
University of Calgary

PRISM Repository https://prism.ucalgary.ca

The Vault Open Theses and Dissertations

2012-12-17

Noise-Immune Digital Circuit Design

Based on Probabilistic Models

Tangim, Golam

Tangim, G. (2012). Noise-Immune Digital Circuit Design Based on Probabilistic Models

(Master's thesis, University of Calgary, Calgary, Canada). Retrieved from

https://prism.ucalgary.ca. doi:10.11575/PRISM/27112

http://hdl.handle.net/11023/361

Downloaded from PRISM Repository, University of Calgary



UNIVERSITY OF CALGARY

Noise-Immune Digital Circuit Design

Based on Probabilistic Models

by

Golam Tangim

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTERS OF SCIENCE

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

CALGARY, ALBERTA

December, 2012

c© Golam Tangim 2012



Abstract

This thesis focuses on the logic design architectures that are inherently tolerant to noise.

It aims at achieving noise-tolerance using Markov Random Field (MRF). This model

considers inputs and outputs of a circuit as random variables and the function is evaluated

via correct network states, which maximize the joint probability distribution of those

variables. In implementation, this translates in creating a feedback that reinforces the

correct states. Such circuits are simulated using the 16nm predictive CMOS technology

model in SPICE.

This thesis proposes the implementation of MRF using Binary decision Diagrams

(BDDs) where such circuits are realized on bi-directional switches. To accomplish the

stability, we introduce BDD with feedback, called Cyclic BDD. The proposed designs are

oriented at hardware implementation on the BDD based wrap-gate nanowire architec-

tures. The comparison of the proposed design against conventional probabilistic models,

in terms of performance, shows lesser power dissipation with the minimum area overhead.

i



Acknowledgments

I am extremely thankful to my supervisor Dr. Svetlana Yanushkevich, for the immense

support and guidance. Her generous inspirations and thoughtful guidelines have helped

me to become an independent thinker. I also thank my co-supervisor, Dr. V. P. Shmerko

for his constructive suggestions and feedbacks throughout the years of my Master’s.

Special thanks to the Information and Communication Technologies (ICT) Recruit-

ment Scholarship and Alberta Innovates Technology Future (AITF) research grant for

the financial support to conduct this research.

I’m grateful to all the people around me in Calgary, who never made me feel away

from home, especially my friends.

Last but not least, a particular thanks to my parents and fiancee for their constant

support and inspiration throughout the whole time.

ii



iii

Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Thesis Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 Background and Theoretical Basis . . . . . . . . . . . . . . . . . . . . . . 8
2.1 Switching theory in logic networks . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Noise in nanoscale circuits . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Sources of noise and error . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Architectural model for error and noise tolerance . . . . . . . . . 10

2.3 Markov Random Field (MRF) . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Algorithm for synthesis of MRF models . . . . . . . . . . . . . . . 15

2.4 Embedding logic function using MRF . . . . . . . . . . . . . . . . . . . . 18
2.5 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3 Nanoscaled IC Design Based on Markov Random Field . . . . . . . . . . 24
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Cyclic BDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Noise-tolerant NOT gate model . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Noise-tolerant NAND gate modeling . . . . . . . . . . . . . . . . . . . . 29

3.4.1 Gate-level networks . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.2 Cyclic BDD based design . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4 Probabilistic Model of Logic Networks Using Shared Cyclic BDDs . . . . 39
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 MRF model of a two-bit adder using a Shared cyclic BDD . . . . . . . . 39

4.2.1 Shared BDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.2 Shared cyclic BDD . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5 Noise Immune Multivalued Logic Design . . . . . . . . . . . . . . . . . . 47
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Ternary Inverter and MIN gate . . . . . . . . . . . . . . . . . . . . . . . 48
5.3 Design of a noise-tolerant ternary inverter . . . . . . . . . . . . . . . . . 49
5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6 Conclusion and Future Works . . . . . . . . . . . . . . . . . . . . . . . . 58
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
A MATLAB Codes for Performance Evaluation . . . . . . . . . . . . . . . . 71
A.1 Noisy Signal Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
A.2 Calculation of BER and KLD . . . . . . . . . . . . . . . . . . . . . . . . 71
B SPICE codes for System Design . . . . . . . . . . . . . . . . . . . . . . . 73
B.1 CMOS based NAND design . . . . . . . . . . . . . . . . . . . . . . . . . 73
B.2 MRF based design from [47] . . . . . . . . . . . . . . . . . . . . . . . . . 74
B.3 Ternnary MRF based Inverter Design . . . . . . . . . . . . . . . . . . . . 75

iv



List of Tables

2.1 Components of the MRF model of binary gates. . . . . . . . . . . . . . . 17

3.1 Comparison of Noise-Tolerant NOT Gate Models, Measured in KLD (BER)
for Various Levels of SNR at 16-nm CMOS Technology . . . . . . . . . . 30

3.2 Comparison of noise-tolerant NAND gate models measured using the KLD
and BER metrics for various levels of SNRs simulated at 16nm. . . . . . 36

3.3 Noise Tolerance of Cyclic BDD Models of the Two-input Logic Gates,
measured in terms of KLD and BER for various levels of SNR, simulated
for 16-nm CMOS technology. . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1 Comparison of conventional 2-bit adder and MRF model of 2-bit adder
(implemented using a shared cyclic BDD) in terms of KLDs and BERs for
various levels of SNR, simulated at 16nm CMOS technology. . . . . . . 42

4.2 Performance comparison of conventional CMOS design of a 2-bit adder
and its noise-tolerant designs based on various implementations of the
MRF model reported in [47, 22, 66], and the proposed shared cyclic BDD
implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Comparison of the number of transistors and power dissipation required for
conventional CMOS implementation, MRF model [47], and the proposed
design for the MCNC’91 circuits. . . . . . . . . . . . . . . . . . . . . . . 45

5.1 Design of a noise-tolerant ternary inverter based on the MRF model. . . 50
5.2 Comparison of the ternary conventional and noise-tolerant inverters. . . 54
5.3 Comparison of CMOS conventional and noise-tolerant ternary inverter. . 56

v



vi

List of Figures

1.1 Noise condition of CMOS based Binary Inverter @ 16nm design for 5db
SNR input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Binary two input AND gate (a) and its truth table (b). . . . . . . . . . . 9
2.2 MRF model of a binary inverter: Gibbs distribution of the output [47] (a),

and its implementation using feedback [56] (b). . . . . . . . . . . . . . . 18
2.3 MRF network and compatibility truth table for NOT gate (a) and two-

input EXOR gate (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Noise-tolerant logic NOT gate based on MRF model [47] (a) and its com-
patibility table (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 (a) The cyclic BDD which implements the MRF model of a NOT gate con-
sists of two connected BDDs: the left BDD implements the compatibility
function U(x1, x2) = x1⊕ x2; the right BDD corresponds to the reinforcer
function R(x2, U) = x2 ⊕ U , as shown in its truth table; (b) Equivalent
transistor circuit of a single DEMUX. . . . . . . . . . . . . . . . . . . . . 27

3.3 (a) CMOS implementation of a cyclic BDD for a NOT logic gate; (b)
Fragment of the simulation results (noisy input and noise-tolerant output)
at the subthreshold supply voltage (b). . . . . . . . . . . . . . . . . . . . 29

3.4 (a) MRF-based architecture with feedback of noise-tolerant logic NAND
gate [47]; (b) latch-based architecture with feedback of noise-tolerant logic
NAND gate [22]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 (a) Complete BDD for a NAND gate; (b) BDD node implementation on
pass-gate transistors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6 The cyclic BDD-based architecture of noise-tolerant NAND logic gate,
consisting of two connected BDDs. The left BDD implements the compat-
ibility function U(x1, x2, x3) = x1x2 ⊕ x3, and the right BDD corresponds
to the reinforcer function R(x3, U) = x3 ⊕ U as shown in its truth table. . 32

3.7 Fragment of the simulation results at the subthreshold supply voltage for
the NAND gate: The inputs and corresponding output for CMOS and
BDD based design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.8 The 16-nm Berkeley predictive CMOS implementation of cyclic BDT for
NAND logic gate based MRF model. . . . . . . . . . . . . . . . . . . . . 35

3.9 (a) Comparison of noise-tolerance of the cyclic BDD models of elementary
logic gates, measured in terms of BER metric; (b) KLD metric with respect
to the input SNR for the 16-nm CMOS technology. . . . . . . . . . . . . 37

4.1 A two-bit adder (a) and its implementation using a shared BDD (b). . . 40
4.2 Noise-tolerant two-bit adder based on implementation of the MRF model

by cyclic shared BDD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41



4.3 Noise output signals s0, s1, and s2 of the 2-bit adder for input SNR value
7db for conventional CMOS design (left), and the same noise-free signals
in CMOS MRF model, implemented using a shared cyclic BDD (right). . 43

5.1 Gate symbol and truth table for a ternary inverter (a) and two-input
ternary MIN gate (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2 Output voltage probability distribution for a ternary inverter . . . . . . . 50
5.3 A conventional CMOS ternary inverter [79]. . . . . . . . . . . . . . . . . 51
5.4 Conventional CMOS ternary two-input MIN-NOT gate. . . . . . . . . . . 52
5.5 A ternary noise-tolerant inverter based on MRF model. . . . . . . . . . . 53
5.6 The output of a conventional ternary CMOS NOT gate, and its noise-

tolerant MRF-based model, given the noisy input signals. . . . . . . . . 55
5.7 Output voltage probability distribution of a noise-tolerant ternary inverter. 56

vii



1

Chapter 1

Introduction

Nanotechnology is probably, as a phenomenon, the single most important new

emerging force in technology.

-Charlie Harris, CEO, Harris & Harris Group

In the past decade, the semiconductor chip fabrication industry has been experiencing

a steady downscaling of device dimension, from submicron to nano domain. At the

same time, constant size downscaling and increased packing density cause unreliable or

probabilistic behaviour of the device due to the intrinsic noise [1], defects [2], dopant

concentration [3, 5] and tunneling effect [4]. The electro-chemo-mechanical phenomena

in the nanoscale integration are accountable for the simultaneous increase in the device

output noise and soft-errors [6].

Due to the unavoidable physical limit of semiconductors, the gate length is predicted

to stop near LG ∼ 5nm with the supply voltage being just Vdd ∼ 0.3V [7]. This Ultra

Large Scale Integration (ULSI) with a minimum supply will unquestionably add up to the

device noise and will cause its probabilistic behavior. As shown in Figure 1.1, a simple

binary CMOS inverter, designed using 16nm Predictive Technology Model (PTM), will

yield to noisy output and render ineffective with the introduction of 5db SNR noisy

input signal (circuit driving voltage is 0.3V ). Note that this noise is an Additive White

Gaussian noise (AWG) modeled using Gaussian process. Given the noise free signal y,

the overall noisy signal can be is expressed as Y = y + e, where, e is signal noise.

In the sub threshold region, the intrinsic device noises dominate which are due to

thermal noise, capacitive electrostatics, magnetic interferences and threshold variation.



2

Figure 1.1: Noise condition of CMOS based Binary Inverter @ 16nm design for 5db SNR
input

With low supply voltage, the reduced noise margin and non-uniform behavior of the

circuits, the computation shifts from deterministic towards probabilistic paradigm.

The solution to the problem of noise margin and power consumption took an inter-

esting turn as Palem’s group [13, 14, 15] introduced the idea of considering the in-system

noise as a resource, other than an obstacle. They also developed the algorithms to per-

form probabilistic switching and to use the switches for low power computation.

Examples of models, satisfying the requirements of dealing with noisy environment,

include adaptive signal processing [16] and recurrent neural networks [17, 18]. Most of

these models utilize statistical data [16, 19]. The previous states of a system are used to

generate a statistically reliable, or correct, current states. A recent development of such

model is based on the Markov Random Field (MRF). In hardware implementation, the

state correction is accomplished by using a feedback. Therefore, the MRF-based models

are combinational networks of logic gates with feedback [21], which can be re-structured

as latches [22].



3

The silicon industry has found a way out of the physical limitation problem, by de-

veloping the following technologies: Carbon Nanotube Field-Effect-Transistors (CNFET)

[28], Quantum Cellular Automata (QCA) [29], Single Electron Tunneling (SET) devices

[30], Molecular Devices [31], Silicon Nanowire [32] and Wrap Gate Nanowires [33]. These

technologies not only provide the way to overcome the barrier of the semiconductor phys-

ical limit, but also are stochastic in nature. The inherent stochastic behavior of these

techniques makes them suitable for the probabilistic computing approach [34]. Even

though the development of small gate level circuits is reported, large scale circuits are

yet to be designed using these techniques. The most advanced circuits in this regard are

based on CNFET and Wrap-Gate Nanowire based designs.

This dissertation aims at providing a noise immune circuit design technique that can

be readily implementable using emerging technology. For this purpose, the inherently

probabilistic Markov Random Field (MRF) model is used. The circuit design strategy

is developed around the idea of Binary Decision Diagram (BDD) mapped onto the wrap

gate nanowire structure reported in [33]. The thesis also proposes a probabilistic circuit

design approach based on MRF for the design of non-binary or multivalued noise-immune

circuits.

1.1 Thesis Contribution

The key contributions of this thesis are as follows.

Investigation of noise scenarios in nano-scaled CMOS. This thesis investigates

the nano-scaled CMOS designs of elementary gates at the 16nm technology on

SPICE. For the simulation, the Predictive Technology Model (PTM) model from

Berkeley is used (available at http://ptm.asu.edu/). The elementary universal

gates (NAND, NOR and NOT) were designed and simulated in the presence of



4

noisy input, and several parameters (SNR, BER and KLD) were introduced for the

evaluation of gate reliability.

Introduction of novel MRF based circuit design framework. The dissertation re-

views the idea of a probabilistic framework based on Markov Random Field (MRF)

[46], first proposed by Bahar et. al. [56], and proposes a novel design methodology.

The gates, designed based on MRF, are made stable using a reinforcer, feeding the

correct value back to input from output. The thesis implements the proposed de-

sign on the CMOS based transistors, and compares the reliability of the elementary

level gates with that of the other designs.

Implementation of MRF based circuit on Decision Diagram. This thesis proposes

the complete novel idea of Cyclic-Binary Decision Diagram (Cyclic-BDD), using

multiplexers. Mapping the MRF model onto a BDD is a precursor towards imple-

mentation on wrap-gate nano-wire based structure [33]. Not only the elementary

gates, but also the large scale circuits, such as the MNCN’91 benchmarks are mod-

eled on SPICE.

Extension of probabilistic circuit design towards the multivalued domain. The

thesis extends the MRF based idea of binary circuit design to the multivalued do-

main. The dissertation introduces Arithmetic transformation method [48] for the

calculation of the output probability of the multivalued gates (e.g. ternary gate).

The proposed ternary logic gates are implemented, and the reliability is compared

against the conventional CMOS based multivalued gate design.

The BDD implementation and its noise immunity, presented in this thesis, is not

significantly different from MRF on CMOS [47], but the main difference is that the used

data structure (BDD) is alternative to traditional, which allows to create noise-robust

BDD nanodevices such as wrap-gate nanowire circuits.



5

The research presented in this dissertation has appeared in publications [1-7]. Sections

2.3 and 2.4 in Chapter 2, describe the spectral transformation methods, proposed for the

calculation of the clique energy for Markov Random Field model, it is published in papers

[2] and [7]. The Cyclic BDD based architecture introduced in Chapter 3 was published

in [5] and [6]. Chapter 4 is covered by publication [4]. The probabilistic nature of

multivalued (ternary) gates, introduced in the Chapter 5 is published in [2] and [7]. The

rest of Chapter 5 is covered by publication [3]. The publication [1] also covers Chapter

3 and 4.

[1] S. Yanushkevich, S. Kasai, G.Tangim, T. Mohamed, V. Shmerko, Noise-immune and Fault-

tolerant Models for Nanoscale Logic Devices, in press, Morgan & Claypool Publishers,

USA, January 2013

[2] G. Tangim, S. N. Yanushkevich, S. E. Lyshevski, ”Noise Immune Digital IC Design based on

Shared Cyclic BDDs”, 50th ACM/IEEE Design, Automation Conference (DAC), Austin,

Texas, June 2013 (submitted)

[3] G.Tangim, S.N. Yanushkevich, S. Kasai, V.P. Shmerko, Multivalued Fault-tolerant Logic

Design Using Cyclic Decision Diagram Techniques, IEEE 43rd International Symposium

on Multiple-Valued Logic (ISMVL), Toyama, Japan, May 2013 (submitted)

[4] G. Tangim, T. Mohamed, S. N. Yanushkevich, S. E. Lyshevski, ”Comparison of Noise Tol-

erant Architectures of Logic Gates for Nanoscaled CMOS” 2nd International conference

on High Performance Computing (HPC), vol. 2, pp.66-73, October, 2012

[5] S.N. Yanushkevich, G.Tangim, S. Kasai, S. E. Lyshevsky, V.P. Shmerko, ”Design of na-

noelectronic ICs: Noise-tolerant logic based on cyclic BDD,” Nanotechnology (IEEE-

NANO), 2012 12th IEEE Conference on , vol., no., pp.1-5, 20-23 Aug. 2012

[6] S. N. Yanushkevich, A. H. Tran, G. Tangim, V. P. Shmerko, E. N. Zaitseva and V. Lev-

ashenko, The EXOR Gate Under Uncertainty: A Case Study, Facta Univ. Ser.: Elec.



6

Energ., vol. 24, No. 3, December 2011, pp. 451-482

[7] S. N. Yanushkevich, V. P. Shmerko, A. Abbasinasab, G. Tangim; , ”Probabilistic Gates and

Belief Networks”, 20th International Workshop on Post-Binary ULSI Systems, Tuusula,

Finland, May 2011.

1.2 Thesis Organization

This dissertation consists of the following chapters.

Chapter 1: Introduction, provides an introduction on the probabilistic computing

method in nanoscale with the motivation and history of the works. It also discusses

the contributions of this research and outlines the organization of the thesis.

Chapter 2: Background and Theoretical Basis. The basics of switching theory, noise

scenario in nanoscale circuits and the corresponding architectural design method-

ologies for reliable circuit design are covered in this chapter. This chapter presents a

detailed discussion on Markov Random Field (MRF) for the proposed probabilistic

circuit design. The existing design methods are discussed along with the spectral

transformation methods such as the Arithmetic, Haar and Walsh transformation.

Chapter 3: Nanoscaled IC Design based on Markov Random Field. The exist-

ing design techniques related to probabilistic design, are considered and a new de-

sign technique of reinforcement is introduced. The idea of Cyclic Binary Decision

Diagram (Cyclic BDD) is introduced, and theoretical explanation with practical

simulation results are provided.

Chapter 4: Probabilistic Model of Logic Networks Using Shared Cyclic BDDs.

As a new idea of probabilistic gate design is introduced in the previous chapter, this

chapter focuses on building larger scale circuits, other than elementary logic gates.



7

For the design of large scale reliable circuits with the minimum power consump-

tion, the idea of Shared Cyclic Binary Decision Diagram (Shared Cyclic BDD) is

introduced. This chapter outlines the design methodology of a binary 2-bit adder

circuit, along with the MCNC’91 benchmarks and also does a systematic compar-

ison on reliability and other circuit performance parameters against the existing

modeling techniques.

Chapter 5: Noise Tolerant Modeling of Multivalued Gates based on MRF. This

chapter extends the idea of reliable circuit design to the multivalued domain. The

energy function is extended to design the MRF based reliable Ternary Inverter.

The MRF based ternary inverter is compared with the conventional CMOS based

ternary inverter, in terms of the performance.

Chapter 6: Conclusion. This chapter concludes the thesis with the summary of the

contributions and future scopes of related research and development.



8

Chapter 2

Background and Theoretical Basis

Deep submicron and nano-scale circuits are highly susceptible to noise. As described in

the previous chapter, the intrinsic probabilistic behavior and reduced noise margin due

to lower supply voltage causes the output errors. This chapter discusses about the noise

influence on errors in digital circuits. The approach to tolerate noise, including one the

thesis focuses on, Markov Random Field (MRF), are introduced.

2.1 Switching theory in logic networks

Switching algebra is the theoretical foundation of circuit design and decision diagram

technique. The Boolean algebra is denoted by the set β = {α; +,×; ¯ ; 0, 1}, where α is

the set of input variables. It also includes the two output elements 0 and 1, two binary

operations +, and × and an unary operation ¯ [82].

A special case of Boolean algebra with two elements is called switching algebra. In

switching algebra, an n-variable function f : βn → β is called a switching function. A

switching function of n variables is a discrete function where

f : {0, 1}n → {0, 1}

where {0, 1}n denotes the n-fold Cartesian product of 0 and 1 that is the set of all

binary n-tuples. Each n-tuple, mapped to 1 by the function, is a minterm of the function.

For example, the figure 2.1(a) shows a two input binary AND gate with its truth table

2.1(b). Being a binary system, the inputs can take on values 0 and 1. The possible input

combinations will be a set of 22 = 4 different tuples, that is {00, 01, 10, 11}. Each of the



9

input combination can be mapped to the range of the output being {0, 1}, as shown in

the truth table. Given x1 and x2 being the inputs and output being x3, x1x2 is the only

minterm of the AND gate.

x1 x2 x3

0 0 0
0 1 0
1 0 0
1 1 1

(a) (b)

Figure 2.1: Binary two input AND gate (a) and its truth table (b).

2.2 Noise in nanoscale circuits

With the downscaling of device dimension towards deep submicron and nano scale, dif-

ferent sorts of noises and errors occur in the circuits. To tackle the noise scenario in

nanoscaled digital circuits, a proper model of noise and error is needed with particular

design approach based on the models. This section describes the noise and error sources

at nanoscale, along with the available architectural noise-tolerant design methodologies.

2.2.1 Sources of noise and error

In nanoscale devices, the errors can occur for a number of reasons, starting from fabri-

cation defects to intrinsic device characteristics. A few of the sources that are mostly

responsible for circuit failures are given below.

Thermal noise. As the nanoscaled circuits usually operate only at the very low tem-

peratures, the slight change in temperature can cause the circuit output deviations.

The thermal variation during operation is responsible for radical rise in the output

variance [50].



10

Leakage noise. This noise became an important contributor as soon as the device gate

length scaled below 0.25µ. Even in the device OFF stage, the current leaks through

the circuit to ground, degrading the voltage at the nodes. This creates the attenu-

ation in the output voltage level of the circuit. It is considered to be a major cause

of nano-circuit noise [43].

Supply noise. As the capacitors and resistors of the circuit demand equal current

through the power grid, the components further away from the source get a re-

duced supply, which results in timing problem and functional failure. Furthermore,

lowering the supply voltage in modern technologies causes a reduction in noise

margin, and in proportion to that, a reduction in signal-to-noise ratio.

Crosstalk noise. As the number of devices inside the chip and closely laid intercon-

nections increase, the capacitive coupling among the neighboring wires increases.

Being in a close physical proximity, the grid switching characteristics get affected

due to the raised capacitive coupling [44].

Miscellaneous. Other than the device-level noises, other deviations exist at molecular

or the atomic level. Tunneling noise, shot noise [45], threshold variation [21] and hot

electron effect are some of the sources of noise in the nanoscaled circuits. They make

the circuits more vulnerable to errors, compared to the microelectronic technology.

2.2.2 Architectural model for error and noise tolerance

In order to combat noise and make noise-tolerant circuit design, an acceptable modeling

technique is required. The reliability of circuits can be achieved through architectural

level design [12], device-level methodology [11], error correcting codes for fault detection

and correction [35], system learning using neuromorphic models [18] or Bayesian learning.

The architectural reliability mainly focuses on special circuit configuration and design



11

for fault and noise tolerance, as well as on the transistor level. The recent techniques

developed to achieve circuit reliability are listed below.

Circuit redundancy is one the mostly used circuit design schemes for reliability, where

the circuit elements are replicated N times and passed through a majority gate for

the final decision. Here, N is generally an odd number. This technique is called N-

Tuple Modular Redundancy. A popular variation of this technique is called Triple

Modular Redundancy (TMR) [10]where, N = 3. Other variations include Cascaded

Triple Modular Redundancy [37], Triple Interwoven Redundancy [38] etc. Another

circuit redundancy technique is the Error Correcting Codes [35], where the error is

detected at the receiving end, and corrected accordingly.

Markov Random Field (MRF) proposes a probabilistic method of circuit design.

Rather than traditional circuits, the deployed elements are random in nature, and

use reinforcement to only yield output for the correct states [43, 47]. The output

state combinations, having the highest probability of occurrence, are thought to be

the correct logic levels.

Crossbar architecture is another reliable design technique proposed by Chen et al.

[40]. This is an online testing method, where the defective devices and the inter-

connections systematically go through a Triple Modular Redundancy testing.

Ensemble Dependent Matrix (EDM) considers alternate elements of the circuit with

the same functionality [41]. In the process, the element with the lowest Bit Error

Rate (BER) is chosen among the same functional blocks to produce the least BER

for the whole circuit.

As this dissertation focuses on the reliable circuit design on the architectural level,

based on the principles of Markov Random Field, the next section of this chapter presents



12

an elaborate discussion on the theory and implementation methodology using Markov

Random Field.

2.3 Markov Random Field (MRF)

The basic definitions of Markov Random Field and its application for implementation of

logic functions are discussed in this section.

2.3.1 Basic definitions

The fundamental definition for the MRF is based on [49], and the applied results are

reported in [47, 22, 66]. In terminology, we follow contemporary textbooks on probability

and statistic for engineers, such as [81].

Let X = (x1, x2, . . . , xn) be a set of random variables. Each variable, xi, i =

1, 2, . . . n, takes a finite set of states, for example, two states xi ∈ {0, 1} (binary variable),

or m states xi ∈ {0, 1, . . . ,m − 1} (m-valued variable). Consider the undirected graph

G(V,E), where elements of V and E are called nodes and links, respectively. In G(V,E),

each node vi ∈ V corresponds to a random variable xi. A link in E between nodes v and u

is specified by an unordered pair (u, v), where v and u are called neighbors. This graph

represents a logic network defined on a library of gates. The interconnected neighbors in

a graph produce a clique.

Formal notion of the MRF model. The MRF model of a logic gate is acceptable

for hardware implementation and also convenient for probabilistic analysis of noisy logic

gates and networks [56, 47, 22, 66]. The MRF is characterized by a Gibbs joint probability

distribution:

p(X = x) =
1

Z
exp

(
E(x)

kT

)
(2.1)



13

where Z is a scaling factor (to normalize the total probability to 1), E(x) is an energy

function, and kT is a control parameter.

Logic function embedding. A logic function is embedded into the MRF model

using an energy function. First, this function must be represented in the form of its

compatibility truth table (instead of traditional truth table). The compatibility truth table

represents a compatibility function defined as any algebraic form (instead of logic one),

for example, arithmetic, Walsh, or Haar form [74]. Given a logic gate, its compatibility

function is the energy function.

The MRF-based software models. Probabilistic analysis of logic gates, or net-

works of gates, is provided by computing a joint probability distribution, or marginal

distributions (2.1). No strong limitations on the model for such analysis exist. However,

the arithmetic sum of the function’s minterms is preferable for the hardware implemen-

tation.

The MRF-based hardware models. For hardware implementation, the maximum-

likelihood computing strategy is realized using feedback circuits. The energy function

of a logic is defined as an arithmetic sum of its minterms. The search for the correct

solution is implemented by reinforcement. This idea was implemented in [47] through

designing a device called a reinforcer, using a logic array with multiple feedbacks. Note

that the reinforcer is simpler than a neuromorphic model, which is based on threshold

elements [18]. Hence, there is no notion of a correct logic state in the MRF model, as

the states are determined using the Gibbs probability distribution of signals. The correct

states are those, which maximize the joint probability distribution of random variables.

The process is thoroughly explained below.

Definition 1. Given the compatibility truth vector U of a Boolean function f of n vari-

ables, the arithmetic spectrum of zero polarity, A = (a1, a2, . . . , an) is calculated using



14

the arithmetic transform [74]:

A = A2n ·U, (2.2)

where matrix A2n is formed as follows

A2n =
n⊗

j=1

A2j , A21 =

 1 0

−1 1


Definition 2. Arithmetic form of r-input, x1, x2, . . . , xr, logic function f , given by

spectral coefficients, a1, a2, . . . , an is defined by the polynomial:

f =
2r−1∑
i=0

ai · (xi11 · · · xirr ), (2.3)

where ij is the j-th bit 1, 2, . . . , r, in the binary representation of the index i = i1i2 . . . ir;

x
ij
j = 1 if ij = 0, and x

ij
j = xj if ij = 1.

Example 1. Arithmetic spectrum (representation) of a 3-input logic gate (n = 3),

implementing a function f(x1, x2, x3), is defined by Equation (2.3) as follows: f =

a0 + a1x3 + a2x2 + a3(x2x3) + a4x1 + a5(x1x3) + a6(x1x2) + a7(x1x2x3).

Example 2. Given the compatibility truth vector U of the 2-input AND gate, f = x1x2,

a clique potential is calculated using arithmetic transform (2.2):

A = A23 ·U =



1 0 0 0 0 0 0 0

−1 1 0 0 0 0 0 0

−1 0 1 0 0 0 0 0

1 −1 −1 1 0 0 0 0

−1 0 0 0 1 0 0 0

1 −1 0 0 −1 1 0 0

1 0 −1 0 −1 0 1 0

−1 1 1 −1 1 −1 −1 1





1

0

1

0

1

0

0

1



=



1

−1

0

0

0

0

−1

2


Thus, the vector of spectral coefficients of the clique potential is A = [1 −1 0 0 0 0 −1 2]T .

The energy function in algebraic form is defined by Equation (2.3):

E(v) = 1− v3 − v1v2 + 2v1v2v3 (2.4)



15

2.3.2 Algorithm for synthesis of MRF models

Consider a 2-input logic gate L of a function f , which is described by a single clique

c = {v1, v2, v3} (complete graph) with energy function E(x) = Vc(x). The algorithm for

designing the MRF model of this gate is as follows.

Algorithm 1: The MRF model design for a 2-input logic gate

Input: (a) Graph model {v1, v2, v3} (complete graph) and (b)

function of gate L

Output: An MRF model of L gate

1. Form the compatibility truth table

2. Calculate the energy function, E(v), using Fourier-like

transform, in particular, arithmetic transform (2.2).

3. Specify Gibbs distribution (2.1) by substituting energy

function, E(v), into it.

4. Calculate the marginal probability distribution of the

output node.

Designing the MRF model for the AND gate is illustrated by the following example.

Example 3. Let L be the two-input binary AND gate. Its graphical model is a complete

graph with three nodes, v1, v2 and v3 where v1 and v2 are inputs and v3 is the output

that complete the clique {v1, v2, v3}. Its compatibility truth table (step 1) is calculated as

follows:



16

V1 V2 V3 U Comment

0 0 0 1

0 0 1 0 Undesirable

0 1 0 1

0 1 1 0 Undesirable

1 0 0 1

1 0 1 0 Undesirable

1 1 0 0 Undesirable

1 1 1 1

Clique potential, calculated in Example 2, is equal to energy function, E(v). Gibbs

distribution is specified by substituting E(v) (2.4) into (2.1):

p(v1, v2, v3) =
1

Z
exp

(
1− v3 − v1v2 + 2v1v2v3

kT

)
(2.5)

Marginal distributions are obtained by summing over all possible states of v1:

p(v2, v3) =
1

Z1

∑
v1∈0,1

exp

(
1− v3 − v1v2 + 2v1v2v3

kT

)
=

1

Z1

[
exp

(
1− v3
kT

)
+ exp

(
1− v3 − v2 + 2v2v3

kT

)]

Finally, marginal probability distribution of v3 is obtained by summing over all possible

states of v2:

p(v3) =
1

Z2

∑
v2∈0,1

[
exp

(
1− v3
kT

)
+ exp

(
1− v3 − v2 + 2v2v3

kT

)]
=

1

Z2

[
3 exp

(
1− v3
kT

)
+ exp

(
v3
kT

)]
(2.6)

Example 4. The MRF design for binary NOT, OR and EXOR gate is shown in Table

2.1. Assume p(v1 = 1) = p(v1 = 0) for arithmetic representation of clique potential.



17

Then, after marginalization with respect to v2, MRF model is represented as follows for

a NOT gate with input v1 and output v2:

p(v2) =
exp( v2

kT
) + exp(1−v2

kT
)

2(1 + exp( 1
kT

))
(2.7)

Table 2.1: Components of the MRF model of binary gates.

Gate Graph model Compatibility Energy function (clique) representation
(clique) truth table Arithmetic spectrum Walsh spectrum

 

x f 

f = x

f x 

v1 v2 
v1 v 2 U 
0 0 0 
0 1 1 
1 0 1 
1 1 0 
   

 

U = [0 1 1 0]T

A = [0 1 1 − 2]T

E(v) = v1 + v2 − 2v1v2

U = [0 1 1 0]T

W = 1/4 × [2 0

0 − 2]T

E(v) = 1/4 × [2

−2(−1)v1+v2 ]

 

x1 

x2 

f 

f = x1 ∨ x2

f 

x2 

x1 
v1 

v2 

v3 

v1 v2 v3 U 
0 0 0 1 
0 0 1 0 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 1 
1 1 0 0 
1 1 1 1 
    

 

U = [1 0 0 1 0 1 0 1]T

A = [1 − 1 − 1 2

−1 2 1 − 2]T

E(v) = 1− v1 − v2 − v3

+v1v2 + 2v1v3

+2v2v3 − 2v1v2v3

U = [1 0 0 1 0 1 0 1]T

W = 1/8 × [4 − 2 0 2

0 2 0 2]T

E(v) = 1/8 × [4− 2(−1)v3

+2(−1)v2+v3 +

2(−1)v1+v3 +

2(−1)v1+v2+v3 ]

 

x1 

x2 

f 

f = x1 ⊕ x2

f 

x2 

x1 
v1 

v2 

v3 

v1 v2 v3 U 
0 0 0 1 
0 0 1 0 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 1 
1 1 0 1 
1 1 1 0 
    

 

U = [1 0 0 1 0 1

1 0]T

A = [1 − 1 − 1 2

−1 2 2 − 4]T

E(v) = 1− v1 − v2 − v3

+2v1v2 + 2v1v3

+2v2v3 − 4v1v2v3

U = [1 0 0 1 0 1 1 0]T

W = 1/8 × [4 0 0 0 0

0 0 4]T

E(v) = 1/8 × [4 +

4(−1)v1+v2+v3 ]

The output probability distribution of a Binary Inverter along with the MRF based

circuit implementation from [47], is shown in the Figure 2.2. The equal concentration of

output probability towards the logic 0 and 1 are equally distributed for the inputs, being

equally likely to be 0 and 1.



18

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Output voltage, v
2

P
ro

ba
bi

lit
y,

 p
(v

2)

 

 

kT=0.1
kT=0.25
kT=0.5

(a)

x1 x2 x1 x2 
• 

• 

• 

• 

• • 
• • 

Reinforcer NOT  

x1 x2  

x1x2 

Feedback 

(compatibility) 

(b)

Figure 2.2: MRF model of a binary inverter: Gibbs distribution of the output [47] (a),
and its implementation using feedback [56] (b).

2.4 Embedding logic function using MRF

The MRF model of a logic gate is acceptable for hardware implementation [47, 22, 66],

and useful for probabilistic analysis [56].To embed the logic function into the MRF model,

(a)the logic function must be presented in the form of compatibility truth table (instead

of traditional truth table), and (b) the compatibility function must be represented by the

arithmetic expression (instead of logic one). In terms of the MRF model, this expression

is called the energy function, E(x).

The graphical representation of the MRF for the logic function NOT (x2 = x1) and



19

EXOR function (x3 = x1⊕ x2), along with their compatibility truth tables, are shown in

Fig. 2.3, where the valid state combinations correspond to the value 1 of the compatibility

function, (U), and to the value 0, otherwise.

x1 x2 U
0 0 0
0 1 1
1 0 1
1 1 0

(a)
x1 x2 x3 U
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

(b)

Figure 2.3: MRF network and compatibility truth table for NOT gate (a) and two-input
EXOR gate (b).

In the MRF model, the compatibility function U corresponds to the real valued

function called energy function, E(x); it is defined as an arithmetic sum of the valid

minterms, also called an arithmetic polynomial [48]. For example, the compatibility

function for NOT and EXOR (Fig.2.3) is UNOT = x1x2 + x1x2 and UEXOR = x1x2x3 +

x1x2x3 + x1x2x3 + x1x2x3, respectively. In general form, the compatibility function, U ,

of an n-input function f = xn+1 of n variables x1, .., xn can be written as follows:

U = u0...00x
0
1...x

0
nx

0
n+1 + u0...01x

0
1...x

0
nx

1
n+1 + · · ·+ u1...11x

1
1...x

1
nx

1
n+1

= SumMaxterm× x0n+1 + SumMinterm× x1n+1

where u0...00, ...u1...11 are the components of the truth table of U , x0 = x and x1 = x,

SumMaxterm and SumMinterm are the arithmetic sums of the maxterms (the variable

assignments at the function value 0) and minterms (the variable assignments at the

function value 1), respectively. For example, for NOT function, UNOT = x1x2 + x1x2 =



20

x1f + x1f (Fig. 2.3a);

By analogy, for EXOR function (Fig. 2.3b),

UEXOR = (x1x2 + x1x2)x3 + (x1x2 + x1x2)x3

= (x1x2 ∨ x1x2)x3 + (x1x2 ∨ x1x2)x3 = (x1 ⊕ x2)f + (x1 ⊕ x2)f

Therefore, the compatibility function preserves the states of the MRF via this twofold

representation: a combination of maxterms (the minterms, corresponding to the values

0 of the function f), which are true when the function is false (hence, the product

of this sum and f), and the minterms, which are true when the function f is true.

This corresponds to an implementation, which is a circuit with a feedback: both the

variable-dependent implementation of the function and its complement are reinforced

via a feedback. It preserves the previous (correct) state of the system, due to delay on

the line (envisioned in 2.2(b) [47] as a chain of inverters). Note that both the previous

and current states corresponds to the same combination of the inputs, x1, ..., xn, and

the output f = xn+1. If there is a fault on a line, such that the system “deviates” from

the correct state, the reinforcement mechanism corrects the invalid state by forcing the

system to correct state. Note that the reinforcement in the form of a positive feedback is

ensured from the action results; the more rewarding the task, the greater the probability

is that it will be selected again. Such reinforcement is a well-known computing paradigm

in adaptive computing and artificial intelligence [60].

2.5 Performance Metrics

In the presence of noise, the gate output, Y , can be written as Y = y+ e, where y is the

noise-free output (desired signal); e is signal noise.



21

To evaluate performance of various models, the following metrics were used in our

study:

Signal-to-Noise Ratio

Signal-to-Noise Ratio (SNR), measured in decibel (dB), is defined as follows:

SNR = 10 log10

σ2
y

σ2
e

(dB), (2.8)

where σ2
y and σ2

e are the variances of the desired signal y and the noise e, respectively.

Example 5. Modeling with SNR = 10 dB means that the signal instantaneous power

is 10 times higher than the noise power. Given an input signal of 300mV, the noise

modeling under SNR = 5 dB assumes the noise variance of 14.3 mV. As the SNR of the

input signal rises up to 10 dB, the signal variance reduces to 4.5 mV.

Bit-Error Rate

Bit-Error Rate (BER) is the fraction of information bits in error; it is defined as follows:

BER =
Number of errors

Total number of bits

The BER value of a circuit output represents the relative number of bit-errors due to

the noise, interference or distortion. It is an unitless performance measure and can be

expressed in percentage also.

Example 6. Given a 300 mV input signal and SNR = 5 dB, the BER for the conven-

tional CMOS NAND gate is BER = 0.0478, simulated for 16 nm technology. In circuit

theory, it corresponds to 47 bit flips out of a total of 1000 bits.

Kullback-Leibler Distance

The Kullback-Leibler Distance (KLD) is the measure of discrepancy between the proba-

bility distribution of the noise-free output py (ideal discrete signal) and the probability



22

distribution of the noisy output pY (real discrete signal) [77]. The KLD is defined as the

average with respect to the probabilities py, scaled by the logarithmic difference between

the probabilities py and pY [77]: For multivalued signal, the number of summed term rises

equally with the rise in the number of states.

KLD =
∑

States y

py ln
py
pY

In the physical notion, the Kullback-Leibler Distance is the measure of the information

lost when Y is used to approximate y. In information theory, KLD corresponds to the

required extra bit per datum, to convey the same information as for the true distribution

y, while the practical distribution for approximation is Y . The outcome of a high KLD

value interprets as the high variance in the considered Y distribution, making the output

distribution highly probable to cause bit-flips, hence, errors.

Example 7. The 300 mV input signal for SNR = 5 dB results in KLD = 2.1714 for

regular CMOS design @ 16nm, meaning that, 2.1714 extra bit per datum is required, to

convey the same information as for the true distribution compared to approximation; it

also means that chance of bit flips increases about twice.

We compared the various gates and technologies in terms of the BER and KLD,

given the same SNR. The goal of noise-tolerant design can be formulated in terms of

these measurement. The physical notion of BER is the relative amount of error in the

system and for KLD, it is the variance in the output signal. The lower the BER and KLD,

the better the system performance. So, for a given level of SNR, we aim at achieving the

performance of a model such that

BERProposed < BERConventional

or/and

KLDProposed < KLDConventional



23

2.6 Summary

This chapter introduces the reliable circuit design techniques from the architectural point

of view. The elaborated theoretical discussion on the contemporary probabilistic design

methodology based on Markov Random field is also presented in this chapter.



24

Chapter 3

Nanoscaled IC Design Based on Markov Random Field

3.1 Introduction

Noise-tolerance is a distinct approach to handle noise in nanoscaled ICs. Noise mitigation

requires complex temperature assessment and consequent circuitry redundancy. Noise-

tolerance is understood as the property of a device where the decision making process does

not get compromised even in the presence of noisy input signals. Noise-immune design,

design based on error correcting codes are thought to be some of the design examples

[27]. In particular, in [17, 18], neuromorphic models based on Hopfield networks with

Boltzmann updating rules were studied. These models exhibit noise tolerance. However,

depending on the signal-to-noise ratio, thousands iterations are required in order to ensure

the stability of these networks with corresponding states and outputs.

This work is concerned with noise-tolerance using Markov Random Field (MRF).

The MRF, unlike the Hopfield model, does not require time-redundancy which is a multi

iteration process of stabilization. It considers inputs and outputs of circuits as random

variables. There is no notion of a correct logic state in the MRF model, as the states

are determined using the probability distribution of signals. The correct states are those,

which maximize the joint probability distribution of random variables. In circuit im-

plementation, it is achieved via a feedback, which reinforces the most probabilistically

correct state and reduces the error of incorrect (less probable) outputs.

In [47], an MRF model of logic gates is proposed using a reinforcement and updated

by means of a feedback. The CMOS implementation of the modified MRF model was

reported in [22]. Instead of using logic gates, this thesis work employs bidirectional



25

switches as the proposed design solution. Such circuits are often modeled using the

Shannon expansion with the corresponding graph-based implementation, called a Binary

Decision Diagram (BDD). To implement the premise of feedback, a new type of decision

diagram is introduced , namely, Cyclic BDD.

3.2 Cyclic BDD

Binary decision diagram

An n-level Binary Decision Tree (BDT) represents a logic function of n variables. A BDT

is a rooted directed graph with two types of vertices: non-terminal nodes (on levels 1 to n

of the tree) and terminal nodes, corresponding to the function values. A BDD corresponds

to a representation of a discrete function by means of the Shannon expansion. They are

easily mapped to technology because the layout of a circuit is directly determined by the

shape of the BDD and each node corresponds to a 1-to-2 demultiplexer (DEMUX) or a 2-

to-1 multiplexer (MUX). An example of a BDD-based nanoscale structure is a wrap-gate

nanowire network, in which a single or few electrons are injected into the root node, and

correspondingly, registered at one of the terminal nodes. These nanowire structures for

implementing logic functions have been fabricated at the Research Center for Integrated

Quantum Electronics at Hokkaido University [33].

Cyclic binary decision diagram

To realize a feedback in a BDD, we introduce a Cyclic BDD [66] by analogy with a

cyclic graph. In the proposed cyclic BDD, the output of the root node is fed back

to the “select” inputs of the nodes, using a reinforcement function, which can also be

implemented by a BDD. In hardware implementation, a BDD node corresponds to a

DEMUX, or MUX, because the terminal nodes store the truth-table and the output of



26

the function is evaluated by assigning the “select” inputs of the MUX. The first approach

is called “top-to-bottom”, while the second is referred to as the “bottom-to-top” design.

The cyclic BDDs can be implemented using either approach. The output of the

network, which implements the gate, is fed back to the “select” inputs of the network

via a reinforcement part, which can also be implemented using DEMUXes or MUXes.

3.3 Noise-tolerant NOT gate model

Using an appropriate compatibility and reinforcement function, as described in the pre-

vious chapter, an arbitrary logic gate can be implemented with a minimal redundancy.

Consider the NOT function, for which an MRF model with feedback was proposed in

[47] (Fig. 3.1).

x1 x2 x1 x2 
• 

• 

• 

• 

• • 
• • 

Reinforcer NOT  

x1 x2  

x1x2 

Feedback 

(compatibility) 

x1 x2 U R
0 0 0 1
0 1 x1x2 1
1 0 x1x2 0
1 1 0 0

(a) (b)

Figure 3.1: Noise-tolerant logic NOT gate based on MRF model [47] (a) and its compat-
ibility table (b).

In our approach, a NOT gate is represented as a BDD, realizing a compatibility

function of two variables:

U(x1, x2) = x1 ⊕ x2,

where x1 is the input; x2 = x1 is the output of the gate, as shown in Fig. 3.2. Each node



27

S of the BDD implements a Shannon expansion:

f = xif0 ∨ xif1,

where f0 = fxi=0 and f1 = fxi=1 are the left and right outgoing branches, respectively.

The second BDD implements the reinforcement function,

R(x2, U) = x2 ⊕ U

Note that the compatibility function varies, depending on the gate function, while the

reinforcer function is formed by XNOR of the output and the compatibility function.

NOT gate  Reinforcer 
S 

S S 

0 

S 

S S 

0 0 0 1 1 1 1 

x1 

Feedback 

x2 

Input 

U R 

R 

U 

x2 x2 x2 x2 x2 x2 x2 x2 

x1 x1 U U 

t  t 

S 
 

t 

(a) (b)

Figure 3.2: (a) The cyclic BDD which implements the MRF model of a NOT gate
consists of two connected BDDs: the left BDD implements the compatibility func-
tion U(x1, x2) = x1 ⊕ x2; the right BDD corresponds to the reinforcer function
R(x2, U) = x2 ⊕ U , as shown in its truth table; (b) Equivalent transistor circuit of a
single DEMUX.

3.3.1 Experiments

Technology

The proposed cyclic BDD model was simulated using SPICE and the 16-nm Berkeley

CMOS technology model (http://ptm.asu.edu/ ), with the gate driving voltage being

VDD = 0.3 V and the temperature at 27◦C. The CMOS operates in the below thresh-

old region, where the threshold voltages for the NMOS and PMOS are 0.4797 V and



28

−0.4312 V , respectively. When the supply voltage is lower than the threshold voltage of

the transistor, the following noise effects arise:

(a) The noise margin reduction; the noise margin gets reduced due to the lower sup-

ply voltage and the thermal noise adversely affects the device noise scenario by

upsetting events

(b) Electromagnetic coupling; accounts for the crosstalk noise as the closely laid inter-

connects cause the propagating signals in the adjacent wires to get distorted

(c) Hot-electron effects; where the electron, due to high temperature, gets the kinetic

energy to overcome a potential barrier and thus causing a permanent change in the

device switching characteristic

(d) Threshold variations; the random dopant concentration causes an non-uniform be-

havior in the connected transistors and accounts for undesired switching variation

A cyclic BDD implementation of the NOT gate is given in Fig. 3.3. The similar

implementations are derived for the two-input elementary logic gates, such as NAND,

NOR, AND, OR and EXOR.

Experiment: Comparison of the NOT gate models

The comparison of three noise-tolerant models of the NOT gate are given in Table 3.1

for various levels of input noise (SNR =3− 12 dB) for the 16-nm CMOS technology:

(a) Conventional CMOS design,

(b) MRF model [47] and

(c) The proposed cyclic BDD model.



29

 

 

 

 

 

  

 

 

 

Feedback 

Reinforcer 

0 0 1 1 

In 

 

Out 

 

 

(a) (b)

Figure 3.3: (a) CMOS implementation of a cyclic BDD for a NOT logic gate; (b) Frag-
ment of the simulation results (noisy input and noise-tolerant output) at the subthreshold
supply voltage (b).

Results and findings

1. The reported performance of a cyclic BDD network for a NOT gate, by modeling

noise of subthreshold supply voltage while varying the SNR from 3 to 12 dB SNR,

shows that the KLD of the cyclic BDDs ranges between 0.651 to 0.096, as opposed

to 1.576 and 1.373 for the CMOS gate-level networks. The MRF model, proposed

in [47], outperforms the proposed model, with the KLD varying from 0.432 to 0.012,

respectively.

2. In terms of BER, the cyclic BDDs outperform the CMOS and MRF model [47] for

lower SNR (3 to 5 dB). However, for higher SNR, all models perform comparably.

3.4 Noise-tolerant NAND gate modeling

In the MRF-based model, each input or output is assumed as a random variable (node in

graphical representation), which value varies within the range between 0 V (logic 0) and



30

Table 3.1: Comparison of Noise-Tolerant NOT Gate Models, Measured in KLD (BER)
for Various Levels of SNR at 16-nm CMOS Technology

SNR Conventional MRF [47] Cyclic BDD
C o m p a r i s o n for NOT gate

3 1.576 (0.115) 0.432 (0.045) 0.651 (0.059)
5 1.571 (0.062) 0.231 (0.017) 0.455 (0.042)
7 1.569 (0.03) 0.116 (0.005) 0.417 (0.010)
9 1.459 (0.009) 0.034 (0.005) 0.298 (0.006)
10 1.455 (0.005) 0.029 (0.005) 0.182 (0.005)
12 1.373 (0.002) 0.012 (0.004) 0.096 (0.005)

VDD (logic 1). That is, instead of a correct logic signal (0 or 1), the MRF model operates

with the probability of correct logic signal. Given the observed logic signal, correct

logic values are those that maximize the joint probability distribution of all

the logic variables. The probability of state at a given node can be determined by

marginalizing. Marginalizing the distribution 2.1, with respect to variable xi, we obtain

p(xi|X − xi) =
1

Z

∑
c

expU(xc)/kT ,

this implies the following implementations of the model: (a) The feedback-based

combinational MRF model [47]; (b) The latch-based MRF model [22]; (c) The cyclic

BDD-based MRF model [66].

3.4.1 Gate-level networks

The combinational MRF model with a feedback, called the reinforcer, have been proposed

in [47]. It was shown that this device can handle soft errors and single-event upsets.

Further restructuring of the same architecture led to the hardware implementation based

on the latch based structures [22].

Design examples of a NAND logic gate from [47] and [22] are given in Fig. 3.4.



31

x1x2 x3 

• 

x1 x2 x3 
x1x2 x3 
x1 x2x3 

• 

• • 

• 

• • 

• 

• 

• 

• 

• 

• 

• 

• 
• 

• 
• 

• 
• 

• 

• 

• 
• 

x3 x3 x2 x2 x1 x1 

Feedbacks 

NAND  Reinforcer 

 

x1 
x2 
x1 
x2 

x3 

x3 

x3 

Reinforcer NAND 

x1 ∨x2 

x1 x2 

(a) (b)

Figure 3.4: (a) MRF-based architecture with feedback of noise-tolerant logic NAND gate
[47]; (b) latch-based architecture with feedback of noise-tolerant logic NAND gate [22].

3.4.2 Cyclic BDD based design

Figure 3.5 shows the NAND gate representation using regular non-reduced BDD and a

pass-gate CMOS transistor-level implementation of one node, or multiplexer.

In the cyclic BDD [66], the output of the root node is fed back to the “select” inputs of

the nodes using a reinforcement function. This function can be implemented by another

BDD. The output of the network, which implements the gate, is fed back to the “select”

inputs of the network through a reinforcement part, which can be implemented using

multiplexers.

The BDD-based MRF model of a NAND gate using two cyclic BDDs is presented in

Figure 3.6. The first BDD implements compatibility function U(x1, x2, x3) = x1x2 ⊕ x3,

where x1 and x2 are the inputs and x3 is the output of NAND gate, that is, x3 = x1x2.

The second BDD is the reinforcer, implementing the function R(x3, U) = x3 ⊕ U .

Figure 3.7 demonstrates the efficiency of the cyclic BDD implementation of the MRF

model for a NAND gate. For both noisy inputs (Fig.3.7a,b), the regular CMOS gate-

level implementation produces a noisy output (Fig.3.7c), while the cyclic BDD-based



32

t  t 

S 
 

t 

(a) (b)

Figure 3.5: (a) Complete BDD for a NAND gate; (b) BDD node implementation on
pass-gate transistors.

Figure 3.6: The cyclic BDD-based architecture of noise-tolerant NAND logic gate, con-
sisting of two connected BDDs. The left BDD implements the compatibility function
U(x1, x2, x3) = x1x2 ⊕ x3, and the right BDD corresponds to the reinforcer function
R(x3, U) = x3 ⊕ U as shown in its truth table.



33

implementation of the MRF model of the same gate demonstrates the superior noise

attenuation performance (Fig.3.7d).

3.4.3 Experiments

The designed cyclic BDD model was simulated using PSPICE and the 16-nm Berkeley

CMOS technology model (http://ptm.asu.edu/ ). The gate driving voltage is VDD =

0.3 V , and the temperature is 27◦C. The CMOS operates in the below threshold region,

where the threshold voltages for the NMOS and PMOS are 0.4797 V and −0.4312 V ,

respectively. The cyclic BDD of a NAND gate (Fig. 3.5) is implemented using the 16-nm

Berkeley CMOS technology model. The corresponding transistor level circuit is shown

in Figure 3.8.

Experiment I: Performance comparison of two-input NAND gate models

The goal of this experiment was to compare the performance of the following two-input

noise-tolerant logic gate models:

(a) Standard (conventional) CMOS design,

(b) MRF model [47],

(c) MRF model [22],

(d) MRF model on cyclic BDD [66],

A fragment of our experiment is given in Table 3.3 for various levels of noise measured

in terms of SNR when SNR = 3, 5, 7, 9, 10, 12 (dB). The output was evaluated using

two metrics, which are the BER and KLD. The proposed MRF-BDD based design shows

promising results compared to the two different MRF designs and outperforms the CMOS

based design in every aspect.



34

Input 1

0 200 400 600 800 1000 1200 1400 1600
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time, ns

vo
lta

ge
, v

Input 2

0 200 400 600 800 1000 1200 1400 1600
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

time, ns

vo
lta

ge
, v

CMOS output

0 200 400 600 800 1000 1200 1400 1600
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

time, ns

vo
lta

ge
, v

BDD output

0 200 400 600 800 1000 1200 1400 1600
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

time, ns

vo
lta

ge
, v

Figure 3.7: Fragment of the simulation results at the subthreshold supply voltage for the
NAND gate: The inputs and corresponding output for CMOS and BDD based design.



35

Figure 3.8: The 16-nm Berkeley predictive CMOS implementation of cyclic BDT for
NAND logic gate based MRF model.

Experiment II: Performance comparison of elementary logic gate models

The goal of this experiment is to compare the performance of various logic gate models

based on cyclic BDDs. Table 3.3 and Fig. 3.9 illustrate the performance of each model,

measured using the KLD and BER metrics.

Results and findings

1. In the worst-case scenario, when SNR = 3dB, the vulnerability of the proposed

cyclic BDDs, started with the most vulnerable gates, are as follows:



36

Table 3.2: Comparison of noise-tolerant NAND gate models measured using the KLD
and BER metrics for various levels of SNRs simulated at 16nm.

SNR Conventional CMOS MRF model [47] MRF model [22] MRF-BDD [66]
KLD BER KLD BER KLD BER KLD BER

3 2.2144 0.1028 1.2714 0.0275 0.8618 0.0463 1.2463 0.0356
5 2.1714 0.0478 0.969 0.0157 0.5076 0.0177 0.9130 0.0169
7 1.9847 0.0160 0.7225 0.0074 0.1759 0.0079 0.5659 0.0121
9 1.9224 0.0069 0.4091 0.0067 0.0321 0.0054 0.2031 0.0093
10 1.6038 0.0048 0.1400 0.0052 0.0248 0.0055 0.1235 0.0067
12 1.4000 0.0027 0.096 0.0043 0.0073 0.0051 0.1031 0.0053

BER metric: EXOR OR AND NOT NOR NAND

KLD metric: EXOR OR AND NOR NAND NOT

The best noise tolerance is demonstrated by the two-input logic NAND, NOR and

single input NOT gate models.

2. There is no difference, in terms of the BER metric, for all gates, if SNR = 9 to

12 dB. However, in terms of the KLD, NAND and NOT gates demonstrate better

noise tolerance.

3. Compared with the regular CMOS implementation, the noise-tolerance of the cyclic

BDDs, measured in terms of the BER metric, is from 2 to 3 times better, in the

worst-case scenario when SNR = 3. For example, the cyclic BDD model of the

NAND gate is 2.9 times more noise-tolerant, in terms of BER (0.036 for BDD versus

0.103 for CMOS), if SNR = 3dB.

3.5 Summary

The major contribution of this chapter is the new noise and fault-tolerant designs of

nanoscale ICs using the Cyclic BDD. The proposed feedback schemes to realize the MRF



37

Table 3.3: Noise Tolerance of Cyclic BDD Models of the Two-input Logic Gates, mea-
sured in terms of KLD and BER for various levels of SNR, simulated for 16-nm CMOS
technology.

SNR AND OR NOR EXOR NAND NOT
KLD BER KLD BER KLD BER KLD BER KLD BER KLD BER

3 2.0469 0.1243 2.7334 0.1888 1.677 0.0354 3.3746 0.291 1.2463 0.0356 0.6509 0.0591
5 1.8343 0.0252 2.4694 0.1357 1.481 0.0275 2.398 0.1667 0.913 0.0169 0.455 0.0423
7 1.6016 0.014 1.947 0.0661 1.2801 0.0089 1.8119 0.0718 0.5659 0.0121 0.4171 0.0096
9 1.4743 0.0125 1.5877 0.0198 1.1609 0.0071 1.5017 0.0208 0.2031 0.0093 0.2975 0.0056
10 1.3832 0.0115 1.5273 0.0125 1.1407 0.0062 1.3521 0.0207 0.1235 0.0067 0.1821 0.0053
12 1.2765 0.0094 1.1148 0.0074 0.9431 0.0059 0.9285 0.0187 0.1031 0.0053 0.0964 0.0047

3 4 5 6 7 8 9 10 11 12
0

0.05

0.1

0.15

0.2

0.25

Input SNR, dB

B
E

R

 

 

and
or
nor
exor
nand
not

(a)

3 4 5 6 7 8 9 10 11 12
0

0.5

1

1.5

2

2.5

3

3.5

Input SNR, dB

K
LD

 

 

and
or
nor
exor
nand
not

(b)

Figure 3.9: (a) Comparison of noise-tolerance of the cyclic BDD models of elementary
logic gates, measured in terms of BER metric; (b) KLD metric with respect to the input
SNR for the 16-nm CMOS technology.



38

models of logic circuits are compatible with CAD, physical layout and implementation

of ICs on nanoscaled micro and nano-electronic devices. For example, the quantum-

effect resonant-tunneling devices, photonic devices, wrap-gate nanowire BDD circuits

[33], resistor-logic demultiplexers [51] as well as other solutions are the potential physical

embodiment of the model. The proposed design suits the noise and fault-tolerant BDD-

centric networks, because the robust cyclic BBDs may correct and accommodate soft

technological and operational errors. Another extension of the MRF models and cyclic

BDDs is their capacity to map 2D onto the 3D nanoscale structures [17].

This chapter compared three different implementations of the noise tolerant MRF

model of logic gates using the SNR, KLD, and BER metrics. All these implementations

showed superior immunity to noise compared to the conventional CMOS implementation.



39

Chapter 4

Probabilistic Model of Logic Networks Using Shared Cyclic

BDDs

4.1 Introduction

This chapter pursues the goal of designing networks of logic gates based on the MRF

model, suitable for implementation on available technology such as wrap-gate nanowire

BDD networks [33]. In chapter 3, a realization of the MRF model of elementary logic

gates using so-called cyclic BDD was introduced.

This chapter studies the efficiency of implementing the BDD for logic networks with

many outputs, called shared BDDs [65], using the MRF model. It extends the shared

BDD by adding feedbacks, thus forming the cyclic shared BDDs. It compares area,

power and delay of the CMOS models (traditional and MRF-based from [47]) of a 2-bit

adder, against the CMOS MRF model implemented by the shared cyclic BDD. It also

introduces the result of experiments with large benchmarks from MCNC’91 set and shows

that the shared cyclic BDDs demonstrate lesser total area and power consumption, while

providing superior noise immunity.

4.2 MRF model of a two-bit adder using a Shared cyclic BDD

4.2.1 Shared BDD

Shared BDDs were introduced in [65]. These BDDs are suitable for multiple-output

circuits. For example, shared BDDs were used in [33] for design of a two-bit ALU with

2 outputs on a wrap-gate nanowire BDD network. Fig. 4.1 shows a shared BDD of a



40

two-bit adder.

(a)

(b)

Figure 4.1: A two-bit adder (a) and its implementation using a shared BDD (b).

4.2.2 Shared cyclic BDD

A shared cyclic BDD for a two-bit adder is designed by adding a reinforcer block to each

output (Fig. 4.2). Note, that the switches are not shown, but assumed, in this figure.

The only modification necessary to form a cyclic BDD from a regular shared BDD is the

shifting of the output variable node to the top of the tree (as the root node), other than



41

being on the bottom-most level. The reinforcer block remains the same as the regular

Cyclic BDD, and feeds the output back to the corresponding nodes of the shared BDD.

Figure 4.2: Noise-tolerant two-bit adder based on implementation of the MRF model by
cyclic shared BDD.

4.3 Experiments

The MRF models of the multi-output switching functions based on the shared cyclic

BDDs were simulated using SPICE and the 16-nm Berkeley CMOS technology model

(http://ptm.asu.edu/), with the gate driving voltage being VDD = 0.3 V and the operat-

ing temperature being room temperature, 27◦C. The transistors operated in the below

threshold region, where the threshold voltages for the NMOS and PMOS were 0.4797 V

and −0.4312 V , respectively. For shared BDD design, the CUDD package was used

(http://vlsi.colorado.edu/ fabio/CUDD/).

We aimed at evaluating:

1. The circuit’s behavior in the presence of noise, compared to the conventional CMOS



42

design of a two-bit adder. Since the previous studies were limited to two-input,

single-output logic gates, for the 4-input, 3-output circuit, we expected significant

decrease in BER and KLD values while increasing the SNR.

2. The power dissipation, delay and the number of transistors of our design compared

to the known CMOS designs.

3. The feasibility of the MRF model implemented using the shared cyclic BDD for

more complicated circuits.

Experiment 1: Comparisons in KLD and BER metrics for various levels of

SNR

In Table 4.1, the comparison of conventional CMOS design of the 2-bit adder and noise-

tolerant design of this adder based on the MRF model implemented by shared cyclic

BDD using the 16-nm CMOS technology is introduced. In this experiment, the input

noise was changed from SNR = 3 dB to SNR = 12 dB.

Table 4.1: Comparison of conventional 2-bit adder and MRF model of 2-bit adder (im-
plemented using a shared cyclic BDD) in terms of KLDs and BERs for various levels of
SNR, simulated at 16nm CMOS technology.

Input Conventional CMOS 2-bit adder MRF model of 2-bit adder (shared cyclic BDD)
SNR Output s2 Output s1 Output s0 Output s2 Output s1 Output s0

BER KLD BER KLD BER KLD BER KLD BER KLD BER KLD
3 0.0716 0.7521 0.4399 2.4752 0.2334 2.3501 0.0801 0.2204 0.1456 1.4876 0.1465 1.6016
5 0.0538 0.5909 0.2542 2.1278 0.1502 2.2451 0.0238 0.079 0.047 1.2274 0.0573 0.8786
7 0.043 0.3749 0.1032 1.7949 0.0982 1.9549 0.0122 0.0292 0.0217 0.6658 0.0219 0.4712
9 0.042 0.3585 0.0783 1.6631 0.0973 1.6072 0.0091 0.0087 0.0146 0.3512 0.0122 0.4296
10 0.0419 0.3277 0.0682 1.484 0.0929 1.5012 0.0079 0.0073 0.017o 0.2894 0.0113 0.2713
12 0.0362 0.1849 0.059 1.3391 0.0907 1.3681 0.0051 0.0073 0.0159 0.2097 0.0106 0.2277

Results and findings

As expected, the MRF model of a 2-bit adder, implemented by a shared cyclic BDD,

outperforms the conventional CMOS design. In particular, the improvement in BER is



43

around 50% to 80%, and for the KLD values, the improvement is around 40% to 90%.

This represents the reduction in the output errors and also the decreases the variance in

the signal that would cause bit-flips. This noise-tolerant effect is comparable with the

results, reported for logic gates and circuits in [47, 22].

Fig. 4.3 illustrates strong noise-immune property of the proposed shared cyclic BDD

implementation of the MRF model, compared with a conventional design, given the fixed

SNR value 7db for the input signal.

Out Conventional CMOS design
MRF model implemented by

shared cyclic BDD

s2

0 200 400 600 800 1000 1200 1400 1600
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

time, ns

vo
lta

ge
, v

0 200 400 600 800 1000 1200 1400 1600
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

time, ns
vo

lta
ge

, v

s1

0 200 400 600 800 1000 1200 1400 1600
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

time, ns

vo
lta

ge
, v

0 200 400 600 800 1000 1200 1400 1600
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

time, ns

vo
lta

ge
, v

s0

0 200 400 600 800 1000 1200 1400 1600
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

time, ns

vo
lta

ge
, v

0 200 400 600 800 1000 1200 1400 1600
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

time, ns

vo
lta

ge
, v

Figure 4.3: Noise output signals s0, s1, and s2 of the 2-bit adder for input SNR value
7db for conventional CMOS design (left), and the same noise-free signals in CMOS MRF
model, implemented using a shared cyclic BDD (right).



44

Experiment 2: Area, Power and Delay

In Table 4.2, the power dissipation, delay and the number of transistors are compared for

both CMOS design and the MRF model implementations, reported in [47, 22, 66]. The

operating voltage for the CMOS based design is 0.7V as indicated by the ITRS roadmap

[7]. The BDD based noise-tolerant models were operated in the subthreshold region with

the transistor driving voltage being 0.3V .

Table 4.2: Performance comparison of conventional CMOS design of a 2-bit adder and
its noise-tolerant designs based on various implementations of the MRF model reported
in [47, 22, 66], and the proposed shared cyclic BDD implementation.

Parameter CMOS MRF MRF MRF Proposed
design design[47] design [22] design [66] design

Supply voltage (vdd) 0.7 0.3 0.3 0.3 0.3
No. of transistors 60 420 196 176 140
Power dissipation (nW ) 0.151 0.042 0.034 0.039 0.032
Output delay avg. (nS) 3 16.4 11.1 21.2 18.3

Results and findings

The presented study of the MRF model, implemented using the shared cyclic BDDs,

was aimed at providing the feasibility of the noise-tolerant designs for the nanowire

structures, such as the existing wrap-gate nanowire BDD structures [33], as currently

those structures do not possess any noise immunity. As reported below, the simulated

delay and power dissipation of the BDD-based structures are comparable with the known

CMOS MRF models and in certain cases outperform the conventional design.

Experiment 3: Simulation of MCNC’91 benchmark circuits

It is known, that shared BDDs are preferable for large circuits [65]. In order to study

effectiveness of the shared cyclic BDDs in the implementation of the MRF model, we

conduct experiments with MCNC’91 benchmarks (Table 4.3). The conventional CMOS

designs were simulated for the Vdd = 0.7V and MRF designs for Vdd = 0.3V . Table

4.3 contains the MCNC’91 benchmark circuits specifications (the number inputs and



45

outputs), the number of transistors, # tran and power dissipation in nW for various

designs.

Results and findings

The simulation demonstrated about 4.4 - 4.9 times increase in area for MRF model

described in [47], compared to the regular (not noise-immune) CMOS implementation of

the same circuits, and 1.02 - 1.53 times increase in area for the shared cyclic BDD. The

proposed circuit design approach shows a huge improvement over the power dissipation of

the total circuit. The proposed design consumes about 3 times less power than the MRF

based model proposed in [47] and 15 times less power than the conventional CMOS design.

The whole dissipation would increase rather rapidly for the reliability of CMOS circuit

with the introduction of approaches like Triple Modular Redundancy (TMR). Whereas,

the proposed Shared Cyclic BDD approach doesn’t need any additional circuitry for the

reliability.

Table 4.3: Comparison of the number of transistors and power dissipation required for
conventional CMOS implementation, MRF model [47], and the proposed design for the
MCNC’91 circuits.

MCNC’91 CMOS design, MRF based design [47], Proposed design,
Benchmarks Vdd = 0.7V Vdd = 0.3V Vdd = 0.3V

Circuits Input Output # tran Power (nW ) # tran Power (nW ) # tran Power (nW )
5xp1 7 10 568 1.431 2756 0.487 608 0.138
alu4 14 8 6928 17.458 33416 5.915 7166 1.626
con1 7 2 78 0.196 356 0.063 120 0.027
ex5 8 63 5448 13.728 25964 4.596 6108 1.386
cordic 23 2 604 1.522 2612 0.462 720 0.163
misex1 8 7 356 0.897 1700 0.300 386 0.087
rd53 5 3 236 0.594 1012 0.179 284 0.064
squar5 5 8 346 0.871 1532 0.271 356 0.080



46

4.4 Summary

This chapter proposes a novel probabilistic model of logic networks based on Shared

Cyclic BDDs. These structures realize the MRF based maximum state probability prin-

ciple discussed in previous chapter.

The chapter considers the Shared Cyclic BDDs, for practical circuit, 2-bit Binary

adder circuit, as a design example. Furthermore, the benchmark circuits from MCNC’91

set were also simulated and tested using the proposed design against the contemporary

methodologies. The analysis of layout area overhead and power dissipation shows the

promising results for probabilistic design.



47

Chapter 5

Noise Immune Multivalued Logic Design

5.1 Introduction

Ternary, or 3-valued, inverter is a basic element for ternary storage devices. Ternary logic

gates are known for advantages over their binary counterparts, such as increasing trans-

mitted information, decreasing the number of connections, power dissipation, delay, and

the complexity of circuits. The multivalued domain inherits these significant attributes

from digital world. A Multivalued (MVL) function f of n variables x1, x2, x3, ...., xn is

defined as

f =


f(x1, x2, ..., xn)

f : Kn → K

where the set K = 0, 1, ...., K − 1 is the the k-valued domain, and k is the radix of

the logic. For the value of K = 2, the function becomes a Binary switching function.

This chapter reviews the previously reported results on the subject as follows. The

CMOS ternary logic is discussed in [80]. The ternary NOT gate for building SRAM

devices was studied in [79].

A noise-tolerant model of a ternary inverter is an extension of the MRF models of

logic gates developed in [47, 22], and also the results based on previously discussed cyclic

Binary Decision Diagrams (BDDs) [66].



48

5.2 Ternary Inverter and MIN gate

As the simplest definition for a multivalued function can be f : {0, 1, ...,m − 1}n →

{0, 1, ...,m − 1}, f : {0, 1, 2}n → {0, 1, 2} is the definition for Ternary logic function

where the value of states, m = 3.

The inversion operation is specified by x = (m − 1) − x, where m is the number

of states and x is the variable. Similarly the ternary inverter can be presented by the

equation x = 2− x, as for ternary, the value of m = 3.

The MIN function is a two input single output ternary function defined by the fol-

lowing equation,

MIN(x1, x2) =


x2, if x1 ≥ x2

x1 otherwise

For n variables, the equation can be written as MIN(x1, x2, ..., xn) = x1∧x2∧ ....∧xn.

The Figure 5.1 shows symbols of a ternary inverter and a ternary MIN gate along with

their truth tables.

 

x f x1 f
0 2
1 1
2 0

(a)
x1 x2 f
0 0 0
0 1 0
0 2 0
1 0 0
1 1 1
1 2 1
2 0 0
2 1 1
2 2 2

(b)

Figure 5.1: Gate symbol and truth table for a ternary inverter (a) and two-input ternary
MIN gate (b).



49

5.3 Design of a noise-tolerant ternary inverter

Consider the probabilistic analysis of noise-tolerant ternary inverter, using previously

discussed MRF model. Its truth table is given in Table 5.1. Using vector U, we find the

compatibility function in arithmetic form [74]:

f(v) =
1

2
(−v2 + v22 − v1 + 11v1v2 − 6v22v1 + v21 − 6v21v2 + 3v21v

2
2) (5.1)

Embedding this function into the model (2.1) corresponds to the following equiva-

lence: f(v) = E(v). After substitution E(v) into model (2.1), we obtain the Gibbs joint

probability distribution: p(v1, v2). Summing over all possible values of the variable v1

eliminates this variable, leaving the marginal probability distribution of the output v2:

p(v2) =
1

Z1

∑
v1∈0,1,2

exp

(
−E(v)

kT

)
=

1

Z1

[
exp

(
−2v2 + 2v22

4kT

)

+ 2 exp

(
8v2 − 4v22

4kT

)
+ 2 exp

(
4− 6v2 + 2v22

4kT

)]

Family of distributions p(v2) for various parameters kT is given in Figure 5.2. We

observe that output values are grouped around logic values 0, 1, and 2 with equal prob-

ability (three picks); this is because it is assumed that the input is equally likely to be

0, 1, or 2. So, it is a reasonable behavior model, that is, the Gibbs distribution provides

an acceptable probabilistic approximation of real uncertainty, caused by noise. With the

increased value of kT , a decrease in the terminal probabilities are observed while the

probabilities of the intermediate voltage levels rise. The modeling proposes increased

amount of variance in the output signal with the increment of the system temperature.

In this CMOS model, a high-resistance transmission gate is placed between a low-

resistance inverter and 0.3V supply, in order to produce a middle voltage level (Fig. 5.3).

That is, the threshold voltage of transistors P2 and N2 is half of the supply voltage. Note



50

Table 5.1: Design of a noise-tolerant ternary inverter based on the MRF model.

Gate Graph-model Compatibility truth table

 

x x
0 2
1 1
2 0

f x 

v1 v2 

v1 v2 U Minterm
0 0 0 Undesirable

0 1 0 Undesirable

0 2 1 v01v
2
2

1 0 0 Undesirable

1 1 1 v11v
1
2

1 2 0 Undesirable

2 0 1 v21v
0
2

2 1 0 Undesirable

2 2 0 Undesirable

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Output voltage, x
2

P
ro

ba
bi

lit
y,

 p
(x

2)

 

 

kT=0.1
kT=0.25
kT=0.5

Figure 5.2: Output voltage probability distribution for a ternary inverter

that both P2 and N2 are in the subthreshold region for the middle state “1”. A typical

problem of this CMOS implementation (and the other known ternary gates, for example,

[80]), is that the noise margins of the voltage transfer characteristic are decreased. This

is a well-known effect, observed in many multi-valued circuit realizations, that for the

fixed values of the highest and lowest voltages, noise-tolerance of a circuit with more

logic levels is worse, compared with binary analogs.

Arithmetic SOP form of the compatibility function is derived from the compatibility



51

Figure 5.3: A conventional CMOS ternary inverter [79].

truth table for three valid state combinations {02,11,20} as follows

U =
1

4
(v01v

2
2 + v11v

1
2 + v21v

0
2) (5.2)

where the literal operation is defined as yx = 2 if x = y and yx = 0 otherwise, x, y ∈

{0, 1, 2}.

To implement an MRF model that embodies the above SOP form (5.2) and uses

maximum likelihood principle and multiple feedback, we need a conventional ternary

inverter and a conventional two-input ternary MIN-NOT gate. A ternary inverter is

shown in Fig. 5.3 [79]. The inverter has two storage nodes, v1 and v2, that can take three

different logic values, 0, 1 and 2. The logic value 0 is represented by the voltage 0V , and

logic levels 1 and 2 correspond to 0.15V and 0.3V , respectively. For the input value of

logic 0, the both the circuits stay inactive and logic 2 is propagated to the output. For

the introduction of logic 1 in the input, the first circuit stays inactive but the second

circuit turns on to provide the middle logic level. The similar operation can be described

for the logic 2 input.

Ternary two-input MIN-NOT gate, MIN(x1, x2), is shown in Fig. 5.4. In this circuit,

P1 and P2 are the p-channel enhancement transistors, whereas N1 and N2 are n-channel

enhancement transistors. The threshold voltage, VT , and supply voltage, Vdd, are specified



52

by the following conditions: 0 < |VT | < |Vdd| for P2 and N2 and |Vdd| < |VT | < |2Vdd| for

P1 and N1.

 

Figure 5.4: Conventional CMOS ternary two-input MIN-NOT gate.

The circuit for noise-tolerant ternary inverter is shown in Fig. 5.5. Different state

combination of the storage nodes ensures the propagation of the conditional probability

within the circuit. Assigning the highest probability to the valid state combination is

ensured by the reinforcement feedback. The feedback forces the circuit to return to the

state combinations, for which the clique energy function is true, thus making the system

tolerant to incorrect output due to noise. For example, suppose the nodes, v1 and v2

takes on the logic values 0 and 2 respectively. Getting fed from cyclic inverters [74] the

inputs of the MRF based circuit gets all the possible states. As for the connection, the

first Ternary MIN-NOT gate stays inactive and feeds logic level 0 to corresponding input

nodes. The second and third MIN-NOT gate outputs are logic 1 and logic 2 which are

consistent with the storage node values. For the other valid state combinations between

the two storage nodes, the stability of the network can be defined accordingly.



53

Figure 5.5: A ternary noise-tolerant inverter based on MRF model.

5.4 Experiments

The experimental study involves measurement of the noise-tolerance characteristics of the

proposed MRF-based model of a ternary inverter in various metrics, and also comparison

of the latter against the conventional CMOS design of the inverter.

Technology

The proposed noise tolerant model was simulated using SPICE and the 16-nm Berkeley

CMOS technology model (http://ptm.asu.edu/ ), with the gate driving voltage being

VDD = 0.3 V at the room temperature, 27◦C. CMOS models with two different threshold

voltages were used for the ternary experiments. The CMOSs denoted as P1 and N1 are

the regular PMOS and NMOS models with threshold voltages 0.4797 V and −0.4312 V

respectively. The P2 and N2 models represent the PMOS and NMOS with threshold



54

voltages being −0.17 V and 0.17 V respectively.

Set 1 of experiments: comparison in SNR, KLD and BER metrics

Table 5.2 contains the results of comparison of conventional CMOS design of a ternary

inverter [79] and the proposed noise-tolerant design. The latter is based on the MRF

model, implemented using the 16-nm CMOS technology. In this experiment, the input

SNR was varied between 9 dB 18 dB.

Table 5.2: Comparison of the ternary conventional and noise-tolerant inverters.

Input
Conventional CMOS MRF-based

SNR
CMOS design [79] design
BER KLD BER KLD

9 0.2484 3.9198 0.0861 1.7438
10 0.2301 3.8697 0.0364 1.498
12 0.2103 3.717 0.0191 1.2048
14 0.1824 3.6329 0.0164 1.0628
16 0.1726 3.5169 0.0102 0.7508
18 0.1493 3.3761 0.01 0.5543

Results and findings

As expected, the MRF model of a ternary inverter outperforms the conventional CMOS

design. In particular, the improvement in BER is 60% - 94% and for the KLD values, the

improvement is 55% - 83%. Fig. 5.6 illustrates strong noise-immunity of the proposed

noise-tolerant implementation of the MRF model, compared to a conventional design,

given the fixed SNR value 10dB of the input signal.

The distribution of the output voltage probability for the proposed noise-tolerant

ternary inverter is measured, given the input signal SNR of 9dB and 16dB (Fig. 5.7).

The observation, that random variations of voltage are concentrated around 0V , 0.15V

and 0.3V , corresponding to the logical values “0”, “1”, and “2”, respectively. Hence,

both the theoretical MRF model with Gibbs distribution (Table 5.1) and the measured



55

N
oi

sy
  i

np
ut

 
O

ut
pu

t 
C

M
O

S
  t

er
na

ry
 

N
O

T
 

O
ut

pu
t 

M
R

F
  t

er
na

ry
 

N
O

T
 

 

0 1 2 

2 1 0 

2 1 0 

0 1 2 

2 1 0 

2 1 0 

V
ol

ta
ge

, V
  

V
ol

ta
ge

, V
  

V
ol

ta
ge

, V
  

.

Figure 5.6: The output of a conventional ternary CMOS NOT gate, and its noise-tolerant
MRF-based model, given the noisy input signals.

probabilistic distribution at the output of CMOS circuit, which operates accordingly to

the maximum likelihood principle, exhibit a very close resemblance.

Set 2 of experiments: comparison in area, power and delay

In Table 5.3, the power dissipation, delay and the number of transistors are shown for

both CMOS and MRF model of the inverter. The operating voltage for the CMOS based

design is 0.7V , as indicated by the ITRS roadmap [7]. The noise-tolerant ternary inverter

operated in the subthreshold region, with the transistor driving voltages being 0.3V and

0.15V , correspondingly.



56

 

SNR = 9 db 

SNR = 16 db 

Figure 5.7: Output voltage probability distribution of a noise-tolerant ternary inverter.

Table 5.3: Comparison of CMOS conventional and noise-tolerant ternary inverter.

Parameter Conventional MRF
design based design

Supply voltage (Vdd) (V) 0.7/0.35 0.3/0.15
Number of transistor 4 56
Power dissipation(nW ) 0.378 0.048
Output delay (nS) 0.3334 0.6667

Results and findings

Even though the number of transistor increases 14 times compared to the conventional

CMOS based design, the power dissipation does not increase linearly, given the small

driving voltages. Instead, 87% reduction in power consumption is observed, on average.

At the same time, the average delay for the MRF based ternary circuits is lesser, compared

to the binary ones with the similar models from [47, 66].

5.5 Summary

The main result of this work is a simulated experimental evidence that MRF is an

appropriate model of a ternary NOT logic gate with high noise-tolerant properties. The



57

theoretical contribution is an extension of the MRF model of binary logic gates and

networks developed in [56, 47, 22] towards a noise-tolerant ternary NOT gate. The

preliminary results show, that the generalization of the MRF model toward the two-

input ternary logic gates is straightforward as well. The obtained results can be useful

for advanced future technologies, characterized by high level of noise due to nanoscale

phenomena.



58

Chapter 6

Conclusion and Future Works

”Nanotechnology is the base technology of an industrial revolution in the 21st

century. Those who control nanotechnology will lead the industry.”

-Michiharu Nakamura, Executive VP at Hitachi

6.1 Summary

As electronics technology migrates from micron and sub-micron towards the nano di-

mension, the question of downscaled circuit reliability arises. The device intrinsic noise

becomes much severe with the minimized supply voltage for the low-power applications.

This dissertation addresses this question, and answers it through the proposed proba-

bilistic noise-immune design architecture.

A novel structure on Binary Decision Diagram is proposed and implemented on SPICE

as a noise immune design method that can be readily implemented on wrap-gate nano

wires. Though, not significantly different from the models of Markov Random Field

(MRF) based design on CMOS gates [47], this thesis takes a completely different data

structure and proposes a different reinforcer routing for robust noise-tolerant computing.

The reliable circuit design method in the multivalued domain is also addressed in this

thesis. The key contributions of this thesis are as follows:

• It proposes the implementation of the Markov Random Field based probabilistic

model of logic gates, using novel Binary Decision Diagrams (BDD) with feedback.

The choice of BDD structure is motivated by the fact that they can be implemented

on the wrap-gate nano-wires [33]



59

• It studies the MRF based model not only for the elementary logic gates but also a

network of gates. For that, another version of the Cyclic BDD is proposed called

Shared Cyclic BDD.

• It performs the simulation of the proposed circuits in the SPICE environment, using

the 16nm predictive transistor model from Berkeley.

• It compares the proposed probabilistic models as the Bit Error rate, Kullback-

Liebler Distance, power, area and delay are used as the comparison parameters for

the experiments.

• It introduces the noise-immune design method in the multivalued domain, as it

extends the idea of Markov Random Field to the Ternary valued circuits for reliable

design. The circuit for a ternary inverter is designed based on MRF principle and

compared against the CMOS based design in noisy environment.

6.2 Future work

Both Markov Random Field and Hopfield models are based on Gibbs sampler algorithm

[57, 49, 61, 62] (excellent introduction to these models can be find in textbook [60]).

These models are characterized by (a) the same mechanism of embedding logic function

via compatibility function, and (b) maximum-likelihood computing strategy or Gibbs

sampler. Their combination working together may constitute an efficient hardware im-

plementation, using iterative adaptive scheme via a multiple feedback loop network.

The most urgent plan is to test the proposed model against the implementation on

the existing nanowire networks [33], which is being pursued in collaboration with the

Research Center for Quantum Information Sciences at Hokkaido University.

There are several open problems in design of this new type of noise-tolerant devices,



60

such as:

1. Sum of minterms,
∑

j Mintermj, is the simplest arithmetic form of logic functions

(binary and multivalued) to represent the clique energy function in the MRF model.

The effectiveness of other arithmetic forms, such as arithmetic, Walsh, and Haar

spectrum [74, 48] has not been studied yet.

2. There are other architectures of the MRF model implementations.

3. Application of the MRF model for the multivalued logic functions can be useful for

predictive technologies.

Another open research area is the study of the equivalence between three basic proba-

bilistic models, which can be established using the Gibbs distribution or Gibbs sampling

method, Bayesian network, Boltzmann machine, and MRF [18, 64]. It follows from this

similarity that we can expect similar numerical results while using various models. How-

ever, the techniques for achieving these results, algorithms, behavioral characteristics and

hardware implementation are different. This may become an useful development towards

another nanoscale architecture, neuromorphic arrays [83].



Bibliography

[1] Kish, L. B., End of Moores law: thermal (noise) death of integration in micro and

nano electronics, Physics Letters A, vol. 305, pp. 144149, Dec. 2002.

[2] Ron M Roth et al, Defect-tolerant demultiplexer circuits based on threshold logic

and coding, Nanotechnology, Volume 20, Number 13, 2009

[3] Burnett, D., Higman, J., Hoefler, A., Li, C., and Kuhn, P., Variation in natural

threshold voltage of NVM circuits due to dopant fluctuations and its impact on

reliability, Int. Electron Devices Meeting, pp. 529532, Dec. 2002.

[4] Scholten, A.J.; Tiemeijer, L.F.; van Langevelde, R.; Havens, R.J.; Zegers-van Dui-

jnhoven, A.T.A.; Venezia, V.C.; , ”Noise modeling for RF CMOS circuit simula-

tion,”Electron Devices, IEEE Transactions on , vol.50, no.3, pp. 618- 632, March

2003

[5] M.A. Breuer, S.K. Gupta and T. M. Mak, Defect and Error tolerance in the presence

of massive number of defects, IEEE Des. Test, 21:216-227, May 2004

[6] R. W. Keyes, Fundamental limits of Silicon Technology, In Proceedings of the IEEE,

volume 89, pages 227-239, IEEE Press, 2001.

[7] ITRS, http://www.itrs.net/reports.html, 2012.

[8] G. Cheng, P. Siles, F. Bi, C. Cen, D. Bogorin, C. Bark, C. Folkman, J. Park, C.

Eom, G. Ribeiro, J. Levy. Sketched oxide single-electron transistor. Nature Nan-

otechnology, 2011

[9] Mahmoodi-Meimand H. Low power, robust, and high performance circuit design in

nano-scale CMOS. United States – Indiana: Purdue University ; 2005

61



62

[10] Wakerly, J.F. , Microcomputer reliability improvement using triple-modular redun-

dancy, Proceedings of the IEEE, Volume:64 Issue:6, June 1976.

[11] Pelloie, J. L., Using SOI to achieve low-power consumption in digital, in Proc. SOI

Conf., pp. 1417, Oct. 2005.

[12] Markovic, D., Stojanovic, V., Nikolic, B., Horowitz, M. A., and Brodersen, R. W.,

Methods for true energy-performance optimization, IEEE J. Solid-State Circuits,

vol. 39, no. 8, pp. 12821293, 2004.

[13] Palem, K. V., Proof as experiment:probabilistic algorithms from a thermodynamic

perspective, in Proc. Int. Symposium on Verification (Theory and Practice), pp. 524

547, June 2003.

[14] Palem, K. V., Energy aware computing through probabilistic switching: A study of

limits, IEEE Trans. Computer, vol. 54, pp. 11231137, Sept. 2005.

[15] Korkmaz, P.; Akgul, B.E.S.; Palem, K.V.; , ”Energy, Performance, and Probability

Tradeoffs for Energy-Efficient Probabilistic CMOS Circuits,” Circuits and Systems

I: Regular Papers, IEEE Transactions on , vol.55, no.8, pp.2249-2262, Sept. 2008

[16] G. V. Varatkar, S. Narayanan, N. R. Shanbhag, and D. L. Jones, Stochastic net-

worked computation, IEEE Trans. VLSI Systems, vol. 18, no.10, pp. 1421–1432,

2010.

[17] S. E. Lyshevski, V. P. Shmerko, M. A. Lyshevski, and S. N. Yanushkevich, Neuronal

processing, reconfigurable neural networks and stochastic computing, Proc. 8th

IEEE Conf. Nanotechnology, Arlington, TX, pp. 717–720, 2008.

[18] A. H. Tran, S. Yanushkevich, S. Lyshevski and V. Shmerko, Design of neuromorphic



63

logic networks and fault-tolerant computing, Proc. 11th IEEE Int. Conf. Nanotech-

nology, Portland, pp. 457–462, 2011.

[19] S. E. Lyshevski, S. N. Yanushkevich, V. P. Shmerko, and V. Geurkov, Computing

Paradigms for Logic Nanocells. J. Computational and Theoretical Nanoscience, vol.

5, pp. 2377–2395, 2008.

[20] Nepal, K.; Bahar, R.I.; Mundy, J.; Patterson, W.R.; Zaslavsky, A.; , ”Designing logic

circuits for probabilistic computation in the presence of noise,” Design Automation

Conference, 2005. Proceedings. 42nd , vol., no., pp. 485- 490, 13-17 June 2005

[21] K. Nepal et al., Designing Logic Circuits for Probabilistic Computation in the Pres-

ence of Noise, Proc. 42nd Design Automation Conf. , ACM Press, 2005, pp. 485–490.

[22] I-C. Wey, Y-G. Chen, C.-H. Yu, et. al. Design and implementation of cost-effective

probabilistic-based noise-talerant VLSI circuits, IEEE Trans. Circuits and Systems-

I, vol. 56, no.11, pp. 2411–2424, 2009.

[23] Kaeslin, Hubert (2008), Digital Integrated Circuit Design, from VLSI Architectures

to CMOS Fabrication, Cambridge University Press, section 14.2.

[24] B. Rajendran et al, CMOS transistor processing compatible with monolithic 3D inte-

gration, Proceedings of the VLSI Multi Level Interconnect Conference, 2005, Page(s):

76-82.

[25] B. Rajendran, ”Sequential 3D IC Fabrication: Challenges and Prospects,”in IEEE

Trans. on Electron Devices, 2010.

[26] M. Fuechsle, J. Miwa, S. Mahapatra, H. Ryu, S. Lee, O. Warschkow, L. Hollenberg,

G. Klimeck and M. Simmons, A single-atom transistor, Nature Nanotechnology 7,

242246 (2012).



64

[27] Lei Wang; Shanbhag, N.R.; , ”Noise-tolerant dynamic circuit design,” Circuits and

Systems, 1999. ISCAS ’99. Proceedings of the 1999 IEEE International Symposium

on , vol.1, no., pp.549-552 vol.1, Jul 1999

[28] Jie Deng., et al., ”Carbon Nanotube Transistor Circuits: Circuit-Level Performance

Benchmarking and Design Options for Living with Imperfections”, In Proc. of IEEE

ISSCC, 2007.

[29] P.D. Lent, C.S. Tougaw, A device architecture for computing with quantum dots,

In proceedings of IEEE, volume 85, pages 541-557, Press, 1997

[30] Likharev, K.K.; , ”Single-electron devices and their applications,” Proceedings of the

IEEE , vol.87, no.4, pp.606-632, Apr 1999

[31] M. Stan, P. Franzon, S. Goldstein, J. Lach, and M. Ziegler, Molecular Electronics:

From Devices and Interconnect to Circuits and Architecture, Proceedings of the

IEEE, 91(11), November, 2003

[32] M. Mongillo, P. Spathis, G. Katsaros, P. Gentile, S. Franceschi, Multifunctional

Devices and Logic Gates With Undoped Silicon Nanowires, arxiv.org/abs/1208.1465

[33] H. Hasegawa, S. Kasai, and T. Sato, Hexagonal BDD quantum circuit approach for

ultra-low power III-V quantum LSls, IEICE Trans. Electron., vol. ES7-C, no.11, pp.

1757–1768, 2004.

[34] J. S. Yedidia, W. T.Freeman and Y. Weiss. (2001). Understanding Belief Prop-

agation and Its Generalizations. published as chapter 8 of ’Exploring Articial In-

telligence in the New Millennium eds. G. Lakemeyer and B. Nebel, pp. 239-269,

Morgan Kaufmann 2003



65

[35] Kuekes P J, RobinettW, Seroussi G andWilliams, Defect-tolerant demultiplexers for

nano-electronics constructed from error-correcting codes Appl. Phys. A 80, 2005

[36] T. Rejimon, K. Lingasubramanian, S. Bhanja, Probabilistic error modeling for nano-

domain logic circuits, IEEE Trans VLSI, 17 (1) (2009), pp. 5565

[37] Hamamatsu, M.; Tsuchiya, T.; Kikuno, T.; , ”On the Reliability of Cascaded TMR

Systems,” Dependable Computing (PRDC), 2010 IEEE 16th Pacific Rim Interna-

tional Symposium on , vol., no., pp.184-190, 13-15 Dec. 2010

[38] Han, J.; Jonker, P.; , ”From massively parallel image processors to fault-tolerant

nanocomputers,” Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th

International Conference on , vol.3, no., pp. 2- 7 Vol.3, 23-26 Aug. 2004

[39] M.G. Karpovsky, R.S. Stankovic, and J.T. Astola, Spectral Logic and its Applications

for the Design of Digital Devices, Wiley, NJ, 2008.

[40] Chen He; Jacome, M.F.; de Veciana, G.; , ”A reconfiguration-based defect-tolerant

design paradigm for nanotechnologies,” Design & Test of Computers, IEEE , vol.22,

no.4, pp. 316- 326, July-Aug. 2005

[41] H. Rao; J. Chen; C. Yu; W. Ang; I. Wey; A. Wu; H. Zhao; , ”Ensemble Depen-

dent Matrix Methodology for Probabilistic-Based Fault-tolerant Nanoscale Circuit

Design,” Circuits and Systems, 2007. ISCAS 2007. IEEE International Symposium

on , vol., no., pp.1803-1806, 27-30 May 2007

[42] J. E. Besag, Spatial interaction and the statistical analysis of lattice systems, J.

Roy. Stat. Soc., series B, vol. 36, no. 3, 1974, pp. 192–236.

[43] R. I. Bahar, H. Y. Song, K. Nepal, J. Grodstein, Symbolic Failure Analysis of

Complex CMOS Circuits due to Excessive Leakage Current and Charge Sharing,



66

IEEE Transactions on Computer-Aided Design of Integrated Circuits, Vol. 24, No.

5, April 2005, pp. 502-515

[44] R. Gandikota, Crosstalk Noise Analysis for Nano-Meter VLSI Circuits (Doctoral

Dissertation), University of Michigan, Ann Arbor, 2009

[45] Y. Chen, M. Ventra, Shot noise in nanoscale conductors from first principles, Phys.

Rev. B, vol. 67, Issue. 15, 2003.

[46] S. Z. Li, Markov Random Field Modeling in Computer Vision, Springer-Verlag New

York, Inc. Secaucus, NJ, USA 1995

[47] K. Nepal, R. I. Bahar, J. Mundy, W. R. Patterson, and A. Zaslavsky, Designing

nanoscale logic circuits based on Markov random fields, J. Electronic Testing: The-

ory and Applications, vol. 23, pp. 255–266, 2007.

[48] S. N. Yanushkevich, D. M. Miller, V. P. Shmerko, and R. S. Stanković, Decision

Diagram Techniques for Micro- and Nanoelectronic Design Handbook, CRC Press,

Taylor & Francis Group, Boca Raton, FL, 2006.

[49] S. Geman and D. Geman, Stochastic relaxation, Gibbs distributions and the

Bayesian restoration of images, IEEE Trans. Pattern Analysis and Machine In-

telligence, vol. 6, pp. 721–741, 1984.

[50] Keunwoo Kim; Das, K.K.; Joshi, R.V.; Ching-Te Chuang; , ”Nanoscale CMOS

Circuit Leakage Power Reduction by Double-Gate Device,” Low Power Electronics

and Design, Proceedings of the 2004 International Symposium on , vol., no., pp.102-

107, 11-11 Aug. 2004

[51] P. J. Kuekes, W. Robinett, and R. S. Williams, Defect tolerance in resistor-logic

demultiplexers for nanoelectronics, Nanotechnology, vol. 17, pp. 2466–2474, 2006.



67

[52] H. Astola, S. Stanković, and J. T. Astola, Error-correcting decision diagrams, Proc.

3rd Workshop on Information Theoretic Methods in Science and Engineering, Tam-

pere, Finland, Aug., 2010.

[53] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes,

North-Holland, Amsterdam, 1997.

[54] T. Mohamed, S. N. Yanushkevich, and S. Kasai, Fault-Tolerant Nanowire BDD

circuits, The First International Workshop on Physics and Computing in nano-

scale Photonics and Materials, Orleans, France, September 2012.

[55] V. P. Shmerko, S. N. Yanushkevich, and S. E. Lyshevski, Computer Arithmetics for

Nanoelectronics, Taylor & Francis/CRC Press, Boca Raton, FL, 2009.

[56] R.I. Bahar, J. Chen, and J. Mundy, A probabilistic-based design for nanoscale

computation. In: S. Shukla, and R.I. Bahar, Eds. Nano, Quantum and Molecular

Computing: Implications to High Level Design and Validation, Kluwer, 2004.

[57] H. Derin and P. A. Kelly, Discrete-index Markov-type random process, Proceedings

of the IEEE, vol. 77, no. 10, pp. 1485–1510, 1989.

[58] E. Fredkin and T. Toffoli, Conservative logic, Int. J. Theoretical Physics,, vol. 21,

Nos. 3/4, pp. 219-253, 1982.

[59] B. J. Frey and N. Jojic, A comparison of algorithms for inference and learning in

probabilistic graphical models, IEEE Trans. Pattern Analysis and Machine Intelli-

gance, vol. 27, no. 9, pp. 1392-1416, 2005.

[60] S. Haykin, Neural Networks and Leaning Machines, third edition, Pearson Educa-

tion, Upper Saddle River, NY, 2009.



68

[61] G. E. Hinton, Deterministic Boltzmann machine learning performs steepest descent

in weight-space, Neural Computation, vol. 1, pp. 143–150, 1989.

[62] J. J. Hopfield, Neural networks and physical systems with emergent collective com-

putational abilities, Proceedings of National Academy of Sciences, USA, vol. 79, pp.

2554–2558, 1982.

[63] A. Lin, N. Patil, H. Wei, S. Mitra and H.-S.P. Wong, A Metallic-CNT-tolerant design

methodology for carbon nanotube VLSI: Concepts and experimental demonstration,

IEEE Trans. Electron Devices, 2009.

[64] S. E. Lyshevski, S. N. Yanushkevich, V. P. Shmerko, et. al., Computing paradigms

for logic nanocells. J. Computational and Theoretical Nanoscience, vol. 5, pp. 2377–

2395, 2008.

[65] S. Minato, N. Ishiura and S. Yajima, Shared binary decision diagram with attributed

edges for efficient Boolean function manipulation, Proc. 27th ACM/IEEE Design

Automation Conf., 1990.

[66] S. N. Yanushkevich, G. Tangim, S. Kasai, S. E. Lyshevski, V. P. Shmerko, De-

sign of nanoelectronic ICs: Noise-tolerant logic based on cyclic BDD, Proc. IEEE

Nanotechnology Conf., Birmingham, UK, August 2012.

[67] Seiya Kasai, Tatsuya Nakamura and Yuta Shiratori Multiple path switching de-

vice utilizing size-controlled nano-Schottky wrap gates for MDD-based logic circuits.

Journal of Multiple-Valued Logic and Soft Computing vol.13(3), 267-277, 2007

[68] R. Keyes, ”The evolution of digital electronics towards VLSI,” IEEE J. Solid-State

Circuits, vol. SC-14, pp. 193-201, Apr. 1979.



69

[69] K.C. Smith, The prospects for multivalued logic: A technology and applications

view, IEEE Trans. Comput., vol. C-30, pp. 619-634, Sept. 1981.

[70] R. Mariani, F. Pessolano, , and R. Saletti: ’A new CMOS ternary logic design for

low-power low-voltage circuits’, PATMOS, Louvain-la-Neuve, Belgium, September

1997

[71] S. Lin, Y-B Kim, and F. Lombardi, A novel CNTFET-based ternary logic gate

design, In IEEE International Midwest Symposium on Circuits and Systems, pp.435-

438, 2009.

[72] S. Lin, Y-B Kim, and F. Lombardi, Design of a Ternary Memory Cell Using CNT-

FETs, IEEE Transactions on Nanotechnology, vol. 11, no. 5, september 2012

[73] Z. Kamar and K. Nepal, Noise margin-optimized ternary CMOS SRAM delay and

sizing characteristics, in Proc. IEEE Int. Midwest Symp. Circuits Syst., Aug. 2010,

pp. 801804.

[74] V. P. Shmerko, S. N. Yanushkevich, and S. E. Lyshevski, Computer Arithmetics for

Nanoelectronics, Taylor & Francis/CRC Press, Boca Raton, FL, 2009.

[75] V. Shmerko, S. Yanushkevich, V. Levashenko, and I. Bondar, Techniques of Com-

puting Logic Derivatives for MVL Functions, Proc IEEE. 26th Int. Symp. Multiple-

Valued Logic, Spain, pp. 267-272,1996.

[76] Balla, A. Antoniou, Low power dissipation MOS ternary logic family, IEEE J. Solid-

State Circuits, vol. SC-19, pp. 739-749, 1984.

[77] S. Kullback, Information Theory and Statistics, Gloucester, MA, Peter Smith, 1968.

[78] A. S. Sedra and K. C. Smith, Microelectronic Circuits, Oxford University Press, New

York, 2004.



70

[79] Z. Kamar and K. Nepal, Noise margin-optimized ternary CMOS SRAM delay and

sizing characteristics, Proc. IEEE Int. Midwest Symp. Circuits Syst., pp. 801–804,

2010.

[80] X.W. Wu and F.P. Prosser, CMOS ternary logic circuits, IEE Proceedings, vol. 137,

Pt. G, no. I, pp. 20–27, 1990

[81] D. C. Montgomery and G. C. Runger, Applied Statistics and Probability for Engi-

neers, 5th ed., Willey, 2011.

[82] S. Yanushkevich, D. Miller, V. Shmerko, R. Stankovich, Decisin Diagram Techniques

for Micro and NanoElectronic Design, Taylor & Francis, 2006

[83] Trel , Lee JH, Ma X, Likharev KK., Neuromorphic architectures for nanoelectronic

circuits, International Journal of Circuit Theory and Applications 2004; 32:277302.



71

Appendix A

MATLAB Codes for Performance Evaluation

A.1 Noisy Signal Generation

close all;

clear all; fileID=fopen(’value.txt’,’wt’);

n = 1:1600;

x = [zeros(1,400),ones(1,400)];

x1=[x,x];

x1=x1*0.3;

y1 = awgn(x1,3,’measured’);

figure(1)

plot(n,y1);

xlabel(’time, ns’)

ylabel(’voltage, v’)

fprintf(fileID,’%12.4f)n’,x1);

A.2 Calculation of BER and KLD

close all;

clear all;

[a1,b1] = textread(’nand cmos 3.txt’,’%f %f’);

c1=a1.*1000000000;

figure(1)

plot(c1,b1);

xlabel(’time, ns’)

ylabel(’voltage, v’)

[a2,b2] = textread(’nand cmos 5.txt’,’%f %f’);

c2=a1.*1000000000;

figure(2)

plot(c2,b2);

xlabel(’time, ns’)

ylabel(’voltage, v’)

[a3,b3] = textread(’nand cmos 9.txt’,’%f %f’);

c3=a1.*1000000000;

figure(3)

plot(c3,b3);

xlabel(’time, ns’)

ylabel(’voltage, v’)

[a4,b4] = textread(’nand cmos 12.txt’,’%f %f’);

c4=a1.*1000000000;

figure(4)

plot(c4,b4);

xlabel(’time, ns’)

ylabel(’voltage, v’)

[a5,b5] = textread(’nand cmos 10.txt’,’%f %f’);

c5=a1.*1000000000;

figure(5)



72

plot(c5,b5);

xlabel(’time, ns’)

ylabel(’voltage, v’)

[a6,b6] = textread(’nand cmos 12.txt’,’%f %f’);

c6=a1.*1000000000;

figure(6)

plot(c6,b6);

xlabel(’time, ns’)

ylabel(’voltage, v’)

x = [ones(1,2649),zeros(1,884),ones(1,2648),zeros(1,884)];

figure(11)

plot(c1,x);

b6 avg=(max(b6)+min(b6))/2;

for i=1:length(b6)

if b6(i)>=b6 avg;

b6(i)=1;

else b6(i)=0;

end

end

figure(8)

plot(c1,b6);

y=0;

for i=1:length(b6)

if b6(i)==x(i);

y==y;

else y=y+1;

end

end

BER=y/7065

d 1 =-0.08:0.001:0.35;

[count 1 bins 1] = hist(b1,d 1);

count 1 nor=count 1/sum(count 1);

figure(5)

bar(bins 1,count 1 nor)

d 2 =-0.08:0.001:0.35;

[count 2 bins 2] = hist(b2,d 2);

count 2 nor=count 2/sum(count 2);

figure(6)

bar(bins 2,count 2 nor)

d 3 =-0.08:0.001:0.35;

[count 3 bins 3] = hist(b3,d 3);

count 3 nor=count 3/sum(count 3);

figure(7)

bar(bins 3,count 3 nor)

d 4 =-0.08:0.001:0.35;

[count 4 bins 4] = hist(b4,d 4);

count 4 nor=count 4/sum(count 4);

figure(8)

bar(bins 4,count 4 nor)

d 5 =-0.08:0.001:0.35;

[count 5 bins 5] = hist(b5,d 5);

count 5 nor=count 5/sum(count 5);

figure(9)

bar(bins 5,count 5 nor)

d 6 =-0.08:0.001:0.35;

[count 6 bins 6] = hist(b6,d 6);

count 6 nor=count 6/sum(count 6);

figure(10)

bar(bins 6,count 6 nor)



73

Appendix B

SPICE codes for System Design

B.1 CMOS based NAND design

* CMOS NAND @ 16nm

VDD 1 0 0.3

V1 2 0 PWL .INCLUDE input1.txt

V2 3 0 PWL .INCLUDE input2.txt

MQ1 1 2 4 1 P1 (L=16nm)

MQ2 1 3 4 1 P1 (L=16nm)

MQ3 4 2 5 5 N1 (L=16nm)

MQ4 5 3 0 0 N1 (L=16nm)

.model N1 nmos level = 14

+version = 4.6.5 binunit = 1 paramchk= 1 mobmod = 0 +capmod = 2 igcmod = 1 igbmod = 1 geomod = 1 +diomod

= 1 rdsmod = 0 rbodymod= 1 rgatemod= 1 +permod = 1 acnqsmod= 0 trnqsmod= 0 +tnom = 27 toxe = 9.5e-010 toxp =

7e-010 toxm = 9.5e-010 +dtox = 2.5e-010 epsrox = 3.9 wint = 5e-009 lint = 1.45e-009 +ll = 0 wl = 0 lln = 1 wln

= 1 +lw = 0 ww = 0 lwn = 1 wwn = 1 +lwl = 0 wwl = 0 xpart = 0 toxref = 9.5e-010 +xl = -6.5e-9 +vth0 = 0.47965

k1 = 0.4 k2 = 0 k3 = 0 +k3b = 0 w0 = 2.5e-006 dvt0 = 1 dvt1 = 2 +dvt2 = 0 dvt0w = 0 dvt1w = 0 dvt2w = 0 +dsub

= 0.1 minv = 0.05 voffl = 0 dvtp0 = 1e-011 +dvtp1 = 0.1 lpe0 = 0 lpeb = 0 xj = 5e-009 +ngate = 1e+023 ndep =

7e+018 nsd = 2e+020 phin = 0 +cdsc = 0 cdscb = 0 cdscd = 0 cit = 0 +voff = -0.13 nfactor = 2.3 eta0 = 0.0032

etab = 0 +vfb = -0.55 u0 = 0.03 ua = 6e-010 ub = 1.2e-018 +uc = 0 vsat = 290000 a0 = 1 ags = 0 +a1 = 0 a2 =

1 b0 = 0 b1 = 0 +keta = 0.04 dwg = 0 dwb = 0 pclm = 0.02 +pdiblc1 = 0.001 pdiblc2 = 0.001 pdiblcb = -0.005 drout

= 0.5 +pvag = 1e-020 delta = 0.01 pscbe1 = 8.14e+008 pscbe2 = 1e-007 +fprout = 0.2 pdits = 0.01 pditsd = 0.23

pditsl = 2300000 +rsh = 5 rdsw = 140 rsw = 75 rdw = 75 +rdswmin = 0 rdwmin = 0 rswmin = 0 prwg = 0 +prwb = 0

wr = 1 alpha0 = 0.074 alpha1 = 0.005 +beta0 = 30 agidl = 0.0002 bgidl = 2.1e+009 cgidl = 0.0002 +egidl = 0.8

aigbacc = 0.012 bigbacc = 0.0028 cigbacc = 0.002 +nigbacc = 1 aigbinv = 0.014 bigbinv = 0.004 cigbinv = 0.004

+eigbinv = 1.1 nigbinv = 3 aigc = 0.0213 bigc = 0.0025889 +cigc = 0.002 aigsd = 0.0213 bigsd = 0.0025889 cigsd

= 0.002 +nigc = 1 poxedge = 1 pigcd = 1 ntox = 1 +xrcrg1 = 12 xrcrg2 = 5 +cgso = 5e-011 cgdo = 5e-011 cgbo =

2.56e-011 cgdl = 2.653e-010 +cgsl = 2.653e-010 ckappas = 0.03 ckappad = 0.03 acde = 1 +moin = 15 noff = 0.9

voffcv = 0.02 +kt1 = -0.11 kt1l = 0 kt2 = 0.022 ute = -1.5 +ua1 = 4.31e-009 ub1 = 7.61e-018 uc1 = -5.6e-011

prt = 0 +at = 33000 +fnoimod = 1 tnoimod = 0 +jss = 0.0001 jsws = 1e-011 jswgs = 1e-010 njs = 1 +ijthsfwd= 0.01

ijthsrev= 0.001 bvs = 10 xjbvs = 1 +jsd = 0.0001 jswd = 1e-011 jswgd = 1e-010 njd = 1 +ijthdfwd= 0.01 ijthdrev=

0.001 bvd = 10 xjbvd = 1 +pbs = 1 cjs = 0.0005 mjs = 0.5 pbsws = 1 +cjsws = 5e-010 mjsws = 0.33 pbswgs = 1 cjswgs

= 3e-010 +mjswgs = 0.33 pbd = 1 cjd = 0.0005 mjd = 0.5 +pbswd = 1 cjswd = 5e-010 mjswd = 0.33 pbswgd = 1 +cjswgd

= 5e-010 mjswgd = 0.33 tpb = 0.005 tcj = 0.001 +tpbsw = 0.005 tcjsw = 0.001 tpbswg = 0.005 tcjswg = 0.001 +xtis

= 3 xtid = 3 +dmcg = 0 dmci = 0 dmdg = 0 dmcgt = 0 +dwj = 0 xgw = 0 xgl = 0 +rshg = 0.4 gbmin = 1e-010 rbpb

= 5 rbpd = 15 +rbps = 15 rbdb = 15 rbsb = 15 ngcon = 1

.model P1 pmos level = 14

+version = 4.6.5 binunit = 1 paramchk= 1 mobmod = 0 +capmod = 2 igcmod = 1 igbmod = 1 geomod = 1 +diomod

= 1 rdsmod = 0 rbodymod= 1 rgatemod= 1 +permod = 1 acnqsmod= 0 trnqsmod= 0 +tnom = 27 toxe = 1e-009 toxp = 7e-010

toxm = 1e-009 +dtox = 3e-010 epsrox = 3.9 wint = 5e-009 lint = 1.45e-009 +ll = 0 wl = 0 lln = 1 wln = 1 +lw

= 0 ww = 0 lwn = 1 wwn = 1 +lwl = 0 wwl = 0 xpart = 0 toxref = 1e-009 +xl = -6.5e-9 +vth0 = -0.43121 k1 = 0.4

k2 = -0.01 k3 = 0 +k3b = 0 w0 = 2.5e-006 dvt0 = 1 dvt1 = 2 +dvt2 = -0.032 dvt0w = 0 dvt1w = 0 dvt2w = 0 +dsub

= 0.1 minv = 0.05 voffl = 0 dvtp0 = 1e-011 +dvtp1 = 0.05 lpe0 = 0 lpeb = 0 xj = 5e-009 +ngate = 1e+023 ndep

= 5.5e+018 nsd = 2e+020 phin = 0 +cdsc = 0 cdscb = 0 cdscd = 0 cit = 0 +voff = -0.126 nfactor = 2.1 eta0 = 0.0032

etab = 0 +vfb = 0.55 u0 = 0.006 ua = 2e-009 ub = 5e-019 +uc = 0 vsat = 250000 a0 = 1 ags = 1e-020 +a1 = 0 a2

= 1 b0 = 0 b1 = 0 +keta = -0.047 dwg = 0 dwb = 0 pclm = 0.12 +pdiblc1 = 0.001 pdiblc2 = 0.001 pdiblcb = 3.4e-008

drout = 0.56 +pvag = 1e-020 delta = 0.01 pscbe1 = 1.2e+009 pscbe2 = 8.0472e-007 +fprout = 0.2 pdits = 0.08 pditsd

= 0.23 pditsl = 2300000 +rsh = 5 rdsw = 140 rsw = 70 rdw = 70 +rdswmin = 0 rdwmin = 0 rswmin = 0 prwg = 0 +prwb

= 0 wr = 1 alpha0 = 0.074 alpha1 = 0.005 +beta0 = 30 agidl = 0.0002 bgidl = 2.1e+009 cgidl = 0.0002 +egidl =

0.8 aigbacc = 0.012 bigbacc = 0.0028 cigbacc = 0.002 +nigbacc = 1 aigbinv = 0.014 bigbinv = 0.004 cigbinv =

0.004 +eigbinv = 1.1 nigbinv = 3 aigc = 0.0213 bigc = 0.0025889 +cigc = 0.002 aigsd = 0.0213 bigsd = 0.0025889

cigsd = 0.002 +nigc = 1 poxedge = 1 pigcd = 1 ntox = 1 +xrcrg1 = 12 xrcrg2 = 5 +cgso = 5e-011 cgdo = 5e-011

cgbo = 2.56e-011 cgdl = 2.653e-010 +cgsl = 2.653e-010 ckappas = 0.03 ckappad = 0.03 acde = 1 +moin = 15 noff

= 0.9 voffcv = 0.02 +kt1 = -0.11 kt1l = 0 kt2 = 0.022 ute = -1.5 +ua1 = 4.31e-009 ub1 = 7.61e-018 uc1 = -5.6e-011

prt = 0 +at = 33000 +fnoimod = 1 tnoimod = 0 +jss = 0.0001 jsws = 1e-011 jswgs = 1e-010 njs = 1 +ijthsfwd= 0.01

ijthsrev= 0.001 bvs = 10 xjbvs = 1 +jsd = 0.0001 jswd = 1e-011 jswgd = 1e-010 njd = 1 +ijthdfwd= 0.01 ijthdrev=



74

0.001 bvd = 10 xjbvd = 1 +pbs = 1 cjs = 0.0005 mjs = 0.5 pbsws = 1 +cjsws = 5e-010 mjsws = 0.33 pbswgs = 1 cjswgs

= 3e-010 +mjswgs = 0.33 pbd = 1 cjd = 0.0005 mjd = 0.5 +pbswd = 1 cjswd = 5e-010 mjswd = 0.33 pbswgd = 1 +cjswgd

= 5e-010 mjswgd = 0.33 tpb = 0.005 tcj = 0.001 +tpbsw = 0.005 tcjsw = 0.001 tpbswg = 0.005 tcjswg = 0.001 +xtis

= 3 xtid = 3 +dmcg = 0 dmci = 0 dmdg = 0 dmcgt = 0 +dwj = 0 xgw = 0 xgl = 0 +rshg = 0.4 gbmin = 1e-010 rbpb

= 5 rbpd = 15 +rbps = 15 rbdb = 15 rbsb = 15 ngcon = 1

.OPTION TEMP=27

.TRAN 1ns 1600ns 0s 1ns

.END

B.2 MRF based design from [47]

* inverter design using the switching theory in the inputs VDD 1 0 0.3

V1 2 0 PWL .INCLUDE input1.txt

V2 3 0 PWL .INCLUDE input2.txt

.SUBCKT not bin vcc n in n out

MQ1 vcc n in n out vcc P1 (L=16nm)

MQ2 n out n in 0 0 N1 (L=16nm)

.ENDS not bin

.SUBCKT nand vcc n in1 n in2 n out

MQ1 vcc n in1 n out vcc P1 (L=16nm)

MQ2 vcc n in2 n out vcc P1 (L=16nm)

MQ3 n out n in1 20 20 N1 (L=16nm)

MQ4 20 n in2 0 0 N1 (L=16nm)

.ENDS nand

.SUBCKT switch vcc n n bar n in1 n in2 n out

MQ1 n in1 n n out n out N1 (L=16nm)

MQ2 n in1 n bar n out n in1 P1 (L=16nm)

MQ3 n in2 n bar n out n out N1 (L=16nm)

MQ4 n in2 n n out n in2 P1 (L=16nm)

.ENDS switch

x1 1 4 15 not bin

x2 1 2 13 not bin

x3 1 4 15 12 2 3 switch

x4 1 4 15 14 13 5 switch

x5 1 3 7 8 nand

x6 1 8 9 not bin

x7 1 5 6 10 nand

x8 1 10 11 not bin

x9 1 9 14 not bin

x10 1 9 6 not bin

x11 1 11 7 not bin

x12 1 11 12 not bin

.model N1 nmos level = 14

+version = 4.6.5 binunit = 1 paramchk= 1 mobmod = 0 +capmod = 2 igcmod = 1 igbmod = 1 geomod = 1 +diomod

= 1 rdsmod = 0 rbodymod= 1 rgatemod= 1 +permod = 1 acnqsmod= 0 trnqsmod= 0 +tnom = 27 toxe = 9.5e-010 toxp =

7e-010 toxm = 9.5e-010 +dtox = 2.5e-010 epsrox = 3.9 wint = 5e-009 lint = 1.45e-009 +ll = 0 wl = 0 lln = 1 wln

= 1 +lw = 0 ww = 0 lwn = 1 wwn = 1 +lwl = 0 wwl = 0 xpart = 0 toxref = 9.5e-010 +xl = -6.5e-9 +vth0 = 0.47965

k1 = 0.4 k2 = 0 k3 = 0 +k3b = 0 w0 = 2.5e-006 dvt0 = 1 dvt1 = 2 +dvt2 = 0 dvt0w = 0 dvt1w = 0 dvt2w = 0 +dsub

= 0.1 minv = 0.05 voffl = 0 dvtp0 = 1e-011 +dvtp1 = 0.1 lpe0 = 0 lpeb = 0 xj = 5e-009 +ngate = 1e+023 ndep =

7e+018 nsd = 2e+020 phin = 0 +cdsc = 0 cdscb = 0 cdscd = 0 cit = 0 +voff = -0.13 nfactor = 2.3 eta0 = 0.0032

etab = 0 +vfb = -0.55 u0 = 0.03 ua = 6e-010 ub = 1.2e-018 +uc = 0 vsat = 290000 a0 = 1 ags = 0 +a1 = 0 a2 =

1 b0 = 0 b1 = 0 +keta = 0.04 dwg = 0 dwb = 0 pclm = 0.02 +pdiblc1 = 0.001 pdiblc2 = 0.001 pdiblcb = -0.005 drout

= 0.5 +pvag = 1e-020 delta = 0.01 pscbe1 = 8.14e+008 pscbe2 = 1e-007 +fprout = 0.2 pdits = 0.01 pditsd = 0.23

pditsl = 2300000 +rsh = 5 rdsw = 140 rsw = 75 rdw = 75 +rdswmin = 0 rdwmin = 0 rswmin = 0 prwg = 0 +prwb = 0

wr = 1 alpha0 = 0.074 alpha1 = 0.005 +beta0 = 30 agidl = 0.0002 bgidl = 2.1e+009 cgidl = 0.0002 +egidl = 0.8

aigbacc = 0.012 bigbacc = 0.0028 cigbacc = 0.002 +nigbacc = 1 aigbinv = 0.014 bigbinv = 0.004 cigbinv = 0.004

+eigbinv = 1.1 nigbinv = 3 aigc = 0.0213 bigc = 0.0025889 +cigc = 0.002 aigsd = 0.0213 bigsd = 0.0025889 cigsd

= 0.002 +nigc = 1 poxedge = 1 pigcd = 1 ntox = 1 +xrcrg1 = 12 xrcrg2 = 5 +cgso = 5e-011 cgdo = 5e-011 cgbo =

2.56e-011 cgdl = 2.653e-010 +cgsl = 2.653e-010 ckappas = 0.03 ckappad = 0.03 acde = 1 +moin = 15 noff = 0.9

voffcv = 0.02 +kt1 = -0.11 kt1l = 0 kt2 = 0.022 ute = -1.5 +ua1 = 4.31e-009 ub1 = 7.61e-018 uc1 = -5.6e-011

prt = 0 +at = 33000 +fnoimod = 1 tnoimod = 0 +jss = 0.0001 jsws = 1e-011 jswgs = 1e-010 njs = 1 +ijthsfwd= 0.01

ijthsrev= 0.001 bvs = 10 xjbvs = 1 +jsd = 0.0001 jswd = 1e-011 jswgd = 1e-010 njd = 1 +ijthdfwd= 0.01 ijthdrev=

0.001 bvd = 10 xjbvd = 1 +pbs = 1 cjs = 0.0005 mjs = 0.5 pbsws = 1 +cjsws = 5e-010 mjsws = 0.33 pbswgs = 1 cjswgs



75

= 3e-010 +mjswgs = 0.33 pbd = 1 cjd = 0.0005 mjd = 0.5 +pbswd = 1 cjswd = 5e-010 mjswd = 0.33 pbswgd = 1 +cjswgd

= 5e-010 mjswgd = 0.33 tpb = 0.005 tcj = 0.001 +tpbsw = 0.005 tcjsw = 0.001 tpbswg = 0.005 tcjswg = 0.001 +xtis

= 3 xtid = 3 +dmcg = 0 dmci = 0 dmdg = 0 dmcgt = 0 +dwj = 0 xgw = 0 xgl = 0 +rshg = 0.4 gbmin = 1e-010 rbpb

= 5 rbpd = 15 +rbps = 15 rbdb = 15 rbsb = 15 ngcon = 1

.model P1 pmos level = 14

+version = 4.6.5 binunit = 1 paramchk= 1 mobmod = 0 +capmod = 2 igcmod = 1 igbmod = 1 geomod = 1 +diomod

= 1 rdsmod = 0 rbodymod= 1 rgatemod= 1 +permod = 1 acnqsmod= 0 trnqsmod= 0 +tnom = 27 toxe = 1e-009 toxp = 7e-010

toxm = 1e-009 +dtox = 3e-010 epsrox = 3.9 wint = 5e-009 lint = 1.45e-009 +ll = 0 wl = 0 lln = 1 wln = 1 +lw

= 0 ww = 0 lwn = 1 wwn = 1 +lwl = 0 wwl = 0 xpart = 0 toxref = 1e-009 +xl = -6.5e-9 +vth0 = -0.43121 k1 = 0.4

k2 = -0.01 k3 = 0 +k3b = 0 w0 = 2.5e-006 dvt0 = 1 dvt1 = 2 +dvt2 = -0.032 dvt0w = 0 dvt1w = 0 dvt2w = 0 +dsub

= 0.1 minv = 0.05 voffl = 0 dvtp0 = 1e-011 +dvtp1 = 0.05 lpe0 = 0 lpeb = 0 xj = 5e-009 +ngate = 1e+023 ndep

= 5.5e+018 nsd = 2e+020 phin = 0 +cdsc = 0 cdscb = 0 cdscd = 0 cit = 0 +voff = -0.126 nfactor = 2.1 eta0 = 0.0032

etab = 0 +vfb = 0.55 u0 = 0.006 ua = 2e-009 ub = 5e-019 +uc = 0 vsat = 250000 a0 = 1 ags = 1e-020 +a1 = 0 a2

= 1 b0 = 0 b1 = 0 +keta = -0.047 dwg = 0 dwb = 0 pclm = 0.12 +pdiblc1 = 0.001 pdiblc2 = 0.001 pdiblcb = 3.4e-008

drout = 0.56 +pvag = 1e-020 delta = 0.01 pscbe1 = 1.2e+009 pscbe2 = 8.0472e-007 +fprout = 0.2 pdits = 0.08 pditsd

= 0.23 pditsl = 2300000 +rsh = 5 rdsw = 140 rsw = 70 rdw = 70 +rdswmin = 0 rdwmin = 0 rswmin = 0 prwg = 0 +prwb

= 0 wr = 1 alpha0 = 0.074 alpha1 = 0.005 +beta0 = 30 agidl = 0.0002 bgidl = 2.1e+009 cgidl = 0.0002 +egidl =

0.8 aigbacc = 0.012 bigbacc = 0.0028 cigbacc = 0.002 +nigbacc = 1 aigbinv = 0.014 bigbinv = 0.004 cigbinv =

0.004 +eigbinv = 1.1 nigbinv = 3 aigc = 0.0213 bigc = 0.0025889 +cigc = 0.002 aigsd = 0.0213 bigsd = 0.0025889

cigsd = 0.002 +nigc = 1 poxedge = 1 pigcd = 1 ntox = 1 +xrcrg1 = 12 xrcrg2 = 5 +cgso = 5e-011 cgdo = 5e-011

cgbo = 2.56e-011 cgdl = 2.653e-010 +cgsl = 2.653e-010 ckappas = 0.03 ckappad = 0.03 acde = 1 +moin = 15 noff

= 0.9 voffcv = 0.02 +kt1 = -0.11 kt1l = 0 kt2 = 0.022 ute = -1.5 +ua1 = 4.31e-009 ub1 = 7.61e-018 uc1 = -5.6e-011

prt = 0 +at = 33000 +fnoimod = 1 tnoimod = 0 +jss = 0.0001 jsws = 1e-011 jswgs = 1e-010 njs = 1 +ijthsfwd= 0.01

ijthsrev= 0.001 bvs = 10 xjbvs = 1 +jsd = 0.0001 jswd = 1e-011 jswgd = 1e-010 njd = 1 +ijthdfwd= 0.01 ijthdrev=

0.001 bvd = 10 xjbvd = 1 +pbs = 1 cjs = 0.0005 mjs = 0.5 pbsws = 1 +cjsws = 5e-010 mjsws = 0.33 pbswgs = 1 cjswgs

= 3e-010 +mjswgs = 0.33 pbd = 1 cjd = 0.0005 mjd = 0.5 +pbswd = 1 cjswd = 5e-010 mjswd = 0.33 pbswgd = 1 +cjswgd

= 5e-010 mjswgd = 0.33 tpb = 0.005 tcj = 0.001 +tpbsw = 0.005 tcjsw = 0.001 tpbswg = 0.005 tcjswg = 0.001 +xtis

= 3 xtid = 3 +dmcg = 0 dmci = 0 dmdg = 0 dmcgt = 0 +dwj = 0 xgw = 0 xgl = 0 +rshg = 0.4 gbmin = 1e-010 rbpb

= 5 rbpd = 15 +rbps = 15 rbdb = 15 rbsb = 15 ngcon = 1

.OPTION TEMP=27

.TRAN 1ns 1600ns 0s 1ns

.END

B.3 Ternnary MRF based Inverter Design

* TERNARY MRF INVERTER @ 16nm

VDD1 1 0 0.3

VDD2 4 0 0.15

V1 2 0 PWL .INCLUDE ternary in.txt

.SUBCKT inv cyclic vcc1 vcc2 n in n out1 n out2

MQ1 vcc2 n in n out1 vcc2 P2 (L=16nm)

MQ2 n out1 n in 0 0 N2 (L=16nm)

MQ3 vcc1 n in n out2 vcc1 P1 (L=16nm)

MQ4 n out2 n in vcc2 vcc2 N1 (L=16nm)

.ENDS inv cyclic

.SUBCKT inv ter vcc1 vcc2 n in n out

MQ1 vcc1 n in n out vcc1 P1 (L=16nm)

MQ2 n out n in 0 0 N1 (L=16nm)

MQ3 n out n in 5 n out P2 (L=16nm)

MQ4 5 n in vcc2 vcc2 N2 (L=16nm)

.ENDS inv ter

.SUBCKT nand ter vcc1 vcc2 n in1 n in2 n out

MQ1 vcc1 n in1 n out vcc1 P1 (L=16nm)

MQ2 vcc1 n in2 n out vcc1 P1 (L=16nm)

MQ3 n out n in1 5 5 N1 (L=16nm)

MQ4 5 n in2 0 0 N1 (L=16nm)

MQ5 n out n in1 6 n out P2 (L=16nm)

MQ6 n out n in2 6 n out P2 (L=16nm)

MQ7 6 n in1 7 7 N2 (L=16nm)

MQ8 7 n in2 vcc2 vcc2 N2 (L=16nm)

.ENDS nand ter

x1 1 4 2 3 5 inv cyclic

x2 1 4 6 7 8 inv cyclic



76

x3 1 4 5 6 9 nand ter

x4 1 4 3 7 10 nand ter

x5 1 4 2 8 11 nand ter

x6 1 4 11 12 inv ter

x7 1 4 12 6 inv ter

x8 1 4 10 13 inv ter

x9 1 4 13 7 inv ter

x10 1 4 9 14 inv ter

x11 1 4 14 8 inv ter

*output node 6......

.model N1 nmos level = 14

+version = 4.6.5 binunit = 1 paramchk= 1 mobmod = 0 +capmod = 2 igcmod = 1 igbmod = 1 geomod = 1 +diomod

= 1 rdsmod = 0 rbodymod= 1 rgatemod= 1 +permod = 1 acnqsmod= 0 trnqsmod= 0 +tnom = 27 toxe = 9.5e-010 toxp =

7e-010 toxm = 9.5e-010 +dtox = 2.5e-010 epsrox = 3.9 wint = 5e-009 lint = 1.45e-009 +ll = 0 wl = 0 lln = 1 wln

= 1 +lw = 0 ww = 0 lwn = 1 wwn = 1 +lwl = 0 wwl = 0 xpart = 0 toxref = 9.5e-010 +xl = -6.5e-9 +vth0 = 0.47965

k1 = 0.4 k2 = 0 k3 = 0 +k3b = 0 w0 = 2.5e-006 dvt0 = 1 dvt1 = 2 +dvt2 = 0 dvt0w = 0 dvt1w = 0 dvt2w = 0 +dsub

= 0.1 minv = 0.05 voffl = 0 dvtp0 = 1e-011 +dvtp1 = 0.1 lpe0 = 0 lpeb = 0 xj = 5e-009 +ngate = 1e+023 ndep =

7e+018 nsd = 2e+020 phin = 0 +cdsc = 0 cdscb = 0 cdscd = 0 cit = 0 +voff = -0.13 nfactor = 2.3 eta0 = 0.0032

etab = 0 +vfb = -0.55 u0 = 0.03 ua = 6e-010 ub = 1.2e-018 +uc = 0 vsat = 290000 a0 = 1 ags = 0 +a1 = 0 a2 =

1 b0 = 0 b1 = 0 +keta = 0.04 dwg = 0 dwb = 0 pclm = 0.02 +pdiblc1 = 0.001 pdiblc2 = 0.001 pdiblcb = -0.005 drout

= 0.5 +pvag = 1e-020 delta = 0.01 pscbe1 = 8.14e+008 pscbe2 = 1e-007 +fprout = 0.2 pdits = 0.01 pditsd = 0.23

pditsl = 2300000 +rsh = 5 rdsw = 140 rsw = 75 rdw = 75 +rdswmin = 0 rdwmin = 0 rswmin = 0 prwg = 0 +prwb = 0

wr = 1 alpha0 = 0.074 alpha1 = 0.005 +beta0 = 30 agidl = 0.0002 bgidl = 2.1e+009 cgidl = 0.0002 +egidl = 0.8

aigbacc = 0.012 bigbacc = 0.0028 cigbacc = 0.002 +nigbacc = 1 aigbinv = 0.014 bigbinv = 0.004 cigbinv = 0.004

+eigbinv = 1.1 nigbinv = 3 aigc = 0.0213 bigc = 0.0025889 +cigc = 0.002 aigsd = 0.0213 bigsd = 0.0025889 cigsd

= 0.002 +nigc = 1 poxedge = 1 pigcd = 1 ntox = 1 +xrcrg1 = 12 xrcrg2 = 5 +cgso = 5e-011 cgdo = 5e-011 cgbo =

2.56e-011 cgdl = 2.653e-010 +cgsl = 2.653e-010 ckappas = 0.03 ckappad = 0.03 acde = 1 +moin = 15 noff = 0.9

voffcv = 0.02 +kt1 = -0.11 kt1l = 0 kt2 = 0.022 ute = -1.5 +ua1 = 4.31e-009 ub1 = 7.61e-018 uc1 = -5.6e-011

prt = 0 +at = 33000 +fnoimod = 1 tnoimod = 0 +jss = 0.0001 jsws = 1e-011 jswgs = 1e-010 njs = 1 +ijthsfwd= 0.01

ijthsrev= 0.001 bvs = 10 xjbvs = 1 +jsd = 0.0001 jswd = 1e-011 jswgd = 1e-010 njd = 1 +ijthdfwd= 0.01 ijthdrev=

0.001 bvd = 10 xjbvd = 1 +pbs = 1 cjs = 0.0005 mjs = 0.5 pbsws = 1 +cjsws = 5e-010 mjsws = 0.33 pbswgs = 1 cjswgs

= 3e-010 +mjswgs = 0.33 pbd = 1 cjd = 0.0005 mjd = 0.5 +pbswd = 1 cjswd = 5e-010 mjswd = 0.33 pbswgd = 1 +cjswgd

= 5e-010 mjswgd = 0.33 tpb = 0.005 tcj = 0.001 +tpbsw = 0.005 tcjsw = 0.001 tpbswg = 0.005 tcjswg = 0.001 +xtis

= 3 xtid = 3 +dmcg = 0 dmci = 0 dmdg = 0 dmcgt = 0 +dwj = 0 xgw = 0 xgl = 0 +rshg = 0.4 gbmin = 1e-010 rbpb

= 5 rbpd = 15 +rbps = 15 rbdb = 15 rbsb = 15 ngcon = 1

.model P1 pmos level = 14

+version = 4.6.5 binunit = 1 paramchk= 1 mobmod = 0 +capmod = 2 igcmod = 1 igbmod = 1 geomod = 1 +diomod

= 1 rdsmod = 0 rbodymod= 1 rgatemod= 1 +permod = 1 acnqsmod= 0 trnqsmod= 0 +tnom = 27 toxe = 1e-009 toxp = 7e-010

toxm = 1e-009 +dtox = 3e-010 epsrox = 3.9 wint = 5e-009 lint = 1.45e-009 +ll = 0 wl = 0 lln = 1 wln = 1 +lw

= 0 ww = 0 lwn = 1 wwn = 1 +lwl = 0 wwl = 0 xpart = 0 toxref = 1e-009 +xl = -6.5e-9 +vth0 = -0.43121 k1 = 0.4

k2 = -0.01 k3 = 0 +k3b = 0 w0 = 2.5e-006 dvt0 = 1 dvt1 = 2 +dvt2 = -0.032 dvt0w = 0 dvt1w = 0 dvt2w = 0 +dsub

= 0.1 minv = 0.05 voffl = 0 dvtp0 = 1e-011 +dvtp1 = 0.05 lpe0 = 0 lpeb = 0 xj = 5e-009 +ngate = 1e+023 ndep

= 5.5e+018 nsd = 2e+020 phin = 0 +cdsc = 0 cdscb = 0 cdscd = 0 cit = 0 +voff = -0.126 nfactor = 2.1 eta0 = 0.0032

etab = 0 +vfb = 0.55 u0 = 0.006 ua = 2e-009 ub = 5e-019 +uc = 0 vsat = 250000 a0 = 1 ags = 1e-020 +a1 = 0 a2

= 1 b0 = 0 b1 = 0 +keta = -0.047 dwg = 0 dwb = 0 pclm = 0.12 +pdiblc1 = 0.001 pdiblc2 = 0.001 pdiblcb = 3.4e-008

drout = 0.56 +pvag = 1e-020 delta = 0.01 pscbe1 = 1.2e+009 pscbe2 = 8.0472e-007 +fprout = 0.2 pdits = 0.08 pditsd

= 0.23 pditsl = 2300000 +rsh = 5 rdsw = 140 rsw = 70 rdw = 70 +rdswmin = 0 rdwmin = 0 rswmin = 0 prwg = 0 +prwb

= 0 wr = 1 alpha0 = 0.074 alpha1 = 0.005 +beta0 = 30 agidl = 0.0002 bgidl = 2.1e+009 cgidl = 0.0002 +egidl =

0.8 aigbacc = 0.012 bigbacc = 0.0028 cigbacc = 0.002 +nigbacc = 1 aigbinv = 0.014 bigbinv = 0.004 cigbinv =

0.004 +eigbinv = 1.1 nigbinv = 3 aigc = 0.0213 bigc = 0.0025889 +cigc = 0.002 aigsd = 0.0213 bigsd = 0.0025889

cigsd = 0.002 +nigc = 1 poxedge = 1 pigcd = 1 ntox = 1 +xrcrg1 = 12 xrcrg2 = 5 +cgso = 5e-011 cgdo = 5e-011

cgbo = 2.56e-011 cgdl = 2.653e-010 +cgsl = 2.653e-010 ckappas = 0.03 ckappad = 0.03 acde = 1 +moin = 15 noff

= 0.9 voffcv = 0.02 +kt1 = -0.11 kt1l = 0 kt2 = 0.022 ute = -1.5 +ua1 = 4.31e-009 ub1 = 7.61e-018 uc1 = -5.6e-011

prt = 0 +at = 33000 +fnoimod = 1 tnoimod = 0 +jss = 0.0001 jsws = 1e-011 jswgs = 1e-010 njs = 1 +ijthsfwd= 0.01

ijthsrev= 0.001 bvs = 10 xjbvs = 1 +jsd = 0.0001 jswd = 1e-011 jswgd = 1e-010 njd = 1 +ijthdfwd= 0.01 ijthdrev=

0.001 bvd = 10 xjbvd = 1 +pbs = 1 cjs = 0.0005 mjs = 0.5 pbsws = 1 +cjsws = 5e-010 mjsws = 0.33 pbswgs = 1 cjswgs

= 3e-010 +mjswgs = 0.33 pbd = 1 cjd = 0.0005 mjd = 0.5 +pbswd = 1 cjswd = 5e-010 mjswd = 0.33 pbswgd = 1 +cjswgd

= 5e-010 mjswgd = 0.33 tpb = 0.005 tcj = 0.001 +tpbsw = 0.005 tcjsw = 0.001 tpbswg = 0.005 tcjswg = 0.001 +xtis

= 3 xtid = 3 +dmcg = 0 dmci = 0 dmdg = 0 dmcgt = 0 +dwj = 0 xgw = 0 xgl = 0 +rshg = 0.4 gbmin = 1e-010 rbpb

= 5 rbpd = 15 +rbps = 15 rbdb = 15 rbsb = 15 ngcon = 1

.model N2 nmos level = 14

+version = 4.6.5 binunit = 1 paramchk= 1 mobmod = 0 +capmod = 2 igcmod = 1 igbmod = 1 geomod = 1 +diomod

= 1 rdsmod = 0 rbodymod= 1 rgatemod= 1 +permod = 1 acnqsmod= 0 trnqsmod= 0 +tnom = 27 toxe = 9.5e-010 toxp =

7e-010 toxm = 9.5e-010 +dtox = 2.5e-010 epsrox = 3.9 wint = 5e-009 lint = 1.45e-009 +ll = 0 wl = 0 lln = 1 wln

= 1 +lw = 0 ww = 0 lwn = 1 wwn = 1 +lwl = 0 wwl = 0 xpart = 0 toxref = 9.5e-010 +xl = -6.5e-9 +vth0 = 0.17 k1

= 0.4 k2 = 0 k3 = 0 +k3b = 0 w0 = 2.5e-006 dvt0 = 1 dvt1 = 2 +dvt2 = 0 dvt0w = 0 dvt1w = 0 dvt2w = 0 +dsub =



77

0.1 minv = 0.05 voffl = 0 dvtp0 = 1e-011 +dvtp1 = 0.1 lpe0 = 0 lpeb = 0 xj = 5e-009 +ngate = 1e+023 ndep = 7e+018

nsd = 2e+020 phin = 0 +cdsc = 0 cdscb = 0 cdscd = 0 cit = 0 +voff = -0.13 nfactor = 2.3 eta0 = 0.0032 etab =

0 +vfb = -0.55 u0 = 0.03 ua = 6e-010 ub = 1.2e-018 +uc = 0 vsat = 290000 a0 = 1 ags = 0 +a1 = 0 a2 = 1 b0 =

0 b1 = 0 +keta = 0.04 dwg = 0 dwb = 0 pclm = 0.02 +pdiblc1 = 0.001 pdiblc2 = 0.001 pdiblcb = -0.005 drout =

0.5 +pvag = 1e-020 delta = 0.01 pscbe1 = 8.14e+008 pscbe2 = 1e-007 +fprout = 0.2 pdits = 0.01 pditsd = 0.23

pditsl = 2300000 +rsh = 5 rdsw = 140 rsw = 75 rdw = 75 +rdswmin = 0 rdwmin = 0 rswmin = 0 prwg = 0 +prwb = 0

wr = 1 alpha0 = 0.074 alpha1 = 0.005 +beta0 = 30 agidl = 0.0002 bgidl = 2.1e+009 cgidl = 0.0002 +egidl = 0.8

aigbacc = 0.012 bigbacc = 0.0028 cigbacc = 0.002 +nigbacc = 1 aigbinv = 0.014 bigbinv = 0.004 cigbinv = 0.004

+eigbinv = 1.1 nigbinv = 3 aigc = 0.0213 bigc = 0.0025889 +cigc = 0.002 aigsd = 0.0213 bigsd = 0.0025889 cigsd

= 0.002 +nigc = 1 poxedge = 1 pigcd = 1 ntox = 1 +xrcrg1 = 12 xrcrg2 = 5 +cgso = 5e-011 cgdo = 5e-011 cgbo =

2.56e-011 cgdl = 2.653e-010 +cgsl = 2.653e-010 ckappas = 0.03 ckappad = 0.03 acde = 1 +moin = 15 noff = 0.9

voffcv = 0.02 +kt1 = -0.11 kt1l = 0 kt2 = 0.022 ute = -1.5 +ua1 = 4.31e-009 ub1 = 7.61e-018 uc1 = -5.6e-011

prt = 0 +at = 33000 +fnoimod = 1 tnoimod = 0 +jss = 0.0001 jsws = 1e-011 jswgs = 1e-010 njs = 1 +ijthsfwd= 0.01

ijthsrev= 0.001 bvs = 10 xjbvs = 1 +jsd = 0.0001 jswd = 1e-011 jswgd = 1e-010 njd = 1 +ijthdfwd= 0.01 ijthdrev=

0.001 bvd = 10 xjbvd = 1 +pbs = 1 cjs = 0.0005 mjs = 0.5 pbsws = 1 +cjsws = 5e-010 mjsws = 0.33 pbswgs = 1 cjswgs

= 3e-010 +mjswgs = 0.33 pbd = 1 cjd = 0.0005 mjd = 0.5 +pbswd = 1 cjswd = 5e-010 mjswd = 0.33 pbswgd = 1 +cjswgd

= 5e-010 mjswgd = 0.33 tpb = 0.005 tcj = 0.001 +tpbsw = 0.005 tcjsw = 0.001 tpbswg = 0.005 tcjswg = 0.001 +xtis

= 3 xtid = 3 +dmcg = 0 dmci = 0 dmdg = 0 dmcgt = 0 +dwj = 0 xgw = 0 xgl = 0 +rshg = 0.4 gbmin = 1e-010 rbpb

= 5 rbpd = 15 +rbps = 15 rbdb = 15 rbsb = 15 ngcon = 1

.model P2 pmos level = 14

+version = 4.6.5 binunit = 1 paramchk= 1 mobmod = 0 +capmod = 2 igcmod = 1 igbmod = 1 geomod = 1 +diomod

= 1 rdsmod = 0 rbodymod= 1 rgatemod= 1 +permod = 1 acnqsmod= 0 trnqsmod= 0 +tnom = 27 toxe = 1e-009 toxp = 7e-010

toxm = 1e-009 +dtox = 3e-010 epsrox = 3.9 wint = 5e-009 lint = 1.45e-009 +ll = 0 wl = 0 lln = 1 wln = 1 +lw

= 0 ww = 0 lwn = 1 wwn = 1 +lwl = 0 wwl = 0 xpart = 0 toxref = 1e-009 +xl = -6.5e-9 +vth0 = -0.17 k1 = 0.4 k2

= -0.01 k3 = 0 +k3b = 0 w0 = 2.5e-006 dvt0 = 1 dvt1 = 2 +dvt2 = -0.032 dvt0w = 0 dvt1w = 0 dvt2w = 0 +dsub =

0.1 minv = 0.05 voffl = 0 dvtp0 = 1e-011 +dvtp1 = 0.05 lpe0 = 0 lpeb = 0 xj = 5e-009 +ngate = 1e+023 ndep =

5.5e+018 nsd = 2e+020 phin = 0 +cdsc = 0 cdscb = 0 cdscd = 0 cit = 0 +voff = -0.126 nfactor = 2.1 eta0 = 0.0032

etab = 0 +vfb = 0.55 u0 = 0.006 ua = 2e-009 ub = 5e-019 +uc = 0 vsat = 250000 a0 = 1 ags = 1e-020 +a1 = 0 a2

= 1 b0 = 0 b1 = 0 +keta = -0.047 dwg = 0 dwb = 0 pclm = 0.12 +pdiblc1 = 0.001 pdiblc2 = 0.001 pdiblcb = 3.4e-008

drout = 0.56 +pvag = 1e-020 delta = 0.01 pscbe1 = 1.2e+009 pscbe2 = 8.0472e-007 +fprout = 0.2 pdits = 0.08 pditsd

= 0.23 pditsl = 2300000 +rsh = 5 rdsw = 140 rsw = 70 rdw = 70 +rdswmin = 0 rdwmin = 0 rswmin = 0 prwg = 0 +prwb

= 0 wr = 1 alpha0 = 0.074 alpha1 = 0.005 +beta0 = 30 agidl = 0.0002 bgidl = 2.1e+009 cgidl = 0.0002 +egidl =

0.8 aigbacc = 0.012 bigbacc = 0.0028 cigbacc = 0.002 +nigbacc = 1 aigbinv = 0.014 bigbinv = 0.004 cigbinv =

0.004 +eigbinv = 1.1 nigbinv = 3 aigc = 0.0213 bigc = 0.0025889 +cigc = 0.002 aigsd = 0.0213 bigsd = 0.0025889

cigsd = 0.002 +nigc = 1 poxedge = 1 pigcd = 1 ntox = 1 +xrcrg1 = 12 xrcrg2 = 5 +cgso = 5e-011 cgdo = 5e-011

cgbo = 2.56e-011 cgdl = 2.653e-010 +cgsl = 2.653e-010 ckappas = 0.03 ckappad = 0.03 acde = 1 +moin = 15 noff

= 0.9 voffcv = 0.02 +kt1 = -0.11 kt1l = 0 kt2 = 0.022 ute = -1.5 +ua1 = 4.31e-009 ub1 = 7.61e-018 uc1 = -5.6e-011

prt = 0 +at = 33000 +fnoimod = 1 tnoimod = 0 +jss = 0.0001 jsws = 1e-011 jswgs = 1e-010 njs = 1 +ijthsfwd= 0.01

ijthsrev= 0.001 bvs = 10 xjbvs = 1 +jsd = 0.0001 jswd = 1e-011 jswgd = 1e-010 njd = 1 +ijthdfwd= 0.01 ijthdrev=

0.001 bvd = 10 xjbvd = 1 +pbs = 1 cjs = 0.0005 mjs = 0.5 pbsws = 1 +cjsws = 5e-010 mjsws = 0.33 pbswgs = 1 cjswgs

= 3e-010 +mjswgs = 0.33 pbd = 1 cjd = 0.0005 mjd = 0.5 +pbswd = 1 cjswd = 5e-010 mjswd = 0.33 pbswgd = 1 +cjswgd

= 5e-010 mjswgd = 0.33 tpb = 0.005 tcj = 0.001 +tpbsw = 0.005 tcjsw = 0.001 tpbswg = 0.005 tcjswg = 0.001 +xtis

= 3 xtid = 3 +dmcg = 0 dmci = 0 dmdg = 0 dmcgt = 0 +dwj = 0 xgw = 0 xgl = 0 +rshg = 0.4 gbmin = 1e-010 rbpb

= 5 rbpd = 15 +rbps = 15 rbdb = 15 rbsb = 15 ngcon = 1

.OPTION TEMP=27

.TRAN 1ns 1200ns 0s 1ns

.END


