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Abstract 

The Internet of Things (IoT) consists of sensors and actuators embedded in everyday devices 

interconnecting and communicating through interoperable information and communication 

technologies. The real potential of IoT is in creating innovative applications by integrating and 

repurposing IoT sensing and controlling capabilities from different sources. However, 

proprietary IoT systems now create silos that make the IoT goal almost unreachable as the 

applications need to deal with heterogeneous data from different systems. In addition to the 

problem of heterogeneity, big data is a challenge for all technologies in the modern world. As 

predicted by CISCO and IDC, the number of internet-connected objects will reach at least 50 

billion by 2020. As a result, IoT is facing heterogeneity and big data challenges including 

volume and velocity. We have proposed an architecture for IoT with the focus on data 

management challenges in this dissertation. The proposed architecture merges the Lambda 

architecture with the SensorThings API. The SensorThings API is used as a solution for the 

heterogeneity problem. One of the solutions for data heterogeneity or so-called interoperability 

in IoT is the use of a standard API. SensorThings API has been proven to be a mature, open 

geospatial standard for IoT by various literature, implementations, and its widespread adoption. 

Moreover, the Lambda architecture addresses big data volume and velocity challenges through 

the use of three layers architecture: batch, serving, and speed. We implemented a case study of 

our proposed architecture with real air quality data. For our implementation, we used Hadoop 

and Azure technologies. Our case study showed that our proposed architecture significantly 

improves the performance of IoT service on real-world big open data. 

Keywords: Internet of Things, Big Data, SensorThings API, Lambda Architecture 
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Introduction 

Billions of small sensors and actuators will be embedded in everyday objects and connected 

to the Internet forming a concept called the Internet of Things (IoT) (Arlitt et al., 2015; Evans, 

2011). In the concept of IoT, there are a great many “things” that are connected to each other 

using wireless or wired connections with unique addressing schemas. With the help of these 

connections, “things” can interact and cooperate with each other in order to create new 

applications (Vermesan & Friess, 2013). 

The International Telecommunication Union (ITU) (International Telecommunication 

Union, 2012) defines IoT as “a global infrastructure for the information society, enabling 

advanced services by interconnecting (physical and virtual) things based on existing and 

evolving interoperable information and communication technologies”.  IoT-enabled objects can 

sense their environment, collect information, and communicate and interact with each other. In 

the context of IoT, the “things” in the physical world are identifiable and capable of being 

integrated into communication networks. By populating our environment with real-world sensor-

based devices, the IoT is opening the door to a variety of application domains, such as 

environmental monitoring, transportation and logistics, urban informatics, smart cities, as well as 

personal and social applications ( S. Liang, Bermudez, Huang, Jazayeri, & Khalafbeigi, 2013). 

The observation data collected by “things” in IoT are different depending on the sensors that 

produce them (e.g. temperature, humidity, sound, light, etc.). Along with these differences in 

types, the data is collected using different structures (can also be unstructured). Furthermore, the 
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high frequency of producing data by a large amount of “things” results in IoT data deluge. The 

heterogeneity, ubiquity and streaming nature of IoT data make data management a challenging 

task in IoT (Barnaghi, Sheth, & Henson, 2013).  Data management is a key research topic for 

IoT and it plays a crucial role in the effective operation of IoT (M. Ma, Wang, & Chu, 2013). 

Data management in IoT includes the tasks of data collection, integration, cleaning, storage, 

processing, analysis, and visualization (Mishra, Lin, & Chang, 2015). For this thesis, I focused 

on data storage, processing and analysis in IoT; other data management tasks are out of the scope 

of this dissertation. 

For this dissertation, I proposed an architecture for IoT with a focus on data storage, 

processing and analysis challenges. I divide the solution into two sub-solutions: 

 We (GeoSensorWeb Laboratory1) propose using the SensorThings API (S. Liang, 

Huang, & Khalafbeigi, 2016) for IoT services in order to address the challenge of 

heterogeneous data for IoT. 

 I propose applying the Lambda architecture (Marz & Warren, 2015) over the 

SensorThings API in order to overcome storage, processing and analysis challenges 

for IoT. 

                                                 

 

 

1 http://sensorweb.geomatics.ucalgary.ca/  

http://sensorweb.geomatics.ucalgary.ca/
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The next subsection explains IoT data management challenges that are what this 

dissertation aims to solve. Then, the objectives are explained in detail followed by a brief 

discussion as to how our proposed solution fits the objectives. 

Challenges of Data Management in IoT 

The nature of IoT data causes different challenges for IoT data management. IoT data are 

inaccurate, heterogeneous, massive, real-time, and also have implicit semantics (Ding, Yang, & 

Wu, 2011; M. Ma et al., 2013). Also, IoT data has spatiotemporal attributes (Ding et al., 2011). 

Based on these data characteristics, data management in IoT can be categorized as data cleaning; 

data (pre)processing; data storage and analysis; and handling security and privacy (Ding et al., 

2011; T. Fan & Chen, 2010; M. Ma et al., 2013; Mishra et al., 2015). For this dissertation, IoT 

data management is discussed from a big data perspective which covers data preprocessing, and 

data storage and analysis. In the following subsection, big data management for IoT is elaborated 

on. 

IoT Big Data Management 

The term big data in the context of information technology is often thought of as managing 

large datasets. However, although managing large volumes is an important challenge in the big 

data world, big data does not only mean big data volume but also big data velocity and variety. 

Volume, Velocity and Variety are called the three “V”s of big data management challenges 

(Russom, 2011) as shown in Figure 1.  
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With the rapid development of IoT and the increasing number of IoT-enabled objects, it has 

been observed that IoT also encounters big data challenges. As such, IoT data has been widely 

used in literature as a typical example of big data challenges (W. Fan & Bifet, 2013). An 

explanation of the basic concept of the three “V”s big data model and how IoT fits into this 

model is given below. (C.-Y. Huang, 2013) 

Data Volume: The most obvious characteristic of big data is the large data volume, which 

refers to large datasets in terms of size or number of data records. As predicted by CISCO 

(Evans, 2011) and the International Data Corporation (IDC) (Arlitt et al., 2015), the number of 

internet-connected objects will reach at least 50 billion by 2020. Each of these sensors registers 

its observations frequently and even managing some of the data from the 50 billion devices is 

challenging with today’s data management systems. It is foreseeable that with the increasing 

number of IoT-enabled “things”, IoT will be generating more and more data every day. As a 

result, storing and retrieving the large volume of data will be a major challenge for IoT. 

 

Figure 1 Big Data Three "V"s (Russom, 2011) 
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Data Velocity: Data velocity refers to the high rate of data production. In the context of 

IoT, sensors are used to detect interesting events and higher sampling frequency will reduce the 

chance of missing important events. As a result, billions of future IoT sensors will produce data 

at high frequencies. Sound pressure sensors are examples that typically register their readings 

every second. Another example is the Boeing jet engines that produce ten terabytes of sensor 

data every 30 minutes during flights (C.-Y. Huang, 2013). In addition, an effective IoT data 

management system not only needs to store and index the continuous sensor data streams 

flowing into the system but also needs to continuously answer queries about these data streams. 

As a result, efficiently processing high-velocity data streams is another big data challenge faced 

by IoT.  

Data Variety: Data variety refers to managing different datasets with a large variety of 

characteristics. As shown in Figure 1, the different characteristics can be in terms of data 

structures, incompatible data formats, and different data interfaces (Russom, 2011).  Sensor data 

is relatively structured in comparison to social media data. However, sensor data varies greatly in 

terms of hardware, data types, observed phenomena, communication protocols, data encodings, 

semantics, and syntaxes (C.-Y. Huang, 2013). For example, there are different kinds of 

temperature sensors from different vendors and their observations need to be organized in a 

consistent fashion by IoT. Each of these sensors has their own IoT service provider that develops 

and uses its own proprietary software interface, encodings, and ontologies. This means that the 
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number of proprietary interfaces are growing as the number of IoT devices increases. As a result, 

the IoT sensor data may come from different sources with different interfaces and structures (or 

may even be unstructured). Thus, effectively integrating heterogeneous data in order to provide a 

coherent view for innovative applications is another challenge for the IoT world.  

Objectives and Proposed Solutions 

In this subsection, I first clarify the objectives before explaining the proposed solutions to 

achieve the objectives. 

High Level Objective: To propose an architecture that can address data management 

challenges for the Internet of Things from the big data perspective. 

My overall objective is to address data management challenges by proposing an architecture 

for IoT. To better explain the proposed solution, I divide the overall objective into the big data 

three “Vs” and then explain the proposed solution for each objective. 

Objective 1: To Propose a Solution for the Data Variety Challenge for IoT 

OGC SensorThings API is an OGC standard that proposes an API for IoT services to 

monitor and control IoT devices (i.e. sensors and actuators). The SensorThings API applies 

Representational State Transfer (REST) -like architecture and uses HTTP protocols for its 

communication. The overall objective of the API is to make IoT services interoperable so that 

the real value of IoT can be achieved by creating innovative applications for these services. In 

other words, the data variety problem for IoT can be overcome by using this API. 
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The SensorThings API proposes a standard solution for IoT-enabled devices to interact with 

each other and through the Web using the JSON data format. The JSON format is preferable to 

the Extensible Markup Language (XML) format, because it is lightweight, simple, and efficient 

for presenting data in the server. In other words, it is easy to use (S. Liang et al., 2016). 

For the SensorThings API, a REST-like service interface is used for accessing the 

resources. With this API, each resource is identified using a unique identifier. As a result, each 

resource can be accessed uniquely without the need to know its related resources. The 

SensorThings API supports four basic operations for all the resources: create, read, update, and 

delete (CRUD). Since the API uses HTTP protocol, it uses HTTP POST for create; GET for 

read; PUT and PATCH for update; and finally DELETE for delete. 

The SensorThings API consists of three major parts which are: Sensing, Tasking, and Rules 

engine parts. The Sensing part defines an interoperable framework to manage and access sensors 

and observations. The Tasking part defines an interoperable framework for managing the 

actuators and submitting tasks to them. Finally, the Rules engine part defines events as the 

connection point between the Sensing and Tasking parts. The Sensing part was published in July 

2016 and the Tasking part will be published in late 2018. The Rules engine part is a work in 

progress and is planned for 2019. The focus of this dissertation is on the Sensing part. 

The Sensing part contains following resources: Things, Location, HistoricalLocation, 

Datastreams, Sensors, ObservedProperties, Observations, and FeaturesOfInterest. A Thing is an 

IoT-enabled object and has a current Location and may have some previous locations in 
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HistoricalLocations. It can also have one or more Datastreams. A Datastream is a mechanism for 

grouping Observations with the same Observed Property and Sensor. The Sensors of the IoT-

enabled object produce results (or readings) with values that are an estimate of an 

ObservedProperty of the FeatureOfInterest. These readings are called Observations in the 

SensorThings API. 

The SensorThings API provides a standard framework for IoT services. As a result, even if 

each IoT-enabled object has its own implementation of this API as a software interface, 

integrating the data from these services to create innovative applications is straightforward. In 

summary, we believe that SensorThings API provides sematic interoperability through its data 

model and syntactic interoperability with its REST API. Thus, we believe that by using the 

SensorThings API for IoT services we can address the data variety challenge for IoT. 

I propose using Lambda architecture (Marz & Warren, 2015) on top of of the SensorThings 

API to address the data volume and velocity challenges. Lambda architecture is a generic, 

scalable and fault-tolerant data processing architecture that can be used for real-time data 

processing. It contains three layers. The batch layer manages the master datasets and creates 

batch views. The serving layer indexes the batch views and prepares them for querying. Finally, 

the speed layer deals with real-time data processing and query answering. The following explains 

how using the different layers of Lambda architecture can address data volume and velocity 

challenges for IoT. 
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Objective 2: To Propose a Solution for the Data Volume Challenge for IoT 

I propose using the batch and serving layer to address the data volume challenge for IoT. 

The batch layer responsibilities are: 1) storing an immutable, constantly growing master dataset, 

and 2) computing arbitrary functions on that dataset and creating batch views. The serving layer 

indexes these precomputed batch views so that they can be efficiently queried. In other words, 

the serving layer makes batch views queryable. The serving layer continuously swaps in new 

versions of batch views that are periodically computed by the batch layer. Since the batch layer 

processing takes at least a few hours, the serving layer is updated at most once every few hours. 

(Marz & Warren, 2015) 

I propose to use the batch layer together with the serving layer to address the data volume 

challenge. Different kinds of technology can be used to organize the master dataset and batch 

views which contain large amounts of data from sensors and actuators. NoSQL (Not Only SQL) 

data stores and Apache Hadoop2 are the canonical example of batch processing systems (Marz & 

Warren, 2015). 

Objective 3: To Propose a Solution for the Data Velocity Challenge for IoT 

I propose using the speed layer in Lambda architecture to address the data velocity 

challenge for IoT. The serving layer updates whenever the batch layer finishes precomputing 

                                                 

 

 

2 http://hadoop.apache.org/ 

http://hadoop.apache.org/
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batch views. As a result, data that is received during batch views precomputation is not 

represented in batch views. If the service answers the queries only based on the serving layer, the 

response would not contain real-time data. To overcome this problem, Lambda architecture has a 

dedicated real-time data system (arbitrary functions computed with arbitrary data in real-time) 

named speed layer. 

One of the strengths of the Lambda Architecture is that once data makes it through the 

batch views and is loaded onto the serving layer, the corresponding results for the real-time 

views will be removed from the speed layer. This means real-time views that are no longer 

needed can be discarded from the speed layer frequently. It makes the architecture more fault-

tolerant, since the speed layer is much more complex than the batch and serving layers and the 

probability of faults for real-time view is more than for batch view.  

The speed layer is more complex than the batch layer because the whole master dataset is 

processed each time to create batch views for the batch layer, but with the speed layer, real-time 

views are created using incremental computation which is much more complex. Moreover, since 

calculation performance is a major factor for the speed layer, heuristic methods may be used to 

calculate the view approximation. As a result, fault occurring is more probable for the speed 

layer than batch layer. However, even if a fault occurs for the speed layer, it will soon be 

replaced with the correct information in the batch views. To address the data velocity challenge, 

the speed layer is used to provide real-time sensor and actuator data processing and query 

answering. 
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I propose using the SensorThings API in order to solve the data variety challenge. To 

complete our solution for data management, I propose using the Lambda architecture (Marz & 

Warren, 2015) on top of the SensorThings API to address both data volume and velocity 

challenges.   

I believe that an IoT system that is implemented based on the SensorThings API and using 

the Lambda architecture can address data challenges as a whole, i.e. variety, volume, and 

velocity. 

In the second chapter, we explain the SensorThings API in detail along with its related 

work. Then in the third chapter, we discuss big data management for IoT as well as Lambda 

architecture. We also review the related literature for big data management for IoT. The fourth 

chapter discusses how to merge the SensorThings API with Lambda architecture to create an 

open geospatial architecture for addressing big data challenges for IoT. We discuss a case study 

implementation of the proposed architecture in chapter five, as well as the experiments to show 

that the proposed architecture is suitable for addressing the big data three Vs challenges for IoT. 

Finally, chapter six provides the conclusion and discusses future work.  
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SensorThings API, Details and Design Decisions 

We use the SensorThings API in our proposed architecture to address the big data variety 

challenge or so-called interoperability. In this chapter, we will talk about the OGC SensorThings 

API in detail. The first section is an introduction to the requirements behind the SensorThings 

API and where the need for the standard arose. Then, we discuss the place of the SensorThings 

API in the IoT reference model. That is followed by a discussion on work related to the 

SensorThings API. Finally, we explore details about SensorThings from its data model to its 

flexible REST-like API and different extensions. 

Introduction 

Similar to Web 2.0 (Hinchcliffe, 2006), the real potential of IoT is in creating innovative 

applications by repurposing and assembling the IoT sensing and controlling capabilities from 

different sources in novel, effective and sometimes unexpected ways. However, today's IoT 

service providers are developing and using their own proprietary software interfaces. Proprietary 

systems are called stove pipes or vertical silos and cannot be combined or extended easily 

(Ahlgren, Hidell, & Ngai, 2016). Using these proprietary systems for IoT results in a vendor 

locked in problem and makes creating integrated innovative applications for IoT very difficult or 

almost impossible (Ahlgren et al., 2016). 

An example of proprietary IoT systems is a smart lighting system that only works with light 

bulbs from the same vendor.  These systems are usually designed as end-to-cloud-to-end systems 

and the cloud is controlled by the vendor. Using these end-to-cloud-to-end systems for IoT 
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introduces interoperability issues between different IoT systems (Ahlgren et al., 2016). Lack of 

interoperability limits the growth of marketing (Fältström, 2016) and IoT innovative 

applications. 

The number of proprietary interfaces are growing as the number of IoT devices increases. 

Consequently, the effort required to interconnect different IoT devices for innovative 

applications is growing exponentially. A standardized interface for IoT sensors is a key solution 

to this problem. There is a need for an open standards-based interoperable Web Application 

Programming Interface (API) that allows different IoT sensing devices and applications to 

interoperate. In other words, in order to address the interoperability issue, we need horizontally 

designed IoT systems with well-defined open standard APIs instead of vertical silos (Ahlgren et 

al., 2016).  

Our GeoSensorWeb Laboratory proposed an Open Geospatial Consortium (OGC) standard 

called “SensorThings API”. I was responsible for designing the data model and API (together 

with other members) and also for implementing the world’s first prototype system. We worked 

on the design and development of a REST-like API that can overcome the above-mentioned IoT 

interoperability issues. The goal was to capture the observations and controlling capabilities from 

IoT devices and make them easily available through data aggregation portals (e.g., cloud-based 

IoT platforms). 

SensorThings API can be the building block to achieving IoT interoperability, enabling us to 

address the IoT data variety challenge. IoT devices can simply connect to such a service and 
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sensing devices can upload their observations to the service by simply using the HTTP POST 

request. Moreover, IoT controlling devices also can be controlled and tasked by users through 

the service. Such a service has the flexibility of updating and deleting the uploaded data using 

simple HTTP PUT/PATCH and DELETE requests. The service implemented based on 

SensorThings API accepts the JavaScript Object Notation3 (JSON) format for the input data and 

also GeoJSON4  for uploading location information. In addition, the retrieved data from the 

service also uses the IoT data model encoded in JSON encodings.  

The service implemented based on the SensorThings API supports the use case as shown in 

Figure 2. The use case starts with some IoT devices registering themselves to the service. For the 

sensing devices, registration information contains the phenomenon observed by one or many 

sensors. As the IoT devices can accept tasks and be controlled, they can also register and publish 

their tasking capabilities to the service. After registration, sensing devices can start uploading 

their observations to the service. Users can then access those observations and send controlling 

tasks to the controlling devices through the service. All the scenario functionalities follow the 

REST-like architecture, i.e. using the HTTP verbs (i.e., GET, POST, UPDATE, and DELETE). 

                                                 

 

 

3 http://www.json.org/  
4 http://geojson.org/  

http://www.json.org/
http://geojson.org/
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Figure 2 SensorThings Service Sample Use Case 

 

Based on standard interfaces for IoT sensors, such as SensorThings API, a Web of Things 

vision can be realized and cloud services can be built to serve a wide variety of sensors all over 

the world. Such services need to handle a very high throughput rate (i.e. a very large number of 

requests per second), since many sensors will frequently register their observations and many 

requests will also be sent from applications using their sensor data for different applications. 

Moreover, the service needs to scale with the growing amount of data it stores without 

sacrificing performance. To sum up, IoT faces data volume and velocity challenges. Thus, we 

need to design an architecture for global IoT devices that can efficiently store and retrieve a large 

number of sensor data and also handle a large number of queries with different types in a very 

efficient manner. 
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OData and SensorThings 

OData (Chappell, 2011) defines an abstract data model (Handl, Pizzo, & Biamonte, 2014) 

and a protocol (Pizzo, Handl, & Zurmuehl, 2014) that lets any client access information exposed 

by any data source. OData is a general-purpose data access mechanism. This means that it 

provides a simple and easy way for different types of clients to access a wide variety of data. The 

OData protocol is based on REST and HTTP. It also defines the method for modelling the data 

as well as how to query them. 

SensorThings API is based on OData in general. It defines the IoT data model for OData and  

adds geospatial queries as well as extended functionalities such as Message Queuing Telemetry 

Transport (MQTT) and Data Array to the OData basics. To sum up, SensorThings uses the 

OData proven data access mechanism, while customizing and extending it for IoT systems. 

IoT Reference Model and Place of SensorThings 

In this Section, we first overview the ITU-T IoT reference model (illustrated in Figure 3) 

(International Telecommunication Union, 2012) before discussing where the place of 

SensorThings would be in this architecture.  

ITU-T defines the IoT reference model as having four layers: Application; Service and 

Application Support; Network; and Device. There are also management capabilities and security 

capabilities associated with the four layers. 
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The Application layer is where IoT applications reside. Physical and virtual sensor devices 

as well as their gateways are part of the Device layer. The Network layer consists of the medium 

for the sensor data to be transferred over the Internet or Network. There are different protocols 

that are popular for the IoT Network layer including, but not limited to, HTTP, MQTT, and 

CoAP. 

 

Figure 3 IoT Reference Model (Adapted from (International Telecommunication Union, 

2012)) 

 

The Service and Application Support layer is where the interfaces for devices and 

applications reside. IoT data processing and storage is also part of this layer. We can see that 
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SensorThings is a standard for the Service and Application Support layer, consisting of a 

standard data model for data storage, a standard REST-like interface for IoT applications, and 

standard HTTP and MQTT interface for devices.  

Related Work 

The OGC SensorThings API was approved on February 2016 and published in July 2016. 

The SensorThings API has been very well-received and has become popular in a short period of 

time due to its powerful data model and interface. In two years, there have been multiple 

implementations of the API for clients to use. In the GeoSensorWeb lab, we implemented the 

first prototype implementation for SensorThings API. SensorUp Inc., a Calgary-based startup 

implemented the first reference implementation of the SensorThings API as it was being 

approved. Mozilla has started an IoT project based on the SensorThings API and they are 

developing their implementation of the API. CGI is developing a SensorThings API 

implementation called Kinota in conjunction with the University of Lafayette. Fraunhofer 

developed an open source reference implementation and Geodan is also implementing a 

SensorThings API called GOST that is written in Go language. Other companies such as 

Compusult and 52North are also working on their SensorThings implementation. These different 

implementations not only represent the maturity of the standard, but also illustrate the absence of 

the vendor locked in issue when using the SensorThings API standard for IoT. 

In order to review the literature, we divided them based on their context. First, we discuss 

other solutions proposed for the IoT interoperability challenge. We further divide this category 
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into two subcategories: adaptor/translator solutions and standard platform solutions. Then, we 

review literature that used and reviewed SensorThings.  

IoT Interoperability Challenge 

In this subsection, we discuss different solutions proposed for the IoT interoperability 

challenge in available literature. The solutions can be categorized into two subcategories: 

adaptor/translator solutions, and platforms.  

Adaptor/Translator Solutions 

An IoT challenge in the modern world is the increasing number of proprietary systems with 

their own protocols and structures. One category of solutions tries to provide an adaptor between 

all the proprietary solutions and connect all the different types together by defining an adaptor 

for each of the proprietary systems. IFTTT5 (If This Then That) is an example of such a solution. 

IFTTT defines different connectors. For example, it has a connector that acts on Philips Hue if a 

certain event happens from Nest. These solutions work, but they are not optimal solutions as the 

effort to develop such solutions increases exponentially with the increase of the number of IoT 

systems. We call these solutions adaptor/translator solutions in this dissertation.  

                                                 

 

 

5 https://ifttt.com/ 
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Apple HomeKit6, Google Home7, and Amazon Alexa8 are other examples in this category 

that attempt to provide many adaptors/connectors for different IoT systems in order to provide a 

unified system in which several IoT systems can work together. Ninja Blocks 9 can also be 

categorized in this category, although it has a very limited number of system adaptors. 

The problem with all the solutions in this category is that as the number of proprietary IoT 

systems grows, the effort required for creating adapters grows exponentially. As a result, 

although these solutions might seem to be working well now, they are not the ultimate solution 

for the interoperability challenge. Moreover, the geospatial aspect of the SensorThings API is a 

unique feature that other solutions lack. In addition, it is worth mentioning the vendor locked in 

challenge that happens when using these adaptor systems. If the vendor shuts down their adaptor 

service for any reason, moving to another system could be extremely expensive, if not 

impossible. 

                                                 

 

 

6 https://www.apple.com/ca/ios/home/ 
7 https://store.google.com/product/google_home 
8 https://developer.amazon.com/alexa 
9 https://ninjablocks.com/ 
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IoT Platforms and Standards 

The other category of solutions emphasizes the standard approach. These solutions define 

standards and try to define a unified way that can be used by different IoT Systems. Xively1 0, 

ThingSpeak1 1 and ThingWorx1 2 are IoT platforms that can be used for IoT systems. However, 

these are not standards and they provide platforms which can result in a vendor locked in 

problem.  

The Xively platform does not have a concrete data model. It allows users to define their 

device template and feed sensor data into that template. This approach can be useful for device 

owners to record and analyze the data from their device. However, when it comes to aggregating 

data from multiple systems and creating integrated applications, the lack of a coherent data 

model creates problems. Users may not be expert enough to define the device template and may 

find out in future that there is more information that they need to gather. Xively can be useful as 

the IoT middleware platform for individual businesses but the open data model would still result 

in silos of data. In other words, it does not address the data variety issue properly. However, the 

SensorThings API has a well-defined data model. Moreover, as it is an API and has multiple 

                                                 

 

 

1 0 https://xively.com/ 
1 1 https://thingspeak.com/ 
1 2 https://www.ptc.com/en/products/iot  
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different implementations, all tested and compliant to the standard, there will not be any vendor 

locked in issue. 

ThingSpeak defines a data model and does not have the Xively problem. However, its data 

model is very simple and may not be comprehensive enough. One of the problems is the lack of 

a unit of measurement. Without a unit of measurement, the data is only useful for its owner who 

already knows the unit of measurement of his/her device. However, the data cannot be 

aggregated with data from other devices for creating integrated applications. We can say that the 

sensor reading is meaningless without its unit of measurement. Also for the geospatial feature, it 

does not use the standard way and only keeps latitude and longitude without the information 

about projection. All in all, it may be simple and easy and might be useful for device owner not 

to worry about the data management platform, but it does not solve the interoperability issue for 

IoT. On the other hand, the SensorThings API focuses on the interoperability and comprehensive 

data model as well as simplicity of use. Moreover, for the geospatial feature, the SensorThings 

API is flexible enough to use different standards. The current suggestion is GeoJSON which is 

standard JSON presentation for geospatial information. However, the data model is defined in 

such a way that it can be used with other standards as well, e.g. OGC IndoorGML (K.-J. Li et al., 

2015). 

In comparison with Xively and ThingSpeak, ThingWorx is better in term of data model as it 

has some predefined templates that can be inherited by users. However, as it is visible from the 

website, it is a total industrial platform, and focuses on a solution rather than a standard. Vendor 
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locked in issue is definite problem in their case. As discussed before, in comparison to 

ThingWorx, the SensorThings API has a well-defined data model and different implementations 

to choose from to prevent the vendor locked in problem. 

The OGC Sensor Observations Service (SOS) (Bröring, Stasch, & Echterhoff, 2012) is a 

standard API for sensor networks that can be used for IoT. It is the closest in comparison to the 

SensorThings API. Basically, SOS and the feedback from its users was one of the motivations 

for starting the work on the SensorThings API. There are two major issues with SOS. Firstly, it is 

complex and not easy to use. Secondly, the interface is not flexible in terms of accessing the 

data. SensorUp Inc. compared SOS to SensorThings API (SensorUp Inc., 2016) and the 

comparison is shown in Table 1. 

Table 1 SOS and SensorThings Comparison (Adapted from (SensorUp Inc., 2016)) 

 SensorThings API SOS 

Encoding JSON XML 

Binding REST SOAP 

Inserting New Sensors or 

Observations 

HTTP POST or MQTT Using SOS specific interfaces, 

e.g., RegisterSensor(), 

InsertObservation() 

Deleting Existing Sensors HTTP DELETE Using SOS specific interfaces, 

i.e., DeleteSensor() 
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Pagination $top, $skip, $@iot.nextLink Not Supported 

Pub-Sub Support MQTT  Not Supported 

Updating Properties of 

Existing Sensors or 

Observations 

HTTP PATCH Not Supported 

Deleting Observations HTTP DELETE Not Supported 

Return Only the Properties 

Selected by the Client 

$select Not Supported 

Return Multiple O&M 

Entities (e.g., 

FeatureOfInterest and 

Observation) in One 

Request/Response 

$expand Not Supported 

 

As we can see from Table 1, there are multiple added functionalities for the SensorThings 

API as compared to SOS, e.g. CRUD operations on all entities. SensorThings API focuses on 

being easy-to-use and lightweight. As a result, it adopts JSON instead of XML and also includes 

support for MQTT. SensorThings also adds support for pagination which increases the server 

performance dramatically when the data size is large. In summary, SensorThings improves SOS 

by making it simpler and easier to use and by adding more functionality. 
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We looked at different adaptor/translator systems, as well as IoT platforms and standards in 

this section. In summary, SensorThings is superior in multiple ways compared to them. Firstly, it 

has a well-defined and comprehensive data model as well as a flexible interface for accessing 

data. Secondly, it is a standard API and multiple implementations are available for users to adopt 

and they can implement the API themselves. As a result, there is no vendor locked in issue. Also, 

SensorThings API focuses on being lightweight for resource constrained devices and supports 

JSON and MQTT for that purpose. SensorThings API keeps geospatial information for its 

Observations which is lacking in some of the comparative systems. Moreover, SensorThings 

keeps the geospatial information in a standard way by using GeoJSON and is flexible for the use 

of other standards such as IndoorGML. 

SensorThings API in Literature 

After SensorThings API was published as an OGC standard in 2016, it has been studied and 

discussed in various literature. Even before publication when SensorThing API was just a 

candidate standard, it was studied and compared in different literature (Gómez Maureira, 

Oldenhof, & Teernstra, 2014; Jazayeri, Liang, & Huang, 2015; Kotsev, Pantisano, Schade, & 

Jirka, 2015). The API was found to be compatible with any open or custom hardware (Gómez 

Maureira et al., 2014) and also easy to use (Kotsev et al., 2015). Moreover, the use of JSON 

encoding and REST-like API are practical and make the API lightweight (Gómez Maureira et al., 

2014; Jazayeri et al., 2015; Kotsev et al., 2015). 
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There has been an attempt to map the SensorThings API to OpenIoT (van der Schaaf & 

Herzog, 2015). OpenIoT is an open source middleware implementation for supporting IoT 

applications. Semantic Sensor Network (SSN) Ontology is the core of OpenIoT which is 

influenced by Sensor Web Enablement (SWE) which is the base for the SensorThings API. As a 

result, the core concept of OpenIoT and SensorThings are related and this paper attempted to 

map their two data models. This paper states that the SensorThings API is easy to use and 

provides simple abstraction of IoT resources, despite SSN-ontology which is complicated. As a 

result, finding a bridge between OpenIoT to SensorThings would lead to simplicity and ease of 

use. This paper shows the value of the SensorThings API as it tries to map another concept, 

OpenIoT, to the simple and easy to use standard, SensorThings. 

After the SensorThings Sensing part was published, work was started on the Tasking part. 

There was an attempt to extend the API with Tasking in some literature (C. Y. Huang & Wu, 

2016b, 2016a) as well. The SensorThings API Tasking part has been approved and will be 

published soon. 

There is recent work on mapping INSPIRE to the SensorThings API (Kotsev et al., 2018). 

These mappings show the value and adoption of SensorThings API as a standard, as other 

systems start to move to this standard by mapping their current models. The INSPIRE Directive 

is a European Union spatial data infrastructure that enables the sharing of environmental spatial 

information across Europe and mapping this infrastructure to SensorThings API has proven 

valuable. 
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There is research that was very recently published about the interoperability of the 

SensorThings API (Teixeira, 2018). This master thesis developed an application based on 

multiple implementations of SensorThings API as a proof of concept about the interoperability 

of the SensorThings API. This work considers the SensorThings API as easy-to-use and a good 

fit for addressing the heterogeneity challenge for IoT. 

Moßgraber et al. in (Moßgraber, Hilbring, van der Schaaf, et al., 2018) focused on crisis 

management and how data from different sources need to be aggregated in Decision Support 

Systems (DSS) for managing a disaster which leads to a data heterogeneity issue. They came to 

the conclusion that the SensorThings API is a helpful solution that is harmonizing heterogeneous 

IoT data for different processing services for crisis management. There is also other research 

(Moßgraber, Hilbring, Pouli, & Padeletti, 2018) for creating a knowledge base for cultural 

heritage protection against climate change in which the ontology is defined on top of the 

SensorThings API. These two research studies are part of the European Horizon 2020 project. 

The smart emission (Grothe, Carton, Van Den Broecke, Volten, & Kieboom, 2016), 

mySMARTLife (mySMARTLIfe Consortium Partners, 2017), and analysis of sensor signals for 

monitoring of heritage buildings (Watson, Kunz, van der Schaaf, & Ubertini, 2018) projects are 

also part of the Horizon 2020 project that uses the SensorThings API as the standard for IoT. 

Hussain and Wu in (Hussain & Wu, 2018) designed the Information and Communication 

Technology (ICT) framework for sustaining the interoperability by applying the Model Driven 

Software Development (MDSD) paradigm and ontology. In order to validate their framework, 
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they chose to use the SensorThings API and apply their ontology framework on top of it – which 

shows the value of the SensorThings API in addressing the interoperability challenge. 

Trilles et al. in (Trilles et al., 2017) used the SensorThings API as the interoperable IoT 

service for developing their Sense Our Environment (SEnviro) platform. This project is a smart 

city system which develops the entire IoT stack from device to application and the SensorThings 

API is used as the IoT standard for their service layer. 

Lue et al. in (Luo, Saeedi, Badger, & Liang, 2018) used the SensorThings API as the IoT 

platform for monitoring human and animal use of industrial linear features. They created some 

devices for counting animals and humans and for collecting the data. In order to persist and 

access their sensor data, they chose to use the SensorThings API as an interoperable IoT 

standard. 

In summary, we can see that the SensorThings API appears in various literature even before 

it was officially published and it shows that the standard was well-received by the IoT 

community in a short amount of time. Apart from literature, the SensorThings API has been 

implemented many times thus far, as mentioned before, and it has been adopted for multiple 

industry and research IoT projects – showing the maturity of the standard. These 

implementations and adoption will be discussed in more detail in the Results and Discussion 

chapter. The next sections of this chapter elaborate on the SensorThings data model and interface 

in detail. 
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Data Model 

As mentioned before, the SensorThings API has three different parts – the Sensing part, 

Tasking part, and Rules engine part. Only the Sensing part has been officially published. In this 

section, we will discuss details of the Sensing part which is the focus of this dissertation.  

As we have seen in previous sections, a standard and comprehensive IoT data model, 

together with geospatial enablement, differentiates the SensorThings API from other literature 

and research work on IoT. We believe that IoT systems with a variety of requirements can be 

easily modeled with SensorThings API for different use cases. In this section, we will focus on 

the SensorThings API data model and design decisions for each of the data model entities. 

The SensorThings API follows the OGC Observation and Measurement (O&M) 

specification (Cox, 2011) in general. Figure 4 shows the SensorThings Sensing part data model. 

The data model for the SensorThings Sensing part contains eight entities. There are two common 

properties for all of these entities (except Observation as we will see later): description and 

name. Description is a short description of the entity and name is a descriptive label for the 

entity. Observation does not have these properties as it is the reading of the sensor and all its 

details can be found from related entities. 

The main entity, which is also the connection part between the Sensing and Tasking parts, is 

a Thing. A Thing for SensorThings has the same definition as Thing for IoT. Put simply, the 

SensorThings Thing is a physical or virtual sensing and tasking device, which means that it can 

have multiple sensors and actuators. A Thing can be different for the same IoT system based on 
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use cases and application requirements. As an example, consider a smart scale. For the scale 

manufacturer, the Thing is the scale. But from the perspective of a user who uses this scale 

together with other health and tracking devices for tracking his/her health, the Thing is the user 

and the scale is just one of the sensors measuring information for that user. As a result, the most 

important factor for modeling the Thing is the application requirements and use cases. 

 

Figure 4 SensorThings Data Model (Adapted from the Standard Specification (S. Liang et 

al., 2016)) 
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Aside from the name and description that are common in most of the entities, Thing has a 

properties property. Properties is a JSON and can contain arbitrary information about the Thing. 

As a result, it may not be searchable amongst all Things of the system.  

A Thing can have a Location. The Location is the current physical position of the Thing. As 

the SensorThings is a standard, it uses a standard way for storing Location which is GeoJSON. 

GeoJSON (Butler et al., 2016) is a geospatial standard for recording location. However, there are 

other standards for more sophisticated situations such as indoor positioning. OGC IndoorGML 

(K.-J. Li et al., 2015) and CityGML (Kolbe et al., 2012) is one of the examples. In order to make 

the system unified and queryable across the whole system, as well as across multiple systems, 

GeoJSON is used as a primary type for Location. But if you need to use other standards such as 

IndoorGML, you are allowed to link more than one Location entity to a Thing. In other words, a 

Thing can have more than one Location, and they are all different representations of its current 

location. 

SensorThings is flexible with its use of the Location entity. If two Things have the same 

Location, a user can either reuse the Location entity or create a new one with the same 

information. However, there are best practices in order for the system to be the most useful from 

an application point of view. For the SensorThings server developers it is best practice to 

implement the system in a way that reuses the Location entities in case there are two identical 

Location entities. For SensorThings users, if the server does not support the automatic reuse of 

Location, it is best practice to reuse Location entities by searching and, if possible, linking the 
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existing Location to their Thing. This way it will be easier for applications to find all the Things 

in a specific Location by accessing Locations({id})/Things. Even if these best practices are not 

followed, with the SensorThings rich query options, performing such a query is possible. It may 

only need more processing on the server to retrieve the result, which makes using this best 

practice even more important for server developers. The query will be explained in the Data 

Retrieval section. 

Apart from name and description, Location has encodingType and location. EncodingType 

specifies which standard is used for representing Location’s location. Location is the position 

information encoded in encodingType. The major standard used for encoding location is 

GeoJSON.  

There are two types of Things with regards to their Location: static and moving. Static 

Things are those that stay in the same position either for its whole life or for a long period of 

time. Examples of these Things are sensors and devices that are used at home. Moving Things 

are those that change their Location frequently. Sensors and devices connected to cars and public 

transit are examples of these Things. 

For static Things, the current Location is all the information that we need. However, for 

moving Things, we need to keep track of previous Locations. For this purpose, SensorThings has 

an entity called HistoricalLocation. HistoricalLocation specifies which Thing was at which 

Location at what time. The only data it keeps is time and links to Thing and Location. Time 

shows the first time the Thing was seen at the Location. HistoricalLocation is one of the entities 
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that does not have name and description as they are not required. We emphasize that since 

Location is the current position of the Thing, we cannot keep track of moving Things without 

HistoricalLocation. 

Thus far, we have looked at how to model a Thing together with its Location depending on 

whether it is moving or static. Now we will examine how to store readings/observations of the 

sensing devices. Each Thing can sense multiple phenomena. For example, a weather station can 

sense temperature, humidity, wind direction, wind speed, rain precipitation, and Particulate 

Matters 2.5mm (PM2.5). For this example, Thing is the weather station and Location is the 

position of the weather station. As the Thing is most probably static, we don’t need to worry 

about moving and tracking the HistoricalLocations. 

Datastream groups Observations of the same type for a Thing. Observations of a 

Datastream are recorded by the same Sensor and are all observing the same phenomenon. In the 

example of the weather station, we have six Datastreams for grouping each type of readings, 

temperature, humidity, wind direction, wind speed, rain precipitation, and PM2.5. Each 

Datastream’s Observations have the same type, observe the same phenomenon, and are read by 

one Sensor. Aside from name and description, a Datastream has observationType, and 

unitOfmeasurement. ObservationType specifies the type of Observations grouped by that 

Datastream. For example, it can be numeric, true/false, categories, etc. In order to define these 

observationTypes in a standard way, SensorThings uses O&M (Cox, 2011) conceptual model. It 

has defined category, count, measurement, truth, and complex observationTypes. 



 

 

 

  

 

34 

The UnitOfMeasurement specifies the unit for Datastream’s Observations. This property is 

mostly useful for numeric/measurement Observations. It is a JSON object with three fields: 

name, symbol and definition. The definition is a URI for defining the meaning of the 

measurement. The definition is the means of unification between different unitOfMeasurement. 

For example, people may use C or degC or degreeC or °C for the Celsius’ symbol or something 

else in another language. However, using the same definition URI shows that all these 

unitOfMeasurements are the same. 

There are three optional properties for Datastream: observedArea, phenomenonTime, and 

resultTime. ObservedArea specifies the area that is observed by all the Observations of that 

Datastream. PhenomenonTime is a time period and it specifies the time range this Datastream 

has the Observations for. ResultTime is like phenomenonTime except that it shows the range of 

resultTimes for Observation. 

Each Datastream has a Sensor and an ObservedProperty. A Sensor entity keeps information 

about the sensor device that is recording the Observations. Other than description and name, it 

has a metadata and encodingType. EncodingType defines the type of metadata. For example, it 

can be SensorML (Botts, Robin, Greenwood, & Wesloh, 2014), PDF, or the html site. Metadata 

contains detailed information about the Sensor. It is recommended as the Sensor data sheet or 

SensorML. 

Each Sensor can be connected to more than one Datastream. SensorThings is flexible about 

how to use the Sensor entity. Each Datastream can have its own unique Sensor entity and detail 
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information of the sensor such as, the serial number or Media Access Control (MAC) address, 

can be persisted in Sensor entities. Another way is reusing Sensor entities when the same sensor 

type is used in different Datastreams. In this case, it is possible to see all the Datastreams that 

are recorded by the same Sensor. For example, SH131 3 is a temperature-humidity sensor. You 

can check all the Datastreams and Things that are using this Sensor by checking Datastreams 

that are connected to that Sensor with Sensors({id})/Datastreams. As a result, depending on the 

use case, Sensor can be modeled and used differently. However, the second approach may be 

more useful from an application point of view. Same as with Location, even if Sensor entities are 

not reused, there might be other ways to get all the Datastreams of the same Sensor type with the 

rich query options of SensorThings. 

As mentioned before, each Datastream has one ObservedProperty. ObservedProperty is the 

phenomenon observed by Datastream’s Observations. Examples of this phenomena are weather 

temperature, or dust particulates in the air. Other than name and description, ObservedProperty 

has definition property. Similar to Location and Sensor entities, although SensorThings is 

flexible and does not force the reusing of entities, it is best practice to reuse ObservedProperty 

entities in case Datastreams are observing the same phenomenon. However, in cases such as 

when using different languages, definition property is the joint point between 

                                                 

 

 

1 3 http://wiki.seeedstudio.com/Grove-TempAndHumi_Sensor-SHT31/ 
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ObservedProperties. Definition is a URI containing the definition of the phenomenon and it is 

used for differentiation purposes between same phenomenon that use different name and 

description, and can be in different languages. With the reuse approach, we can access all of the 

Datastreams observing the same phenomenon with ObservedProperties({id})/Datastreams. For 

the second approach, with the SensorThings rich query option, we can retrieve 

ObservedProperties that have the same definition and then get all of their Datastreams. 

As mentioned before, each Datastream has many Observations. Observation is the entity 

that records sensor readings. The type of reading, the sensor that takes the reading, and the 

phenomenon that the reading is observing can be found from the Datastream attached to the 

Observation, and the Sensor and ObservedProperty that are attached to the Datastream. 

Observation does not have name and description. It has result, phenomenonTime, and 

resultTime. Result records the reading from the sensor. PhenomenonTime is the time when the 

Observation happened. ResultTime is the time that the result is recorded in the system. Result 

and phenomenonTime cannot be null as they are the core information required for an 

Observation. Result’s type should match the observationType specified in the Datastream.  

ResultTime is a time instance and it specifies the time the result is recorded. However, 

phenomenonTime is a time object. It can be time instance or time interval. Having the flexibility 

of recording phenomenonTime as instance or interval can be useful in different use cases. Using 

time instance for phenomenonTime is commonly used for Observation. For the example of the 

weather station, keeping time instance can be efficient. However, for video Observations, time 
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instance is not sufficient. Video Observation is the use case for which time interval is the perfect 

match. In that case, phenomenonTime has the starting time of when that video is taken and also 

the time that it finishes. 

The other use case for which the time interval can be useful for phenomenonTime is when 

certain granularity for phenomenonTime is not important. For example, consider a case when the 

seconds that the Observation happens is not important. In that case, all the Observations 

happening within a certain minute of an hour can have a time interval with the start and end of 

that minute.  

It also can be very useful in the case of sampling and aggregation. Raw Observations can be 

taken and then aggregated for every minute and persisted in another aggregated Datastream. In 

this case, Observations of such a Datastream has the aggregated value as their result and the 

phenomenonTime is the time range for which the Observations are aggregated. 

Each Observation, in addition to having a linked Datastream, has a FeatureOfInterest. 

FeatureOfInterest is the feature of the phenomenon observed by the Observation. The 

FeatureOfInterest entity has encodingType and feature, as well as name and description. 

EncodingType specifies which standard is used to represent the feature. Feature is the detailed 

description of FeatureOfInterest with the encoding specified in encodingType. As with Location, 

we recommend using the well-known geospatial standard, GeoJSON. 

In a lot of situations, the FeatureOfInterest is identical to the Thing’s Location. For example, 

for a thermostat that is in the living room, the Location and FeatureOfInterest are both the living 
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room’s position/area. However, in the case of remote sensing, Location and FeatureOfInterest 

are different. A simple example is a camera or satellite. Their position is different from the area 

they are observing. For the camera, this area is close to the camera’s position, whereas it is quite 

far for the satellite. 

Since most of the use cases have the same Location and FeatureOfInterest, SensorThings 

has the automatic option for creating the FeatureOfInterest from the Thing’s Location, if the 

FeatureOfInterest is not specified during the creation of the Observation. In other words, if you 

create an Observation and you don’t link the Observation to a FeatureOfInterest in the request, 

SensorThings will create or reuse a FeatureOfInterest based on the information from the Thing’s 

Location. Note that since the relationship between Thing and Location is not mandatory, the 

request of creating Observation without linking the FeatureOfInterest will fail, if a Thing does 

not have a linked Location. Every time a SensorThings server needs to automatically link the 

new Observation to a FeatureOfInterest, it first checks if the Thing has a Location. If not, the 

request fails. Then, the service checks if there is an existing FeatureOfInterest with that Location 

information. If it exists, the service links the new Observation to the existing FeatureOfInterest. 

Otherwise, the service will create a new FeatureOfInterest and link it to the new Observation.  

SensorThings forces the reusing of FeaturesOfInterest when it is created and linked 

automatically by the service. However, to make it simpler for the clients, it is not mandatory to 

reuse FeatureOfInterest when clients are creating and linking FeatureOfInterest themselves. 

Best practice for the service developer is to catch these cases and handles reusing the 
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FeatureOfInterest in the background so that it does not affect client experience. It is also always 

best practice for clients to try to reuse FeatureOfInterest whenever possible and more 

importantly to let the server handle FeatureOfInterest in case it is the same as the Thing’s 

Location. 

When FeaturesOfInterest are reused throughout the system, different Observations for a 

specific FeatureOfInterest can be accessed with FeaturesOfInterest({id})/Observations. With 

SensorThings query options, it can be further filtered to access the readings for a specific time 

interval. Same as with other entities, even if FeaturesOfInterest are not reused, those queries are 

possible with SensorThings rich geospatial query options. However, it may put more load on the 

service, which makes it important for the service developers to follow the best practices. 

SensorThings Application Interface 

The previous section has explained the how-tos of modeling IoT systems with the 

SensorThings API. In this section, we discuss the SensorThings API application interface by 

exploring the requests and protocol for interacting with the API. We start with data retrieval 

before moving onto how to post data to SensorThings and we link this section with the device 

interface.  

Data Retrieval 

As mentioned before, SensorThings is customizing and extending OData for IoT. For data 

retrieval, SensorThings has a REST-like interface as well as a set of query options and functions 

for filtering data. To access all the data, i.e. historical data as well as recent data, HTTP protocol 
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and GET request are used. The following explains the URL convention and query options that 

can be used in GET requests. 

SensorThings is following OData URL conventions for the requests. The only difference 

between this convention and regular RESTful is using @iot.id in parenthesis in order to refer to a 

specific entity. Related entities can be accessed following the OData convention as 

/Entities({id})/RelatedEntity(ies).  

SensorThings also makes access to the entities easier by providing @iot.selfLink and 

@iot.navigationLink. Accessing the root URL of SensorThings returns the link to access each 

entity. For each entity, the @iot.selfLink provides the URL to access that specific entity. 

Moreover, each entity @iot.navigationLink provides a link to its related entities. Knowing the 

request URL, entities can be accessed by sending HTTP GET request to the SensorThings 

service.  

Furthermore, SensorThings API provides a wide variety of query options for accessing the 

data. Using these query options, the service response can be customized in terms of number of 

returned results, content, and order.  

$expand and $select query options are used for controlling the level of detail in the 

SensorThings service response. With $expand, information from related entities can be 

embedded in the response for a request to read the entity(ies). $select limits the properties that 

will be returned for each entity. For example, with $select it can be specified for the query to 
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return only result property for Observations in the read request. As a result, the response will not 

contain other properties such as phenomenonTime or resultTime. 

The $orderby query option is used for sorting the SensorThings response based on one or 

more properties. The $top query option can limit the number of entities that will be returned in 

the SensorThings response. $skip is also used to skip a specific number of entities before 

returning the result from the SensorThings service. $top, $skip, and $orderby are meant to be 

used together for pagination. Using a specific order, $top and $skip can be used to return entities 

in pages. Pagination is a use case of these query options. However, they can be used individually 

and for other purposes as well. For example, getting the latest Observation is one of the use cases 

which can be achieved by ordering the response with phenomenonTime and then asking for the 

top one. 

With the $count query option set to true, the service returns the total number of entities 

found for the request. If pagination is enabled on the service, the response may only contain a 

limited number of entities but with $count=true, the service also returns the total number which 

could be useful for clients.  

One of the most useful query options in SensorThings is $filter. With $filter, clients can 

filter the results from the SensorThings service in a very flexible manner. SensorThings supports 

arithmetic operators as well as logical operators. There is also a wide variety of functions that 

can be used for filtering the results. Moreover, spatial functions are one of the things which 

differentiate SensorThings from the other IoT platforms and proposed standards. For example, 
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finding the closest sensor to a specific location or another sensor; finding all the sensors in a 

bounding box; and finding sensors that are observing the same area are easy using $filter in 

SensorThings. 

The query options can also be used to query expanded entities. Clients can filter the 

expanded entities in the request by specifying the filters in parenthesis in front of the $expand 

query. This capability makes SensorThings more flexible and easy to use for clients.  

 SensorThings uses @iot.nextLink as a means of pagination. Clients can manually apply 

pagination for the service by using $top and $skip or using the pagination that is provided by the 

service. SensorThings developers are all encouraged to implement pagination by limiting the 

number of results returned and providing the @iot.nextLink to access the next page of results. 

Providing pagination boosts the performance of the SensorThings service for most use cases and 

is strongly recommended for SensorThings service developers.  

MQTT 

The SensorThings MQTT extension provides access to real-time data using the MQTT 

protocol. This is another way of accessing SensorThings data in real-time in addition to the 

HTTP protocol. One of the most important use cases for MQTT in SensorThings is receiving 

Observations in real-time. The topic that is used for subscribing to MQTT is a collection or 

navigation collection URL pattern without the service address, i.e. the path starts from v1.0/. 

After subscribing to a topic, each time an insertion/modification happens to that collection, the 
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client will receive a MQTT notification with the JSON representation of the added/modified 

entity. 

DataArray 

Observations can be retrieved in SWE common DataArray format as well. This feature is 

added to SensorThings to make it interoperable with SWE common compatible services as well 

as for efficient retrieval of Observations as it removes redundant information in the response. 

$format=DataArray can be used to retrieve Observations in DataArray format. In this case, 

Observations will be grouped by their Datastream and response will be formatted to DataArray 

format. 

Data Insertion and Modification 

HTTP requests for the insertion and modification of data for SensorThings. POST request is 

used for creating entities; PATCH for updating an entity; and DELETE for deleting an entity. 

Also whilst PUT can be used for updating or resetting an entity, a SensorThings service may or 

may not implement this functionality. 

In order to create an entity, the POST request should be sent to the entity collection URL or 

relative navigation collection URL with a valid entity JSON as the body. For updates, the 

PATCH request should be sent to the @iot.selfLink of the specific entity. The PATCH request 

body contains a JSON with the properties of the entity that are modified. Sending a DELETE 

request to @iot.selfLink results in deleting that specific entity from the collection. If the server 

also supports PUT for updates, the entity will be replaced completely with the JSON entity in the 
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PUT body. Thus, the JSON entity in the PUT request body must have all the mandatory fields 

even if the values are unchanged. 

For insertion and deletion, some integrity constraints apply. Insertion integrity constraints 

are applied to Datastream and Observation. For creating a Datastream, it must be linked to a 

Thing, a Sensor, and an ObservedProperty. Similarly, in order to create an Observation, it must 

be linked to a Datastream and a FeatureOfInterest. There is an exception for this constraint for 

creating an Observation. If the FeatureOfInterest is the same as the Thing’s Location, there is no 

need for the POST request to contain the link from Observation to FeatureOfInterest. In this 

case, the SensorThings service must automatically create or reuse a FeatureOfInterest with the 

corresponding Thing’s Location information. Note that the link between Observation and 

FeatureOfInterest is mandatory and this exception only makes the client request easier. 

There are also integrity constraints that are applied on most of the entities when an entity is 

deleted. When a Thing is deleted, all of its corresponding Datastreams and HistoricalLocations 

will be deleted automatically by the SensorThings service. Also, deleting a Datastream or a 

FeatureOfInterest results in the deletion of all the linked Observations. By deleting Sensors or 

ObservedProperties, all of the corresponding Datastreams will be deleted by the SensorThings 

service. Finally, when a Location is deleted, the SensorThings service will delete the linked 

HistoricalLocations automatically. 

SensorThings API provides the capability for embedding entities inside the creation request. 

In other words, an entity can be created together with its related entities in one request. This 
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capability is called deep insert. In order to deep insert, the POST request body should contain the 

valid JSON for each of the related entities that are supposed to be created inline. The POST 

request body can have some inline entities and some links to existing entities. The JSON body 

looks like the GET response when the related entity is expanded using $expand. 

MQTT 

In addition to HTTP POST, the MQTT protocol can be used for creating Observations. To 

this end, the valid JSON for creating an Observation should be published to the Observations 

topics, i.e. the topics used for subscription to Observations. These topics include collection and 

navigation URL paths to Observations without the service address. Insertion integrity constraints 

for Observation apply for MQTT creation as well. 

DataArray 

Similar to retrieving Observations in DataArray format, Observations can be created using 

DataArray. To this end, the JSON request body contains multiple Observations grouped by their 

Datastream and in DataArray format. The POST request should be sent to a special URL path, 

/v1.0/CreateObservations. This capability provides an efficient way of creating multiple 

Observations at the same time from the sensor devices. 

Batch Requests Extension 

SensorThings API supports batch processing in order to provide an efficient way for 

resource-constrained IoT devices to send multiple requests in one communication to the server. 

Multiple CRUD requests can be sent to the SensorThings server as one HTTP request using 
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batch request. SensorThings API is following OData by supporting batch request with the 

exception that the OData header should be removed from the request. Just as with OData, 

SensorThings is using Multipart MIME v1.0 message as a standard for representing batch 

request and response. Batch request is considered an extension for SensorThings. Thus, server 

support for batch request is optional. However, it is highly recommended as it is useful for 

effective communication between SensorThings with resource-constrained IoT devices. 

MultiDatastream Extension 

SensorThings API provides MultiDatastream extension to support complex Observations. 

For most of the use cases, Observations have simple types such as number, categories, etc. 

However, there are use cases in which Observations have a complex type or there is an array of 

Observations. One example of this situation is when more than one parameter is important for 

the Observation. For example, when a sensor reading depends on the temperature of the unit and 

the sensor reading should be interpreted differently with respect to the temperature unit. In this 

case, the SensorThings MultiDatastream extension can be used. A MultiDatastream observes 

more than one phenomenon and its Observations are in forms of array. For the previous 

example, each Observation of the MultiDatastream is an array with two elements, the first is the 

sensor reading and the second is the temperature of the unit. 

MultiDatastream’s properties are slightly different from Datastream. First of all, the 

observationType is always O&M ComplexObservation as all other observationTypes can be 

modeled using Datastream. In order to specify the observationType for each element of the 
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Observation array, MultiDatastream has a property called multiObservationDataType which is 

an array of O&M observationTypes. Moreover, unitOfMeasurement is a JSON array as it needs 

to define the unit of measurement for each of the elements in the Observation array. All of the 

other properties are the same as Datastream. 

As mentioned above, a MultiDatastream can observe multiple phenomena. As a result, each 

MultiDatastream can be related to more than one ObservedProperty. In other words, a 

MultiDatastream has an ObservedProperty for each element of its Observation array. The rest of 

the relations are the same as Datastream and MultiDatastream has one Thing and one Sensor and 

multiple Observations. 

MultiDatastream is an extension to SensorThings and supporting that is optional. Even in 

the case of complex Observations, the system can be modeled without the MultiDatastream 

extension. With multiple Datastreams, the system can correlate their Observations at accessing 

time with queries. However, using MultiDatastream makes it easier to use and easier to 

understand for clients. In the case of the server needing to support complex Observations, this 

extension provides developers with guidance on how to add the capability to the server. Support 

for that is highly recommended. 

Summary 

SensorThings API is an open geospatial standard for IoT that is approved by OGC. 

SensorThings defines the data model and the retrieval API for managing IoT data. The 

SensorThings data model is comprehensive and can address most of the IoT use cases. There is a 
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Thing which is the sensor system. A Thing can have Locations as its current location and 

HistoricalLocations as the previous locations. A Thing has multiple Datastreams. A Datastream 

groups Observations observing the same phenomenon, called ObservedProperty, and are 

generated by the same Sensor. Finally, Observations are where sensor readings are stored and 

FeatureOfInterest records the feature observed by each Observation. 

SensorThings API adopted OData and a REST-like interface for interacting with IoT data. It 

also has a MQTT extension, a solution for resource-constrained IoT devices. Moreover, the API 

provides MultiDatastream and Batch Requests extensions for more complicated use cases in IoT. 

SensorThings API is a solution for homogenizing the heterogeneous IoT data and provides 

interoperability between different IoT systems. The sensing part was published in July 2016 and 

in the two years since then, it has been mentioned in different literature, research, and industry 

projects. Furthermore, there are multiple implementations of the API available, as well as, some 

in progress which prevent the vendor locked in problem. The evidence shows the maturity of the 

standard and make it a good fit for addressing the data variety challenge for IoT. 

Future Work 

The SensorThings API has a second part called the Tasking part. The Tasking part defines 

the data model and interface for controlling devices or so-called actuators. The SensorThings 

Tasking part is going to be published in late 2018 as an OGC standard. The Sensing part together 

with the Tasking part make SensorThings a comprehensive standard for all aspects of IoT. It fills 
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the gap between sensing and controlling devices and provides a standard API for IoT devices to 

talk to each other. 

Furthermore, there is a work in progress for defining events for the SensorThings API called 

the Rules engine part. This part connects SensorThings Sensing and Tasking parts together with 

the definition of an event. For example, the event defines a situation for sensor readings in the 

Sensing part and if the event occurs different tasks can be generated in the Tasking part. 

SensorThings can also be merged with JSON-LD to become linked data ready. Providing 

linked data helps machines to understand SensorThings better and SensorThings can use that to 

be linked to other system sources. Also, other systems can digest SensorThings resources 

smoothly. JSON-LD provides a standard lightweight linked data format. SensorThings can easily 

be integrated with JSON-LD. For that end, @context needs to be defined for each of the 

SensorThings entities and their properties. Since SensorThings is also using JSON format and 

the entities and their properties are well defined, @context can be defined for them easily and the 

integration will be smooth. Providing comprehensive JSON-LD context is the future work for the 

SensorThings API. 
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Data Management for Internet of Things and Lambda Architecture 

The main objective of this dissertation is to propose an architecture for IoT that overcomes 

big data management and geospatial challenges. In this chapter, we explore the big data 

challenge in IoT as well as Lambda architecture as a potential solution for the big data challenge 

in general. Then, we discuss the proposed architecture and how it meets the big data 

compatibility requirements in the next chapter.  

Big Data and Internet of Things 

One of the most important areas of future information technology is big data and its 

emerging technological development. In 2011, the big data concept and its potential was 

introduced in an EMC/IDC research report (Gantz & Reinsel, 2011). It was stated in the 2012 

World Economic Forum in Davos, Switzerland, that big data has become a strategic economic 

resource and has high value that is similar to currency and gold in terms of significance and 

liquidity (Alharthi, Krotov, & Bowman, 2017; Johnson, 2012). In recent years, many enterprise 

organizations have started investing in different solutions to cope with big data challenges (IDG, 

2015). They realized that an important source of competitive advantage in future is big data 

analytics (Alharthi et al., 2017). 

The total amount of generated data has increased nine times in a five year period, according 

to the International Data Corporation (IDC) report (Gantz & Reinsel, 2011). It is also predicted 

that this amount will double every two years (Chen, Mao, Zhang, & Leung, 2014; Yaqoob et al., 

2016) . As one of the buzzwords for the past decade, big data refers to large data sets that need 
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technologies beyond traditional data management tools to manage and process (Akoka, Comyn-

Wattiau, & Laoufi, 2017).  

IoT and social media are considered the most important drivers for rapid progress on big 

data technologies and applications (Lee, 2017). IoT devices such as wearables, environmental 

sensors and smart home appliances are generating a large portion of worldwide data (Lee, 2017). 

For IoT a great many sensors are embedded into different devices, collecting various types of 

data such as environmental data, geographical data, astronomical data, and logistic data. As 

Cisco reported, the number of internet-connected devices has already exceeded the world 

population (Evans, 2011). The number of internet-connected devices is expected to double in 

size from 22.9 billion in 2016 to 50 billion by 2020 (Figure 5) (Ahmed et al., 2017). These 

internet-connected devices include, but are not limited to, Wi-Fi enabled sensors, smart home 

appliances, and wearable technologies. As IoT is formed by these devices (Figure 6), it shows 

how IoT is responsible for the data deluge (Ahmed et al., 2017). Currently, IoT data is not the 

dominant part of big data. However, by 2030, as predicted by HP, there will be a trillion sensors 

generating data and IoT can be the most important part of big data (Chen et al., 2014). 
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Figure 5 Trend in the Number of Internet-Connected Devices (Adapted from (Ahmed et al., 

2017)) 

 

 

Figure 6 Internet-Connected Devices Forming IoT (Adapted from (Ahmed et al., 2017)) 
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Akoka et al in (Akoka et al., 2017) surveyed the literature on big data and did a statistical 

study on publication trends and subject, application and focus of the papers. The publication 

trend showed that there is an exponential growth in number of research papers in the area of big 

data. They found out that Cloud and Analytics were the topics for most of the published papers, 

whilst in spite of the fact that IoT is one of the main markets for big data application, IoT is one 

of the least addressed topics in the papers. They expect that IoT will become one of the hottest 

areas in big data research with an increase in the number of research publications very soon. 

(Akoka et al., 2017) 

IoT and big data research are two technologies that are interdependent. With the growth of 

IoT applications, more and more data will be generated both in terms of quantity and 

heterogeneity. As a result, it provides opportunity for the application and development of big 

data. On the other hand, the research advances and business models of IoT can be accelerated by 

the application of big data technology.  

As we saw, data management in IoT is a hot topic and needs improvement to cope with the 

data deluge that has already started. In this thesis, we propose an architecture for data 

management for IoT that addresses big data management challenges.  

Since 2001, big data management challenges have been defined using the 3Vs model, 

Volume, Variety, and Velocity. The 3Vs model was first introduced in a META report (Laney, 

2001) and it has been used in different literature and by different organizations such as IBM and 
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Microsoft to define big data and its challenges (Yaqoob et al., 2016). Through the years more Vs 

were added to this model such as, Value (Mishra et al., 2015), Veracity (Normandeau, 2013; 

Ward & Barker, 2013), Validity (Normandeau, 2013), and Volatility (Klarity, 2015). However, 

since the 3Vs are the main challenges, in the latest definition by Gartner (Gartner, 2018), big 

data is still defined with the three characteristics of high-volume, high-velocity, and/or high-

variety. Thus, in this dissertation, our focus will be on variety, volume, and velocity, as main 

challenges we face in big data. 

In the 3Vs model, volume refers to the massive amount of data that is difficult to collect, 

manage, and analyze with current infrastructures and tools. Variety refers to heterogeneous data 

that is generated by different sources with different structures or may even be unstructured. And 

finally, velocity refers to real-time data streams that are continuously generated with high 

frequency. The big data generated in IoT has the same characteristics: heterogeneity, large size, 

and high rate of data streams. 

In the next section, we review the literature and also off-the-shelf solutions for big data 

management for IoT. Then, we explore Lambda architecture as a potential solution for 

addressing big data volume and velocity challenges. We explain our proposed architecture in the 

next chapter and elaborate on how it can address all 3Vs challenges of big data. 

Related Work 

We categorize the related works into two categories: the research and literature, and the 

platforms and technologies available for big data management. 
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Related Literature 

In this section, literature about IoT and its data management is reviewed. IoT is a wide 

research area and also an emerging technology. Different surveys about IoT research challenges, 

prospective applications, and architectural elements have been conducted in recent years (Al-

Fuqaha, Guizani, Mohammadi, Aledhari, & Ayyash, 2015; Atzori, Iera, & Morabito, 2010; 

Gubbi, Buyya, Marusic, & Palaniswami, 2013; S. Li, Xu, & Zhao, 2014; Miorandi, Sicari, De 

Pellegrini, & Chlamtac, 2012; Zeng, Guo, & Cheng, 2011). These surveys are mostly focused on 

high level issues and architecture of IoT.  

Atzori et al. (Atzori et al., 2010) presented different visions for IoT (things-oriented, 

internet-oriented, and semantic-oriented). They also surveyed enabling technologies, open issues, 

and some applications for IoT. Zeng et al. (Zeng et al., 2011) focused on web-oriented 

architecture for IoT and its open issues in their survey. Miorandi et al. (Miorandi et al., 2012) 

categorized and explained research areas and ongoing initiatives for IoT.  

Gubbia et al. (Gubbi et al., 2013) surveyed IoT with cloud-centric vision. They proposed 

the use of a specific framework such as Aneka instead of using Cloud storage and MapReduce. 

Aneka is a platform as a service (PaaS) that can be integrated with Microsoft Azure or Amazon 

EC2. The proposed solution in this dissertation is the architecture and it is one level of 

abstraction higher than the proposed Cloud system in (Gubbi et al., 2013), since they used 

technologies and platforms in their proposed solution. I propose the architecture that allows the 

user to choose the technology to fulfil that.  
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Li et al. (S. Li et al., 2014) concentrated on service-oriented architecture (SOA) for IoT as 

well as open issues in IoT. The SOA they proposed for IoT contains four layers: sensing layer, 

network layer, service layer, and interface layer. Since they follow SOA, each of these layers is 

independent and can be exchanged with other services with the same functionalities. I propose an 

architecture for the service layer in the overall SOA for IoT with the main objective of 

addressing data management issues.  

Al-Fuqaha et al. (Al-Fuqaha et al., 2015) surveyed IoT for its enabling technologies, 

protocols, and applications. There are two interesting observations in their survey which is 

related to our work. Firstly, whilst they surveyed application protocols, it shows that REST and 

MQTT are two of the most used protocols. They are what is used by the SensorThings API as 

well. Secondly, scalability and interoperability are named as two of the main challenges for IoT 

which is the focus of this thesis. They concluded that there is a need for platforms that support 

IoT big data and analytics. They also noted that security is another hot topic for IoT. In this 

dissertation, the focus is on presenting an architecture for supporting big data analytics for IoT 

and security is out of the scope of this thesis.  

Amongst these surveys there is one with a data-centric view (Qin et al., 2016). In this 

survey, data management challenges are present in terms of managing data streams, 

heterogeneous data streams, and large volumes of data. These challenges remain the same as this 

dissertation challenges the data velocity, variety, volume respectively. 
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Whitmore et al. did a comprehensive survey on the literature for IoT in 2015 (Whitmore, 

Agarwal, & Da Xu, 2015). They did a classification of the literature related to IoT and found out 

that most of the IoT literature has focused on the technology part of IoT and that hardware was 

usually the topic of interest. It also stated that big data and how IoT would fit into the big data 

movement is one of the important future steps for IoT. 

Arasteh et al. (Arasteh et al., 2016) surveyed components and features of IoT-based smart 

cities. Heterogeneity, large scale, and big data are listed amongst the challenges of IoT-based 

smart city applications. Smart city is a spreading use case for IoT and it suffers from the same 

challenges as IoT. 

Ray (Ray, 2017) did a survey on IoT cloud platforms. He compared 26 different platforms 

and visualization tools from different aspects. It shows the silos for IoT by showing the options 

that are available out there. He found that heterogeneity management, analytics, visualization, 

and research-centric clouds were missing on the surveyed platforms, although data management 

was the goal for most of these platforms. One important finding from this literature is that the 

platforms that are evaluated either do not have big data capability, or their capability is limited to 

using NoSQL databases. We can see that they are relying on tools rather than architecture for big 

data and the only tool used is the NoSQL databases. As concluded in this paper also, big data 

analytics is the lacking capability on these platforms and needs to be studied. In this thesis, we 

focus on architecture for big data rather than tools. When the architecture is set, it can be 

implemented with different tools. 
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There are several attempts to develop (web-based) interfaces for IoT in order to overcome 

the heterogeneity challenge (Guinard, Trifa, Mattern, & Wilde, 2011; Leong & Choo, 2014; 

LogMeIn Inc., 2015). To this end, REST-based approaches and the use of the JSON format are 

adopted by some of these literature. The reason for the popularity of REST-based architecture is 

that HTTP transport protocol is widely available and easy to use. Moreover, JSON encoding is 

adopted since compared to its alternatives such as CSV and XML, it is more lightweight as well 

as more expressive. Unlike SensorThings API, (Guinard et al., 2011; Leong & Choo, 2014; 

LogMeIn Inc., 2015) focused on developing a platform rather than providing an API that 

everyone can customize according to their needs. Furthermore, SensorThings API provides an 

international and open standard solution for overcoming heterogeneity issues unlike (Guinard et 

al., 2011; Leong & Choo, 2014; LogMeIn Inc., 2015) as they only try to provide a platform 

solution that can accept heterogeneous data. 

Some literature on IoT architecture focuses on the big data challenge (S. Li et al., 2014; 

Mishra et al., 2015; Sowe, Kimata, Dong, & Zettsu, 2014; Tracey & Sreenan, 2013). The 

literature proposed the overall architecture of IoT with regards to the huge number of devices 

that are connected to IoT and the large volume of data that is created. Tracey et al. in (Tracey & 

Sreenan, 2013) proposed a holistic architecture for IoT. In their architecture, they only 

mentioned the large volume of data out of three big data challenges and for that they proposed 

using HBase for storing the data. Mishra et al. in (Mishra et al., 2015) proposed a cognitive 

oriented IoT big data framework (COIB framework). In their IoT overall architecture, they used 
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HBase for large volumes of data. They also add a layer to their architecture for grouping 

homogenous data out of heterogeneous IoT data using classification. However, real-time data 

management is not considered in their architecture. Sowe et al. in (Sowe et al., 2014) focused on 

the heterogeneity challenge in IoT data. They use a Service-Controlled Networking (SCN) 

middleware in their architecture to manage the heterogonous data. In this middleware, they used 

different APIs for different types of data that goes to the system with different protocol. 

However, this approach may not scale well, since the number of these APIs can grow 

exponentially in time if there is no standard API. Li et al. in (S. Li et al., 2014) proposed using 

SOA for IoT as mentioned before. This architecture is for the overall IoT and my proposed 

architecture is for the service layer out of this overall architecture. To summarize, all this work 

focused on the overall architecture and the data volume and variety challenge. However, they did 

not elaborate on the data management in detail, since their concentration is on the overall 

architecture. 

There is some work on data storage and indexing for IoT (T. Li, Liu, Tian, Shen, & Mao, 

2012; Y. Ma et al., 2012). Ma et al. in (Y. Ma et al., 2012) proposed an update and query 

efficient index (UQE-Index) framework for IoT. They proposed having two different clusters, 

one for storage and one for indexing. The data is also classified as current data and historical 

data. They used B+-tree indexing for time index and R-tree for space index. Their idea can be 

used for indexing data in the serving layer in our proposed solution.  
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Li et al. in (T. Li et al., 2012) proposed a storage design for IoT massive data based on 

NoSQL named IOTMDB. In their proposed design, data storage and data management are 

separated and the responsibilities are assigned to different machines in a cluster. Master nodes 

are responsible for data management and slave nodes are only for storing the data. There are also 

standby nodes working as a secondary option if any damage occurs to the primary nodes. They 

also proposed performing preprocessing on data and retrieving the interest and digest value in 

order to make future queries more efficient. For the data management part, they only focused on 

historical, tracking and preference queries. They claimed that they chose those queries based on 

the demand of IoT applications. However, it limits their system. Compared to our proposed 

architecture, this literature can be used as the master data set for the batch layer. It provides a 

way for storing and managing the massive data for IoT, but their solution lacks a method for big 

data analytics in an efficient manner, as also mentioned in their future work. Moreover, no 

mechanism is proposed for managing IoT real-time data. 

Lambda architecture, proposed by Marz (Marz & Warren, 2015), is seen to be the future of 

big data analytics because of its ability to deal with both historical and real-time data (W. Fan & 

Bifet, 2013; H. H. Huang & Liu, 2014). Batch processing and stream processing are two 

categories of big data analytics (H. H. Huang & Liu, 2014). The strength of Lambda architecture 

is that it combines batch and stream processing together and constructs a general framework for 

analysing big data.  
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Villari et al. (Villari, Celesti, Fazio, & Puliafito, 2015) proposed AllJoyn Lambda. They 

claimed that AllJoyn Lambda is a software solution integrating AllJoyn in the Lambda 

architecture used for Big Data storage and analytics in IoT. Using Lambda architecture is what 

makes our work similar to this work. However, there are multiple differentiators between our 

work. AllJoyn is a software that is used for IoT from the physical to application layer. It claims 

that it is a solution for the interoperability challenge. However, the interoperability in their case 

is in sensor discovery and operating systems and does not discuss data management. Also, 

AllJoyn does not cover the geospatial use cases in IoT. The Lambda architecture is a well-

established solution for addressing the big data challenge. But this work is totally different from 

what we are proposing, as our work is an architecture rather than a software. Also, our work 

focuses on the service layer and data management whereas their paper vaguely claimed to have a 

software for the whole IoT stack. Furthermore, we use an open geospatial standard as a solid 

solution for the IoT interoperability challenge. 

Huacarpuma et al in (Cruz Huacarpuma et al., 2017) proposed a Distributed Data Service 

(DDS) to collect and process data for IoT environments with the goal of enabling multiple IoT 

middleware systems to share common data services. They used a distributed architecture for 

storing and processing the data. Their architecture has two parts, data collection and data 

aggregation. In order to gather the data from different sources and overcome the heterogeneity 

issue, they used a communications interface that converts different data formats and also a 

metadata creation module that manages different metadata characteristics. The data collection 
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part gets data from different IoT middleware and generate metadata and store it in the NoSQL 

database. They used JSON format for receiving data from IoT middleware. The data aggregation 

part aggregates and summarizes the data. They claimed that their work was similar to the 

Lambda architecture batch and serving layer but did not provide details. For example, there is no 

immutability in their data set. There are similarities between this work and ours. Both try to solve 

the big data volume, velocity, and variety challenge. Other similarities include using batch 

processing and real-time processing; using a publish-subscribe paradigm for collecting the data; 

and using the JSON format. However, one important differentiator for our work is using the 

SensorThings API. They used some generated metadata for solving the heterogeneity issue. The 

most important metadata that they mentioned are timestamp and location. We can see in the 

example they provided, that they used latitude and longitude for storing location information 

which makes the system limited to points and cannot store other geometries such as polygons. 

The difference here is the rich and mature data model of SensorThings API compared to their 

metadata. Also, our proposed architecture uses the Lambda architecture and its best practices for 

addressing big data volume and velocity simply and seamlessly. 

Big data analytics is considered an important next step for IoT health care systems (Firouzi 

et al., 2018). Manogaran et al in (Manogaran et al., 2018) proposed IoT architecture for smart 

healthcare monitoring and alert systems to address big data and security challenges. Their 

proposed architecture has two subsystems, Meta Fog-Redirection (MF-R) and Grouping and 

Choosing (GC) architecture. MF-R has three phases: data collection, transfer and storage. In the 
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data collection phase, data is gathered from medical devices. Through fog computing, alerts are 

generated if the sensor readings are out of their normal healthy range. The data transfer phase 

moves the data from local databases to Amazon Elastic MapReduce to enable big data 

MapReduce processing. The storage phase stores the data in Hbase. Security is placed between 

fog and cloud layer in GC. The nature of this work is for health monitoring and alerting systems. 

As a result, it makes real-time processing much more important and they add fog computing for 

what is near the edge. For data management, they do not provide any specific architecture and 

they merely mentioned different Amazon technologies used such as Amazon EMR and S3. Our 

work focuses on data management. Fog computing can be added in another layer for any alert 

needed. 

Marjani et al (Marjani et al., 2017) did a survey for big data analytics in IoT. This work 

surveyed big data, IoT, and big data analytics separately and tried to show the relationship 

between big data analytics and IoT. The paper proposed that in the IoT architecture layer, big 

data analytics should be a layer on top of cloud storage and should be implemented using 

Hadoop technologies. What they proposed as architecture is very high level and without detail as 

the paper’s focus is on the survey part. Our work is a detailed architecture that combines their 

cloud storage and big data analytics layers. Our SensorThings master dataset can be the cloud 

storage and the rest of batch layer and serving and speed layers will be in the big data analytics 

layer. 
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Darwish and Abu Bakar in (Darwish & Abu Bakar, 2018) explored big data analytics for 

the Internet of Vehicles (IoV). IoV could be considered a category in IoT. They proposed an 

architecture which uses Lambda architecture for processing or, as they called it, artificial 

intelligence layer. Their proposed architecture is for the full stack of IoV including the physical 

layer and application layer. They proposed using fog computing in the edge layer for 

transportation sensor devices. This work shows how fog computing can be used alongside 

Lambda architecture in another layer for application specific use cases. They did not add any 

details about the possible data model and listed data heterogeneity as one of the challenges 

needing to be fixed – which was something that we explored in our work. 

To the best of our knowledge, the proposed research in this dissertation is the first attempt 

to integrate open standards and Lambda architecture in the context of IoT to address the big data 

management challenges. 

Big Data Platforms and Technologies 

In this section, we explore current technologies and off-the-shelf solutions for big data 

management for IoT. 



 

 

 

  

 

65 

Hadoop 

Apache Hadoop1 4 is one of the most well-known big data technologies now. It is used by 

many major software organizations including, but not limited to, Amazon, Facebook, Google, 

IBM, and Yahoo! as well as numerous other companies. Apache Hadoop consists of open-source 

software for reliable, scalable, distributed computing. The goal of Hadoop is to build a 

framework for distributed processing of large data sets across clusters of computers. Its main 

focus is on software rather than hardware, for the availability and seamless handling of failures. 

Hadoop Common, Hadoop Distributed File System (HDFS), Yarn, and MapReduce are main 

modules of the Apache Hadoop. There are numerous other projects related to Apache Hadoop 

including, Hbase, Hive, and Spark. 

As two major modules of Hadoop, HDFS and MapReduce are designed for big data storage 

and parallel processing respectively. One of the strategies that Hadoop uses for big data 

processing is to move processing and computation close to the data site instead of traditional in-

memory processing (Oussous, Benjelloun, Ait Lahcen, & Belfkih, 2017). It reduces the 

communication load and results in better performance for processing and computation (Oussous 

et al., 2017). 
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One of the major factors for the success of Apache Hadoop is that it has an important 

support community and the framework is growing bigger everyday with new components 

developed or improved and added to the Hadoop framework.  

Although the Hadoop framework is improving every day, it is not the ultimate solution for 

addressing big data challenges in IoT. First of all, we need to find out how to use Hadoop 

components together in order to reach our big data goals for IoT. It consists of making decisions 

about the components and distribution, and how to connect them together. For this thesis, we are 

not focusing on the technologies, but on the architecture for using the technologies together. 

Moreover, the interoperability or big data variety issue is out of the scope of Hadoop 

technologies. In summary, the goal of this thesis is to provide an architecture for IoT and then 

the components can be implemented using off-the-shelf big data technologies such as Apache 

Hadoop. 

Hortonworks 

Hortonworks1 5 focus is on providing enterprise-ready scalable open solutions and they are 

using technologies such as Hadoop and Spark. One of their products is called Hortonworks Data 

Platform (HDP) and it has enterprise ready Apache Hadoop distribution and delivers big data 

analytics. HDP works on improving Apache Hive (Ahmed et al., 2017). One of the advantages of 
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Hortonworks is that it makes using Apache Hadoop easier as it removes all the installation, 

preparation, and configuration complexity. 

However, just like Apache Hadoop itself, Hortonworks cannot be the ultimate solution for 

addressing big data challenges in IoT and it differs from my proposed solution in two ways. 

Firstly, it does not address interoperability issues for IoT directly. All these frameworks can 

process structured, semi-structures, and also unstructured data and they claim that they address 

the big data variety issue through this. However, analyzing all the data together with different 

structures would be difficult, if not impossible. Secondly, our proposed solution is an 

architecture and each part of it can be implemented using Apache Hadoop or Hortonworks or 

other big data technologies. In other words, our solution defines how the bits and pieces of big 

data technologies and tools, including Hortonworks platforms, can work together to form a 

comprehensive solution for addressing big data challenges for IoT.  

Pivotal Big Data Suite 

The Pivotal Big Data Suite1 6 provides open source scalable database technology. Two of the 

main parts of the Pivotal Big Data Suite are the Pivotal Greenplum and Pivotal GemFire. Pivotal 

GreenPlum is the analytics module that provides high performance massively parallel processing 
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(MPP) analytics. Pivotal GemFire is a combined data and compute in-memory grid that is 

designed to be fast, scalable, and available (Stolz, 2018).  

The Pivotal Big Data Suite still needs time to be adopted (Ahmed et al., 2017). The focus is 

performance and high data volume. It can be a good solution for addressing bid data volume. 

However, to address big data challenges we need other technologies for big data variety and 

velocity. Similar to other technologies, Pivotal Big Data can be the implementation that is used 

as part of our proposed architecture. 

Cloudera Enterprise Data Hub 

Cloudera Enterprise is based on the Apache Hadoop distribution and provides a platform 

that is fast, easy to manage, and secure so that users will not need to focus on the technology and 

can focus instead on the analytics result that they want. It uses Apache Spark for in-memory data 

processing as well as Apache Impala, Solr, Kudu, and Hadoop for analytics, search, storage, and 

optimization. (Cloudera, 2017) 

Cloudera Enterprise is similar to our solution in that it is using multiple technologies to 

provide a platform for big data analytics. However, first of all, it is a general solution and is not 

finetuned for IoT. Moreover, if users find a more suitable technology for one part of the platform 

they cannot easily replace and customize it. As discussed, for this thesis we provide the 

architecture and users can implement our architecture by using different technologies. 
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MapR 

MapR is an enterprise big data platform that is partly based on Hadoop. One of their 

products is the converged data platform that is using MapR-DB. It uses different Hadoop and 

Apache technologies on their big data platform. The main difference of our proposed solution 

with this platform is that MapR is a platform whereas our work is an architecture. Furthermore, 

our architecture addresses the interoperability issue and is finetuned for IoT whereas MapR is a 

general platform. Moreover, using their platform can result in the vendor lock in problem 

whereas our solution is based on an open standard and does not rely on any proprietary solutions. 

Database Management Systems 

Database Management Systems (DBMS) are the everyday solutions for data storage. There 

are different types of DBMS. In this subsection, we discuss RDBMS, PDBMS, and NoSQL and 

how they differ from our solution. 

RDBMS 

Relational database management system (RDBMS) is the most mature and widely used data 

management solution. As a result, RDBMS can be a solution for data management for IoT. 

RDBMS is transaction oriented; it focuses on atomicity, consistency, isolation, and durability 

(ACID) of transactions. These characteristics ensure data integrity and stable management of 

processing results (Choi, Jeon, & Yoon, 2014). In other words, the ACID characteristics refer to 

“all or nothing”, “the results of each transaction are tables with legal data”, “transactions are 

independent”, and “database survives system failures” respectively (Pokorny, 2013). 
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RDBMS is finetuned for high data reliability. However, sometimes achieving high reliability 

unavoidably introduces overheads and subsequently sacrifices performance. Meanwhile, there 

are a great many applications in which performance is a more important factor than reliability, 

such as analytics applications. In this case, RDBMS is not a suitable solution anymore (DataStax 

Corporation, 2013). IoT applications are such kinds of applications, because as mentioned 

before, performance in answering queries is one of the most important characteristics that an IoT 

application must have. Therefore, RDBMS is not an appropriate solution for IoT. 

PDBMS 

A more scalable solution than RDBMS is the Parallel Database Management Systems 

(PDBMS). PDBMS uses the full capabilities of multiprocessors in order to achieve high 

performance and high availability (Valduriez, 1993). In other words, PDBMS combines database 

management with parallel processing. Like DBMS, PDBMS is write-optimized (Qin et al., 2016) 

or transaction oriented (Whang, 2011). As a result, PDBMS is designed for homogeneous 

relational data. Unfortunately, IoT data is heterogeneous and PDBMS is not appropriate. An 

alternative to PDBMS is NoSQL data stores that are read-optimized (Qin et al., 2016) and 

suitable for large-scale heterogeneous data (Whang, 2011).  

NoSQL 

NoSQL stands for Not only SQL (Structured Query Language). The reason is that NoSQL 

data stores mostly do not use SQL for query processing. One of the reasons for moving from 

RDBMS to NoSQL is the data model flexibility in NoSQL. In addition, NoSQL data stores can 
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manage different types of data (i.e. structured, semi-structured, and unstructured) with less 

constraints than RDBMS. Finally, NoSQL does not have the above-mentioned overheads and 

performance issues of RDBMS (DataStax Corporation, 2013). As a result, when performance is 

an important factor in designing an application, using the NoSQL data store is considered a more 

suitable choice than RDBMS. 

 In addition, NoSQL data stores are more horizontally scalable than RDBMS. The reason is 

that these data stores relax and simplify some of the restrictions of RDBMS, i.e. relational data 

structure and transaction processing overheads. Key-value stores are the simplest NoSQL data 

stores and their tables contain only key-value pairs that can be accessed only through the primary 

key (i.e. key) very fast. These NoSQL data stores are also called big hash tables. Compared to 

RDBMS, key is the same as attribute name in the RDBMS table. There are also more 

complicated NoSQL data stores that have a collection of key-value pairs. (Pokorny, 2013) 

The NoSQL database appears to be a more suitable solution for data management challenges 

in IoT, but it is not complete. Although we mentioned that the NoSQL database can accept 

heterogeneous data types, it does not mean that it can understand different semantics in 

heterogeneous data. As a result, although the NoSQL database helps in addressing the data 

volume challenge, it cannot address the variety and velocity challenges thoroughly. The IoT data 

management system requires a high level architecture that has the NoSQL database as a part of 

it, together with other components that address all the big data challenges. 
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As we discussed, there are different technologies related to big data and big data analytics, 

but none of these technologies are the ultimate solution for addressing big data challenges for 

IoT. However, these technologies can be customized and used together for that purpose. In other 

words, a big data system needs multiple tools and techniques (Marz & Warren, 2015). For this 

thesis, we propose an architecture in which these technologies can be used and the big data 

challenges in IoT addressed. Our architecture is based on the Lambda architecture (Marz & 

Warren, 2015) together with the SensorThings API (S. Liang et al., 2016) in order to address the 

big data volume, velocity, and variety challenges for IoT. We will discuss Lambda architecture 

in next section before moving on to the proposed architecture in the next chapter. 

Lambda Architecture 

Lambda architecture (Marz & Warren, 2015) is a new paradigm for the big data problem. It 

focuses not only on the scalability of the paradigm, but also on its ease of use and fault tolerance. 

Lambda architecture minimizes the complexity so that the paradigm can be developed and 

implemented easily by a small team and does not need enterprise resources. The main idea 

behind Lambda architecture is to provide an architecture with the capability of computing any 

arbitrary function over a large data set in real-time. Also, the main motivation behind it is that 

there is no single tool or technique that can fulfil the idea. Lambda architecture is based on a 

layered architecture and provides three layers that together can provide an infrastructure for 

creating a big data system. 
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The Lambda architecture consists of three layers: batch layer, serving layer, and speed layer. 

In the following sections, we will discuss the functionalities of each of these layers. 

Batch Layer 

 Batch layer’s main purpose is to hide the computation time from the client. Executing 

functions and queries on huge amounts of data, e.g. petabytes of data, is extremely time 

consuming and would not be acceptable to users. Batch layer precomputes the functions and 

creates batch views. Then instead of running user queries on the fly, they can be answered based 

on precomputed batch views in an efficient manner. Other than batch computing, the batch layer 

is responsible for storing all the data as the master dataset of the system. In short, the two 

functions of the batch layer are (1) storing the immutable master dataset, and (2) running 

arbitrary functions on the master dataset continuously and creating batch views. 

For Lambda architecture, batch layer is proposed to be simple. With regards to that, the 

batch processing will be simple single threaded functions and the scalability will be handled 

horizontally. In other words, rather than being worried about complicated multithreaded 

processes for batch processing, Lambda architecture proposes adding more nodes to the 

processing system in order to increase performance as needed. The use of the MapReduce 

paradigm is proposed for batch processing in order to achieve horizontal scalability. 

Master dataset is the core and ground truth in Lambda architecture. It is our raw data and it 

is the only important part of Lambda architecture that is required to be safeguarded from 

corruption, since all the other parts can be generated from this master dataset in case of loss. The 
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first suggestion of Lambda architecture for the master dataset is to store the data in its rawest 

form. The word data refers to information and facts that cannot be derived from anything else 

and serves as axiom for all other derived information. The master dataset should be a collection 

of these data. Information is a collection of knowledge about the dataset that can be extracted 

from the data. Also, queries are the questions that can be asked about our dataset. Moreover, 

views are information derived from our data in order to help in answering queries. Since 

information, queries, and views can be derived and answered by the data, data in its rawest 

format is what we need to store in our master dataset. The raw data will be the material for 

answering user queries. The rawer the data is, the more questions can be answered based on it. 

In addition, Lambda architecture discusses that there is a trade-off between storing the data 

in a structured or unstructured format. It argues that sometimes unstructured data can provide 

more information. This happens when the algorithm for deriving structured data from 

unstructured data has a chance of improving over time, which means that we may be able to 

derive more information from the unstructured data in future with an improved semantic 

algorithm. However, if the algorithm for extracting structured data is simple and accurate, 

structured data should be stored in the master dataset. As a result, this factor should be 

considered when designing the data model for the master dataset. 

In addition to the rawness of data, Lambda architecture defines the master dataset as being 

immutable and perpetual. It claims that if the big dataset is raw, immutable, and perpetual, the 

big data system will be more robust. The suggestion of immutability helps the master database to 
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be human fault-tolerant and also simple. However, for our proposed solution which is finetuned 

for the Internet of Things, we will use mutable data whilst minimizing this mutability to the least 

possible. We will discuss this in the next chapter when explaining our proposed architecture. 

Lambda architecture suggests that the data should be eternally true. In order to achieve that, 

together with data immutability, data should be labeled with time. For our proposed architecture, 

we use the SensorThings API as the data model for the master dataset. The most important and 

useful entity of SensorThings for IoT is Observation and is time-stamped in two ways, the time 

that the observation is recorded and the time that the observation actually happened. We will 

discuss this in more detail in the next chapter as we elaborate on our proposed solution in more 

detail. 

Data Model 

Lambda architecture has a fact-based data model, which means that the data consists of a set 

of facts that are fundamentally immutable, atomic, and time-stamped units. Each fact also needs 

to be identifiable. Fact-based model is helpful for answering client questions and queries, and 

can tolerate human errors. Human fault tolerance is the result of immutability. Because with 

faulty updates to the data, we would lose the data, but with immutability, the update to the data 

will be stored as a new time-stamped data which can be removed if faulty. As we will discuss in 

the next chapter, the Observation entity has all the features of a fact-based model. Comparing 

SensorThings to the recommended fact-based model of Lambda architecture, we can say that 
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Observation is our fact-based model and the rest of the entities are storing metadata about those 

facts. 

Batch layer has the advantage of both normalized and denormalized data models. The fact-

based data model for the master dataset is for suggesting normalized data model for data, 

whereas the batch views are denormalized and optimized for client queries. Batch views are 

reconstructed from scratch periodically and they do not need to be updated. As a result, there are 

no disadvantages from being denormalized.  

In Lambda architecture, there should be a schema for the fact-based data model. Lambda 

architecture suggests using graph schema and enforcing it with the fact-based data model. In our 

solution, we use the SensorThings API as our data model and the schema is already present. 

Master Dataset 

Master dataset is where all the data is stored in the batch layer. The characteristic required 

for the master dataset is defined by the requirements we have for our batch layer. As discussed 

above, the data in the batch layer should be immutable and eternally true. This means that first 

the data will be accumulated and the master dataset must be scalable. Secondly, the data will not 

be updated. As a result, the master dataset only needs to be efficient for appending data and it 

does not need to be efficient for randomly accessing the data. As a result, the data does not need 

to be indexed to be performant for updates. 

 In our proposed solution, Observation is our only immutable entity. However, we can argue 

that since other entities are only keeping metadata about Observation and therefore they are 
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much smaller in size, the rare update cost is negligible. As a result, we do not need to design our 

master dataset for frequent updates, although other entities are mutable. 

Batch layer periodically accesses bulk data to compute batch views and we know that the 

data will be huge. Therefore, the master dataset should have the capability of processing large 

amounts of data. Finally, the master dataset should have the flexibility of compressing the data. 

Because the data is huge and can affect the cost, we will need to compress the data in order to 

reduce the cost at some point. However, the design for compression is different for various use 

cases and the master dataset should be flexible for that reason. Distributed file systems are one of 

the best fits for the master dataset in Lambda architecture as they have the required capabilities, 

whereas they don’t have the extra features that lead to higher cost. Key-value data stores are one 

of the examples of overkill for the master dataset, because they have all sorts of optimization for 

random access which is not required for the master dataset and result in higher costs. 

Batch Views Precomputation 

There should be a balance between how much of the computation is done on the fly and how 

much we precompute into batch views. No precomputation results in very high latency in 

answering the queries, whilst precomputing everything is infeasible. The idea is to precompute 

some intermediate results enough for answering queries quickly. 

There are two approaches for precomputing batch views: incremental computation and 

recomputation. Recomputation means that the batch views will be created every time based on 

the whole dataset. Incremental approach is updating the already computed batch views when new 
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data is added to the system. There is a trade-off for choosing each approach in terms of 

performance, human fault tolerance, and generality of the computation algorithm. 

Incremental algorithms use less resources during computation, however, their batch view 

size might be significantly larger. Unfortunately, incremental approach is prone to human error 

whereas the recomputation approach is not. The reason is that, if there is faulty data in the 

dataset because of human error, we can delete it and the recomputation approach automatically 

computes the batch view based on the current dataset which does not have faulty data. But for 

the incremental approach the effect of that faulty data is in the batch views and will not 

disappear, since we only consider new data added to system. Moreover, the recomputation 

approach results in more general algorithms as it uses a simpler structure for batch views as well 

as simpler on-the-fly calculation for answering queries. 

In order to have a more robust system, Lambda architecture suggests using a recomputation 

approach for computing batch views. However, an extra incremental approach can also be used 

for increasing the efficiency of batch processing. But a recomputation version of algorithm must 

be executed on data, maybe with less frequency than incremental algorithms, in order to ensure 

that batch views are human fault-tolerant. 

MapReduce 

 First introduced by Google (Dean & Ghemawat, 2004), MapReduce is a distributed 

computing paradigm that parallelizes computation between a cluster of machines. Using 

MapReduce as the computing paradigm for a system makes the system inherently scalable, as all 
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that is required for processing more data is more machines in the cluster. As a result, the 

MapReduce paradigm is a good candidate for batch processing in Lambda architecture. 

In the MapReduce paradigm, a computing program consists of map and reduce functions. 

Map function runs on parallel data blocks over a cluster of machines and produces some 

intermediate results, usually in terms of key-value pairs. Then the reduce function merges these 

intermediate results, usually using the keys, and creates the final computation result. The process 

of sending intermediate results of map tasks to reduce tasks is called shuffling. 

MapReduce computation is fault-tolerant as well. The system automatically retries map 

functions in case there is a failure that is caused by hardware break down, memory overflow, 

disk storage overflow, or other causes, and tries to overcome the failures using this process. 

However, the whole program will fail if a failure happens more than a preconfigured number of 

times. The reason is that in this case the failure is most probably caused by a program bug rather 

than server issues. As a result, map functions should be deterministic as the system should be 

able to re-run it, as needed, seamlessly without changing the final result. 

MapReduce algorithms for batch processing can get very complicated, as usually a series of 

continuous MapReduce jobs are required to compute a batch view. Lambda architecture 

recommends using pipe diagrams as a means for designing batch computation. Pipe diagrams are 

helpful in terms of designing batch computation at a higher level without the concerns for the 

details of the complicated MapReduce jobs. Pipe diagrams are also supported by different tools 

that can be used for batch processing including, but not limited to, Hive, Pig, and Cascalog. 
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The pipe diagram defines the batch processing in terms of the concepts of SQL queries. 

Each part has an operation and the input and output is defined concisely. The operation can be 

processing in terms of tuples, functions, filters, aggregators, joins, and merges. Although the 

concept for operations are from SQL definitions, they are not limited to predefined functions and 

can be user-developed programs.  

After high level designing with the pipe diagram, each part can be translated into a 

MapReduce job, so that the whole batch processing will be executed in a scalable manner. Each 

operation is simple enough so that it can be easily implemented by MapReduce jobs. We will see 

this step in the next chapter when we discuss our proposed architecture in more details. 

We discussed the details about batch layer and batch computing. More details about how 

these concepts apply to our proposed architecture will be discussed in the next chapter. In the 

next section, we will discuss the second layer of Lambda architecture, the serving layer. 

Serving Layer 

 Serving layer provides access to batch views in an efficient manner. In other words, the 

serving layer is where the precomputed batch views are indexed and can be queried efficiently to 

answer user queries. The serving layer is in close connection with the batch layer, as the batch 

layer frequently computes and updates batch views. Due to the high latency nature of batch 

processing, batch views served by the serving layer are not up-to-date with recent data. Dealing 

with recent data is the responsibility of the speed layer which we will discuss in the next section. 
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 The most important characteristic of the serving layer is to be performant for answering 

queries. In this case, latency, which is the time that is required by the serving layer to serve one 

query, becomes an important metric. Indexing is the solution for the serving layer to provide 

better performance and lower latency for answering user queries.  

The indexing of the serving layer is different from indexes in traditional databases as batch 

views are distributed over a cluster of machines in the serving layer. As a result, how to 

distribute batch views amongst the cluster is also part of indexing for achieving lower latency. It 

adds a new rule to our indexing that the fewer machines that need to be accessed for answering a 

query, the lower the latency, and thus, the better the performance. Moreover, the serving layer 

can benefit from denormalizing the data for the purpose of improving the performance and hence 

reducing latency. 

Denormalization is the process of storing redundant data for the purpose of minimizing 

expensive joins in order to achieve better performance. Denormalization has the cost of data 

consistency verification. However, in Lambda architecture this verification is not important as 

the main data in the master dataset is stored with the normal structure, and the serving layer in 

which we use denormalization has been frequently overridden by the batch layer. As a result, 

even if any inconsistency arises, it will be fixed soon when the next round of batch processing is 

completed. 

Lambda architecture puts some requirements in the serving layer. The serving layer must be 

scalable, fault-tolerant, batch writable, and support random reads. Being scalable is inevitable as 
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it needs to query batch views that can be big. Using a distributed cluster of machines can help the 

serving layer to be scalable. The serving layer should tolerate machine faults whilst serving 

queries. As the batch views are re-created periodically, the serving layer should have the 

capability of dumping the current batch views and replacing them with newly computed batch 

views. And finally, since the serving layer is where the queries are answered, it needs to support 

random access to batch views as requested by different queries. 

The serving layer does not need to support random writes. It is interesting as most of the 

complexity is introduced by random writes in the database systems. As the batch views are 

computed periodically, the serving layer only needs to be capable of replacing the bulk of batch 

views with new ones and there is no need for updating only part of the view. The only place in 

Lambda architecture which needs to be capable of random writes is the speed layer which 

handles the real-time data and will be discussed in the next section. The simplicity of the serving 

layer is a big advantage in Lambda architecture, especially because it is the container of the 

majority of the queryable data in the architecture. 

Speed Layer 

The only part left from Lambda architecture is the random write for real-time data 

processing and it is the responsibility of the speed layer. Unlike the batch layer, the processing in 

the speed layer needs to be done incrementally. However, having batch and serving layers in 

Lambda architecture makes the speed layer requirements narrower than a big data system 

supporting random writes. Firstly, the speed layer is only responsible for the data that hasn’t 
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been added to the serving layer yet, which makes the data size much smaller than the master 

dataset. Basically, the speed layer only handles recent data as old as the latency of batch 

processing which is usually a few hours. Moreover, the speed layer does not need to be as robust 

as the batch and serving layers, as the data in the speed layer is transient. As a result, even if any 

error occurs during processing it will soon be corrected as the data is moved to the batch layer 

for more robust processing. 

If we want to compare Lambda architecture with traditional data architecture, we will find 

that traditional architecture only has speed layers which are implemented with relational 

databases. As a result, the processing in traditional data architecture needs to be far more 

complicated. However, since Lambda architecture assigns different roles and responsibilities to 

different layers, the whole architecture and processing is simpler and more robust. 

The speed layer processes the real-time data and creates some real-time views. These real-

time views fill the gap of the real-time data, that are not yet in the serving layer, for answering 

queries. As discussed above, the process for creating these real-time views is different from 

batch processing as it is incrementally processed because it has to be as efficient as possible. 

Although the responsibilities for processing and storing batch views are separated between batch 

and serving layers, for real-time views, the speed layer is responsible for both of the functions for 

real-time data. 

As discussed, the speed layer needs to use incremental algorithms for producing real-time 

views. Recomputation is not a good approach for the speed layer for two reasons. Firstly, for the 
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speed layer, latency needs to be decreased as much as possible in order to produce real-time or 

near real-time results, depending on the application. Although the size of data that needs to be 

processed is less than the master dataset, the latency that we are looking for here is with an order 

of magnitude less than batch processing. The latency that results from recomputing real-time 

views can be in order of minutes. Thus, recomputing real-time views is not an option for the 

speed layer. Moreover, recomputation is very resource intensive, if not impossible, considering 

the rate of new data coming to the system. As a result, the incremental approach is considered 

the best for the speed layer. 

Real-time views should be optimized for both random reads and writes. Random writes are 

required for the use of the incremental approach and random reads are needed because these 

views are used for answering queries. Furthermore, real-time views should be scalable and also 

fault-tolerant. This scalability is achieved by using distributed architecture. The speed layer 

should tolerate machine failures as with the serving layer. All the characteristics we mentioned 

for the speed layer are features of the NoSQL database. As a result, the use of the NoSQL 

database for implementing the Lambda architecture speed layer is recommended. 

Whether the real-time views structure is the same as batch views structure or not depends on 

the complexity of the computation. Complex computations can easily be done in batch layer, as 

high latency is not the issue. However, such computation may not be suitable for the low latency 

nature of the speed layer. In this case, the computation can be simplified to only calculate 

approximate answers for the query. The layered nature of Lambda architecture provides the 
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flexibility for eventual accuracy which means that all the data will eventually end up in batch 

views which are accurate, and if there is any approximation in real-time view it is only 

temporary. Using approximation algorithms for real-time views are optional in Lambda 

architecture, but might be the optimal choice for more complicated computation. 

Challenges for Incremental Processing for Speed Layer 

Incremental computation for the speed layer brings up some challenges. The most important 

one is what is called CAP theorem. CAP theorem says that whenever the data system is 

distributed and partitioned, the data system cannot be consistent and available at the same time. 

In other words, for distributed data systems there is a trade-off between consistency and 

availability. This challenge is introduced by real-time updates and random writes to the system. 

Availability needs replicas of data whilst managing consistency is difficult with replicas 

especially considering real-time updates. The CAP theorem is also valid for batch and serving 

layers. However, the different nature of batch and serving layers makes the CAP theorem not an 

important challenge, as availability is the obvious choice for these layers rather than consistency. 

The reason is that batch views in the serving layer are always out-of-date because of the high 

latency of batch processing and as a result the serving layer is never consistent and availability 

would be the choice. 

In contrast, the speed layer needs to be both available and eventually consistent somehow, 

which brings up the CAP theorem. The eventual consistency supports the theorem as the instant 

consistency is not an issue and we only need the final processed value to be consistent. Lambda 
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architecture recommends using conflict-free replicated data types (CRDTs) to assist eventual 

consistency. CRDTs limit the operations that can be done on different values and thus assist with 

consistency. For example, if the CRDT only allows addition and we find an inconsistency 

between two replicas, we know that the maximum value is the correct data and the other just 

misses some additions. 

We emphasize that although the CAP theorem adds more complexity to the speed layer and 

conflicts and corruption to the processed data is a possibility, the final process that goes through 

the batch and serving layer will correct all the possible corruptions. In other words, any 

inconsistency or corruption that may happen in the speed layer is just temporary and will be 

fixed in the batch and serving layers soon. 

One important challenge for the speed layer is the expiration of real-time views. It means 

removing real-time views as their data is added to the batch views in the serving layer. The 

simplistic approach is to use the databases that support data expiry and set the expiry time to the 

expected finishing time for batch processing. However, since it is just an estimated time, if the 

batch processing takes longer for any reason, for some time some data is neither in batch views 

nor real-time views. In order to prevent this situation, Lambda architecture recommends another 

approach. The suggested approach maintains two sets of real-time views and cleans one of them 

each time that the batch views get ready. It is clear that some redundancy is involved but the 

maintenance will be very simple. Queries are always answered using the bigger real-time views. 

Although some redundancy is introduced it is not much of a concern as the real-time views only 
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contain a very small portion of the data, usually couple of hours, and it is not big enough to be 

worried about. 

Asynchronous vs Synchronous Updates for Real-time Views 

There are two approaches in the speed layer for updating real-time views: synchronous and 

asynchronous. Synchronous updates mean that the database is locked for each request, does the 

update, and then releases it. As a result, the system halts for each request. On the other hand, 

asynchronous updates are added to a queue and executed in order in the database. Thus, an 

update may happen with some delay, which is usually between milliseconds to a few seconds in 

the speed layer. Meanwhile, it can benefit from batch processing multiple requests in the queue, 

which is not possible with the synchronous approach. Synchronous updates are good for 

transactional data, whereas asynchronous updates are good for analytics with better throughput 

and better management of high loads. Because of the benefits of asynchronous updates, Lambda 

architecture suggests using asynchronous updates for the speed layer unless there is a good 

rationale for using synchronous or transactional updates for the designed system.  

In order to pursue an asynchronous approach, the speed layer should have the ability for 

queuing and stream processing. Moreover, fault tolerance is a feature we need to keep in mind 

for the speed layer. In order to achieve fault tolerance, all the processing should have the ability 

to re-run without the loss of information, just as for batch processing, in case there is machine 

failure and the processing is corrupted. This feature should be considered in stream processing 

and queuing. 
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Queuing 

The queue that is used for speed layer should be persistent. Firstly, as discussed above, we 

want to be able to re-run the processing. If a machine is broken and there is no persisted queue, 

the data it was processing will be lost. Also, the data can be lost in an overwhelmed machine that 

is using most of its memory and computation resources because of multiple simultaneous 

queries. The persisted queue helps the speed layer to survive such situations, and tolerates those 

errors. 

When using persisted queue, there should be a mechanism to empty the queue as the data is 

processed with the real-time views so that the processing units will then get the next top element 

of the queue to process. The simple acknowledgement approach does not work for the speed 

layer, as the data might need to be processed in multiple machines and consumed for multiple 

real-time views. Using separate queues for each processing is also not a good option, since the 

complexity will increase with the number of simultaneous data multiplied by the amount of 

processing that needs to be done on that data. 

As an alternative approach, Lambda architecture suggests letting the applications keep 

tracking their processed data. In this approach, the persisted queue will contain all the data, and 

each processing application keeps track of the data it has already consumed and gets the desired 

data part from the queue. This approach also fulfils the requirement for the capability of re-

running or re-playing the data in case of machine failure as the data can be retrieved back from 

the time the machine crashed. 
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In order to maintain the queue and prevent it from getting very big over time, there will be a 

Service Level Agreement (SLA) that the queue always keeps data for a certain amount of time or 

until the queue reaches a specific size. The time limit or the maximum size can be configured 

based on the system in such a way that ensures that no data will be lost for real-time views. In 

the meantime, if for any reason, some data is lost, the system will correct this situation when the 

data is added to the batch views. As a result, any possible loss will be temporary. This type of 

queue is called multi-consumers queue and is the recommended queue structure for Lambda 

architecture. 

Stream Processing 

The data in the queue is processed using stream processing to create real-time views. The 

data can be processed one-at-a-time or using micro-batch processing depending on the 

application. The one-at-a-time approach has lower latency and simpler programming models, 

whereas micro-batch has higher throughput. With a one-at-a-time approach, the system will 

process one data tuple at a time. However, this processing can be parallelized in a cluster to gain 

higher throughput.  

One-at-a-Time Stream Processing 

For the one-at-a-time processing approach, Lambda architecture recommends using the 

storm model for the speed layer which has a graph of computation representing the stream 

processing pipeline. This graph of computation is called a topology. Storm model suggests a 

single program deployed over the whole cluster for processing the topology rather than having 
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different processing for each node in the cluster. In this model, the executable uses different 

nodes to complete each part of processing in the topology.  

The storm model contains streams as its main concept. Streams are a sequence of tuples and 

the tuples are named data values. The Storm model processes the streams and the result of the 

processing will be new streams. Spout is another concept in the storm model topology. Spouts 

are sources for the streams. Spouts can be where data comes to the system and then tuples and 

streams will be created from them. Another concept in the storm model is bolt which is 

responsible for executing actions on streams. The input and output of a bolt are both streams. 

Moreover, a bolt can have multiple streams for input and also produce more than one stream as 

output.  

Most of the logics and basic processing of the topology is happening inside the bolts. In 

other words, the equivalent processing that we do in batch processing with filtering, aggregation, 

etc. is performed in bolts in the storm model for the speed layer. With these concepts, a topology 

can be re-defined as a network of spouts and bolts in which the bolts are processing the streams 

that come from spouts or the output streams of other bolts. 

Bolts and spouts are abstract concepts and instances of them are called tasks in the Storm 

model. Tasks should have the capability of being run in parallel. This feature is similar to 

MapReduce batch processing in which the map and reduce functions should be inherently 

parallel. In this model, each bolt task is receiving all the output streams from all the tasks that 
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generate the input for that bolt. The tasks for each bolt or each spout are spread over a cluster of 

machines.  

Storm model uses stream grouping to define which tasks will receive the tuple that a task 

emits. Shuffle grouping and fields grouping are two different approaches for stream grouping. 

Shuffle grouping is basically distributing tuples using a random round-robin algorithm, whilst 

filed grouping is using hash function to decide which task will receive this tuple. Field grouping 

is more useful if the tasks are designed to receive some targeted tuples. 

Storm model guarantees at-least-once processing for streams and tuples. To achieve this, the 

system should support retry in case of failure. Storm model proposes retrying from the root 

instead of retrying from the point of failure. Each spout tuple has a directed acyclic graph (DAG) 

when processed inside storm model topology. If a failure happens in any part of this DAG, 

processing of the spout tuples will be re-executed which guarantees at-least-once processing. 

Tuple DAGs can be big but there are tools that can track the DAG with high efficiency and 

scalability.  

In order to be able to re-try a spout tuple, the processing should be idempotent, i.e. running 

the process multiple times should not affect the process result. However, the requirement for 

idempotent processing in the storm model is a soft requirement as the speed layer result can 

handle some inaccuracy since it will be temporary and will be fixed in the batch layer. Also, the 

failures are rare and any introduced inaccuracy is small. Using non-idempotent processing can 
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result in lower latency which will be desirable for the speed layer, whilst any introduced 

inaccuracy will be minimal and also temporary. 

Micro-Batch Stream Processing 

Micro-batch processing is another approach for stream processing in the speed layer. It has 

the advantages of better accuracy and higher throughput compared to one-at-a-time processing. 

This approach is useful for applications in which any inaccuracy, or even temporary 

inaccuracies, are unacceptable. However, micro-batch processing has slightly higher latency 

compared to a one-at-a-time processing approach. In other words, for applications that accuracy 

is a mandatory requirement, we can gain accuracy with micro-batch processing in the Speed 

layer, at the cost of higher latency. 

Despite the one-at-a-time approach that tracks and processes each tuple DAG individually to 

guarantee the at-least-once processing, the micro-batch approach tracks a batch of tuples and the 

processing is executed in a specific order in order to achieve exactly-once processing. As such, 

each batch of tuples has a unique identifier (ID) and each batch will be processed after the 

completion of the previous batch.  

Each batch of data is partitioned and sent to different tasks for parallel processing. Each 

intermediate processed result will keep the ID of latest processed batch. This way if processing 

one batch of tuples fails, the processing on that batch will be replayed and the tasks will update 

only the intermediate results that has the latest processed ID other than the ID of the current 

batch. As a result, the processing will not update the results that are already updated in the 
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previous round and only updates the results that haven’t yet been updated during the time of the 

failure. Storing the ID of the latest processed batch adds idempotence to non-idempotent 

operations that are done in tasks. Thus, those tasks can be replayed multiple times but the end 

result is always the same. 

Micro-batch processing consists of two parts: batch local processing and stateful 

computation. Batch local processing refers to computation done inside each batch that is local to 

that batch and independent from other batches. For example, partitioning the tuples in the batch 

in order to send to different tasks is one of the batch local computations. Stateful processing is 

the computation that needs to keep the state of the micro-batch across all batches. 

Stateful computation in micro-batch processing results in the need for transactional spouts. 

Transactional spouts are sources of data that can partition data to micro-batch of tuples and 

replay exactly the same micro-batch in case a failure happens. For this to occur, the transactional 

spout should know which offsets from which partition the particular micro-batch can be derived. 

As mentioned before, micro-batch processing has higher latency and throughput compared 

to one-at-a-time processing. The latency is caused by the time needed to coordinate partitions for 

micro-batch as well as waiting for one batch to complete the processing and then start the next 

batch. This latency may be as small as milliseconds to a second but it is significant considering 

the difference in order of magnitude. Moreover, higher throughput is achieved in micro-batch 

processing when processing batch of tuples all at once. 
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Pipe diagrams can be used to represent micro-batch processing as it is used for showing 

batch processing in the batch layer. Pipe diagrams can be used exactly as it is used in batch layer 

for batch local computations. However, for the stateful computation the pipe diagram needs to be 

extended as the pipe diagrams are designed to work on one batch at a time without the 

consideration of any state. In other words, the pipe diagram can show the micro-batch 

computation, but there is more to micro-batch processing than what can be shown in the pipe 

diagram. Micro-batch processing needs to keep batch IDs as state and it is hidden inside the pipe 

diagram abstraction. 

As the final word about the speed layer, it is worth mentioning that the processing done in 

the speed layer is not always real-time processing. For example, finding inactive sensors, which 

are sensors that have not been active and sending data in the past hour, can be our use case and 

computing that is not real-time processing, but rather, processing the data from the past. As a 

result, depending on the use case and the questions that need to be answered, the processing of 

the speed layer may or may not be real-time processing. 

Summary 

In this chapter, we reviewed IoT data management and its challenges as well as the related 

literature and tools. Then we went over the details of the Lambda architecture which is our 

candidate for addressing data management challenges in our proposed architecture. 

The Lambda architecture is an architecture for big data management and consists of three 

layers: batch, serving, and speed layers. The batch layer and serving layer are used for storing, 
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preprocessing and indexing large datasets. In other words, these two layers are designed to 

address the data volume challenge. The speed layer is designed for processing real-time data and 

queries. The Lambda architecture is also capable of addressing the data velocity challenge 

through the use of the speed layer. 

We use Figure 7 to summarize the process and show the overall structure of the Lambda 

architecture (Marz & Warren, 2015).  

The journey of data in the Lambda architecture for answering queries is as follows: 

1. When new data is added to the system, it is sent to both the batch layer and the speed 

layer. This new data is added and stored in the master dataset in the batch layer. It is also 

used for incremental updating of real-time views by the speed layer. 

2. For the Lambda architecture, the master dataset is designed to be append-only and 

contains the raw data that enter the system.  

3. Common query functions are precomputed in the batch layer periodically and batch 

views are created. The preprocessing is performed from scratch each time. This 

characteristic makes batch views human fault-tolerant. The batch layer can compute any 

arbitrary function on any arbitrary data to support different applications. 

4. Batch views are indexed and prepared for queries in the serving. The batch processing in 

the batch layer takes time. As a result, each time the serving layer is updated it is out of 

date compared to all the data that comes to the system at that point in time. 
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Figure 7 The Overall Process in Lambda Architecture (Adapted from (Marz & Warren, 

2015)) 

 

5. Because of the latency of batch processing, the serving layer is always out of date. This is 

when the speed layer comes in to answer the real-time queries for which answers are not 

present in the serving layer yet. To this end, the speed layer produces real-time views by 

using fast, incremental update algorithms on new data that enters the system. In this way, 

the real-time views are always up to date. The real-time views contain the views of data 

recently entering the system which are not yet absorbed by the batch views. As a result, 
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both batch views and real-time views are needed for answering queries. However, real-

time views should be discarded as soon as they are absorbed into the batch views.  

6. The answers for the queries are created by merging both batch and real-time views 

together. This is the final part of the data journey in the Lambda architecture. 

In the following chapter, we explain how we use the Lambda architecture with the 

SensorThings API to address all of the 3 Vs of big data management challenges in IoT. 
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Integrating the Lambda Architecture with the SensorThings API  

For this dissertation, I am proposing an open geospatial cloud service architecture for the 

Internet of Things. The focus of the proposed architecture is to solve data management 

challenges for IoT. We described the OGC SensorThings API and Lambda Architecture in detail 

in the previous chapters. In this chapter, I explain how using Lambda Architecture together with 

the SensorThings API result in an architecture that can overcome data management challenges 

for IoT. We first explain how to use the Lambda architecture with the SensorThings API, before 

discussing how this architecture overcomes big data managements challenges for IoT. 

Proposed Architecture 

The proposed architecture uses Lambda architecture together with the SensorThings API. In 

this section, we discuss how we can merge the Lambda architecture with the SensorThings API 

in order to create an architecture for solving big data challenges for IoT. For this we will discuss 

how SensorThings is used in each layer of the Lambda architecture. 

Data Model and Master Dataset 

As we discussed in the previous chapter, Lambda architecture requires a fact-based data 

model. The data model for the SensorThings API suits all the requirements for the Lambda 

architecture. It is normalized as suggested in Lambda architecture. Moreover, the SensorThings 

API data model satisfies the fact-based data model of Lambda architecture as the Observation 

entity is the centric entity in SensorThings for which all other entities keep metadata. As a result, 

Observation can be the fact entity. We propose making the Observation table immutable as 
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suggested by the Lambda architecture which means that Observation entries can only be added to 

the system but cannot be updated. Since Observations are sensor readings, they are immutable 

and time-stamped by nature. If there is an anomaly in the Observation data it can be detected in 

the application level by using anomaly detection or a cleansing algorithm. Furthermore, 

erroneous Observations can be deleted later by the user in another process and it will affect the 

batch views for the next batch processing period. By making the Observation entity immutable, 

we follow the Lambda architecture recommendation for achieving higher fault tolerance. 

Although the FeatureOfInterest keeps the metadata for the Observation entity, we propose 

making this table immutable as well. In most of the use cases, the FeatureOfInterest is the GPS 

reading for the sensor and is either the same for all the sensor’s Observations in the case of static 

sensors, or different in case of moving sensors. In either case, there is no need for updating the 

FeatureOfInterest entity for Observation. If there is faulty data for the FeatureOfInterest it will be 

corrected in the next Observation reading and thus no problems will arise. 

All the other SensorThings entities including, Thing, Location, HistoricalLocation, 

Datastream, Sensor, and ObservedProperty keep metadata for Observation and they rarely 

change. We loosen the Lambda architecture requirement of immutability for these entities and 

give the user the capability to update them in case the wrong data was entered in the first place. 

As these entities only contain metadata information and not facts, we can still benefit from the 

fault tolerance that the Lambda architecture offers. 
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As discussed, the SensorThings data model fits perfectly with the Lambda architecture data 

model and we can use this data model as our master dataset data model. To sum up, Observation 

is our fact table and immutable. FeatureOfInterest is also immutable. All other entities are 

metadata or so-called dimensions for the Observation table and rarely change, except when the 

user inputs the wrong information. 

By using the SensorThings API as the Lambda Architecture data model, we benefit from the 

fault tolerance from the Lambda architecture as well as the flexibility of SensorThings to get 

Observations from different points of view, e.g. Sensor view or ObservedProperty view. The 

data can be queried to get all the Observations of a specific Sensor; all the Observations that 

observe the same phenomenon (known as ObservedProperty); or all the Observations that 

observe the same place (known as FeatureOfInterest). In summary, the system is flexible but 

fault-tolerant when we make Observation and FeatureOfInterest immutable. 

Batch Views 

When we use the Lambda architecture together with the SensorThings API, our batch views 

can be created based on the analytics use case on top of SensorThings schema. There is no 

limitation on what we can define for our batch views. Furthermore, geospatial information in the 

SensorThing API can enrich our IoT analytics with Lambda architecture and it can facilitate any 

type of spatiotemporal analytics on Observations whilst the Observations can also be categorized 

based on the phenomena they are observing. Moving on, we will discuss some popular use cases 

for SensorThings and IoT. 
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When using Lambda architecture with SensorThings API, batch views can either be 

summarized or aggregated values, or preprocessed analytics on our Observations with different 

dimensions from other SensorThings entities that can be carried out based on the use case. Also, 

batch views can chunk the data based on popular SensorThings queries for a fast read. An 

example of the second case is if 

/Things(id)/Datastreams?$exapnd=ObservedProperty,Observations($orderby=result 

desc;$top=1) is a very frequent SensorThings path; the response, as raw data can be stored as 

batch view for fast access. The dimension in this case would be Thing id and the result would be 

stored as a file and can be accessed every time we want to answer the query. The challenge for 

this query is multiple database joins needed to answer the query as well as the fact that finding 

the highest result is an expensive operation. Thus, using batch view and preprocessing can 

improve the performance of this query. When using Lambda architecture, the file in batch views 

needs to be compared and merged with the information we have in our real-time views so that 

our response would contain the highest result of all the time. Another situation is that in which 

the query is needed for only retrieving the highest Observations results. In that case, a flat 

structure can be stored as batch views and then queried from the serving layer. The flat structure 

in this case has the Thing required information, can be only its @iot.id, the Datastream required 

information, again can be only its @iot.id, the ObservedProperty required information, and the 

Observation that has highest result. This flat structure can be a table and can be queried in a fast 

and scalable manner from serving layer. 
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Another more sophisticated query could be /Observations?$filter=phenomenonTime lt {t1} 

and phenomenonTime gt {t2} and st_within(FeatureOfInterest/feature,{bbox WKT}) and 

Datastream/ObservedProperty/name eq {n1}&$orderby=phenomnonTime desc. It requests all 

the sensor readings that observe a specific phenomenon for a specific time range for a specific 

area. In this case, our dimensions are ObservedProperty, FeatureOfInterest, and time. The data 

can be chunked based on these dimensions and stored as batch views. It can be as simple as a file 

structure for dividing the data. We need to define a folder structure for time and 

FeatureOfInterest. Different indexing can be used for FeatureOfInterest such as QuadTree, 

GeoHash, ZXY tile number, etc. In (Khalafbeigi, Huang, Liang, & Wang, 2014) we proposed 

using Time tags as YYYYMMDDHH and the QuadTree index as the structure for the 

dimensions. For the query mentioned earlier, we need to add the ObservedProperty id into the 

structure. To respond to this frequent query with raw data, the tags can be hashed into file names 

for faster access and the result can be read from the file. 

In the above use case, instead of QuadTree we can use the ZXY tile number (Wikipedia, 

2018b) if the query is usually made for rendering the data on a map. For this, we duplicate the 

data for each zoom level in order to achieve a fast read when zooming in and out on the map. 

ZXY is used to store tile files for fast rendering. Z is the directory and X is the subdirectory and 

Y is the file name that keeps the tile data. In this format, each zoom has 2zoom2zoom tiles. In this 

use case, we can use ZXY numbers as a way of indexing the data geospatially. Also, using this 

ZXY information, tiles can be pregenerated for rendering. The following is the formula for 
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calculating X and Y for each Zoom level based on latitude and longitude information available 

from the SensorThings API: 

As mentioned, the other use case is when a summarized or aggregated value is needed from 

our Observations or if some more complex analytics are required for Observations. In this case, 

we do not keep all the data for answering queries and only the aggregated or analysis value is 

needed. Flat structures can be used as a way of storing the information after aggregation or other 

analytics. In the flat structure, each row has all the dimension information needed as well as the 

summarize, aggregated, or computed value for the fact which is the Observation in the 

SensorThings API. Basically, the flat structure is created by denormalizing the SensorThings 

schema in order to achieve higher performance for the specific analytics. The flat structure can 

be stored as a table in the serving layer and used for answering user queries. Although 

normalization can help keep the data consistent as well as requires less storage, denormalized 

data can be accessed faster. Since performance is the primary factor when it comes to batch 

views, denormalized data is a better choice for batch views. 

In summary, using the SensorThings API with Lambda architecture does not limit how to 

define batch views. From the IoT point of view, since the SensorThings API has a 

comprehensive data model that can fulfill most of the IoT use cases, different geospatial and 

n = 2zoom 

xtile = n  ((longitude + 180) / 360) 

ytile = n  (1 - (log(tan(radian(latitude)) + 

sec(radian(latitude)))) / π)) / 2 
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spatiotemporal analytics can be easily done on the data and the preprocessed data can be stored 

in batch views. Also, in terms of batch processing, there is no limitation on the paradigm that we 

use for preprocessing the data. MapReduce or any other parallel processing paradigm can be 

easily adopted for preprocessing the data for increasing the performance of batch processing. 

Serving Layer 

Using Lambda architecture with the SensorThings API does not put any limitation on the 

Serving layer. For batch views, we can use file structures if we only want to segmentize our raw 

data for fast access, or we can denormalize and aggregate data in batch views and index them in 

the serving layer based on the dimensions chosen for the analytics. For geospatial indexing in the 

serving layer, we can use the applications that provide geospatial indexing. Also, we can use 

different types of indexing at the preprocessing level, such as ZXY tile numbers that we used for 

our case study implementation, so that we can use any tool for indexing in the serving layer. 

As the Lambda architecture suggested, the serving layer should be optimized for random 

reads due to its purpose and this should be taken into account when we use the Lambda 

architecture together with the SensorThings API. 

The rule of thumb here is using denormalization, as suggested by the Lambda architecture, 

for aggregated batch views. Furthermore, the file name structures/hashes can be used for raw 

data segmentation, and no constraint is introduced by SensorThings into the Lambda 

architecture. 
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Speed Layer 

When using Lambda architecture with SensorThings API, the simple SensorThings server 

can be used for answering real-time queries whereas the batch and serving layer can be used for 

answering questions about historical data. It is possible because of the rich RESTful API that 

SensorThings API introduces. Moreover, the data can be added to the system in real-time using 

the lightweight MQTT protocol. As a result, a service that is compliant to the SensorThings API 

is ready for real-time processing for most use cases. 

However, for more sophisticated analytics, it is recommended that the speed layer be 

implemented for real-time data which results in real-time views. Basically, we move some of the 

processing time from the run-time to the speed layer. When using SensorThings API with 

Lambda architecture, depending on the analytics, the real-time view can have the same structure 

of batch views or be in a rawer format. As an example, real-time views can be as simple as the 

denormalized version of the SensorThings schema which reduces join on the run-time. In this 

case there will be data duplication but the read time can be faster. When we use rawer structure 

for our real-time views, they can be used for answering more user queries, whereas the more 

aggregated views result in fewer questions that it can answer. However, there is less run-time 

processing for more aggregated views and answering the questions based on them is faster. As 

we can see, there is a trade-off here and a decision needs to be made based on the use cases for 

the designed system. 
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We discussed batch views for highest result for each Datastream of a Thing in the previous 

section. For this use case, we can use the same flat structure for our real-time views as for our 

batch views. The real-time stream processing that is required in the speed layer is as easy as 

comparing the new data result with the real-time view record and updating it if the new 

Observation’s result is higher. Micro-batch processing can be very useful in this case as the 

highest Observation result in the batch can be compared and applied to the real-time views. 

Similar to the serving layer, merging the SensorThings API with Lambda architecture does 

not introduce any constraints on Lambda architecture and all the suggestions and guidelines from 

Lambda architecture can be used for the speed layer of our proposed architecture. 

In summary, the SensorThings API enriches the Lambda architecture with its well-defined 

schema and geospatial information which makes it suitable for IoT applications and analytics. As 

the SensorThings data model is comprehensive and can be used for most IoT use cases, the 

proposed architecture can also be used for most big data IoT use cases. In the next Section, we 

discuss how using the SensorThings API with Lambda architecture provides an architecture 

suitable for big data management for IoT. 

Discussion 

As we can see from previous chapters, big data management challenges can be divided into 

three categories: variety, volume, and velocity. In this section, we discuss how using Lambda 

architecture with SensorThings API addresses these challenges. Also, in the next chapter, we will 
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review the evidence that the proposed architecture is suitable for solving data management 

challenges for IoT. 

Big Data Volume 

The Lambda architecture is a solution for big data volume and velocity. Basically, the 

Lambda architecture batch and serving layers solve big data volume by using multiple tactics. 

Firstly, the Lambda architecture has a master dataset for storing all the data. The master dataset 

should be able to store large volumes of data but it is not necessarily optimized for random reads. 

Furthermore, in the batch layer, the Lambda architecture uses batch processing in order to 

prepare the data for answering user queries efficiently. The paradigms used here are 

preprocessing and denormalization which both lead to higher performance for answering user 

queries. Also, the Lambda architecture has the serving layer for storing and accessing the batch 

views that are created during batch processing. The serving layer needs to be optimized for 

random reads which leads to high performance for answering user queries.  

It can be seen that by using the batch and serving layer together, Lambda architecture can 

handle high volumes of data and in doing so, provide a solution for the big data volume 

challenge. The key here is separation of concerns, as the master data set is optimized for writing 

high volumes of data and the serving layer is optimized for reading. Also, the batch processing 

moves some computation from runtime to processing time which increases read performance. 

There is only one concern left – batch processing can be time consuming and can take as much 

as a few hours. In this case, if we answer user queries from the serving layer, our response does 



 

 

 

  

 

108 

not contain the information from the data entering the system in those few hours. That is the 

reason behind the introduction of the speed layer by the Lambda architecture. 

Big Data Velocity 

Lambda architecture can solve the big data velocity challenge with its speed layer. The 

speed layer processes streams of real-time data and creates real-time views. These real-time 

views together with batch views can answer user queries in a timely manner. Different tools and 

techniques can be used in the speed layer for the system to be responsive to high volumes of 

data. Incremental analytics and micro-batch processing are two of the techniques discussed in the 

previous chapter. As a result, Lambda architecture can overcome the big data velocity challenge 

with its speed layer. 

In conclusion, Lambda architecture can overcome big data volume and velocity challenges. 

Big Data Variety 

 For handling the big data variety challenge, we propose using the SensorThings API. Using 

a standard is one of the solutions for addressing the interoperability challenge or big data variety 

for IoT. The OGC SensorThings API is a comprehensive and easy-to-use IoT standard published 

in 2016. Since then, there have been multiple implementations and the standard is widely 

adopted in the IoT world. We will discuss different implementations of the SensorThings API in 

the next chapter. The fact that the standard has been widely adopted in the two years since it was 

published shows the maturity of the standard and the community around it. Hence, the 

SensorThings API is a perfect candidate for handling the big data variety issue. 
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Lambda architecture addresses big data volume and velocity, and SensorThings API 

overcomes the big data variety challenge. We propose addressing big data 3 Vs challenges by 

using the SensorThings API together with Lambda architecture. We see in this chapter that the 

SensorThings API data model can match the Lambda architecture schema well. Also, using the 

SensorThings API with the Lambda architecture does not introduce any limitations or constraints 

to the Lambda architecture. As a result, we can see that there is no problem in merging the 

Lambda architecture with the SensorThings API and the resulting architecture can address big 

data volume, velocity, and variety challenges for IoT.  

Explaining the details of merging the SensorThings API and Lambda architecture is much 

easier with an example use case and we will discuss it in more detail in the next chapter when we 

discuss our implementation for an air quality monitoring use case. 
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Results and Discussion 

In this chapter, we are going to illustrate a use case that uses the SensorThings API with the 

Lambda architecture – which is our proposed architecture for IoT. Firstly, we describe our case 

study and how we gather our data. Then we discuss the different technologies used to implement 

our architecture. In the third section, we compare the proposed architecture with the naïve 

implementation of SensorThings. Finally, we will discuss how the proposed architecture 

improves the IoT system implementation and how it addresses the big data 3 Vs challenges. 

Air Quality Case Study 

We use the data from the Location Aware Sensing System (LASS) originating from Taiwan 

(LASS Community / Academia Sinica, n.d.). It is an open source and public environmental 

sensor network system. LASS gathers sensor data from different sensors and publishes the 

readings on MQTT. We subscribe to their MQTT and load the sensor readings onto our 

SensorThings service in real-time. There are different sensors reporting their readings on LASS. 

However, we only load the data from the Edimax sensors (EDIMAX Technology Co., 2017) 

which created around 90% of LASS data, because Edimax sensors are reliable and have well-

defined API for easy loading. 

The sensor readings from LASS have GPS information to use for FeatureOfInterest. 

However, although their sensors are static or rarely moving, the sensors report slightly different 

GPS values for every reading. When we load data from LASS into our service, we use Geohash 

(Wikipedia, 2018a) level 11 to check if the sensor actually moved or if it is GPS error and then 
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load the data into our SensorThings API. As a result, if a sensor is moved less than 7.4 

centimeters, our loader detects it as a static sensor and uses the old FeatureOfInterest for its 

Observation. 

We use the device’s Media Access Control (MAC) address to identify the Thing for the 

device. We only load data from Edimax sensors as we know the Sensors in their devices and also 

their ObservedProperties. We create the Thing and corresponding Datastreams when we see the 

first reading from each MAC address. The other important factor for Edimax sensors is that we 

know the unitOfMeasurement for its readings which makes the sensor reading meaningful. After 

the first time that the entities are provisioned for each MAC address, the next readings will only 

be checked for GPS data and if the sensor moved, before being added as Observations to their 

corresponding Datastream. 

We started gathering LASS data since September 2016 and currently we have around 4000 

Things and more than 630 million Observations in our SensorThings so far. 22 phenomena have 

been observed which led to 22 ObservedProperties and 22 Sensors. After cleaning the GPS data, 

there are currently around 40,000 FeaturesOfInterest in our SensorThings API. The rate of 

reading for sensors are different throughout the time, but currently it is around 30 hertz which 

means there will be around 2.5 million Observations added to our SensorThings API every day. 

We gather LASS data as a real-world dataset, load it into the SensorThings model and 

implement and experiment on our proposed architecture.  
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Case Study Implementation 

We used Apache Hadoop and Azure technologies for implementing a case study for our 

proposed IoT architecture. SensorThings MQTT is the means of entering the data into our 

implementation. For our implementation, we used Azure HDInsight clusters which provides 

clusters using Hortonworks Hadoop distribution. HDInsight provides different cluster types for 

Hadoop, Storm, etc. All of them use Hortonworks, but they are optimized and finetuned for 

different use cases, i.e. the storm cluster is optimized for applications that use storm. 

The first technology we used to stream the MQTT data throughout our system was Apache 

Strom. We used an Azure HDInsight Cluster with two namenodes and five supervisors. The 

cluster has a total of 36 processing cores as well as 200GB memory. We had a storm process for 

each entity that subscribed to its SensorThings topic and streamed their data through the system. 

Master Dataset 

We used Apache Hive to implement our master dataset. Apache Hive is an open data 

warehouse residing on top of the Hadoop Distributed File System (HDFS) and facilitates 

querying the data using its SQL-like query language, HiveQL (Leverenz, 2018). Hive 

automatically runs the queries using MapReduce which increases the performance for querying 

large datasets. 

We defined a table for each entity in hive as well as two tables with identical schema to the 

Observation table for storing real-time Observations. As a result, the table we do the batch 

processing on is different from the table we add real-time data to as there will be no conflicting 
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problems, and we know exactly which part of the data our batch views belong to. We used the 

Azure HDInsight Hadoop cluster for our apache Hive with two namenodes and four workers. 

The cluster has a total of 24 processing cores as well as 200GB memory. 

When new data streams to the system through storm it is saved in the corresponding table in 

our Hive master datastet. For our implementation, we used apache SQOOP to move our 

historical data from PostgreSQL to Hive and then the storm process adds all the new data that 

streams through the system. 

Batch Layer 

We used the Azure Data Factory to implement our batch processing. The Azure Data 

Factory is a hybrid Extract-Transform-Load (ETL) service for creating, scheduling, and 

managing data integration in a scalable manner (Microsoft Azure, 2018a). It is a serverless 

technology which means that Microsoft Azure automatically manages the backend for the system 

in the cloud. It supports different connectors and data flow. We used a copy data pipeline in the 

Azure Data Factory. 

The pipeline starts from Hive, creates a summarized view from raw data using the Hive 

query, and stores it as batch views. We used the Azure SQL Data Warehouse (DW) for storing 

our batch views as the serving layer. Azure SQL DW is a cloud-based data warehouse that 

separates computing from storage. As a result each component can scale independently 

(Microsoft Azure, 2018b). Azure SQL DW supports columnar caching which is caching 
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frequently used columns and row groups. As it has distributed cloud infrastructure, the system 

can scale for large datasets very well.  

Batch View Structure 

For our batch view we chose time, FeatureOfInterest, and ObservedProperty as our 

dimensions and to keep count of and calculate the sum of the Observation results as facts. We 

use a flat table structure for our purpose. Since the geospatial aspect of our IoT data is important 

to us, we used the ZXY tile number for aggregating Observations. And we keep the aggregation 

for zoom zero to 12. This means that there will be redundancy in our batch views which means 

that we need more storage. However, this structure requires less run-time computation for 

answering user queries and leads to faster response. 

Together with ZXY we also keep the centroid for latitude and longitude that is the average 

of latitude and longitude of all FeatureOfInterest in that tile. We can use these centroids for some 

applications that work better with coordinates and ZXY for other applications. 

For the time dimension, we keep the data down to hours, and we aggregate from minutes. In 

our batch views, we keep the date and the hour as two separate fields so that grouping will be 

faster for daily run-time aggregation. 

We always keep two timelines of batch views, one which is processing now, and one which 

is ready to use for queries. Once one set is ready to use the other starts processing again. We also 

have two timelines for our real-time views as described in the previous chapter. We will go over 

the real-time view timelines in the Speed Layer section. 
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Batch Processing 

As mentioned earlier, we used the Azure Data Factory for our batch processing. Our batch 

processing has four parts: 

1. We copy all the data from Hive real-time Observation table to the main Observation 

table to get the data ready for processing. 

2. We delete all the Observations before this time point from one of our two real-time view 

timelines. (We will cover more about real-time timelines later) 

3. We delete the outdated batch views from our serving layer. 

4. We keep track of the batch and real-time views that should be used during the time when 

the batch processing is happening in SQL DW. 

5. We run a hive query grouping the data based on our dimensions and create a view. 

6. We save the batch view in Azure SQL DW. 

7. We repeat step 3 and 4 for as many zoom levels as desired. We store batch views up to 

zoom 12.  

We process different zoom levels sequentially, rather than in parallel, since our cluster is 

small in terms of memory and cannot handle them all together. For more powerful clusters it can 

be done in parallel. However, as we saw in the previous chapter, for the Lambda architecture 

optimizing the batch process is not critical as the system will not be held back for that 

processing. 

The Query that is run on level 3 for zoom zero is as follows: 
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The Hive queries will be run using MapReduce automatically. Apache TEZ is used for 

scheduling and running MapReduce. Apache TEZ is an extensible framework for data 

processing in Hadoop that improves the MapReduce paradigm by improving its speed and 

scalability (Hortonworks, 2018). 

select count(*) as total_count, sum(result) as total_sum,  

   data_stream.observed_property as observed_property_id,  

   observed_property.description as observed_property_name,  

   to_date(observation.phenomenon_time_start) as aggregation_date, 

   HOUR(observation.phenomenon_time_start) as aggregation_hour,  

   0 as zoom,  

   floor((get_json_object(regexp_replace(feature,\"\\\\|\",\",\"),  

      '$.coordinates\\[0]')+180)/360*power(2,0)) as x,  

   floor((1 - ln(tan(radians(get_json_object(regexp_replace( 

      feature,\"\\\\|\",\",\"),  '$.coordinates\\[1]'))) +  

      1 / cos(radians(get_json_object(regexp_replace( 

      feature,\"\\\\|\",\",\"), '$.coordinates\\[1]')))) / pi())  

      / 2 * power(2,0)) as y, 

   round(avg(get_json_object(regexp_replace(feature,\"\\\\|\",\",\"),  

      '$.coordinates\\[1]')),5) as lat,  

   round(avg(get_json_object(regexp_replace(feature,\"\\\\|\",\",\"),  

      '$.coordinates\\[0]')),5) as lon 

from sensorthings.observation  as observation join  

   sensorthings.feature_of_interest as feature_of_interest  

      on (observation.feature_of_interest=feature_of_interest.id) 

    join sensorthings.data_stream as data_stream  

      on (observation.data_stream=data_stream.datastream_id)  

    join sensorthings.observed_property as observed_property  

      on (observed_property.obs_property_id=data_stream.observed_property) 

group by data_stream.observed_property, observed_property.description,  

    to_date(observation.phenomenon_time_start), 

    HOUR(observation.phenomenon_time_start), 

    floor((get_json_object(regexp_replace(feature,\"\\\\|\",\",\"),  

      '$.coordinates\\[0]')+180)/360*power(2,0)),  

    floor((1 - ln(tan(radians(get_json_object(regexp_replace( 

      feature,\"\\\\|\",\",\"), '$.coordinates\\[1]'))) +  

      1 / cos(radians(get_json_object(regexp_replace( 

      feature,\"\\\\|\",\",\"), '$.coordinates\\[1]')))) / pi())  

      / 2 * power(2,0)); 
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Serving Layer 

We used the Azure SQL Data Warehouse (DW) for storing and indexing our batch views in 

the serving layer which is a cloud-based data warehouse. The Azure SQL DW separates 

computing from storage. As a result, computation can be improved in terms of scalability 

independent from storage. It uses Massive Parallel Processing (MPP) for high performance and 

scalability. In its cloud-based architecture, there is a control node that prepares the query for 

parallel processing and then compute nodes run the query in parallel. Also, Azure SQL DW uses 

adaptive caching for fast response to frequent queries. 

Azure uses a metric called performance level which defines how powerful the cluster is. For 

our implementation, we used the basic level with the least performance level provided, but in the 

experiment section we can see that our architecture still outperforms other solutions by order of 

magnitude.  

Speed Layer 

For implementing the speed layer of our architecture, we used Azure Eventhub and Azure 

Stream Analytics and our real-time views are stored in Azure SQL DW. Since we used the Azure 

platform for implementing a case study of our architecture, we chose to route our messages to 

Eventhub to create real-time views seamlessly in this platform. 

When the new data streams into the system through storm it will be sent to Eventhub. 

Eventhub queues the messages automatically as required and works seamlessly with Azure 

Stream Analytics to make sure that all the data goes through the stream analytics. The stream 
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analytics job is to analyze the datastream coming into the system in small batches and storing the 

result in the SQL DW. 

Real-Time View Structure 

For our real-time views, we decided to keep our raw data and only add some information to 

it. Since the data in our real-time view is only there for a few hours and not very big, the 

computation for the dimension we defined can be done relatively fast in real-time. However, we 

added the ZXY tile number as well as separate date and hour columns to the raw data to 

minimize the real-time computation. As we add the ZXY tile number to our data, each raw data 

is duplicated to 12 datasets for our 12 zoom levels.   

Similar to batch views, we keep two timelines of real-time views. One of them is used for 

answering user queries and the other is used when the current batch processing is finished. We 

keep two timelines as we want our batch and real-time views to be independent and to avoid any 

overlap in their data. In order to explain the rationale behind this decision, let’s name our 

timeline view batch1, batch2, real-time1, and real-time2. As we can see in Figure 8, at the 

starting point of time, t1, we don’t have any batch views and batch processing is started to create 

batch1. At this time real-time1 and real-time2 are identical. At time t2, batch1 is ready and 

contains all the info about the data before t1 whilst real-time1 has all the data from after t1. As a 

result, user queries can be answered using batch1 and real-time1 quickly and without any 

overlapping of data. 
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Figure 8 Timeline for Batch and Real-Time Views 

 

At time t2, we start reprocessing our batch views. At this time, we use batch2 to store our 

result, as batch1 is in use for answering user queries. We delete all the data before time t2 from 

real-time2, so that after our processing is finished, batch2 and real-time2 won’t have any overlap. 

We cannot do this delete for real-time1 since it is in use for answering user queries and batch1 

does not have the info for the data between t1 and t2. When this round of batch processing is 

finished, batch2 and real-time2 are ready for answering user queries and we repeat the process 

for batch1 and real-time1 again. Using these two timelines for batch and real-time views helps in 

keeping batch processing and query answering smooth and quick and without any complications. 

Figure 9 shows all the technologies we used for the implementation of our proposed 

architecture – the Lambda architecture with SensorThings API. Also, Figure 10 shows a 

screenshot of all the tools and technologies that we used from Azure to implement our proposed 

architecture. 



 

 

 

  

 

120 

 

Figure 9 Case Study Implementation of Lambda Architecture with SensorThings API 

 

 

Figure 10 Screenshot of All the Azure Services We Used for Implementing Our Proposed 

Architecture 
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Any type of application tool can be used to query our batch and real-time views in SQL DW 

and port the results to the end user. Visualization is out of the scope of this dissertation. 

However, as a show case we used Power BI to show a possible application as shown in Figure 11 

and Figure 12. 

 

Figure 11 Power BI Screenshot Querying the Data from Our Proposed Architecture, 

Showing the Average Temperature for Dates Between 29/09/2017-26/04/2018 



 

 

 

  

 

122 

 

Figure 12 Power BI Screenshot Querying the Data from Our Proposed Architecture, 

Showing the Average Dust Level (PM2.5) for Dates Between 30/01/2018-18/06/2018 for the 

Select Area 

 

In the following section, we will explain the experiments done on our implemented case 

study and discuss the results. 

Case Study Experiments 

In this section, we discuss the experiments for our implemented case study. For this 

dissertation, we proposed an architecture suitable for IoT data management and we discuss how 

it can overcome the big data 3 Vs challenges. In this section, we illustrate how our architecture 

outperforms other naïve implementations for IoT. In the first subsection, we discuss how our 
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proposed architecture can overcome the big data variety challenge. Then, we divide our 

experiments into two categories and each of them provide evidence that our architecture can 

overcome one of the big data Volume or Velocity challenges. In our final experiment, we 

illustrate how the proposed architecture performs compared to naïve implementations. 

Big Data Variety 

As explained before, big data variety refers to different types and structures of data that a big 

data system is required to deal with. It is also referred to as an interoperability issue for the 

Internet of Things. The interoperability issue in IoT rises from proprietary IoT systems that result 

in vertical standalone silos. Horizontally designed IoT systems with well-defined open standard 

APIs are required to address this interoperability issue. The OGC SensorThings API is a standard 

that can be used to overcome the interoperability issue. As we described in detail in the 

“SensorThings API, Details and Design Decisions” chapter, it is a geospatial standard published 

in 2016, and since then there have been multiple organizations implementing the standard and it 

is widely adopted by the IoT community. The number of implementations and adoptions show 

the maturity of the standard and that the SensorThings API is a good fit for solving the 

interoperability issue for IoT. In the following subsection, we will list different implementations 

of SensorThings API as well as its adoption. 

In order to complete the standard life cycle, a test suite is developed for checking the 

compliance of different implementations with SensorThings API and ensure the interoperability 
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between them. I developed a test suite which was published together with the standard in 2016. It 

is available at the OGC compliance testing website1 7. 

Implementations 

After the SensorThings API was published in 2016, multiple organizations started working 

on implementing the standard. My colleagues and I from the GeoSensorWeb lab in the 

University of Calgary implemented the very first prototype of the standard as a proof of concept 

whilst the standard was going through review and acceptance.  

SensorUp Inc. implemented the first compliant implementation of SensorThings API using 

Java programming language and PostgreSQL DBMS. SensorUp also provides multiple 

resources, from webinar to documentation to client libraries, to facilitate the use of the 

SensorThings API. 

In addition, Fraunhofer implemented an open source version of SensorThings API that is 

available1 8 for anyone to fork. This implementation also uses PostgreSQL DBMS for persisting 

the data. In order to make it easy to use, they provide a Docker container to make it easy to 

install and run.  

                                                 

 

 

1 7 http://cite.opengeospatial.org/teamengine/ 
1 8 https://github.com/FraunhoferIOSB/FROST-Server 
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Mozilla also spent some time implementing the SensorThings API using Node.js1 9. The 

other organization that worked on implementing it is Geodan Inc and they implemented another 

open source implementation of SensorThings API named GOST. GOST is written using Go 

language and PostgreSQL. CGI is also developing a SensorThings API named Kinota2 0. Kinota 

is also an open source implementation and aims to separate different concerns in their 

implementation (CGI Group Inc, 2017). As an example, they try to modularize persistence level 

in order to work with different RDBMS and NoSQL databases. Currently they are using Apache 

Cassandra as their persistence level. There is also an implementation of SensorThings API from 

a Bosch group named Gossamer2 1. 

A quick search on Github2 2 shows that there are currently 69 implementations so far for the 

SensorThings API, either implementing the core or a client for accessing the data. The number of 

implementations of the standard and the work around it two years from its publication shows it is 

well-received in the IoT community and is a good solution for solving the IoT interoperability 

issue. 

                                                 

 

 

1 9 https://github.com/mozilla-sensorweb/sensorthings 
2 0 https://github.com/kinota/kinota-bigdata 
2 1 https://github.com/zubairhamed/gossamer 
2 2 https://github.com/ 
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Standard Adoption 

Since the SensorThings API was published in 2016, it was widely adopted for multiple IoT 

projects. The Department of Homeland Security (DHS) of United States adopted the 

SensorThings API for their Next Generation First Responders project (Department of Homeland 

Security, 2018). In addition, INSPIRE, which is Infrastructure for Spatial Information in the 

European Community, was extended to support the SensorThings API (Kotsev et al., 2018). 

Eclipse also has a project called Whiskers2 3, providing clients with lightweight gateways for the 

SensorThings API. IoT Systems adopted the SensorThings API as well 2 4 and they believe that it 

is the most robust API available for IoT. Geoconnections Canada is another organization that 

invested in the SensorThings API for the air quality smart city project around Canada2 5. The 

Smart Emission Project in Nijmegen was another project that adopted the SensorThings API2 6 as 

a IoT platform.  

Horizon 20202 7 is a European Research and Innovation program and Internet of Things is 

one of their focus topics for the ICT section. There was some effort to integrate the SensorThings 

API, one of which is INSPIRE (which we talked about). The City of Hamburg is one of the cities 

                                                 

 

 

2 3 https://projects.eclipse.org/projects/iot.whiskers 
2 4 https://iotsyst.com/sensorthings/ 
2 5 http://smartair.sensorup.com/ 
2 6 http://data.smartemission.nl/ 
2 7 https://ec.europa.eu/programmes/horizon2020/en/what-horizon-2020 
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that chose the SensorThings API as a IoT standard as part of the Horizion 2020 program 

(Meiling, Purnomo, Shiraishi, Fischer, & Schmidt, 2018). Furthermore, cities of Hamburg, 

Nantes, and Helsinki, as part of project mySMARTLife 2 8, adopted the SensorThings API 

(mySMARTLIfe Consortium Partners, 2017). The mySMARTLife project focuses on making 

cities more environmentally friendly by reducing CO2 emissions and increasing the use of 

renewable energy sources. For this project, the SensorThings API was chosen for the monitoring 

infrastructure. 

What we mentioned above in terms of implementation and adoption of the SensorThings 

API are all of the work published and we believe that there is even more work in progress around 

the SensorThings API. The number of implementations and adoptions of the SensorThings API 

in only two years since it was published show the maturity of the standard and make it a good 

solution for solving interoperability issues for IoT. As a result, we chose to use the SensorThings 

API in our proposed architecture for addressing the interoperability challenge also known as, big 

data variety. 

Big Data Volume 

Big data volume challenge refers to the large size of data that needs to be maintained in the 

system. We proposed that by using the Lambda architecture together with SensorThings API, we 

                                                 

 

 

2 8 https://www.mysmartlife.eu/mysmartlife/ 
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can overcome the big data volume challenge. The techniques used here are first, preprocessing 

and denormalization, and second, separation of concerns for read and write as well as indexing. 

The dilemma here is that indexing can make read faster, whilst adding overheads to write. Thus, 

instead of having a system which is both optimized for read and write and requires maintaining a 

large dataset, we separate the concerns into different parts of the system and the batch layer is 

designed for quick write whilst the serving layer uses indexes to be optimized for quick read.  

To support our claim about supporting big data volume, we compare the query response 

time of our implementation with naïve solutions. The first system that we compared is a system 

that implemented the SensorThings API with the PostgreSQL database. The reason we chose 

PostgreSQL for our experiment is because of the geospatial nature of the SensorThings API, 

PostgreSQL is one of the best relational DBMS that can be used and this is proven by the 

SensorThings implementations that are available.  

The second system we compared our architecture with is a SensorThings service that uses 

the NoSQL database as its data store and we chose Hive which is the tool that we used for 

implementing our master dataset. NoSQL databases in theory manages large datasets better than 

RDBMS. The goal here is to show how using the NoSQL database in a well-designed 

architecture can result in much better performance. In other words, it is not the technology and 

tools that guarantee the performance, but the architecture and design that can help the system 

survive large datasets. 
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We used the real dataset that we gathered from LASS with around 40 thousand 

FeaturesOfInterest and more than 630 million Observations. In order to show how the system 

works when the data size gets bigger, we chunked our Observation data from 100 to 500 million 

Observations and repeated our experiment to find the trend. 

The query that we tested the performance for is as follows: 

This query finds the average dust level for the Taiwan area on August 8th, 2018. We need 

that information for each tile in zoom level 8. The above query is the query that needs to be sent 

to our batch views to get the response back. However, using PostgreSQL or Hive with raw data 

requires a more sophisticated query. The following is the same query for PostgreSQL: 

select sum(total_count) as count, 

   sum(cast(total_sum as float)) as sum, 

   sum(cast(total_sum as float))/sum(total_count) as average, 

   x,y   

from [lass_batch_views].[lass_batch_view_table_2]  

where observed_property_id=29014 and  

   aggregation_date='2018-08-08'  and  

   zoom=8 and  

   x>=213 and x<=214 and  

   y>=109 and y<=111  

group by x,y; 
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Also, the query for Hive is as follows:  

select sum(cast(result as double precision)), 

   count(*),sum(cast(result as double precision))/count(*), 

   floor(((cast((feature::json)->'coordinates'->>0 as double precision)) 

      +180)/360*power(2,8)), 

   floor((1 - ln(tan(radians(cast((feature::json) 

      ->'coordinates'->>1 as double precision))) +  

      1 / cos(radians(cast((feature::json)->'coordinates'->>1  

      as double precision)))) / pi()) / 2 * power(2,8))  

from observation  as observation join feature_of_interest as 

feature_of_interest  

      on (observation.feature_of_interest=feature_of_interest.id) 

   join data_stream as data_stream  

      on (observation.data_stream=data_stream.datastream_id)  

   join observed_property as observed_property  

      on (observed_property.obs_property_id=data_stream.observed_property) 

where data_stream.observed_property = 29014 and  

   observation.phenomenon_time_start>='2018-08-08T00:00:00.000' and  

   observation.phenomenon_time_start<'2018-08-09T00:00:00.000' and  

   floor(((cast((feature::json)->'coordinates'->>0 as double precision))+180) 

      /360*power(2,8))>=213 and  

   floor(((cast((feature::json)->'coordinates'->>0 as double precision))+180) 

      /360*power(2,8))<=214 and  

   floor((1 - ln(tan(radians(cast((feature::json)->'coordinates'->>1  

      as double precision))) + 1 / cos(radians(cast((feature::json) 

      ->'coordinates'->>1 as double precision)))) / pi()) / 2 * 

power(2,8))>=109 and 

   floor((1 - ln(tan(radians(cast((feature::json)->'coordinates'->>1  

      as double precision))) + 1 / cos(radians(cast((feature::json) 

      ->'coordinates'->>1 as double precision)))) / pi()) / 2 * 

power(2,8))<=111  

group by  

   floor(((cast((feature::json)->'coordinates'->>0 as double precision))+180) 

      /360*power(2,8)), 

   floor((1 - ln(tan(radians(cast((feature::json)->'coordinates'->>1  

      as double precision))) + 1 / cos(radians(cast((feature::json) 

      ->'coordinates'->>1 as double precision)))) / pi()) / 2 * power(2,8)); 
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We measure the response time for all three systems. Figure 13 shows the performance of 

running the query on batch views from Azure SQL DW. The performance is shown in 

select sum(result) as sum,count(*) as count, 

   sum(result)/count(*) as average,  

   floor((get_json_object(regexp_replace(feature,"\\|",","),  

      '$.coordinates\[0]')+180)/360*power(2,8)) as x, 

   floor((1 - ln(tan(radians(get_json_object( 

      regexp_replace(feature,"\\|",","), '$.coordinates\[1]'))) +  

      1 / cos(radians(get_json_object(regexp_replace(feature,"\\|",","),  

      '$.coordinates\[1]')))) / pi()) / 2 * power(2,8)) as y  

from sensorthings.observation  as observation  

   join sensorthings.feature_of_interest as feature_of_interest  

      on (observation.feature_of_interest=feature_of_interest.id) 

   join sensorthings.data_stream as data_stream  

      on (observation.data_stream=data_stream.datastream_id)  

   join sensorthings.observed_property as observed_property  

      on (observed_property.obs_property_id=data_stream.observed_property) 

where data_stream.observed_property = 29014 and  

   to_date(observation.phenomenon_time_start)='2018-08-08' and 

   floor((get_json_object(regexp_replace(feature,"\\|",","),  

      '$.coordinates\[0]')+180)/360*power(2,8))>=213 and  

   floor((get_json_object(regexp_replace(feature,"\\|",","),  

      '$.coordinates\[0]')+180)/360*power(2,8))<=214 and  

   floor((1 - ln(tan(radians(get_json_object(regexp_replace( 

      feature,"\\|",","), '$.coordinates\[1]'))) + 1 / cos(radians( 

      get_json_object( regexp_replace(feature,"\\|",","),  

      '$.coordinates\[1]')))) / pi()) /  

      2 * power(2,8))>=109 and 

   floor((1 - ln(tan(radians(get_json_object(regexp_replace( 

      feature,"\\|",","),'$.coordinates\[1]'))) + 1 / cos(radians( 

      get_json_object(regexp_replace(feature,"\\|",","),  

      '$.coordinates\[1]')))) / pi()) /  

      2 * power(2,8))<=111  

group by  

   floor((get_json_object(regexp_replace(feature,"\\|",","),  

      '$.coordinates\[0]')+180)/360*power(2,8)), 

   floor((1 - ln(tan(radians(get_json_object(regexp_replace( 

      feature,"\\|",","),'$.coordinates\[1]'))) + 1 / cos(radians( 

      get_json_object(regexp_replace(feature,"\\|",","),  

      '$.coordinates\[1]')))) / pi()) /  

      2 * power(2,8)); 
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milliseconds and the X axis is the number of Observations that are processed in our batch views. 

As we can see the trend is a constant value for the response time and even with increasing the 

number of Observations in the system we still achieve a good response time of less than a second 

from our batch views.  

 

Figure 13 Query Performance on Batch Views in Milliseconds Based on Number of 

Observations 

 

Figure 14 illustrates the performance of our query running on Hive raw data. As we can see 

the response time grows linearly with the number of Observations and it is in the order of a few 

hundred seconds compared with our batch views that respond in milliseconds. 

Also, Figure 15 shows the query response time for PostgreSQL. The PostgreSQLtable in the 

test has multiple indexes on time and the foreign keys. It also has some geospatial index on 

FeatureOfInterest. However, since we are interested in ZXY, it is not of much help. What we 
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notice is that PostgreSQL performs better than Hive because of the indexes. However, it shows 

the polynomial trend and we can predict that when the number of Observations are almost 950 

million, Hive will start outperforming PostgreSQL. We believe that the reason we don’t see the 

linear trend here is that for smaller datasets indexes can help the system respond faster. However, 

as the data size grows the size of the index tree also grows. When the index size is big enough 

that it cannot fit in the memory it cannot help improve the performance anymore. However, this 

is not the focus of our experiment. Our experiment shows that our batch views query 

outperforms PostgreSQL as well.  

Finally, Figure 16 shows all the three experiments together and we can see that our batch 

views architecture by far outperforms both PostgreSQL and Hive. We can say that our 

architecture improves how the system performs as the data size grows. In other words, the 

proposed architecture outperforms naïve implementations and it can address the big data volume 

challenge. 



 

 

 

  

 

134 

 

Figure 14 Query Performance on Hive Raw Data in Seconds Based on Number of 

Observations 

 

Figure 15 Query Performance on PostgreSQL Raw Data in Seconds Based on Number of 

Observations 
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Figure 16 Query Performance in Seconds Based on Number of Observations 

 

Big Data Velocity 

Big data velocity focuses on real-time data and refers to streams of data coming to the 

system at high speed and is one of the challenges in big data. When using the Lambda 

architecture with SensorThings API, the speed layer is in charge for handling big data velocity. 

The SensorThings API uses MQTT protocol which is a lightweight publish-subscribe protocol 

for IoT. For our implementation, we used Apache Storm and also Azure products that are well-

known for stream processing. In addition, Apache Storm is the tool that the Lambda architecture 

suggests for using in the speed layer. 

In order to support our claim, we did two experiments. Firstly, we tested the efficiency of 

our real-time views. For this experiment, we want to show that our proposed architecture 
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outperforms naïve implementation in terms of answering queries about real-time data that 

streams to the system. The second experiment tests the latency of the speed layer, which means 

how long it takes for data to pass through the speed layer in our architecture and reach the real-

time views. 

For the first experiment, we sent a query to our real-time views as well as to PostgreSQL 

(which could be an alternative implementation). Basically, as an alternative to our 

implementation, we keep the batch layer and use a naïve SensorThings implementation with 

PostgreSQL for speed layer real-time data and only clean its data after each batch processing. 

We did this test based on the hours of data available in our real-time views. The size of data in 

our real-time views depends on how long the batch processing takes to complete, because after 

each batch processing the real-time views will be cleared. Firstly, we did an experiment to show 

the performance of our batch processing. We shrank our Observation table from 100 to 500 

million data and carried out the experiment. Figure 17 shows the result of this experiment. As we 

can see, it shows a linear trend for batch processing time based on the number of Observations. 

For our current real system, the batch processing takes 6 hours and 30 minutes.  

What we wanted to show in this experiment was that the size of real-time views is relatively 

small especially when compared to the size of the data as a whole, and it is as big as few hours of 

data. However, what we show in Figure 17 is not true for all systems. The reason is that first of 

all, the performance can be improved easily by adding more nodes to the cluster we have for the 

batch layer. Moreover, with more resources, we can parallelize the computation for each zoom 
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level which will reduce the processing time by order of magnitude. All we wanted to show was 

that real-time views will be as small as a few hours of data or a few days at worst.  

 

Figure 17 Batch Processing Time in Minutes Based on the Number of Observations 

 

For our experiment, we test the performance of real-time views based on the data for 1, 3, 6, 

12, 18, 24, and 48 hours of data. In order to carry out the experiment for PostgreSQL, we 

chunked the data in our Observation table for 1, 3, 6, 12, 18, 24, and 48 hours and we run the 

query on them. 

The following is the query that we tested on our real-time views: 

select count(*) as count, 

   sum(cast(result as float)) as sum, 

   sum(cast(result as float))/count(*) as average, 

   x,y   

from [lass_real_time_views].[lass_real_time_view_table_2]  

where observed_property_id=29014 and  

   aggregation_date='2018-08-08' and  

   zoom=8 and  

   x>=213 and x<=214 and  

   y>=109 and y<=111  

group by x,y; 
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Also, the query we sent to our PostgreSQL is as follows. It is similar to the query in the previous 

experiment, but with different data. Also, the constraint on time is not required when the data in 

the table is equal to, or less than, 24 hours. 

 

select sum(cast(result as double precision)), 

   count(*),sum(cast(result as double precision))/count(*), 

   floor(((cast((feature::json)->'coordinates'->>0 as double precision)) 

      +180)/360*power(2,8)), 

   floor((1 - ln(tan(radians(cast((feature::json) 

      ->'coordinates'->>1 as double precision))) +  

      1 / cos(radians(cast((feature::json)->'coordinates'->>1  

      as double precision)))) / pi()) / 2 * power(2,8))  

from observation  as observation join feature_of_interest as 

feature_of_interest  

      on (observation.feature_of_interest=feature_of_interest.id) 

   join data_stream as data_stream  

      on (observation.data_stream=data_stream.datastream_id)  

   join observed_property as observed_property  

      on (observed_property.obs_property_id=data_stream.observed_property) 

where data_stream.observed_property = 29014 and  

   observation.phenomenon_time_start>='2018-08-08T00:00:00.000' and  

   observation.phenomenon_time_start<'2018-08-09T00:00:00.000' and  

   floor(((cast((feature::json)->'coordinates'->>0 as double precision))+180) 

      /360*power(2,8))>=213 and  

   floor(((cast((feature::json)->'coordinates'->>0 as double precision))+180) 

      /360*power(2,8))<=214 and  

   floor((1 - ln(tan(radians(cast((feature::json)->'coordinates'->>1  

      as double precision))) + 1 / cos(radians(cast((feature::json) 

      ->'coordinates'->>1 as double precision)))) / pi()) / 2 * 

power(2,8))>=109 and 

   floor((1 - ln(tan(radians(cast((feature::json)->'coordinates'->>1  

      as double precision))) + 1 / cos(radians(cast((feature::json) 

      ->'coordinates'->>1 as double precision)))) / pi()) / 2 * 

power(2,8))<=111  

group by  

   floor(((cast((feature::json)->'coordinates'->>0 as double precision))+180) 

      /360*power(2,8)), 

   floor((1 - ln(tan(radians(cast((feature::json)->'coordinates'->>1  

      as double precision))) + 1 / cos(radians(cast((feature::json) 

      ->'coordinates'->>1 as double precision)))) / pi()) / 2 * power(2,8)); 

 



 

 

 

  

 

139 

  

Figure 18 Real-Time Query Performance on PostgreSQL Raw Data in Seconds Based on 

Hours of Available Observations 

 

Figure 19 Real-Time Query Performance on Real-Time Views in Milliseconds Based on 

Hours of Available Observations 
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Figure 18 and Figure 19 show the performance of our query on PostgreSQL and real-time 

views respectively. We can see that the difference between the two measurements is not as high 

as for batch queries because the size of the data is smaller and there is not much preprocessing 

involved. However, our real-time views still outperform PostgreSQL for two main reasons. 

Firstly, because we precalculated our ZXY tiles in our real-time views while in PostgreSQL it 

needs to be calculated on the fly. Secondly, the tool we used for our speed layer, SQL DW, is 

optimized and finetuned for read, whereas PostgreSQL is optimized for both read and write. 

Based on the use case and the resources available for batch processing (affects how long the 

batch processing would take), designers can make the decision to use the SensorThings service 

itself for the real-time views if the latency is acceptable for their system. 

The second experiment we did was testing the latency of our speed layer with different rates 

of streaming data. The current rate of the system for LASS is around 30 Hertz. We tested for 10 

to 1000 Hertz of input data. We generated MQTT Observations using Apache Jmeter and 

calculated how long it took for the data to go through the speed layer.  

Figure 20 illustrates the results of our experiment. What it shows is that increasing the rate 

of data does not add much to the latency, merely around 0.5% increase when 1000 Hertz is 

compared to 1 Hertz. This means that the data will not queue up and will not create huge 

latencies.  The latency is roughly five seconds. As such, we can say that our system is working in 

near real-time and contains all the data up to five seconds ago. The five seconds can definitely be 

reduced as we used basic capacity for both Azure Eventhub and Azure Stream analytics. Thus, 
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we show that the architecture can handle big data velocity and still works fine even with a high 

rate of data and the high rate does not lead to queuing of data and added latency. 

 

Figure 20 Latency of Adding Data to Real-Time Views in Milliseconds Base of Stream Rate 

in Hertz 

 

Experiment with Query on All Data 

As the final experiment, we tested the performance of our implementation with a query that 

requires the scanning of all the data. We did this experiment with our batch and real-time views 

as well as on PostgreSQL and Hive as alternative implementations. 
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The query we submitted to implementation was as follows: 

 

Here is the same query that was submitted to Hive: 

select top(5) sum(count) as count, sum(sum) as sum,  

   sum(sum)/sum(count) as average,aggregation_date,  

   x , y   

from  

   ((select top(5) count(*) as count, 

      sum(cast(result as float)) as sum, 

      sum(cast(result as float))/count(*) as average,  

      result_date as aggregation_date, x , y  

   from [lass_real_time_views].[lass_real_time_view_table]  

   where observed_property_id=29014 and zoom=8   

   group by result_date, x, y  

   order by average desc)  

union  

   (select top(5) sum(total_count) as count, 

      sum(cast(total_sum as float)) as sum, 

      sum(cast(total_sum as float))/sum(total_count) as average,  

      aggregation_date, x , y  

   from [lass_batch_views].[lass_batch_view_table_2]  

   where observed_property_id=29014 and zoom=8   

   group by aggregation_date, x, y  

   order by average desc)) as tmp  

group by aggregation_date, x , y   

order by average desc; 
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Also, this is the query that we submitted to PostgreSQL: 

 

 

 

 

select count(*) as total_count,sum(result) as total_sum, 

   sum(result)/count(*) as average,  

   data_stream.observed_property as observed_property_id,  

   observed_property.name as observed_property_name, 

   8 as zoom, 

   floor((get_json_object(regexp_replace(feature,"\\|",","),  

      '$.coordinates\[0]')+180)/360*power(2,8)) as x,   

   floor((1 - ln(tan(radians(get_json_object(regexp_replace( 

      feature,"\\|",","), '$.coordinates\[1]'))) + 1 / cos(radians( 

      get_json_object(regexp_replace(feature,"\\|",","),  

      '$.coordinates\[1]')))) / pi()) /  

      2 * power(2,8)) as y 

from sensorthings.observation  as observation  

   join sensorthings.feature_of_interest as feature_of_interest  

      on (observation.feature_of_interest=feature_of_interest.id) 

   join sensorthings.data_stream as data_stream  

      on (observation.data_stream=data_stream.datastream_id)  

   join sensorthings.observed_property as observed_property  

      on 

(observed_property.obs_property_id=data_stream.observed_property) 

where observed_property.obs_property_id=29014 

group by data_stream.observed_property, observed_property.name, 

   to_date(observation.phenomenon_time_start), 

   HOUR(observation.phenomenon_time_start), 

   floor((get_json_object(regexp_replace(feature,"\\|",","),  

      '$.coordinates\[0]')+180)/360*power(2,8)),  

   floor((1 - ln(tan(radians(get_json_object(regexp_replace( 

      feature,"\\|",","), '$.coordinates\[1]'))) + 1 / cos(radians( 

      get_json_object(regexp_replace(feature,"\\|",","),  

      '$.coordinates\[1]')))) / pi()) / 2 * power(2,8)) 

order by average desc  

limit 5; 
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These queries try to find the five days and regions that are most polluted (have highest 

average dust level throughout the day). As a result, it needs to scan all the data and calculate the 

average and then find the highest five. 

Figure 21 shows the performance of our proposed architecture based on the number of 

Observations. As we can see, there is a constant trend when we increase the number of 

Observations. We see that the response time is around 1.5 seconds which is more than the time 

taken for previous queries and the reason is that for this query scanning all the data is necessary.  

 

select sum(cast(result as double precision)),count(*), 

   sum(cast(result as double precision))/count(*) as average,  

   floor(((cast((feature::json)->'coordinates'->>0  

      as double precision))+180)/360*power(2,8)) as x,   

   floor((1 - ln(tan(radians(cast((feature::json)-> 

      'coordinates'->>1 as double precision))) + 1 / cos( 

      radians(cast((feature::json)->'coordinates'->>1  

      as double precision)))) / pi()) / 2 * power(2,8)) as y,  

   date(observation.phenomenon_time_start)  

from observation as observation  

   join feature_of_interest as feature_of_interest  

      on (observation.feature_of_interest=feature_of_interest.id) 

   join data_stream as data_stream  

      on (observation.data_stream=data_stream.datastream_id)  

   join observed_property as observed_property 

      on 

(observed_property.obs_property_id=data_stream.observed_property)  

where data_stream.observed_property=29014  

group by  

   floor(((cast((feature::json)->'coordinates'->>0  

      as double precision))+180)/360*power(2,8)),  

   floor((1 - ln(tan(radians(cast((feature::json)-> 

      'coordinates'->>1 as double precision))) +  

      1 / cos(radians(cast((feature::json)->'coordinates'->>1  

      as double precision)))) / pi()) / 2 * power(2,8)),  

   date(observation.phenomenon_time_start)  

order by average desc 

limit 5; 
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Figure 21 Query Performance in Milliseconds on All Data Using Batch and Real-Time 

Views Based on Number of Observations 

 

Figure 22 shows the performance of the query on Hive. It shows a linear trend with the 

increase in the number of Observations, and the response time is a few hundred seconds – which 

is much more than the 1.5 seconds for our architecture implementation. We see here that our 

implementation not only performs much better than Hive, but also that its performance does not 

change with the increase of data. 
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Figure 22 Query Performance in Seconds on All Data Using Hive Based on Number of 

Observations 

 

Figure 23 Query Performance in Seconds on All Data Using PostgreSQL Based on Number 

of Observations 
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The performance of the query executed by PostgreSQL can be seen in Figure 23. Again, we 

see a linear trend in performance based on the number of Observations. Also, we can observe 

that the performance decreases compared to previous queries which results from the need for 

scanning all the data and not using the indexes. 

 

Figure 24 Query Performance in Seconds on All Data Using Our Proposed Architecture, 

PostgreSQL, and Hive Based on Number of Observations 

 

Figure 24 illustrates the query performance of our proposed architecture compared to Hive 

and PostgreSQL. As we can see, our architecture outperforms Hive and PostgreSQL 

significantly. Also, we can see that Hive performs better than PostgreSQL which is expected as 

Hive is using MapReduce and is faster when whole data scans are required. Also, the indexing 

will not help in this case because all the data needs to be scanned anyway because of the nature 
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of the query. Even the trend is better for Hive because of MapReduce. We can see how 

preprocessing as well as using cloud-based SQL DW for indexing increases the efficiency of 

question answering in the implementation of our proposed architecture.  

Summary and Discussion 

In this chapter, we described how we implemented a case study for our proposed 

architecture and we saw how this implementation outperformed naïve implementations of the 

SensorThings API. There are couple of points worth highlighting as the result of our 

experiments.  

First of all, as we discussed in the “SensorThings API, Details and Design Decisions” 

chapter, the SensorThings API is very flexible in terms of how the user can interact with the API 

in terms of its RESTful API. In order to implement the SensorThings API, the naïve method is 

relational databased because of the relational nature of the SensorThings data model. Also, 

PostgreSQL is a good choice for DBMS as it supports the spatial functionality that is required by 

the SensorThings API. This implementation works pretty well for small datasets. However, as 

we saw in our experiment results, it is not suitable for big data and we need to find alternative 

options for implementing the SensorThings API. 

One alternative can be using cloud-based NoSQL data stores such as Hadoop technologies 

or Apache Hive, which was what we used in our experiments. There are two main advantages for 

Hive for implementing the SensorThings API. Firstly, it has a query language called HiveQL 

which is very close to SQL. As SensorThings RESTful API mostly follows SQL operations, 
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Apache Hive can be a natural NoSQL fit. Moreover, Hive supports MapReduce automatically, 

which means that for each HiveQL query submitted to Hive, it will be run using MapReduce 

automatically. This is another advantage, as using MapReduce is one of the most popular 

processing paradigm for large datasets. However, as we saw in our experiment results, Hive 

cannot be used to address big data challenges by itself. It can be used as part of the architecture, 

but more technologies are needed to handle all of the big data challenges. 

Even when we only talk about big data volume or large datasets, we can see that 

preprocessing and using a flat structure for data would result in a much faster response to a 

query. However, there is a trade-off happening between preprocessing and the flexibility of the 

SensorThings RESTful API. When we change the structure of the data from the SensorThings 

relational data model into a flat structure, we prepare the data for a specific analytics or query. 

As a result, we need to prepare multiple flat structures and preprocess them in order to answer 

different queries. 

In other words, our architecture needs to be designed in advance for common queries and 

analytics and then prepare as many flat structures as needed, and add them to our preprocessing 

pipeline. Although this might seem like a downside of our proposed architecture, we can argue 

that since our batch processing is always running on all the data and takes a few hours to finish, 

any new analytics or query we want to add to our system will take a few hours to be 

preprocessed and then the system would be ready. For our proposed architecture, we chose 
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higher performance although higher flexibility can still be achieved by adding more pipelines to 

the batch layer. 

The other point worth mentioning, is that naïve SensorThings implementation with 

PostgreSQL can be an option for our speed layer. In this case, we create a batch layer with 

preprocessing and batch views and periodically clean the data that we have in our PostgreSQL. 

In other words, the batch layer would be an archiving place for the data that we have in our 

PostgreSQL. This option is very useful if most of the queries are about real-time data and the 

flexibility of SensorThings RESTful API is required.  

However, as we observed in our experiments, using a proper speed layer can lead to higher 

performance for real-time data especially if complex analytics are required. There are two 

reasons for that. First, part of the processing will be moved to the speed layer rather than being 

processed at run-time. The second reason is that the place we store our real-time views should be 

optimized for random read, whilst the SensorThings PostgreSQL needs to be optimized for 

random read and write. For our implementation of the speed layer, we used SQL DW which is 

optimized for read and experiments showed that it outperforms PostgreSQL. As a result, a 

separate implementation of the speed layer can be useful for complex analytics and is a design 

decision that needs to be made based on the use cases of the system. 

In summary, we propose using the SensorThings API which is a comprehensive and easy-to-

use open geospatial IoT standard in order to overcome the interoperability issue for IoT. In 

addition, we propose using the Lambda architecture for implementing the SensorThings API as a 
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solution for the big data volume and velocity challenge in IoT. We looked at how a case study 

implementation of our proposed architecture outperformed naïve solutions such as PostgreSQL 

and Hive.  

It is worth mentioning that although our implementation outperforms the alternatives in the 

experiments, our case study implementation is by no means the best or most optimized 

implementation and was still only a case study. We faced the limitation of 60 cores for our 

Hadoop clusters – by using more machines the performance would definitely increase. 

Moreover, with more powerful clusters, our batch processing can be parallelized which leads to 

better performance. Also, for Azure Data Factory, Eventhub, Stream Analytics, and SQL DW we 

use the least performance level possible to reduce costs, and we can achieve better performance 

by increasing the performance level of each of these technologies. 

We used Hadoop technologies on Azure together with other technologies offered by Azure. 

Amazon AWS cloud technologies are another alternative for implementing our proposed 

architecture. Also, Apache Spark can be used to implement the whole architecture from scratch 

and can be run on a Hadoop cluster. These are just some alternatives for implementing our 

proposed architecture and sum up the main contribution of this dissertation.  
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Conclusion and Future Work 

The Internet of Things consists of sensors and actuators embedded in everyday devices 

interconnecting and communicating through interoperable information and communication 

technologies. The real potential of IoT is in creating innovative applications by integrating and 

repurposing IoT sensing and controlling capabilities from different sources. However, 

proprietary IoT systems present now create silos that make the IoT goal almost unreachable as 

the applications need to deal with heterogeneous data from different systems. In addition to the 

heterogeneity problem, big data is a challenge for all technologies in the modern world. As 

predicted by CISCO and IDC, the number of internet-connected objects will reach at least 50 

billion by 2020. As a result, IoT is facing heterogeneity and big data challenges. In this 

dissertation, we have proposed an architecture for IoT with the focus on data management 

challenges. 

The proposed architecture merges Lambda architecture with the SensorThings API. The 

SensorThings API is used as a solution for the heterogeneity problem. One of the solutions for 

data heterogeneity or so-called interoperability in IoT is using a standard API. The SensorThings 

API is a mature open geospatial standard for IoT and has been mentioned by various literature. 

There are multiple compliant implementations for the API which result in no vendor locked in 

issue. The standard has been adopted by many industry projects since it was published two years 

ago. Hence, we think that the SensorThings API is a good fit for addressing the interoperability 

challenge for IoT. 
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Moreover, the Lambda architecture addresses big data volume and velocity challenges in its 

three-tier architecture. The Lambda architecture consists of the batch, serving, and speed layers. 

The batch layer has a master dataset which stores all the data. The key for the master dataset is 

that it is immutable and as a result, fault-tolerant. There is no need for the master dataset to be 

optimized for random readings as the user does not deal with the master dataset directly. There is 

batch processing in the batch layer which creates batch views. Batch views are used for 

answering user queries. As a result, it should be designed based on system requirements and use 

cases. Batch views are indexed and stored in the serving layer which is optimized for random 

reads. User queries are answered by searching batch views from the serving layer. Batch and 

serving layers address the big data volume challenge with two methods: preprocessing and 

separation of optimization for random read and write. 

However, since batch processing is a time-consuming process and may take up to a few 

hours, batch views do not reflect all the data in the system and do not include recent data. This is 

the reason why the Lambda architecture has a third layer named speed layer. The speed layer 

receives streams of real-time data and creates real-time views. These real-time views together 

with batch views can answer user queries and the response reflects all the data in the system. The 

speed layer complements the batch and serving layers. Its purpose is to deal with high frequency 

real-time streams of data – thus addressing the big data velocity challenge. Different techniques 

such as micro-batch and incremental processing can be used in this layer to increase the 

performance for answering user queries. 



 

 

 

  

 

154 

Since the Lambda architecture is a solution for big data volume and velocity and the 

SensorThings API addresses the IoT interoperability challenge, we proposed that merging these 

two results in an architecture that can overcome big data challenges including volume, velocity, 

and variety (heterogeneity). For integrating SensorThings API with Lambda architecture, the 

data model from SensorThings will be used as the schema for the master dataset in Lambda 

architecture. The immutability constraint from Lambda architecture is only applied to 

Observations and FeaturesOfInterest without any problems as these two entities are immutable 

by nature. However, this constraint is loosened for other entities as they are rarely changed and 

we want the benefits from the SensorThings API’s flexibility.  

Batch views are defined using the SensorThings data model as well as real-time views. The 

rich data model in SensorThings helps facilitate the analysis with different spatiotemporal 

dimensions. Moreover, the MQTT protocol used by the SensorThings API can facilitate stream 

management and processing in the speed layer. There is no constraint introduced to the Lambda 

architecture by using the SensorThings data model and all the recommendations and guidelines 

from Lambda architecture can be used for the batch, serving and speed layers. 

As a proof of concept, we implemented a case study for air quality data. We used a real 

online dataset from the Location Aware Sensing System (LASS) originating from Taiwan. The 

data is gathered using MQTT and stored in the SensorThings service. To design our batch views, 

we chose three dimensions of time, FeatureOfInterest, and ObservedProperty and summarized 

our Observations by calculating the average result for the given dimensions. The query that can 
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be answered by this batch view is “Give me the air quality of this region in this period of time”. 

We used ZXY tile indexing for locations as one of our query dimensions so that the data can be 

shown on the map with different zoom levels and granularity efficiently. We also stored the 

centroid for the locations of all the Observations we summarized into a tile so that it can be 

queried with them as well. 

Hadoop and Azure technologies are used in the implementation of our case study as well. 

Apache Hive is used for the master dataset in the batch layer. Azure data factory is used for 

calculating batch views and they are stored in Azure SQL DW as the serving layer. For the speed 

layer, we used Storm, Azure EventHub, and Azure stream analytics and the resulting real-time 

views were stored in Azure SQL DW. 

In our experiments, we compared our implementation with two systems, one that uses Hive 

and MapReduce, and the other using PostgreSQL as the data store. We tested three different 

scenarios: a query that needed only batch views for answering; one that only needed real-time 

views; and one that needed to use batch and real-time views together and that needed the 

scanning of all the data. Our experiments showed that our implementation outperforms Hive and 

PostgreSQL. We observed that if the dataset is small, PostgreSQL outperformed Hive because of 

its indexing. But for larger datasets, or for cases that needed the scanning of all the data, 

MapReduce outperformed PostgreSQL queries. In both cases, the case study implementation of 

our architecture performed better than Hive and PostgreSQL. As expected, we observed that the 

performance of our implementation has tested constant trends in all the scenarios. 
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In theory, since the SensorThings API is a solution for interoperability and the Lambda 

architecture addresses big data volume and velocity challenges, merging them together should 

result in an architecture that addresses the big data three Vs challenges. With our case study 

implementation and experiments, we showed that our theoretical hypothesis was true and our 

proposed architecture can be a solution for overcoming big data volume, velocity, and variety. 

Future Work 

There are several recommendations for future work in this dissertation. The SensorThings 

Tasking part will be published soon and the Rules engine part is a work in progress. The Tasking 

part is for tasking controllable IoT devices. The Rules engine is for processing events on the 

SensorThings API. As a result, the SensorThings Sensing, Tasking, and Rules engine parts 

complement each other and provide a standard for the whole IoT ecosystem. How to merge the 

Tasking and Rules engine parts with the proposed architecture can be valuable future work. 

This dissertation proposed an architecture rather than focusing on the optimized 

implementation. It may also be worth experimenting with different possible implementations. 

There will not be an optimal solution for all IoT systems and the architecture needs to be 

implemented based on the requirements of each system. However, a study showing the 

differences between using different technologies for implementation can help to facilitate the use 

of this architecture for different industries. In other words, a study showing implementation best 

practices for different scenarios can be useful. 
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Moreover, various useful analytics for IoT can be explored to provide recommendations for 

different applications. This can be merged with the exploration of technology and the results can 

be used as guidelines for different industries to adopt the architecture. 

Finally, the security option for the architecture can be explored. Security is one of the top 

challenges for the IoT world as noted in various survey literature (Al-Fuqaha et al., 2015; Atzori 

et al., 2010; Gubbi et al., 2013; S. Li et al., 2014; Miorandi et al., 2012; Puthal, Ranjan, Nepal, & 

Chen, 2018; Zeng et al., 2011). Security can be implemented as a new layer. However, other 

options and best practices can also be explored. Providing security options can facilitate the 

adoption of the architecture in the industry.  

In conclusion, we have proposed a geospatial architecture in this dissertation based on the 

SensorThings API open standard and the Lambda architecture for addressing big data challenges. 

Implementation technologies, analytics use cases, and security best practices may be useful 

future work for this dissertation as well as guidelines for merging the SensorThings Tasking and 

Rules engine parts with the proposed architecture. 
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