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Abstract 

In structural reliability a new trend has developed to formulate design criteria directly 

for the response variable instead of specifying a high or low percentile for the load 

or resistance variables. 

A new method to develop Response-Based Design Criteria is introduced and 

compared with existing methods and their ability to include model uncertainty is 

discussed. Their accuracy and efficiency is benchmarked by means of three applica-

tions, which are of gradually increasing computational complexity. 

The first application is a moving load problem on a two-span continuous beam. 

The most likely joint occurrences for the two point loads are determined for different 

responses. Wave forecasting is the subject of the second application. The maximum 

extreme crest height of a wave for different return periods is studied. The last 

application deals with the drilling operability of marine risers. The design significant 

wave height and current profile are determined from the critical response angle. 
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Chapter 1 

Introduction 

1.1 Structural Reliability Analysis 

Engineering practice, and structural engineering in particular, is characterized by 

decision making under incomplete or imperfect knowledge. Examples are abundant: 

what is the lifetime maximum load a structure will have to withstand or the lifetime 

minimum strength a structural component will demonstrate? 

In the early history of modern structural engineering it was believed that abso-

lute upper and lower limits to loads and resistances could be established [35]. Safety 

factors then related these bounds to mean or characteristic load or resistance val-

ues. The structural uncertainty was believed to result from incomplete data rather 

than inherent uncertainty of the loads or resistances. Subsequently, each new type 

of structure developed its own safety factors based on engineering judgment and 

accumulated experience [35]. 

Due to the growing acceptance of structural design as a problem of decision 

making under uncertainties and risk, the reliability theory is used more and more 

as a control tool in the design code development process. Nowadays, most design 

codes are reliability based. These design codes reduce the work involved in a full 

probabilistic analysis to a routine check for the class of structures to which the code 

is meant to apply, commonly referred to as the scope of the code. 

Structural reliability theory assumes that failures occur only by means of a finite 

number of failure modes. Even though the condition of a structural component may 

be described by a discrete, or continuous limit state function (LSF), it is assumed 

that each mode can adopt only two states: safe or unsafe. Subsequently, these limit 
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state functions depend on the random loads and material strengths, the geometric 

and other deterministic design parameters, and the remaining random model uncer-

tainties. Generally, loads and resistances vary randomly in space and time; they are 

described by random fields and/or stochastic processes. Often this time- and space-

dependent reliability problem can be reduced to a time-invariant equivalent. In this 

case the uncertain quantities are described by basic random variables. The failure 

probability Pr(F), where F stands for failure domain, is then given as the probability 

that one or more limit states is violated. In that case, a failure has occurred in the 

associated failure modes. 

In this thesis, some important limitations apply to the methods presented. The 

limit state functions are assumed to be time- and space-independent. Consequently, 

the structural reliability problems are described in terms of basic random variables 

and not random processes in time or space. As explained in the next sections, this 

does not imply that time-variant reliability cannot be studied. Those problems first 

have to be reduced to an equivalent problem in terms of basic random variables only. 

In addition, failure is assumed to occur mainly due to violation of only one LSF. 

1.2 The Need For Response-Based Design Criteria 

Consider the time-invariant formulation of the following load-resistance problem. 

There is only one load effect S and one material resistance R in this problem. If the 

load effect variable S exceeds the resistance R, the system fails; otherwise it is safe. 

The LSF for this failure mode is simply given by: 

g(R, 8) = R - S (1.1) 

where uppercase notation denotes random variables and lowercase is used for a partic-

ular occurrence of this random variable. Bold typeface refers to vectors and matrices. 
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The LSF divides the original (r, s)-domain in a safe and failure domain: 

= {(r, s) I g(r, .$) > O} - f safe domain 

F = {(r, s) I g(r, s) ≤ O} failure domain 
(1.2) 

where (r, s) stands for a particular occurrence of R and S. The structural failure 

probability Pr(F) is then easily obtained as the probability content of the failure 

domain F: 

Pr(F) = Pr (g(R, S) ≤ 0) = Pr(R < S) (1.3) 

The simple R-S formulation reflects the two key aspects in structural engineering: 

loads and resistances. Traditionally, a fair share of the structural engineering re-

search focuses on the resistance side. On the load side, however, arise similar, if 

not greater, challenges: different loads act simultaneously upon a typical structure. 

Some of the resulting load effects are correlated with each other, others may be 

independent. Some loads may be sustained, others are transient in nature. Load 

duration effects may be important when the material experiences time-dependent 

behavior: e.g. creep, relaxation or fatigue. 

In classical civil engineering application fields, such as office buildings, the design 

codes have evolved from engineering practice. In recent years, however, there has 

been an increased need for a more quantitative assurance of the structural reliabil-

ity. Additionally, new types of structures are being designed in increasingly hostile 

environments. The uncertainty in the loads then becomes an important issue. Since 

not all loads act at their maximum level at the same time, the identification of the 

appropriate load combinations is of primary interest for the designing engineer. 

The Response-Based Design Criteria (RBDC) development process identifies those 

critical combinations. Risk levels are specified directly in terms of critical responses 
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rather than input variables such as environmental loading or material strength. For 

each of those critical responses, corresponding to one or more limit states, the most 

important load combinations can then be identified. 

1.3 Reliability-Based Design And Load Combination 

In reliability-based design two philosophies are currently adopted: an extreme event 

formulation and a response based approach. According to the former philosophy, 

loads and resistances associated with an extreme event are used in the design. These 

loads and resistances are typically specified at a high return period level. In the 

latter case, the safety level is formulated directly for the response variables rather 

than for the input parameters. The design loads and resistances are then given as 

the input values associated with this critical response. 

This difference is best illustrated by means of an example. For the design of 

Tension-Leg platforms (TLP), both philosophies are presently in use. The environ-

mental load effects axe caused by wind, waves and currents. The UK Department of 

Energy [12] adopts the design event approach and specifies a return period for these 

environmental parameters of 50 or 100 years. This is different from the API (Amer-

ican Petroleum Institute) recommended practice for TLP design [1] which stipulates 

the responses be calculated to have a return period of 100 years. The environmental 

input parameters associated with this response are used as the design loads. 

For simplicity the formulation in this section will be restricted to loads only. 

When different loads act simultaneously, their design values have to be determined 

to assure that the probability of exceedance of a sum of load effects is approximately 

equal to the probability of exceedance of any load acting separately [53]. Usually 

these design combination rules depend on the required risk/reliability level. In gen-

eral, the more unlikely the exceedance of the design values of the individual loads, 



5 

the less important the combination problem. 

For variable loads it proves to be convenient to describe the fluctuation of the 

loading according to a time scale corresponding to the structural natural vibration 

period [55]. The structural response under loads with a macro-scale fluctuation is 

primarily static. For loads with fluctuation periods in the vicinity of the structural 

period the dynamic response is important. The former can be reduced to an equiva-

lent static loading formulated in terms of basic random variables. Stochastic process 

theory gives approximate expressions for the maximum of such a process. Turkstra 

[52] formulated a rule of thumb for design purposes resulting from an approximate 

combination analysis: the maximum of each individual load effect is identified and 

combined with the point-in-time values of the other load effects. This is repeated 

for all load effects and the maximum effect of all these is used for the actual design. 

This idea is known as Turkstra's rule. 

The maximum combined load is not always given by this rule: studies of live 

loads in office buildings, for instance, indicate that a simultaneous occurrence of 

the maxima of at least some of the load processes, which is not accounted for in 

Turkstra's rule, may become important [8]. Nevertheless, Turkstra's rule generally 

gives satisfactory results when the duration of load pulses is very short. In other 

cases a more refined load combination model is required. Two approximate solution 

methods in terms of up-crossing rates are the Point Crossing Method [31], [32] and 

the Load Coincidence Method [46]. 

1.4 RBDC And Inverse Reliability 

Unlike the normal, "forward" reliability problem which tries to find the failure prob-

ability Pr(F), given the distributions of the load and resistance variables and a limit 

state function, the development of RBDC starts from a specified failure probability 
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Pr(F) and identifies critical load and resistance combinations. As such, RBDC can 

be considered an "inverse" reliability problem. 

For simplicity consider the simply supported reinforced concrete beam, subject 

to two random loads as given in Figure 1.1. Assume that the response quantity of 

interest is the mid-span deflection. The limit state model describes under which load 

and resistance combinations the structure has failed, which in this case is formulated 

as "the deflection exceeds a given, critical value 5". The loads and resistances, i.e. 

material strengths and geometry, are the basic variables of the problem and denoted 

as X. The failure probability of this structure is calculated using forward reliability 

techniques. This is, therefore, a "forward" reliability problem: 

J find Pr(F) = Pr (g(X, 5) ≤ 0) 

given the parameter 6 
(1.4) 

In a design context, however, an "inverse" formulation is needed. Given a speci-

fied failure probability Pr(F) = q, the value of a design parameter A is to be deter-

mined. In the example this parameter could be the effective depth of the beam or 

the mean concrete strength, for instance. In a more general formulation, the inverse 

reliability problem determines the value of one scalar parameter A, which appears 

in the LSF g(x, A) or in the joint probability density function fx(xIA) such that a 

P 

V V 

Q 

Figure 1.1: Simply supported beam 

/\ 
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required reliability level is achieved [14]: 

Jfind the value for A 

such that Pr(F) = Pr (g(X) ≤ 0 I A) = q 
(1.5) 

RBDC takes us one step further. Given the failure probability q, the deflection 

6q with exceedance probability will now be determined together with the load com-

binations which cause this deflection. It is clear that if the unknown parameter A 

in the LSF g(x, A) is replaced by 5q (or, in general, the critical response level yq) in 

(1.5), the inverse reliability problem gives the desired extreme response level. The 

corresponding load values, given as the components of the vector x, are the RBDC. 

As explained in the next section this solution is no longer unique, several combina-

tions x1, x2,... may possibly result in the critical response. This problem arises, for 

instance, in code formulation and the development of design criteria for a large or 

new structure. The goal is to come up with input parameters (loads and/or resis-

tances) such that the overall failure probability Pr(F) matches the target exceedance 

probability q. 

ffind the value for Vq and the corresponding x 

such that Pr(F) = Pr (g(X, yq) ≤ 0) = q 
(1.6) 

In the RBDC formulation this exceedance probability q is specified directly for 

the response variables, rather than for the input parameters. 

A "forward" approach to this problem implies an iterative solution: a level for 

the critical response Y is assumed and the resulting failure probability Pr(F) is 

compared with the target reliability q. Iteration will then yield the final design values 

of y. for the applicable range of input parameters X. The alternative, "inverse" 

problem, starts from Pr(F) = q and then identifies the required values for y. from 
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the probabilistic response model without iteration. 

1.5 RBDC Problem Formulation 

The most common case in which RBDC are presently used is that of a structural 

system which is subjected to a variety of environmental variables such as wind, 

waves, currents, earthquakes, heating or cooling, or live load, and denoted by X = 

(X1, X2, . . . , X). Based on a structural analysis, certain critical responses Y = 

(Y1, Y2,. . . , Y) can be identified in this system, e.g.: axial and shear forces, bending 

and twisting moments, deflections and rotations, stresses and strains. These response 

variables directly affect the reliability of the system, i.e. each of them appears 

in one or more limit states. Deflections and rotations for instance appear in the 

serviceability limit state equations; plastic rotations may appear in the ultimate 

limit state function. 

In this work, the response model is assumed to be time-independent Y = 

where h is a static structural response model. It is therefore assumed that the 

response at time t is a function of the input variables X at time t only. In a more 

general approach, the time-dependent behavior can be taken into account. 

In general, several combinations of the input variables result in a response with 

exceedance probability less than or equal to q. The determination of "the" load 

combination as such therefore does not exist and in their most general formulation, 

RBDC consist of all combinations of input variables X,,1, Xq,2, ... which produce an 

extreme response Yq with exceedance probability q. In a more restricted definition, 

only the most likely joint occurrence x is understood by the term RBDC. In the 

following the term RBDC is restricted to this most likely combination, other combi-

nations are referred to as "other" or "alternative" RBDC. 

Depending on which method is used, this extreme response Yq may have to be 
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determined beforehand, usually from an extreme value analysis, or results from the 

RBDC identification procedure itself. 

1.6 Examples Of RBDC Development 

The following examples illustrate the concept of RBDC: 

1. Consider the simply supported reinforced concrete beam in Figure 1.1 sub-

ject to two random point loads, which have a lifetime maximum magnitude 

described by some joint probability distribution. An upper bound for the life-

time maximum deflection 8q with exceedance probability q can be given by the 

deflection of the beam when both loads are equal to their lifetime maximum 

level with exceedance probability q. This upper bound is exact if these max-

imum loads occur simultaneously. However, when a joint occurrence of these 

maxima is highly unlikely this upper bound is over-conservative. This may be 

the case if both loads are negatively correlated for instance; when one load is 

higher than average, the other one will then tend to be smaller than average. 

In general a lot of load combinations will result in the critical deflection 8q It 

then makes sense to design for the most likely, or at least a highly likely, load 

combination which results in this deflection 5 q• 

2. Examples are common in offshore engineering. The environmental loading is 

described by wind and speeds, and wave heights and periods. Usually, not all 

of these input parameters need to be extreme to cause an extreme response. 

Which loads are critical also depends to some extent on the type of structure 

considered. For a gravity-based structure (GBS), for instance, the wave peri-

ods are not very important; for a more compliant structure they may become 

the main variable. In a lot of sites the extreme values of wave height and 
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current speed are stochastically independent [25], [47], with low probability of 

simultaneous occurrence of high wave heights and current speeds. This indi-

cates that an extreme event approach, i.e. combination of extreme waves and 

extreme currents, will result in an over-conservative loading. RBDC may then 

substantially improve the efficiency of the design. 

3. RBDC are not restricted to structural engineering applications only. Consider 

for example the following transportation engineering problem. The traffic flow, 

i.e. traffic volume passing a particular road section during a specified time, is 

function of the travel speed and car density (or its inverse, the car distance). It 

is clear that for low car densities the speed is independent of the density, while 

for high densities the speed is limited by the density. Consider now the traffic 

flow as a design response. RBDC will then identify critical combination(s) of 

speed and density resulting in the specified critical traffic flow. 

1.7 Overview 

Chapter 2 briefly reviews different methods used in structural reliability compu-

tation and presents different methods for time-invariant RBDC. The first one was 

introduced by Winterstein et al. [56] and is based on the First-Order Reliability 

Method (FORM) [35], [41], [50], [51], [54]. This method requires a transformation 

(or reparametrization) of the problem in the standard normal space. The second 

method is developed in this thesis and it is based on the maximum likelihood prin-

ciple. Consequently, approximate methods which account for model uncertainty are 

explained as well. 

Chapters 3, 4 and 5 deal with structural engineering examples: a moving load 

problem, ocean wave modeling and drilling riser operability are studied. 

The moving load problem in Chapter 3 applies the different techniques, presented 



11 

in Chapter 2, in the simplest possible way. Both RBDC methods are compared, and 

the effect of model uncertainty is analyzed using both an "exact" approach and 

approximate second moment methods. The power and limitations of the RBDC 

technique are demonstrated. 

In Chapter 4 the maximum crest height of ocean waves is determined as a func-

tion of the significant wave height and the wave peak spectral period and is solved 

using exact probabilistic methods. This solution is then compared with a simpli-

fied problem formulation; relative likelihoods are estimated and a model expansion 

approach is presented. 

In the drilling riser example (Chapter 5) considerable attention is paid to the 

formulation of a simple, but accurate, structural model reducing a three dimensional 

drilling riser model into a planar one. This is required since design criteria have to 

be formulated "in plane" for practical reasons. The design criteria are set in terms 

of operability limits. Different load combinations and their relative likelihood are 

analyzed using both methods and the results are compared. 

Finally, a comparison of both RBDC methods and the treatment of the effects 

of model uncertainty, based on a discussion of the inherent strengths and drawbacks 

of the different techniques is made in Chapter 6. Some directions for further im-

provement of the RBDC methods are given and the need for an even more general. 

reliability-based design technique is discussed. 



Chapter 2 

Response-Based Design Criteria 

2.1 Introduction 

Before the actual development of RBDC is discussed, two different methods to cal-

culate failure probabilities are briefly presented. They form the basis for the various 

state-of-the-art computational techniques used in structural reliability. The first ap-

proach is based on first-order approximation methods involving the use of reliability 

indices. The second one evaluates failure probabilities using simulation techniques. 

Then, it is explained how RBDC can be obtained as the solution of either an iter-

ative forward or an inverse reliability problem formulation. Two inverse techniques 

are discussed and compared. The first one is the inverse FORM method introduced 

by Winterstein et al. [56]. Transformation of the basic random variables X into the 

standard normal U-space is required. The second one is based on (log-) likelihood 

maximization in the original variable domain. 

Subsequently, RBDC development for uncertain models is discussed. Two differ-

ent approaches are given: inflated contours [56], based on omission [33] or expansion 

[36] factors, and ignorance factors [36]. 

Finally, the algorithms for the determination of practical design combinations are 

given for the different RBDC development methods. A comparison of their overall 

performance is made. 

12 
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2.2 Structural Reliability Integrals 

The reliability of a structural element or system is described by a limit state function 

(LSF) g(x) which depends on an n-dimensional random vector X = (X1, X2, ..., X). 

The components Xi of X describe the basic variables of the problem such as: geome-

try, loads and material properties. When g(x) ≤ 0 the structural element has failed, 

otherwise, it is safe. The domain where g(x) < 0 is known as the failure domain 

F. In order to calculate the failure probability of this structural element both the 

probability density function (PDF) fx(x) of the random vector X and the limit state 

function (LSF) g(x) must be known: 

Pr(F)=Jg(X)<O fx(x)dx (2.1) 

Usually the integral (2.1) can not be evaluated in closed form. Numerical inte-

gration is difficult as well since in many cases: 

1. the failure probability Pr(F) is very small for structural applications 

2. the dimension n of the problem is typically large 

3. the integration domain g(x) ≤ 0 may have an irregular shape 

4. the PDF fx(x) may behave irregularly over the domain g(x) ≤ 0 

Because of the first reason the approximation error for common numerical inte-

gration rules may be of the same order as Pr(F). The last three reasons make it 

difficult to implement common integration rules efficiently. 

Since a straightforward solution of the basic problem (2.1) is usually impossible, 

various approximations and alternative methods have been introduced. Two groups 

can be distinguished: first, approximation methods which calculate the reliability 

index of the failure probability. Second, simulation methods which compute the 
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failure probability Pr(F) in a statistical way, namely by Monte Carlo Simulation 

(MCS). A more extensive review of these methods can be found in various papers 

and textbooks [34], [35], [41]. 

2.3 First-Order Reliability Method (FORM) 

2.3.1 The Reliability Index /3 

Since the actual failure probability is usually hard to obtain, the LSF g(x) is re-

placed by an approximation and the reliability index ,6 of this (simplified) problem 

is calculated. It will be shown that under some rather strict conditions an exact 

relationship exists between /3 and Pr(F). In these cases, finding the reliability index 

is equivalent to finding the actual failure probability Pr(F). 

Since the normal distribution has interesting characteristics, it is not surprising 

that much work in structural reliability heavily relies on this distribution. In FORM, 

the basic random variables are always transformed to the normal space. 

2.3.2 FORM-Procedure 

In the First-Order Reliability Method the reliability index ,8 associated with the 

failure probability Pr(F) is determined. The method consists of the following three 

steps: 

1. The transformation t maps all basic variables and the limit kate function 

into the standard normal space. In this U-space all random variables U are 

uncorrelated and have a standard normal distribution: 

I x•u 
1 g(x)gu(u) (2.2) 
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2. Determine the point u' on the LSF g(u) = 0 for which the distance to the 

origin is minimized. This minimal distance point is often called the design 

point. 

3. The First-Order reliability index 3 is now defined as this shortest distance 

I I I. 

Since the standard normal distribution is rotationally symmetric, it is clear that 

for a linear LSF: 

Pr(F) = (-j3) (2.3) 

where 'I stands for the standard normal cumulative distribution function (CDF). 

Consequently, the FORM method actually replaces the evaluation of the failure 

probability integral (2.1) by the constrained optimization problem: 

Find i3 = min hull = lIu*hI 
subject to gu(u) = 0 

2.3.3 Discussion 

(2.4) 

Transformation Into The Standard Normal u-Space 

For independent basic variables a transformation which maps non-normal vectors x 

into the standard normal space u 

Ui = I'(Fx(x)) (2.5) 

where Fx, is the CDF of Xi and ' the inverse standard normal CDF. 

A further extension of the method to dependent variables was made by Hohen-

bichier and Rackwitz [24]. They suggested to use the Rosenblatt-transformation to 

map the correlated variables xi onto mutually independent standard normal variables 
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Figure 2.1: Definition of the first-order reliability index 3 

= 21--1)) 

= '(FxIxft_l, ... ,xj(XnIXn_.1) ... ,X1)) 

with Fxi I xj_i,...,xi(xj I x_ 1, ..., x1) the CDF of Xi conditional upon X_1, ..., X1. 

It is to be noted that the transformation (2.6) is usually difficult to implement 

since, in many cases, the conditional CDF is not available in an analytical form. 

Moreover, the transformed vector u can be obtained in numerical form only, since 

the inverse standard normal CDF can not be expressed in closed form. Accurate 

approximations for the standard normal CDF can be found in the literature [28]. 

When the problem dimension is high, the numerical stability of this transformation 

must be considered carefully. 

(2.6) 
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Linearization Of The Limit State Function 

In the FORM method, a non-linear transformed LSF gu(u) is approximated by its 

tangent hyperplane 9L(u) at the design point u' 

n 
v-s gL(u) g(u* ) + 
i=1 oui 

(2.7) 

The relationship between ,@ and Pr(F) is only valid as a first-order approximation 

(see Figure 2.1): 

Pr(F) '(-3) (2.8) 

because of the linearization (2.7), whence the name First-Order Reliability Method 

(FORM). For a non-linear transformed LSF gu(U), the first order approximation at 

the design point u' may be rather poor. In the situation on the left of Figure 2.2 the 

failure probability is overestimated, while the situation on the right side leads to an 

underestimation. The so-called Second Order Reliability Method (SORM) remedies 

this imperfection by accounting for curvature information of the limit state function 

at the design point. This method and the use of asymptotic techniques form today's 

state-of-the-art in reliability analysis. 

2.3.4 First-Order Approximations In The Original Domain 

The classical state-of-the-art structural reliability computational methods rely on 

the transformation (2.5) or (2.6) of the original variables X to the standard normal 

space Ti. It is already mentioned that this numerical transformation may be hard 

when the original basic variables are not independent. 

In addition, modern structural reliability analysis does not only require an ac-

curate evaluation of the probability integral (2.1) but the sensitivity of this result 

with respect to some design parameters as well. It is not immediately clear how 

sensitivity factors resulting from a FORM analysis in the standard normal space U, 
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Figure 2.2: Linearization of the limit state surface in FORM 

u 

can be expressed in terms of those design parameters. This explains the need for 

complementary methods in the original variable domain X. 

In 1991, Breitung [5] shows that the transformation to the standard normal space 

can be avoided: the minimization of the distance to the origin in the standard 

normal U-space is asymptotically equivalent to the maximization of the log-likelihood 

function £x (x) = in (fx(x)). 

For a standard normal vector U, the density and log-likelihood functions are: 

ftj(u) =  exp (. UT u) 

= £u(u) = - (n ln(2ir) + 1u112) 
(2.9) 

The point x" where this log-likelihood function is maximal, is known as the point 

of maximum likelihood (PML) and assumes the role of the minimal distance point 

u in the original domain. 

min Ilull = llu*II max £(u) = 

subject to g(u) = 0 subject to gu(u) = 0 
(2.10) 
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From the latter equation in (2.9), it is clear that iso-log-likelihood lines are given 

by a circle in the U-space. Maximization of the log-likelihood £(u) is then equivalent 

to minimization of Ilull, the distance to the origin (2.10). 

For all other distributions, proof of (2.10) is based on asymptotic approximations 

of the reliability integral using the Laplace-integration method for small failure prob-

abilities [4], [5]. This implies that all methods developed for the standard normal 

U-space can equally well be applied in the original X-domain. The role of the design 

point u is then assumed by the PML x' which allows a direct probabilistic inter-

pretation of the results rather than a geometrical one [6, pp.107-108]. This opens a 

whole new perspective for structural reliability computation since sensitivity factors 

for the results are now directly formulated in terms of the original design parameters. 

Especially asymptotic approximations of the reliability integral will prove useful. 

2.4 Simulation Methods 

2.4.1 Crude Monte Carlo 

Crude Monte Carlo simulation is used primarily to approximate high dimensional 

integrals for which common numerical integration methods such as Simpson's rule or 

Newton-C ôtes formulas are not effective [43]. The failure probability is now estimated 

as a frequency statistic. A sample point x in the n-dimensional original basic variable 

domain is drawn from the joint distribution fx(x). The limit state function g(x) 

is evaluated and the failure frequency f) is an estimate for the failure probability 

Pr(F). 

This hit-and-miss algorithm overcomes the first 3 difficulties mentioned in Sec-

tion 2.2. Moreover, P is unbiased and asymptotically exact, which means that the 

estimate f converges to the true failure probability Pr(F) as the number of sam-

ples m increases. Unfortunately, this convergence rate is very low, the coefficient of 
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variation of f) is given by: 
COV() 1  

\/mP 
(2.11) 

which indicates very slow decay ('s.' rn_li2) of the approximation error compared 

to the widely used Simpson integration rule (' rn 4) for instance. This makes the 

method computationally expensive for structural reliability problems since Pr(F) 

is typically very small in these cases (see point 4 of the list in Section 2.2). E.g.: 

to obtain an estimate for Pr(F) = 10 with COV less than 10%, at least iO 

simulations are required! 

2.4.2 Importance Sampling 

To circumvent the excessive computational cost of crude Monte Carlo simulations, 

different variance reduction techniques are available. 

The most important technique is importance sampling [3], [30], [48], [57]. A 

new sampling density is selected such that the variance of the probability failure 

estimator P is reduced. The failure probability estimate remains unbiased as long as 

the new sampling density covers the entire failure domain. It can be shown that the 

variance of the estimator is minimal if the new sampling density is proportional to 

the original one in the failure domain. In the safe domain, however, the PDF of the 

new sampling density should be as close to zero as possible in order to save computer 

time. 

It is clear that all these objectives are somehow conflicting. In addition, im-

portance sampling results strongly depend on the appropriate selection of the new 

sampling density. Failure to do so may bias the outcome of the estimation process. 

Since failure probability estimation is a key-point in reliability analysis, it is not 

surprising that a wide variety of alternative sampling algorithms has been devel-

oped. A concise overview with further references can be found in [18]. Many of 
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these commonly used simulation methods rely on a transformation of the random 

variables to the standard normal space. An alternative is the Asymptotic Impor-

tance Sampling (AIS) method [37]. It is based on identification of the PML and 

asymptotic approximations of the failure probability integral in the original basic 

variable domain. 

2.5 RBDC Development Methods 

Different RBDC methods will be presented here. First, the algorithms for each of 

the methods will be given. At the end of this section the intrinsic strengths and 

shortcomings of the methods will be compared briefly. 

We recall from Chapter 1 that RBDC consist of the most likely combinations 

of input variables x, which produce an extreme response Yq, or yq for a scalar 

response, with specified exceedance probability q. To simplify the notations, only 

scalar responses Y are considered. 

2.5.1 RBDC Using Iterative Forward FORM 

The FORM Method does not only result in an estimate for the failure probability 

but in the minimal distance point u" as well. This point represents the most likely 

combination of input parameters in the U-space which yields a response Y = Yq. 

Consequently, straightforward application of the FORM method yields the RBDC 

if the critical response yq is known. Based on an iterative step-by-step method, this 

critical response level yq and the RBDC can be obtained from forward reliability 

techniques: 

1. Assume a value for the critical response Ytrial for which the RBDC are to be 

developed 
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2. Find the reliability index /3 from the optimization problem (2.4) and the cor-

responding first-order estimate for the failure probability Pr(F) from (2.8) 

3. Compare Pr(F) with q and adjust yt,jj accordingly. 

4. Repeat steps 1-3 until Pr(F) = q 

5. The resulting value for Y from this iteration process is a first-order estimate 

for 

6. After back-transformation of u, x" = t1 (U") gives the RBDC 

For completeness, it should be mentioned that RBDC development using forward 

reliability techniques is not restricted to FORM only. Every method which identifies 

the PML, such as SORM or AIS, can be used in the iterative scheme to find the 

RBDC. 

2.5.2 RBDC Using Inverse FORM 

The RBDC development can be formulated as an "inverse" reliability problem [14]. 

Even though it is strictly speaking not necessary for the method to be applicable, 

the problem solution is simplified considerably if the LSF is of the form: 

g,, (U, Y) = Y - h.,, (U) (2.12) 

where h is the response model in the U-space and Y represents the scalar response 

of interest. 

In contrast to forward FORM, the exceedance probability q is now given. This 

defines an n-dimensional hypersphere surface with radius hull = /3 in the standard 

normal space, where /3 —'(q) (2.8). All combinations u of the input variables U 

on this surface have a FORM probability of joint occurrence equal to q. Consequently, 
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the maximum response yq produced by one of these combinations u has an exceedance 

probability q. 

As a matter of fact, this is strictly speaking correct only if the maximum response 

on a surface I lull = /3 is a monotonically increasing function of /3. But this 

is generally true since, due to the nature of the problem, extreme responses are 

caused by unlikely joint occurrences of the input variables. The more extreme a joint 

occurrence is, the higher the response level will be. If this condition is not satisfied, 

the critical response is given as the maximum response in the sphere 11ull ≤ 18, 
which indicates that even though the critical response has an exceedance probability 

larger than q, it is caused by input variable combinations with probability of joint 

occurrence greater than q. This could be the case for discontinuous or step-wise 

continuous responses, for instance. 

The method can therefore be summarized as follows [56]: 

1. Given q, determine the reliability index /3 from (2.8) 

2. Solve the constrained optimization problem 

JFind Yq = max [h(u)] 
subject to llull=13 

3. After back-transformation of u*, x" = t (u*) gives the RBDC 

(2.13) 

2.5.3 RBDC Using Maximum Likelihood Method 

Consider the joint PDF of the input variables in the original domain. Unlike in the 

U-space, the distance from the PML to the mean is no longer a simple measure 

for the failure probability. It is generally not straightforward to determine contours 

of constant exceedance probability. Actually, this would almost always require a 
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transformation similar to (2.5) or (2.6). Instead we now consider contours of constant 

response y. Generally, different combinations of input variables x1 and x2 yielding 

the same response y will have different likelihoods fx(xi) and fx(x2) where fx 

stands for the joint PDF of X. This likelihood can be used to assess how likely, or 

unlikely, the occurrence of x1 is compared with x2. The most likely combination on 

the limit state surface y = Yq is the solution to the RBDC problem. This point is 

known as the PML x'. 

For computational reasons, it is much easier to maximize the log-likelihood func-

tion instead of the joint PDF. The different steps involved in the computation are: 

1. Determine the extreme response Yq corresponding to the chosen exceedance 

probability q 

2. Set up the joint log-likelihood model and solve: 

Jmax x(x) =ln(fx(x)) 
subject to g(x, yq) = 0 

3. The solution x of this non-linear optimization problem gives the RBDC 

2.5.4 Discussion 

(2.14) 

An inverse reliability formulation holds clear computational advantages over a for-

ward approach: iteration is no longer required. In addition, inverse FORM allows, 

at least theoretically, an uncoupling of the environmental input variables X and the 

response Y as well. In principle, the contours of X can be determined from an inverse 

Rosenblatt transformation first, see (2.6). Then, the maximum response is sought 

along these contours in a second step. 

So fax it is assumed that the critical response yq corresponding to the exceedance 

probability q is known when the Maximum (Log-)Likelihood (MLL) method is used. 



25 

This is totally different from the inverse FORM approach where the value for Yq 

results from the analysis itself. One, but definitely not the best, way to find this 

critical response Yq could be using iterative, forward FORM. Of course this is not 

very efficient, since an inverse FORM approach would give this very same result at 

once! 

The advantage of the proposed MLL method is precisely located in its very flexible 

format. Due to the uncoupling of the determination of the extreme response yq and 

the actual RBDC, a wide range of methods is at hand, such as: extreme value 

analysis, Second-Order Reliability Methods (SORM), asymptotic approximations, 

and simulation methods. Generally these methods are superior (faster and/or more 

accurate) to forward FORM. Unfortunately, their formulation is not suited for an 

inverse reliability approach. Consequently, the proposed MLL method is application 

dependent and can be customized to the specific needs of the problem. 

In short, inverse FORM seems to be computationally the most efficient solution; 

while the MLL method is the most versatile one. Additionally, the validity of the 

MLL results is not jeopardized by the linearization of the LSF, which may adversely 

affect the quality of the inverse FORM solution. 

2.6 Model Uncertainty 

2.6.1 Introduction 

Der Kiureghian [13] distinguishes three basic sources of uncertainties, other than 

human and organizational errors, 

1. Inherent randomness is described by the probability density functions fx(x). 

2. Statistical uncertainty is reflected in uncertainty associated with the parameters 

0 in the PDF and denoted as fx,e(x, 0). 
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3. Model uncertainty is due to model inexactness and is reflected by uncertainties 

in the LSF g(x, 9). 

The vector X describes the basic random variables (point 1) and G describes 

the model uncertainties (point 2 and 3). When the state of knowledge is perfect 

(no model uncertainty) (E) is deterministically known: e = 0 and is a deterministic 
parameter in the distribution and LSF. To explicitly delineate the dependence of the 

model on ®, the probabilistic model and LSF can be formulated as conditional upon 

e: fxio(xlO) and g(xO). Otherwise, the degree of model imperfection is reflected in 
the distribution of ®, the parameter e then may then be considered an additional 
random variable in the models fx,e(x, 0) and g(x, 0) [15]. 

Unlike inherent variability, statistical and model uncertainties can be reduced, 

e.g. by collecting additional data or using more refined models. Model imperfection 

arises from two sources: one is lack of understanding of the physical phenomenon 

itself and the other is the use of simplified models. Quite often a model has to be 

simplified to keep the formulation mathematically tractable. So many variables may 

be involved in the analysis, such as in stochastic finite elements, that there is a need 

for simplification. Variables that do not greatly affect the response or that do not 

demonstrate much variation are then considered to be deterministic and are fixed at 

some value, typically the median or the mean. Since design codes have to be kept 

simple, these issues are closely related to the RBDC development as well. 

This important problem of simplifying a probabilistic analysis has attracted con-

siderable attention in recent years. Two, approximate methods are discussed here: 

they are based on "omission" of variables and "expansion" of a simplified analysis to 

a full one. Afterwards, it will be shown how they can be used in RBDC development, 

based on a second moment approximation of the model uncertainty. 
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2.6.2 Omission Factors In U-Space 

Omission sensitivity factors give the relative error in the reliability index ,8 when a 

basic variable is replaced by a deterministic number [33]. They are primarily used in 

the iterative determination of the design point u" in forward FORM (2.4). The idea 

is that variables ui with small omission factors do not greatly affect the reliability 

index, and can therefore be replaced by a fixed value for all subsequent iterations at a 

minimal penalty. This reduces the dimension of the optimization problem and hence 

substantially decreases the computer time. Once the reduced optimization problem 

has converged, one or two more iterations can be performed on the full problem. 

The omission sensitivity factor 'y (() of the i-th variable, fixed at the value u(, is 
defined as the ratio between the /3-index, resulting from a simplified analysis with 

Uj fixed at the value uf and the 18-index resulting from a full analysis, where U is 

a random variable. 

In the following, the case where a model uncertainty E) is fixed at its median 

value, i.e. u9 = 0, will be of practical interest. Madsen [33] proves that, when e is 
an independent basic variable, the omission sensitivity factor 'yj is: 

•yi (uo = 0) 
1 

(2.15) 

where the approximation (2.15) is exact to first order and asymptotically true as 

a0 - 0. This is illustrated in Figure 2.3 for a non-linear LSF; the first order approx-

imation will coincide with the exact value as ao -+ 0. The factor ai is a measure for 

both the sensitivity of the reliability index to inaccuracy in ui at the design point 

0/3 

oui 
(2.16) 
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and for the fraction of total uncertainty due to the uncertainty on u: 

U1 

U  18 a 

cos v = Vi—cc 

p * -  1 
t Cos  

limit state surface - 

= 0 

U®  

linearization 
= 0 

(2.17) 

Figure 2.3: illustration of the omission sensitivity factor y = 3*/3 for the case of 

only one model uncertainty e 

2.6.3 Model Expansion Factors In X-Space 

Maes [36] estimates the failure probability of the full analysis P® based on informa-

tion resulting from the reduced analysis only. In this context the term "reduced" or 

"simplified" analysis refers to an analysis without consideration of model uncertainty, 

while the "full" analysis takes this model uncertainty into account as an additional 

random variable e. The failure probability Pr(F) of the full and reduced analysis 
are denoted as P® and P-. respectively. 
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In this formulation the parameters (E) are fixed at their mean value in the re-

duced analysis. Based on the total probability theorem, the exact failure probability 

Pe can be found as: 

Pe(X, ®) = fe Pr (g (X, 9) ≤ 019) fe(9) dO (2.18) 

Based on a Taylor-expansion of the integrand in (2.18) about the mean and asymp-

totic expressions for the second order sensitivities of the failure probabilities, a first-

order second moment (FOSM) approximation for Pe can be obtained, based on 

the failure probability in the reduced analysis where €) = 8. For the practical case 

where only a single model uncertainty e is considered, the following result is obtained 
[36]: 

PeP{1+ 10,02 
(lag lVV1 Lao  

(2.19) 

where the gradient V is taken with respect to x, and x' represents the PML in the 

original variable space. 

2.6.4 Application To RBDC Development 

Model uncertainty may result from two different sources: 

1. Simplification when an exact or less inaccurate model is known 

2. Inexactness due to lack of understanding of the physical phenomena 

In any event, a central modeling of this uncertainty, i.e. second moment infor-

mation, is readily available. For instance, this can be obtained from a comparison 

of model predictions with experimental evidence. The approximate methods, pre-- 

sented in the previous sections, can now be applied to develop RBDC when model 
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uncertainty is present. 

It is clear from the discussion in Section 2.5 that the iterative forward FORM 

method is computationally not efficient. It merely serves as a theoretical justification 

for the compact inverse FORM algorithm. Hence, model uncertainty discussion will 

be restricted to the inverse FORM and MLL methods only. 

Inverse FORM 

Winterstein et al. [56] assume the model uncertainty in the response model is repre-

sented by an additive, independent, zero mean, normally distributed random error 

term e. The "exact" response model is then: 

Y, (U, 0) = h, (U) +0 (2.20) 

An exact RBDC formulation using inverse FORM for (2.20) considers E) as an ad-

ditional random variable. Without loss of generality, it can be assumed that E) is a 

standard normal variable. This can always be achieved by multiplying 0 in (2.20) 

with the standard deviation o of the model uncertainty. The resulting inverse 

FORM problem (2.13) is: 

JFind V. = max [Y(u, 9)] = max [h(u) + ce 0] 
subject to JIIuII +92 3 1(q) 

To avoid explicit inclusion of this additional uncertainty 0, Winterstein et al. [56] 

suggest to seek a new, inflated contour 3* ≥ /3, along which the simplified response 

model yields the correct capacity: 

(2.21) 

fFind yq = max [Y(u 10 = 0)] = max [h(u)] (222 

j subject to hull = /3* 

This argument is somehow circular, since the new value of /3* is unknown and depen-
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dent on the model uncertainty e. However, Winterstein et al. suggest that growing 
experience with this format for different structures will identify a reasonable range 

for the required correction 8* 1)3. The inflated contour level 3* reflects the additional 

safety required to compensate for the model uncertainty (B. The exact value for 3* 

can only be obtained from a full analysis: 

1. determine the maximum response yq from (2.21) 

2. find /3* from a forward FORM (2.4) with the simplified model h(U) and the 

exact response Yq, obtained is step 1. 

Theoretically, for each assumption about (B and every response Y this ratio can 

be determined exactly. The forward FORM in this two step determination of /3*/,5 

can actually be avoided. 

An asymptotically exact value for ,8 can be obtained from Madsen's omission 

sensitivity factors [33]: 

3 =1 
Substitution of (2.15) in (2.23) yields the inflated contour level: 

70 2 

(2.23) 

(2.24) 

This result is correct only for a linear LJSF, otherwise it is an asymptotic approxi-

mation as c -+ 0. For relatively small a, (2.24) may remain accurate. 

In short, an asymptotic estimate for 3* can be obtained as: 

1. determine the maximum response y. from (2.21) 

2. find /3* from (2.24) 
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The inconvenience of the use of omission sensitivity factors is that still one full 

analysis is required to identify a9 and the inflated contour level 3* (2.24). The 

expansion factor derived by Maes [36] avoids this problem since only information 

available from the reduced analysis is used. An asymptotic result for the inflated 

contour level 3* can then be determined from (2.19): 

_4I -1 (1:) 

(-CD (-j3) '0 ) Pe (2.25) 

When (2.25) is used the two-step determination of /3* actually reduces to a single 

step, where only information from the reduced analysis is used. 

Maximum Likelihood Method 

When RBDC are developed using the MLL method, the critical response i'  is as-

sumed to be known. The exceedance probability qe for a given response y when 

model uncertainty is accounted for, will be different from the exceedance probabil-

ity q, when this uncertainty is fixed at its mean level. When model uncertainty 

is present, the MLL method is only useful if the "exact" response level Yq,e can be 

estimated directly from yqW, i.e. the critical response when model uncertainty is not 

considered. In other words, there is a need for techniques which allow to obtain 

the required change of the limit state function Lg compensating for the model un-

certainty and keeping the "exact" failure probability equal to the target exceedance 

probability q. 

Maes suggests to achieve this by means of so-called ignorance factors 0* [36]. The 

required change /g is then obtained by replacing the model uncertainty parameter 

e by 0* instead of , while the other input variables x remain unaffected. This 

approach allows to keep the same design parameters x', which resulted from the 
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simplified analysis, while still achieving the required "exact" exceedance probability 

q. An additional advantage of this format is that it provides a clear incentive to 

reduce the model uncertainty. 

These ignorance factors result from the model expansion technique. They can 

be used directly in the simplified LSF model by replacing by 0*. For an addi-

tive and multiplicative model uncertainty e and IF, asymptotic approximations are 
respectively [36]: 

10,02 100 og WI] 
- 

V02 Vtfl 
- 

(2.26) 

(2.27) 

where o is the standard deviation of ®, u, is the COV of T, and x" is the PML for 

the simplified model analysis (0 = , IF = = 1). 

2.7 Alternative RBDC 

2.7.1 General 

In the preceding sections, only the most likel combination of input variables giving 

a extreme response yq was identified. Various other combinations will cause the same 

extreme response. 

For practical design purposes one may wish to fix some input variables at a 

convenient value: the median, a suitably high or low percentile or a selected return 

period level. This is best illustrated by means of an example. 

Assume now that RBDC have to be developed for different response variables 

Y = (Y1, . . . ,Ym) in a particular structure subject to various loads X. The most 

likely combinations of input variables x, which result from the RBDC development 

process, will consist of different load levels Xj for each response Yq, where the sub-
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script i indicates which one of the m responses is considered. Typically, the resulting 

load levels for the load variables governing the response will be extreme (high or low) 

while the RBDC levels for the remaining load variables will be located in the cen-

tral part of their marginal distributions. In this case, it makes sense from a design 

point of view to bundle the various load combinations. One may wish to fix the 

non-governing variables at their mean level and adjust the other ones accordingly 

such that the exact response is obtained. Or, just the other way around, when one 

variable seems to govern the response, it makes sense to relate this load directly 

to the response in terms of return periods. Again, all remaining variables of the 

particular problem will have to be adjusted accordingly. E.g. the 100-year bending 

moment is caused by the 100-year wind load, combined with other loads which are 

specified at a different level. 

They may also be used to compare two different design philosophies. The RBDC 

in strict sense determines the environmental parameters associated with the recur-

rence interval of the responses. The other RBDC can reflect an extreme event philos-

ophy in which return period levels for at least some of the input variables are used. 

The RBDC development will then give the most likely values for the non specified 

variables, conditional upon those fixed return period levels. 

That the exact response Yq and corresponding input variables x are known al-

ready from the first step, the actual RBDC development. The n basic variables are 

now partitioned in two groups: j variables are somehow fixed, the remaining n-j 

variables are still random. In this context, fixed means a deterministic relation to 

find them is available, rather than fixed at one particular deterministic value; they 

are no longer stochastic variables: 

original variable domain: X = [xi, X, j] 

standard normal space: U = {u, U_] 
(2.28) 
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The objective is now to determine the most likely combination of the remaining 

input variables when yq and x3 are given. This is discussed for all three RB]JC 

development methods, independent from which method is used to determine the 

critical response Y, the PML x' and the fixed input parameters x. 

2.7.2 Forward FORM 

A forward FORM analysis with the problem dimension reduced to n-j will give the 

practical design combination x_3. The reliability index resulting from this analysis 

can be interpreted as an inflated contour level ,@*. This increased reliability level 

indicates how much further the new minimal distance point is away from the origin 

compared with the actual design point u*. 

In the case of independent variables the transformation (2.5) is straightforward. 

It is to be noted, however, that for correlated basic variables the implementation of 

the Rosenblatt transformation (2.6) has to be considered on a case by case basis. 

When the dependent original variable xi is specified at some fixed level this does 

no longer imply a fixed value for the corresponding standard normal ui-variable. It 

rather defines a deterministic equation for u2. Generally, the inverse tranformation 

t1 u x has to be re-arranged. This is illustrated in the drilling riser application 

in Chapter 5. 

2.7.3 Inverse FORM 

Since the design point of the full analysis is known, the omission factors and the 

increased contour level can be determined from (2.24). A new inverse FORM in the 

n-j—dimensional U-space will then give the practical design combination. However, 

this solution is only asymptotically correct for c.j -+ 0 if the LSF is non-linear [33]. 

Given this 8*, an inverse FORM will then yield the RBDC. The full analysis result 

provides a good starting value for Even though the method is not exact in 
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most cases, it provides an internal quality check. If the resulting yq from the reduced 

analysis is much different from the full analysis result, this is a clear indicator that 

the LSF is too non-linear for the given ai-values. 

2.7.4 Maximum Likelihood Method 

In this method the dimension of the optimization problem (2.14) is directly reduced 

to n-j. The method is applicable without modification. The likelihood of the most 

likely combination (the "PML" x_) in the ri-j—dimensional problem will be less 

than for the true PML 4, resulting from the n-dimensional full analysis. The ratio of 

both likelihoods indicates how less likely this "constrained PML" 4_i, yielding the 

same response Yq as the actual PML 4, is to occur compared with the combination 

given by the actual PML 4. 

2.7.5 Comparison Of Results 

When these other RBDC are determined using the, FORM method the new minimal 

distance U* 11 can be interpreted as a measure of the relative likelihood of occurrence 
of the design combination with some fixed parameters, compared to the most likely 

design combination. Both design combinations, however, result in the same response 

level yq, with exceedance probability q. 

When the MLL method is used for this purpose, a relative likelihood is obtained 

at once. This is a relative probability density, rather than a relative probability. 

2.8 Comparison 

2.8.1 General 

All RBDC development methods discussed in this chapter are now compared with 

each other on the basis of 6 criteria: required input, produced output and computa-
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tional effort are self explanatory terms. The applicability of the method combines 

both the versatility and accuracy of the technique and explains for what type of 

PDF and LSF the method can be applied successfully. The item model uncertainty 

describes how second moment information about model uncertainty can be used to 

determine the RBDC. Eventually, the term alternative design combinations stands 

for the computational effort involved and accuracy obtained when the method is 

used to determine other than "most likely" design combinations, given the solution 

to the actual RBDC problem. 

2.8.2 Forward FORM 

1. required input: required reliability level q 

2. produced output: RBDC x" and critical response Yq 

3. computational effort: requires iterative solution, each iteration is of a similar 

computational complexity as the inverse FORM calculation itself. 

4. applicability: only exact for LSF which is linear in the standard normal Ti-

space. A non-linear LSF g(u) may influence the quality of the results. 

5. model uncertainty: inflated contours are most convenient, but only asymp-

totically correct. If is easily determined, ignorance factors can be used 
lvgl 

straightaway. 

6. alternative design combinations: new n-j—dimensional forward FORM 

2.8.3 Inverse FORM 

1. required input: required reliability level q 

2. produced output: RBDC x and critical response Yq 
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3. computational effort: concise and straightforward 

4. applicability: only exact for LSF which is linear in the standard normal U-

space. A non-linear LSF gu(u) may influence the quality of the results. 

5. model uncertainty: inflated contours based on omission or expansion factors 

6. alternative design combinations: approximate solution from inverse FORM us-

ing inflated contour level; exact solution from n-j—dimensional forward FORM 

2.8.4 Maximum Likelihood 

1. required input: the critical response level y. 

2. produced output: RBDC x 

3. computational effort: actual RBDC development is of same computational com-

plexity as inverse FORM. Determination of Yg increases computing cost. 

4. applicability: is applicable to all problems. Output quality depends only on 

the accuracy of Yq, which may be determined using any structural reliability 

computational method. 

5. model uncertainty: ignorance factors 

6. alternative design combinations: new n-j—dimensional log-likelihood maxi-

mization 

2.9 Summary 

In this chapter, the structural reliability integral is defined and some structural 

reliability computation methods are reviewed briefly. 
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Then, three methods for RBDC development are presented. Iterative forward 

FORM and inverse FORM rely on the transformation of the basic variables to the 

normal space and the First-Order reliability index 3. Aside from the RBDC they also 

give a first-order estimate of the extreme response Yq. In the maximum likelihood 

method this extreme response has to be determined beforehand. This opens the 

option to use a more refined method to find the critical response Y. 

It is shown how model uncertainty can be handled if only second moment infor-

mation is available and the practical development of design combinations is discussed 

as well. Finally, the methods are compared with each other for different criteria. 



Chapter 3 

Application To A Moving Load Problem 

3.1 Overview 

In this chapter a first application is given which demonstrates the different methods 

presented in the previous chapter. It concerns a two-span continuous beam subjected 

to two moving point loads. The example is intended to illustrate, in the simplest 

possible way, the various methodologies for RBDC. To limit the computational work, 

a bivariate normal distribution is chosen for the two loads. 

First, the influence of the correlation coefficient between the loads is studied with 

respect to three response variables specified at the lO level: the middle support 

reaction, the bending moment over the support, and the mid-span deflection. The 

load combinations yielding these critical responses are determined using both the 

inverse FORM and Maximum Likelihood methods. 

Subsequently, model uncertainty is introduced by assuming an uncertain settle-

ment of the middle support. The performance of the omission factor and ignorance 

factor approaches is measured against "exact" results for the bending moment and 

support reaction. 

3.2 Problem Description 

3.2.1 General 

Consider the two-span statically indeterminate beam shown in Figure 3.1. Both 

spans have equal length 1 and constant bending stiffness ei. Two moving point 

loads, P1 and P2, act on the beam; their spacing is 1 and it is assumed that there is 

40 
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Figure 3.1: Moving load problem on a two-span continuous beam 

always one load acting on each span (i.e. 0 ≤ x ≤ 1). It is worthwhile re-stating that 

the notation followed here is consistent with common practice in reliability analysis: 

uppercase letters are used for random variables, while lowercase notation is used 

for deterministic values of these random variables. Consequently, P1 stands for a 

random load variable, whereas p, is used for a particular occurrence of this random 

load P1. This is in contrast with the notation usually adopted in structural analysis 

where lowercase denotes distributed loads. 

In this example three structural responses are studied: the reaction force RB and 

bending moment MB at the middle support and the deflection AD at mid-span. The 

following sign convention is adopted: an upward support reaction RB is considered 

positive, the bending moment MB is positive if it produces tension in the top fibre 

of the beam and the deflection /D is measured positively in downward direction. 

3.2.2 Load Modeling 

The loads P1 and P2 are assumed to be jointly normal: their mean value p is the 

same, but their standard deviation and correlation are different. The coefficient of 

variation (COV) of the load in the second span is selected at 10%. The parameter k 
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expresses the ratio of the two standard deviations and p is the correlation coefficient 

(-1 ≤ p ≤ 1). Only k> 1 is analyzed since the largest critical load level will always 

occur in the first span in that case. This simplifies the formulas a lot and it can be 

done without actual loss of generality since the problem geometry is symmetric. The 

mean vector j.tp and covariance matrix Ep are: 

JE(P1) 
E(P2) 

Var(P1) Covar (Pi ,P2) - (O.lkp)2 pk(O.lp)2 

Covar(.P1,P2) Var(P2) pk(O.lp)2 (O.lp)2 

In the original basic variable space, this joint probability density function is 

consequently given as: 

(3.1) 

(3.2) 

11P LZ2 2 (21z2) fP2_P) + (P2_P'l 
01P, a PI U p2 a P2 

fp(pl,p2) =  1  exp 2(1-p2) F (3.3) 
and the log-likelihood function is then: 

(P1, P2) = —a   - (P1_P)   +   ] + b P2 ( P2-P) 

2   2 

(3.4) 

where a, b are constants and a> 0. 

The Rosenblatt-transformation (2.6) which is generally required to map the orig-

inal variables into the standard normal space is greatly simplified here since the 

original variables are already normally distributed: 

J ui 1  [ cos  sin 1 '   J 0.11 
)   U2 J cos(2) [ sin cos çü p2-p j 2 

(3.5) 
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where ço = 1 arcsin(—p). In the standard normal space the joint PDF (3.3) is given 

as: 

fu(ui, U2) = exp {- (u + U2)} = exp {- IIuII2} 

3.3 Derivation Of Influence Lines 

3.3.1 General 

(3.6) 

In this section the structural models h(P1, P2) for the three responses of interest are 

developed. The actual RBDC formulation afterwards is then as follows: find the 

most likely combination of P1 and P2 yielding the response yq = h(P1, P2) where Yq 

has an exceedance probability q. Here, h(P1, P2) is formulated in terms of influence 

ordinates: 

h(P1, P2) = iii (x)Pi + 2(x)P2 (3.7) 

where x denotes the position of the loads P1 and P2 on the span. 

The derivation of the influence lines is based on the Mfiller-Breslau technique 

[19]. Since the loads in this problem are moving, the position of the moving loads 

which results in the maximum effect of the action considered has to be determined 

from: 

max h(P1, P2) = [i71(x)Pi + n2(r)P2] =0 
O<x<1 dx 

(3.8) 

3.3.2 Support Reaction RB 

To determine the influence line for the reaction force at B, the support B is removed 

and a unit displacement in downward direction introduced at B. The corresponding 

force f required is: 
6ei 
13 

(3.9) 
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The deflected shape of the beam subjected to this load f at point B represents the 
influence line for r3. The influence ordinates for the first and second span (load P1 

and P2 respectively) are: 

771 - - 

772 = 1 - 3 2 + •3 

(3.10) 

where = f is the so-called natural coordinate for the position of the point load P 
on span i. 

The structural response rB (3.7) is: 

TB(P1,P2) - 3) +P2 (1— 3e2 + 3)2 2  

and has to be maximized with respect to according to (3.8). It can be shown that 

(3.11) is maximal when: 
K - - r. + 1 

K—i 
(3.12) 

with K=. Ific=1, (3.11) is maximal for =0.5. Pi 

It is interesting to see how much varies in function of : 

• K = 0 max = 1: load p, acts at point B, and P2 (= 0) at the right end C. 
• K= 1 > max = 0.5: both load p, and P2 act at mid-span (at D and E). 

• K = 00 = em3 = 0: load Pi (= 0) acts at the left end A, and P2 at point B. 

The maximum load effect for every occurrence (pl,p2) can be determined from 

(3.11). Since Pi and P2 are random, the load ratio r. and position for maximum effect 

(3.12) will be random as well. 
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3.3.3 Bending Moment MB, 

To determine the influence line for the bending moment at B, a hinge and a unit 

rotation are introduced at the support B. The moment m required to do so-is [19, 

App. B]: 
3ei 

Mu 2- 1 

(3.13) 

The deflected shape of the beam subjected to this bending moment m at point B 

represents the influence line for mB. The influence ordinates for the first and second 

span (load P1 and P2 respectively) are: 

772 = (3 - 32 +26) 
(3.14) 

where 6 =  11  is the so-called natural coordinate for the position of the point load E. 

The structural response mB (3.7) is: 

mB(pl,p2) = Pi1 [( - e3) + K ( - 32 + 2)] (3.15) 

with ic = and (3.15) has to be maximized with respect to e according to (3.8). It Pi 

can be shown that (3.15) is maximal when: 

3/c - /3 (/c2 + /c +1) 

max = 3(ic-1) (3.16) 

It is observed that the variation of (3.16) as function of ,c is a lot less for the 

bending moment mB compared with the support reaction mB. For ic = 0, (3.15) is 

maximal at mC = 0.577 and for n = 1, (3.16) yields ma,c = 0.5. 

As before, p, and P2 are random. Consequently, the load ratio ic and position for 

maximum effect (3.16) will be random as well. 
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3.3.4 Mid-span Deflection /D 

From Betti's theorem, it follows that the influence line for the deflection at D is 

given as the deflected shape of the beam when a unit load is applied at this point D. 

Since the two-span continuous beam is statically indeterminate to the first degree, 

the influence line will be obtained through the following procedure [19, pp. 381-382]: 

1. determine the influence coefficient of the deflectionq6,, in the released structure 

2. determine the influence coefficient 17rB for the redundant force rB 

3. determine the value of the deflection due to unit redundants 8, 

4. the influence coefficient for the deflection at D 'qoD in the statically indetermi-

nate beam is then 1lD = 77 + 'qrB & 

The support reaction force TB is chosen as the redundant in the structure. Ac-

cording to step 1, a unit load is now introduced at x = 1/2 in the released structure 

and the deflected shape is determined: 

x≤l/2 ?7 ----(7l2-4x2) rel - 96ei 

x ≥ 1/2 115 - _L (4x3 - 24x21 + 33x12 —213 
reZ 96i 

(3.17) 

It is clear from Figure 3.1 that the load P2 will always be located to the right of D. 

Consequently, the influence coefficient of the deflection 8D for the load in the second 

span in the released structure 'qrej2 is given as: 

'qSrel,2 = (4(x + 1)3 - 24(x + 1)21 + 33(x + 1)12 - 213) 

1 (4x3 - 12x21 - 3x12 + iil) 
reL2 - 9j 

(3.18) 
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The influence line for the redundant force TB was already obtained before, see (3.11). 

Now, the value of 8D due to a unit redundant TB = 1 is calculated: 

6. 
1113 

96ei 
(3.19) 

Eventually, the influence coefficients ql and q2 in (3.7) are obtained as 75rej + 7kB öu: 

X ≤ 1/2: 

X ≥ 1/2: 

for all a;: ?72= 

Thi (-13x3 + 9x12) 

ri (19x3 + 33x12 - 48x21 - 413) (3.20) 

(a;3 - 3x21 + 2x12) 

After substitution for (3.20), The maximum of (3.7) is given by the formula for 

X < 1/2 if ic < 1 and obtained at: 

3n+ v'3' 2 - 17i +39 
emax = 

3i+ 13 

and is given by: 

ÔD(P1,P2) - - Pi 13 [(9e - 133) - 3i (e3 - 3e2 + 2)] 
192ei 

(3.21) 

(3.22) 

The position ernax where the maximum is obtained is now almost invariant with 

respect to /,;. For x = 0, = 0.480 and for ic = 1, em 0.5. Since, as 

before, p, and P2 are random, the load ratio ic and position for maximum effect em 

(3.21) will be random as well. 
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3.4 RBDC By Inverse FORM And Maximum Likelihood 

3.4.1 Inverse FORM 

According to the methodology outlined in the previous chapter, we first have to 

determine the reliability index corresponding to the desired risk level. Here, an 

arbitrary level of q = iO is chosen which yields /3 = —'(q) = 3.72. Then, the 

inverse reliability problem is formulated as an inverse FORM problem (2.13). In 

order to solve (3.24) the structural response function h has to be known in terms 

of the standard normal vector u whose components ui are mutually independent. 

Therefore, the transformation (3.5) is inverted: 

5 Pi - 5 1 cos cc sin cc 5 'U1 

P2 J p J - sin cc o', cos u2 

and the inverse FORM problem can be formulated as: 

5 Find rB,q = max [h (pj(u),p2(u))] 

subject to lluli=/3= 3.72 

3.4.2 Maximum Likelihood 

} (3.23) 

(3.24) 

When the maximum likelihood (MLL) method is used, the RBDC are obtained 

through: 

{ 1, 2 / / \ / 

subject to h(pi,p2) =pi'qi() +p2?12() =  Yq 

(3.25) 

where a, b are constants and a> 0. 

In this method the critical response Y, correspon,ding to the risk level q, must be 

known beforehand. In this example, yq is determined directly from the distribution 
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for the response variable of interest, which is obtained by Monte Carlo Simulation 

(MCS). 

Applying a basic variance reduction technique [3], the required number of simu-

lations can be substantially reduced. Since the correlation coefficient p is considered 

as a parameter in this problem, the relative performance of the inverse FORM and 

MLL methods, is of interest as well. This relative performance indicates whether 

both methods reflect the sensitivity of the result to p correctly or not. Symbolically, 

the differences 

dyq = Yq(P = —1) - Yq(P) (3.26) 

are of interest. The objective of the variance reduction technique is now to reduce 

the uncertainty, typically measured as the sample variance, on the estimate of drq. 

From 

Var [dyq] = Var [yq(p = 1) - yq(p)] (3.27) 

= Var [yq(_1)] + Var [yq(p)] - 2Cov [yq(1), yq(p)] 

it follows that making the Coy-term positive reduces the variance of v. The Coy-

term in (3.27) is maximal if the random numbers used to calculate y,(—I) and yq(p) 

are the same. This is easily achieved in simulation: using the same initial seed for the 

random number generator (RNG) reproduces the stream of pseudo-random numbers. 

Even when the absolute performance yq(p) is of primary interest, the former 

method can be used to reduce the computer time. Once a specific value y(po) is 

obtained sufficiently accurate (e.g. from a long simulation) each additional point 

yq(p) can be obtained at a marginal cost by in fact estimating the difference yq(p) - 

y(po) rather than yq(p). 

It is obvious that this simple variance reduction technique is helpful only if a 
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parameter sensitivity analysis (p in this example) is to be performed. If only one 

value yq is of interest, more refined variance reduction techniques, such as described 

in [3], [30], [48], and [57], must be used to cut the excessive computational costs of 

crude MCS. 

3.4.3 Middle Support Reaction RB 

Figure 3.2 compares the results for rB,q, p, and p, obtained from inverse FORM and 

Maximum Likelihood for the case k = 1.01 as a function of the correlation coefficient 

p (-1 < p < 1). The main conclusion from the graph is that both methods yield 

almost identical results for the critical response rB,q. This will be discussed in more 

detail in Section 3.4.6. 

Lo
ad

 p
1
*
 o
r 
p
2
*
 

Load p1* 

1 

0.9-

08 -  

0.7 

0.6   

/ 

'I 

Support reaction rB,q 

- Maximum Likelihood 
- - - Inverse FORM 

multiplier: p• 

T 1.95 

1.9 

1.85 

1.8 

1.75 

1.7 

1.65 

1.6 

1.55 

1.5 

1.45 
-1 -0.5 0 0.5 

Correlation coefficient p between P1 and P2 

Re
ac

ti
on

 F
or
ce
 a
t 
B
 

Figure 3.2: Comparison between inverse FORM and MLL for k = 1.01 

In a second step, the influence of the parameter k is studied. Figure 3.3 shows 

the RBDC for k-values of 1.01, 1.1, 1.25, 1.5 and 2. The arrows on the graph point 

in the direction of increasing k. Since the results for the inverse FORM and MLL 
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methods are almost identical, only one set of solutions (inverse FORM) is presented. 

The following conclusions can be drawn: 

1.8 
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0 

0.8 

0.6 

k=2 

/ 
L k=1.25 

k=1.01 

k=L1 

—Load in Span 1 

 Load in Span 2 

multiplier. i 

-1 -0.5 0 
Correlation coefficient p 

0.5 1 

Figure 3.3: RBDC for p and p, plotted as a function of the correlation coefficient 
p and the COV-ratio k, for the reaction force at support B, obtained using Inverse 
FORM. 

• The critical response rB,q increases as k, and thus the variance of the load in 

the first span, increases. To avoid overloading of the graph, the values for rB,q 

are not plotted. Their values are listed in Table 3.1 for p = —1, 0, and +1. As 

k - 00, the level for rB,q becomes independent of p. Since the load p1 is then 

much higher than p, P1 governs the response whence u /3 while u 0. 

• The load levels (after division by the standard deviation o) corresponding to 

p=±l axe invariant ofk: 2 = /3, =—/3 for p=—1 and /3 for p=1. 
0 P2 

is always positive since the variance of P1 is greater than for P2. The 

actual load levels p are invariant of k for p = ±1 in the original domain as 

well because the variance of load P2 does not depend on k. 
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COV-ratio 

k 
Correlation 

p= -1 
between 

p=O 
P1 and P2 

p=+l 
1.01 1.488 1.739 1.889 

1.10 1.519 1.756 1.912 

1.25 1.571 1.788 1.952 

1.50 1.657 1.850 2.019 

2.00 1.882 1.992 2.161 

4.00 2.549 2.651 2.785 

Table 3.1: Critical response rB,q for different values of p and k (multiplier: p) 

COV-ratio 

k 

Correlation 

p=—1 

between 

p=0 

P1 and P2 

p=+l 

1.01 0.1886 0.2226 0.2576 

1.10 0.1918 0.2393 0.2607 

1.25 0.1971 0.2433 0.2660 

1.50 0.2060 0.2504 0.2747 

2.00 0.2237 0.2657 0.2922 

Table 3.2: Critical response mB,q for different values of p and k (multiplier: p1) 

• For low values of k, p and p (or better, and are almost identical, 

even for rather strong negative correlation (p = —0.6). This trend decreases 

with increasing Ic. In the limit for Ic -+ 00, p is a linear function of p which 

implies p = p (t4 0) when the loads are mutually independent (p = 0). 

This corresponds to what one intuitively expects: the response level is actually 

governed by the variability of the more important load. 
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3.4.4 Support Moment MB 

As before, the inverse FORM and MLL solutions are compared for a particular value 

of k (Figure 3.4). Figure 3.5 shows the influence of the parameter k on the RBDC; 

these results are obtained using inverse FORM. To avoid overloading the graph, only 

the loads p and p yielding the critical response mB,q are drawn. The actual support 

bending moment mB,q is not shown on the graph, the trend as function of p can be 

seen from Figure 3.4. The critical bending moment level mB,q varies with k in a way 

similar to the support reaction TB,q (see Table 3.2). Comparing these figures with 

the ones for the support reaction response ?B,q from the previous section, we may 

conclude: 
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Figure 3.4: Comparison between inverse FORM and MLL for k = 1.1 

The discrepancy between inverse FORM and MLL is even smaller here. A 

more detailed discussion is presented in Section 3.4.6. 
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Figure 3.5: RBDC for p and p, plotted as a function of the correlation coefficient p 
and the COV-ratio k, for the bending moment at support B, obtained using Inverse 
FORM. 

• As before, the load levels (after division by the standard deviation op) corre-

sponding to p = ±1 are invariant of k: = 3, = -/3 for p = —1 and 

equal to 3 for p = 1. 

• The same trend to have u and u almost identical is observed as for the 

support reaction response rE,q. The trend is much stronger though than for 

?B,q. For k = 1.01, an almost pathological case is obtained, p and p differ 

only significantly when —1 ≤ p < —0.97. For this reason the curves in Figure 

3.5 were cut off at p = —0.5. Figure 3.6 shows this effect in a different way: 

the total load p + p increases a lot faster for the bending moment mB,q than 

for the support reaction rB,q. This difference between the two RBDCs is even 

more pronounced for k = 1.01 but vanishes as k - oo. 
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Figure 3.6: Total load p + p resulting from the RBDC for RB and M3 (k = 1.1) 

• As before, the trend to have u1 and 4 almost identical decreases with increasing 

k and in the limit for k -+ 00, p is a linear function of p, similar to the previous 

case. 

3.4.5 Midspan Deflection ID 

First, the inverse FORM and MLL methods are compared for k = 1.01 (Figure 3.7). 

Figure 3.8 shows the influence of the parameter k on the RBDC; these results are 

again obtained using inverse FORM. To avoid overloading of the graph, only the 

loads p and p yielding the critical response 5D,q are drawn. The values for the 

critical deflection 5D,q are listed in Table 3.3. 

• The actual mid-span deflection 6D,q is not shown on the graph. The trend as 

function of p can be seen from Figure 3.7: 5D,q now decreases with p. Since the 

influence coefficient 772 is negative (3.20), the mid-span deflection will decrease 

as P2 becomes more and more important, i.e. as p increases. 



56 

CO V-ratio 

k 

Correlation between P1 and P2 

p=-1 p=O P= +1 
1.01 

1.10 

1.25 

1.50 

2.00 

3.2520 

3.3485 

3.5092 

3.7772 

4.3132 

2.9099 

3.0003 

3.1526 

3.4101 

3.9326 

2.4117 

2.5080 

2.6684 

2.9360 

3.4712 

Table 3.3: Critical response 5D,q for different values of p and k (multiplier: _21 3 _) 192ei 

• The RBDC resulting from inverse FORM and MLL actually coincide now. This 

is not surprising when we consider that the influence coefficients ij are now 

almost constant because the position for maximal effect is practically invariant 

of the relative magnitude of P1 and P2 (0.480 < ≤ 0.5). Consequently, the 

LSF in the u-space is almost perfectly linear resulting in an exact result using 

First-Order reliability techniques. 

• Once more, the load values (after division by their standard deviation cTp) 

corresponding to p = ±1 are invariant of k: = /3, = -/3 for p = —1 
o•P1  

and equal to/3 for p=1. 

• Because the influence coefficients nj and 2 have different sign, the loads p 

tends to be as small as possible. However, in the limit for k —+ 00, p is a linear 

function of p, similar to the previous cases. This limit is now approached from 

the lower side. 

• The actual loads p are now almost independent of p while p hardly depends 

on k: there is only 15% variation on p in the range k E (1, oc). For the more 

practical range k E (1, 2), this variation is even less than 8%. 
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Figure 3.7: Comparison between inverse FORM and MLL for k = 1.01 

3.4.6 Discussion Of FORM Performaiwe 

Comparison Inverse FORM and Maximum Likelihood Method 

As discussed in Chapter 2, both RI3DC development methods are conceptually dif-

ferent. Inverse FORM first determines load combinations with a given exceedance 

probability q, referred to as U- or 18-contours, and then finds the maximum response 

due to these loads. It is conceptually appealing that these circles are response in-

dependent. For a given exceedance probability q, the contour surface is always 

the same. This is shown for the support reaction at B in Figure 3.9. The iso-

response curves vary with p, but the fl-contour remains invariant. Maximization of 

the response along this circle gives the critical support reaction rB,q. The critical 

iso-response lines for the bending moment mB,q and mid-span deflection 6D,q are also 

tangent to this circle, but they are omitted from Figure 3.9 for clarity. 

The MLL method on the other hand first searches all combinations yielding the 

critical response Yq, and then looks for the most likely load combination among 
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Figure 3.8: RBDC for p and p, plotted as a function of the correlation coefficient 
p and the COV-ratio k, for the mid-span deflection of the first span, obtained using 
Inverse FORM. 

these. For a joint normal distribution the contour lines of the log-likelihood function 

£ (P1, P2) and the U-contours actually coincide. 

After back-transformation to the original variable domain, these contours are 

presented in Figure 3.10 for k = 1.01 and in Figure 3.11 for k = 2. In this case the 

back-transformed U-contours are ellipses: 

U-contour = {p I hull = hlt(p)hh i3} 

and coincide with the log-likelihood contours: 

£-contour = {p I £p(p) = £(pl,p2) = constant} 

(3.28) 

(3.29) 

The parameter k determines the ratio of the lengths of the axes of the ellipses while 
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Figure 3.9: ,8-circle and iso-response lines for r3,,7 in the standard normal space for 
k = 1.01 and different values of p 

the correlation coefficient p indicates the orientation of those axes [29]. The center 

of the ellipses is located at the mean (1, 1). 

Since the loads are jointly normal, the PML p* and minimal distance point u* 

are perfectly interchangeable through the transformation t. For k = 1.01 two local 

PMLs can be identified for negative p, they correspond to two points in the standard 

normal space whose distance to the origin is almost minimal (see Figure 3.9). As p 

increases, the two local PML points merge into one global PML. For k = 2 only one 

PML is found for the full range —1 ≤ p ≤ 1. 

The First-Order approximation formula 

q (—i3) (3.30) 

is based on the assumption that there is only 1 unique minimal distance point u 

and is consequently no longer correct for the case k = 1.01. If the design points are 
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Figure 3.10: Contour lines of log-likelihood and response TB,q for k = 1.01 

sufficiently far away from each other, a pragmatic adjustment for (3.30) consists of 

adding the contribution of all design points u towards the failure probability: 

q -ID (-180 (3.31) 

where 8i represents the distance from design point u to the origin. 

Consequently, we may conclude that in this particular application an underesti-

mation of the failure probability by 50% still results in an accurate estimate for TB,q 

(see Figure 3.2). 

Linearization of g(u) = 0 In Inverse FORM 

From a comparison of the Figures 3.2, 3.4, and 3.7, it can be concluded that the 

difference between the inverse FORM and MLL solution vanishes more and more. 

At least for the positive range of p-values this is to be contributed to the nearly 

linear shape of the limit state surface gu(u) = 0. 
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Figure 3.11: Contour lines of log-likelihood and response rB,q for k = 2 

When the influence line for MB was developed (see Section 3.3.3), it was pointed 

out that the support bending moment was maximal when the loads P1 and P2 are po-

sitioned between 0.51 and 0.5571. The same rationale can be made for the deflection 

AD where 0.480 <m ≤ 0.5. This implies that the influence coefficients ql and 772 

are not very variable and that, as a result, the structural response function h (3.7) is 

almost linear in P1 and P2. This quasi-linearity is not affected by the transformation 

to the u-space because (3.5) represents a shift, a scaling and a rotation, operations 

which do not affect the linearity. In short, the LSF in the u-space is quasi-linear 

whence the very good performance of First-Order reliability techniques. 

Quality Of Inverse FORM 

It is observed that in this application the inverse FORM method always gives very 

good results even though the First-Order failure probability estimate is not necessar-

ily accurate. As a matter of fact, the error on the response yq is more of interest than 
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the error on the exceedance probability q. In structural reliability applications, q is 

usually very small. Consequently the tail behavior of the distribution then becomes 

important. The minus log-exceedance function: 

L(y) = —ln(q) (3.32) 

is widely used for the estimation of large quantiles yq of a random variable Y [2]. 

This function is plotted in Figure 3.12 for the response rB,q and will be referred to 

as the (L, y)-plot. For a wide class of distributions, this function becomes more and 

more linear as q -+ 0 [7]. A linearization is then justified, whence the following 

error-estimate for the critical response yq: 

12 -

10T  p-o.5 

2-

0 

p=O p=O.5 

1.45 1.55 1.65 1.75 1.85 

Reaction Force at B (multiplier: p) 

1.95 

Figure 3.12: Minus log-exceedance function for RB, k = 1.01, and different p-values 

1L YqJ = 
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where L'(yq) is the slope of the (L, y)-plot at the estimate for Yq. From (3.33) it 

follows that a crude estimate for q may be satisfactory as long as the slope L'(yq) is 

not too small. 

For p = —1 and k = 1.01, the error A. lnq ]n2 = 0.69, the slope L'(rB,q) = 74.5, 

whence LrB,q = = 0.0093. As a result, an error of 50% on q is reduced to an 
74.5 

error of only 0.6% on rB,q. This corresponds to the difference between the inverse 

FORM and MCS result for rB,q. For p = 1, this slope L'(rB,q) is smaller, which 

requires a more accurate estimate of the exceedance probability q to maintain the 

same accuracy on rB,q-

It is important to stress that this tall behavior accounts for all sources of er-

ror: both non-linearity of the LSF and multiple PML problems. In this particular 

application the tail behavior of rB compensates for the error on q. 

3.4.7 Comparison Of Design Criteria 

It may be concluded from the Figures 3.2, 3.4, and 3.7 that the load levels p and p 

are very different for the three responses. Since the influence coefficient 972 in (3.20) 

is negative, this is to be expected for the deflection response. This is also reflected in 

the marginal exceedance probabilities for p. Figure 3.13 clearly indicates that the 

load P2 tends to be as low as possible. It also shows, however, that the RBDC for 

RB and MB are quite different as well. This seems in contradiction with what one 

expects since both responses are clearly strongly correlated. Figure 3.14 explains 

this difference. 

The arrows in Figure 3.14 point at the position of maximum effect for p and p. 

The load values for k = 1.01 are printed above the beam, and for k = 2 under the 

beam. The values si between brackets indicate the number of standard deviations 

this load value p' is away from the mean and is related to the marginal exceedance 
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probability plotted in Figure 3.13: 

Pr(P>pfl —1—(s) (3.34) 

Figure 3.14 shows that the difference between the two RBDC is caused by a different 

position of maximum effect Xm . Even though RB and MB are correlated for most 

values of P1 and P2, their extremes are different. Assume for instance P1 >> P2, the 

maximum reaction force RB is then obtained when P1 is located near the support B. 

This causes only a very small bending moment though. Recall that the position Xm 

for maximum bending moment is always located between 0.51 and 0.577 1, while this 

range is much wider for the reaction force: 0.51 ≤ Xm ≤ l. 

It is most pronounced for strong negative correlation between P1 and P2 and is 

stronger for increasing values of k as well. This can also be seen from Figure 3.13: 

for k = 1.01 the marginal distributions of p almost coincide for p> —0.6, while for 



65 

Reaction Force at B Bending Moment at B 

A 

1.3526 

L7414 '  0.67991 
(3.71) (-3.20) 

0.74 18 1.0927 1.0745 
k=1.01 (0.92) (0.75) 

P  41116 1.6984 0. 741 61 
(3.49) (-2.58) 

12679 1.2609 1.2670 1.2617 
(2.65) (261 ) k=l.01 1(2.64) i262) 

V  .A p=0 A  
1.7140 1.1047  46 1.6680 1.1638 
(3.57) (1.05) k=2 (3.34) (1.64) 

I 3663 

(363) 

.3625 
(3.63) 

1.7587 1.3518 
(3.69) (3.52) 

P=0.9 

1.3664 1.3623 
k=1.01 (363) (3.62> 

1.7359 T £1.355o 
k=2 (3.68) (3.55) 

Figure 3.14: Comparison of p and p (multiplier: p) for the critical support reaction 
and bending moment at B as a function of k and p. 

k = 2 they are clearly different until p> 0.5. 

The RBDC development clearly indicates these different extremes and conse-

quently provides a better understanding of the underlying (extreme) behavior. 

3.5 Model Uncertainty 

3.5.1 Problem Description 

The performance of the approximate methods accounting for model uncertainty, pre-

sented in the previous chapter, is now examined In this example, model uncertainty 

is introduced through an uncertain settlement of the middle support at B, which is 

treated as a model error here. 

It was already pointed out in the previous chapter that the approximate methods 

dealing with model uncertainty (e.g. ignorance factors) are accurate only as long as 
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the model uncertainty does not govern the response. Since it is clear that the mid-

span deflection '5D is highly affected by a support settlement SB, this response variable 

will be excluded from this model uncertainty analysis. 

Because the mean value of this support settlement is not equal to zero, the 

response levels obtained before can not directly be compared to the new ones, a shift 

is required. 

The exact, modified, structural response model h, resulting from a structural 

analysis is [19]: 

as: 

6ei 
r.8(pl,p2, 6.) = Pi. ( - .16  3) +p2 (i - 3) - 13 

(3.35) 

mB(pl,p2)SB) = Pi1 + 3_3 2+2)] 3ei 6B (3.36) 
4  12 

For the subsequent analysis, it is convenient to express this support settlement 

(3.37) 

where 9 is a parameter, indicating the magnitude of the support settlement. This 

selection for 5B expresses the model uncertainty in (3.35) and (3.36) with the same 

multipliers p and p1 as the actual responses RB and MB and allows a more elegant 

formulation of the results. Substituting (3.37) in (3.35) and (3.36), we obtain: 

rB(pi,p2, 9) = p ( - 3) +P2 (i - 162  - 3) - 69 p (3.38) 

mB(pl,p2, 9) = Pu  4 1 39 i (3.39) 

Now consider 0 to be uncertain with a lognormal distribution for e. Note that 
this distribution becomes more and more skew with increasing COV. The mean of 

0 then describes the magnitude of the mean support settlement, while the variation 
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of e represents the actual uncertainty around this mean value. 

3.5.2 "Exact" Results 

General 

When e is considered an additional random variable in the problems (3.38) and 

(3.39), "exact" results for the RBDC can be obtained. In this section we compare 

the solution obtained using inverse FORM with the MLL method and an omission 

factor approach using the exact lognormal distribution for e. In the following the 

COV of E) is studied as a parameter of the problem. 

Since 0 h 0 in general, the response levels obtained before can not be directly 

compared to the new ones. A shift over 5R,, = E(R) = —6p or 5MB = E(/MB) = 

—30 p1 is required. 

Middle Support Reaction RB 

First, the "exact" solution is obtained directly from the distribution for RB, which is 

obtained by Monte Carlo Simulation (MCS). Then this is compared with an inverse 

FORM solution, including a third standard normal variable U3, representing the 

model uncertainty parameter E) after transformation into the u-space: 

U3 
0 In(e) 

12 with E (In ((3)) = ln(E(0)) - cT(e) 

and U1n(G) = /ln (1+4) 

In (0) —E (hi (e))  

(3.40) 

Figure 3.15 compares the RBDC using inverse FORM with the results using MCS 

for k = 1.01, p = 0 and 0.1. The third line shown on the figure represents the 

RBDC when an "exact" omission factor is used. This result is listed in Table 3.4 

obtained as follows: 

1. determine the sensitivity factor: c3 = 
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Figure 3.15: Comparison of "exact" rB,q for k = 1.01, p = 0 and 9 = 0.1 

2. calculate the inflated contour level ,8* from the omission sensitivity factor: 

3. find the approximate response level using inverse FORM, with u3 = 0 as the 

omitted variable. 

A few remarks may to be added here: step 2 is correct only if the LSF is linear, for 

non-linear limit states this valid in an asymptotic sense as a —* 0. The approximation 

gradually worsens as a increases. This is also clear from the Table 3.4 which shows 

the monotonic relationship between model uncertainty COV and a as well. 

It may be worth noting that u3 = 0 fixes E) at its median level and not the mean. 

This median value depends on the COV and can be calculated from (3.40). 
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COV (%) a3 Relative Error (%) 

0 0 -0.5 

5 -0.26 -0.4 

10 -0.44 -0.6 

15 -0.53 -1.4 

20 -0.59 -2.5 

Table 3.4: Error on rB,q using an "exact" omission factor 

COV (%) a3 Relative Error (%) 

0 0 -0.08 

20 -0.31 -0.07 

40 -0.39 -0.54 

60 -0.40 -1.00 

80 -0.39 -1.17 

100 -0.38 -1.08 

Table 3.5: Error on mB,q using an "exact" omission factor 

Support Bending Moment MB 

Similar to the support reaction, Figure 3.16 compares the RBDC for the bending 

moment MB using inverse FORM with the results using MCS for 'k = 1.01, p = 0 

and = 0.01. The third line shown on the figure shows mB,q when an "exact" omis-

sion factor, outlined in the previous section, is used. This approximation gradually 

worsens as a3 increases (see Figure 3.16 and Table 3.5). Since the model uncertainty 

is a lot less (9 = 0.01), the induced error is now much smaller than for the support 

reaction and stabilizes around 1% (a3 0.4). 
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Figure 3.16: Comparison of "exact" mB,q for k = 1.01, p = 0 and = 0.01 

3.5.3 Approximate Second Moment Solutions 

General 

These methods use only first and second moment information of the model error e. 
Basically, this comes down to assuming a normal distribution for the model uncer-

tainty. For both responses an omission and ignorance factor approach are compared 

with the "exact' value obtained using MCS. For the omission factor approach the 

sensitivity of the RBDC to the a-value is studied as well. The standard normal 

variable U3, representing the model uncertainty parameter E) after transformation 

into the u-space, is now obtained as: 

= 0 -E(e) (3.41) 
0*8 

In this case an inverse FORM and omission factor approach are almost identical 

since the model uncertainty is represented by an independent, normally distributed 
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random variable and both approaches use the same linearization of the LSF at the 

design point u" (see Chapter 2 and [33]) Since the LSF is almost linear, there is 

hardly a difference between the linearization of the LSF at the slightly different 

design points u". Because a3 can only be obtained from a full analysis (including 

U3), the omission factor approach will usually be based on an estimate of a3 [56]. 

Therefore, the effect of a 10% error on a3 is analyzed as well. The method works as 

follows: 

1. perform an inverse FORM analysis based on (3.41) 

2. determine the sensitivity factor: a3 = ua/i3 

3. modify a3 by 10% - C}3 

4. calculate the approximate inflated contour level 3* from the omission sensitivity 

factor: 

5. find the approximate RBDC using inverse FORM, with u3 = 0, i.e. e = 9, as 

the omitted variable. 

Support Reaction RB 

Figure 3.17 shows rB,q using inverse FORM for the inflated contour level /3* with 

the results obtained from MCS for k = 1.01, p = 0 and = 0.1. The inflated 

contour level becomes quite sensitive to a correct estimate of a3 when a3 becomes 

rather large, say for COV > 0.1 (see Table 3.6). It may be interesting to point out 

that /3 = 3.72 corresponds to an exceedance probability q = iO, /3* = 5.67 to 

q = 7.2 x i0, /.io% = 5.07 to q = 2.0 x i0, and /o% = 6.68 to q = 1.2 x 10_". 

The ignorance factor for the additive model uncertainty in (3.38) is calculated as 

well and the result is compared with the inflated contour results. Based on (3.35) 
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Figure 3.17: Comparison of second moment approximations for rB,q for k = 1.01, 
p=0 and =0.1 

and (3.38), the LSF can be written as: 

9(P,e) =rB,q — [h(P1,P2) —6pE)] (3.42) 

We can now calculate the asymptotic ignorance factor for additive model uncertainty 

for this LSF [36]: 
el  Ogg] 

f_ 20 [lv 

(p* -  ' (p* 2 - 2 37.5422 
O,P ) 2 ) = 

IVgi = V'(3ax - ax) m \2 ± (2— ± ax)2 = 0.9723 

(3.43) 

(3.44) 

(3.45) 

(3.46) 
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(1(WT (O7\ 
\IO) a3 (1* 

'-'-10% 
R* 
1-' 

R* 
'-'+10% 

0 0 3.72 3.72 3.72 

5 -0.28 3.84 3.88 3.82 

10 -0.50 4.16 4.29 4.45 

15 -0.65 4.60 4.92 5.37 

20 -0.76 5.07 5.67 6.68 

Table 3.6: Inflated contour level /3* for rB,q using approximate second moment meth-
ods 

CO = COV(e) =o.lcOv(e) (3.47) 

Substituting (3.44) to (3.47) in (3.43), the following asymptotic result is obtained: 

9* - ..' 1.158 [cov(e)]2 (3.48) 

The model uncertainty in (3.38) or (3.42) is now fixed at the ignorance factor 

level 9* instead of the mean and the RBDC are determined in the two-dimensional 

u(u1, u2)-space. Maes [36] proves that the value for rB,q, resulting from this analysis, 

is a second order approximation for the true value of rB,q around e . The graph 

supports this finding. 

It can be concluded that both approaches are equally valuable. Even though 

inverse FORM using the "exact" second moment inflated contour seems more accu-

rate, it has to be considered that this "exact" second moment sensitivity factor a 

is generally not available. The a-value must then be estimated [56]. The ignorance 

factors, however, can be obtained exactly from the reduced analysis results (where 
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Support Moment MB 

Figure 3.18 shows the RBDC for the bending moment at the support MB using 

inverse FORM for the inflated contour level 3* with the results obtained from MCS 

for k = 1.01, p = 0 and = 0.01. Even though the average magnitude of the 

model error is now a lot smaller, it is observed that this model error (3 gradually 

dominates the problem as its COY increases (Ja3 I approaches 1). Since the lognormal 

distribution for the model error becomes skewer and skewer with increasing COV, 

the second moment approximation for the model error (which has zero skewness) 

deteriorates. As a result, the inverse FORM method using inflated contour levels 

can not accurately account for the model uncertainty. 

' 0.275 

0.265 

0.255 -e -e 

. 0.245 

bo 

0.205   

£ 

0 0.2 0.4 0.6 0.8 1 

COV of Model Uncertainty € 

Figure 3.18: Comparison of second moment approximations for mB,q for k = 1.01, 
p=0 and 9=0.01 

It is again observed that the ignorance factor approach yields a second-order 

approximation for the true response level rnB,q around (3= 

As long as the model error COV is. not excessively large (say less than 0.5), both 
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Coy (%) a3 /-io% ,8* 1o% 

0 

20 

40 

60 

80 

100 

0 3.72 3.72 3.72 

-0.39 3.97 4.04 4.12 

-0.65 4.57 4.87 5.28 

-0.78 5.26 6.00 7.37 

-0.86 5.88 7.30 11.53 

-0.90 6.39 8.69 34.23 

Table 3.7: Inflated contour level 3* for m3,q using approximate second moment 
methods 

approaches yield equally accurate results. For larger values of the COV, the a3-

values clearly indicate that these approximate solution methods can not work any 

longer since the model error which is excluded from the analysis obviously governs 

the problem. Consequently, a 10% variation of a3 yields useless estimates for /3* (see 

Table 3.7) and the response level mB,q (error bars on Figure 3.18). 

3.6 Summary 

In this chapter the performance of the various methods and techniques described 

in Chapter 2 are compared and evaluated by means of an application, taken from 

structural analysis. RBDC for the design of a two-span continuous beam, subject to 

two moving loads, are developed for three responses: middle support reaction force, 

support bending moment and mid-span deflection. 

In this problem the inverse FORM and MLL methods yield almost identical 

results since the limit state function (in the standard normal u-space) is almost linear. 

The inverse FORM method is computationally more efficient since it automatically 

yields the critical response Yq as well. When MLL is used, the response is obtained 

through simulation. 
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It is demonstrated that an omission sensitivity factor and an ignorance factor 

approach yield equally valuable results when model uncertainty is present. These 

shortcut, approximate, procedures are compared with "exact" results for a lognormal 

model error a 
It is shown that an ignorance factor approach yields a second-order approximation 

for the critical response around e = 9. In this example, their performance is found 

to be satisfactory as long as the COV of the model uncertainty does not exceed 0.2. 

In this example, it is observed that an inflated contour approach based on the 

model uncertainty sensitivity factor a, yields good results too as long as Jael <0.4, 
i.e. when the model uncertainty does not govern the problem. This is in agreement 

with results reported by Winterstein [56]. An estimate for a, within 10% of the exact 

sensitivity factor a, is sufficiently accurate in this particular example. 



Chapter 4 

Application To Ocean Wave Modeling 

4.1 Introduction 

In this example, RBDC for an extreme wave crest height Y are determined. The 

input environmental parameters are the significant wave height H3 and the peak 

spectral period T. This example is of practical interest since Y determines the deck 

level of a fixed offshore structure which is required to avoid wave impact loading. 

The data for this problem are taken from Winterstein et al. [56]. 

First, the extreme wave crest height Y is replaced by its median value 7/0.5 and the 

critical response is determined for return periods of 10, 100 and 1000 years. Then, 

an "exact" solution, assuming Poisson uperossings for Y, is computed. Finally, 

the approximate methods accounting for model uncertainty (inflated contours and 

ignorance factor) are compared with this exact result. 

4.2 Problem Formulation 

4.2.1 Definitions 

In ocean wave modeling the term "wave height" is used for the vertical distance 

between a crest and the preceding trough (Figure 4.1). The "crest height" is defined 

as the vertical distance between a crest , i.e. wave maximum, and the men water 

level. In the zero-crossing method, the time Tz between two consecutive zero up-

crossings of the wave is defined as the zero (up-)crossing wave period [42]. 

From these definitions, it is clear that the crest height is a more meaningful design 

parameter than the wave height for fixed, bottom-founded offshore structures [27]-

77 



78 

\h, 

t3 

14 

t4 t5 

/ time  10. 

Figure 4.1: Definition of wave height h, crest height y, and zero-crossing period t 

The platform deck elevation must be selected on the basis of a "maximun" crest 

elevation. 

Hsj ,Tp.i I HS.2 IP,2 Hs.3 Tp.3 HS.4 ,IP.4 I Hs,5 ,IP.  

short term seostote 

time  

Figure 4.2: Long term modeling as a series of stationary, short term seastates 

Long term predictions are modeled as a series of stationary seastates in which 

the seastate parameters are constant (see Figure 4.2). The stochastic process theory 

gives the distribution of the crest height of a wave conditional upon the seastate 

under the following assumptions [45]: 

1. Ocean waves are taken to be a wide sense stationary, zero mean, ergodic, 
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Gaussian process 

2. Wave spectral density functions are narrow banded 

3. Wave crest maxima are statistically independent 

4. The statistical properties of ocean waves are homogeneous, i.e. independent of 

the local position 

4.2.2 Wave Climate Description 

For short term periods, the wave elevation y(t) can be described as a realization of 

a zero mean stationary Gaussian process. Consequently, this process is completely 

described by the spectral density function S(w) which is the Fourier transform of 

the autocorrelation function R(,r) [44]: 

+00 

S(w) = f 00 R(r)e 3'Tdr (4.1) 

where j = \/i, w denotes the frequency and r the time difference. The autocorre-

lation function of the y(t) is defined as: 

R(r) = E [y(t +,r) y(t)] (4.2) 

For long term predictions, this model is extended over a series of stationary 

seastates which are parameterized by the significant wave height H8 (in meter) and 

the peak spectral period Tp (in seconds). The significant wave height is defined as 

the average of the highest one-third of the waves. The spectral peak period is the 

period Tp corresponding to the frequency w where S(w) is maximal. 

The wave climate model considered is this application was developed by Haver 

and Nyhus for the North Sea [21], [22]. For the northern part of the North Sea they 
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suggest the following Weibull distribution for Hs: 

i.547" 

Pr(Hs < hg) = FH(hs) = 1 - exp \2.822) (4.3) 

A lognormal distribution is used for T, conditional upon the value for H. Its 

parameters are: 

E(1n(Tp)hs) = 1.59+0.421n(hs+2) (4.4) 

Var (In (Tp) Ihs) = 0.005 + 0.085 exp (-0.13 h 34) (4.5) 

For the JONSWAP wave spectrum, which is most commonly used for the North 

Sea, the average zero up-crossing period is approximately given as: 

T Tp (i - 0.29 ._0.22) 

where 'y is the peak factor of the JONSWAP spectrum [9]. 

4.2.3 Maximum Crest Height Prediction 

(4.6) 

For a short term seastate, the relative frequency of large crest heights Y is modeled 

by the Rayleigh distribution when a narrow band spectrum is assumed. The CDF 

is: 
) 

FyIh(y) = i. - exp {_8 h (47) J 
Y-uperossings of a high level y can be accurately described by a Poisson process 

since they are rare events. The expected number of waves in one seastate with 

duration Tss is T.s.s/Tz. Consequently, the CDF of Y over the full seastate is then 

Pr(Y > y) = exp{_ (TZ ) [i - Fylhs(y)]} 
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= exp{_ ()exp [_8( )2] } (4.8) 

Using 3 hour seastates and a peak factor 'y = 3.3 in the JONSWAP wave spec-

trum, the following result is obtained for the up-crossing problem: 

Pr(Y > ytp, h5) = exp {- (13899.8) tP exp [-8 ()2] } (49) 

4.2.4 Solution Approach 

Winterstein et al. [56] break the extreme crest height determination up in 2 steps: 

1. ignore the uncertainty on Y, given the seastate parameters Hg and Tp. This 

is achieved by using the median response level 110.5 from (4.9) for Hg and T 

corresponding to the required reliability level, i.e. return period. 

2. compensate for the uncertainty in Y, by selecting Hg and T, corresponding to 

a higher reliability than required such that the median response 110.5 for these 

new H8 and Tp values equals the correct value 

4.3 Median Extreme Crest Height 

4.3.1 RBDC Using Inverse FORM 

The median extreme crest height Y0•5 is found by setting (4.9) equal to 0.5: 

YO. 5(Hs,Tp) = HS  
in (20053.2) TP  

The different steps of the inverse FORM method are: 

(4.10) 

1. Determine the reliability index 3 for the different risk levels. For this purpose 

the return period n must be formulated in terms of the exceedance probability 
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q for a 3-hour seastate. Since there is 2920 3-hour seastates in a year 

q=1— 292 /1 _! (4.11) 

where 1/n is the annual exceedance probability corresponding to a return pe-

riod n. Finally, we obtain the following expression for /3: 

292 /1 - 1 ) (4.12) 

2. Transform the standard normal vector U to the original basic variable space, 

e.g. using an inverse Rosenblatt-transformation: 

whence 

J Hg FHS ((Ui)) 

Tp=F h ((U2)Ihs) 

JHg = 2.822 '/-1n(1 - 
Tp = exp {E(ln(Tp)ths) + U2\/Var(ln(Tp)Ihs)} 

3. Solve the inverse FORM problem: 

Find Yo.5 = max hs(u) 

subject to Jul = 3 = 

In (20053.2  
tp(u) 

8 

(4.13) 

(4.14) 

(4.15) 

The results obtained by Winterstein et al. [56] for (4.15) for return periods of 10, 

100 and 1000 years are given in Table 4.1. 
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Return Period n [yr] YO.5,q [m] h [m] t [s] 

10 12.1 12.69 15.05 

100 13.7 14.51 15.80 

1000 15.2 16.18 16.46 

Table 4.1: Inverse FORM results for the median extreme crest height Yo.5 

4.3.2 RBDC Using Maximum Likelihood 

Determination Of The Critical Response Level 

When using the MLL method for RBDC development the critical response level 

YO.5,q, corresponding to the median extreme crest height for a return period n, must 

be known beforehand. This level can be determined exactly from the distribution 

for Y0.5. Consider the PDF for HS and Tpjh5; from (4.3), (4.4) and (4.5) follows: 

fH8(hs) = 

fTp jH8 (tPthS) = 

1547 (h0547 exp  f  1.547 

2.822 2.822) 2.822) } 
exp f . 2 Uifl(Tp)Ihg  (1.(t,)-E(1.(T,)Jhs)  )2} 

(4.16) 

(4.17) 

Now, the distribution for Y05 is determined from the joint density for H8 and Tp: 

fH,T(hS,tP) = fHS(hs)fTP IHS (tplhs) 

Consider the transformation: 

X1 =Y0.5= 

= h8 

20053.2  
tp 

8 (4.19) 

(4.18) 
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The joint density fx1,x2 is then given by (see [23]): 

1x1,x2 (XI, X2) = 1x2 (x2) fx1ix2 (xilx2) IJI 

where JI is the Jacobian of the transformation (4.19): 

8h. Oh  
Oxi 0X2 

49tp Otp  

Oxi OX2 

This exceedance probability q is: 

(4.20) 

320850.72 () exp f_2 (4.21) 
X2) J 

00 f 

q = dx2  fx2(x2) fx1ix2 (iIx2) IJI dx1 (4.22) 

This density function is plotted in Figure 4.3 and indicates that solution of (4.22) by 

numerical integration is not straightforward. Since the integrand is almost a spike 

function, the integration domain and quadrature rule must be carefully selected on 

a case by case basis. Therefore, evaluation of small failure probabilities by common 

integration rules is to be avoided in general. The integration error easily amounts to 

the order of magnitude of the failure probability. 

After substitution of (4.11) in (4.22), the critical response Yo.5,q can be deter-

mined as function of the return period n. This was done using three different meth-

ods: direct numerical evaluation using Newton-Côtes integration, using Breitung's 

Second-Order asymptotic probability integral approximations [6] and using Asymp-

totic Importance Sampling [39]. The results are practically identical to the inverse 

FORM critical response levels and listed in Table 4.2. 

RBDC Development 

The RBDC development using the MLL method can now be applied: 
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Figure 4.3: Joint density plot for fx,,x2(xi, x2) = fYo.5,Hs(Yo.5, h) 

1. The critical response levels YO.5,q are known and given in Table 4.2. 

2. From the joint PDF (4.18), the log-likelihood function is determined: 

Y .547 (hg, tp) 0.547 ln(hs) - 2.822 - in (01n(Tp jhg)) - ln(tp) (4.23) 

(1n(tp)—i(In(Tphs))  

2 k °In(TphS) 
) + constants 

Return Period ii [yr] Newton-Côtes SO-Asymptotic MS 

10 11.99 12.00 12.03 

100 13.74 13.75 13.70 

1000 15.25 15.26 15.24 

Table 4.2: Estimation of median extreme crest height YO.5,q using different methods 
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Return Period n [y:r] Yq [m] h5. [m] t [s] 

10 12.03 12.68 14.95 

100 13.70 14.49 15.70 

1000 15.24 16.16 16.34 

Table 4.3: RBDC results using the MLL-method for the median extreme crest height 

Yo.5 

3. The solution (ha., t) to the problem 

max £(h, tp) = In (fH,T (hg, tp)) = (4.23) 

In 20053.2  

subject to   = YO.5,q 

(4.24) 

represents the most likely combination of the environmental input variables, 

yielding the critical response. 

The resulting RBDC are given for the various return periods in Table 4.3. The 

results are almost identical to the inverse FORM solution. 

4.3.3 Comparison Of Inverse FORM And MLL 

Both RBDC development methods are conceptually different. This is illustrated 

in Figure 4.4 Inverse FORM searches for the maximum response yo.5,max along the 

transformed U-contour. The MLL method searches for the PML along the iso-

response line YO.5 = YO.5,q 

In this case, the transformed U-contour lines and the iso-loglikelihood contours 

are no longer identical. Recall that the U-contour connects all points with joint 

occurrence equal to q = (-3), while the iso-loglikelihood line is a line of equal 

probability density. 

At the RBDC combination the iso-response line is tangent to the transformed U-
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Figure 4.4: Comparison of Inverse FORM and Maximum Likelihood Method to find 
the RBDC 

contour, since it represents the maximum response along this contour line. At this 

point the iso-loglikelihood contour is tangent to this response line, since it represents 

the maximum loglikelihood along this response line. Consequently, the gradient of 

the transformed U-contour and of the log-likelihood function coincide at the PML. 

4.4 Maximum Extreme Wave Crest Height 

4.4.1 Exact Solutions 

General 

So far, the uncertainty on the maximum crest height Y, given hs and tp, has been 

ignored. Using the uperossings result (4.9), an exact solution can be obtained. Figure 

4.5 shows the distribution for Y, given h* and t,, i.e. hs and tp at the PML of the 

simplified analysis when Y is replaced by the median Yo.5, for the three return periods 

of interest. The plots show increasing scatter for the response Y as the return period 
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n increases. Consequently, it is expected that the differences between the maximum 

extreme wave height Yq and the median extreme wave height YO.5,q will increase with 

the return period n. 
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Figure 4.5: PDF of response Y, conditional upon h and t 

RBDC Using Inverse FORM 

When Y is considered a third random variable of the problem, an inverse FORM 

yields the RBDC results given in Table 4.4. The omission sensitivity factor ay = 

i4//3 is listed as well. 4 indicates the fraction of the total uncertainty caused by 
the uncertainty on Y. Since ay increases with the return period n, the difference 

between y. and YO.5,q increases (see Figure 4.6). This is expected since the scatter 

on Y increases for higher return periods (see Figure 4.5). It is to be noted that the 

values for h and t are now consistently lower than for the median extreme wave 

height. 
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Return Period n [yr] /3 Yq [m] h [m] tj, [s] ay 

10 3.97 12.78 11.83 14.76 0.36 

100 4.50 14.86 13.21 15.36 0.40 

1000 4.97 16.87 14.40 15.85 0.44 

Table 4.4: Inverse FORM results for the maximum extreme crest height 

Return Period n [yr] q Yq [m] h [m] t [s] 

10 3.61 x iO 12.82 12.06 14.68 

100 3.44 x 10-6 14.85 13.38 15.26 

1000 3.43 x iO 16.75 14.45 15.71 

Table 4.5: RBDC results for the maximum extreme crest height using the MLL 

method 

RBDC Using Maximum Likelihood 

The exact maximum extreme wave crest height y. for a particular return period n is 

now found as the solution of-

00 > y) f dy f dtp f fyIH,T (y) f'piis (tp) fHs (hg) dhg = q (4.25) 
Yq 0 0 

where q is the exceedance probability per seastate corresponding to the return period 

n (4.11). The values for Yq and the input parameters h and t resulting from the 

RBDC development for the various return periods are estimated using MCS and 

listed in Table 4.5. Figure 4.6 shows that these results are practically identical to 

the inverse FORM solution. 
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Figure 4.6: Median and Maximum Extreme Wave Crest Height 

4.4.2 Second Moment Approximations 

Inverse FORM Results 

Winterstein et al. [56] approximate the real PDF fYIHS,TP (y), shown in Figure 4.5, 

by 

Y(Hs, Tp, ) = Yo.5 + ê (4.26) 

where e is a normal distribution with mean 3 = 0. The standard deviation of e 

is readily obtained as the second moment of the actual PDF fylh5,t (y) about Yo.5 

It is important to note that this normal "model uncertainty" distribution actually 

depends on the PML and the PMLs are different for the various return period (see 

Tables 4.1, 4.3 and Figure 4.5). 

For this normal approximation, the maximum extreme wave height for the three 

return periods is estimated using MAIS [39]. For this purpose the program MATS 

was modified to allow for conditional sampling. The COV on the MATS results is 
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less than 0.3%. The obtained maximum extreme crest heights are shown in Figure 

4.7. 

Winterstein et al. {56} used an inverse FORM approach to determine these max-

imum extreme crest heights; their results are practically identical to the AIS results 

(see Table 4.7). 
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Figure 4.7: Second Moment Approximations for c3 

17 

Table 4.6 shows the impact of replacing the exact distribution for Y, given Yo.5, 

by the normal approximation 0. It may be concluded that the normal approxima-

tion is justified in this case. Because the model uncertainty is not too important 

(ay is relatively small), a central modeling is sufficiently accurate. Since the sensi-

tivity factors ay are slightly higher for the actual distribution than for the normal 

approximation 0, the resulting critical responses yq are a bit higher as well. 
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Exact Distribution for Y Normal Approx. E) 
Return Period n 4 ,8 ,8/,8 Y 4 18*118 Yq 

10 0.13 4.25 1.07 12.78 0.10 4.19 1.05 12.69 

100 0.16 4.91 1.09 14.86 0.12 4.81 1.07 14.67 

1000 0.19 5.53 1.11 16.87 0.14 5.37 1.08 16.54 

Table 4.6: Comparison of Inverse FORM solutions using the exact distribution for 
Ylhs, tp and the normal approximation e 

Inflated Contours 

Unlike the previous example, the inverse FORM results for the full problem, including 

no longer coincide with the ones obtained from an inflated contour approach 

using the exact omission sensitivity factor. This can be understood as follows. The 

"model uncertainty", i.e. the standard normal ê, now depends on the basic variables 

in the simplified problem, H5 and Tp in this case. Consequently, the design point 

U* = (u.3) u), or its equivalent in the original variable domain, the PML (h, t) 

will be different for both cases. As a result, the LSF will be linearized in a different 

point. Depending on how much the PMLs differ for both cases and how non-linear 

the LSF is near those PMLs, the inverse FORM and inflated contour results will 

differ more or less. Typically, the PMLs will be close to each other, at least when 

the model uncertainty is not too important. As a consequence, the difference between 

the two results will generally be small for not too non-linear LSF. 

The exact sensitivity factor a is usually not available, unless a full analysis is 

performed. Winterstein et al. [56] acknowledge this problem and suggest a reasonable 

range for a2 for offshore structures: 0.05 - 0.25, and most commonly 0.1 - 0.2. 

Here, the exact a-value was modified by ±10%, similar to the procedure used in 

the previous example. The consequence of replacing 18* by this modified fi on the 

maximum extreme wave height response Yq is shown as the horizontal error bars in 
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Return Period n MATS Inv. FORM /3* 1* 10% 13•10% Ign. Fact. 

10 12.80 12.69 12.71 12.57 12.87 12.80 

100 14.83 14.67 14.70 14.50 14.94 14.69 

1000 16.80 16.54 16.54 16.31 16.92 16.52 

Table 4.7: Comparison of estimate for yq using various approximate second moment 
formulations 

Figure 4.7 and in Table 4.7. 

Ignorance Factors 

The ignorance factor approach suggested by Maes [36] avoids the estimation of omis-

sion or sensitivity factors. This (multiplicative) ignorance factor can be derived from 

the simplified analysis results, i.e. where the maximum extreme crest height Y is 

replaced by its median value Y0.5. Multiplication of the critical response obtained 

from the simplified analysis by this ignorance factor compensates for the model un-

certainty, i.e. yields an second moment estimate for the actual critical response. His 

results are presented in Figure 4.7 as well for comparison. 

4.5 Summary 

In this chapter a wave forecasting RBDC problem is analyzed. The practical case of 

the determination of the maximum extreme crest height is studied. An exact solution 

for the problem is obtained and compared with an approach where the uncertainty 

on the crest height, given the sea state parameters Its and Tp, is approximated by 

a normally distributed variable 0. 

In this particular example the t,-values for the RBDC are always close the con-

ditional median value of Tplhs. As a matter of fact, the formula (4.10) suggests 

that the n-year extreme crest values Y05 will essentially be produced by the n-year 
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Hg. This is typically the case for gravity dominated phenomena while for dynamic 

phenomena the wave period becomes more important and the values for t, will be 

different from the conditional median of Tphs. It is a conceptual advantage from 

the Inverse FORM method that the same (hg, tp)-contours can be used for other 

responses as well. This allows, at least theoretically, for an uncoupling of the envi-

ronmental modeling and the structural design process. 

The first-order estimate of the critical response is very accurate. It can be shown 

that the limit state function in the standard normal space is almost linear near the 

design point u". 

It is also shown that model uncertainty can successfully be accounted for by a 

second moment formulation (inflated contours or ignorance factors) as long as the 

sensitivity factor a for the model uncertainty is not too large. An estimate fr a 

within 10% of the exact sensitivity factor seems to be sufficiently accurate for this 

purpose. 



Chapter 5 

Application To A Marine Drilling Riser 

5.1 Introduction 

In this third application, a deep-sea drilling riser, located in the Gulf of Mexico, is 

studied. The input variables are the significant wave height H3 and the sea current 

velocity V. The critical response is the angle w between the riser and the vertical at 

the bottom of the riser. This angle is of practical interest since it limits the drilling 

operability: as the angle increases, the friction between the drill and the pipe becomes 

more and more important. This critical Wq is determined from a separate response 

analysis of hindcast storm data. 

The goal is to identify the most likely sets as well as some other practical design 

combinations of the environmental variables which produce the extreme response 

with the specified return period. Three return period levels are studied: 10, 100 and 

200 years [25], [38]. 

5.2 Drilling Risers 

Floating structures are economically attractive for deep water drilling and produc-

tion. A marine riser is essentially a conductor pipe, connecting the floating platform 

and the bore hole (see Figure 5.1). An excellent description of marine risers can be 

found in [49]. At the top, the riser pipe ends at a telescopic joint beneath the vessel. 

This slip joint allows change in riser length as the vessel heaves or moves laterally. 

The operability of drilling risers is expressed in terms of maximum angles from the 

vertical. To increase the riser stiffness, and thus limit these angles, tensioning de-

95 
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Figure 5.1: Schematic of a drilling riser [49] 

vices are installed at the top joint. Buoyancy devices may be added to limit the 

maximum tension in the riser pipe. For deep-water conditions, dynamic positioning 

of the vessel considerably improves the drilling operability and reduces the required 

tension [10], [16]. 

5.3 Riser Model 

5.3.1 General 

This section describes the structural analysis model for the riser. The riser is modeled 

as a 3D tensioned string. Since, for reasons of practical design, the RBDC must be 
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Section Distance above well head Cd d Specific Weight (riser+mud) 

1 > 0 in 0.5 1.118 m 64.3 kg/rn 

2 > 594.4 m 0.5 1.143 m 69.2 kg/rn 

3 > 914.4 m 0.5 1.086 m 73.0 kg/rn 

4 > 1371.6 rn 0.5 1.067 rn 76.8 kg/rn 

5 > 2286 m 0.0 0.473 m 713.2 kg/rn 

Table 5.1: Assumed riser characteristics 

two-dimensional, this 3D model is reduced to an equivalent 2D model, which gives 

the same bottom angle w as the 3D model for the equivalent 2D current pattern. 

5.3.2 Riser Specification 

The riser specifications in this case study are taken from [40] and are listed in Table 

5.1. The drag coefficient is denoted as Cd and d stands for the riser (drag-)diameter. 

The operating tension tqf at the bottom of the riser is fixed at 450 kN (= 100 kips). 

The buoyancy rate is assumed to vary with the water depth from 98% up to 99.5%. 

5.3.3 Metocean Data 

The riser is assumed to be located at the grid point: latitude 27.08, longitude 88.42 

in the Gulf of Mexico. All storms in the Gulf of Mexico starting 1900 were hindcast 

[20]. The current data were taken from the central portion of the model for the Gulf 

of Mexico. Two data sets are available: 

1. Hourly data for the significant wave height hs during each storm period 

2. Current velocities v in x- and y-direction at 9 different water depths: 5, 17.5, 

37.5, 75, 137.5, 212.5, 525, 1200 and 2000 meter. In this model these velocities 

are assumed to be constant in each range. 
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5.3.4 Rig Offset 

The rig offset is the horizontal distance from the well head and the rig position. 

Here they are taken to be identical to the "Jack Bates" rig offsets [10] with an intact 

mooring system and 60% thruster assist. These offsets are given as a function of the 

significant wave height h5 through the Response Amplitude Operators (RAO) of the 

rig. The total offset os, i.e. the sum of the mean offset, surge and slow drift, for 

these conditions is given as: 

hS ≤ 1.5 m: Os = 0.05 m 

h5> 1.5 m: os = max {4.5,7.835 hS - 20} 

5.3.5 3D Riser Analysis 

(5.1) 

The riser is modeled as a tensioned string. The model used in this case study is the 

3D extension of a model described by Garrett [17]. The riser bending stiffness is 

assumed to be negligible though. The 3D equilibrium equation of a tensioned string 

is (small angle assumption): 

(tef f —qj (5.2) 

where t is the effective tension in the riser, u the component in x- or y-direction 

of the lateral riser displacement, q = i 2 PseawaterCd d  I v I the distributed load on the 

riser, Cd the drag coefficient, d the drag diameter, and v the current velocity. A prime 

denotes differentiation with respect to distance along the vertical z-axis. 

For simplicity, consider the distance s along the riser to be measured positive 

from the bottom of the riser. The top is then at s = L. 

As a result, the following integral expressions can be derived for the riser angle 
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at the bottom [38]: 

L U., (L)+ teff(z) =u ( )= (fz 0 Pseawater Cd(c) d(C) vi(C) lvi(C)I dc dz 

O  10 L 

J O 

teff(0) dz 
teff(z) 

L z 

- (L)+J O 

(f0 
Pscaweter ' \ teff(Z) )dz 

JL 

teff(0) dz 
0 tel f(z) 

(5.3) 

For a 3D analysis (bi-planar motion), this integration has to be performed in 

both the x- and y-directions. This implies that the rig offset u(L) must be known in 

these directions. Due to lack of more detailed information, it is assumed, however, 

that the offsets are aligned with the top (sea surface) current. This is justified for 

this current profile [26]. The total angular response w and the orientation ço of the 

plane in which the response angle is maximal, can be determined from the projected 

responses (5.3). 

The 3D analysis results are now reduced to one single plane. This is done by pro-

jecting currents and rig offset onto the plane of the total response angle w in such a 

way that the projected offsets are always positive (the response angles, however, can 

be either positive or negative). The 2D reduction is considered necessary since the 

resulting design criteria will have to be formulated in two dimensions for practical 

design purposes. In general, the loads associated with the projected rig offset and 

current profile v, will not yield exactly the same response angle in 2D as in 3D. 

Consequently, the projected offset has to be rescaled, while keeping the projected 

currents v1,,,,. . . , v9, constant, to come up with the same in-plane response as in 

the three dimensional analysis. After rescalirig, the h8, value corresponding to the 

projected and rescaled offset is determined from the hs-offset relation (5.1). In this 

particular case the required rescaling is usually negligible, say less than 0.5%. How-

ever, if the angle between the plane of the response angle and the plane containing 
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the top current is large, the required correction may be important. 

If both top and bottom angles are considered, this operation is to be performed 

separately for each response. Since the rescaling factor will generally be different 

for the top and the bottom angle, the analysis results in two data sets for hs V 

and projected currents v,; a first one for the top angle and another one for the 

bottom angle response [38]. Here, only the bottom response is analyzed. Since 

the subsequent analysis is entirely two-dimensional, the subscript ço will be omitted. 

The rescaled significant wave height is denoted as hs while v stands for the current 

velocity vector, projected on the plane of the bottom angular response. 

5.4 Metocean Probabilistic Modeling 

5.4.1 General 

Several joint probability models for waves and currents have been proposed. Most 

of them are to some extent restrained by the use of the Rosenblatt transformation. 

In these models the joint PDF is defined as a marginal distribution and a series of 

conditional density functions. The advantage of this approach is that one environ-

mental parameter, like Fl5 in this case, dominates the loading so that errors in the 

conditional models are not critical. 

An alternative approach was recently used by Prince-Wright [47]. He argues 

there is no theoretical method for selecting the variable for the marginal distribution 

and suggests to transform all basic variables into a near-normal vector. Uncorre-

lated standard normal variates then result from a diagonalization of the variance-

covariance matrix. 

This avoids the computationally expensive Rosenblatt-transformation but may 

affect the tail behavior of the dominating variable(s). 

Since the wave height clearly is the dominating variable in this application, a 
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conditional model will be set up. H8 is selected as the marginal distribution and the 

currents are modeled conditional upon H8. 

5.4.2 Significant Wave Height II 

Storm Occurrences 

The approach is to analyze storm events using a generalized extreme value distribu-

tion. The storm occurrences are modeled as a Poisson process and combined with 

the conditional distribution of the peak significant wave height, given a storm event, 

to describe the annual maximum significant wave height distribution. 

During the 89 year period (1900-1988) for which data are available, 38 severe 

storm events are observed. The expected value of the occurrence rate in the Poisson 

process is then ii = L8 = 0.427 storms per year. 89 

Due to limited availability of data, statistical uncertainty is associated with the 

estimate for ji. This mean value is only one possible estimator for the occurrence 

rate. Least squares estimation, assuming a Poisson process, yields an average of 0.451 

storms per year. In a Bayesian approach to include this uncertainty, a (Gamma) 

distribution is assigned to the occurrence rate V (uppercase zi), which is now a 

considered as a random variable. Since a Gamma distribution is a conjugate prior for 

Poisson observations, the posterior distribution is also Gamma [11]. This posterior 

distribution for V can subsequently be used to assess the uncertainty associated with 

the design criteria. This issue is not further pursued here. 

Distribution For The HS Storm-Maxima 

The distribution of the H8 storm peaks, given the occurrence of a storm, is deter-

mined by fitting a GEVD through the hs-storm maxima, i.e. the maximum of II 
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in each storm. The three parameter GEVD has the following CDF [7]: 

1/c 

Fx(xlc, A,S) =exp A {_[1+c(x8, )] } (54) 

These parameters are estimated using least squares minimization in a Gumbel plot, 

which is shown in Figure 5.2. The parameter estimates are given in Figure 5.2 as 

well. Since c> 0, the extreme value distribution is of the Frechet-type. 
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Figure 5.2: GEVD fitted to the Hs-storm maxima in a Gumbel-plot 

The n-Year Return Period Hg-Values 

The hg-value corresponding to a return period of n years results from the combination 

of the occurrence rate and intensity distribution. Compounding the Poisson and the 

GEVD yields the CDF for the Hg-annual maxima: 

(hs—A\l 
FH5(hs) e I - (i - e {_ [i + c (5.5) 
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Return Period n [year] hs [m] 

10 

100 

200 

6.49 

15.37 

19.88 

Table 5.2: Significant wave height hs for different return periods 

Cl C2 C3 C4 C5 C6 C7 C8 C9 

a 

bi 

56 84 88 34 0 -3 -3 -3 -3 

585 123 207 -114 2 6 5 5 5 

Table 5.3: Regression coefficients (multiplied by 1000) 

The h3-values corresponding to the three return periods of interest are given in 

Table 5.2. 

5.4.3 Current Modeling 

The top current velocity V1 is plotted as a function of h5 in Figure 5.3. It can be 

concluded that, even though the average current velocity is almost invariant with 

respect to hg, the variance of V1 increases considerably with h9. The sai-ne trend 

is observed for the other current velocities [38]. In order to stabilize the variance, 

the currents are divided by hg. A linear regression between hs and is made; the hs 

formula for the remaining "residual conditional current" Ci is: 

Vi 
= —(ahg+bj) 

Its 

(5.6) 

For all currents the values for the slope ai and intercept bi are determined from 

the over 1200 hourly current data and are listed in Table 5.3. The resulting model for 

every V is conditional upon the value of Hs. It can be seen from Figure 5.4 that the 
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Figure 5.3: Top current velocity v1 as a function of the significant wave height h 

variance of C1 is a lot more stable than for V1. These "residual conditional current" 

Ci are now assumed to be zero mean jointly normal distributed random variables. 

The experimental CDF for the normalized marginal density of C. is shown in Figure 

5.5 and compared with the standard normal CDF. The quality of the fit is satisfactory 

over the range [-2,2]. The standard deviation cr, the skewness /c1 and kurtosis ic2 

(second, third and fourth moment) for all marginal densities are listed in Table 5.4. 

If the distribution for the "residual conditional currents" C would be perfectly joint 

normal, the skewness and kurtosis would be 0 and 3 respectively for all marginal and 

partial joint distributions. Even though this is not the case, the result is found to 

be satisfactory, except for the tail region. The kurtosis-value, which is a measure for 

the "peakedness" of the distribution is too high, resulting in tails which are much 

longer than for the normal distribution. 



105 

0.2 -

0.15 

0.1 

0.05 

-0.05 

-0.1 

. 

S 

S • • 55 • 
S 

•. .s •. :. 
. . 

5,5 • S 

S • 
. •• 

S 
S.1*• • S •• 

. . S : 
- dISSS # 0 0 00 •*S •S . S •• Cs.J..,% • 

• . •'_.• S • 

S 

. 

. 

S • 
S S 

S . 

11 

S 

S 13 
S 

. 

Figure 5.4: Top residual current c1 as a function of the significant wave height hs 

Cl 02 C3 C4 C5 C6 C7 C8 C9 

0• 

PC' 

0.034 0.031 0.028 0.022 0.007 0.002 0.002 0.002 0.002 

1.219 1.357 1.659 2.194 3.151 -1.42 -1.72 -1.73 -1.81 

7.788 7.330 4.151 10.60 42.46 9.859 11.03 11.13 12.39 

Table 5.4: Standard deviation, skewness and kurtosis for the marginal current dis-
tributions 

5.5 Reponse Modeling 

In the present application, it is observed that peak responses are always associated 

with large storm events. In addition, the joint distribution of C does not depend 

on H, i.e. the residual currents distribution does not on depend on whether us is 

extreme or not. This justifies the choice of the joint point-in-time density for the 
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Figure 5.5: Experimental and Normal. CDF for C1 on standard normal scale 

current velocities V. The model is then as follows: 

fH,v(hs, v) = fH ( hs)fvlHs (v, hg) (5.7) 

The total log-likelihood function is then: 

£H,V(hS, v) = £ff3 (hs) + £VIHS(V, h5) (5.8) 

The log-likelihood for the annual H8 annual storm maxima can be obtained from 

(5.5) after differentiation: 

£H(hS) = —v (i - exp {- [i + c ()]_1/c}) - [i + ()J_1Ic 
(5.9) 

—(-1)1n[i+c (2)J + constants 

Since the residual reduced currents C are assumed to be jointly normal with zero 
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mean, their joint point-in-time density is given by: 

1 
Me) = (2,7r) 9/2  exp {_cT 1c c} (5.10) 

where Ejc denotes the 9 x 9 variance-covariance matrix of the residual reduced 

currents. After substitution of (5.6) in (5.10), the joint PDF of the current velocities 

V is obtained: 

1 
fvlffs (v, hg) = (2ir)9/2 h \/det Ecc 2hsexp {— - 1 2' (v _v)T cc (v_V)} 

where V is the column vector of the mean values for the current velocities: 

ai 4 + b hg 

From (5.11) the log-likelihood function is easily derived: 

£VIHS (v, hg) = - in h - - (v_V)T Z5 (v—V) + constants 

(5.11) 

(5.12) 

(5.13) 

Substitution of (5.9) and (5.13) in (5.8) gives the total log-likelihood function. 

5.6 RBDC Development 

5.6.1 Inverse FORM 

The different steps in the inverse FORM method are: 

1. Determine the reliability index /3 for the different design risk levels, where /3 = 

—'(q). The exceedance probabilities and corresponding reliability indices 

for the three return periods of interest are given in Table 5.5. 
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Return Period n. [year] Exceedance prob. q Reliability index /3 

10 0.1 1.282 

100 0.01 2.326 

200 0.005 2.576 

Table 5.5: Exceedance probabilities and reliability indices for the three return periods 

2. Defne a transformation t : X -+ U, where X is the vector of the basic random 

variables, i.e. HS and V. The transformation used here is a Rosenblatt-

transformation of the form (2.6): 

I Ul= ID '(FH3 (Hs)) 
Ui = 4cp ' (Fv_1IH$(V2_1IHs)) for i = 2,..., 10  

(5.14) 

The transformation of the currents velocities V is greatly simplified here since 

the residual currents C, are jointly normal with mean equal to 0. Since these 

residual currents are not independent however, they have to be transformed 

into independent, standard normal variates. Consider the symmetric variance-

covariance matrix Ecc: 

cc = 

Var(C1) Covar(C1,C2) ... Covar(C1,C9) 

Covar(C2, C1) 

Covar(Cg,Ci) ... Var(Cg) 

(5.15) 

Clearly, a set of jointly normal random variables Y will be mutually indepen-

dent if all covariances equal zero, i.e. if their variance-covariance matrix Zyy 

is a diagonal matrix. These independent normal variates Y can be obtained 



109 

from a transformation [51]: 

Y=ATC (5.16) 

where A is an orthogonal matrix with column vectors equal to the orthonormal 

eigenvectors of Ec. By this transformation: 

Var(Y1) 0 0 

0 

0 •.. Var(Yg) — 

(5.17) 

where the non-zero diagonal elements in Zyy are given by the eigenvalues 

A9 of Ecc. Dividing each of those independent normal variates Y by 

their standard deviation gives the corresponding standard normal variate 

U 1 in the Rosenblatt-transformation (5.14). 

3. After back-transformation to the original variable space, the solution u' can 

be found from the constrained optimization problem: 

os(u)+f (f Psea water cd(C) d(C) v(u()) Jv(u())I d-;Find = m tif(z) ) dz 

Wq L [ 

- Jo 

subject to huM =8 

teff(0) dz 
teff(Z) 

(5.18) 

where os stands for the rescaled rig offset. This gives both the critical response 

Wq and the RBDC (h, v*). The results are given in Tables 5.6-5.8 for the three 

return periods of interest. 
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Comb /:1 Comb #2 Comb #3 Comb #4 Comb #5 Comb #6 
1.00000 6.21832 2.77429 0.99997 2.43977 4.16279 

First order I3-value 1.28155 7.96910 3.55540 1.28151 3.12668 5.33482 

Hs 7.05308 6.49100 7.05375 7.05296 7.01728 6.95944 
Current 1 0.69276 0.26244 0.00000 0.69274 0.99569 1.23413 
Current 2 0.50338 -0.13109 0.00000 0.50347 0.77765 0.99331 
Current 3 0.29254 -0.42562 0.00000 0.29278 0.54464 0.74323 

Current 4 0.08911 -0.41830 0.00000 0.08936 0.28274 0.43644 

Current 5 -0.00017 0.01206 0.00000 -0.00010 0.06417 0.11562 

Current 6 -0.01146 0.08362 0.00000 -0.01152 0.00635 0.02077 

Current 7 -0.01164 0.09022 0.00000 -0.01170 0.00615 0.02054 
Current 8 -0.01166 0.09033 0.00000 -0.01172 0.00614 0.02055 

Current 9 -0.01156 0.09131 0.00000 -0.01162 0.00639 0.02092 
Cn Hs 0.08104 0.10007 0.08102 0.08104 0.08211 0.08387 

Current 1 0.50000 0.94485 0.99796 0.50000 0.09982 0.00995 

Current 2 0.50019 0.99747 0.98939 0.50000 0.09984 0.00996 

Current 3 0.50051 0.99984 0.92813 0.50000 0.09986 0.00996 

Current 4 0.50066 0.99975 0.72100 0.50000 0.09984 0.00996 

Current 5 0.50050 0.39738 0.49918 0.50000 0.09984 0.00996 

Current 6 0.49841 1.7E-13 0.20359 0.50000 0.09984 0.00996 

Current 7 0.49828 2.8E-15 0.19963 0.50000 0.09985 0.00996 

Current 8 0.49827 2.7E-15 0.19936 0.50000 0.09985 0.00996 

Current 9 0.49819 2.6E-15 0.20341 0.50000 0.09986 0.00996 

Hs* Exceedance probability on an annual basis 

Combination #1: PML, no values fixed 
Combination #2: Fix HS at the 10-year return level (HS=6.491m) 
Combination #3: Fix all currents at zero 
Combination #4: Fix all currents at their average value corresponding to RS 
Combination #5: Fix all currents at their 10% exceedance probability level 
Combination #6: Fix all currents at their 1% exceedance probability level 

Table 5.6: Inverse FORM results for n = 10 year 
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Comb #1 Comb #2 Comb #3 Comb #4 Comb #5 Comb #6 
/f3 1.00000 1.04353 2.53927 1.00012 1.57533 2.43456 

First order 3*_value 2.32634 2.42761 5.90721 2.32662 3.66476 5.66363 

Hs 15.49910 15.37100 15.45218 15.50738 15.06386 14.82758 

Current 1 2.26178 2.26372 0.00000 2.26201 2.82055 3.28691 

cc Current 2 2.20332 2.17239 0.00000 2.20566 2.68515 3.09400 

Current 3 1.79726 1.74751 0.00000 1.80086 2.23898 2.61317 

Current 4 0.64041 0.59447 0.00000 0.64361 1.02034 1.32775 

Current 5 -0.00428 -0.01542 0.00000 -0.00358 0.13466 0.24335 

Current 6 -0.06671 -0.05063 0.00000 -0.06762 -0.02547 0.00660 

Current 7 -0.06564 -0.04809 0.00000 -0.06663 -0.02463 0.00736 

Current 8 -0.06584 -0.04826 0.00000 -0.06683 -0.02478 0.00724 

Current 9 -0.06415 -0.04614 0.00000 -0.06517 -0.02291 0.00931 
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0.00978 0.01000 0.00986 0.00976 0.01056 0.01102 

0.49872 0.47466 0.99999 0.50000 0.09982 0.00995 

0.50008 0.49691 1.00000 0.50000 0.09984 0.00996 

0.50136 0.51737 0.99998 0.50000 0.09986 0.00996 

0.50288 0.54350 0.97192 0.50000 0.09984 0.00996 

0.50255 0.54328 0.48720 0.50000 0.09984 0.00996 

0.48910 0.30183 0.01375 0.50000 0.09984 0.00996 

0.48798 0.28366 0.01482 0.50000 0.09985 0.00996 

0.48797 0.28351 0.01465 0.50000 0.09985 0.00996 

0.48768 0.27976 0.01757 0.50000 0.09986 0.00996 

Hs* Exceedance probability on an annual basis 
Combination #1: PML, no values fixed 
Combination #2: Fix ES at the 100-year return level (HS=15.371ni) 
Combination #3: Fix all currents at zero 
Combination #4: Fix all currents at their average value corresponding to ES 
Combination #5: Fix all currents at their 10% exceedance probability level 
Combination #6: Fix all currents at their 1% exceedance probability level 

Table 5.7: Inverse FORM results for n = 100 year 
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Comb #1 Comb #2 Comb #3 Comb #4 Comb #5 Comb #6 
1.00000 1.00276 2.90712 1.00029 1.48121 2.43078 

First order i3(cvalue 2.57583 2.58295 7.48827 2.57658 3.81534 6.26130 

Hs 19.95577 19.88400 19.80413 19.98726 19.02129 18.43888 

Current 1 3.41312 3.40964 0.00000 3.42011 3.98577 4.62020 

Current 2 3.58242 3.56064 0.00000 3.59322 4.02139 4.54821 

Current 3 
Cd 

Current 4 
3.10016 
1.12961 

3.06986 
1.11323 

0.00000 
0.00000 

3.11138 
1.13491 

3.49156 
1.54511 

3.96805 
1.97781 

Current 5 -0.00717 -0.00272 0.00000 -0.00690 0.16811 0.33379 
Current 6 -0.11384 -0.10884 0.00000 -0.11605 -0.05646 -0.00421 

Current 7 -0.11149 -0.10603 0.00000 -0.11383 -0.05459 -0.00257 

Current 8 -0.11184 -0.10637 0.00000 -0.11418 -0.05487 -0.00279 

Current 9 -0.10869 -0.10320 0.00000 -0.11106 -0.05167 0.00061 

Hs 0.00495 0.00500 0.00505 0.00493 0.00563 0.00612 

Current 1 0.49887 0.48899 1.00000 0.50000 0.09982 0.00497 

Current 2 0.49992 0.49793 1.00000 0.50000 0.09984 0.00497 

Current 3 0.50055 0.50518 1.00000 0.50000 0.09986 0.00498 a Current 4 0.50127 0.50818 0.99528 0.50000 0.09984 0.00497 

Current 5 0.50083 0.48850 0.48099 0.50000 0.09984 0.00497 

Current 6 0.48146 0.43964 0.00177 0.50000 0.09984 0.00497 

Current 7 0.48003 0.43335 0.00209 0.50000 0.09985 0.00498 

Current 8 0.48002 0.43329 0.00204 0.50000 0.09985 0.00498 
Pq Current 9 0.47980 0.43307 0.00282 0.50000 0.09986 0.00498 

Hs* Exceedance probability on an annual basis 
Combination #1: PML, no values fixed 
Combination #2: Fix HS at the 200-year exceedance level (HS=19.884m) 
Combination #3: Fix all currents at zero 
Combination #4: Fix all currents at their average value corresponding to HS 
Combination #5: Fix all currents at their 10% exceedance probability level 
Combination #6: Fix all currents at their 1% exceedance probability level 

Table 5.8: Inverse FORM results for n = 200 year 
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5.6.2 MLL Method 

Extreme Response 

In this method the extreme response W q must be determined first. The time series 

for the response w is generated from the time series for hS and v. This involves 

the solution of the differential equation (5.2) using the integration scheme (5.3). 

Now, the critical responses corresponding to return periods of 10, 100 and 200 year 

are determined from an extreme value analysis on these time series using a similar 

procedure as for the significant wave height hs. The occurrence rate of a storm is 

the same: i' = 0.427 storms/year. The intensity distribution for the response storm 

maxima is a GEVD as before. The Gurnbel-plot and the GEVD-parameters are 

shown in Figure 5.6. The n-year critical responses are listed in Table 5.9. 
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Figure 5.6: GEVD fitted to the w-storm maxima in a Gumbel-plot 
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Return Period n [year] Critical response w [0] 

10 1.7552 

100 5.7458 

200 7.7872 

Table 5.9: Bottom angular response w for different return periods 

RBDC Development 

When the MLL method is used to derive the RBDC, the calculations can be struc-

tured as follows: 

1. The critical response level Wq is known for the three return periods of interest 

and given in Table 5.9. 

2. The log-likelihood function of the joint PDF of Hg and V is given in (5.8). 

3. The RBDC are given as the solution (h, v*) to the problem: 

max eHS,v(hs,v) = £H(hs) +v1H(v,hs) 

os(hg) + 1L f Psea water ca(C) d(C) v(C) lv(C)l k dz 
subject to  0 L teff(Z) = Wq 

fo tff 
(0) dz 

t11(z) 

where os(hs) is defined in (5.1). 

(5.19) 

The resulting RBDC are given for all three return periods in Tables 5.10-5.12. It 

may be concluded that, except for the 10-year return period, the results are practi-

cally identical. The difference between both methods for the 10-year return period, 

is entirely due to a difference in critical response Wq. The structure of the solution 

is the same: hS is the governing variable and the current velocities v are almost at 

their mean level. In the inverse FORM solution both Wq and h correspond to a 

return period of 12.5 year, when determined from the respective GEVDs. 
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Comb #1 Comb #2 Comb #3 Comb #4 Comb #5 Comb #6 
Relative likelihood 1.00000 0.93317 0.00471 0.02160 0.01723 1.53E-06 

- Log-Likelihood -4.01431 -4.08348 -9.37136 -7.84929 -8.07542 -17.40565 

Us 6.49554 6.49100 6.49667 6.49569 6.46721 6.41695 

Currentl 0.61800 0.65380 0.00000 0.61761 0.89736 1.11790 

Current2 0.43347 0.45868 0.00000 0.43335 0.68670 0.88638 

Current3 0.23761 0.25177 0.00000 0.23770 0.47040 0.65430 

Current4 0.06980 0.07267 0.00000 0.06996 0.24832 0.39032 

Current5 0.00005 0.00005 0.00000 0.00000 0.05919 0.10662 

Current6 -0.00935 -0.00669 0.00000 -0.00944 0.00699 0.02025 

Current7 -0.00954 -0.00635 0.00000 -0.00964 0.00677 0.02001 

Current8 -0.00956 -0.00635 0.00000 -0.00966 0.00676 0.02002 

Current9 -0.00951 -0.00619 0.00000 -0.00961 0.00696 0.02032 

Hs* 0.09990 0.10007 0.09985 0.09989 0.10100 0.10298 

:- Currenti 0.49926 0.43416 0.99728 0.50000 0.10000 0.01000 

Current2 0.49973 0.44877 0.98436 0.50000 0.10000 0.01000 
It Current3 0.50017 0.46864 0.90128 0.50000 0.10000 0.01000 

Current4 0.50043 0.49187 0.69076 0.50000 0.10000 0.01000 

Current5 0.49957 0.49957 0.49998 0.50000 0.10000 0.01000 

Cd Current6 0.49719 0.41534 0.23037 0.50000 0.10000 0.01000 

Current7 0.49686 0.39864 0.22525 0.50000 0.10000 0.01000 

Current8 0.49685 0.39844 0.22503 0.50000 0.10000 0.01000 

Cuxrent9 0.49683 0.39584 0.22820 0.50000 0.10000 0.01000 

Hs* Exceedance probability on an annual basis 
Combination #1: PML, no values fixed 
Combination #2: Fix US at the 10-year return level (HS=6.491m) 

Combination #3: Fix all currents at zero 
Combination #4: Fix all currents at their average value corresponding to US 
Combination #5: Fix all currents at their 10% exceedance probability level 
Combination #6: Fix all currents at their 1% exceedance probability level 

Table 5.10: MLL results for n = 10 year 
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Comb #1 Comb #2 Comb #3 Comb #4 Comb #5 Comb #6 
Relative likelihood 1.00000 0.81432 3.81E-07 0.99718 0.01936 1.79E-06 

Log-likelihood -8.00460 -8.21001 -22.78565 -8.00742 -11.94912 -21.23635 

Hs 15.50109 15.37100 15.46376 15.51917 15.07483 14.83821 

Curreit 1 2.26594 2.33651 0.00000 2.26476 2.82300 3.28919 

Current 2 2.20465 2.23254 0.00000 2.20887 2.68806 3.09676 

Current 3 
CZ 

Current 4 
1.79675 
0.64010 

1.79804 
0.64102 

0.00000 
0.00000 

1.80385 
0.64472 

2.24172 
1.02135 

2.61581 
1.32871 

ho Current 5 -0.00240 0.01167 0.00000 -0.00358 0.13466 0.24334 

Current 6 -0.06579 -0.05158 0.00000 -0.06773 -0.02557 0.00650 

Current 7 -0.06461 -0.04884 0.00000 -0.06674 -0.02472 0.00727 

Current 8 -0.06481 -0.04899 0.00000 -0.06694 -0.02488 0.00715 

Current 9 -0.06313 -0.04715 0.00000 -0.06528 -0.02300 0.00923 
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0.00977 0.01000 0.00984 0.00974 0.01054 0.01100 

0.49594 0.41996 0.99999 0.50000 0.10000 0.01000 

0.49942 0.44668 1.00000 0.50000 0.10000 0.01000 

0.50228 0.47122 0.99998 0.50000 0.10000 0.01000 

0.50347 0.48774 0.97204 0.50000 0.10000 0.01000 

0.49578 0.44506 0.48718 0.50000 0.10000 0.01000 

0.47676 0.31286 0.01368 0.50000 0.10000 0.01000 

0.47432 0.29205 0.01476 0.50000 0.10000 0.01000 

0.47430 0.29180 0.01458 0.50000 0.10000 0.01000 

0.47421 0.29097 0.01750 0.50000 0.10000 0.01000 

Hs* Exceedance probability on an annual basis 

Combination #1: PML, no values fixed 
Combination #2: Fix US at the 100-year return level (HS=15.371m) 

Combination #3: Fix all currents at zero 
Combination #4: Fix all currents at their average value corresponding to US 
Combination #5: Fix all currents at their 10% exceedance probability level 
Combination #6: Fix all currents at their 1% exceedance probability level 

Table 5.11: MLL results for n = 100 year 
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Comb #1 Comb #2 Comb #3 Comb #4 Comb #5 Comb #6 
Relative likelihood 1.00000 0.82630 9.13E-12 0.99133 0.02132 2.08E-06 

Log-likelihood -9.25389 -9.44469 -34.67318 -9.26260 -13.10200 -22.33729 

115 20.17101 19.88440 20.05093 20.24506 19.24167 18.73153 

Currentl 3.48551 3.50837 0.00000 3.49363 4.05516 4.56322 

Current2 3.65983 3.61796 0.00000 3.68330 4.10296 4.52045 

Current3 3.16873 3.09647 0.00000 3.19758 3.56899 3.94581 

Current4 1.15412 1.12094 0.00000 1.16735 1.57710 1.92606 

Current5 -0.00241 0.01219 0.00000 -0.00712 0.16983 0.30533 

- Current6 -0.11420 -0.09395 0.00000 -0.11923 -0.05851 -0.01532 

Current7 -0.11155 -0.08939 0.00000 -0.11692 -0.05658 -0.01358 

Current8 -0.11190 -0.08970 0.00000 -0.11729 -0.05686 -0.01382 

Current9 -0.10868 -0.08631 0.00000 -0.11407 -0.05358 -0.01039 
Hs* 0.00481 0.00500 0.00489 0.00477 0.00546 0.00587 

Currenti 0.49244 0.43149 1.00000 0.50000 0.10000 0.01000 

Current2 0.49839 0.46096 1.00000 0.50000 0.10000 0.01000 

Current3 0.50277 0.48647 1.00000 0.50000 0.10000 0.01000 

Current4 0.50353 0.50107 0.99579 0.50000 0.10000 0.01000 

0urrent5 0.48715 0.44678 0.48064 0.50000 0.10000 0.01000 

Current6 0.45877 0.29735 0.00155 0.50000 0.10000 0.01000 

Current7 0.45503 0.27651 0.00184 0.50000 0.10000 0.01000 

Current8 0.45499 0.27627 0.00180 0.50000 0.10000 0.01000 

Current9 0.45515 0.27551 0.00251 0.50000 0.10000 0.01000 

Hs* 

Combination #1: 
Combination #2: 
Combination #3: 
Combination #4: 
Combination #5: 
Combination #6: 

Exceedance probability on an annual basis 
PML, no values fixed 
Fix HS at the 200-year exceedance level (HS=19.884.m) 
Fix all currents at zero 
Fix all currents at their average value corresponding to HS 
Fix all currents at their 10% exceedance probability level 
Fix all currents at their 1% exceedance probability level 

Table 5.12: MLL results for n = 200 year 
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5.7 Alternative RBDC 

5.7.1 General 

In this section, other than "most likely" design combinations are determined. For 

practical design purposes, one may wish to fix one or more environmental design 

parameters. The objective is to determine the most likely combination of the re-

maining environmental parameters, when these fixed values and Wq are given. For 

both methods and the three return periods of interest, several alternative design 

combinations are determined. They can be divided into three categories: 

1. Fix H5 at the n-year return level 

2. Fix VatO 

3. Fix V at a chosen marginal exceedance probability level 

In the following, the procedure is outlined for both RBDC methods. The results 

are given in Tables 5.6-5.8 and Tables 5.10-5.12 for the inverse FORM and the MLL 

method respectively. 

5.7.2 Procedure For Forward FORM 

When forward FORM is used the most likely design combinations when j parameters 

are fixed is the solution of the optimization: 

min(IIulI JU=u) 
L 

subject to 
os(hs(u)) + J  Pser. water Cd() d(() v(u(C)) v(u(C))I dç  

tell (z) dz 

tcff(0) dz = Wq 

J o teff(z) 

The procedure for the three types of problems is as follows: 

(5.20) 
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1. When H8 is fixed at the n-year return level, the standard normal variate u1 is 

easily determined from the GEVD for H8 (5.5) and (5.14a). The optimization 

(5.20) problem is now reduced to 9 dimensions. 

2. When the current velocities V are fixed at zero, the residual currents C are 

determined from (5.6): 

C=—(aHs+b) (5.21) 

The mutually independent normal variates Y are found from the transforma-

tion (5.16). After scaling of the components of Y by their standard deviations, 

given in (5.17), the standard normal u, i = 2, ..., 10 are obtained. Conse-

quently, the vector equation (5.21) actually adds 9 equations to the optimiza-

tion problem (5.20) which is formally reduced to a constrained optimization in 

1 dimension. 

3. When the current velocities V are fixed at a chosen marginal exceedance prob-

ability p, the residual currents Cj are: 

cj='(p) oa (5.22) 

where aci is the standard deviation of the residual current C., and listed in 

Table 5.4. The actual current velocity vj is determined from (5.6). Inversion 

of (5.16) gives yj from where ui is easily determined through scaling by the 

standard deviation Oy, = %/ (5.17). Inversion of A (5.16) is readily obtained 

since the matrix A is orthonorma].. Consequently, the optimization problem 

(5.20) is reduced to a constrained optimization in 1 dimension only. 



120 

5.7.3 Procedure For The MLL Method 

When the MLL method is used, the most likely design combinations when j param-

eters are fixed is the solution of the constrained optimization problem: 

maxH,v (hs,v I Xj = xj) 
os(hs) + 1L fZ pserwatorCd(C)d(C)V(C)IV()Idc 

subject to  0 L teff(z) dz = W q 

10 tff(0) dz tff(Z) 

(5.23) 

where X3 stands for those original variables ifs or V which are fixed. Re-arrangement 

of the equations is avoided. In the MLL method, the dimension of the optimization 

is directly reduced. 

1. The ifs-value corresponding to the n-year return level is readily available from 

the GEVD (5.5). The dimension of the optimization (5.23) is reduced to 9. 

2. When the current velocities V are fixed at zero, the residual currents C are de-

termined from (5.21). The optimi9ation is directly reduced to a 1-dimensional 

problem. 

3. When the current velocities V are fixed at a chosen marginal exceedance prob-

ability p, the residual currents Cj are: 

cj= 1(p) oc (5.24) 

where oc is the standard deviation of the residual current C, and listed in 

Table 5.4. The actual current velocity vi is immediately determined from (5.6). 

Consequently, the optimization problem (5.23) is reduced to a constrained 

optimization in 1 dimension only. 
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5.7.4 Discussion 

The MLL method avoids the transformation of the original basic variables to the 

standard normal space. This results in a more direct algorithm when other than 

most likely design combinations have to be determined. 

Even though the 9 residual currents are assumed jointly normal in the original 

variable domain, the transformation into mutually independent standard normal 

variates requires the determination of the eigenvalues and eigenvectors. It must be 

stressed that this is numerically difficult in this particular application. The condition 

of the matrix Ecc is given as the ratio of the largest to the smallest eigenvalue. In 

this application ).m/.\min = 32 x 106, which indicates that 7 digits may be lost 

in the calculations. When the MLL method is used a matrix inversion is required, 

which is also prone to round-off error. 

As outlined in Chapter 2, the value for can be interpreted as a measure 

for the relative occurrence likelihood of the design combination with some fixed 

parameters compared with the occurrence of the most likely design combination. All 

design combinations result in the same response level Wq, with exceedance probability 

q, however. 

When the MLL method is used for this purpose, a relative likelihood of both 

design combinations is obtained at once. This is a relative probability density, rather 

than a relative probability. 

5.8 Conclusions 

Since the current velocities V are very small over the bottom part of the riser, the 

significant wave height H5 is the governing variable in this drilling riser application. 

This results for almost all analyzed cases in a PML (or minimal distance point when 

inverse FORM is used) where the H5-exceedance probability level is very close to 
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the one selected for the response angle Q. The currents are then very close to their 

mean value. 

Only for the 10-year return period, the h-value obtained from inverse FORM 

does not correspond to the 10 year return level for Hs. This results in a critical 

response Wo.1,InvFoRM which is significantly larger than the more accurate value which 

is obtained directly from an extreme value analysis on the generated time series for 

Q. When Hs is fixed at the 10 year return level, the relative likelihood of the design 

combination yielding this W0.1JnvF0RM is very small (see Table 5.6). The bottom 

currents need to be extremely high (marginal exceedance probability almost zero) to 

compensate for too small an hs-value in this case. 

On the other hand, fixing the currents at their mean level, yields almost the 

same design combination as at the PML, i.e. for the full optimization problem. This 

results in relative likelihoods very close to 1. 

When the currents are fixed at their 10% level the relative likelihood of this design 

combination drop to about 1% compared with the PML. If the current velocities are 

fixed at the 1% exceedance level, this results in relative likelihoods of about iO. 

5.9 Summary 

In this chapter, the performance of the RBDC methods is analyzed for a practical 

application where data records are available for the basic variables rather than a 

joint distribution. In this particular application, the LSF is known in algorithmic 

form only. 

When inverse FORM is the used basic variables must be transformed into the 

standard normal U-space. Even though the residual currents C are assumed to be 

jointly normal, the transformation to mutually independent, standard normal vari-

ables is delicate. It requires to determine the eigenvalues of the variance-covariance 
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matrix ECC. Since the Ecc is ill-conditioned, this is not possible without numerical 

difficulty. 

When the MML method is used, the actual RBDC development is uncoupled 

from the determination of the critical response level W q. This opens the possibility to 

determine this response W q directly from an extreme value analysis of the generated 

time series for the response ft 

For this application, other than most likely design combinations, which result 

in the same critical response W q, are determined as well. Both a FORM and MLL 

approach to this problem are given and the results are compared. A solution using 

the MLL method is computationally attractive since the transformation of the basic 

variables into the standard normal space is avoided. 

The relative likelihood of joint occurrences of extreme currents and significant 

wave height is very low. This indicates that for this application associating the 

environmental design parameters with the recurrence interval of the response is more 

appropriate than an extreme event philosophy: there is no need to combine extreme 

sea states with extreme currents. This is in agreement with results reported by 

Prince-Wright for combined wave and current loading in TLP design [47]. 



Chapter 6 

Conclusions 

6.1 Summary and Conclusions 

Chapter 2 describes two, conceptually different methods to develop RBDC. The 

inverse FORM method maximizes the response along a,3-contour surface, i.e. all 

combinations of input variables with exceedance probability q. These contours are 

response-independent. The MLL method searches for the most likely point (PML) 

on the iso-response curve for the response Yq. 

The inverse FORM method is exact only for linear limit state functions g(u). 

Additionally, the basic random variables must be transformed into the standard 

normal space. The MLL method is more versatile, but the critical response level y 

must be determined from a separate analysis. 

Chapter 2 also presents approximate, second moment formulations which account 

for model uncertainty. Use of these techniques avoids the explicit introduction of 

additional random variables, which would increase the dimension of the problem, to 

describe them. 

The methods are applied and compared in Chapters 3, 4 and 5. In these ap-

plications the computational complexity is gradually increased. Only joint normal 

distributions are used in the moving load problem in Chapter 3. In Chapter 4, a two-

dimensional application of practical interest is made. A two-dimensional Rosenblatt-

transformation is required for the inverse FORM formulation. Even though the con-

ditional distribution of the currents is joint normal, this transformation becomes 

computationally involving in the riser application presented in Chapter 5. On the 

other hand, the critical response level Yq, which is required for the MLL method, 

124 
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can be determined straightaway from an extreme value analysis. The MLL method 

avoids this computationally expensive Rosenblatt-transformation. 

The performance of both the inverse FORM and MLL method for RBDC develop-

ment in the three applications presented in this thesis is generally satisfactory. Based 

on the experience gained from the applications, some general conclusions concerning 

the performance of each method can be drawn: 

• The approximation error in the FORM method is mainly due to the lineariza-

tion 9L(u) of the LSF g(u). A first-order approximation g(u) of the limit 

state function gu(u) may be inaccurate. An example is given in the moving 

load application (Figure 3.9). Because of the transformation to the standard 

normal U-space, the degree of non-linearity will usually increase when the orig-

inal basic variables are non-normally distributed. A first-order approximation 

of the LSF may then result in an inaccurate estimate for q. However, for RBDC 

development purposes the error on the critical response yq is of interest rather 

than the error on the actual exceedance probability q. It is shown that the 

error L q is proportional to the error A In q rather than Aq. When the slope 

L'(yq) (3.33) of the log-exceedance function L at yq is not too small, a first 

order estimate of the true exceedance probability may be sufficiently accurate 

even for a non-linear LSF. 

• In the MLL method the actual RBDC development is independent of the 

method used to compute the critical response level yq. Consequently, a vast 

range of more performant methods is available to determine the response level 

Yq In the most general case, this level is to be obtained iteratively as the 

solution of: 

L(x,yq)≤0 fx(x)dxq (6.1) 

Since Yq is located in the tail of the distribution for the response Y, this equation 
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is best solved in the (L, y)-domain. The MLL method is theoretically exact, 

but the iterative solution of (6.1) may be computationally expensive. 

As a result, the following practical recommendation can be made: 

• The inverse FORM method is computationally efficient. An easy way to check 

its accuracy consists of calculating the RBDC for two different risk levels q1 

and q2 and plotting the log-exceedance function L. The slope L' is then a 

measure for the error on the RBDC. 

• In some particular applications, however, the critical response level can easily 

be determined from an extreme value analysis. In this case, the MLL method 

is a valuable alternative, since the transformation of the basic variables to the 

standard normal space is avoided. 

When modeling uncertainty must be considered in the RBDC development, a 

second moment formulation is justifiable as long as this model uncertainty does not 

govern the response. 

• Both statistical uncertainty and actual model inexactness can be handled in 

this way. The second moment formulation provides a convenient format to 

account for the discrepancies between experimental evidence and model pre-

dictions as well. In this way a clear and formal incentive is provided towards 

designers and code developers to use more accurate models. 

• If the inverse FORM method is used an inflated contour level ,8 is determined 

from estimated omission sensitivity factors (2.24). In this method the tar-

get reliability index is modified such that the reduced model, which does not 

account for model uncertainty, yields the correct response. 
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• Ignorance factors on the other hand change the limit state function such that 

the reduced model yields the correct target reliability. 

• The applications show that both approaches are equally accurate. An ignorance 

factor is conceptually more appealing since only information from the reduced 

analysis is required. On the other hand, the omission factors in the standard 

normal U-space are easier to incorporate in the inverse FORM method. 

6.2 Recommendations For Future Research 

The applications presented in this thesis clearly show the power of the RBDC. Since 

the usefulness of this methodology is now established, extensions of this inverse 

reliability technique to different fields of application are desirable. In addition, more 

efficient and/or accurate algorithms need to be developed: 

RBDC Development For Time-Dependent Problems 

The methods used so fax are restricted to time-invariant reliability problems, which 

can be formulated in terms of basic random variables. In a lot of practical applica-

tions, the combined effect of several time-dependent load processes can not accurately 

be described using time-invariant methods. 

Consequently, there is a need for an extension of these inverse reliability tech-

niques to time-dependent applications. 

RBDC Development In The Original Domain 

The performance of the inverse FORM method in the applications considered in this 

thesis suggests that first-order reliability techniques may be more accurate in their 

"inverse" than in "forward" direction. 

Unfortunately, the transformation to the U-space may become difficult and nu-

merically ill-conditioned when the basic variables are no longer independent. This 
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justifies the development of asymptotic approximations for the evaluation of the 

probability integral in the original variable domain [5], [18]. 

Their format should be modified to allow for "inverse" reliability application. 

RBDC Development For Structural Systems 

In this thesis it is assumed that failure occurs due to violation of one limit state func-

tion (LSF) only. This assumption essentially limits the applicability of the methods 

to structural components. An extension to multiple limit state problems is required 

to develop RBDC in terms of overall system reliability rather than on the component 

reliability level. 

Efficient Algorithms 

In the applications presented here, general purpose optimization routines are used. 

More efficient algorithms taking advantage from the particular structure of the math-

ematical inverse reliability program (2.13) are necessary when the problem complex-

ity increases. Two examples for inverse FORM may be found in [14] and [58]. 

For non-linear LSF the inverse FORM method may be inaccurate. To overcome 

this limitation a mixed inverse FORM/SORM algorithm is tentatively suggested. 

SORM is not suited for an inverse reliability formulation since the failure probability 

estimate does not only depend on the reliability index /3 but also on the curvature 

at u. The mixed algorithm works as follows: 

1. Perform an Inverse FORM computation to find u*FORM 

2. Calculate the main curvatures and find the required correction on the failure 

probability due to the non-linearity of the LSF g (u). Determine the corrected 

reliability index /3* 

3. Find a better estimate for u* from an inverse FORM using 3* 
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The underlying idea is that the main curvatures at the new design point uwill 

not be too much different from the ones at the first order design point If 

desired, iteration on steps 2-3 is possible. It is believed, however, that this will not 

be necessary. As a matter of fact, the idea to correct the reliability index based 

on a comparison of the first-order probability approximation and a more accurate 

estimate is not restricted to SORM only. A further generalization includes the use 

of any method in step 2. 

Multiple PML problems can tentatively be handled in the same way, even though 

there is only a heuristic justification in this case. For multiple PML problems the only 

method which guarantees to find the exact response level is crude MCS. Combination 

with the MLL method then results in the RBIJC. 
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