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Abstract 

Pvoce.s$or efficient parallel algorithms are those that use parallel time that is poly-

logarithmic in the input size and a number of operations which is asymptotically 

within a polylog factor of the best known sequential step count for solving the corre-

sponding problems. 

Recently Reif gave processor efficient parallel algorithms for general dense matrix 

computations provided that the input matrix has rational or integer entries. A sim-

ilar method was exploited to achieve processor efficient algorithms for Toeplitz and 

Toeplitz-like matrix computations. These methods use different models and tech-

niques from the previously known methods. This thesis provides an analysis and 

simplified version of Reif's algorithms and shows that the bit precision in these álgo-

rithms can be reduced significantly and be made optimal. The improvement of the 

bit precision gives evidence that Reif's algorithms can be made "practical". 
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Notation 

R The real numbers 

Q The rational numbers 

Z The integers 

DflXfl The set of in x n matrices over domain D 

The characteristic polynomial of the matrix A 

(A) The displacement generator of the matrix A 

c(A) The displacement rank of the matrix A 

MAlI The norm of the matrix A 

(A) The Schur complement of the matrix A 

det(A) The determinant of the matrix A 

A 1 The inverse of the matrix A 

AT The transpose of the matrix A 

rank(A) The rank of the matrix A 

adj(A) The adjoint of the matrix A 

tr(A) The trace of the matrix A 
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CHAPTER 1 

Introduction 

Parallel matrix computation is a fertile research area in computer science. Problems in 

this area, that will be considered in this thesis include computing the determinant, the 

inverse, the characteristic polynomial, and the rank of an input matrix, and solving 

a. nonsingular linear system. 

Processor efficient parallel algorithms are those that use parallel time that is poly-

logarithmic in the input size and a number of operations which is asymptotically 

within a polylog factor of the best known sequential step count for solving the cor-

responding problems. Processor efficient parallel algorithms for computing exact so-

lutions of the above problems for arbitrary matrices have been found [KP91, KP92]. 

These algorithms require computation of the characteristic polynomial of a matrix 

generated from (but different from) the input matrix, and these computations are 

known to be numerically unstable in practice. More recently, Reif has given pro-

cessor efficient parallel algorithms for solving the above problems based n matrix 

factorizations which are used extensively in sequential numerical computations and 

are essential in many applications [Rei94]. Reif also uses a similar approach to 

achieve processor efficient algorithms for Toeplitz and Toeplitz-like matrix compu-

tations, which are the first known processor efficient algorithms for exact Toeplitz 

and Toeplitz-like matrix computations [Rei95]. 

R.eif's algorithms require the input matrix to have integer or rational entries. Thus 

the hit precision of the algorithms must he taken into consideration. It should be 

1 



1. INTRODUCTION 2 

'optimal" - the bit precision used by the algorithms should be asymptotically only 

as large is the bit precision required to represent the output. The algorithms use 

approximate Newton iterations. However, the analysis of approximate Newton it-

erations is not given in [Rei94, Rei95]. A complete analysis of approximate Newton 

iterations is desirable because these methods are being used to achieve fast algorithms 

more and more often. These techniques are used in general matrix computations as 

well as structured and sparse matrix computations. In this thesis, a complete analy-

sis of approximate Newton iterations is given. The analysis shows that for a general 

matrix, only a "small" integer needs to be added to the diagonal entries to obtain a 

system that can he solved using these iterations. The analysis may also be applied to 

Toeplitz or Toeplitz-like matrix computations. This result significantly improves the 

bit precision of Reif's original algorithms and shows that it can be made optimal. 

The results of the thesis will be introduced in the last section of this chapter. Before 

that, fundamental definitions and properties of matrix theory will be given and the 

computational model will be introduced. 



1. INTRODUCTION 

1.1. Definitions 

3 

Basic definitions in matrix theory and asymptotic notations for complexity are 

introduced in this section. 

1.1.1. Definitions in Matrix Theory. An ii x m matrix is a matrix with n 

rows and m. columns. The set of n x m matrices whose entries are chosen from a 

domain D is denoted as D'". For a matrix A E D><", A = [ajj] denotes the 

matrix A with aij E D in the ith row and jth column of A, where 1 < i < n and 

I <j <m. 

Let M,1 = R 7 X?t, for some ring R. Let O be the n x n matrix of U's and let 1,, be 

the n x n identity matrix with l's on the main diagonal and 0's elsewhere. Let +, 

be matrix addition and x be matrix multiplication. Then it is easy to verify that 

(M,, +,, x, Oni .T,) is a ring, but it is not a commutative ring (unless n = 1 and R is 

commutative). 

DEFINITION 1.1. Let a matrix A E F''< for some field F. The determinant of A, 

denoted det(A), is the sum over all n! permutations o of the integers 1 through n of 

the product 

(_l)ki J 

where k, is 0 if o is even (constructible from (1,2,... , n) by an even number of 

interchanges) and k is 1 if o is odd (constructible by an odd number of interchanges). 

If det(A) 0 0, then A is nonsingular ; otherwise, A is singular. 

DEFINITION 1.2. An m x n matrix A = [a] is upper triangular if aij = 0 whenever 

1 ≤ J < i < in. An m x n matrix A is lower triangular if a3 = 0 whenever 

1≤i<i ≤n. 

DEFINITION 1.3. A submatrix of a matrix A is a matrix obtained by deleting some 

rows and columns of A. A principal submatrix of an n x n matrix A is a square 
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submatrix of A that consists of the first k rows of the first k columns of A, for 

1<k<n. 

DEFINITION 1.4. The transpose of a matrix A = [a], denoted AT, is the matrix 

formed by exchanging ajj and aji for each i and Li. 

Clearly (AB)" = B1'AT. Furthermore, clet(A) = dct(AT). A matrix A is symmetric 

if A = AT. 

DEFINITION 1.5. Let a matrix A E Fnx?l for some field F. A pair of matrices 

C, H E j;'nxd is called a. generator of length d of the matrix A = CHT. The minimum 

length of a. generator of A is called the rank of A, denoted rank(A). 

DEFINITION 1.6. Leta matrix A E Fllxn for some field F. The inverse of A, 

denoted A 1, is that n x m matrix, if it exists, such that AA' = A'A = I. 

It is also easy to verify that if A and B have inverses, then so does AB, and 

(AB) 1 = B 1A 1 in this case. 

DEFINITION 1.7. The adjoint matrix of A, denoted adj(A), is the matrix whose 

entry in row i and column j is equal to (1) times the determinant of the submatrix 

obtained from A by removing row j and column i. 

For any square matrix A, adj(A) exists and is unique. If A is nonsingular, then 

A 1 exists and is unique; furthermore, Aadj(A) = adj(A)A = det(A)I and A 1 = 

adj(A)/ det(A). 

DEFINITION 1.8. The trace of an n x n matrix A, denoted tr(A), is the sum of the 

diagonal entries of A. 

DEFINITION 1.9. The characteristic polynomial of an n x n matrix A is the poly-

nomial ?/) = det(\I - A) = cjA, where c = 1. 

The characteristic polynomial of A includes the entries: Co = (_l)n det A, and 

c = —tr(A). 
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DEFINITION 1.10. An eigenvalue of a. matrix A of algebraic multiplicity in is a. zero 

of ?/,(A) of multiplicity in. 

In the complex field, an n x n matrix has exactly n eigenvalues counted with their 

algebraic multiplicities. 

DEFINITION 1.11. The n x in matrix K(a, v, in) = [v, Av, A2v, . . . , Am_lv], defined 

for a matrix A E RflXfl and a vector v E R71, for some ring R, is called an ii x rn 

Krylov matrix [GVL9O, BP94]. Define K(A, v) = K(A, v, n). 

DEFINITION 1.12. A Toeplitz matrix is a matrix with the same entries along the 

diagonal and along each band that is parallel to the diagonal. 

Hence a. square Toeplitz matrix has the form: 

a an-1 a1 

a+i an a2 

- (t2n1 2n2 a - 

DEFINITION 1.13. A Hankel matrix is a matrix with the same entries along the 

antidiagonal and along each band that is parallel to the antidiagonal. 

Hence a square Hankel matrix has the form: 

a1 an-1 a 

a2 a a+i 

a a2_2 a2_1 - 

If T = [t] is a Toeplitz matrix then tj = so that the matrix T is completely 

defined by its first row and its first column. Similarly, if H = [h] is a Hankel matrix 

then hij = so that the matrix H is completely defined by its first row and 

its last column. 
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The "lower-shift" matrix Z is the matrix 

00 0 

10 0 

1 

with l's on the band immediately below the diagona and with 0's everywhere else. 

As usual, R will denote the field of real numbers, Q will denote the field of rational 

numbers, and Z will denote the ring of integers. 

DEFINITION 1.14. A matrix A E R'<' is positive definite if x7'Ax > 0 for all 

nonzero r E R. 

The proof of the following lemma can be found in [GVL9O] (Theorem 4.2.1, Corol-

lary 4.2.2, p. 140). 

LEMMA 1.1. Let A E R ><Th he positive definite. Let Y E RflX be nonsingular. 

Then 

(1) A is nonsingular; 

(2) YTAY is positive definite; 

(3) All the principal submatrices of A are positive definite; 

(4) yTy is symmetric and positive definite. 

1.1.2. Matrix Norms. Norms serve the same purpose on vector spaces that the 

absolute value does on the real line: they furnish a measure of distance. The p-norms 

of a vector .are functions f : R' -  R, defined by 

IIxIIp = (IxiI + ... + lxI, p ≥ 1. 

For a matrix A E define the p-norm of the matrix A as IIAII = sup0 LfL 

It can be shown that hAil1 = maxj Ej Jajjjand IIAILD = maxi >j Ial [GVL9O] (p. 56). 



1. INTRODUCTION 7 

The following important fact can be found in [CVL9O] (p. 57). 

I'4I :; I'  I2 ≤ 11AII7, 

for 7) = 1, 00. 

The p-matrix norms satisfy the three basic norm properties: 

IAI'p - 0 I > 

1111 + B'Ip - < p -I- IBIP '  

IIo'i4'1 = Ic'I II Il lip 

A E W1 (IIAI7, = 0 if A = 0); 

A,B E R' 

c E R, A G RlXn. 

It is easy to verify that the p-matrix norms also satisfy the sub multiplicative property 

IjABII ≤ IIAIIP JIBII P, A E Rm <Th, B E nxk 

If D = dl, where d is a positive real number and I is the identity matrix, then 

clearly IIDIIP = d and = l/d, for any p = 1,2,00. If A is nonsingular, define 

the p-conditzon number of A, denoted by cond(A), as cond(A) = IAII MA 1It, for 

any p where p = 1, 2, 00. 

Matrices with small condition numbers are said to be well-conditioned. A matrix 

with nonzero diagonal entries is row (or, respectively, column) diagonally dominant, 

if III - (diag(A)) 1A c (or, respectively, if III - A(diag(A))' c), for some 

constant c, 0 < c < 1. A matrix A is strongly diagonally dominant if A is diagonally 

dominant for c = 1 - 1/nc for some constant c0> 0. 

The determinant of a matrix A is bounded by the Hadamard inequality 

(1.2) Idet(A)l ≤ IIAII. 

Assume laI 2, for all i, j; then by Equation 1.1, IIAII ≤ n2', for.p = 1 or oo, so 

that by Equation 1.2 Idet(A)l < 2, where ii = n(e + log n). 

1.1.3. Asymptotic Notation. To represent the efficiency of parallel algorithms 

the standard notation defined for the analysis of sequential algorithms is used. Con-
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sider two functions T, .1: R - R such that T(n) > 0 and f(n) ≥ 0 for all n. 

• T(n) E 0(f(n)) if there exist positive constants c and no such that T(n) < 

for all n ≥ no. 

• T(n) E (f(n)) if there exist positive constants c and no such that T(n) ≥ 

c( f ( n)), for all fl ≥ no. 

• T(n) E e(f(n)) if T(n) E 0(1(n)) and T(n) E l(f(n)). 

• T(n) E O(f(n)) if T(n) E 0(f(n)(log n)'), for some constant c. 

1.1.4. Classes of Randomized Algorithms. Unlike a deterministic algorithm, 

which never returns different outputs when run twice on the same input, a randonized 

algorithm typically has access to a random number generator, and its output on one 

fixed input can be considered to be a random variable. 

rFl ere are two commonly discussed classes of randomized algorithms: Las Vegas 

and Monte Carlo. A Las Vegas randomized algorithm will always either generate a 

correct output or report failure. A Monte Carlo algorithm will either return a correct 

output or an incorrect output - failure is not recognized. In both cases, for e > 0, 

it should be possible to guarantee that the probability of obtaining a correct answer 

exceeds 1—c, by increasing the algorithm's cost by a factor that is polynomial (ideally, 

linear) in log(1/c). 
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1.2. Models of Computation 

1.2.1. Sequential Model. A well-known sequential computational model is the 

Random Access Machine (RAM) model [AHU74]. The model assumes the presence 

of a central processing unit with a random-access memory attached to it, and some 

way to handle the input and the output operations. 

The important measures on the RAM model of an algorithm are its time (and/or 

space) complexity, measured as functions of the size of input. To specify the time 

(and/or space) complexity exactly, it is necessary to specify the time of each opera-

tion and the size of each memory location. The arithmetic RAM model allows the 

operations on elements drawn from an arbitrary ring or field as primitive operations, 

which cost unit time. Each memory location has infinite size so that it can hold any 

element. The primitive operations are +, -' x, /, mod, and a "zero test". This 

model is considered to be the standard sequential computational model. 

The arithmetic RAM model does not reflect the dependence of the computational 

complexity of a problem on the precision of computing. In practice, the dependence 

is substantial. To measure time for computations over Z and Q, one can measure 

time complexity based on the logarithmic cost criterion. The logarithmic cost cri-

terion is based on the crude assumption that the cost of performing an operation is 

proportional to the length of the inputs. For example, to add two integers of magni-

tude the cost is defined to be 0(n), whereas to add two integers of magnitude 

20(2), the cost will be 0(n2). Clearly under the logarithmic cost criterion, the hit 

precision of the elements involved in the computation will affect the time complexity 

substantially. 

The computational model used by Reif [Rei94, Rei95] is an extended arithmetic 

RAM model with the following modifications. 

(1) Real inputs are represented as floating point numbers. 

(2) The model also allows one to randomly and uniformly select an integer from 

an interval [M, N] for two given integers M, N, where M < N. 
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(:3) The model includes a. comparison (≤) between two numbers as an operation. 

(4) The model includes rounding a. number to the nearest integer as an operation. 

Unfortunately, R.eif's model is not very clearly defined. It appears that the following 

is also required, although this is never explicitly stated: 

(5) The model includes computation of an inverse modulo a prime. That is, given 

an integer x and a. prime p that are relatively prime, one can find an integer y 

such that xy is congruent to one modulo p. 

Section 4.'l of this thesis discusses the evidence for this additional requirement. 

1.2.2. Parallel Model. The model for parallel computation to be used in this 

thesis is a natural extension of the above sequential model. In this model, many 

processors have access to a single shared memory unit. More precisely, the shared-

memory model consists of a number of sequential processors. Each processor has 

its own local memory. The processors communicate by exchanging data through the 

shared memory unit. All processors operate synchronously under the control of a 

command clock. In one unit of time, each processor can read one global or local 

memory location, execute a single RAM operation, and write into one global or local 

memory location. This model is called the parallel random access machine (PRAM) 

model. 

The parallel computation model in Reif's algorithms is an extended PRAM model 

because it is based on the above extended sequential RAM model. 

The important measures on the PRAM model of the performance of an algorithm 

are its time and processor complexity. Suppose a PRAM algorithm runs in time 

T(n) using P(n) processors, for an instance of size n. The time-processor product 

C(n) = T(n) . P(n) represents the cost of the parallel algorithm. Since a single 

processor can simulate P(n) processors in O(P(n)) time, for each of the T(n) parallel 

steps, a parallel algorithm with cost C(n) can be converted into a sequential algorithm 

that runs in O(C(n)) time. 



1. INTRODUCTION 11 

Given p ≤ P(n) processors, p processors can simulate the P(n) original processors 

in FP(i)/v1 < (P(n)/p) + I substeps: in the first substep, the original processors 

numbered 1,2, . . , p are simulated; in the second substep, processors numbered p + 

1,p + 2. . . , 2p are simulated; and so on. This entire simulation uses time at most 

'I1(n) +   E O(T(n)P(n)/p) time. 

r11iiS the following constraints on parallel algorithms are equivalent: 

• the algorithm uses O(P(n)) processors and T(n) time, 

• the algorithm has cost C(n) E O(P(n)T(n)) and runs in time T(n), 

• the algorithm uses time O(T(n)P(n)/p) with p < P(n) processors, for all 

p ≤ P(n). 

Given a computational problem Q, let the sequential time complexity of Q he 

T*(n ). A parallel algorithm to solve Q will be called optimal if the cost required by 

the algorithm is e(T*(n)). 

There are several variations of the PRAM model based on the assumptions regard-

ing the handling of the simultaneous access by several processors of the same location 

of global memory. The exclusive read exclusive write (EREW) PRAM does not allow 

any simultaneous access by multiple processors to a single memory location. The con-

current read exclusive write (CREW) PRAM allows simultaneous access for a read 

instruction only. Simultaneous access to a location for a read or a write is allowed in 

the concurrent read concurrent write (CRCW) PRAM. Though these three models 

differ in their computational power, it turns out that the difference will not affect the 

result in the thesis. Thus the thesis follows Reif's algorithms, assuming the PRAM 

model to be CRCW PRAM. Further information about the PRAM model can be in 

found, for example, in JáJ's text [JáJ92]. 
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1.3. Problems and Preliminary Results 

In this section, the problems in matrix computations discussed in this thesis are 

defined (also see [BP94]) and some preliminary results are given. 

1.3.1. Problems in Matrix Computations. 

PROBLEM I.I. Solving a nonsingular sYstem of linear equations: Given a matrix 

A € FflXTh and a. vector b E F' for some field F, compute the unique vector x = 

A'b giving the solution to the linear system Ax = b if the coefficient matrix A is 

nonsingular; otherwise, report that the coefficient matrix A is singular. 

PROBLEM 1.2. Matrix inversion: Given a matrix A E FThXfl for some field F, com-

pute A', the inverse of A, if A is nonsingular; otherwise, report that the matrix A 

is singular. 

PROBLEM 1.3. Determinant: Given a matrix A E RThXfl for some ring R, compute 

det(A), the determinant of the matrix A. 

PROBLEM 1.4. Characteristic polynomial: Given a matrix A E RflXfl for some 

ring R, evaluate the coefficients of the characteristic polynomial (A) = det\I - A) = 

LO cj) of the matrix A. 

The main focus in this thesis is parallel algorithms for solving the above problems 

efficiently. The following problems are given either because the algorithms in the 

thesis can be also applied to solve them efficiently or because an algorithm for solving 

the problem will be used as a subroutine. 

PROBLEM 1.5. Rank: Given a matrix A E F, for some integers m, n > 0, 

compute the rank of A. 

PROBLEM 1.6. LU factorization: Given a matrix A E FTh, if possible, factor 

A = LU, where L is nonsingular and lower triangular, and U is nonsingular and upper 

triangular. Otherwise report that A has no LU factorization. (If A is symmetric and 
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computations of square roots are allowed, then one can require that U = LT. This 

problem is then known as (Jholesky factorization). 

PROBLEM 1.7. QR factorization: Given a matrix A E R7><', if possible, factor 

A = QR where R is a nonsingular upper triangular matrix and Q is an orthogonal 

matrix (QTQ = I). If the QR fact orization is not possible, then report that A has no 

QR. factorization. 

PROBLEM 1.8. Hessenherg reduction: Given a matrix A E compute an or-

thogonal matrix Q and a matrix H = [hjj] such that II = QTAQ, Q7'Q = I and such 

that hij = 0 if i - j > 1. If A is symmetric, then H is tridiagonal. 

PROBLEM 1.9. Singular value decomposition (SVD): Given a matrix A E RflXTh 

compute a triple U, V, E such that 

A = UEVT, 

Where U E RtnxT, V E UTU = Jr, VTV = 1r E = diag( i(A),... ,r(A)), and 

o1(A) ≥ o2(A) ≥ ≥ or(A) > 0, where r = rank(A). The values a1(A),... , o,.(A) 

are called the singular values of A. 

1.3.2. Complexity Bounds. The following results will be used throughout the 

thesis. 

FACT 1.1. Given an arbitrary square matrix A E RVXI1 and a vector v e Rn for 

some ring R, the product u = Av can be computed in 0(log n) time using O(n2/ log ri) 

processors, which is optimal (see, for example, [BM75]). 

Given two square matrices A, .8 E RThXfl for some ring R, their product can be 

computed in 0(log n) time using 0(n3) processors via the straightforward method. 

However, such a method is not optimal. The best known sequential bound for matrix 

multiplication is Q(n(), for a real number w such that 2 <w < 2.376 [CW9O], though 
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asymptotically slower algorithms are superior for computations one might expect to 

perform. 

Many matrix computations have been shown to have the same sequential com-

plexity as that of matrix multiplication. Computing the determinant, computing the 

inverse, solving a nonsingular linear system, and LU factorization are among these 

problems [AFIU74]. rflis these problems can all be solved in time O(M(n)), where 

M(n) is the number of the operations required to multiply two n x n matrices. 

FACT L2. Parallel matrix multiplication can he performed in O(log n) time using 

Q(nw*) operations, for w <w < 2.376 ([PRS5], Appendix A). 

Hereafter let P(n) denote a processor bound such that the bound O(log n) time and 

O(P(n)) processors holds for the parallel complexity of n x ii matrix multiplication. 

FACT 1.3. Given a positive integer in and a square matrix A E R nxn for some 

ring R, the powers A2, A3,... , A' can he computed in O(log m log n) time using 

O(mP(n)) processors (see, for example, [BP94]). 

FACT 1.4. Given a positive integer m, a square matrix A E RThXTh, and a vector v E 

RTh for some ring R, the Krylov matrix K(A, v, m) can be computed in O(log m log n) 

time using O(P(n)) processors (see [BM75], p. 128). 

FACT 1.5. The inverse of a triangular matrix A E FThXTh for some field F can be 

computed in O(1og2 n) time using O(P(n)) processors (see [BM75], p. 146). 

The inverse can be computed in O(1og2 n) time using O(P(n)) processors by a 

simple divide and conquer strategy. Assuming n is a power of 2, let A be an n x n 

lower triangular matrix partitioned as follows 

B O 
A= 

CD 
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where B, C, D are of size n/2 x n/2 and where B and D are also lower triangular. 

Tiieii 

B-' 0 

—D'CB' D 1 

Thus the following stages can be used to invert the matrix A efficiently. 

(I) Invert B and D concurrently by the same strategy; 

(2) Multiply Th'CB' and get A 1. 

This divide and conquer method will invert an n, x n triangular matrix in 0(log2 n) 

time using 0(P(n)) processors. 

FACT 1.6. The coefficients of the product of two polynomials of degree in and ri 

respectively can he computed in O(log(n+m)) time using 0((m+n)) processors over 

a field supporting the Fast Fourier Transform (FFT) - that is, a, field containing a 

kth primitive root of unity for k E e(n. + in) (see, for example, [JáJ92]). 

FACT 1.7. Given two bivariate polynomials with degrees bounded by n for each 

variable, the coefficients of the product of the two polynomials can be computed in 

0(log n) time using 0(n2) processors [BP94]. 

FACT I.S. Given a positive integer in and a. polynomial T(z), T(0) 0, the first 

K coefficients of the formal series w(z) such that w(z)T(z) = 1 can be computed in 

0(1og2 K) time using 0(K) processors. When the coefficients of w(z) mod w2k are 

k given, the coefficients of w(z) mod z2k+1 i can be computed n 0(k) time using (2 ) 

processors. (See, for example, [B P94].) 

The formal power series w(z) of Fact 1.8 will be denoted 1/T(z). 

An oracle PRAM is assumed to he a PRAM associated with a special shared 

memory for the (parallel) construction of oracle queries and for receiving the oracle's 

answers. It is assumed that each oracle query only costs unit time [Joh90] (p. 132). 
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DEFINITION 1.15. An NC reduction from a problem A to a. problem B is an oracle 

PRAM program that, given an oracle for B, solves A in polylog time using at most 

a polynomial number of processors. An efficient NC reduction from a problem A to 

a problem B is an NC reduction from A to B using O(Q(n)) processors, where Q(n) 

is a lower bound on the number of operations required to solve B sequentially, such 

that the sum of the sizes of all the values passed to the oracle is at most within a 

polylog factor of the size of the oracle PRAM's input. 

We write "A - B" to denote the existence of an efficient NC reduction from A 

to B. The following can be found, for example, in [BP94J. 

FACT 1.9. 

(1) Solving a nonsingular linear system Matrix inversion; 

(2) Matrix inversion - Determinant; 

(3) Determinant Characteristic Polynomial. 

Csanky has given the first parallel algorithm for computing the determinant in 

O(1og2 n) time using a polynomial number of processors; his algorithm uses O(nP(n)) 

[Csa76] processors. Csanky's algorithm only works over fields of characteristic zero. 

Borodin, von zur Gathen and Hoperoft give an algorithm for this computation over 

arbitrary fields which uses far more processors than O(nP(n)) [BvzGH82]. Berkowitz 

[Ber84] and Chistov [Chi85] use different approaches to achieve parallel algorithms for 

computing the determinant in O(1og2 n) time using O(riP(n)) processors. For finding 

the rank, Mulmuley [Mul87] gives a fast parallel algorithm that works by computing 

the characteristic polynomial of a permuted matrix of the input with twice the size 

of the input matrix. 

Kaltofen and Pan [KP91, KP92] give the first randomized processor efficient parallel 

algorithm for computing the determinant. They also give algorithms for inverting a 

nonsingular matrix, solving a nonsingular linear system, computing the rank, and 

computing a basis for the null space. All these algorithms use polylogarithmic time 
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and number of operations that is within a polylog factor of the amount needed for 

matrix multi plication. 

Some related problems also have processor efficient parallel algorithms. Eberly 

[Ebe9i] gives algorithms for computing a. maximal linearly independent subset of a. 

given set of vectors (see also [CR93, BP94]) and for computing a "PLU factorization" 

of a nonsingular matrix. Giesbrecht gives a processor efficient parallel algorithm for 

computing the Frobenius form and for computing the characteristic polynomial of a 

given matrix [Gie]. 

However, these fast parallel algorithms require computation of the characteristic 

polynomial of a matrix related to the input. These computations are known to be nu-

merically unstable. For numerical matrix computations, Pan and Reif apply Newton 

iteration and its extensions to achieve processor efficient algorithms for computing 

approximate solutions for these problems [PR85, Pan87, PR89, PR93]. Newton it-

eration is generally quadratkally convergent and numerically stable. However, these 

algorithms require that an initial approximation of the input matrix is given, or that 

the input matrix is well-conditioned so that an initial approximation of the input 

matrix can be computed. Their algorithms for matrix factorizations use O(1og3 n) 

parallel time. (When the input matrix is an integer matrix, the problems - solving 

a linear system, inverting a nonsingular matrix, and computing the determinant can 

be solved in O(1og2 n) time using O(P(n)) processors [Pan87], but the bit precision 

is greater than optimal.) 

Reif gives a new parallel method for various exact factorizations of general dense 

matrices [Rei94]. His method can be further extended to block matrices, sparse sepa-

rable matrices, and banded matrices. These methods reduce the previous known par-

allel time bounds for some matrix factorizations from O(1og3 n) to O(1og2 n), resolving 

an open question in [Pan87]. The exact factorizations that Reif's algorithms compute 

include recursive factorization sequences, LU factorizations, QR factorizations, and 

reduction into upper Hessenberg form. The method also provides algorithms for solv-
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big a. linear system, inverting a nonsingular matrix, and computing the determinant. 

The algorithms assume the input matrices are square (of order n) with either integer 

entries of absolute value less than 271°) or rational entries expressible as a ratio of 

integers of absolute value less than r°'. Reif claims that the bit precision of the 

algorithm is "optimal" that is, asymptotically only as large as the bit precision 

required to represent the output. However, it is not proved in Reif's paper and it 

appears that the precision used by Reif's algorithms is an 0(n) factor away from 

being optimal. 
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1.4. Thesis Results 

This thesis provides a. complete analysis of Reif's method for matrix factoriza-

tions of general dense matrices. The analysis reduces the bit precision significantly— 

achieving the asymptotically optimal bit precision claimed by Reif. Thus the results 

in this thesis provide evidence that Reif's algorithms can be made, practical. The 

analysis is based mainly on the analysis of approximate Newton iteration, which may 

he of some independent interest. The thesis also shows some interesting properties of 

the recursive factorization sequence of a given matrix. 

Reif has also given a new parallel method for Toeplitz and Toeplitz-like matrix 

computation and achieved the first processor efficient algorithms for exact Toeplitz 

and Toeplitz-like matrix computations [Rei95]. The thesis gives a brief introduction 

to that algorithm and shows that it is possible to improve the hit precision of this 

algorithm as well. However, certain steps remain difficult and unclear (as they exist 

in Reif's algorithms). 

A brief survey of previous known parallel algorithms for general dense matrix com-

putations is given in Chapter 2. Chapter 3 gives a complete analysis of approximate 

Newton iteration, which is entirely new. Reif's algorithm is analyzed in Chapter 4. 

Most of that material is also new. Toeplitz and Toeplitz-like matrix computations 

are briefly surveyed in Chapter 5. The idea to simplify .Reif's algorithms for Toeplitz 

and Toeplitz-like matrix computations is also given in Chapter 5. Some part of that 

material is new. A conclusion of the thesis work is drawn and some further interesting 

problems are pointed out in Chapter 6. 



CHAPTER 2 

Parallel Matrix Computations 

A brief survey on parallel algorithms for general dense matrix computations is given 

in this chapter. The survey includes the known deterministic approaches and random-

ized processor efficient approaches. These algorithms use exact arithmetic operations 

over a field as unit cost operations. 

Some numerical algorithms for matrix computations are also introduced in this 

chapter. These algorithms have finite bit precision, so rounding errors will appear 

in the computation. These algorithms have better numerical stability than the exact 

algorithms given here. 

20 
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2.1. Deterministic Parallel Matrix Computations 

Csa.nky has given the first parallel algorithms for computing the determinant and 

inverse of a matrix, and solving a. nonsingular system of linear equations in O(log2 n) 

time, using O(nP(n)) processors [Csa76]. Csanky's algorithm only works over fields 

of characteristic zero or greater than ii, where n is the order of the input matrix. 

The algorithm is 1)aSCd on a sequential method clue to Leverrier for computing the 

characteristic polynomial. The algorithm has the following main steps: 

(1) Compute A2, A3, . . . , All_i; 

(2) Compute the traces of the first n l)OWCF5 of A; 

(3) Compute the coefficients c0, c1,... , c_ of the characteristic polynomial of A 

using the traces computed in the first step; 

(4) Compute det(A) = (1)'co and A' = - if A is nonsingular. 

The first step is known as the matrix powers problem, which can be solved in O(1og2 n) 

time using O(nP(n)) processors by Fact 1.3. The second step is straightforward. The 

fourth step is also easy since the powers A, for 1 < i ≤ ii - 1, have been computed. 

The third step is reduced to solving a triangular linear system, as shown below. 

Suppose the characteristic polynomial is 1'(A) = where c, = 1. The 

quantities si = tr(A), for 1 ≤ i ≤ n, are available from Step (2). The coefficients 

Ci of the characteristic polynomial and the values 5k are related as shown by the 

following system of linear equations (see, for example, [Csa76]): 

(2.1) 

1 0 0 

i 2 0 

2 S1 3 

.93 82 S1 4 

\ / / i 0 c_, 

C_3 

Cl 

S2 

.93 

8 n—i 

83 82 S1 71 j \ Co / Sfl J 
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Since the coefficient matrix is a lower triangular matrix, the system can be solved 

in O(1og2 n) time using O(P(n)) processors by Fact 1.5. Thus the cost of the whole 

algorithm is dominated by the first step, which requires O(log2 n) time and O(P(n)) 

processors. 

The above triangular linear system can be solved more efficiently than Fact 1.5 

suggests - in O(Iog2 n) time using O(n/ log n) processors [Sch82, Pan9OhJ. The 

algorithm is shown below since it is required in the later sections of this thesis. 

Let g(z) = 1 + = z'(fl, where (x) is the characteristic polynomial 

of A. Suppose A1,) 2,... ,) are the eigenvalues of A, so that '()) = 0c1A 

=117 - A1). Then g(z) = = - A) = fJ1(1 - zA1). 

Now 

= (. g(z)  ( 
1=1 

If (1—zA1)1 is replaced by the series k>o (z)j) Ic, where 1 ≤ i < n, then the following 

equation is obtained. 

n i 

g'(z) = —g(z) (j 

1=1 \ k≥O 

The above equation is rearranged as 

k 

(2.2) = - sz31 mod 2k, 
j=1 

for k ≥ 0, 

using the fact that s 

Suppose the polynomial gr(z) = g(z) mod z 1 has been computed. As shown 

below, it is possible to compute g2r(z) = g(z) mod z2rl in 0(logr) time using 0(r) 

processors. The polynomials g1(z) = 1 + c_i(z) and g2(z) = 1 + c1z + Cn2Z2 are 

readily available, because = — si, and 2 Cn = _-2  s2. Let 92r(z) be expressed 
as 

(2.3) 92r(Z) = gr(z) (1 + /ir(Z)) mod 2r+l 
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where h,.(z) = hr+i + • • + h2,.z is an unknown polynomial. Then 

(2.4) g,.(z) = g(z)(1 + h7.(z)) + g7.(z)h(z) mod 2r. 

Now observe that 

(2.5) 1  = h(z) mod 2r+1 

because hr is divisible by z". Also notice that 

/ I__\ / (\ 
g2r' _')    = mod 

92r(z) gr(z) (1 + hr(s)) 

By Equation ' 4 

(9 6) g(z) g(z) +  h,(z)  mod _,2r 
92, (z) - g,, (z) 1 + hr(Z) 

Following Equations 2.2, 2.5, and 2.6, 

9 (2.7) g' (Z ) mod z 2 . 

Assume the coefficients of g, (z) are known, as well as the values 3j, for all  ≤ 2r+1. 

Then 92r(Z) can be computed as shown in step (2) of the following algorithm. This 

gives a recursive algorithm to compute g(z) (since g(z) = gn(z) = g2flog n(z)). The 

coefficients of O(A) are immediately available from those of g(z). 

ALGORITHM 2.1. Computing the coefficients of the characteristic polynomial. 

Input: The values of 3k = tr(A"), 1 ≤ k < n, where A is an n x n matrix. 

Output: The coefficients of the characteristic polynomial ?/) = cj A2. 

begin 

step 1 Initialization: 

,r:=  1; 

gr(z) := 1 - 
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step 2 While r < n do (sequentially) 

u := 1/g(z) mod z2r; 

(Comment: Recall that it is a polynomial including 

the leading terms of the Taylor series for 1/gr(Z).) 

v := 

1 := uv mod z2'; 

1. = I 

(Comment: compute hr(Z) by symbolic integration using the fact 

that hr(0) = 0, and that the coefficients of h are now available.) 

g2r(z) = g,-(z)(1 + hr()) mod  

r := 2r; 

end while 

step 3 Output the coefficients of gn(Z) with the order reversed. 

end 

LEMMA 2.1. Given sj = tr(A3), for 1 ≤ j ≤ n - 1, where A is an n x n matrix over 

a field whose characteristic is zero or greater than n, the characteristic polynomial of 

the matrix A can be computed in 0(1og2 n) time using 0(n/ log ri) processors. 

PROOF. The algorithm uses the recursive method sketched above to compute the 

coefficients of the characteristic polynomial. Each recursive stage i requires computa-

tion of a polynomial reciprocal, polynomial multiplication, and polynomial addition 

with input polynomials of degree at most 2, 1 < i < logn. Polynomial multiplica-

tion and polynomial reciprocal computation can both be performed using an FFT in 

0(log 2i) time and 0(2 log 2i) operations. Thus the number of operations for Stage i 

is at most c2 log 2', for some constant c> 0 (independent of i), and the algorithm uses 

0(log2 n) time and at most 2c - 2c log 2c € 0(n log n) operations, where k = flog ii]. 

Thus the algorithm runs in O(1og2 12) time using 0(n/ log n) processors. 0 
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The algorithm has a, restriction which requires the ground field to be of characteris-

tic zero or characteristic greater than n (see Equation 2.1). The number of processors 

can be reduced to O( /P(i)) by using a. similar approach [PS78, GP89]. These 

algorithms do not work for fields whose characteristic is positive and less than n. 

The best known deterministic parallel algorithms for computations over these fields 

require O(nP(n)) processors [Ber84, Chi85]. These last algorithms compute the char-

acteristic polynomial of the input matrix without divisions. These results, together 

with Fact 1.9, imply the following theorem. 

THEOREM 2.1. There are deterministic parallel algorithms to evaluate the coeffi-

cients of the characteristic polynomial, to solve a. linear system, and to compute the 

inverse and determinant of a matrix over any field in O(1og2 n) time using O(nP(ri)) 

processors. 
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2.2. Processor Efficient Algorithms 

The uielci independent randomized sequential method for solving sparse linear sys-

tems given by Wiedemann reduces solving a linear system to finding the minimum 

generator of a. linear recurrence [Wie86]. Ka.ltofen and Pan use the same approach but 

give a randomized parallel processor efficient reduction. Instead of trying to find the 

minimum generator of a. linear recurrence, which so far has not been solved efficiently 

in parallel, Kaltofen and Pan use a reduction from computing the determinant to 

solving a nonsingular Toeplit;z system based on the observation that when the degree 

of the minimum polynomial of the recurrence is known, the problems of finding the 

minimum generator of the recurrence and solving a nonsingular Toeplitz system of 

linear equations are equivalent. 

Let V be a vector space over a field F. Let {a} 0 be an infinite sequence with 

elements ai € V. The sequence {a} 0 is linearly generated over F if there exist 

CO, C1,... , c, € F, for some n ≥ 0, such that 

coai + ... + ca1 = 0, Vi ≥ 0. 

The polynomial c0 + cix + + c,xn is called a generating polynomial for {a} 0. 

The set of all generating polynomials for any sequence, taken together with the zero 

polynomial, forms an ideal in F[x]. The unique polynomial generating that ideal, nor-

malized to have leading coefficient 1, is called the minimum polynomial of the linearly 

generated sequence {a} 0. Every generating polynomial for {a}.0 is a multiple of 

the minimum polynomial for this sequence. Let A E FflXfl be a square matrix over 

some field F. The sequence {A} 0 is linearly generated, and its minimum polyno-

mial is the minimum polynomial of A, which is denoted by 1A For any column vector 

b E F', the sequence {Ab} 0 is also linearly generated. The minimum polynomial 

of {Ab}_0, denoted by fAb, is a divisor of fA. Finally for any row vector u E F1><', 

the sequence {uAb} 0 is linearly generated as well, and its minimum polynomial, 

denoted by fAb, is a divisor of fAb 
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Let {a} 0 be linearly generated and let n be the degree of its minimum polynomial. 

For in ≥ 0, construct the Toeplitz matrix 

/ 
(Lnz_1 1m2 a1 a0 

1m-1 a2 (L7 

1m (t2 

CL2m _3 am_I 

\ (1'2m-2 a2 71 _3 (1 a771_1 j 

E FnXn. 

Then det(T) 0 and for all rn > ii., det(Tm) = 0 (see Lemma 1 in [KP91]). 

Furthermore, let 8 be a finite subset of F. Uniformly and randomly choose a 

row vector it e 81Xn and a column vector b E S'. If S is sufficiently large, then the 

probability that the minimum polynomial of {Ab} 0 equals the minimum polynomial 

of A is high (Lemma 2 in [KP91]): 

9 deg (fA) 
Pr(f_fA)>1  181 

Wiedemann shows that if the given matrix A has the property that all its principal 

submatrices are nonsingular, and if 

A=AD, D=diag(di,... ,d), 

where di are uniformly and independently selected from 8, then the probability that 

the characteristic polynomial of A equals the minimum polynomial of A is high: 

Pr(fA() = det(I - A)) ≥ 1 n(2n— 2) 
181 
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For an arbitrary nonsingular matrix A, let 

A=AH, H= 

/ ' hi /1_ Ii J 

un_i Jim 

h_ ui h2n_2 J 

where the elements of the Ilankel matrix If are randomly and uniformly selected from 

the set 8. Then the probability that all the principal submatrices of A are nonsingular 

is also high: 

n(m + 1) 
Pr(All the principal submatrices of A are nonsingular) ≥ 1 

2181 

Kaltofen and Pan's algorithm is shown below. It reduces computing the determi-

nant of an arbitrary matrix to solving a nonsingular Toeplitz system, to computing 

the determinant of a nonsingular 1-lankel matrix, and to matrix multiplication. Algo-

rithms for solving a nonsingular Toeplitz system in parallel will be given in Chapter 5. 

These algorithms can also be extended to compute the determinant of a nonsingular 

1-lankel matrix. 

ALGORITHM 2.2. Computing the Determinant 

Input: An n x n nonsingular matrix A 

Output: det(A) 

begin Pick a random Hankel matrix H, a random diagonal matrix D, a 

random row vector u, and a random column vector b, all with entries 

in S. 

step 1 (a) Compute A = AHD. 

(h) Compute {Ab,A2b,... 

(c) Compute the sequence {ao,... ,a2 fl_l}, where ai = uA1b. 
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step 2 Solve the Toeplitz system 

/ 
(l_ (t,?_2 

(L_ 

(tj 

x1 

(12 

12n-3 (l_. 1 t2n2 

\ 12n-2 (12 71_3 (t fl an-1 / \ Xfl_ / \ •t2n-1 / 

If the system is singular, then report failure and halt. Otherwise, the 

coefficients of the minimum polynomial of the sequence {a} 0 have 

been computed. Since the minimum polynomial of the sequence is 

also the characteristic polynomial of A, the coefficients of the char-

acteristic polynomial of A are obtained such that b(A) = cj, 

where ci = x for 0 < i ≤ fl — 1. 

step 3 Compute the determinant of A using the formula 

fAtb(o) 
det(A) 

end 

det(H) det(D) 

The above result and the Fact 1.9 imply the following theorem [KP91]. 

THEoREM 2.2. Given a nonsingular matrix A E FThXn, for some field F of charac-

teristic zero or greater than ii, and a finite subset S of F, there exists a randomized 

algorithm (Las Vegas) for computing det(A), solving a linear system Ax = b, and 

evaluating A-' in O(log2 n) time using O(P(n)) processors. The algorithm outputs 

the correct answer with probability at least 1- 3n'/  ISI, and reports failure otherwise. 

For matrix computations over fields of small positive characteristic, Kaltofen and 

Pan also achieve randomized processor efficient parallel algorithms with both running 

time and number of processors increased by at most an O(log 72) factor. 
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Kaltofen and Pan also gave processor efficient parallel algorithms for computing 

the rank and finding a basis for the nulispace of a matrix. 
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2.3. Rational and Integer Matrix Computations 

The parallel algorithms for matrix inversion and related problems in the previous 

sections require computation of the characteristic polynomial or related forms (the 

minimum polynomial etc.), which are known to be. highly unstable in practice [WiI65]. 

If the calculations are not performed using exact arithmetic, then their outputs may 

substantially differ from A 1. The a.lgorithnis discussed in this section have better 

numerical stability. 

Henceforth, hAil will denote the p-norm IIAIIP of A, and cond(A) will denote the 

cond7,(A), for some 7) ≥ I There are iterative methods for computing the inverse of 

a well-conditioned matrix [PRS5, PRS9, PR93]. These iterative methods are based 

on Newton iteration and its extensions. Given a matrix A, the Newton iteration 

method requires an initial approximate inverse B such that Ill - ABII is substantially 

less than 1. For a. general matrix, there is no known technique to find such an 

initial approximate inverse; however, for a strictly diagonally dominant matrix A, an 

approximate inverse B of A can be a diagonal matrix consisting of the inverses of the 

diagonal entries of A. These iterative algorithms compute A 1 (up to error 20(1)) 

using O(log n) matrix multiplications (in the stages of Newton iterations) and hence 

in O(1og2 n) time using O(P(n)) processors. 

The above results have been extended to the exact evaluation of the inverse and 

the determinant in O(1og2 n) time using O(P(n)) processors when the input matrix 

is an arbitrary integer matrix such that IIAII ≤ 2's, where ,8 ≤ nc, for some constant 

c [Pan85, Pan87]. The hit precision of these algorithms is not optimal. 

Recent results by Reif [Rei94] show that a similar method can be applied to the 

exact evaluation of LU factors of a given matrix in O(1og2 n) time using O(P(n)) 

processors when the input matrix is an arbitrary integer matrix such that IIAII 2, 

where ,8 ≤ nc , for some constant c. Thus the algorithms are available to compute 

the inverse, determinant, and various factorizations in O(1og2 n) time using O(P(n)) 

processors. 
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2.3.1. Inversion of Well-conditioned Matrices. Pan and Reif show that it 

takes O(log2 n) time and O(P(n)) processors to compute the inverse (up to error 

of a. well-conditioned matrix [PRS5, PRS9, PR93]. 

Given a matrix A E a. matrix B is called an approximate inverse of A if 

III - ABIJ = c < 1. Let B° = B and = B(k)(21 - AB(')), for k ≥ 1. This is 

exactly the Newton iteration applied to the equation R(B) = I - AB = 0. It can be 

shown that converges to A 1 quadratically, because 

- (k)A II = 11  I - B' (21 - AB(k_ 1)) All 

= (I_B(k_1)A) 2 

≤ 0' - B(k_1)A02 

Therefore, if III 
- B(°)AO < e, then 

- B(k)AO < 

It can also be shown that A-1 Ii ≤ JIBIJ /(1 - ), because 

- BM + IIBII 

4.-1 - 14B11 -F• 11.8 11 

≤ eA + IIBII. 

Thus 

- B(k)0 2k Ahll 2k IBM 1(1 - 

Let B = B° satisfy the inequality 

(2.9) Ill - ABII =c = 1 - 1/n° '. 

It can be shown that if Ilog 11.8111 ≤no(l) , then O(logn) iterations, which take 

O(1og2 n) time and O(P(n)) processors, suffice in order to compute a matrix A_i 
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such that 

- A-' 2 IlBil, 

for any fixed constant c. 

Given a nonsingular matrix A, let B = tA7', where i = 1/(IlAII1 lAIL). It can be 

shown that IBII ≤ 1/ IIAII and II - ABII < 1— 'I /((cond(A))2n) [P1185] (Lemma 2.4). 

Thus when the matrix A is well-conditioned, say concl(A) < nO w, an approximate 

inverse B can be computed in O(log n) time using O(n2/ log??,)  processors. Thus the 

algorithm only uses (log2 n) time and O(P(n)) processors. 

2.3.2. Exact Solution of Integer Matrix Computations. Pan shows that 

the problems of solving a linear system, evaluating the determinant, inverse, and 

computing the coefficients of the characteristic polynomial can be solved exactly by 

computing numerical approximations and rounding them to the nearest integers pro-

vided that the entries of the input matrix (and vector) are integers [Pan85, Pan87]. 

Given an integer matrix A, assume hAil = 2, where 0 <ac, for some constant c, 

so log log A I I = O (log n). 

Let q be an integer such that q > 3n2 IIAII. Let P = [pjj] be the n x n cyclic 

permutation matrix such that 

1 
Pu = 

0 

ifi — j = 1 mod n, 

otherwise. 

Let V = PA + qP. Let v = (1,0,... ,o)T. It can be shown that the Krylov ma-

trix K(V,v) = [v,Vv,... ,V' 1v] is strongly diagonally dominant. Thus K(Vv) 

is nonsingular and the minimum polynomial of the sequence {V} 0 has degree at 

least n. Since the characteristic polynomial is a generating polynomial of the sequence 

{ /"}?O and has degree n, the characteristic polynomial is the minimum polynomial 

of {V} 0. Let the characteristic polynomial of V be b(V) = detJ— V) = >I c)\ 

and let the vector c(V) = [—co, —c1,... , _cn_i]T be the coefficient vector of of b(V). 
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Then 

K ( 1) v ) c( V) = 11"v. 

Since K(V, v) is strongly diagonally dominant, it is well-conditioned. Apply the 

algorithm for computing the inverse (with high precision) of a. well-conditioned matrix, 

then the exact values of c( V) = c(A) mod q can be obtained by rounding the entries 

of c(V) to the nearest integers. 

It is necessary (and sufficient) that q > 2(IIAIl)7 if c(A) is to be recovered from 

the above residue, c(A) mod q. In this case clet(A) is immediately available. Since 

pTV = A + ql is strongly diagonally dominant and hence well-conditioned, one 

can apply the algorithm for computing the inverse (with high precision) to com-

pute (P'V)'. The determinant of PTV is also available because det(PTV) 

det(PT)det(V) = (—l)' 1c(V). Thus adj(PTV) = (pTV) 1 det(PTV) can be com-

puted. From adj(PTV) it is easy to compute adj(A) via reduction modulo q. Finally 

A' = adj (A) / det (A) can he computed. 

Notice that the exact computation of det(A) by this method requires q > 2 IIAII, 

so the computation involves the use of ri2 log lAM-bit integers. 

2.3.3. Matrix Factorizations. Reif shows a method using recursive factoriza-

tion to achieve exact solutions for integer matrices [Rei94]. The method can be 

extended to achieve new algorithms for various factorizations of a general matrix as 

well as some special classes of matrices. Reif's method and an improved version will 

be given in Chapter 4. 



CHAPTER 3 

Matrix Norms and Bounds 

Some properties of matrix norms are given in this chapter. Approximate Newton 

iteration, a modified version of the standard Newton iteration, is introduced. Unlike 

the Newton iterative methods used to compute a numerical approximation of a matrix 

inverse, approximate Newton iteration does not require the exact input. It is shown 

that under certain conditions, approximate Newton iteration also produces a sequence 

of numerical approximations which converges quadratically. 

35 
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3.1. Approximate Newton Iteration and Norm Properties 

Some l)roperties of matrix norms are given in this section. Let A E ]?1Xfl be a 

nonsingular matrix. Let d E R and D = dl, where I is the n x ii identity matrix. 

Assume d > 0 hereafter. Let A = D + A. For sufficiently large ci, the matrix A 

is diagonally dominant, and D 1 is in some sense a "good approximation" for A'. 

It will be shown in Chapter 4 that the inverse (and adjoin) of A can be of use in 

computing the inverse of A, as well. The lemmas given in this chapter will be applied 

to analyze the algorithms given in Chapter 4. The matrix norm 11AII will be used to 

denote 11 A 11 p , where p = 1, 2, 00. 

3.1.1. Basic Norm Bounds. It is easy to verify the following facts using the 

properties of matrix norms. 

• hAil = 11—All, for any matrix A. 

• 11DM = ci and IID 1 II = i/cl. 

• - D11 = hAil and AD ≤ hAll + d. 

• Ill  - D_A = 11D 1A11 = hAll /d. 

• If d≥ 11AII, then det(A)  < (2d)'. 

• If A = [a] then lah ≤ hAil, for 1 < i,j ≤ n. 

LEMMA 3.1. If d ≥ 2 hAll, then llA_1 ≤ 2/d. 

PROOF. It is given that d ≥ 2 hAll. Thus 1D 1 All . According to a well known 

result for matrix norms ([GVL9O], Theorem 2.3.4, p.59), 

hAil IlD 1 112 
- D9 ≤ 

1 - IID-1A11 

A modification of the right side of the inequality shows the following. 

hAil  
d(d— hAll) - 

The lemma follows, since 11D'hh = 1/d. 
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A careful observation shows that when d is sufficiently large, both and II A' 11 

are mainly affected by the choice of d. The norm 11 A 
- shows how close A is to 

a, diagonal matrix. The norm VA_ i - D'11 shows how close A 1 is to a diagonal 

matrix. The following lemma shows when A is close to a. diagonal matrix D, A' is 

close to D 1. 

LEMMA 3.2. If VA - DV <d/k for some k> 1, then 

(I) V' - DhV 1/((k - 

(2) A' V <k/((k - 

(3) if k ≥ 2, then VA_1 V < 2/cl. 

PROOF. Since 11 D-1 (A - D)V ≤ :1/k < 1, the result of [GVL9O] (Theorem 2.3.4, 
p. 59) again implies that 

Ilk'  - D' 11 11A - DII IID 1 12 

1 - IID-'(A - 

1 

- d(k-1 

The lemma follows from the equality 1D 1 J = 1/d. 0 

3.1.2. Determinant and Matrix Norms. The Hadamard inequality (Equa-

tion 1.2) shows the relation between matrix norms and the determinant. 

LEMMA 3.3. If 11A - Bil ≤ es, where e ≥ 0 and 11AII , JIBIJ z > 0, then 

Idet(A) - det(B)I < (nz)'c/z. 

PROOF. Let A = [a] and B = [b1]. Then Ia - bl ≤ 11A - Il ≤ e. By the 

definition of determinant, the following is easy to check. 

det(A) - det(B)j ≤ 



3. MATRIX NORMS AND BOUNDS 38 

where the sum runs over all n! permutations a of the n items {1, . . . , n}. Since 

1J (iij - 1J = >:= (i: b ()) (aia(i) - bI()) (n=+1 ai(i) ), 
fl 

Thus 

- nz fl_1€. 

clet(A) - (let(B)I < n! (nz') < (nz)"e/z. 

0 

3.1.3. Exact Newton Iteration. Let be a sequence of matrices 

that are approximations of the matrix A 1 generated by Newton iterations starting 

with some initial estimate where B') = B(' 1)(2I - AB('')). The sequence 

converges quadratically. This.follows since 

I - B(k_l)(21 - 

= (I - B(k_l)A)2. 

Thus 

(3.1) 111 - B()A 11 ≤ I - B(k-1)A 2 

If III - B(0)A = e < 1, then it follows that 

IJI - B()AJ 

Since A is given exactly, this Newton iteration is called exact Newton iteration. 

3.1.4. Approximate Newton Iteration. Suppose the matrix A such that 

(3.2) II A 
- DII <de/2 
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is not given, but that a sequence of approximations of A is given instead. Suppose 

the sequence = D, . . . , A satisfies the inequalities 

(3.:3) - All  < 

and 

(3.4) - < 2k 

where 0 . A sequence E(o),.(1), j(2) , , f(k) of approximations of A 1 

is computed as follows: E° = D' and = (k_1 )(9J - A(k)_ 1)). Since a 

sequence of approximations of A is used instead of A itself, this is called approximate 

Newton iteration. 

LEMMA 3.4. If 0 ≤ e ≤ , then DI - AU 41) ll ≤ and (k)0 :52/d. 

PROOF. It is given that E ° = D' and DA(1) - All ≤ d 2/2. Thus 

11 1 - V :• 0' - .(°)A ll° 0 0 A - )j(1) 

A - DII 
" +  

d 

≤ 

since 0 ≤ € ≤ 1. Also I0)11 = 1/d ≤ 2/d. 
Suppose the claim in the lemma holds for k - 1, so that 

DI - _1)A(c)ll ≤ 

where ic ≥ 1. Since 0 ≤ € ≤ , Vj - (k-1 )A(k) 

on A and {A(k)} that 

< 1. It follows from the conditions 

d€ < 3d 
≤ A() — All + VA — DO < d62k + - 8' 

for k ≥ 1. It follows by Part (2) of Lemma 3.2 that 11 (A (/) )_10 <8/(5d). 
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Since 73(k) = E(k_1)(21 - 

j(k— 1) (21 - 4(k)B(I_ 1) )4(k) (,4(k) )_i 

≤ - _f.. J1111  (4(k))1 

≤ (1+ I - A(k)M2) 11('4( k) )-111 

(.1 + ( 1 )2) 8 = 2 

2 5d (1 , 

\'Vitli the hypothesis that the claim holds for : - 1, 

- < - + - 

≤ - E( 1)A(k)ll2 + - 

:5 ( (2'') + 
( 2k-2 + i) 2k < 2 2k_12k 

since 22k_2 > I when k ≥ 1. Thus the lemma is proved by induction on k. E 

LEMMA 3.5. Suppose again that 0 ≤ e ≤ . Let A and A(k) satisfy Equations 3.2- 

3.4. Let B(k) he computed as above. Then 11 I - E(k)A (2k, where 0 

PROOF. From Lemma 3.4, it immediately follows that 

11 1 - E(k)A 11 ≤ 1 - E(k)A(k+i)I + E(k)(A - 

2 d 2k 

2 d2 
(2 + 

; + i) k 6 (2) 2c . 

This lemma shows that if A satisfies Equation 3.2, a sequence {A(')} of approxi-

mations to A satisfying Equations 3.3-3.4 is given instead of A, and if 6 < , then 

it is possible to compute a sequence {E(k)} of approximations to A' such that the 

sequence { ('c) } converges quadratically. 
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3.2. Schur Complement and Norm Bounds 

Let A be partitioned into the following form: 

A=[h1 Al2 
A21 /122 

41 

and suppose A11 is nonsingular. Define the Schur complement of A, denoted by A( A), 

1 A (A) A A A- i to oe J1) = P122 - t121r'11 '12• 

According to the definitions of matrix norms, the following lemma is easy to verify 

(see [CVl9O], p. 60, Exercise P2.3.2). 

LEMMA 3.6. Let B be any subma.trix of A; then 111311 All. 

Suppose A - D < 6. Then, by Lemma 3.6, 

11A11_ D ≤ ll - D 1 ≤ 6, and 11 A22 - D2I 11  —D 11 < 6, where D1 = d11, 
D2 = d12, and I, 12 are the identity matiices with the same shapes as All 

and A22 respectively; 

111412 11 ≤ II - DD <6 and II A21 11 <DA - <6. 

LEMMA 3.7. If HA - DH ≤ de/2, where 0 ≤ e ≤ 1, then (A) - D2D ≤ de. 

PROOF. The condition jj .A - DI ≤ de/2 implies that 11,41, - D, 11 ≤ de/2. By Part 

(3) of Lemma 3.2 with e ≤ , Aj11 ≤ 2/d. 

Recall that the Schur complement of A is L(A) = A22 -  A21A 1Al2. Notice that 

IIA21 11 ≤ 11 A - DH dc/2, 11 A1211≤ 11 A - DM ≤ de/2, and 11 A22 
- D211 II A - D 1 ≤ 

de/2. It follows that 

l(A) - D20 ≤ 0A22 - D2II + IA21 JJA11111 IIA1211 
de + 2 (dc )2 

2 d2 

de de2 de 
= -+---≤--(1+e)≤de. 

0 
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This lemma shows that if the original matrix A is relatively close to a, diago-

nal matrix D with VA - DV ≤ &/2, then the Schur complement of A is also rel-

atively close to a, diagonal matrix with the same diagonal entries d. In particular, 

- D2V ≤ (1 + )(dc)/2 < (if., so the "distance" only doubles. 

LEMMA 3.8. Suppose A satisfies Equation 3.2, the sequence AM, A(1),... , A( sat-

isfies Equation 3.3 and Equation 3.4. Suppose aiso that. 

,(k) (k) 
P1 t112 

li (k) (k) 
21 22 

for 

A ≥ 0, and that (°) = D 1, and (k) = (k_i)(2J A ) k_ 1)) , for k > 1. Let, 

0 . 'I']icn 

- (k) 
where o = D2, = A22 - A21Ar11 Al2, and () = A22 - A21 (k)AJ. 

PROOF. Notice that 11A2111 ≤ VA - DV d/2, VA12O - D ≤ &/2, and 

VA22 - D211 A - DV ≤ de/2. Since AM = D2, it is easy to verify that 

II - V 11 ,422  - D2 II + 11  '421 V V Ar1 V II Al2 II 
& + 1 2 (d' 2 

≤ ---- ) 

≤ 

Also, 

II (k) (k) ll 1: -  All  = 11A22 - A21 A21 - (A22 - A2lAi1Al2)I 

= (A ) - A22) + (A )(. (") - A')A]) U 

+ (A21 )A 11(A - Al2 )) + ((A ) - A21)A11Al2) II 

≤ - A22I + IIAE(' - A' 'i (k)II 

+ AAr11(A - Al2)V + ll(A - A2l)A11Al2I 
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By Lemma 3.6, 

11 ,4 1k, 21 - A21V ≤ A(k) - AD ≤ 2k 

II 
12 - A1211 - AD <c2k 

and 

A(k) - A22I ≤ DA) - AD ≤ (lie 

It is given that VA - DD c, so 11 A21V and V'L2D 
II (k) 11 < d(2k) 3d 

and 

I' (k)II < k) 3d 11A1211_— + e < — 

when k ≥ 1. 

2 
Also 0 ≤ < 1 2 Thus, 

Lemma 3.6 also implies that VAIl - D, 11:5 11 A — DV ≤ dc/2. It follows that 

11-A 11 11 ≤ 4/3d by Part 2 of Lemma 3.2 using the inequality c ≤ . 

- (k - )} satisfy the corre-Since A and {A' '} satisfy Equations 3.2-3.4, A11 and { (k A11 

sponding conditions. By Lemma 3.5, 

11 1 - (k)A1 (2) 
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Thus, 

11 (k) 
- All  ≤ - A22 + II' — A1' V VA )Ii 21  

+ 'AV A''1 — AI2V .+. VA ) A21 V Vkhll VAI2V I liii 
- ii 

e 
2 + -(2e) + 3d 2k 4 3d 3d 4 (1 2k (1 2k 4 3d - ---

(d (1 (1 ) 2k 3d 2k 
≤ +(2c) 

≤ 

≤ 

where A: ≥ 1, so that d2 ≤ (2)2k, and since 1 16 + < 2 

LEMMA 3.9. Suppose A satisfies Equation 3.2, the sequence A(1),... , A(k) sat-

isfies Equations 3.3 and Equation 3.4, (°) = Dj 1, and (k) = (k_1)(2I_A )E(k_1)) 11 

fork≥1. LetO≤≤. Then 

- (k+1)0 

(k) (k) where (°) = D2, and = A - A 22 21 B('A ]. 

PROOF. The equality A(°) = D and Equation 3.4 imply that VA 11)V ≤ OA() — DO ≤ 
d2/2, VA'2V — DII ≤ d2/2, and — D20 ≤ 11 All) - DO ≤ & 2/2. Also 

A11 and {A11 } satisfy Equations 3.2-3.4. Thus Lemma 3.4 shows that ≤ 2/d 

and 0' — 11  Since AM = D2, it is easy to verify that 

— — D2 + 21 12 11 

dc d2 2 d2 

& dc 
≤d. 

< 

< 
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\'Vheii A' ≥ 1, 

I ' 
- A (k+1) O = I1A 22(k) - A21(k) E(k')A(I) - ( 22 21 21 11 A' 1 - 

((k) - + (A(i(") - 

22 21 )22 12) 

+ (A)E(k+1)(A) - A(k+l))) + ((AV - i( k+ l))(k+1)A( k+J)) 
21 12 12  12 21 

≤ - + OA? - (k)II 

21 12 (k+L)) 'I 

(k+1)(A - '12 + - t121(k+i) ) 12 
21 12 

By Lemma :3.6 and Equation 3.4, 

D d 2' 
"22 - A +1)O ≤ A(k) 4(k+1) - O < 

IA ) - A "1)I - A('') ≤ d 2k 

and 

d 2k 1k) 
- < - A(+1)M ≤ 

It is given that 11A 
- DO ≤ , and 0 ≤ ≤ so 

I 

and 

II '(k)II 1Al2 ≤ 2k ) < 

when k ≥ 1. 

Since E(k+ 1) = -  11 

- = Ilf3 (k) (i - A(k+1)E(k)) 

11 

E (k) V j - 
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Lemma. :3.4 shows that 

III - 

and also that; 

2 
-. 

(1 

All these facts and the inequality L ≥ 1 imply that 

- (k+1) II (1 k 3(12 k k3(1 3d2d k d 2k2 3d 
—e + --2 - + ---C + —e -- 

— 2 8(1 8 8(12 2 (18 
((1 3(1 3d\ 2k 9d 2k 1 2k 

≤ ++)c +2 
2 32 

• 51 9d (2c )2' + 

≤ 



CHAPTER 4 

Efficient Parallel Factorization 

Reif gives processor efficient parallel algorithms for general dense matrix factoriza.-

tions. These algorithms reduce. the parallel time of O(1og3 ii) required by the previous 

known processor efficient algorithms to O(1og2 n). A complete analysis of Reif's par-

allel algorithms is given in this chapter. The analysis shows that the bit precision 

required for these algorithms can be significantly reduced. The analysis also shows 

that certain steps of Reif's algorithms can be simplified. Recursive factorization trees 

(RF trees) of matrices are introduced. Some important properties of factorization 

trees are shown. 

47 
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4.1. Recursive Factorization Trees of Matrices 

Assume n is a power of 2. If all principal submatrices of A E RflX7 are nonsingular, 

a full binary tree of C1C1)th log n can be associated with A as follows. 

Every node in the binary tree is indexed with a, binary string, and contains a. matrix. 

Time root is denoted as <>, the empty string, and contains the matrix A. A node at 

depth 1, 0 < t ≤ log n, contains an /2t x n/21 matrix. The matrix in the node a 

at (101)th t is denoted as A(, where a is a. binary string of length t. Each node a at 

depth t, 0 < 1 < log ii, has exactly two children, a0 and al, which contain A 0 and 

A 1 respectively. The matrices A 0 and A 1 are constructed from Ac, as follows. Let 

the matrix Ac, at depth i, 0 ≤ t < log n, be partitioned as 

Ac,= [A o Xc,] 
1.' '7 
.Ly 

where Ac,, Xc,, Yc,, and Zc, are n/2t+1 x n/21+l matrices. As stated above, the 

left child of the node a contains the matrix Ac,0. The right child of a contains 

L(Ac,) = Z,' -  Yc,AXc,, which is the Schur complement of Ac,. 

The above binary tree is called the Recursive Factorization tree (RF tree) of the 

matrix A. For 0 ≤ V ≤ t, an RF tree of depth t is the RF tree defined only to the 

depth t [Rei95J. In this thesis, extended versions of the above RF tree are used. An 

"augmented" RF tree has the same structure except that each node a also includes 

the inverse A' of the matrix Ac, found in that node of the regular "RF tree". An 

"extended" RF tree includes this extra matrix at each node a, as well as an integer 

mc, which will be defined later. 

Not every n x n matrix has an RF tree. The following lemma is given by Reif 

[Rei94]. 

LEMMA 4.1. Any symmetric positive definite matrix A has an RF tree and it is 

unique. 
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PROOF. Let A be partitioned as 

- All A 2 - 

A21 A22 

where All . Al2, A21, and A22 are n/2 x n/2 matrices. Since A is symmetric and 

positive definite, All is invertible. If All is nonsingular then 

A - 1 0 - All 0 - I A'A l2 

- A21A 11 I - 0 A 0 I 1 
where A is the Schur complement of the matrix A, A = A22 - A2iA111 Al2. 

Since A is also symmetric, Al2 = Al2, 

and 

I 

0 

I 

A n 
J2i t111—i 

By Lemma 1.1, the matrix 

cause 

[ All 

0 

and All - - so that 

T 

o 1 1 i A 11A•12 1 
- I) 

I j to I j 

n 
— A li' A21 2i 

I 

All 

0 

1= 
I 0 IT 

—Al2Aj11 I 

is also symmetric and positive definite, be-

T 

I —A 11A1 1 1 A. i —A 1Al2 1 
I •I I. 

0 1  .r ] 
Thus All and /. are both symmetric and positive definite, and this factorization can 

continue. Thus existence of the RF tree follows by induction on n. The uniqueness 

follows from the deterministic construction of the RF Tree. E 

LEMMA 4.2. The inverse of A can be recursively computed from the RF tree of A, 
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as 

A'= 
I —Ali 'A1 - Ar11 0 

0 1 0 L 

I 0 

LEMMA 4.3. If A has an RF tree then the LU factorization of A can be recursively 

computed Froin the IF tree of A. 

PROOF. 

1 0 
'4= 

A21Ar11 

All 

0 

0 I A'A1 

0 1 

and the RF tree of A includes RF trees for All and A. Suppose All = L1U1 

= LU2; then A = LU, for 

I 0L1 

A21Ar1' I I I 0 
0 

0 

L2 
and U= 

U1 0 I A 1Al2 

0 U2 0 I 

and 

Since A is defined recursively, it is natural to check the relation between A and 

the original matrix A. This observation, (Lemma 4.4, which follows) leads to the 

important properties of the RF tree and clarifies one ambiguity in Fteif's algorithms 

(see [Rei94, Rei95]). 

Define val(a) to be the value obtained by treating cras a base-2 representation of 

an integer for any a y4<>, and define val(<>.) = 0. For example, val(0001) = 1 and 

val(1101) = 13. It is clear that val(a) ≤ 2 - 1 for any node a of depth t. Define s(a) 

to be a function of n and a, for some a at depth t, which shows the corresponding 

position of Aa in A: s(a) = val(a). For example, s(01) = ; .s(101) = . It is 

easy to verify that s(a) ≤ ii - n/2t because val(a) < 2 - 1 

The following lemma shows that A is more directly related to A: in particular, 

A is a principal submatrix of A or a Schur complement for some principal submatrix 
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of A. 

LEMMA 4.4. Let cy be a node of depth tin the lIE tree of A. If s(a) = 0, then A 

is the n/21 x n/2t principal submatrix of A. Otherwise, let A he the (s(a) + n/2t) x 

(s(a) + n/21) principal suhrnatrix of A, and let 

(4.2) 
All 

X Z 

where All is of size s(a) x s(a), X is of size s(a) x n/2t,Y is of size n/2 x s(c), and 

Z is of size n/2' x n/2t. Then A = Z - YA 1X. 

PROOF. When t = 1, the claim obviously holds because A0 is the n/2 x n/2 

principal submatrix of A and s(0) = 0, and A1 is the Schur complement of A according 

to the definition of RF tree of A, and s(1) = n/2. 

Suppose the claim holds for depth t and let a be a node of depth t. If s(a) = 0, 

consider the nodes a0 and al at depth t + 1. Since A 0 is the n/2i+' x n/2t+1 

principal submatrix of A, the claim obviously holds for A o; meanwhile, A 1 is the 

Schur complement of A, so the claim holds for al as well. 

If s(c) 0 0, then by the inductive hypothesis, A = = Z - YAj11X for All, Y, 

X, and Z as given above. 

Let X = [x1 x2] for s() x 2' matrices X1 and X2, let Y [ I for 

2t+1 x s(c) matrices Yl and 1'2, and let Z = 
Zll Z 2 

Z21 Z22 
for 2' x matrices 

Z11, Z12, Z21, and Z22. Then the Schur complement A = Z - YA'X has the form 

Z11 —Y1Aj11X1 Z12 —Y1A 11X2 

Z21 - Y2AX1 Z22 - 

The matrix Ac0 is, by the definition of RF tree, the leading principal submatrix of 

Acy, so A 0 = Z11 - YiA'Xj, and since .s(a) = s(c0), this is the Schur comple-
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ment obtained using the (s(a) + n./2 1) x (3(a) + 77/9t+1) principal submatrix of A, 
A V 
tijj Aj 

I'll z.11 

- By definition of HF tree, and since 

as desired. 

A = 
Zil - } A 1' X, Z,2 - } A11-'X2 

Z 21 
Ai V '7 V A-i V 

- V 2"j 1 z22 - 1 2th1 A2 

= (Z22 - }'Ar11X2) - (Z2, - '2Arl1X,)(ZI1 - )-'-A-'X,) -' (Z12 - }Ar,1X2) 

= (Z22 - '2 11A'X2) - (Z21 - YAr,'X1)A(Z12 - Y1Ar11X2). 

Now it is necessary and sufficient to show that this is the Schur complement, 

2— 

All X1 I - I X2 I - 
for Ali  I,Y={Y2 

Y1 Zii I I Z12 I 
Since A,, is nonsingular, and A 0 = Zll - 

so 

Thus 

;i l1 -1 i-i-

1 0 All 

Y1 A 1 I 0 

I —A 11X 

0 I 

= [2 z21] 

I 

0 

A 0 

Z2, I , and 2 = Z22. 

o A][_YiAri1 'l A 1' 0 II 1 0 

I —A 11 X, 

0 I 

'7 V A-1V 
2 L121 - 1 21111 '11 I 

A 1' 0 

0 A —y 

Ar11 0 

0 AaO Z12 

I 0 X2 

[A11 I Z,2 

'p 

./ 2 

- Y,Ar,1X2 

Y2Ar11X2 + (Z2, - Y2Ar,'X,)A(Z12 - Y1Ar11X2), 

I 
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and 

- K = (Z - Y A 1X2) - (Z21 - }A 1X1)A(Z12 - }'A'X2)  22 2 11 

as required. The result follows by induction on 1. 0 

If the given matrix A has integer entries, the determinant of A is an integer; fur-

thermore, the adjoint matrix adj(A) is also a matrix with integer entries. However, 

the matrices in all the nodes of the RF tree of an integer matrix are not guaranteed 

to be integer matrices. 

Recall that each node a in the extended RF tree has an associated integer value rn. 

The integer m(- is chosen in such a way that is guaranteed to be an integer 

matrix. Recursively define m for all the nodes in the RF tree as follows. Define 

772<> to be 1. Let the left child and right child of the node a contain rn 0 = m and 

= m det(A o) respectively. The following lemma shows that n is also closely 

related to the matrix A. 

LEMMA 4.5. For a node a in the RF tree of a matrix A, if s(a) = 0, then m = 1; 

otherwise, m = det(A), where A is the s(a) x s(a) principal submatrix of A. 

PROOF. For a node at depth 1, the claim holds because ni0 = 1 and 772k = det(Ao) 

according to the definition of ma. 

Suppose the claim holds for depth t, so that rn, = det(A), where a is a node at 

depth t and A is the s(a) x s(a) principal submatrix of A. Suppose s(a) > 0, since the 

claim obviously holds for a0 and al if s(a) = 0. Since m 0 = ma, and .s(aO) = 

the claim holds for a0. Meanwhile s(al) = s(a) + T, and m,,, = ma det(Aao) by 

definition. Lemma 4.4 shows that A,O is the Schur complement of A, where A is the 
(s(a0)+n/2t+l) x (s(aO)+n/2t+l) principal submatrix of A and where A is partitioned 

as in Equation 4.2. Notice that det(A) = det(A 11) . det(L(A)) = det(A ij) det(Aao). 

Clearly All = A, and by hypothesis ma = det(A), so the claim holds for Aai as well. 

The lemma follows by induction on t. 0 
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LEMMA 4.6. In the R,F tree of an integer matrix A, rnA and madj(A) are 

integer matrices for every node a. 

PROOF. Lemma 4.4 shows that A is either a principal submatrix of A or a Schur 

complement of A, where A is a principal submatrix of A with a. certain size. If A. 

is a principal submatrix of A, then rn = 1, and mAa is clearly an integer matrix. 

Suppose Ac, is a Schur complement of a principal submatrix A of A. Clearly A is an 

integer matrix. Let A be partitioned as in Equation 4.2, so that Ac, = Z - YA'X. 

Lemma 4.5 shows that mc, = clet(Ai,). Thus mc,Ac, = det(A ii )(Z - YAX) = 

det(Aj )Z - Yadj(A,i )X is also an integer matrix. 

The same argument shows that mc,adj(Ac,) is an integer matrix for any node a. 

Suppose a is a principal submatrix of A, then mc, = 1 and mc,adj(Ac,) is an integer 

matrix, since Ac, is an integer matrix. Suppose Ac, is a Schur compliment of a principal 

submatrix A of A. Let A be partitioned according to the partitioning of A. Then the 

bottom right corner of A' is A;1. Since A is an integer matrix, adj(A) = det(A)A' 
is also an integer matrix. Thus det(A)A;1 is also an integer matrix, because A;' is a 

submatrix of A 1. Now imc,adj(Ac,) = det(A 11)det(Ac,)A;', but det(Aii )det(Ac,) = 

det(A), and hence mc,adj(A) = det(A)A; is an integer matrix as well. D 

The following lemma shows a bound for the norm of mc,Ac,. 

LEMMA 4.7. For any node a in the RF tree of A, jImAc,II ≤ 122 11A 11n. 

PROOF. Notice that Ac, is either a principal submatrix of A or a Schur complement 

of a principal submatrix of A. If Ac, is a principal submatrix of A, then mc, = 1 and 

the claim is obvious. Suppose Ac, is a Schur complement of a principal submatrix A 

of A, which is partitioned as in Equation 4.2. Then Ac, = Z - YA'X, where All, 

X, Y, and Z are submatrices of A. It follows that mc,Ac, = det(Aii)Z - Yadj(Aii )X 

by Lemma 4.5. It is now easy to verify that IIadi(Aii)II ≤ (n - 1)2 IIAll'2. Thus 

IImc,Ac,II <2 11A 11n. i: 



4. EFFICIENT PARALLEL FACTORIZATION 55 

4.2. RF Trees and Matrix Computations 

In this section, it is shown that some matrix problems can he reduced to computing 

the RF tree. Then Reif's processor efficient algorithm for computing the RF tree of 

a symmetric positive definite matrix is outlined. 

4.2.1. Reduction of Matrix Computations to the RF Tree. The following 

problems can he efficiently reduced to computation of the RF tree [Rei94]. The 

concept of efficient NC reduction is defined in Definition 1.15. 

Given a nonsingular matrix A E Rn1n, if A has an RF tree, then A' can he com-

puted by the RF sequence (see Lemma 4.2). Otherwise, ATA is symmetric and posi-

tive definite, so that if A is nonsingular, then ATA has an RF tree (see Lemma 4.1). 

Then (ATA)_i = A-l(AT)_l can be computed from the RF tree of ATA. Thus 

A1 = (ATA)-'AT can he computed by an additional matrix multiplication. 

LEMMA 4.8. There is an efficient NC reduction from matrix inversion to computing 

the RF tree. 

Given a matrix A E R'<, recall the LU factorization for A (see Definition 1.6). 

LEMMA 4.9. There is an efficient NC reduction from LU factorization to computing 

the RF tree. 

LEMMA 4.10. There is an efficient parallel reduction from solving a nonsingular 

system of linear equations to computing the RF tree. 

Given a matrix A E the QR factorization of A can be computed from the 

LU factorization of A'A, assuming that square roots of positive real numbers can be 

computed efficiently. Let ATA = LU he a Cholesky factorization, so that U = LT. 

Then R = U = LT and Q = AU' gives a QR factorization of A. Since U is 

upper triangular, O(1og2 ii) time and O(P(n)) processors are sufficient to compute 

this factorization from L and U. 
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LEMMA 4.11. There is an efficient NC red uction from QR factorization to comput-

ing the RF tree. 

If the Krylov matrix K(A, v) = (v, Av, A2v,. . . , An-It)) is nonsingular, with QR 

factorization K(A,v) = QR, then H = QTAQ is in upper I-Iessenberg form (see, for 

example, [B P94]). 

LEMMA 4.12. There is an efficient randomized NC reduction from Hessen berg re-

duction to computing the RF tree when the characteristic polynomial of the input 

matrix equals the minimum polynomial. 

4.2.2. Computing the Exact RF Tree. Reif's processor efficient algorithm 

for computing the RF tree of a given symmetric positive definite matrix is sketched. 

A modified (and somewhat simplified) version of the algorithm appears in the later 

sections of this chapter. 

The following definition and algorithm are directly taken from Reif's paper. 

Let G be the directed acyclic digraph derived from the RF tree by simply (1) 

including all tree edges directed from the children to parents, and (2) adding directed 

edges from each node of form cel to its sibling of form cO. The ordering of directed 

edges of C allows for the recursive computation of mao = ma and mal = ma det(Aao) 

(since it will be the case that computing det(Aao) requires the computation of mao). 

The longest path in C has 1 + 2 log n nodes. The node of C can be partitioned 

into 1 + 2 log n blocks H0, Hi,... , 11iOfl so that the evaluation of mc is executed in 

parallel for c E rIj in 1 + 21og n sequential stages for j = 0,... , 2 log n (see [Rei94], 

pp. 15-16). 

ALGORITHM 4.1. Computing the RF tree of a Symmetric Positive Definite Matrix. 

Input: An n x n integer symmetric positive definite matrix A, with integer 

entries of magnitude at most 2's, where 3 ≤ °(1), and where ii is 

assumed to be a power of 2. 
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Output: RF tree of A 

begin Let 7r = n(1@ + log n.). 

step I Depending on whether a deterministic or randomized algorithm is 

desired, perform (1) or (2). 

(1) Let p be any prime from the interval [(n IIAII)nc0, (n IIAI)] 

for some constants 2 < c0 < c. 

(2) Let p be a. prime from the interval [2(n IlAJI0/n, 2(n lAII)c0] 

for some constant c0 > 2. 

step 2 Let A = A + Ip(n for a sufficiently large positive con-

stant c1. 

step 3 Apply approximate Newton iteration to compute in O(1og2 n) time 

using O(P(n)) processors, an approximate RF tree of A within ac-

curacy 2r for a sufficiently large positive constant c. 

step 4 Construct an ordered partition 11o, Ui,... ,H 2 1.gn of the strings {a E 

{O,1}tlt ≤ log n}. 

for i = 0 to 2 log n do (sequentially) 

for all c E r1i do (in parallel) 

(1) Define integer multipliers ?h for the matrices Ac. 

(2) Compute det(Ac) to accuracy within 2. 

(3) Compute in, det(A) exactly by rounding to the nearest 

integer the product of ih, times this approximation to 

det(A). 

(4) Represent det(Aa) exactly as the rational fraction 

Thadet(Aa) divided by 

(5) if det(A) = 0 mod p then goto Step 1. 

(6) Multiply the exact rational value of det(Aa) by the approx-

imation of (Ac ' to get an approximation of the adjoint 
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matrix adj(A) to accuracy within 

(7) To compute fiiaaclj(Aa) exactly, round to the nearest in-

teger the product of flia times this approximation of the 

adjoint matrix adj(Aa). 

(8) Represent A;' =   exactly as the rational fraction 

ñiaaclj(Aa) divided by ma det(Aa). 

end for 

end for 

step 5 Reduce (mod p) the exact RF tree of A, yielding RF tree (mod p) 

of A. 

step 6 Apply Newton-Hensel Lifting to compute the RF tree (mod p22) of 

A for i = 0,... , = f1og(cir)1. If det(A) = 0 mod p2' for any i 

and ce , then exit and report A has no RF tree. 

step 7 Using the exact RF tree of A, compute det(Aa) for each a. 

step 8 for i =0 to 2 log n do (sequentially) 

for all c E rIj do (in parallel) 

(1) Compute integer multipliers mc. and det(Ac.). 

(2) Using the exact RF tree of A, represent A, exactly as the 

rational fraction of integer matrices: m det(A) divided 

by m. 

(3) Compute A;1. 

(4) Let mc.adj(Ac.) be the integer matrix m det(Ac.)(A)' 

(5) Represent A;' = exactly as the rational fraction of integer 

matrices: iiic.adj(Ac.) divided by n det(A). 

end for 

end for 

end 
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In Reif's algorithm, A = A + Ip(n IIAIL0)dmn so the number of bits needed to 

represent the diagonal entries of A will be O(n8). Since det(A) may he as great as 

the product of the diagonal entries, the number of bits needed to represent det(A) 

can be as large as O(nir) (instead of O(ir)) which is not optimal. 

The matrices A in the R.F tree of A may have rational entries. For a rational 

number y/x, where x, y are relatively prime integers, define the "modular inverse" 

a = (y/x) mod p to be an integer a, where 0 ≤ a <p and y = ax + bp for some integer 

b. Given a rational number y/x, and an integer p, there is no known efficient parallel 

algorithm to compute the value a. (An algorithm for integer GCD computation is 

required and there is no known fast parallel algorithm for integer GCD computation.) 

Notice that p is chosen from the interval [2(77. 11AII0/n,2(n 11AII)c0J. Given a ra-

tional number y/x, it will use at least O(log hAil) time to compute a = (y/x) mod p 

by currently known methods. While this is not entirely clear, it seems that the RF 

tree (mod p) of A mentioned in the above algorithm is required to have entries that 

are the modular inverses of the rational entries of A. Thus, it is not clear that Step 5 

can be performed quickly using a realistic model of computation. 

In the later sections, a simplified version of Reif's algorithm is shown, which includes 

two parts. The first part shows that if d is chosen to be greater than (2n 11A1D2 

and A = A + dl, then the RF tree of A can he computed in O(1og2 n) time using 

O(P(n)) processors. The second part shows that if p is randomly and uniformly 

chosen from the set of prime numbers in the interval [n3 log  11AM , 4n3 log2 11AM] and 

A = A + dl, where d = pd for some integer d such that d ≥ (2n ll All )2, then the RF 

tree of A can be recovered from the RF tree of A in O(1og2 n) time using O(P(n)) 

processors. The algorithm fails with a very small probability. In both parts, the 

steps in Reif's algorithm have been somewhat simplified. Thus the improved version 

of Reif's algorithm in this thesis has optimal hit precision and simplified procedures. 
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4.3. Computing Exact RF Tree via Approximation 

Given a matrix A, let A = A + D, where D = cli and d ≥ (2n lAII)2. The 

exact RF tree of A can be computed in O(1og2 n) time using O(P(m)) processors via 

approximation. 

The algorithm includes the following steps, which are described in more detail in 

Sections 4.3.1 and 4.3.2. 

(1) Compute an approximate RF tree of A in O(1og2 n) time using O(P(n)) pro-

cessors; 

(2) Compute the exact RF tree from the approximate RF tree in O(log n) time 

using Q(n2/ log m) processors. 

The algorithm returns exact values for det(A), A 1, and the (extended) RF tree of 

A and replaces steps 2-4 of Reif's algorithm (Algorithm 4.1 in Section 4.2). 

4.3.1. Computing the Approximate RF Tree. Let Ac be the matrix on the 

node a in the RF tree of A. Let I be the identity matrix of the same size as A. Let 

= dl,,. 

Consider again the approximate Newton iteration of Section 2.2.4, which esti-

mates A;1 where A is nearly diagonal 11  (A - D d/2) without using the exat 

value for A1: instead a sequence {A)} is given, such that IIA - A)II ≤ d/22k, 
VA+1) -  ce  A)D ≤ d/22k, and A° = D, where 0 ≤ e ≤ . Given this sequence 

of approximations to A,, approximations to A;1 are computed. The 

matrix 0) is assigned to be D;1 and = (13 (k-1) (21 - A)k_ 1)) for k ≥ 1. 

Given the matrix A, A 1 can be approximated via exact Newton iterations. In 

order to compute the RF tree of A, notice that A0 is the principal submatrix of 

A; and A 1 is needed to compute A1. A simple divide and conquer strategy (in 

which an accurate approximation of A 1 is computed before the computation of Al  

begins) does not give a fast parallel algorithm for matrix factorization. However, the 

following algorithm computes a sequence of approximations of A1 efficiently by using 
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less accurate estimates for A 1 when these are sufficient, and starting the iteration 

for A 1 as soon as possible. 

Define a function v(a) as follows: v(<>) = 0, v(a0) = v(a), and v(Q1) = 1 + v(a), 

so that v(a) is the number of l's in the binary string c. 

ALGORITHM 4.2. Computing an approximate RF tree using approximate Newton 

iteration. 

Input: An n x ii matrix A = A + D, where D = dl and d ≥ (2n hAil)2, and 

a positive integer V < log  (n is assumed to be a power of 2). 

Output: An approximate augmented R.F tree of depth V of A 

begin 

h := logn + 2 

step 1 Initialization: 

for all nodes a in the extended RF tree do in parallel 

:= Ce 

(0) := 

end for 

for all nodes a with v(a) = 0 do 

for i := 1 to h do (sequentially) 

Set A) to be the n/2t x n/2t principal submatrix of 

A, for a at depth t. 

Set X, Yc$, and 2) to the upper right, bottom left, ce 

and bottom right submatrices of order n/2 4 of AU). 

end for 

end for 

step 2 for i := 1 to (h + log  + 1) do (sequentially) 
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for all nodes a in the RF tree such that v(a) < i and i—v(a) < Ii 

do in parallel 

if a = 01 for some node ,8 then 

(Comment: note that v(/30) = v(/3) = v(a) - 1, so 

(i - v(a)) = (i - 1 - v(/9)) = (i - 1 - v(0)) and 
'c:.(i—v(a))  

/30 130 j3 an - 13 

have already been computed.) 

= 
- &(i—v(cw )) ,-I:i—v(cx)) (i—v(c)) .(i—v(cY )) 

I3 - J3 B I30 -'/3 

end if 

if a = -Y10i for some node 'yl and some positive integer j 

then 

(Comment: v(a) = v('yl), and has just been 

computed.) 

Let t be the depth of node a and let matrices Ac0 

and 2(')) he the matrices of 
JC(i_v(cx)) 

size n /2t+1 xn/2+l such that [010 

= is the top left submatrix of size n/2t x fl/2t 

of A. 

end if 

if t < log  then 

(21 -  

else 

(Comment: is a 1 x 1 matrix, so the inverse 

can be directly computed.) 

end if 
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end for 

end for 
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end 

The algorithm recursively computes an approximate augmented RF tree, working 

from the "top" node <> down, in the following way. Suppose a sequence of approx-

imations of A is computed. The sequence of approximations of A,o immediately 

follows. This sequence of approximations of A 0 can be used to compute a sequence 

of approximations of A by means of approximate Newton iterations; and this se-

quence of approximations of is used to compute a sequence of approximations 00 

of the Schur complement A1. Thus, finally, an approximate augmented RF tree of 

depth V ≤ log  of A can be computed. 

LEMMA 4.13. Let c = 2 11AM /d with d ≥ (2n hAil)2. The algorithm generates an 

approximate augmented RF tree such that the node a has the following properties, 

for all a at depth t ≤ log n. and for 0 ≤ k ≤ h = log n + 2. 

{Ihi - (L.)4 (2t+1 )2', 

II' .13(k)Acyll ≤ (2), 

(2) 11 A ce - D 

(3) A - A(k) ≤ (2)2k . 

(4) lk - (k+1) 

t < log 71; 

t = log 71. 

PROOF. It is easy to verify that at depth t = 0, A.<> = A and P<> = D = dl. 

ThusA < > 
- D<>ll = hAIl = . Also according to the algorithm, since v(<>.) = 0, 

A, and hence - A<>. = 0 ≤ 2'; furthermore, IA - 0 

Thus I - ≤ (26) 2  by Lemma 3.5. 

Since the depth of the RF tree is less than log n, 2 n for any depth t. Since 

is chosen to be 2 11AII /d and d ≥ (2n 11AII)2, so that f < 2lIAlIn2' 0 < < . If, 

for a node a at depth t < log n, the matrices Aa and {A)}ce  satisfy properties (2), 

(3), and (4), then property (1) follows by Lemma 3.4. Following the steps in the 
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algorithm, Lemma 3.6 shows that - D0 11 11  , Ao - < (2t)2', and 

II (k) - II (2c)k , even though aO has depth i + 1. 

CY0Suppose now that t + 1 < log 77.. Then Lemma 3.7, Lemma 3.8, Lemma 3.9, 

and Lemma 3.5 show that -  Dcyl < d2t1c llAai - < (2t+1)2 and 

c1 

When 1 = log?? - 1, since B (A —i 
- DoD :5 and - 11 

— II 
1-1 (2c), it can he shown that 2/cl by Lemma 3J. - . Then o (k) A011 

(k) II II (k) oD - 2 d (9tc) 2' = (2t C) 2" Lemma 3.7 shows that A1 - D 1 
- - A 11 11 

d2tc Similar approaches as the proofs of Lemma 3.8 and Lemma 3.9 can show that 
2 

)2', and lACk) - < (9t+1)2k Since DAcd - DiII ≤ VAi - al 11 :5 c1 

II (k)II 
d2+1 and llA1 - < (2'c 

__ )al 2 , again it can be shown that IIJ3.i V 2/d by 
Lemma 3.1. Then since $) = (A)_', II' - < - ≤ al II IV 

= (2) k 

Let A denote and f3, denote E'), where h = log n + 2. 

LEMMA 4.14. Algorithm 4.2 generates an approximate augmented RF tree such 

that for a node a in the approximate augmented RF tree, 

(1) I &A ()2; 

(2) 11 a - < 

PROOF. This follows from Lemma 4.13 with the fact t ≤ log n. 0 

LEMMA 4.15. If the number of approximate Newton iterations h and the value d 

are chosen as described in Algorithm 4.2, then 11 1 - (2d) (2(n lI4Il)2) 

and - A (2d) <(2(n IAII)2)'). 

PROOF. Lemma 4.14 shows that 

11 1 - ]AC 11 (2d)' ≤ (nc) (2d)Th 

= (2 MAlI 2h 
n  ) (2d). 
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Since h = log n + 2 and d ≥ (2??. IIAID2, 2h = 4m and 

11 - f.3A (2d)Th (2n. lIAII)'1d32 

≤ (2n 11AID"(4m2 11AM2 )n2 

= (2(12 llAlI)2)— . 

The second claim is proved by the same argument. D 

Define an approximate augmented RF tree of the matrix A to he a good approximate 

augmented RF tree if 

(1) Il Acv - A (2d) < 21 

(9) kc' - (2d) < 

where A and f3,, are, respectively, the matrix in the node a of the approximate RF 

tree, and the approximation of its inverse. 

Since fi = det(A), where A is a principal .s(a) x s(a) submatrix of A, and since 

AD ≤ 11,411 ≤ 2d, l7lc,l ≤ (2d)n; furthermore, for any node a at depth t in the RF 

tree of A, ln-il ≤ (2d)''/2t by Lemma 4.5 since s(a) ≤ 12 - n/2t. 

LEMMA 4.16. The approximate augmented RF tree computed by Algorithm 4.2 

has the following properties: 

(1) DA ce 
- A01 11 1771, 1≤ Aa - A (2d) <(2(72 IlAlD2); 

(2) adj(A) - adj(A) lI ≤ ll - A1 (2d)' ≤ (2(n 11A 11)2) -(n-1) 

PROOF. This is a direct consequence of Lemma 4.14 and Lemma 4.15. 0 

LEMMA 4.17. Algorithm 4.2 computes a good approximate augmented RF tree in 

O(log2 ii) time using O(P(n)) processors. 

PROOF. Lemma 4.16 implies that the approximate RF tree is a good approximate 

RF tree. It is only necessary to show that the algorithm uses O(log2 n) time and 

O(P(n)) processors. 
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Let M(n) < P(n) log n he the number of operations required for n x n matrix 

multiplication using time O(log n). Since the number of stages of approximate Newton 

iterations h is chosen to be log 7?. + 2, the algorithm only uses h + log n + 1 E O(log n) 

stages. Each stage only includes matrix multiplications and matrix additions, which 

cost O(log 7?.) time and O(M(n/2t)) operations for a node a at depth t. Since M(n) E 

(7?2) the total cost of a stage of approximate Newton iteration of the whole RF 

tree is 2M(n/2) E O(M(n)). Thus the algorithm can be implemented using 

O(log2 n.) time and O(P(n)) processors. El 

REMARK 1. Step 2 of Algorithm 4.2 actually uses a. well-known pipelining tech-

nique in parallel computation. Since AJ only depends on , AJ is computed as ao 

soon as B is available—namely, during the stage immediately after has been 

computed (A is the top left corner of and is available as soon as is). 

Thus the total time is red.uced to O(1og2 n) instead of O(log3 n), which would be 

used if no A' at depth t were computed until after all the A s at depth t - 1. 

4.3.2. Computing the Exact RF Tree. After a good approximate augmented 

RF tree of A has been computed by Algorithm 4.2, the exact extended RF tree of A 

can be computed by multiplying these matrices by the appropriate multipliers, 

and then by rounding the rational numbers that are entries of the resulting matrices 

to the nearest integers. Since a good approximate RF tree is so close to the RF tree 

of A (Lemma 4.16), this will correctly recover the (exact) extended RF tree of A from 

the good approximate augmented RF tree of A. 

ALGORITHM 4.3. Computing the exact 1-IF tree of A. 

Input: A good approximate augmented RF tree of depth i = log  of A 

Output: Exact extended RF Tree of A 

begin 

step 1 Compute the determinants of the matrices in {A} 
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for all nodes a of depth i do in parallel 

det := (A) 11 (A is an 1 x 1 matrix) 

end for 

for .s := t - 1 down to 0 do (sequentially) 

for all nodes a of depth t do in parallel 

det := det x 

end for 

end for 

step 2 Compute integer multipliers {iz) such that the matrices fiA all 

have integer entries 

:= 1 

for .s := 0 to i - 1 do (sequentially) 

for all nodes a of depth s do in parallel 

771,0 := 

th 1 := ffi oi x det o 

ffial ñi.,i rounded to the nearest integer 

det(Ao) := ñici/fi2cx 

4/ 

CA 

t' rounded to the nearest integer 

det(Ai) := tcj /72ci 

end for 

end for 

step 3 for s := 0 to i do (sequentially) 

for all nodes a of depth s do in parallel 

Set A to he the integer matrix obtained by rounding each 

of the entries of (fi2A) to the nearest integer; 

A := 
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end for 

end for 

step 4 for s := 0 to t do (sequentially) 

for all nodes a' of depth s do in parallel 

Set adjA to be the integer matrix obtained by rounding 

each of the entries of (771, det(A).Ba) to the nearest inte-

ger; 

adj(Ac) := —adjA, 

end for 

end for 
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end 

The algorithm works in a bottom up manner in Step 1, moving from leaves to 

the root in Step 1 to compute the determinant det of A for every node in the 

approximate RF tree. This step only involves multiplications of rational numbers 

and requires O(log n) time and 0(n/ log n) processors. Step 2 is similar. Instead the 

computation is top down, moving from the root to the leaves, and has the same cost. 

Step 3 requires multiplications of rational numbers by all entries of all the matrices 

in the RF tree. However, there are only 0(n2) entries of all the matrices in the RF 

tree. Thus Step 3 uses O(logn) time and O(n2/ log n) processors. Step 4 is similar 

to Step 3. 

LEMMA 4.18. Algorithm 4.3 computes the (exact) extended RF tree of A in 0(log n) 

time using 0(n2/ log ii) processors. 

PROOF. Define E(t) to be the maximum error of det(A) for any a at depth t: 

E(t) = max det(A) - det. 
c,depth(a)=t 

Since IAI 2d, for any 1 x 1 matrix A, and from the algorithm, deta is computed 

from the bottom up, it is clear that IdetI ≤ (2d) for any node a at depth t. Also 
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because A4 ≤ 2d, it is clear by the Haclamarci inequality that det(Aa) ≤ (2d). 

Thus 

E(i) = max det(A) - det 

= max det(A o) det(Aai) - deiodetci 

< max ((det(Aco) - de.t o) clet(A) + (det(A1) - deti)detaoI) 

< 2(2d)TE(t+i). 

This recurrence shows that E(0) ≤ n(2d)''E(logn) and E(i) ≤ n(2d)f/2t_1E (log n ). 

The error E(log n) is the error in the estimate of the determinant of a 1 x 1 matrix" 

which is exactly 11 ,40 - A4 where 8 is a leaf node. Thus 

E(1ogn)(2d) n= max JjAp - A4 (2d)Th < 1 
0 at depth log  

because the input is a good approximate augmented RF tree. Then 

E(0) n(2d)' 1E (log n) E(logn)(2d)n < 
2d 21 

since d> (2n IIAID2 > n, and 

(4.3) E(t)(2d)' 12t ≤ n (2d)t 1E(logn) < 1 
21 

for any depth t. Again, rounding det<> to the nearest integer will yield the exact 

value of det(A), since .det(A) is an integer. 

For any ce at depth t, suppose ii has been computed correctly—that is, suppose 

fiz is the determinant of the leading principal submatrix of A of size 

provided that a = a1a2. .. a3 for 0 < log  and for cei E {0, 1). Since 774,0 = 
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is obviously correct. As well, th 1 = fii clet 0, so 

- Th(det(Ao) - deio) 

≤ IaI E(t + 1) 

≤ (2d)7_7/2tE(t + 1) 

≤ (2d)71- n/2'+ ' (t + 1) < 

by Equation 4.3. Therefore, Th can be obtained by rounding to the nearest 

integer as well. 

When in have been computed for all a in the RF tree of A, the final steps of the 

algorithm will yield the exact extended RF tree of A by rounding each of the entries 

of the matrix (iA) and its adjoint I adj(A) to the nearest integer and then 

dividing the entry by fn, to recover each of the entries of A, and its adjoint (see 

Lemma 4.6). The bounds for time and the number of processors are clear. 0 

LEMMA 4.19. Given an n x n integer matrix A, where 11AM ≤ 213 and ,8 = n c, let 

A = A + dl, where d is an integer and d ≥ (271 IIAID2. Then the extended RF tree of 

A can be exactly computed in O(log2 n) time using O(P(n)) processors. 

PROOF. This is a direct consequence of Lemma 4.17 and Lemma 4.18. 0 
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4.4. Recovering the RF tree of A 

Given an n x n symmetric positive definite matrix A, assume again that hAil 2, 

where / < p.C, for some constant c, and let A = A + dl, where d ≥ (2n ll All )2. It has 

been shown in Section 4.3 that the exact extended RF tree of A can be computed in 

O(1og2 n) time using O(P(n)) processors. 

If x is an integer such that —y x < y, for some positive number y, then x can be 

determined from x mod p if p> 2y. If d is chosen to be greater than 2n IIAII, then 

since it is known that lm ≤ hlAlh", each integer multiplier rn can he determined 

from its residue mod d. Also because lirnAli < llAll, all the entries of mA can 

be easily recovered. Thus the RF tree of A could be recovered from the entries of the 

matrices in the RF tree of A modulo ci for d > 2172 llAl. As well, det(A) ≤ hlAll, and 

clet(A) det(A) mod ci. However, the use of such a large value for d would increase 

the hit complexity of the algorithm and affect the time complexity of the algorithm 

as well. 

An alternative approach is to use a smaller value for d (as in Section 4.3) and then 

use a second step to "lift" the RF tree of A from its residue mod d. In order to do 

this, it is necessary to restrict the set of values for d that can be used. Let p be a 

prime number randomly and uniformly chosen from the set of prime numbers in the 

interval [n3 log2 hAil ,4n3 log2 hAu]. Let d be some number such that pd ≥ (2n llAlD2. 

Let A = A + pc2l. The exact RF tree of A can be computed (by Lemma 4.19) in 

O(1og2 n) time using O(P(n)) processors. In this section, it is shown that the exact 

RF tree of A can be recovered from the exact RF tree of A with high probability by 

Newton Hensel Lifting. 

4.4.1. Reducing Rational Entries to Integer Entries. Given the (extended) 

RF tree of A, the goal is to recover the (extended) RF tree of A. 

For a rational number y/x, where x, y are relatively prime integers and where 

gcd(p,x) = 1, define a = (y/x) mod p to be an integer a such that 0 ≤ a < p 
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and y = ax + bp for some integer p. Given y/x, if p and x are relatively prime, 

a = (y/.x) mod p can be computed as follows: 

(1) Compute integers s and t such that sx + tp = 1; 

(2) Compute a = (y.$) mod p. 

The cost of this computation is dominated by the the first step. However, if p is a 

prime number less than or equal to 477,3 log' hAil, then it is relatively "small", because 

it is given that 11AII 2, where 0 < nc, for some constant c. The first step can be 

performed by using the Extended Euclidean algorithm [AHU74] in 0(1og2 n) time, 

because the binary representation of p thas length 0(log n). Now, given any n x n 

matrix A = [a] with rational entries whose denominators do not divide p, the matrix 

A mod p can be defined to be the matrix with entries aij mod p for 1 < i,j ≤ n, and 

the "RF tree (mod p)" of matrix A can he defined similarly. 

Since the RF tree of A is available, 0(1og2 n) time and 0(n2) processors are suffi-

cient to obtain the RF tree (mod p) of A. 

4.4.2. Newton-Hensel Lifting. Fix a. nonsingular n x n matrix A and a prime 

number p. Assume A 1 mod p is given. Newton-Hensel Lifting is the following. 

Algorithm: Newton-Hensel Lifting 

Input: A positive number k, and n x n matrices A and A' mod p. 

Output: $(k)(A) = A 1 mod P,k . 

begin 

step 1 S° := A' mod p. 

step 2 for i := 1 to k do 

- AS('')) mod p2k 

end for 

end 
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The algorithm is similar to Newton iteration. Each iteration of Newton Hensel 

Lifting will produce a "closer" approximation of A' (where two integers a and b are 

now considered to be "close" if their difference is divisible by a higher power of p). The 

algorithm computes a sequence of approximations, which "converges" quadratically. 

LEMMA 4.20. [MC79] S" = A' mod p2k. 

PROOF. Let Ek be an "error" matrix (with rational entries, whose denominators 

do not divide the prime number p) such that AS(k) = J p2k Note that (1) = 

- AS(k)) = $(')(1 + p2 Ek). It follows that 

AS'' = AS(I + p2kEk) 

= (J l)2kE)(I+ p2kE) 

k+1 2 
= I—p E=I mod p 

The lemma follows by induction. 

Apply Newton Hensel Lifting to the RF tree. Assume that the matrix A and its 

(extended) RF tree (mod p) of A are given. Recall that the (extended) RF tree 

has A and A;1 in the node c. The node c in the (extended) RF tree (mod p) of 

A includes A mod p and A;' mod p. The following algorithm produces an RF tree 

(mod p2k) of A for any given k. 

ALGORITHM 4.4. Newton Hensel Lifting for an RF tree. 

Input: The matrix A, the augmented RF tree (mod p) of A, and an integer 

k>1. 

Output: Augmented RF tree (mod p2k) of A. 

begin 

step 1 Initialization: 

for all nodes c with v(a) = 0 do 

A° := A mod p 
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for i := 0 to h do (sequentially) 

Set AM to be the n/2t x fl /2t principal submatrix of 

A, for a at depth i. 

Set X, y('), and Z to be the upper right, bottom 

left, and bottom right submatrices of 

end for 

end for 

for all nodes a in the RF tree do in parallel 

B ° := A;1 mod p 

end for 

step 2 for i :=1 to  k + log n. + 1 do (sequentially) 

for all nodes a in the RF tree such that v(a) < i and i—v(a) ≤ ii 

do in parallel 

if a = ,81 for some node P then 

(Comment: note that v(f30) = v(18) = v(a) - 1, so 

(i - v(a)) = (i 1 - v(13)) = (i - 1 - v(,80)) and 

x_v()), yi_v(c)) and 
'60 130 1 13 

have already been computed.) 

A('—v(a)) = 

y(i_v(ce)) B(i_v(o)) X('—V('-')) 

mod p 2('(°)) 

end if 

if a = -YIOj for some node -yl and some positive integer j 

then 

-v 
(Comment: v(a) = v('yl), and A..i11 (ce) has just been 

computed.) 

- Let t be the depth of node a and let matrices A(iv(x)) 0 

y(i_v(&)) and ZJ)) be the matrices of 

74 
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fl(i_v(C)) \r(i_v(c)) 1 
size n/2t+ xn/21+l such that [ 01 

\z(i—v(c)) LJ '7(i—v(c)) I 
Ce 1 J 

= is the top left submatrix of size n/2t x Cy 

of ti (i—v(c)) 
-?1 

end if 

B (' — v(c)) .= B(' — v(cY) - 1) (21 - 
Ce .L.Jc 

20 ' (0)) mod p 

end for 

end for 

end 

Since p is chosen to heat least n3 log' hAil, and hAil 2, where /3 <flC, for some 

constant c, p 2k > 2n2 hiAil for k ≥ 1 + logri + log log hAil; in particular, one can use 

k E O(log n), where the hidden multiplicative constant is less than c + 2. Now an RF 

(mod p 2k) tree of A has been computed, where p > 2712 hAll fl 

LEMMA 4.21. Given an n x n matrix A and its augmented RF tree (mod p), the 

RF tree (mod p2k) of A can be computed in O((k + log n) log n) parallel time using 

O(P(n)) processors. 

PROOF. Let M(n) ≤ P(n) log n be the number of operations required for n x n 

matrix multiplication using time O(log 72). Since the number of Newton Hensel Lifting 

stages k E O(logn), the algorithm uses k + log  + 1 E O(logn) stages. Each stage 

only includes matrix multiplications and matrix additions, which cost O(log n) time 

and O(M(n/2t)) operations for a node a at depth t. Since M(n) E (n2), the total 

number of operations used by a stage of Newton Hensel Lifting of the whole RF tree 

is at most 2iM(n/2t) € .O(M(ri)). Thus the algorithm uses O(1og2 n) time and 

O(M(n) log 12) operations which implies the above time and processor bound. D 

The following algorithm recovers the exact RF tree of A. 
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ALGORITHM 4.5. Recovering the RF tree of A. 

Input: The R.F tree (mod p2') of A such that f > 277,2 IIAII7 
Output: det(A) and Exact RF Tree of A 

begin 

step 1 Compute the determinant of the matrices A, mod 2k in the RF tree: 

for all a at depth log  do in parallel 

(det(A, mod p 2)) := (Aa)ji mod p2 

(Comment: Aa is a 1 x 1 matrix) 

end for 

for s := log  - 1 down to 0 do (sequentially) 

for all nodes of depth s do in parallel 

(det(A, mod p2k)) := det(Aao) det(Aai) mod p2'; 

end for 

end for 

(Comment: det(A) mod 2k is computed at this stage.) 

if (det(A<>) mod 2') < 12' then 

det(A<>) := (det(A<>) mod p2k); 

else 

det(A<>) := p2" - (det(A<>) mod p2k); 

end if 

(Comment: Since Idet(A)I ≤ IlAI, the exact value of det(A) 

can be computed.) 

step 2 Compute integer multipliers ma for all a in the RF tree: 

m.<>  

for .s := 0 to log  - 1 do (sequentially) 

for all nodes at depth s do in parallel 

mao := ma; 
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mc, (det(Ac,o) mod p2 ); 

(Comment: mc, nz,l mod p2k has been computed.) 

if in > 12k then i?ic, := p2 - 

end if 

end for 

end for 

(Comment: since mc, IIAIl, the exact values of mc, can be 

obtained.) 

step 3 Compute Ac, for all nodes a in the RF tree: 

for s := 0 to log  do (sequentially) 

for all a at depth .s do in paralleli 

:= (mc,)(Ac, mod p2'); 

For all the entries aij in A 

if aij > 12k then aij := 2k - 

end if 

Ac, := A'/?n,,; 

end for 

end for 

(Comment: Lemma 4.7 shows that Ilmc,Ac,II ≤ 712 hAiltm, and 
all the entries in mc,Ac, have absolute value at most n2 11A 11 n, 

so the above stage computes mc,Ac, exactly. The RF tree of A 

is therefore recovered.) 

end 

The above algorithm only fails when p is a divisor of mc, for one or more a; however, 

the following lemma shows that this happens with a small probability. 

LEMMA 4.22. Let p be a prime randomly and uniformly chosen from the set of 

prime numbers in the interval [n3 log2 hAll ,4n3 log2 hAll]. If A is symmetric and 
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positive definite, then in = 0 mod p with probability O(log n/(n log hAil)). 

PROOF. Let ir(x) be the number of prime numbers less than x, then 7r(x) = 

0 () (see, for example, [Zip93]). Furthermore, a tighter bound for 7r(x) is also 

known (also [Zip93]): 

0.92 <ir(x)<l.105  X  
log  log  

Assuming ii ≥ 2, one can verify that there are at least cn3 log2I hAil / log (n log2 hAil) 

prime numbers in the interval [77,3 log2 hAil ,43 log2 hAil], for some constant c 0.73. 

On the other hand, there are at most n. - 1 distinct me's (not including m<> = I), 

since each in is the determinant of a principal submatrix of A. Also because A is 

symmetric and positive definite, m 0. Clearly the determinant of the i x i principal 

submatrix has absolute value at most hiAlit. Thus there are at most clog hAil prime 

numbers that divide rn, for one or more a's. Since p is uniformly and randomly 

chosen from the set of the prime numbers in the given interval, the probability that 

p divides in, for one or more a's, is 

Pi(p m ) - <   2 cn log 11 11 
(1og n + log log 11Ail)  

nlog hAil 

for some constant > 2. Thus the lemma follows. 0 

The following theorem is a direct result of the previous two. 

THEOREM 4.1. Given a symmetric and positive definite n  n integer matrix A such 

that hAil E there exists a randomized algorithm (Monte Carlo) that computes 

the RF tree of A in O(log2 n) time using O(P(n)) processors. The algorithm fails 

with pro babilityO (log n/(n log A)). 

Assume IlAll < 2', for the input matrix A. When 9 ≥ log n, the number of bits 

needed to represent the inverse and each entry in the LU factorization is at least 
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fl(nj9) in the worst case, because the determinant for a triangular matrix with the 

entries of magnitude (2) has value From the analysis of the algorithm, it is 

sufficient to choose d E O(n2 log 11 All), which can be represented using O(fl + log n) 

bits. It is also shown that only O(log ii) Newton iteration stages are required in the 

computation. Observe that the algorithm never uses values that are represented using 

more that O(n(log n + 0)) bits and this large number of bits is only used at the end 

of the approximate Newton iteration stages and Newton Hensel Lifting stages. Thus 

the bit precision of the algorithm is O(ir), where ir = n(8 + log n), which is optimal, 

when [3 ≥ log 77.. 



CHAPTER 5 

Toeplitz and Toeplitz-like Matrix Computations 

Fast sequential algorithms for Toeplitz and Toeplitz-like matrix computations re-

quire O(ri. log  92) steps [13GY80, BASO, Mor8O, Kal94]. However, known fast parallel 

algorithms for general Toeplitz and Toeplitz-like matrix computations still require 

(n2 log2 n) operations using the parameterized Newton iteration [Pan9Ob, Pan92d, 

BP93]. Numerical algorithms compute the inverse of an n x n Toeplitz or Toeplitz-

like matrix in O(1og2 n) time using O(n log2 n) operations, but they require that 

a good initial approximation to a short displacement generator for the inverse of 

the input matrix is readily available or that the input matrix is well-conditioned 

[PRS7, Pan92c, Pan92h]. 

Reif gives the first processor efficient parallel algorithm for the exact solutioii for 

Toeplitz and Toeplitz-like matrix computations {Rei95] with integer matrices as in-

puts. Modifications of the algorithm, similar to the changes made to Reif's algorithm 

for dense unstructured matrix computations, are considered, and it is conjectured 

that bit precision for this algorithm can also be improved. 

In the beginning of this chapter, the concept of displacement rank and the definition 

of Toeplitz-like matrices are introduced. Then some known fast parallel algorithms 

for Toeplitz and Toeplitz-like matrix computations are briefly surveyed. Finally Reif's 

algorithm and ideas for its modification are discussed. 

80 
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5.1. Displacement Ranks and Toeplitz-like Matrices 

In this section, definitions of displacement rank and Toeplitz-like matrices are given. 

Some important properties of displacement rank are introduced. 

5.1.1. Displacement Ranks. It is well-known that computing the product of 

a Toeplitz matrix and a vector is computationally equivalent to the computation of 

the product of two polynomials with degrees no more than twice the dimension of the 

Toeplitz matrix ([BP94], pp. 137-138). Polynomial multiplication with coefficients 

over a field supporting the Fast Fourier rfransform (FFT) can be performed in 0(log n) 

time using 0(n) processors; whereas, O(log n log log n) time is required when the 

coefficients are over an arbitrary ring assuming one can perform exact division by 

some small prime [CK87]. Since only an 0(log log ri) factor is added in the general 

case, it is assumed that such a computation can he performed in 0(log 72) time using 

0(n) processors in the later discussion. An attempt to generalize the properties of 

Toeplitz matrices leads to the concept of displacement rank [KKM79]. 

Notice that a Toeplitz matrix is uniquely defined by its first column and last column. 

Let L(x) denote a lower-triangular Toeplitz matrix whose first column is x and let 

U(yT) denote an upper triangular Toeplitz matrix whose first row is yT. It is easy to 

check that any Toeplitz matrix T can be represented as 

(5.1) T = L(v)I + IU(uT), 

where v is the first column of T and u is the last column of T with the last entry set 

to 0 and the order reversed. 

DEFINITION 5.1. The (+)-displacement rank of an n x n matrix A is the smallest 

integer a+(A) such that 
o!  (A) 

LU 

for some lower triangular Toeplitz matrices {L} and upper-triangular Toeplitz ma-

trices {U}. The (—)-displacement rank of an n x ii matrix A is the smallest integer 
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a- (A) such that 
c_(A) 

A= UL 

for some upper-triangular Toeplitz matrices { Uj } and lower triangular Toeplitz ma-
trices {L}. 

If T is a. Toeplitz matrix then a+(T) ≤ 2 and a_(T) 2 by Equation 5.1. A 

genera.! matrix A has displacement ranks no more than n. If the displacement ranks 

of a. matrix A are in 0(n), where 0 < a < 1, then there are two advantages for 

computations: 

(1) The matrix can be represented by 0(n1 ) elements instead of 0(n2) elements; 

(2) The product of the matrix and a vector can he computed in 0(logn) time 

using O(n1 ) processors based on the fact that the product of a Toeplitz 

matrix and a vector can be computed in 0(log n) time using 0(n) processors. 

Recall that Z is the rixn matrix with l's immediately below the diagonal and zeroes 

everywhere else. The following lemma suggests equivalent definitions for displacement 

rank—as the (usual) rank of "shifted" matrices related to A. 

LEMMA 5.1. [KKM79] Given column vectors {Xj,yj,i = 1,... ,a}, the functional 

equation (for an "unknown" matrix A) 

A - ZAZT = XiYT 

has the unique solution 

A = 

where L(x) denotes a lower-triangular Toeplitz matrix whose first column is x, and 

U(yT) denotes an upper-triangular Toeplitz matrix whose first row is yT. 

Similarly, the functional equation. 

A - ZTAZ = XjYT 
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has the unique solution 
a 

A =E U()L(I7), 
i=1 

where T = [x, ,...,x ] when xT = 

LEMMA 5.2. [KKM79] The (±)-displacement ranks can he computed as 

a+ (A) = rank(R - ZAZT) , a- (A) = rank(A - ZTAZ) . 

Let 0 be a function 0 : Fnzxn - FnIXn. Call +(A) = A - ZAZT and _(A) = 

A - ZTAZ (±)-displacement functions. Recall that a generator for a matrix A is the 

pair of matrices C, H such that A = GHT. Define a generator of length d of ±(A) 

to be a (±)-displacenient generator of length d of A. Since the minimum length of 

a generator of a matrix is the rank of the matrix, the minimum length of a (±)-

displacement generator of matrix A is the (±)-displacement rank of A. When the 

above definitions appear without ±, one can assume either + or - may apply to the 

definitions. 

5.1.2. Important Properties. 

LEMMA 5.3. If A, B are n x n matrices then rank(I - AB) = rank(I - BA). 

PROOF. It is sufficient to show that I - AB and I - BA have the same nullity. 

Let {x1, .x2,... , x} be a maximal linearly independent set of vectors satisfying 

(5.2) (I - AB)x = 0, 

and let vectors yi = Bx1, for 1 ≤ i < r. Thus 

(I - BA)yj =yj - B(ABx) = Bx1 - Bxj = 0. 

It can also be shown that all j'5 are independent: Suppose there are scalars cj 

such that >T O!jj = 0, so B = 0. Equation 5.2 shows that >I aixi = 

AB > 1 aixi = 0, which shows that the independence of the set {x1,x2,... ,Xr} 
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implies the independence of {yl,y2,... ,Yr}. A similar argument with the roles of A 

and B interchanged completes a one-to-one correspondence between the null vectors 

of I - AB and I - BA, so that I - AB and I - BA have the same nullity and hence 

have the same rank. 0 

LEMMA 5.4. [NKM79] The (±)-displacement rank of a nonsingular matrix A is 

equal to the (::F )-displaceinent rank of its inverse, i.e., 

o(A) = c_(A 1) and a_(A) = 

PROOF. Since the rank of an arbitrary matrix is unaffected by multiplication by a 

nonsingular matrix, 

= rank(A' - ZTA_1Z) 

= rank((A 1 - ZTA_1ZT)A) 

= rank(I - ZTA_1ZA) 

= rank(I - ZAZTA_I) (by Lemma 5.3) 

= rank((I - ZAZTA_I)A) 

= rank(A.—ZAZT) 

= a+ (A). 

A similar argument will establish that 

= o_(A). 

0 

There is an explicit formula for converting a E LU representation to a E UL rep-

resentation [KKM79, BA8O]. Let x,y E ftn, for some ring R. Then 

(5.3) L(x)U(yT) = IL(ji) + U(T)I - U((ZJX)T)L(ZJy), 



5. TOEPLITZ AND TOEPLITZ-LIKE MATRIX COMPUTATIONS 85 

where T is the reversed last row of L(x)U(yT), and is the reversed last column of 

L(x)U(yT) with the first entry set to 0. The dual formula is 

(5.4) U(YT)L(x) = L()I + JU(?JT) - L(ZJy)U((ZJx)T), 

for a:, y E R', where T is the first row of U(yT)L(x), and t is the first column of 

U(yT)L( x) with its first entry set to 0. This establishes the following. 

LEMMA 5.5. lai(A) - c(A)I <2. 

5.1.3. Toeplitz-like Matrices. A matrix that has constant displacement ranks 

is called a Toeplitz-like matrix. Many efficient algorithms for Toeplitz matrix compu-

tations can be extended to Toeplitz-like matrix computations. 

Block matrices with Toeplitz blocks, such as the Sylvester matrix corresponding 

to the resultant of two univariate polynomials, are Toeplitz-like; the product of two 

Toeplitz matrices is Toeplitz-like, because it can be shown to have (+)-displacement 

rank at most 4 by Equation 5.1 and Equation 5.3. The inverse of a Toeplitz matrix 

is also Toeplitz-like, since a- (T) ≤ 2 and therefore a+ (T-') ≤ 2 by Lemma 5.4. 

Let T be an n x n invertible Toeplitz-like matrix subdivided as 

T12 ] 

T22 

where T11, T12,T21, and T22 are of size kxk, k  (n—k),(n—k)xk, and (n—k)x(n—k) 

respectively. 

LEMMA 5.6. Suppose T has (+)-displacement rank a and suppose T11 is nonsingu-

lar. Then a+(Tii ), a_(T1j'), a+(T22 - T21 Tjj'T12 ), and a_{(T22 - T21Tj1T12)1] are 

at most a; a+ (T12) and a+(T21) are at most a + 1; and a+(T22) is at most a + 2. 

PROOF. It is easy to check that T11 - ZTU ZT is the k x k principal submatrix of 
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T - ZTZT. So 

a(Tii) = rank(Tii —ZT11ZT) 

< rank(T — ZTZT) 

=a. 

By Lemma 5.4, a_(Tj 1) = a(Tii) < a. 

Because T is invertible, if T11 is invertible, then the inverse of T has the following 

form: 

1 1T21T1 1 —T1 'T12z 1 
T = 

TJj1 + Tj 1T12L\T 

—'T21T 

where A = T22 -  T21T1 1T12. It is also easy to check that ' - ZT_1Z is the 

(n— k) x(n — k) bottom right submatrix of T 1 _ZTT_IZ. Thus a....() ≤ 

Again by Lemma 5.4, a_ [(T22 - T21T1-j'T12)-1] ≤ a and a(T22 - T21Tj1T12) a. 

Compare T12 - ZTI2ZT , - ZT21 ZT, and T22 - ZT22ZT with the corresponding 

submatrices of T - ZTZT. They are only different by one column, one row, and one 

column plus one row respectively. Thus a+(T12) and a+(T21) have value at a + 1; 

a+ (T22) has value at most a + 2. 0 

The above lemma has a requirement that both T and T11 are nonsingular. A further 

observation shows that if T11 is nonsingular, then a+(T22 —T21T 1T12) ≤ a even when 

T is singular [Kal94]. 

LEMMA 5.7. If T and T11 are the matrices defined as above, and T11 is nonsingular, 

then a+(T22 - T21Tj'T12) ≤ a. 

PROOF. Suppose T is represented as Let be the kx Ic principal 3=1 11 

submatrix of L(j) and let be the k x Ic principal submatrix of UW, for all 1 <j < a. 

Thus T11 = LUW. Because T11 is nonsingular, there is at least one j such 
z=1 11that U[1, 1] 0 0; otherwise, all the terms have the first column all 0, which implies 
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that T11 is singular. Without loss of generality suppose U(1 ) [1, 1] 0, which implies 

that U')[l, 1] 0 0. 

Introduce the parameterized matrix 

CY 
T\) = (L 1' + Al) U(') + LU = T + 

j=2 

which is nonsingular, (since U 1 is, and .\ is an indeterminate) and of displacement 

rank a. Partition T\) according to the partitioning of T so that 

T11 + )U T12 + )U) 

T21 .122 + 

Let 

71(A) = 

= T22 + — T21 (T11 + U )_1(T12 + -12 

Thus a())) ≤ a by Lemma 5.6. 

The inverse of a matrix I + AB can be expressed as I - AB + )2B2 - )3B3 + 

Use this to expand (T11 + AU) as 

then 

(T11 + AU)_1 = [T11(I+ AT1U)]1 

= (I+ AT 1U)_1T 1 

- rn-i - T'U11T 1 + A2(T1U( , 112m_1 
- j ill 11  

= A + (U) + T2iT 1U1)Tj 1Ti2 - T21T1U)) +... 

Thus the displacement rank of A cannot he higher than the displacement rank of 

\). Therefore, a() ≤ a((A)) a. 

The displacement rank of the product of two Toeplitz-like matrices is also bounded 

by a constant [Pan92a] (Proposition A.3). 

LEMMA 5.8. Let A, B be two n x n matrices with displacement ranks a+(A) and 
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a'(B). Then a(AB) < a(A) + a+(B) + 1 and a. (+)-displacement generator of 

length a + ,8 + 1 can he computed in O(logn) time using O((a + ,8)n) processors. 

The dual claim holds for (-)"-displacement rank and (-)-displacement generator. 

PROOF. First, observe that I = ZTZ + where I is the n x n identity matrix, 

Z is the lower shift matrix, and c, is the nth unit vector. Therefore, 

AB - ZABZT = AB - ZAIJ3ZT 

= AB - (ZAZT)(ZBZT) - ZAe ?LeBZT 

= (A - ZAZT)B + ZAZT(B - ZBZT) - (lb T, 

where a = ZAen E F' and b = ZBT n E F. The equation implies that rank(AB - 

ZABZT) < rank(A - ZAZT) + rank(B - ZBZT) + 1, since the rank of the sum of 

several matrices is less than or equal to the sum of the ranks of these matrices. The 

cost of the computation is obvious. D 

5.1.4. Computing Generators of Minimum Length. A generic 12 X 12 ma-

trix has displacement rank n. For n x 12 matrices, a displacement generator can 

usually be obtained efficiently, though the length of the displacement generator may 

be greater than the displacement rank. A displacement generator of length n of a 

generic n x n matrix can easily be computed by setting one of the pair of matrices 

in the displacement generator to be an identity or a shift matrix. Suppose the dis-

placement generator X of length 9 ≥ a(X) for a matrix X E FflXfl is given, where 

a(X) is the displacement rank of X. Let Y = (X) = O. ftT, where G, ft E FflX 

is the displacement generator of X. The goal is to determine the displacement rank 

a = a(X) and to compute a displacement generator of length a for X, C, H E Fn xcl  

such that Y = q(X) = GHT. 

LEMMA 5.9. [KS91] Given a matrix A E FThXfl of rank r, let UT and L be two 

unit lower triangular Toeplitz matrices, which have I's on the diagonal and the other 

entries uniformly and independently selected from a subset S of the field F. Then 
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the probability that the i x i principal submatrices of A = UAL are all nonsingular 

for i = 1,... ,r is at least 1— v(r + 1)/ 1 SI. 

If S is sufficiently large, then the probability will be high. Let Y = UYL, where 

LI and L are chosen according to Lemma 5.9. Since U and L are both nonsingular, 

rank(Y) = rank(>). All the i x i principal submatrices of Y will be nonsingular for 

i = I.... .a with high probability. If these principal submatrices are nonsingular, 

then every column to the right of the first a columns of ' is a linear combination of 

the first a columns. These linear combinations determine generators for Y. Let C be 

the matrix consisting of the first a columns of Y. Let y = [yi Iy2] be the first a rows 

of k, where yi is the a x a principal submatrix of k and is nonsingular. Then 

where i1 E FflX and kT = [IIyjy2J (so that y = y1fJT). A displacement generator 

of minimum length for X is then obtained as Y = (U-10) . (IiTL_1). The following 

parallel algorithm is modified from the sequential algorithm of Kaltofen [Ka194]. 

ALGORITHM 5.1. Computing a Generator of Minimum Length 

Input: G5 ft E F><', where ,8 > a(X) and where Y = (X) = OfIT 

Output: G,H E Fn ,, , where a = a(X) and where Y = O(X) = GHT 

begin 

step 1 

Generate a unit upper triangular Toeplitz matrix U and a lower tri-

angular Toeplitz matrix L by uniformly and independently choosing 

the entries from a sufficiently large subset S C F. 

Compute ' = UYL: 

(=UG 

step 2 Find a, the rank of Y: 
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Compute entries of }', the i x i principal submatrix of Y. 

while }' exists do 

i 2 x i; 

Compute entries of the i x i principal submatrix of Y. 

end while 

Now 1/2 < a <i. Find a using binary search. 

step 3 Compute G, the first a columns of Y, and Ti, the first a rows of Y. 
step 4 Compute 1Y2 to produce 11T, where Y2 is the right n - a columns 

of the first a rows of Y. 

step 5 G := U'G. 

H := (IIL_1)T. 

end 

LEMMA 5.10. Given a displacement generator of length /3 of a matrix X E F><, 

one can compute a displacement generator of length a - a(X), the displacement rank 

of X, in O(log n +log a log /3 + log 3 a) time using O(a/3n +/3n + P(a)) processors. The 

algorithm is Monte Carlo and requires 2n - 2 elements uniformly and independently 

chosen from a set S C F; it returns a correct result with probability at least 1 - 

a(a + 1)/ ISI (and a wrong answer otherwise). 

PROOF. Step 1 only requires multiplication of an n x n triangular Toeplitz matrix 

and n-dimensional vectors. There are only 2/3 multiplications involved. Thus Step 1 

can be performed in Q(log n) time using O(/3n) processors. 

In Step 2, assume ki has been computed. The additional entries in k2i are in 

three i x i matrices with each entry equal to a sum of /3 products, which can be 

computed in 0(logo) time using O(i2/3) processors because it takes 0(logo) time 

and O(/3) processors to compute the inner product of two /3-dimensional vectors. If 
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Ỳ2j is nonsingular, the inverse }.71 can be computed in O(Iog2 i) time using O(P(i)) 

processors. Since i never exceeds 2a, the total time is O(1og3 a+ log a log /3) and the 

total number of processors required is O(P(a) + a2/3). 

In Step 3 there are an entries of Y to be computed, and each entry is equal to 

a, sum of P products. Thus this step can be performed in O(log fi) using 0(a,8??.) 

processors. 

Step 4 is to compute the product of an a x a matrix and an a x (n - fi) matrix. 

It, can be performed in O(log a) time using 0(a 27Z) processors. 

Step 5 is similar to Step 1. D 

It follows that when a and ,8 are constant, a displacement generator of minimum 

length can be computed in O(log n) time using 0(n) processors. 



5. TOEPLITZ AND TOEPLITZ-LIKE MATRIX COMPUTATIONS 92 

5.2. Previous Parallel Algorithms 

Fast sequential algorithms are known for solving a linear system with a Toeplitz 

or Toeplitz-like coefficient matrix that use O(n log  n) steps [BGYSO, BA8O, Mor8O, 

['al94]. However, known fast parallel algorithms for exact solutions of a general 

Toeplitz or Toeplitz-like matrix require f(1og2 n) time and (n2/ log n) processors 

using a. parameterized Newton iteration [Pan9Ob, Pan92d, BP93]. There are also 

numerical algorithms that compute the inverse of an n x n Toeplitz or Toeplitz-like 

matrix in 0(1og2 n) time using 0(n) processors. However, these numerical algorithms 

require that a, good initial approximation to a, short displacement generator for the 

inverse of the input matrix is readily available or that the input matrix is well-

conditioned [PR87, Pan92c, Pan92h]. 

5.2.1. Fast Parallel Algorithms. The algorithm of Bini and Pan [BP93] is 

similar to Csanky/Leverrier's algorithm for computing the characteristic polynomial 

of a general dense matrix. Given an 72 x n Toeplitz matrix T, the algorithm includes 

the following steps: 

(1) Compute the traces of T2, T3,... , 

(2) Compute the coefficients c0, ci,... , c of the characteristic polynomial with 

the traces computed in the first step. 

The second step can be performed in 0(1og2 n) time using 0(n/ log n) processors 

by the algorithm for computing the characteristic polynomial given in Section 2.1. 

The following method shows that the first step can be computed in 0(1og2 n) time 

using 0(n2/ log n) processors. 

Let ) be an indeterminate over the ground field F, define X0 = I, B = I - 

and let Xi = (21 - X_1B)X_1, for i ≥ 1. Then 

Xi = I + AT + A 2 T 2 + ... + A2!_lT2_l (I - AT)-' mod A2' 
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Let k = flog 77.1. Then Xk = I+AT+.A2T2+ +A 1T, where fl = 2' ≥ n > fi/2. 

The trace of the matrix Xk is given by tr(Xk) =  )ttr(T). Therefore, the traces 

of all the ith powers of the matrix T for 1 ≤ - 1 can be deduced immediately 

from Xk-

The straightforward algorithm cannot be used to compute X (21 —X 1B)X_1, 

because it requires matrix multiplications which cost at least O(P(n)) processors. A 

careful observation shows that step one may only require computation of the product 

of a Toeplitz matrix or the inverse of a Toeplitz matrix and a vector, because the 

inverse of a Toeplitz matrix is also uniquely determined by its first column and last 

column [Tre64, G572]. 

LEMMA 5.11. Let T' he the inverse of an n x n Toeplitz matrix T, suppose the top 

left entry of this matrix is nonzero and let u = [u1,... , u]' and v = [v1,... , 

he the two vectors representing the first and the last columns, respectively, of T'. 

Then 

(5.5) = - L(v(3))U(u(t)), 

' Where V(r) = [V"" va_i,... , vi]T , = [0, vi,... , v_1]T and [0, u, . . . )U21 T . 

This formula is known to be Gohberg-Semencul formula. 

Since A is an indeterminate and the top left entry of (1 - AT)-' is congruent to one 

modulo A, this entry is clearly nonzero. Since Xi = (1 - A) 1 mod A21, it is clear that 

the top left entry of Xj is also nonzero, for i > 0. Thus, since Xj = (I —AT)-'mod A21 

and (I - AT) is also a Toeplitz matrix, the above lemma implies that Xi is uniquely 

determined by its first column and its last column. Suppose the first column u_1 and 

last column v_1 of X_1 are given. Then, the first column ui of Xi can be computed 

by 

ui = (21 - X_iB)u_i; 
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that is, 

(5.6) iti = - —-[L(u_1)U(v21) - 

where is the first entry of the vector ui_i. The last column of vi of Xi can he 

computed by a similar method. 

Notice that B is also a Toeplitz matrix. Thus the column ui can be obtained from 

'u_1 and v_1 by applying several matrix-vector products, where each matrix is a 

Toeplitz matrix and such a computation can be reduced to polynomial multiplication. 

Since the elements involved are polynomials in A, such a matrix-vector product is 

further reduced to polynomial multiplication of two bivariate polynomials as follows: 

(1) Compute Bu-1, where B is a Toeplitz matrix with polynomial entries in A 

with degrees at most 1, and u_.1 is a vector with polynomial entries in A 

with degrees no more than 2• - 1. The computation can he reduced to the 

multiplication of two bivariate polynomials with degrees 271 - 1 and n - 1 

respectively in the first variable, and 1 and 2j-1 - 1 respectively in the second, 

so that it can be performed in O(i + log n) time using Q(n2) operations by 

2-dimensional FFT or Kronecker substitution [BP94]. 

(2) Compute L(u_1)U(v21)(B_1) and L(v 1)U(u21)(Bu..1). Since the victor 

Bu-1 has been computed, again the computations are only the multiplication 

of Toeplitz matrices by vectors. The Toeplitz matrices have polynomial entries 

in A with degree at most 2j-1 - 1 and the vector Bu-1 has polynomial entries 

with degree at most 2j-1 Thus the computation can also he reduced to the 

multiplication of two bivariate polynomials with degrees n - 1 and 21 - 1 
respectively in the first variable, and ii - 1 and 2' (or 2 - 1) respectively in 
the second. Thus this step takes O(log n) time using Q(n21) operations. 

(3) The reciprocal of uJ1 modulo A2' can also be computed efficiently [BM75]. 

In each iteration step of computing X, one actually only needs to compute 

one more stage of a Newton iteration for the reciprocal, which is equivalent 
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to the multiplication of two polynomials with degrees less than 2. Thus the 

computation only costs 0(i) time using O(j2) operations. 

The above shows that for 1 ≤ i ≤ k, the ith stage of the algorithm can he performed 

in 0(log n) time using 0(n2) operations. Thus the first columns of Xo, X1,. . . , X 

can be computed in 0(log 2 n) time using 0(n2 log n) operations. Clearly a similar 

procedure can be used to compute v. 

The whole matrix Xk can be recovered from its first column and its last column by 

the Gohberg-Semencul formula, but the cost will he as high as O(n3 log  n) because 

all the entries of Xk are polynomials of degree n - 1 in A. However, notice that it 

is only necessary to compute the trace of X. Thus after the first column and the 

last column of Xk have been computed, the trace of Xk can he recovered using the 

following formula (with the first column uk = (x1,x2,...,x)T of Xk and the last 

column Vk = (y1,y2,... of Xk.) 

n fj j-1 

tr(Xk) = tr(I - \T) 1 mod \2k =X 0 > (xy — mod A2' 

This computation is only vector convolution (equivalent to polynomial multiplica-

tion) with entries being polynomials of degree less than n. The reciprocal of x0 has 

already been computed in the kth iteration step. Thus this step can he performed 

in 0(log n) time using 0(n2 log i) operations. Since computation of the traces of 

T, T2, T3,... , T'' is the most expensive step of the above algorithm, the following 

lemma has been proved. 

LEMMA 5.12. The characteristic polynomial of an n x n Toeplitz matrix T over a 

field of characteristic zero or greater than n can be computed in 0(log 2 n) time, using 

O(n2/ log n) processors. 

The algorithm works over any field of characteristic zero or greater than n. The 

restriction comes from the method for computing the characteristic polynomial from 

the traces. 
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The above method can clearly also be used to compute the determinant. The 

algorithm uses O(1og2 n) time and O(n2/ log ii) processors. 

Computing a Krylov Sequence. Given an 72 x n Toeplitz matrix T and a vector 

h, it; is possible to compute the Krylov sequence b, Tb, T2h, . . . , T' 1b in O (log 2 n) time 

using 0(712/ log n) processors by a modified version of the above algorithm. 

Recall the above algorithm. At the Icth stage of Newton iterations, the first column 

Uk and the last column vk of Xk have been computed. Since Xk = I + AT + A 2 T 2 + 

+ A'T 1, Xkb = (I + AT + A2T2 + ... + A"-'T"-')b, SO Xkb = b + (Tb)A + 

(T2b)A2 + + (T"'b)A 1. Let b(A) = Xkb. Then b(A) can be computed by the 

following formula, again with the first column of Xk equal to Uk = (x1, x2...... n)T 

and the last column of Xk eciva.l to vk = Y2, . . . ,Yn 

(5.7) b(A) = x1[L(zLk)U(Vk. )) - L(vj8))U(uk. t))]Bb, 

where x0 is the first entry of Uk-

Compute b(A) using Equation 5.7 and performing multiplications from the right 

to the left, so that one repeatedly computes the product of Toeplitz matrices and 

vectors with polynomial entries of degree at most n. As argued above, this can be 

performed in O(log 72) time using O(n2/ log n) processors. 

The time and processor bounds are the same as those for computing the char-

acteristic polynomial. The vector b(A) has entries that are polynomials in A. The 

coefficients in A' of the entries form the vector Tkb in the Krylov sequence. 

Computing the Solution of a Linear System. Suppose T is nonsingular. 

Then the system Tx = b has a unique solution. The coefficients of the characteristic 

polynomial and the the Krylov sequence can be computed in O(1og2 72) time using 

O(ii2/ log n) processors. By the Cayley-Hamilton theorem, the solution of the system 

for the above system is 

(5.8) x = —1 c+iTb, 
Co i=O 
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if the characteristic polynomial of  is co+c,x+• Thus computing x from the 

characteristic polynomial and hrylov sequence only requires multiplication of vectors 

by scalars, which can be performed in constant time using 0(n2) processors, and 

vector additions (or subtractions) of n vectors, which can be performed in 0(log n) 

time using 0(n2/ log n) processors. 

Thus if T is an n x n nonsingular Toeplitz matrix (again, over a field whose char-

acteristic is zero or greater than n), the system of linear equations Tx = b can be 

solved in 0(1og2 n) time using 0(n2/ log n) processors. 

Toeplitz-like Matrix Computations. The above fast parallel algorithms for 

Toeplitz matrix COrnl)UtatiOfls can be extended to Toeplitz-like matrix computations 

[BP93]. 

5.2.2. Numerical Algorithms. Suppose that a nonsingular n x n matrix A is 

given with its displacement generator of minimum length (equal to the displacement 

rank) and the displacement rank of A is bounded by a small constant. It is possible 

to compute a displacement generator of A' in 0(1og2 n) time using 0(n) processors 

when a good initial approximation with small displacement rank of A' is readily 

available [Pan92c, Pan92b]. 

Recall the numerical algorithms based on Newton iteration or its extensions for 

general dense matrix computations in Section 2.3. Given an n x n nonsingular matrix 

A, and a sufficiently close initial approximation B to A', let B ° = B and let 

13 (k) = B('')(2I - AB (k- 1)) for k> 1. Then I - B'A = (I - B(1 )A)2 for k > 1, 

so _.B(k)AD ≤ I I - B(k_,)A 2. If the initial approximation B to A' is given such 

that 111 - BAIl < e < 1 - 1/n o('), then B(c) is quadratically convergent to A-' such 

(')A0 < If > 0 and log log(1/8) E 0(logn), then k e 0(logn) that 0'- B  

stages of iterations will ensure 11 1 - B(k)A11 S. Each iteration requires 0(log n) 

time and 0(P(n)) processors, which is the cost for matrix multiplication and matrix 

addition (or subtraction). 
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The above iteration method can be modified to achieve solutions for Toeplitz and 

Toeplitz-like matrix computations. Assume that the (+)-displacement generator of 

a Toeplitz-like matrix A of length r is given, and that an initial approximation B 

to A' is also given, with its (—)-displacement generator of length at most r, such 

that Ill - BAIl < c < . Apply exact Newton iteration to compute an approximation 

to A 1 of accuracy within 8. Suppose B° = B is given with its (—)-displacement 

generator of length r, where r is a. constant. Clearly B' = B(°)(21 - AB(°)) can 

be computed in 0(log n) time using 0(77.) processors. However, B(') may have (-)-

displacement rank as high as 3r+5 by Lemma 5.8. If the Newton iteration method for 

general dense matrices is directly applied, then after 0(log log n) stages of iteration, 

to compute for k E 0(log log??.), then the new generated approximation of A' 

may have (—)-displacement rank f(logn), which will affect the cost of each stage 

of iterations dramatically (it will require 11(log n) matrix multiplications and matrix 

additions (or subtractions)). Thus it is necessary to keep the displacement rank of 

these approximations small, in particular, to be at most r. Therefore, after each stage 

of Newton iteration computing B(') = B('1)(2I - AB(1) ), a subroutine should be 

called to replace the current approximation of A 1 with one whose (—)-displacement 

rank is at most r. 

Define r to be a subroutine that takes a matrix B and a constant r as inputs, 

and generates a matrix Br as an output that has (—)-displacement rank at most r 

such that I I  - Br 12 is small. Abusing notation, write r(B,r) to represent Br, the 

output of the subroutine T with (—)-displacement rank bounded by r. Similarly 'r 

is defined to be a subroutine to reduce the (+)-displacement rank. Thus the desired 

modified Newton iteration is the following. 

(5.9) E(k) = B' 1 (2I - AB'' B(k) = 

A suitable subroutine (which, however, is assumed when analyzed to use exact 

real arithmetic) is described by Pan [Pan9Ob, Pan92b]. This subroutine generates an 
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output by solving the Singular Value Decomposition (SVD) problem defined in Section 

1.3 for auxiliary matrices of rank 0(1), which is essentially reduced to computing the 

zeros of polynomials of degrees 0(1) have only real zeros. The algorithm only uses 

0(log n) time and 0(n) processors. Pan also shows that if B is an approximation of 

X such that IIX - B112 A, X has displacement rank i', and B has displacement 

rank R, then IIB Brll2 (1 + 2n(R - r)). Thus each stage of extended Newton 

iterations uses 0(logn) time and 0(n) processors (see Equation 5.9). 

Assume that an nxn nonsingular matrix Ahas been given with its (+)-displacement 

generator of length at most r = 0(1) and that an initial approximation B to A 1 

is also available with its (—)-generator of length at most v. Suppose one recur-

sively computes E( 1), B(2), as given in Equation 5.9. Pan shows that if 

III - AB 2 = is small - in particular, if (1+2n(2r+3))cond2(A)d1 " < 1, for some 

fixed positive v < 1, then 

llB' - A'" < (1+v)" II A-' 1I 'A' 112 - 12 

The matrices ,.(k),B(k) can be computed in 0(k log n) time 

using 0(n) processors. Since e < I and IIA 1 112 ≤ 20(1), if log log(1/5) E 0(logn), 

then 11 B(k) - A_Ill ≤ S for some k E 0(logn), and the algorithm can be used to 

compute such an approximation B(c) of A 1 in 0(1og2 n) time using 0(n) processors. 

Approximation by a Matrix of Bounded Displacement Rank, The algo-

rithm T_ solves the problem as follows. Let X be an unknown n x n matrix such that 

a- (X) = r, for a fixed r. In the above case, X = A 1 and c+ (A) = r. Let B be an ap-

proximation to X (in the above case B = B(1)) with a_(B) ≤ R and R > r (in the 

above case R = 3r+5). Furthermore, the matrix B is given with its (—)-displacement 

generator M,N e Rn x R such that W = q_(B) = MNT. Let 8 = IlX - Bll2. The 

algorithm is to compute G, H E R'<', a (—)-displacement generator of length r of a 

matrix Br (in the above case, Br = B( ')), such that q_(Br) = GHT and IX - Brll2 

is small. 
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This problem is reduced to computing the SVD of A, by the following lemma 

([GVL9O], p.73): 

LEMMA 5.13. Let A = UVT he the SVD of a matrix A E Rmxn, where E is an 

m. x n diagonal matrix with exactly r nonzeros on the diagonal, al ≥ a2 

a > 0. Let a < r he a positive integer, E8 he the m >< ii diagonal matrix, Es = 

diag(ai,a2,. . . ,o,0,. . . ,0), As = UESVT. Then 11A - A3112 = o+i ≤ 11A - Y112 for 

all matrices Y of rank at most a. 

Pan shows that an algorithm to compute the desired matrix B [Pan90b, Pan92b]. 

(1) Compute the SVD of the matrix W = _(B) = MNT. Let (Jr and V denote 

the pair of Ic x r matrices formed by the first r columns of the matrices U and 

V, respectively, of the SVD and let E,. = diag(ai(W),... , 

(2) Compute and output the desired (—)-generator G = VrE,, H = 1V/r of length 

r for the matrix B. 

The complexity of this algorithm is dominated by the complexity of the first step, 

of computing the SVD of W = MNT, which can be performed in O(log n) time 

using O(n/ log n) processors. Unfortunately, there is no rational algorithm for SVD 

computation, since this computation produces outputs that are not rational functions 

of the inputs. Pan assumes that exact real arithmetic is used in the analysis of his 

algorithm. Of course, we are interested here in finite precision computations. An 

error (and complexity) analysis for an implementation of this algorithm using finite 

precision arithmetic remains to be performed. 

Pan shows that IIX - BTII2 ≤ (1 + 2n(R - r)) JJX - B112 [Pan90b, Pan92b]. The 

above bound can be improved. 

LEMMA 5.14. lix - BTII2 ≤ (1 + 272) IIX - B112. 



5. TOEPLITZ AND TOEPUITZ-LIKE MATRIX COMPUTATIONS 101 

PROOF. Since I(X) - _(B)ll2 2 lix - Bil2, and Br is computed from the 

above algorithm using SVD, Lemma 5.13 shows that 

- _(Br)li2 ≤ ll_(8) - 0 -(X)112 < 2 IX - B112 

It can be shown that 4 ol(ZT)iq_(A)Zi ([Woo93] Lemma 2). Thus 

JIB - B,112 :5 n Il_(8) - _(Br)iJ2 

SO IIB - BrII2 <2n 11  - BJJ2. Therefore, 

IIX - BrJJ2 <IIX - B112 + JIB - Bril < (1 + 2n) IX - BJJ2. 

El 
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5.3. Efficient Toeplitz and Toeplitz-like Matrix Computations 

Reif has given a processor efficient parallel algorithm for Toeplitz and Toeplitz-like 

matrix computations using a. method similar to the approach for general dense matrix 

computations [Re.i95]. 

The structure of the algorithm for Toeplitz and Toeplitz-like matrix computations 

is identical to that of the algorithm for general dense matrix computations (given in 

Section 4,2). The differences are as follows. 

• The input matrix A is required to have "constant" displacement rank r, and is 

given by a, displacement generator of length v—that is, a pair of n. x v matrices 

G, I-I such that +(A) = GHT. 

• The input matrix in each Newton iteration should have small displacement 

rank and he given by a displacement generator. In particular, the matrix 

should have displacement rank at most r and be given by its displacement 

generator of length at most v. 

• The output matrix computed by each Newton iteration has small (hut in-

creased) displacement rank (at most R ≤ 3r + 5) and is represented by a 

displacement generator of length R. 

Unfortunately, Newton iteration and Newton Hensel Lifting produce displacement 

ranks much higher than r (likely R = 3r + 5). In order to keep the displacement 

ranks and the length of the displacement generators small, one additional change is 

required. Each Newton iteration and Hensel Lifting stage is followed by an additional 

approximation stage, in which the current approximation is replaced by a slightly less 

accurate estimate whose displacement rank is at most r. 

For most of the algorithm it is sufficient to replace general dense matrix multi-

plication and matrix vector multiplication by Toeplitz-like matrix multiplication and 

Toeplitz-like matrix-vector multiplication in order to reduce the number of processors 

to 0(n). It is not so easy to recover an exact RF tree of A from an approximate RF 



5. TOEPLITZ AND TOEPLITZ-LIKE MATRIX COMPUTATIONS 103 

tree efficiently—more sophisticated techniques are required for this step. 

Changes to Newton iteration are discussed in Section 5.3.1. An algorithm for 

recovering of an exact RF tree of A is given in Section 5.3.2. Hensel Lifting is discussed 

briefly in Section 5.3.3. Additional work that should be clone to complete an analysis 

(and, perhaps, description) of this algorithm is summarized in Section 5.3.4. 

5.3.1. Approximate Newton Iteration for Toeplitz-like Matrices. Recall 

that approximate Newton iteration replaces an approximation for the inverse of 

a matrix A by = B 1)(21—A B'), where A(k) is an approximation of A. If 

A(k) has (+)-displacement rank r (and hence has (—)-displacement rank r + 2 by 

Lemma 5.5) and B'' has (—)-displacement rank r, then, by Lemma 5.8, A()B(k_l) 

has (—)-displacement rank at most 2r + 3, 21— A(/c)B(l_l) has (—)-displacement rank 

at most 27, + 4, and B' 1 has (—)-displacement rank at most R = 3r + 5. 

In order to keep the displacement rank of all the matrices returned as output 

small, one has to find a matrix E' 1 with (—)-displacement rank at most r such 

that - A_iD is not substantially larger than IB(k1) - AD. Then i3 (k-1) can 
be used to continue the iteration instead of One method to solve this problem 

has been used in the previous numerical algorithms for Toeplitz and Toeplitz-like 

matrix computations [Pan90b, Pan92b] (see also Section 5.2.2). However, Reif shows 

a different way to solve this problem. 

In the approximate Newton iteration, let E(k) = B(21 - A(k)(._1)). Reif's algo-

rithm computes 13 (k) from by the following steps. 

• Find the maximum number r(k) < r such that q_(B(')) has a nonsingular 

>< 1(k) principal submatrix 

• Compute the (—)-displacement generator of length of (k) using the first 

columns and the first r(c) rows of 0-(B (k)). 

Reifs shows the following lemma [Rei95] (Proposition 7.4). 
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LEMMA 5.15. Suppose c = 11 1 - ; then 11  - < s, where 
00 00 

.9 = (n IIAILJ'• 

Reif appears to base a proof of this on the assumption that "if a matrix A has 

displacement rank v then the first r rows and columns of +(A) are linearly indepen-

dent". However, this assumption is not generally true (as can be seen by considering 

A = / , where A is an x n/2 matrix with displacement rank r — 2). 
OA 

It has already been shown that the problem can also be solved by a numerical 

method—using an SVD computation as described in Section 5.2.2. That method 

is numerically stable and has a very small numerical error (see [Wil65, GVL9O]). 

Hereafter, suppose that the subroutine T_ (and +) can be found which computes a 

matrix Br efficiently from B using finite precision arithmetic such that I8r X11 ≤ 

2ncllB — XI, for some constant c> 1. Also assume all the norms I I I 1 are 

Suppose the matrix A of (+)-displacement rank r satisfies Equation 3.2, the se-

quence AM, A(1),... , A(') satisfies Equation 3.3 and Equation 3.4, and all A() have 

(+)-displacement rank at most r for i ≥ 0. Let .(°) = D1, f3(k) = (k_1)(2I - 

A(').(''_')), f3(k) = fr')(2I - A(')E('')), and (k) = r_(E(''),r), for Ic > 1. 

LEMMA 5.16. If d2 ≤ l/(5cn), then 11  I - k)A( 1)D ≤ (2 )k , and II I 
- 

≤ I - b 112 . 

PROOF. The inequality 11 I - (°)A(')II ≤ e has been shown in the proof of Lemma 3.4. 
Suppose the claim holds for Ic - 1, so I - ,(k1)A(k)D Then 

01 - EA(' ) = 01 — (k_1)(21 — 

- 

≤ ( (2E) 2k 1)2 < (1(2 E)) = 2 
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Also 

— = II' — E(k)(21 — 
≤ i — 

Since = T_( .B(k) ,r) and has (+)-displacement rank at most r, 

< 2cn - 

Since satisfies Equation 3.3, it is easy to verify that 

Thus 

cond(A) = A(') (A(/)_1 <2. 

- + A(')I (k) - 

≤I I - + (2cn (A(c))_1 - 

≤ - + 2cn ll A( V (A(c))_l 11111 — II 
≤ (1 + 2cm . cond(A)) 11— 

≤ (1 + 4cri) 11 I — 

≤ (5cm 11 i - EA(k)V) 01 - 

< (5cm€2) 11 j — (k_1)A(k)02 ≤ 11 I - 

The inequality J - ≤ (2c) can now be proved by an argument similar 

to the one used to prove Lemma 3.4. Thus the lemma follows by induction. EJ 

Suppose again that A satisfies Equation 3.2, the sequence A(°), A(1),... IA(k ) sat-

isfies Equation 3.3 and Equation 3.4, B ° = Di 1, and is computed as above, 

for Ic ≥ 1. Let (°) = D2, (k) = — A(k)f3(k)A (k ), and (k) = r+(A(''),r), for 22 21 12 

k>1. 
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LEMMA 5.17. If c2 < t/(2 + 4cm), then 

IlAlkI -  All  ≤ 

where A = A22 - A21A 1 Al2, and 

- 

for k ≥ 0. 

PaooF. Lemma 3.8 shows that -  All  < L(2c)2k.Since A has displacement 

rank r and (k) = T+(L(1),V), 

≤ (1 + 2cm) IIA(k+1) -  All 

≤ (1 + 2cn)(2€)21 

< (2(1 + 2cn)f2) d(2)2k 

≤ 

A similar method can be used to prove the bound on - 0 

Thus the analysis in Section 4.2 can be applied, assuming that the subroutines r+ 

and r.... have the properties described above. 

5.3.2. Computing the Exact RF Tree of A. Suppose a good approximate 

augmented RF tree of A has been computed, as defined in Section 4.3. All the 

matrices A and their inverses in the approximate augfnented RF tree are given by 

their (±)-displacement generators. The goal is to compute the (±)-.generators for the 

exact matrices from the generators for their approximations. 

The algorithm for general dense matrices requires O(m2/ log n) processors to recover 

the exact entries of Aa. It only uses O(log m) time and O(n/ log n) processors to 

compute n, and det(Aa) exactly, but it uses f(m2/ log m) processors to recover the 

exact entries of A. The following shows how to recover (+)-displacement generators 

of all the (exact) Ac, in O(log n) time using 0(n) processors. 
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Let A be an approximation of A such that MA - All ≤ c, for a small c, where A 

is an unknown integer matrix and has (+)-displacement rank v, and G,H, a (+)-

displacement generator of length r of A, is given. 

Let UT and L be two unit lower triangular Toeplitz matrices, which have l's on the 

diagonal with the other entries uniformly and independently selected from the set of 

integers {i, 2, . . . , n), where n is the order of the matrices A and A. Lemma 5.9 shows 

that the probability that the i x i principal submatrices of B = U(A)L are all non-

singular for i = 1,... , r is at least 1—r(?-+l)/n. Since the entries of U and L are cho-

sen from {i, 2,.. . , n}, 11 U11 ILIl < n. Let M and Al be the 1' X r principal submatri-

ces of f3 and of B = Uq(A)L respectively. Since (A)— +(All ≤ 2 MA - All ≤ 2, 

MB - i3ll ≤ IJUJI MA — AM IILII < 2nd. Thus MM -  R 11  < 11  B -  B 11  < 2n. When d 

is small enough (say c < 1/(4714)), rounding each of the entries of M to the nearest 

integer will yield the exact matrix M. Also the first r columns and the first r rows 

of B can be computed exactly from the first r columns and the first r rows of B by 

rounding each entry to the nearest integer. If M is nonsingi1ar, let e,' be the first 

i' columns of B and iI' = [Ijyj 1y2J, where [ylly2] is the matrix consisting of the 

first rows of B. Then B can he exactly represented by f1T Let G = U_1O and 

HT = fTL_1; then +(A) = GHT. 

ALGORITHM 5.2. Rounding-off for Toeplitz-like matrices. 

Input: 0+ (A) = OfIT, where 0 and ft are two n >< r matrices, for a matrix A 

that is an approximation to an integer matrix A such that a+ (A) = r 

and 11 A - All <, where < 1/(4n4).) 

Output: q5(A) = GIIT 

begin Generate two unit lower triangular Toeplitz matrices UT and L which 

have l's on the diagonal and with the other entries uniformly and 

independently selected from the set of integers {1, 2,... , n}. 

step 1 Compute UO and !IT L. 
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step 2 Compute M, the r x r principal submatrix of = U +(A)L = 

(UG)(HTL). Set Al to be the integer matrix obtained by rounding 

each entry of M to the nearest integer. 

step 3 If Jt'I is singular then report failure and stop; otherwise, compute 

step 4 Compute the first r rows and the first r columns of b from UG and 

JITL. Round each entry in these rows and columns to the nearest 

integer to yield O, the first r columns, and = [MIy2J, the first r 

rows, of B = L10+(A)L. 

step 5 Compute fqT = [JlM 1y2] so that B = 

step 6 Compute C = Uâ and HT = 

end 

LEMMA 5.18. Given a displacement generator of length r E 0(1) for A, an approx-

imation of an integer matrix A, such that 11A - All < 1/4n2, the above algorithm 

computes a displacement generator C, H E Qfl of A such that (A) = GHT, in 

O(log n) time using 0(n) processors. The algorithm returns a correct result with 

probability at least 1 - r(r + 1)/n. 

Using the above algorithm as a subroutine, a (+)-displacement generator of A and 

a (—)-displacement generator of A;1 can be exactly computed from the approximate 

RF tree for every node c in the RF tree of A. 

ALGORITHM 5.3. Recovering the exact RF tree from an approximation of Toeplitz-

like matrix 

Input: An approximate augmented RF tree of depth t = 

Output: The exact extended RF tree of depth t = t 

begin 

step 1 Compute the determinant of the matrices Acy: 
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for all nodes a of depth i do in parallel 

det := (A) (A is a 1 x 1 matrix) 

end for 

for S := t - 1 clown to 0 do (sequentially) 

for all nodes a of depth s do in parallel 

clet det1.0 >< det 

end for 

end for 

step 2 Compute integer multipliers {i} such that the matrices iA all 

have integer entries 

2<> 1 

for s := 0 to t - 1 do (sequentially) 

for all nodes a of depth s do in parallel 

:= 

:= x det 0 

filal := ffial 

end for 

end for 

rounded to the nearest integer 

step 3 for .s := 0 to i do (sequentially) 

for all nodes a of depth s do in parallel 

Call Algorithm 5.2 to compute a (+)-displacement generator 

of 

Compute the (+)-displacement generator of A using the fact 

that q+(Aa) := q+(Aa), so it suffices to divide each 

of the entries of one of the matrices in the displacement 

generator for 1laAc, by 

end for 
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end for 

step 4 for .s 0 to t do (sequentially) 

for all nodes cv of depth s do in parallel 

Call Algorithm 5.2 to compute a (+)-displacement generator 

of ?nadj (A0.) 

Compute the (—)-displacement generator of adj(A0.) using 

the fact that adj(A0.)) = -q +(fn0.adj A0.), so it suffices to 

divide each entry of one of the matrices in the displacement 

generator for i0.adj(A0.) by ñ. 

end for 

end for 

end 

LEMMA 5.19. The exact extended RF tree of A can be computed from the approx-

imate extended RF tree of A in O(1og2 n) time using 0(n/ log n) processors. 

5.3.3. Newton Hensel Lifting for RF Trees of Bounded Displacement 

Rank. Recall the step to recover the extended RF tree of A from the extended 

RF tree of A in the algorithm for general dense matrices. The main technique used 

is Newton Hensel Lifting. Reif's algorithm for Toeplitz and Toeplitz-like matrix 

computations uses the same approach. 

Given a displacement generator of a nonsingular matrix A and S(°)(A) = A 1 mod 

let S(k)(A) = A 1 mod p2 k and compute S(k)(A) = S(k_l)(A)(21_AS(k)(A)) mod 

2k All these matrices involved are given by their (±)-displacement generators, thus 

can be computed from S('-') (A) in 0(logn) time using 0(n) processors. Reif 

gives the following lemma ([Rei95}, Proposition 6.1, p.24). 

LEMMA 5.20. For all k ≥ 0, if A has (+)-displacement rank r, then S(')(A) = 

A 1 mod p2k has (—)-displacement rank at most r in 7L2k. 
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The assertion S(tc)(A) = A-1 mod P,k has (—)-displacement rank at most r E 

Z 7)2k (apparently) means that there exist integer matrices G, H E Z' such that 

q5_(S''(A))— GHT = p2'Ci, and also that S(A) - A-' = p2' C2, where C1 and C2 

are n x n matrices with rational numbers as entries, such that none of the integer 

denominators of the entries of these matrices is divisible by P. 

Suppose S(k)(A) has (—)-displacement rank at most r in Z  for Ic ≥ 0, ,$(k+l)(A) is 

computed from ,S(")(A) in the usual way. In general S(' 1) (A) is then given by a (-)-

generator of length 3r + 5 using the method for Toeplitz-like matrix multiplication 

(see Lemma 5.8). Then an additional step is required to reduce the length of the 

displacement generator to minimum. 

Reif solves this problem by assuming that the r x r principal submatrix of the 

displacement generator is nonsingular (see Corollary 2.1 in [Rei95]) and, again, this 

assumption is not true for arbitrary inputs. It does not appear that Reif's solution 

for this problem is correct. 

5.3.4. Further Work. The following questions need to be solved to complete 

an analysis (and correction) of Reif's processor efficient algorithm for Toeplitz and 

Toeplitz-like matrix computations. 

• In the stage of approximate Newton iteration, b (k) = 13 (k-1)(21 - 

how can one compute an approximation from f3(k) such that B() has 

small displacement rank and - is small? Possibly, all that is re-

quired here is a more complete analysis of Pan's solution for this problem—and 

estimation of the precision needed to find a sufficiently accurate estimate (/) 

when finite precision arithmetic is used. 

• How can one solve the corresponding problem for the later stage of the algo-

rithm that uses Newton Hensel Lifting? 

It appears that these problems can he solved and that it is not necessary to increase 

the parameters p and d in order to do so. Thus it is conjectured that the improvement 
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on Reif's algorithm for general dense matrix computations can also be achieved for 

this algorithm. 



CHAPTER 6 

Conclusion 

This thesis has provided a complete analysis for Reif's recent processor efficient par-

allel algorithm for general dense matrix factorizations [Rei94]. As a by-product of 

the analysis, a modified (and somewhat simplified) version of Reif's algorithm has 

been achieved. A brief description of Reif's processor efficient parallel algorithm for 

Toeplitz and Toeplitz-like matrix computations [Rei95] has also been given in the 

thesis. Some ideas to improve this algorithm have been discussed. However, certain 

difficulties remain. A complete analysis of this algorithm is considered to be future 

work. 

It was shown in Chapter 3 that approximate Newton iteration (which works with 

approximations of the input matrix A rather than A itself in order to approxi-

mate A-1) could be used to generate a sequence of approximations which converges 

quadratically. Suppose a matrix A is close to a diagonal matrix D = dl such that 

11 -4 - DO ≤ for some e < 1. It is possible to compute approximations of A 1 

with a sequence of approximations of A instead of A. The results in Chapter 3 have 

shown that if the sequence of the approximations of A converges quadratically, then 

a sequence of approximations of A' can be computed so that the sequence con-

verges quadratically as well; furthermore, a sequence of approximations to the Schur 

complement of A that converges quadratically can also be computed. 

Reif's algorithm for general dense matrix computations was analyzed and its mod-

ified version was given in Chapter 4. Several problems in matrix computations can 

113 
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be efficiently reduced to computing the RF tree of the input matrix. The RF tree 

used in this thesis differs slightly from the one in Reif's original paper. The def-

inition was changed to simplify the algorithms that compute and use these trees. 

The analysis showed that for a symmetric positive definite matrix A, the RF tree of 

A = A + dl can be computed in O(1og2 n) time using O(P(n)) processors provided 

that d = pd ≥ (2n hAil)2 and p is a prime number. Furthermore, it was shown that if 

p is uniformly and randomly chosen from the interval [n3 log  hAil , 470 log2 hAil], then 

the RF tree of A can be exactly recovered from the RF tree of q in O(1og2) time using 

O(M(n) log n) operations with high probability. Since the modified version of Reif's 

algorithm in this thesis uses relatively "mall" numbers throughout the computation, 

the bit precision could be shown to be optimal. 

The ideas to simplify Reif's algorithm for Toeplitz and Toeplitz-like matrix com-

putations were given in Chapter 5: Reif's algorithm for Toeplitz and Toeplitz-like 

matrix computations was very similar to the one for general dense matrix computa-

tions. Thus it was conjectured that the improvement in the modified version of Reif's 

algorithm for general dense matrix computations could be also achieved in the case 

of Toeplitz and Toeplitz-like matrix computations; however, certain steps of Reif's 

algorithm remain unclear. The remaining question is how to reduce the displace-

ment rank of a Toeplitz-like matrix and how to find a close approximation with small 

displacement rank in the stages of Newton iterations and Hensel Lifting. 

Once the analysis of Reif's algorithm for Toeplitz and Toeplitz-like matrix com-

putations is complete, one may extend the algorithm to the computations of other 

classes of matrices, such as Hankel-like, Hilbert-like, and Vandermonde-like matrices 

by applying techniques in [Pan9Oa] (see also [BP94]). 

It is still interesting to look for processor efficient parallel algorithms for Toeplitz 

and Toeplitz-like matrix computations over an arbitrary field. 
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