
University of Calgary

PRISM Repository https://prism.ucalgary.ca

The Vault Open Theses and Dissertations

2018-12-20

An Open Geospatial Internet of Things

Cloud Service Architecture Based on

the Big Data Lambda Architecture

Khalafbeigi, Tania

Khalafbeigi, T. (2018). An Open Geospatial Internet of Things Cloud Service Architecture Based

on the Big Data Lambda Architecture (Doctoral thesis, University of Calgary, Calgary, Canada).

Retrieved from https://prism.ucalgary.ca.

http://hdl.handle.net/1880/109398

Downloaded from PRISM Repository, University of Calgary

UNIVERSITY OF CALGARY

An Open Geospatial Internet of Things Cloud Service Architecture Based on the Big Data

Lambda Architecture

by

Tania Khalafbeigi

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

DEGREE OF DOCTOR OF PHILOSOPHY

GRADUATE PROGRAM IN GEOMATICS ENGINEERING

CALGARY, ALBERTA

DECEMBER, 2018

© Tania Khalafbeigi 2018

ii

Abstract

The Internet of Things (IoT) consists of sensors and actuators embedded in everyday devices

interconnecting and communicating through interoperable information and communication

technologies. The real potential of IoT is in creating innovative applications by integrating and

repurposing IoT sensing and controlling capabilities from different sources. However,

proprietary IoT systems now create silos that make the IoT goal almost unreachable as the

applications need to deal with heterogeneous data from different systems. In addition to the

problem of heterogeneity, big data is a challenge for all technologies in the modern world. As

predicted by CISCO and IDC, the number of internet-connected objects will reach at least 50

billion by 2020. As a result, IoT is facing heterogeneity and big data challenges including

volume and velocity. We have proposed an architecture for IoT with the focus on data

management challenges in this dissertation. The proposed architecture merges the Lambda

architecture with the SensorThings API. The SensorThings API is used as a solution for the

heterogeneity problem. One of the solutions for data heterogeneity or so-called interoperability

in IoT is the use of a standard API. SensorThings API has been proven to be a mature, open

geospatial standard for IoT by various literature, implementations, and its widespread adoption.

Moreover, the Lambda architecture addresses big data volume and velocity challenges through

the use of three layers architecture: batch, serving, and speed. We implemented a case study of

our proposed architecture with real air quality data. For our implementation, we used Hadoop

and Azure technologies. Our case study showed that our proposed architecture significantly

improves the performance of IoT service on real-world big open data.

Keywords: Internet of Things, Big Data, SensorThings API, Lambda Architecture

iii

Acknowledgements

I would like to thank the following individuals who supported me and did not leave

me alone in all aspects of my research:

• Dr Steve Liang for his guidance, financial support, and excellent supervision.

• Dr Xin Wang, Dr Reda Alhajj, Dr Mea Wang, and Dr Kyle O'Keefe for providing useful

comments about my research during my candidacy exam.

• Charlene K for helping me polishing the English of this dissertation

• Mahdi, my husband, and also my parents for their spiritual support.

I would also want to thank my colleagues in GeoSensorWeb lab for all their help when we

worked on SensorThings API design, especially Alec Huang and Mohammad Jazayeri.

Last, but not least, I would like to thank SensorUp Inc. for sponsoring my implementation on

Microsoft Azure.

iv

Table of Contents

Abstract ... ii

Acknowledgements .. iii

Table of Contents ... iv

List of Tables .. vii

List of Figures and Illustrations ... viii

List of Symbols, Abbreviations and Nomenclature ...x

INTRODUCTION ...1

Challenges of Data Management in IoT ..3

IoT Big Data Management ...3

Data Volume ..4

Data Velocity ...5

Data Variety ...5

Objectives and Proposed Solutions ..6

Objective 1: To Propose a Solution for the Data Variety Challenge for IoT6

Objective 2: To Propose a Solution for the Data Volume Challenge for IoT9

Objective 3: To Propose a Solution for the Data Velocity Challenge for IoT9

SENSORTHINGS API, DETAILS AND DESIGN DECISIONS12

Introduction ..12

OData and SensorThings ...16

IoT Reference Model and Place of SensorThings ...16

Related Work ...18

IoT Interoperability Challenge ...19

Adaptor/Translator Solutions ...19

IoT Platforms and Standards ..21

SensorThings API in Literature ..25

Data Model ..29

SensorThings Application Interface ..39

Data Retrieval ...39

MQTT ..42

DataArray ...43

Data Insertion and Modification ...43

MQTT ..45

DataArray ...45

Batch Requests Extension ..45

MultiDatastream Extension ...46

Summary ..47

Future Work ...48

DATA MANAGEMENT FOR INTERNET OF THINGS AND LAMBDA

ARCHITECTURE ..50

Big Data and Internet of Things ..50

Related Work ...54

Related Literature ...55

v

Big Data Platforms and Technologies ..64

Hadoop ...65

Hortonworks ..66

Pivotal Big Data Suite ..67

Cloudera Enterprise Data Hub ...68

MapR ...69

Database Management Systems ...69

Lambda Architecture ...72

Batch Layer ..73

Data Model ..75

Master Dataset ...76

Batch Views Precomputation ...77

MapReduce ..78

Serving Layer ...80

Speed Layer ..82

Challenges for Incremental Processing for Speed Layer85

Asynchronous vs Synchronous Updates for Real-time Views87

Queuing ..88

Stream Processing ..89

Summary ...94

INTEGRATING THE LAMBDA ARCHITECTURE WITH THE SENSORTHINGS API

...98

Proposed Architecture ..98

Data Model and Master Dataset ...98

Batch Views ..100

Serving Layer ...104

Speed Layer ..105

Discussion ..106

Big Data Volume ..107

Big Data Velocity ...108

Big Data Variety ...108

RESULTS AND DISCUSSION ..110

Air Quality Case Study ..110

Case Study Implementation ...112

Master Dataset ..112

Batch Layer ..113

Batch View Structure ...114

Batch Processing ..115

Serving Layer ...117

Speed Layer ..117

Real-Time View Structure ...118

Case Study Experiments ..122

Big Data Variety ...123

Implementations ...124

Standard Adoption ...126

vi

Big Data Volume ..127

Big Data Velocity ...135

Experiment with Query on All Data ...141

Summary and Discussion ...148

CONCLUSION AND FUTURE WORK ..152

REFERENCES ..158

vii

List of Tables

Table 1 SOS and SensorThings Comparison (Adapted from (SensorUp Inc., 2016)) 23

viii

List of Figures and Illustrations

Figure 1 Big Data Three "V"s (Russom, 2011) .. 4

Figure 2 SensorThings Service Sample Use Case .. 15

Figure 3 IoT Reference Model (Adapted from (International Telecommunication Union,

2012)) .. 17

Figure 4 SensorThings Data Model (Adapted from the Standard Specification (S. Liang et al.,

2016)) .. 30

Figure 5 Trend in the Number of Internet-Connected Devices (Adapted from (Ahmed et al.,

2017)) .. 52

Figure 6 Internet-Connected Devices Forming IoT (Adapted from (Ahmed et al., 2017)) 52

Figure 7 The Overall Process in Lambda Architecture (Adapted from (Marz & Warren,

2015)) .. 96

Figure 8 Timeline for Batch and Real-Time Views.. 119

Figure 9 Case Study Implementation of Lambda Architecture with SensorThings API 120

Figure 10 Screenshot of All the Azure Services We Used for Implementing Our Proposed

Architecture ... 120

Figure 11 Power BI Screenshot Querying the Data from Our Proposed Architecture, Showing

the Average Temperature for Dates Between 29/09/2017-26/04/2018 121

Figure 12 Power BI Screenshot Querying the Data from Our Proposed Architecture, Showing

the Average Dust Level (PM2.5) for Dates Between 30/01/2018-18/06/2018 for the

Select Area .. 122

Figure 13 Query Performance on Batch Views in Milliseconds Based on Number of

Observations ... 132

Figure 14 Query Performance on Hive Raw Data in Seconds Based on Number of

Observations ... 134

Figure 15 Query Performance on PostgreSQL Raw Data in Seconds Based on Number of

Observations ... 134

Figure 16 Query Performance in Seconds Based on Number of Observations 135

Figure 17 Batch Processing Time in Minutes Based on the Number of Observations............... 137

Figure 18 Real-Time Query Performance on PostgreSQL Raw Data in Seconds Based on

Hours of Available Observations .. 139

ix

Figure 19 Real-Time Query Performance on Real-Time Views in Milliseconds Based on

Hours of Available Observations .. 139

Figure 20 Latency of Adding Data to Real-Time Views in Milliseconds Base of Stream Rate

in Hertz .. 141

Figure 21 Query Performance in Milliseconds on All Data Using Batch and Real-Time

Views Based on Number of Observations .. 145

Figure 22 Query Performance in Seconds on All Data Using Hive Based on Number of

Observations ... 146

Figure 23 Query Performance in Seconds on All Data Using PostgreSQL Based on Number

of Observations ... 146

Figure 24 Query Performance in Seconds on All Data Using Our Proposed Architecture,

PostgreSQL, and Hive Based on Number of Observations .. 147

x

List of Symbols, Abbreviations and Nomenclature

Abbreviation Definition

ACID Atomicity, Consistency, Isolation, and Durability

API Application Programming Interface

CRDT Conflict-free Replicated Data Type

CRUD create, read, update, and delete

DAG Directed Acyclic Graph

DBMS Database Management System

DDS Distributed Data System

DHS Department of Homeland Security

DSS Decision Support System

DW Data warehouse

ETL Extract Transform Load

HDFS Hadoop Distributed File System

HiveQL Hive Query Language

ICT Information and Communication Technology

ID identifier

IDC International Data Corporation

IoT Internet of Things

IoV Internet of Vehicles

ITU International Telecommunication Union

JSON JavaScript Object Notation

LASS Location Aware Sensing System

MAC Media Access Control

MDSD Model Driven Software Development

MPP Massively Parallel Processing

MQTT Message Queuing Telemetry Transport

NoSQL Not only SQL

O&M Observation and Measurement

OGC Open Geospatial Consortium

PaaS platform as a service

PDBMS Parallel Database Management System

RDBMS Relational Database Management System

REST Representational State Transfer

SCN Service-Controlled Networking

SLA Service Level Agreement

SOA Service Oriented Architecture

SOS Sensor Observation Service

SQL Structured Query Language

SSN Semantic Sensor Network

SWE Sensor Web Enablement

XML Extensible Markup Language

1

Introduction

Billions of small sensors and actuators will be embedded in everyday objects and connected

to the Internet forming a concept called the Internet of Things (IoT) (Arlitt et al., 2015; Evans,

2011). In the concept of IoT, there are a great many “things” that are connected to each other

using wireless or wired connections with unique addressing schemas. With the help of these

connections, “things” can interact and cooperate with each other in order to create new

applications (Vermesan & Friess, 2013).

The International Telecommunication Union (ITU) (International Telecommunication

Union, 2012) defines IoT as “a global infrastructure for the information society, enabling

advanced services by interconnecting (physical and virtual) things based on existing and

evolving interoperable information and communication technologies”. IoT-enabled objects can

sense their environment, collect information, and communicate and interact with each other. In

the context of IoT, the “things” in the physical world are identifiable and capable of being

integrated into communication networks. By populating our environment with real-world sensor-

based devices, the IoT is opening the door to a variety of application domains, such as

environmental monitoring, transportation and logistics, urban informatics, smart cities, as well as

personal and social applications (S. Liang, Bermudez, Huang, Jazayeri, & Khalafbeigi, 2013).

The observation data collected by “things” in IoT are different depending on the sensors that

produce them (e.g. temperature, humidity, sound, light, etc.). Along with these differences in

types, the data is collected using different structures (can also be unstructured). Furthermore, the

2

high frequency of producing data by a large amount of “things” results in IoT data deluge. The

heterogeneity, ubiquity and streaming nature of IoT data make data management a challenging

task in IoT (Barnaghi, Sheth, & Henson, 2013). Data management is a key research topic for

IoT and it plays a crucial role in the effective operation of IoT (M. Ma, Wang, & Chu, 2013).

Data management in IoT includes the tasks of data collection, integration, cleaning, storage,

processing, analysis, and visualization (Mishra, Lin, & Chang, 2015). For this thesis, I focused

on data storage, processing and analysis in IoT; other data management tasks are out of the scope

of this dissertation.

For this dissertation, I proposed an architecture for IoT with a focus on data storage,

processing and analysis challenges. I divide the solution into two sub-solutions:

 We (GeoSensorWeb Laboratory1) propose using the SensorThings API (S. Liang,

Huang, & Khalafbeigi, 2016) for IoT services in order to address the challenge of

heterogeneous data for IoT.

 I propose applying the Lambda architecture (Marz & Warren, 2015) over the

SensorThings API in order to overcome storage, processing and analysis challenges

for IoT.

1 http://sensorweb.geomatics.ucalgary.ca/

http://sensorweb.geomatics.ucalgary.ca/

3

The next subsection explains IoT data management challenges that are what this

dissertation aims to solve. Then, the objectives are explained in detail followed by a brief

discussion as to how our proposed solution fits the objectives.

Challenges of Data Management in IoT

The nature of IoT data causes different challenges for IoT data management. IoT data are

inaccurate, heterogeneous, massive, real-time, and also have implicit semantics (Ding, Yang, &

Wu, 2011; M. Ma et al., 2013). Also, IoT data has spatiotemporal attributes (Ding et al., 2011).

Based on these data characteristics, data management in IoT can be categorized as data cleaning;

data (pre)processing; data storage and analysis; and handling security and privacy (Ding et al.,

2011; T. Fan & Chen, 2010; M. Ma et al., 2013; Mishra et al., 2015). For this dissertation, IoT

data management is discussed from a big data perspective which covers data preprocessing, and

data storage and analysis. In the following subsection, big data management for IoT is elaborated

on.

IoT Big Data Management

The term big data in the context of information technology is often thought of as managing

large datasets. However, although managing large volumes is an important challenge in the big

data world, big data does not only mean big data volume but also big data velocity and variety.

Volume, Velocity and Variety are called the three “V”s of big data management challenges

(Russom, 2011) as shown in Figure 1.

4

With the rapid development of IoT and the increasing number of IoT-enabled objects, it has

been observed that IoT also encounters big data challenges. As such, IoT data has been widely

used in literature as a typical example of big data challenges (W. Fan & Bifet, 2013). An

explanation of the basic concept of the three “V”s big data model and how IoT fits into this

model is given below. (C.-Y. Huang, 2013)

Data Volume: The most obvious characteristic of big data is the large data volume, which

refers to large datasets in terms of size or number of data records. As predicted by CISCO

(Evans, 2011) and the International Data Corporation (IDC) (Arlitt et al., 2015), the number of

internet-connected objects will reach at least 50 billion by 2020. Each of these sensors registers

its observations frequently and even managing some of the data from the 50 billion devices is

challenging with today’s data management systems. It is foreseeable that with the increasing

number of IoT-enabled “things”, IoT will be generating more and more data every day. As a

result, storing and retrieving the large volume of data will be a major challenge for IoT.

Figure 1 Big Data Three "V"s (Russom, 2011)

5

Data Velocity: Data velocity refers to the high rate of data production. In the context of

IoT, sensors are used to detect interesting events and higher sampling frequency will reduce the

chance of missing important events. As a result, billions of future IoT sensors will produce data

at high frequencies. Sound pressure sensors are examples that typically register their readings

every second. Another example is the Boeing jet engines that produce ten terabytes of sensor

data every 30 minutes during flights (C.-Y. Huang, 2013). In addition, an effective IoT data

management system not only needs to store and index the continuous sensor data streams

flowing into the system but also needs to continuously answer queries about these data streams.

As a result, efficiently processing high-velocity data streams is another big data challenge faced

by IoT.

Data Variety: Data variety refers to managing different datasets with a large variety of

characteristics. As shown in Figure 1, the different characteristics can be in terms of data

structures, incompatible data formats, and different data interfaces (Russom, 2011). Sensor data

is relatively structured in comparison to social media data. However, sensor data varies greatly in

terms of hardware, data types, observed phenomena, communication protocols, data encodings,

semantics, and syntaxes (C.-Y. Huang, 2013). For example, there are different kinds of

temperature sensors from different vendors and their observations need to be organized in a

consistent fashion by IoT. Each of these sensors has their own IoT service provider that develops

and uses its own proprietary software interface, encodings, and ontologies. This means that the

6

number of proprietary interfaces are growing as the number of IoT devices increases. As a result,

the IoT sensor data may come from different sources with different interfaces and structures (or

may even be unstructured). Thus, effectively integrating heterogeneous data in order to provide a

coherent view for innovative applications is another challenge for the IoT world.

Objectives and Proposed Solutions

In this subsection, I first clarify the objectives before explaining the proposed solutions to

achieve the objectives.

High Level Objective: To propose an architecture that can address data management

challenges for the Internet of Things from the big data perspective.

My overall objective is to address data management challenges by proposing an architecture

for IoT. To better explain the proposed solution, I divide the overall objective into the big data

three “Vs” and then explain the proposed solution for each objective.

Objective 1: To Propose a Solution for the Data Variety Challenge for IoT

OGC SensorThings API is an OGC standard that proposes an API for IoT services to

monitor and control IoT devices (i.e. sensors and actuators). The SensorThings API applies

Representational State Transfer (REST) -like architecture and uses HTTP protocols for its

communication. The overall objective of the API is to make IoT services interoperable so that

the real value of IoT can be achieved by creating innovative applications for these services. In

other words, the data variety problem for IoT can be overcome by using this API.

7

The SensorThings API proposes a standard solution for IoT-enabled devices to interact with

each other and through the Web using the JSON data format. The JSON format is preferable to

the Extensible Markup Language (XML) format, because it is lightweight, simple, and efficient

for presenting data in the server. In other words, it is easy to use (S. Liang et al., 2016).

For the SensorThings API, a REST-like service interface is used for accessing the

resources. With this API, each resource is identified using a unique identifier. As a result, each

resource can be accessed uniquely without the need to know its related resources. The

SensorThings API supports four basic operations for all the resources: create, read, update, and

delete (CRUD). Since the API uses HTTP protocol, it uses HTTP POST for create; GET for

read; PUT and PATCH for update; and finally DELETE for delete.

The SensorThings API consists of three major parts which are: Sensing, Tasking, and Rules

engine parts. The Sensing part defines an interoperable framework to manage and access sensors

and observations. The Tasking part defines an interoperable framework for managing the

actuators and submitting tasks to them. Finally, the Rules engine part defines events as the

connection point between the Sensing and Tasking parts. The Sensing part was published in July

2016 and the Tasking part will be published in late 2018. The Rules engine part is a work in

progress and is planned for 2019. The focus of this dissertation is on the Sensing part.

The Sensing part contains following resources: Things, Location, HistoricalLocation,

Datastreams, Sensors, ObservedProperties, Observations, and FeaturesOfInterest. A Thing is an

IoT-enabled object and has a current Location and may have some previous locations in

8

HistoricalLocations. It can also have one or more Datastreams. A Datastream is a mechanism for

grouping Observations with the same Observed Property and Sensor. The Sensors of the IoT-

enabled object produce results (or readings) with values that are an estimate of an

ObservedProperty of the FeatureOfInterest. These readings are called Observations in the

SensorThings API.

The SensorThings API provides a standard framework for IoT services. As a result, even if

each IoT-enabled object has its own implementation of this API as a software interface,

integrating the data from these services to create innovative applications is straightforward. In

summary, we believe that SensorThings API provides sematic interoperability through its data

model and syntactic interoperability with its REST API. Thus, we believe that by using the

SensorThings API for IoT services we can address the data variety challenge for IoT.

I propose using Lambda architecture (Marz & Warren, 2015) on top of of the SensorThings

API to address the data volume and velocity challenges. Lambda architecture is a generic,

scalable and fault-tolerant data processing architecture that can be used for real-time data

processing. It contains three layers. The batch layer manages the master datasets and creates

batch views. The serving layer indexes the batch views and prepares them for querying. Finally,

the speed layer deals with real-time data processing and query answering. The following explains

how using the different layers of Lambda architecture can address data volume and velocity

challenges for IoT.

9

Objective 2: To Propose a Solution for the Data Volume Challenge for IoT

I propose using the batch and serving layer to address the data volume challenge for IoT.

The batch layer responsibilities are: 1) storing an immutable, constantly growing master dataset,

and 2) computing arbitrary functions on that dataset and creating batch views. The serving layer

indexes these precomputed batch views so that they can be efficiently queried. In other words,

the serving layer makes batch views queryable. The serving layer continuously swaps in new

versions of batch views that are periodically computed by the batch layer. Since the batch layer

processing takes at least a few hours, the serving layer is updated at most once every few hours.

(Marz & Warren, 2015)

I propose to use the batch layer together with the serving layer to address the data volume

challenge. Different kinds of technology can be used to organize the master dataset and batch

views which contain large amounts of data from sensors and actuators. NoSQL (Not Only SQL)

data stores and Apache Hadoop2 are the canonical example of batch processing systems (Marz &

Warren, 2015).

Objective 3: To Propose a Solution for the Data Velocity Challenge for IoT

I propose using the speed layer in Lambda architecture to address the data velocity

challenge for IoT. The serving layer updates whenever the batch layer finishes precomputing

2 http://hadoop.apache.org/

http://hadoop.apache.org/

10

batch views. As a result, data that is received during batch views precomputation is not

represented in batch views. If the service answers the queries only based on the serving layer, the

response would not contain real-time data. To overcome this problem, Lambda architecture has a

dedicated real-time data system (arbitrary functions computed with arbitrary data in real-time)

named speed layer.

One of the strengths of the Lambda Architecture is that once data makes it through the

batch views and is loaded onto the serving layer, the corresponding results for the real-time

views will be removed from the speed layer. This means real-time views that are no longer

needed can be discarded from the speed layer frequently. It makes the architecture more fault-

tolerant, since the speed layer is much more complex than the batch and serving layers and the

probability of faults for real-time view is more than for batch view.

The speed layer is more complex than the batch layer because the whole master dataset is

processed each time to create batch views for the batch layer, but with the speed layer, real-time

views are created using incremental computation which is much more complex. Moreover, since

calculation performance is a major factor for the speed layer, heuristic methods may be used to

calculate the view approximation. As a result, fault occurring is more probable for the speed

layer than batch layer. However, even if a fault occurs for the speed layer, it will soon be

replaced with the correct information in the batch views. To address the data velocity challenge,

the speed layer is used to provide real-time sensor and actuator data processing and query

answering.

11

I propose using the SensorThings API in order to solve the data variety challenge. To

complete our solution for data management, I propose using the Lambda architecture (Marz &

Warren, 2015) on top of the SensorThings API to address both data volume and velocity

challenges.

I believe that an IoT system that is implemented based on the SensorThings API and using

the Lambda architecture can address data challenges as a whole, i.e. variety, volume, and

velocity.

In the second chapter, we explain the SensorThings API in detail along with its related

work. Then in the third chapter, we discuss big data management for IoT as well as Lambda

architecture. We also review the related literature for big data management for IoT. The fourth

chapter discusses how to merge the SensorThings API with Lambda architecture to create an

open geospatial architecture for addressing big data challenges for IoT. We discuss a case study

implementation of the proposed architecture in chapter five, as well as the experiments to show

that the proposed architecture is suitable for addressing the big data three Vs challenges for IoT.

Finally, chapter six provides the conclusion and discusses future work.

12

SensorThings API, Details and Design Decisions

We use the SensorThings API in our proposed architecture to address the big data variety

challenge or so-called interoperability. In this chapter, we will talk about the OGC SensorThings

API in detail. The first section is an introduction to the requirements behind the SensorThings

API and where the need for the standard arose. Then, we discuss the place of the SensorThings

API in the IoT reference model. That is followed by a discussion on work related to the

SensorThings API. Finally, we explore details about SensorThings from its data model to its

flexible REST-like API and different extensions.

Introduction

Similar to Web 2.0 (Hinchcliffe, 2006), the real potential of IoT is in creating innovative

applications by repurposing and assembling the IoT sensing and controlling capabilities from

different sources in novel, effective and sometimes unexpected ways. However, today's IoT

service providers are developing and using their own proprietary software interfaces. Proprietary

systems are called stove pipes or vertical silos and cannot be combined or extended easily

(Ahlgren, Hidell, & Ngai, 2016). Using these proprietary systems for IoT results in a vendor

locked in problem and makes creating integrated innovative applications for IoT very difficult or

almost impossible (Ahlgren et al., 2016).

An example of proprietary IoT systems is a smart lighting system that only works with light

bulbs from the same vendor. These systems are usually designed as end-to-cloud-to-end systems

and the cloud is controlled by the vendor. Using these end-to-cloud-to-end systems for IoT

13

introduces interoperability issues between different IoT systems (Ahlgren et al., 2016). Lack of

interoperability limits the growth of marketing (Fältström, 2016) and IoT innovative

applications.

The number of proprietary interfaces are growing as the number of IoT devices increases.

Consequently, the effort required to interconnect different IoT devices for innovative

applications is growing exponentially. A standardized interface for IoT sensors is a key solution

to this problem. There is a need for an open standards-based interoperable Web Application

Programming Interface (API) that allows different IoT sensing devices and applications to

interoperate. In other words, in order to address the interoperability issue, we need horizontally

designed IoT systems with well-defined open standard APIs instead of vertical silos (Ahlgren et

al., 2016).

Our GeoSensorWeb Laboratory proposed an Open Geospatial Consortium (OGC) standard

called “SensorThings API”. I was responsible for designing the data model and API (together

with other members) and also for implementing the world’s first prototype system. We worked

on the design and development of a REST-like API that can overcome the above-mentioned IoT

interoperability issues. The goal was to capture the observations and controlling capabilities from

IoT devices and make them easily available through data aggregation portals (e.g., cloud-based

IoT platforms).

SensorThings API can be the building block to achieving IoT interoperability, enabling us to

address the IoT data variety challenge. IoT devices can simply connect to such a service and

14

sensing devices can upload their observations to the service by simply using the HTTP POST

request. Moreover, IoT controlling devices also can be controlled and tasked by users through

the service. Such a service has the flexibility of updating and deleting the uploaded data using

simple HTTP PUT/PATCH and DELETE requests. The service implemented based on

SensorThings API accepts the JavaScript Object Notation3 (JSON) format for the input data and

also GeoJSON4 for uploading location information. In addition, the retrieved data from the

service also uses the IoT data model encoded in JSON encodings.

The service implemented based on the SensorThings API supports the use case as shown in

Figure 2. The use case starts with some IoT devices registering themselves to the service. For the

sensing devices, registration information contains the phenomenon observed by one or many

sensors. As the IoT devices can accept tasks and be controlled, they can also register and publish

their tasking capabilities to the service. After registration, sensing devices can start uploading

their observations to the service. Users can then access those observations and send controlling

tasks to the controlling devices through the service. All the scenario functionalities follow the

REST-like architecture, i.e. using the HTTP verbs (i.e., GET, POST, UPDATE, and DELETE).

3 http://www.json.org/
4 http://geojson.org/

http://www.json.org/
http://geojson.org/

15

Figure 2 SensorThings Service Sample Use Case

Based on standard interfaces for IoT sensors, such as SensorThings API, a Web of Things

vision can be realized and cloud services can be built to serve a wide variety of sensors all over

the world. Such services need to handle a very high throughput rate (i.e. a very large number of

requests per second), since many sensors will frequently register their observations and many

requests will also be sent from applications using their sensor data for different applications.

Moreover, the service needs to scale with the growing amount of data it stores without

sacrificing performance. To sum up, IoT faces data volume and velocity challenges. Thus, we

need to design an architecture for global IoT devices that can efficiently store and retrieve a large

number of sensor data and also handle a large number of queries with different types in a very

efficient manner.

16

OData and SensorThings

OData (Chappell, 2011) defines an abstract data model (Handl, Pizzo, & Biamonte, 2014)

and a protocol (Pizzo, Handl, & Zurmuehl, 2014) that lets any client access information exposed

by any data source. OData is a general-purpose data access mechanism. This means that it

provides a simple and easy way for different types of clients to access a wide variety of data. The

OData protocol is based on REST and HTTP. It also defines the method for modelling the data

as well as how to query them.

SensorThings API is based on OData in general. It defines the IoT data model for OData and

adds geospatial queries as well as extended functionalities such as Message Queuing Telemetry

Transport (MQTT) and Data Array to the OData basics. To sum up, SensorThings uses the

OData proven data access mechanism, while customizing and extending it for IoT systems.

IoT Reference Model and Place of SensorThings

In this Section, we first overview the ITU-T IoT reference model (illustrated in Figure 3)

(International Telecommunication Union, 2012) before discussing where the place of

SensorThings would be in this architecture.

ITU-T defines the IoT reference model as having four layers: Application; Service and

Application Support; Network; and Device. There are also management capabilities and security

capabilities associated with the four layers.

17

The Application layer is where IoT applications reside. Physical and virtual sensor devices

as well as their gateways are part of the Device layer. The Network layer consists of the medium

for the sensor data to be transferred over the Internet or Network. There are different protocols

that are popular for the IoT Network layer including, but not limited to, HTTP, MQTT, and

CoAP.

Figure 3 IoT Reference Model (Adapted from (International Telecommunication Union,

2012))

The Service and Application Support layer is where the interfaces for devices and

applications reside. IoT data processing and storage is also part of this layer. We can see that

18

SensorThings is a standard for the Service and Application Support layer, consisting of a

standard data model for data storage, a standard REST-like interface for IoT applications, and

standard HTTP and MQTT interface for devices.

Related Work

The OGC SensorThings API was approved on February 2016 and published in July 2016.

The SensorThings API has been very well-received and has become popular in a short period of

time due to its powerful data model and interface. In two years, there have been multiple

implementations of the API for clients to use. In the GeoSensorWeb lab, we implemented the

first prototype implementation for SensorThings API. SensorUp Inc., a Calgary-based startup

implemented the first reference implementation of the SensorThings API as it was being

approved. Mozilla has started an IoT project based on the SensorThings API and they are

developing their implementation of the API. CGI is developing a SensorThings API

implementation called Kinota in conjunction with the University of Lafayette. Fraunhofer

developed an open source reference implementation and Geodan is also implementing a

SensorThings API called GOST that is written in Go language. Other companies such as

Compusult and 52North are also working on their SensorThings implementation. These different

implementations not only represent the maturity of the standard, but also illustrate the absence of

the vendor locked in issue when using the SensorThings API standard for IoT.

In order to review the literature, we divided them based on their context. First, we discuss

other solutions proposed for the IoT interoperability challenge. We further divide this category

19

into two subcategories: adaptor/translator solutions and standard platform solutions. Then, we

review literature that used and reviewed SensorThings.

IoT Interoperability Challenge

In this subsection, we discuss different solutions proposed for the IoT interoperability

challenge in available literature. The solutions can be categorized into two subcategories:

adaptor/translator solutions, and platforms.

Adaptor/Translator Solutions

An IoT challenge in the modern world is the increasing number of proprietary systems with

their own protocols and structures. One category of solutions tries to provide an adaptor between

all the proprietary solutions and connect all the different types together by defining an adaptor

for each of the proprietary systems. IFTTT5 (If This Then That) is an example of such a solution.

IFTTT defines different connectors. For example, it has a connector that acts on Philips Hue if a

certain event happens from Nest. These solutions work, but they are not optimal solutions as the

effort to develop such solutions increases exponentially with the increase of the number of IoT

systems. We call these solutions adaptor/translator solutions in this dissertation.

5 https://ifttt.com/

20

Apple HomeKit6, Google Home7, and Amazon Alexa8 are other examples in this category

that attempt to provide many adaptors/connectors for different IoT systems in order to provide a

unified system in which several IoT systems can work together. Ninja Blocks 9 can also be

categorized in this category, although it has a very limited number of system adaptors.

The problem with all the solutions in this category is that as the number of proprietary IoT

systems grows, the effort required for creating adapters grows exponentially. As a result,

although these solutions might seem to be working well now, they are not the ultimate solution

for the interoperability challenge. Moreover, the geospatial aspect of the SensorThings API is a

unique feature that other solutions lack. In addition, it is worth mentioning the vendor locked in

challenge that happens when using these adaptor systems. If the vendor shuts down their adaptor

service for any reason, moving to another system could be extremely expensive, if not

impossible.

6 https://www.apple.com/ca/ios/home/
7 https://store.google.com/product/google_home
8 https://developer.amazon.com/alexa
9 https://ninjablocks.com/

21

IoT Platforms and Standards

The other category of solutions emphasizes the standard approach. These solutions define

standards and try to define a unified way that can be used by different IoT Systems. Xively1 0,

ThingSpeak1 1 and ThingWorx1 2 are IoT platforms that can be used for IoT systems. However,

these are not standards and they provide platforms which can result in a vendor locked in

problem.

The Xively platform does not have a concrete data model. It allows users to define their

device template and feed sensor data into that template. This approach can be useful for device

owners to record and analyze the data from their device. However, when it comes to aggregating

data from multiple systems and creating integrated applications, the lack of a coherent data

model creates problems. Users may not be expert enough to define the device template and may

find out in future that there is more information that they need to gather. Xively can be useful as

the IoT middleware platform for individual businesses but the open data model would still result

in silos of data. In other words, it does not address the data variety issue properly. However, the

SensorThings API has a well-defined data model. Moreover, as it is an API and has multiple

1 0 https://xively.com/
1 1 https://thingspeak.com/
1 2 https://www.ptc.com/en/products/iot

https://xively.com/
https://thingspeak.com/
https://www.ptc.com/en/products/iot

22

different implementations, all tested and compliant to the standard, there will not be any vendor

locked in issue.

ThingSpeak defines a data model and does not have the Xively problem. However, its data

model is very simple and may not be comprehensive enough. One of the problems is the lack of

a unit of measurement. Without a unit of measurement, the data is only useful for its owner who

already knows the unit of measurement of his/her device. However, the data cannot be

aggregated with data from other devices for creating integrated applications. We can say that the

sensor reading is meaningless without its unit of measurement. Also for the geospatial feature, it

does not use the standard way and only keeps latitude and longitude without the information

about projection. All in all, it may be simple and easy and might be useful for device owner not

to worry about the data management platform, but it does not solve the interoperability issue for

IoT. On the other hand, the SensorThings API focuses on the interoperability and comprehensive

data model as well as simplicity of use. Moreover, for the geospatial feature, the SensorThings

API is flexible enough to use different standards. The current suggestion is GeoJSON which is

standard JSON presentation for geospatial information. However, the data model is defined in

such a way that it can be used with other standards as well, e.g. OGC IndoorGML (K.-J. Li et al.,

2015).

In comparison with Xively and ThingSpeak, ThingWorx is better in term of data model as it

has some predefined templates that can be inherited by users. However, as it is visible from the

website, it is a total industrial platform, and focuses on a solution rather than a standard. Vendor

23

locked in issue is definite problem in their case. As discussed before, in comparison to

ThingWorx, the SensorThings API has a well-defined data model and different implementations

to choose from to prevent the vendor locked in problem.

The OGC Sensor Observations Service (SOS) (Bröring, Stasch, & Echterhoff, 2012) is a

standard API for sensor networks that can be used for IoT. It is the closest in comparison to the

SensorThings API. Basically, SOS and the feedback from its users was one of the motivations

for starting the work on the SensorThings API. There are two major issues with SOS. Firstly, it is

complex and not easy to use. Secondly, the interface is not flexible in terms of accessing the

data. SensorUp Inc. compared SOS to SensorThings API (SensorUp Inc., 2016) and the

comparison is shown in Table 1.

Table 1 SOS and SensorThings Comparison (Adapted from (SensorUp Inc., 2016))

 SensorThings API SOS

Encoding JSON XML

Binding REST SOAP

Inserting New Sensors or

Observations

HTTP POST or MQTT Using SOS specific interfaces,

e.g., RegisterSensor(),

InsertObservation()

Deleting Existing Sensors HTTP DELETE Using SOS specific interfaces,

i.e., DeleteSensor()

24

Pagination $top, $skip, $@iot.nextLink Not Supported

Pub-Sub Support MQTT Not Supported

Updating Properties of

Existing Sensors or

Observations

HTTP PATCH Not Supported

Deleting Observations HTTP DELETE Not Supported

Return Only the Properties

Selected by the Client

$select Not Supported

Return Multiple O&M

Entities (e.g.,

FeatureOfInterest and

Observation) in One

Request/Response

$expand Not Supported

As we can see from Table 1, there are multiple added functionalities for the SensorThings

API as compared to SOS, e.g. CRUD operations on all entities. SensorThings API focuses on

being easy-to-use and lightweight. As a result, it adopts JSON instead of XML and also includes

support for MQTT. SensorThings also adds support for pagination which increases the server

performance dramatically when the data size is large. In summary, SensorThings improves SOS

by making it simpler and easier to use and by adding more functionality.

25

We looked at different adaptor/translator systems, as well as IoT platforms and standards in

this section. In summary, SensorThings is superior in multiple ways compared to them. Firstly, it

has a well-defined and comprehensive data model as well as a flexible interface for accessing

data. Secondly, it is a standard API and multiple implementations are available for users to adopt

and they can implement the API themselves. As a result, there is no vendor locked in issue. Also,

SensorThings API focuses on being lightweight for resource constrained devices and supports

JSON and MQTT for that purpose. SensorThings API keeps geospatial information for its

Observations which is lacking in some of the comparative systems. Moreover, SensorThings

keeps the geospatial information in a standard way by using GeoJSON and is flexible for the use

of other standards such as IndoorGML.

SensorThings API in Literature

After SensorThings API was published as an OGC standard in 2016, it has been studied and

discussed in various literature. Even before publication when SensorThing API was just a

candidate standard, it was studied and compared in different literature (Gómez Maureira,

Oldenhof, & Teernstra, 2014; Jazayeri, Liang, & Huang, 2015; Kotsev, Pantisano, Schade, &

Jirka, 2015). The API was found to be compatible with any open or custom hardware (Gómez

Maureira et al., 2014) and also easy to use (Kotsev et al., 2015). Moreover, the use of JSON

encoding and REST-like API are practical and make the API lightweight (Gómez Maureira et al.,

2014; Jazayeri et al., 2015; Kotsev et al., 2015).

26

There has been an attempt to map the SensorThings API to OpenIoT (van der Schaaf &

Herzog, 2015). OpenIoT is an open source middleware implementation for supporting IoT

applications. Semantic Sensor Network (SSN) Ontology is the core of OpenIoT which is

influenced by Sensor Web Enablement (SWE) which is the base for the SensorThings API. As a

result, the core concept of OpenIoT and SensorThings are related and this paper attempted to

map their two data models. This paper states that the SensorThings API is easy to use and

provides simple abstraction of IoT resources, despite SSN-ontology which is complicated. As a

result, finding a bridge between OpenIoT to SensorThings would lead to simplicity and ease of

use. This paper shows the value of the SensorThings API as it tries to map another concept,

OpenIoT, to the simple and easy to use standard, SensorThings.

After the SensorThings Sensing part was published, work was started on the Tasking part.

There was an attempt to extend the API with Tasking in some literature (C. Y. Huang & Wu,

2016b, 2016a) as well. The SensorThings API Tasking part has been approved and will be

published soon.

There is recent work on mapping INSPIRE to the SensorThings API (Kotsev et al., 2018).

These mappings show the value and adoption of SensorThings API as a standard, as other

systems start to move to this standard by mapping their current models. The INSPIRE Directive

is a European Union spatial data infrastructure that enables the sharing of environmental spatial

information across Europe and mapping this infrastructure to SensorThings API has proven

valuable.

27

There is research that was very recently published about the interoperability of the

SensorThings API (Teixeira, 2018). This master thesis developed an application based on

multiple implementations of SensorThings API as a proof of concept about the interoperability

of the SensorThings API. This work considers the SensorThings API as easy-to-use and a good

fit for addressing the heterogeneity challenge for IoT.

Moßgraber et al. in (Moßgraber, Hilbring, van der Schaaf, et al., 2018) focused on crisis

management and how data from different sources need to be aggregated in Decision Support

Systems (DSS) for managing a disaster which leads to a data heterogeneity issue. They came to

the conclusion that the SensorThings API is a helpful solution that is harmonizing heterogeneous

IoT data for different processing services for crisis management. There is also other research

(Moßgraber, Hilbring, Pouli, & Padeletti, 2018) for creating a knowledge base for cultural

heritage protection against climate change in which the ontology is defined on top of the

SensorThings API. These two research studies are part of the European Horizon 2020 project.

The smart emission (Grothe, Carton, Van Den Broecke, Volten, & Kieboom, 2016),

mySMARTLife (mySMARTLIfe Consortium Partners, 2017), and analysis of sensor signals for

monitoring of heritage buildings (Watson, Kunz, van der Schaaf, & Ubertini, 2018) projects are

also part of the Horizon 2020 project that uses the SensorThings API as the standard for IoT.

Hussain and Wu in (Hussain & Wu, 2018) designed the Information and Communication

Technology (ICT) framework for sustaining the interoperability by applying the Model Driven

Software Development (MDSD) paradigm and ontology. In order to validate their framework,

28

they chose to use the SensorThings API and apply their ontology framework on top of it – which

shows the value of the SensorThings API in addressing the interoperability challenge.

Trilles et al. in (Trilles et al., 2017) used the SensorThings API as the interoperable IoT

service for developing their Sense Our Environment (SEnviro) platform. This project is a smart

city system which develops the entire IoT stack from device to application and the SensorThings

API is used as the IoT standard for their service layer.

Lue et al. in (Luo, Saeedi, Badger, & Liang, 2018) used the SensorThings API as the IoT

platform for monitoring human and animal use of industrial linear features. They created some

devices for counting animals and humans and for collecting the data. In order to persist and

access their sensor data, they chose to use the SensorThings API as an interoperable IoT

standard.

In summary, we can see that the SensorThings API appears in various literature even before

it was officially published and it shows that the standard was well-received by the IoT

community in a short amount of time. Apart from literature, the SensorThings API has been

implemented many times thus far, as mentioned before, and it has been adopted for multiple

industry and research IoT projects – showing the maturity of the standard. These

implementations and adoption will be discussed in more detail in the Results and Discussion

chapter. The next sections of this chapter elaborate on the SensorThings data model and interface

in detail.

29

Data Model

As mentioned before, the SensorThings API has three different parts – the Sensing part,

Tasking part, and Rules engine part. Only the Sensing part has been officially published. In this

section, we will discuss details of the Sensing part which is the focus of this dissertation.

As we have seen in previous sections, a standard and comprehensive IoT data model,

together with geospatial enablement, differentiates the SensorThings API from other literature

and research work on IoT. We believe that IoT systems with a variety of requirements can be

easily modeled with SensorThings API for different use cases. In this section, we will focus on

the SensorThings API data model and design decisions for each of the data model entities.

The SensorThings API follows the OGC Observation and Measurement (O&M)

specification (Cox, 2011) in general. Figure 4 shows the SensorThings Sensing part data model.

The data model for the SensorThings Sensing part contains eight entities. There are two common

properties for all of these entities (except Observation as we will see later): description and

name. Description is a short description of the entity and name is a descriptive label for the

entity. Observation does not have these properties as it is the reading of the sensor and all its

details can be found from related entities.

The main entity, which is also the connection part between the Sensing and Tasking parts, is

a Thing. A Thing for SensorThings has the same definition as Thing for IoT. Put simply, the

SensorThings Thing is a physical or virtual sensing and tasking device, which means that it can

have multiple sensors and actuators. A Thing can be different for the same IoT system based on

30

use cases and application requirements. As an example, consider a smart scale. For the scale

manufacturer, the Thing is the scale. But from the perspective of a user who uses this scale

together with other health and tracking devices for tracking his/her health, the Thing is the user

and the scale is just one of the sensors measuring information for that user. As a result, the most

important factor for modeling the Thing is the application requirements and use cases.

Figure 4 SensorThings Data Model (Adapted from the Standard Specification (S. Liang et

al., 2016))

31

Aside from the name and description that are common in most of the entities, Thing has a

properties property. Properties is a JSON and can contain arbitrary information about the Thing.

As a result, it may not be searchable amongst all Things of the system.

A Thing can have a Location. The Location is the current physical position of the Thing. As

the SensorThings is a standard, it uses a standard way for storing Location which is GeoJSON.

GeoJSON (Butler et al., 2016) is a geospatial standard for recording location. However, there are

other standards for more sophisticated situations such as indoor positioning. OGC IndoorGML

(K.-J. Li et al., 2015) and CityGML (Kolbe et al., 2012) is one of the examples. In order to make

the system unified and queryable across the whole system, as well as across multiple systems,

GeoJSON is used as a primary type for Location. But if you need to use other standards such as

IndoorGML, you are allowed to link more than one Location entity to a Thing. In other words, a

Thing can have more than one Location, and they are all different representations of its current

location.

SensorThings is flexible with its use of the Location entity. If two Things have the same

Location, a user can either reuse the Location entity or create a new one with the same

information. However, there are best practices in order for the system to be the most useful from

an application point of view. For the SensorThings server developers it is best practice to

implement the system in a way that reuses the Location entities in case there are two identical

Location entities. For SensorThings users, if the server does not support the automatic reuse of

Location, it is best practice to reuse Location entities by searching and, if possible, linking the

32

existing Location to their Thing. This way it will be easier for applications to find all the Things

in a specific Location by accessing Locations({id})/Things. Even if these best practices are not

followed, with the SensorThings rich query options, performing such a query is possible. It may

only need more processing on the server to retrieve the result, which makes using this best

practice even more important for server developers. The query will be explained in the Data

Retrieval section.

Apart from name and description, Location has encodingType and location. EncodingType

specifies which standard is used for representing Location’s location. Location is the position

information encoded in encodingType. The major standard used for encoding location is

GeoJSON.

There are two types of Things with regards to their Location: static and moving. Static

Things are those that stay in the same position either for its whole life or for a long period of

time. Examples of these Things are sensors and devices that are used at home. Moving Things

are those that change their Location frequently. Sensors and devices connected to cars and public

transit are examples of these Things.

For static Things, the current Location is all the information that we need. However, for

moving Things, we need to keep track of previous Locations. For this purpose, SensorThings has

an entity called HistoricalLocation. HistoricalLocation specifies which Thing was at which

Location at what time. The only data it keeps is time and links to Thing and Location. Time

shows the first time the Thing was seen at the Location. HistoricalLocation is one of the entities

33

that does not have name and description as they are not required. We emphasize that since

Location is the current position of the Thing, we cannot keep track of moving Things without

HistoricalLocation.

Thus far, we have looked at how to model a Thing together with its Location depending on

whether it is moving or static. Now we will examine how to store readings/observations of the

sensing devices. Each Thing can sense multiple phenomena. For example, a weather station can

sense temperature, humidity, wind direction, wind speed, rain precipitation, and Particulate

Matters 2.5mm (PM2.5). For this example, Thing is the weather station and Location is the

position of the weather station. As the Thing is most probably static, we don’t need to worry

about moving and tracking the HistoricalLocations.

Datastream groups Observations of the same type for a Thing. Observations of a

Datastream are recorded by the same Sensor and are all observing the same phenomenon. In the

example of the weather station, we have six Datastreams for grouping each type of readings,

temperature, humidity, wind direction, wind speed, rain precipitation, and PM2.5. Each

Datastream’s Observations have the same type, observe the same phenomenon, and are read by

one Sensor. Aside from name and description, a Datastream has observationType, and

unitOfmeasurement. ObservationType specifies the type of Observations grouped by that

Datastream. For example, it can be numeric, true/false, categories, etc. In order to define these

observationTypes in a standard way, SensorThings uses O&M (Cox, 2011) conceptual model. It

has defined category, count, measurement, truth, and complex observationTypes.

34

The UnitOfMeasurement specifies the unit for Datastream’s Observations. This property is

mostly useful for numeric/measurement Observations. It is a JSON object with three fields:

name, symbol and definition. The definition is a URI for defining the meaning of the

measurement. The definition is the means of unification between different unitOfMeasurement.

For example, people may use C or degC or degreeC or °C for the Celsius’ symbol or something

else in another language. However, using the same definition URI shows that all these

unitOfMeasurements are the same.

There are three optional properties for Datastream: observedArea, phenomenonTime, and

resultTime. ObservedArea specifies the area that is observed by all the Observations of that

Datastream. PhenomenonTime is a time period and it specifies the time range this Datastream

has the Observations for. ResultTime is like phenomenonTime except that it shows the range of

resultTimes for Observation.

Each Datastream has a Sensor and an ObservedProperty. A Sensor entity keeps information

about the sensor device that is recording the Observations. Other than description and name, it

has a metadata and encodingType. EncodingType defines the type of metadata. For example, it

can be SensorML (Botts, Robin, Greenwood, & Wesloh, 2014), PDF, or the html site. Metadata

contains detailed information about the Sensor. It is recommended as the Sensor data sheet or

SensorML.

Each Sensor can be connected to more than one Datastream. SensorThings is flexible about

how to use the Sensor entity. Each Datastream can have its own unique Sensor entity and detail

35

information of the sensor such as, the serial number or Media Access Control (MAC) address,

can be persisted in Sensor entities. Another way is reusing Sensor entities when the same sensor

type is used in different Datastreams. In this case, it is possible to see all the Datastreams that

are recorded by the same Sensor. For example, SH131 3 is a temperature-humidity sensor. You

can check all the Datastreams and Things that are using this Sensor by checking Datastreams

that are connected to that Sensor with Sensors({id})/Datastreams. As a result, depending on the

use case, Sensor can be modeled and used differently. However, the second approach may be

more useful from an application point of view. Same as with Location, even if Sensor entities are

not reused, there might be other ways to get all the Datastreams of the same Sensor type with the

rich query options of SensorThings.

As mentioned before, each Datastream has one ObservedProperty. ObservedProperty is the

phenomenon observed by Datastream’s Observations. Examples of this phenomena are weather

temperature, or dust particulates in the air. Other than name and description, ObservedProperty

has definition property. Similar to Location and Sensor entities, although SensorThings is

flexible and does not force the reusing of entities, it is best practice to reuse ObservedProperty

entities in case Datastreams are observing the same phenomenon. However, in cases such as

when using different languages, definition property is the joint point between

1 3 http://wiki.seeedstudio.com/Grove-TempAndHumi_Sensor-SHT31/

36

ObservedProperties. Definition is a URI containing the definition of the phenomenon and it is

used for differentiation purposes between same phenomenon that use different name and

description, and can be in different languages. With the reuse approach, we can access all of the

Datastreams observing the same phenomenon with ObservedProperties({id})/Datastreams. For

the second approach, with the SensorThings rich query option, we can retrieve

ObservedProperties that have the same definition and then get all of their Datastreams.

As mentioned before, each Datastream has many Observations. Observation is the entity

that records sensor readings. The type of reading, the sensor that takes the reading, and the

phenomenon that the reading is observing can be found from the Datastream attached to the

Observation, and the Sensor and ObservedProperty that are attached to the Datastream.

Observation does not have name and description. It has result, phenomenonTime, and

resultTime. Result records the reading from the sensor. PhenomenonTime is the time when the

Observation happened. ResultTime is the time that the result is recorded in the system. Result

and phenomenonTime cannot be null as they are the core information required for an

Observation. Result’s type should match the observationType specified in the Datastream.

ResultTime is a time instance and it specifies the time the result is recorded. However,

phenomenonTime is a time object. It can be time instance or time interval. Having the flexibility

of recording phenomenonTime as instance or interval can be useful in different use cases. Using

time instance for phenomenonTime is commonly used for Observation. For the example of the

weather station, keeping time instance can be efficient. However, for video Observations, time

37

instance is not sufficient. Video Observation is the use case for which time interval is the perfect

match. In that case, phenomenonTime has the starting time of when that video is taken and also

the time that it finishes.

The other use case for which the time interval can be useful for phenomenonTime is when

certain granularity for phenomenonTime is not important. For example, consider a case when the

seconds that the Observation happens is not important. In that case, all the Observations

happening within a certain minute of an hour can have a time interval with the start and end of

that minute.

It also can be very useful in the case of sampling and aggregation. Raw Observations can be

taken and then aggregated for every minute and persisted in another aggregated Datastream. In

this case, Observations of such a Datastream has the aggregated value as their result and the

phenomenonTime is the time range for which the Observations are aggregated.

Each Observation, in addition to having a linked Datastream, has a FeatureOfInterest.

FeatureOfInterest is the feature of the phenomenon observed by the Observation. The

FeatureOfInterest entity has encodingType and feature, as well as name and description.

EncodingType specifies which standard is used to represent the feature. Feature is the detailed

description of FeatureOfInterest with the encoding specified in encodingType. As with Location,

we recommend using the well-known geospatial standard, GeoJSON.

In a lot of situations, the FeatureOfInterest is identical to the Thing’s Location. For example,

for a thermostat that is in the living room, the Location and FeatureOfInterest are both the living

38

room’s position/area. However, in the case of remote sensing, Location and FeatureOfInterest

are different. A simple example is a camera or satellite. Their position is different from the area

they are observing. For the camera, this area is close to the camera’s position, whereas it is quite

far for the satellite.

Since most of the use cases have the same Location and FeatureOfInterest, SensorThings

has the automatic option for creating the FeatureOfInterest from the Thing’s Location, if the

FeatureOfInterest is not specified during the creation of the Observation. In other words, if you

create an Observation and you don’t link the Observation to a FeatureOfInterest in the request,

SensorThings will create or reuse a FeatureOfInterest based on the information from the Thing’s

Location. Note that since the relationship between Thing and Location is not mandatory, the

request of creating Observation without linking the FeatureOfInterest will fail, if a Thing does

not have a linked Location. Every time a SensorThings server needs to automatically link the

new Observation to a FeatureOfInterest, it first checks if the Thing has a Location. If not, the

request fails. Then, the service checks if there is an existing FeatureOfInterest with that Location

information. If it exists, the service links the new Observation to the existing FeatureOfInterest.

Otherwise, the service will create a new FeatureOfInterest and link it to the new Observation.

SensorThings forces the reusing of FeaturesOfInterest when it is created and linked

automatically by the service. However, to make it simpler for the clients, it is not mandatory to

reuse FeatureOfInterest when clients are creating and linking FeatureOfInterest themselves.

Best practice for the service developer is to catch these cases and handles reusing the

39

FeatureOfInterest in the background so that it does not affect client experience. It is also always

best practice for clients to try to reuse FeatureOfInterest whenever possible and more

importantly to let the server handle FeatureOfInterest in case it is the same as the Thing’s

Location.

When FeaturesOfInterest are reused throughout the system, different Observations for a

specific FeatureOfInterest can be accessed with FeaturesOfInterest({id})/Observations. With

SensorThings query options, it can be further filtered to access the readings for a specific time

interval. Same as with other entities, even if FeaturesOfInterest are not reused, those queries are

possible with SensorThings rich geospatial query options. However, it may put more load on the

service, which makes it important for the service developers to follow the best practices.

SensorThings Application Interface

The previous section has explained the how-tos of modeling IoT systems with the

SensorThings API. In this section, we discuss the SensorThings API application interface by

exploring the requests and protocol for interacting with the API. We start with data retrieval

before moving onto how to post data to SensorThings and we link this section with the device

interface.

Data Retrieval

As mentioned before, SensorThings is customizing and extending OData for IoT. For data

retrieval, SensorThings has a REST-like interface as well as a set of query options and functions

for filtering data. To access all the data, i.e. historical data as well as recent data, HTTP protocol

40

and GET request are used. The following explains the URL convention and query options that

can be used in GET requests.

SensorThings is following OData URL conventions for the requests. The only difference

between this convention and regular RESTful is using @iot.id in parenthesis in order to refer to a

specific entity. Related entities can be accessed following the OData convention as

/Entities({id})/RelatedEntity(ies).

SensorThings also makes access to the entities easier by providing @iot.selfLink and

@iot.navigationLink. Accessing the root URL of SensorThings returns the link to access each

entity. For each entity, the @iot.selfLink provides the URL to access that specific entity.

Moreover, each entity @iot.navigationLink provides a link to its related entities. Knowing the

request URL, entities can be accessed by sending HTTP GET request to the SensorThings

service.

Furthermore, SensorThings API provides a wide variety of query options for accessing the

data. Using these query options, the service response can be customized in terms of number of

returned results, content, and order.

$expand and $select query options are used for controlling the level of detail in the

SensorThings service response. With $expand, information from related entities can be

embedded in the response for a request to read the entity(ies). $select limits the properties that

will be returned for each entity. For example, with $select it can be specified for the query to

41

return only result property for Observations in the read request. As a result, the response will not

contain other properties such as phenomenonTime or resultTime.

The $orderby query option is used for sorting the SensorThings response based on one or

more properties. The $top query option can limit the number of entities that will be returned in

the SensorThings response. $skip is also used to skip a specific number of entities before

returning the result from the SensorThings service. $top, $skip, and $orderby are meant to be

used together for pagination. Using a specific order, $top and $skip can be used to return entities

in pages. Pagination is a use case of these query options. However, they can be used individually

and for other purposes as well. For example, getting the latest Observation is one of the use cases

which can be achieved by ordering the response with phenomenonTime and then asking for the

top one.

With the $count query option set to true, the service returns the total number of entities

found for the request. If pagination is enabled on the service, the response may only contain a

limited number of entities but with $count=true, the service also returns the total number which

could be useful for clients.

One of the most useful query options in SensorThings is $filter. With $filter, clients can

filter the results from the SensorThings service in a very flexible manner. SensorThings supports

arithmetic operators as well as logical operators. There is also a wide variety of functions that

can be used for filtering the results. Moreover, spatial functions are one of the things which

differentiate SensorThings from the other IoT platforms and proposed standards. For example,

42

finding the closest sensor to a specific location or another sensor; finding all the sensors in a

bounding box; and finding sensors that are observing the same area are easy using $filter in

SensorThings.

The query options can also be used to query expanded entities. Clients can filter the

expanded entities in the request by specifying the filters in parenthesis in front of the $expand

query. This capability makes SensorThings more flexible and easy to use for clients.

 SensorThings uses @iot.nextLink as a means of pagination. Clients can manually apply

pagination for the service by using $top and $skip or using the pagination that is provided by the

service. SensorThings developers are all encouraged to implement pagination by limiting the

number of results returned and providing the @iot.nextLink to access the next page of results.

Providing pagination boosts the performance of the SensorThings service for most use cases and

is strongly recommended for SensorThings service developers.

MQTT

The SensorThings MQTT extension provides access to real-time data using the MQTT

protocol. This is another way of accessing SensorThings data in real-time in addition to the

HTTP protocol. One of the most important use cases for MQTT in SensorThings is receiving

Observations in real-time. The topic that is used for subscribing to MQTT is a collection or

navigation collection URL pattern without the service address, i.e. the path starts from v1.0/.

After subscribing to a topic, each time an insertion/modification happens to that collection, the

43

client will receive a MQTT notification with the JSON representation of the added/modified

entity.

DataArray

Observations can be retrieved in SWE common DataArray format as well. This feature is

added to SensorThings to make it interoperable with SWE common compatible services as well

as for efficient retrieval of Observations as it removes redundant information in the response.

$format=DataArray can be used to retrieve Observations in DataArray format. In this case,

Observations will be grouped by their Datastream and response will be formatted to DataArray

format.

Data Insertion and Modification

HTTP requests for the insertion and modification of data for SensorThings. POST request is

used for creating entities; PATCH for updating an entity; and DELETE for deleting an entity.

Also whilst PUT can be used for updating or resetting an entity, a SensorThings service may or

may not implement this functionality.

In order to create an entity, the POST request should be sent to the entity collection URL or

relative navigation collection URL with a valid entity JSON as the body. For updates, the

PATCH request should be sent to the @iot.selfLink of the specific entity. The PATCH request

body contains a JSON with the properties of the entity that are modified. Sending a DELETE

request to @iot.selfLink results in deleting that specific entity from the collection. If the server

also supports PUT for updates, the entity will be replaced completely with the JSON entity in the

44

PUT body. Thus, the JSON entity in the PUT request body must have all the mandatory fields

even if the values are unchanged.

For insertion and deletion, some integrity constraints apply. Insertion integrity constraints

are applied to Datastream and Observation. For creating a Datastream, it must be linked to a

Thing, a Sensor, and an ObservedProperty. Similarly, in order to create an Observation, it must

be linked to a Datastream and a FeatureOfInterest. There is an exception for this constraint for

creating an Observation. If the FeatureOfInterest is the same as the Thing’s Location, there is no

need for the POST request to contain the link from Observation to FeatureOfInterest. In this

case, the SensorThings service must automatically create or reuse a FeatureOfInterest with the

corresponding Thing’s Location information. Note that the link between Observation and

FeatureOfInterest is mandatory and this exception only makes the client request easier.

There are also integrity constraints that are applied on most of the entities when an entity is

deleted. When a Thing is deleted, all of its corresponding Datastreams and HistoricalLocations

will be deleted automatically by the SensorThings service. Also, deleting a Datastream or a

FeatureOfInterest results in the deletion of all the linked Observations. By deleting Sensors or

ObservedProperties, all of the corresponding Datastreams will be deleted by the SensorThings

service. Finally, when a Location is deleted, the SensorThings service will delete the linked

HistoricalLocations automatically.

SensorThings API provides the capability for embedding entities inside the creation request.

In other words, an entity can be created together with its related entities in one request. This

45

capability is called deep insert. In order to deep insert, the POST request body should contain the

valid JSON for each of the related entities that are supposed to be created inline. The POST

request body can have some inline entities and some links to existing entities. The JSON body

looks like the GET response when the related entity is expanded using $expand.

MQTT

In addition to HTTP POST, the MQTT protocol can be used for creating Observations. To

this end, the valid JSON for creating an Observation should be published to the Observations

topics, i.e. the topics used for subscription to Observations. These topics include collection and

navigation URL paths to Observations without the service address. Insertion integrity constraints

for Observation apply for MQTT creation as well.

DataArray

Similar to retrieving Observations in DataArray format, Observations can be created using

DataArray. To this end, the JSON request body contains multiple Observations grouped by their

Datastream and in DataArray format. The POST request should be sent to a special URL path,

/v1.0/CreateObservations. This capability provides an efficient way of creating multiple

Observations at the same time from the sensor devices.

Batch Requests Extension

SensorThings API supports batch processing in order to provide an efficient way for

resource-constrained IoT devices to send multiple requests in one communication to the server.

Multiple CRUD requests can be sent to the SensorThings server as one HTTP request using

46

batch request. SensorThings API is following OData by supporting batch request with the

exception that the OData header should be removed from the request. Just as with OData,

SensorThings is using Multipart MIME v1.0 message as a standard for representing batch

request and response. Batch request is considered an extension for SensorThings. Thus, server

support for batch request is optional. However, it is highly recommended as it is useful for

effective communication between SensorThings with resource-constrained IoT devices.

MultiDatastream Extension

SensorThings API provides MultiDatastream extension to support complex Observations.

For most of the use cases, Observations have simple types such as number, categories, etc.

However, there are use cases in which Observations have a complex type or there is an array of

Observations. One example of this situation is when more than one parameter is important for

the Observation. For example, when a sensor reading depends on the temperature of the unit and

the sensor reading should be interpreted differently with respect to the temperature unit. In this

case, the SensorThings MultiDatastream extension can be used. A MultiDatastream observes

more than one phenomenon and its Observations are in forms of array. For the previous

example, each Observation of the MultiDatastream is an array with two elements, the first is the

sensor reading and the second is the temperature of the unit.

MultiDatastream’s properties are slightly different from Datastream. First of all, the

observationType is always O&M ComplexObservation as all other observationTypes can be

modeled using Datastream. In order to specify the observationType for each element of the

47

Observation array, MultiDatastream has a property called multiObservationDataType which is

an array of O&M observationTypes. Moreover, unitOfMeasurement is a JSON array as it needs

to define the unit of measurement for each of the elements in the Observation array. All of the

other properties are the same as Datastream.

As mentioned above, a MultiDatastream can observe multiple phenomena. As a result, each

MultiDatastream can be related to more than one ObservedProperty. In other words, a

MultiDatastream has an ObservedProperty for each element of its Observation array. The rest of

the relations are the same as Datastream and MultiDatastream has one Thing and one Sensor and

multiple Observations.

MultiDatastream is an extension to SensorThings and supporting that is optional. Even in

the case of complex Observations, the system can be modeled without the MultiDatastream

extension. With multiple Datastreams, the system can correlate their Observations at accessing

time with queries. However, using MultiDatastream makes it easier to use and easier to

understand for clients. In the case of the server needing to support complex Observations, this

extension provides developers with guidance on how to add the capability to the server. Support

for that is highly recommended.

Summary

SensorThings API is an open geospatial standard for IoT that is approved by OGC.

SensorThings defines the data model and the retrieval API for managing IoT data. The

SensorThings data model is comprehensive and can address most of the IoT use cases. There is a

48

Thing which is the sensor system. A Thing can have Locations as its current location and

HistoricalLocations as the previous locations. A Thing has multiple Datastreams. A Datastream

groups Observations observing the same phenomenon, called ObservedProperty, and are

generated by the same Sensor. Finally, Observations are where sensor readings are stored and

FeatureOfInterest records the feature observed by each Observation.

SensorThings API adopted OData and a REST-like interface for interacting with IoT data. It

also has a MQTT extension, a solution for resource-constrained IoT devices. Moreover, the API

provides MultiDatastream and Batch Requests extensions for more complicated use cases in IoT.

SensorThings API is a solution for homogenizing the heterogeneous IoT data and provides

interoperability between different IoT systems. The sensing part was published in July 2016 and

in the two years since then, it has been mentioned in different literature, research, and industry

projects. Furthermore, there are multiple implementations of the API available, as well as, some

in progress which prevent the vendor locked in problem. The evidence shows the maturity of the

standard and make it a good fit for addressing the data variety challenge for IoT.

Future Work

The SensorThings API has a second part called the Tasking part. The Tasking part defines

the data model and interface for controlling devices or so-called actuators. The SensorThings

Tasking part is going to be published in late 2018 as an OGC standard. The Sensing part together

with the Tasking part make SensorThings a comprehensive standard for all aspects of IoT. It fills

49

the gap between sensing and controlling devices and provides a standard API for IoT devices to

talk to each other.

Furthermore, there is a work in progress for defining events for the SensorThings API called

the Rules engine part. This part connects SensorThings Sensing and Tasking parts together with

the definition of an event. For example, the event defines a situation for sensor readings in the

Sensing part and if the event occurs different tasks can be generated in the Tasking part.

SensorThings can also be merged with JSON-LD to become linked data ready. Providing

linked data helps machines to understand SensorThings better and SensorThings can use that to

be linked to other system sources. Also, other systems can digest SensorThings resources

smoothly. JSON-LD provides a standard lightweight linked data format. SensorThings can easily

be integrated with JSON-LD. For that end, @context needs to be defined for each of the

SensorThings entities and their properties. Since SensorThings is also using JSON format and

the entities and their properties are well defined, @context can be defined for them easily and the

integration will be smooth. Providing comprehensive JSON-LD context is the future work for the

SensorThings API.

50

Data Management for Internet of Things and Lambda Architecture

The main objective of this dissertation is to propose an architecture for IoT that overcomes

big data management and geospatial challenges. In this chapter, we explore the big data

challenge in IoT as well as Lambda architecture as a potential solution for the big data challenge

in general. Then, we discuss the proposed architecture and how it meets the big data

compatibility requirements in the next chapter.

Big Data and Internet of Things

One of the most important areas of future information technology is big data and its

emerging technological development. In 2011, the big data concept and its potential was

introduced in an EMC/IDC research report (Gantz & Reinsel, 2011). It was stated in the 2012

World Economic Forum in Davos, Switzerland, that big data has become a strategic economic

resource and has high value that is similar to currency and gold in terms of significance and

liquidity (Alharthi, Krotov, & Bowman, 2017; Johnson, 2012). In recent years, many enterprise

organizations have started investing in different solutions to cope with big data challenges (IDG,

2015). They realized that an important source of competitive advantage in future is big data

analytics (Alharthi et al., 2017).

The total amount of generated data has increased nine times in a five year period, according

to the International Data Corporation (IDC) report (Gantz & Reinsel, 2011). It is also predicted

that this amount will double every two years (Chen, Mao, Zhang, & Leung, 2014; Yaqoob et al.,

2016) . As one of the buzzwords for the past decade, big data refers to large data sets that need

51

technologies beyond traditional data management tools to manage and process (Akoka, Comyn-

Wattiau, & Laoufi, 2017).

IoT and social media are considered the most important drivers for rapid progress on big

data technologies and applications (Lee, 2017). IoT devices such as wearables, environmental

sensors and smart home appliances are generating a large portion of worldwide data (Lee, 2017).

For IoT a great many sensors are embedded into different devices, collecting various types of

data such as environmental data, geographical data, astronomical data, and logistic data. As

Cisco reported, the number of internet-connected devices has already exceeded the world

population (Evans, 2011). The number of internet-connected devices is expected to double in

size from 22.9 billion in 2016 to 50 billion by 2020 (Figure 5) (Ahmed et al., 2017). These

internet-connected devices include, but are not limited to, Wi-Fi enabled sensors, smart home

appliances, and wearable technologies. As IoT is formed by these devices (Figure 6), it shows

how IoT is responsible for the data deluge (Ahmed et al., 2017). Currently, IoT data is not the

dominant part of big data. However, by 2030, as predicted by HP, there will be a trillion sensors

generating data and IoT can be the most important part of big data (Chen et al., 2014).

52

Figure 5 Trend in the Number of Internet-Connected Devices (Adapted from (Ahmed et al.,

2017))

Figure 6 Internet-Connected Devices Forming IoT (Adapted from (Ahmed et al., 2017))

53

Akoka et al in (Akoka et al., 2017) surveyed the literature on big data and did a statistical

study on publication trends and subject, application and focus of the papers. The publication

trend showed that there is an exponential growth in number of research papers in the area of big

data. They found out that Cloud and Analytics were the topics for most of the published papers,

whilst in spite of the fact that IoT is one of the main markets for big data application, IoT is one

of the least addressed topics in the papers. They expect that IoT will become one of the hottest

areas in big data research with an increase in the number of research publications very soon.

(Akoka et al., 2017)

IoT and big data research are two technologies that are interdependent. With the growth of

IoT applications, more and more data will be generated both in terms of quantity and

heterogeneity. As a result, it provides opportunity for the application and development of big

data. On the other hand, the research advances and business models of IoT can be accelerated by

the application of big data technology.

As we saw, data management in IoT is a hot topic and needs improvement to cope with the

data deluge that has already started. In this thesis, we propose an architecture for data

management for IoT that addresses big data management challenges.

Since 2001, big data management challenges have been defined using the 3Vs model,

Volume, Variety, and Velocity. The 3Vs model was first introduced in a META report (Laney,

2001) and it has been used in different literature and by different organizations such as IBM and

54

Microsoft to define big data and its challenges (Yaqoob et al., 2016). Through the years more Vs

were added to this model such as, Value (Mishra et al., 2015), Veracity (Normandeau, 2013;

Ward & Barker, 2013), Validity (Normandeau, 2013), and Volatility (Klarity, 2015). However,

since the 3Vs are the main challenges, in the latest definition by Gartner (Gartner, 2018), big

data is still defined with the three characteristics of high-volume, high-velocity, and/or high-

variety. Thus, in this dissertation, our focus will be on variety, volume, and velocity, as main

challenges we face in big data.

In the 3Vs model, volume refers to the massive amount of data that is difficult to collect,

manage, and analyze with current infrastructures and tools. Variety refers to heterogeneous data

that is generated by different sources with different structures or may even be unstructured. And

finally, velocity refers to real-time data streams that are continuously generated with high

frequency. The big data generated in IoT has the same characteristics: heterogeneity, large size,

and high rate of data streams.

In the next section, we review the literature and also off-the-shelf solutions for big data

management for IoT. Then, we explore Lambda architecture as a potential solution for

addressing big data volume and velocity challenges. We explain our proposed architecture in the

next chapter and elaborate on how it can address all 3Vs challenges of big data.

Related Work

We categorize the related works into two categories: the research and literature, and the

platforms and technologies available for big data management.

55

Related Literature

In this section, literature about IoT and its data management is reviewed. IoT is a wide

research area and also an emerging technology. Different surveys about IoT research challenges,

prospective applications, and architectural elements have been conducted in recent years (Al-

Fuqaha, Guizani, Mohammadi, Aledhari, & Ayyash, 2015; Atzori, Iera, & Morabito, 2010;

Gubbi, Buyya, Marusic, & Palaniswami, 2013; S. Li, Xu, & Zhao, 2014; Miorandi, Sicari, De

Pellegrini, & Chlamtac, 2012; Zeng, Guo, & Cheng, 2011). These surveys are mostly focused on

high level issues and architecture of IoT.

Atzori et al. (Atzori et al., 2010) presented different visions for IoT (things-oriented,

internet-oriented, and semantic-oriented). They also surveyed enabling technologies, open issues,

and some applications for IoT. Zeng et al. (Zeng et al., 2011) focused on web-oriented

architecture for IoT and its open issues in their survey. Miorandi et al. (Miorandi et al., 2012)

categorized and explained research areas and ongoing initiatives for IoT.

Gubbia et al. (Gubbi et al., 2013) surveyed IoT with cloud-centric vision. They proposed

the use of a specific framework such as Aneka instead of using Cloud storage and MapReduce.

Aneka is a platform as a service (PaaS) that can be integrated with Microsoft Azure or Amazon

EC2. The proposed solution in this dissertation is the architecture and it is one level of

abstraction higher than the proposed Cloud system in (Gubbi et al., 2013), since they used

technologies and platforms in their proposed solution. I propose the architecture that allows the

user to choose the technology to fulfil that.

56

Li et al. (S. Li et al., 2014) concentrated on service-oriented architecture (SOA) for IoT as

well as open issues in IoT. The SOA they proposed for IoT contains four layers: sensing layer,

network layer, service layer, and interface layer. Since they follow SOA, each of these layers is

independent and can be exchanged with other services with the same functionalities. I propose an

architecture for the service layer in the overall SOA for IoT with the main objective of

addressing data management issues.

Al-Fuqaha et al. (Al-Fuqaha et al., 2015) surveyed IoT for its enabling technologies,

protocols, and applications. There are two interesting observations in their survey which is

related to our work. Firstly, whilst they surveyed application protocols, it shows that REST and

MQTT are two of the most used protocols. They are what is used by the SensorThings API as

well. Secondly, scalability and interoperability are named as two of the main challenges for IoT

which is the focus of this thesis. They concluded that there is a need for platforms that support

IoT big data and analytics. They also noted that security is another hot topic for IoT. In this

dissertation, the focus is on presenting an architecture for supporting big data analytics for IoT

and security is out of the scope of this thesis.

Amongst these surveys there is one with a data-centric view (Qin et al., 2016). In this

survey, data management challenges are present in terms of managing data streams,

heterogeneous data streams, and large volumes of data. These challenges remain the same as this

dissertation challenges the data velocity, variety, volume respectively.

57

Whitmore et al. did a comprehensive survey on the literature for IoT in 2015 (Whitmore,

Agarwal, & Da Xu, 2015). They did a classification of the literature related to IoT and found out

that most of the IoT literature has focused on the technology part of IoT and that hardware was

usually the topic of interest. It also stated that big data and how IoT would fit into the big data

movement is one of the important future steps for IoT.

Arasteh et al. (Arasteh et al., 2016) surveyed components and features of IoT-based smart

cities. Heterogeneity, large scale, and big data are listed amongst the challenges of IoT-based

smart city applications. Smart city is a spreading use case for IoT and it suffers from the same

challenges as IoT.

Ray (Ray, 2017) did a survey on IoT cloud platforms. He compared 26 different platforms

and visualization tools from different aspects. It shows the silos for IoT by showing the options

that are available out there. He found that heterogeneity management, analytics, visualization,

and research-centric clouds were missing on the surveyed platforms, although data management

was the goal for most of these platforms. One important finding from this literature is that the

platforms that are evaluated either do not have big data capability, or their capability is limited to

using NoSQL databases. We can see that they are relying on tools rather than architecture for big

data and the only tool used is the NoSQL databases. As concluded in this paper also, big data

analytics is the lacking capability on these platforms and needs to be studied. In this thesis, we

focus on architecture for big data rather than tools. When the architecture is set, it can be

implemented with different tools.

58

There are several attempts to develop (web-based) interfaces for IoT in order to overcome

the heterogeneity challenge (Guinard, Trifa, Mattern, & Wilde, 2011; Leong & Choo, 2014;

LogMeIn Inc., 2015). To this end, REST-based approaches and the use of the JSON format are

adopted by some of these literature. The reason for the popularity of REST-based architecture is

that HTTP transport protocol is widely available and easy to use. Moreover, JSON encoding is

adopted since compared to its alternatives such as CSV and XML, it is more lightweight as well

as more expressive. Unlike SensorThings API, (Guinard et al., 2011; Leong & Choo, 2014;

LogMeIn Inc., 2015) focused on developing a platform rather than providing an API that

everyone can customize according to their needs. Furthermore, SensorThings API provides an

international and open standard solution for overcoming heterogeneity issues unlike (Guinard et

al., 2011; Leong & Choo, 2014; LogMeIn Inc., 2015) as they only try to provide a platform

solution that can accept heterogeneous data.

Some literature on IoT architecture focuses on the big data challenge (S. Li et al., 2014;

Mishra et al., 2015; Sowe, Kimata, Dong, & Zettsu, 2014; Tracey & Sreenan, 2013). The

literature proposed the overall architecture of IoT with regards to the huge number of devices

that are connected to IoT and the large volume of data that is created. Tracey et al. in (Tracey &

Sreenan, 2013) proposed a holistic architecture for IoT. In their architecture, they only

mentioned the large volume of data out of three big data challenges and for that they proposed

using HBase for storing the data. Mishra et al. in (Mishra et al., 2015) proposed a cognitive

oriented IoT big data framework (COIB framework). In their IoT overall architecture, they used

59

HBase for large volumes of data. They also add a layer to their architecture for grouping

homogenous data out of heterogeneous IoT data using classification. However, real-time data

management is not considered in their architecture. Sowe et al. in (Sowe et al., 2014) focused on

the heterogeneity challenge in IoT data. They use a Service-Controlled Networking (SCN)

middleware in their architecture to manage the heterogonous data. In this middleware, they used

different APIs for different types of data that goes to the system with different protocol.

However, this approach may not scale well, since the number of these APIs can grow

exponentially in time if there is no standard API. Li et al. in (S. Li et al., 2014) proposed using

SOA for IoT as mentioned before. This architecture is for the overall IoT and my proposed

architecture is for the service layer out of this overall architecture. To summarize, all this work

focused on the overall architecture and the data volume and variety challenge. However, they did

not elaborate on the data management in detail, since their concentration is on the overall

architecture.

There is some work on data storage and indexing for IoT (T. Li, Liu, Tian, Shen, & Mao,

2012; Y. Ma et al., 2012). Ma et al. in (Y. Ma et al., 2012) proposed an update and query

efficient index (UQE-Index) framework for IoT. They proposed having two different clusters,

one for storage and one for indexing. The data is also classified as current data and historical

data. They used B+-tree indexing for time index and R-tree for space index. Their idea can be

used for indexing data in the serving layer in our proposed solution.

60

Li et al. in (T. Li et al., 2012) proposed a storage design for IoT massive data based on

NoSQL named IOTMDB. In their proposed design, data storage and data management are

separated and the responsibilities are assigned to different machines in a cluster. Master nodes

are responsible for data management and slave nodes are only for storing the data. There are also

standby nodes working as a secondary option if any damage occurs to the primary nodes. They

also proposed performing preprocessing on data and retrieving the interest and digest value in

order to make future queries more efficient. For the data management part, they only focused on

historical, tracking and preference queries. They claimed that they chose those queries based on

the demand of IoT applications. However, it limits their system. Compared to our proposed

architecture, this literature can be used as the master data set for the batch layer. It provides a

way for storing and managing the massive data for IoT, but their solution lacks a method for big

data analytics in an efficient manner, as also mentioned in their future work. Moreover, no

mechanism is proposed for managing IoT real-time data.

Lambda architecture, proposed by Marz (Marz & Warren, 2015), is seen to be the future of

big data analytics because of its ability to deal with both historical and real-time data (W. Fan &

Bifet, 2013; H. H. Huang & Liu, 2014). Batch processing and stream processing are two

categories of big data analytics (H. H. Huang & Liu, 2014). The strength of Lambda architecture

is that it combines batch and stream processing together and constructs a general framework for

analysing big data.

61

Villari et al. (Villari, Celesti, Fazio, & Puliafito, 2015) proposed AllJoyn Lambda. They

claimed that AllJoyn Lambda is a software solution integrating AllJoyn in the Lambda

architecture used for Big Data storage and analytics in IoT. Using Lambda architecture is what

makes our work similar to this work. However, there are multiple differentiators between our

work. AllJoyn is a software that is used for IoT from the physical to application layer. It claims

that it is a solution for the interoperability challenge. However, the interoperability in their case

is in sensor discovery and operating systems and does not discuss data management. Also,

AllJoyn does not cover the geospatial use cases in IoT. The Lambda architecture is a well-

established solution for addressing the big data challenge. But this work is totally different from

what we are proposing, as our work is an architecture rather than a software. Also, our work

focuses on the service layer and data management whereas their paper vaguely claimed to have a

software for the whole IoT stack. Furthermore, we use an open geospatial standard as a solid

solution for the IoT interoperability challenge.

Huacarpuma et al in (Cruz Huacarpuma et al., 2017) proposed a Distributed Data Service

(DDS) to collect and process data for IoT environments with the goal of enabling multiple IoT

middleware systems to share common data services. They used a distributed architecture for

storing and processing the data. Their architecture has two parts, data collection and data

aggregation. In order to gather the data from different sources and overcome the heterogeneity

issue, they used a communications interface that converts different data formats and also a

metadata creation module that manages different metadata characteristics. The data collection

62

part gets data from different IoT middleware and generate metadata and store it in the NoSQL

database. They used JSON format for receiving data from IoT middleware. The data aggregation

part aggregates and summarizes the data. They claimed that their work was similar to the

Lambda architecture batch and serving layer but did not provide details. For example, there is no

immutability in their data set. There are similarities between this work and ours. Both try to solve

the big data volume, velocity, and variety challenge. Other similarities include using batch

processing and real-time processing; using a publish-subscribe paradigm for collecting the data;

and using the JSON format. However, one important differentiator for our work is using the

SensorThings API. They used some generated metadata for solving the heterogeneity issue. The

most important metadata that they mentioned are timestamp and location. We can see in the

example they provided, that they used latitude and longitude for storing location information

which makes the system limited to points and cannot store other geometries such as polygons.

The difference here is the rich and mature data model of SensorThings API compared to their

metadata. Also, our proposed architecture uses the Lambda architecture and its best practices for

addressing big data volume and velocity simply and seamlessly.

Big data analytics is considered an important next step for IoT health care systems (Firouzi

et al., 2018). Manogaran et al in (Manogaran et al., 2018) proposed IoT architecture for smart

healthcare monitoring and alert systems to address big data and security challenges. Their

proposed architecture has two subsystems, Meta Fog-Redirection (MF-R) and Grouping and

Choosing (GC) architecture. MF-R has three phases: data collection, transfer and storage. In the

63

data collection phase, data is gathered from medical devices. Through fog computing, alerts are

generated if the sensor readings are out of their normal healthy range. The data transfer phase

moves the data from local databases to Amazon Elastic MapReduce to enable big data

MapReduce processing. The storage phase stores the data in Hbase. Security is placed between

fog and cloud layer in GC. The nature of this work is for health monitoring and alerting systems.

As a result, it makes real-time processing much more important and they add fog computing for

what is near the edge. For data management, they do not provide any specific architecture and

they merely mentioned different Amazon technologies used such as Amazon EMR and S3. Our

work focuses on data management. Fog computing can be added in another layer for any alert

needed.

Marjani et al (Marjani et al., 2017) did a survey for big data analytics in IoT. This work

surveyed big data, IoT, and big data analytics separately and tried to show the relationship

between big data analytics and IoT. The paper proposed that in the IoT architecture layer, big

data analytics should be a layer on top of cloud storage and should be implemented using

Hadoop technologies. What they proposed as architecture is very high level and without detail as

the paper’s focus is on the survey part. Our work is a detailed architecture that combines their

cloud storage and big data analytics layers. Our SensorThings master dataset can be the cloud

storage and the rest of batch layer and serving and speed layers will be in the big data analytics

layer.

64

Darwish and Abu Bakar in (Darwish & Abu Bakar, 2018) explored big data analytics for

the Internet of Vehicles (IoV). IoV could be considered a category in IoT. They proposed an

architecture which uses Lambda architecture for processing or, as they called it, artificial

intelligence layer. Their proposed architecture is for the full stack of IoV including the physical

layer and application layer. They proposed using fog computing in the edge layer for

transportation sensor devices. This work shows how fog computing can be used alongside

Lambda architecture in another layer for application specific use cases. They did not add any

details about the possible data model and listed data heterogeneity as one of the challenges

needing to be fixed – which was something that we explored in our work.

To the best of our knowledge, the proposed research in this dissertation is the first attempt

to integrate open standards and Lambda architecture in the context of IoT to address the big data

management challenges.

Big Data Platforms and Technologies

In this section, we explore current technologies and off-the-shelf solutions for big data

management for IoT.

65

Hadoop

Apache Hadoop1 4 is one of the most well-known big data technologies now. It is used by

many major software organizations including, but not limited to, Amazon, Facebook, Google,

IBM, and Yahoo! as well as numerous other companies. Apache Hadoop consists of open-source

software for reliable, scalable, distributed computing. The goal of Hadoop is to build a

framework for distributed processing of large data sets across clusters of computers. Its main

focus is on software rather than hardware, for the availability and seamless handling of failures.

Hadoop Common, Hadoop Distributed File System (HDFS), Yarn, and MapReduce are main

modules of the Apache Hadoop. There are numerous other projects related to Apache Hadoop

including, Hbase, Hive, and Spark.

As two major modules of Hadoop, HDFS and MapReduce are designed for big data storage

and parallel processing respectively. One of the strategies that Hadoop uses for big data

processing is to move processing and computation close to the data site instead of traditional in-

memory processing (Oussous, Benjelloun, Ait Lahcen, & Belfkih, 2017). It reduces the

communication load and results in better performance for processing and computation (Oussous

et al., 2017).

1 4 http://hadoop.apache.org

66

One of the major factors for the success of Apache Hadoop is that it has an important

support community and the framework is growing bigger everyday with new components

developed or improved and added to the Hadoop framework.

Although the Hadoop framework is improving every day, it is not the ultimate solution for

addressing big data challenges in IoT. First of all, we need to find out how to use Hadoop

components together in order to reach our big data goals for IoT. It consists of making decisions

about the components and distribution, and how to connect them together. For this thesis, we are

not focusing on the technologies, but on the architecture for using the technologies together.

Moreover, the interoperability or big data variety issue is out of the scope of Hadoop

technologies. In summary, the goal of this thesis is to provide an architecture for IoT and then

the components can be implemented using off-the-shelf big data technologies such as Apache

Hadoop.

Hortonworks

Hortonworks1 5 focus is on providing enterprise-ready scalable open solutions and they are

using technologies such as Hadoop and Spark. One of their products is called Hortonworks Data

Platform (HDP) and it has enterprise ready Apache Hadoop distribution and delivers big data

analytics. HDP works on improving Apache Hive (Ahmed et al., 2017). One of the advantages of

1 5 https://hortonworks.com

67

Hortonworks is that it makes using Apache Hadoop easier as it removes all the installation,

preparation, and configuration complexity.

However, just like Apache Hadoop itself, Hortonworks cannot be the ultimate solution for

addressing big data challenges in IoT and it differs from my proposed solution in two ways.

Firstly, it does not address interoperability issues for IoT directly. All these frameworks can

process structured, semi-structures, and also unstructured data and they claim that they address

the big data variety issue through this. However, analyzing all the data together with different

structures would be difficult, if not impossible. Secondly, our proposed solution is an

architecture and each part of it can be implemented using Apache Hadoop or Hortonworks or

other big data technologies. In other words, our solution defines how the bits and pieces of big

data technologies and tools, including Hortonworks platforms, can work together to form a

comprehensive solution for addressing big data challenges for IoT.

Pivotal Big Data Suite

The Pivotal Big Data Suite1 6 provides open source scalable database technology. Two of the

main parts of the Pivotal Big Data Suite are the Pivotal Greenplum and Pivotal GemFire. Pivotal

GreenPlum is the analytics module that provides high performance massively parallel processing

1 6 https://pivotal.io/

68

(MPP) analytics. Pivotal GemFire is a combined data and compute in-memory grid that is

designed to be fast, scalable, and available (Stolz, 2018).

The Pivotal Big Data Suite still needs time to be adopted (Ahmed et al., 2017). The focus is

performance and high data volume. It can be a good solution for addressing bid data volume.

However, to address big data challenges we need other technologies for big data variety and

velocity. Similar to other technologies, Pivotal Big Data can be the implementation that is used

as part of our proposed architecture.

Cloudera Enterprise Data Hub

Cloudera Enterprise is based on the Apache Hadoop distribution and provides a platform

that is fast, easy to manage, and secure so that users will not need to focus on the technology and

can focus instead on the analytics result that they want. It uses Apache Spark for in-memory data

processing as well as Apache Impala, Solr, Kudu, and Hadoop for analytics, search, storage, and

optimization. (Cloudera, 2017)

Cloudera Enterprise is similar to our solution in that it is using multiple technologies to

provide a platform for big data analytics. However, first of all, it is a general solution and is not

finetuned for IoT. Moreover, if users find a more suitable technology for one part of the platform

they cannot easily replace and customize it. As discussed, for this thesis we provide the

architecture and users can implement our architecture by using different technologies.

69

MapR

MapR is an enterprise big data platform that is partly based on Hadoop. One of their

products is the converged data platform that is using MapR-DB. It uses different Hadoop and

Apache technologies on their big data platform. The main difference of our proposed solution

with this platform is that MapR is a platform whereas our work is an architecture. Furthermore,

our architecture addresses the interoperability issue and is finetuned for IoT whereas MapR is a

general platform. Moreover, using their platform can result in the vendor lock in problem

whereas our solution is based on an open standard and does not rely on any proprietary solutions.

Database Management Systems

Database Management Systems (DBMS) are the everyday solutions for data storage. There

are different types of DBMS. In this subsection, we discuss RDBMS, PDBMS, and NoSQL and

how they differ from our solution.

RDBMS

Relational database management system (RDBMS) is the most mature and widely used data

management solution. As a result, RDBMS can be a solution for data management for IoT.

RDBMS is transaction oriented; it focuses on atomicity, consistency, isolation, and durability

(ACID) of transactions. These characteristics ensure data integrity and stable management of

processing results (Choi, Jeon, & Yoon, 2014). In other words, the ACID characteristics refer to

“all or nothing”, “the results of each transaction are tables with legal data”, “transactions are

independent”, and “database survives system failures” respectively (Pokorny, 2013).

70

RDBMS is finetuned for high data reliability. However, sometimes achieving high reliability

unavoidably introduces overheads and subsequently sacrifices performance. Meanwhile, there

are a great many applications in which performance is a more important factor than reliability,

such as analytics applications. In this case, RDBMS is not a suitable solution anymore (DataStax

Corporation, 2013). IoT applications are such kinds of applications, because as mentioned

before, performance in answering queries is one of the most important characteristics that an IoT

application must have. Therefore, RDBMS is not an appropriate solution for IoT.

PDBMS

A more scalable solution than RDBMS is the Parallel Database Management Systems

(PDBMS). PDBMS uses the full capabilities of multiprocessors in order to achieve high

performance and high availability (Valduriez, 1993). In other words, PDBMS combines database

management with parallel processing. Like DBMS, PDBMS is write-optimized (Qin et al., 2016)

or transaction oriented (Whang, 2011). As a result, PDBMS is designed for homogeneous

relational data. Unfortunately, IoT data is heterogeneous and PDBMS is not appropriate. An

alternative to PDBMS is NoSQL data stores that are read-optimized (Qin et al., 2016) and

suitable for large-scale heterogeneous data (Whang, 2011).

NoSQL

NoSQL stands for Not only SQL (Structured Query Language). The reason is that NoSQL

data stores mostly do not use SQL for query processing. One of the reasons for moving from

RDBMS to NoSQL is the data model flexibility in NoSQL. In addition, NoSQL data stores can

71

manage different types of data (i.e. structured, semi-structured, and unstructured) with less

constraints than RDBMS. Finally, NoSQL does not have the above-mentioned overheads and

performance issues of RDBMS (DataStax Corporation, 2013). As a result, when performance is

an important factor in designing an application, using the NoSQL data store is considered a more

suitable choice than RDBMS.

 In addition, NoSQL data stores are more horizontally scalable than RDBMS. The reason is

that these data stores relax and simplify some of the restrictions of RDBMS, i.e. relational data

structure and transaction processing overheads. Key-value stores are the simplest NoSQL data

stores and their tables contain only key-value pairs that can be accessed only through the primary

key (i.e. key) very fast. These NoSQL data stores are also called big hash tables. Compared to

RDBMS, key is the same as attribute name in the RDBMS table. There are also more

complicated NoSQL data stores that have a collection of key-value pairs. (Pokorny, 2013)

The NoSQL database appears to be a more suitable solution for data management challenges

in IoT, but it is not complete. Although we mentioned that the NoSQL database can accept

heterogeneous data types, it does not mean that it can understand different semantics in

heterogeneous data. As a result, although the NoSQL database helps in addressing the data

volume challenge, it cannot address the variety and velocity challenges thoroughly. The IoT data

management system requires a high level architecture that has the NoSQL database as a part of

it, together with other components that address all the big data challenges.

72

As we discussed, there are different technologies related to big data and big data analytics,

but none of these technologies are the ultimate solution for addressing big data challenges for

IoT. However, these technologies can be customized and used together for that purpose. In other

words, a big data system needs multiple tools and techniques (Marz & Warren, 2015). For this

thesis, we propose an architecture in which these technologies can be used and the big data

challenges in IoT addressed. Our architecture is based on the Lambda architecture (Marz &

Warren, 2015) together with the SensorThings API (S. Liang et al., 2016) in order to address the

big data volume, velocity, and variety challenges for IoT. We will discuss Lambda architecture

in next section before moving on to the proposed architecture in the next chapter.

Lambda Architecture

Lambda architecture (Marz & Warren, 2015) is a new paradigm for the big data problem. It

focuses not only on the scalability of the paradigm, but also on its ease of use and fault tolerance.

Lambda architecture minimizes the complexity so that the paradigm can be developed and

implemented easily by a small team and does not need enterprise resources. The main idea

behind Lambda architecture is to provide an architecture with the capability of computing any

arbitrary function over a large data set in real-time. Also, the main motivation behind it is that

there is no single tool or technique that can fulfil the idea. Lambda architecture is based on a

layered architecture and provides three layers that together can provide an infrastructure for

creating a big data system.

73

The Lambda architecture consists of three layers: batch layer, serving layer, and speed layer.

In the following sections, we will discuss the functionalities of each of these layers.

Batch Layer

 Batch layer’s main purpose is to hide the computation time from the client. Executing

functions and queries on huge amounts of data, e.g. petabytes of data, is extremely time

consuming and would not be acceptable to users. Batch layer precomputes the functions and

creates batch views. Then instead of running user queries on the fly, they can be answered based

on precomputed batch views in an efficient manner. Other than batch computing, the batch layer

is responsible for storing all the data as the master dataset of the system. In short, the two

functions of the batch layer are (1) storing the immutable master dataset, and (2) running

arbitrary functions on the master dataset continuously and creating batch views.

For Lambda architecture, batch layer is proposed to be simple. With regards to that, the

batch processing will be simple single threaded functions and the scalability will be handled

horizontally. In other words, rather than being worried about complicated multithreaded

processes for batch processing, Lambda architecture proposes adding more nodes to the

processing system in order to increase performance as needed. The use of the MapReduce

paradigm is proposed for batch processing in order to achieve horizontal scalability.

Master dataset is the core and ground truth in Lambda architecture. It is our raw data and it

is the only important part of Lambda architecture that is required to be safeguarded from

corruption, since all the other parts can be generated from this master dataset in case of loss. The

74

first suggestion of Lambda architecture for the master dataset is to store the data in its rawest

form. The word data refers to information and facts that cannot be derived from anything else

and serves as axiom for all other derived information. The master dataset should be a collection

of these data. Information is a collection of knowledge about the dataset that can be extracted

from the data. Also, queries are the questions that can be asked about our dataset. Moreover,

views are information derived from our data in order to help in answering queries. Since

information, queries, and views can be derived and answered by the data, data in its rawest

format is what we need to store in our master dataset. The raw data will be the material for

answering user queries. The rawer the data is, the more questions can be answered based on it.

In addition, Lambda architecture discusses that there is a trade-off between storing the data

in a structured or unstructured format. It argues that sometimes unstructured data can provide

more information. This happens when the algorithm for deriving structured data from

unstructured data has a chance of improving over time, which means that we may be able to

derive more information from the unstructured data in future with an improved semantic

algorithm. However, if the algorithm for extracting structured data is simple and accurate,

structured data should be stored in the master dataset. As a result, this factor should be

considered when designing the data model for the master dataset.

In addition to the rawness of data, Lambda architecture defines the master dataset as being

immutable and perpetual. It claims that if the big dataset is raw, immutable, and perpetual, the

big data system will be more robust. The suggestion of immutability helps the master database to

75

be human fault-tolerant and also simple. However, for our proposed solution which is finetuned

for the Internet of Things, we will use mutable data whilst minimizing this mutability to the least

possible. We will discuss this in the next chapter when explaining our proposed architecture.

Lambda architecture suggests that the data should be eternally true. In order to achieve that,

together with data immutability, data should be labeled with time. For our proposed architecture,

we use the SensorThings API as the data model for the master dataset. The most important and

useful entity of SensorThings for IoT is Observation and is time-stamped in two ways, the time

that the observation is recorded and the time that the observation actually happened. We will

discuss this in more detail in the next chapter as we elaborate on our proposed solution in more

detail.

Data Model

Lambda architecture has a fact-based data model, which means that the data consists of a set

of facts that are fundamentally immutable, atomic, and time-stamped units. Each fact also needs

to be identifiable. Fact-based model is helpful for answering client questions and queries, and

can tolerate human errors. Human fault tolerance is the result of immutability. Because with

faulty updates to the data, we would lose the data, but with immutability, the update to the data

will be stored as a new time-stamped data which can be removed if faulty. As we will discuss in

the next chapter, the Observation entity has all the features of a fact-based model. Comparing

SensorThings to the recommended fact-based model of Lambda architecture, we can say that

76

Observation is our fact-based model and the rest of the entities are storing metadata about those

facts.

Batch layer has the advantage of both normalized and denormalized data models. The fact-

based data model for the master dataset is for suggesting normalized data model for data,

whereas the batch views are denormalized and optimized for client queries. Batch views are

reconstructed from scratch periodically and they do not need to be updated. As a result, there are

no disadvantages from being denormalized.

In Lambda architecture, there should be a schema for the fact-based data model. Lambda

architecture suggests using graph schema and enforcing it with the fact-based data model. In our

solution, we use the SensorThings API as our data model and the schema is already present.

Master Dataset

Master dataset is where all the data is stored in the batch layer. The characteristic required

for the master dataset is defined by the requirements we have for our batch layer. As discussed

above, the data in the batch layer should be immutable and eternally true. This means that first

the data will be accumulated and the master dataset must be scalable. Secondly, the data will not

be updated. As a result, the master dataset only needs to be efficient for appending data and it

does not need to be efficient for randomly accessing the data. As a result, the data does not need

to be indexed to be performant for updates.

 In our proposed solution, Observation is our only immutable entity. However, we can argue

that since other entities are only keeping metadata about Observation and therefore they are

77

much smaller in size, the rare update cost is negligible. As a result, we do not need to design our

master dataset for frequent updates, although other entities are mutable.

Batch layer periodically accesses bulk data to compute batch views and we know that the

data will be huge. Therefore, the master dataset should have the capability of processing large

amounts of data. Finally, the master dataset should have the flexibility of compressing the data.

Because the data is huge and can affect the cost, we will need to compress the data in order to

reduce the cost at some point. However, the design for compression is different for various use

cases and the master dataset should be flexible for that reason. Distributed file systems are one of

the best fits for the master dataset in Lambda architecture as they have the required capabilities,

whereas they don’t have the extra features that lead to higher cost. Key-value data stores are one

of the examples of overkill for the master dataset, because they have all sorts of optimization for

random access which is not required for the master dataset and result in higher costs.

Batch Views Precomputation

There should be a balance between how much of the computation is done on the fly and how

much we precompute into batch views. No precomputation results in very high latency in

answering the queries, whilst precomputing everything is infeasible. The idea is to precompute

some intermediate results enough for answering queries quickly.

There are two approaches for precomputing batch views: incremental computation and

recomputation. Recomputation means that the batch views will be created every time based on

the whole dataset. Incremental approach is updating the already computed batch views when new

78

data is added to the system. There is a trade-off for choosing each approach in terms of

performance, human fault tolerance, and generality of the computation algorithm.

Incremental algorithms use less resources during computation, however, their batch view

size might be significantly larger. Unfortunately, incremental approach is prone to human error

whereas the recomputation approach is not. The reason is that, if there is faulty data in the

dataset because of human error, we can delete it and the recomputation approach automatically

computes the batch view based on the current dataset which does not have faulty data. But for

the incremental approach the effect of that faulty data is in the batch views and will not

disappear, since we only consider new data added to system. Moreover, the recomputation

approach results in more general algorithms as it uses a simpler structure for batch views as well

as simpler on-the-fly calculation for answering queries.

In order to have a more robust system, Lambda architecture suggests using a recomputation

approach for computing batch views. However, an extra incremental approach can also be used

for increasing the efficiency of batch processing. But a recomputation version of algorithm must

be executed on data, maybe with less frequency than incremental algorithms, in order to ensure

that batch views are human fault-tolerant.

MapReduce

 First introduced by Google (Dean & Ghemawat, 2004), MapReduce is a distributed

computing paradigm that parallelizes computation between a cluster of machines. Using

MapReduce as the computing paradigm for a system makes the system inherently scalable, as all

79

that is required for processing more data is more machines in the cluster. As a result, the

MapReduce paradigm is a good candidate for batch processing in Lambda architecture.

In the MapReduce paradigm, a computing program consists of map and reduce functions.

Map function runs on parallel data blocks over a cluster of machines and produces some

intermediate results, usually in terms of key-value pairs. Then the reduce function merges these

intermediate results, usually using the keys, and creates the final computation result. The process

of sending intermediate results of map tasks to reduce tasks is called shuffling.

MapReduce computation is fault-tolerant as well. The system automatically retries map

functions in case there is a failure that is caused by hardware break down, memory overflow,

disk storage overflow, or other causes, and tries to overcome the failures using this process.

However, the whole program will fail if a failure happens more than a preconfigured number of

times. The reason is that in this case the failure is most probably caused by a program bug rather

than server issues. As a result, map functions should be deterministic as the system should be

able to re-run it, as needed, seamlessly without changing the final result.

MapReduce algorithms for batch processing can get very complicated, as usually a series of

continuous MapReduce jobs are required to compute a batch view. Lambda architecture

recommends using pipe diagrams as a means for designing batch computation. Pipe diagrams are

helpful in terms of designing batch computation at a higher level without the concerns for the

details of the complicated MapReduce jobs. Pipe diagrams are also supported by different tools

that can be used for batch processing including, but not limited to, Hive, Pig, and Cascalog.

80

The pipe diagram defines the batch processing in terms of the concepts of SQL queries.

Each part has an operation and the input and output is defined concisely. The operation can be

processing in terms of tuples, functions, filters, aggregators, joins, and merges. Although the

concept for operations are from SQL definitions, they are not limited to predefined functions and

can be user-developed programs.

After high level designing with the pipe diagram, each part can be translated into a

MapReduce job, so that the whole batch processing will be executed in a scalable manner. Each

operation is simple enough so that it can be easily implemented by MapReduce jobs. We will see

this step in the next chapter when we discuss our proposed architecture in more details.

We discussed the details about batch layer and batch computing. More details about how

these concepts apply to our proposed architecture will be discussed in the next chapter. In the

next section, we will discuss the second layer of Lambda architecture, the serving layer.

Serving Layer

 Serving layer provides access to batch views in an efficient manner. In other words, the

serving layer is where the precomputed batch views are indexed and can be queried efficiently to

answer user queries. The serving layer is in close connection with the batch layer, as the batch

layer frequently computes and updates batch views. Due to the high latency nature of batch

processing, batch views served by the serving layer are not up-to-date with recent data. Dealing

with recent data is the responsibility of the speed layer which we will discuss in the next section.

81

 The most important characteristic of the serving layer is to be performant for answering

queries. In this case, latency, which is the time that is required by the serving layer to serve one

query, becomes an important metric. Indexing is the solution for the serving layer to provide

better performance and lower latency for answering user queries.

The indexing of the serving layer is different from indexes in traditional databases as batch

views are distributed over a cluster of machines in the serving layer. As a result, how to

distribute batch views amongst the cluster is also part of indexing for achieving lower latency. It

adds a new rule to our indexing that the fewer machines that need to be accessed for answering a

query, the lower the latency, and thus, the better the performance. Moreover, the serving layer

can benefit from denormalizing the data for the purpose of improving the performance and hence

reducing latency.

Denormalization is the process of storing redundant data for the purpose of minimizing

expensive joins in order to achieve better performance. Denormalization has the cost of data

consistency verification. However, in Lambda architecture this verification is not important as

the main data in the master dataset is stored with the normal structure, and the serving layer in

which we use denormalization has been frequently overridden by the batch layer. As a result,

even if any inconsistency arises, it will be fixed soon when the next round of batch processing is

completed.

Lambda architecture puts some requirements in the serving layer. The serving layer must be

scalable, fault-tolerant, batch writable, and support random reads. Being scalable is inevitable as

82

it needs to query batch views that can be big. Using a distributed cluster of machines can help the

serving layer to be scalable. The serving layer should tolerate machine faults whilst serving

queries. As the batch views are re-created periodically, the serving layer should have the

capability of dumping the current batch views and replacing them with newly computed batch

views. And finally, since the serving layer is where the queries are answered, it needs to support

random access to batch views as requested by different queries.

The serving layer does not need to support random writes. It is interesting as most of the

complexity is introduced by random writes in the database systems. As the batch views are

computed periodically, the serving layer only needs to be capable of replacing the bulk of batch

views with new ones and there is no need for updating only part of the view. The only place in

Lambda architecture which needs to be capable of random writes is the speed layer which

handles the real-time data and will be discussed in the next section. The simplicity of the serving

layer is a big advantage in Lambda architecture, especially because it is the container of the

majority of the queryable data in the architecture.

Speed Layer

The only part left from Lambda architecture is the random write for real-time data

processing and it is the responsibility of the speed layer. Unlike the batch layer, the processing in

the speed layer needs to be done incrementally. However, having batch and serving layers in

Lambda architecture makes the speed layer requirements narrower than a big data system

supporting random writes. Firstly, the speed layer is only responsible for the data that hasn’t

83

been added to the serving layer yet, which makes the data size much smaller than the master

dataset. Basically, the speed layer only handles recent data as old as the latency of batch

processing which is usually a few hours. Moreover, the speed layer does not need to be as robust

as the batch and serving layers, as the data in the speed layer is transient. As a result, even if any

error occurs during processing it will soon be corrected as the data is moved to the batch layer

for more robust processing.

If we want to compare Lambda architecture with traditional data architecture, we will find

that traditional architecture only has speed layers which are implemented with relational

databases. As a result, the processing in traditional data architecture needs to be far more

complicated. However, since Lambda architecture assigns different roles and responsibilities to

different layers, the whole architecture and processing is simpler and more robust.

The speed layer processes the real-time data and creates some real-time views. These real-

time views fill the gap of the real-time data, that are not yet in the serving layer, for answering

queries. As discussed above, the process for creating these real-time views is different from

batch processing as it is incrementally processed because it has to be as efficient as possible.

Although the responsibilities for processing and storing batch views are separated between batch

and serving layers, for real-time views, the speed layer is responsible for both of the functions for

real-time data.

As discussed, the speed layer needs to use incremental algorithms for producing real-time

views. Recomputation is not a good approach for the speed layer for two reasons. Firstly, for the

84

speed layer, latency needs to be decreased as much as possible in order to produce real-time or

near real-time results, depending on the application. Although the size of data that needs to be

processed is less than the master dataset, the latency that we are looking for here is with an order

of magnitude less than batch processing. The latency that results from recomputing real-time

views can be in order of minutes. Thus, recomputing real-time views is not an option for the

speed layer. Moreover, recomputation is very resource intensive, if not impossible, considering

the rate of new data coming to the system. As a result, the incremental approach is considered

the best for the speed layer.

Real-time views should be optimized for both random reads and writes. Random writes are

required for the use of the incremental approach and random reads are needed because these

views are used for answering queries. Furthermore, real-time views should be scalable and also

fault-tolerant. This scalability is achieved by using distributed architecture. The speed layer

should tolerate machine failures as with the serving layer. All the characteristics we mentioned

for the speed layer are features of the NoSQL database. As a result, the use of the NoSQL

database for implementing the Lambda architecture speed layer is recommended.

Whether the real-time views structure is the same as batch views structure or not depends on

the complexity of the computation. Complex computations can easily be done in batch layer, as

high latency is not the issue. However, such computation may not be suitable for the low latency

nature of the speed layer. In this case, the computation can be simplified to only calculate

approximate answers for the query. The layered nature of Lambda architecture provides the

85

flexibility for eventual accuracy which means that all the data will eventually end up in batch

views which are accurate, and if there is any approximation in real-time view it is only

temporary. Using approximation algorithms for real-time views are optional in Lambda

architecture, but might be the optimal choice for more complicated computation.

Challenges for Incremental Processing for Speed Layer

Incremental computation for the speed layer brings up some challenges. The most important

one is what is called CAP theorem. CAP theorem says that whenever the data system is

distributed and partitioned, the data system cannot be consistent and available at the same time.

In other words, for distributed data systems there is a trade-off between consistency and

availability. This challenge is introduced by real-time updates and random writes to the system.

Availability needs replicas of data whilst managing consistency is difficult with replicas

especially considering real-time updates. The CAP theorem is also valid for batch and serving

layers. However, the different nature of batch and serving layers makes the CAP theorem not an

important challenge, as availability is the obvious choice for these layers rather than consistency.

The reason is that batch views in the serving layer are always out-of-date because of the high

latency of batch processing and as a result the serving layer is never consistent and availability

would be the choice.

In contrast, the speed layer needs to be both available and eventually consistent somehow,

which brings up the CAP theorem. The eventual consistency supports the theorem as the instant

consistency is not an issue and we only need the final processed value to be consistent. Lambda

86

architecture recommends using conflict-free replicated data types (CRDTs) to assist eventual

consistency. CRDTs limit the operations that can be done on different values and thus assist with

consistency. For example, if the CRDT only allows addition and we find an inconsistency

between two replicas, we know that the maximum value is the correct data and the other just

misses some additions.

We emphasize that although the CAP theorem adds more complexity to the speed layer and

conflicts and corruption to the processed data is a possibility, the final process that goes through

the batch and serving layer will correct all the possible corruptions. In other words, any

inconsistency or corruption that may happen in the speed layer is just temporary and will be

fixed in the batch and serving layers soon.

One important challenge for the speed layer is the expiration of real-time views. It means

removing real-time views as their data is added to the batch views in the serving layer. The

simplistic approach is to use the databases that support data expiry and set the expiry time to the

expected finishing time for batch processing. However, since it is just an estimated time, if the

batch processing takes longer for any reason, for some time some data is neither in batch views

nor real-time views. In order to prevent this situation, Lambda architecture recommends another

approach. The suggested approach maintains two sets of real-time views and cleans one of them

each time that the batch views get ready. It is clear that some redundancy is involved but the

maintenance will be very simple. Queries are always answered using the bigger real-time views.

Although some redundancy is introduced it is not much of a concern as the real-time views only

87

contain a very small portion of the data, usually couple of hours, and it is not big enough to be

worried about.

Asynchronous vs Synchronous Updates for Real-time Views

There are two approaches in the speed layer for updating real-time views: synchronous and

asynchronous. Synchronous updates mean that the database is locked for each request, does the

update, and then releases it. As a result, the system halts for each request. On the other hand,

asynchronous updates are added to a queue and executed in order in the database. Thus, an

update may happen with some delay, which is usually between milliseconds to a few seconds in

the speed layer. Meanwhile, it can benefit from batch processing multiple requests in the queue,

which is not possible with the synchronous approach. Synchronous updates are good for

transactional data, whereas asynchronous updates are good for analytics with better throughput

and better management of high loads. Because of the benefits of asynchronous updates, Lambda

architecture suggests using asynchronous updates for the speed layer unless there is a good

rationale for using synchronous or transactional updates for the designed system.

In order to pursue an asynchronous approach, the speed layer should have the ability for

queuing and stream processing. Moreover, fault tolerance is a feature we need to keep in mind

for the speed layer. In order to achieve fault tolerance, all the processing should have the ability

to re-run without the loss of information, just as for batch processing, in case there is machine

failure and the processing is corrupted. This feature should be considered in stream processing

and queuing.

88

Queuing

The queue that is used for speed layer should be persistent. Firstly, as discussed above, we

want to be able to re-run the processing. If a machine is broken and there is no persisted queue,

the data it was processing will be lost. Also, the data can be lost in an overwhelmed machine that

is using most of its memory and computation resources because of multiple simultaneous

queries. The persisted queue helps the speed layer to survive such situations, and tolerates those

errors.

When using persisted queue, there should be a mechanism to empty the queue as the data is

processed with the real-time views so that the processing units will then get the next top element

of the queue to process. The simple acknowledgement approach does not work for the speed

layer, as the data might need to be processed in multiple machines and consumed for multiple

real-time views. Using separate queues for each processing is also not a good option, since the

complexity will increase with the number of simultaneous data multiplied by the amount of

processing that needs to be done on that data.

As an alternative approach, Lambda architecture suggests letting the applications keep

tracking their processed data. In this approach, the persisted queue will contain all the data, and

each processing application keeps track of the data it has already consumed and gets the desired

data part from the queue. This approach also fulfils the requirement for the capability of re-

running or re-playing the data in case of machine failure as the data can be retrieved back from

the time the machine crashed.

89

In order to maintain the queue and prevent it from getting very big over time, there will be a

Service Level Agreement (SLA) that the queue always keeps data for a certain amount of time or

until the queue reaches a specific size. The time limit or the maximum size can be configured

based on the system in such a way that ensures that no data will be lost for real-time views. In

the meantime, if for any reason, some data is lost, the system will correct this situation when the

data is added to the batch views. As a result, any possible loss will be temporary. This type of

queue is called multi-consumers queue and is the recommended queue structure for Lambda

architecture.

Stream Processing

The data in the queue is processed using stream processing to create real-time views. The

data can be processed one-at-a-time or using micro-batch processing depending on the

application. The one-at-a-time approach has lower latency and simpler programming models,

whereas micro-batch has higher throughput. With a one-at-a-time approach, the system will

process one data tuple at a time. However, this processing can be parallelized in a cluster to gain

higher throughput.

One-at-a-Time Stream Processing

For the one-at-a-time processing approach, Lambda architecture recommends using the

storm model for the speed layer which has a graph of computation representing the stream

processing pipeline. This graph of computation is called a topology. Storm model suggests a

single program deployed over the whole cluster for processing the topology rather than having

90

different processing for each node in the cluster. In this model, the executable uses different

nodes to complete each part of processing in the topology.

The storm model contains streams as its main concept. Streams are a sequence of tuples and

the tuples are named data values. The Storm model processes the streams and the result of the

processing will be new streams. Spout is another concept in the storm model topology. Spouts

are sources for the streams. Spouts can be where data comes to the system and then tuples and

streams will be created from them. Another concept in the storm model is bolt which is

responsible for executing actions on streams. The input and output of a bolt are both streams.

Moreover, a bolt can have multiple streams for input and also produce more than one stream as

output.

Most of the logics and basic processing of the topology is happening inside the bolts. In

other words, the equivalent processing that we do in batch processing with filtering, aggregation,

etc. is performed in bolts in the storm model for the speed layer. With these concepts, a topology

can be re-defined as a network of spouts and bolts in which the bolts are processing the streams

that come from spouts or the output streams of other bolts.

Bolts and spouts are abstract concepts and instances of them are called tasks in the Storm

model. Tasks should have the capability of being run in parallel. This feature is similar to

MapReduce batch processing in which the map and reduce functions should be inherently

parallel. In this model, each bolt task is receiving all the output streams from all the tasks that

91

generate the input for that bolt. The tasks for each bolt or each spout are spread over a cluster of

machines.

Storm model uses stream grouping to define which tasks will receive the tuple that a task

emits. Shuffle grouping and fields grouping are two different approaches for stream grouping.

Shuffle grouping is basically distributing tuples using a random round-robin algorithm, whilst

filed grouping is using hash function to decide which task will receive this tuple. Field grouping

is more useful if the tasks are designed to receive some targeted tuples.

Storm model guarantees at-least-once processing for streams and tuples. To achieve this, the

system should support retry in case of failure. Storm model proposes retrying from the root

instead of retrying from the point of failure. Each spout tuple has a directed acyclic graph (DAG)

when processed inside storm model topology. If a failure happens in any part of this DAG,

processing of the spout tuples will be re-executed which guarantees at-least-once processing.

Tuple DAGs can be big but there are tools that can track the DAG with high efficiency and

scalability.

In order to be able to re-try a spout tuple, the processing should be idempotent, i.e. running

the process multiple times should not affect the process result. However, the requirement for

idempotent processing in the storm model is a soft requirement as the speed layer result can

handle some inaccuracy since it will be temporary and will be fixed in the batch layer. Also, the

failures are rare and any introduced inaccuracy is small. Using non-idempotent processing can

92

result in lower latency which will be desirable for the speed layer, whilst any introduced

inaccuracy will be minimal and also temporary.

Micro-Batch Stream Processing

Micro-batch processing is another approach for stream processing in the speed layer. It has

the advantages of better accuracy and higher throughput compared to one-at-a-time processing.

This approach is useful for applications in which any inaccuracy, or even temporary

inaccuracies, are unacceptable. However, micro-batch processing has slightly higher latency

compared to a one-at-a-time processing approach. In other words, for applications that accuracy

is a mandatory requirement, we can gain accuracy with micro-batch processing in the Speed

layer, at the cost of higher latency.

Despite the one-at-a-time approach that tracks and processes each tuple DAG individually to

guarantee the at-least-once processing, the micro-batch approach tracks a batch of tuples and the

processing is executed in a specific order in order to achieve exactly-once processing. As such,

each batch of tuples has a unique identifier (ID) and each batch will be processed after the

completion of the previous batch.

Each batch of data is partitioned and sent to different tasks for parallel processing. Each

intermediate processed result will keep the ID of latest processed batch. This way if processing

one batch of tuples fails, the processing on that batch will be replayed and the tasks will update

only the intermediate results that has the latest processed ID other than the ID of the current

batch. As a result, the processing will not update the results that are already updated in the

93

previous round and only updates the results that haven’t yet been updated during the time of the

failure. Storing the ID of the latest processed batch adds idempotence to non-idempotent

operations that are done in tasks. Thus, those tasks can be replayed multiple times but the end

result is always the same.

Micro-batch processing consists of two parts: batch local processing and stateful

computation. Batch local processing refers to computation done inside each batch that is local to

that batch and independent from other batches. For example, partitioning the tuples in the batch

in order to send to different tasks is one of the batch local computations. Stateful processing is

the computation that needs to keep the state of the micro-batch across all batches.

Stateful computation in micro-batch processing results in the need for transactional spouts.

Transactional spouts are sources of data that can partition data to micro-batch of tuples and

replay exactly the same micro-batch in case a failure happens. For this to occur, the transactional

spout should know which offsets from which partition the particular micro-batch can be derived.

As mentioned before, micro-batch processing has higher latency and throughput compared

to one-at-a-time processing. The latency is caused by the time needed to coordinate partitions for

micro-batch as well as waiting for one batch to complete the processing and then start the next

batch. This latency may be as small as milliseconds to a second but it is significant considering

the difference in order of magnitude. Moreover, higher throughput is achieved in micro-batch

processing when processing batch of tuples all at once.

94

Pipe diagrams can be used to represent micro-batch processing as it is used for showing

batch processing in the batch layer. Pipe diagrams can be used exactly as it is used in batch layer

for batch local computations. However, for the stateful computation the pipe diagram needs to be

extended as the pipe diagrams are designed to work on one batch at a time without the

consideration of any state. In other words, the pipe diagram can show the micro-batch

computation, but there is more to micro-batch processing than what can be shown in the pipe

diagram. Micro-batch processing needs to keep batch IDs as state and it is hidden inside the pipe

diagram abstraction.

As the final word about the speed layer, it is worth mentioning that the processing done in

the speed layer is not always real-time processing. For example, finding inactive sensors, which

are sensors that have not been active and sending data in the past hour, can be our use case and

computing that is not real-time processing, but rather, processing the data from the past. As a

result, depending on the use case and the questions that need to be answered, the processing of

the speed layer may or may not be real-time processing.

Summary

In this chapter, we reviewed IoT data management and its challenges as well as the related

literature and tools. Then we went over the details of the Lambda architecture which is our

candidate for addressing data management challenges in our proposed architecture.

The Lambda architecture is an architecture for big data management and consists of three

layers: batch, serving, and speed layers. The batch layer and serving layer are used for storing,

95

preprocessing and indexing large datasets. In other words, these two layers are designed to

address the data volume challenge. The speed layer is designed for processing real-time data and

queries. The Lambda architecture is also capable of addressing the data velocity challenge

through the use of the speed layer.

We use Figure 7 to summarize the process and show the overall structure of the Lambda

architecture (Marz & Warren, 2015).

The journey of data in the Lambda architecture for answering queries is as follows:

1. When new data is added to the system, it is sent to both the batch layer and the speed

layer. This new data is added and stored in the master dataset in the batch layer. It is also

used for incremental updating of real-time views by the speed layer.

2. For the Lambda architecture, the master dataset is designed to be append-only and

contains the raw data that enter the system.

3. Common query functions are precomputed in the batch layer periodically and batch

views are created. The preprocessing is performed from scratch each time. This

characteristic makes batch views human fault-tolerant. The batch layer can compute any

arbitrary function on any arbitrary data to support different applications.

4. Batch views are indexed and prepared for queries in the serving. The batch processing in

the batch layer takes time. As a result, each time the serving layer is updated it is out of

date compared to all the data that comes to the system at that point in time.

96

Figure 7 The Overall Process in Lambda Architecture (Adapted from (Marz & Warren,

2015))

5. Because of the latency of batch processing, the serving layer is always out of date. This is

when the speed layer comes in to answer the real-time queries for which answers are not

present in the serving layer yet. To this end, the speed layer produces real-time views by

using fast, incremental update algorithms on new data that enters the system. In this way,

the real-time views are always up to date. The real-time views contain the views of data

recently entering the system which are not yet absorbed by the batch views. As a result,

97

both batch views and real-time views are needed for answering queries. However, real-

time views should be discarded as soon as they are absorbed into the batch views.

6. The answers for the queries are created by merging both batch and real-time views

together. This is the final part of the data journey in the Lambda architecture.

In the following chapter, we explain how we use the Lambda architecture with the

SensorThings API to address all of the 3 Vs of big data management challenges in IoT.

98

Integrating the Lambda Architecture with the SensorThings API

For this dissertation, I am proposing an open geospatial cloud service architecture for the

Internet of Things. The focus of the proposed architecture is to solve data management

challenges for IoT. We described the OGC SensorThings API and Lambda Architecture in detail

in the previous chapters. In this chapter, I explain how using Lambda Architecture together with

the SensorThings API result in an architecture that can overcome data management challenges

for IoT. We first explain how to use the Lambda architecture with the SensorThings API, before

discussing how this architecture overcomes big data managements challenges for IoT.

Proposed Architecture

The proposed architecture uses Lambda architecture together with the SensorThings API. In

this section, we discuss how we can merge the Lambda architecture with the SensorThings API

in order to create an architecture for solving big data challenges for IoT. For this we will discuss

how SensorThings is used in each layer of the Lambda architecture.

Data Model and Master Dataset

As we discussed in the previous chapter, Lambda architecture requires a fact-based data

model. The data model for the SensorThings API suits all the requirements for the Lambda

architecture. It is normalized as suggested in Lambda architecture. Moreover, the SensorThings

API data model satisfies the fact-based data model of Lambda architecture as the Observation

entity is the centric entity in SensorThings for which all other entities keep metadata. As a result,

Observation can be the fact entity. We propose making the Observation table immutable as

99

suggested by the Lambda architecture which means that Observation entries can only be added to

the system but cannot be updated. Since Observations are sensor readings, they are immutable

and time-stamped by nature. If there is an anomaly in the Observation data it can be detected in

the application level by using anomaly detection or a cleansing algorithm. Furthermore,

erroneous Observations can be deleted later by the user in another process and it will affect the

batch views for the next batch processing period. By making the Observation entity immutable,

we follow the Lambda architecture recommendation for achieving higher fault tolerance.

Although the FeatureOfInterest keeps the metadata for the Observation entity, we propose

making this table immutable as well. In most of the use cases, the FeatureOfInterest is the GPS

reading for the sensor and is either the same for all the sensor’s Observations in the case of static

sensors, or different in case of moving sensors. In either case, there is no need for updating the

FeatureOfInterest entity for Observation. If there is faulty data for the FeatureOfInterest it will be

corrected in the next Observation reading and thus no problems will arise.

All the other SensorThings entities including, Thing, Location, HistoricalLocation,

Datastream, Sensor, and ObservedProperty keep metadata for Observation and they rarely

change. We loosen the Lambda architecture requirement of immutability for these entities and

give the user the capability to update them in case the wrong data was entered in the first place.

As these entities only contain metadata information and not facts, we can still benefit from the

fault tolerance that the Lambda architecture offers.

100

As discussed, the SensorThings data model fits perfectly with the Lambda architecture data

model and we can use this data model as our master dataset data model. To sum up, Observation

is our fact table and immutable. FeatureOfInterest is also immutable. All other entities are

metadata or so-called dimensions for the Observation table and rarely change, except when the

user inputs the wrong information.

By using the SensorThings API as the Lambda Architecture data model, we benefit from the

fault tolerance from the Lambda architecture as well as the flexibility of SensorThings to get

Observations from different points of view, e.g. Sensor view or ObservedProperty view. The

data can be queried to get all the Observations of a specific Sensor; all the Observations that

observe the same phenomenon (known as ObservedProperty); or all the Observations that

observe the same place (known as FeatureOfInterest). In summary, the system is flexible but

fault-tolerant when we make Observation and FeatureOfInterest immutable.

Batch Views

When we use the Lambda architecture together with the SensorThings API, our batch views

can be created based on the analytics use case on top of SensorThings schema. There is no

limitation on what we can define for our batch views. Furthermore, geospatial information in the

SensorThing API can enrich our IoT analytics with Lambda architecture and it can facilitate any

type of spatiotemporal analytics on Observations whilst the Observations can also be categorized

based on the phenomena they are observing. Moving on, we will discuss some popular use cases

for SensorThings and IoT.

101

When using Lambda architecture with SensorThings API, batch views can either be

summarized or aggregated values, or preprocessed analytics on our Observations with different

dimensions from other SensorThings entities that can be carried out based on the use case. Also,

batch views can chunk the data based on popular SensorThings queries for a fast read. An

example of the second case is if

/Things(id)/Datastreams?$exapnd=ObservedProperty,Observations($orderby=result

desc;$top=1) is a very frequent SensorThings path; the response, as raw data can be stored as

batch view for fast access. The dimension in this case would be Thing id and the result would be

stored as a file and can be accessed every time we want to answer the query. The challenge for

this query is multiple database joins needed to answer the query as well as the fact that finding

the highest result is an expensive operation. Thus, using batch view and preprocessing can

improve the performance of this query. When using Lambda architecture, the file in batch views

needs to be compared and merged with the information we have in our real-time views so that

our response would contain the highest result of all the time. Another situation is that in which

the query is needed for only retrieving the highest Observations results. In that case, a flat

structure can be stored as batch views and then queried from the serving layer. The flat structure

in this case has the Thing required information, can be only its @iot.id, the Datastream required

information, again can be only its @iot.id, the ObservedProperty required information, and the

Observation that has highest result. This flat structure can be a table and can be queried in a fast

and scalable manner from serving layer.

102

Another more sophisticated query could be /Observations?$filter=phenomenonTime lt {t1}

and phenomenonTime gt {t2} and st_within(FeatureOfInterest/feature,{bbox WKT}) and

Datastream/ObservedProperty/name eq {n1}&$orderby=phenomnonTime desc. It requests all

the sensor readings that observe a specific phenomenon for a specific time range for a specific

area. In this case, our dimensions are ObservedProperty, FeatureOfInterest, and time. The data

can be chunked based on these dimensions and stored as batch views. It can be as simple as a file

structure for dividing the data. We need to define a folder structure for time and

FeatureOfInterest. Different indexing can be used for FeatureOfInterest such as QuadTree,

GeoHash, ZXY tile number, etc. In (Khalafbeigi, Huang, Liang, & Wang, 2014) we proposed

using Time tags as YYYYMMDDHH and the QuadTree index as the structure for the

dimensions. For the query mentioned earlier, we need to add the ObservedProperty id into the

structure. To respond to this frequent query with raw data, the tags can be hashed into file names

for faster access and the result can be read from the file.

In the above use case, instead of QuadTree we can use the ZXY tile number (Wikipedia,

2018b) if the query is usually made for rendering the data on a map. For this, we duplicate the

data for each zoom level in order to achieve a fast read when zooming in and out on the map.

ZXY is used to store tile files for fast rendering. Z is the directory and X is the subdirectory and

Y is the file name that keeps the tile data. In this format, each zoom has 2zoom2zoom tiles. In this

use case, we can use ZXY numbers as a way of indexing the data geospatially. Also, using this

ZXY information, tiles can be pregenerated for rendering. The following is the formula for

103

calculating X and Y for each Zoom level based on latitude and longitude information available

from the SensorThings API:

As mentioned, the other use case is when a summarized or aggregated value is needed from

our Observations or if some more complex analytics are required for Observations. In this case,

we do not keep all the data for answering queries and only the aggregated or analysis value is

needed. Flat structures can be used as a way of storing the information after aggregation or other

analytics. In the flat structure, each row has all the dimension information needed as well as the

summarize, aggregated, or computed value for the fact which is the Observation in the

SensorThings API. Basically, the flat structure is created by denormalizing the SensorThings

schema in order to achieve higher performance for the specific analytics. The flat structure can

be stored as a table in the serving layer and used for answering user queries. Although

normalization can help keep the data consistent as well as requires less storage, denormalized

data can be accessed faster. Since performance is the primary factor when it comes to batch

views, denormalized data is a better choice for batch views.

In summary, using the SensorThings API with Lambda architecture does not limit how to

define batch views. From the IoT point of view, since the SensorThings API has a

comprehensive data model that can fulfill most of the IoT use cases, different geospatial and

n = 2zoom

xtile = n  ((longitude + 180) / 360)

ytile = n  (1 - (log(tan(radian(latitude)) +

sec(radian(latitude)))) / π)) / 2

104

spatiotemporal analytics can be easily done on the data and the preprocessed data can be stored

in batch views. Also, in terms of batch processing, there is no limitation on the paradigm that we

use for preprocessing the data. MapReduce or any other parallel processing paradigm can be

easily adopted for preprocessing the data for increasing the performance of batch processing.

Serving Layer

Using Lambda architecture with the SensorThings API does not put any limitation on the

Serving layer. For batch views, we can use file structures if we only want to segmentize our raw

data for fast access, or we can denormalize and aggregate data in batch views and index them in

the serving layer based on the dimensions chosen for the analytics. For geospatial indexing in the

serving layer, we can use the applications that provide geospatial indexing. Also, we can use

different types of indexing at the preprocessing level, such as ZXY tile numbers that we used for

our case study implementation, so that we can use any tool for indexing in the serving layer.

As the Lambda architecture suggested, the serving layer should be optimized for random

reads due to its purpose and this should be taken into account when we use the Lambda

architecture together with the SensorThings API.

The rule of thumb here is using denormalization, as suggested by the Lambda architecture,

for aggregated batch views. Furthermore, the file name structures/hashes can be used for raw

data segmentation, and no constraint is introduced by SensorThings into the Lambda

architecture.

105

Speed Layer

When using Lambda architecture with SensorThings API, the simple SensorThings server

can be used for answering real-time queries whereas the batch and serving layer can be used for

answering questions about historical data. It is possible because of the rich RESTful API that

SensorThings API introduces. Moreover, the data can be added to the system in real-time using

the lightweight MQTT protocol. As a result, a service that is compliant to the SensorThings API

is ready for real-time processing for most use cases.

However, for more sophisticated analytics, it is recommended that the speed layer be

implemented for real-time data which results in real-time views. Basically, we move some of the

processing time from the run-time to the speed layer. When using SensorThings API with

Lambda architecture, depending on the analytics, the real-time view can have the same structure

of batch views or be in a rawer format. As an example, real-time views can be as simple as the

denormalized version of the SensorThings schema which reduces join on the run-time. In this

case there will be data duplication but the read time can be faster. When we use rawer structure

for our real-time views, they can be used for answering more user queries, whereas the more

aggregated views result in fewer questions that it can answer. However, there is less run-time

processing for more aggregated views and answering the questions based on them is faster. As

we can see, there is a trade-off here and a decision needs to be made based on the use cases for

the designed system.

106

We discussed batch views for highest result for each Datastream of a Thing in the previous

section. For this use case, we can use the same flat structure for our real-time views as for our

batch views. The real-time stream processing that is required in the speed layer is as easy as

comparing the new data result with the real-time view record and updating it if the new

Observation’s result is higher. Micro-batch processing can be very useful in this case as the

highest Observation result in the batch can be compared and applied to the real-time views.

Similar to the serving layer, merging the SensorThings API with Lambda architecture does

not introduce any constraints on Lambda architecture and all the suggestions and guidelines from

Lambda architecture can be used for the speed layer of our proposed architecture.

In summary, the SensorThings API enriches the Lambda architecture with its well-defined

schema and geospatial information which makes it suitable for IoT applications and analytics. As

the SensorThings data model is comprehensive and can be used for most IoT use cases, the

proposed architecture can also be used for most big data IoT use cases. In the next Section, we

discuss how using the SensorThings API with Lambda architecture provides an architecture

suitable for big data management for IoT.

Discussion

As we can see from previous chapters, big data management challenges can be divided into

three categories: variety, volume, and velocity. In this section, we discuss how using Lambda

architecture with SensorThings API addresses these challenges. Also, in the next chapter, we will

107

review the evidence that the proposed architecture is suitable for solving data management

challenges for IoT.

Big Data Volume

The Lambda architecture is a solution for big data volume and velocity. Basically, the

Lambda architecture batch and serving layers solve big data volume by using multiple tactics.

Firstly, the Lambda architecture has a master dataset for storing all the data. The master dataset

should be able to store large volumes of data but it is not necessarily optimized for random reads.

Furthermore, in the batch layer, the Lambda architecture uses batch processing in order to

prepare the data for answering user queries efficiently. The paradigms used here are

preprocessing and denormalization which both lead to higher performance for answering user

queries. Also, the Lambda architecture has the serving layer for storing and accessing the batch

views that are created during batch processing. The serving layer needs to be optimized for

random reads which leads to high performance for answering user queries.

It can be seen that by using the batch and serving layer together, Lambda architecture can

handle high volumes of data and in doing so, provide a solution for the big data volume

challenge. The key here is separation of concerns, as the master data set is optimized for writing

high volumes of data and the serving layer is optimized for reading. Also, the batch processing

moves some computation from runtime to processing time which increases read performance.

There is only one concern left – batch processing can be time consuming and can take as much

as a few hours. In this case, if we answer user queries from the serving layer, our response does

108

not contain the information from the data entering the system in those few hours. That is the

reason behind the introduction of the speed layer by the Lambda architecture.

Big Data Velocity

Lambda architecture can solve the big data velocity challenge with its speed layer. The

speed layer processes streams of real-time data and creates real-time views. These real-time

views together with batch views can answer user queries in a timely manner. Different tools and

techniques can be used in the speed layer for the system to be responsive to high volumes of

data. Incremental analytics and micro-batch processing are two of the techniques discussed in the

previous chapter. As a result, Lambda architecture can overcome the big data velocity challenge

with its speed layer.

In conclusion, Lambda architecture can overcome big data volume and velocity challenges.

Big Data Variety

 For handling the big data variety challenge, we propose using the SensorThings API. Using

a standard is one of the solutions for addressing the interoperability challenge or big data variety

for IoT. The OGC SensorThings API is a comprehensive and easy-to-use IoT standard published

in 2016. Since then, there have been multiple implementations and the standard is widely

adopted in the IoT world. We will discuss different implementations of the SensorThings API in

the next chapter. The fact that the standard has been widely adopted in the two years since it was

published shows the maturity of the standard and the community around it. Hence, the

SensorThings API is a perfect candidate for handling the big data variety issue.

109

Lambda architecture addresses big data volume and velocity, and SensorThings API

overcomes the big data variety challenge. We propose addressing big data 3 Vs challenges by

using the SensorThings API together with Lambda architecture. We see in this chapter that the

SensorThings API data model can match the Lambda architecture schema well. Also, using the

SensorThings API with the Lambda architecture does not introduce any limitations or constraints

to the Lambda architecture. As a result, we can see that there is no problem in merging the

Lambda architecture with the SensorThings API and the resulting architecture can address big

data volume, velocity, and variety challenges for IoT.

Explaining the details of merging the SensorThings API and Lambda architecture is much

easier with an example use case and we will discuss it in more detail in the next chapter when we

discuss our implementation for an air quality monitoring use case.

110

Results and Discussion

In this chapter, we are going to illustrate a use case that uses the SensorThings API with the

Lambda architecture – which is our proposed architecture for IoT. Firstly, we describe our case

study and how we gather our data. Then we discuss the different technologies used to implement

our architecture. In the third section, we compare the proposed architecture with the naïve

implementation of SensorThings. Finally, we will discuss how the proposed architecture

improves the IoT system implementation and how it addresses the big data 3 Vs challenges.

Air Quality Case Study

We use the data from the Location Aware Sensing System (LASS) originating from Taiwan

(LASS Community / Academia Sinica, n.d.). It is an open source and public environmental

sensor network system. LASS gathers sensor data from different sensors and publishes the

readings on MQTT. We subscribe to their MQTT and load the sensor readings onto our

SensorThings service in real-time. There are different sensors reporting their readings on LASS.

However, we only load the data from the Edimax sensors (EDIMAX Technology Co., 2017)

which created around 90% of LASS data, because Edimax sensors are reliable and have well-

defined API for easy loading.

The sensor readings from LASS have GPS information to use for FeatureOfInterest.

However, although their sensors are static or rarely moving, the sensors report slightly different

GPS values for every reading. When we load data from LASS into our service, we use Geohash

(Wikipedia, 2018a) level 11 to check if the sensor actually moved or if it is GPS error and then

111

load the data into our SensorThings API. As a result, if a sensor is moved less than 7.4

centimeters, our loader detects it as a static sensor and uses the old FeatureOfInterest for its

Observation.

We use the device’s Media Access Control (MAC) address to identify the Thing for the

device. We only load data from Edimax sensors as we know the Sensors in their devices and also

their ObservedProperties. We create the Thing and corresponding Datastreams when we see the

first reading from each MAC address. The other important factor for Edimax sensors is that we

know the unitOfMeasurement for its readings which makes the sensor reading meaningful. After

the first time that the entities are provisioned for each MAC address, the next readings will only

be checked for GPS data and if the sensor moved, before being added as Observations to their

corresponding Datastream.

We started gathering LASS data since September 2016 and currently we have around 4000

Things and more than 630 million Observations in our SensorThings so far. 22 phenomena have

been observed which led to 22 ObservedProperties and 22 Sensors. After cleaning the GPS data,

there are currently around 40,000 FeaturesOfInterest in our SensorThings API. The rate of

reading for sensors are different throughout the time, but currently it is around 30 hertz which

means there will be around 2.5 million Observations added to our SensorThings API every day.

We gather LASS data as a real-world dataset, load it into the SensorThings model and

implement and experiment on our proposed architecture.

112

Case Study Implementation

We used Apache Hadoop and Azure technologies for implementing a case study for our

proposed IoT architecture. SensorThings MQTT is the means of entering the data into our

implementation. For our implementation, we used Azure HDInsight clusters which provides

clusters using Hortonworks Hadoop distribution. HDInsight provides different cluster types for

Hadoop, Storm, etc. All of them use Hortonworks, but they are optimized and finetuned for

different use cases, i.e. the storm cluster is optimized for applications that use storm.

The first technology we used to stream the MQTT data throughout our system was Apache

Strom. We used an Azure HDInsight Cluster with two namenodes and five supervisors. The

cluster has a total of 36 processing cores as well as 200GB memory. We had a storm process for

each entity that subscribed to its SensorThings topic and streamed their data through the system.

Master Dataset

We used Apache Hive to implement our master dataset. Apache Hive is an open data

warehouse residing on top of the Hadoop Distributed File System (HDFS) and facilitates

querying the data using its SQL-like query language, HiveQL (Leverenz, 2018). Hive

automatically runs the queries using MapReduce which increases the performance for querying

large datasets.

We defined a table for each entity in hive as well as two tables with identical schema to the

Observation table for storing real-time Observations. As a result, the table we do the batch

processing on is different from the table we add real-time data to as there will be no conflicting

113

problems, and we know exactly which part of the data our batch views belong to. We used the

Azure HDInsight Hadoop cluster for our apache Hive with two namenodes and four workers.

The cluster has a total of 24 processing cores as well as 200GB memory.

When new data streams to the system through storm it is saved in the corresponding table in

our Hive master datastet. For our implementation, we used apache SQOOP to move our

historical data from PostgreSQL to Hive and then the storm process adds all the new data that

streams through the system.

Batch Layer

We used the Azure Data Factory to implement our batch processing. The Azure Data

Factory is a hybrid Extract-Transform-Load (ETL) service for creating, scheduling, and

managing data integration in a scalable manner (Microsoft Azure, 2018a). It is a serverless

technology which means that Microsoft Azure automatically manages the backend for the system

in the cloud. It supports different connectors and data flow. We used a copy data pipeline in the

Azure Data Factory.

The pipeline starts from Hive, creates a summarized view from raw data using the Hive

query, and stores it as batch views. We used the Azure SQL Data Warehouse (DW) for storing

our batch views as the serving layer. Azure SQL DW is a cloud-based data warehouse that

separates computing from storage. As a result each component can scale independently

(Microsoft Azure, 2018b). Azure SQL DW supports columnar caching which is caching

114

frequently used columns and row groups. As it has distributed cloud infrastructure, the system

can scale for large datasets very well.

Batch View Structure

For our batch view we chose time, FeatureOfInterest, and ObservedProperty as our

dimensions and to keep count of and calculate the sum of the Observation results as facts. We

use a flat table structure for our purpose. Since the geospatial aspect of our IoT data is important

to us, we used the ZXY tile number for aggregating Observations. And we keep the aggregation

for zoom zero to 12. This means that there will be redundancy in our batch views which means

that we need more storage. However, this structure requires less run-time computation for

answering user queries and leads to faster response.

Together with ZXY we also keep the centroid for latitude and longitude that is the average

of latitude and longitude of all FeatureOfInterest in that tile. We can use these centroids for some

applications that work better with coordinates and ZXY for other applications.

For the time dimension, we keep the data down to hours, and we aggregate from minutes. In

our batch views, we keep the date and the hour as two separate fields so that grouping will be

faster for daily run-time aggregation.

We always keep two timelines of batch views, one which is processing now, and one which

is ready to use for queries. Once one set is ready to use the other starts processing again. We also

have two timelines for our real-time views as described in the previous chapter. We will go over

the real-time view timelines in the Speed Layer section.

115

Batch Processing

As mentioned earlier, we used the Azure Data Factory for our batch processing. Our batch

processing has four parts:

1. We copy all the data from Hive real-time Observation table to the main Observation

table to get the data ready for processing.

2. We delete all the Observations before this time point from one of our two real-time view

timelines. (We will cover more about real-time timelines later)

3. We delete the outdated batch views from our serving layer.

4. We keep track of the batch and real-time views that should be used during the time when

the batch processing is happening in SQL DW.

5. We run a hive query grouping the data based on our dimensions and create a view.

6. We save the batch view in Azure SQL DW.

7. We repeat step 3 and 4 for as many zoom levels as desired. We store batch views up to

zoom 12.

We process different zoom levels sequentially, rather than in parallel, since our cluster is

small in terms of memory and cannot handle them all together. For more powerful clusters it can

be done in parallel. However, as we saw in the previous chapter, for the Lambda architecture

optimizing the batch process is not critical as the system will not be held back for that

processing.

The Query that is run on level 3 for zoom zero is as follows:

116

The Hive queries will be run using MapReduce automatically. Apache TEZ is used for

scheduling and running MapReduce. Apache TEZ is an extensible framework for data

processing in Hadoop that improves the MapReduce paradigm by improving its speed and

scalability (Hortonworks, 2018).

select count(*) as total_count, sum(result) as total_sum,

 data_stream.observed_property as observed_property_id,

 observed_property.description as observed_property_name,

 to_date(observation.phenomenon_time_start) as aggregation_date,

 HOUR(observation.phenomenon_time_start) as aggregation_hour,

 0 as zoom,

 floor((get_json_object(regexp_replace(feature,\"\\\\|\",\",\"),

 '$.coordinates\\[0]')+180)/360*power(2,0)) as x,

 floor((1 - ln(tan(radians(get_json_object(regexp_replace(

 feature,\"\\\\|\",\",\"), '$.coordinates\\[1]'))) +

 1 / cos(radians(get_json_object(regexp_replace(

 feature,\"\\\\|\",\",\"), '$.coordinates\\[1]')))) / pi())

 / 2 * power(2,0)) as y,

 round(avg(get_json_object(regexp_replace(feature,\"\\\\|\",\",\"),

 '$.coordinates\\[1]')),5) as lat,

 round(avg(get_json_object(regexp_replace(feature,\"\\\\|\",\",\"),

 '$.coordinates\\[0]')),5) as lon

from sensorthings.observation as observation join

 sensorthings.feature_of_interest as feature_of_interest

 on (observation.feature_of_interest=feature_of_interest.id)

 join sensorthings.data_stream as data_stream

 on (observation.data_stream=data_stream.datastream_id)

 join sensorthings.observed_property as observed_property

 on (observed_property.obs_property_id=data_stream.observed_property)

group by data_stream.observed_property, observed_property.description,

 to_date(observation.phenomenon_time_start),

 HOUR(observation.phenomenon_time_start),

 floor((get_json_object(regexp_replace(feature,\"\\\\|\",\",\"),

 '$.coordinates\\[0]')+180)/360*power(2,0)),

 floor((1 - ln(tan(radians(get_json_object(regexp_replace(

 feature,\"\\\\|\",\",\"), '$.coordinates\\[1]'))) +

 1 / cos(radians(get_json_object(regexp_replace(

 feature,\"\\\\|\",\",\"), '$.coordinates\\[1]')))) / pi())

 / 2 * power(2,0));

117

Serving Layer

We used the Azure SQL Data Warehouse (DW) for storing and indexing our batch views in

the serving layer which is a cloud-based data warehouse. The Azure SQL DW separates

computing from storage. As a result, computation can be improved in terms of scalability

independent from storage. It uses Massive Parallel Processing (MPP) for high performance and

scalability. In its cloud-based architecture, there is a control node that prepares the query for

parallel processing and then compute nodes run the query in parallel. Also, Azure SQL DW uses

adaptive caching for fast response to frequent queries.

Azure uses a metric called performance level which defines how powerful the cluster is. For

our implementation, we used the basic level with the least performance level provided, but in the

experiment section we can see that our architecture still outperforms other solutions by order of

magnitude.

Speed Layer

For implementing the speed layer of our architecture, we used Azure Eventhub and Azure

Stream Analytics and our real-time views are stored in Azure SQL DW. Since we used the Azure

platform for implementing a case study of our architecture, we chose to route our messages to

Eventhub to create real-time views seamlessly in this platform.

When the new data streams into the system through storm it will be sent to Eventhub.

Eventhub queues the messages automatically as required and works seamlessly with Azure

Stream Analytics to make sure that all the data goes through the stream analytics. The stream

118

analytics job is to analyze the datastream coming into the system in small batches and storing the

result in the SQL DW.

Real-Time View Structure

For our real-time views, we decided to keep our raw data and only add some information to

it. Since the data in our real-time view is only there for a few hours and not very big, the

computation for the dimension we defined can be done relatively fast in real-time. However, we

added the ZXY tile number as well as separate date and hour columns to the raw data to

minimize the real-time computation. As we add the ZXY tile number to our data, each raw data

is duplicated to 12 datasets for our 12 zoom levels.

Similar to batch views, we keep two timelines of real-time views. One of them is used for

answering user queries and the other is used when the current batch processing is finished. We

keep two timelines as we want our batch and real-time views to be independent and to avoid any

overlap in their data. In order to explain the rationale behind this decision, let’s name our

timeline view batch1, batch2, real-time1, and real-time2. As we can see in Figure 8, at the

starting point of time, t1, we don’t have any batch views and batch processing is started to create

batch1. At this time real-time1 and real-time2 are identical. At time t2, batch1 is ready and

contains all the info about the data before t1 whilst real-time1 has all the data from after t1. As a

result, user queries can be answered using batch1 and real-time1 quickly and without any

overlapping of data.

119

Figure 8 Timeline for Batch and Real-Time Views

At time t2, we start reprocessing our batch views. At this time, we use batch2 to store our

result, as batch1 is in use for answering user queries. We delete all the data before time t2 from

real-time2, so that after our processing is finished, batch2 and real-time2 won’t have any overlap.

We cannot do this delete for real-time1 since it is in use for answering user queries and batch1

does not have the info for the data between t1 and t2. When this round of batch processing is

finished, batch2 and real-time2 are ready for answering user queries and we repeat the process

for batch1 and real-time1 again. Using these two timelines for batch and real-time views helps in

keeping batch processing and query answering smooth and quick and without any complications.

Figure 9 shows all the technologies we used for the implementation of our proposed

architecture – the Lambda architecture with SensorThings API. Also, Figure 10 shows a

screenshot of all the tools and technologies that we used from Azure to implement our proposed

architecture.

120

Figure 9 Case Study Implementation of Lambda Architecture with SensorThings API

Figure 10 Screenshot of All the Azure Services We Used for Implementing Our Proposed

Architecture

121

Any type of application tool can be used to query our batch and real-time views in SQL DW

and port the results to the end user. Visualization is out of the scope of this dissertation.

However, as a show case we used Power BI to show a possible application as shown in Figure 11

and Figure 12.

Figure 11 Power BI Screenshot Querying the Data from Our Proposed Architecture,

Showing the Average Temperature for Dates Between 29/09/2017-26/04/2018

122

Figure 12 Power BI Screenshot Querying the Data from Our Proposed Architecture,

Showing the Average Dust Level (PM2.5) for Dates Between 30/01/2018-18/06/2018 for the

Select Area

In the following section, we will explain the experiments done on our implemented case

study and discuss the results.

Case Study Experiments

In this section, we discuss the experiments for our implemented case study. For this

dissertation, we proposed an architecture suitable for IoT data management and we discuss how

it can overcome the big data 3 Vs challenges. In this section, we illustrate how our architecture

outperforms other naïve implementations for IoT. In the first subsection, we discuss how our

123

proposed architecture can overcome the big data variety challenge. Then, we divide our

experiments into two categories and each of them provide evidence that our architecture can

overcome one of the big data Volume or Velocity challenges. In our final experiment, we

illustrate how the proposed architecture performs compared to naïve implementations.

Big Data Variety

As explained before, big data variety refers to different types and structures of data that a big

data system is required to deal with. It is also referred to as an interoperability issue for the

Internet of Things. The interoperability issue in IoT rises from proprietary IoT systems that result

in vertical standalone silos. Horizontally designed IoT systems with well-defined open standard

APIs are required to address this interoperability issue. The OGC SensorThings API is a standard

that can be used to overcome the interoperability issue. As we described in detail in the

“SensorThings API, Details and Design Decisions” chapter, it is a geospatial standard published

in 2016, and since then there have been multiple organizations implementing the standard and it

is widely adopted by the IoT community. The number of implementations and adoptions show

the maturity of the standard and that the SensorThings API is a good fit for solving the

interoperability issue for IoT. In the following subsection, we will list different implementations

of SensorThings API as well as its adoption.

In order to complete the standard life cycle, a test suite is developed for checking the

compliance of different implementations with SensorThings API and ensure the interoperability

124

between them. I developed a test suite which was published together with the standard in 2016. It

is available at the OGC compliance testing website1 7.

Implementations

After the SensorThings API was published in 2016, multiple organizations started working

on implementing the standard. My colleagues and I from the GeoSensorWeb lab in the

University of Calgary implemented the very first prototype of the standard as a proof of concept

whilst the standard was going through review and acceptance.

SensorUp Inc. implemented the first compliant implementation of SensorThings API using

Java programming language and PostgreSQL DBMS. SensorUp also provides multiple

resources, from webinar to documentation to client libraries, to facilitate the use of the

SensorThings API.

In addition, Fraunhofer implemented an open source version of SensorThings API that is

available1 8 for anyone to fork. This implementation also uses PostgreSQL DBMS for persisting

the data. In order to make it easy to use, they provide a Docker container to make it easy to

install and run.

1 7 http://cite.opengeospatial.org/teamengine/
1 8 https://github.com/FraunhoferIOSB/FROST-Server

125

Mozilla also spent some time implementing the SensorThings API using Node.js1 9. The

other organization that worked on implementing it is Geodan Inc and they implemented another

open source implementation of SensorThings API named GOST. GOST is written using Go

language and PostgreSQL. CGI is also developing a SensorThings API named Kinota2 0. Kinota

is also an open source implementation and aims to separate different concerns in their

implementation (CGI Group Inc, 2017). As an example, they try to modularize persistence level

in order to work with different RDBMS and NoSQL databases. Currently they are using Apache

Cassandra as their persistence level. There is also an implementation of SensorThings API from

a Bosch group named Gossamer2 1.

A quick search on Github2 2 shows that there are currently 69 implementations so far for the

SensorThings API, either implementing the core or a client for accessing the data. The number of

implementations of the standard and the work around it two years from its publication shows it is

well-received in the IoT community and is a good solution for solving the IoT interoperability

issue.

1 9 https://github.com/mozilla-sensorweb/sensorthings
2 0 https://github.com/kinota/kinota-bigdata
2 1 https://github.com/zubairhamed/gossamer
2 2 https://github.com/

126

Standard Adoption

Since the SensorThings API was published in 2016, it was widely adopted for multiple IoT

projects. The Department of Homeland Security (DHS) of United States adopted the

SensorThings API for their Next Generation First Responders project (Department of Homeland

Security, 2018). In addition, INSPIRE, which is Infrastructure for Spatial Information in the

European Community, was extended to support the SensorThings API (Kotsev et al., 2018).

Eclipse also has a project called Whiskers2 3, providing clients with lightweight gateways for the

SensorThings API. IoT Systems adopted the SensorThings API as well 2 4 and they believe that it

is the most robust API available for IoT. Geoconnections Canada is another organization that

invested in the SensorThings API for the air quality smart city project around Canada2 5. The

Smart Emission Project in Nijmegen was another project that adopted the SensorThings API2 6 as

a IoT platform.

Horizon 20202 7 is a European Research and Innovation program and Internet of Things is

one of their focus topics for the ICT section. There was some effort to integrate the SensorThings

API, one of which is INSPIRE (which we talked about). The City of Hamburg is one of the cities

2 3 https://projects.eclipse.org/projects/iot.whiskers
2 4 https://iotsyst.com/sensorthings/
2 5 http://smartair.sensorup.com/
2 6 http://data.smartemission.nl/
2 7 https://ec.europa.eu/programmes/horizon2020/en/what-horizon-2020

127

that chose the SensorThings API as a IoT standard as part of the Horizion 2020 program

(Meiling, Purnomo, Shiraishi, Fischer, & Schmidt, 2018). Furthermore, cities of Hamburg,

Nantes, and Helsinki, as part of project mySMARTLife 2 8, adopted the SensorThings API

(mySMARTLIfe Consortium Partners, 2017). The mySMARTLife project focuses on making

cities more environmentally friendly by reducing CO2 emissions and increasing the use of

renewable energy sources. For this project, the SensorThings API was chosen for the monitoring

infrastructure.

What we mentioned above in terms of implementation and adoption of the SensorThings

API are all of the work published and we believe that there is even more work in progress around

the SensorThings API. The number of implementations and adoptions of the SensorThings API

in only two years since it was published show the maturity of the standard and make it a good

solution for solving interoperability issues for IoT. As a result, we chose to use the SensorThings

API in our proposed architecture for addressing the interoperability challenge also known as, big

data variety.

Big Data Volume

Big data volume challenge refers to the large size of data that needs to be maintained in the

system. We proposed that by using the Lambda architecture together with SensorThings API, we

2 8 https://www.mysmartlife.eu/mysmartlife/

128

can overcome the big data volume challenge. The techniques used here are first, preprocessing

and denormalization, and second, separation of concerns for read and write as well as indexing.

The dilemma here is that indexing can make read faster, whilst adding overheads to write. Thus,

instead of having a system which is both optimized for read and write and requires maintaining a

large dataset, we separate the concerns into different parts of the system and the batch layer is

designed for quick write whilst the serving layer uses indexes to be optimized for quick read.

To support our claim about supporting big data volume, we compare the query response

time of our implementation with naïve solutions. The first system that we compared is a system

that implemented the SensorThings API with the PostgreSQL database. The reason we chose

PostgreSQL for our experiment is because of the geospatial nature of the SensorThings API,

PostgreSQL is one of the best relational DBMS that can be used and this is proven by the

SensorThings implementations that are available.

The second system we compared our architecture with is a SensorThings service that uses

the NoSQL database as its data store and we chose Hive which is the tool that we used for

implementing our master dataset. NoSQL databases in theory manages large datasets better than

RDBMS. The goal here is to show how using the NoSQL database in a well-designed

architecture can result in much better performance. In other words, it is not the technology and

tools that guarantee the performance, but the architecture and design that can help the system

survive large datasets.

129

We used the real dataset that we gathered from LASS with around 40 thousand

FeaturesOfInterest and more than 630 million Observations. In order to show how the system

works when the data size gets bigger, we chunked our Observation data from 100 to 500 million

Observations and repeated our experiment to find the trend.

The query that we tested the performance for is as follows:

This query finds the average dust level for the Taiwan area on August 8th, 2018. We need

that information for each tile in zoom level 8. The above query is the query that needs to be sent

to our batch views to get the response back. However, using PostgreSQL or Hive with raw data

requires a more sophisticated query. The following is the same query for PostgreSQL:

select sum(total_count) as count,

 sum(cast(total_sum as float)) as sum,

 sum(cast(total_sum as float))/sum(total_count) as average,

 x,y

from [lass_batch_views].[lass_batch_view_table_2]

where observed_property_id=29014 and

 aggregation_date='2018-08-08' and

 zoom=8 and

 x>=213 and x<=214 and

 y>=109 and y<=111

group by x,y;

Th

130

Also, the query for Hive is as follows:

select sum(cast(result as double precision)),

 count(*),sum(cast(result as double precision))/count(*),

 floor(((cast((feature::json)->'coordinates'->>0 as double precision))

 +180)/360*power(2,8)),

 floor((1 - ln(tan(radians(cast((feature::json)

 ->'coordinates'->>1 as double precision))) +

 1 / cos(radians(cast((feature::json)->'coordinates'->>1

 as double precision)))) / pi()) / 2 * power(2,8))

from observation as observation join feature_of_interest as

feature_of_interest

 on (observation.feature_of_interest=feature_of_interest.id)

 join data_stream as data_stream

 on (observation.data_stream=data_stream.datastream_id)

 join observed_property as observed_property

 on (observed_property.obs_property_id=data_stream.observed_property)

where data_stream.observed_property = 29014 and

 observation.phenomenon_time_start>='2018-08-08T00:00:00.000' and

 observation.phenomenon_time_start<'2018-08-09T00:00:00.000' and

 floor(((cast((feature::json)->'coordinates'->>0 as double precision))+180)

 /360*power(2,8))>=213 and

 floor(((cast((feature::json)->'coordinates'->>0 as double precision))+180)

 /360*power(2,8))<=214 and

 floor((1 - ln(tan(radians(cast((feature::json)->'coordinates'->>1

 as double precision))) + 1 / cos(radians(cast((feature::json)

 ->'coordinates'->>1 as double precision)))) / pi()) / 2 *

power(2,8))>=109 and

 floor((1 - ln(tan(radians(cast((feature::json)->'coordinates'->>1

 as double precision))) + 1 / cos(radians(cast((feature::json)

 ->'coordinates'->>1 as double precision)))) / pi()) / 2 *

power(2,8))<=111

group by

 floor(((cast((feature::json)->'coordinates'->>0 as double precision))+180)

 /360*power(2,8)),

 floor((1 - ln(tan(radians(cast((feature::json)->'coordinates'->>1

 as double precision))) + 1 / cos(radians(cast((feature::json)

 ->'coordinates'->>1 as double precision)))) / pi()) / 2 * power(2,8));

131

We measure the response time for all three systems. Figure 13 shows the performance of

running the query on batch views from Azure SQL DW. The performance is shown in

select sum(result) as sum,count(*) as count,

 sum(result)/count(*) as average,

 floor((get_json_object(regexp_replace(feature,"\\|",","),

 '$.coordinates\[0]')+180)/360*power(2,8)) as x,

 floor((1 - ln(tan(radians(get_json_object(

 regexp_replace(feature,"\\|",","), '$.coordinates\[1]'))) +

 1 / cos(radians(get_json_object(regexp_replace(feature,"\\|",","),

 '$.coordinates\[1]')))) / pi()) / 2 * power(2,8)) as y

from sensorthings.observation as observation

 join sensorthings.feature_of_interest as feature_of_interest

 on (observation.feature_of_interest=feature_of_interest.id)

 join sensorthings.data_stream as data_stream

 on (observation.data_stream=data_stream.datastream_id)

 join sensorthings.observed_property as observed_property

 on (observed_property.obs_property_id=data_stream.observed_property)

where data_stream.observed_property = 29014 and

 to_date(observation.phenomenon_time_start)='2018-08-08' and

 floor((get_json_object(regexp_replace(feature,"\\|",","),

 '$.coordinates\[0]')+180)/360*power(2,8))>=213 and

 floor((get_json_object(regexp_replace(feature,"\\|",","),

 '$.coordinates\[0]')+180)/360*power(2,8))<=214 and

 floor((1 - ln(tan(radians(get_json_object(regexp_replace(

 feature,"\\|",","), '$.coordinates\[1]'))) + 1 / cos(radians(

 get_json_object(regexp_replace(feature,"\\|",","),

 '$.coordinates\[1]')))) / pi()) /

 2 * power(2,8))>=109 and

 floor((1 - ln(tan(radians(get_json_object(regexp_replace(

 feature,"\\|",","),'$.coordinates\[1]'))) + 1 / cos(radians(

 get_json_object(regexp_replace(feature,"\\|",","),

 '$.coordinates\[1]')))) / pi()) /

 2 * power(2,8))<=111

group by

 floor((get_json_object(regexp_replace(feature,"\\|",","),

 '$.coordinates\[0]')+180)/360*power(2,8)),

 floor((1 - ln(tan(radians(get_json_object(regexp_replace(

 feature,"\\|",","),'$.coordinates\[1]'))) + 1 / cos(radians(

 get_json_object(regexp_replace(feature,"\\|",","),

 '$.coordinates\[1]')))) / pi()) /

 2 * power(2,8));

132

milliseconds and the X axis is the number of Observations that are processed in our batch views.

As we can see the trend is a constant value for the response time and even with increasing the

number of Observations in the system we still achieve a good response time of less than a second

from our batch views.

Figure 13 Query Performance on Batch Views in Milliseconds Based on Number of

Observations

Figure 14 illustrates the performance of our query running on Hive raw data. As we can see

the response time grows linearly with the number of Observations and it is in the order of a few

hundred seconds compared with our batch views that respond in milliseconds.

Also, Figure 15 shows the query response time for PostgreSQL. The PostgreSQLtable in the

test has multiple indexes on time and the foreign keys. It also has some geospatial index on

FeatureOfInterest. However, since we are interested in ZXY, it is not of much help. What we

133

notice is that PostgreSQL performs better than Hive because of the indexes. However, it shows

the polynomial trend and we can predict that when the number of Observations are almost 950

million, Hive will start outperforming PostgreSQL. We believe that the reason we don’t see the

linear trend here is that for smaller datasets indexes can help the system respond faster. However,

as the data size grows the size of the index tree also grows. When the index size is big enough

that it cannot fit in the memory it cannot help improve the performance anymore. However, this

is not the focus of our experiment. Our experiment shows that our batch views query

outperforms PostgreSQL as well.

Finally, Figure 16 shows all the three experiments together and we can see that our batch

views architecture by far outperforms both PostgreSQL and Hive. We can say that our

architecture improves how the system performs as the data size grows. In other words, the

proposed architecture outperforms naïve implementations and it can address the big data volume

challenge.

134

Figure 14 Query Performance on Hive Raw Data in Seconds Based on Number of

Observations

Figure 15 Query Performance on PostgreSQL Raw Data in Seconds Based on Number of

Observations

135

Figure 16 Query Performance in Seconds Based on Number of Observations

Big Data Velocity

Big data velocity focuses on real-time data and refers to streams of data coming to the

system at high speed and is one of the challenges in big data. When using the Lambda

architecture with SensorThings API, the speed layer is in charge for handling big data velocity.

The SensorThings API uses MQTT protocol which is a lightweight publish-subscribe protocol

for IoT. For our implementation, we used Apache Storm and also Azure products that are well-

known for stream processing. In addition, Apache Storm is the tool that the Lambda architecture

suggests for using in the speed layer.

In order to support our claim, we did two experiments. Firstly, we tested the efficiency of

our real-time views. For this experiment, we want to show that our proposed architecture

136

outperforms naïve implementation in terms of answering queries about real-time data that

streams to the system. The second experiment tests the latency of the speed layer, which means

how long it takes for data to pass through the speed layer in our architecture and reach the real-

time views.

For the first experiment, we sent a query to our real-time views as well as to PostgreSQL

(which could be an alternative implementation). Basically, as an alternative to our

implementation, we keep the batch layer and use a naïve SensorThings implementation with

PostgreSQL for speed layer real-time data and only clean its data after each batch processing.

We did this test based on the hours of data available in our real-time views. The size of data in

our real-time views depends on how long the batch processing takes to complete, because after

each batch processing the real-time views will be cleared. Firstly, we did an experiment to show

the performance of our batch processing. We shrank our Observation table from 100 to 500

million data and carried out the experiment. Figure 17 shows the result of this experiment. As we

can see, it shows a linear trend for batch processing time based on the number of Observations.

For our current real system, the batch processing takes 6 hours and 30 minutes.

What we wanted to show in this experiment was that the size of real-time views is relatively

small especially when compared to the size of the data as a whole, and it is as big as few hours of

data. However, what we show in Figure 17 is not true for all systems. The reason is that first of

all, the performance can be improved easily by adding more nodes to the cluster we have for the

batch layer. Moreover, with more resources, we can parallelize the computation for each zoom

137

level which will reduce the processing time by order of magnitude. All we wanted to show was

that real-time views will be as small as a few hours of data or a few days at worst.

Figure 17 Batch Processing Time in Minutes Based on the Number of Observations

For our experiment, we test the performance of real-time views based on the data for 1, 3, 6,

12, 18, 24, and 48 hours of data. In order to carry out the experiment for PostgreSQL, we

chunked the data in our Observation table for 1, 3, 6, 12, 18, 24, and 48 hours and we run the

query on them.

The following is the query that we tested on our real-time views:

select count(*) as count,

 sum(cast(result as float)) as sum,

 sum(cast(result as float))/count(*) as average,

 x,y

from [lass_real_time_views].[lass_real_time_view_table_2]

where observed_property_id=29014 and

 aggregation_date='2018-08-08' and

 zoom=8 and

 x>=213 and x<=214 and

 y>=109 and y<=111

group by x,y;

138

Also, the query we sent to our PostgreSQL is as follows. It is similar to the query in the previous

experiment, but with different data. Also, the constraint on time is not required when the data in

the table is equal to, or less than, 24 hours.

select sum(cast(result as double precision)),

 count(*),sum(cast(result as double precision))/count(*),

 floor(((cast((feature::json)->'coordinates'->>0 as double precision))

 +180)/360*power(2,8)),

 floor((1 - ln(tan(radians(cast((feature::json)

 ->'coordinates'->>1 as double precision))) +

 1 / cos(radians(cast((feature::json)->'coordinates'->>1

 as double precision)))) / pi()) / 2 * power(2,8))

from observation as observation join feature_of_interest as

feature_of_interest

 on (observation.feature_of_interest=feature_of_interest.id)

 join data_stream as data_stream

 on (observation.data_stream=data_stream.datastream_id)

 join observed_property as observed_property

 on (observed_property.obs_property_id=data_stream.observed_property)

where data_stream.observed_property = 29014 and

 observation.phenomenon_time_start>='2018-08-08T00:00:00.000' and

 observation.phenomenon_time_start<'2018-08-09T00:00:00.000' and

 floor(((cast((feature::json)->'coordinates'->>0 as double precision))+180)

 /360*power(2,8))>=213 and

 floor(((cast((feature::json)->'coordinates'->>0 as double precision))+180)

 /360*power(2,8))<=214 and

 floor((1 - ln(tan(radians(cast((feature::json)->'coordinates'->>1

 as double precision))) + 1 / cos(radians(cast((feature::json)

 ->'coordinates'->>1 as double precision)))) / pi()) / 2 *

power(2,8))>=109 and

 floor((1 - ln(tan(radians(cast((feature::json)->'coordinates'->>1

 as double precision))) + 1 / cos(radians(cast((feature::json)

 ->'coordinates'->>1 as double precision)))) / pi()) / 2 *

power(2,8))<=111

group by

 floor(((cast((feature::json)->'coordinates'->>0 as double precision))+180)

 /360*power(2,8)),

 floor((1 - ln(tan(radians(cast((feature::json)->'coordinates'->>1

 as double precision))) + 1 / cos(radians(cast((feature::json)

 ->'coordinates'->>1 as double precision)))) / pi()) / 2 * power(2,8));

139

Figure 18 Real-Time Query Performance on PostgreSQL Raw Data in Seconds Based on

Hours of Available Observations

Figure 19 Real-Time Query Performance on Real-Time Views in Milliseconds Based on

Hours of Available Observations

140

Figure 18 and Figure 19 show the performance of our query on PostgreSQL and real-time

views respectively. We can see that the difference between the two measurements is not as high

as for batch queries because the size of the data is smaller and there is not much preprocessing

involved. However, our real-time views still outperform PostgreSQL for two main reasons.

Firstly, because we precalculated our ZXY tiles in our real-time views while in PostgreSQL it

needs to be calculated on the fly. Secondly, the tool we used for our speed layer, SQL DW, is

optimized and finetuned for read, whereas PostgreSQL is optimized for both read and write.

Based on the use case and the resources available for batch processing (affects how long the

batch processing would take), designers can make the decision to use the SensorThings service

itself for the real-time views if the latency is acceptable for their system.

The second experiment we did was testing the latency of our speed layer with different rates

of streaming data. The current rate of the system for LASS is around 30 Hertz. We tested for 10

to 1000 Hertz of input data. We generated MQTT Observations using Apache Jmeter and

calculated how long it took for the data to go through the speed layer.

Figure 20 illustrates the results of our experiment. What it shows is that increasing the rate

of data does not add much to the latency, merely around 0.5% increase when 1000 Hertz is

compared to 1 Hertz. This means that the data will not queue up and will not create huge

latencies. The latency is roughly five seconds. As such, we can say that our system is working in

near real-time and contains all the data up to five seconds ago. The five seconds can definitely be

reduced as we used basic capacity for both Azure Eventhub and Azure Stream analytics. Thus,

141

we show that the architecture can handle big data velocity and still works fine even with a high

rate of data and the high rate does not lead to queuing of data and added latency.

Figure 20 Latency of Adding Data to Real-Time Views in Milliseconds Base of Stream Rate

in Hertz

Experiment with Query on All Data

As the final experiment, we tested the performance of our implementation with a query that

requires the scanning of all the data. We did this experiment with our batch and real-time views

as well as on PostgreSQL and Hive as alternative implementations.

142

The query we submitted to implementation was as follows:

Here is the same query that was submitted to Hive:

select top(5) sum(count) as count, sum(sum) as sum,

 sum(sum)/sum(count) as average,aggregation_date,

 x , y

from

 ((select top(5) count(*) as count,

 sum(cast(result as float)) as sum,

 sum(cast(result as float))/count(*) as average,

 result_date as aggregation_date, x , y

 from [lass_real_time_views].[lass_real_time_view_table]

 where observed_property_id=29014 and zoom=8

 group by result_date, x, y

 order by average desc)

union

 (select top(5) sum(total_count) as count,

 sum(cast(total_sum as float)) as sum,

 sum(cast(total_sum as float))/sum(total_count) as average,

 aggregation_date, x , y

 from [lass_batch_views].[lass_batch_view_table_2]

 where observed_property_id=29014 and zoom=8

 group by aggregation_date, x, y

 order by average desc)) as tmp

group by aggregation_date, x , y

order by average desc;

143

Also, this is the query that we submitted to PostgreSQL:

select count(*) as total_count,sum(result) as total_sum,

 sum(result)/count(*) as average,

 data_stream.observed_property as observed_property_id,

 observed_property.name as observed_property_name,

 8 as zoom,

 floor((get_json_object(regexp_replace(feature,"\\|",","),

 '$.coordinates\[0]')+180)/360*power(2,8)) as x,

 floor((1 - ln(tan(radians(get_json_object(regexp_replace(

 feature,"\\|",","), '$.coordinates\[1]'))) + 1 / cos(radians(

 get_json_object(regexp_replace(feature,"\\|",","),

 '$.coordinates\[1]')))) / pi()) /

 2 * power(2,8)) as y

from sensorthings.observation as observation

 join sensorthings.feature_of_interest as feature_of_interest

 on (observation.feature_of_interest=feature_of_interest.id)

 join sensorthings.data_stream as data_stream

 on (observation.data_stream=data_stream.datastream_id)

 join sensorthings.observed_property as observed_property

 on

(observed_property.obs_property_id=data_stream.observed_property)

where observed_property.obs_property_id=29014

group by data_stream.observed_property, observed_property.name,

 to_date(observation.phenomenon_time_start),

 HOUR(observation.phenomenon_time_start),

 floor((get_json_object(regexp_replace(feature,"\\|",","),

 '$.coordinates\[0]')+180)/360*power(2,8)),

 floor((1 - ln(tan(radians(get_json_object(regexp_replace(

 feature,"\\|",","), '$.coordinates\[1]'))) + 1 / cos(radians(

 get_json_object(regexp_replace(feature,"\\|",","),

 '$.coordinates\[1]')))) / pi()) / 2 * power(2,8))

order by average desc

limit 5;

144

These queries try to find the five days and regions that are most polluted (have highest

average dust level throughout the day). As a result, it needs to scan all the data and calculate the

average and then find the highest five.

Figure 21 shows the performance of our proposed architecture based on the number of

Observations. As we can see, there is a constant trend when we increase the number of

Observations. We see that the response time is around 1.5 seconds which is more than the time

taken for previous queries and the reason is that for this query scanning all the data is necessary.

select sum(cast(result as double precision)),count(*),

 sum(cast(result as double precision))/count(*) as average,

 floor(((cast((feature::json)->'coordinates'->>0

 as double precision))+180)/360*power(2,8)) as x,

 floor((1 - ln(tan(radians(cast((feature::json)->

 'coordinates'->>1 as double precision))) + 1 / cos(

 radians(cast((feature::json)->'coordinates'->>1

 as double precision)))) / pi()) / 2 * power(2,8)) as y,

 date(observation.phenomenon_time_start)

from observation as observation

 join feature_of_interest as feature_of_interest

 on (observation.feature_of_interest=feature_of_interest.id)

 join data_stream as data_stream

 on (observation.data_stream=data_stream.datastream_id)

 join observed_property as observed_property

 on

(observed_property.obs_property_id=data_stream.observed_property)

where data_stream.observed_property=29014

group by

 floor(((cast((feature::json)->'coordinates'->>0

 as double precision))+180)/360*power(2,8)),

 floor((1 - ln(tan(radians(cast((feature::json)->

 'coordinates'->>1 as double precision))) +

 1 / cos(radians(cast((feature::json)->'coordinates'->>1

 as double precision)))) / pi()) / 2 * power(2,8)),

 date(observation.phenomenon_time_start)

order by average desc

limit 5;

145

Figure 21 Query Performance in Milliseconds on All Data Using Batch and Real-Time

Views Based on Number of Observations

Figure 22 shows the performance of the query on Hive. It shows a linear trend with the

increase in the number of Observations, and the response time is a few hundred seconds – which

is much more than the 1.5 seconds for our architecture implementation. We see here that our

implementation not only performs much better than Hive, but also that its performance does not

change with the increase of data.

146

Figure 22 Query Performance in Seconds on All Data Using Hive Based on Number of

Observations

Figure 23 Query Performance in Seconds on All Data Using PostgreSQL Based on Number

of Observations

147

The performance of the query executed by PostgreSQL can be seen in Figure 23. Again, we

see a linear trend in performance based on the number of Observations. Also, we can observe

that the performance decreases compared to previous queries which results from the need for

scanning all the data and not using the indexes.

Figure 24 Query Performance in Seconds on All Data Using Our Proposed Architecture,

PostgreSQL, and Hive Based on Number of Observations

Figure 24 illustrates the query performance of our proposed architecture compared to Hive

and PostgreSQL. As we can see, our architecture outperforms Hive and PostgreSQL

significantly. Also, we can see that Hive performs better than PostgreSQL which is expected as

Hive is using MapReduce and is faster when whole data scans are required. Also, the indexing

will not help in this case because all the data needs to be scanned anyway because of the nature

148

of the query. Even the trend is better for Hive because of MapReduce. We can see how

preprocessing as well as using cloud-based SQL DW for indexing increases the efficiency of

question answering in the implementation of our proposed architecture.

Summary and Discussion

In this chapter, we described how we implemented a case study for our proposed

architecture and we saw how this implementation outperformed naïve implementations of the

SensorThings API. There are couple of points worth highlighting as the result of our

experiments.

First of all, as we discussed in the “SensorThings API, Details and Design Decisions”

chapter, the SensorThings API is very flexible in terms of how the user can interact with the API

in terms of its RESTful API. In order to implement the SensorThings API, the naïve method is

relational databased because of the relational nature of the SensorThings data model. Also,

PostgreSQL is a good choice for DBMS as it supports the spatial functionality that is required by

the SensorThings API. This implementation works pretty well for small datasets. However, as

we saw in our experiment results, it is not suitable for big data and we need to find alternative

options for implementing the SensorThings API.

One alternative can be using cloud-based NoSQL data stores such as Hadoop technologies

or Apache Hive, which was what we used in our experiments. There are two main advantages for

Hive for implementing the SensorThings API. Firstly, it has a query language called HiveQL

which is very close to SQL. As SensorThings RESTful API mostly follows SQL operations,

149

Apache Hive can be a natural NoSQL fit. Moreover, Hive supports MapReduce automatically,

which means that for each HiveQL query submitted to Hive, it will be run using MapReduce

automatically. This is another advantage, as using MapReduce is one of the most popular

processing paradigm for large datasets. However, as we saw in our experiment results, Hive

cannot be used to address big data challenges by itself. It can be used as part of the architecture,

but more technologies are needed to handle all of the big data challenges.

Even when we only talk about big data volume or large datasets, we can see that

preprocessing and using a flat structure for data would result in a much faster response to a

query. However, there is a trade-off happening between preprocessing and the flexibility of the

SensorThings RESTful API. When we change the structure of the data from the SensorThings

relational data model into a flat structure, we prepare the data for a specific analytics or query.

As a result, we need to prepare multiple flat structures and preprocess them in order to answer

different queries.

In other words, our architecture needs to be designed in advance for common queries and

analytics and then prepare as many flat structures as needed, and add them to our preprocessing

pipeline. Although this might seem like a downside of our proposed architecture, we can argue

that since our batch processing is always running on all the data and takes a few hours to finish,

any new analytics or query we want to add to our system will take a few hours to be

preprocessed and then the system would be ready. For our proposed architecture, we chose

150

higher performance although higher flexibility can still be achieved by adding more pipelines to

the batch layer.

The other point worth mentioning, is that naïve SensorThings implementation with

PostgreSQL can be an option for our speed layer. In this case, we create a batch layer with

preprocessing and batch views and periodically clean the data that we have in our PostgreSQL.

In other words, the batch layer would be an archiving place for the data that we have in our

PostgreSQL. This option is very useful if most of the queries are about real-time data and the

flexibility of SensorThings RESTful API is required.

However, as we observed in our experiments, using a proper speed layer can lead to higher

performance for real-time data especially if complex analytics are required. There are two

reasons for that. First, part of the processing will be moved to the speed layer rather than being

processed at run-time. The second reason is that the place we store our real-time views should be

optimized for random read, whilst the SensorThings PostgreSQL needs to be optimized for

random read and write. For our implementation of the speed layer, we used SQL DW which is

optimized for read and experiments showed that it outperforms PostgreSQL. As a result, a

separate implementation of the speed layer can be useful for complex analytics and is a design

decision that needs to be made based on the use cases of the system.

In summary, we propose using the SensorThings API which is a comprehensive and easy-to-

use open geospatial IoT standard in order to overcome the interoperability issue for IoT. In

addition, we propose using the Lambda architecture for implementing the SensorThings API as a

151

solution for the big data volume and velocity challenge in IoT. We looked at how a case study

implementation of our proposed architecture outperformed naïve solutions such as PostgreSQL

and Hive.

It is worth mentioning that although our implementation outperforms the alternatives in the

experiments, our case study implementation is by no means the best or most optimized

implementation and was still only a case study. We faced the limitation of 60 cores for our

Hadoop clusters – by using more machines the performance would definitely increase.

Moreover, with more powerful clusters, our batch processing can be parallelized which leads to

better performance. Also, for Azure Data Factory, Eventhub, Stream Analytics, and SQL DW we

use the least performance level possible to reduce costs, and we can achieve better performance

by increasing the performance level of each of these technologies.

We used Hadoop technologies on Azure together with other technologies offered by Azure.

Amazon AWS cloud technologies are another alternative for implementing our proposed

architecture. Also, Apache Spark can be used to implement the whole architecture from scratch

and can be run on a Hadoop cluster. These are just some alternatives for implementing our

proposed architecture and sum up the main contribution of this dissertation.

152

Conclusion and Future Work

The Internet of Things consists of sensors and actuators embedded in everyday devices

interconnecting and communicating through interoperable information and communication

technologies. The real potential of IoT is in creating innovative applications by integrating and

repurposing IoT sensing and controlling capabilities from different sources. However,

proprietary IoT systems present now create silos that make the IoT goal almost unreachable as

the applications need to deal with heterogeneous data from different systems. In addition to the

heterogeneity problem, big data is a challenge for all technologies in the modern world. As

predicted by CISCO and IDC, the number of internet-connected objects will reach at least 50

billion by 2020. As a result, IoT is facing heterogeneity and big data challenges. In this

dissertation, we have proposed an architecture for IoT with the focus on data management

challenges.

The proposed architecture merges Lambda architecture with the SensorThings API. The

SensorThings API is used as a solution for the heterogeneity problem. One of the solutions for

data heterogeneity or so-called interoperability in IoT is using a standard API. The SensorThings

API is a mature open geospatial standard for IoT and has been mentioned by various literature.

There are multiple compliant implementations for the API which result in no vendor locked in

issue. The standard has been adopted by many industry projects since it was published two years

ago. Hence, we think that the SensorThings API is a good fit for addressing the interoperability

challenge for IoT.

153

Moreover, the Lambda architecture addresses big data volume and velocity challenges in its

three-tier architecture. The Lambda architecture consists of the batch, serving, and speed layers.

The batch layer has a master dataset which stores all the data. The key for the master dataset is

that it is immutable and as a result, fault-tolerant. There is no need for the master dataset to be

optimized for random readings as the user does not deal with the master dataset directly. There is

batch processing in the batch layer which creates batch views. Batch views are used for

answering user queries. As a result, it should be designed based on system requirements and use

cases. Batch views are indexed and stored in the serving layer which is optimized for random

reads. User queries are answered by searching batch views from the serving layer. Batch and

serving layers address the big data volume challenge with two methods: preprocessing and

separation of optimization for random read and write.

However, since batch processing is a time-consuming process and may take up to a few

hours, batch views do not reflect all the data in the system and do not include recent data. This is

the reason why the Lambda architecture has a third layer named speed layer. The speed layer

receives streams of real-time data and creates real-time views. These real-time views together

with batch views can answer user queries and the response reflects all the data in the system. The

speed layer complements the batch and serving layers. Its purpose is to deal with high frequency

real-time streams of data – thus addressing the big data velocity challenge. Different techniques

such as micro-batch and incremental processing can be used in this layer to increase the

performance for answering user queries.

154

Since the Lambda architecture is a solution for big data volume and velocity and the

SensorThings API addresses the IoT interoperability challenge, we proposed that merging these

two results in an architecture that can overcome big data challenges including volume, velocity,

and variety (heterogeneity). For integrating SensorThings API with Lambda architecture, the

data model from SensorThings will be used as the schema for the master dataset in Lambda

architecture. The immutability constraint from Lambda architecture is only applied to

Observations and FeaturesOfInterest without any problems as these two entities are immutable

by nature. However, this constraint is loosened for other entities as they are rarely changed and

we want the benefits from the SensorThings API’s flexibility.

Batch views are defined using the SensorThings data model as well as real-time views. The

rich data model in SensorThings helps facilitate the analysis with different spatiotemporal

dimensions. Moreover, the MQTT protocol used by the SensorThings API can facilitate stream

management and processing in the speed layer. There is no constraint introduced to the Lambda

architecture by using the SensorThings data model and all the recommendations and guidelines

from Lambda architecture can be used for the batch, serving and speed layers.

As a proof of concept, we implemented a case study for air quality data. We used a real

online dataset from the Location Aware Sensing System (LASS) originating from Taiwan. The

data is gathered using MQTT and stored in the SensorThings service. To design our batch views,

we chose three dimensions of time, FeatureOfInterest, and ObservedProperty and summarized

our Observations by calculating the average result for the given dimensions. The query that can

155

be answered by this batch view is “Give me the air quality of this region in this period of time”.

We used ZXY tile indexing for locations as one of our query dimensions so that the data can be

shown on the map with different zoom levels and granularity efficiently. We also stored the

centroid for the locations of all the Observations we summarized into a tile so that it can be

queried with them as well.

Hadoop and Azure technologies are used in the implementation of our case study as well.

Apache Hive is used for the master dataset in the batch layer. Azure data factory is used for

calculating batch views and they are stored in Azure SQL DW as the serving layer. For the speed

layer, we used Storm, Azure EventHub, and Azure stream analytics and the resulting real-time

views were stored in Azure SQL DW.

In our experiments, we compared our implementation with two systems, one that uses Hive

and MapReduce, and the other using PostgreSQL as the data store. We tested three different

scenarios: a query that needed only batch views for answering; one that only needed real-time

views; and one that needed to use batch and real-time views together and that needed the

scanning of all the data. Our experiments showed that our implementation outperforms Hive and

PostgreSQL. We observed that if the dataset is small, PostgreSQL outperformed Hive because of

its indexing. But for larger datasets, or for cases that needed the scanning of all the data,

MapReduce outperformed PostgreSQL queries. In both cases, the case study implementation of

our architecture performed better than Hive and PostgreSQL. As expected, we observed that the

performance of our implementation has tested constant trends in all the scenarios.

156

In theory, since the SensorThings API is a solution for interoperability and the Lambda

architecture addresses big data volume and velocity challenges, merging them together should

result in an architecture that addresses the big data three Vs challenges. With our case study

implementation and experiments, we showed that our theoretical hypothesis was true and our

proposed architecture can be a solution for overcoming big data volume, velocity, and variety.

Future Work

There are several recommendations for future work in this dissertation. The SensorThings

Tasking part will be published soon and the Rules engine part is a work in progress. The Tasking

part is for tasking controllable IoT devices. The Rules engine is for processing events on the

SensorThings API. As a result, the SensorThings Sensing, Tasking, and Rules engine parts

complement each other and provide a standard for the whole IoT ecosystem. How to merge the

Tasking and Rules engine parts with the proposed architecture can be valuable future work.

This dissertation proposed an architecture rather than focusing on the optimized

implementation. It may also be worth experimenting with different possible implementations.

There will not be an optimal solution for all IoT systems and the architecture needs to be

implemented based on the requirements of each system. However, a study showing the

differences between using different technologies for implementation can help to facilitate the use

of this architecture for different industries. In other words, a study showing implementation best

practices for different scenarios can be useful.

157

Moreover, various useful analytics for IoT can be explored to provide recommendations for

different applications. This can be merged with the exploration of technology and the results can

be used as guidelines for different industries to adopt the architecture.

Finally, the security option for the architecture can be explored. Security is one of the top

challenges for the IoT world as noted in various survey literature (Al-Fuqaha et al., 2015; Atzori

et al., 2010; Gubbi et al., 2013; S. Li et al., 2014; Miorandi et al., 2012; Puthal, Ranjan, Nepal, &

Chen, 2018; Zeng et al., 2011). Security can be implemented as a new layer. However, other

options and best practices can also be explored. Providing security options can facilitate the

adoption of the architecture in the industry.

In conclusion, we have proposed a geospatial architecture in this dissertation based on the

SensorThings API open standard and the Lambda architecture for addressing big data challenges.

Implementation technologies, analytics use cases, and security best practices may be useful

future work for this dissertation as well as guidelines for merging the SensorThings Tasking and

Rules engine parts with the proposed architecture.

158

References

Ahlgren, B., Hidell, M., & Ngai, E. C. H. E. C.-H. (2016). Internet of Things for Smart Cities:

Interoperability and Open Data. IEEE Internet Computing, 20(6), 52–56.

https://doi.org/10.1109/MIC.2016.124

Ahmed, E., Yaqoob, I., Hashem, I. A. T., Khan, I., Ahmed, A. I. A., Imran, M., & Vasilakos, A.

V. (2017). The role of big data analytics in Internet of Things. Computer Networks, 129,

459–471. https://doi.org/10.1016/j.comnet.2017.06.013

Akoka, J., Comyn-Wattiau, I., & Laoufi, N. (2017). Research on Big Data – A systematic

mapping study. Computer Standards and Interfaces.

https://doi.org/10.1016/j.csi.2017.01.004

Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of

Things: A Survey on Enabling Technologies, Protocols, and Applications. IEEE

Communications Surveys and Tutorials. https://doi.org/10.1109/COMST.2015.2444095

Alharthi, A., Krotov, V., & Bowman, M. (2017). Addressing barriers to big data. Business

Horizons. https://doi.org/10.1016/j.bushor.2017.01.002

Arasteh, H., Hosseinnezhad, V., Loia, V., Tommasetti, A., Troisi, O., Shafie-Khah, M., & Siano,

P. (2016). Iot-based smart cities: A survey. In EEEIC 2016 - International Conference on

Environment and Electrical Engineering. https://doi.org/10.1109/EEEIC.2016.7555867

Arlitt, M., Shah, A., Marwah, M., Bellala, G., Shah, A., Healey, J., & Vandiver, B. (2015).

IoTAbench: An Internet of Things Analytics Benchmark. Proceedings of the 6th

159

ACM/SPEC International Conference on Performance Engineering.

https://doi.org/10.1145/2668930.2688055

Atzori, L., Iera, A., & Morabito, G. (2010). The Internet of Things: A survey. Computer

Networks. https://doi.org/10.1016/j.comnet.2010.05.010

Barnaghi, P., Sheth, A., & Henson, C. (2013). From data to actionable knowledge: Big data

challenges in the web of things. IEEE Intelligent Systems.

https://doi.org/10.1109/MIS.2013.142

Botts, M. E., Robin, A., Greenwood, J., & Wesloh, D. (2014). OGC® SensorML: Model and

XML Encoding Standard. OGC®. https://doi.org/OGC 12-000

Bröring, A., Stasch, C., & Echterhoff, J. (2012). OGC Sensor Observation Service. OGC

Implementation Standard. https://doi.org/OGC 12-006

Butler, H., Daly, M., Doyle, A., Gillies, S., Hagen, H., Schaub, T., & Metacarta, C. S. (2016).

The GeoJSON Format. Internet Engineering Task Force (IETF). Retrieved from

https://tools.ietf.org/html/rfc7946

CGI Group Inc. (2017). CGI IoT Data Management for Smart Communities With KinotaTM open

source API.

Chappell, D. (2011). Introducing OData: Data access for the web, the cloud, mobile devices, and

more. Access, (May).

Chen, M., Mao, S., Zhang, Y., & Leung, V. C. M. (2014). Big data: related technologies,

challenges and future prospects. SpringerBriefs in Computer Science.

160

Choi, Y. L., Jeon, W. S., & Yoon, S. H. (2014). Improving database system performance by

applying NoSQL. Journal of Information Processing Systems.

https://doi.org/10.3745/JIPS.04.0006

Cloudera, I. (2017). CLOUDERA ENTERPRISE The Ultimate Data Engine. Retrieved March

23, 2018, from http://kr.cloudera.com/content/dam/www/apac/resources-

en/datasheets/cloudera-enterprise-datasheet.pdf

Cox, S. J. D. (2011). Observations and Measurements - XML Implementation. OGC®.

https://doi.org/http://www.opengeospatial.org/

Cruz Huacarpuma, R., de Sousa Junior, R., de Holanda, M., de Oliveira Albuquerque, R., García

Villalba, L., & Kim, T.-H. (2017). Distributed Data Service for Data Management in

Internet of Things Middleware. Sensors, 17(5), 977. https://doi.org/10.3390/s17050977

Darwish, T. S. J., & Abu Bakar, K. (2018). Fog Based Intelligent Transportation Big Data

Analytics in The Internet of Vehicles Environment: Motivations, Architecture, Challenges,

and Critical Issues. IEEE Access, 6, 15679–15701.

https://doi.org/10.1109/ACCESS.2018.2815989

DataStax Corporation. (2013). Why NoSQL?

Dean, J., & Ghemawat, S. (2004). MapReduce: Simplied Data Processing on Large Clusters. In

Proceedings of 6th Symposium on Operating Systems Design and Implementation.

https://doi.org/10.1145/1327452.1327492

Department of Homeland Security. (2018). Next Generation First Responder Integration

161

Handbook, Part 2: Engineering Design.

Ding, Z., Yang, Q., & Wu, H. (2011). Massive Heterogeneous Sensor Data Management in the

Internet of Things. In 2011 International Conference on Internet of Things and 4th

International Conference on Cyber, Physical and Social Computing.

https://doi.org/10.1109/iThings/CPSCom.2011.6

EDIMAX Technology Co. (2017). AirBox : Smart Air Quality Detector with PM2.5,

Temperature and Humidity Sensors. Retrieved September 3, 2018, from

https://www.edimax.com/edimax/merchandise/merchandise_detail/data/edimax/global/air_q

uality_monitoring_semioutdoor/ai-1001w_v2/

Evans, D. (2011). The Internet of Things - How the Next Evolution of the Internet is Changing

Everything. CISCO White Paper. https://doi.org/10.1109/IEEESTD.2007.373646

Fältström, P. (2016). Market-driven Challenges to Open Internet Standards. Global Commission

on Internet Governance Paper Series, Centre for International Governance Innovation

(CIGI), paper series no. 33.

Fan, T., & Chen, Y. (2010). A scheme of data management in the Internet of Things. In 2010

2nd IEEE InternationalConference on Network Infrastructure and Digital Content.

https://doi.org/10.1109/ICNIDC.2010.5657908

Fan, W., & Bifet, A. (2013). Mining Big Data : Current Status , and Forecast to the Future. ACM

SIGKDD Explorations Newsletter. https://doi.org/10.1145/2481244.2481246

Firouzi, F., Rahmani, A. M., Mankodiya, K., Badaroglu, M., Merrett, G. V., Wong, P., &

162

Farahani, B. (2018). Internet-of-Things and big data for smarter healthcare: From device to

architecture, applications and analytics. Future Generation Computer Systems, 78(2), 583–

586. https://doi.org/10.1016/j.future.2017.09.016

Gantz, J., & Reinsel, D. (2011). Extracting Value from Chaos State of the Universe: An

Executive Summary. IDC IView. https://doi.org/10.1007/s10916-016-0565-7

Gartner. (2018). Big Data.

Gómez Maureira, M. A., Oldenhof, D., & Teernstra, L. (2014). ThingSpeak – an API and Web

Service for the Internet of Things. World Wide Web.

Grothe, M., Carton, L., Van Den Broecke, J., Volten, H., & Kieboom, R. (2016). Smart emission

- Building a spatial data infrastructure for an environmental citizen sensor network. CEUR

Workshop Proceedings, 1762. https://doi.org/http://dx.doi.org/urn:nbn:de:0074-1762-0

Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision,

architectural elements, and future directions. Future Generation Computer Systems.

https://doi.org/10.1016/j.future.2013.01.010

Guinard, D., Trifa, V., Mattern, F., & Wilde, E. (2011). From the Internet of Things to the Web

of Things : Resource Oriented Architecture and Best Practices. Architecting the Internet of

Things. https://doi.org/10.1007/978-3-642-19157-2

Handl, R., Pizzo, M., & Biamonte, M. (2014). OData JSON Format Version 4.0. OASIS

Standard.

Hinchcliffe, D. (2006). Enterprise Web 2.0: Creating real business value with Web 2.0.

163

Retrieved from https://www.zdnet.com/article/creating-real-business-value-with-web-2-0/

Hortonworks. (2018). Apache TEZ. Retrieved August 29, 2018, from

https://hortonworks.com/apache/tez/

Huang, C.-Y. (2013). GeoPubSubHub: A Geospatial Publish/Subscribe Architecture for the

World-Wide Sensor Web. University of Calgary.

Huang, C. Y., & Wu, C. H. (2016a). A web service protocol realizing interoperable internet of

things tasking capability. Sensors (Switzerland), 16(9). https://doi.org/10.3390/s16091395

Huang, C. Y., & Wu, C. H. (2016b). Design and implement an interoperable Internet of Things

application based on an extended OGC sensorthings API Standard. In International

Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS

Archives. https://doi.org/10.5194/isprsarchives-XLI-B4-263-2016

Huang, H. H., & Liu, H. (2014). Big data machine learning and graph analytics: Current state

and future challenges. 2014 IEEE International Conference on Big Data (Big Data).

https://doi.org/10.1109/BigData.2014.7004471

Hussain, A., & Wu, W. (2018). Sustainable interoperability and data integration for the IoT-

based information systems. Proceedings - 2017 IEEE International Conference on Internet

of Things, IEEE Green Computing and Communications, IEEE Cyber, Physical and Social

Computing, IEEE Smart Data, IThings-GreenCom-CPSCom-SmartData 2017, 2018–Janua,

824–829. https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2017.126

IDG. (2015). Big Data and Analytics: The Big Picture.

164

International Telecommunication Union. (2012). Overview of the Internet of things. Series Y:

Global Information Infrastructure, Internet Protocol Aspects and next-Generation Networks

- Frameworks and Functional Architecture Models.

https://doi.org/10.1109/ESEM.2015.7321184.3.

Jazayeri, M. A., Liang, S. H. L., & Huang, C. Y. (2015). Implementation and evaluation of four

interoperable open standards for the internet of things. Sensors (Switzerland).

https://doi.org/10.3390/s150924343

Johnson, J. E. (2012). Big Data + Big Analytics + Big Opportunity. Financlial Executive.

https://doi.org/10.1002/9781118562260

Khalafbeigi, T., Huang, C. Y., Liang, S., & Wang, M. (2014). A hybrid scale-out cloud-based

data service for worldwide sensors. In Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol.

8505 LNCS, pp. 342–348). https://doi.org/10.1007/978-3-662-43984-5_26

Klarity. (2015). Dimensions of Big Data. Retrieved from http://www.klarity-

analytics.com/2015/07/27/dimensions-of-big-data/

Kolbe, T. H., Nagel, C., Lorenz, A., Groger, G., Plumer, L., Czerwinski, A., … Hafele, K.-H.

(2012). OGC® CityGML.

Kotsev, A., Pantisano, F., Schade, S., & Jirka, S. (2015). Architecture of a service-enabled

sensing platform for the environment. Sensors (Switzerland).

https://doi.org/10.3390/s150204470

165

Kotsev, A., Schleidt, K., Liang, S., van der Schaaf, H., Khalafbeigi, T., Grellet, S., … Beaufils,

M. (2018). Extending INSPIRE to the Internet of Things through SensorThings API.

Geosciences. https://doi.org/10.3390/geosciences8060221

Laney, D. (2001). 3D Data Management: Controlling Data Volume, Variety and Velocity.

Application Delivery Strategies. https://doi.org/10.1016/j.infsof.2008.09.005

LASS Community / Academia Sinica. (n.d.). LASS PM2.5 Open Data Portal. Retrieved

September 3, 2018, from https://lass-net.org/

Lee, I. (2017). Big data: Dimensions, evolution, impacts, and challenges. Business Horizons,

293–303. https://doi.org/10.1016/j.bushor.2017.01.004

Leong, P., & Choo, W. (2014). CloudCall: Cloud Database for the Internet of Things. CloudAsia.

Leverenz, L. (2018). Apache Hive. Retrieved September 3, 2018, from

https://cwiki.apache.org/confluence/display/Hive

Li, K.-J., Lee, J., Zlatanova, S., Kolbe, T. H., Nagel, C., & Becker, T. (2015). OGC®

IndoorGML. Open Geospatial Consortium. https://doi.org/http://www.opengeospatial.org/

Li, S., Xu, L. Da, & Zhao, S. (2014). The internet of things: a survey. Information Systems

Frontiers. https://doi.org/10.1007/s10796-014-9492-7

Li, T., Liu, Y., Tian, Y., Shen, S., & Mao, W. (2012). A storage solution for massive IoT data

based on NoSQL. In Proceedings - 2012 IEEE Int. Conf. on Green Computing and

Communications, GreenCom 2012, Conf. on Internet of Things, iThings 2012 and Conf. on

Cyber, Physical and Social Computing, CPSCom 2012.

166

https://doi.org/10.1109/GreenCom.2012.18

Liang, S., Bermudez, L. E., Huang, C., Jazayeri, M., & Khalafbeigi, T. (2013). Advances on

Sensor Web for Internet of Things. American Geophysical Union.

Liang, S., Huang, C.-Y., & Khalafbeigi, T. (2016). OGC SensorThings API Part 1: Sensing.

Open Geospatial Consortium. Implementation Standard.

LogMeIn Inc. (2015). Xively by LogMeIn- Business Solutions fo the Intenet of Things.

Retrieved from https://xively.com/

Luo, K., Saeedi, S., Badger, J., & Liang, S. (2018). Using the Internet of Things to Monitor

Human and Animal Uses of Industrial Linear Features. In International Symposium on Web

and Wireless Geographical Information Systems (pp. 85–89). Springer.

Ma, M., Wang, P., & Chu, C.-H. (2013). Data Management for Internet of Things: Challenges,

Approaches and Opportunities. In 2013 IEEE International Conference on Green

Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical

and Social Computing. https://doi.org/10.1109/GreenCom-iThings-CPSCom.2013.199

Ma, Y., Rao, J., Hu, W., Meng, X., Han, X., Zhang, Y., … Liu, C. (2012). An efficient index for

massive IOT data in cloud environment. In Proceedings of the 21st ACM international

conference on Information and knowledge management - CIKM ’12.

https://doi.org/10.1145/2396761.2398587

Manogaran, G., Varatharajan, R., Lopez, D., Kumar, P. M., Sundarasekar, R., & Thota, C.

(2018). A new architecture of Internet of Things and big data ecosystem for secured smart

167

healthcare monitoring and alerting system. Future Generation Computer Systems, 82, 375–

387. https://doi.org/10.1016/j.future.2017.10.045

Marjani, M., Nasaruddin, F., Gani, A., Karim, A., Hashem, I. A. T., Siddiqa, A., & Yaqoob, I.

(2017). Big IoT Data Analytics: Architecture, Opportunities, and Open Research

Challenges. IEEE Access, 5, 5247–5261. https://doi.org/10.1109/ACCESS.2017.2689040

Marz, N., & Warren, J. (2015). Big Data: Principles and Best Practices of Scalable Realtime

Data Systems. Manning Publications Co. https://doi.org/10.1073/pnas.0703993104

Meiling, S., Purnomo, D., Shiraishi, J.-A., Fischer, M., & Schmidt, T. C. (2018). MONICA in

Hamburg: Towards Large-Scale IoT Deployments in a Smart City. Proceedings of the

European Conference on Networks and Communications, EuCNC. Retrieved from

http://arxiv.org/abs/1803.06854

Microsoft Azure. (2018a). Data Factory. Retrieved September 3, 2018, from

https://azure.microsoft.com/en-us/services/data-factory/

Microsoft Azure. (2018b). SQL Data Warehouse. Retrieved September 3, 2018, from

https://azure.microsoft.com/en-ca/services/sql-data-warehouse/

Miorandi, D., Sicari, S., De Pellegrini, F., & Chlamtac, I. (2012). Internet of things: Vision,

applications and research challenges. Ad Hoc Networks.

https://doi.org/10.1016/j.adhoc.2012.02.016

Mishra, N., Lin, C. C., & Chang, H. T. (2015). A Cognitive Adopted Framework for IoT Big-

Data Management and Knowledge Discovery Prospective. International Journal of

168

Distributed Sensor Networks. https://doi.org/10.1155/2015/718390

Moßgraber, J., Hilbring, D., Pouli, P., & Padeletti, G. (2018). A Knowledge Base for Cultural

Heritage Protection against Climate Change. In 15th ESWC Conference.

Moßgraber, J., Hilbring, D., van der Schaaf, H., Hertweck, P., Kontopoulos, E., Mitzias, P., …

Kompatsiaris, I. (2018). The sensor to decision chain in crisis management. In Universal

Design of ICT in Emergency Management Proceedings of the 15th ISCRAM Conference.

Rochester, NY, USA.

mySMARTLIfe Consortium Partners. (2017). Transition of EU cities towards a new concept of

Smart Life and Economy.

Normandeau, K. (2013). Beyond Volume, Variety and Velocity is the Issue of Big Data

Veracity. Inside Big Data. Retrieved from https://insidebigdata.com/2013/09/12/beyond-

volume-variety-velocity-issue-big-data-veracity/

Oussous, A., Benjelloun, F. Z., Ait Lahcen, A., & Belfkih, S. (2017). Big Data technologies: A

survey. Journal of King Saud University - Computer and Information Sciences.

https://doi.org/10.1016/j.jksuci.2017.06.001

Pizzo, M., Handl, R., & Zurmuehl, M. (2014). OData Version 4.0 Part 1: Protocol. OASIS

Standard.

Pokorny, J. (2013). NoSQL databases: A step to database scalability in web environment.

International Journal of Web Information Systems.

https://doi.org/10.1108/17440081311316398

169

Puthal, D., Ranjan, R., Nepal, S., & Chen, J. (2018). IoT and big data: An architecture with data

flow and security issues. Lecture Notes of the Institute for Computer Sciences, Social-

Informatics and Telecommunications Engineering, LNICST. https://doi.org/10.1007/978-3-

319-67636-4_25

Qin, Y., Sheng, Q. Z., Falkner, N. J. G., Dustdar, S., Wang, H., & Vasilakos, A. V. (2016). When

things matter: A survey on data-centric internet of things. Journal of Network and Computer

Applications. https://doi.org/10.1016/j.jnca.2015.12.016

Ray, P. P. (2017). A Survey of IoT Cloud Platforms. Future Computing and Informatics Journal.

https://doi.org/10.1016/j.fcij.2017.02.001

Russom, P. (2011). Big data analytics. TDWI Best Practices Report.

https://doi.org/10.1109/ICCICT.2012.6398180

SensorUp Inc. (2016). Comparison of SensorThings API and Sensor Observation Service – Part

1.

Sowe, S. K., Kimata, T., Dong, M., & Zettsu, K. (2014). Managing heterogeneous sensor data on

a big data platform: IoT services for data-intensive science. In Proceedings - IEEE 38th

Annual International Computers, Software and Applications Conference Workshops,

COMPSACW 2014. https://doi.org/10.1109/COMPSACW.2014.52

Stolz, M. (2018). Scaling Data Services with Pivotal GemFire. O’REILLY.

Teixeira, J. A. B. S. (2018). Using SensorThings API to enable a multi-platform IoT

environment. University of Porto.

170

Tracey, D., & Sreenan, C. (2013). A holistic architecture for the Internet of Things, sensing

services and big data. In Proceedings - 13th IEEE/ACM International Symposium on

Cluster, Cloud, and Grid Computing, CCGrid 2013.

https://doi.org/10.1109/CCGrid.2013.100

Trilles, S., Calia, A., Belmonte, Ó., Torres-Sospedra, J., Montoliu, R., & Huerta, J. (2017).

Deployment of an open sensorized platform in a smart city context. Future Generation

Computer Systems, 76, 221–233. https://doi.org/10.1016/j.future.2016.11.005

Valduriez, P. (1993). Parallel database systems: Open problems and new issues. Distributed and

Parallel Databases. https://doi.org/10.1007/BF01264049

van der Schaaf, H., & Herzog, R. (2015). Mapping the OGC sensorthings API onto the OpenIoT

middleware. In Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics). https://doi.org/10.1007/978-3-

319-16546-2_6

Vermesan, O., & Friess, P. (2013). The Internet of things: Converging Technologies for Smart

Environments and Integrated Ecosystem. River Publisher.

https://doi.org/10.1038/scientificamerican1004-76

Villari, M., Celesti, A., Fazio, M., & Puliafito, A. (2015). AllJoyn Lambda: An architecture for

the management of smart environments in IoT. Proceedings of 2014 International

Conference on Smart Computing Workshops, SMARTCOMP Workshops 2014, 9–14.

https://doi.org/10.1109/SMARTCOMP-W.2014.7046676

171

Ward, J. S., & Barker, A. (2013). Undefined By Data: A Survey of Big Data Definitions. ArXiv

Preprint ArXiv:1309.5821.

Watson, K., Kunz, S., van der Schaaf, H., & Ubertini, F. (2018). Analysis of sensor signals for

monitoring of heritage buildings. In EGU General Assembly Conference Abstracts, Vol. 20.

Whang, K.-Y. (2011). NoSQL vs. Parallel DBMS for Large-scale Data Management. In

DASFAA 2011 Panel on Challenges in Managing and Mining Large, Heterogeneous Data.

Whitmore, A., Agarwal, A., & Da Xu, L. (2015). The Internet of Things—A survey of topics and

trends. Information Systems Frontiers, 17(2), 261–274. https://doi.org/10.1007/s10796-014-

9489-2

Wikipedia. (2018a). Geohash. Retrieved September 3, 2018, from

https://en.wikipedia.org/wiki/Geohash

Wikipedia. (2018b). Slippy Map Tilenames. Retrieved September 3, 2018, from

http://wiki.openstreetmap.org/wiki/Slippy_map_tilenames

Yaqoob, I., Hashem, I. A. T., Gani, A., Mokhtar, S., Ahmed, E., Anuar, N. B., & Vasilakos, A.

V. (2016). Big data: From beginning to future. International Journal of Information

Management. https://doi.org/10.1016/j.ijinfomgt.2016.07.009

Zeng, D., Guo, S., & Cheng, Z. (2011). The web of things: A survey. Journal of

Communications. https://doi.org/10.4304/jcm.6.6.424-438

