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Abstract 

We present here a wide-ranging and general discussion encompassing communication 

channels, signal processing, and applications to cryptography using results from abstract 

Information Theory, a field of mathematical study invented by Claude Shannon, the famous 

researcher from Bell Labs. We give a brief survey of methods used to calculate èhannel 

capacity for discrete channels and use them, alpng with some new results, including a 

generalization of Shannon's regular channel theorem, to clarify some misunderstandings in 

the literature. Arelatively novel result regarding reciprocal channels is also discussed. To 

our knowledge, these types of channels have not yet been fully exploited. Following a very 

brief discussion of concepts from signal processing, applications to cryptography are 

presented, beginning with the definition and proper characterization of Shannon's notion of 

"perfect secrecy". We conclude with some new examples of perfect secrecy and a discussion 

of a very interesting analog cryptosystem due to Alan Turing that is seldom discussed in the 

standard literature. 
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1 Introduction 

In the Department of Mathematics and Statistics at the University of Calgary, it seems 

traditional for a Master's thesis to provide a survey on important results found in the 

literature. Our goal here is somewhat more ambitious. Not alone do we present a survey, but 

we also provide some new research results which have not yet appeared in print elsewhere. 

These new results are detailed chapter by chapter. 

Our focus here will be to explore some of the insights into some of the widespread 

applications of abstract Information Theory, which provides a mathematical characterization 

of both information and communication channels, with applications ranging from data 

compression and cryptography to biology, the stock market, and gambling (and even 

jurisprudence!). We stress here that the applicability of Information Theory need not be 

limited to the study of electronic communication systems alone. We do mention connections 

with communications systems, although they are not central to our discussion. 

Following the brief presentation of pertinent background material in Chapters 2 and 3, we 

proceed to a discussion regarding discrete channels in Chapter 4. Throughout the chapter, we 

correct several misunderstandings and omissions in the literature by means of examples, in 

the area of channel capacity. Again, such channels can be quite general. We also provide a 

generalization of Claude Shannon's theorem for the capacity of regular channels in the form 

of a new theorem, which will allow us to further clarify various examples from several 

sources. This new result is potentially very useful. For example, calculating the capacity of a 

near-regular channel with hundreds of variables reduces to a problem concerning just one 

variable! 

Another fundamental new contribution provided by our work here involves a concept which 

has not been developed, namely the concept of the reciprocal channel. We are able to 

determine the capacity of the reciprocal of a binary symmetric channel by exploiting a basic 
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technical result, namely, the symmetry of information content, in addition to outlining 

several other properties of these useful channels in Chapter 5. It is important to emphasize 

that the calculation of the capacity of a discrete memoryless channel can sometimes be 

greatly simplified, as we point out here, by calculating the capacity of its reciprocal, making 

our development here potentially very useful in a wide range of problems. Furthermore, since 

the result on reciprocal channels involves the crucial symmetry of information, we provide an 

intuitive discussion of that result which is not given in the standard text books. 

In Chapter 6, we present a very brief discussion of the sampling theorem together with some 

of the difficulties in applications to its practical use in the famous capacity formula for band-

limited channels, Capacity = W log(1 + S / N). One difficulty in applying the capacity 

formula is a result of the well-known fact from the study of Fourier Transforms that, if a 

signal is time-limited it cannot be band-limited, and vice versa. This material is standard in 

the literature, so our discussion is very brief. Our main goal is to pave the way for a 

discussion of "analog cryptography" below. 

Finally, several aspects of cryptography are explored in Chapter 7, particularly Shannon's 

notion of "perfect secrecy" and its proper characterization in the form of Latin squares, 

instead of just the so-called one-time pad. This characterization is typically not provided in 

the standard literature. We also provide here some new examples of perfect secrecy. To 

conclude our discussion, we present a novel idea using the sampling theorem for the 

encryption of analog signals due to Alan Turing, which shows that analog signals should not 

be ignored as they frequently are when discussing cryptography in general. 
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2 Preliminaries 

Before we explore the various applications of Information Theory, it is necessary to outline 

some preliminary concepts, including some important results, definitions, and properties 

pertaining to probability theory and the study of Fourier transforms and Fourier series 

expansions. 

2.1 Probability Theory 

The study of Information Theory relies heavily upon many tools and techniques developed in 

the field of probability theory. By its very nature, information is inherently probabilistic: the 

more improbable an event is, the more information we gain upon learning that such an event 

has occurred. We will soon see that being able to represent information in such a way leads 

to some very powerful and widely applicable results. We begin with an overview of some 

concepts from probability theory, including the definition of a random variable. 

2.1.1 Random Variables 

Definition 2.1: A random variable X associates a value to each of the possible outcomes 

contained in the sample space Q of an experiment. 

Here, we will be concerned with discrete random variables, in which each outcome of an 

experiment has associated with it a probability of occurrence. In particular, we denote the 

probability of the ith outcome of an experiment as P(X = x1) (or more briefly P(x1)), which is 

usually assumed to be non-zero. The probability distribution of a random variable X is the 

set of probabilities 

{P(X = X01 P(X = x2), ... ,P(X = x)}={P(X = x)} 

'I 

where P(X = x) =1 and 0 < P(X = x1) ≤ 1. 
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It must be noted that we have brushed aside the more rigorous definition of a random 

variable, as it is not required for our uses here. The interested reader is referred to [8] or [ 17] 

for a more formal definition. 

For an example of a random variable, consider the tossing of a single coin. A suitable 

random variable for this experiment assumes the value of '0' for an outcome of tails and a ' 1' 

for an outcome of heads. Here, the sample space Q = { 'Tails', ' Heads' }. Typically speaking, 

given the prevalence of digital information in our society today, the random variables 

encountered throughout our discussion will be discrete, i.e. the sample space of the 

associated random experiment will be countable, and most often finite in size. However, for 

continuous random variables, we can define a probability density function, which is 

analogous to a probability distribution for discrete random variables. Specifically, the 

probability density of a continuous random variable X is the function p(x) where 

00 

P(X ≤ k) = fp(x)dx and fp(x)dx =1 

In order to compare different random variables, it is useful to determine the average or 

expected value of a variable, as well as the variance, which is indicative of how spread out a 

random variable is. 

Definition 2.2: The expected value of a random variable X is the weighted sum over the 

given probabilities of the possible values of X and is given by 

E(X) = xP(X = x1) (2.1) 

Definition 2.3: The variance of a random variable X is the weighted average of the variable 

(x1 - E(X))2 and is given by 

V(X) = (x — E(X))2P(X = x) = E(X 2) - [E(x)] 2 (2.2) 
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The variable (x1 - E(X))2 provides a measure of how far each value x1 is from the average 

value, in terms of Euclidean distance. As such, variance is a good indicator of how spread 

out the values of X are. Another commonly used measure for this purpose is called the 

standard deviation of X, and is denoted o(X) = - V(X) 

We can also consider pairs of random variables as a single joint random variable. If X, Y are 

random variables where X has possible outcomes x1 , X2,..., x,1 and Y has possible outcomes 

y1' in then (X, Y) is a random variable with possible outcomes (x1, y) for 1 ≤ i ≤ n, 

1:5 j ≤ m, where the joint probability P(X = x1, Y = y) represents the probability that both 

X = x1 and Y = y1. 

The individual distributions for X and Y can be obtained from the joint distribution by 

summing over all outcomes for X and Y respectively, i.e. 

In fl 

P(X = xi) =  P(X =x,,Y=y1) and P(Y =y1)=  P(X = Xi, Y=y) 
1=1 1=1 

There are also situations where we wish to know the value of a random variable X, given that 

an outcome corresponding to a random variable Yhas already occurred.' This probability, 

denoted by P(Y = yj I X = x1), is called the conditional probability of one random variable 

given another and plays a large role in describing communication channels, as well as in 

discussing security notions in cryptography. More formally, we have the following. 

Definition 2.4: Given two random variables X, Y where X has possible outcomes x1 ' X2 1 ... I 
X n 

and Y has possible outcomes y1, y2,..., y,, the conditional probability of X achieving the 

value xi given that Y has achieved the value y is denoted P(X = x, I Y = y) and is defined as 

follows. 

P(X = x. and  = y.) 
.) P(X =x.IY=y= I J  

J P(Y=y) 

where it is assumed that P(Y = y) # 0. 
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Using Definition 2.4, we can now state the following formula known as Bayes' Formula. 

Theorem 2.5 (Bayes' Formula): Given two random variables X, Y where X has possible 

outcomes x1 , ,..., x,1 and Y has possible outcomes y1, Y2 1 ... I y,,1, if P(X = x1) # Ofor, 

alll≤j≤m,then 

)= JX=x P(Y =y P(X =x1IY=y.)P(Y=y.) .. J Xi)  
P(X =Xi) 

(2.3) 

Note that Bayes' Formula leads us to two separate definitions for independence between two 

random variables and that Definition 2.6 is slightly more general in that it makes sense even 

in the case where both P(X = x) and P(Y = y) are zero. 

Definition 2.6: Two random variables X, Y with joint probability distribution 

{P(X = x,Y = y)} and marginal probability distributions {P(X = x)}, {P(Y = y)} are 

independent if 

P(X = x1,Y = y) = P(X = x1)P(Y = y) (2.4) 

for alll≤i≤n,l≤j≤m. 

Definition 2.7: Two random variables X, Y with joint probability distribution 

{P(X = x, Y = y)} and marginal probability distributions {P(X = x)}, {P(Y = y)} are 

independent if 

P(X = xi I Y = y) = P(X = x1), or equivalently, if P(Y = I X = x) = P(Y = y). 

for all l≤i≤n,l≤j≤m. 

We can also make use of Bayes' Formula along with the fact that for jointly distributed 

,fl 

variables X, Y, P(X = x) = P(X = x1, Y = y) to obtain the Law of Total Probability. 
1=1 
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Theorem 2.8 (Law of Total Probability): Given two jointly distributed discrete random 

variables X, Y where X has marginal probability distribution {P(x = x)}, then the marginal 

probabilities of Y are given by 

P(Y = y) = P(Y = y1 I X = x1)P(X = x) (2.5) 

for all 1≤i_<n, 1≤ j ≤m. 

Note that the same result holds for calculating the marginal probabilities of X given the joint 

distribution for (X, Y) and the marginal distribution for Y. 

2.1.1.1 Notable Random Variables 

For the purposes of studying Information Theory, there are two important types of 

probability distributions to consider, namely the Bernoulli distribution and the ubiquitous 

Gaussian, or Normal, distribution. 

A Bernoulli random variable X represents the outcomes of an independently repeated 

experiment for which there is either a failure (with probability 1— p) or a success (with 

probability p) in each trial. A random variable with this type of distribution is a Bernoulli 

random variable with parameterp. The expectation of a Bernoulli random variable with n 

trials is np, and the standard deviation is np(1— p). 

Note that Bernoulli random variables are discrete. There is also a very important continuous 

random variable in the background. A Normal or Gaussian random variable with 

parameters (u, o) is a continuous random variable with a probability density function 

(analogous to the distribution of a discrete random variable) given by 

( 
p(x)= 1 exp _(x_p)2" 

if 2a 
(2.6) 
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where p is the mean and o-2 is the variance. The fact that noise can be modeled using a 

Normal random variable with a mean of zero is important in the development of channel 

capacity for continuous signals. 

2.1.1.2 The Weak Law of Large Numbers 

Consider a sequence of n independent Bernoulli trial, where the result of a "failure" is 

assigned a value of '0' and the result of a "success" is assigned a value of ' 1'. If we observe 

this binary sequence long enough, what happens to the total number of l's and 0's present in 

the sequence? To investigate the long-run behavior of such an experiment, we will need to 

make use of the Weak Law of Large Numbers: see for example [4]. 

Theorem 2.9 (Weak Law of Large Numbers): Let X1, X2, X3,... be a sequence of 

independent, identically distributed random variables with1u = E(X1), = V(X,) < oo, 

i=1,2.....Then Vs > 0, 

urn 
P 

fl —3oo 

x1+x2+...+x fl 
/1 

n 
>ej=0 (2.7) 

In the case of n Bernoulli trials, we point out that, here, p = np and p = Pr(" Success"). 

2.2 The Fourier Transform & Fourier Series 

The Fourier transform, or Fourier integral, is a method of function representation that applies 

to a wide range of functions, both periodic and non-periodic, and is used to represent signals 

in terms of frequency domain characteristics. Essentially, the Fourier transform of a time-

varying function produces a frequency-varying functionH(f), where IH(f)I is the 

amplitude of the function, andf represents the frequency. In general, given a time-varying 

function h(t), assume h(t) satisfies a set of conditions known as Dirichiet conditions, namely 
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1. h(t) is absolutely integrable over the entire real line 

ii. h(t) has a finite number of maxima and minima over any finite interval of its 

domain 

iii. h(t) has a finite number of discontinuities over any finite interval of its domain. 

Then h(t) has a Fourier transform representation H(f) where 

H(f) = Z{h(t)}= Jh(t)e 22nftdt (2.8) 

On the other hand, h(t) can be recovered from H(f) using the inverse Fouiier transform: 

h(t) = S-'{H(f)j= JH(f)e2'dft df (2.9) 

We will see in Chapter 6 that it is also useful to represent functions in terms of their Fourier 

series expansion which, far a periodic function p(t), is given by 

00 27rinf t 

p(t) Ec8e 
n=-00 

1 T -2.irinf t 

where c, = - J p(t)e " dt for some arbitrary a. 

(2.10) 

In addition to periodicity, the function p(t) must also satisfy the Dirichiet conditions outlined 

above. It should be noted that any functions that can be generated by physically realizable 

means satisfy the Dirichiet conditions, and hence both the Fourier transform and series 

representations that will be utilized here are well-defined. 
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3 Classical Information Measures 

We now focus our attention on the fundamentals of Information Theory in preparation for a 

look at some of the most important applications of the field. Developed in the late nineteen 

forties, Information Theory deals with the analysis of information from a mathematical 

perspective. Based upon the work of Hartley and others, Claude Shannon began his 

development of the theory using a logarithmic measure for information, based on the 

observations that: 

1. It is useful in practice. Several engineering applications involve parameters that vary 

in proportion to the logarithm of the number of possible outcomes of a given 
experiment or procedure. 

2. The logarithmic measure permits linearity in coding and channel capacity for 

example, which is what one should intuitively expect. 

3. The logarithmic measure provides a great degree of simplicity in many calculations 

relating to Information Theory, which would not be the case if we performed the 

same evaluations under the framework of the number of possibilities involved. 

Using the logarithmic measure, Shannon defined information to depend on the probability of 

the given message using the concept of entropy. 

In addition to basic entropy, we will also investigate the fundamental concept of conditional 

entropy, which is a measure of redundancy between two or more random variables, or how 

much information they have in common. Furthermore, we will discuss mutual information, 

which is a measure of how much information a random variable reveals about another, and is 

fundamental in the analysis of communication channels. Finally, we briefly discuss typical 

sequences, which allow us to make some important conclusions about long binary sequences 

that have been produced by a memoryless or Markov source. 
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3.1 Entropy 

The information gained, or equivalently, the amount of uncertainty removed, from learning 

the value of a random variable is referred to as the entropy of the random variable. Entropy 

is a measure of information that is based entirely upon the probability of the outcomes of a 

random variable, as opposed to the actual values achieved by the random variable itself. 

Definition 3.1: If X is afinite random variable with possible values x1 , X2 1. •., x,, and 

corresponding probabilities P(X = x1), P(X = x2),..., P(X = xv), then the entropy of X is 

defined as 

H(X) = — P(X = x) log P(X = x1) (3.1) 
1=1 

Without loss of generality, logs will typically be considered to be base 2 and H(X) is 

measured in Shannon bits. Again, note that in the definition, only the probabilities of the 

values of X are utilized, and not the actual values achieved by X. 

A special case of entropy arises when , = 2, i.e. when X is a Bernoulli random variable with 

parameter p. Here, H(X) = —p log p —(1— p) log(1— p) = H(p,1— p) = H(p) where H(p) is 

called the Shannon function, and is encountered frequently in the study of Information 

Theory as we are often dealing with sequences of Bernoulli random variables. The Shannon 

function, as shown in Figure 3-1, represents the amount of uncertainty removed, or the 

amount of information gained, from learning the outcome of a single Bernoulli experiment. 

"p) 

Figure 3-1 The Shannon function H(p) ([2]) 
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As shown in [4], the entropy of a random variable satisfies the following properties: 

1. H(p) is a concave function of p. 

2. H(X) ≥ 0, with equality if and only if P(x1) = 0 or 1 for each value xi achieved by X. 

3. H(X) ≤ log n, where n is the number of values attained by X, with equality exactly 

when X has a uniform probability distribution. 

Entropy plays an extremely important role in the field of data compression. In fact, the 

smallest amount of information required to describe a random variable and thus, the 

maximum amount a source of data that can be compressed without losing any essential 

information, is based entirely upon the entropy of the random variable in question. 

3.2 Mutual Information, More on Entropy 

As we have seen, the information gained upon learning the value of a random variable is 

completely dependent upon the probability distribution of the random variable. Likewise, we 

can define the entropy of a pair .of jointly distributed random variables X, 1', since if X, Y are 

random variables with probability distributions P1  = x}, P{Y = y} respectively 

then (X, Y) is a random variable with probability distribution P(X = xi, Y y) = P(x y) 

forl≤i≤n,1≤j≤m. 

Definition 3.2: If X and Y are discrete random variables where (X, Y) has possible values 

(x1, y) with corresponding probabilities P(xy), forl ≤ i ≤ n, 1 ≤ j ≤ m then the joint 

entropy H(X,Y)ofa pair ofjointly distributed discrete random variables X, Y is defined as 

n m 

H(X,Y) = — P(x1y) log P(x1y1) (3.2) 
i=1 j=1 
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Similarly, we can define entropy for one random variable conditioned on the value of another. 

Consider the random variable (X I Y = y1), where y is a fixed value achieved by the 

random variable Y (note that this is indeed a random variable since P(X I Y = y) =1). 
1=1 

'I 

Then from the definition of H(X), H(X I y)= E P(X — x1 I  = y1) log P(X = x I  = y). 
i=1 

To obtain H(X I Y), we simply average over all values achieved by the random variable Y. 

Definition 3.3: Given two random variables X, 1', with possible values x1 , , ... , Xn 

and y1, y2,..., y,,1 respectively, the conditional entropy of X given Y is defined as 

Ifl Ii 

H(X IY)=P(Y= y.)  P(X = x, I Y = y1) log P(X = x, I Y = y) (3.3) 
j=1 1=1 

Alternatively, using conditional probability, we have 

n in 

H(X IY)=EP(X = x1,Y= y)logP(X = x1 I Y = y) (3.4) 
1=1 j=1 

where it is assumed that P(Y = y) # 0, j = 1,..., m. 

Conditional entropy is an extremely important information measure, with applications 

ranging from channels and their capacity, to cryptography and the concept of perfect security. 

With the above definitions in place, several properties of joint and conditional entropies can 

now be presented. For formal proofs of the following properties, refer to [2] or [4]. 
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Properties of Joint & Conditional Entropy: 

1. H(X,Y)=H(X)+H(YIX)—H(Y)+H(X II') = H(Y,X) 

2. H(X I Y) # H(Y I X) in general. 

3. H(X .1 Y) ≤ H(X) (conditioning reduces entropy) with equality if and only if the 

random variables X,Y are independent, i.e. P(X = x1,Y = y1) = P(X = x)P(Y = y1). 

4. H(f(X)IX)=O 

Mutual information is another fundamental information measure. Essentially, the mutual 

information of two random variables is a measure of how much uncertainty is removed,, or 

equivalently, how much information is gained from one random variable upon learning the 

outcome of another. 

Definition 3.4: Given two random variables X, 1', the mutual information of X and Y is the 

reduction in uncertainty of X due to the knowledge of Y and is defined as 

I(X; Y) = H(X) — H(X I Y) (3.5) 

A crucial property of mutual information that is often stated is the fact that mutual 

information is symmetric with respect to X and Y, i.e. I(X; Y) = I(Y; X). Often, lacking in the 

literature is an intuitive description of this property. As Welsh phrased it in [21], mutual 

information possesses "(a) somewhat surprising symmetry... which, as far as I can see, has no 

intuitive explanation". 

The intuitive explanation that Welsh was looking for can be provided using input and output 

fans, and will be discussed in Chapter 4. In addition, the symmetry of mutual information for 

two variables can be deduced using Venn diagrams, and is shown below in Figure 3-2, 

following the analytic proof. 
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Proposition 3.5: Given I(X;Y) defined byl(X;Y)= H(X)—H(X IY), then 

I(X;Y) = I(Y;X) for random variables Xand Y. 

Proof. Let P(X = x1) = P(x1) where X is a random variable with possible values Xj, x2,..., x, 

and corresponding probabilities P(X1 )1 P(x2 ),..., P(x,1) and similarly, 

let P(Y = y1) = P(y) where Y is a random variable with possible values yj, y2,..., Ym and 

corresponding probabilities P( y'), P( y2),..., P( y,,). 

Since I(X;Y) = H(X) - H(X I Y) by definition, we have 

I(X;fl=H(X)—H(X IY) 

( \ I n in 

= P(x1)lo(P( 
1=1 i=1 j=1 

P(x1y)log(P(x, I YA) 

ii n in 

P(x1)log(P(x1))+ P(x,y)log(P(x1 
1=1 1=1 j=1 

It in it in 

P(x1y1)log(P(x1))+ P(x1y)log(P(x1 I YA 
1=1 j=1 j=1 j=1 

( ii in 

ZE 
P(x, y ) log(P(x1 )) - P(x1 y1) log(P(x1 I y)) I 

1=1 j=1 ) 

1 P(x1y) log /I ) (xi  I 

Y1))1 

P(x1).P(y lx)  
Now, from Bayes' formula, we have P(x I y1) = P(y) , so that 

in P(x).P(y1) 
I(X;Y)= - P(x1Y)log  11 

3=1 1x1) 

1' n in ii in 

i=1 j=1 1=1 j=1 
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=—P(y)log(P(y1))_ —>> P(x1y)1og(P(y Ix1)) 
j=1 1=1 j=1 

=H(Y)—H(YI X) = I(Y;X) 

0 

As a result of the symmetry of mutual information, we have that 

I(X; Y) = H(X) — H(X I Y) = H(Y) — H(Y I X) = I(Y; X) (3.6) 

The various relationships between entropy, joint entropy, conditional entropy, and mutual 

information can be summed up in the Venn diagram taken from [2] shown in Figure 3-2. 

H (X 

I(X:1)=I(Y:X 

Figure 3-2 The relationship between entropy and mutual information 

Remark: The analogous Venn diagram for three variables does not provide the same result. 
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3.3 Typical Sequences 

Consider a source emitting n consecutive binary digits independently and according to 

identical distributions (i.e. the source is i.i.d.). This process represents a sequence of n 

independent Bernoulli trials, with parameter p. According to the Weak Law of Large 

Numbers, the number of l's and 0's present in the sequence of bits emitted from the source 

approach, in terms of probability, the expected value of each, namely np and n(1-p) as n gets 

larger. Hence, "most" of the time, a sequence of length n will have close to the average 

number of l's and U's. More specifically, from [2], if we choose an e > 0 and any integer k 

such that k2 <3/s, then with N = actual number of l's in the sequence, we say that the 

sequence is typical if 
/np(1—p) 

sequences of length n has a total probability less than e. 

<k. It will then follow that the set of non-typical 

More generally, for an i. 1. d. source, we consider typical sequences as sequences that are 

"supposed" to occur. Since it is highly unlikely that we would get a run of n 0's or n l's for 

example, these sequences, called atypical sequences, are disregarded when analyzing the 

statistical behaviour of a communications system. Essentially, the set of typical sequences 

account for the majority of the probability and the minority of the number of sequences that 

are emitted from an i. i. d. source. The following theorem adapted from [4] summarizes the 

most important properties of typical sequences, where H(X) is the entropy of the random 

variable X. 

Theorem 3.6 (Typical Sequences): If X is a random variable with possible values 

{x1 , X2 1 ... , Xm } and entropy H(X), then with A" representing the set of typical sequences of 

length n, the following hold: 

1. If(xi ,x2 .... ,xm)EAthen _! log p(x1,x2, ... ,x) 
n 

(H(X)—e,H(X)+s) 
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2. P((x1,x2 ,..., Xm) E A(')\ >1—s for n sufficiently large. 

3. JA6(•') I < 2 n(H(X)+e) 

4. jA,"')j≥(I— .6)2fl(fl_ 

To paraphrase Theorem 3.6, the probability of any sequence from the typical set is almost 

uniform, the probability that a given sequence is contained in the typical set is close to 1, and 

the total number of typical sequences is approximately 2?H. The idea of typical sequences 

will be called upon to aid in the development of Shannon's capacity theorem for discrete 

channels. 

With the preliminaries out of the way, we can now proceed with the investigation and 

analysis of some of the most important applications of Information Theory, particularly 

channels and their capacity, signal processing, and cryptography. 
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4 Discrete Channels & Their Capacity 

One of the most fundamental results due to Claude Shannon pertains to the maximum rate of 

information that can be transmitted over an inherently noisy electronic channel, such that the 

inevitable errors due to interference or noise encountered by the message can be made 

arbitrarily small. This limit to effective communications is referred to as the capacity of the 

channel, where a channel can be thought of as a mechanism for transmitting messages. 

While this result may seem somewhat subtle at first, it should be noted that the entire 

communications engineering community at the time believed that such a reduction in signal 

errors was possible only if the information rate approached zero. Hence, Shannon's results, 

dating from about 1940, almost single-handedly revolutionized the field of efficient 

communication system design. In fact, to this day, most of the practical work in 

communications still revolves around Shannon's work. 

In this chapter, we will focus on the case where the channels are discrete. The continuous 

version of Shannon's capacity theorem will be presented in Chapter 6. A discussion of 

Shannon's capacity theorem for discrete memoryless channels will be presented, followed by 

an overview and analysis of a variety of channel types. We also present, in effect, a brief 

survey of available methods for calculating the capacity of a wide range of channels, in 

addition to providing several new results which will further aid us in the task of evaluating 

discrete channels. We will then use these methods and results to address discrepancies and 

obscurities that appear in various published sources pertaining to the calculation of capacity. 

4.1 Discrete Channels 

Definition 4.1: A discrete memoryless channel (DMC) is a mapping F: X -p Y where X is 

the set of values attained by the random variable X and Y is the set of values attained by the 

random variable 1', both of which are discrete and offinite size. 
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Every DMC has associated with it a channel transition matrix P = [P(Y = y I X = x)]. 

From this point forward, as a convention, we will be using the notation ' x e X' to denote 

that x is a value achieved by the random variable X. Again, for our purposes here, we will 

assume that any given channel is memoryless. Essentially, this condition implies that each 

input that is passed through the channel does not depend on any of the inputs that preceded it. 

From an abstract point of view, a channel is a mechanism that is used for converting inputs 

into outputs in a probabilistic sense. In fact, it can be shown that all that is required to define 

a discrete memoryless channel is a joint probability distribution and vice versa. 

Theorem 4.2 (Discrete Channels <=,5 Joint Probability Distribution): Given a discrete 

channel F: X - Y, there exists a joint probability distribution P(X = x,Y = y) and, 

conversely, given a joint probability distribution P(X = x,Y = y) , one can construct a 

discrete channel F: X -> Y. 

Proof.- By definition, if we have a discrete channel F, then the channel transition probabilities 

given by P(Y = I X = x) are known. Then, using Bayes' formula, with P(Y = y) >0 for all 

y e Y, we have 

P(X =x,Y=y) P(X = x,Y= y)  
P(Y = y X = x) - P(X = x) E P(X = x, Y = y) 

yGY 

(4.1) 

Therefore, we can obtain P(X = x, Y = y) for all x  X, y E Y, so that having a channel 

implies having a joint probability distribution. 

Alternatively, given a joint probability distribution, we can determine the channel transition 

probabilities and so a channel matrix, and thus obtain a channel, since 

P(X = x, Y = y) P(X = ., ' = y) = P(Y = y X = x) (4.2) 
P(X=x,Y=y) P(X — x) 

yEY 
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with P(X = x)>O for all xE Xand P(X = x,Y = y)=P(X = x). Hence, having a 
yEY 

channel implies possessing a joint probability distribution between the inputs and outputs, 

and vice versa. 

0 

With the definition of mutual information and discrete channels firmly in hind, we can now 

define the capacity of a discrete channel, which can be thought of as the greatest rate of 

information that can be transmitted such that the probability of erroneous transmission can be 

made arbitrarily small. 

Definition 4.3 (Capacity of a Discrete Channel): The capacity of a discrete channel 

r:x - 4  Yi deflneddsA...-  marl(X; Y')-, - Wkefe the mximut  is- -taken bye? all pbsible 
P(X=x) 

input distributions given by {P(X = x)}. Equivalently, the capacity of a discrete channel can 

also be defined asA= max I(Y;X) 
P(Y=y) 

An informal proof of Shannon's capacity theorem for certain discrete channels will be 

provided shortly. Some of the most important properties of channel capacity, taken from [ 17], 

are summarized below. 

1. A≥O  since l(X;Y)≥O 

2. A = logI # of distinguishable inputsi 

3. A ='logJ # of distinguishable outputsl 

4. I(X;Y)is a continuous function of P(X = x) 

5. I(X;Y) is a concave function with respect to P(X = x) 

More formally, the capacity is defined as the supremum of I(X; Y) over all input 

distributions, but I(X;Y) is both a continuous and concave function of P(X = x), so that a 

local maximum is in fact a global maximum. Then, since I is concave over a c1oed convex 

set, the function does indeed attain the maximum. 
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4.1.1 Capacity of a Binary Channel 

We will now present an interpretive sketch of the capacity theorem for (n parallel copies of) a 

binary symmetric channel, which will allow us to proceed with a more intuitive grasp of 

channel capacity. For a detailed, more formal proof of Shannon's famous result, the reader is 

referred to [ 19]. 

Consider a source X emitting sequences of binary digits of length n. We are interested in 

determining the greatest number of distinguishable inputs emitted by X that can be 

transmitted over an arbitrary discrete channel subject to random noise. 

From Chapter 3, we know that since Xis a random -variable withä'OfteSponding probability 

distribution {P(X = x)}, then'there are roughly 2hhh1 typical input sequences of length n. 

Similarly, at the output, there are approximately 2'" typical output sequences of length n 

since Y can be regarded as a source (using the fact that P(Y = = P(Y = I x = x)P(X = x)). 
yY 

If we fix an input sequence x and transmit the sequence, a natural question to ask is where 

may x end up upon transmission over the noisy channel? In other words, following 

transmission, what output sequences could have reasonably been caused by x? The answer 

lies in the fact that all output sequences are "noisy" versions of input sequences, where the 

noise can act on x to produce one of probable output sequences. For some insight 

into why this is indeed the case, recall that H(Y I x) is a random variable and H(Y I X) is 

obtained by averaging H(Y I x) over all inputs x, and that each possible output sequence 

occurs with the same probability from our definition of typical sequences in Chapter 3. 

Therefore, the input sequence x can be mapped to one of 21?11'1 output sequences, 

producing an "output fan" of likely sequences as shown in Figure 44 below. 
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a 

a 

2nff(YjX) 

a n1I(X) typical 
,n-sequences 

2a-H(Y ) typical 
n-sequences 

Figure 4-1 Output fan associated with the input sequence x 

Upon receiving an output sequence contained in a given output fan, we must be able to 

unambiguously determine which input message was sent. In order to do so, we require that 

no two output fans can overlap since, if they did, then given an output sequence y in a 

particular output fan, we would not be able to say with certainty which input sequence 

produced the received output sequence. This "non-overlap" condition can be expressed 

mathematically as 

N2 t'"1 nH(Y) (4.3) 

where N represents the total number of output fans. Expressing the above in terms of N, we 

have 

N ≤ 2n(H(Y)—H(YIX)) 2n1(Y;X) 

Upon taking the logarithm of both sides and dividing through by n, we obtain 

logN I(Y;X) 

(4.4) 

(4.5) 

Finally, maximizing over all output distributions for Y, we obtain the fundamental result 

logN = A (4.6) 



Y 
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where the left hand side is thought of as the transmission rate in bits per symbol since, in 

the binary case, there are log N message bits, and n is the number of symbols per message 

string. 

On the other hand, consider the situation depicted below in Figure 4-2. In this case, we fix 

an output symbol and attempt to determine the set of inputs that could have produced it via 

transmission over a noisy channel. Again, we have about typical input sequences and 

approximately 2" typical output sequences, all of length n. 

EE(X) typical 
n-sequences 

o ''() typical 
n_sequences 

Figure 4-2 Input fan associated with the output sequence y 

In this case, given a received output sequence y, the question becomes 'which input 

sequence(s) could have most likely produced the output sequence y?' In this case, we can 

view our channel as transmitting from Y to X, since we can regard Y as a source (so-called 

"flipped", or "reciprocal" channels will be discussed in detail in Chapter' 5). Therefore, by the 

same argument as before, the output sequence y can be mapped to one of input 

sequences, each occurring with equal probability, thus producing an input fan of likely 

sequences as shown in Figure 4-2. In order to ensure unambiguous communication, we must 

again have the "non-overlapping" condition which, in this case, is expressed as 

M2" ≤ 2fl(X) (4.7) 

where M represents the total number of input fans. Therefore, in terms of M, we have 
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M ≤ 2nH(X) - 2 nH(X[Y)  2 n!(X;Y) (4.8) 

and upon taking the base 2 logarithm of both sides and dividing through by n, we have 

J(;y)> lOM 

n 

This time, by maximizing over all possible input distributions for X, we obtain 

A= logM 

(4.9) 

(4.10) 

We therefore conclude that the capacity of n parallel copies of an arbitrary, discrete binary 

symmetric channel is given by 

A= max I(X;Y)= max I(Y;X) 
P(X=x) P(Y=y) 

It is also worth mentioning that we have seen yet another justification for the fact that mutual 

information is indeed symmetric with respect to a source and a destination. This symmetry 

will prove to be extremely useful when examining reciprocal channels in Chapter 5. 

4.2 Binary Channels 

A type of channel that is of particular practical importance is the binary symmetric channel, 

given the prevalence of binary data in most practical computing applications. We will first 

investigate the Binary Symmetric Channel, or BSC which, by definition, features a 

probability of bit error that is the same foi either input bit value. The general binary channel 

will also be discussed in this section, where since the probability of bit error varies for each 

input bit value, computation of channel capacity is somewhat more involved. 
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4.2.1 The Binary Symmetric Channel 

The Binary Symmetric Channel (BSC) consists of an input and output alphabet {O,1} along 

with a parameter p, which represents the probability of a bit error during transmission, as 

depicted in Figure 4-3. 

Input 

0 

Output 

1 

Figure 4-3 A binary symmetric channel with parameter p 

The channel transition matrix of a BSC is given by 

P = [I — p p ] 
p i— p 

If the parameter p is equal to ½ ,, the channel is completely unreliable, since any input bit is 

capable of producing the output '0' or ' 1' with equal probability. Thus, the receiver has no 

way of knowing which input bit was sent. It should also be noted that if p > ½, we can 

switch the inputs '0' and ' 1', resulting in the original BSC with parameter 1 - p. Hence, we 

will only consider parameter values p such that 0 ≤ p ≤ ½. We can now formally present 

Shannon's capacity theorem for the BSC. 

Theorem 4.4 (Capacity of a BSC): The capacity of a BSC with parameter p is given by 

A 1— H(p) where H(p) is the Shannon function. 

Proof.  Let P(X =0) = a, P(X = i) = 1— a. Now, the output symbol will be '0' if either '0' 

is input and transmitted without error, or if ' 1' is input and is erroneously transmitted. 
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Thus, P(Y 0) = a(1— p) + (1— a)p, and using similar arguments, P(Y = 1) = c+(l—a)(l—p). 

From the channel matrix P, we can compute 

H(YI X) = — P(X = x)P(Y = I X = x) log P(Y = y I X = x) 
XEX yY 

=—P(X=O)P(Y=OX=O) log P(Y=OIX=O)—...—P(X=1)P(Y=1X=1) log P(Y=1X=1) 

=—a(1—p)1og(1—p)—cp log p—(1—a)p log p—(1—c)(1—p)1og(1—p)=(a+(1—a))H(p)=H(p) 

Then, using the definition for mutual information, we have 

I(X;Y)= I(Y;X) = H(Y)—H(Y I X) 

= —(a(1— p)+(l— a)p)log(a(1— p)±(l— a)p)—(ap +(1— a)(1— p))1og(c +(1— a)(1— p))— H(p) 

Note that I(X ; Y) is a function of one variable and a parameter p, which is considered fixed. 

To determine the maximum value of I(X;Y), we need only evaluate the endpoints of the 

interval over which I(X; Y) is defined (namely the closed interval [0,1]), or at any point 

where the derivative of I(X;Y) is 0. 

At the endpoints, ifa = 0, we have I(X;Y) = —p log p —(1— p)log(1— p)— H(p) 0. 

On the other hand, if  = 1, we have I(X;Y) = —(1— p)log(1— p)— p log p—H(p) = 0. 

Thus, in order to determine the local and, subsequently, the global maximum, it suffices to 

calculate the value of a for which the derivative of I(X;Y) is 0. Then, with f(a) = I(X;Y), 

we obtain 

f'(a) = —(1-2p)log(a(1— p)+(l— a)p)—(1-2p)—(2p-1)log(ap+(1—a)(1— p))—(2p-1) 

= (2p - 1)(log((1 - p) + (1— x)p) - log(ap + (1— a)(1- p))) 
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Therefore, f'(x) = 0=> log(a(1— p)+ (1— a)p) = log(ap + (1— a)(1— p)) a =!. 

Hence, the maximum value of I(X ; Y) is attained when a = ½, and thus the capacity of the 

BSC with parameter p is given by 

A = maxl(X;Y) = — 1 --- log 1—  — 1 — log 1— - H(p) = 1— H(p) 
2 22 2 

0 

Evidently as can be seen from the above, even for one of the most straightforward channels, 

calculating the corresponding capacity can be quite tedious. However, later on we provide a 

much simpler proof of Theorem 4.4 using an observation of Shannon. 

4.2.2 General Binary Channels 

As an alternative to the BSC, we can consider the case in which the probability of a bit error 

is not the same for each input bit. 

Definition 4.5: A general binary channel is defined as a map F: X -> Y, where X, Y = {o,i} 

with corresponding channel transition matrix given by 

[P00 Poi 

[Pio Pi ll 

where pij represents the probability that given message i was sent, message j was received, 

with the constraint that p0 + p01 = p10 + p11 =1. To compute the capacity of general binary 

channels, we can make use of a theorem due to Ash ([ 1]). 
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Theorem 4.6 (Capacity of a Binary Channel): Consider a general binary channel with 

channel transition matrix 

= IPIO Poi 
Pi ll 

The capacity of this channel is given by A = log(2u + 2') where 

=  p11H(p00)—p01H(p10) and v= —p10H(p00)+p00H(p10)  

Pio Poo Pio - Poo 

For example, if Poo = Pu I= 1 P' Pm = pol = p then 

= (1— p)H(p)— pH(p) = —H(p) and v = - pH(p)+(1— p)H(p) = H(p) 

p— (l— p) p— (1— p) 

which results in a capacity of 

A = log(2-F1) +2 -H )= log(. 2' )= log 2 + log 2'" 1— H(p) 

This is exactly what we expected to obtain, since this case corresponds to the BSC discussed 

in Section 4.2.1. M a numerical example, consider the general binary channel with channel 

transition matrix 

P= [0.75 
0.250.15 0.85 

Then, with 

(0.85)H(0.75) - (0.25)H(0. 15)  U  - 0.90, v  (0. 15)H(0.75) + (O .75)H(O. 15) = - - 0.56 
0.15-0.75 0.15-0.75 

the capacity is A = log(2 °° +2 -0.56 ) 2_056) 0.28. 
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4.3 Further Techniques for Calculating the Capacity of a 

Discrete Channel 

We now present, additional techniques that will prove to be quite useful in the calculation of 

capacities for a variety of channels. 

4.3.1 Regular Channels 

Consider the channel shown in Figure 4-4. 

i-P 
XI 

X3 

xn 

Figure 4-4 An example of a regular channel 

The inherent symmetry of this type of channel can be exploited to greatly simplify the 

computation of its associated capacity. From a combinatorial standpoint, notice that each 

X € X has the same set of probabilities on the emerging lines, or in other words, their output 

fans look the same. This implies that, for all x€ X, P(Y = y I X = x) is constant with respect 

to the inputs. Let us now assume that the output fans are in fact the same. This is 

tantamount to assuming that the rows of the channel matrix are permutations of each other. 

The channel matrix corresponding to the channel in Figure 4-4 is then called a semi-regular 

channel matrix. For example, the channel matrix P of Figure 4-4 is semi-regular with 
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i—p p 0 

o i—pp 
o o i— p 

p 

Recall that 

0 0 

0 

0 

0 

H(YIX)=—P(X = x)P(Y= y I X =x) log P(Y= y I X = x) 
xrz  yEY 

Then, since the output fans are equal and the sum of the probabilities for X add up to 1, we 

obtain the following result. 

Result 1: The capacity Aof a channel for which the rows are permutations of each other is 

given by the following formula. 

A := max {H(Y)}-. H(any row of P) (4.11) 
P(Yy) 

• In the diagrammed example above, this gives A = max {H(Y)I— H(p). 
P(Y=y) 

Next, let us also assume that the columns of the channel matrix are permutations of each 

other. Thus, combinatorially, the input fans of each y E Y are also the same, and the channel 

is referred to in this case as a regular channel. 

It follows that if the input probabilities P(X = x) are equal, then Y also has the equiprobable 

distribution so thatH(Y) = log(number of outputs). From Result 1, we then have the 

following. 
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Theorem 4.7 (Capacity of a Regular Channel): Given a regular channel F: X --> Y with 

inputs X = {x1,..., xm}and outputs Y = {y1,..., y,j , let (p1, p2 ,..., p,) denote any row of the 

channel matrix. Then the capacity A of the channel is given by the following formula. 

A= log n—H(p1,p2,...,p) (4.12) 

Since the BSC is a regular channel, we now have the easier proof for the capacity of the BSC 

promised earlier. 

Corollary 4.8: The capacity Aof the Binary Symmetric Channel with parameter p is equal to 

A=1ogn—H(p1,p2,...,p)=1—H(p) (4.13) 

Remark 1: This formula easily extends to the case of n copies in parallel of the BSC. 

Remark 2: In order to achieve capacity, we can take the X to be equiprobable so that the 

distribution for Y is equiprobable. However, there exist examples where the Y can be made 

equiprobable without the X being equiprobable. Here is one such example due to Shannon. 

Example 4.9: Consider the channel in Figure 4-5 with channel transition matrix 

P= 

1/2 1/2 0 0 

0 1/2 1/2 0 

0 0 1/2 1/2 

1/2 0 0 1/2 
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1/2 

1 

2 

3 

2 

3 
1/2 

Figure 4-5 A regular channel with four inputs and outputs 

Then, by Theorem 4.7, the capacity is given by A = log 4— log 2=1. 

Now, since the channel is regular, we know that H (Y I X) is constant with respect to each 

input, so that achieving capacity amounts to maximizing H(Y) with respect to all possible 

output distributions. From Chapter 3, we know that H(Y) is maximized if and only if the 

outputs are equiprobable. Therefore, for each y E 1', P(Y = y) = 1/4. If we denote the .input 

probabilities as P(X =0) = a, P(X =1) = /3, P(X =2) = ', and P(X =3) = 8 where 

a +,6 +  ' +8=1, then using the Law of Total Probability, we obtain the following system of 

equations relating the input probabilities to the equiprobable outputs: 

1/2 1/2 0 0 1/4 

o 1/2 1/2 0 1/4 

o o 1/2 1/2 1/4 

1/2 0 0 1/2 1/4 

where '=' denotes row-reduction. 

Therefore, we obtain a solution of 

x= 

P(X =0) 

P(X =1) 

P(X =2) 

P(X = 3) 

1/2 

0 

1/2 

0 

1 0 0 1 1/2 

o i o —1 0 
0 0 1 1 1/2 

0 0 0 0 0 

,where0 ≤ P(X = x) ≤ 1 for all xE X. 
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Thus, we actually have an infinite number of possibilities such that the outputs are 

equiprobable but the inputs are not. In other words, there are infinitely many input 

probability distributions achieving capacity! For example, if t = 0, we can achieve capacity 

using only the 1st and 3   symbols, so that the input distribution is given by{1/2,O,1/2,0}, 

which produces a uniform output distribution. For the other extreme, we could have used 

only the 2nd and 4 1h symbols, which corresponds to an input distribution of {O,1/2,O,1/2}, 

again resulting in an equiprobable output distribution. 

The technique involved in analyzing regular channels can also be extended to include 

channels that are ' almost' regular, i.e. channels that are regular with the exception of one 

input and one output. This result is based upon the subtle pooling inequality, which 

essentially states that, for entropy, "the more equat the probabilities, the bigger the entropy." 

([8]) The pooling inequality does not seem to follow from the usual Jensen's inequality 

argument. 

We now present an extension to Theorem 4.7 that applies to the case where a channel is near-

regular, i.e. the input fans are the same with the exception of one output, and the set of output 

fans are the same with the exception of one input. 

Theorem 4.10 (Near-Regular Channel Capacity): Let T: X - Y be a channel with inputs 

X = {x1 ,..., x,, } and outputs Y = {y .... , y, }. Assume the following. 

1. Each of {x2 ,..., Xm }has the same output fan 

2. Each of {y2,..., y,} has the same inputfan 

3. P(Y—yiIX=x1)=P(Y=y1IX=x) for 2≤i,j≤m. 

4. P(X=x1IY=y1)=P(X=x1lY=y) for 2≤i,j≤n. 

Then at capacity, we must have P(Y = y2) = ... = P(Y = y,). This can be achieved by putting 

P(X=X2)= ... =P(X=Xm). 
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Notice that if n and m were 100 for example, then we could assume at the outset that the last 

99 inputs have the same probability distribution. Hence, it is possible to reduce an 

optimization problem involving 100 variables to one involving only a single variable! 

For an application of Theorem 4. 10, consider the channel below in Figure 4-6 discussed in 

Shannon [ 19]. 

O 
i-p 

1 

2 

Figure 4-6 Example of an almost regular channel from [19] 

Following Shannon's notation, we denote the input probabilities by P, Q and R for 0, 1, and 2 

respectively. The author assumes that Q = R. Following this, he calculates the capacity, With 

the assumption that Q = R simplifying the calculations. We want to point out that Theorem 

4.10 provides one way of showing that we may assume Q = R, since the inputs have the same 

output fan with the exception of the input '0', and the outputs have the same input fans with 

the exception of the output V. It should also be noted that for this problem, Shannon uses 

the method of Lagrange Multipliers discussed below, in addition to assuming that the channel 

matrix P has an inverse. This assumption is too stringent, since it excludes channels where 

the number of inputs and the number of outputs are different. In fact, Shannon computes the 

capacities of such channels in [ 19] without making use of this assumption at all. 

4.3.2 The Method of Lagrange Multipliers 

The method of Lagrange Multipliers is a standard tool in solving constrained optimization 

problems and, as such, it will be outlined here. This method is based upon a theorem due to 

Lagrange, which specifies the conditions for which there exists a maximum or minimum 

value for a so-called objective function, subject to a constraint function. Lagrange's theorem, 
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slightly modified from Larson et al ([ 12]) to account for three variables and provided without 

proof, can be summarized as follows. 

Theorem 4.11 (Lagrange's Theorem): Letf, g have continuous first partial derivatives such 

that f (a, /3, ') has an extremum at a point (ac, /3, r,,) on the smooth constraint 

curve g (a"8' y) = C. If Vg (ao,,80, To 0, then there is a real number % such, that 

Vf(a0,fl0,y0)=2Vg(a0,/30,7) (4.14) 

Theorem 4.12 (The Method of Lagrange Multipliers): Letf, g satisfy the hypothesis of 

Theorem 4.11, and let f(,/3, y) = I(X;Y)have a maximum subject to the constraintfunction 

g (a, fl,y) = Cr +,8 + V- 1 = 0. Then the following steps will yield the maximum value of 

f(a,/3, r)= I(X;Y)and hence the capacity of the corresponding discrete channel. 

1Vf(a0,fl0,y0)=2Vg(a0,/30,y0) 
1. Solve the system of equations j i) = cx + /3 + 7-1= 0 

2. Evaluate f(a, fi,') = I(X; Y) at each point obtained from step 1. The largest value 

attained by I(X;Y) subject to g(a, fl,') = a+.8 +  7-10 is the capacity of the 

channel. 

Remark: For our purpoes, the numbers a,,6, 'always turn out to be probabilities. 

With an arsenal of techniques for computing capacity in hand, we can now address some 

capacity questions that appear in Goldie & Pinch ([8]) and correct the results there. 
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Example 4.13: Consider the ternary channel shown in Figure 4-7 below. 

0  2/3  .0 

1/3 
1/3 

1  1/3  

2 :1/3: ::  2 
2/3 

Figure 4-7 Ternary channel with one random input 

The corresponding channel transition matrix is then 

1 
3 3 0 

1 1 1 

3 3 3 

1 2 

3 3 
0 

To compute the capacity of this channel, we must maximize the mutual information of the 

channel over all input (or output) probability distributions. However, we will seek to 

maximize mutual information in terms of probability p, and then set p equal to 1/3 in order to 

obtain the result we desire. 

Therefore, the channel transition matrix that we are interested in is given by 

2p p 0-

P p p 

0 p 2p 

First, we can calculate H(Y) by regarding Y as a source using the Law of Total Probability, 

where the input probability distribution is {P(X = x) } = {a, fi, 2' =1— a - /3): 
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P(Y=O)=P(Y=OIX=x)P(X=x)=P(Y=OIX=O)P(X=O)+...+P(Y=OIx=2)P(x=1) 
xG X 

=2pa+p/3 

Similarly, we compute P(Y =1) = (a +,8 + ')p, P(Y =2) = p/i + 2pv. Thus we have 

H(Y) = —(2ap +,8 p)log(2, +,6p) — ((a+ /3+ y)p)log((a+ /3+ y)p)—(flp + 2)log(flp + 2p) 

Next, we must determine H(Y I X) and find the maximum value of I(Y; X) = H(Y) - H(Y I X). 

By definition, we have thatH(Y I X) = P(X = x)P(Y = 3' I X = x) log P(Y = y I X = x). 
XEX yEY 

Then, using the entries of F, we have 

H(YIX)=—P(X=O)P(Y=OIX=O)logP(Y=OIX=O)—...—P(X=2)P(Y=2IX=2)1ogP(Y=2X=2) 

= —a(2p log(2p) + p log(p)) - ,6(3p log(p)) - 7(2p log(2p) + p log(p)) 

Now, to find the capacity of the channel, we must maximize I(Y; X) = H (Y) - H (Y I X) over 

all possible output probability distributions. Note that I(Y; X) is a function of three variables 

in addition to p, subject to the constraint a +,8 + y =1. Hence, we can use the method of 

Lagrange Multipliers to determine the capacity, where the objective function is 

f(a, /3, ') = H(Y) - H(Y I X) and the constraint function is given 

byg(a,fl,)=a+fl+y-1. 

Computing partial derivatives, we have: 

fa (a,,8, y)= —2plog(2ap + 18p)— plog((a+fl+ )p)-3p±2p log 2p+ p log p 

fp (a, /3,7) = —plog(2ap ±/ip) - p log((cr +fl + y)p) - p log(/3p + 2W) - 3p - 3p log i 

f7(a,fl,y)=-2plog(flp+2)-p1og((a+fl+y)p)-3p+2p log 2p+p log p 
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Thus, we must now solve the system of equations 

—2plog(2ap+flp)—plog((a+fl+y)p)-3p+2p log 2p+p log p=2 

- plog(2xp+/ip)— plog((ct'+/i+ y)p)— plog(/ip+ 21p)-3p-3p log p = 2 

—2plog(flp+2)—plog((a+fl+y)p)-3p+2p log 2p+p log p=2 

resulting in the following solution. 

The capacity of the channel in Figure 4-7 is given by A= (i - p) log !LP 2 )+(1- P)Io.41—P), 

which corresponds to an input distribution of {a = 1/2,/i = 0,7= 1/2}. 

Hence, the capacity of the channel when p = 1/3 is A = 2/3 bits per symbol corresponding 

to an input distribution of{P(X = x)} = { 1/2, 0, 1/2}, or alternatively, an output distribution 

of {P(Y = y) } = { 1/3, 1/3, 1/3 }. In physical terms, we can achieve the capacity of this 

channel if we do not use the second input, and use the other two inputs with equal probability. 

We note here that, from Theorem 4. 10, we could have actually assumed at the outset 

that a = v, thus simplifying our calculations as shown below. 

Example 4.13 Revisited: Using Theorem 4. 10, we have that a = y. Therefore, we can 

calculate 

H(Y I X) = _24. log + . lo(.JJ —(1— 2a)[\lo 3 
" 'iJJ 4a 

=--+1og3 
3 ,3 3 3 ) 3  

Upon calculating the output probabilities in order to determine H (Y), we see that 

P(Y=0)=a+1(1-2a)=1=P(Y=1)=P(Y=2) 
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Therefore, H(Y) = 10g3, so that I(Y;X) = 1og3+± 1_log3. Hence, capacity will be 

achieved when a is as large as possible. In this case, since we have both a ≥ 0 and 

1— 2a ≥ 0, then the resulting capacity of the channel is A = 2 / 3 corresponding to an input 

distribution of{P(X = x)} = { 1/2, 0, 1/2) as above. 

This particular channel appears in Goldie & Pinch (pg. 120, [8]), and while the authors are 

indeed correct in asserting that capacity is achieved by setting one of the outputs to '0', they 

have made a mistake in calculating the actual capacity of the channel, which they assert 

incorrectly to be A = log 3. 

Note that this would only be possible if either the inputs or outputs were uniformly 

distributed and there was no noise present in either the channel from X —k Y or 

Y —k X which is clearly not the case. 

Another way of showing that the capacity calculated by Goldie & Pinch is incorrect is to 

consider the fact that the only way to achieve a capacity of A = 10g3 is to have the case 

where each input gets mapped to a distinct output with probability 1, as shown below in 

Figure 4-8. 

0 

1 

2 

1  

1 

. 0• 

1 

1 

Figure 4-8 An example of a noiseless channel 

Analytically speaking, this amounts to the following theorem. 
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Theorem 4.14 (Capacity of a Noiseless Channel): Given a channel F: X - Y, where the 

inputs are given by X = {x1, x2 ,..., x} and the outputs are given by Y = {y1 , y2 ,..., y, }, a 
capacity of A = log  can be obtained if and only if H(Y I X) = 0 and the outputs are 

uniformly distributed. 

Note that Theorem 4.14 corresponds to a noiseless channel, where each of the n output fans 

are disjoint. 

Example 4.15: Now consider the ternary channel shown in Figure 4-9, that also appears in 

Goldie & Pinch (pg . 120, [8]), albeit with an incorrect conclusion. 

1 

2 

1 -p 

p 

1 

p 

i-p 
2 

Figure 4-9 Ternary channel with one deterministic input 

The corresponding channel transition matrix in this case is then 

'_i —pp 
P:= 0 1 0 

_0 p i —p 

Again, we can proceed using the method of Lagrange Multipliers, and since the channel is 

not symmetric, this method is our best bet. In this case, using an input distribution 

of{P(X =x)}={a,fl,7=1—a—fl},we can compute 
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P(Y=O)=P(Y=OjX=x)P(X=x)=P(Y=OIX=O)P(X=O)+...+P(Y=OIX=2)P(X=l) 
XGX 

=a(l-p) 

Similarly, we can compute P(Y =1) = ap + /3+ p, P(Y =2) = 7(1 - p). Hence, we have 

H(Y) = -(a- ap)log(a- ap)-(ap + /3+ p)log(ap + fl+ p)-(y- p)log(y- p) 

Again, using the entries of the channel transition matrix, we calculate 

H(YX)=-P(X=O)P(Y=OX=O)1ogP(Y=OX=O)-...-P(X=2)P(Y=2X=2)logP(Y=2IX=2) 

-a((i- p)log(1- p) + p log p) -'8G) logG)  - 2'(P log p + (1- p)log(1- p)) 

(a + )H(p) where H(p) is the Shannon function. 

Then, we can compute the capacity of the channel by using the method of Lagrange 

Multipliers, with objective funbtion f(a, ,8, ) = H(Y) H(Y I X) and constraint function 

given by g (a, /3, )/) = a +,8 + 7-1. Computing the partial derivatives off, we have 

f,, (a,,8, v)= -(1--- p)log(a- ap)- plog(ap +,8 +  p)- p - H(p) 

ffl (a,fl,7)=- log(ap +fl+p)-1 

fr(C,/3, y)= -(1- p)log(y- p)- p log(ap -i-/3-i- p)- p-H(p) 

Then, by solving the system of equations 

-(1- p) log(a - ap) - p log(ap +,6 + ip) - p - H(p) = 2 

- log(ap +fl+p)-1=2 

-(1- p)log(y- 2P) - p log(ap +,8 + p) - p - H(p) = 2 

a+fl+=1 
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we obtain a capacity of A = (i - p)log(1) + (i - p)log(1— p), which is achieved with an 

input distribution of {P(x = x)}= { 1/3,1/3,1/31 or equivalently, an output distribution of 

{P(Y = y)}::: { 1/3,1/3,1/3}. 

In their book, Goldie & Pinch claim that, for the above channel, a capacity of A = log 3 can 

be achieved for any value of p < 1/3. This statement is, for the most part erroneous, with the 

exception of the case when p = 0 for which the capacity is indeed A = log 3. 

Note that using Theorem 4.14, we can compute a capacity of A = log 3 exactly when the 

outputs are uniformly distributed and p = 0, since this choice of p would result in a noiseless 

channel, i.e. H(Y I X) = 0. We also point out here that using Theorem 4. 10, we could have 

assumed at the outset that a = , thereby reducing a three-variable optimization problem to a 

one-variable problem as was done in Example 4.13. 

As we have seen, the calculation of capacity for certain channels can be an elusive task, 

especially if one makes one or more misguided assumptions along the way. We point out 

here that the use of Lagrange Multipliers, or its more generalized version, the Kuhn-Tucker 

algorithm, is the most common method used to evaluate the capacity of discrete channels. 

However, both the Regular Channel Theorem and the Near-Regular Channel Theorem can be 

used to exploit symmetry in a given channel to greatly reduce the amount of computation 

required to obtain the capacity of the channel. More specifically, the Near-Regular Channel 

Theorem allows us to reduce a capacity problem involving n variables to one involving only 

one variable. We have also shown here that in some cases, there may exist infinitely many 

input distributions that can be used to achieve capacity. This contradicts the implication by 

some that in order to achieve the capacity of a channel, one must have a unique set of input 

probabilities. 
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5 Reciprocal Channels 

First we pose the following problem. We are given a binary channel F' with input 

probability Po = P(X =0) and q0 = I — po =P(X =1). Let p be a constant with 0 < p<l/2. 

We assume that Po satisfies the constraint 

It then follows that 

P< PO . <1P 

p<q0 < i—p 

Suppose the channel matrix P is given by 

p 4l 00 P01 

[P10 P11 

where each row of P adds up to 1. Moreover, we assume that 

Poo = (1P)(Po  and P11 = (1—p)(q0 — p)  

Po(12P) q0(1- 2p) 

(5.1) 

(5.2) 

We note that the channel matrix P depends on the input probabilities: it is not a constant as is 

usually the case. Then, with a= Po 12and/3=1—x= l- 2p q0p  1— 2p ,wehave 

(1—p)  . Pa  

(i—p)cr+pfl p0:+(1— p)/3 
p/i (1—p)/3 

(1—p)c-i-p/Y p0:+(1— p)/3 

It must first be noted that this channel matrix is not in general symmetric (with the exception 

of the case when a = /3), so we cannot make use of Theorem 4.7 to determine the capacity. 
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Hence, we can proceed by way of two methods, either by using Ash's formula for general 

binary channels, or by using Lagrange Multipliers. 

Recall that via Theorem 4.6, the capacity of a general binary channel can be computed as 

A= log(21 + 2v) 

Unfortunately, the actual expression for the capacity is quite cumbersome and depends on 

two variables, particularly p and a. Hence, we can not obtain a closed form for the capacity 

unless the input probabilities specified first. The relevant calculations are included in 

Appendix A. 

In an attempt to find a more tidy solution, we can try the method of Lagrange Multipliers, as 

was done for the channels in Examples 4.13 and 4.15. 

To compute the capacity of this channel, we find H(Y)by regarding Y as a source as before: 

P(Y=O)=P(Y=OlX = x)P(X =x)=P(Y=OIX =O)P(X = O)+P(Y=OIX = 1)P(X =1) 

=  (1—p)a  ((1—p)+pfl)+ pa  (Pa +(1—p)fl) 
(1—p)a+p/3 pa+(1—p)/3 

=(1—p)a+ pa= o 

Similarly, we computeP(Y = 1) = P(Y = i I X = O)P(X = O)+P(Y =11 X = 1)P(X = 1)  

Thus we haveH(Y) = —aloga - fllogfl = H(a). 

Next, we must determine H(Y I X) and find the maximum value of I(Y;X) = H(Y)—H(Y I X). 
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By definition, we have thatH(YIX)= I m =x)P(Y= yX =x)logP(Y= yX rnx). 
xX y€Y 

Using the entries of P, we have 

H(YIX)=—P(X =O)P(Y=OIX =O)logP(Y=OX = O)—...—P(X=1)P(Y=1X=1)logP(Y=1X=1) 

=—((1—p)a+p/3)  (1—j,  log  ... (pc+(1 p)/3) (1— A 8 log  
(1.— p)a+ p/i (1— p)a+ p/i pa+ (1— p)/i pa+ (1— p)/3 

(l—p)a P'8 pa'log  pa  (1 =—(p)fllog l—p)alog(1)fl p/3Iog 13 pa+(l—p),8 pa+(l—p),6 

Using Maple, no closed form for capacity can be obtained (see Appendix A for 

corresponding calculations). The reason that Lagrange fails to provide a solution is that there 

are extra constraints involved here that were not present in the examples above from Goldie 

& Pinch, namely constraints (5.1) and (5.2) above. With our two most promising methods 

exhausted, what other option do we have? 

Fortunately, with a bit of convenient manipulation, we can make .use of the symmetry 

property of mutual information to solve the problem with great ease. As it turns out, the 

channel matrix given above corresponds to the induced, or reciprocal, channel F' (i.e. 

F': Y - X instead of F: X -> Y) of a binary symmetric channel F with parameter p and 

input probabilities P(X = 0) = a, P(X = 1) = fi = 1— a. Note that constraints (5.1) and (5.2) 

above fall out here. 

As we have already seen, the capacity of the BSC is given by A = 1— H(p). Thus, because 

of the crucial fact that A = max I(X; Y) = max I(Y; X) (as discussed in Chapter 3 and 4), we 
P(X=x) P(Y=y) 

Can compute the capacity of the channel F' above to be 

A = max I(X;Y) = max I(Y; X) = max (H(Y) - H(Y I X)) = 1— H(p) = capacity(F') 
P(X=x) P(Y=y) P(Y-y) 

and we have completely solved the problem! 
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It is important to emphasize, as above, that the reciprocal of a BSC is not a BSC, with the 

exception of the case when a 

In general, an induced or reciprocal channel is a channel F': Y -> X with transition 

probabilities given by P(X = x I Y = y) for all input values x and output values y 

corresponding to a channel F: X -> Y. In the example above, the input probabilities of the 

induced channel were obtained using Bayes' Formula from the input probabilities of the 

original binary symmetric channel F and the entries of the binary symmetric channel 

transition matrix 

P= [1_p P 

L P i— P 

Note that using Bayes' Formula, it can be shown that the reciprocal of the reciprocal of a 

binary symmetric channel F is F. 

Theorem 5.1 (Reciprocal of the Reciprocal of a BSC): Given a BSC with P(X =0) = a, 

P(X =1) = ,8=1— a, then the reciprocal of the reciprocal of a BSC is a BSC. 

Proof. We have already seen that a reciprocal BSC defined by F': Y - X with input 

probabilities given byP(Y =O)=(1—p)a+pfl,P(Y =1)= pa+(1—p)/3 ,where /3=1—a 

has a channel transition matrix given by 

- (1—p)a pa - 

(1—p)a+pfi pa+fl(1—p) 
p/i (1—p),8 

(1—p)a+p/i pa+(1—p)/3 

Therefore, by viewing the output of the reciprocal channel as a source, we have 

P(X =0)= P(X =OIY=0)P(Y=0)+ P(X = OIY=1)P(Y=1) 
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(i — p)a  
p)x+pfl)+ pa  (pa+(1—p)fl)=a 

1—p)a+pp pa+(1—p)18 

P(X = 1)=P(X = 1IY.=0)P(Y=O)+P(X =1IY=1)P(Y=1) 

p/i (,—((1— P),8p)a+ pfl)+ (pa+ (1— p)fl)= /3 
(1— p)a+  pa 

Also, using Bayes' formula, the conditional probabilities P(Y = y I X = x) can be calculated as 

P(X=O) ((1—p)x+pfl)c 

Similarly, P(Y=1IX = O)=p, P(Y=OIX = 1)=p,andP(Y=1IX = l)=1— p. 

Therefore, upon flipping the reciprocal BSC, the input probabilities, coupled with the 

conditional probabilities P(Y = y I X = x), correspond exactly to those of a BSC, hence the 

underlying structure of a channel is not changed when it is flipped. 

0 

In connection with the above result, we have the following more general theorem. 

Theorem 5.2 (Reciprocal of the Reciprocal of a Discrete Channel): Given a discrete 

channel IF: X - Y, the reciprocal of the reciprocal of r is F. 

Sketch of Proof. Given a channel F, we have the channel transition probabilities 

P(Y = y I X = x) for all x € X, y E Y. In the reciprocal channel F', the channel transition 

probabilities are 

P(X=xIY=y)= P(Y Y1X  

P(Y = y) 
(5.3) 
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Now, when we reciprocate F', we obtain the transition probabilities 

P(X = x I Y = y)P(Y = y) = P(Y = I X = x)P(X = x)P(Y = y) = P(Y = y I X = x) 
P(X — x) P(Y = y)P(X=x) 

which are exactly the transition probabilities corresponding to the channel F. Hence, by 

reciprocating the reciprocal of r, we obtain F. 

0 

Corollary 5.3: Every channel is the reciprocal of a (unique) channel. 

Proof. Given a channel 17: X -> Y, from Theorem 5.2 we have that IF = reciprocal (F'). To 

show that r is indeed unique, suppose that F = reciprocal (M) and F = reciprocal (N) where 

M, N are distinct channels. Then, by reciprocating both sides of each expression, we obtain 

reciprocal (F) = M and reciprocal (F) = N 

which implies that M = N. But, we assumed that M, N were distinct. Therefore, by 

contradiction, we have our result. 

0 

Next, we discuss a practical example. Consider the use of diagnostic equipment that is used 

to detect underlying input conditions based on detected output signals. As discussed above, 

it is possible to regard the output of a channel as a source by using the Law of Total 

Probability. Then, using Bayes' Formula, it is possible to calculate the transition 

probabilities of the induced channel, since for each input x and output y, we have 

P(X =xIY='y)= P(Y= ylX =x)P(X = x)  
P(Y = y) 
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Thus, by viewing the results of a diagnostic test, we are actually making use of an induced 

channel in the sense that viewing the output of the original channel gives us much insight 

into the input of the original channel. 

To appreciate the usefulness of induced channels in a practical setting, consider the following 

example from Luenberger [ 14]. 

Example 5.4: Consider an oil company that has discovered a potentially promising site to 

drill for oil. At this site, there are two possibilities: either oil is present at the site with a 

probability of 1/3, or the well is "dry" and no oil is present with a probability of 2/3. Assume' 

that if the well is "wet", the company stands to gain $600 million in oil reserves. 

.Alternatiyely, a dry well results in $0 return. Also. suppose. it costs $ 120 million to drill a 

well. 

Before evaluating channel information, the expected payoff to the oil company is given by 

E(payout) = P(wet)($600M) + P(dry)($0) - cost of drilling 

= (1/3)($600M) + (2/3)($0) - $120M = $80M 

Now, suppose the most technologically advanced seismic imaging technology has revealed 

that there is a strong possibility that oil is present at the site. In particular, if a positive test 

result is observed, there is a 75% chance that oil is present, and if a negative test result is 

observed, there is a 75% chance that the site is dry. With A, B iepresenting the output and 

input repectively of the channel, the corresponding channel matrix is then 

pos. neg. 

P(B I A) = wet [0.75 0.25 

dry [0.25 0.75 
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The decision to drill is based on the outcome of the seismic testing, which unfortunately in 

this example, is not as accurate as oil executives would hope. In actual fact, the probability 

of a profitable decision can be greatly increased if we make use of the induced channel. 

Regarding the test outcomes as a source, we have 

P(positive) = P(positive I wet)P(wet) + P(positive I dry)P(dry) 

= (3/4)(1/3)+ (1/4)(2/3) = 5/12 

P(negative) = P(negative I wet)P(wet) + P(negative I dry)P(dry) =1— P(positve) = 7/12 

The channel transition probabilities of the induced channel are calculated using Bayes' 

Formula: 

P(wet I positve) = P(positive I oil)P(oil) (3/4)(1/3) - 3 
P(positive) (5/12) - 5 

Similarly, we can compute 

1 2 6 
P(wet I negative) =., P(diy positive) = and P(dry I negative) = -. 

Now, supposing it costs roughly $120 million to drill for oil, what decision should the 

company make based on the test results? 

If the test result is positive, we see that there is a 3 in 5 chance that oil is actually present. 

Thus the expected value of the payoff is (3/5)($600 million)-($120 million) = $240 million. 

On the other hand, if the test is negative, there is a 1 in 7 chance that oil is actually present. 

The expected return in this case is ( 1/7)($600 million)-($120 million) = -$34.29 million. 

Overall, the expected net profit is calculated to be $ 100 million, which is $20 million dollars 

greater than the expected profit obtained before making use of the induced channel. Thus, it 

is clear that, based on the probabilities of false negatives and false positives, if the test is 
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positive, the company should drill, and if it is negative, the company should stop. Also note 

that, in each case, the actual act of testing likely costs the oil company in the form of 

consulting fees, although compared to the amount of the potential payout, the cost can be 

considered negligible. 

Thus, using the induced channel, the oil company can decide whether to drill or not based on 

the results of the seismic test, as opposed to blindly drilling based on the a priori 

probabilities of oil being present at the site in question. While this may seem to be an 

obvious choice, this example serves to exhibit the value of induced channels and the 

information that they convey. 



53 

6 Signal Processing 

Another fundamental aspect of Information Theory pertains to signal processing, the 

technique of transmitting and receiving continuous streams of data. The theoretical basis for 

signal processing is centred around the celebrated sampling theorem. In this chapter, the 

definition of entropy for continuous random variables will be presented, along with an 

analytical sketch of the proof of Shannon's famous capacity result. We will then move on to 

provide a brief discussion of the sampling theorem, coupled with a generalization of the 

theorem to include signals sampled in a practical manner. The main purpose of this chapter 

is to provide us with some context in order to investigate a novel cryptosystem due to Alan 

Turing in Chapter 7. 

6.1 Shannon's Capacity Theorem for Continuous Channels 

We now revisit the concept of channel capacity, this time from a continuous point of view. 

Recall that in the discrete case, the capacity was essentially the maximum value of the 

entropy of the signal and the noise, or H(Y), minus the conditional entropy of the noise itself, 

or H(Y I X). The same argument holds true for continuous channels as well, although we first 

require a definition for continuous entropy in order to proceed. 

Definition 6.1: The entropy of a continuous random variable X with probability density p(x) 

is defined as 

h(x) = Jp(x) log p(x)dx (6.1) 

The subtlety involved with this definition is that as shown, it only represents part of the 

entropy one would obtain if the continuous signal was discretized, where values of the 

function are taken at intervals of Ax with & -> 0. The other part of the "discretized entropy" 

is infinite, but it doesn't depend on probabilities. Furthermore, when we apply the definition 
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above, it will be in the form of a difference of entropies, and the infinite part of each entropy 

in the difference will cancel out. Thus, by simply ignoring the infinite part, the above 

definition is appropriate. 

Also, recall that in Chapter 2, the probability density for a Gaussian random variable with a 

mean of zero and variance o2 is given by 

1 (_ x2\ 

Ax) = expl  2o 2 
V2,ro.2  

(6.2) 

It was also mentioned in Chapter 2 that random perturbations due to channel noise are best 

modeled using a Gaussian distribution with a mean of 0, and that the noise is additive and 

independent. Such noise is referred to as Additive White Gaussian Noise, or AWGN. 

Therefore, we can calculate the entropy of continuous channel noise as 

[V2 2 
h(x) = - $p(x) log  1 expl — x 2 )Idx 

—fp(x) log(e) ln[ 
exp x2 )]dX i 

2o 

I 

( 2 = - log(e)f P(x)[ln - x 

I j22 2] 
  In  2 

2o 

= - log(e) Jp(x)I  - X in 2 2 
2o 

(since log x = log(e) in x) 

Now, from [ 14], Jx2p(x) = a'2 and since fp(x)dx = 1, we can write 

h(x) = log(e)[-- + 1nJ2ffo2 ]= log(e)[-_lne + 11n 221a'2] = !log(e)ln 2, ea'2 = !1n 2,1ea'2 

Before moving on, we will need to outline a property for Gaussian density from [ 14], by way 

of the following theorem. 
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Theorem 6.2 (Maximal Properly of Gaussian Density): The continuous entropy of a random 

variable, h(x), subject to the constraints 

fp(x)dx = 1 and fx2p(x)dx ≤ S (6.3) 

where S is the average power of the signal, is maximized when p(x) is Gaussian and 

Var{h(x)} = Q.2 = S. 

Now, suppose we have a signal to be transmitted over a continuous, noisy channel subject to 

AWGN. Then with Y representing the received signal and Z the AWGN, then clearly we 

have Y = X + Z, where X and Z are assumed to be independent. This situation is depicted in 

Figure 6-1. 

X Y=x+z 

Figure 6-1 Signal transmission over a continuous channel subject to AWGN 

Furthermore, we know that the capacity of the channel between X and Y is given by 

A = max l(X;Y) = max l(Y;X) = max(H(Y)—H(Y I X)) where this time, we are 

maximizing subject to the constraints outlined in Theorem 6.2. Thus, we arrive at one of 

Shannon's most famous theorems. 

Theorem 6.3 (Continuous Channel Capacity): Given a transmitted signal X with average 

power 5, a received signal Y, and AWGN represented by Z such that Z has average power N, 

the capacity A of the channel F: X - Y subject to Z is given by 

A = i log (1+ ..J (6.4) 

and is achieved when the probability density of X, p(x), is Gaussian. 
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Sketch of Proof. Given a transmitted signal X with average power S, a received signal Y, and 

AWGN represented by Z, where Z has average power N, in order to find the capacity, we 

must maximize 

I(X ; Y) subject to the constraint $p(x)dx = 1, where p(x) is the probability density of X. 
-00 

Then, we can find the capacity of the channel by computing 

I(X; Y) = H(Y) - H(Y I X) = H(Y) - H(X + Z I X) 

=H(Y)- H(Z IX) 

= H(Y) - H(Z) (since X and Z are independent) 

00 00 

and maximizing I(X;Y) = H(Y)—H(Z) subject to fp(x)dx = land fx2p(x)dx ≤ S. 
-00 

From above, we know that H(Z) = h(z) = -. 1og2,re2 bits, and from Theorem 6.2, we 

know that H(Y) is maximized when the signal has a Gaussian density with average power S. 

Therefore, the capacity can be computed as 

A = max l(X;Y) = max(H(Y) - H(Z)) = max(H(Y))- --log 2reN 

Finally, since the noise is additive by definition, and X has a Gaussian density with average 

power S, we have 

A = max(H(Y))— -- log27zeN = .- 1og[2,'e(S + N)]— ! log[2,re(N)] = i log (1+ -'_) 
0 
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With the continuous framework for signals and channels, we can now move on to some 

fundamental results pertaining to signal processing in general. 

6.2 The Sampling Theorem 

Consider a continuous, analog signal that one might wish to transmit from one point to 

another. For example, consider a temperature sensor mounted on a tower which measures the 

ambient temperature at a given site. Since temperature is measured in terms of real numbers, 

the resulting data stream of the sensor would be a continuous function, with an infinite and 

uncountable number of data points. Clearly, this data stream is of no practical use, since an 

infinite set of values is impossible to transmit! In order to obtain the desired temperature 

information, some estimation needs to be done, but the question remains, how can we 

estimate the stream of data to ensure that we have obtained all of the important data 

measured by the sensor using only a finite amount of information? The answer can be found 

in the celebrated sampling theorem, initially published by Claude Shannon, which acts as one 

of the cornerstones of communication engineering and is responsible for setting the 

groundwork for analog communications as we know it. 

Through the use of Fourier transforms Shannon was able to determine, by building upon the 

work of Hartley and Nyquist, the exact number of data points, or "samples", that are required 

in order to reconstruct an analog signal using only these points. Using this theorem, a time-

varying signal that is band-limited (i.e. it has no frequency components beydnd a finite range) 

can be sampled at multiples of a basic sampling interval, and reconstructed upon 

transmission using only these sampled values and a reconstruction formula proposed by 

Shannon and Nyquist before him. This in itself is a fascinating result: a continuous stream of 

data with an infinite and uncountable amount of information can be accurately represented 

using only a countable set of data points. For a fully detailed proof of the sampling theorem, 

refer to [ 17] or [ 13]. 
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Theorem 6.4 (The Sampling Theorem): A band-limited signal x(t) offinite energy, which 

has no frequency components higher than WHertz, is completely described by specifying the 

values of the signal at instants of time separated by ,2W seconds. Furthermore, it is 

possible to reconstruct the original signal from the specified values of x(t) using the 

reconstruction formula 

x(t) = 2WiTx(nT3)sinc[2Wi(t—nT)] 
n=—oo 

where W1 is an arbitrary number such that W ≤ W1 ≤ - W = f - W, and I Yf is the 

sampling interval with T, < Y2W 
— 

Sketch of Proof: Assume that x(t), a signal of finite energy, satisfies the Dirichiet conditions 

outlined in Chapter 2, and suppose that x(t) is an arbitrary band-limited signal wiih 

bandwidth W and amplitude A as shown below in Figure 6-2. 

X(f) 
A 

—w 

Figure 6-2 Frequency domain representation of an arbitrary signal x(t) ([17]) 

Let x5 (t) be the result of the sampling process upon sampling x(t) at n7" time instants, 

where n is an. integer. Then we have 

x3 (t) Y x(nT3)5(t—nT) where 8(t—nT)= 
n=-oQ 

Ji, ,ft=nT 
1.9, if  nT 
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Thus, we can write x5 (t) = x(t) E 5(t - nI's) without loss of generality. 

Upon taking the Fourier transform of both sides and using the convention that X(f) = S{x(t)} 

and X5(f) =3{x5(t)j, we obtain 

X8(f) = X (f) * 5(t - nT ) using the Convolution Property for Fourier Transforms. 

n=—oo 3 15(t 

Also, since - n7",)} ---.5(f - --) from [ 17], we have 

X5(f)= X(f)*---6(f _) (6.5) 

Using the convolution property of the impulse function, which states that 

x(t) * 6(t —t0) = x(t —t0) (see [ 14] for details), we get 

X5(f)=JX(f_1±.) (6.6) 

which represents a series of waveforms in the frequency domain of bandwidth W, centred 

about the frequencies f n/Ta for all integers n as shown in Figure 6-3. 

TV 

Figure 6-3 Frequency representation of the sampled signal corresponding to x(t) ([17]) 
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Note that there is a gap between each of the individual waveforms. This gap is referred to as 

the guard band of the signal, where the guard band is of width f —2W and is present as long 

as the samples are taken according to the Nyquist criterion I' ≤ 1/2W. 

However, if the samples are taken at a rate less than the Nyquist rate, the signal waveforms 

will overlap and no amount of filtering will allow us to recover the original spectrum X (f). 

This over-lapping error is referred to as aliasing error, and can be prevented only if a signal 

is sampled suchthat at least two samples occur in one period. This condition is exactly 

satisfied by sampling according to the Nyquist criterion. For a more detailed account of 

aliasing, refer to Hamming ([9]). 

On the other hand, samples taken at any rate greater than the Nyquist rate will permit 

unambiguous detection of the signal. This is analogous to the concept of input/output fans 

discussed in Chapter 4, where a given signal could be unambiguously detected as long as the 

input or output fans corresponding to the signal were disjoint. 

Remark: The assertion that x(t) is of finite energy rules out more troublesome functions such 

as x(t) = sin(t) or x(t) = cos(t). The assumption can be relaxed to allow for such functions if 

we sample at a rate greater than the Nyquist rate. For more details, see [ 13]. 

We continue with the sketch proof of Theorem 6.4. In order to extract the component that is 

centred about the origin (which is a scaled version of X (f)), we need to employ an ideal. 

low-pass filter which "passes" all frequency components in a signal that are lower than the 

parameter, WI, of the filter, and negates all others. 

Mathematically speaking, in order to filter a signal with such a device, we multiply the 

transform of the signal with the transform of the filter, shown in Figure 6-4, along with the 

inverse transform of the filter in Figure 6-5. 
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H(f) 
T,IfI<Wi, with w≤wi <f —W 

O,f≥f —W 

f(t) = sinc(t) = sin('r t)  
(s t) 

IH(f)I 

T5 

A 

-WI WI f 

Figure 6-4 An ideal low pass filter 

Figure 6-5 Graphical representation of the sine function 

Hence, with X(f) = X5(f)H(f), and from [ 17], Z'{H(f)}= 2W1Tsinc(2W1t) , then taking 

the inverse transform of both sides yields 

x(t) = x5(t)* 2W1Tsinc(2W1t) = x(nT)8(t - n?"3) * 2W1T3sinc(2W1t) 
n=—oo' 

Again, using the convolution property of the impulse function, we obtain the reconstruction 

formula 

x(t) = 2W1Tx(nTf )sinc(2W1 (t - n1)) (6.7) 
n=—oo 
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It must be noted that there are, unfortunately, some repercussions involved with translating 

the sampling theorem from the ideal, abstract situation to that of practical applications. 

These considerations are addressed further in [ 17] and [9]. 

6.2.1 The Sampling Theorem & the Capacity of a Band-Limited 

Channel 

According to the sampling theorem, we must sample a given signal at a sampling rate of 

T ≤ 1/2W. Furthermore, we know that the capacity of a Gaussian channel with a single 

input sample is 

is 
A=-1ogi 1+— 

2 ( N 
(6.8) 

Since we can have, at most, 2W distinct samples as per the Nyquist criterion, the capacity of 

a continuous, band-limited channel with bandwidth W subject to AWGN noise is then 

1+—I 
S'\ 

2 N) N) 

We now have the following theorem. 

Theorem 6.5 (Capacity of a Band-Limited AWGN Channel): Given a continuous band-

limited signal X of bandwidth Wand average power S, a received signal Y, and AWGN 

represented by Z such that Z has average power N, the capacity A of the channel 

F: X -> Ysubject to Z is given by 

A = Wlog1+) (6.9) 
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6.3 A More General Approach to Sampling 

The sampling theorem as stated in Section 6.2 is an extremely important result, although it is 

only a limiting case in a more general theory. We can extend the theory to include signals 

sampled in a practical sense as well, which for our intents and purposes, are signals that are 

mixed with an. arbitrary pulse train so as to capture samples which are pulses of period T and 

amplitude corresponding to the original signal. This method represents a more practical 

realization of sampling, as Theorem 6.4 above pertains to sampling instantaneously, which is 

not realizable in practice.. 

Consider the series of pulses, or pulse train, in Figure 6-6, along with the signal x(t) shown 

below in Figure 6-7. By mixing the two signals, the net effect is that the pulses stretch or 

shrink in terms of amplitude to match the amplitude of x(t) for the duration of each pulse, as 

shown in Figure 6-8. 

Figure 6-6 Arbitrary pulse train with period T 

S(t) 

t 

A 

 10. 

t 

Figure 6-7 Time-varying, band-limited signal 

a a+T t 

Figure 6-8 Mixed signal with period T 
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Analytically speaking, we have = x(t)p(t), and it is assumed thatx(t) is a band-limited 

function with bandwidth W and is of finite energy, and that p(t) is a periodic function of 

period T that satisfies the Dirichlet conditions outlined in Chapter 2. 

Since p(t) is periodic and satisfies the Dirichiet conditions, we can obtain the Fourier series 

expansion of p(t), with  = l/f: 

00 2inf t 

p(t)= ce ' 

fl=-00 

o+T —2)v1nf t 

where c, = - J p(t)e " dt for some arbitrary a. 

Then, we can compute the Fourier transform of s(t) to be 

S(f) = jx(t)[ cne2t]e_22n1ftdt 

Upon interchanging the summation and integration, we obtain 

00 
—2.iri(f—nf )t 

S(f) = c fx(t)e dt 
.00 

00 

(6.10) 

(6.11) 

(6.12) 

Now, since X(f) = Jx(t)e 2"-"dt, we can see that the integral in the expression for S(f) is 

simply X (f - nf1,,), i.e. the frequency representation of x(t) shifted by a frequency of nf 

for n€ 
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Therefore, 

S(f) = cX(f — nf) (6.13) 

which is essentially several copies of X (f) centred at frequencies that are multiples of fp as 

shown below in Figure 6-9, with amplitude determined by the complex Fourier coefficients 

c,. As before, in order to prevent overlapping, we must choosef subject to the Nyquist 

criterion fp ≥ 2W. Then, we can capture the copy of X (f) centred about the origin using a 

low-pass filter, and take the inverse Fourier transform to recover the signal x(t) in a similar 

fashion as described in Section 6.2. 

S(f) 

0 4 

Figure 6-9 Fourier transform of the mixed signal s(t) ([14]) 

A major practical consideration resulting the study of Fourier transforms is the fact that if a 

signal is band-limited (i.e. the Fourier transform of the signal is non-zero over a finite range 

of values), then it cannot be time-limited, and vice-versa. Unfortunately, since infinite-time 

and infinite-frequency signals cannot be used in a practical setting, the signals of interest 

must be truncated and approximated so that both the time-domain and frequency-domain 

signals are of finite support. 

This problem comes up in the use of the sampling theorem, in that it is assumed that the 

time-varying signal is band-limited, implying that its time-domain representation has infinite 

support. However, this cannot occur in a practical sense. In order to rectify this apparent 

contradiction, the signals are subject to possibly significant amounts of error, due to the 
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widely-known Gibbs phenomenon for truncated signals (see Hamming ([9]) for more details). 

Hence, the sampling theorem and thus Shannon's capacity theorem for continuous channels, 

does indeed fit into the framework of theoretical signal processing, although practical 

considerations must be made in order to apply the sampling theorem to real-life applications. 

With the survey of continuous signals now complete, we turn our focus to the application of 

Information Theory to the field of cryptography. We will soon see that by using Shannon's 

sampling theorem discussed here in conjunction with Shannon's idea for a perfectly secure 

discrete cryptosystem, that perfectly secure communications using analog signals is indeed 

possible, at least in principle. 
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7 Information Theory & Cryptography 

Cryptography deals with the secure exchange of information between two parties, commonly 

referred to as Alice and Bob and denoted by A and B respectively. Seeking to intercept or 

disrupt this correspondence is an eavesdropper Eve, denoted by E, who is either a passive 

attacker (intercepts but does not interfere) or a malicious attacker (seeks to commit fraud by 

impersonation or otherwise). In classical cryptography, secure communication in a practical 

sense can be achieved using two main classes of cryptosystems, namely symmetric and 

asymmetric cryptosystems. 

Asymmetric cryptosystems are based upon a publicly available key that is then used in 

conjunction with a mathematical problem that is assumed to be intractable such as the 

factorization of a very large number into a product of (typically two large) primes, to which 

only the recipient knows the answer. The security of such systems is based upon the 

assumed difficulty of the mathematical problem in question, and no rigorous proofs have 

been found to validate such assumptions, nor the security of an asymmetric cryptosystem. It 

must be noted that, although theoretically possible to break, public-key systems in use today 

are secure enough to be used in online banking, email, and countless other applications. The 

interested reader is referred to [2] for a more detailed overview of public-key cryptography. 

Symmetric cryptosystems, on the other hand, are based on a private key possessed only by 

the sender and intended receiver(s) of a given message. In fact, it is then possible to design a 

cryptosystem which is totally unbreakable. 

Our discussion regarding cryptography will focus on the examination of symmetric 

cryptosystems having perfect secrecy, a notion which ensures that, regardless of the 

computing power or the existence of a clever algorithm, a cryptosystem exhibiting such 

security will be unbreakable unless an eavesdropper possesses the key itself. A classical 

example of a cryptosystem offering perfect secrecy is the Vemam cipher, or one-time pad, 

which was developed by Claude Shannon. We will discuss the one-time pad before 

presenting a characterization of perfect secrecy using Latin squares under an assumption 
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concerning the cardinality of various sets. This characterization is not provided in the 

standard literature but is implicit in the work of Claude Shannon. Following this, we present 

new examples of perfect secrecy. At the end of the chapter, we briefly describe a rarely-

discussed example of perfect secrecy for analog systems using Shannon's sampling theorem 

that goes back to Alan Turing. 

7.1 Symmetric Cryptosystems and Perfect Secrecy 

We begin our discussion here with the following definition. 

Definition 7.1: A symmetric crypiosystem r' is a cipher system involving a finite set of 

possible messages M = {m1 , m2 ,. ..}, a finite set of encrypted messages, or ciphers 
C = {c1 , C21 ... 11 and a finite set of keyed enciphering transformations K = {el, e2 ,...}, where 

each e1 E K is a transformation that maps each m e M to each c E C injectively. 

We assume that each message has a non-zero probability of transmission, i.e. P(M = m) > 0 

for each m e M ,otherwise we could simply delete it from our set of possible messages. 

Similarly, for each c e C, it is assumed that there is at least one message that gets encrypted 

into c. 

Furthermore, to decrypt, or undo the encryption, we apply the inverse of the enciphering 

transformation to a given cipher. Note that the inverse is well defined since each e E K is 

injective. Therefore, for any message m, we encrypt it as e1 (m) = c. To decrypt, we apply 

d = e' to the cipher, i.e. d1(e,(m)) = di (c) = e/ 1(c) = M. 

Now, suppose we have a set of n possible messages, M = {m1 , M21 ... , Mn }. Upon fixing the 

enciphering transformatiOn ek, we have that {ek (m1 ), ek (M2 ),..., ek (Mn )} is a set of n distinct 
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ciphers. Therefore, the number of ciphers in C, denoted by IC1, is at least equal to the number 

of possible messages in M. Hence, we have that for a symmetric cryptosystem, 

(7.1) 

With the framework of a symmetric cryptosystem in hand, we can now discuss the desirable 

property of perfect secrecy for symmetric systems from an information-theoretic perspective. 

Perfect secrecy occurs when the ciphers produced by the cryptosystem tell us nothing new 

about the underlying message itself. Hence, if .we view the encryption process as a discrete 

channel from our set of messages M to our set of ciphers C, we require that the capacity of 

the resulting channel is zero, or equivalently, the mutual information between the two 

random variables is zero. More formally, we have the following definition of perfect secrecy. 

Definition 7.2 (Definition of Perfect Secrecy): A symmetric cryptosystem F has perfect 

secrecy if 

I(M;C)=H(M)—H(M IC)=O (7.2) 

Thus for perfect secrecy we haveH(M) = H(M I Q. From Chapter 2, we see that this is 

equivalent to saying that M and C are independent. So, we have the following equivalent 

definition of perfect secrecy. 

Definition 7.3 (Equivalent Definition of Perfect Secrecy): A symmetric cryptosystem r has 

perfect secrecy if M and C are independent, so that P(M = m I C = c) = P(M = m)for 

all in E M, c € C. Alternatively, we write P(M I C) = P(M). 

In what follows, for practical reasons, we use Definition 7.3. Let us now explore the 

implications of perfect secrecy. By definition, if we assume that our symmetric 

cryptosystem F exhibits perfect secrecy, then P(M I C) = P(M) for all in E M , c E C. Now, 

let (m, c) be any message-cipher pair. Since P(M = in) >0, then P(M = in I C = c) >0. 

This implies that, with non-zero probability, the message m was encrypted into the cipher c. 
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Therefore, given any m € M, c e C, there exists at least one enciphering transformation 

ekwhere P(K = ek ) > 0 such that ek(m)=c. 

Now, if we fix the message in and let the keys vary, then we have that the set {ek (m) I e K} 

contains all ciphers c E C and is thus equal to C, since each ek (m) E C. We can then 

conclude that 

ICI≤IKI 

Furthermore, from (7.1), sincelMi ≤ ICI, we have that 

IMI≤ICI≤IKI 

(7.3) 

(7.4) 

Hence, to ensure that a symmetric cryptosystem exhibits perfect secrecy, we must have that 

the total number of enciphering transformations, or keys, be At least as big as the number of 

possible messages. We can now summarize with the following theorem. 

Theorem 7.4 (Perfect Secrecy): Given a symmetric cryptosystem r with messages 

M = {m1 , M21 ... 11 ciphers C = {c1 , C21 ... 11 and injective encryption keys K = {e1 , e2 ,...}, then a 
necessary condition for F to have perfect secrecy is IMI ≤ ICi ≤ IKI. 

We now turn to some examples of symmetric cryptosystems. 

Example 7.5: Consider the symmetric cryptosystem r with messages M = {m 1 , m 2 , in3 , m }, 
ciphers C = {c1 , C2 , c3 , c4 }and keys K = {el, e2, e3 }where the keys are defined as follows. 

e1: nz1 — )c1 e2: 

in4 —* C1 

e3: m 1 -3 c3 

M2 —> C4 

in3 -3 C1 

M4 > C2 
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Also, suppose the messages are distributed such that P(M = m1) 0.1,P(M = m2) = 0.2, 

P(M m3) = 0.3, and P(M = in4) = 0.4, and the keys are distributed such that 

P(K = e1)=0.3, P(K = e2) = 0.3, and P(K = e3) = 0.4. 

Since P(C = c I M in) represents the probability that in gets enciphered as c, we can 

compute 

P(C =c1IM = m1) =P(K = e1) 

P(C =c2 IM =m1) =P(K = e2) 

P(C =c3 IM =m1) =P(K = e3) 

P(C =c4 IM =m1)=0 

P(C = C1 ( M = in2) = 0 

P(C =c2 lM = m2)= P(K =e1) 

P(C =c3 IM =m2)= P(K =e) 

P(C = c4 M = in2) = P(K = e3) 

P(C =ciIM = m3)= P(K = e3) 

P(C=c2 IM =m3)=Q 

P(C =c3 IM =m3)= P(K = e1,) 

P(C =c4 IM =m3)= P(K =e2) 

P(C =c1IM = m4)= P(K = e2) 

P(C =c2 IM =m4)= P(K = e3) 

P(C =c3 IM =m4)=0 

P(C = c4 IM m4) = P(K = e1) 

For perfect secrecy, we require that P(M I C) = P(M) or equivalently, P(C I M) = P(C) for 

all m E M , c E C. However, since for example we have 

P(C = c1) = P(C = c1 I M = m)P(M = in) =(0.3)(0.1)+(0.4)(0.3)+(0.3)(0.4) = 0.27 
,n M 

and P(C = c1 I M = m1) = P(K = e1) = 0.3 

It follows that we cannot achieve perfect secrecy in this case, since we do not have 

P(C I M) = P(C) for all m E M , c E C as is required in the definition of perfect secrecy. 
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Note that for this cryptosystem, we havelMl = Cl > IKI, so that by Theorem 7.4, we cannot 

have perfect secrecy regardless of the distributions of keys and messages. 

Example 7.6 (The One-Time Pad): Consider the symmetric cryptosytem [' with the 

message set M = {o,i}", cipher set C = {0,1}i, and key set K = {e,, e2 }' where the keys are 

defined as follows. 

e. 0-1 

1-0 

e2: 0-0 

1-1 

Note that the enciphering transformations in this case correspond to the Boolean XOR 

operation, i.e. a @ a = 0, a @ b =1 for a, b E {o,i}, where the key set acts on the message set 

one bit at a time. 

Now suppose A wishes to send the binary message '00110100' to B, where A and B are 

assumed to share a private key. If A and B agree on using the sequence of keys 'C2 el e2 el e2 

e2 e2 e' as their private key, it is the same as adding the bits '01010001' via the Boolean 

XOR operation to the message sequence, resulting in the ciphertext '01100101' as indicated 

below. 

00110100 (message) 

(D 01010001 (key) 

01100101 (cipher) 

Then, since B also knows the private key, B decrypts by performing the Boolean XOR 

operation again as follows. 

01100101 (cipher) 

01010001 (key) 

00110100 (message) 



73 

It transpires that if, for each bit, the enciphering transformation is chosen at random (i.e. 

P(K = e1) =1/2 for all e1 (=- K), then the one-time pad symmetric cryptosystem has perfect 

secrecy. In fact, we shall soon see that for a symmetric cryptosystem with IMI = JCJ = Kl, 
then the cryptosystem has perfect secrecy if and only if the keys are equiprobable. 

One significant drawback regarding the practical use of the one-time pad is the fact that the 

key bits are difficult to generate in a random fashion. Currently, the most widely used 

methods for generating the key bits 'pseudo-randomly' is by way of Linear Shift Feedback 

Registers (LFSRs) or by using linear congruences. Refer to [2] or [ 14] for more details. 

It should be noted that in World War II, the one-time pad was used successfully, although 

once a given key was used, it had to be thrown out to ensure that if the cryptosystem was 

compromised, the message encrypted with that particular key would remain safe. This gave 

rise to the moniker, one-time pad. 

7.2 Equiprobable Keys and Perfect Secrecy 

We establish here a deeper connection between perfect secrecy and the general structure of 

the encryption keys. In addition to the fact that the number of keys must be greater than or 

equal to the number of messages as shown earlier, we present the following proposition 

which states that, as long as the set of messages, ciphers, and keys satisfy the 

equality IMI = JCJ = Kl , then if the keys are distributed uniformly, perfect secrecy can be 

achieved, and vice versa. 

Theorem 7.7: For messages m E M, ciphers c € C, and keys e E K such that each 

e1 E K is an infective map from M to C, with IMI = JCJ = IKI = n where n is an integer, then 

P(M I C) = P(M) if and only if each e € K is equiprobable. 
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Proof. Assume that IMI = Cl = IKI = n. From our discussion above, we know that for each 

ordered pair of messages and ciphers (m, c), there exists a unique enciphering transformation 

such that e1 (in) = c since {e1(m1),e2(m2),...,e  (MA = C. 

Therefore, we have that P(C = c I M = m1) = P(K = e1). Now, since keys and messages are 

assumed to be independent of each other, then P(M = m1 , k = e) = P(M = m1)P(K = e1). 

From Bayes' Formula, we have 

P(M = m1 C = c) = P(M = m1,C = c) P(M = m1)P(K = e1) 

P(C — c) 
P(C c 1 M = m1)P(M = m1) 

since the probability of having message m1 and cipher c is equivalent to using key ei to 

encipher message m1. 

Upon applying the perfect secrecy condition and sim1ifying the right side further, we obtain 

P(M =m1)P(K—e1)  
(7.6) 

P(M = m1)P(K = e1) + ... + P(M = m)P(K = e) 

This gives P(K =e1)=P(M = m1)P(K= el) +...+ P(M = m)P(K = en). 

Furthermore, using the fact that P(M = m) =1, we have 

P(K = e1)[P(M = m1) + ... + P(M = rn,1)] = P(M = m1)P(K = e1) + ... + P(M = rn)P(K = e) 

which in turn implies 

P(M — rn1){P(K--e1)— P(K =e1)]+...+P(M = m)[P(K=e1)—P(K = e)]=O 
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Now, choose the notation so that P(K = e1) is greater than or equal to P(K = e) for anyj, 

1 ≤ j ≤ n. Then, in the above, we have a sum of non-negative terms adding to zero. This can 

only happen if each term in the sum is zero. 

Therefore, since P(M =m1)>O for all m EM, we have that P(K =e)=--- for all e E K. 

To show that equiprobable keys implies perfect secrecy, we can substitute P(K = e1)= ! 

into (7.6) above to obtain the desired result immediately. Thus, we have that for a symmetric 

cryptosystem with MI = JCJ = JKJ = n, where n is an integer, then P(M I C) = P(M) if and 
only if each e1 € K is equiprobable. 

0 

7.3 Characterization of Perfect Secrecy 

In the literature, it is frequently asserted that the only cryptosystem that exhibits perfect 

secrecy is the one-time pad. However, this assertion is false, and our efforts here will seek to 

dispel some of the apparent confusion by outlining a more complete characterization, 

particularly that perfect secrecy amounts to an n x n Latin square. 

Suppose that IMi = JCJ = IKI = n where n is an integer. Also, letM = 

C = {c1,c2,...,c}, and  = {e1,e2,...,e}. Since the keys are injective, we know that, for a 

fixed i, the set of encrypted messages {e (ml), e• (m2),..., e (m )}is a set of distinct ciphers. If 

we consider our messages and ciphers to be the integers from 1 to n, i.e. M = {1,2,..., n} = C, 

then applying the th key to our message set produces a re&rangemeflt of the set {1,2,..., n}. 

Finally, by varying i, we obtain all possible rearrangements of the messages. In matrix form, 

if each rearrangement represents a row, we can write this as 
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L = [e ] = 

e(1) e(2) ei(n) 

e2 (1) e2 (2) e2 (n) 

e (1) e (2) e, (n) 

where every row and column of L is a permutation of the set {1,2,..., n} since the keys are 

injective and every message must be mapped to every cipher once and only once as a result 

of the condition that IMI = ICI = IKI. Such a construction is referred to as a Latin square.. We 

now present a theorem from Bruen and Forcinito ([2]) that properly characterizes perfect 

secrecy when Ml= ICI= KI. 

Theorem 7.8 (Characterization of Perfect Secrecy): Let F be a symmetric cryptosystem 

exhibiting perfect secrecy with IMI = ICI = iKI = n, so we may take M and C as the set of 

integers {1,2,..., n}. Each enciphering transformation e1 E K yields a unique row of an n x n 

Latin square L, i.e. a permutation of {1,2,...,n}and the key is the index of that row. Each key 

is chosen with uniform probability. If the message is j and the enciphering key is e1, we have 

e1 (j) = e1 . Conversely, given any n x n Latin square L, we may construct a cryptosystem 

with perfect secrecy as above. 

Example 7.9: Suppose we have a symmetric cryptosystem F exhibiting perfect secrecy 

with Ml = CI = IKI4, whereM = C = {1,2,3,4}. Hence, we can represent F using a Latin 

square such as 

2 3 4 1 

1234 

3412 

1 2 
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Now, suppose that A and B decide to use the fourth key, e4. If A transmits the cipher '3' to 

B, then B searches the fourth row of L for '3'. Since '3' appears in the fourth column of the 

fourth row of L, B deduces that the original message was '4', i.e. '4' is the message m such 

that e4(m)=3. 

As another example of the Latin square characterization of perfect secrecy, 'we can further 

support the craze of the popular Japanese game, Sudoku, which is based on filling in the 

entries of a 9 x 9 Latin square. However, it should be noted that for our purposes here, we are 

interested only in the larger square itself, and not the extra constraint that the nine disjoint 

sub-squares cannot have duplicate entries. 

Example 7.10: Consider the following solved Sudoku puzzle, which is a 9 x 9 Latin square 

since the rows and columns are permutations of the set of integers {1,2,,.., n}. 

987613245 

564829137 

231547896 

472385619 

395461782 

8 1 6 9, 7 2 3 5 4 

643258971 

159736428 

7 2 8 1 9 4 5 6 3. 

By Theorem 7.8, we can use the solved puzzle to construct a cryptosystem with perfect 

secrecy, where M = { 1,..,9} = C, and the keys are the indexes of each row. Thus, we can see 

that the keys are defined as 



78 

el 1-? 9 e2 15 e9 : 147 

2-* 8 2-* 6 2-2 

3-7 3-4 3-8 

4-6 4-8 4-1 

5-* 1 5-2 5.9 

6-3 6-9 6-4 

7-2 7-1 7-5 

8-4 8-3 8-6 

9•- 5 9- 7 9-* 3 

Thus, if A and B agree to use key e2 , then the sequence .' 13.579L.would be encrypted as 

'54217', and since the keys are equiprobable, then E, who is eavesdropping on the 

transmission of the encrypted sequence, would be unable to determine which key was used to 

encipher the original message sequence. However, B would know to use the inverse of key 

e2 to undo the encryption, or decrypt the sequence '54217' by determining the column in 

which each of the ciphers are found. Thus, since '5' is found in column 1 of the second row, 

then '5' decrypts to ' 1 and so on. 

Therefore, we can conclude that the game of Sudoku amounts to determining how messages 

should be mapped to each cipher to ensure that perfect secrecy can be achieved! 

As a final example, consider a cryptosystem with M = {O,1 } C, with the corresponding 

Latin square 

L=I 
[0 1 

[1 0 

Since the keys are assumed to be uniformly distributed, we see that L actually corresponds to 

the channel transition matrix of a completely unreliable channel from M to C! This confirms 

our interpretation that perfect secrecy can be thought of as a discrete channel from M to C 

that has a capacity of zero, or equivalently, as a completely random channel. We also note 
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that the one-time pad discussed earlier gives rise to a Latin square of size 2" x 2" and so can 

be fitted into the characterization above. 

7.4 Some New Examples of Perfect Secrecy 

As we saw in the previous section, perfect secrecy can be attained by a cryptosystem as long 

as the messages, keys, and ciphers satisfy the inequality JMJ ≤ JCJ≤ IKI. In the literature, there 

are examples of cryptosystems exhibiting perfect secrecy for the case where IMI = ICI = IKI 
such as the one-time pad, but few others are discussed. To address these shortcomings, we 

have already introduced some new examples using Latin.-squares, ancLwe now present some 

new examples of cryptosystems achieving perfect secrecy with IMI < ICI <IKj. 

Example 7.11: Consider the discrete cryptosystem withM = {o,i}, C = {O,1,2}, and 

K ={e1,e2,e3,e4}, where P(M = 0) = p,P(M = 1) = i — p. In order to satisfy the perfect 

secrecy condition, we must have P(C = c IM = m) = P(C = c)for all c  C,mE M. 

By the Law of Total Probability, we have P(C = c) = P(C = c M = m)P(M = m), 
MGM 

thus, in order to satisfy P(C = c I M = m) = P(C = c), we need for each ce C, 

i. P(C=c)=P(C=cIM=0)and 

ii. P(C=c)=P(C=cIM=1) 

For C=0,weobtainP(C=O)=p.P(C=OIM=O)+(1—p).P(C=OIM=1)usingthe 

Law of Total Probability. Similarly, we compute 

P(C =1)= p• P(C •= iIM = O)+(1—p)• P(C =1IM =1) 

P(C=2)= p.P(C=2M = 0)+(1—p).P(C=21M =1) 
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So, for (i), we need to choose our keys to simultaneously satisfy the following requirements: 

p•P(C=OIM = O)+(1—p)•P(C=0(M = 1)=P(C=OIM =0) 

p•P(C=1IM = O)+(1—p).P(C=1M = 1)=P(C=1IM =0) 

p'P(C=2IM = O)+(1—p)•P(C=21M = 1)=P(C=21M =0) 

Equivalently, we need to choose our set of keys K such that 

P(C=OIM=O)=P(C=OIM=1) 

P(C=1IM = 0)=P(C=1IM =1) 

P(C = 21 M = 0) = P(C = 2 1 M = 1) 

(7.7) 

Then, as. long as the keys are constructed in such a way that each message is mapped to a 

given cipher the same number of times, we can achieve perfect secrecy. Now, consider the 

set of keys defined as follows. 

e1: 0-•)1 

1-2 

e2: 0-)2 

1-0 

e3: 00 

1-1 14 0 

e4: 01 

where P(K = e1) ≥ 0 for all ele K. Then using these keys to encrypt our message set M, we 

obtain the following conditional probabilities in terms of key probabilities. 

P(C=OIM = 0)=P(K=e3) P(C=OIM=1)=P(K=e2)+P(K=e4) 

P(C=1IM = 0)=P(K=e1)+P(K=e4) P(C=1M = 1)=P(K=e3) 

P(C=21M=0)=P(K=e2) P(C=21M=1)=P(K=ei) 

Hence, to satisfy the system of equations from above,, we require that 
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i. P(K =e3)= P(K =e2)+ P(K = e4) 

ii. P(K = e1) = P(K = e1) 

iii. P(K =e1)+ P(K =e2)+ P(K = e3)+ P(K =e4)=1 

where (iii) comes from the fact that the key probabilities belong to a probability distribution. 

In matrix form, the above system can be represented as the row reduced matrix 

-0 1 -i 1 0-

1 0-1 1 0 

1 -1 0 0 0 

_i 1 1 1 

where? = denotes row-reduction. 

This results in the set of solutions given by 

X= 

P(K = e1) 

P(K = e2) 

P(K = e3) 

P(K = e4)-

with t such that P(K = ej ) ≥ 0 for all e1 E K. 

0 

1 0 0 2 1 

0 1 0 
33 

0 0 1-
33 

0 0 00 0 

+t 

- 2/3 

- 2/3 

1/3 

1 

Hence, the cryptosystem with M = {o,i}, C = {0,1,2}, K = {e,, , e3, e4 }where the keys are 

defined as above, exhibits perfect secrecy as long as the keys have a probability distribution 

given by 
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11-2t 1-2t 1+t 
{P(K=ei)}=j 3 3 , 4 

which provides us with an infinite number of possibilities for key distributions! 

For another example, we can make use of the same sets of messages and ciphers, while 

increasing the number of possible keys. 

Example 7.12: Consider the discrete cryptosystem with  ={o,i},c = {O,1,2}, and 

K ={e1,e2,e3,e4,e5,e6}, where P(M = O)= p,P(M = 1) = 1—p. Again, in order to satisfy 

the perfect secrecy condition, we must have P(C = c I M = m) = P(C = c) for all 

c€ C,m€ M. 

As was the case in Example 7.4, for perfect secrecy we must choose our keys to satisfy 

P(C=OIM = O)=P(C=OIM=1) 

P(C=1(M = O)=P(C=1IM =1) 

P(C =21M = O)= P(C =21M=1) 

(7.8) 

Let our keys be defined in the following way, again with P(K = e) ≥ 0 for all e(=- K. 

e1: 0 4 0 e2: 0 4 0 e3: 0 4 1 e4: 0 -* 1 e5: 04 2 e6: 04 2 

1-1 1-* 2 1-O 1-)2 1-O 1-)1 

Thus we can determine that 

P(C =OIM = 0)=P(K=e1)+P(K=e2) 

P(C =1IM = O)=P(K=e3)+P(K=e4) 

P(C =2M = 0)=P(K=e5)+P(K=e6) 

P(C=OIM = 1)=P(K=e3)+P(K=e5) 

P(C=1IM = 1)=P(K=e1)+P(K=ë6) 

P(C=21M = 1)=P(K=e2)+P(K=e4) 
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and, along with the fact that P(K = el) +P(K = e2)+P(K = e3)+ P(K =e4)=1, we can 

solve the system of equations for key probabilities to obtain the row reduced matrix 

1 1 -1 0 -1 0 0-

1 0 -1 -1 0 1 0 

o i 0 1 -1 -1 0 

_1 1 1 1 1 1 1_ 

where '=' denotes row-reduction. 

100 1 -

0 1 0 1 -1 -1 0 

001 1 11 

0 0 0 0 0 0 0 

Based on the row-reduced matrix, we arrive at the of set of solutions 

P(K = e1) 

P(K = e2) 

P(K = e3) 

P(K =e4) 

P(K =e5) 

P(K e6) 

1/2 

0 

1/2 

0 

0 

0 

+s 

1/2 

—1 

—1/2 

1 

0 

0 

with s, t, and u such that P(K = e) ≥ 0 for all e1€ K. 

+t +u 

—3/2 

. 1 

—1/2 

0 

0 

1 

To see that there is at least one valid solution, with s ---, t= ---, and u = ---, we obtain 
6 6 18 

P(K = e1) 

P(K = e2). 

P(K = e3) 

P(K = e4) 

P(K =e5) 

P(K e6)-

6/18 

1/18 

4/18 

3/18 

3/18 

1/18 
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Contrast both examples with the case when IMI = Cl = IKI where the keys must be uniformly 
distributed in order to achieve perfect secrecy. By increasing the number of keys and ciphers, 

we have gained some flexibility in how often each key must be used without sacrificing 

perfect secrecy. 

7.5 Perfect Secrecy for Analog Communication Systems 

As we saw in Chapter 6, Shannon's Sampling Theorem provides the framework for which 

efficient analog communications is made possible. What isn't widely known is the fact that 

the same theorem can be used as the basis for an analog, symmetric cryptosystem which 

óTfèrs üiicoiiditioñal ciritiiñièh likëthèónetfr1e àd. The idea was first proposed by 

Alan Turing during the later stages of World War II, and combines the concept of the one-

time pad with sampled analog signals. Turing's original objective was to produce a secure 

speech encoder for the British, although his cryptosystem is well-suited for any short range 

analog application. 

Turing's cryptosystem, referred to as "Delilah" (or 'deceiver of men' in Biblical times), acts 

on a time-varying continuous signal, for which samples are taken according to the Nyquist 

rate. Without loss of generality, we will assume here that the signal x(t) is positive for all , 

values of t. 

Hence, upon sampling at a rate of T = 1/2W where W is the bandwidth of the original signal, 

a set of samples {x(nT )}N is produced, where N is the number of samples, and n is an 

integer, as shown below in Figure 7-1. 
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Figure 7-1 A signal and its samples taken at the Nyquist rate 

Then, using a pseudo-random number generator such as a Linear Feedback Shift Register 

(LFSRs, as discussed hi [2]), N key values can be gôraCed'thidäddëd to the sampled values 
modulo A, where A is the amplitude of the original signal as shown in Figure 7-2. 

Figure 7-2 An encrypted signal and its samples 

The resulting set of sample values is then transmitted using standard analog communication 

techniques (i.e. AM or FM modulation), and upon reception, the receiver then subtracts each 

key value from the corresponding samples, and reconstructs the original signal using the 

reconstruction formula 
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x(t) = 2W1Tx(nT )sinc(2W1 (t - nT)) (7.9) 

where Wi is any number such that  ≤ W1 <f - W and f ≤ 2W from Chapter 6. 

Since the keys are ideally generated in a random fashion, each key is equally likely and 

hence, each message is equally likely. Moreover, since, each key value is a real number, the 

number of possible keys and in turn, the number of possible messages is uncountable. 

Therefore, Delilah indeed provides perfect secrecy under ideal conditions for the same reason 

the one-time pad does. The only foreseeable drawback with Delilah, in addition to the 

drawbacks discussed with regards to the one-time pad, is the fact that as with analog 

communication in general, a small amount of signal perturbation or time delay significantly 

impacts the fidelity of the transmitted signal. Hence, Delilah's effective range is quite short 

relative to other, less secure analog encryption schemes such as the X—System'. However, 

depending on the particular application, the theoretically unconditional security offered by 

Delilah may far outweigh the advantage of extended useable range offered by other analog 

encryption systems. 

American speech encryption scheme (refer to [ 10]). 
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8 Discussion & Conclusions 

We have provided here a wide-ranging yet focused presentation regarding the applications of 

Information Theory in the fields of communication channels, signal processing, and 

cryptography. We have presented several new results pertaining to discrete channels, 

including a generalization of Shannon's theorem for regular channels, which allows for a 

significant reduction in the calculation of channel capacity for channels that are near-regular. 

We have also cleared up some discrepancies and omissions in the literature regarding the 

computation of channel capacity, outlining several new techniques that can be used to solve 

such problems. 

we alsO presented-here añäxiomatization of certain reciprocal cianneI alohg with some 

new developments, including the computation of the capacity of the reciprocal binary 

symmetric channel using the symmetry of mutual information. Reciprocal ôhannels have 

proven to be very useful in practice, and our efforts here may well help simplify the analysis 

and characterization of channels in the future. 

In the realm of cryptography, the proper characterization of perfect secrecy was outlined in 

the form of Latin squares, contradicting the impression or assertion in the standard literature 

that perfect secrecy must amount to the one-time pad when the number of messages, ciphers, 

and keys are the same. We also provided some new examples of perfect secrecy when the 

number of messages, ciphers, and keys are not equal. Finally, Turing's proposed 

cryptosystem for analog signals based on the sampling theorem was discussed, showing that 

analog signals should not be ignored when it comes to cryptographic applications, as is 

currently the case for the most part. 

With regards to future work in the area of Information Theory, we have only scratched the 

surface in terms of the applicability of Shannon's ideas. In the realm of communication 

theory, much work has been done over the past several years extending Information Theory 

to multiple input, multiple output (MIMO) channels and continuous channels subject to other 

types of distortion such as Rayleigh fading. Moreover, Information Theory has proven to be 
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fundamental in the analysis of more leisurely pursuits such as poker and horse-racing, via the 

Kelly formula ([ 16]), as well as stock-market analysis, molecular biology ([2]), and 

jurisprudence ([ 11]). In short, the applications of Information Theory extend far beyond the 

reaches of communication theory, giving credence to the argument, in reference to Shannon's 

revolutionary paper, A Mathematical Theory of Communication ([ 19]), that "no other works 

of the twentieth century have had greater impacts on science and engineering."([2]) 
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Appendix A 

The Maple calculations pertaining to reciprocal channels in Chapter 5 are provided here. 

Ash's Formula: 

>u :=(q2*(_q1*1og(2](q1)_p1*1ogE2](p1))_p1*(.p2*1ogE2](p2)_ 

q2*1og(2](q2)))/(p2q1); 
2 qi ln(ql) p1 ln(pl) 1 ( p2 ln(p2). q2 In(q2)  
I In(2) ln(2) ) ' ln(2) ln(2)  

U:= 
p2 - qi 

>v:=(_p2*(_q1*1og(2](q1)_p1*1og(2](p1))+q1*(.p2*1og(2](p2)_ 

q2*log(2] (q2)))/(p2-ql); 

—p2 qi ln( qi) p1 l(l)) + qi p2 In(p2) q2 ln( q2)'\ 
ln(2) In(2) .• ln(2) in(2) J  

V 
p2 - qi 

>Cap:=1ogE2](2'u+2v); (q(  qi lr(q/) p1 LIP1)) 1 ( p2 Iip2) q2  
1r2) h2) liX2) h(2) 

Cap In  
p2—qi J 

( qi lrLql)  p2 hp2) q2 lr(q2)V\\ 
(—p2k— h2) k (2) ) - Ii2) Ir2) J I 

p2—qi ) 
111n(2) 

> 

cl+b*p) ,q2=(b*q)/(a*p+b*q)] , Cap); 
( ap  \\ 4 • Oq + bp )(aq+bp)I2) (ap+bq)Itaqia aPllp+qJ ap  bPI(aqb:hp) bqIl(b+ 2) ) 

(aq+bp)I2) (ap+bq)l2)J  

ap+bq ap+bq  

bp aq 

aq+bp aq+bp 
Cap] 1n2" 

aqirl I api bpl hql (  I aq  \ ap '  hp  ) (ap+bj) 
bp aq+bp) ap+bq aq+bp  

- (aq+bp)I2) (ap+bq)i2)j +  (aq+hp)12) (ap+bq)l2)J  
aq - 

aq+bp aq+bp  

bp aq 

+2 

>Cap2:=subs(q=1-p,capl); 

aq+bp aq+bp 
/ln(2) 
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( If 

Cap2 := 1n2" 

a(1 b(1 )l( a(1— p)  ' apir( (Ip  - p ) 
a(I —p)+hp) ap+h(1  

(a(1 — p)+ bp) li2) (ap+h(1—pIi2))  

a p + h ( 1 - p) 

bplr( bp ' 

b(1—p)lrI h(1— p)  
q , (, bp 

ap+b(1—p))  

ap[— (a(1—j,)+ bp) 1r2) (ap+h(I—p))li2) " /( a(I —hp  a(1— p)  \ 
ap+h(I _ p) p)+bp a(1 _ p)+ bp) 

[ a(1—p)h-I a(L—p)  ' apirl  
hp (1_p)p) ap+h(1—p))  

(a ( I —p) + bp) Ir(2) (ap + b (1 — p)) lr(2) ) 
a(1 — p)+bp 

,h( h1, \ ( h(1— p) ' b(1 — p)11 
a(t_p)+hpj ap+b(1—p))  

a ( I  + (a ( 1 —p) + hp) 12) (a p + h (1 —p)) 1i2) ) 
a(l —p)+bp 

ln(2) 

> Capacity:=simplify(Cap2); 

Capacity := in e 

\ ft 

+ 2' 

/ ( a(1 —bp  a(1— p)  
p)+hp a(1 —p)+bp) 

ha (i( —a(—J+p) a(-1+p)  'b 3I[ a(-1+p)  bp 
a + a p - hi,) —a + a p - h p) + a p - b p) 

I Ihp + apl 2p Ii 
a(-1+p)  " 2 pa  2 [ pa \ 

2Ii[ a(—l+p)  ap2+3 —a+ap—hp) (ap+b_hp) ap+h_hp)' —a + ap - hp) 

_ P 

Pa  ' a(-1+p)  \ 3 (  a(—I+p)  'b+ 1 ( pa  ' 
ap+h—hp) +k hJaP 1 —a+ap—bp) ap+b—bp) 

bp  ' 2 bp  "b+P3 1r( bp 3  pa b 3h(_ _O+O/,h P )a P —a+ap—bpJ —a+ap—bp) a p + h - h p) 

h(—l+p) ) aP+21r( b(—l+i,)  ' ap2 
9 ap+b—bp - ap+b_hpJ 

h(-1+p)  \ 3 
-Ii!— abp(+—hE+—ph)p ),, 2 Ir( ap+b_bpJ('P 

I h(—I +p)  •\ 
+1 r ap+b_bpJ)/h1(' (ba( i( a(—I  

t —a+ap— 

j, +h ap I (  a (-1 +j,)  hi) +2 a (-1 + p)  ' b 2 1 a (-1 +i') ) 3 ( a (-1 +i')  ' hp3 
—0+0p— bpJ —a + ap —bp) —a + ap— bp —a+ap — bp) 

I pa  \ ' 

+ h_h pJ a) 
pa  ' 2  h 2.( pa_bp) a + 

p ap+b l ap hh p Ja P (apb 1t a+hp° 

bp ' 2 2 11  bp  '\ /  h(-1+p) \ (  h(-1+p)  \ 
Ia 3lri +hP 1I(_ + .b) a+ap_hpJ ap+b—bp) ap+bb p JaP 

n— Ibp+3 21 tzp+b—hp) UJ)+b_hP)aPd' h(-1  b 1 
+p)  ) 23 +I (   

(  b(—I+p)  " b(-1+p)  
t ap+b—bp —a+ap—hpj 

bp  \ (  h(—l+p)  \ 3 / 
In -  +P31(_+b)h I1 ap+h—bp)' +  

(hP_a + aP)))J 

An(2) 

"I 

Note that the above formula involves both input probabilities for the channel in addition to 
the parameter p. 
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Lagrange Multipliers: 

>HY=a*1og[23 (a)_b*log[2] (b); 

HY=- 
aln(a) bln(b) 

In(2) !n(2) 

>HYX:=_(aa*p)*1og[2]((a_a*p)/(a_a*p+b*p))_ 
(p*b)*log[2]((p*b)/(aa*p+b*p))(p*a)*log[2] ((p*a)/(p*a+b... 
b*p))_(b_b*p)*log [2] ((b_b*p)/(a*p+b_b*p)); 

(a—ap+bp)  a—ap (a—ap+bp)  pb (ap +b- bp ) 
pa  

(a - a p) m p b m   p a mHYX    

In(2) In(2) Iii(2) 

(b_bp)1n bbP bb J 

In(2) 

> with ( Student [$ultivariatecalcu].us]): 

> TagrangeMu1tip1iers(HY-RYX, Ea+b-1], [a,b3); 

' p(eZ1) 1 +In' —2p+1+p2  )+_Z—PIn —2p+I+p2  

_2e_Zp+e_Z+p ) (_2e_Zp+ e +p2)(e _I)) (_2e_Zp +e +p2)(c_Z_J)]] 

(-1+p) 
2e RootO( 

—p Ir p2 (e Zl) —2p+1+p2 —2p+1+p2  
-  

_2 e_Zp +e_Z+ p (_2e_Zp +e_Z+p2)(e_Z_I)J \ (_2e_Zp+e_Z+p2)(e_Z_i)JJ 

RootO{ 

p- e 

2Z 1  —2p+1+p2  1+ —plr —2p+1+p2  —pin — 
p+e_Z+p2 J (-2e_Z p+e_Z +p2 )(e—Z — 1)) (_2e_Zp +e Z+p2)(e_Z_I) 

". ( I, 

RootO4 

-p1,p e 
p2(e_Z_ l) —2p + 1+ p 2  

p l— z Z + p2] + I{_ _Z + _Z_ P In —2p +   1 +p2  
—2e— p+e — e_Z p+e_Z +p 2 )(e — l)J (_2ep +e +p2)(e_Z_I) 
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RootO 

p— e 

' p  ( e_Z - I)  (  —2j, + 1 + p2 -2p + I + p2  

J)11 - 7 7 2 + hi - 7 7 2 7 I + - p Ir 7 7 2 7 
-2e-p+e-+p ) I (-2ep+e+p )(e-1)) (-2ep+e- +p )(e- I) 

—p/ 

The two expressions above pertain to the maximizing values of P(Y=O) and P(Y=1). Notice 
that they both depend on the parameter p, which prevents us from obtaining a closed form for 
capacity. 


