Teaching Syntax

in an Introductory Progdramming Course

Katrin Beacker

Department of Computer Science
University of Calgary

All introductory programming students
must leacrn the syntax of the language
they are to use. The problems that
students have learning syntax are
described, and a teaching methodology is
squested.~fwo types of exercises are
explained which will help the students
learn syntax, and the reactions of the
students who have usad them are

outlined.

Introduction

Curriculum '78 includes "syntax and
semantics of a higher level (problem

orientedy lanquage" [AUST79] in its 1l9.st
of elementary topics and, indeed, most
Computer Science programs at
post-secondary institutions orffer an
introductory programming course in the
first yszar. Much has been wcitten
[R0S173, GRIE74] about the need to teach
problem—-solving skills, and its

importance is undeniable, but no matter

how a course is organized to facilitate

183

the learning of these skills, the fact
remains that the students must also
learn the structucre of the languaje they

are to use.

"To learn a projramming languaje ...
regquires both a comprehension of the
meaning of the available forms of

sentences and a detailed knowledge of

the syntactic rules governing the

lanjuajge." [WIRT73] It has been claimed
that syntax is the most easily learned
part of any lanjuagje and we shouldn't
spend much time on it [KIRKS82]. It is
true that the syntax is usually the most
straight—-forward part of a languaje;
howaver, it is also true that a
disproportionately large amount of the
available time, both in lectures and on
assignments, is spent teaching the
structure of the language. This is a
result of the fact that the programs
must not only be read and understood,
but, more importantly, be invented and

formulated [WIRT73].

Initially, the goal of the formal
study of syntactic analysis was to
provide precise definitions of the
syntax of a programwming lanjuaje
[PRAT75]. It has also provided us with a
use2ful tool for teaching the syntax of a
lanjuage to students. A survey of
several introductory programwming texts
(3’4182, C43IR80, HUYEBR2, K=ELLB2, “0OORS82,
TREM80, WEL379] reveals widespread use
of syntax diajraws and 3NF-lik2 gramnacs
in defining the lejal constructs of a
lanjuage. Conspicuous by its absance
however, is any attempt to explain how
these rformal definitions can actually be
used. Often, an attempt is made at
defining the term 'syntax', but then the
syntax diagrams are siaply presented as
fact without further explanation.
Sometimes the text includes several
examples of the construct in guestion,
both correct and incorrect, but still
the majority of the time spent on
programming assignments by introductory
students is used in finding and
correcting syntax errors. The 'tools'
currently available to the average

student are obviously insutficient.

lzaching Syntax

'he purpose of this papac is to
sujjest 3 wethod by which students aay
becowe rawiliac with ths syntax of a
lanjuaje by actually using the syntax

diajcaws as tools. Pascal has been

184

chosen as the projraumning lanjuage for
several reasons. Perhaps most
importantly, it is widely used as an
introductory projramming language. In
addition, Pascal is a lanquage that can
be easily definad using syntax diagrams.
The materials required for the proposed

exercises are readily obtainable (syntax

compiler error messajesl .

The syntax of a languaje provides a
notation for the communication of
information between the programmer and
the processor [PRAT7S]. Clearly, knowing
the syntax of a language allows one to
write projrams that will compile without
error (i.2. programs that are iree oL
syntax errorst. Learning somsthing of
syntax analysis as well as just the
tules tha2uselves can be vary benerficial
to beginning prograwmers. Students can
learn to use syntax diajrams as tools
for debugging their own projrams. They
learn which errors are detactable by the
compiler, because they can learn, at
least in gen=ral terms, how the compiler
looks for these errors. Another valuable
result is that by doing exercises
intended to help them learn the syntax,
they will also gain experience in
reading programs and rollowing what is
actually written rather than what they

think is written.

By allowing students to use syntax
diajgrams as tools, the syntax rules will
acquire more meaning than if simply
presented as fact along with a few
axamples. Studsnts can be given
exercises that allow them to work with
the syntax rules to s22 how they fit
tojether, and what happens when thece is
a syntax error. They can actually be
shown the difference between syntax and

'logic' errors within prograus.

Exercise I

The first set of exercis2s reguire
only the Pascal syntax diagrams and some
samnple sections of code. The syntax
diajrams used are of a somewhat
simplified form (see 'Problems and
Comments'). The term 'sections of code'
is used rather than programs because, as
will be explained later, both partial
and complete programs are useful kere.
The object of the exercise is to reduce
the sauwple code, bejginning with simple
tokens and ending with the highest level

syntactic unit for that particular
example. In the cass2 of a finished

projram, the highest possible syntactic
level is <program>. Partial projraus
should be written such that thay reduce
to a single syntactic unit (e7.
{expression> or <compound statament>).
For the purpose of these a2xecrcises, the

sample code must be syntactically

correct to avoid contusion (error
detection and handling are coverad in
the se2cond set of exercisest. The
exauwples usad can be varied to
illustrate pacticular classes of
constructs. For example, one may wish
the students to concentrate their
eiforts on the different kinds of loops.
The examples could then consist of
complete loops, even nesting them. It is
also possible to isolate procedures,
tunctions, if-then-else statements,

declarations, expressions, =2tc.

The method used to complete the

exercise is for the studants to make

s2veral pass2s over the sample,
rewriting the program each time, but
ceplacing one s2t of syntactic entities
with th2 next higher set in th2 process.
The first pass would reduce all possible
strings to tokens. In order to
facilitate the writing, short mnemonics
must be chosen for the names of their
syntactic entities (a list of these
mnemonics can be attachad to the syntax

diagrams).

Problems and Comments

After having completed a few exauples
myself, using just the syntax diajrams
as given in the Pascal User Manual and

Raport [JEINS74], it became apparent that

in order to be easily used, they

required some modification. Some
syntactic entities nezded to be brokan

into several smaller ones (such as

¢statement> and <block>) while others
needed to be simplified for some
exanples (for instance, tha s2t of
diagrams describing literals is too
in the reduction of

detailed for use

complete programs : there is a danger
that the students will get caujght up in
the details and fail to see the larger
pictucel . The modified syntax diajrams

appear at the end of this paper.

Although it would be possible to
create an on-line system for these
exercisas in the CAI spirit, thece are
ssveral reasons for not so doing. In
order for these exercises to fulfill
their objectives, it must be possible
for the students to do many of them.
This is accomplished most economically
by having the students work on these
exercises at home. Enrollment in most
introductory programwming classes is
quite large (especially at universities)

and these, tojether with the other
progranwning classes often tax tha

available computing facilities to the
limit. Adding to this by cequirinj the
students to complete these exercises
on-line is likely to reduce the amount
of time students can use

the computar to

write their own projrams. One of the
values of these execcises is that the

students can gain practical exparience

reading and working with prograns

without having to be lojged on.

Exercise II

The second set of exercises reguires
a bit more in the way of materials but
the exercises can still easily be
accomplished using pencil and paper
methods. These exercises require the
syntax diajrams as previously described,
example sections of code (ajain both

complete and partial programs are

usa2rfull, a list of the 2rror messajes a
compiler might produce (each numberedl ,
and a s2t of rules to jo with each error
messaje that tells how to recover from
the ecror that caused that ﬁessa;e. In
essance, the

students are asked to 'play

compiler' and parse the examples given.
Their task is to go through the
axamples, using the syntax diajrams to
juide them and print out the appropriate
error messaje when on2 is found (one
could name the error number and the line
number in the example where it was
foundl, £ollow the recovery rules and
continue on until the end of the example
is reached. For each example, the syntax
diajgram used to start with should be
named (for complete programs , it would
simply be <program>). As these exercises
can quickly become quite complicated, it

would be helpiful for the students to

copy out the syntax diagrams (using

mnemonic forms for the syntactic unit
names) as they follow them. This will
allow them not only to find their place
in a particular syntax diagram (it is
often necessary to leave one in the
middle and return to it at some latar
pointl, but it will make backtracking
much easier, should it become nacessary.
It will also leave the student with a
'picture' of the example they just

parsed.

This s2cond set of exercises is
somewhat more advanced than the first,
and therefore may require introduction
in steps. A suitable first step is to
provide the students with syntactically
correct examples and have them simply
parse them, writing out the diagrams as
they use them. Once this can be done
with relative ease it will be possible
to begin introducing errors into the

examples.

These exercises are intended to give

the student some understanding of what
the compiler does as well as exposure to
a wide range of syntax errors. Some
common errors that students often have
difficulty with are : too many or not

enoujh 'end' statements, missing closing
quotes, missing closing comment
delimiters, and misplaced semi-colons.
These types of errors often result in a
deluge of error messages, most of which

convey little or no information about

187

the actual error. Following the
exercises will allow the students to see

how this happens.

Experience with the Exercises

Early experience with the exercises
has been encouraging. To suppleuent
preliminary reactions, both types of
exercises were given to a second-year
class in January 1933 and the students'

reactions have been noted. As the sample

programs chosen have not been used in
the exercises before, they were g3iven to
a second-year class of approximately 30
sStudents instead of the introductory
class because they would be better able
to cope with possible mistakes (a first
year class should be given axamples that
are known to be managable and not

misleading) .

The students were given
questionnaires and asked to respond to
jeneral questions that primarily
requested 'yes/no' answers (with room
for commentst. Half of the students who
completed the exercises had had no prior
experience with Pascal and the rest had
used it in their introductory course but
still felt they did not know it well.
Most students had seen syntax diajyrams

before but few had ever used them. Those

who were familiar with Pascal used the

exercises as a review and found them

quite helpful. The others used the

opportunity to ramiliarize themselves
with the Pascal syntax. Almost all felt
th2se 2xercises would have been helptul
in their first course; in particular,
they felt the second 2xercise helped
them to find the causes of errors in

their own programs.

Saveral students criticised the
syntax diagrams for being incomplete,
and in fact the diajrams are currently
being refined. With clearer syntax
diagrams and carefully chosen sample
programs this problem will be corrected.
The other main complaint was with the
amount of sample code they were given.
Many students felt there w2re too many.
This problem can also be corrected by
giving small samples throughout the
entire course (these students were given
the examples all at oncet. New samples
are currently being devised; the
intention beingy to provide somewhat more

formal test results. The exercises will

this time be given to a first-year class
(in the fall of '83) and they will be
test2d rather than asked to rill out a

quastionnaire.

It is clear from the students'
comments that these execcises cannot
replace lectures, labs, or programming
assignments but they do provide a

valuable supplement that can be used to

some extent, whenaver they are required

to write a program.

Conclusions

Students in Computer Science, perhaps
more than almost any other discipline,
must learn how to learn. Over the years
it has become apparent that students

graduating out of Computer Science

programs will have to relearn most of

what th2y know about programming
[X13K82). Understanding syntax and being
able to us2 syntax diajrams provides
thess students with a tool that is a
step removed from the actual langjuage
and tharefore can be applied with

when learning other

relative ease

languages.

Aside from its value as a tool to be
usad later, learning how to use syntax
diagrams also provides the student with -
more immediate gains. The most important
of these are : experience in reading
programs, learning to recognize common
syntax errors, and acquiring a

rudimentary understanding of the parsing

process.

[AU3TT79]

[R05173]

[3RIE74)

[WIRT73]

[BRATIB2]

[THERBO]

[HUMES2)

[KELL82]

[(M00OR82)

[TREMB0]

[WELS79]

Rerfarences

Austig,Richard H. et.al., Ed.,
"Curriculum '73:
Racommendations for the
Undargraduate Projram in
Computar Science — A Ra2port of
the ATY Curriculum Committee on
Computar Scisnce", CACM
Vol.22,N0.3, (Mar.'79), pp
147-165

Rosin,R.F., "Teaching 'About'
Programming", CAC™M Vol.1l6,No.7,
(July '73) pp 435-439

3ries, D., " What Should We
Tzach in an Introductory
Programming Course?", SIGCSE
Bulletin (ACMI 6,1 (Feb.'74) pp
81-39

‘ANicth,Niklaus, "Systematic
Programwming : An Introduction",
New Jersey: Prentice-dall, 1973

Brainerd,W.S, G.H.Goldberg, and
J.L.Gross, "Pascal Programming
: A Spiral Approach", San
Fransisco: 3oyd and Fraser
Publishing Company, 1982

Chercry,G.W., "Pascal
Projramming Structures: An
Introduction to Systematic
Projramming”, Raston,Vicginia:
Raston Publishing Company, 1930

Yume,J.N.P., and R.C.Holt,
"JCSD Pascal : A 3eginner's
Guide to Progjramming
Microcomputers",
Reston,Virginia:
Publishing Company,

Reston
1982

Xeller ,Acthur, "A First Courss2
in Computer Prograwming”, New
York: McGraw-3ill, 1932

Moore,John B., "Pascal Text and
Reference with Waterloo Pascal
and Pascal V3",
Raston,Virginia:
Publishing Co.,

Raston
1982

Tremblay,Jean Paul, R.B.Bunt,
and L.M.Pseth, "Structured
Pascal", New York: McGraw-Hill,
1980

Welsh,Jim, and John Elder,

"Introduction to Pascal",
London: Prentice-Hall
International, 1979

189

[KIRKS2]

[PRAT75]

[1ENS74)

Kicrkerud,Bjorn R., "The
Teaching of Programming",
Teaching Informatics Courses,
HLWJackson (Ed.), North-tlolland
8ook Publishing Co., IFIP 1982,
pp 25-42

Pratt, Terrence W.,
"Programming Language 3 Design
and Implementation", New Jersey
: Prentice-dall, 1975

Jensen,Kathleen, and Niklaus
Wirth, "Pascal User Manual and
Report", 2nd Ed. New York :
Springer—-Verlag, 1974

SYNTAX DIAGRAMS

Syntax Diagrams define the structure of a language. They can
be used to help you understand how the statements in a language
are formed. They can also be used to help you find mistakes in
your programs. Each diagram describes what is called a syntactic
entity. The boxes denote the components of this entity (some of
which need further explanation) and the lines and arrows define
the possible combinations.

The exercises you have been given will use the syntax diagrams
extensively so that you may become familiar with their utility.

The following explanations supplement and complete the syntax
diagrams you have been given.

1. Symbols: Circles denote terminal symbols (i.e. those actually
written in Pascal programs.

: Rounded boxes denote Pascal keywords and are written
just as they appear (except 'character', which stands
for any single character). The keywords shown do not
represent the complete set of Pascal keywords - see
your text for a full set..

The boxes refer to a syntactic entity, most of which
are defined by other syntax diagrams. The following
may be considered to be primitive tokens and thus
are not defined by syntax diagrams :

ID : Identifier - any name that is not a keyword
UI : Unsigned Integer - any positive wholé number

UN : Unsigned Number - any positive number (incl.
decimals and scientific notation)

E : Expression - any epression of the form :
unary operator operand operator operand ...
or operand operator operand ...

T : Type - any system or user defined type

2, Comments may occur anywhere except within : constants, variables,
expressions, and parameter lists. A syntax diagram for comments
has been provided, but for Exercise I, the comments may be
ignored after Pass 1.

3. For the purposes of these exercises, qualifiers on variables
in 'write', 'writeln', 'read', and 'readln' (eg. x:5 or
y:5:2) along with the variables themselves may be considered
to be expressions.

4. All statements are coded as 'S' to make the reduction somewhat

simpler.
CS:Character Sh'fns CoMs Comment
O Gt 1O O-+Gnsce) 110

UC:Unsi gned Constant
\D:Constart | dertifie

et
I_.Il
(VL)

V: Variable

® |

O+{E B |0
e

. 1D:Reld Wenthier

v

PH: Rogram Header
PROGRAM)—{ID: derkifer (O5{ID:ldenkifer 0

O,

PL: Ricameter List

m“
(3¢
‘&\/ » ID:Ty pe Identifier

..
VAR

1D ldenhfier
LD:Lebel Declaration CDi Conetat Declgratten
% —(cmsr)—‘[—qmz ldertfler M —{C:Constank
(=)<
G
TD: Type Teclarabion

(TP)40t Wenhler [+ TrType

26,

VD: Varigble Dedarahion

PD: Rocedure Declsration

—t‘@OCEWRB—PIIDiHen'Bﬁer |{PliRrameter List |(5)
e

7

FD: Function Declaration

FUNCTION)-iDrdentfier P Riramelerlisk |(-{1D: Tpo \derkfier [(3)

4
N2/

S:Statement , Type 1 : Simple Statement
— 4 V: Variable (24 E:Expression y

|Dfunchionldentifier s 14

ID:Rocedure dentih lq
ID:Rocedureldentifie

v

GOTO)—»{lliUnsigned Integer |

\ J

St Statement s Type 23 Commpound Stetement St Statemertt, ‘B;pe 3t With Statement

—{BeaIN S:Statement END WITH 'v:\ér:able ' S:Statemedt
»

S:Staterment, Type 4 t Condifional Shatement

S:Skatement ,Type 5 : Repetathve Statement

v

Etexprassion [~ DO*)4 S:Staterment

192

B: B[ock

B} G S

i O St

o SiStatement rmeriTrpe
, Stafement;Type?
D s ecbraton5(3) 5 Stabermert; Type 5

!
RS

!l

P:ngram
PH:RogramHeader |5(3) ®

ERROR MESSAGES

1. Identifier Expected :: assume there was one and continue.

2. 'program' Expected :: insert and continue.

3. ')'" Expected :: insert and continue.

4. ':' Expected :: insert and continue.

5. Illegal Symbol :: mark, ignore, and continue.

6. Error in Parameter List :: Search for '}Y' or end of line,
if ')' found first, assume you are at the end of 'PL';
if end of line found first, assume you are at the end
of the header for the procedure or function declaration;
then continue.

7. '"of' Expected :: insert and continue.

8. '(' Expected :: insert and continue.

9. '['" Expected :: insert and continue.

10. '"]' Expected :: insert and continue.

11. 'end' Expected :: insert and continue.

12. ';' Expected :: insert and continue.

13. Integer Expected :: convert number found to integer and
continue; or if no number found at all, assume there was
one and continue anyways.

14. '=' Expected :: insert and continue.

15. 'begin' Expected :: insert and continue.

16. Error in Declaration Part :: skip to beginning of next
declaration or 'begin', whichever comes first.

17. ',' Expected :: insert and continue.

18. ':=' Expected :: insert and continue.

193

19.
20.
21.
22.

23.

24,

'then' Expected insert and continue.
'until' Expected :: insert and continue.
'do' Expected :: insert and coninue.

'to'/'downto' Expected :: insert and continue.

'if' Expected insert and continue.

Error in Variable :: skip to next delimiter (blank, operator,
comma, end of line, '(', ')', etc.)

and continue.
Sign (+, -) Not Allowed :: ignore and continue.

Missing Result Type in Function Declaration ::
was one and continue.

assume there

194

27. String Constant Must Not Exceed Source Line :: assume that the
end of the string was reached and continue.

28. Too Many Errors on This Source Line :: if there were more than
three errors, then ignore the rest of the
line and start on the next line 'fresh'.

29. ';' Found Before 'else' :: delete and continue.

30. Unmatched ''' (quote) For String go to the end of the line
assume that the end of the string has
been reached, and continue.

31. '.' Expected :: insert and continue.

EXERCISE I
EXAMPLE :
if i = 10
then begin
i = 0;
X 1= x * x
end
else bhegin
i:=1i+ 1;
X =Yy
end;
PASS 1: PASS 2: PASS 3: PASS 4:
e A if E) if B S;
then begin then begin then s
ID := E; S; T else S;
ID := E S
end end
else begin else begin
ID := E; 2?
IDh := E -
end; _J enqi)

EXERCISE II

EXAMPLE :

program one (input, output);

var i : integer;

begin
write ('Number please: ');
while not eof(input) do

begin
read (i))
writeln ('That was a ', i)
write ('Number please: ')
end

end.

Result after Parsing :

P[PH[program id (id, id)}] ;
B[VD [var id : t] ;

begin
S1[id (csS[' characters ' 1)] ;
S5[while e do
S2[begin
S1[id (id)])
* : S1[id (cs[' characters '], id)]
ERROR i i) R
**ERROR 5 S1[id (cs| characters
end]
end]

Error Messages from the previous example :
line 9, error 12
line 10, error 12

Please note that the line numbers refer to the place in the
source where the error was detected.

195

