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Abstract 

The scope of this thesis is limited to analytical queueing theory models applied directly to 

discrete parts manufacturing systems. Furthermore, only closed queueing networks that can 

model flexible manufacturing systems of realistic size are considered. 

The results of this work relate to the problem of determining the equilibrium distribution of 

parts (customers) in closed queueing systems composed of M interconnected stages of 

service centers. The number of parts, N, in a closed queueing system is fixed since parts 

pass repeatedly through the M stages with neither entrances nor exits permitted. At the ith 

stage there are c1 parallel exponential servers with mean service rate u, for each server. 

When service is completed at stage i, a part proceeds directly to stage j with probability p. 

Such closed systems are said to be stochastically equivalent to open systems in which the 

number of parts cannot exceed N. 

By means of numerical examples, performance measures of the analytical models 

developed are explored through a C++ program written for some algorithms. The algorithm 

values are compared with exact performance values and the results are presented. Also, this 

thesis presents flexibility measures through computational examples and definitions of 

single-machine and machine-group flexibility relative to task sets. 
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Chapter 1 

Introduction 

Queueing has become a way of modern life which we encounter at every step in our daily 

activities. This has made the study of queueing become more interesting and important as it 

provides both a theoretical background to the type of service that we may expect from a 

facility and the way in which the facility itself may be structured to respond to some 

specified quality of service to its users (customers). Application of queueing theory 

provides the theoretical framework for the design and study of flexible manufacturing 

systems (FMSs). 

"A flexible manufacturing system (FMS) is a production unit capable of producing a range 

of discrete products with a minimum of manual intervention. It consists of production 

equipment workstations (machine tools or other equipment for fabrication, assembly, or 

treatment) linked by a materials-handling system to move parts from one workstation to 

another, and it operates as an integrated system under full programmable control." 

Generally, modeling approaches in flexible manufacturing systems can be categorized into 

two broad classes namely, analytical method and simulation method. This thesis only 

presents analytical modeling methods which have been used to study the behavior of 

queues in flexible manufacturing systems with emphasis on closed Jackson queueing 

'M. E. Marchant, personal communication, Oct. 12, 1983. Adapted from a definition developed by the 
International Institution for Production Engineering Research. 
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networks. The earliest works in this area were by Jackson (1954)(1956) to evaluate service 

standards in aircraft maintenance. Gordon and Newell (1967) extended the work of Jackson 

to more general networks of closed queues where the customers, after finishing service at 

one station, could go to another station with a given probability. They showed that a 

product-form solution, obtained for open queueing networks, also holds for closed 

queueing networks, the difference being that, in this case, there is a normalization constant 

that is considered dependent on the entire network and the problem is, for large systems it 

becomes computationally expensive to obtain the normalization constant. 

Buzacott and Shanthikumar (1993) reviewed queueing models that can be used to design 

flexible manufacturing systems. They devised efficient algorithms which reduced the 

computational difficulty of the normalization constant and relevant performance measures. 

Buzacott and Yao (1986) reviewed the development of analytical models for flexible 

manufacturing systems. They summarized the contributions of various groups at the time 

and outlined the directions in which the models needed extension. 

As a result of increased automation and the trend towards an ever shorter life cycle for a 

product, it has become apparent that the flexibility of the machinery needed for complex 

production processes is now very important for long-term profitability. Brill and 

Mandelbaum (1987)(1989) defined measures of flexibility which take into account how 

well a machine or group of machines can perform relative to a background task set. 
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1.1 Thesis Objective 

The objective of this thesis is to develop analytical queueing theory models applied directly 

to discrete parts manufacturing systems with emphasis on only single-class closed queueing 

networks that can model flexible manufacturing systems. Furthermore, both the 

performance measures and the flexibility measures will be explored through numerical 

examples and the results presented. 

1.2 Thesis Outline 

1) Chapter two deals with description of the fundamental components and characteristics 

of a flexible manufacturing system with a typical layout example. 

2) Chapter three discusses some vital decisions which should be made in relation to 

design, planning, and scheduling and control before any flexible manufacturing system can 

be established and implemented. 

3) Chapter four considers single class closed queueing network models that have a 

productform solution and can be analyzed exactly, provided suitable simplifying 

assumptions are satisfied. Jackson's closed network theorem is introduced. This chapter 

also presents the mean value algorithm and the extended mean value algorithm as defined 

by Buzacott and Shanthikumar (1993) for the solution of simple closed queueing networks 

when there is only a single server at a service center. 

4) Chapter five deals with computational examples to measure the performance of the 

analytical models developed in chapter four and the results presented. The C++ program 

codes for these examples can be found in the appendices. 
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5) Chapter six focuses on the flexible manufacturing system flexibility measures relative 

to a task set for single machine and group of machines as defined by Brill and Mandelbaum 

(1987)(1989) with computational examples. 

6) Chapter seven is the summary and discussion. 
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Chapter 2 

Characteristics of FMS 

2.1 Introduction 

In this section we will first define flexible manufacturing system (FMS) and then describe 

the fundamental components of FMS. 

2.2 What is an FMS 

Flexible manufacturing system is a computer-controlled group of numerically controlled 

machines (fully automated machines) with supporting work stations which are connected 

by automated material handling systems and are controlled by a central computer. For 

instance, if an FMS is designed to manufacture cars, then a production planner responsible 

for production planning gets information on market demands, production capacity, current 

production levels, raw materials needed, etc. to determine specification of the sequence of 

operations required for converting raw materials into parts and then assembling parts into 

products. The task plan is then divided into subtask plans to obtain short-term schedules 

showing, for each service center, its goals for the next point of action. The jobs assigned to 

the service center are then sequenced by the order in which they will be loaded onto the 

machines. The material handling system transports parts on pallets between work stations. 

The central computer (controller) keeps track of the system's status. The controller 
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downloads commands to the individual system components based on current status and 

production plans. The processed parts pass through the inspection unit for quality standard 

check before moving on to assembly work station to be assembled into finished products. 

2.3 System Machines 

A typical FMS consists of computer-controlled machines that are used for value-added 

production operations. Machine operations such as milling, shaping, turning, etc. are 

carried out to produce parts such as engine blocks, pumps, etc. (which have irregular 

shapes) and shafts, rings, etc. (which have regular shapes). The machines are provided with 

tool magazines (storages) and automatic tool changers to allow many operations to be 

performed on a part each time it is available to the machine. A particular work piece may 

have to visit more than one machine to have required operations performed. So, many parts 

can be machined without tooling changeovers. 

2.4 Material Handling System 

One important aspect of FMS is the material handling systems. They are automated to 

handle work pieces both within and between work stations. They act as the circulatory 

system of the whole plant system, distributing vital material to all of plant's cells. A 

manufacturing cell (plant's cell) is a cluster or collection of machines designed and 

arranged to produce a specific group of component parts. There are many kinds of material 

handling systems such as rail mounted carts, conveyors,. tow carts and automatic guided 

vehicles (AGVs). But AGVs are now more popular than the others. An AGV is a self-

powered electrically driven vehicle which transports a pallet containing one or more 
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fixtured parts for work piece to rest on. A work piece is one of the parts (jobs) to be 

processed which arrive in batches to a work station for processing. Work piece is 

transported on pallet to a fixture on the machine which is specially designed for the work 

piece. The fixture holds the work piece in a specific orientation for the machine to operate 

on it. Loading and unloading parts at machines are done automatically by pallet changers. 

To avoid blockage there may be the need for different types of pallets or pallets with 

fixtures of a given work piece to be set in place. The material handling system of FMSs 

permits work pieces to visit machines in any sequence and imposes no constraint on the 

number of visits of work pieces to machines. 

2.5 Work Stations 

Another vital component found in FMSs is a number of supporting work stations where 

operations such as milling, drilling, washing parts, inspecting parts, or measuring parts are 

performed. An automatic washer station is where all the cleaning of parts for machining is 

done. Inspection and measurement of parts are done at the coordinate measuring machine 

station. As loading and unloading station is used to enter and remove parts from the system, 

statistical quality control station is used to make sure that all manufactured products meet 

standard specifications. 

2.6 Information and Control Systems 

Information and control systems consist of either one central computer or several 

computers with programmed controllers that can exchange data and commands. The 

systems keep track of information on the status of jobs, machines operation, and material 
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handling systems, and also control the processing of jobs to and from the system. An 

attendant loads the computer with data and keeps track of problems to rectify or makes 

changes where necessary. The controller downloads commands to the individual system 

components according to production plans and current production status. The components 

respond and execute the command or show that they failed to execute. The controller 

controls loading and unloading of parts onto and moving between machines. It also 

controls tools path and automatic change of tools. 

2.7 Flexibility 

According to Askin and Standridge (1993), "flexibility refers to the ability to handle 

different product sizes, shapes, weights, paths, and volumes with the same equipment." 

There are relatively many advantages of an FMS due to its flexibility nature. Some of the 

benefits of an FMS include the ability to respond to changing markets, and to quickly and 

efficiently incorporate design or process changes, or to use new materials. Flexible systems 

in an FMS permit multiple operations to be performed on a work piece. Machine tools of 

the system are computer controlled; hence the system is flexible to produce a variety of 

parts by a simple change of controller software. Also, with tool automated changing 

capability, setup time is eliminated, enhancing machine productivity and workflow 

characteristics. Furthermore, the system can respond flexibly to unforeseen activities, such 

as machine breakdown and temporary overloads, by dynamically rerouting work pieces to 

the closest available machine with the necessary tooling to alleviate potential bottlenecks. 

These flexibilities, among others, promise productivity improvements through increasing 
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machine utilization and, at the same time, reducing levels of work-in-process (WIP) and 

production cycle time. 

2.8 A Typical FMS Layout 

Generally, the number of pallets that move the parts in an FMS is assumed to be fixed, so 

the number of parts that the system can accommodate at a time is also fixed. To maximize 

the throughput (i.e., the number of parts processed per unit time), a part is replaced by a 

new part as soon as it finishes processing and leaves the system. This can be considered a 

closed system because the number of parts in the system can be assumed to be fixed. This 

characteristic allows these systems to be modeled as closed queueing networks. Figure 1 

show a typical FMS layout which can be modeled by a closed queueing network. 

MACHINING CENTER 
(7 SETS) 

ci 

ci 

ji 

ID Cl D 11 DI 
El 

D 

lu DDDDI 
PALLET STOCKER 

INSPECTION 
UNIT 

DII D  :4 
ROBOT CARRIER 

M 
(4 SETS) 

LOAD UNLOAF 
STATION 
(3 SETS) 

Figure 1: A Typical FMS Layout (Figure, courtesy of Arbel and Seidmann, 1984) 
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Chapter 3 

Planning and Control of FMS 

3.1 Introduction 

For an FMS to work effectively to yield the desired result, some vital decisions should be 

made. In this section we will discuss some strategic decisions relative to design, planning, 

and scheduling and control. 

3.2 System Design 

In designing an FMS one starts with a specification having few or moderate details and 

creates certain design proposals. It is important to carry out some preliminary calculations 

to check the feasibility of the proposals against the specification. A design team must 

carefully ensure their proposals are technically sound, offer economic benefits, and are 

financially justifiable before establishing more details and implement. In light of these, 

some vital decisions have to be made and these have been divided into initial specification 

decisions and subsequent implementation decisions (Stecke, 1985). 
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3.2.1 Initial Specification Decisions 

1. Determination of types of parts to be processed on the FMS 

It must be decided which part types will be made on the system so that parts (identical part 

type) which share common tools, pallets, and fixtures or use the same materials can be 

grouped for appropriate machines to operate on them. This makes the system economical 

and also improves productivity. 

2. Specification of the number and type of processing machines and their tools 

needed 

Since the main aim is to make the FMS as flexible as possible the machine types and their 

tools ought to be selected in order to enable the system offer adequate flexibility in its 

operation. There should be a processing plan, which identifies the needed operations on 

each type of parts and the volume of parts required so that the number of machine types 

and tools needed to perform the operation can be determined. The number of machine types 

in the system normally depends on the capacity of the tool magazine. 

3. Determination of the type of material handling system 

The types of material handling system should be specified among rail-mounted carts, roller 

conveyors, tow carts, AGVs and so on. The choice is usually based on the methods through 

which the designer wants the system to handle materials efficiently and also the capital 

availability for its implementation. Some factors, which influence the choice, are the size 

and weight of the parts, and the volume of material handling. 
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4. Provision of tool and part system 

Automatic tool and part changing facilities and the necessary standard interfaces to other 

materials handing system should be provided for efficient running of the system. 

5. The materials storage system 

This system could be a central storage within the system or/and a computer controlled 

warehouse. It should communicate with the material handling and data processing systems. 

It should be able to store rough materials, semi-finished and finished work pieces, tools, 

fixtures and other necessary components, together with spare parts. 

6. Specification of computers and control system components 

The type of computers with specific software/hardware to control the system should be 

determined. Normally this should consist of several computers, which keep track of 

information on jobs in process, machines operation, and material handling systems, and 

should be linked to a central computer, which controls the whole system. This computer 

network should be linked with sensory-based diagnostic feedback systems in operation in 

each cell to detect faults and errors in case of breakdowns and report them automatically. 

3.2.2 Subsequent Implementation Decisions 

1. Systematic Layout by which the FMS will be configured 

The systems components such as machines, material handling systems, work stations, etc. 

should be properly laid out to avoid job delays which in effect reduces production cycle 

time. 
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2. Determination of number and type of pallets and fixtures 

Decision on how many pallets and fixtures type should be in the system is crucial because 

it determines the number of work pieces and the types of work pieces which should be in 

operation at a time. 

3. Specification of work methods 

The overall procedure that involves a specific and well-defined method of work should be 

determined. This involves the description of the way in which a workshop and all its 

equipment to be used functions. In line of this comes feasibility study whose aims are to 

establish that the project is technically possible, to make the initial choices and to 

determine a financial justification envelope or overall plan with maximization of profit in 

mind. 

4. Specification of information management system 

Determination of software for production planning, job scheduling, data processing, data 

management, and control need to be specified. They should be compatible so that future 

developments would not be higher capital investment or be impossible. 

3.3 System Planning 

A good planning procedure must take account of possible alternative routes taken by the 

part through the workshop. It becomes an element of forecast planning for the part and thus 

a sub-system in itself for production management. The two main planning in FMS are 

process planning and production planning. Process planning in FMS involves determining 

the route and the plan of activities for manufacturing, inspecting, assembling, etc. a work 

piece. Production planning entails the implementation of a process plan in a defined 
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environment for all parts to be produced and scheduled according to the manufacturing 

facilities and other resources of the factory. Therefore, planning decisions must be made 

before work pieces are released to the system for production to commence. 

1. Decision on the technology to be used 

Technology is a factor that is often not clearly defined in the manufacturing plan. It is 

important that manufacturing have a clear understanding of the technologies that will be 

required and that new technologies be introduced carefully, based on well thought out 

planning. It is well known that a smaller EMS is easier to manage and control than a larger 

EMS, so the designer should consider such options. There should be a dynamic routing 

(i.e., deciding which operation should be performed next by which processor depending on 

current machine work loads) to improve performance. Also, more tools and programs 

should be assigned to the set of tasks that require higher processing times. 

2. Selection of group of part types for simultaneous production 

A collection of part types along with the machines and tooling required to produce them 

should be grouped. To the extent possible, each part should be made totally within its 

group. Each parts group visit different group of machine types for simultaneous production 

of all part types in order to avoid machine idleness (i.e. total machine utilization). Parts 

should be dispatched to the system to match demand while keeping in mind system 

capacity. When the system requires frequent changeovers, the dispatching problem 

dominates. 
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3. Sequencing of operations 

Once in the system, a part must often visit a number of different machines before 

processing is complete. The sequence of the separate machine visits could be chosen to 

enhance the performance of the system. 

4. Operation and frequency selection for quality check 

There should be a decision on the type of measuring machine to monitor the quality of the 

parts being processed as well as the processes themselves. The intelligent selection of 

operations to measure and the frequency with which to measure them is required in order to 

ensure that quality standards are satisfied and that processing errors are quickly identified. 

5. Decision on human resource 

Implementation of any plan for automation is dependent on the availability of the technical 

skills and talents of people. It is necessary to have a clear understanding of the human 

resources, technical and non-technical, salaried and hourly that will be available to 

undertake implementation of the FMS. 

3.4 Scheduling and Control 

An FMS needs to perform operations under the control of a dynamic scheduling system. 

This means that decisions concerning what work piece is manufactured next on which cell, 

are made close to the operation currently being performed by the particular cell. In other 

words, a complete FMS schedule is not made in advance because it must be capable of 

responding to real-time decisions. The need to schedule the EMS for maximum 

effectiveness is great due to the high capital investment involve for such manufacturing 

processes. Since the objective of an EMS is to respond quickly to changes in customer 
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demand without carrying large finished goods inventory, dynamic scheduling decisions are 

necessary to maintain high system effectiveness. Also, there should be a control system 

which keeps track of production to make sure that all the production goals and targets are 

being met as scheduled. 

1. Part sequence into FMS 

Since an FMS can process a number of different parts and since these parts are required in 

certain ratios relative to one another, active control of the part input sequence is required. 

Workloads must be balanced so that all machines finish their work for each batch more or 

less together and new batch can start immediately. 

2. Sequencing of fixturings 

Many parts must make a number of passes through the system in order to process different 

sides. The sequence for these separate passes could be chosen to enhance the performance 

of the system. 

3. Cart choice and movement 

FMSs employ a number of separate carts for transporting parts from machine to machine. 

When the need arises for transporting a part, a choice among the carts of the system must 

be made. Carts are always moving, except while undergoing load/unload operation or while 

queueing at an occupied cell node. Shortest routes are chosen when there is a destination. 

Deadlocks are checked for periodically. Deadlocks refer to any blockages (congestion) 

which may occur from time to time. 
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4. Total number of pallets and each pallet type in the system 

Generally, increasing the supply of pallets will increase the rate at which parts flow through 

the system and vice versa. This is because having more pallets increases the probability that 

a part will always be ready for processing when a machine becomes idle. However, as more 

and more pallets are added to a system with limited storage capacity, the resulting 

congestion may actually reduce throughput. Most FMSs operate in a cycle mode; when a 

pallet comes out of the system, a part is chosen that can be fixtured on the pallet and the 

pallet is then sent back in. If more than one part type can use a given pallet type, the part 

that is most behind in production is usually chosen. 

5. Part priorities 

To make room for priority jobs, some control systems allow the operator to fine tune part 

priority above and beyond allocation of resources, i.e. machines, pallets, etc. The basic 

mechanism is to alter the processing order so that certain parts waiting to be processed by a 

particular machine can be processed first. 
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Chapter 4 

Exact FMS Models 

4.1 Introduction 

Models are required to predict the performance of the system and also to give the designer 

insight into the technical issues related to the system. Analytical models can be developed 

for performance evaluation. In order to solve the models they require simplifying 

assumptions but they have the advantage that assumptions can be made explicit and it is not 

difficult for other analysts to check the development of the model solution and validate it. 

The existence of an analytical model enables simulation model validity to be checked. 

These analytical models also enable the effect of different assumptions to be found. In this 

section we shall describe the process of developing and using some analytical models by 

using closed Jackson queueing networks. 

Assumptions: 

1. The system has M = (1, 2...... ,m) distinct service centers with ci identical servers 

at each service center. 

2. The maximum number of parts allowed in the system simultaneously is N. 

3. Parts that arrive when there are N parts already in the system wait in an external queue 

and are released to the system as soon as space is available. 

4. The distribution of service time at server i is exponential; i.e. F (t) = 1 - eit, where 

is the service rate of server i. 
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5. Parts are served according to a first come, first served (FCFS) service policy. 

6. Parts arrive at the system as a Poisson process with parameter X. 

7. Parts arrive in batches; the batches of the r types of parts are pre-specified. 

8. All these part types (the same class) can be loaded onto the same type of pallets. 

9. The service center 0 acts as the load/unload server. 

4.2 Single-Stage Closed Jackson Queueing Network Model 

The analysis of FMS using closed queueing networks was the concept of cyclic networks. 

In a cyclic network, the number of parts and the machines in the system as well as the 

sequence in which the parts visit the machines for processing is fixed. After finishing 

processing on the last resource, the parts return to the first resource, forming a cycle. 

Here we want the input process to maintain the number of parts at constant value of N. And 

each departing part is replaced immediately by a new part, thus we model this by a single-

class closed queueing network with a total of N parts in it. The fraction of parts that will 

join machine center i on their arrival is y, i = 1,  ,m. 

We must specify how parts (customers) determine the next queue they will visit when they 

have completed service at a particular queue. For all the models considered here, we 

assume that the selection of the next queue parts will visit is random and based on a 

discrete probability density function. The part that completes service at machine center i 

proceeds to station j ( # I) with transfer probability matrix P = (pj ) ,m• Thus the 

part departs the system entirely with probability PjO = q. = I —  pij , i = 1, , m. The 
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probability measure gives a great deal of control on how the parts move about the system. 

For the complete network of M queues, these probabilities can be seen as an M x M matrix 

P = [Pt,]• Since a part cannot disappear after leaving a queue, the rows of this matrix must 

sum to 1 (i.e. the matrix is stochastic). The average number of times a part visits machine 

center i during its stay in the system, 

V =y+. 1v3p3( ,i=1, ,m;where v0=1. 

So the visit ratios are simply the solution to the matrix equation v = y + VP, where v is a 

vector representing the visit ratios of parts to machine centers, v is a vector representing 

the fraction of parts that will join machine centers on their arrival, and P is a transfer 

(routing) probability matrix; it follows that v = (i —P) 1y, where v0= 1. The square 

matrix P is nonsingular since its rank is equal to the number of columns it has; that is, the 

columns of P are linearly independent. Note that VP = vp1 + v2p2 + + VmPm where 

pi is the ith column of P, so that the condition of nonsingularity is just the statement that 

the columns of P are linearly independent. Note also that for the condition of 

nonsingularity to hold there should be at least three machine/service centers (i.e., m ≥ 2 for I 

= 0,1, ,in) in the system. 

We will assume that all self-transitions have been eliminated so that pii = 0, i 1....... ,m. 

The service times of parts at machine center i are iid exponential random variables with 

mean 1/4u1 , i = 0,1...... m. All the service times and the arrival times are mutually 

independent. The rate at which a part is processed at machine center i when there are n 

parts is assumed to be r1(n), n = 1, N. This allows us present, as special cases, single or 
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multiple machines in parallel at the machine center i. Specifically if there are ci machines in 

parallel at machine center i, we set 

r(n) = min{n,c}, n = 1, ,N; i = 0,1, ,m. 

Let us assume that at time t, machine center i, i = 0,1 ....... m, contains Ai(t) individual parts, 

so that the state of the system may be represented as the vector 

A(t) = (A0(t),A1(t), ,A,1(t)). We assume for simplicity that the process A(t) is 

Markovian, taking values in the set NN = { n = (no,ni, ,n,,1) : ni = 1, ,N for 

0 ≤ i ≤ m }of sequences of non-negative integers. 

Define the stationary distribution of A by p(n) = limp{A(t) = n}, n E NN assuming its 

existence. The inflow into state n can occur from state n + ej - e1 owing to a service 

completion of a part at machine center j (j = 0,1..... ,m; j# 1) that joins machine center i 

directly; i = 0,1, ,m. Here ei is the ith unit vector. Now, equating the rates of probability 

inflow and outflow of state n, one gets the following balance equations: 

nz In m 

duJrJ(nJ +i)p,p(n+e —e1)= 1ui(n1)p(n),nE NN  (4.1) 
j=O iO i=o 

We can get p using equation 4.1 along with the normalizing equation 

nENN p(n) = 1. 

Theorem 4.1 

The equilibrium distribution of an irreducible closed Jackson network with Njobs is 

In 

p(n)=BN V i H n E NN,   (4.2) 
1=0 [L1uiU) 
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where BN = 
1 

III ha J. J_ 

nEN N 1=0 JT'11u,i(j) 

is the appropriate normalizing constant. 

(4.3) 

Proof of Theorem 4.1 

The process has at most one equilibrium distribution, and any such distribution 

p = (p(n) : ii E NN ) satisfies the equations 4.1. We will try to see whether a product form 

solution of the form p(n) = BN fj p, (n,) will lead to a consistent solution for equation 4.1. 

Substituting this product form in equation 4.1 and dividing by p(n) we get 

m nz + p(n +i) p,(n, .i) 
j=Oi0 p,(flj) fi,i(n1) ,n € NN , 

I=0 

Equating term by term in equation 4.4 for each i we get 

ni  p1(n1 —i) 1u,rj(nj +i) p(n()+1) p1 = ,ui (n,)p, (j,), i = 1, 

(4.4) 

 ,m; n E N, (4.5) 

Therefore, if equation 4.5 has a consistent solution for p, i = 0,1, ,m, it is also a 

solution to equation 4.4. For this to be true the term 

m p.(n.+1) 
,u,rj(nj + i) '  p1 =4 say, should be independent of nj  (4.6) 

j=O 

So, substituting 4 in equation 4.5, we get 

p1(n1-1)4=,u1r1(n1)p,(n1), n1=1, ,N;i=O,1, ,m.   ..(4.7) 

substituting equation 4.7 in equation 4.5, we get 

1=0,1, ,m ....(4.8) 
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Because 4, 1 = 0,1, ,m with v0=1 defined earlier is the solution to 

nl 

4 = i = 0, 1, ,m, setting 4 =v we see that the solution to 
j=o 

p(n—i)v1=ii1i(n1)p1(n1),nj=i, ,N  (4.9) 

is consistent with equations 4.7 and 4.8 and therefore 

p(n) = BN[Jpl(nl) , n NN is a solution to equation 4.1. 

Because p1(n1)= Vni 
  , n1=0,1......,N; 1=0,1, ,m   ..(4.10) 
IIE ni =1itiriU) 

satisfies equation 4.7 we see that 

p(n) = BNfl i—rn , fl E NN, 

i=0 ii(i) 

where B. - 

1 
in 71 nj 

nENN 10 

Hence the proof is complete. (Buzacott and Shanthikumar (1993)) 

Now, we will treat the entire system as an M/M(N)/1 queueing system. Parts arrive at the 

rate A = Ay1. Parts are served (state-dependent) at the rate Ur1 (n1) when there are ni parts 

in the system ( ni = 1, 2, )  For this model, the level crossing rate balance equation for 

the stationary distribution P{X1 = n1}, n1 = 0,1, ., is 

Av1p{X = n1}= 1u1i(n, +1)p{X1 = n1 +i}, ni = 0,1, ,  ...(4.11) 

where X1 is a random variable representing the stationary distribution of the number of parts 

in the M/M(N)/1 queueing system and ,u,r, (i,) = min{n1, c1 },u1 is the rate at which service 

completions occur when there are n1 parts in the system. That is, we can have ci parallel 
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servers at service center i, such that 2 <p,c, or equivalently 2 < ,u.c1 I z. Solving equation 

4.11 with the normalizing condition I p(n) =1, 

one obtains PM = n1}= Vj  '' p{x, = o}, ni = 0, 1, ,  (4.12) 
ni 

j=1 

The distribution of X is the stationary distribution of an open Jackson queueing network 

with a set of service centers {0,1, ,in} and an arbitrary part visiting service center i 

on the average v, number of times before it leaves the system (1 = 1, .,m) and the 

load/unload center twice (= 2v0). If we observe the open queueing network only when 

there are a total of N parts in it, then the distribution of the number of parts in the closed 

queueing network model is the same as that of the open queueing network. Now, we need 

to compute the convolution of the probability distributions, 

fli 

p{x, =n1}=P{X, —0X2v1Iit1)'/fJi(j) ,i=0,1, ,m.   (4.13) 

to get the probability distribution of the number of parts in the closed queueing network. 

The below algorithm by Buzacott and Shanthikumar (1993) will compute this convolution 

and the stationary distribution of the number of parts in the closed queueing network. 

Algorithm 4.0 ConvolUtion Algorithm 

Step 1: Set pi (0) = 1, 1 = 0,1, ,m 

Step 2: For i=0,1, ,m 

For n=0,1, ,N-1,set p1(n+i)=p1(n)v1i(,ui(n+i)) 

Step 3: Set (n)=p0(n),n=0,1,  
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For i=1, ,m 

For n=O,1,  

For n=0,1,  

In 

,N, set c(n)=E P (e)p1(n—e) 
e=0 

,N, set f3(n) = t(fl) 

Step 4: p(n) = (1/(N))Hpj(nt) , n E N N 
1=0 

Step 5: Stop. 

Various performance measures can be computed from the model. For example, the 

expected number of parts at service center i, is 

E[N1 (N)] = Th(N)  1)t)ip(fl;N —i) , i = 0,1, ,m.  .(4.14) 

where Th(N) is the throughput rate, thus Th(IV) = p0E{r0 (NO (N))] is the rate at which parts 

are being loaded/unloaded at the load/unload service center. 

The long-term expected time of an arbitrary part in service center i, is 

N—I +1 
'' E[T1 (N)] = 1 p1(n1;N-1), i = 0,1, ,m.  . (4.15) 
,f 01u,i(n1 +i) 

The throughput rate, Th(N) = m N i = 0,1, ,m.  (4.16) 

v,E[1 (N)] 
1=0 

where E[N1(N)] N. 



26 

4.3 Mean Value Analysis (MVA) 

Mean value analysis of queues is an approach which can be used to study queueing 

networks with product-form solutions. With this procedure, operations are measured in 

terms of mean queue size, mean waiting time, and throughput. It is based on Little's 

formula, L = 2W (i.e., the average number of customers in the system L, is equal to the 

average arrival rate 2, times the average amount of time spent by the customers in the 

system, W) and the following results: 

In a closed queueing network with product-form solution, the probability that the system is 

in state N upon arrival of a part in the system with N parts is the same as the long term 

equilibrium probabilities of N in a system with N -1 parts. 

Mean value analysis (MVA) results in a simple recursive algorithm to determine measures 

of performance and can be used to analyze closed networks by applying an algorithm 

which has been found to be fairly accurate. 

Now, if we observe that pi (0;0) = 1, i = 0,1, .,m and Th(1) = , then 

/ Vi  

Buzacott and Shanthikumar (1993) suggest that the following mean value analysis 

algorithm provides an efficient way to compute the system performance measures if each 

service center has only a single server (i.e., c1 = 1, i= 0,1,  

Algorithm 4.1 Mean Value Analysis (MVA) 

Step 1: Set E[N1(0)] =0, i-0,1,  

Step 2: For £ =1, ,N , compute 

i=0,1,  

,m 

,m). 
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Th(t) 

E{N1()]=v1Th()E['I(e)] , i=0,1,  M. 

Step 3: Stop. 

Note that the expected number of times a part visits service center i as a class £ part is v, 

the solution to the equation v = E vjp ji ,i = 0,1, ,ni (i.e. v = VP). Because each part 

visits the load/unload station only once before it is replaced by a new (raw) part we also 

have v0 = 1. 

4.4 General Single-Stage Closed Queueing Network 

It is important to account for deviations from the exponential service time assumptions. We 

will allow the service time distribution to be arbitrary and to be described by the mean and 

second moment of service time at each service center. We assume that there are c (c1 ≥ 1) 

parallel servers at service center i, and the part service times at each service center form an 

iid sequence of random variables with distribution function Z. with mean E[S], second 

moment E[S ], i= 0, 1, ,m. Thus each service center acts as a • / G, / c1 queueing 

system with the input process" ." determined by the rest of the service centers. 

We suppose that service center i can be modeled by a M 1(N)/G1/c queueing system with 

state-dependent arrival rates 2(n1), ni = 0,1, ,N and the mean and squared coefficient 

of variation of the service times are E[S]= and C, respectively. Expressions for the 
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M(N)IG/c queue usually rely on C; which is assumed known for each service center (it 

depends on the service time distribution). 

According to Buzacott and Shanthikumar (1993) when we have only a single server (i.e., c 

= 1) at each of the service centers, each arrival to service center i on its arrival will see the 

part in service, if any, requiring an average of EIS?]/ 2E[S1] additional processing time to 

complete its service. This exhibits the property of an MIGI1 queueing system. They also 

said that, with this and assumption that an arrival with N parts in the system sees the time 

average behavior of a system with N -1 parts, we have 

i['j (N)] = {E[N, (N - i)] - v,Th(N - 1)E[S, ]+ 1}B[s1] + vTh(N - 1)B[s]/ 2 , i = 0,1 ......... in. 

 (4.17) 

So, approximate performance measures -of the general closed queueing network are as 

follows; 

Algorithm 4.2 Extended Mean Value Analysis (EMVA) 

Step 1: E[N1(0)] =0, i=0,1, ,in.;Th(0)=0 

Step 2: For £ =1, , N , compute 

E[1(e)] = {B[N1( -i)j- v'm(t —1)E[s}+ 1}E[s1]+ v,Th(J? -1)E[s]I2, i = 0,1,.. .,in 

Th(e) = •/ ZvjE[T#)1f 

•!=Mo 

E[N1()]=vTh()E{'I(e)] , i=0,1,  

Step 3: Stop. 
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Chapter 5 

Illustrative Numerical Examples 

5.1 Introduction 

In this section we shall explore, by means of computational examples, performance 

measures of the analytical models developed in Chapter Four using Algorithms 4.1 and 

4.2. All the results are from C++ programs written for Algorithms 4.1 and 4.2 for each 

example. The C++ programs for each example are shown in the appendices A-F. 

In all cases considered we have only a single server (i.e., ci = 1, i = 1 ...... m) at each service 

center, and service center 0 is considered to be the load/unload server. The expected 

number of times a part visits service center I as a class £ part is v,, the solution to the 

in 

equation t = Y Vjpji,i = 0,1, ,m (i.e. v = vP). Because each part visits the 

load/unload station only once before it is replaced by a new (raw) part we also have v0 = 1. 

The parts are serviced according to the FCFS service protocol. 

5.2 Statement of Problem 1 

The management of a company considered owning a new designed FMS. It is estimated 

that this new system can handle a total of six jobs. Three machine centers (0, 1, 2) (with a 

load/unload station being machine center 0) are to be formed to cover all the processing 

requirements of the six jobs. Each machine center is to be equipped with a single server and 
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their processing times are expected to be E[So] = 0.7, E[S1] = 1, E[S] = 0.3 and their 

squared coefficient of variation of the service times are assumed known to be C = 0.25, 

("2 
= 1 C 1 , 2 = 0.5. The routing probability matrix 

0 0.45 0.55 

P= 0.3 0 0.7 

0.4 0.6 0 

We want to calculate the performance measures. 

5.3 Results of Problem 1 

Using Algorithm 4.1 (MVA); we know that ,u1 = YE[Si]' so we get p0= 1.42857, u1= 1, 

In 

and U2= 3.33333. Also, with V1 = z vjpji ,i=  0,1, ,m (i.e. v = vP), we get v0= 1, v1= 
j=1 

1.3448, and v2= 1.4914. We put these values in the C++ program found in appendix A and 

the following results were obtained. 

MVA approximate throughput = 0.7308 

Exact throughput = 0.7306 

Table 1 gives the comparison of exact and MVA approximate average queue length and 

average waiting time for problem 1. 

Machine 
center 

Average number of parts 

B[N,(e)] 
Average waiting time 

E[I(e)] 

MVA Approx. Exact MVA Approx. Exact 
0 0.9821 0.9818 1.3438 1.3435 
1 4.5404 4.5416 4.6198 4.6202 
2 0.4776 0.4772 0.4382 0.4376 

Table 1: A comparison of MVA approximation and exact performance - Problem 1 
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Using Algorithm 4.2 (EMVA); with E[S]= (E[s])2 x (i + c) we get, E[S]= 0.6125, 

E[S2] 2, and E{S]= 0.135. We put these values and the values of v1 and E[S1] in the 

C++ program found in appendix B and the following results were obtained. 

EMVA approximate throughput = 0.7359 

Exact throughput = 0.7358 

Table 2 gives the comparison of exact and EMVA approximate average queue length and 

average waiting time for problem 1. 

Machine 
center 

Average number of parts 

E[N, (e)] 

Average waiting time 

E[ (e)] 

EMVA Approx. Exact EMVA Approx. Exact 
0 0.8192 0.8190 1.1132 1.1128 
1 4.7356 4.7359 4.7851 4.7857 
2 0.4453 0.4459 0.4057 0.4046 

Table 2: A comparison of EMVA approximation and exact performance - Problem 1 

5.4 Statement of Problem 2 

An FMS consists of three machine centers, each with a single machine. A single type of 

part is loaded onto N = 10 pallets and processed by this FMS. Assume each part visits 

machine center i = 0, 1, 2 on the average v0= 1, v1= 0.4, v2= 0.8 times and the average 

processing requirements are E[SO] = 1.35, E[S1] = 2, E[S2] = 1.65 respectively per part per 

visit to machine center i. If the squared coefficient of variation of the service times of each 

machine are known to be 1.5, 1.25, and 1 respectively; we want to calculate the 

performance measures. 
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5.5 Results of Problem 2 

Using Algorithm 4.1 (MVA); from the problem we have 

in 0 1 2 
0.7407 0.5 0.6061 

Vi 1 0.4 0.8 

Table 3: Values we put in the C++ program found in appendix C 

We put these values (Table 3) in the C++ program found in appendix C and the following 

results were obtained. 

MVA approximate throughput = 0.6704 

Exact throughput = 0. 67 11 

Table 4 gives the comparison of exact and MVA approximate average queue length and 

average waiting time for problem 2. 

Machine 
center 

Average number of parts 

E[N, (i)] 

Average waiting time 

EE7 (t)] 

MVA Approx. Exact MVA Approx. Exact 
0 4.1170 4.2314 6.9083 6.9267 
1 1.0696 1.0256 4.1393 4.1105 
2 3.8133 3.6840 7.9415 7.9113 

Table 4: A comparison of MVA approximation and exact performance - Problem 2 

Using Algorithm 4.2 (IEMVA); from the problem we get 

in 0 1 2 

E[S1] 1.35 2 1.65 

Vi 1 0.4 0.8 

1.5 1.25 1 

E[S,] 4.55625 9 5.445 

Table 5: Values we put in the C++ program found in appendix D 
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We put these values (Table 5) in the C++ program found in appendix D and the following 

results were obtained. 

EMVA approximation throughput = 0.6549 

Exact throughput = 0.6558 

Table 6 gives the comparison of exact and EMVA approximate average queue length and 

average waiting time for problem 2. 

Machine 
center 

Average number of parts 

E{N1()] 

Average waiting time 

E{7 (e)] 

EMVA Approx. Exact EMVA Approx. Exact 
0 5.0121 5.1243 7.6527 7.6942 
1 1.1225 1.0441 4.2847 4.2645 
2 3.8655 3.7451 7.3775 7.3567 

Table 6: A comparison of EMVA approximation and exact performance - Problem 2 

5.6 Statement of Problem 3 

Consider a closed queueing network model of an FMS with a load/unload station 0 and 

three service centers (1, 2, 3). Each center is known to have a single machine and their 

processing rates are u= 2, u1= 0.6897, ,u2= 1, 14= 0.5. Parts are transported between 

service centers by a closed-loop conveyor that connects all machines. The conveyor has 

ample capacity and small delay time relative to machine processing time and will be 

excluded from our analysis. The system is shown in Figure 2; with inter-machine transfer 

probabilities: P00 = P11 = P22 = P33 = P30 = P12 = P13 = 0, P01 = 0.2, P02 = P20 = P23 = 0.3, P03 

= P31 = P32 = 0.5, P10 = 1, P21 = 0.4. The squared coefficient of variation of the service 
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times of each machine are fixed to be 0.5, 2, 1, and 0.5 respectively. N = 15 parts are kept 

in process. We want to examine the performance measures of the system. 

Service Centre 0 

3 

Figure 2: A Closed Queueing Network 

2 
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5.7 Results of Problem 3 

Using Algorithm 4.1 (MVA); from the problem we have 

M 0 1 2 3 

A 2 0.6897 1 0.5 

Vi  0.1059 0.6471 0.6941 

Table 7: Values we put in the C++ program found in appendix E 

We put these values (Table7) in the C++ program found in appendix E and the following 

results were obtained. 

MVA approximation throughput = 0.7203 

Exact throughput = 0.7214 

Table 8 gives the comparison of exact and MVA approximate average queue length and 

average waiting time for problem 3. 

Machine 
center 

Average number of parts 

E[N,(e)] 
Average waiting time 

MVA Approx. Exact MVA Approx. Exact 
0 0.5629 0.5604 0.7814 0.7762 
1 0.1244 0.1097 1.6302 1.6274 
2 0.8730 0.8776 1.8728 1.8842 
3 13.4398 13.4122 26.8801 26.8432 

Table 8: A comparison of MVA approximation and exact performance - Problem 3 
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Using Algorithm 4.2 (EMVA); from the problem we get 

M 0 1 2 3 

E[S] 0.5 1.45 1 2 

Vi 1 0.1059 0.6471 0.6941 

0.5 2 1 0.5 

E[S2] 0.375 6.3075 2 6 

Table 9: Values we put in the C++ program found in appendix F 

We put these values (Table 9) in the C++ program found in appendix F and the following 

results were obtained. 

EMVA approximation throughput = 0.7346 

Exact throughput = 0.7362 

Table 10 gives the comparison of exact and EMVA approximate average queue length and 

average waiting time for problem 3. 

Machine 
center 

Average number of parts 

E[N1(e)] 
Average waiting time 

E[7 (e)J 

EMVA Approx. Exact EMVA Approx. Exact 
0 0.5380 0.5298 0.7188 0.7121 
1 0.1344 0.1307 1.7272 1.6952 
2 0.9093 0.9244 1.9129 1.9223 
3 13.4283 13.4013 26.3351 26.3321 

Table 10: A comparison of EMVA approximation and exact performance - Problem 3 

The results from all the three illustrative examples indicate that both Algorithm 4.1 (MVA) 

and Algorithm 4.2 (EMVA) accurately predict the exact performance measures. In practical 

application, the designer should make sure that any changes in the assumptions go with 

changes in the model. The exact performance measure results were obtained from queueing 

network analysis package software. 
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Chapter 6 

Measures of Flexibility in FMSs 

6.1 Introduction 

A company's ultimate success depends on its ability to utilize resources and meet the needs 

of the market. These internal factors steer demand and in turn the volume of business and 

the price of the commodity. Drastic changes in market demands and rapid technological 

development have created a need for more flexible production systems and more complex 

products with a larger degree of variation. 

There is strong pressure towards the use of more and more mechanized and automated 

equipment from single numerical computerized-machines to complete manufacturing 

systems. At the same time, there is a need for flexibility towards changes in the products. 

These changes have to be made in a limited time and without the need for large 

reinvestments in the production system. Thus, production analysts are concerned with how 

well systems perform under a variety of conditions, and the ability of machines or groups 

of machines to adapt to change. FMSs have generated interest in flexibility, how to achieve 

it and how to measure it. In this section we shall explore measures of flexibility of 

machines and groups of machines relative to sets of required tasks, as defined by Brill and 

Mandelbaum (1987)(1989) by giving examples of their computation. 
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6.2 Measures of Single-Machine Flexibility Relative to Finite 

Task Set 

The flexibility measures depend on the set of tasks to be done relative to a background task 

set, the relative importance of the tasks and the efficiency of machines in doing them. 

Let au denote the effectiveness of machine i for doing task j, where 0 ≤ a, ≤ 1 . The 

effectiveness measure will reflect the machine characteristics such as set up time, speed, 

quality, cost of doing the task, etc. For instance, the effectiveness measure might depend 

inversely on cost but directly on speed. That is, if the cost of a machine in doing a task is 

denoted by C and the speed of the machine in doing the task is denoted by S, then the 

effectiveness of the machine, a = k / C and a = kS respectively, where k is a constant, which 

is chosen such that 0 ≤ a ≤ 1. It follows that S = 1 / C, thus as the cost of doing a task 

increases, the speed of doing the task decreases. Also, let wO ≤ co ≤ 1, denote the weight 

of importance of task j. If the task set consists of all tasks under consideration, denoted by 

task set ST, then 

w1=1. 
JEST 

If the task set ST is a subset of all tasks, i.e. S. c ST, then 

co ≤1. 
JEST 

Thus the measure of flexibility for machine i relative to a task set ST is defined as 

zaijwj 
F jESr  

i,ST - 

JEST 

(6.1) 
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provided jWj > 0. 
jesT 

Example 6.1 

A task set consisting of five tasks is to be performed, and six different machines are being 

considered to do them (Table 11). To each machine-task pair corresponds a number 

between 0 and 1 which indicates how effective the machine is in doing the task. An 

effectiveness rating of 1 indicates that the machine can perform the task most effectively, 

while a rating of 0 indicates that the machine cannot do that task at all. Also, to each task 

corresponds a non-negative weight of importance such that the overall weight for the whole 

task set is 1. Therefore, a machine is more flexible than another if its weighted 

effectiveness in performing tasks in the set is greater. Thus, a measure of flexibility for a 

machine is its weighted effectiveness over all the tasks in the set. 

For instance, the measure of flexibility of machine 3 is given by 

F - 0.0x0+0.lx0.7 +0.2x0.3+O.3x0.6-i-.O.4x0.5 —051 
?fl3 - 0.0+0.1+0.2+0.3+0.4 - 

where the denominator is the sum of all the importance weights. 

The flexibility measure for each machine are computed in the same way and shown in 

Table 11. Machine 5, ,n, has a greater flexibility measure than machine 2, 1n2, although it 

can do fewer tasks to some degree, and machine 1, ml, has a greater flexibility measure 

than machine 4, 1n4, although both can do all five tasks to some degree. 
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Machine-task efficiencies 
Task 1 2 3 4 5 
Weight of importance 0.0 0.1 0.2 0.3 0.4 Machine flexibility Fm. 

Group 1 machines 
MI 1 1 1 1 1 1.00 

Group 2 machines 
M2 0 0.8 0.4 0.9 0 0.43 
M3 0 0.7 0.3 0.6 0.5 0.51 

Group 3 machines 
M4 0.3 0.8 0.7 0.4 0.9 0.70 
M5 0 0 0 0.7 0.6 0.45 

M6 1 0 0 0 0 0.00 

Table 11: Machine flexibility 

Example 6.2 

In most practical applications only a subset of the tasks may be relevant. Referring to Table 

11, assume only tasks 3, 4, and 5 are applicable. Using the same importance weights (0.2, 

0.3, 0.4) for tasks 3, 4, and 5, respectively, we can compute flexibility measures between 0 

and 1 relative to this new task subset. For instance, the flexibility of machine 3, m3, relative 

to the task subset Sr= {3, 4, 5} is given by 

F (0.2x0.3+0.3x0.6+0.4x0.5) —0.49 
F. 3,  (0.2 + 0.3 + 0.4) 

where the denominator is the sum of the importance weights for the subset. 

The flexibility measures of machines 1 - 6 relative to the task set ST = {3, 4, 5) are 

respectively 1.00, 0.39, 0.49, 0.69, 0.50, 0.00. 

The ordering of the flexibility measures of the machines depends on the background 

reference subset of tasks. If the task set of five tasks is used, then an ordering of the 

machines in ascending order by their flexibility measures is (m6, m2, m5, m3, m4, ml). 

On the other hand, if the machine flexibilities are measured relative to the task subset 
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ST = 13, 4, 5 }, then the ordering is (m6, m2, m3, m5, m4, mi). 

6.3 Measures of Machine-Group Flexibility Relative to a Finite 

Task Set 

Production analysts or decision-makers may be interested in the flexibility of a group of 

machines rather than that of an individual machine. 

We consider three groups of machines from Table 11: 

Group 1 = {mi}, Group 2 = {m2, m3}, Group 3 = {m4, m, m6}. There are many ways 

flexibility of a group of machines relative to a task set ST can be defined. 

1. An optimistic measure of machine-group flexibility 

An optimistic measure of group flexibility is given by 

w max {au} 
F1)T = j,iG'3  (6.2) 

where G denotes the group of machines. The machine-group effectiveness is computed by 

taking the maximum value of effectiveness (or best machine) for each task. For instance, 

the group 2 effectiveness measures are 0, 0.8, 0.4, 0.9, 0.5 for the five tasks respectively. 

Thus, the flexibility measure is calculated similarly to that of a single machine (that is, as 

the inner product of the task importance weights and the group effectiveness measures). 

The flexibility measures with respect to ST = ST for group 1, group 2, and group 3 are as 

follows: 

- 0.0xl+0.lxl+0.2x1+0.3x1+0.4x1 - 

l'T 0.0+0.1+0.2+0.3+0.4 
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F(1) - 0.0x0+0.lx0.8+0.2x0.4+0.3x0.9+O.4x0.5 = 063 
Gz,Sr - 0.0+0.1+0.2+0.3+0.4 

F(1) = 0.0xl+0.lx0.8+0.2x0.7 +0.3x0.7+O.4x0.9 = 0.79 
G3,Sr 0.0+0.1+0.2+0.3+0.4 

respectively. Note that the group flexibility measure obtained by using the maximum 

effectiveness will always be greater than or equal to the measure of flexibility of a single 

machine in the group. This optimistic measure supposes the best allocation of machines to 

jobs. 

2. A pessimistic measure of machine-group flexibility 

A pessimistic measure of flexibility of the machine group with respect to a subset ST would 

be obtained by assuming the least effective assignable machine to do the task. In this case 

the measure would be 

w, min{a} 
F(2) - JEST,iEG  (6.3) 
G,ST 

where, for each j e S 

min(a,) = fmini{aiIaii > 01, if there exists ajj > 

0, otherwise. 

iEG 

Under this criterion, the lowest assignable value of effectiveness for each task is used. 

Effectiveness measures of zero are excluded since corresponding machines cannot be 

assigned to that task. The pessimistic flexibility for group 1, group 2, and group 3 with 

respect to ST = ST are as follows: 

F(2) - 0.0xl+0.lxl+0.2x1+0.3x1+0.4x1 —1 

0.0+0.1+0.2+0.3+0.4 - 

G1, Sr - 



43 

F(2) = 0.0x0+0.lx0.7 +0.2x0.3+0.3x0.6+0.4x0.5 = 0.51 
G,, S, 0.0+0.1+0.2+0.3+0.4 

F(2) = 0.0x0.3+0.lx0.8+0.2x0.7+0.3x0.4+0.4x0.6 = 0.58 
G3,Sr 0.0+0.1+0.2+0.3+0.4 

respectively. 

3. A probabilistic measure of machine-group flexibility 

A probabilistic measure of machine-group flexibility could be obtained by assuming that 

machine i has a likelihood of being used for task  with probability Pu, where Pij = 1, 

and Pu =0 if au =0. The group flexibility measure with respect to subset ST would be 

G,Sr 

= jESr iGG  

jESr 

wE[efficiency, conditional on doing task j] 
- JESr  

yjoj 
JESr 

where and FE.] stand for 'expected value' and 0 ≤ E[.] ≤ 1. 

(ieG 

(6.4) 

If we consider the weight of importance of task j, cod, as the probability of doing task i' 

then this group flexibility measure with respect to subset ST can be interpreted as the 

expected value of the machine-task efficiency ratings for the machines in the group. For an 

individual machine, the probabilistic flexibility measure is the same as the machine's usual 

flexibility measure. 
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Example 6.3 

Table 12 below shows probabilities assigned to each of the six machines and tasks, the sum 

in each column being 1. 

Task 1 2 3 4 5 

MI - 0.3 0.5 0.2 0.1 

M2 - 0.2 0.3 0.4 - 

1fl3 0.4 - 0.1 0.2 0.4 

M4 - 0.5 0.1 0.1 0.3 

M5 - - 0.1 0.2 

M6 0.6 - - - 

Table 12: Probabilities of pij of using mi for taskj. 

Consider the calculation of the flexibility with respect to ST = ST for group 1, group 2, 

and group 3 in the probabilities case . The conditional probabilities for group 1, group 2, 

and group 3 are calculated using qij = and shown in Table 13. 
Fij 

ieG 

Task 1 2 3 4 5 
Group 1 
machines m1 - 0.3 I 0.3=1 0.5 I 0.5=1 0.2 / 0.2=1 0.1 / 0.1=1 
Group 2 
machines m2 - 0.2/0.2=1 0.3 I 0.4=0.75 0.4 I 0.6=0.67 - 

m3 0.4 / 0.4=1 - 0.1 I 0.4=0.25 0.2 I 0.6=0.33 0.4 I 0.4=1 
Group 3 
machines m4 - 0.5 I 0.5=1 0.1/ 0.1=1 0.1/ 0.2=0.5 0.3 I 0.5=0.6 

- - 

- 0.1/ 0.2=0.5 0.2 I 0.5=0.4 
M6 0.6/0.6=1 - - - - 

Table 13: Conditional probabilities 
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The conditional expectation of machine-task efficiency is computed for each task using 

qa and shown in Table 14. 
iG 

Task 1 2 3 4 5 
Group 1 
machines nil - 1(1)=1 1(1)=1 1(1)=1 1(1)=1 
Group efficiencies - 1 1 1 1 
Group 2 
machines in2 - 1(0.8)=0.8 0.75(O.4)=0.3 0.67(0.9)=0.603 - 

fli3 1(0)=0 - 0.25(0.3)=0.075 0.33(0.6)=0.198 1(0.5)=0.5 
Group efficiencies 0 0.8 0.375 0.801 0.5 
Group 3 
machines m4 - 1(0.8)=0.8 1(0.7)=0.7 0.5(0.4)=0.20 0.6(0.9)=0.54 

M5 - - - 0.5(0.7)=0.35 0.4(0.6)=0.24 
M6 1(1)=1 - - - - 

Group efficiencies 1 0.8 0.7 0.55 0.78 

Table 14: The conditional expectation of machine-task efficiency 

The probabilistic flexibility for group 1, group 2, and group 3 are calculated using 

equation 6.4 as follows: 

- 0.lxl+0.2x1+0.3x1+0.4x1 =1 
GI,ST 0.0+0.1+0.2+0.3+0.4 

- 0.0x0+0.lx0.8+0.2x0.375+0.3x0.801+0.4x0.5 = 0.5953 
G2,Sr 0.0+0.1+0.2+0.3+0.4 

= 0.0xl+0.lx0.8+0.2x0.7+0.3x0.55+0.4x0.78 = 0.697 
G,,Sr 0.0+0.1+0.2+0.3+0.4 

Table 15 shows the summary of the calculation of group flexibility from Table 11 - Table 

14. In Table 15, conditional probabilities for each group from Table 13 have been shown, 

and the machine task efficiencies from Table 11 are shown in parentheses. The conditional" 

expectation of machine-task efficiency computed for each task from Table 14 has been 

shown in the last row of each group. Each group measure of flexibility is equal to the 
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weighted sum of the conditional expectations, utilizing the task weights of importance, thus 

we have 1 for group 1, 0.5953 for group 2, and 0.697 for group 3. 

Task 1 2 3 4 5 
Weight of importance 0.0 0.1 0.2 0.3 0.4 

mj 
(Group 1) Group efficiencies 

Flexibility = 

- 

- 

1 

1(1) 
1 

1(1) 
1 

1(1) 
1 

1(1) 
1 

M2 - 1(0.8) 0.75(0.4) 0.67(0.9) - 

(Group 2) in3 1(0) - 0.25(0.3) 0.33(0.6) 1(0.5) 
Group efficiencies 0 0.8 0.375 0.801 0.5 
Flexibility = 0.5953 

M4 - 1(0.8) 1(0.7) 0.5(0.4) 0.6(0.9) 
M5 

- - - 0.5(0.7) 0.4(0.6) 
(Group 3) m6 1(1) - - - - 

Group efficiencies 1 0.8 0.7 0.55 0.78 
Flexibility = 0.697 

Table 15: Summary of the calculation of group flexibility 

From the calculated values obtained for the flexibility measures for machine groups 1 - 3 

in all the three cases i.e., optimistic measure, pessimistic measure, and probabilistic 

measure, indicate that group 1 machines are more flexible, followed by group 3 machines 

and group 2 machines in that order. These computations are unique for this particular 

problem. This is so because a change in the background task sets changes the values of the 

flexibility measures. In an application, the background task sets should be defined to suit 

the particular problem at hand since the flexibility measures depend on the background task 

sets, and their values in general are sensitive to changes in the task sets. 
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Chapter 7 

Summary and Discussion 

Queueing theory models have found widespread use in the analysis of service provider 

facilities such as manufacturing systems, telecommunication systems, and many other 

situations where congestion or competition for scarce resources may occur. This thesis is 

intended to apply single-stage queueing theory to flexible manufacturing systems. Before 

we can apply queueing theory to flexible manufacturing systems, one has to know and also 

understand what a flexible manufacturing system is, and how it works. In light of these, we 

have defined a flexible manufacturing system (which is viewed as a fully automated system 

of service-providing work stations where parts (customers) enter the system of servers, visit 

their required servers in turn, and then leave the system). 

Any good and efficient flexible manufacturing system starts with strategic decisions in line 

with design, planning, and scheduling and control. We have outlined a detailed decision 

strategy in relation to these issues which are intended to be used by a management group 

(decision makers) in support of choosing a flexible manufacturing system, its set of number 

and type of machines, type of parts (products) to produce, designing a machine for 

particular assignment, specification of computers and control system components, etc. 

The management ultimate goal is to make sure that the system's machines are able to 

utilize all resources to boost production, so for productivity improvements through 
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increasing machine utilization, the system machines should be provided with tool 

magazines (storages) and automatic tool changers to allow many operations to be 

performed on a part each time it is available to the machine. Also, the material handling 

system of an FMS should be carefully selected such that it permits parts to visit machines 

in any sequence and imposes no constraint on the number of visits of parts to machines. 

Some factors that influence the choice of material handling system are the size and weight 

of the parts, the volume of material handling, and the capital availability for its 

implementation. Furthermore, the system should be able to respond flexibly to unforeseen 

activities, such as machine breakdown and temporary overloads, by dynamically rerouting 

parts to the nearest available machine with the necessary tooling to alleviate potential 

bottlenecks. 

To design an FMS there is the need for proposals and the designers must carefully ensure 

that their proposals meet certain criteria, such as their design is technically sound, offer 

economic benefits, and are financially justifiable before establishing more details and then 

implement. It is important for an FMS to have compatible information management system 

software so that future developments would not be higher capital investment or be 

impossible. Also, the designers and the planners should make it clear for the manufacturers 

to understand the technologies that will be required and that new technologies be 

introduced carefully, based on well thought out planning. There should be a measuring 

machine (quality control) to monitor the quality of the parts being processed as well as the 

processes themselves. The intelligent selection of operations to measure and the frequency 

with which to measure them is required in order to ensure that quality standards are met 

and that processing errors are quickly identified and corrected. 
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Decisions concerning what work piece is manufactured next on which work station, are 

made close to the operation currently being performed by the particular work station. That 

is, a complete FMS schedule is not made in advance because it must be capable of 

responding to real-time decisions - respond quickly to changes in customer demand. 

Generally, increasing the number of pallets in the system increases the rate at which parts 

flow through the system and vice versa. This is due to the fact that having more pallets 

increases the probability that a part will always be ready for processing when a machine 

becomes idle. But increasing the number of pallets should go along with increasing the 

storage capacity to avoid congestion that affects the throughput. 

We have developed analytical models to predict the performance of the flexible 

manufacturing system and also to give the designer insight into the technical issues related 

to the system. We considered only closed queueing networks that can model flexible 

manufacturing systems but we observed that there are two basic types of queueing 

networks distinguished by their nature of arrivals and departures. If a queueing network 

system has no potential for arrivals from the outside and at the same time does not allow 

parts (customers) to leave, we say that the queueing network system is closed. On the other 

hand, if arrivals and departures are allowed, the queueing network system is said to be 

open. Clearly, the number of parts in a closed queueing network system is fixed, while the 

number of parts in an open queueing network system can be any value from zero to 

infinity. So, closed queueing network system is said to be stochastically equivalent to open 

queueing network system if we observe the open queueing network system only when there 

is a fixed number of parts (a total of N parts) in it. 
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In order to solve the models they require simplifying assumptions. Although the 

assumptions of such models may not be met exactly in a practical application, these models 

can still be useful in providing a rough estimate of a performance measure. In designing an 

FMS, if the number of servers needed at each work station or service center is not known 

but the arrival rate A. and the service rate p are known or can be estimated, then the 

inequality A > p.c1 can be used to provide an initial estimate for the number of servers, c1, 

at service center i. 

Exact performance measure results were used to compare the predictive ability of the 

Algorithm 4.1 and Algorithm 4.2 and it was found that the algorithms provided 

performance measure estimates that were as accurate as the exact performance measures. 

The exact performance measure results were obtained from queueing network analysis 

package software. It should be noted that any changes in the assumptions should go with 

changes in the models. Thus it is important for the designer to have available resources 

(software) that implement the algorithms presented in this thesis so that he can try out a 

wide range of different system conditions to understand the influence of various design 

factors on system performance. 

There is strong pressure towards the use of more and more automated machines due to 

overwhelming changes in market demands, ever shorter life cycle for products, and rapid 

technological advancement. As a result of this, it is now very important that flexible 

manufacturing systems become more flexible for complex production processes which are 

the real situation on the ground of the manufacturing environment. We have defined 

flexibility measures of single machine and group of machines relative to finite task set. The 

flexibility measures depend on the set of tasks to be done relative to a background task set, 
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the relative weights of importance of the tasks and the efficiencies of the machines in doing 

them. 

In a practical application, decision makers must make sure that the background task sets are 

detailed defined to incorporate how important each task is to the particular problem in the 

production environment. This is so because of the sensitivity nature of the flexibility 

measures to the background task sets. In general, the values of the flexibility measures are 

sensitive to changes in the task sets because the flexibility measures depend on them. Static 

situations flexibility measures are considered and the simple numerical illustrative 

examples to explore the flexibility measures presented consider discrete task sets. 

However, the definitions of flexibility measures can be extended to cover continuous task 

sets. 
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Appendix A 

The C++ program for Problem 1 using Algorithm 4.1 (MVA). 

Notation  

i = k = 0, ,m = machine centers 

j = £ = 1, ,N=class £ parts 

m = number of machine centers 

N = number of parts 

EN[i]o) = BEN1 (£)] = average number of parts (£) at service center i (Note: £ = i) 

ET[i]o] = E{T1 (t)] = average waiting time of an arbitrary part () in service center i 

(Note: £ =j) 

Th[j] =Th[.e] = throughput rate (Note: £ =j) 

mu[i] = A = mean part service time at service center i 

V[i] = V1 = expected number of times a part visits service center i 

ET[m+1][N+1] = ET matrix of dimension m+1 x N+1 

EN[m+1][N+1] = EN matrix of dimension m+1 x N+1 

Th[N+1] = Th vector of N+1 elements 

Input 

The main function "void mainO" takes number of machine centers (m = 2), number of parts 

(N = 6), mean part service times, mu[3]= {1.42857, 1, 3.33333 1, and expected number of 

times a part visits service center i, v[3] = 11, 1.3448, 1.4914} as an input. 
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Output 

It outputs the throughput rates in a vector form, followed by the average number of parts in 

a matrix form, and followed by the average waiting time of a part in a matrix form. 

Program  

II MVA Problem 1 

#include <stdio .h> 
#include <iostream.h> 

#define N 6 
#define m 2 

//Assigns values for number of machine centers(m) and number of 
//parts(l=j) 

void main() 

C 
mt 1, j, k; 

double sum=O.O ; //initialize sum 

double ET[m+1][N+1],Th[N+1],EN[m+1][N+1] , mu[3]={1.42857,1,3.33333}, 
v[31={1,1.3448,1.4914) ; 

//Assign known values to Mean service time and mean number of times a 
//part visits service centers for various machine centers 

for (1 = O;i<=m;i++){ 

EN[1] [0] = 0; 

//Assigns 0 to first column of matrix EN 

} 

j1; Th[0]0; 

//Starting a while loop to calculate elements of ET, EN and Th 

while (j<=N) C//while loop begins... 

for( i = 0;i<=m; i++){ //Start 1 ...for loop 

//Finding column j elements for ET matrix (Mean waiting times) 

ET[i][j]= (EN[i][j-1] +1) /mu[i]; 
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)//End 1 . . .for loop 

sum=O; 

for (k = 0; k<m; k++){ //Start 2 . ..for loop 

sum = sum + v[k] *ET [k][j] ; 

}I/End 2 . . . for loop 

ThEji = j/sum; //calculating throughput rate 

for( i = 0;i<=m; i++){ //Start 3 . ..for loop 

EN[i][j] = v[i] * Th[j) * ET[i][j); 

}// End 3.. .forloop 

j++ ; //increasing count for j 

} //End of while loop for j 

//Printing results... 
//##4Hf4t##########4t#4t#4Ht######4########### 

cout<< "Here are the elements of the Th vector \n "; 

cout<< "\n "; 

for( J = l;j<=N; j++){ 

cout<< "Th["<<j<<"] = 

} 

cout<< "\n "; 

Th[j]<<"\n 

cout<< "Here are the elements of the EN matrix . . .\n If ; 

cout<< "\n "; 

for ( j1; j<N; j++)( 

for( i = 0;i<m; i++){ 

cout<< "EN[ "<<i<<", "<<J<<"] = "<< EN[i] [j)<<" " 

} 
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cout<< "\n "; 

} 

cout<< Mn  

cout<< "Here are the contents of the ET matrix \n  

cout<< "\n "; 

for ( j1; j<N; j-i-+){ 

for( i = O;i<m; i++){ 

cout<< "ET["<<i<<","<<j<<"] = 

} 

return 

} 
cout<< " \n  

) //End of main... 

ET(i) EjJ<<" 
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Appendix B 

The C++ program for Problem 1 using Algorithm 4.2 (EMVA). 

Notation  

i = k =0, ,m = machine centers 

j==1, ,N= class parts 

m = number of machine centers 

N = number of parts 

ES[i] = B[S1] = mean part service time at service center I 

ESsq{i] = E[S] = second moment part service time at service center I 

V[i] = v,= expected number of times a part visits service center I 

EN[i] ] = E[N1 (.e)] = average number of parts (£) at service center I (Note: £ = j) 

ET[i]o] = E[T1 (t)] = average waiting time of an arbitrary part (t) in service center i 

(Note: £ =j) 

Th[j] = Th{ £ I = throughput rate (Note: £ = j) 

ET[m+1][N+1] = ET matrix of dimension m+1 x N+1 

EN[m+1][N+1] = EN matrix of dimension m+1 x N+1 

Th[N+1] = Th vector of N+1 elements 

Input 

The main function "void mainO" takes number of machine centers (m = 2), number of parts 

(N = 6), mean part service times, ES[3] = {0.7, 1, 0.3 1, second moment part service times, 
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ESsq[3] = {O.6125, 2, O.135}, and expected number of times a part visits service center i, 

v[3] = {1, 1.3448, 1.4914} as an input. 

Output 

It outputs the throughput rates in a vector form, followed by the average number of parts in 

a matrix form, and followed by the average waiting time of a part in a matrix form. 

Program 

//EMVA Problem 1 

#include <stdio.h> 
#include <iostreain.h> 

#clefine N 6 
#define ni 2 

//Assigns values for number of machine centers(m) and number of 
//parts(l=j) 

void main() 

mt i, j, k; 

double sum=0.0 ; //initialize sum 

double ES(3]={0.7,1,0.3}, ET(m+1](N+1),Th[N+1],EN[m+1][N+1] 
,ESsq[3]=0.6125,2, 0.135), v[3]=1,1.3448,1.4914); 

//Assign known values to Mean service time, second moment of service 
//time and mean number of times a part visits service centers for 
//various machine centers 

for (i = 0;i<m;i++){ 

EN[iJ (0) = 0; 

//Assigns 0 to first column of matrix EN 

) 

j=1; Th[0]0; 

II Starting a while loop to calculate elements of ET, EN and Th 
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while (j<=H){ //while loop begins... 

for( i = O;i<=m; i++){ //Start 1 . . .f or loop 

//Finding column j elements for ET matrix (Mean waiting times) 

ET[i] [j]= (EN[i] [i-i] _v[i]*Th[j_1] * ES[i] +l)*ES[i] + 

v[i] *Th[j_1] *Essq[i] /2; 

}//End 1 . . .for loop 

sum=O; 

for (k = 0; k<=in; k-i--i-){ //Start 2 .. .for loop 

sum = sum + v[k] *ET[k] [j]; 

}//End 2 . . .for loop 

Th[j] = jlsum; //Calculating throughput rate 

for( i = 0;i<rm; i++){ //Start 3 . . .for loop 

EN[i] [j] v[i] * Th[j] * ET[i] [ii; 

}// End 3.. .for loop 

j++; //increasing count for j 

) //End of while loop for j 

//Printing results... 
II############################################### 

cout<< "Here are the elements of the Th vector \n  

cout<< " \n "; 

for( j = l;j<N; j-i-+){ 

cout<< TuTh[cu.(<j<< ut] = •<< Th[j]<<"\n I' ; 

} 

cout<< " \n "; 

cout<< "Here are the elements of the EM matrix .. .\n "; 
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cout<< \n "; 

for ( j1; j<=N; j++)( 

for( i = O;i<m; i++)( 

cout<< "EN["<<i<<","<<j<<"] = 

} 
cout<< "\n "; 

"<< EN[i] [j]<<" 

} 

cout<< " \n "; 

cout<< "Here are the contents of the ET matrix \n  

cout<< "\n "; 

for ( j1; j<N; j++){ 

for( i = O;i<m; i++){ 

cout<< "ET["<<i<<", "<<j<<"] = "<< ET[i] [j]<<" It ; 

cout<< "\n "; 

} 

return 

} //End of main... 
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Appendix C 

The C++ program for Problem 2 using Algorithm 4.1 (MVA). 

Notation 

i = k =0, ,m = machine centers 

j = £ = 1, ,N = class £ parts 

m = number of machine centers 

N = number of parts 

EN[i] [j] = E[N1(t)] = average number of parts (t) at service center i (Note: £ =j) 

ET[i]o] = E[T1 (t )J = average waiting time of an arbitrary part (£) in service center i 

(Note: £ =j) 

Th[j] = Th[ £ I = throughput rate (Note: £ = j) 

mu[i] = u, = mean part service time at service center i 

V[i] = v, = expected number of times a part visits service center i 

ET[m+1][N+1] = ET matrix of dimension rn-i-i x N+i 

EN[m+1][N-i-1] = EN matrix of dimension m+1 x N-i-i 

Th[N+1] = Th vector of N+i elements 

Input 

The main function "void mainO" takes number of machine centers (m = 2), number of parts 

(N = 10), mean part service times, mu[3]= {0.7407, 0.5, 0.6061 1, and expected number of 

times a part visits service center i, v[3] = {i, 0.4, 0.8) as an input. 
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Output  

It outputs the throughput rates in a vector form, followed by the average number of parts in 

a matrix form, and followed by the average waiting time of a part in a matrix form. 

Program 

//M\TA Problem 2 

#include <stdio.h> 
#include <iostream.h> 

#define N 10 
#define m 2 

//Assigns values for number of machine centers(m)and number of 
I/parts (l=j) 

void main() 
{ 

mt i, j, k; 

double sum=O.0 ; //initialize sum 

double ET[m+1J[N+1],Th[N-F1],EN(m-f1][N+1] , mu(3)=(0.7407,0.5,0.6061}, 
v[31={1,0.4,0.8); 

//Assign known values to Mean service time and mean number of times a 
//part visits service centers for various machine centers 

for (i = 

EN[i] [0] = 0; 

//Assigns 0 to first column of matrix EN 

) 

j1; Th[0]0; 

//Starting a while loop to calculate elements of ET, EN and Th 

while (j<=N)1 //while loop begins... 

for( i = 0;i<=m; i++)( //Start 1 .. .for loop 

//Finding column j elements for ET matrix (Mean waiting times) 

ET[i] [j]= (EN[i] [j-1] +1) /mu[i]; 

}//End 1 . . . for loop 
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sum=O; 

for (k = 0; k<=m; k++)( //Start 2 . . for loop 

sum = sum + v[k]*ET[k][j] ; 

)//End 2.. .for loop 

Th[j] = i/sum; //calculating throughput rate 

for( i = 0;i<=m; i++){ //Start 3 ...for loop 

EN[i][j]= v[i] * Th[j] * ET[i][jj; 

)// End 3 . . .for loop 

j++ ; //increasing count for i 

} //End of while loop for J 

//Printing results... 
/ / # # #41: # #41: # #41:41: # # # 41' #41:41: # # # #41: # # #41: # # #41: #41' 41' # # #41: # #41: #41:41:41: # # 

cout<< 
cout<< 

"Here are the elements of the Th vector \n 
"\n If; 

for( j = l;j<N; i++)C 

cout<< "Th["<<j<<"] 

) 

cout<< "\n "; 

Th[j]<<"\n "; 

cout<< "Here are the elements of the EN matrix . . .\n "; 

cout<< "\n "; 

for ( j1; j<N; j++)( 

for( i = 0;i<m; i++){ 

cout<< "EN["<<i<<',"<<j<<"] = I' << EN[iJ [j]<<" 
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cout<< "\n "; 

} 

cout<< "\n II; 

cout<< "Here are the contents of the ET matrix \n "; 

cout<< "\n "; 

for ( j1; j<I\T; j++) { 

for( ± = O;i<m; i+--){ 

cout<< "ET["<<i<<", "<<k<1'] = '<< ET[i] [j]<<" " 

) 
cout<< "\n "; 

) 

return 

//End of main... 
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Appendix D 

The C++ program for Problem 2 using Algorithm 4.2 (EMVA). 

Notation  

i = k 0, ,m = machine centers 

j=?=1, ,N= class tparts 

m = number of machine centers 

N = number of parts 

ES[i] = E[S1] = mean part service time at service center i 

ESsq[i] = E[S i ] = second moment part service time at service center i 

V[i] = V1 = expected number of times a part visits service center i 

EN[i] U] = E[N (t)] = average number of parts (£) at service center i (Note: £ = j) 

ET[ij[j] = E[Tj average waiting time of an arbitrary part () in service center i 

(Note: £ =j) 

Th[j] = Th[€] = throughput rate (Note: £ =j) 

ET[m+1]{N+1] = ET matrix of dimension m+1 x N+1 

EN[m+1][N+1] = EN matrix of dimension m+1 x N+1 

Th[N+1] = Th vector of N+1 elements 

Input 

The main function "void mainQ" takes number of machine centers (m = 2), number of parts 

(N = 10), mean part service times, ES[3] = {1.35, 2, 1.65}, second moment part service 
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times, ESsq[3] ={4.55625, 9, 5.445}, and expected number of times a part visits service 

center i,v[3] = {1,O.4,O.8} asaninput. 

Output  

It outputs the throughput rates in a vector form, followed by the average number of parts in 

a matrix form, and followed by the average waiting time of a part in a matrix form. 

Program  

//EMVA Problem 2 

#include <stdio.h> 
#include <iostream.h> 

#define N 10 
#define m 2 

//Assigns values for number of machine centers(m)and number of 
//parts(l=j) 

void main() 

C 
mt i, j, k; 

double suxn=0.0 ;//initialize sum 

double ES[3]={1.35,2,1.65}, ET[m+1][N+1],Th[N+1],EIT[m+1][N+1] 
,ESsq[3]=(4.55625,9,5.445), v[3]=(l,0.4, 0.8); 

//Assign known values to Mean service time, second moment of service 
//time and mean number of times a part visits service centers for 
//various machine centers 

for (i = 0;i<=m;i-i-+){ 

EN[i] [0] = 0; 

//Assigns 0 to first column of matrix EN 

} 

j1; Th[0]=0; 

//Starting a while loop to calculate elements of ET, EN and Th 

while (j<=N){ //while loop begins... 
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for( i = O;i<=m;, i+--){ //Start 1.. .for loop 

//Finding column j elements for ET matrix (Mean waiting times) 

ET[i] [j]= (EN[i] [j-1] _v[i]*Th(jl] * ES[i] il)*ES[i] + 

v[i] *Th[j_l] *ESsq[i] /2; 

)//End 1... for loop 

sum=O; 

for (k = 0; k<=m; k++){ //Start 2. ..for loop 

sum = sum + v[k]*ET[k][j] ; 

)//End 2 ... for loop 

Th[j] = j/sum; //Calculating throughput rate 

for( i = 0;i<=m; i++){ //Start 3.. .for loop 

EN(iJ [j]= v[i] * Th[j] * ET[i] [j] 

}II End 3.. .for loop 

j++ ; //increasing count for j 

} //End of while loop for j 

//Printing results... 

cout<< "Here are the elements of the Th vector \n  

cout<< "\n "; 

for( j = l;j<N; j++){ 

cout<< "Th[ <<j<<"] = '<< Th[j]<<\n 1?; 

} 

cout<< "\n H; 
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cout<< "Here are the elements of the EN matrix . . .\n "; 

cout<< "\n "; 

for ( j=l; j<N; j+i-){ 

for( I = O;i<m; j++)( 

cout<< tEN[ 1t<<i<< 11 , 1t<<j<< 11 ] = "<< EN[i][j]<<" H; 

} 
cout<< 11\n H; 

} 

cout<< "\n "; 

cout<< "Here are the contents of the ET matrix \n "; 

cout<< " \n "; 

for ( j1; j<N; j++)( 

for( i = O;i<m; i++){ 

cout<< "ET[ "<<i<<", "<<j<<'] = "<< ET [ii [j ] <<" it ; 

} 
cout<< "\n "; 

return 

) I/End of main... 
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Appendix E 

The C++ program for Problem 3 using Algorithm 4.1 (MVA). 

Notation 

i = k =0, ,m = machine centers 

j==1, ,N= class parts 

m = number of machine centers 

N = number of parts 

EN[i] [j] = E[Nj average number of parts (£) at service center i (Note: £ = j) 

ET[i]o] = E{T1 (e)] = average waiting time of an arbitrary part (£) in service center i 

(Note: £ =j) 

Th{j] = Th[fl = throughput rate (Note: £ =j) 

mu[i] =#1 mean part service time at service center i 

V[i] =v = expected number of times a part visits service center i 

ET[m+1][N+1] = ET matrix of dimension m+1 x N+1 

EN[m+1][N+1] = EN matrix of dimension rn-i-i x N+i 

Th[N+1] = Th vector of N-i-i elements 

Input  

The main function "void mainO" takes number of machine centers (m = 3), number of parts 

(N = 15), mean part service times, mu[4]= {2, 0.6897, 1, 0.5), and expected number of 

times a part visits service center i, v[4] = 11, 0.1059, 0.6471, 0.6941) as an input. 
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Output 

It outputs the throughput rates in a vector form, followed by the average number of parts in 

a matrix form, and followed by the average waiting time of a part in a matrix form. 

Program 

//MVA Problem 3 

#include <stdio.h> 
#include <iostream.h> 

#define M 15 
#define m 3 

//Assigns values for number of machine centers(m) and number of 
IIparts(l=j) 

void main() 

mt i, j, k; 

double sum=O.O ; //initialize sum 

double ET[m+1][N-i-1],Th[N+1],EN[m+1][N-i-1] , mu[4]={2,O.6897,1,O.5}, 
v[4]=(1,O.1059,O.6471,O.6941); 

//Assign known values to Mean service time and mean number of times a 
//part visits service centers for various machine centers 

for (i = O;i<=m;i-i-+)( 

EM[i) [0] = 0; 

//Assigns 0 to first column of matrix EM 

} 

j=l; Th(O]0; 

//Starting a while loop to calculate elements of ET, EN and Th 

while (j<=N)( //while loop begins... 

for( i = O;i<=m; i-i--i-){ //Start 1 . ..for loop 

//Finding column j elements for ET matrix (Mean waiting times) 

ET[i][j]= (EN[i][j-1] +1) /mu[i]; 

}//End 1 . . . for loop 
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sum=O; 

for (k = 0; k<=m; k++)( //Start 2 . . . forloop 

sum = sum + v[k]*ET[k][j] ; 

}//End 2 . . . for loop 

Th[j] = i/sum; //calculating throughput rate 

for( i = O;i<=m; i+-i-){ //Start 3 . ..for loop 

EN[iJ [j]= v[i] * Th[j] * ET[i] [i] 

}// End 3 . . . for loop 

j++ ; //increasing count for j 

} //End of while loop for j 

//Printing results... 

cout<< "Here are the elements of the Th vector \n  

cout<< "\n "; 

for( j = l;j<N; j++)C 

cout<< "Th["<<j<<"] = "<< Th[j]<<"\n 

} 

cout<< "\n "; 

cout<< "Here are the elements of the EN matrix . . .\n "; 

cout<< "\n "; 

for ( j1; j<N; j++){ 

for( i = O;i<=m; i++){ 

cout<< "EN[ "<<i<<", "<<j<<"] = "<< EN[i] [j]<<" ' 

} 
cout<< "\n 
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cout<< '1\n 

cout<< "Here are the contents of the ET matrix \n  

cout<< " \n "; 

for ( j1; j<N; j+-i-){ 

for( i = O;i<m; i++){ 

cout<< "ET["<<i<<","<<j<<"] = 

) 
cout<< "\n "; 

} 

return 

//End of main... 

It ET[i] [j]<<" 
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Appendix F 

The C++ program for Problem 3 using Algorithm 4.2 (EMVA). 

Notation 

i = k = 0, ,m = machine centers 

j= £ =1, ,N=class £ parts 

m = number of machine centers 

N = number of parts 

ES [i] = E[S1] = mean part service time at service center i 

ESsq[i] = E[S] = second moment part service time at service center i 

V[i] = V1 = expected number of times a part visits service center i 

EN[i]o] = E[N1 (a)] = average number of parts (£) at service center i (Note: £ =j) 

ET[iJU] = E[T1 (.)] = average waiting time of an arbitrary part (t) in service center I 

(Note: £ =j) 

ThIj] = Th[ £1 = throughput rate (Note: £ = j) 

ET[m-i-1][N+1] = ET matrix of dimension m+1 x N+1 

BN[m+1][N+1] = EN matrix of dimension m+1 x N+1 

Th[N-i-1] = Tb vector of N+1 elements 

Input 

The main function "void mainQ" takes number of machine centers (m = 3), number of parts 

(N = 15), mean part service times, ES[4] = {O.5, 1.45, 1, 2}, second moment part service 
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times, ESsq[4] = {0.375, 6.3075, 2, 6}, and expected number of times a part visits service 

center i, v[4] = 11, 0.1059, 0.6471, 0.69411 as an input. 

Output 

It outputs the throughput rates in a vector form, followed by the average number of parts in 

a matrix form, and followed by the average waiting time of a part in a matrix form. 

Program 

//EMVA Problem 3 

#include <stdio.h> 
#include <iostream.h> 

#define N 15 
#define m 3 

//Assigns values for number of machine centers(m) and number of 
I/parts (l=j) 

void main() 

mt 1, j, k; 

double sum=0.0 ; //initialize sum 

double ES[4]={0.5,1.45,1,2), ET[m+1][N+1],Th[N+1],EN[m+1][N+1] 
,ESsq[4]=0.375, 6.3075,2, 6), v[41= [1,0.1059,0.6471,0.6941}; 

//Assign known values to Mean service time, second moment of service 
//time and mean number of times a part visits service centers for 
//various machine centers 

for (1 = 0;i<m;i++){ 

EN[i) [0] = 0; 

//Assigns 0 to first column of matrix EN 

} 

j1; Th[0]0; 

//Starting a while loop to calculate elements of ET, EN and Th 

while (j<=N)( //while loop begins... 

for( i = 0;i<=m; i++){ //Start l....forloop 
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//Finding column j elements for ET matrix (Mean waiting times) 

ET[i] [jJ= (EN[iJ [i-li _v[i]*Th[j_1] * ES[i] +1) *ES[j] + 

v[i] *Th[j_1] *Essq[j] /2; 

)//End 1 . . . for loop 

sum=O; 

for (k = 0; k<=m; k-i-+)f //Start 2 .for loop 

sum = sum + v[k]*ET[k][j] ; 

)//End 2 . . . for loop 

Th[j] = j/sum; //Calculating throughput rate 

for( i = 0;i<m; i++){ //Start 3 ...for loop 

EI'T[i][j]= v[i] * ThEji * ET[i](j); 

}// End 3 . . .for loop 

j++; //increasing count for j 

} //End of while loop for j 

//Printing results... 
//####4######4H#4H#4t############# 

cout<< 
cout<< 

"Here are the elements of the Th vector \n  

"\n it; 

for( j = 1;j<N; j-i-+)( 

cout<< "Th["<<j<<"] = 

) 

cout<< "\n "; 

Th[j]<<"\n "; 

cout<< "Here are the elements of the EN matrix . . .\n "; 

cout<< "\n "; 
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for ( j1; j<N; j++){ 

for( i = O;i<m; i++)4 

cout<< "EN["<<i<<", ht<<j<< ' ] = 

} 
cout<< It\ II ; 

EN[i] [j]<<" 

} 

cout<< "\n  

cout<< "Here are the contents of the ET matrix \n  

cout<< Mn "; 

for ( j1; j<N; j++){ 

for( i = O;i<m; i++){ 

cout<< "ET[ "<<i<< " '<<<<' ] = "<< ET [i] [j ] <<" " 

) 
cout<< °\n "; 

} 

return 

} //End of main... 
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