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Abstract: 
 
Brain function and structure change significantly during the toddler and preschool 

years. However, most studies focus on older or younger children, so the specific 

nature of these changes is unclear. In the present study, we analyzed 77 functional 

magnetic resonance imaging datasets from 44 children aged 2-6 years. We 

extracted measures of both local (amplitude of low frequency fluctuation and 

regional homogeneity) and global (eigenvector centrality mapping) activity and 

connectivity, and examined their relationships with age using robust linear 

correlation analysis and strict control for head motion. Brain areas within the 

default mode network and the frontoparietal network, such as the middle frontal 

gyrus, the inferior parietal lobule and the posterior cingulate cortex, showed 

increases in local and global functional features with age. Several brain areas such 

as the superior parietal lobule and superior temporal gyrus presented opposite 

development trajectories of local and global functional features, suggesting a 

shifting connectivity framework in early childhood. This development of 

functional connectivity in early childhood likely underlies major advances in 

cognitive abilities, including language and development of theory of mind. These 

findings provide important insight into the development patterns of brain function 

during the preschool years, and lay the foundation for future studies of altered 

brain development in young children with brain disorders or injury. 
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1. Introduction: 

 

Early childhood is a period during which there is significant development in 

cognitive functions, behavior, social abilities, and emotional maturity. Many 

neurodevelopmental disorders are first recognized and diagnosed during this time, 

and investigation of human brain development can provide insight into changes in 

cognitive functions, behavior, and emotional development (Brown and Jernigan, 

2012). Neurodevelopmental disorders are associated with functional and structural 

brain alterations in preschool children (Dinstein et al., 2011; Mahone et al., 2011).  

Developing a better understanding of typical functional brain maturation during 

this time is critical to fully understanding functional brain changes across the 

human lifespan (Zuo et al., 2017), and could inform early treatment and 

intervention approaches for brain disorders.  

 

Magnetic resonance imaging (MRI) techniques have allowed us to develop a better 

understanding of typical functional and structural brain changes from late 

childhood to adulthood (Fjell et al., 2009; Lebel et al., 2008; Lebel and Beaulieu, 

2011). Throughout early life, the brain undergoes structural changes; white matter 

volume, cortical thickness and myelination increase with age (Brain Development 

Cooperative Group, 2012; Brown and Jernigan, 2012; Deoni et al., 2011), and 
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likely underlie changes in functional brain network development. Changes in the 

ratio of blood–oxygen-level-dependent (BOLD) signal to cerebral blood flow that 

represent neurovascular coupling in early childhood (Schmithorst et al., 2015) are 

likely related to brain changes observed in fMRI. Previous studies have shown that 

brain functional networks, such as the default mode network (DMN), follow a 

local-to-global pattern of development: younger children show a more focused, 

regional pattern of connections than adults who have a larger, more distributed 

network of connections, and this might be due to synaptic growth and myelination 

during the early years (Fair et al., 2009, 2008; Lebel et al., 2008; Power et al., 

2010; Sowell et al., 2002; Supekar et al., 2010; Uddin, 2010; Vogel et al., 2010). 

Key functional networks associated with language-related brain areas are evident 

in infants, and show significant maturation during the first two years of life (Cao et 

al., 2016; Fransson et al., 2007; Gao, 2009; Gao et al., 2016, 2015; Lin et al., 2008; 

Manning et al., 2013; Smyser et al., 2010). However, functional brain development 

in the preschool period (~2-6 years) is very understudied due to the practical 

difficulties associated with MRI scanning in this population. A few studies have 

used language perception tasks during sleep or waking to investigate brain function 

in preschoolers (Hutton et al., 2015; Redcay et al., 2008), and one used resting 

state functional MRI (rs-fMRI) to look at longitudinal development of the language 

networks from 5-6 years (Xiao et al., 2015). However, the trajectories of healthy 
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brain development associated with rs-fMRI measures during preschool remain 

poorly understood. Improving our understanding of functional brain development 

is critical for improving early identification of neurodevelopmental disorders 

during this period.  

 

In the present study, we examine the development of brain function in young 

children aged 2 to 6 years using passive viewing fMRI, which is similar to rs-fMRI. 

To our knowledge, this is the youngest awake population studied with fMRI. We 

used data-driven approaches that measure the local activity and global connectivity 

of brain function, including fractional and whole amplitude of low frequency 

fluctuations (ALFF/fALFF) (Yu-Feng et al., 2007a; Zou et al., 2008), regional 

homogeneity (ReHo) (Zang et al., 2004), and eigenvector centrality mapping 

(ECM) (Lohmann et al., 2010; Zuo et al., 2012). The test-retest reliability of these 

metrics is high, and accuracy and reproducibility are improved with strict head 

motion control, and the use of z-scores (Yan et al., 2013; Zuo et al., 2013, 2012, 

2010a; Zuo and Xing, 2014). These approaches provide valuable information to 

assist us in understanding brain function, and have been widely used in studies of 

children with developmental disorders, such as attention deficit hyperactivity 

disorder (ADHD) (Cao et al., 2006; Yu-Feng et al., 2007b; Zhu et al., 2008), 

epilepsy (Mankinena et al., 2011) and autism spectrum disorder (ASD) (Di 
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Martino et al., 2013; Paakki et al., 2010). Previous studies have also shown that 

these metrics change with age in older children and adults (Biswal et al., 2009; 

Lopez-Larson et al., 2011; Zuo et al., 2012). Our primary aim was to characterize 

relationships between age and fMRI metrics in preschool children, ultimately to 

provide information on typical functional brain development in this young 

population. Considering the potential for severe head motion of preschool children 

during scanning, several sophisticated motion correction and exclusion criteria 

based on previous studies were employed in the current study. 

 

2. Materials & Methods: 

 

2.1 Participants 

 

A total of 63 healthy children were recruited from Calgary to participate in this 

imaging study. Children were invited to return for subsequent scans approximately 

every six months, and provided a total of 152 fMRI datasets. Scans with either 

excessive head motion (see 2.3.2 Head motion regression), or during which 

children fell asleep were excluded, and a total of 77 datasets from 44 healthy 

children were included in the present study. These 44 children were aged 2.5-5.8 

(3.98 ± 0.72) years at their first scan, and included 17 females and 27 males, with 
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3/36/5 left-handed/right-handed/undetermined handedness. Most (n = 37) were 

Caucasian, with the other 7 being of mixed race. 23 children successfully 

completed one scan, 14 children completed two scans, 3 children completed three 

scans, 3 children had four scans, and 1 child completed five scans. The average age 

across all 77 scans was 4.33 ± 0.78 years; average time between scans was 0.8 ± 

0.4 years. Fig.1a shows the age distribution of subjects included in the present 

study; across all scans, age was normally distributed. All participants were free of 

diagnosed developmental disorders. Informed consent from a parent was obtained 

before scanning. The study was approved by the conjoint health research ethics 

board at the University of Calgary. 

 

2.2 MRI parameters 

 

All neuroimaging data were collected at the Alberta Children’s Hospital using a 

GE 3T MR750w (General Electric, Waukesha, WI) equipped with a 32-channel 

head-coil. Children were awake and watching self-selected movies during the 

whole MRI scan session. T1-weighted images were acquired with an FSPGR 

BRAVO sequence, flip angle = 12º, 210 slices, TR = 8.23 ms, TE = 3.76 ms, voxel 

size = 0.9 × 0.9 × 0.9 mm, matrix size = 512 × 512, inversion time = 540 ms. 

Passive viewing fMRI data were acquired with a gradient-echo echo-planar 
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imaging (EPI) sequence, TR = 2 s, TE = 30 ms, flip angle = 60º, 36 slices, voxel 

size = 3.59 × 3.59 × 3.6 mm, matrix size = 64 × 64, 250 volumes.  

 

2.3 Data preprocessing and processing 

 

2.3.1 Data preprocessing 

 

For each participant, the T1 image was skull stripped and segmented into grey 

matter (GM), white matter (WM), and cerebrospinal fluid (CSF) structures to 

create individual masks. T1 images were registered to a pediatric brain template 

(ages 33-47 months) in Montreal Neurological Institute (MNI) standard space 

(Fonov et al., 2011). The first 10 volumes of the rs-fMRI data were removed to 

allow for MR signal stabilization. The data were pre-processed using slice timing 

correction, head motion correction, co-registration to T1 image, and linear de-

trending. The relative root-mean-square frame-wise displacement (FD) and its 

mean were calculated (Jenkinson et al., 2002). Then the pre-processed fMRI 

signals were put into the head motion regression analysis. 

 

2.3.2 Head motion regression 
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Head motion regression was performed according to established methods (Ciric et 

al., 2016; Power et al., 2014; Satterthwaite et al., 2013). For each dataset, spike 

volumes were identified by high relative FD (> 0.25 mm) and a spike volumes 

matrix was created. A 36 parameter model was created from the averaged signals 

from the individual whole brain, CSF mask, WM mask, the 6 head motion 

parameters, their temporal derivatives and quadratic term signals. Then the 36 

parameters combined with the spike matrix were regressed out of the pre-processed 

fMRI signals. Datasets with high mean FD (>0.25 mm) or spike volumes long 

enough to make the signals shorter than 5 minutes were excluded. Finally, the 

processed fMRI signals were band-pass filtered (0.009 to 0.08Hz) and transformed 

to MNI standard space (Satterthwaite et al., 2013) using a pediatric template 

(Fonov et al., 2011). Head motion (mean FD) was not significantly correlated with 

age (Fig 1b). Slice timing, head motion correction, regression of the nuisance 

signals, linear trend removal and band-pass filtering were done using AFNI version 

AFNI_16.2.12 (Cox, 1996). T1 image segmentation, head motion outlier detection, 

co-registration, and spatial normalization were done in FSL (Jenkinson et al., 

2012). 

 

2.3.3 Correlation between functional metrics and age 
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Data analysis procedures are shown in Figure 2. A consensus whole brain mask 

was created across all participants. Then ReHo, fALFF, ALFF were calculated for 

each voxel within this mask using the REST toolbox (Song et al., 2011; Yan et al., 

2013; Zuo et al., 2013) and the EC of each voxel was calculated by the fastECM 

toolbox (Wink et al., 2012). The REST, fast ECM and BrainNet Viewer toolboxes 

are MATLAB-based (The MathWorks, Inc., Natick, Massachusetts, United States). 

All functional metric maps were converted to z-maps by subtracting the global 

mean and dividing by the standard deviation within the whole brain mask (Zuo et 

al., 2012). This standardized step is now a widely used procedure in analysis of 

these functional metrics. It can increase the comparability and reliability of such 

whole brain voxel-wise metrics across participants and does not affect the 

topography of centrality measures (Buckner et al., 2009; Zuo et al., 2010b). All z-

maps were spatially smoothed with a 4mm full width at half maximum (FWHM) 

kernel in FSL. A GM mask (included 21292 voxels) was created with the 

combination of the consensus whole brain mask and the GM structures of the 

pediatric T1 image template and applied to all functional metrics z-maps for the 

further analysis. 

 

Before linear correlation analysis, a constant column, sex, handedness, mean FD, 

and longitudinal information were combined to form a covariates matrix. The 



 12 

longitudinal information is a binary 77 by 21 matrix with one column for each 

participant with longitudinal data. In each column, multiple scans for the same 

individual are indicated with a 1 and all other scans have a 0.  This allows the 

shared variance across multiple scans to be statistically accounted for. This matrix 

was regressed out of both age and the functional metrics across the populations 

before linear correlation analysis. A robust correlation paradigm was implemented 

to test relationships between functional metrics (i.e., ALFF, fALFF, ReHo and EC 

maps) and age (Cyril R. Pernet, 2013). This correlation paradigm includes 

bootstrapping analysis (600 ~ 1000 permutations of the dataset for each voxel), a 

test for variance homogeneity (Wilcox and Muska, 2001), and outlier detection, 

followed by selecting the most appropriate correlation method (Rousseeuw, 1984; 

Rousseeuw and van Driessen, 1999; Verboven and Hubert, 2005; Wilcox, 2004, 

1994). For each voxel within the GM mask, the robust correlation paradigm was 

performed between each functional metric (separately) and age across all datasets 

(Fig. 2). Results were determined to be statistically significant (p<0.05) based on 

the confidence interval from the bootstrapping analysis as indicated in Fig 3.  

 

To further verify the results of the development changes, the 21 participants who 

had longitudinal data were tested for between-scan differences in each functional 

metric using a paired t-statistic model with sex and handedness as covariates. For 
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participants who had more than two visits, a best-fit linear regression line was 

generated across all their scans and the values on the best-fit line at the individual’s 

youngest and oldest ages were extracted for the paired t-tests (Lebel and Beaulieu, 

2011). Based on the effect sizes observed in the first GLM analysis (r2=0.12-0.13), 

we had 85-89% power to detect effects in the longitudinal paired t-test analysis. 

Only voxels that met the same criteria (increase or decrease with age) for both 

analyses (i.e., GLM across all data at permutation-test p <0.05, plus un-thresholded 

paired t-tests for longitudinal data) were retained and considered to have 

significant age-related changes. Finally, the combination map for each functional 

metric was corrected for multiple comparisons to p<0.05 (voxel-wise p<0.05, 

cluster size > 2619 mm3) by 3dClustSim (Fig. 1) with the averaged estimated 

smoothing parameters by 3dFWHMx in AFNI (version: AFNI_16.2.12, Cox 

1996). The aim of the cluster-level correction was removal of small regions in the 

statistical maps likely to be spurious findings. Therefore, the final clusters reported 

survived both the permutation test during correlation, and the cluster-level 

correction to remove small spurious findings. All results are displayed by BrainNet 

Viewer (M. Xia et al., 2013). For each scatter plot, the region of interest (ROI) on 

the conjunction map was selected and the robust correlation analysis was 

performed.  
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To assess overlap of the results, conjunction maps were created across the 

corrected maps. From selected ROIs, functional metrics were extracted and 

averaged across participants of the same age (in 1-year bins) to examine changes 

across the age range.  

 

 

Figure 1. Age was normally distributed in the current dataset (a), and not significantly correlated with head motion 

(b). This shows the result of correlation analysis between mean FD and age, controlling for sex, handedness and 

longitudinal information. The bold red line is the best-fit line. The blue points are the dataset and the hollow blue 

points were the outliers. CI is the confidence interval of the bootstrap tests. 
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Figure 2: Data analysis procedures. Two parallel analyses were run after pre-processing the rs-fMRI data and 

calculating the functional metrics (ALFF/fALFF/ReHo/ECM). All subjects’ data were combined and run through a 

robust correlation with age, using outlier detection and the most appropriate correlation technique. Additionally, data 

from participants with multiple scans were run through paired t-tests. Voxels that met significance thresholds 

(p<0.05) for both analyses were retained and deemed to have age-related changes. Nuni= number of univariate 

outliers, Nbi = number of bivariate outliers. 

 
3. Results: 
 
 
3.1 Outlier detection  
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In the robust correlation analysis, the dataset at each voxel was examined for 

outliers and homogeneity of variance. Table 2 shows the results of outlier detection 

and heteroscedasticity for each metric in the robust correlation analysis. Most data 

were heteroscedastic, and thus analyzed using Spearman correlations.  

 

Table 2: The average percentage of voxels for each metric identified as outliers, and identified as having 

heterogeneous variance across participants. 

 
Metrics Outliers (%) Heteroscedasticity (%) 
ALFF 12.13 87.15 

fALFF 12.30 62.00 

ReHo 11.92 60.37 

ECM 11.09 30.02 

 
 
 
3.2 Age-related changes in functional metrics  

 

For ALFF analysis, significant positive correlations with age were found in the left 

middle frontal lobe, bilateral inferior parietal lobe and bilateral precuneus; negative 

correlations were found in the right middle temporal lobe, right sensorimotor 

cortex, and bilateral medial temporal regions (Fig. 3). Only a small area of the right 

superior parietal lobe had significant correlations between fALFF and age (see 

Inline Supplementary Fig.1).  
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ReHo was positively correlated with age in the left middle frontal gyrus, left 

parietal lobe, left precuneus, bilateral middle cingulate cortex and bilateral 

dorsolateral frontal areas; negative correlations were found in the left middle 

temporal lobe and medial prefrontal cortex (Fig. 3). EC had significant positive 

correlations with age in bilateral temporal-parietal areas, bilateral cingulate cortex, 

right prefrontal cortex, and the right superior temporal gyrus; negative correlations 

were found in the bilateral superior partietal lobules and inferior temporal gyrus 

(Fig. 3).  

 

 

 

Figure 3, Age was significantly correlated with functional metrics in multiple brain regions, as shown here for a) 

ALFF, b) ReHo and c) ECM. Warm colors indicate positive correlations and cold colors indicate negative 

correlations. For key brain regions (d, e, f), scatter plots depict individual values and trend lines (black); multiple 

scans from the same individual are connected with lines. CI means confidence interval of the bootstrap tests. The 
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prefix “r-” of the x and y axis means the values were residual after the covariates regression. The hollow blue circles 

are the identified outliers. Abbreviations: MFG: medial frontal gyrus, IPL: inferior parietal lobule, PCUN: precuneus, 

STG: superior temporal gyrus, MCC: middle cingulate cortex, FG: fusiform gyrus, SPL: superior parietal lobule. 

 

3.3 Overlap of results   

 

 

 

Figure 4, Conjunction maps between ALFF, ReHo and ECM. (a) shows convervent trajectories where local and 

global metrics both increased or decreased; b) shows divergent trajectories where local and global measures had 

opposite trends. Development trajectories of ALFF (red line), ReHo (blue line) and EC (green line) are shown for 

selected representative regions. The functional metrics were averaged across participants of the same age after 

correction for the covariates (i.e., sex, handedness, mean FD and longitudinal matrix); error bars indicate standard 

error. Only one dataset was acquired older than 6 years, so the 6-year value does not have an error bar. PM: putamen. 
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A conjunction analysis was performed across ALFF, ReHo and ECM results to 

identify regions where multiple metrics correlated with age (Fig. 4). Frontal, 

parietal, superior temporal, and cingulate areas showed convergent trajectories. 

Both local activity and connectivity (i.e., ALFF and ReHo) of the left MFG, left 

IPL and precuneus increased with age, while these measures in the right STG 

decreased with age. Both local activity and global connectivity were positively 

correlated with age in the bilateral IPL and PCUN, and negatively correlated with 

age in the left FG. Both local and global connectivity was positively correlated 

with age in the left IPL, MCC and right PM.  

 

Three areas showed divergent trajectories. In the superior parietal lobe and 

fusiform gyrus, ReHo increased while EC decreased with age. The left STG had 

increasing EC and decreasing ReHo with age. All of these regions had significant 

correlations with age based on the bootstrap testing (Fig. 4, the scatter plots).  

 

4. Discussion: 

 

The present study used robust correlations and longitudinal data to examine 

relationships between fMRI metrics and age in preschool children. We detect 

highly robust age-related changes in functional metrics during early childhood that 
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suggest increased local and global connectivity in frontal, parietal, and cingulate 

areas. The superior parietal and fusiform gyrus showed a shift to more local 

connectivity with age, while the superior temporal area had a local-to-global shift. 

Importantly, this study provides detailed information about functional brain 

development during the preschool years.  

 

4.1 Brain development in preschool children  

 

ALFF and ReHo measure voxel-wise local signal intensity and concordance, and 

have been used to characterize changes in local connectivity across different 

conditions within healthy populations (Biswal et al., 2009; Lopez-Larson et al., 

2011; Yang et al., 2007; Yu-Feng et al., 2007b; Zang et al., 2004). Here, we find 

that these measures increase with age from 2-6 years in the middle frontal gyrus, 

inferior parietal lobe, and precuneus, which are all nodes of the frontoparietal 

network (FPN) (Damoiseaux et al., 2006; Scolari et al., 2015; Seeley et al., 2007). 

The FPN is involved in executive function, attention control, and interaction 

between functional networks (Cole et al., 2014; Ptak, 2012; Seeley et al., 2007; 

Vincent et al., 2008). Previous studies have shown that within-network 

connectivity of the FPN in stronger in adults than children 7-9 years old (Fair et al., 

2007), and increases with age from 10 and 13 years (Sherman et al., 2014). Our 
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findings of increased ReHo and ALFF with age in FPN areas during early 

childhood (2-6 years) suggest that local connectivity may develop early in this 

network, followed by strengthening of longer range within-network connections 

during late childhood. FPN connectivity is often reduced in neurodevelopmental 

disorders such as ADHD and ASD (Bos et al., 2014; H.-Y. Lin et al., 2015; 

Minshew and Keller, 2010; Silk et al., 2008), suggesting that children with these 

disorders may display altered or delayed development of this network.  

 

Several nodes of the DMN, especially the left inferior parietal lobe, demonstrate 

increases of both local connectivity (ReHo and ALFF) and global connectivity 

(EC). The DMN is one of the early emerging functional networks; it develops and 

matures through the first year of life (Cao et al., 2016; Fransson et al., 2007; Gao, 

2009; Gao et al., 2016). Changes in the DMN have also been reported later, with 

DMN connectivity higher in adults than children (Fair et al., 2008). In support of 

this, our results suggest that DMN nodes increase both local and global functional 

features during the preschool years. The DMN is involved in functions such as 

self-referential mental activity (Gusnard et al., 2001) and theory of mind (Mars et 

al., 2012), which develop during the preschool years (Brown and Jernigan, 2012; 

Frith and Frith, 2003). Thus, DMN maturation during preschool years likely 

underlies the development of these functions.  
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Most of the cingulate cortex had positive correlations between age and EC, 

suggesting increased global connectivity overall. The posterior cingulate cortex is 

part of the default mode network (Fox et al., 2005; Fransson, 2005; Fransson and 

Marrelec, 2008; Greicius et al., 2003; Raichle et al., 2001; Raichle and Snyder, 

2007), while the middle and anterior cingulate cortex belong to the fronto-parietal 

network. Functional connectivity of the anterior cingulate cortex shifts from local 

to distant brain areas from childhood to adulthood (Kelly et al., 2009). Thus, the 

increasing global connectivity observed here across the cingulate supports the idea 

that strengthening of these networks is occurring across childhood. 

 

The development of functional brain features might be related to the structural 

changes in early life. Both gray and white matter mature significantly during early 

childhood in the preschool years, and display changes in cortical thickness and 

brain volume (Brain Development Cooperative Group, 2012; Brown and Jernigan, 

2012), increases of white matter myelination (Deoni et al., 2012, 2011; Leppert et 

al., 2009), and increases in white matter volume and structural connectivity 

(Hagmann et al., 2010; Krogsrud et al., 2016; Lebel and Beaulieu, 2011; 

Mukherjee et al., 2001). In adults, several studies have linked age-related 

functional connectivity changes in the DMN to structural changes in the underlying 
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white matter tracts (e.g., the cingulum) (Andrews-Hanna et al., 2007; Khalsa et al., 

2014; Wang et al., 2015). So the increased functional connectivity observed here 

could be supported by major development of underlying white matter connections 

during the same time period. The link between structural and functional brain 

changes will be important to investigate in future studies. 

 

The superior temporal gyrus (STG) had decreasing local connectivity (ReHo or 

ALFF) and increasing global connectivity (EC), suggesting a shift from a local-to-

global arrangement, which may occur as the networks become more integrated 

across brain regions and less focused in certain areas. These findings are consistent 

with a previous study showing changes in degree centrality in the same area 

between age 5 and 6 years (Xiao et al., 2015).  Given that the STG is associated 

with language function, our findings suggest that increasing global connectivity 

may be related to the significant language development that occurs in young 

children. 

 

The superior parietal area and inferior temporal region (fusiform gyrus) showed the 

opposite trend – a shift from a more global arrangement to being more locally 

connected. This shift in connectivity may be related to ongoing maturation of 

cognitive functions such as working memory and facial recognition, which have 
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been related to connectivity in the superior parietal and fusiform areas, 

respectively, in older populations (Klingberg et al., 2002; Peelen et al., 2009). 

Whether those brain areas continue to show similar development patterns in the 

later years is a question for further studies.  

 

Fewer results were found for fALFF than ALFF. Only one large cluster showed 

significant correlations between fALFF and age, located in the right parietal lobe. 

fALFF is considered an improved version of ALFF, and is more robust against 

physiological artifacts than ALFF (Zou et al., 2008). However, fALFF has lower 

test-retest reliability than ALFF (Zuo et al., 2010a; Zuo and Xing, 2014), and thus 

the robust statistics used here may miss regions that a less stringent test would find 

significant. Alternatively, the ALFF analysis may be influenced by physiological 

changes during the preschool years (Feldman, 2009; Zuo et al., 2010a). However, 

we implemented strict noise and motion control procedures to increase the data 

quality (Ciric et al., 2016), and the ALFF results overlap with the ReHo results in 

several regions, suggesting that there is development of regional brain activity 

during the preschool years. More studies are needed to confirm the nature of ALFF 

and fALFF changes during early childhood.  
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4.2 The robust linear correlation analysis against age 

 

The functional metrics in the present study have been widely implemented to 

detect linear correlations with age (Biswal et al., 2009; Lopez-Larson et al., 2011; 

Premi et al., 2014; Zuo et al., 2012), behavioral measurements (Kwak et al., 2012; 

Ren et al., 2015; Schaefer et al., 2014; Tian et al., 2012; Wu et al., 2015; W. Xia et 

al., 2013), and clinical parameters (An et al., 2013; Cai et al., 2015; Holiga et al., 

2015; W.-C. Lin et al., 2015; Qiu et al., 2011; W. Xia et al., 2013) in older 

pediatric and adult populations, providing much valuable information on the 

associations between brain function and clinical or behavioral outcomes. Pearson 

correlations, as used in many previous studies, may give false positives if datasets 

are heteroscedastic, contain outliers or are affected by head motion, as are most 

fMRI datasets (Cyril R. Pernet, 2013; Siegel et al., 2016). Our present study takes 

those issues into account by using robust correlations with bootstrapping, outlier 

detection and control of confound artifacts, ensuring that our results can be 

interpreted with confidence. 

 

4.3 Limitations  

 

Our study used linear correlations to model age-related changes, as our age range 
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was relatively small (2-6 years), and linear fits are a good approximation. However, 

structural brain development is known to be non-linear during this period (Giedd et 

al., 1999; Lebel and Beaulieu, 2011), and thus functional development may also be 

non-linear. Test-retest reliability across short-term multiple scans was found to be 

relatively low for EC (Zuo and Xing, 2014). However, reliability is improved by 

proper head motion correction and the use of permutation tests, as was done here. 

The robust statistics also improve the reliability of our results by reducing the risk 

of false positives, but could lead to false negative results for metrics like EC and 

fALFF. We chose to focus on the most robust age-related changes in this age range 

so that our results could be interpreted with confidence with little risk of false 

positives. The fMRI data in the present study were obtained while participants 

were watching movies. Videos increase compliance and reduce head motion in 

children, permitting data acquisition in this generally difficult to scan population 

(Vanderwal et al., 2015). Networks are similar during passive viewing tasks 

compared to rest (Bray et al., 2015), though slight differences have been reported, 

for example in the visual and dorsal attention networks (Emerson et al., 2015). 

However, in the present study, this is only a minor concern as we conducted a 

within-group analysis that did not compare different brain networks, and passive 

viewing is unlikely to affect development trajectories. The functional metrics in the 

current study examined the BOLD properties and were treated as the indices of the 
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neural activity features during resting-state (Zuo et al., 2010a, 2017).  However, a 

recent study showed changes in the ratio of BOLD signal to cerebral blood flow 

during childhood (Schmithorst et al., 2015), suggesting that neurovascular 

coupling is not stable across our age range. Our study provides an important 

contribution to understanding functional brain development in young children, but 

future studies, including those measuring cerebral blood flow, and those with more 

subjects, are necessary to better understand the actual changes within the brain 

during the preschool years.  

 

5. Conclusions 

 

Using data-driven analysis and longitudinal rs-fMRI data, we show robust age-

related changes in several brain regions across the preschool period. In general, we 

observe increased regional activity and global connectivity in the nodes within the 

DMN and the FPN. We also found a local-to-global shift in the superior temporal 

gyus, and the opposite pattern (global-to-local shift) and in the superior parietal 

lobule and fusiform gyrus. Our study fills an important gap in the understanding of 

functional brain development in preschool aged children. As early childhood is a 

critical development period when many neurodevelopmental disorders emerge, our 

results may assist future research in understanding the functional brain 
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abnormalities underlying these disorders, and ultimately lead to earlier and more 

effective treatments.   

 

Acknowledgements: 

This work was supported by the Canadian Institutes of Health Research (CIHR), 

funding reference numbers IHD-134090 and MOP-136797, and a grant from the 

Alberta Children’s Hospital Research Institute and Alberta Innovates Health 

Solutions. Salary support provided by the University of Calgary I3T program (XL), 

and CIHR (CL). 

 

 
Supplementary materials: 
 
 



 29 
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Figure S2, Brain areas with significant relationships between age and ReHo when calculated in each individual’s 
native space. Comparing with Figure 3b, where results were calculated in MNI standard space, the main findings, 
such as fronal area, parietal area, cingulate cortex and precuneus, are similar. L means left and R means right. Warm 
colour means positive value and cold colour means negative value. 
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