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Abstract 
 
 

On the Optimization of Clostridioides difficile Diagnostics Through RT-PCR Cycle Threshold 

Defined Zones of Disease Probability 

 

 

Advisor        Cody Patrick Doolan  

Dr Dylan Pillai        University of Calgary 2022 

 

 

Clostridioides difficile is an opportunistic pathogen with a large burden of disease and no gold 

standard test. Quantitative polymerase chain reaction (qPCR) offers excellent sensitivity but 

overcalls clinical C. difficile infections (CDI) due to high prevalence of colonization. The 

hypothesis of this thesis is that the CDI qPCR results can be titrated down to determine clinical 

CDI more accurately and possibly aid in predicting disease severity.  

 

A cross sectional study was conducted on suspected CDI patients evaluating if qPCR cycle 

threshold (Ct) can be correlated to probability of CDI. Latent class analysis (LCA) was 

employed with observed variables including four commercial qPCR tests, toxin detection by 

enzyme immunoassay, toxigenic culture, fecal calprotectin, and CDI clinical diagnosis. Three 

defined zones as a function of qPCR cycle threshold (Ct) were identified: CDI likely (>90% 

probability), CDI equivocal (<90% and >10%), CDI unlikely (<10%). A single model 

comprising toxigenic culture, clinical diagnosis, and toxin EIA demonstrated the best fitness. 
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The following Ct cut-offs for 4 commercial test platforms were obtained to delineate CDI 

probability zones: GeneXpert®: 24.00, 33.61; Simplexa®: 28.97, 36.85; Elite MGB®: 30.18, 

37.43; and BD Max™: 27.60, 34.26.  

 

A prospective cohort study was conducted to investigate if these zones (using GeneXpert®) can 

be further correlated to indicators of severe CDI. Primary diagnosis, demographic data and 

known indicators of disease severity were captured: white blood cell, creatinine, albumin, C-

reactive protein, and hospital length of stay. A sub analysis was conducted evaluating a subset of 

the patient population attempting to isolate patients whose clinical variables were most 

influenced by CDI. No significant correlations were found between the clinical variables 

investigated and Ct values or Ct zones.   

 

This work establishes a method of using currently deployed diagnostics to allow clinicians to 

reduce overdiagnosis of CDI. Decreasing false positives could have broad impacts, increase 

targeted treatments, and decrease antibiotics used with mistreatment. The average cost attributed 

to CDI for one patient is estimated at $11,917. LCA models predict that qPCR confirmation 

overdiagnoses patients in Calgary by at least 20.9%. If CDI confirmation were reduced by 20.9% 

this could equate to massive savings; Foothills Medical Center alone could save over $929,000 

annually with no additional investment in laboratory infrastructure.  
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Preface 
 
Chapter 2. Is published in Clinical Infectious Disease and is used with permission of Doolan et 

al.  ©The Author(s) 2020 (See Chapter 6.0 Appendix). 

Chapter 3. Is used in this thesis with permission from the author.   
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1.0. Introduction  

1.1. Background  

Clostridioides difficile (previously Clostridium difficile) is commonly accepted as the leading 

infectious cause of nosocomial diarrhea in developed countries [1-3]. It is the organism 

responsible for almost all cases of pseudomembranous colitis, 10-25% of antibiotic associated 

diarrhea, and presents a large burden of morbidity and mortality [4]. In 2011, in the United States 

alone, this bacterium caused 500,000 infections and 29,000 deaths with an annual cost in excess 

of $4 billion [5]. Canadian incidence estimates range from 34,139 to 41,725 cases annually [6]. 

To understand the intricacies of clinical diagnostics of C. difficile infection (CDI), it is crucial to 

understand the organism and pathology of CDI. C. difficile is an anaerobic, spore forming, 

Gram-positive, toxin-producing bacillus with many environmental sources (livestock & wild 

animals, seafood, vegetables, healthcare, human carriers, etc.) [4, 7, 8]. This bacilli was first 

described in 1935 but was not appropriately linked with antibiotic-associated diarrhea until the 

1970s [3]. The spores of C. difficile can persist in the environment for over 12 months resulting 

in  patient to patient transmission and spread from environmental fomites [3]. Contaminated 

hospital surfaces play an important role in the transmission of C. difficile as spores are resistant 

to standard cleaning compounds [9]. 

In-hospital colonization of patients is quite common with reported values as high as 20-30% of 

inpatients carrying the organism [3, 8]. It is generally agreed upon that there is no need to treat 

asymptomatic carriage of toxigenic C. difficile, but these patients do play a role in introducing 

and maintaining CDI transmission in hospitals and communities [4, 8]. As not all patients 
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colonized with C. difficile develop CDI, it is suggested that possible immune response and 

microbiota balance are important in the pathogenesis [4]. Infants and young children are 

common carriers of C. difficile in their gut microbiome and much of the time appear to have no 

symptoms even when colonized with a toxigenic strain [3]. While hospital-acquired CDI is the 

most common, it is important to note there is an increasing prevalence and burden of 

community-acquired CDI and the application of the findings of this thesis will not be limited to 

nosocomial infections [8].  

Early detection of disease and isolation of CDI patients, hand hygiene, antibiotic stewardship, 

and environmental cleaning remain important preventative measures [9]. The primary risk factor 

in development of CDI for both hospital and community acquired infections is a disruption of the 

gut microbiome caused by antibiotics [3]. The onset of symptoms generally occurs within 2 

weeks of initiation of an antibiotic treatment with fluoroquinolones, broad-spectrum penicillin, 

broad-spectrum cephalosporins, and clindamycin being frequent culprits [8]. Other common risk 

factors for CDI include advanced age (>65 years), immunosuppression, inflammatory bowel 

diseases, cancer chemotherapy, and exposure to healthcare setting [5]. Proton pump inhibitors 

have additionally been found to increase risk of CDI [5, 9].  

CDI pathophysiology involves the colon where C. difficile spores transition to a vegetative form 

and produce two major exotoxins, toxin A (TcdA), and toxin B (TcdB) [4, 5].  Toxin A and B 

interact with the colonic epithelium disrupting tight junctions and breaking down the actin 

cytoskeleton of enterocytes, while causing cytokine/chemokine production, increased neutrophil 

infiltration, increased enterocyte cell death, and disruption of the intestinal mucosal barrier [5].  
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Clinical manifestation ranges from asymptomatic carriage, to diarrhea, abdominal cramping 

and/or distension, fever, leukocytosis, colitis with and without pseudo membranes, and can 

progress to toxin megacolon, perforation, sepsis, and death [3]. There is no consensus on a 

scoring method for categorizing disease severity or disease status. Disease severity as suggested 

by the Infectious Disease Society of America (IDSA) and used by the Association of Medical 

Microbiology and Infectious Diseases Canada (AMMI), classifies severe CDI disease when 

leukocytes are ≥15,000 cells/ml and/or serum creatine is ≥1.5 mg/dl [10, 11]. Other disease 

scoring systems do exist with varying predictive value. With a lack of a clear and primary 

disease classification system clinical judgement remains the primary and most widespread 

method to evaluate and manage individual patients [10].  

There are several hypervirulent strains of C. difficile associated with increased incidence and 

severity of CDI [5]. The most common hypervirulent strain is NAP1/027. NAP1 is characterized 

by high sporulation, high toxin production, increased treatment failure, high mortality, and 

fluoroquinolone resistance [5].  

 

1.2 Laboratory Diagnostics 

In the late 1990’s, CDI surveillance and detection methods dramatically improved with a 

corresponding increase in the incidence and severity of observed CDI [12]. This is due not only 

to outbreaks of hypervirulent strains with increased transmission, but also increases in our ability 

to detect both the organism and disease process [12]. How to best utilize highly sensitive and 

specific diagnostics for the presence of toxigenic C difficile versus true disease is still in question 
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and will be the topic of this thesis. Much of the time, CDI cannot be clinically distinguished from 

other causes of diarrhea making laboratory diagnostics crucial for accurate diagnosis and 

treatment [13]. There is much discussion around the optimal way to conduct laboratory diagnosis 

of CDI regarding testing methods, sample selection, testing algorithms, and clinical validation [9, 

10]. There exists no agreed upon gold standard (GS) for diagnostic testing of clinical CDI 

disease, and despite advances, no test combines high sensitivity/specificity, rapid turnaround 

time, and low cost [4, 5]. Current CDI diagnostics is based on a combination of both clinical and 

laboratory findings as current diagnostics are not able to distinguish between colonisation by the 

bacillus and true clinical CDI. Factors that are used for diagnosis include symptoms of diarrhea 

(3 or more unformed stools in a 24-hour period), positive laboratory diagnostic for presence of 

toxigenic C. difficile or its related toxins, or histopathologic findings of pseudomembranous 

colitis [5]. Due to high rates of colonization, it is crucial to only perform diagnostic tests on 

symptomatic patients after other causes of diarrhea such as laxatives, medications, and enteral 

feedings have been appropriately ruled out [5, 9]. Repeat testing increases the likelihood of a 

false positive results and diagnostics should not be used as a “test of cure” as results can remain 

positive for many weeks following culmination of the disease [5, 9]. 

There are multiple clinical diagnostic tests commercially available each with their own unique 

advantages, draw backs, and associated levels of detection. The following will be discussed: cell 

culture cytotoxicity neutralization assay (CCCNA), toxigenic culture, toxin enzyme 

immunoassays (EIA), glutamate dehydrogenase (GDH), and nucleic acid amplification tests 

(NAAT) (e.g., polymerase chain reaction (PCR) based tests).  
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Cell culture cytotoxicity neutralization assay (CCCNA) was historically considered to be the 

gold standard for diagnosis. It can detect down to picograms of C. difficile toxin but requires a 

long turnaround time (48 hours to 7 days), requires cell cultures (MCR-5, Vero, HeLa, Hep-2), 

requires trained personnel, and lacks uniform standardization [4, 9]. It functions by observing the 

cytopathic effects after a culture is inoculated with stool filtrates followed by specificity 

confirmation using a toxin B antitoxin for neutralization [4].  

Toxigenic culture is performed by isolating C. difficile from the stool and confirming in culture 

if the isolate produces toxin [8, 9]. The turnaround time of >48 hours is not practical for routine 

clinical diagnostics and thus is not generally used in a clinical setting [9]. In 2010 the Infectious 

Disease Society of America (IDSA) supported this to be used for the gold standard in method 

comparison studies. Toxigenic culture will pick up more positive samples than CCCNA, 

however it has not been found superior to CCCNA in detection of clinical CDI disease [9].    

Toxin enzyme immunoassays (EIAs) work by detecting toxin A, B, or both. These tests are 

inexpensive and yield rapid results with a high specificity (>95%) but have low sensitivity. 

Sensitivity using CCCNA as GS is 29-86% or using toxigenic culture as GS is 45-66% [9]. 

These tests are not recommended as a sufficient stand-alone test for CDI [4, 5, 9]. Growing 

evidence suggests the detection of free toxin in stool correlates best with clinical symptoms and 

outcomes [4]. Generally, it is considered that there is no stand-alone test that can accurately and 

quickly detect fecal free toxin for CDI diagnosis [14].  

Glutamate dehydrogenase (GDH) is a metabolic enzyme produced by both toxigenic and 

nontoxigenic strains of C. difficile [4, 9]. GDH tests have high sensitivity, generally above 90% 

across most GS [9]. This is a rapid and inexpensive test that is commonly used for initial 
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screening (high negative predictive value) but will need to be followed by a second type of 

diagnostic, such as an EIA or NAAT detecting presence of toxin or a toxin gene to determine if a 

toxigenic strain is present [4, 5]. Combined assays that include GDH and EIA in a single lateral 

flow immunochromatographic membrane exist and utilize multiple tests in one platform to 

diagnose with variable results [4]. An example of this used in Alberta Public Laboratories is the 

TechLab C. Diff Quik Chek Complete that simultaneously tests for Toxin A/B and GDH.  

Nucleic acid amplification tests (NAAT) became commercially available in 2009 and detect 

genes specific to toxigenic strains of C. difficile [4]. Popular NAAT options such as polymerase 

chain reaction (PCR) based tests have high sensitivity (85% to >95% depending on GS) and high 

specificity (>95%) for the presence of the organism or targeted gene [8, 9]. Targets for these 

PCR tests include conserved regions of tcdA (Toxin A Gene), tcdB (Toxin B Gene), and tcdC 

deletion (Binary toxin gene marker for identification of ribotype 027/NAP1 strain) [9, 15]. How 

to best utilize NAAT for the presence of toxigenic C difficile in diagnosing true disease is still in 

question and will be explored in the upcoming chapters. These NAATs pick up the presence of a 

gene that may or may not be expressed and their high level of detection cannot differentiate 

between asymptomatic carriage and true clinical disease. In 2014, 44% of US hospitals used 

NAAT as a stand-alone test for CDI diagnostics compared to Europe in 2013 at 5% [15]. In 

clinical settings where EIAs or CCCNA diagnostics are replaced by NAATs, a >50% increase in 

laboratory confirmed C. difficile can be observed. Patients colonized by C. difficile are 5 to 10 

times more prevalent in hospital than patients with non-infectious diarrhea and/or CDI clinical 

disease [9, 13]. NAATs overcalling prevalence true disease can lead to misdiagnosis, 

unnecessary treatment, poor antibiotic stewardship, increased patient isolation, and unnecessary 
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clinical and economic burdens on healthcare facilities [15]. Further research is required to assess 

C. difficile NAATs for clinical disease detection and how to best implement this diagnostic tool.  

Many facilities implement a multi-step algorithm for diagnostic testing that tries to address the 

limitations of the diagnostics and the complications presented by asymptomatic carriage of C. 

difficile [4, 5]. The European Society of Clinical Microbiology and Infectious Disease 

recommends a two-step algorithm utilizing an initially sensitive screening method (NAAT, or 

GDH), followed if positive by a more specific technique targeting toxin in stool (i.e., EIA, or 

NAAT) [4]. European guidelines recommend NAAT only be used as part of a two stage 

algorithm [15]. The intention of this method is to use an initial screening method with high 

negative predictive value followed by a diagnostic with sufficient positive predictive value in 

order to limit mis diagnosis as much as possible. The Infectious Disease Society of America has 

similar guidelines but also concludes that NAAT can be used alone if appropriate stool selection 

is guaranteed [4, 11].  

 

1.3 Using PCR Cycle Threshold as a Predictor 

Prior studies have tried to address PCR’s inability to distinguish between true clinical disease 

and carriage of the C. difficile organism. Real-time PCR or quantitative PCR (qPCR) can be 

quantitative by an inverse correlation between the cycle threshold (Ct) with the log amount of the 

target sample [16]. Multiple studies have examined correlations between qPCR Ct value, free 

toxin and/or severity of CDI, or C. difficile bacterial fecal load [13, 17]. Identifying severity in 

many of these studies incorporate IDSA guidelines for leukocytes and creatinine with some 
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studies additionally factoring in temperature and evidence of severe colitis [13]. Study analyses 

commonly utilized receiver operating characteristic (ROC) curves and associated analyses 

attempting to define a single optimal cut-off value based on a standard chooses as a gold 

standard (GS) for the study. The following table briefly summarizes some of the attempts to use 

PCR Ct as a predictor for C. difficile severity and toxin load.    

Authors Findings 

Garvey et al.  
Ct value <26 correlated with ≥72% EIA positivity, a low Ct value is associated with 
higher mortality [13]. 

Senchyna et al.  
Used PCR Ct value to predict free toxin. They found a similar cut-off of 26.35 
predicted toxin positive samples with a sensitivity of 96.0% and specificity of 
65.9% in addition to exploring other GS with similar results [14]. 

Crobach et al.  

Found similar mean Ct values for Toxin negative symptomatic patients and 
asymptomatic carriers (30.4 [ 95% CI 29.5, 31.3] and 29.2 [95% CI 27.3, 31.2]) and 
a mean Ct of 24.4 [95% CI 23.5, 25.3] for toxin positive symptomatic patients.  
They recommend for clinical application establishing a Ct cut-off with a high 
negative predictive value of >90% (Ct= 29.0 or 32.0 in their data) could be useful to 
establish a preliminary diagnosis [18].  

Kamboj et al.  

Focused specifically on cancer patients to examine the potential of Ct to predict free 
toxin and clinically relevant disease. They found using CCCNA as GS an optimal 
Ct of 28 (using ROC and max Youden value) predicted a sensitivity of 77% and 
specificity of 74%. Lower Ct values were associated with toxin and increased 
disease severity [16]. 

Davies et al. 

A retrospective study finding significantly different median Ct values for patents 
who died (Ct mean=25.5) versus survivors (Ct mean = 27.5) and between toxin 
positive (Ct mean= 24.9) and toxin negative (Ct mean = 31.6) patients. Optimizing 
their cut-off (ROC analysis) to Ct ≤25 with a sensitivity of 51.3% and specificity of 
87.5%. for detection of toxin positive patients [15]. 

Reigadas et al. 

Used Ct as a predictor of poor outcomes with the objective of developing a tool to 
better inform clinical plan and management of CDI [19]. Using ROC analysis, they 
found an optimal Ct of <23.5 predicted risk of poor outcomes in their combined 
cohort with a sensitivity of 67.4% and specificity of 87.3% [19].  
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Origuen et al.  

Evaluated predictive merit of Ct with that of toxin detection and clinical variables 
for predicting severity of infection and outcomes by model comparison [20]. Their 
optimal Ct value of 27.55 yielded a sensitivity of 78.6% and specificity of 35.7% 
for poor outcomes. They found that including Ct into their predictive model did not 
meaningfully increase the predictive value over using toxin EIA and clinical 
variables alone. They observed a negative correlation with Ct value and disease 
severity but caution against clinical decisions on this value alone based on their 
modeling [20]. 

Sandlund et al.  

Acknowledges the predictive ability of Ct values in the available literature but 
caution against solely using due to poor accuracy in toxin prediction and a 
significant overlap of Ct values between diseased and non-diseased patients. They 
argue for the use of ultrasensitive toxin assays instead of predictive Ct values as 
there appears to be a larger risk of misclassifying patients using current literature 
values of optimal Ct cut-off [12]. 

Table 1.1: Summary of past literature using PCR Ct as predictor for C. difficile toxin and 
disease. 

 

The literature in Table 1.1 indicates it is possible to correlate C. difficile free toxin, and clinical 

outcomes with genomic burden with PCR cycle threshold. The literature has major shortcomings 

by attempting to simplify the disease and biologic process by seeking a single optimal Ct cut-

point with PCR diagnostics to define disease and/or toxin load. These studies also have limited 

evaluative potential because a gold standard (GS) for CDI diagnostics does not exist, and few 

studies compare broadly Ct values across multiple GS and platforms. The literature however 

does set a foundation for further questions by hypothesizing PCR cycle Ct has potential to 

predict true clinical C. difficile infections (CDI) and that the high level of detection could be 

titrated to better represent presence of true clinical disease. The techniques used thus far have not 

provide a clinically relevant model. The publications fall short of providing a method that could 

be applied in a clinical setting as concluded by Sundlund et al., and Origuen et al. [12, 20]. ROC 

analyses and arithmetic means have been employed in many papers as a means of comparison 

for diagnostic tests but does not appear to capture the whole story of what we may be able to 
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extrapolate using genomic burden as an indicator. ROC curves have the benefit of allowing easy 

dichotomous test comparison but come with trade-offs. This method’s common evaluation of the 

Area under the Curve (AUC), or area under the ROC curve, is simplistic but struggles with 

clinical application because it evaluates a test across all thresholds simultaneously; changes in 

sensitivity and specificity effect patients and diagnosis differently and in many cases might not 

be equally important [25]. Additionally, optimizing Ct values with a method such as Youden 

values, is a very basic statistical tool founded in mathematics and does not provide a clinical 

application to predict probability of disease. 

This thesis builds upon the foundations of previous literature and conducts the first application of 

latent class analysis (LCA) to C. difficile diagnostics with the goal of using Ct to predict CDI to 

improve patient care. The use of LCA enables evaluation of diagnostics without the limitations 

of a single gold standard and allows one to evaluate probability of CDI more broadly in patients. 

 

1.4 Summary of Subsequent Chapters 

Chapter 2 establishes a method of CDI disease classification by PCR Ct value zones using a 

retrospective cohort of GDH positive patients and multiple diagnostic standards for comparison. 

Latent class analysis is utilized to better distinguish between symptomatic carriage of C. difficile, 

true CDI, and patients that have indeterminant diagnostic results. Latent class analysis allows for 

the use of more than one gold standard for comparison and eliminates reliance on a single gold 

standard for diagnostic evaluation. Through this process a classification system determining 

probability of CDI based on Ct values is established.  
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Chapter 3 examines a prospective cohort of patients with suspected CDI. The classification 

system established in the previous chapter based on Ct value zones is further evaluated for 

correlations with clinical metrics of disease severity.   

Chapter 4 is the conclusion of the thesis discussion of its findings. This chapter expands on the 

possible clinical impacts, the value of what has been found, and presents future questions.  
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2.1 Chapter Abstract 

Background. Clostridioides difficile infection (CDI) is an opportunistic disease that lacks a 

gold-standard test. Nucleic acid amplification tests such as real-time polymerase chain reaction 

(PCR) demonstrate an excellent limit of detection (LOD), whereas antigenic methods are able to 

detect protein toxin. Latent class analysis (LCA) provides an unbiased statistical approach to 

resolving true disease. 

Methods. A cross-sectional study was conducted in patients with suspected CDI (N = 96). Four 

commercial real-time PCR tests, toxin antigen detection by enzyme immunoassay (EIA), 

toxigenic culture, and fecal calprotectin were performed. CDI clinical diagnosis was determined 

by consensus majority of 3 experts. LCA was performed using laboratory and clinical variables 

independent of any gold standard. 

Results. Six LCA models were generated to determine CDI probability using 4 variables 

including toxin EIA, toxigenic culture, clinical diagnosis, and fecal calprotectin levels. Three 

defined zones as a function of real-time PCR cycle threshold (Ct) were identified using LCA: 

CDI likely (>90% probability), CDI equivocal (<90% and >10%), CDI unlikely (<10%). A 
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single model comprising toxigenic culture, clinical diagnosis, and toxin EIA showed the best 

fitness. The following Ct cutoffs for 4 commercial test platforms were obtained using this model 

to delineate 3 CDI probability zones: GeneXpert®: 24.00, 33.61; Simplexa®: 28.97, 36.85; Elite 

MGB®: 30.18, 37.43; and BD Max™: 27.60, 34.26. 

Conclusions. The clinical implication of applying LCA to CDI is to report Ct values assigned to 

probability zones based on the commercial real-time PCR platform. A broad range of 

equivocation suggests clinical judgment is essential to the confirmation of CDI. 

 

2.2 Introduction 

Clostridioides difficile is the predominant cause of nosocomial and healthcare-associated 

infectious diarrhea in the community [1, 2]. Clostridioides difficile manifestation ranges from 

asymptomatic colonization to severe fulminant disease and/or death [3]. Studies have shown up 

to 15% of healthy adults and up to 21% of hospital-admitted patients can be asymptomatically 

colonized with C. difficile [4]. The transition from colonization to clinical disease is 

multifactorial, dependent on types and durations of antimicrobial exposure, agents that alter 

intestinal physiology, and host factors including intestinal immunity and bile salt metabolism. 

Asymptomatic colonization and transition to clinically evident infection can be bidirectional 

where patients with CDI can be self-resolving or run a relapsing course. Because of these 

complex pathogen, host, and microbial dynamics, detecting the presence of C. difficile toxin in 

stool by either antigenic or molecular methods does not directly correlate with clinical disease 

[5].  
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Accurately diagnosing CDI with a stand-alone test remains elusive and available tests come with 

trade-offs [6–8]. The presence of C. difficile toxin correlates well with clinical disease but 

enzyme immunoassays (EIAs), although simple and inexpensive, lack sufficient analytical 

sensitivity to be used alone [6, 8]. Nucleic acid amplification tests (NAATs), using real-time 

polymerase chain reaction (PCR) targeting a toxin-producing gene, provide high analytical 

sensitivity for the detection of C. difficile bacteria at the cost of specificity for clinical disease, 

especially without proper assessment of pretest probability and indiscriminate test utilization to 

help distinguish between clinical CDI and asymptomatic carriage and colonization. Despite its 

excellent limit of detection (LOD), PCR has not traditionally been used to distinguish between 

clinical CDI and asymptomatic carriage and colonization [2–4, 6, 8]. Detection of glutamate 

dehydrogenase (GDH), a metabolic enzyme produced by both toxigenic and nontoxigenic 

strains, provides inexpensive and rapid screening but must be followed with a confirmatory EIA 

or NAAT [8]. Fecal calprotectin (fCPT) has also been demonstrated to correlate with CDI and 

the presence of toxigenic C. difficile [9, 10]. Fecal calprotectin is a stable protein that is present 

in proportion to neutrophil migration in the mucosa of the intestine, thus acting as a marker for 

CDI- and non– CDI-related inflammatory bowel disease [9, 10].  

 

Generally, a 2-step algorithm is recommended for CDI diagnosis, but some guidelines do state 

that NAATs are sufficient as a stand-alone test [8, 11] supported with clinical context. Several 

hospitals have reported a 50–100% increase in the amount of laboratory-confirmed CDI when 

switching from EIA to stand-alone NAATs [12]. We posed the question: Can the exceptional 

LOD of NAATs through the use of cycle threshold (Ct) values be used as a means to better 

identify clinically significant CDI in situations where noninfectious diarrhea can occur?  
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Several groups have attempted to use the quantitative potential of real-time PCR to address this 

concern. It has been demonstrated that reporting the real-time PCR Ct can reduce the treatment 

of toxin-negative patients [13]. Ct values have an inverse correlation with the log amount of the 

target gene and thus bacterial load [14, 15]. Laboratories have demonstrated that Ct values 

strongly correlate with fecal protein toxin [11, 14, 16–19]. Ct values have been correlated with 

CDI clinical outcomes and disease severity [14, 17, 18, 20, 21]. Most of the literature optimizing 

CDI real-time PCR Ct values has sought a single cutoff to determine disease status through the 

use of receiver operator curves (ROCs) [16, 17]. ROC analysis can be used to assess a 

discriminating threshold and test performance but is limited to a single reference method and 

single optimal cutoff [22]. So far, these efforts have failed to yield a method that has widespread 

clinical validity for predicting clinical CDI and/or protein toxin load in order to reduce laboratory 

detection of colonization. Commercial assays typically use microbiological endpoints to 

determine Ct value cutoffs [23, 24]. We sought to use latent class analysis (LCA) as an unbiased 

approach to determine CDI status based on multiple molecular real-time PCR platforms, toxin 

antigen detection by EIA, the clinical judgment of experts, and markers of inflammation namely 

fCPT.  

 

  



 19 

2.3 Methods 

Study Design, Patient Population, and Ethics  

A subset of patients (N = 96) with suspected CDI who tested positive for the presence of GDH 

were selected at random during the month of October 2016 to November 2016 in Calgary, 

Alberta. All samples were received at Alberta Precision Laboratories, the primary microbiology 

laboratory for the city of Calgary covering a population of approximately 1.4 million, comprising 

both inpatients and outpatients. Alberta Precision Laboratories’ CDI clinical diagnostic 

algorithm relies on a 2-step algorithm. Stool samples were first tested by Liaison C. difficile 

GDH (DiaSorin, Cypress, CA) for GDH. Samples positive for GDH were then tested with 

GeneXpert C. difficile (Cepheid, Sunnyvale, CA) real-time PCR to report tcdB presence. Ethical 

approval was obtained through University of Calgary’s Institutional Research Information 

Services Solution (REB-16–1896). Patient information was protected as per Alberta Health 

Services protocol and all data were de-identified prior to analysis.  

Additional Diagnostic Testing  

Additional diagnostic testing and clinical chart review beyond the routine were conducted on the 

samples from the 96 patients testing positive for GDH (Figure 2.1). Additional diagnostics 

included 3 additional commercial NAAT real-time PCR platforms: Simplexa C. difficile Direct 

(DiaSorin, Cypress, CA), C. difficile Elite MGB kit (ELITechGroup S.p.A, Torino, Italy), and 

BD Max C. difficile assay (Becton Dickinson, Sparks, MD). Liaison C. difficile Toxins A&B 

(DiaSorin, Stillwater, MN) was used to evaluate the presence of toxin A/B (Toxin). Toxigenic 

culture using standard anaerobic culture on selective cycloserine cefoxitin fructose agar (CCFA; 

Dalynn Biological, Alberta, Canada) was performed to further evaluate the presence of the 

organism. Clostridioides difficile isolates were confirmed by matrix-assisted laser desorption 
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ionization–time of flight mass spectrometry (MALDI-TOF; Vitek MS; Biomerieux, Durham, 

NC) and shown to be toxigenic strains by performing real-time PCR to determine the presence of 

the tcdB gene using Cepheid GeneXpert C. difficile. fCPT was measured using Liaison 

calprotectin (DiaSorin, Stillwater, MN), a quantitative sandwich EIA relying on a monoclonal 

antibody against the fCPT heterocomplex. fCPT is a nonspecific marker of intestinal 

inflammation associated with CDI [9, 10].  

 

Figure 2.1: Flow chart demonstrating criteria for patient enrollment and subsequent laboratory 
and clinical investigations performed. Abbreviations: C. difficile, Clostridioides 
difficile; GDH, glutamate dehydrogenase; PCR, polymerase chain reaction. Images are licensed 
under the Creative Commons Attribution 4.0 International license. 
 
 
Clinical Diagnostic Evaluation by Experts  

Clinical diagnosis of CDI was determined by conducting a chart review and itemizing other 

relevant diagnostic results. For a list of clinical and laboratory data gathered from the chart 

review to form the diagnostic verdict, see Appendix Table 2.1. A positive clinical diagnosis was 

based on the consensus majority of 3 independent, blinded, infectious disease experts. Latent 

class analysis for diagnosing disease that lacks a single gold-standard laboratory test, multiple 

diagnostic tests can be combined into a latent class model to determine the probability of true 

disease. Latent class analysis permits probabilistic determination of an unmeasured disease 

“latent class” using model inputs of multiple “observed variables” [25, 26]. Multiple observed 

variables were investigated in the following combinations: A, clinical diagnosis and toxin; B, 
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clinical diagnosis and culture; C, clinical diagnosis, toxin, and culture; D, clinical diagnosis and 

fCPT; E, clinical diagnosis, toxin, and fCPT; F, clinical diagnosis, toxin, culture, and fCPT 

(Figure 2.2). Clinical diagnosis was used in each model as CDI in practice is ultimately 

determined by healthcare provider judgment [7]. Bayesian information criterion (BIC) values, a 

measure of fitness of the LCA model, were calculated for each model to aid in model 

comparison. A lower BIC implies better LCA model fitness [27]. Latent class analyses were 

conducted in R-Studio (version 1.2.5033; R Foundation for Statistical Computing, Vienna, 

Austria) using the package depmixS4 [28, 29]. The mean probability of membership to a disease 

latent class as a function of Ct value was plotted and analyzed via polynomial regression for each 

commercial real-time PCR assay. The corresponding adjusted R2 values were evaluated to 

measure the fit of each regression model. Models with an adjusted R2 value greater than 0.5 were 

deemed sufficiently predictive. The model that incorporated the most clinically relevant 

variables, has an adjusted R2 greater than 0.5, and lower BIC was chosen to ascertain Ct cutoff 

values for disease probability. Cutoff values for disease and non-disease status were set at 90% 

and 10% probability of disease in a Ct range of 0 to 40 in line with the commercial real-time 

PCR manufacturer’s recommendations. The LCA models had Ct values divided into 3 groups: 

CDI likely (>90% probability of disease), CDI equivocal (10% and 90% probability of disease), 

CDI unlikely (<10% probability of disease). The LCA described was performed for each real-

time PCR platform. 
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Figure 2.2: Overview of key variables used to generate latent class analysis model, statistical 
tools used to select model fitness, and outputs generated to determine likelihood of 
Clostridioides difficile infection. Abbreviations: BIC, Bayesian information Criterion; Ct. Cycle 
Threshold; LCA, Latent class analysis; PCR, polymerase chain reaction. Images are licensed 
under the Creative Commons Attribution 4.0 International license.  
 
 
 
2.4 Results 

Patient Demographics  

In total, 96 patients with diarrhea suspected of CDI and GDH positive by EIA were included in 

the study. Among this cohort of patients, 48.9% were female, 52.0% were treated for CDI, and 

60.4% of the patients had a record of antibiotic use in the prior 3 months. The average patient 

age was 48.5 years (1–91 years) with a median age of 50.5 years (Table 2.1).  

Real-time PCR Assays, Toxigenic Culture, Clinical Diagnosis, and Fecal Calprotectin  

The distribution of Ct values for each patient sample in the study across all commercial 

molecular platforms is shown in Figure 2.3. The positivity rates between commercial real-time 

PCR platforms (N = 96) using the manufacturer’s recommended Ct value cutoff were as follows: 

GeneXpert, 68.4% positive; Simplexa, 66.3% positive; BD Max, 61.1% positive; and Elite 

MGB, 66.3% positive (Table 2.1). Toxigenic culture using CCFA was positive in 74.7% of 

patients. The consensus clinical diagnosis of CDI by 3 infectious disease specialists based on 

selected criteria (Appendix Table 2.1) was made in 52.6% of patients. The toxin antigens A/B 
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were detected in 41.1% of patients using EIA. The mean concentration of the inflammatory 

marker fCPT was 316.9 μg/g with a range from 5 to 800 μg/g (Table 2.1).  

 

Table 2.1: Patient Characteristics, Risk Factors for Clostridioides difficile Infection, and Results 
of Clinical Laboratory Investigation in the Study Population 

 

 

Latent Class Analyses to Determine Clostridioides difficile Infection  

Latent class analysis was used to investigate the predictive ability of real-time PCR Ct values to 

identify CDI without being limited to a single gold-standard reference method. Probability of 

membership to 1 of 3 latent classes (CDI, not CDI, indeterminant) as a function of Ct value was 

evaluated for 6 different models of the observed variables (clinical diagnosis [clinical diagnosis], 

toxin detection by EIA [toxin], toxigenic culture [culture], and fCPT detection by EIA 

[calprotectin]), all as a function of Ct value for each commercial real-time PCR platform. The 

statistical values associated with LCA model fitness for all models (A through F) are 

summarized in Appendix Table 2.2. All models are presented in the Appendix Figures 2.1–2.4. 

Model A (toxin, clinical judgment) resulted in a high adjusted R2 and relatively low BIC. Model 

B (culture, clinical judgment) did not consistently meet the criteria of an adjusted R2 greater than 



 24 

0.5 but resulted in a lower BIC value relative to the other models generated. With the 

introduction of fCPT, in models D, E, and F, BIC values were consistently much higher 

(Appendix Table 2.2). Model C (when both toxin and culture are combined with clinical 

judgment) incorporated the greatest diversity of observed variables while still maintaining an 

adjusted R2 greater than 0.5 and comparatively lower BIC values. Latent class analysis results for 

model C showing the probability of CDI in relation to the Ct values for 4 commercial real-time 

PCR systems used in this study are presented in Figure 2.4. The LCA model C generated the 

following Ct cutoff values: GeneXpert, an average 90% probability of disease Ct value cutoff 

was 24.00 and an average 10% probability of disease Ct value cutoff was 33.61; Simplexa, an 

average 90% probability of disease Ct value was 28.97 and an average 10% probability of 

disease Ct value 36.85; Elite MGB, an average 90% probability of disease Ct value was 30.18 

and an average 10% probability of disease Ct value 37.43; and BD Max, an average 90% 

probability of disease Ct value was 27.60 and an average 10% probability of disease Ct value 

34.26. All models generated comparable Ct value cutoffs except for models B and D (Appendix 

Table 2.2). 
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Figure 2.3 Histogram plot of Ct values for each commercial real-time PCR platform designed to 
detect the Clostridioides difficile toxin gene. Ct values are plotted against 
number for each of (A) Cepheid GeneXpert®, (B) DiaSorin Simplexa®, (C) Becton Dickinson 
BD Max™, and (D) ELITechGroup Elite MGB®. Abbreviations: Ct, cycle threshold; PCR, 
polymerase chain reaction. 
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Figure 2.4. Latent class analyses results of model C showing the probability of CDI in relation to 
the Ct value (N = 96) for commercial real-time PCR systems used in this study: 
Cepheid GeneXpert®, DiaSorin Simplexa® real-time PCR, ELITe MGB® real-time PCR, and 
BD Max™ real-time PCR. Observed variables included in model C: clinical diagnosis 
(diagnosis), toxin detection by enzyme immunoassay (toxin), toxigenic culture (culture). Vertical 
dashed lines demarcate the Ct value boundaries obtained for the equivocal 
zone based on 10% and 90% probability of CDI using polynomial regression. Other models are 
presented in the Appendix Data (Table 2, and Figures 2.1-2.4). Abbreviations: 
CDI, Clostridioides difficile infection; Ct, cycle threshold; PCR, polymerase chain reaction. 
 
 
2.5 Discussion 

Given no gold-standard reference test for CDI diagnosis, LCA combines multiple standards into 

a single model. The model focuses on major components identified as necessary for clinical 

disease: the presence of C. difficile organism, presence of protein toxin, clinical symptoms as 
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adjudicated by experts, and a heightened immune response. These factors were then correlated 

with Ct values produced by commercial molecular platforms commonly used to test for CDI. 

The LCA model investigates combinations of observed variables in order to define the 

probability of CDI. The model where clinical diagnosis, protein toxin, and culture of the 

organism are combined produced the most robust model from a statistical perspective. fCPT in 

this model did not add additional predictive value and was excluded in the final model of choice. 

The higher BIC values (poor LCA fitness) in models incorporating fCPT are likely due to high 

variability in calprotectin values in patients who have CDI toxin gene detectable by real-time 

PCR [9, 10]. Taken together, the LCA suggests a relatively large zone of equivocal diagnosis 

based on Ct value for all commercial platforms evaluated in several of the models generated. 

Using a combination of statistical tools, a single model appeared to provide the most complete 

picture of CDI—namely, with toxigenic culture, clinical diagnosis by experts, and protein toxin 

included. This suggests that all 3 aforementioned variables add value to the diagnosis of CDI and 

real-time PCR Ct values demarcate an equivocal range based on the commercial real-time PCR 

assay where more information is required. Previous attempts to find an optimal Ct cutoff for 

toxin or CDI generally place their Ct values within the equivocal zones defined by the LCA 

performed in this study. The broad range of equivocal findings in the LCA likely explains why a 

single cutoff has poor predictive value for the clinical diagnosis of CDI. Although results for 

patients falling within the equivocal zone do not gain more resolution with the current LCA, it 

provides value in defining when an accurate stand-alone laboratory result for clinical disease is 

not possible. Other infectious disease diagnostic studies have benefited from LCA modeling [30–

36]. For example, we recently reported that antigenic tests and molecular test results can differ 

from the clinical diagnosis of acute dengue infection, and that LCA is able to provide an 
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unbiased approach to determining true acute disease when the diagnostic tests do not agree [34]. 

There is immediate potential for clinical application of probability zones: CDI likely, CDI 

equivocal, and CDI unlikely. The probability models can provide diagnostic guidance that is 

more insightful than the current binary real-time PCR result. LCA applied to commercial NAAT 

diagnostic technology to provide clinicians with additional valuable information at little to no 

additional cost to hospitals or laboratories. In 2014, 44% of US hospitals used NAAT as a stand-

alone test for CDI diagnostics [17]. The LCA model developed here can reduce the 

overdiagnosis of CDI, potentially leading to improved antibiotic stewardship and increased 

targeted treatment for patients. Analyses incorporated multiple standards into one model but was 

not powered to account for variations such as age or comorbidities of the patients; for example, 

an older immunocompromised patient might present with clinically relevant CDI at a 

significantly higher Ct value. Further studies integrating additional immune biomarkers might 

increase model resolution in the equivocal zones. There is an assumption of conditional 

independence with the observed variables of the LCA, but all observed variables address clinical 

symptoms and/ or pathophysiology of the same disease processes. Additionally, an assumption 

was made that more variables used in the LCA, an adjusted R2 greater than 0.5, and lower BIC 

value implied greater model fitness to predict CDI. While it is difficult to say that one set of 

criteria produces the “correct” model, the use of an adjusted R2 greater than 0.5 and lower BIC 

value is a conservative approach, lowering the chance of overfitting and including terms that 

only appear important due to random chance. Further investigation correlating clinical outcomes 

and/or disease severity to the Ct value cutoff zones proposed here will be helpful in further 

clinically validating the LCA model.  
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Conclusions  

This publication applied an unbiased approach to CDI diagnosis relying on LCA and multiple 

standards to determine disease status. The results show that CDI diagnosis using a single Ct 

value cutoff likely oversimplifies diagnosis. A broad range of equivocation exists where clinical 

diagnosis is mandatory. Commercial platforms also do not necessarily have identical cutoff 

points for zones of CDI probability, suggesting heterogeneity between assays. The LCA 

approach has implications for infectious disease diagnostics beyond CDI where pathogen gene 

presence does not necessarily imply clinical disease. 
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2.7 Chapter 2 Appendix Figures and Tables  

 

Appendix Table 2.1: Summary of variables available to infectious disease experts to make 
clinical diagnosis based on chart review. Abbreviations in table:  IBD – diagnosis of 
inflammatory bowel disease. CRP – C reactive protein. WBC- white blood cell count. Hgb – 
hemoglobin. CT – computed tomography. CDI – C. difficile infection. 

 
Patient Info  Clinical  Other   Laboratory  
Test Date    Antibiotic Used    X-Ray   Stool WBC 
Age   Treated for CDI  CT Scan   Hgb 
Sex    Repeated Treatment   Endoscopy   WBC  
In/Outpatient  Admitted   Biopsy  Platelets 
Previous CDI   Fever (>38C)   IBD   CRP 
Antibiotics in last 3 Months  Tachycardia      
Antibiotics in last 6 Months             
Antibiotics in last week        
Referred for fecal transplantation            
Admitting Diagnosis        
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Appendix Table 2.2: Results from latent class analyses for all four commercial real-time PCR 
platforms evaluated in this study and associated statistical values corresponding to the six models 
(A through F) generated. Abbreviations: BIC – Bayesian Information Criterion. Ct – cycle 
threshold.  
 

  GeneXpert®  Simplexa®  

Observed 
Variables 

LCA 
model BIC Adjusted  

R-Squared 

Ct at 90% 
Probability 
of Disease  

Ct at 10% 
Probability 
of Disease  

  BIC 
Adjusted 

R-
Squared 

Ct at 90% 
Probability 
of Disease  

Ct at 10% 
Probability 
of Disease  

  

Clinical 
Diagnosis, 
Toxin 

A 207.2 0.761 22.98 31.12   207.4 0.761 27.58 35.38   

Clinical 
Diagnosis, 
Culture 

B 179.6 0.566 29.46 -  185.1 0.604 35.62 41.56  

Clinical 
Diagnosis, 
Toxin, 
Culture 

C 297.6 0.659 24.00 33.61   298.3 0.746 28.97 36.85   

Clinical 
Diagnosis, 
fCPT 

D 1492.7 0.673 23.26 33.39  1411.1 0.342 - -  

Clinical 
Diagnosis, 
Toxin, fCPT 

E 1590.6 0.781 22.97 30.93   1586.5 0.825 28.14 35.32   

Clinical 
Diagnosis, 
Toxin, 
Culture, 
fCPT 

F 1681.2 0.702 23.89 32.63  1677.7 0.777 28.90 36.37  

            

  ELITe MGB®  BD MaxTM   

Observed 
Variables 

LCA 
model BIC Adjusted  

R-Squared 

Ct at 90% 
Probability 
of Disease  

Ct at 10% 
Probability 
of Disease  

  BIC 
Adjusted 

R-
Squared 

Ct at 90% 
Probability 
of Disease  

Ct at 10% 
Probability 
of Disease  

  

Clinical 
Diagnosis, 
Toxin 

A 200.3 0.712 29.56 36.96   214.8 0.549 26.82 33.74   

Clinical 
Diagnosis, 
Culture 

B 175.8 0.686 31.85 39.41  200.0 0.367 - -  

Clinical 
Diagnosis, 
Toxin, 
Culture 

C 284.1 0.684 30.18 37.43   305.9 0.558 27.60 34.26   

Clinical 
Diagnosis, 
fCPT 

D 1403.3 0.424 - -  1411.4 0.263 - -  

Clinical 
Diagnosis, 
Toxin, fCPT 

E 1580.6 0.801 28.96 35.27   1598.2 0.587 26.81 33.57   

Clinical 
Diagnosis, 
Toxin, 
Culture, 
fCPT 

F 1664.4 0.796 30.64 36.95  1689.0 0.610 27.86 34.05  
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Appendix Figure 2.1: LCA analyses results depicting probability of CDI in relation to the Ct 
value for Cepheid GeneXpert® qPCR. Panels A-F represent each variable: clinical diagnosis, 
toxin detection by DiaSorin Liaison® XL C. difficile Toxin A/B [Toxin], toxigenic culture 
[Culture], and detection of calprotectin as a maker of inflammation [fCPT]. 
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Appendix Figure 2.2: LCA analyses results depicting probability of CDI in relation to the Ct 
value for Diasorin Simplexa® qPCR. Panels A-F represent each variable: clinical diagnosis, 
toxin detection by DiaSorin Liaison® XL C. difficile Toxin A/B [Toxin], toxigenic culture 
[Culture], and detection of calprotectin as a maker of inflammation [fCPT]. 
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Appendix Figure 2.3:  LCA analyses results depicting probability of CDI in relation to the Ct 
value for Elite MGB® qPCR. Panels A-F represent each variable: clinical diagnosis, toxin 
detection by DiaSorin Liaison® XL C. difficile Toxin A/B [Toxin], toxigenic culture [Culture], 
and detection of calprotectin as a maker of inflammation [fCPT]. 
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Appendix Figure 2.4:  LCA analyses results depicting probability of CDI in relation to the Ct 
value for Becton Dickinson BD MAXTM qPCR. Panels A-F represent each variable: clinical 
diagnosis, toxin detection by DiaSorin Liaison® XL C. difficile Toxin A/B [Toxin], toxigenic 
culture [Culture], and detection of calprotectin as a maker of inflammation [fCPT]. 
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3.0 Prospective cohort study evaluating Clostridioides difficile qPCR 
cycle threshold correlation to clinical variables  

 

3.1 Abstract 

Background. Clostridiodes difficile infections (CDI) is a common burden of disease in acute 

care facilities and lacks a gold standard clinical diagnostic test to determine CDI. A previous 

method of latent class analysis established that zones defined by C. difficile quantitative 

polymerase chain reaction (qPCR) cycle threshold (Ct) values can correlate to probability of 

disease. This paper intends to investigate if these probability zones or Ct values have further 

correlations beyond diagnostics to clinical variables and indicators of severe CDI.  

Methods. A prospective cohort study was conducted with suspected CDI hospital patients. 

Primary diagnosis, demographic data and indicators of severe disease were captured during CDI 

including white blood cell count, creatinine, albumin, and C-reactive protein, mortality, and 

hospital length of stay. Data was evaluated for correlations between captured variables and the 

patient’s qPCR Ct or the previous latent class analysis established Ct defined probability of 

disease zone: CDI likely (>90% probability), CDI equivocal (<90% and >10%), CDI unlikely 

(<10%), and negative.   

Results. No significant correlations were found between clinical variables and the Ct values or 

zones. 

Conclusions. Ct defined probability zones have been previously shown to assist in diagnostic 

probability but in this study did not extend useful correlations to other clinical variables.   
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3.2 Introduction 

Clostridioides difficile is one of the most common causes of health care-associated infections and 

a major clinical burden on acute care facilities [1]. Despite its common prevalence, current 

technology and practices fall short of providing reliable and rapid laboratory tests that can 

accurately distinguish true C. difficile infections (CDI) from symptomatic colonized patients [2, 

3]. Given that CDI is often clinically indistinguishable from other diarrheal illnesses, reliable 

diagnostic tests are essential for proper clinical management and infection control [3, 4].  

 

Current detection methods include the following diagnostics. Each possesses shortcomings that 

prevent them from being a true gold standard test for CDI. Cell cytotoxicity neutralization assays 

(CCNAs), can detect minimal amounts of toxin and organism, but due to dependence on cell 

cultures, required laboratory expertise, and long turnaround time (>1-2 days), are rarely used as a 

clinical diagnostic test [2, 5, 6]. The toxin produced by toxigenic C. difficile is indicative of CDI 

[4]. Enzyme immunoassays (EIAs) detecting toxin lack adequate analytical sensitivity to be used 

as a reliable stand-alone clinical test [4, 7]. Nucleic acid amplification tests (NAAT), such as 

quantitative polymerase chain reaction (qPCR), targeting conserved regions of toxin-producing 

genes, are widely used with high analytical sensitivity for detecting the C difficile bacilli, but 

struggle to distinguish patients colonized by C. difficile from clinical disease [5]. The detection 

of, glutamate dehydrogenase (GDH), produced by both nontoxigenic and toxigenic strains, can 

provide a rapid and inexpensive screening option with high negative predictive ability. GDH 

testing must be followed by a confirmatory EIA or NAAT to confirm presence of toxigenic C. 

difficile [2, 7].  
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Given the trade-offs presented by available diagnostics, clinical guidelines generally recommend 

multi-step testing algorithms. Still, many laboratories continue to utilize a single-step NAAT 

such as qPCR as their primary test for CDI [8]. Previous literature has examined in depth the 

issues of qPCR overcalling disease and investigated how qPCR cycle threshold (Ct) values 

correlating to disease severity or clinical variables. Ct values have been correlated with the 

following variables: C. difficile bacteria load, fecal toxin, disease severity or variables indicative 

of disease severity, and CDI clinical outcome variables [9-17]. To address qPCR’s prolific use, 

lack of clear gold standard for clinical disease, and the associated overcalling of disease due to 

detection of colonized patients, Doolan et al employed latent class analysis (LCA) to correlate 

qPCR Ct values to probability of CDI [18]. LCA can be utilized to combine multiple variables or 

results into a single evaluation when a diagnostic lacks a clear gold standard for comparison [19, 

20]. Doolan et al.’s LCA incorporated toxin presence, toxigenic culture, and clinical judgement 

into a latent class model correlating probability of CDI to qPCR Ct values for four commercially 

available qPCR platforms [18]. For the platforms evaluated, the LCA results identified three 

zones of Ct values determining the probability of disease in each zone: CDI likely (>90% 

probability of CDI), CDI equivocal (<90% and >10%), CDI unlikely (<10%). Relevant to this 

study, the GeneXpert C. difficile (Cepheid, Sunnyvale, CA) qPCR Ct zones were separated at Ct 

24.00 and Ct 33.61 [18]. The previous LCA evaluation stopped at the attempt to predict true 

disease status, but can these Ct zones provide additional information on clinical variables that are 

indicators of CDI severity? 

 

Clinical variables can be used as metrics to determine patient CDI disease severity or indicate 

likelihood of poor clinical outcomes. These variables include the following: hospital length of 
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stay, white blood cell (WBC), creatinine, albumin, C-reactive protein (CRP), and mortality. 

Length of stay has been associated with higher levels of toxin and severe CDI [6]. The Infectious 

Disease Society of America and Society for Healthcare Epidemiology of America define severe 

CDI with two metrics, a white blood cell (WBC) count >15000 cells/ml or a serum creatinine 

>1.5mg/dl [22]. WBC and creatine are well established in the literature for correlating to severity 

of disease and unfavourable CDI outcomes [22, 23]. Low albumin concentrations are a risk 

factor of severe CDI and serum albumin is thought to act as a component in the defence 

mechanism against C. difficile [6, 24]. CRP has been identified as a risk factor for severe CDI 

and an indicator of associated inflammation [23, 25]. These correlations however are not 

universally accepted as some studies have found no correlation with severity variables to CDI 

diagnostic results or Ct values [6, 21]. 

 

Doolan et al.’s previous retrospective cohort study, Latent Class Analysis for the Diagnosis of 

Clostridioides difficile Infection, demonstrated the utility of Ct threshold to predict a patient’s 

probability of CDI [18]. This publication seeks to determine if the previously established Ct 

zones provide additional predictive value beyond probability of clinical disease and investigates 

the correlation of clinical variable and severity metrics with Ct zones and Ct values. 

 

3.3 Methods 

Study design, patient population, and ethics 

A prospective cohort study was conducted at Foothills Medical Center (FMC), a 1087-bed acute 

care hospital located in in Alberta, Canada. This study acquired laboratory results from the 

centralized laboratory services operated by Alberta Precision Laboratories (APL). Data on 



 45 

suspected CDI patients was collected from September 2018 to May 2020 from inpatient units at 

FMC. Stool samples were collected using the clinical pipeline at FMC and received by APL. 

Stool samples were screened using either the C. DIFF QUIK CHEK COMPLETE® (Techlab 

Inc., Radford, Va) or the Liaison C. difficile GDH (DiaSorin, Cypress, CA). Sample negative 

upon screening were clinically reported immediately, and all positive results were confirmed by 

GeneXpert C. difficile (Cepheid, Sunnyvale, CA) real-time PCR detecting tcdB gene presence. 

Negative patients included in this analysis were those confirmed negative by PCR confirmation. 

Additional patient severity and clinical data was extracted from hospital medical records. Ethical 

approval was obtained through University of Calgary’s Institutional Research Information 

Services Solution (REB-16–0397). Information was protected as per Alberta Health Services 

protocol and data was de-identified prior to analysis. 

 

Clinical and laboratory data 

Patients with suspected CDI were identified (N=9626). CDI suspected patients were defined as 

patients with a C. difficile diagnostic order and stool sample sent for laboratory confirmation. For 

patients that were positive upon screening and had samples sent for qPCR, Ct values were 

recorded (N=414). Data for the following indicators of CDI severity was collected for CDI 

suspected patients during their time in hospital with multiple values per patient (N=149,449 

laboratory values): white blood cell (WBC), creatinine, albumin, and CRP. For any one patient if 

multiple clinical values were present for WBC, creatinine, and CRP, the highest recorded value 

was used in a 7-day window surrounding time of CDI diagnostic request. For albumin, the 

lowest clinical value was used in this 7-day window. An additional data extraction was 

conducted from the hospital’s medical record system containing length of stay and primary 
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diagnosis for suspected CDI patients (N=23,243 records). These data sets were combined to 

create a final study population for analysis consisting of 339 patients (Figure 3.1). Potential 

confounders of age and sex were recorded in addition to the presence of a gene target indicative 

of the C. difficile NAP1 strain (confirmed by qPCR). NAP1 is a prevalent C. difficile strain that 

has been found to be correlated with severe disease, poor outcomes, and death [26].  

 

 
Figure 3.1: Data extraction from hospital (FMC) and laboratory (APL) medical records 
combined for final study population for analysis.  
 

Statistical analysis 

To determine if the Ct value zones as determined by Doolan et al. have correlation beyond 

clinical diagnosis, patients were first sorted into groups based on CDI qPCR results with 

associated Ct values determining zone membership, i.e. probability of disease grouping: CDI 

likely (>90% probability), CDI equivocal (<90% and >10%), CDI unlikely (<10%), and negative 

[18]. Cut-offs between zones were defined by the GeneXpert qPCR platform’s Ct values 

implemented in the clinical pipeline and values separating the 3 CDI probability zones 
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correspond to Ct 24.00 and Ct 33.61 [18]. Negative patients were assigned a Ct value of 40 for 

analysis [18].  

 

Ordinal logistic regression analysis was employed to evaluate the relationship between patients 

grouped in Ct defined disease probability zones and negative patients to the clinical variable of 

interest. Zones including negative patients, were set as the dependent variables. Independent 

variables were WBC, creatinine, CRP, albumin, in hospital mortality, sex, age, presence of 

NAP1 strain, and hospital length of stay. To broaden the applicability of this analysis beyond 

Doolan et al’s defined zones, a second multiple linear regression analysis was conducted with the 

same independent variables exchanging zones as the dependent variable for the continuous 

variable of Ct values. 

  

The study population contained a broad cross section of inpatients at an acute care hospital. 

These patients suffer from a variety of diagnosis in addition to CDI. Many of these other 

diagnoses can dramatically affect the clinical variables being examined in this study. We 

attempted to focus an additional analysis on patients where CDI may play a more major role in 

influencing the clinical and severity variables of interest. A sub analysis was conducted 

examining a population of patients identified based on their primary diagnosis. This was a 

subjective grouping with an intention to limit variations within clinical variables due to other 

clinical disorders or disease and isolate possible CDI effects. Clinical judgement was used to 

exclude diagnosis such as infections or renal failure that are known to dramatically affect the 

chosen clinical variables also influenced by CDI severity. The primary diagnosis indicated as 

CDI was grouped with other diagnosis as seen in Appendix Table 3.1. The ordinal logistic 
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regression and the multiple linear regression previously described was repeated using this subset 

of patients (N=161).  

 

A two-sided alpha of less than 0.05 was considered statistically significant. All analysis was 

conducted in R-Studio (version 1.4.1103; R Foundation for Statistical Computing, Vienna, 

Austria) [27]. 

 

3.4 Results 

Patient Population 

After compiling patient data (Figure 3.1), 339 patients were included in this analysis. Patients 

were 47.2% female with an average age of 61.4 years (18-98 years). The mortality rate was 

10.0% during the study, and 4.1% were NAP1 positive. This cohort contained 33.3% qPCR 

(GeneXpert) negative patients and based on Doolan et al. Ct value zones; 9.7% of patients were 

identified as unlikely CDI, 47.2% identified as equivocal, and 20.6% identified as likely CDI 

(Table 3.1). The distribution of values for WBC, creatinine, albumin, and CRP can be 

graphically visualized based on Ct zone classification of patient in Table 3.2.  
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Table 3.1: Patient characteristics and Ct value identified zone membership.  
 

 
 
 
 
 

 
Figure 3.2: Clinical variable WBC, Creatinine, CRP, Albumin distributions grouped by 
previously established Ct zones (N=339). Abbreviations: WBC, White blood Cells; CRP, C-
reactive Protein. 

Variables Percentage Mean Range
Age (years) … 61.4 18 to 98
Female 47.2 … …
WBC (cells/µl) … 10.2 0.8 to 86.1
Creatinine (mg/dl) … 2.2 0.27 to 11.24
Length of stay (days) … 41.0 1 to 1582
CRP (mg/l, N = 187) … 68.8 1.3 to 437.5
Albumin (g/l, N = 257) … 23.4 10 to 39
Mortality 10.0 … …
NAP1 confirmed 4.1 … …
GeneXpert qPCR (-) 23.0 … …
Ct Values … 30.4 19.6 to 40
Zone: Unlikely 9.7 … …
Zone: Equivocal 47.2 … …
Zone: Likely 20.6 … …
N = 339 unless otherwise specified
Abreviations: CDI, Clostridioides difficile infection; -, negative; WBC, White Blood Cell
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Regression Analyses: All Patients (N=339) 
 
Of the 9 independent variables included in the ordinal logistic regression, 0 were found to be 

associated with zone membership (Table 3.2). The model was found to have a Akaike 

information criterion (AIC) of 301.45. For the multiple linear regression analysis with Ct as the 

dependent variable, 1 variable was found to be associated with Ct values (p-value= 0.04). The 

multiple linear regression found a significant relationship between age and Ct value showing a 

0.077 decrease in age (years) as Ct value increases by one. However, when the p-value of this 

model based on the global F-statistics was observed, it is non-significant (p-value= 0.14) (Table 

3.3).  

 

Table 3.2: Results from ordinal logistic regression conducted on entire study patient population. 
Dependent variable: Ct Zones  
 

 
 
 
 
 

Dependent: Ct Zones (Likely, Equivocal, Unlikely,  Negative)

Coefficients Std. Error p-value
WBC -0.046 0.03 0.10
Creatinine 0.000 0.00 0.83
CRP 0.000 0.00 0.93
Albumin -0.023 0.03 0.49
Mortality -0.579 0.65 0.38
Sex -0.013 0.37 0.97
Age -0.020 0.01 0.06
NAP1 -1.247 0.77 0.11
Length of Stay 0.000 0.00 0.77

N= 339, AIC = 301.45

Ordinal Logistic Regression: Patient Population 
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Table 3.3: Results from multiple linear regression conducted on entire study patient population. 
Dependent variable: Ct values.   
 

 
 

 

Sub-analysis based on primary diagnosis (N=161) 

With a subset of the population is being evaluated, the sample size decreased to 161 patients and 

the same two regression as previously described were repeated. Of the 9 independent variables 

included in the ordinal logistic regression, 1 variable, age, was found to be associated with zone 

membership (p-value= <0.01, Table 3.4). The AIC improved in this analysis with a decrease to 

117.9. Using the same patient subset in the multiple linear regression analysis with Ct as the 

dependent variable, 1 variable, age, again was found to be associated with Ct values (p-value= 

0.01, Table 3.5). The global p-value of the multiple linear regression model is non-significant (p-

value= 0.29).  

  

Dependent: Ct Values

Coefficients Std. Error p-value
WBC -0.090 0.07 0.20
Creatinine 0.001 0.00 0.76
CRP 0.000 0.01 0.99
Albumin -0.091 0.12 0.44
Mortality -2.467 2.28 0.28
Sex -0.848 1.30 0.52
Age -0.077 0.04 0.04
NAP1 -4.345 2.79 0.12
Length of Stay 0.001 0.00 0.85

N= 339, Adjusted R-squared= 0.04, p-value= 0.14

Multiple Linear Regression: Patient Population 
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Table 3.4: Results from ordinal logistic regression conducted on subset of study patient 
population. Dependent variable: Ct Zones  
 

 

 

Table 3.5: Results from multiple linear regression conducted on entire study patient population. 
Dependent variable: Ct values.   
 

 

 

  

Dependent: Ct Zones (Likely, Equivocal, Unlikely,  Negative)

Coefficients Std. Error p-value
WBC -0.051 0.08 0.52
Creatinine 0.000 0.00 0.97
CRP -0.003 0.01 0.60
Albumin 0.011 0.06 0.85
Mortality 0.135 1.49 0.93
Sex 0.891 0.68 0.19
Age -0.063 0.02 <0.01
NAP1 -2.276 1.22 0.06
Length of Stay 0.000 0.00 0.87

N= 161, AIC = 117.9

Ordinal Logistic Regression: Patient Population Subset

Dependent: Ct Values

Coefficients Std. Error p-value
WBC -0.080 0.25 0.75
Creatinine 0.002 0.00 0.63
CRP -0.003 0.02 0.84
Albumin 0.045 0.20 0.82
Mortality -0.391 4.77 0.94
Sex 1.638 2.16 0.45
Age -0.177 0.07 0.01
NAP1 -7.355 3.76 0.06
Length of Stay 0.000 0.01 0.94

N= 161, Adjusted R-squared= 0.06, p-value= 0.29

Multiple Linear Regression: Patient Population Subset
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3.5 Discussion 

The results of the analysis found minimal correlations between Ct values or Ct zones and the 

nine independent clinical variables. The significant correlation found between Ct and age is 

contradicted by non-significant p-values of the models based on global F-statistics. Given the F-

statistic findings and considering the quantity of variables being evaluated over multiple 

regressions, it is suggestive that these significant finding regarding Ct and age are likely a 

function of family-wise type I error. Regardless, when examining the models’ coefficient values 

for age, they indicate a rate of change per unit Ct value that is minimal and could be interpreted 

as clinically non-relevant. Given these interpretations, we did not consider age to be a 

meaningful significant finding of this analysis.   

 

In a prior publication, Doolan et al. demonstrated the potential utility of Ct values to render the 

probability of clinical CDI and its potential usefulness for implementation in diagnostic strategy 

[18]. The analyses in this paper examined if the Ct values and zones further correlated with 

variables and known indicators of severe disease or poor outcomes. Interestingly, the analysis 

did not support that severity variables or length of stay correlated to Ct. These findings add to a 

discussion that correlations of clinical variables to CDI qPCR Ct values is not straightforward. 

Publications such as Reigadas et at do find correlations with clinical variables [17]. While other 

works such as Origuen et al or Bosch et al, do not support that Ct values add value to predictive 

models for severity variables [28, 29]. The findings of this paper agree with the later in that these 

correlations are not observed. Additional investigation is still needed to define when meaningful 

correlations do and do not exist and when these correlations can provide information to inform 
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clinical practices. Differences in finding could likely be a function of the patient populations 

being investigated. 

 

This study was conducted using a broad cohort of patients with widely varying primary 

diagnoses across hospital inpatient wards. Patients in hospital for diagnoses other than CDI, that 

strongly affect clinical variables, introduce variations that are unrelated to CDI and thus would 

not be correlated to C. difficile qPCR Ct. The primary investigation of this paper analyzed the 

entire study population with a sub analysis isolated a population where the observed differences 

in variables might be more attributed to CDI. Given that neither of these approaches provided a 

correlation of interest, the possibility of type II error and sufficient power to detect differences 

between Ct values should be evaluated. If we examine the power of the primary analysis with 

339 patients, 9 predictor variables, and a relatively small effect size of 0.05, we observe a 

sufficient power of 83.9%. When the sub analysis was conducted, the ordinal logistic regression 

did see a decrease in AIC indicative of a decrease in prediction error but this was accompanied 

by a dramatic decrease in sample size to 161 patients. With this reduction of the sample size, a 

similar moderately small effect size, and the same number of predictor variables, the power of 

the analysis was reduced to an insufficient 46.1%. With this reduction of power, it is possible 

that the null hypothesis was incorrectly accepted in the sub analysis and that a correlation might 

yet be undetected. Future studies should be specifically designed and powered to investigate 

subpopulations of CDI patients where CDI is the primary contributor to clinical symptoms while 

controlling for clinical comorbidities and interfering diagnosis.  
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An additional potential limitation of this study was the filtering of patient data for highest value 

of WBC, lowest albumin, etc. in a 7-day window. The intention was to identify moments of 

potential severe disease in a window surrounding the CDI diagnostics request. It is possible that 

this method could have introduced bias and collected data that represented the population as 

more severe than was factual. Future studies should closely consider data collection choices and 

incorporate in-depth chart review in order to identify a more exacting method of isolating patient 

data prior to analysis. 

 

Future analysis could also expand to include examining the change of clinical variables and Ct 

values over time and the potential relationships. These observations could provide further insight 

into positive or negative disease progression and correlation to Ct values during different stages 

of disease. Additional patient data including but not limited to presence of colectomy, movement 

to and from ICU, and how metrics such as creatine change as patient severity changes might 

illuminate further possible correlations or predictions.  

 

It is possible that the finding of this work and others are indicating that Ct values are just not the 

best way to correlate a laboratory available value with metrics of CDI disease severity. Ct value 

correlations are based on several major assumptions. Primarily that Ct value are correlated with 

bacterial load/burden and toxin presence. Toxin is a critical component for the progression of 

CDI pathophysiology leading to clinical symptoms, and thus these correlations have potential to 

further correlate to disease severity [9, 13, 14]. These assumptions however are not universally 

observed. For instance, Pollock et al using ultrasensitive quantitative immunoassays to quantify 

toxin in stool did not find a significant difference in toxin load between asymptomatic carriers of 
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C. difficile (exhibiting no clinical symptoms) and symptomatic patients confirmed with CDI [30]. 

Indicators of how a patient’s immune system is reacting to the toxin presence could be a better 

predictor of disease severity and associated variables. This is supported by both Feghaly et al 

demonstrating CDI outcomes were correlated with levels of inflammatory cytokines but not 

bacterial burden, and further work by Kelly et al demonstrating how immune markers can 

distinguish between CDI and colonization [31, 32]. The positive and at times contradicting 

findings in literature spanning both Ct and inflammatory marker-based studies support the idea 

that multiple factors must be aligned to have clinical disease caused by C. difficile. The presence 

of C. difficile, toxin load, and a host immune response are all necessary for CDI but appear 

insufficient to cause disease alone. The next steps in CDI disease investigations will be to 

continue to understand the interactions and roles that each factor plays in the disease process and 

how this knowledge can be used to improve diagnostics and patient outcomes.  

 

Conclusion 

The intention of this publication’s was to examine a broad base of patients at a single time point 

investigating Ct correlations across the breadth of the inpatient population and diagnosis. This 

study specifically focused on results from samples collected from suspected CDI patients. The 

overarching goal was to determine if with a diagnostic test requested by a clinician and the 

associated Ct values generated, can we provide additional valuable information for CDI clinical 

management. Unfortunately, future studies are needed to fully understand this question. This 

paper does not detract from the previous publication by Doolan et al establishing Ct zone’s 

ability to predict probability of CDI, it instead helps to further defines the Ct model and the 

previous LCA model’s current limitation to disease prediction. This work provides evidence 
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supporting the need for further investigation on the correlations of clinical variables to laboratory 

tests such as qPCR Ct values in C. difficile patients.   

 
 
 
3.6 Chapter 3 Appendix Material 
 
 
Appendix Table 3.1: Grouping of primary diagnostics identifying patients where CDI would 
more likely affect clinical variables.  
 

Category Primary Diagnosis 

Ev
al

ua
te

d 
in

 se
co

nd
ar

y 
an

al
ys

is
 (N

=1
61

) 

Ac subendocardial myocardial infarction 

Ac transv myelitis in demyelin dis CNS 

Acute transmural MI of oth site 

Alzheimer's disease unspecified 

Anoxic brain damage NEC 

Aortic (valve) stenosis 

Ath hrt dis native coron art 

Atrioventricular block complete 

Benign paroxysmal vertigo 

Beriberi 

Bronchopneumonia unspecified 

Calc gallblad w ac cholecyst w/o obstrct 

Cardiogenic shock 

Care inv use of rehab procedure NOS 

Central cord lesion cervical spinal cord 

Cereb infarct dt embolism cerebral art 

Cereb infarct dt embolism precereb art 

Cereb infarct dt occlusion cereb art NOS 

Chronic or unspec duodenal ulcer w haem 

Chronic or unspec gastric ulcer w haem 

Congestive heart failure 
COPD with acute exacerbation 
unspecified 

COPD with acute lower resp infection 

Coxarthrosis unspecified 

Decub ulcer & press area unspec 

Decub ulcer & press area unspec 

Delirium superimposed on dementia 

Diaph hernia without obs or gangrene 

Diffuse brain inj w/o open intracran wd 

Dissection of aorta 

Enterocolitis dt clostridium difficile 

Fistula of vagina to large intestine 

Fluid overload 
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Focal brain injury w/o open intracran wd 

Fx bone follw insert orth implnt unspec 

Fx of second cervical vertebra, closed 

Fx of thoracic vertebra T1 - T6, closed 

GB lacr w/o BD inj w/o opn wnd cav 

Hypertensive heart disease 

Hypotension unspecified 

Inflammatory disorders seminal vesicle 

Intertrochanteric fracture, closed 

Intestinal adhesions with obstruction 

Intracereb haem in hemisphere cortical 

Intracerebral haem intraventricular 

Intracranial injury unspec 

Iron deficiency anaemia dt blood loss 

Lumbar and oth I/V disc disrd w radiclpth 

Malaise and fatigue 

Mech comp GI prosth dev impl gft 

Mech comp oth spec int prosth dev impl 

Ment/beh disrd dt alco use withdrawal st 

Mild cognitive disorder 

Multiple fractures of 2 - 4 ribs, closed 

NA 

Nausea with vomiting 

Noninfect gastroenteritis and colitis NOS 

Obstruction of bile duct 

Orthostatic hypotension 

Oth spec crystal arthropathies lower leg 

Other & unspec convulsions 

Other and unspecified dysphagia 

Other delirium 

Other forms of acute pericarditis 

Other fracture of femoral neck, closed 

Other giant cell arteritis 

Other hydrocephalus 

Other impaction of intestine 

Other spec diseases biliary tract 

Pain management planning 

Palliative care 

Pleural effusion NEC 

Pneumonia unspecified 

Pneumonitis due to food and vomit 

Poisoning by cocaine 

Poisoning by fentanyl and derivatives 

Poisoning by hydromorphone 

Postproc pelvic peritoneal adhesions 

Preparatory care for subsequent Rx NEC 
Psn oth parasympatholytic spasmlytic 
NEC 

Resp failure unspec type 1 [hypoxic] 
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Sick sinus syndrome 

Status epilepticus unspecified 

Subdural haem (acute)(nontraumatic) 

Traumatic ischaemia of muscle 

Traumatic subdural haemorrhage 

Type 2 DM with foot ulcer 

Ulcer low limb not elsewhere classified 

Unspec fx low (distal) end of femur open 

Unspecified dementia 

Varicose veins legs w ulcer and inflam 
Vascular comp following a procedure 
NEC 

Vascular myelopathies 

Ventricular fibrillation 

Ventricular tachycardia 

Volvulus 
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Abscess of vulva 
Acute appendcts w local peritonitis 
Acute cholecystitis 
Acute leukaemia of unspecified cell type 
Acute lymphoblastic leukaemia [ALL] 
Acute myeloblastic leukaemia 
Acute pancreatitis, unspecified 
Acute prostatitis 
Acute renal failure unspecified 
Acute resp failure type 2 [hypercapnic] 
Acute vascular disorders of intestine 
Adult respiratory distress syndrome 
Alcoholic cirrhosis of liver 
Alcoholic hepatic failure 
Alcoholic hepatitis 
Bacterial infection unspecified 
Benign neoplasm of lower jawbone 
Cachexia 
Calculus of kidney 
Chemotherapy session for neoplasm 
Chronic cholecystitis 
Chronic kidney disease stage 5 
Chronic myelomonocytic leukaemia 
Crohn's disease of large intestine 
Crohn's disease of small intestine 
Crohn's disease unspecified 
Cutan abs furuncle carbuncle other sites 
Cutan abscess furuncle and carbuncle 
trunk 
Diffuse large B-cell lymphoma 
Diverticlr dis large intest w perf and abs 
Diverticlr dis lrg intest w/o perf and abs 
Enterostomy malfunction, NEC 
Fever unspecified 
Follicular lymphoma grade II 
Gastric ulcer acute with haemorrhage 
Gastro-oesophageal laceration-haem syndr 
Gastrointestinal haemorrhage NOS 
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Graft-versus-host reaction or disease 
Haemoptysis 
Heart transplant rejection 
Hyperosmolality and hypernatraemia 
Infect and infl reaction dt knee prosth 
Infection foll infus transfn thrpc injct 
Infection foll infus transfn thrpc injct 
Infection following a procedure NEC 
Infection of below knee amputation stump 
Infectn inf dt oth int prosth dev impl 
Infectn intervertebral disc lumbosacral 
Influenza w pneum ident seasonal virus 
Influenza w pneum ident seasonal virus 
Kidney transplant failure 
Kidney transplant rejection 
Left sided colitis 
Local infectn inf dt central ven cath 
Localized enlarged lymph nodes 
Malgt neoplm ovary u/bilateral not spec 
Malignant lesion oesophagus unspecified 
Malignant neoplasm of anal canal 
Malignant neoplasm of appendix 
Malignant neoplasm of bladder unspec 
Malignant neoplasm of cardia 
Malignant neoplasm of endometrium 
Malignant neoplasm of ileum 
Malignant neoplasm of lower limb 
Malignant neoplasm of prostate 
Malignant neoplasm rectosigmoid junction 
Mantle cell lymphoma 
Meningitis unspecified 
Multiple myeloma 
Myelodysplastic syndrome unspecified 
Neutropenia 
Oth and unsp gastroe and colitis inf origin 
Other acute renal failure 
Other agranulocytosis 
Other bacterial infections of site NOS 
Other Crohn's disease 
Other spec sepsis 
Pneumocystosis 
Pyonephrosis 
Rotaviral enteritis 
Sec malgt neoplasm bone and bone 
marrow 
Sec malgt neoplm brain cerebral meninges 
Sec malgt neoplm lrg intestine and rectum 
Secondary malignant neoplasm right lung 
Sepsis due to anaerobes 
Sepsis due to E. coli 
Sepsis due to enterococcus 
Sepsis unspec 
Staphylococcal infection unspec site 
Streptococcal sepsis unspecified 
Toxic gastroenteritis and colitis 
Tubulo-interstitial nephritis NOS 
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Type 1 DM w establish adv renal disease 
Type 1 DM with keto & lactic acidosis 
Type 1 DM with ketoacidosis 
Type 2 DM w establish adv renal disease 
Type 2 DM w foot ulcer w gangrene 
Type 2 DM w periph angiopathy gangr 
Type 2 DM with ketoacidosis 
Umbilical hernia with obs w/o gangrene 
Unspec infectn inf dt central ven cath 
Urinary tract infection site not spec 
Viral carditis 
Viral intestinal infection unspecified 
Zoster encephalitis 
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4.0 Common Discussion 

4.1 Context and limitations 

Despite the high prevalence of C. difficile and progress in diagnostics, the ability to accurately 

diagnose clinical CDI remains allusive. Given the prevalence of qPCR diagnostics for CDI 

diagnostics, this is not the first work to evaluate Ct value correlation to disease or clinical 

variables. Previous works, relying heavily on ROC analysis, sought for single Ct value cut-point 

to distinguish clinical disease from colonization and correlate with clinical variables and toxin 

load. Cycle threshold was critically established to be correlated with free toxin levels as toxin is 

a component necessary for CDI pathophysiology and indicative of true disease [1-4]. Studies 

also examined Ct direct correlation to diagnosis of CDI [2, 3]. This work adds significant value 

to the collective knowledge of CDI diagnostics in several ways. This is the first application of 

LCA to CDI diagnostics and helps to elucidates why previous attempts to make a predictive 

model using Ct values have failed. It is a move away from an overly simplistic model of a single 

Ct cut point and takes into the consideration the more complex biology and clinical presentation 

involved with CDI. It identified probability zones (CDI likely, CDI equivocal, and CDI unlikely) 

using latent class analyses and attempts to better define the limits of Ct based models’ ability to 

predict true disease.  

This work continues to probe these questions deeper with an investigation into other clinical 

variables as indicators of severe disease and their relationship with Ct. This works adds to the 

knowledge that correlations of clinical variables to Ct values is not straightforward. Some papers 

such as Reigadas et at did find correlations with variables indicative or poor outcome [5]. 

However, other published works such as Origuen et al or Bosch et al, support contradicting 
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evidence that Ct values do not add value to predictive models for severity variables [6, 17]. This 

works adds evidence that these correlations are not clearly defined. More investigations should 

be made to determine when these correlations with Ct values do and do not exist and when this 

can provide useful information to inform clinical practices.   

The conclusion that the Ct model were not a useful predictor of severity metrics was not entirely 

surprising due to the contradicting literature and this leads to further questions. The analysis was 

conducted on a broad cross section of inpatients with CDI and suspected CDI. The models were 

unable to predict indicators of CDI severity such as WBC, albumin, CRP possibly due to these 

variables being affected by a plethora of other clinical conditions. This caused a huge variance 

within the patient population for these variables. Future studies should further investigate not 

only different subsets of patients, and different permutations of predictor variables, but also 

investigate other potential predictors beyond Ct that are commonly employed in hospital. 

Although this work found a negative result, it adds to the collective knowledge and foundation 

surrounding Ct value-based predictions for CDI and by no means discredits the use of Ct value 

based predictions to determine the probability of disease. It helps to define the limitation of the 

model and where Ct values provide value and where more work is needed. 

There is an additional avenue to build further upon this work. The models and statistical 

investigations of CDI in this thesis are limited by the selected input variables. As the collective 

knowledge around CDI diagnostics continues to grow, these models can be updated to 

potentially decrease the breadth of area that is defined as an equivocal Ct zone with a hope to 

provide more detailed information to clinicians. In the latent class analyses, the presence of an 

equivocal zone does not discredit the potential for clinically relevant implementation. It 
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alternatively adds value by more clearly defining the “known unknown” of the diagnostic test 

and Ct associated correlations. Not clearly defining this zone of uncertainty is one of the 

shortcomings of previous attempts at Ct cut points for diagnostics that this work addresses.  

LCA has seen increasing application in medical research in recent years and was chosen as the 

method for the first study for many of the same reasons driving its growing popularity, the ability 

to analyze complex data with a lack of clear gold standard and the more readily available 

computations power of home computers seen over the past several decades [7, 8]. CDI lacks a 

clear GS test or clinical diagnostic strategy to accurately predict true disease [8-10]. LCA’s 

ability to integrate multiple gold standards into a single probability model is advantageous in 

predicting a “true” diagnosis [11]. LCA methods are useful in predicting constructs that we 

cannot directly measure, or latent classes [10]. For instance, in the case of CDI, we can measure 

a patient’s symptoms, if they are colonized by the C. difficile bacilli, or if there is toxin present, 

but we cannot directly measure “CDI disease”.  LCA additionally and correctly assumes that 

these observed variables (the model inputs) are imperfect predictors of CDI status (the latent 

class). This is not the case in more conventional analyses where a gold standard is assumed to be 

a perfect predictor of disease and only one comparison can occur in each model. Much of 

previous work described on the correlations of Ct values to CDI employ some form of ROC or 

gold standard analysis. These overly simplified method relying on a gold standard, do not 

incorporate the complexity of diagnostics, and provide results that are not reflective of the 

complexity of the disease process. As a result, disease prediction based on ROC curves or other 

methods have yet to yield results that can be used in a clinical setting. 
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One potential weakness of the LCA model is the necessity to assume a state of conditional 

independence among the observed variables. The assumption is that the observed variables are 

conditionally independent of the presence or absence of CDI, or to rephrase that the results of 

one variable or test that contributes to the LCA is independent and gives no information 

regarding the other tests or variables [8, 9]. This is necessity for LCA but often fails in practice 

as correlations between tests do exist as they are testing for metrics of the same disease on the 

same patient. Additionally, the amount of a substance or organism present will give non 

consistence false negatives when quantities near the LOD of a particular test, i.e., more false-

negative values with lower amounts of target [8]. For example, low levels of C. difficile toxin in 

a patient’s stool will give more false negatives than a patient with very high levels of toxin. This 

does not invalidate the models but contributes to their imperfect predictive ability and 

acknowledges a necessary assumption. LCA is a proven statistical tool that when used properly 

can provide new information and insight into the value and nuance of a diagnostic tests [10].  

 

4.2 Clinical application 

With the current state of this work there is an ability to inform clinical application of Ct based 

diagnostics for CDI. The clinical diagnosis of CDI using the described LCA model and 

associated Ct value cut-offs are clearly not a perfect representation of disease status. The model 

can however allow clinicians to reduce overdiagnosis of CDI by titrating qPCR to better predict 

“true” CDI. This not only can positively affect the health system, but accurate diagnosis is the 

best thing for patients.  
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Clinical implementation would focus on the language of the test’s diagnostic result. Instead of a 

dichotomous qPCR result of positive or negative, a four-tiered result might dramatically affect 

clinical practice. The language around the results would need to be tested and refined further but 

an example of result options are as follows: 1) CDI likely recommend CDI treatment, 2) CDI 

possible rule out other causes, 3) CDI unlikely, 4) Negative. CDI likely patients would have a 

greater than 90% possibility of disease and laboratory results should encourage treatment. For 

CDI possible patients, language should encourage the clinician to use clinical judgement to 

assess treatment options. For CDI unlikely patients with a probability of disease of less than 

10%, language should discourage treatment but leave open the possibility to be overruled by 

clinical judgement. Patients negative by qPCR, NAATs, or other tests with a high negative 

predictive ability should generally not be considered CDI positive, treated or isolated. The 

intention of this implementation would be to titrate down over treatment of CDI. Future 

investigation should examine how strong of language, or where to place probabilities of disease 

cut-offs to titrate down treatment of C. difficile colonization while introducing minimal instances 

of withholding treatment when it is clinically required. This further investigation would need to 

balance both the economic and clinical costs of false negative and false positive results and their 

effects on patients. If an imperfect system with language that introduced some doubt into the 

clinician mind to encourage deeper clinical diagnosis of patients were introduced, there is 

potential for an immediate reduction in overtreatment of colonized patients with limited risk to 

patient wellbeing. It has been demonstrated that up to half of patients confirmed by molecular 

testing as CDI positive do not experience adverse effects without antibiotic treatment [12].  
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4.3 Impact 

A decrease in overdiagnosis, if implemented broadly, could have far reaching impact, increase 

targeted treatments, and decrease the overuse of antibiotics used in mistreatment of CDI. The 

health system here in Calgary uses a two-step algorithm to screen suspected CDI patients but 

confirms all diagnosis with qPCR. The Ct model corresponding to the Calgary implemented 

GeneXpert C. difficile (Cepheid, Sunnyvale, CA) qPCR, has Ct zones delineated at Ct 24.00 and 

33.61. These Ct values separate the three zones: CDI likely (>90% probability of CDI), CDI 

equivocal (<90% and >10%), CDI unlikely (<10%). The distribution of patients during the 

second study (Chapter 2) consisted of 12.64% of Ct values in the CDI likely zone, 66.5% of Ct 

values in the equivocal zone, and 20.9% of Ct values in the CDI unlikely zone. These results 

suggest that qPCR is potentially over diagnosing patients in excess of 20.9%. This estimate 

would grow if a reduction of diagnosis occurred for patients with Ct values falling in the 

equivocal zone; many patients in this zone will not have CDI. Evaluations of total costs 

attributed to CDI directly related expenses range from $2,992 to $29,000 [13]. In a retrospective 

cohort study by Pereira et al in Ontario they found a median cost attributed to CDI was 

approximately $11,917 [14]. At Foothills Medical Center in Calgary, Alberta there is currently 

an average of 373 qPCR confirmed positive CDI inpatients annually. If the diagnostic model of 

this thesis were to be implemented at FMC alone, and we consider that >20.9% of CDI cases 

could be false positives, using the Ontario CDI cost estimate, this would result in a cost saving of 

over $929,000 annually. These savings would occur by simply changing how CDI diagnostics 

are reported with no additional laboratory infrastructure changes and using information already 

produced at the clinical laboratory (APL). The dramatic savings observed at a single hospital 

would rapidly increase if expanded to a larger health system. In the United States more than 
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300,000 annual hospitalizations involve a CDI diagnosis, costing the health system up to $4.9 

billion [12]. Implementation of the diagnostics model introduced in this work would result in an 

estimated savings of over $747 million (assuming continued widespread reliance on qPCR 

diagnostics, etc.). Overdiagnosis of CDI is not a new concept and this thesis both adds to the 

argument against CDI overdiagnosis and provides a solution for improving diagnostic accuracy 

with the current infrastructure [12]. In addition to cost savings, more targeted diagnostics will 

lead to more targeted care for patients and improved antibiotic stewardship.  

 

4.4 Conclusion 

The aim of this thesis was to develop methods to improve CDI diagnostics in health systems with 

easily implementable techniques. This thesis describes a method to better distinguish clinical 

CDI disease using existing and implemented diagnostic technology. With the lack of a CDI gold 

standard, it is crucial to continue to hone and identify implementable and affordable solutions to 

detect true CDI. By using existing diagnostic pipelines and changing how tests are reported, 

change can be enacted much quicker with no need for additional monetary investment in 

equipment or physical infrastructure. The implementable components of this work could be 

combined with additional administrative strategies to improve CDI diagnosis. CDI is a clinical 

diagnosis and should be treated as such; clinicians need to always taking into consideration pre-

test probability of disease prior to ordering diagnostic testing or initiating isolation or treatment 

[15]. At a system level, protocols implementation is necessary to prevent incorrectly ordered 

laboratory diagnostics to compliment any advances in understanding or more sophisticated 
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diagnostic strategies [16]. These kinds of multidisciplinary approaches could offer economical 

and highly effective approaches to improving diagnostics of CDI and other pathogens  

The methods used in this work are not limited to CDI diagnostics and can be applied broadly to 

evaluate other opportunistic pathogens where qPCR diagnostics are used. If Ct probabilities were 

applied clinically for opportunistic pathogens, instead of simple dichotomous positive or 

negative results, there is a massive potential to decrease overdiagnosis/misdiagnosis leading to 

better antibiotic stewardship, lower healthcare costs, and most importantly improved patient 

outcomes and care.  
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