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Abstract

The study of frost heave and soil-structure interaction of pipelines in permafrost
is a challenging task. There exists a large number of theories ranging from simple
Winkler’s models to more sophisticated ones based on continuum mechanics.

This thesis considers the continuum approach in which the pipeline is regarded
as an axi-symmetric structure upon which non-axisymmetric loads resulting from
heat processes are being applied. The Fourier finite element method is known to be
very efficient for solving this problem. The time dependent load induced by thermal
processes are first obtained by solving the coupled heat transfer-moisture migration
equations using Galerkin’s method. Then, stresses and deformations are computed
from Fourier finite elements incorporating material non-linearity.

Numerical results obtained were in good agreement with the Caen pipe-freezing
soil experimental data. Comparisons of results to ABAQUS revealed that the Fourier

finite element formulation produced a more efficient program.
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Chapter 1

INTRODUCTION

1.1 Background

Pipelines, mainly made of cast iron, ductile iron, steel and polyethylene, are widely
used infra-structures for transporting oil, natural gas, water, or sewage materials.
Usually, pipelines can either be buried underground, off-shore, or placed above
ground. While underground pipelines have better stability and longer service life
than above ground pipelines, they also take less land use. However, one major issue
for considering underground pipelines is the need for major ground excavation works
and maintenance.

During their service life, buried pipelines can experience damage due to a vari-
ety of reasons such as frost heave, loss of soil strength due to thawing, landslides,
buckling, leaking, corrosion, and creeping movements of slopes. Frost heave is a very
common problem when the pipeline is buried in cold regions of Northern Canada.
Sometimes, frost may cause so much heave that large deformations in the pipeline
ultimately result in its failure. On the other hand, lateral loads can be induced by
landslides due to generation of high pore pressures in unstable slopes. In that case,
the loads are so huge that a long flexible pipeline is subjected to large bending with

the adjacent soil failing in both active and passive modes. Another aspect of failure



can result from a loss of soil strength when the surrounding frozen soil thaws. Again,
this type of failure may cause large displacement of the pipeline. In some cases there
have been reports of buried pipelines buckling and being uprooted from the ground
due to the development of large thermally induced axial forces.

Most of Canada’s pipelines are mainly used to transport oil or natural gas from
cold northern regions to the south of Canada or the United States. Some pipelines
are buried in permafrost while others are locaﬁed in the seasonal freezing and thawing
zone. The latter pipelines are in particular subjected to freezing and/or thawing load
cycles. In this thesis, the study of underground pipelines and the surrounding soil
undergoing freezing will be the main focus of research since it presents special and

interesting soil-structure modelling aspects.

1.2 Objectives

A proper understanding of the mechanics of buried pipelines in freezing soils involves
the study of displacement, strain, and stress fields developed in both the soil and
pipeline as they are subjected to mechanical and thermal loads. Also, considerations
have to be made to the interaction of the buried pipeline and the surrounding soils
as well. Usually, the analysis leads to solving a complicated system of equilibrium
equations, together with other equations describing thermal and mechanical loads,
fluid flow, phase change, and creep.

The main objectives of this thesis are as follows:

e develop a special numerical procedure so that a three-dimensional stress analy-



sis of soil-pipeline systems can be undertaken in an efficient manner,

e perform a coupled heat transfer-moisture migration analysis of the freezing
soil so that the temperature field, and hence frost bulb development, can be

computed in time,

e couple the above thermal analysis with the stress analysis mentioned in the

first point, and

e validate the model by referring to bench mark problems.

It is worth mentioning that this research is probably first in its kind since it
attempts to apply Fourier finite element techniques to the analysis of soil-pipeline

problems.

1.3 Methods

The finite element method is a well established theory which is commonly used in a
lot of engineering applications. There are also numerous commercial finite element
codes which permit the analysis of structures in either two or three dimensions, with
different constitutive models describing the material. The most complete analyses
are three-dimensional in nature, but they require rather heavy computational effort
especially in non-linear cases. In this respect, solving realistic three-dimensional
finite element problems is probably limited to workstations. On the other hand,

two-dimensional analyses, which involve much less computational effort, are normally



found to suit most engineering applications except the more complicated ones such
as soil-pipelines systems.

Other aspects which need to be considered in the analysis are non-linearities (ei-
ther materially or geometrically related) which appear in the solution of the problem.
Linear models are fairly simple in physical concept and are only good as a prelim-
inary solution to most engineering problems. However, most realistic constitutive
models are non-linear in nature and require an iterative based solution strategy.

Turning to a typical analysis of soil-pipeline problems, the domain of interest
can be restricted to the immediate vicinity of the pipeline and advantage can be
taken from the axi-symmetrical nature of the geometry. However, the load induced
by the surrounding frozen soils on the pipeline usually has a non-axisymmetric or
arbitrary spatial distribution. This type of three-dimensional structure can be effi-
ciently analyzed by using Fourier series based finite element methods. Sometimes,
these methods are also called semi-analytical or quasi-analytical finite element meth-
ods. In this thesis, the Fourier finite element method will be used because it can
be a viable analysis tool. This method uses classical two-dimensional finite elements
in one plane of the geometry and expands all variables into a Fourier series in the
third direction, thus leading to a system of decoupled equations which correspond
to a series of 2-D analyses. Therefore lots of computational work can be saved while
retaining all of the 3-D nature of the principal field variables. Depending upon the
formulation, the resulting Fourier finite element can be classified as being continuous
or discrete. Further details will be provided in subsequent chapters. This thesis will

focus on continuous Fourier finite element method unless stated otherwise.



1.4 Organization of this Thesis

Chapter one begins with an introduction of the subject and deals with general infor-
mation on the thesis. Chapter two follows with a literature review on soil-pipeline
systems and their numerical modelling. Chapter three presents the formulation of
the proposed Fourier finite element method which deals with non-linearities. The
coupled non-linear problem of heat transfer and moisture migration, relevant to the
freezing soil, is then described in Chapter four. Chapter five demonstrates the va-
lidity of the developed model by comparing results to ABAQUS, a commercial finite
element code. Application of the Fourier finite element method to the computation
of ice pressure and liquid pressure development as a result of heat transfer and mois-
ture migration is described in Chapter six. The numerical solutions are compared to
the results obtained from the well-known Caen experiment which deals with a pipe
buried in two different freezing soils. Finally, Chapter seven discusses the findings

of this research including conclusions and recommendations for further studies.



Chapter 2

LITERATURE REVIEW

2.1 Introduction

There has been a lot of interest in the analysis of underground soil-pipeline systems,
particularly in the case of the surrounding soil being subjected to freezing. In this
latter case, the soil heaves at ground surface (frost heave problem) due to freezing,
and at the same time induces mechanical loads which can be detrimental to the
pipeline. For analyzing such a problem, there exists a variety of methods which
range from simple one-dimensional elastic models to complicated ones in which both
the soil and pipeline, treated as solid continua, deform plastically.

The freezing of the soil, as well as its evolution, is an important issue to consider
in the analysis. This can only be achieved by a proper understanding of soil freezing
and the characterization of the different governing thermal processes.

The following sections discuss issues of frost heave, moisture migration, heat
transfer, and also the different methods of analysis available in the current literature.
This literature review will indeed lead to a better understanding of the current issues
in soil-pipeline modelling while also providing a guideline for the development of the

thesis model.



2.2 Winkler Model

The simplest method of analysis for soil-pipeline frost heave problems is based on
the Winkler model which has been classically used in elastic foundation engineering,
see reference [1]. The concept is to isolate the pipeline from the soil and model the
soil-pipeline interaction by means of a series of individual supporting springs.
Rajani and Morgenstern {2] [3] [4] successfully used the above concept in a 1-D
case to pipeline problems, and incorporated creep behaviour as a result of ice in the
surrounding soils by using Winkler “creep” springs. They adopted the Norton creep

relationships written in the generalized form as proposed by Ladanyi [5]

é = Bo" (2.1)

where

£ is the axial strain rate;

o is the axial stress;

B and n are the creep constants. Typically, n is about 3 for ice at low stresses
and icy silts. B is both temperature and material dependent.

The comparisons between the results predicted by their model and measurements
in the Caen experiment [6] were made and concluded to be satisfactory. Along the
same line of thought, Ng, Pyrah, and Anderson [7] simulated a pipeline as an elastic
beam under lateral load and also regarded the supporting soils as a series of elastic
Winkler springs. Other applications of Winkler model can be found in the work by
Rajani, Zhan, and Kuraoka (8].



Although all the above works seem to give good predictions for soil-pipeline be-
haviour, the major shortcomings and challenges still lie in the modelling of the sur-
rounding soil which is altogether precluded. While the Winkler type model has been
preferred to other methods for analysis due to its inherent simplicity, its capabilities
are still fairly limited as it applies only to simple configurations. There is major
contention about the true physical meaning of the spring constants and which values
to adopt for different soils.

Perhaps it is also of interest to mention that various modifications to Winkler’s
model have been attempted in the past. As cited in Selvadurai {9], these include: (1)
Filonenko-Borodich model which acquires continuity between the individual spring
elements by connecting them to a thin elastic membrane under a constant tension T',
(2) Hetényi model which accounts for the interaction between the independent spring
elements by incorporating an elastic plate, (3) Pasternak model which assumes the
existence of shear interaction between the spring elements by connecting them to
a layer of incompressible vertical elements deforming in transverse shear only, and
(4) Vliazov model which introduces displacement constraints that simplify the basic

equations for a linear elastic isotropic continuum.

2.3 Continuum Model

Contrary to the Winkler model, continuum based models treat the surrounding soil
as a continuum and the pipeline as a shell structure. Hence, the behaviour of the

surrounding soils, the pipeline, and the interaction of soil-pipeline can be readily



modelled. A proper analysis should ideally include the computation of stress and
deformation fields in the soil-pipeline system which undergoes both mechanical and
thermal loading such as that induced by freezing.

Nixon et al. [10] applied a continuum model to analyze frost heave-pipeline
interaction. They found that, when a chilled gas pipeline crosses a transition from
frozen to unfrozen ground, the stiff layer of the frozen ground between the pipe and
the heaving soil will attenuate or dampen the sudden differential movements. By
contrast, the Winkler model assumes that the differential movements are transmitted
almost directly onto the pipeline without the benefit of any smoothing effect from
the surrounding frozen soils. They demonstrated the performance of their model in
the elastic and viscous (creep) behavioural regimes of the soil, but did not include
any three-dimensional or thermal effects due to freezing. The following sub-sections
investigate the thermal problem and numerical methods available for conducting a

stress-deformation analysis of a continuum.

2.4 Thermal Aspects

2.4.1 The Formation and Growth of an Ice Lens

Lewis and Sze [11] applied the principles of irreversible thermodynamics to describe
the freezing of soil, and thus derived a system of coupled heat and mass transfer
partial differential non-linear equations. They have ideally classified frost heave

models into two categories:
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1. Primary heave model which is characterized by the existence of sharp freezing
front that separates the frozen and unfrozen zones of the soil system.

2. Secondary heave model which extends the sharp freezing front into a region
called the frozen “fringe”, where the ice and liquid water are in a state of thermo-
dynamics equilibrium.

Their models not only treat the surrounding soils as continuum media, but also
take the coupled heat and mass (liquid water) transfer into account.

A more elaborate concept of frost-heave characteristics of soils has been proposed
by Svec [12]. It is known that the frost heave is caused not only by freezing of in-
situ pore water, but also by the migratory water. The latter process is known as
ice segregation and is characterized by the growth of ice lenses at the “segregation”
freezing temperature, which is a few tenths of a degree below the freezing point. The
water flowing towards an ice lens is induced by suction pressures developed within
the freezing “fringe”. This fringe is a partly frozen zone between the zero-degree
isotherm and the growing ice lens.

The process of ice segregation in soils is reasonably well understood now, but its
quantitative description and prediction is not yet possible. This is mainly due to
difficulties in obtaining adequate experimental measurements and verification. The
following description gives some insight into this problem.

It has been demonstrated that pore water migration depends on the capillary
characteristics of a particular soil, its chemical potential, pneumatic and elevation
heads, and overburden pressure. The main agent generating the suction potential is

the change in the adsorbed water layer surrounding the soil particles. As this water
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layer freezes and becomes thinner, a negative pressure within the layer is generated.
It has been commonly assumed that the water content, suction pressure and soil
hydraulic conductivity vary exponentially in the freezing fringe. During the growth
of an ice lens, the segregation temperature as well as the ice lens location remain
constant due to the release of latent heat. The zero-degree isotherm, however, moves
as continuous cooling takes place. Consequently, the width of the freezing fringe
increases and, therefore, the overall “effective” hydraulic conductivity decreases. The
water flow towards the ice lens can be calculated as a product of the hydraulic
conductivity and the suction potential. Since the suction potential remains more or
less constant, it is the low hydraulic conductivity and the “long” path through the
freezing fringe that will eventually retard the water movement. At such a time, the
lack of latent heat at the ice lens surface will result in fast freezing. During this
process, only the in-situ water will change phase. This is possible because the cold
part of the freezing fringe has been partially depleted of water. The entire fringe
then moves further with continuing cooling until a new segregation location, with
suitable thermal and hydraulic conditions, develops.

An experiment on ice lens growth has been conducted by Penner [13] . He found
that the growth rate rises rapidly when a lens has been initiated. Then a protracted
period of decreasing growth follows. The measured temperature of the growing face
of the ice lens decreases continuously until the next lens starts to form. The rapid
increase in latent heat released in the period following lens initiation can be seen
on plots of isotherms. It is thought to be partly due to intra-lens freezing combined

with much higher rate of growth during the early period of lens growth.
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Konrad and Morgenstern [14] [15] investigated the effects of applied pressure
on freezing soils and the influence of cooling rate on the temperature of ice lens
formation in clayey silts. They found that when external loads are applied to soils
subjected to open-system freezing, segregational frost heave will be inhibited. The
temperature of ice lens initiation is not a constant for a given soil. The temperature
at a newly formed ice lens is warmer with smaller rates of cooling of the frozen fringe.
They also found that the velocity v () of pore water arrival at the freezing point can
be predicted from:

v(t) = SPgrad (T) (2.2)

where
SP is the segregation potential (mm?2s~1°C-1);
grad(T) is the thermal gradient (mm/s).
The segregational heave increment, Ah,, which corresponds to the arrival of pore

water over a time interval At can be obtained from

Ah, = 1.09v (t) At (2.3)

and the frost heave increment resulting from the freezing of in-situ pore water,

Ahy, is given by

Ah; = 0.09n (1 -~ '—”;—f) Az (2.4)
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where

€ is a factor taking into account the proportion of unfrozen water remaining in
the frozen sample;

n is the porosity;

0.09 represents the volumetric expansion of water when it freezes;

Wyy is the volumetric unfrozen moisture content;

Az is the increase in frozen depth.

Thus, the total frost heave during a time period, At, is given by

Ah = Ah, + Ah; (2.5)

Other works regarding ice lens formation and growth can be found in Smith and

Williams [16].

2.4.2 Heat-Moisture-Frost Heave Description

Frost heave, generally, is caused by the moisture migration from unfrozen to frozen
soils. Up to now, there seems to be no complete model to simulate this process
despite the numerous experimental and numerical studies cited in the literature.
The main reason is that there are too many factors which are involved, such as soil
type, permeability, degree of saturation, void ratio, temperature, heat characteristics,
creep properties of soil, ice/water pressure, and external loads.

Shen and Ladanyi [17] [18] [19] proposed a numerical model to deal with the

coupled heat, moisture and stress field including creep effects in the freezing soil.
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Sheppard, Kay, and Loch [20] ‘developed a similar computer model to Shen and
Ladanyi’s for heat and mass flow in freezing soils. They also tested their model
against data generated from laboratory studies and field data, and identified the
limitations in applying such a model to the field situation.

In both Shen and Sheppard’s formulations, the ice and liquid pressures along
with the temperature relations are described by the Clapeyron equation [21] which
takes the general form

PR Ti

———=Llhnh— 2.6
o pi Tp (26)

where

P, and P, are the liquid and ice pressure (Pa);

o and p; are the liquid and ice density (kg/m3);

L is the latent heat of fusion (J/kg);

T and T are the temperature and freezing point of pure water at atmospheric
pressure, i.e. 273.16 (°K);

°K =° C +273.16.

A detailed derivation for Eq. (2.6) based on the principle of thermodynamics
can be found in Kay and Groenevelt [21]. They basically investigated the chemical
potential equilibrium between water and ice in the porous medium and described
it by using Gibbs-Duhem equation. A more detailed explanation will be given in
Chapter four of this thesis. Similar model describing the water and heat transport
and the frost heave can also be found in the work by Fremond and Mikkola [22].



15

Computational modelling of pipelines in discontinuous frost heave zones can be
also found in the works of Selvadurai [23]. He examined the flexural interaction of
a long distance pipeline with the surrounding soils and attributed it to differential
ground heave due to frost heave. Beam elements were also used in his model to
simulate pipeline and the frozen soil was considered a creeping material.

Nixon [24] established an analytical method for predicting the build up of ice due
to thermally induced water flow in frozen soil initially near its melting point beneath
a chilled pipeline. The method requires a steady state temperature field that can be
obtained from relatively straightforward closed-form analysis. In addition, a func-
tion describing the hydraulic conductivity gradient with temperature is required to
complete an estimate of long-term or steady heave rate. He suggested an expression
of power law in the form

dk

ﬁ =CT~ (2.7)

where k is the hydraulic conductivity in cm/s, T is the temperature in °C below
freezing, C is a constant dependent on soil type, and n is an exponent having a value
of about 2.5. Equation (2.7) appears to be valid in the range of temperatures from
about —0.2°C to about —2°C. The long-term frost after many years of operation of
a chilled pipe in previously frozen ground can be expected to be in the range of a
-few centimeters.

The consequence of soil freezing is due to the action of frost loads. Rajani and
Zhan [25] developed a model based on the estimation of frost loads. They indicated
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that vertical force equilibrium is satisfied throughout the trench and sidefill prior
to the setup of the freezing front. Thus, frost load is an additional stress gener-
ated load as a consequence of net upward movement at the freezing front, i.e. soil
expansion. Therefore, if the frozen soil above the freezing front were to behave as
a Mohr-Coulomb type material, frost load is a consequence of “negative arching”.
This situation is contrasted with “positive arching” where trench backfill settlement
mobilizes the soil stresses at the backfill-sidefill interface with a concurrent reduction
in earth pressure. It is also assumed that the shear resistance at the trench backfill-
sidefill interface is less than that at the soil-soil interface. Concurrently, a reaction
force will be generated by the mass of unfrozen soil beneath the freezing front in
response to the frost heave at the freezing front.

Other investigations on heat and moisture transfer and frost heave can be found

in the works by Williams [26] [27) [28] [29] [30] [31].

2.5 Numerical Modelling

2.5.1 Finite Element Method

Most of the finite element analysis relating to soil-pipeline systems have been carried
out in two dimensions, even though three-dimensional computations have also been
attempted, see [23]. In fact, three-dimensional finite element models are well estab-
lished now, but one drawback is that they are computationally intensive, especially

in the non-linear case where solutions must be searched iteratively. In this situation,
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an efficient and yet simple method is highly desired. Also, the method should be able
to capture most of the constitutive features of the soil and the pipeline. The Fourier
finite element method theory seems to provide the required efficiency by using an
alternative formulation. The method and its application to pipeline engineering will

be developed in details in the following sections.

2.5.2 Fourier FEM Theory and its Applications

As discussed in the previous chapter, when a structure reveals periodicity in one of
its dimensions even if the load is non-symmetric, the Fourier finite element method
can be employed. In this method, all the variables in the periodic direction will be
expanded into a Fourier series and the classical finite element can be used in the
other directions. Upon certain conditions of linearity, the global system of equations
referring to the three-dimensional problem reduces to perfectly decoupled blocks of
equations, of which each refers to a classical two-dimensional finite element case.
Hence, efficiency in computations stems from the fact that the solution of the com-
plete three-dimensional problem can be carried out from a series of independent
classical two-dimensional finite element analyses.

As early as in 1965, Wilson [32] had already developed a Fourier finite element
method in the context of linear structural analysis of axisymmetric solids. Later on,
Percy et al. [33] and Stricklin et al. [34] also used the Fourier series decomposition
technique to analyze linear elastic deformation of shells of revolution subjected to
non-axisymmetric loads. A few years later, the method was extended to a geomet-

rically non-linear analysis of shells of revolution under non-axisymmetric loading in
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both static and dynamic regimes, see Stricklin et al. [35] and Wunferlich et al. [36].

Geometrically non-linear problems which involve large deformations have also
been solved by Danielson and Tielking [37] using Fourier continuum finite elements.
Their study showed that although the Fourier harmonics resulting from the equi-
librium equations are coupled, the computational effort can still be much less than
that required for an analysis based on traditional 3-D brick elements. The first step
in their proposed solution involves the use of a decoupled stiffness matrix to pre-
condition the coupled system of linear simultaneous equations. Then the solution as
obtained from the decoupled system is used as first estimate into the coupled system
for achieving a better solution. In fact, the scheme basically involves an iterative
process in which the solution is being constantly updated until an acceptable level
of error tolerance is reached.

With regards to addressing materially non-linear structural problems within Fourier
finite element context, the basic theory of the method and its application can be
found in the work by Winnicki and Zienkiewicz [38]. They judiciously introduced
elasto-visco-plastic behavior in their model in order to solve elasto-plastic problems,
and found that their approach is 6-10 times cheaper than the true three-dimensional
case. In fact, it is well known that the elasto-visco-plastic solution will tend towards
the non-viscid solution corresponding to the original elasto-plastic problem when
time reaches infinity. Also, by explicitly integrating the elasto-visco-plasticity equa-
tions and treating the resulting unbalanced forces due to visco-plasticity as initial
strains, the elastic stiffness which is constant can be used during each step of the

solution, see Owen and Hinton [39]. Hence, the resulting Fourier harmonics are still



19

decoupled so that a series of independent two-dimensional finite element analyses
can be carried out.

Kay and Griffiths [40] successfully used the above method to solve the struc-
tural response of a concrete skirt structure of geometric revolution axisymmetry
under conventional horizontal, vertical, and moment loads which result into a non-
axisymmetric load effect. The concrete skirt structure is embedded in a normally
consolidated clay which follows plastic deformation.

The Fourier finite element method was also used in heat transfer problems by
Hinton and Owen [41]. Heat transfer is investigated in a rectangular plane with the
uniform temperature distribution on two opposing sides. The method here takes
a special form known as the finite strip method, a semi-analytical finite element
process, in which a rectangular plate is discretized by using different interpolation
functions in different directions of space so that the resulting equations can be solved
in a decoupled manner. Each decoupled system of equations then correspond to a
problem with reduced dimension in space; in the case of the plate they would be
one-dimensional. Further details with regard to the exact form and properties of the

interpolation functions can be found in Cheung [42].

2.5.3 Discrete Fourier FEM

The literature suggests that Fourier finite element methods of the continuous type
is the most commonly used approach. There is, however, another approach which
uses discrete Fourier series expansion in the finite element method. Runesson and

Booker [43] [44] used a discrete Fourier finite element approach in elasto-plastic
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layered soil and in consolidation problems. A circular boundary element technique
of discrete Fourier finite element approach has also been adopted by Moore and
Booker [45] in solving deep underground tunnel problems. The discrete Fourier finite
element method works with variables defined in discrete domains while its continuous
counterpart deals with variables in continuous domains. This can be regarded as the
major difference between these two branches of the Fourier finite element method and
their choice in analysis is based on their relative ease and flexibility in mathematical
formulation.

Lai and Brooker [46] presented detailed formulation of this discrete method in
their paper. They found that discrete method can overcome Gibb s phenomenon
which is inherent in the Fourier series approximation. Basically Gibb's phenom-
enon refers to an oscillation or offset which might always exist no matter how many
Fourier terms are employed for some particular problem when the continuous method
is used. Using complex function decomposition, they derived their equilibrium equa-
tions which are decoupled from each mode (wedge, or slice). To illustrate their
method, a rigid caisson founded in both elastic and elasto-plastic soils was presented.
They also concluded that no special joint or interface element is needed when shear
failure, slip, or breakaway is encountered. This is probably because the variables are
dealt with in discrete domains with orthogonality conditions still prevalent.

The commercial finite element code ABAQUS [47] offers the possibility of using
the discrete Fourier finite element method. However, only up to four Fourier modes
are allowed in ABAQUS, which is usually not accurate enough for complicated load

conditions.
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2.5.4 Consistent Tangent Operator

This section describes a general method for solving non-linear problems with par-
ticular reference to plasticity which will be later used in the Fourier finite element
method developed in this thesis.

Simo and Taylor (48] were first to introduce the concept of consistent tangent
operator in 1985. This method uses a closest-point-projection algorithm to return
the yielded stress state onto the yield surface, and the tangent operator which is
consistent with this algorithm can be developed accordingly. It has been proven in
their paper that the resulting iterative procedure for the linearization of the equilib-
rium equation will preserve the quadratic convergence nature of Newton's method.
However, the so called elasto-plastic tangent modulus derived from the continuum
elasto-plastic equations with a radial return integration algorithm has been used
for more than a decade now. It is found that this modulus results into a loss of
quadratic convergence characteristic which is particularly important for large time
step problems.

An implicit integration algorithm for Hoek-Brown elastic-plastic model for rocks
with consistent tangent modulus has been investigated by Wan [49] in 1992. It
was demonstrated that formulation of such consistent tangent modulus results in
accurate and rapid convergence of the displacement finite element scheme during the
search for equilibrium, even for complicated yield surfaces in non-associated plasticity
calculations.
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2.5.5 Contact Element

Due to the disparity in the soil and pipe material properties, their respective defor-
mations will be largely different. Discontinuities in displacement fields in the form
of a slip may take place between these two different materials. The contact problem
which arises is of a complex nature because the contacting surfaces may change in size
and shape with load conditions. This may result in changes in friction conditions be-
tween the contacting bodies. Consequently, the contact problem is highly non-linear
and remains one of the most challenging problems in computational mechanics.

Literature which deals with direct application of contact elements to soil-pipeline
is scarce. However, contact elements have been profusely used in other engineering
problems such as in the mechanical, civil, structural, and geotechnical areas. One of
the early applications was by Wilson and Parsons [50] who used an indirect approach
where contact conditions were treated as subsidiary equations. Another classical
application of contact elements was used Goodman et al. (51] for simulating slippage
in jointed rocks. Extension of this method to include friction was presented by Chan
and Tuba [52] [53]. A formulation based on flexibility matrices for contact problems
was introduced by Francavilla and Zienkiewicz [54]. More recent applications of finite
element method to contact problems can be divided into three major approaches:
the Lagrange multiplier method; the Penalty method; and the Mixed (or Hybrid)
method.

Bathe and Chaudhary [55] made efforts to develop an algorithm for analyzing
planar and axisymmetric contact problems. They included the possibilities to analyze

contact between flexible-flexible and rigid-flexible bodies under various conditions
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such as

(1) sticking or sliding conditions (with or without friction);

(2) large relative motions between bodies;

(3) repeated contact and separation between the bodies.

The solution procedure uses a Lagrange multiplier technique to incrementally
impose the deformation constraints along the contact surfaces. The contact forces
are evaluated from distributed tractions that act on the contactors. The friction
condition is based upon the Coulomb’s law.

Peric and Owen [56] used penalty method in 3-D contact problems with friction.
The friction forces are assumed to follow the Coulomb’s law. Plastic flow obeys a
non-associated frictional contact law, with a slip criterion treated in the context of
a standard return mapping algorithm. Consistent linearization, used for the field
equations, leads to a fully implicit scheme with non-symmetric tangent stiffness.
This stiffness preserves asymptotic quadratic convergence of the Newton-Raphson
method. Their model is suitable for simulating problems not involving high normal
forces.

For frictionless contact problems, the contact element stiffness matrices are sym-
metric. However, for friction contact problems, a shear force should be included and
consequently the stiffness matrices become unsymmetrical. Generally, an analysis
which involves unsymmetrical matrices requires about twice the amount of storage
space and twice the amount of calculation time as those with symmetric matrices.
To overcome the solution of non-symmetric system of equations Ju and Rowlands

[57] proposed a new contact element for frictional contact problems based on the
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penalty method. The unique feature of this approach is that the contact element
stiffness matrix is symmetrical, even for frictional contact problems with a large
sliding mode. This element can be used to simulate sticking, sliding, and separa-
tion modes in frictional contact analysis. Finite element analysis that uses this new
contact element requires only half the computing time and half the storage space of
those using unsymmetrical contact elements.

In the frictional type of contact finite elements Cescotto and Charlier (58] de-
veloped mixed contact finite elements based on mixed variational principles. The
displacement field and the contact stress field are discretized independently. The
basic advantage of using such mixed contact elements is that the contact condition
is naturally smoother than with the displacement type approach. Discretizing the
contact stress field alone basically ensures stress compatibility at the interface just
in the same way as what is done for stress type finite element formulations. How-
ever, displacement compatibility is not ensured which is suitable for describing the
interface slip.

Joint element is another type of contact element. Lee, Pande, and Pietruszczak
[59] developed a joint element method based on a homogenization technique for the
finite element analysis of jointed rock masses. In fact, the homogenization technique
uses an averaging rule by which the influence of the joint is smeared into a small
region of the adjacent intact rock based on energy principles. The constitutive matrix
in this region is defined in terms of properties of both the intact rock and the joint
as well as the geometry of the homogenized domain. The stiffness matrix does not

depend on the thickness of the joint, which is the main advantage over other joint
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elements. And the position of the joint within the element can be arbitrary since
the homogenization technique is performed according to the volume fractions of the

materials.

| 2.6 Conclusion

From the above literature review, it appears that the continuum approach is the most
flexible method of analysis despite the mathematical complexity involved. On the
other hand, in terms of numerical modelling, most previous works have focussed on
two-dimensional finite elements for simplicity while limiting true three-dimensional
finite elements to only specialized cases. It seems that more efficient calculations may
be achieved by the Fourier finite element method which has been used for different
applications as described in the previous sections. In this thesis, a numerical model
based on Fourier finite elements and elasto-plasticity will be developed. Also, for
solving the complete stress-moisture migration-thermal problem, it is proposed to
perform a separate thermal analysis which will then be explicitly coupled to the

Fourier finite element model.



Chapter 3

DESCRIPTION OF MODEL

3.1 Formulation of Continuous Fourier FEM

3.1.1 Background

The Fourier finite element theory is based on the judicious use of trigonometric
functions for discretizing field variables which appear in the finite element equations.
For structures which reveal a periodicity in one of their dimensions, the efficiency of
the finite element analysis can be improved. It is natural to assume these structures
as geometrically axisymmetric, but loaded non-axisymmetrically. For a pipeline,
some degree of periodicity can also be established in its circumferential direction.
The technique involves developing two-dimensional finite elements in one plane
of the structure and expressing the main field variable by a Fourier series in the
periodic direction. In the literature, these elements have been often referred to as
Fourier expansion or semi-analytic elements, see Winnicki and Zienkiewiczs [38] and
Kay and Griffiths [40] . Here, Fourier series could be written in either continuous or
discrete form. In this thesis, the continuous scheme is utilized unless noted explicitly.
The Fourier series involves trigonometric functions such as cosine and sine which

are endowed with the orthogonality property. In this respect, advantage is taken

26
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from this property in an analysis where the deformational displacement fields can be
superimposed from each harmonic load component. It will be demonstrated in this
thesis that the superposition of harmonics is still legitimate for the case of non-linear
constitutive behaviour. This observation can interestingly produce several beneficial
effects, the major one being the reduction of a three-dimensional model to a two-
dimensional one. Furthermore, this advantage is accentuated by the fact that in
some cases the loading can be represented by only a few harmonics.

In one longitudinal plane of the pipeline, the space is discretized by standard
finite elements, while in the periodic direction, one has the choice between a Fourier
expansion or a series of discrete finite elements using polynomials. It is clearly
desirable to use Fourier series iu the periodic direction due to the orthogonality
property of trigonometric functions. The resulting stiffness matrices of each harmonic
will be decoupled from the other one. Hence, modelling can be greatly simplified by

the analysis of a series of decoupled two-dimensional finite element problems.

3.1.2 Principle of Virtual Work

The equilibrium equations for a deforming solid, irrespective of the nature of its
constitutive behaviour, can be expressed by the virtual work statement in which all

quantities are expressed with respect to a global cylindrical coordinate system:

/ oij0€i; T drdzdf — / bidu; rdrdzdf — / Tibuirdgdf =0 3.1)
Q Q T,

The above equation basically indicates that the internal work done by Cauchy
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stresses o;; during virtual infiniitesimal strains b¢;; must be equal to the external
work done by surface tractions, T; during virtual displacements u;. Subscripts ¢
and j vary from 1 to 3 referring to radial, axial and circumferential directions r, z
and 6 respectively. Here, §u, v and §w are virtual displacements in radial, axial and
circumferential directions respectively, and g is a coordinate along the loaded edge
in the r — z plane.

In general terms, the deformable body could be subjected to an initial stress
and/or initial strain field denoted by of; and €; respectively. For example, the
initial stresses may originate from in-situ stress in the soil while initial strains may
be due to thermal loads. Hence, the virtual work equation in Eq. (3.1) must be

amended by considering the following:

Oij = C,-,-k;(skz - 621) + G?j (3.2)

where Cj;i; is the constitutive tensor of the material.

3.1.3 Fourier Discretization of Field Variables

Figure 3.1 shows a typical pipeline embedded in the ground with reference to a
cylindrical system axes. The radial, axial, and circumferential axes of the pipeline
are represented by axes r, z, and 6.

During the discretization of Eq. (3.1), the displacement field variable is expanded
using both polynomial and trigonometric functions. In precise terms, isoparametric

quadrilateral finite element interpolation is used in the -2z plane, while interpolation
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in the circumferential direction 6 is represented by a trigonometric series generally
in cosine and sine functions. Depending on the degree of symmetry about the axis
of the pipeline, the series can be simplified accordingly. Herein, both cosine and
sine components are included in the formulation for the sake of generality. Each
trigonometric series is truncated after the mth harmonic and each r — z plane is
discretized using n nodes. Within each plane, the coordinates (r, z) of any point are

given as

r = 2}1\/}(1‘, z) T;

z = Zn:l\f,-(r,z)i,- (3.3)

whereas displacements for a given reference plane oriented at 8 are expanded as

u(r, z,0) = i (i Ni(r, z) @ cos(pd) + iM(T, 2) % sm(pe))
p=0 \i=l i=1

w6 = 3 (Z Nilr, 2) % cos(ob) + 3 Nifr, 2) 7 sin(po)) (3.4)
=0 \i=l i=1

w(r, z,0) = i (2”: Ni(r, z) T cos(ph) -l-iN,-(r, 2) T, sin(pﬁ))
p=0 \i=1 =1

The discretization in the r — z plane is typically done by means of isoparametric
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finite elements whose shape functions are N;(r, z). In the coordinate interpolation
given in Eq. (3.3) barred variables refer to nodal values. For the discretization of
displacements in Eq. (3.4) single and double barred variables stand for cosine and
sine components respectively.

The external load terms which appear in Eq. (3.1) can also be expanded similarly

as displacements

T, = i(ZN(r,z) cos(po)+im<r,z>'ﬁ’,i sm(po))
s y

by = i ZN(r 2) b,,cos(pa)+ZN(r,z) b“sm(po)) (3.5)
1(w.:=r, z, and 0)

3.1.4 Discretization of Virtual Strains

The small strain components are typically given in terms of displacement derivatives

obtained from strain-displacement compatibility equations, i.e.
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The interpolation scheme given in Eq. (3.4) can be readily replaced into the

expression of strains in Eq. (3.6).
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=1 i=1
19v Ow m n N; ) n N;
V0 = ;%+E=;(-P;Tﬁsmw+P§lTﬁwsPo)+
m n dN; n 8N; )

After considerable algebraic manipulations the strain vector £ can be written
in a matrix form. This matrix expression involves cosine and sine components of

displacements for all nodes contained in a typical plane in (, z) and for all harmonics.

¢ 3
u

U2

us

e=B:u=[B;ByB;..B,..Bn]{ . (3.8)

m = total number of harmonics.
The structure for the matrix B, at a particular harmonic p contains terms in
partial derivatives of shape functions N;(r, z) and cosine and sine components for

the entire plane in (r, z).
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B,=[B.B?...B!...B"] and B} = ['ﬁj, | Bp] (3.9)

The single barred and double barred matrices ﬁ:, and ﬁ:, corresponding to the

ith node and pth harmonic are indeed given as:

- & cos ph 0 0 -
0 %icospe 0
ﬁ; _ Y cosph 0 —p#i sinpd
%ivgcospé’ ‘-’aﬂricospﬂ 0
plaingd 0 (- ) cospd
| 0 —pﬁrisinpa %"z’icospO ]
| 2% sin ph 0 0 -
0 8% sin ph 0
ﬁ; _ % sin pd 0 pi cos pf (3.10)
%’isinpo %’isinpﬂ 0
plcospd 0 (%E-%)sinpd
| 0 pgricospe %’ismpa ]

or written in a more abbreviated way:



ﬁ; = B"cospf — B’sinpd
B, = Bsinpd— B’ cospf (3.11)
in which
T 0 | (00 0]
or
0 2% 0 000
oo 0 pN; [0 01
B" = ;  Br== (3.12)
&g 9 "looo
0 0 (-4 100
0 0 o 010

The displacement vector u given in Eq. (3.8) contains all the degrees of freedom
including the sine and cosine components for each harmonic. In precise terms, the
vector u, at the pth harmonic has the following structure in which single and double

barred degrees of freedom are grouped per node contained in the plane r — z, i.e.

(p=1,2,3,.., m) (3.13)
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Finally, the virtual strain vector de can be obtained by taking the virtual form

of Eq. (3.6), i.e.

e =B:6u (3.14)

3.1.5 Discretization of Displacements

The displacements u, §v, S w which appear in Eq. (3.1) can be written in terms of
cosine and sine components by using Eq. ( 3.4). After rearranging terms the same

way as was done for strains in the previous section, one gets

. 3
buy
bug
duz
ou
Sv p=[A1A2As ... Ay AR .} (3.15)
dw bup
. Sum )

m = total number of harmonics, in which a typical submatrix A, for the pth harmonic

is given by
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AL = [“ ] (3.16)
and
A = Ncospd I
100
A, = Nsinpfly; L={010 (3.17)
001

or written in explicit expression, Eq. (3.16) becomes

N; cospf 0 0 N; sin pf 0 0
A= 0 N; cospd 0 0 N;sinpf 0 (3.18)
0 0 N; cospé 0 0 N;sin pf

A typical expression of u, in Eq.(3.15) can be easily obtained by taking the
virtual form of Eq. (3.13). This virtual form is just by putting a § symbol in Eq.

(3.13).
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3.1.6 Discretization of External Load Terms

The tractions and body forces given in Eq. (3.5) have three components, i.e. radial,

axial and circumferential directions. For example, the discretized form of traction

forces can be given as

~

5% (55 Mt 2) T contp) + 5 Mt 2 T, csiaof) ‘
p=0 \i=1 =1
T = { B (£ 00 Toacosoh) + 3 M) T in6)) |
5 (z Ni(r,2) TS, cos(@h) + 3 Ni(r, 2 ?Z,,-sin(pe))
\ p=0 \i=l i=1 J
( Tl 3
T,
= [P; Po..P,..Py] > (3.19)
TP
\ Tm J
in which
P, = [P;, P ... P . P;;]
P = [F;’, [ ﬁ] (3.20)
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and

P, = N cospdIy;
P, = Nisinpfly (3.21)

or written in explicit expression, Eq. (3.20) becomes

N; cos pf 0 0 N; sin pf 0 0
P,= 0 N; cos pf 0 0 N;sinpf 0 (3.22)
0 0 N; cos pf 0 0 N;sinpf

A typical submatrix in Eq. (3.19) is as follows

—
el
—
-
[ ]
i
v
=4
[ -]
Al

*

o To,m Ton}

z,n!

N

nrtznr+ 0,

3

For body forces b, the Fourier expansion has the same form as above for traction

forces, except that T; are substituted by b;.
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3.1.7 Finite Element Equations

The displacement based Fourier finite elements equations can be readily obtained
by substituting Eqs. (3.14), (3.15), and (3.19) and invoking a stress-strain matrix
C. It is noted that the constitutive matrix C is not restricted to elasticity but
can represent any material non-linearity or time dependency behaviour. Thus, the

equation of equilibrium is

/BT : C:Brdrdzdf:u
Q

= /AT:brd'rdde + | AT:T rdgdf (3.23)
Q T,

The above integration has the contribution of displacement from each harmonic.
It also involves each element in the mesh.

It should be also noted that if initial strain J; is involved, Eq. (3.23) must include
another term in the right hand side to represent the equivalent initial strain load.
For example, temperature loads induce strains which can be treated as initial strains.

One typically obtains the following global system of equilibrium to solve simul-

taneously, i.e.
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- W 4 W ( ) ( 3
K!! 12 K™ u; b; T,
Km I{22 o e sz U2 bg T2
K~ . . y=¢ . P+ B (3.24)
_K"‘1 K™ . . K"'"‘- | Um | \bmJ \T,,.J

3.1.8 Stiffness Matrix

A typical submatrix K™ found in the global stiffness matrix of Eq. (3.24) represents
the coupling of harmonic p with harmonic g. Hence K™ is formed by B matrices

introduced in Eq. (3.8) and constitutive matrix C, i.e.

KM = /BZ:C:qudrdzdo
Q
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=/ " |:C:[B}, B .., B, .., B}] rdrdzdd
Q

= |.. K% .. . (3.25)

------

Introducing Egs. (3.9) and (3.11), a typical inner submatrix of the above equation

can be written as

Ki = BT C:Bjrdrdzdf
B,
= [ |2 1=3'“’] rdrdzdo
B,



/ B!T cos pd — BT sin pb
2 | BITsinpd + BIT cospld

Bj cosgf — Bisingf : Bjsingf + Bj cosqﬁ] rdrdzdd

_ kii ka2 (3.26)
ko ki

where

kn = /Q(B}'T : C: Bjcospdcosgf — B} T : C: B} cos pfisin gf
-B:T:C :B’stinpﬂcosqa-i-BfT : C: Bj sinpfsingf) df - rdrdz
ki, = /Q(B;'T:C:B;cosp05inq9+B{T:C:B;cospecosqe
-B:T:C: B;fsinpesinqé?—B;?'r : C: Bjsinpfcosqf) df - rdrdz
kg = /Q(B:-’T:C:B;T sinpﬂcoqu—B{T:C:B;sinpﬂsian
+B{T:C:Bjcospfcosqd — B : C: B} cospdsingf) df - rdrdz
ke = /Q(BIT:C:B} sinpfsingd + B[ T : C : B sinpf cos b
+B:T:C :B;fcosstinqa—Bg'r : C : B} cospfcosgh) df - rdrdz

(3.27)



3.1.9 Orthogonality Conditions

When calculating the stiffness matrices in Eq. (3.27), the orthogonality property
of trigonometric series can be applied provided that the constitutive matrix C is

independent of the circumferential direction . The orthogonality relationships can

be expressed as follows
/ cospf singddd = 0 for all pand q (3.28)
4
0 forp#gq
/cospe cosgfdd = { ® p=gqg#0 (3.29)
| 2m p=gq=0
.
o 0 for andp=¢g=0
/sinpe singddf = « P#a p=1 (3.30)
- |7 p=g#0

When the above orthogonality conditions are applied to Eq. (3.27 ), one can

easily get the following only if p is not equal to g (p # g),

ki = kip=ky=kp=0

(p # q (3.31)

This means that off-diagonal terms in Eq. (3.24 ) are all zero. Thus, the equilib-



rium equations take a decoupled form, i.e.

[ K1 o
0 K2 .
0 o

¢ 3 ¢ 3

0 ] ) 5] (b],w T1

0 U2 b2 T2
KPP . §. ¢=9%. ¢+ . ¢
Kmm.uu”"a xb"‘J LT”‘J

(3.32)

For diagonal terms such as matrix KP?(q = p), the four submatrices of which it

is composed are given as

ka

ko2

(¢

//ﬂ'-(B}'T:C:B;-i-B:T:C:B;) rdrdz
//ﬂ“- B;T:C:B;-B{T:C:B]) rdrdz
//‘K‘(—B::T:C:B;-{*B:T:C:B;) rdrdz

//ﬂ'-(B}'T:C:B;-i-BgT:C:B;) rdrdz

p # 0, diagonal terms)

(3.33)

(3.34)

(3.35)

(3.36)

A special case arises for the Oth harmonic, i.e. ¢ =p = 0. The term = in Egs.

(3.33) and (3.36) should be replaced by 2x and 0 respectively.
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Written in a concise form, the diagonal terms in Eq. (3.32) are as follows

K = I.(f.’," I-(f.’g (3.37)
K7 K&
where inner submatrices are given by
K% = //B{T:C:Bjrdrdz (3.38)

I,J = r,sandi, 7=1,2,3..n; p=1,2,..m

in which I, J refer to cosine and sine components as shown in Egs. ( 3.11) and
(3.12) while 7 and j identify the nodes contained in the r — z plane. The superscript
p refers to the pth harmonic.

The procedures for calculating stiffness matrix K* in Eq. ( 3.32) can be pseudo-
coded in Table 3.1.

3.1.10 Body Force

The body force term b which appears in Eq. (3.23) can be discretized in the same
fashion as shown in Eq. (3.19). Thus,
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Table 3.1: Procedures for Calculating Stiffness Matrix

1. Calculate B by Eq. (3.12)
24 0 0 ] [0 0 0]
0 &u 0 000
. ) 0 s N 1001
Br=leh v P B =000
0 0 (§a-4 100
| 0 0 v | 01 0|
2. Calculate submatrices K%, by Eq. (3.38 )
I-(?}=//B{T:C:Bjrdrdz
3. Assemble K? by Eq. (3.37)
_ | K¥ K&
KW—[Kng
()
br
b:
b
/AT:b rdrdzdﬁ:/AT:P rdrdzdf ¢ _ (3.39)
Q Q b"
b,
[ % )

The single and double barred terms refer to cosine and sine components of body
forces b when expanded into Fourier series. The integral which appears in Eq. (3.39)

can be expressed as



/AT:P rdrdzdf =
Q

where typically

A%T
A%T

T
[ A7

All

Am

>[P; P2 .

Anm

........
--------
........
........

........

. Pm

rdrdzdf

47

(3.40)
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Qu Qi .. .. Qin
= . Q,‘j ...... . (341)
in Qn2 ------ an

Introducing Egs. (3.17) and (3.21), Q;; in the above equation becomes

Q; = /A;‘,":Pgrdrdzde
Q

/ N; cospl I3
Q

[NjcosqGIa stinqgls] rdrdfdz
N; sinpd I3

cos pf cos qf cospl singf I
/N,-N,» P cosqfly cospbsinddls | o pas
Q

sinpf cosgfI; sinpf singfIs

If p is different from g, i.e. if found off-diagonal in Eq. (3.41), due to the
orthogonality conditions given in Eqs. (3.28), ( 3.29), and (3.30), all the off-diagonal
terms are zero.

The non-zero matrix ‘&m (p = g # 0) of diagonal terms contains typical terms

such as
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o nls O
Q,~,-=/A;, :P;rdrdzda=//N,~N, rdrdz = (342)
Q rJz 0 T 13

If p equals to 0, the upper-left 7 should be replaced with 27 and the lower-right
7 should be replaced with 0.

Further back referring to Eq.(3.39), the Fourier cosine and sine components of
the body force need to be calculated as follows

- p=12,...m; s=r, 20 (3.43)

,=#/ b, df
-r p=0; s=r20 (3.44)
0

3.1.11 Traction Force

The calculation of the traction force T which appears in Eq. ( 3.23) can be obtained
following the same developments outlined for the body forces in the previous sections

except that
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AT :T rdgdd
Ty
0 for off-diagonal terms, i.e. p # ¢
= I3 O (3.45a)
N;N; rdg for diagonal terms, ie. p=g#0
Ty 0 «1I3

The traction force T is applied along I'y, which is a boundary curve in r — 2
plane. Thus, dg can be expressed as

dg = 1/ (dr)* + (dz)? (3.46)

Introducing geometric interpolation Eq. (3.3), one gets

i = (G ga) 7
2. (8N; AN;

dz = (——‘df-i——'d) -2 3.47
2% %+ (347

Then, Eq. (3.46) can be easily written as
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2 2
(N .. 0N\ _ ~ (0N . 0N\ _
dg = \J [Z (—-6—6- d€ + Fn- dn) 1',] + [Z (a—E d§ + ?"7- d‘n) z,] (3.48)

i=1 i=l

3.1.12 Initial Stress and Strain Loads

The principle of virtual work given in Eq. (3.1) can take an alternate and compact

form when considering equilibrium of the system,

/a:éedﬂ—/b:&udﬂ— T:6udl, =0 (3.49)
Q Q r,

When the body has initial strains &g and initial stresses oo, the stress-strain

relationship is given as

o=C(e—g) +oy (3.50)

Substituting Eq. (3.50) into (3.49) and noticing Eq. (3.14), one gets

/C(e—eo)+ao:55d§2

Q

= /C:ezéedQ-/C:eo:6edQ+/a’oéedQ
Q Q Q

= /BT:C:BzﬁudQ—/BT:C:eozéudQ-i-/BTao:éudQ
Q Q Q

(3.51)
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Using Eqgs. (3.14), (3.15), and (3.19), then Eq. (3.49) can be further written as

/BT:C:BdQ:u= /AT:bdQ+ AT :Tdl,
Q Q ry

+/BT : C:eon—/BT:o'on (3.52)
Q Q

Comparing Eq. (3.52) with Eq. (3.23), one finds that the only difference is that

on the right-hand side there are two more terms. These terms are / BT: C: g dQ
Q

and (—- / BT : oy dﬂ) which represent the initial strain load and initial stress
load, respe;::ively.

It is noted that the B matrix contains submatrices relating strains to displace-
ments for each harmonic, just like in Eq. (3.12). Furthermore for the calculation of

the term / BT: C:eqd2 and / BT: 0y dQ, the integration can be performed as

2r

/BT : C:eodﬂ=/ //BT:C:eordzdrdO
0

Q

( / / BT:C: eordzdr) Aby (3.53)
/BTaodsz - / //BT oordz drdf

Q
/ / BT :oordzdr | Ad, (3.54)
L=1

IR

IR
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where np is the number of planes used to discretize the temperature distribution.
Equation (3.52) is a general expression which includes body force, traction, initial
strain load, and initial stress load. However, if a structure undergoes any particular
load condition, only the corresponding load term will be considered and the other
load terms will be discarded.
The coupled temperature distribution with water pressure and ice pressure will
be elaborated in the next chapter. Both the water and ice pressures will be simply

considered as initial stress loads exerted to the soil-pipeline system.

3.1.13 Boundary Conditions

The finite element formulations derived in the previous sections will have to be
completed with appropriate boundary conditions which will adequately reflect the
three-dimensional nature of the pipeline problem shown in Fig. 3.2.

Due to the nature of the finite element approximation which involves the dis-
cretization of field variables in a 7 — z plane and the use of Fourier expansion for
variables in the circumferential direction € , the boundary of interest for computa-
tions is a circle of radius R as shown in dotted lines in Fig. 3.2 (b).

To simulate a long enough pipeline, all the end nodes for the concerned cylinder
are restrained in the longitudinal direction. This means that all the end nodes in
r — z plane are restrained in the z direction. To simulate volumetric expansion due
to frost heave, all the nodes are free in their r degree of freedom. This treatment
is a necessary approximation to meet the geometric symmetry requirement of this

method. But the restriction conditions for the real case will be dependent upon the
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depth from the ground surface. For example, in Fig. 3.2 (b), at three locations,

point B, C, and D should have different restriction conditions.

3.2 Numerical Solution of Equilibrium Equations

In considering a general boundary value problem, the static equilibrium equations
derived from the previous sections must be solved together with the constitutive
equations and appropriate static or kinematic boundary conditions. The following
derivations are meant to be applied to the Fourier finite elements equations derived
in the last sections. The elementary volume of interest will be generically denoted
by df2 instead of specifically alluding to a cylindrical reference which includes dr, dz
and df .

3.2.1 Discrete Equilibrium Equations

The condition of static equilibrium can be generically stated through an integral
equation representing the principle of virtual work shown in Eq. ( 3.49). From
the finite element view point, one needs to advance the solution from ¢, at which
principal field variables such as u,, &, and o, are known to time ¢,4;. The finite

element equilibrium equation at time t,4, is thus written as

Fa (Unsa) = /n BT : 011 = (Fazt)rss (3.55)
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in which Fy is the vector of internal nodal force and B is the strain-displacement
transformation matrix. Since the internal force vector Fi,. depends on the final
stresses, strains, and displacements which are unknowns an iterative process must
be adopted for finding the solution. Setting up the iterative process, at the kth

iteration, the equilibrium conditions can be written as

Fie(ufy, +Aug,) = Fen (3.56)
By using a Taylor expansion about the kth iteration, one gets

OF iz |*
Fim(uf;,) + —au'uzt‘ Aug,; +0(Au,;)? = Fex (3.57)

n+l

Hence, the increment of displacement at the end of iteration k is

-1
Auf,_{.l = [K:H] [Fat - Fint(uﬁﬂ)] (3.58)
in which Kﬁ_,,l is the Jacobian of the linearized system, whose expression is

OF e |*
Kﬁ+1 = Wt (3.59)

n+l

Finally, the displacement at the end of the kth iteration becomes

uitl =ui,; +Aug, (3-60)

The expression of K&, can be further developed by combining Egs. (3.55) and
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(3.59). Thus,
K / BT, 2% 4o / BT:Ct, :BdQ (3.61)
+1 = aun_“ n+l * .
in which
ck 6""“ (3.62)

nbl = a en+1

is the material stress-strain matrix or the so called consistent tangent modulus in-
troduced by Simo and Taylor [48].

When formulating the problem from a finite element view point, non-linear equa-
tions arise. These must be linearized and solved within a Newton-Raphson scheme.
The algorithm presented herein distinguishes itself from the conventional methods in
that the global equilibrium equations and the constitutive stress integrations are inti-
mately linked during the Newton-Raphson iterations. By virtue of this, the quadratic

rate of convergence of the Newton method is preserved.

3.2.2 Non-linear Fourier Finite Elements

The Fourier finite element model hinges on orthogonality conditions. Within this
model complications arise when the consistent tangent modulus in Eq. ( 3.62) is used
in the integrals of Eq. (3.38). This is because C%_, is no longer constant as it varies
with the circumferential direction ¢ . Hence, the orthogonality conditions cannot be

applied explicitly and thus destroys the decoupled nature of the harmonics. In order
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to retain the decoupled nature of all the harmonics, the orthogonality conditions
must be made to hold even in the non-linear case. In this thesis, the mean of the
consistent tangent modulus C¥_; will be taken in the circumferential direction so that
it can be separated out of the integral involving 6. By virtue of this approximation,
the orthogonality relations can still be applied. The numerical example described
in the next sections shows that the technique proves to be very effective. This is
because the Newtonian equilibrium iterations retain a quadratic convergence despite

of the averaging of C%_, in the circumferential direction.

3.2.3 Stress Return Algorithm

The elasto-plastic formulation is cast into the stress return mapping algorithm which
basically results from the discretization of a set of evolution equations as obtained
from a strain driven framework. Typically, for a given incremental strain history,
new values of state variables {o, €?, &’} must be determined from the constitutive
equations. In precise terms, let the total and plastic strain tensors, as well as the
effective plastic strains be known at state t,, i.e. { &5, €8, 22}.

The incremental stresses which result from the change of state from time £, to
ta+1, due to an increment of total strain A e,4;, can be calculated based on the
additivity of elastic and plastic strains, and the flow rule of plasticity, i.e.

9Qn
Aon =C°: (Agpn —Agh,,); Ay, = A/\n-i-lh (3.63)

00 ni1

where the elasticity tensor is denoted by C¢, A\ is a plastic multiplier, and Q is
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a plastic potential. When the stress increment Ao,y; is added to the previous

converged stress o, the total stress o, emerges as

One1 = Opn+ A0z =05, —C*:< Ach | > (3.64)

where the so called trial ( .*") stress o7, ; which represents an elastic stress predictor

is given as

on.=0,+C%: Aeapy (3.65)

The operator < . > is defined as follows. If the elastic trial stress of,; falls
beyond the elastic region, which is defined by an appropriate yield surface in the
stress space, the incremental plastic strains are non-zero and < A&l >=A & _;;
otherwise < Aef_; >= 0. The implication of Eq. (3.64) is that the elastic stress
predictor is being corrected by a term which depends on the amount of plastic strains
Aegl ., produced during times ¢, and ¢,.;. This corrector term can be viewed as
a stress return of the trial stress to the yield surface. To satisfy the consistency
conditions, the final stress or,.; must lie on the yield surface.

The procedure of tracking down the evolution of the stresses within the stress
return framework proves to be very simple, yet accurate and stable. References of
such methods can be found in Simo and Taylor [48]. These methods deviate from

other incremental techniques used by Owen and Hinton [39).
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3.2.4 Equilibrium Iteration

Equation (3.32) represents the equilibrium of the structure written in an decoupled
form which can be easily solved. However, for an elasto-plastic analysis, the equi-
librium equations are in fact coupled since the constitutive matrix C is function of
circumferential direction 6 and orthogonality relations cannot be applied. In order
to circumvent this problem, a homogenized matrix C based on taking the mean of all
values of C along direction 6 is used instead. Hence, using such an approximation,
the decoupled form of the equilibrium equations can be regained.

Special care has to be exercised for solving Eq. (3.32) in the elasto-plastic case.
Within each load step, for each harmonic starting from the Oth, one should solve
that only harmonic and accumulate the stress, strain, and displacement to the total
targeted value. For each harmonic, the yield criterion is then checked using values
accumulated for the stress. If the accumulated stress state is found beyond the yield
surface, then plastic deformations take place and the stress state has to be brought
back onto the yield surface.

The equilibrium iteration procedure can be explained by referring to the pseudo-

code shown in Table 3.2.

3.3 Algorithm for Solving the Coupled Equations

For sake of completeness, an alternative algorithm is herein proposed to solve the
coupled equilibrium equation system. Let’s assume that three harmonics are involved

for the purpose of illustration. The fully coupled equations take the following form:



Table 3.2: Procedures for Solving Equilibrium Equations

1. Loop over each load step

2. Loop over each harmonic (starting from 0th), solve Eq. (3.32);

Ku 0 e e 0 ] u; b1 T1
0 K22 oo e 0 U2 b2 Tz
. . K | . =4q . +4q .

0o 0 .. Km||un bm Tm

3. Loop over each Gauss point and calculate stress state

4. Check for yielding
IF (total stress is beyond the yield surface) THEN
bring this total stress back
ENDIF

5. Check for equilibrium
IF Fix = Fee: THEN
goto 3 for the next Gauss point
ELSE
goto 3 for the same Gauss point
ENDIF

6. Next harmonic

7. Next load step

60
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Ky K Kis U F
Kan Kz Ko U =\ F (3.66)
K3 Kz Ki Us F3

If all off-diagonal terms K;; (¢ # j) are equal to 0 , the above equation obviously
collapses into the decoupled case. The algorithm for solving decoupled equations has
been discussed in previous sections.

Let’s split the stiffness matrix K into two parts: decoupled and coupled terms.

Equation (3.66) can be written as

Ky 0 0 Uy 0 Ki2 Ki U R

0 Kp O U ¢+ | Kn 0 Kun Us F (3.67)
0 0 Ku||lU) |Kun Kno0 ||U R
Rearranging Eq. (3.67), one gets

Ky 0 0 U R 0 K2 Ky U

0 Ky 0O U, = F - | Ky O Koz U, (3'68)
0 0 Kz Us F3 Ky K 0 Us

Equation (3.68) can be written in a concise form
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K : U =F-K": U (i=0,1,23,..) (3.69)
where
Ky 0 0 0 K2 K
K = 0 Ky O and K= Koy O Ko (3.70)
| 0 0 K33 K31 K32 0
4
2 Uy
F =4(F and U=4 U, (3.71)
k F3 U3

Actually, Eq. (3.69) refers to an iterative formula for solving U. In Eq. (3.69),
Ut is the estimate for U iteration ¢, while U**! the updated estimate at ¢ + 1 is to
be solved iteratively.

To solve Eq. (3.69), we set the first estimation U® = 0. Then, Eq. (3.69) becomes

K:Ul'=F (3.72)

Let’s write Eq. (3.72) in a clear expression
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Kn 0 0 U % F 1
0 Kn 0 U} ¢=9 F (3.73)
0 0 K33 U§ Fs

Equation (3.73) is in a decoupled form which can be solved easily using the
algorithm previously discussed. Once {U'} is obtained from Eq. (3.72), one can
easily solve for {U?} by substituting {U"} into Eq. (3.69) and setting ¢ = 2. In this
way, once ||{U**!} — {U'}| < ¢ (a given tolerance for iteration), convergence of the
iterative scheme towards the solution is assumed to be reached.

The proposed algorithm for solving coupled equations can be summarized as
follows in Table 3.3.

3.4 Plasticity Models

3.4.1 von Mises Model

The von Mises model is one of the simplest models ever used in the constitutive
modelling of materials. Here for the soil-pipeline problem, it can be well applied to
model the constitutive behaviour of steel pipeline.

In connection with the subsequent developments, let the following stress invari-

ants be defined as



Table 3.3: Procedures for Solving Coupled Equilibrium Equations

1. Set the initial iteration value
i=0,U%=0

2. Calculate the first estimation
K°:Ul=F

3. Calculate the current corrector in Eq. (3.69)
K:U'

4. Compute the right hand side of Eq. (3.69)
F-K:U!

5. Sovle for new value
K: Ul =F-K*: U

6. Check for convergence
IF: ||U*! - Ui|| < ¢ THEN:
exit
ELSE
goto 3
ENDIF
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1 1
p = gtrace (Ons1); D7 = 3 trace (of.1) (3.74)
S = On41—Dl; s"=0of.,-p"1 (3.75)

where p represents the mean stress; s is the deviatoric stress tensor; 1 is the Kronecker
delta tensor; and trace operator corresponds to the sum of all diagonal terms of a
tensor.

The yield criterion used for von Mises material is mean stress insensitive as shown

in the following yield function F,

F=F(s, &) =|s| - \/g (&0 +H 5?) =0; |sl =555  (3.76)

where &, is the uniaxial yield stress, H is the hardening parameter and ” is the

effective plastic strain calculated from the following equation

t
& = / \/g |€? (7)|| dr; T = pseudo time (3.77)
0

where the deviatoric strain tensor is defined as e =& — 3 tr (€) 1.
In writing the incremental constitutive equations in terms of elastic strain com-

ponents, one gets
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p=K trace(8); $=2G(&—¢") (3.78)

in which K and G are bulk and shear modulus.
Furthermore, if associated plastic flow rule is assumed, we have

0

0

&f =)

=\ (3.79)

Q

S

where f is the direction of plastic strain and has a radial direction when looking in

the deviatoric plane. fi can be obtained from

OF _o|sll _ 0vEisu_ _ _ 8ilu _ s
55 05 = O P T Jmatt¥ T g (3.80)

n=

The normal at trial stress s‘" is the same as that at final stress s,+; found on the
yield surface, i.e.
ol Sn+1

= = 3.81
ST~ Towl (3.81)

The stress update equation can be readily obtained by splitting the total stress
into deviatoric and spherical parts, i.e., & = s™ + 1 trace(o)/3, and noting Eqgs.

(3.76 ), ( 3.78) and (3.81) one finally gets

Ont1 = K trace(€ns1) 1+ Sns1 = K trace(ns1) 1 + ||spafl 2
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= K trace(ep+1) 1+ \/g (&o+H é‘f‘_H) i (3.82)

Figure 3.3 illustrates the stress return scheme as the trial stress is pulled back to
the expanding yield surface in the stress space.

The consistent tangent modulus emerges when the stress o,+; is differentiated
with respect to strains €,4+;. After numerous algebraic manipulations, the final

expression for CE_, at the kth iteration is

2 2G 1 R
ck,, = K1 ®1+\/; (ao+H’ e'fm)-"— [(I—-l ®1) - i n]

Sn+1|| 3
2GH'

+m nn (3.83)

Comprehensive derivations of the above can be found in Simo and Taylor [48].

3.4.2 Drucker-Prager Model

The constitutive modelling of the soil can be approximated by a model based on
Mohr-Coulomb failure criterion. The Drucker-Prager model a simplified version of
Mohr-Coulomb model in the sense that the yield function represents a cone instead
of a pyramidal surface in the stress space. The expression of the yield surface F here

is
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F=Flo, 2= sl - 2 0= 0 (p) = ey (Ccosp+psing) (384

where ¢ and ¢ represent cohesion and friction angle respectively.

Here, adopting an associated flow rule, the incremental stress-strain relations can
be set up just like in Eqs. (3.78), (3.79) and ( 3.81). The stress return equation is
readily obtained by using Eq. ( 3.64) and applying consistency conditions such that
the final stress lies on the yield surface given in Eq. (3.84). Thus, one finally gets

6singp siT
Pﬁ+1 = P:zr+1 - f\n+13 — singoK; n+1 =sp - 2G\/—/\n+1 " ntl I (3.85)
n+1
1
Aﬂﬁ-l = 6 N 2
3G+K ( ¥ )
3 —sinyp
{\/_ |Isirall - (ccoscp P, sin <p)} (3.86)

Figure 3.4 shows the Drucker-Prager yield surface and the stress return algorithm.
The consistent tangent modulus is obtained by differentiating stress &p+; with

respect to strains €,4; . Thus,
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6sin 2
Cﬁ_ﬂ = [K— (3—:SiT‘p(PK) 1]] 1®1

\/G—Gn "(Pfaﬂ))

[E

S8 paea+ael) (387)

+2G (1-%1@1-:1@:1) (1—3Gn+

+2G(1—3Gn)ﬁ®ﬁ-\/§Gn3

in which

6 2
1/n=3G+K ( oy simp) (3.88)



axis of pipeline

Fig. 3.1 Fourier Discretization of Soil Around Pipeline
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Fig. 3.3 Stress Return Algorithm for the Hardening von-Mises Model
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Fig. 3.4 Stress Return Algorithm for Drucker-Prager Model



Chapter 4

HEAT TRANSFER/MOISTURE MIGRATION

4.1 Introduction

The processes taking place in the freezing of fine-grained soil are first identified be-
fore introducing the basic equations of physics. When a saturated fine-grained soil
such as silt is subjected to freezing temperature, part of the water in the pores can
solidify into ice, i.e. pore ice particles. Close to the soil particles, a film of unfrozen
water remains since it is more tightly bound to them. According to thermodynam-
ics, this adsorbed water film has lower free energy at a lower negative temperature.
Thus, a potential gradient can develop along with the existing temperature gradi-
ent. Chemical potentials of water due to gradients of hydrostatic pressure, solute
concentration and temperature interact additively to create a strong thermodynamic
sink. This water is basically sucked from the warm portion to replace the water lost
during freezing and to feed the accumulation of pore ice. As the pore ice particles
grow, they can finally contact each other and form an ice lens oriented perpendicular
to the direction of heat and water flow. Solutes are largely excluded in the freez-
ing process, and maximum solute concentration in the medium thus establishes an
osmotic pressure gradient which also helps the movement of water.

The freezing in a capillary-porous medium described in the above is essentially a

74
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process coupling heat and mass transfer. Also, the understanding of the movement
of water into the freezing and frozen zones through the capillaries, and factors gov-
erning it, is of critical importance in order to understand the freezing and thawing
phenomena. From a thermodynamic point of view, a capillary porous medium will
involve heat, water, solute and electric fluxes when subjected to physico-chemico-
electro environment. For example, water moves in response to gradients in temper-
ature (thermal), hydrostatic pressure (Darcy’s law), solute concentration (capillary
osmosis) and electric potential (electro osmosis).

Amongst other things during the freezing process, the solute will also lower the
freezing point of water. For dilute solutions, Van’t Hoff equation in reference [60]
may be used to quantity the freezing point depression.

The mathematical description of the freezing-thaw processes in capillary-porous
systems will normally involve the assumption that the medium is a continuum. The
writing of (a) the mass balance equations in terms of the fluxes described above, (b)
the heat transfer equations with mostly conduction, and (c) the pressure equations
supplemented with the relevant boundary conditions will lead to a set of governing
equations from which the principal unknowns will be solved numerically in most of
the times.

Governing equations presented in this chapter will be expressed in Cartesian
coordinates (z,y,z). Here, directions z,y,z correspond to directions r, z and 4

respectively which were previously defined in Chapter 3.
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4.2 Governing Equations

4.2.1 Assumptions

The basic assumptions made in the derivation of the model are as follows:

e Moisture transport in frozen and unfrozen zones occurs only by the liquid
water form. The air phase and vapor transfer have negligible effects in net

water transfer.

o The freezing of the soil is considered to be mainly controlled by heat conduction

and convection is neglected.
e The freezing point depression of ice in the soil under loading is negligible.

e The soil is consolidated under external pressure before freezing, and the effect

of consolidation in the unfrozen zone is negligible during the freezing process.
e The volume of the soil particles remains constant in the freezing process.
e Both unfrozen and frozen soil are isotropic bodies.
e The sign rule is that all tensile stresses and strains are positive.

e Gravitational pressure on water flow in the frozen zone is negligible.

4.2.2 Heat Transfer

To investigate the heat transfer in a water saturated soil, an elemental volume (dz,

dy, dz) shown in Fig. 4.1 is considered. Neglecting heat convection during the
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freezing of the soil, the net heat flux ¢; (i=1, 2, 3) generated by pure conduction
must be equal to the heat flux associated to the cooling of the water (heat capacity C)
and phase change (latent heat L) as part of the water turns into ice. In the following
developments, the balance equations will be written in rate form with “energy rate”
expressed in joule/sec due to the evolutionary nature of the of cooling process.

Referring to Fig. 4.1, the rate of heat flux balance in the direction z (i=1) can
be described as follows:

0q- a6

; oT
S drdydz = ~Lps = - dodydz + C— - ddydz (4.1)

in which the term on the left hand side corresponds to net rate of energy flux passing
through the cube, while the first and second terms on the right hand side refer to
rate of energy changes associated to phase change and heat capacity respectively.
The temperature is denoted by T while ice fraction and ice density are given by 6;
and p; respectively.

Furthermore, the process of heat conduction can be described by Fourier’s Law
which states that the heat flux is proportional to the temperature gradient through
the thermal conductivity A. Therefore, in direction z, the heat flux ¢, is

or

4z = -,\% (4.2)

Writing rate of heat balance in all three directions z, y, z and considering Eq.

(4.2), one finally arrives at the three-dimensional heat transport equation
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or o [.oT g (.0T g (0T 06;
CE =3 <z\a ) + gy' (/\Ey—) + 3 (1\5-2-) + Lp,-ﬁ (4.3)

In the above Eq. (4.3), C : heat capacity of material (Jm=3°C-!), T : tem-
perature (°C), t : time (sec), z, y : coordinates (m), A : thermal conductivity of
material (W m~!°C~!), isotropic case here, L : latent heat of fusion (Jkg?), i.e.
the heat extracted from 0 °C of water to 0 °C of ice, L =333.7 x 10® (Jkg~!), p; :

density of ice 0.9 Mg m=3, and finally, 6; : fraction of ice (m® m~3).

4.2.3 Mass Transfer

In order to investigate mass transfer phenomena in the freezing soil, an elemental
volume (dz,dy.dz) is again considered as shown in Fig. 4.2. Aspects such as the
effect of gravitational potential on moisture flow and vapour phase transfer as the
soil freezes can be neglected in the derivation as the unfrozen water movement is
mainly driven by pressure gradients. As the soil freezes, mass must be conserved
as the liquid water flows out of the pores due to a combination of pressure gradient
build up and ice formation. Looking at mass transfer balance across a face of area
(dy.dz) along the z direction, one gets
9Q=

pl—da:dy dz = pl%%- dzdydz -i-p,%ti -dzdydz (4.4)

in which new variables p;, 6; and Q. refer to unfrozen water (liquid) density, volume

fraction and flux respectively. The left hand side of Eq. (4.4) represents the net
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mass flux across two faces of the cube in the z direction, while the right hand side
refers to mass flux due to unfrozen water and ice generation.
Further assuming that the liquid water flux @, is governed mainly by a diffusion
process, Fick’s Law can be introduced, i.e.
oF,

Q: = -kg:; (4.5)

in which P, (Pa) is the pressure in the unfrozen water (liquid) pressure and k
(m? sec™! Pa™!) is its hydraulic conductivity.

Inserting Eq. (4.5) into Eq. (4.4) and writing the mass balance in all directions
z,y, z, the generalized moisture transport equation for steady state or unsteady state

emerges as

o , w3 _ 0 (R, 0 (OB 0 (R
3t+p18t_az(kaz)+ay(kay)+az(k6z) (4.6)

4.2.4 Clapeyron Equation

In this section, the relationship of liquid pressure, ice pressure, and temperature will
be investigated. Frozen soil can be regarded as porous medium with the mixture of
liquid, ice, air, and solid skeleton, as shown in Fig. 4.3.

From Fig. 4.3, when equilibrium is reached, at any point of the porous medium,
the chemical potential of ice y; must be equal to the chemical potential of liquid p;,

ie.
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pi = or du; =dw

Applying Gibbs-Duhem (energy dissipation) equation for liquid and ice sepa-

rately,
du; = -S;dT; + V;dP; and dm = —8,dT + VidP,

one gets

VidP;~VidP + (5= S;) dI, =0

=  WdPR -VdP:=(5-5)dl}

By definition the difference of the liquid entropy and the ice entropy must be

equal the latent heat of that liquid per unit temperature in Kelvin, i.e.
L
(St—8)= T

Hence,
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VidP - VidP; = = dT}
Tk

Integrating the above equation, one gets

Py T
V/ dP, - dP; =1L ﬂ
r Tk
ViR-V,P= Lln(To)
or
P P (Tk)
——==Lh 4.7
AL pi TO ( )

In the above equation, 1 : chemical potential (J kg™!), S : specific entropy (J kg~ K1),

V : specific volume (m kg~!), P : ice pressure (Pa), P, : liquid pressure (Pa), T :
temperature in Kelvin (K =° C + 273.16), Tp : reference temperature (273.16 K)) .

4.2.5 Liquid Fraction and Temperature Relations

A certain amount of liquid water remains unfrozen in the pores due to several factors,
freezing point depression being a major one. The relationship between the amount

of unfrozen liquid and temperature has been determined experimentally for many
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different soils by Anderson and Morgenstern [61] and Fortier et al. [62] . Based
on these experimental data, it is found that the best fit would be described by an
exponential function. However, due to the complexity of the problem addressed
herein, a linear relationship is chosen for sake of simplicity. Thus, assuming that at
zero degree Celsius there is no ice and all the pores are occupied by unfrozen water,

the linear relationship can be written as

0= f(T) =ne(0.3+ ETd) x 100 (4.8)

in which, ng is the initial porosity of the frozen soil.

Figure 4.4 shows a comparison of the assumed linear relationship for a soil such
as Caen silt (np = 0.3808) with the experimental data given by Fortier et al. [62)].
At this point, it is important to note that the hypothesis of linearity has to be still
verified.

4.2.6 Ice Pressure Relations

The generation of ice pressures in frozen soils is probably the most poorly understood
topic in soil mechanics. In order to numerically simulate the nature of frozen soil,
some assumptions must be introduced according to the experimental work done by
other researchers. In this thesis, the author borrows Shen and Ladanyi’s suggestion
for ice pressure distribution [17] because of its simplicity. In their suggestion, the ice
pressure distributed linearly within the freezing fringe, as shown in Fig. 4.5.

Thus, in two dimensions, we have
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8 (,0P 9 (,0F\ _
(%) 5 (%) = )
It is important to emphasize that in general, Eq. (4.9) does not imply a linear
distribution of ice pressures.
Egs. (4.3), (4.6), (4.7), (4.8), and (4.9) reveal that there are five unknowns,
namely T, 8, 8;, P}, and P;.Once these are solved, the resulting ice and liquid pres-

sures P, and P, can be considers as initial stresses in a finite element type of stress

analysis which involves only mechanical processes, i.e.

oo = (P + R)6 (4.10)

in which 6 is the Kronecker delta symbol used to imply that the ice and liquid
pressures are being applied to the soil grains isotropic.
Then work equivalent mechanical load terms F,, which enter the Fourier finite

element equations can be simply calculated as

Fo, = / BT : g¢dQ (4.11)
Q

which will be used in the Fourier finite element model developed in the previous

chapter.



4.3 Derivation of General Controlling Equation

The following derivations will be carried out in two dimensions as a result of a
reduction in dimensions due to the use of Fourier finite elements. The five principal
unknowns are T, 6, 6;, P, and P, have been derived according to the physical nature
of the frozen soil in the previous section. In this thesis, the temperature, T, will be
solved first. Then, the liquid and the ice pressure, P, and P;, will be employed as the
initial stress load in the mechanical analysis of a numerical example. So, F,and F;
will also be solved explicitly. The liquid and ice fractions, 6; and §;, will be treated
as intermediate variables in the following derivations, because they cannot be solved
explicitly based on the above mentioned assumptions unless some other conditions
are introduced.

From Eq. (4.6), one can get

00, _ 1 [2 (10B) 4 2 ((OR)] _ , ;2%
wige=nt 7 (va) v (43y)| -l e
Substituting the above equation into Eq. (4.3) leads to
or, 06,0 (0T 0 (er 2 (,0R), 0 (0B
% +nlgt =5 (%) 5 (%) oL [ (5) +5 (45|

(4.12)

From Eq. (4.7), one can derive the following
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P = %Prf-sz (lnTi — InTp)

OB _ poR _1_) 9T

0z p:i Oz Te oz
o (LOR\ _ m 8 (R _ L (%) Lo (O
6:1:( 62:) p,-az("az)“'L[ le(az) +Tk6a:(k6x>

k
_al 31’;)_;01[4 (3T mL 0 (,0T;
pi Oz (k oz T? k 5z ) * T Oz k oz

il
®
h

(%) -25 (%) -5 (3) %5 (3)

and

LD

JORTC

() -2 [2.(48) -4 ()]
[+ ()] 4202 - ()

Substituting Eq. (4.13) into (4.12), and noting that 4% = 3% 8T  one gets

@
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-2 (8) 5 (5) (2080203
[( ()] 2 (2 () + 2 ()]

Furthermore, assuming that the temperature change within an element is small,

ie.,

8z Oz 0Oy Oy

so that higher order terms are negligible, i.e.

then, Eq. (4.12) becomes

-4 (65) 4 () 2 ()-405)] o

in which
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— 96,

C = C+p;].2;? p2 2

- kp? L koL

X = A= =X prome (4.16)

Finally, assuming a linear distribution of ice pressures, as a first approximation,

which results into Eq. (4.9), Eq. (4.15) reduces to

E-305)-505)(GEF)

Equation (4.17) contains parameters C and X which are function of unknowns
such as temperature T and liquid volume fraction 6;. Noting Eq. (4.16) and also
realizing that 6, is a function of T by virtue of Eq. (4.8), Eq. (4.17) turns out to
be non-linear with respect to temperature. An iterative scheme is devised based on
Newton’s method.

The author wants to highlight that the developments described in reference [17]

contain minor errors. For example, referring to Eq. (8) of [17], i.e.

=0T 9 (0T 9 (0T o OP; 0 aP;
E’a?("b?)*'a?(’\a )*P*L [a— ("5‘) ER (’“E)]

the multiplier p;L, in the right hand side, should be f‘:{-‘. Instead, their basic govern-
ing equation for heat and moisture transfer should be Eq. (10) only, not including
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(3) and (7), because (10) is derived from (3) and (7). The same relationship should
also be imposed on their Eqs. (21) and (22), which means that only Eq. (21) is
the controlling equation for one-dimensional case. The principal unknown should be
temperature, T, in Eq. (10) or (21) for one-dimensional case. The other unknowns
can only be solved by “back-substitution” based on that T is known, instead of

solving Egs. (21) and (22) for one-dimensional case.

4.4 Finite Element Discretization

Consider a domain of volume €2 bounded by a contour I" subjected to initial and
boundary conditions as shown in Fig. 4.6. Galerkin’s method is used to discretize
Eq. (4.17) for finite element calculations. Thus, the temperature field T(z, y,t) can

be discretized using interpolation functions N(z,y), i.e.

N N
T(z,y,t) = Y Ne(z,9) Tk(t) = D_ Ne Tk (4.18)
k=1

k=1

where T} is the nodal temperature and NV is the order of interpolation.
As a result of the above discretization, Galerkin’s method requires that the

weighted residual over volume of interest 2 to be zero. Hence,

AN,- [X(-‘Z—iga-%;—f) -'c‘%] dQ=0 (4.19)

Let’s apply Gauss integral theorem to Eq. (4.19) so that the volume integral

converts into a surface integral along contour I, i.e.
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-~ ~ [ON; 8T A ON; oT
- (e - (EE T w) e
r

N A (@ Iz + % z,,) dl' (4.20)

At this point, let’s recall the following conditions:
Initial condition: ¢t = 0, T'(z,y,0) = T%(z,y,0)
Boundary condition:
(1) along Iy : T(z,y,t) = T*(z,y,t) given
(2) along I'; :

P (s—aflﬁ-%ly) =-B(T-T.)

in which, 8 is a surface dissipation factor, and T is a reference temperature.
In Eq. (4.20), let the right hand side
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3 (Zr i)

= me)\ (g’fz +§§I,) dr1+/ N; X (%T;lz-i-%ly) dl; (4.21)

When calculating the temperature along the elements of boundary I'; , e.g. J. &,

the temperature at ¢ and m are known while V; along im is 0, see Fig. 4.6. Hence,

/mN,\<g::l +Z§z)dr1_ (4.22)

Accumulating Eq. (4.20) for each element, one gets

L[ F(EEa %) o]
_ Z:/ax(ggzﬁ%z,) T

- -3 [ naw-)a (4.23)

Introducing an interpolation function (4.18), one gets

2 [ UE (CFm) 5 (EF)| e (Tng) e
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= —Z/.Mﬁ(szTk-h)drg

Rearranging the above gives rise to

L ECER (S| | aor
+Z/;Naﬂ ZNka dI‘z-i-Z/mMa‘(sz%)dQe
= Z /r; N; BT, dT w20

which can be written in matrix form,

K(T): T+M(T): @

Ky(T) = Y Kg(T), i,-(T)=ZM:,-(T), P=) Fr

=P (4.25)

For each element,

dN; ON; 6N ON;

K5 = [ (az 5z * 3y oy
/'c‘

)dﬂ°+/ B N; N; T
rs

M(T) N.Njdee,  Pt= [ BN.T.dr3 (4.26)
rs
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Equation (4.25) is nonlinear and has to be solved by an iteration scheme, say
Newton’s method.

In this study, the dissipation factor 8 is equal to O since the boundaries are
insulated. Therefore,the term P can be discarded so that the finite element equations

simplify into

F(T) = At K(T): T+ M(T): AT =0 (4.27)

The above equation is function of both space (z,y) and time ¢. Let’s consider a
time interval At taken between time stations ¢, and t,+; at which the temperature
fields are T, and T,.; respectively. Equation (4.27) can be written at a time tn9 €

[tns tn+1] by using an average scheme controlled by a parameter © € [0, 1], i.e.

F(Ta) = (1-0)-At- K(Tp): Ta+0-At- K (Tns1) : Taa

+M (Tns1) : (Tner — Th)

Values of © =0 and © = 1 correspond to explicit and implicit schemes respectively.

Rearranging the above equation, one gets

F(Tuws) = [0-At- K(Tnt1) +M(Tar1)] : Tast

+[(1-96) -At- K(Ta) = M(Tn41)] : T (4.28)
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The non-linear character of the above Eq. (4.28) can be dealt with by expanding

it into Taylor’s series about the kth iteration, i.e.

F(Tats) = F(TE,)+F (TE,,) : (Tasa - Thyy) +0%=00r

F'(Try,) : AT = —F (Try) (4.29)

in which

AT = Th - T8, (4.30)

By virtue of Eq. (4.28), the right hand side of Eq. (4.29 ) becomes

F(Tse) = [©0- At K(T5) +M(Thy)] : T

+[(1-©)-At- K(T,) -M(T,,)] : Tn

Fin (Tﬁﬂ) (4.31)

Also, making use of Eq. (4.28) one gets

¢ OM(Tniy)
oT. n+l

aF \* K (Tpns1)
k - —- . . n+l
FV(Tn+1 - (aTn-i-l) - (e At aTn-H

K
) : Tﬁ-f-l



94

oM (Tn+1) k

+ [6 - At -K (T:-t-l) +M(Tﬁ+1)] - 0Tn+1

:Ta  (4.32)

Substituting Eqs. (4.31) and (4.32) into (4.29), AT} can be solved. Finally,
the temperature distribution T can be obtained from Eq. (4.30). Equation (4.31)
will be used to check convergence. If Fin (T%,;) = 0 or < tolerance , convergence
is reached.

The procedures for solving the temperature field can be summarized in Table 4.1.

4.5 Liquid Pressure Field

Once the temperature field T'(z,y, t) is found at a given time ¢, the liquid pressure
field P, and ice pressure field P; can be calculated. Let’s recall Eq. (4.3) which is

now written in two dimensions, i.e.

8; COT ) (8T  &T
A ~Ta L (@*W) (433)

Substituting Eq. (4.33) into (4.6) and after some rearranging one ultimately gets

2 (5550 - (D) T 2 () 5 () 0w

Applying Galerkin’s Method to Eq. (4.34) to get the finite element equations



Table 4.1: Procedures for Solving Temperature Field
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N

. Start from time step 1 and iteration step 1, introduceing initial value and

boundary conditions

. Compute F (T%,,) by Eq. (4.31)

F (Tn+1) [9 At- K (Tn 1) +M (Tﬁ-#l)] Tn+1
[(1 ) -At- K(T,) - Tﬁ+1)] T,

. Calculate F'(T%_,) by Eq. (4.32)

F'(Tk +1).<e At —a(TT—fl —5%‘:*:—1 ):T§+1

k
+[0- At -K (TE,,) +M(TE,)] - a—M,,ir!';:l : Tn

. Calculate temperature increment AT5*: by Eq. (4.29)
F' (Tn+1) ATﬁi}. =-F (Tn-(-l)

. Calculate current temperature field by Eq. (4.30)

k+1 _ mk+l1 k k+1l _ mk k+1
ATn-H - Tn+1 - Tn+1 or Tn+1 - Tn+1 + ATn-{-l

. Check for convergence by Eq. (4.31)

IF Fin (TX,,;) < tolerance THEN

calculate liquid pressure and ice pressure described in the next sections

proceed to next time step
ELSE

goto 2
ENDIF
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leads to

X (8T 8T a6, c\ar 8P 0°PR
IR [sz (az2 + ayz) - (?T"“m_L) ‘at'”“(cw + ayz)] =0
(4.35)

Gauss integral theorem can again be used towards converting volume integrals

into surface integrals the above equation, one gets

s or
fovor (G ) o= vy (G )

A BNaT oN; T
‘/nsz(az oz T 3y %)‘m (4.36)

and

PR, PR 4o 9P, , . OB
/Nk( )—éMk(%-lz-i-?y-ly)dS

ON;OF, A ON; 0P
Ak(az 3 T By ay)dQ (4.37)

Substituting (4.36) and (4.37) into Eq. ( 4.35), one gets
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A [ON;8T ON;oT ON; 0P, ON;0PR
/anL (az %t oy ay) dQ+./nk (ax 5z oy ay) =

86, C\oT
+/Q.N; (-67'!‘;17:) 5 dQ (4.38)

A [oT or OP, 0P,
= for (G ) o ek (5w g ) as

I' is the same boundary which relates to temperature T as described in the
previous section while S is the boundary relating to liquid pressure in the following
manner:

Initial conditions: when ¢t =0, B = P?

Boundary conditions:

(1) along S : P = Py(t) given

(2) along S5 :

OB _OR ,\ _
k (—a?"lz-i‘w'ly) =0

under the conditions set in the previous section of the basic equations for P, .
Note, S; and S, could be different from I'; and I's respectively.

Introducing interpolation function for the temperature T" and liquid pressure P,
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such that

T(z,yt) = Y Ne(@y) L) =) NT
P(z,y,t) = Y Ne(z,y) Be(t) =D NP

the discrete form of Eq. (4.38) becomes

Loz & (&%)« 5 (E5)
() 2 ) o (30 5) (1)
= -Z/.N,-B ZNka)—TL] dTS (4.39

Again, for an insulated temperature boundary, i.e. 8 = 0, the right hand side
of the above equation reduces to zero. Equation (4.39) re-written in matrix form

becomes

U:T+Q:P1+R:%’f-=0 or Q:Pz=—(U:T+R:%)

or in discrete form

AtQ:P;=—(AtU:T+R: AT) (4.40)
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in which

g = [ b (LN OO e
Qe

9z 9z Oy Oy
. A [8N:dN; ON:dN;\ ..
h= /n p,L(az 2z " By ay)d“
e _ v (98 C )\ 4qe
K = /Q‘N.N,(BT+plL)dQ (4.41)

The liquid pressure P, can thus be calculated from Eq. (4.40) .

4.6 Ice Pressure Field

It has been found in this study that the original Clapeyron Eq. (4.7) tends to over-
estimate the ice pressure, especially for a temperature of —5°C for which an ice
pressure of P, = 5.5 M Pa is obtained. In order to obtain more realistic values, a
modified Clapeyron equation as suggested by [63] will be adopted, i.e. P; = 1.091P;
or P; = 0.9166P;.

Referring back to Eqgs. (4.10) and (4.11), the load induced by ice/liquid pressure
can be finally obtained. If one applies this load to the Fourier finite element model
the displacement and stress field corresponding to the heat conduction-moisture mi-
gration problem can be obtained.

The procedures of solving for liquid pressure and ice pressure can be summarized

by Table 4.2.
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Table 4.2: Procedures for Solving Liquid and Ice Pressure

— X[ ON; 8N, AN; 8N,
w= /. ut (Tz"a;‘ + Ty‘ﬁ,") dar
¥,=| NN (g—'} + ;%) dQe

2. Calculate P; by Eq. (4.40) for the current time step
AtQ:P;=-(AtU:T+R:AT)

3. Calculate P; by equation
P;=1091P; or P;=0.9166P;

4. Proceed to the next time step

4.7 Conclusion

The model described in this chapter presents the solution of a sequence of equations,
which govern the coupled heat transfer-moisture migration in a freezing soil. The
key field variable is temperature which is solved from a non-linear set of differen-
tial equations. Once temperature is calculated, the determination of ice and liquid
pressures becomes an easy task.

In the freezing soil-pipeline problem which is the main subject of this thesis, the
heat transfer-moisture migration induced thermal stress &** can hence be computed
as o't = (P, + P) 6 with 6 being the Kronecker delta symbol. It is herein assumed
that both ice and liquid pressures are isotropic. These stresses will enter as work

equivalent loads in the Fourier finite element model described in the previous chapter.
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Fig. 4.3 Equilibrium of Ice and Water
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Chapter 5
VALIDATION OF THE MODEL

5.1 Introduction

The purpose of developing the Fourier finite element model! is to solve problems with
axisymmetric geometry under arbitrary loading conditions by a series of 2-D prob-
lems. The Fourier finite element theory was presented in Chapters 2 and 3 with
reference to both linear and non-linear cases. It was found in particular, that the
decoupling of harmonics was destroyed as soon as material non-linearity was intro-
duced. Amongst strategies which were proposed to circumvent this problem, the
method which replaces the variation of the constitutive matrix C in the circumfer-
ential direction 6 with a mean value C was retained. This was found to preserve the
decoupling nature of the equilibrium equations at the expense of approximations. In
this chapter, the algorithm proposed for non-linear Fourier finite elements is verified

and approximations made evaluated.

5.2 Validation of Algorithm

There are no closed form solutions available to verify the model, especially in the

non-linear regime. However one can compare the Fourier finite element results to

107
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Table 5.1: Material Properties
Young’s modulus | Poisson’s ratio Cohesion | Friction angle
E=2x10°kPa v=03 c=2x 10°kPa e = 30°

those obtained from a classical three-dimensional finite element program such as
ABAQUS [47]. It is particularly interesting to make the comparisons in the non-linear
regime. To this end, benchmark problems which refer to the elastic and elasto-plastic
responses of a thick-walled cylinder subjected to uniform internal pressure have been
considered since closed form solutions are available. Furthermore, the case of a thick-
walled cylinder subjected to an arbitrary internal loading was examined. The latter
is intended to illustrate the performance of the model in the case of material non-

linearity and arbitrary loading conditions in three dimensions.

5.2.1 Finite Element Mesh and Material Properties

The thick-walled cylinder selected for analysis has an internal radius of a = 1.0m,
outer radius of b = 1.5m, and length of L = 2.0m with one of its ends fixed, see
Fig. 5.1. The finite element mesh used in ABAQUS is shown in Fig. 5.2 where 3456
nodes and 576 elements are used, while in the Fourier finite element analysis, only
16 elements and 69 nodes are needed, see Fig. 5.3. The elastic and elasto-plastic

parameters used in this analysis are shown in Table 5.1.
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5.2.2 Under Uniform Pressure

Elastic Analysis

A uniform pressure of 1.0 x 10°kPa is applied at the internal wall of the cylinder in
the elastic analysis. Figure 5.4 shows the radial, tangential, and longitudinal stress
distributions along the radial distance for any given section along the circumference
since a uniform pressure is applied. As far as displacements are concerned, the two
models basically give identical results. In this simple case, which actually corresponds
to the axi-symmetric problem, it is not surprising that good agreement is obtained

between ABAQUS and the Fourier finite element model.

Elasto-Plastic Analysis

It is more interesting to turn to the elasto-plastic case which involves a thick-walled
soil cylinder subjected to uniform internal pressure. There exists a closed form
solution for the case the material follows a Drucker-Prager failure criterion governed

by cohesion ¢ and friction angle ¢. The elastic limiting pressure pi, is found to be

_ 6c (B* —d®)cosyp
6a2sinp + V352 (3 —sin )

Dim (5-1)

where a, b are the inner and outer radii respectively.

Using the set of parameters in Table 5.1, one finds an elastic limiting pressure
of 1.17 x 10%kPa for an internal pressure of 1.3 x 10°kPa. Figure 5.5 shows the
radial, tangential, and longitudinal stress distributions along radial distance. It is

again seen that the Fourier finite element model agrees very well with the ABAQUS
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results, even in the non-linear material regime.

5.2.3 Mildly Non-symmetric Internal Loading

From the previous section, it can be seen that the Fourier finite element model agrees
perfectly with ABAQUS for both elastic and elasto-plastic thick-walled cylinder un-
der uniform internal pressure. Tests still need to be passed for cases of arbitrary
loads in both elasticity and elasto-plasticity. The same thick-walled cylinder is now
subjected to an arbitrary internal loading described by a radial pressure variation

along circumferential direction, i.e.

Pr = Do + D1 cos 8 + po sin 6 + p3 cos 26 + py sin 260 (5.2)

where sinf = 7;,‘-;, and cosf = 7;.5:_—2,; z, ¥, z being given in Fig. 5.1. In order
to complicate the loading, the radial pressure also varies linearly along the longitu-
dinal direction according to p = po(L — y)/L. As such, one can say that the load

distribution is truly three-dimensional in nature.

Elastic Analysis

The load for the elastic analysis was chosen such that the coefficients that appear
in Eq. (5.2) are pp = 19200kPa, py = 320kPa, p2 = —160kPa, p3 = 640kPa and
ps = 480kPa. The load distribution which emerges from such choice of values is
illustrated in Fig. 5.6 in a cross-sectional plane.

Figure 5.7 shows the load vs. displacement relations and the comparison between
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the Fourier FEM and ABAQUS results. The four locations at sections 0°, 90°, 180°, and
270° were previously defined in Fig. 5.1. Very good agreement between the two
methods is hence obtained.

The following sets of Figs. 5.8 to 5.15 show the radial, tangential, and longitudinal
stress distributions along radial distance at the free end and middle sections of the
pipe at sections 0°, 90°, 180°, and 270°. It is observed that the agreement between

the Fourier FEM and ABAQUS calculations is very satisfactory.

Elasto-Plastic Analysis

In the plastic analysis, the load coefficients used were py = 192000kPa, p; =
3200kPa, p; = —1600kPa, ps = 6400kPa and p; = 4800kPa so that the load
magnitude was substantially increased to make the material yield plastically. The
load distribution which emerges from such choice of values is illustrated in Fig. 5.16
in a typical cross-sectional plane.

Figure 5.17 shows the deformed shape of the cylinder under the mildly non-
symmetric load distribution. It can be seen that the deformations are truly three-
dimensional and there is no axis of symmetry.

The yield zone results of the Fourier FEM and ABAQUS comparison are very
close, see Figs. 5.18 and 5.19.

The load vs. displacement curves are shown in Figs. 5.20 to 5.23. These four
figures also show good agreement between the Fourier FEM and ABAQUS compu-
tations.

Finally, figures 5.24 to 5.31 show the radial, tangential, and longitudinal stress
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distributions along radial distance at the end and middle sections of the pipe at
four locations at 0°, 90°, 180°, and 270°. It is observed that the overall agreement

between the Fourier FEM and ABAQUS results are again satisfactory.

5.2.4 Extremely Non-symmetric Internal Loading

In the previous sections, the Fourier FEM and ABAQUS results agreed very well
for the elastic loading case because no plasticity occurred. For the extremely non-
symmetric loading case, only the elasto-plastic analysis was attempted for reason of

interest.

Elasto-Plastic Analysis

In this analysis, the load coefficients used were pyp = 103680k Pa, p; = 48000kPa,
pa = —24000kPa, p; = 96000kPa and p, = 72000kPa so that the load magnitude
was substantially increased in order to achieve a more profuse yielding state. The
load distribution which emerges from such choice of values is very non-symmetric as
illustrated in Fig. 5.32 for a typical cross-sectional plane. The geometric description
of the problem can be found in Fig. 5.1.

Figure 5.33 shows the deformed shape of the cylinder under this extremely
non-symmetric load distribution. It is obvious that the deformations are three-
dimensional and there is no axis of symmetry.

The comparisons of yield zone results bewteen the Fourier FEM and ABAQUS
are very close, see Figs. 5.34 to 5.37. Figures 5.34 and 5.35 show comparisons of the
yield zones at the free end while Figs. 5.36 and 5.37 refer to the yield zones at the
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fixed end.

The load vs. displacement curves are shown in Figs. 5.38 to 5.41 which reveal
a relatively good agreement between the Fourier FEM and ABAQUS computations.
However, some problems arise at 0° and 90° locations where the Fourier FEM load-
displacement curve seems to be stiffer than the ones generated by ABAQUS due to
mainly two reasons. Firstly, the mean consistent tangent operator made the cylinder
appear to be stiffer than in the real case. Secondly, the yield zone near 0° and 90°
sections is more severe than in the other sections, which can be found in Figs. 5.34
and 5.35. On the other hand, at the 180° section where the yield zone is not well
developed, the results given by the two methods agreed very well again.

Figures 5.42 to 5.53 show the radial, longitudinal, and tangential stress distribu-
tions along radial distance at the free end section of the cylinder at 0°, 90°, 180°, and
270° locations. It is observed that the results given by the two methods do not agree
well as in the mildly non-symmetric load case. This is largely due to the yield zone
being quite localized and confined within a small area. Consequently, the mean
consistent tangent operator technique does not apply very well in this case.

The effective plastic strain results of these two methods are compared in Figs.
5.54 to 5.57. It can be seen that the overall trend still shows very good agreement.
However, one can see that the Fourier FEM computation gives smaller effective
plastic strain values than those of ABAQUS. The use of 2 mean consistent tangent

operator obviously led to stiffer results in this case.
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5.3 Limitations

The above verifications indicate that the Fourier finite element model predicts the
stress and deformation behaviour of an elastic material accurately as shown in Figs.
5.7 to 5.15. However, great caution should be exercised when applying the Fourier
finite element model to elasto-plastic materials under non-axisymmetric loading con-
ditions. Referring to the treatment of the consistent tangent operator C%_, as pre-
sented in the previous sections, a mean value Eﬁﬂ in the circumferential direction
was proposed. As a result, this mean value of Eﬁ_,,l can be taken out of the inte-
gral involving 6, thus retaining the orthogonality condition in the integral and the
decoupled nature of all the harmonics.

Figures 5.58(a), (b), and (c) show graphically the process of taking the mean
consistent tangent operator at different radii. If the materials at a certain radius are
all in the elastic state as shown in Fig. 5.58(a), the mean stiffness is the same as the
elastic stiffness. Thus, this technique would accurately predict the correct results.
However, if the materials at a certain radius are all in the plastic state as shown in
Fig. 5.58(b), the mean stiffness would approximately predict the solution with good
accuracy. The reason for this is that the variation of the plastic stiffness may not be
very significantly different. However, if at certain radius, the plastic zone occurs in
one section and the rest is in an elastic state as shown in Fig. 5.58(c), this technique
would not be recommended. The applicability of this technique is questionable
because the material with the mean stiffness would behave quite differently to the
real case.

Figures 5.59(a) and (b) show a schematic view of a pipe subjected to non-
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axisymmetric internal pressures with different degrees of non-axisymmetry. Figure
5.59(a) is subjected to a mildly non-axisymmetric pressure and the plastic zone de-
veloped under this pressure tends to be also mildly non-axisymmetric. If one takes
a radius in the plastic zone, the soils in the circumferential direction would be in the
. plastic state and the mean stiffness would be very close to the actual plastic stiffness
as illustrated in Fig. 5.59(a). Therefore this technique would provide a reasonably
good solution to the problem. In the case of a uniform internal pressure, the solution
is accurate as shown in Figs. 5.4 and 5.5, regardless of the elastic or plastic state.
However, under extremely non-symmetric loading conditions, the plastic zone
will also be severely non-axisymmetric as shown in Fig. 5.59(b). The plastic zone
occurs in one part of the cylinder while the remainder is still in elastic state. It can
be easily noted that the mean of the consistent tangent operator would not predict
accurate results. As such, the strength of the structure would be overestimated as

the elastic zone contributes significantly to the plastic zone.

5.4 Conclusion

The above discussion indicates that the mean of consistent tangent operator tech-
nique is computationally advantageous. However, this technique should be used with
caution. In general, the load should be mildly non-symmetric such that the plastic
zone development follows the same trend. Although that the displacements in the
plastic zone would be smaller than in the true solution, the stress distribution tenden-

cies would be the same as shown in Figs. 5.42 -5.53. This technique can be used in
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the preliminary study of axisymmetric structures subjected to mildly non-symmetric
loading. An example would be the case of soil-pipeline systems where soil pressure,
ice pressure, water pressure, and thermal loading are mildly non-symmetric.

Under an extremely non-symmetric loading condition, the mean consistent tan-
gent operator technique should not be recommended. The actual stiffness of soils
in the circumferential direction should be employed which would involve much more
computational effort due to the coupled nature of the harmonics. In such a situation,
the advantage of the Fourier finite element method may not be very significant. An
alternative solution is to use the algorithm described in section 3.3 which accounts
for the coupling nature of the harmonics.

Finally, it is interesting to note that for extremely non-symmetric loadings, the
computing time for ABAQUS was 125 minutes while the Fourier FEM needed only
2 minutes on a RISC 6000 IBM Workstation at The University of Calgary.
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Mildly non-symmetric (for Drucker-Prager), load distribution
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Fig. 5.16 Load Distribution for Mildly Non-symmetric Plastic Case
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Fig. 5.17 Deformed Mesh under Mildly Non-axisymmetric Plastic Load
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Extremely non-symmetric (for Drucker-Prager), load distribution

P = [10.368+4.8cos(t)-2.4sin(t)+9.6cos(2t)+7.2sin(2t)]*10 ¢
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Fig. 5.32 Load Distribution for Extremely Non-symmetric Case
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Chapter 6

SOIL-PIPELINE FROST HEAVE MODELLING

6.1 Imtroduction

The objective of this chapter is to explore tﬁe capabilities of the Fourier finite element
model to analyze a soil-pipeline system which involves heat transfer and moisture
migration phenomena. It is attempted to model the Caen (France) (6] laboratory ex-
periment in which a small pipe (270mm in diameter), buried at a depth of 330mm, is
subjected to loads from freezing soil made up of sand and silt. The schematic setup of
the experiment with appropriate dimensions is shown in Fig. 6.1. The room temper-
ature was kept at —0.75°C while the pipe, carrying chilled gas at —5°C, ultimately
froze the soil in its neighbourhood. The soil is composed of two different materials,
namely SNEC sand and Caen silt which have largely different strengths and thermal
conductivities. As a result of the differential freezing around the pipe, non-uniform
movements and heave are induced at the surface of the soil. The computation of the
resulting three-dimensional deformations is attempted.

The freezing of the soil underwent several stages as described in Rajani and

Morgenstern [2] so that resulting deformations were incremental.
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6.2 Finite Element Mesh

Figure 6.2 shows the layout of the aforementioned three-dimensional problem in
which a pipe carrying chilled gas freezes the surrounding soil. The soil in the lon-
gitudinal section of the pipe is composed of two different materials, namely silt and
sand with contrasting mechanical characteristics.

The Fourier finite element mesh used in the computations covers 9m of total pipe
length with the radial, longitudinal, and circumferential directions denoted by r, z
and 6. A typical r — z plane is discretized by using eight-noded isoparametric finite
elements. A total of 224 elements and 751 nodes were used with each node having
three degrees of freedom. It is noted that considerably more elements and nodes
would have been involved if a classical 3-D finite element mesh were to be used.
The pipe is herein represented by thin elements and perfect bonding with the soil is
assumed. An interface/contact element will be required for more refined calculations
in future studies.

To capture the complete three-dimensional behaviour of the structure, it suffices
to make several computations (so called harmonics) in the § direction based on the
two-dimensional finite element mesh shown in Fig. 6.2. Accordingly, computed
displacements will have three components while stress and strains six independent
components.

Thirty six planes (np = 36) were chosen in which the field variables T, 6;, 6, P
and P, were determined from two-dimensional finite elements heat transfer and mois-
ture migration calculations, see Fig. 6.3. Once the ice and liquid pressures were
known for each of these planes, the thermal stresses emerged as o** = (P; + P) §.
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These are used to calculate the thermal loads f™ which enter into Eq. (3.54) such

that
np
™= z (AOL//Bﬂ af,’:rdzdr) (6.1)
L=1 rJz

6.3 Boundary Conditions

6.3.1 Restrictions

With regards to fixity, all nodes on the right and left ends are fixed in z direction,
but freed in the r and 6 directions. Furthermore, in order to prevent rigid body
modes, one node at each end was additionally restricted in the 6 direction, see Fig.
6.2. All the remaining nodes along the external boundary and the internal side of

the pipe are free in r, z and @ directions.

6.3.2 Thermal Boundary and Initial Conditions

For thermal boundary conditions, the right and left ends are assumed to be insulated
boundaries in order to simulate an infinitely long pipe. The internal temperature of
the pipe has a prescribed value of —5°C. Figure 6.4 shows the temperature distribu-
tion applied along the outside periphery of the finite element mesh as extracted from
the work of Selvadurai [64] which dealt with the same case study. It is interesting to
note that the temperature profile is symmetric about a vertical longitudinal cut of

the pipe. The overall temperature distributions in the silt and sand around the pipe
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appear to be mildly non-symmetric.
In the subsequent frost heave calculations, the initial temperature of the ground

was assumed to be 0°C .

6.3.3 Liquid Pressure Boundary Conditions

To simulate the evolution of frost bulb, the proper liquid pressure boundary condition
has to be applied for the solution of Eq. (4.40). The liquid pressure boundary
distribution used in this analysis is shown in Fig. 6.5. The upper semi-circle of the
outside boundary defined by A, B,C, D, and E, has zero liquid pressure because all
the pore water in this region is frozen. The liquid pressure along the lower semi-
circle of the outside boundary is calculated according a certain capillary pressure
distribution. In fact, at the lowest point, L, the capillary pressure is —v, h and
varies linearly decreasing to zero along the height up to the centre altitude of the
pipe. Here, h is the distance from the lowest point to the water table, which is 0.5m

taken from Caen experiment setup.

6.4 Model Parameters

The frozen sand and silt were assumed to follow a Drucker-Prager elasto-plastic
material model law with corresponding mechanical properties borrowed from the lit-
erature, Rajani and Morgenstern [2]. Table 6.1 summarizes the material parameters
used in the simulation. In order to simplify the calculations, the pipe was assumed

to behave as a von Mises material with elasto-plastic properties much higher than



Table 6.1: Fourier FE Model Parameters

Property Silt Sand Pipe

E (kPa) 960 2820 2 x 10°
v 0.3 0.3 0.3

o, (kPa) 140 170 2 x 105
v () 30 30 -
X (W/m/°C) 0.65 2.2 43

' C (J/m®]°C) 108 1.5 x 10° | 3.7 x 10°
k (m?/s/Pa) | 29 x 10~1% | 8.7 x 10~ -
no 0.38 0.29 -

that of the soil.

6.5 Results

6.5.1 General View

180

Figure 6.6 shows the ground surface heave along the longitudinal direction. The

dashed lines represent the original configuration while the curved solid lines show

the deformed one. It is clear that deformations on the Caen silt side are more

prominent that those on the side of the SNEC sand. This is due to the considerable

difference in material properties of the two soils. Also, deformations are function

of the ice pressure, unfrozen water pressure and temperature distributions which

were computed from the moisture migration FEM program, see Figs. 6.14-6.33 and

6.41- 6.43. The maximum heave of the silt reaches 16.4cm which is very close to the

16.2cm measured in the Caen experiment. The hump associated to this maximum

heave is a result of the underlying large yield zone. The yielding taking place near
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the ends of the pipe is possibly due to end effects. The other hump which appears
near the interface region corresponds to the different frost loads existing in the two
soils. The SNEC sand side has an almost uniform displacement of 2.5cm, because
it is stiffer and thus deforms elastically. It is worth noting that the surface heave
shown in Fig. 6.6 corresponds to the superposition of both the surface and bottom
radial displacements. This is necessary because the lower portion of the soil and
the bottom of the tank are constrained to any downward displacement. Hence, all
the calculated downward displacements have to be superposed onto the upper ones.
Figure 6.6 also shows the soil-pipe system at steady state with a major part of the
silt soil yielding. Here, the steady state refers to the condition at which both the
temperature and frost heave have reached their ultimate values and remain constant.
It takes sixteen iterations for the system to reach a mechanical equilibrium state. It is
reminded here that, in general, the shape of the surface heave profile largely depends
on a number of factors. These are: heat transfer/moisture migration induced loads,
thermal coefficient of expansion, strength contrasts between silt and sand materials,
and to some extent, soil-pipe interaction which, in this case, was omitted.

The yield zone distributions are graphically shown in Fig. 6.7. Extensive soil
yielding occurred in the silt zone for section @ — a, due to the sharp differential
heave. Both the pipe and the surrounding soil are subjected to considerable shear
stresses and strains. Since the pipe was modelled as a stiff member with very limited
interaction with the adjacent soil, very high stresses built up in the pipe. If some
degree of interaction was allowed by the introduction of contact elements, consider-

ably lower pipe stresses would have been obtained due to the allowance of slip, and
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hence enhancement of plastic yielding at the pipe-soil interface.

Figure 6.8 shows the cross sectional deformation of different pipe sections. In
section a — a. This deformation does not include the rigid upward movement of the
pipe, which means that the dashed original pipe position has moved upwards about
9¢m, seen from the left end of Fig. 6.6. The largest deformation of 6.2mm is also
near the end restrictions, because more yield zone for the silt occurred in this area.

Figure 6.9 shows the plan view of the deformed pipeline along the longitudinal
direction. Since the load and geometry are symmetric with respect to the vertical
plane, the same symmetry is reflected in the displacements. The three-dimensional
view of the ground surface clearly shows that most deformations take place in the
silt zone with a maximum heave of 16.4cm, see Fig. 6.10.

The plot of number of iterations as a function of out of balance residual force
is given in Fig. 6.11. Since a Newton-Raphson scheme coupled with a consistent
tangent operator (see Chapter 3) is used in the model, quadratic convergence rate
should be expected. However, the results obtained in this analysis do not exactly re-
flect this expectation. There are two main reasons to explain this shortcoming here:
firstly, the integration for the load term along circumferential direction @ is approxi-
mated by the summation of a series of sectors; secondly, when the material undergoes
plastic deformations, the consistent tangential operator, C , is approximated by the
average value along the circumferential direction . One notices that in the first four
iterations, see Table 6.2, the convergence appears to show an oscillating trend which
dies out very rapidly at subsequent iterations. The total number of iteration was

sixteen which is still considered as very acceptable in plasticity computations. It is
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Table 6.2: Convergence Rate

No. | Residual | No. | Residual | No. | Residual | No. | Residual
1 1219x10°| 5 [313x10°| 9 |6.37x10"T| 13 | 8.76 x 103
3 1430 x102]| 6 |1.63x102| 10 | 347x10T| 14 | 2.39x10~°
3 1286 x102]| 7 |3.10x107| 11 |473x102] 15 | 5.01 x 10~*
4 |4.06x10°| 8 |405x100| 12 |567x10~>| 16 | 8.00 x 10~

also important to underscore the efficiency of the computations as the CPU time
consumed on a Pentium PC/100 for running the analysis was about twenty five (25)
minutes for calculating five harmonics. Table 6.2 gives the corresponding data to
Fig. 6.11.

Figure 6.12 gives the comparison of the rate of convergence towards the 3-D
solutions for the cases involving one harmonic and five harmonics. One can see that
there is not too much difference between the ground surface heave computed for
these two cases. This is mainly because the temperature induced load distribution
does not vary much along the circumferential direction as discussed in detail for a
mildly non-symmetric load case in Chapter 5. The results for the other harmonic
cases (two, three, and four) are located between the one and five harmonic cases.
Generally, four to five harmonics would be sufficient enough for addressing most
loading conditions. In this example, five harmonics were sufficient to describe the
three-dimensional aspect and asymmetry of the problem.

Figure 6.13 shows the surface heave value comparisons of the ‘start’ case, t =
2 hours, to the ‘end’ (stable or steady) case, t = 33 hours. The ‘start’ case is
the first time step at which the response is still elastic and the ‘end’ case is the

fifteenth time step at which elasto-plastic behaviour occurs. It does not take too
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many time steps to reach steady state, because the heat capacities of both soils are
somewhat low, see [2]. Due to the scarcity of related information in the literature,
these low heat capacities were the only best approximations. In the real practical
case it is expected that the steady state will usually take much longer time. If the
heat capacities for both soils are chosen reasonably, the proposed model will capture
the actual procedure accordingly.

6.5.2 Analysis of Ice Pressure Evolution

At the beginning of the simulation (the initial state), the upper half of the soil-pipe
system is considered to be in a frozen state. Therefore, ice bulb evolution only
occurs in the lower half of the soil-pipe system due to suction and capillary effects
mainly prevalent in the lower half of soil-pipe system. The capillary water pressure
is assumed to increase with the height from the surface of source water table up to
the bottom of the model boundary. Then, the capillary water pressure decreases
from the bottom of the model boundary up to the interface of the lower half and
upper half of the pipe. The above mentioned capillary water pressure distribution
is shown in Fig. 6.5. Under the capillary water pressure, the water from the source
water table will be sucked upward. This process results in more water aggregation
to the frozen fringe so that the ice fringe will gradually expand with further cooling
taking place as time passes by.

The numerical resuits of the simulation regarding the ice pressure evolution in
the longitudinal direction is given in Figs. 6.14-6.33. Five typical sections of the
soil-pipe system are investigated at locations of 190°, 210°, 230°, 250°, and 270° with
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angle measured counterclockwise, see Fig. 5.1. Note that the axis o0 — y is the only
axis of symmetry. For each of these five sections, four time stations are examined.
The four time stations are 2 hours, 4 hours, 6 hours, and 33 hours after the beginning
of the initial state. These four time stations correspond to time step 1, time step 2,
time step 3, and time step 15 (the last time step). The time step is the iteration time
step used when solving Eq. (4.40). The results given in Figs. 6.14—6.33 reveal that
the convergence rate to the steady state is very fast because the result at time step
3 is very close the that of time step 15, which is the last time step and the steady
state. Generally the results computed at time step 1 of all the five sections have
some oscillations especially in the region near the bottom of the model boundary.
One possible reason for the oscillation may be attributed to the high capillary water
pressure gradient at the bottom of the model boundary. Another possible reason
may be due to the low heat capacities used in the two soils. The slight oscillation
can be seen in time step 2 of these five sections. However, with the time increase,
from time step 3 onwards, the oscillation vanishes very quickly.

Another important fact needs to be addressed. As shown in Figs. 6.14— 6.33,
the ice bulb evolution on the silt side is much faster than that on the sand side.
This is because of the different properties of the two materials. However, the overall
numerical results obtained in this model agreed very well with the Caen experiment.

Figure 6.34 shows a schematic demonstration of the ice bulb evolution in the
cross-sectional direction. It can be seen that the ice bulb expands with time. At the
last time step, the ice bulb approaches the boundary of the model and steady state is

reached. Again, because the ice bulb evolution converges very fast, the situation at



186

time step 3 (only 6 hours after the beginning of the initial state) is very close to the
situation at steady state. This is because some parameters, such as heat capacity,
were intentionally chosen so that the heat conduction process converges very quickly
to save computational effort. It is important to note that only the steady state
results are of interest in the calculations and not the manner in which one achieves

them.

6.5.3 Stress Distribution

Figures 6.35-6.40 show selected stress distributions for some sections at the steady
state. Generally, from these figures it can be seen that the stress in the silt side is
larger than that in the sanci side due to the contrast in material properties. The stress
in the vicinity of pipe is more concentrated than that further away from it. This
is because the soils near the pipe are closely bound to the pipe which is also much
stiffer than the surrounding soil. If contact elements were introduced in the model,
this effect would have been smoothened out significantly. Because the structure
and the load are symmetric about the vertical central plane, only half structure is
investigated. For example, the situation in the 180° section is the same as that in

the 0° section.

6.5.4 Temperature Distribution

At steady state, the temperature distributions for typical sections are shown in Figs.

6.41-6.43. The temperature and load distributions are closely related. The colder
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the temperature in the soil, the larger the ice pressure load will be in that soil and
this effect can be clearly seen on the silt side. Also, due to the symmetry of the

structure and load conditions, only half of the structure is being investigated.

6.6 Conclusion

This study shows that classical Fourier finite elements can be extended in order
to address material non-linearities such as plasticity. The modelling of a buried
pipe subjected to a freezing soil illustrates the viability of the method when it is
supplemented with coupled heat transfer/moisture migration calculations. The soil
heave profiles obtained in the numerical analysis are consistent with experimental
findings for similar configurations. Also, the evolution of the frost bulb has been
captured. It would be interesting to study the sensitivity of the results with regards

to the inclusion of soil-pipe interface mechanism.
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Fig. 6.4 Temperature Distribution on the Outside Boundary of the FEM Mesh
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Fig. 6.5 Liquid Pressure Boundary Conditions
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Fig. 6.7 Yield Zones at Different Sections
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Fig. 6.8 Pipe Movement at Different Sections
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Section 190-degree; time=2hrs

Pressure (Pa )

2.30x10*
1.87x10°
1.44x10*
- 101x10*
d  5.75x10°
1.43x10*
-2.80x10*
-7.22x10*
-1.15x10*
-1.59x10°
-2.02x10*
-2.45x10*
-2.88x10*
-3.32x10°
-3.75x10°

Fig. 6.14 Ice Pressure Evolution at Section 190 Degree; 1st Time Step

Section 190-degree; time=4hrs

Pressure (Pa )

4.04x10°
3770t
3.50x10°
a2zt
2.95x10*
2.6ax10*
2.41x10*
2.14x10°
1.86x10"
1.50x10°
1.32x10*
1.08x10°
7.77x10*
5.05x10*
2.33x10*

Fig. 6.15 Ice Pressure Evolution at Section 190 Degree; 2nd Time Step
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Section 190-degree; time = 6hrs

Pressure (Pa )

4.31x10*
4.02x10*
3.74x10*
3.48x10*
3.16x10*
2.87x10*

1.43x10*
1.14x10*
8.49x10*
5.61x10"
2.72x10*

Fig. 6.16 Ice Pressure Evolution at Section 190 Degree; 3rd Time Step

Section 190-degree; time = 33hrs

Pressure (Pa )

4.38x10*
4.08x10°
a.7ex10*

3.50x10°
3.21x10°
291x10*
2.62x10*
2.33x10*
2.04x10*
1.74x10*
1.45x10*
1.16x10°
8.63x10°
5.70x10*
2.77x10*

Fig. 6.17 Ice Pressure Evolution at Section 190 Degree; 15th Time Step
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Section 210-degres; time = 2hrs

Pressure (Pa )

1.64x10*
1.10x10*
5.71x10°
3.80x10°
-4.93x10*
-1.03x10°
-1.56x10*
-2.00x10°
-2.62x10°
-3.16x10°
-3.69x10*
-4.22x10*
-4.75%10*
-5.28x10*
-5.82x10*

Fig. 6.18 Ice Pressure Evolution at Section 210 Degree; 1st Time Step

Section 210-degree; time = 4hrs

Pressure (Pa )

4.15x10*
3.86x10*
3.56x10*
3.2m10*
2.98x10*
2.69x10*
2.39x10*
2.10x10*
1.81x10*
1.51x10°
1.22x10°
9.28x10*
6.35x10*
3.42x10*
4.94x10°

Fig. 6.19 Ice Pressure Evolution at Section 210 Degree; 2nd Time Step
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Section 210-degree; time = 6hrs

Pressure (Pa )

4.52x10*
4.22x10*
3gx10*
| 3.61x10°

y 3.30x10°
3.00x10*
2.70x10*
2.39x10*
2.00x10*
1.78x10*
1.48x10*
1.17x10*
8.67x10*
5.62x10*
2.57x10°

Fig. 6.20 Ice Pressure Evolution at Section 210 Degree; 3rd Time Step

Section 210-degree; time = 33hrs

Pressure (Pa )

4.61x10°
4.30x10°
3.98x10*
v 3.88x10°
w3370
3.08x10°
2.75x10°
2.44x10°
2.13x10°
1.82x10*
1.50x10*
1.19x10*
8.84x10*
5.73x10*
263x10*

Fig. 6.21 Ice Pressure Evolution at Section 210 Degree; 15th Time Step
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Section 230-degree; time = 2hrs

Pressure (Pa )

5.63x10°
-1.57x10*
-8.78x10*
= .1 60x10*
. -2.32x10°
-3.04x10*
-3.76x10*
-4.48x10°
-5.20x10"
-5.92x10*
-8.64x10*
-7.36x10*
-8.08x10*
-8.80x10*
-9.53x10"

Fig. 6.22 Ice Pressure Evolution at Section 230 Degree; 1st Time Step

Section 230-degree; time = 4hrs

Pressure (Pa )

4.46x10°
4.12x10*
3.78x10*
3.44x10*
3.10x10*
d 2.76x10*
2.43x10*
2.09x10*
1.75x10°
1.41x10°
1.07x10*
7.33x10*
3.94x10*
5.51x10°
-2.84x10*

Fig. 6.23 Ice Pressure Evolution at Section 230 Degree; 2nd Time Step
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Section 230-degree; time = 6hrs

Pressure (Pa )

4.98x10*
4,66x10*
4.32x10*
o 3.98x10*
o 3.64x10°
3.30x10*
2.97x10*
2.63x10*
2.29x10°
1.95x10*
1.62x10*
1.28x10*
9.40x10*
6.03x10°
2.65x10*

Fig. 6.24 Ice Pressure Evolution at Section 230 Degree; 3rd Time Step

Section 230-degree; time = 33hrs

Pressure (Pa )

5.11x10°
4.76x10*
4.42x10*
B 4.07x10°
o 3.73x10°
§ 3.38x10°
3.04x10*
2.69x10*
2.35x10*
2.00x10*
1.85x10°
1.31x10*
9.83x10*
6.18x10*
2.73x10*

Fig. 6.25 Ice Pressure Evolution at Section 230 Degree; 15th Time Step
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Section 250-degree; time = 2hrs

Pressure (Pa )

-a.16x10*
-1.20x10*
-2.08x10*
. -2.97x10"
g -3.86x10°
4.74x10*
-5.83x10°*
-8.51x10*
-7.40x10*
-8.28x10*
-9.17x10*
-1.01x10*
+1.09x10*
-1.18x10°

-8.17x10'] -1.27x10°

SV DA SV P RSN S ARV SRV R

Fig. 6.26 Ice Pressure Evolution at Section 250 Degree; 1st Time Step

Section 250-degree; time = 4hrs

Pressure (Pa )

4.67x10*
4.30x10"
3.92x10*
3.54x10°
3.17x10*
2.79x10*
241x10*
2.03x10*
1.66x10"
1.28x10*
9.01x10*
5.24x10°
1.47x10°
-2.31x10*
-8.08x10*

Fig. 6.27 Ice Pressure Evolution at Section 250 Degree; 2nd Time Step
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Section 250-degree; time = 6hrs

Pressure (Pa )

5.34x10*
4.98x10°
4.62x10*
s 4.26x10°
g 3.90x10°
3.53x10*
3.17x10*
2.81x10*
2.485x10°
2.08x10*
1.72x10*
1.36x10°
9.97x10*
6.35x10"
2.73x10°

Fig. 6.28 Ice Pressure Evolution at Section 250 Degree; 3rd Time Step

Section 250-degree; time = 33hrs

Pressure (Pa )

ss2x10*
5.15x10*
47710
8 4.40x10°
. 4.03x10°
§ 3.685x10°
3.28x10*
2.90x10*
253x10*
2.16x10*
1.78x10*
1.41x10°
1.03x10*
6.50x10°
2.85x10°

Fig. 6.29 Ice Pressure Evolution at Section 250 Degree; 15th Time Step
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Section 270-degree; time = 2hrs

Pressure (Pa )

-5.18x10*
-1.44x10°
-2.36x10°
[ .3.28x10°

§ -4.20x10°
5.12x10°
-8.04x10*
-6.96x10°
-7.88x10"
-8.80x10*
-9.72x10*
-1.06x10*
-1.16x10*
-1.25%10°
-1.34x10°

Fig. 6.30 Ice Pressure Evolution at Section 270 Degree; 1st Time Step

Section 270-degree; time = 4hrs

Pressure (Pa)

4.7710*
4.38x10*
3.gex10*
3.60x10*
g 321x10°
N 282a0"
2.43x10°
2.08x10*
1.86x10*
1.27x10°
8.80x10*
4.92x10*
1.03x10*
-2.95x10"
8.74x10"

Fig. 6.31 Ice Pressure Evolution at Section 270 Degree; 2nd Time Step
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Section 270-degree; time = 6 hrs

Pressure (Pa )

5.47x10*
S5.10x10*
4.72x10*
.- 4.35x10°
3.98x10*
3.61x10*
3.24x10*
2.87x10*
2.50x10*
2.13x10*
1.76x10°
1.39x10°
1.02x10"
6.46x10*
2.76x10*

Fig. 6.32 Ice Pressure Evolution at Section 270 Degree; 3rd Time Step

Section 270-degree; time = 33hrs

Pressure (Pa )

5.63x10*
5.25x10*
48710
e 4.4ox10*
m  4.11x10"
3.72x10*
3.34x10*
2.86x10°
2.58xt10*
2.20x10*
1.81x10*
1.43x10*
1.05x10*
6.69x10°
287x10*

Fig. 6.33 Ice Pressure Evolution at Section 270 Degree; 15th Time Step
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Fig. 6.34 Schematic Demonstration of Ice Bulb Evolution
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stress-r 90

3.31x10°
3.01x10?
2.71x10°
. 2.41x10°

g 2.11x10°
1.81x10°
1.51x10?
1.21x10°
9.13x10’
6.13x10’
3.13x10'
1.32x10°
-2.87x10'
5.87x10’
-8.87x10'

(kPa )

Sand

Silt

Fig. 6.35 Stress-r at 90 Degree Section; Steady State
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stress-r 270

3.21x10?
2.90x10°
2.59x10%

1 2.27x10?
. 1.96x10%
1.64x10?
1.33x10?
1.02x10°
7.04x10'
3.91x10'
7.75x10°
-2.36x10'
-5.50x10"
-8.63x10’
-1.18x10?

(kPa)

Fig 6.36 Stress-r at 270 Degree Section; Steady State
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4.38x10?
4.04x10*
3.71x10?
N 3.38x10°
M 3.05x10°
2.72x10?
2.38x10?
2.05x10*
1.72x10*
1.38x10°
1.06x10°
7.24x10’
3.92x10°
6.02x10°
2.72x10'

(kPa)

Sand

Fig. 6.37 Stress-r at 0 Degree Section; Steady State
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stress-rz

5§.20x10"
4.49x10'
3.78x10'
3.07x10'
2.35x10'
1.64x10'
9.32x10°
2.21x10°
-4.91x10°
-1.20x10'
-1.91x10'
-2.63x10'
-3.34x10'
-4.05x10'
-4.76x10'

(kPa)

Sand

Silt

Fig. 6.38 Stress-rz at 0 Degree Section; Steady State
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stress-it

2.12x10'
1.76x10’
1.40x10’
1.03x10’
6.70x10°
3.07x10°
-5.67x10"
-4.20x10°
-7.83x10°
-1.15x10"
-1.51x10'
-1.87x10'
-2.24x10'
-2.60x10'
-2.96x10'

(kPa )

Sand

Fig. 6.39 Stress-rt at 0 Degree Section; Steady State
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stress-zt

5.99x10°
5.50x10°
5.19%10°
. 4.79x10°
R 4.35x10°
{ 3.98x10°
3.59x10°
3.19x10°
2.79x10°
2.39x10°
1.98x10°
1.59x10°
1.19x10°
7.85x10°
3.84x10°

(kPa)

Sand

Siit

Fig. 6.40 Stress-zt at 0 Degree Section; Steady State
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2,03
224
| 245
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-3.95
4.16
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Fig. 6.41 Temperature Distribution at 0 Degree Section; Steady State
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Fig. 6.42 Temperature Distribution at 90 Degree Section; Steady State
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Fig. 6.43 Temperature Distribution at 270 Degree Section; Steady State



Chapter 7

CONCLUSIONS AND SUGGESTIONS FOR

FUTURE WORK

7.1 Conclusions

The major conclusions which result from the work presented in this thesis are as

follows:

1. The Fourier finite element model developed in this thesis has proved to be a
viable tool for 3-D solutions which involve non-linear calculations. The main
advantage of this method lies in the fact that 3-D computations are achieved

from a series of 2-D calculations.

2. A consistent tangent modulus first introduced by Simo and Taylor [48] has been
adopted for Fourier finite element calculations in this thesis. This framework
ensures quadratic convergence of Newton method during the iteration for the

determination of global equilibrium of the structure.

3. An algorithm has been devised for handling non-linear material behaviour in
the Fourier finite element method without losing the decoupled nature of the

global stiffness matrix. This is achieved by defining an average consistent
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tangent modulus calculated from values obtained in each plane in the circum-
ferential direction. Therefore, the integrals representing stiffness do not involve
constitutive terms dependent on the circumferential direction. Hence, harmon-

ics can be calculated independently with respect to each other.

. Within the non-linear regime, the iteration procedure for the equilibrium of the
system has to be taken care of. At each loading step, convergence of the entire
global equilibrium system must be reached by considering all contributions
from each harmonic. This is not done by just checking equilibrium conditions
for each harmonic individually, but by using accumulated stress values based
on contributions from each harmonic. Therefore, the accumulated stresses can
be used to calculate the corresponding internal loads which are then checked
against the applied external load level at the current loading step.

. The quadratic convergence of the global equilibrium equations is almost pre-
served for the Fourier finite element method devised in the previous item. This
has been verified in the numerical example which took only sixteen iterations

to converge within a tight tolerance.

. Few harmonics were necessary to describe the non-symmetry of the loads and
the three-dimensional response of the structure. For the case studied in this
thesis, five harmonics were usually needed with results not varying significantly
after the third harmonic. Therefore, the computational effort was considerably
less than that for a true 3-D problem, especially one involving plasticity calcu-

lations.
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7. In comparison to the Caen experiment results, the model satisfactorily captures
the surface heave and soil deformations, except for the pipe deflection due to

the absence of soil-pipe interaction element.

8. The coupled heat transfer-moisture migration problem has been effectively
solved by means of implicit finite elements. Again, non-linearities in the equa-
tions have been addressed using a consistent tangent operator which ensures

quadratic convergence.

9. Two FORTRAN codes (over 6,000 lines) were mainly written by the author, (i)
Fourier FEM for the stress analysis and (ii) a heat transfer-moisture migration
FEM program. These two programs run separately; the liquid/ice pressure
fields are determined first and used as load input in the Fourier FEM program.

7.2 Suggestions for Future Work
The following points need to be addressed in pursuit of future work.

e The soil-structure interaction aspect of the problem needs to be implemented

in the present model.

o Large shift which results from deflection of the flexible pipe must be included

so that more realistic results may be obtained.

o The Fourier finite element method as described in this thesis may have to be

revised so that the above aspects may be integrated successfully. For example,
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when applied to the non-linear regime, coupled terms of harmonics should
be taken into account instead of eliminating them by using the mean of the
consistent tangent modulus in the circumferential direction. This modification
as described in section 3.3 algorithm for coupling terms will result in large
increase of computational effort which may still be very economical compared

to a true 3-D finite element model.

An alternative solution may be found by expanding the Fourier terms in the
longitudinal direction instead of the circumferential direction. Coupled terms
should still be included since non-linearities and difference in material proper-

ties may occur in the longitudinal direction.

Consideration may also be given to the development of classical 3-D finite

element models, especially if contact elements are to be introduced.

The interaction between ice and liquid pressures as described by Clapeyron
equation gives unreasonable results in this study. Further theoretical work is

necessary in this area.

The coupling of the stress analysis (Fourier finite element model) with heat
transfer /moisture migration was not done implicitly as computations for each
component were done separately. Ideally, to check the level of coupling, the
volume changes computed in the stress analysis must be compatible with those
calculated in the thermal analysis. If these are not the same, new volume
changes must be computed iteratively until mass balance is satisfied between

the two models, i.e stress and thermal.
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