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Abstract 

In this thesis an analytical electrical transmission 

line model for an isolated buried pipeline is developed. 

Elements of the transmission line model are derived 

mathematically using both field and circuit theory methods. 

Propagation along the coated pipeline in a multi-layer 

earth is studied analytically and modeled with a computer. 

Performance of the transmission line is analyzed and the 

results are illustrated graphically. It is shown that 

electrical methods, such as time domain ref lectometry, can 

provide the pipeline operators with a powerful analytical 

tool to monitor pipeline coating integrity. 
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CHAPTER 1 

INTRODUCTION 

1.1 GENERAL 

In this study an analytical electrical transmission 

line model for an isolated buried pipeline is developed. 

Oil and gas pipelines have been employed as electrical 

transmission lines for transmission of information [1.1]. 

The performance of this transmission channel presently is 

determined empirically without an overall analysis. A 

thorough analytical study should be performed on the 

pipeline as a transmission line to determine the maximum 

capacity of the channel before the transmission equipment 

is built and installed. 

In addition, my goal is to determine the feasibility of 

using electrical methods for detection of holidays (holes) 

and shorts in the pipeline corrosion protection coatings. 

The approach is to treat the pipeline, shown in FIG.1.1., 

the pipeline coating and the surrounding earth as an 

electrical transmission line. This transmission line then 

can be studied analytically and modeled on a computer. 
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ground surface 

pipe coating 

carrier pipe 

FIG.1.1 UNDERGROUND PIPELINE. 

In the modeling and analysis process it will be assumed 

that pulses of electrical voltage are applied to the 

pipeline with respect to the surrounding ground. Anomalous 

reflections of voltage and current back on the pipeline may 

be indicative of coating faults. Corrosion occurs when a 

hole in the protective coating allows contact with the 

surrounding earth [1.2]. This electrical contact may cause 

anomalous electrical behaviour of the transmission line. 

Time domain ref lectometry (TDR) may have application for 

the detection of these contact points. The magnitude of 

the reflected pulse may indicate the extent of a coating 

fault and the line delay may indicate the distance from the 

voltage injection and measurement point. Present holiday 

detection schemes are laborious and expensive and often. 

require that the pipeline be taken out of service. Large 

holidays in the pipeline coating, if left for a long time 

usually lead to a development of hole in the pipeline which 

can lead to loss of product and often create a dangerous 
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or even catastrophic situation, injurious to public safety 

or the environment. A successful electrical method would 

provide a 

pipeline protection system, thereby 

economical alternative for monitoring the 

early signs of corrosion and leaks. This 

continuous method for testing the integrity of 

providing an 

pipeline for 

is a general 

industrial problem and it is a prime concern to pipeline 

operators. A study of electrical methods for detecting a 

small holiday is a worthwhile approach even if, at first, 

the perceived probability of success is significantly less 

than unity. 

In this study each element of the transmission network, 

the pipe, the pipeline coating, the surrounding earth, the 

shorted pipeline casing and ground bed is studied 

analytically and modeled with the aid of a computer. 

In this study an IBM PC is used in conjunction with 

Microsoft Fortran, Microsoft Basic and Microsoft Chart for 

calculations and graphical representation of the results. 

The pipeline is isolated from station to station, other 

lines and the ground of the existing cathodic protection 

system as illustrated in FIG.1.2. This allows the 

electrical measurements to be made on individual section of 

the pipeline. 
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ground beds 

tankage 

cathodic 
protection 
equipment 

pumping 
equipment 

.e. c. 

electrical 
connections 

isolating pipeline 
flange under consideration 

up to 30 Kin 

pipeline 
 >< 

station 1 equipment pipeline station2 
 >< ><  

FIG.l.2 TYPICAL SEGMENT OF A PIPELINE 
SHOWING THE CATHODIC PROTECTION SYSTEM. 

This isolation will also assist in the operation of the 

pipeline as an electrical transmission line. Cathodic 

protection is required by regulations of several 

governmental agencies to provide safe operation and to 

attempt to prevent all accidents caused by the influence of 

corrosion. 

1.2 ANALYTICAL APPROACH 

Derivation of exact closed-form analytical solutions of 

electromagnetic problems dealing with cylindrical current 

carrying conductors in the presence of earth is a 

formidable task, even for simple conductor geometries. 
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Analysis using closed-form algebraic expressions is largely 

intractable, owing to the large number of complicated 

expressions encountered. It is possible to simplify the 

problem considerably by making a number of judicious 

assumptions. Over the years there have been several papers 

relevant to the chosen topic in the area of power line 

grounding. Some of them are based on the circuit theory 

approach which is derived from Maxwell's equations ( or 

field theory) using some of the following assumptions: 

- The conductor is infinitely long. 

- The conductor is located in the dielectric medium 

or is well-insulated. 

- The frequency is low. If high frequencies need 

to be considered, then a lossless conductor is 

assumed or at most, the distributed lossy circuit 

approach is used. 

- Propagation of current in an electrically long 

conductor is assumed to follow a decaying 

exponential law [1.3, 1.4, 1.5]. 

The circuit theory approach can provide simple and 

accurate solutions to a number of problems which 

otherwise are impossible or extremely difficult to solve 

by field theory based methods only. 

Other work that is relevant to this research are field 

theory based methods which have been developed for the 
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application of electrical prospecting methods. Electrical 

prospecting methods [1.6, 1.7] generally assume current 

sources of infinitesimally small spherical dimension such 

as point sources, electric and magnetic dipoles or 

perfectly insulated conductor loops located on the surface 

of soil. Direct current or very low frequency excitation 

current is often used to achieve good subsurface depth 

penetration. 
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CHAPTER 2 

ELECTRICAL MODEL OF THE PIPELINE 

2.1. GENERAL 

The present chapter, deals with the derivation of 

expressions relating to the distributed circuit of an 

isolated buried pipeline. It involves methods that are 

outside the mainstream of conventional transmission line 

theory. Circuit analysis using the circuit element 

concepts of . lumped resistance, inductance and capacitance, 

almost invariably omits any reference to ferromagnetic 

metals as the conducting circuit element. Any transmission 

line theory that is developed must account for the magnetic 

properties of the pipeline and the highly distributed 

nature of the ground return. The problem must then be 

treated and solved using a method that provides the 

engineer with a systematic analysis and design tool. 

The traditional manner of treating this problem is to 

solve differential equations with boundary values based on 

Maxwell's equations. These results •are used to produce 

values of distributed and lumped resistance and 

conductance. A wide variety of structures, including 

circular cylinders have been treated already, but the 

mathematical form of results is reasonably elementary only 

for direct currents or voltages. When the frequency is 
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larger than zero, even for the idealized geometries, 

calculation of resistance and reactance requires 

transcendental mathematical functions, with the consequence 

that approximate formulae and graphical representations are 

widely used. Computer analysis is needed and is applied in 

this study to obtain adequate solutions to the transmission 

line problem. The results are presented graphically. 

2.2. DISTRIBUTED RESISTANCE AND INTERNAL INDUCTANCE OF 

THE PIPE 

The most widely used transmission line conductors are 

solid homogeneous wires and tubular conductors of circular 

cross-section. The analysis that follows, shows that an 

approximate solution in functional form can be found for 

the distributed resistance and distributed internal 

inductance of a homogeneous tubular conductor ( ie. the 

pipe), for all frequencies at which such a conductor can be 

used as transmission line. 

2.2.1 SKIN EFFECT 

When alternating current flows in a conductor, the 

alternating magnetic flux within the conductor inducs eddy 

currents. These eddy currents, cause the main current 

density to decrease in the interior of the conductor and to 
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increase at the outer surface. The effect, known as the 

skin effect, becomes more pronounced the higher the 

frequency, or the larger the cross section of the 

conductor, or as in our case, when a ferromagnetic 

conductor material is used. 

2.2.2 HISTORICAL PERSPECTIVE 

The problem of determining the resistance and 

inductance of a round conductor was first discussed by 

Maxwell in 1873 (2.1]. He adapted an infinite series to 

describe the current density at any point of the cross 

section by which the effective resistance of the conductor 

can be computed at low frequencies. The importance of the 

results given by his formulae was not fully appreciated at 

that time. In 1884 Oliver Heaviside discussed the 

"throttling" effect in a core, that is, the increased 

resistance, the reduced inductance and the tendency for the 

current to concentrate near the surface. He used two 

functions N and N in his solution, which Kelvin 

subsequently called the ber and bei functions. Oliver 

Heaviside made a very important contribution by providing 

the approximate formula for the effective resistance of a 

hollow cylindrical conductor. He also gave general 

descriptions of how the current-density varies in the 

conductors. Three years later ( in 1887) Lord Kelvin gave a 
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practical solution of the effective resistance of a solid 

conductor. Joseph Thomson also obtained a practical 

solution for high frequency current distribution. In 1909 

A.Russel [2.1] obtained the current density variation by 

forming a differential equation connecting the current and 

the cross section dimensions of the conductors. In 1918 an 

alternative method was described by H.B.Dwight [2.3], in 

which the effect of the magnetic field was presented. 

Successive increments of current and voltage drop were 

calculated, to keep the voltage uniform over the cross 

section. The radius was stepped in small increments which 

allowed the formation of a convergent series, providing the 

established result for a round wire and for special cases 

of tubes and straps. This paper also gives the asymptotic 

formula for the skin effect of a tube. The precise method 

of calculating skin effect in an isolated tube is given by 

Dwight [2.4] in 1923, then in 1929 he provides [2.5] tables 

of Bessel functions of zero and higher orders for a.c. 

problems. In 1934 McLachlan [2.6] compiled a book on 

Bessel functions for engineering applications, which was 

revised in 1955, providing substantial information about 

the general nature of these functions. 
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2.2.3 ANALYTICAL SOLUTION 

The quantitative analysis of the skin effect in the 

pipe starts with the application of Faraday's law and 

Ampere's law to a solid circular conductor's longitudinal 

cross section which is illustrated in FIG.2.1. This 

approach is described in [2.7], therefore only some 

intermediate results and the final formulae will be given 

here. The overall method presented in this chapter is 

original to this thesis. The analysis for the insulated 

buried pipe has been performed by means of a computer 

simulation in the frequency range of interest. 

 (7> 
a  

I 

z 

FIG.2.l LONGITUDINAL CROSS SECTION 
OF SOLID CIRCULAR CONDUCTOR. 

The requirement in this analysis is that an external 

source causes current to flow in the z direction. The 

resulting current density j at any point in the 

conductor's cross section is in general a function of r, 
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and for reasons of symmetry it is not a function of angular 

position around the center of the conductor. The return 

current path is many radii away so that the electric and 

magnetic fields are nearly uniform around the pipe. This 

is proved to be true for the case under consideration and 

is illustrated in the next chapter ( see FIG.3.4.a and b). 

The purpose of the analysis is to find the manner in 

which J(r) varies with r, and from this result to find the 

effective resistance and internal inductance of the 

conductor per unit length as a function of frequency, cross 

section and pipe material. 

At any radius r in the conductor there is an electric 

field E(r) associated with the total current density J(r) 

according to the time-harmonic electromagnetic relation 

curlH = cE + EdE/dt 

= (a + j)E 

Jz = aE z  + jwEE (2.1) 

where a is the conductivity and € is the permittivity of 

the conductor. For the metals used in pipelines e is the 

same as for free space (€ = 8.85.1012 farads/m) . Since 

the conductivity of the steel pipe is about 4.106 S/rn, 

it can be seen that for all practical transmission line 

frequencies the displacement current is negligible and the 

current density becomes 



13 

= aE = J. (2.2) 

To further simplify expressions, the J(r) = J notation 

will be used, where J is time harmonic with a factor 

exp(jwt). 

Voltage is induced in the rectangle of FIG.2.1. because 

of the time-changing magnetic flux going through it. This 

flux is produced by the total conductor current contained 

within the radius r. 

E.dl = - d/dt (Faraday's Law) (2.3) 

where 0 is the flux linking the path and is given by 

q=1 I3dr . (2.4) 
Jr 

Using E = J/a, J = Jm exp(jwt), B = B211exp(jwt) and B In = aH In 

(2.3) becomes with the substitution of (2.4) 

1/o dJ3/dr = jwpH In . (2.5) 

The second necessary equation is obtained by applying 

Ampere's law and writing an equation for the enclosed 

current around the circular path at radius r 
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r T2rr 2irrH =  dr (Ampere's Law) (2.6) 

Using J = J111exp(jwt), H = H in exp(jwt), (2.6) becomes 

ro-Tin 
2rH 111 = 2r dr (2 . 7) 

Taking the derivative with respect to .r and rearranging, 

this becomes 

dHm/dr + 1/r H in = Jin (2.8) 

To eliminate Hm/ we solve (2.5) for RIII and substitute the 

result into (2.8). This yields the differential equation 

for the current density 

d2J1/dr2 + 1/r dJ1/dr = j wji (2.9) 

Equation (2.9) is a special form of Bessel's 

differential equation which is usually written as 

d2J/dr2 + 1/r dJ/dr - jm2J = 0 (2.10) 

where 

in = 
(2.11) 
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The solution of the Bessel's differential equation 

which follows is well known for the solid round conductor 

and the hollow tube. For a tube of inner radius q, 

equation (2.10) has two independent solutions which are 

known as Bessel functions of order zero of the first and 

second kind [2.4, 2.6] 

J = (A+jB) (ber(mr) +jbei (mr)) + (C-I-iD) (ker(mr) +jkei (mr)) 

(2.12) 

where A,.B,C and D are constants with values presently 

undetermined. 

The quantity (ber(mr)+jbei(mr)) is the Bessel function 

of the first kind, order zero, and the quantity 

(ker(mr)+jkei(mr)) is the bessel function of the second 

kind. Their values are calculated in a computer program 

shown in Appendix B, from a series described in Appendix A 

and are illustrated in FIG.2.2.a-d. Note that in these 

figures x = mr. 

To determine the constants (A 4- jB) and (C + jD), we 

require two equations. These are obtained using boundary 

conditions at r = cj, and r = a. 

At the inner surface of radius q, there is no ernf 

induced by the magnetic field, so dff/dt = 0 and from (2.5) 

1/cT dJjdr = jwpHm = 0, accordingly from (2.12) cU/dr = 0 

and therefore 
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(A+jB) (ber' (mq) +jbei '(mq)) + (C+jD) (ker' (mq)+jkei '(mq)) =0 

(2.13) 

Since ber'(mr) = d ber(mr)/d(mr), etc. [2.3], therefore 

(C+jD)/(A-I-JB) = -(ber' (mq)+jbei '(mq))/(ker' (mq)-/-jkei '(mcj-)). 

(2.14) 

These complex quantities are also computed using the 

attached computer program. 

The total current in the pipe is 

rq 2irrJdr (2 . 15) 

rqI 

=2ir (A+jll) (ber(mr) +jbei (mr) ) + (C+jD) (ker(mr) +jkei (mr)) Jrdz-

Using the following integrals [2.3] 

1 
I 
I 
I 

r ber(mr) dr = r/m bei '(mr) 

r bei(mr) dr = -r/m ber'(mr) 

r ker(mr) dr = r/m kei '(mr) 

.r kei(mr) dr = -i-/rn ker'(rnr) 
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and rearranging, we get 

I = (2 ir/m) (r(A+jB) (bei '(mr) -jber' (mr)) + 

r(C+JD) (kei '(mr) -jker' (mr)) 

The quantity in the square brackets is equal to 0 when 

r = q, as per ( 2.13), therefore 

I = (2ira/m)((A+jB) (bei '(ma) -jber' (ma)) + 

(C+jD) (kel '(ma) -jker' (ma))] . (2.16) 

Let Z be the effective impedance per unit length of the 

pipe at a certain frequency due to its effective a.c. 

resistance R ac and its inductance X caused by the flux 

inside the metal. The voltage at the surface of the pipe 

is found from the surface conductivity and the surface 

current density (2.12) 

V = IZ = (1/(7)J 
r=a 

=71/a) ((A+jB) (ber(ma) +jbei (ma) ) + (C+jD) (ker(ma) +jkei (ma))]. 

(2.17) 

The resistance of the pipe to direct current is 

Rdc = 1/(air(a2 -q2 )) 

Therefore 

(2.18) 
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IRdc = 2a/(mc7(a2 -q2)). 

(A+JB) (bel' (ma) -jber' (ma))+(C+jD) (kel '(ma) -jker' (ma)) 

From (2.17) and (2.19) 

ZJRdC = [jm(a2 -q2)/2a]. 

(ber(ma) +jbei (ma)) +(C+jD)/(A+jB) (ker(ma) +jkei (ma)) 

(2.19) 

(ber' (ma)+jbei '(ma))+(C+jD)/(A+JB) (ker' (ma)+jkei '(ma)) J 

(2.20) 

The above equation gives the ratio ZJRdC as a complex 

quantity. The real part is equal to RaC/RdC( the skin 

effect resistance of the pipe, and the imaginary part gives 

the internal inductance of the pipe as a function of 

frequency, wall thickness and pipe material. 

the terms in the Bessel series become very 

numerical overflow, at about 20 Hz for 

Therefore an approximate exponential formula 

The values of 

large causing 

a 20" pipe. 

[2.5] is used 

instead of the precise calculation, for arguments larger 

than 10. This causes no noticeable discrepency in the 

final values. For example ber(x) function gives the 

following two values: 

calculated 

calculated 

where the 

graphical 

by series be-r(10) = 138.840 

by exponential approximation ber(10) = 138 . 852, 

difference is less than that noticeable in a 

representation. Both the precise and the 

exponential approximation formulae are given in Appendix A 
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from reference [2.5]. 

FIG.2.3.a,b are provided to illustrate the skin effect 

of various pipe thicknesses, as RaC/RdC is plotted against 

mt or the square root of the frequency. in is defined by 

equation (2.11) and t is the pipe wall thickness t = a - q. 

The pipe permeability is assumed to be constant, r = 500. 

The curve of RaC/RdC becomes approximately a straight line 

for high frequencies, indicating that the asymptotic 

solution given by Dwight [2.3] can be applied for values of 

mt greater than 4. 

The asymptotic formula given below in expression (2.21) 

is given by Dwight [2.3] for the skin effect, which can be 

derived from expressions for the ber and ker functions 

given by Savidge [2.2] and is 

RaiRd c = (mt(q + a)/(2aV2)] (1 + 1/(maV2) + 3/(8m2 a2)] 

(2.21) 

This formula gives the curves for nit > 4 in FIG.2.3.a,b. It 

may be observed that the term 3/(8m2a2) in (2.21) is 

positive, therefore the curves given by (2.20) lie a little 

above their asymptotes when nit is greater than 4. 

Two cases have been calculated to illustrate the skin 

effect on both the resistance and reactance ratios, for 20" 

and 8" pipeline, and the results are shown in FIG.2.4.a-b. 

The results for the resistance ratios only are shown in 

FIG.2.4.a separately, to provide a simpler picture. 
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2.3 DISTRIBUTED CAPACITANCE OF THE PIPE 

The derivation of an expression for the distributed 

capacitance of an ordinary transmission line is usually a 

simple process, because this quantity is a function of the 

insulating material physical dimensions and dielectric 

constant only. However, in our case the physical 

dimensions are not necessarily fixed; distance between the 

outer surface of pipe coating and the hypothetical bounding 

surface of the ground return is a function of frequency. 

The skin depth will be taken to be the equivalent ground 

return distance D as shown by Wait (2.8]. Derivation for 

the equivalent return distance D is provided in the next 

chapter. 

The ground return current gives rise to inductive and 

capacitive effects. These effects are correctly predicted 

if the return ground current is considered to flow at the 

bounding surface at radius Interpretation of this 

value can be best visualized with the aid of FIG.2.5. 

Capacitance distributed around the pipe is connected at D 

equivalent return distance to a hypothetical bounding 

surface, that is coaxial with the insulated pipe, by R. 
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pipe coating 

FIG 2.5 INSULATED PIPE AND GROUND RETURN. 

7-

bounding surface 

t 

I 

The resistance value of R1 is determined by the 

following formula 

R1 =V/I1 = fD 1 1 
dr = - ln(D,/b) 

2irro 2ira 

where X is the shunt current per unit length 

o• is the the ground conductivity 

Assuming a = 0.01 S/rn 

(2.25) 

and Dg = 300 in at 100 Hz, 

equation (2.25) gives R = 113 Ohm. 

The capacitive reactance X is calculated by 

= (1/i WC) (2.26) 

where the capacitance C between the two conductor elements, 

pipe and earth, is the ratio of the magnitude of the equal 
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and opposite charges on them to the potential difference 

produced by the charges. 

L.C=z,Q/(Vb - V) a 

and 

(2.27) 

fb   = ra Vb - Va r  -E (r) dx- dx- 1  
2€ 2€ e Ox- Or in (b/a) 

where E is the permittivity of free space 

is the permittivity of the coating 

is the longitudinal charge density, q1 = 

The distributed capacitance of the pipe is 

2ir ' r 
C = AC/AZ = (/.Q/i,.Z)/(Vb - V O ) = 

in (b/a) 
(2.28) 

Using (2.26), for a 20" pipe and 100 Hz, XC = 60 KOhrn. 

From here and from equation (2.25) we see that R1 can be 

neglected for all practical earth resistivities and 

transmission line frequencies. Equation (2.28) is 

integrated into the final transmission model in Chapter 5 

and calculated in the attached computer program in 

Appendix B. 

It should be noted that identical results to (2.28) can 

be derived using a field theory approach, for insulated 

underground conductor as shown by Wait [2.8]. However, the 

derivation by the above method is much simpler. 
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CHAPTER 3 

ELECTRICAL MODEL OF THE GROUND RETURN 

3.1 GENERAL 

The earth has been used as a conductor for electrical 

currents by early electrical power and communication 

systems. However, after a brief period of preference for 

sending return currents through the ground, great 

difficulties and hazards were found in all branches of 

electrical engineering [3.1]. The point which was 

overlooked was that a means had to be provided to pass 

current into and out of the earth, and that these means, in 

the form of plates, rods or pipes, have a definite 

resistance [3.2]. By the end of the 19th century, 

experience and analysis had indicated that long telephone 

circuits worked best when constructed of two copper wires, 

mounted as spaced open-wire pole lines, and the use of the 

ground-return was abandoned because of its susceptibility 

to crosstalk and to inductive interference from power 

lines. It also became obvious in power transmission that 

the earth should be used for fixing the neutral point of 

the electrical system as a return conductor, and that the 

earth resistance has to be included as part of the circuit 

[3.3]. Later applications for calculation of transients on 

power lines required further examination of the grounding. 
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3.2 IMPEDANCE OF THE GROUND RETURN 

When alternating current flows in a pipeline, the 

return current in the ground does not take the shortest 

path between grounding points at the ends of the line, and 

it does not spread out to great distances from the pipe as 

cathodic protection current does. Instead, it follows the 

route of the pipeline, no matter how circuitous that may 

be, and it spreads out sideward and downward only to a 

limited extent, to avoid any large open loops. This 

behavior of the ground current can be explained by saying 

that the current density is greatest in the paths of lowest 

impedance and that the reactance, which is the predominant 

component of impedance, is lowest for those paths nearest 

to the pipe. This is a typical example of skin and 

proximity effects. 

3.3 CARSON'S APPROACH 

The importance of ground return parameters of 

transmission lines has been recognized in 

telecommunications theory and is explained by J.R.Carson's 

fundamental paper [3.4], giving expressions for the line 

return parameters with ground return for over-head 

transmission lines. This is the most widely known and 
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accepted approach since 1926. He made the following 

assumptions: 

- The ground resistivity is finite and uniform. 

- The ground surface lies in a horizontal plane 

(parallel to the conductor or conductors). 

- The frequency is low enough so that the 

capacitive displacement currents in the ground 

are negligible. 

- The ground currents are parallel to the 

conductors. 

The last assumption is equivalent to saying that end 

effects are negligible. 

The calculation of line impedances according to Carson 

is based on an equation which contains an infinite integral 

with a complex argument which accounts for the effect of 

the finite conductivity of the ground. Carson proposed a 

solution for the integral ( evaluated by R.M.Foster) which 

consisted of an infinite series. He also gave 

approximations for low and high frequencies. 

The derivation will not be given here, but the 

resulting approximate formulae for uniform-earth and low 

frequency applications are equivalent to those given below. 

Carson's original formula for self impedance with an 

earth return is 
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ZS = Z C  + (jw,/(2ir))1n(4h/d) + 4w(P + jQ) 

where: 

ZC = r + jx = conductor internal impedance, from 

equation (2.20) 

d = diameter of the conductor 

h = conductor distance above ground 

P and Q are correction terms, which account for the 

finite conductivity of the ground and are functions of the 

infinite integral 

je 

P + jQ = ro + ( 2 + jwa) 
cIA. 

To evaluate P and Q, one calculates a quantity called 

the equivalent depth of ground return [3.5, 3.6], defined 

as 

Dg = 660(1/(cTf)) 1"2 meters 

where a is the ground conductivity in S/rn, and f is the 

frequency in Hertz. Comparison of the above equation with 

the skin depth or the equivalent depth of penetration 

reveals that D = 1.315, where & is the skin depth. The 

reactance component corresponding to Dg is 
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X/1 = 2•91•10 3 •f•lfl(Dg) ohms/Km (3.1) 

where Xg/l is the ground component of reactance in ohms/kin, 

and D is expressed in meters, the same units that are used 

for the other components of reactance. Since the common 

values of ground resistivity are between 10 and 1000 meter-

ohms, with about 100 meter-ohms as a median value, at f-1O0 

Hz D. is commonly between 300 and 3,000 meters, with the 

median value of about 900 meters , and X/i at f-100 Hz 

ranges from about 1.0 to 1.2 ohms/Km. 

The approximate formula of self-impedance of a single 

over-head wire for low frequency uniform-earth application 

is given by Clarke [3.5] 

Z/1 = R/1 + R/1 + dR/i + j(X + X + dXg)/i (3.2) 

where : R/1 is the resistance of the conductor 

R/i =10 3.f is the resistance of the ground 

return path in ohms/Km 

X/1 is the conductor component of reactance 

dR/i is the earth resistance correction term 

dX/i is the earth reactance correction term 

dR/i = 1O 3.4.04f(-P/(32) + P2 (0.6728 + ln(2/P))/16 +... J 

dX/i = iO 3.4.O4f[P/(32) - P2/64 + 
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where P is a dimensionless parameter and defined by the 

following formula 

P = Da/2 = 1.85D/D = 10 3.8.565(uf) 1"2 

where D is the distance of the over-head wire to its image. 

In the case at hand it is the distance of the pipeline to 

its image. 

There are some features of the low frequency 

approximate formula (3.2) which call for comment. 

First, the self-impedance is essentially independent of 

the height of the wire or wires above ground, because the 

height is negligible compared with the equivalent depth of 

ground return. Therefore, the formula is applicable to 

underground conductors, in our case to a pipeline, whose 

height is negative. 

Second, the ground resistance is independent, not 

counting the dRg term, of the ground resistivity. This is 

explained by the fact that as the resistivity is increased 

the effective cross-sectional area in which the ground 

current flows, increases in direct proportion to the 

resistivity. The skin effect causes the skin depth to vary 

inversely as the square root of conductivity and frequency 

8 = (110rafp)) 112 
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and the resistance therefore varies as 

R/1 = 1/(ircr62) = f 

as given by the approximate formula of (3.2). FIG.3.1 

illustrates that at 100 Hz the approximate value of the 

ground resistance is 0.1 Ohm/Km for an earth of 100 Ohm-rn 

resistivity. The correction term makes this value decrease 

with decreasing resistivity and with' decreasing depth of 

the pipeline. The reactance increases with the same factor 

but to a, lesser extent. 

The short comings of this relatively simple asymptotic 

approximation are: 

- A multi-layer earth is not considered. 

- It is valid for a limited range of frequencies only 

and medium frequencies are not covered. 

3.4 A CLOSED-FORM SOLUTION 

Recently, a closed-form solution for the self-impedance 

of a conductor buried in the uniform earth has been 

presented by Tylaysky et al. [3.7]. This recent paper uses 

the analogy of another closed-form approximation by Deri et 

al. [3.8] intended for overhead conductors. 

It should be mentioned here that many contributions in 

the area of developing synthetic seismograms in exploration 
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geophysics, like Wuenschel [3.9], utilize formulations 

similar to those developed in [3.8]. Synthetic seismograms 

that include multiple reflections, transmission 

coefficients are obtained by solving the boundary value 

problem for the multi-layered half-space, where the 

reflected signal depends on the vertical distribution of 

acoustic impedance. The similarity is expected since 

acoustic wave propagation is modelled in the plane-wave 

case by equations analogous to that of an EM wave 

propagation into a multi-layer earth. 

Some parts of reference [3.8] will be examined in 

detail with corrections (numerous typographical errors 

occur in the equations of reference 3.8) . The following 

analytical development models the current return profile in 

a homogeneous and multi-layer ground. 

Deri et al. introduce the concept of current flow in an 

ideal return plane, which is placed below the ground 

surface at a complex distance p equal to the complex 

penetration depth for plane waves. They demonstrate that 

simple and sufficiently accurate expressions for line 

impedances, the Dubanton equations, are valid for the whole 

range of frequencies. Deri et al. [3.8] stated that the 

Dubanton equations were probably obtained by intuitive 

insight and that a proof of the method was still required. 

This proof is presented by Deri et al. [3.8], and is then 

extended for the modelling of a multi-layer ground return. 
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The rewritten Carson equation for self impedance of a 

conductor is 

zs = (jwp,/(2ir))1n(2h/r) + (wiL/1r)J (3.3) 

where the ground correction term J is the infinite 

integral: 

is 
=s + 

je 
-2h.) foo 

= I dA 
JO ) + /Q 2 + jwpo) (3.4) 

and where: h is the conductor height above ground. 

r is the conductor radius. 

o is the earth conductivity 

The equivalent Dubanton equation is: 

zS = (jwji/(2ir))1n(2(h+p)/r) (3.5) 

where p is the complex penetration depth. This equation 

provides an accurate approximation to Carson's equation 

when the following concepts are introduced: 

- Equivalent return distance. 

- Complex depth. 

- Complex ground return. 

The equivalent return distance is defined with the aid 

of FIG.3.2, and the following assumptions are made: 
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- The conductor is assumed to be planar ( and not round 

for this analysis) at height h above ground. The 

final results apply equally well for round conductor. 

- The magnetic field is parallel to the ground. 

- The current is time harmonic with a factor exp(jwt) 

where w is the angular frequency. 

+0 
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V 
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FIG. 3.2 EQUIVALENT GROUND RETURN. 

The impedance of the ground return loop is Z = V/I, as 

show in FIG.3.2a. In FIG.3.2b the earth is replaced by 

a perfectly conducting plane at distance D from the 

plane conductor. The equivalent return distance is 

defined by the requirement that the impedance Z of the 

conductor/return loop of FIG.3.2a be the same as of the 

wave impedance in FIG . 3 . 2b. 
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Let D be the equivalent return distance. It turns out 

to be a complex length since the inductance of the loop has 

to account for the resistance of the earth return. 

Therefore p = D - h represents the complex depth of the 

ground return plane below the earth surface. Because p is 

complex, this plane is called the complex ground return 

plane. The complex plane replaces the actual ground return 

path without loss of accuracy Moghram et al. [3.1O] 

derive this same complex depth and prove that this concept 

applies equally well for round conductors. 

3.4.1 CALCULATION OF COMPLEX DEPTH 

The following basic steps will be taken in this 

analytical process: 

- In order to calculate the wave impedance Z, it is 

necessary to find the flux 0 due to the current I. 

- The current I is 

magnetic field H0 

- At infinite depth, 

given, therefore we know the 

at the surface. 

where there is no backward wave, 

we calculate the magnetic field H in 

relationship to the surface magnetic field H0 . 

- We find 0 by integrating H for each resistivity 

layer and then by summation we calculate the 

total flux E0 from the earth surface to infinity. 

- The related electric field E for each layer is found 
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by ABCD complex matrix multiplication, that is, by 

modeling the earth layers as transmission lines 

connected in cascade. 

Consider in FIG.3.2a the closed loop formed by the 

source, conductor plane, descending wire, a straight 

horizontal plane in the earth at any depth, and an 

ascending wire. For this loop: 

E.dl = -jw 

where 0 is the flux contained by the loop. The line 

integral in (3.6) is 

E- dl = -v + Z,i + J/cT 

(3.6) 

(3.7) 

where Z is the impedance per unit length of the 

conductor, and J is the current density at the depth of 

the return plane. From (3.6) and (3.7) 

V= ZI+J/a+jwq5 (3.8) 

By setting the conductor impedance to zero Z = 0, thus 

leaving only the'ground impedance, we have 

V = J/u + jwçb . (3.9) 
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The breakdown of V into its two components in (3.9) is 

arbitrary since the return depth was selected arbitrarily. 

It is therefore convenient to consider the return depth, 

where ,T = 0, i.e. infinite depth. Then from (3.9) 

V = jwq5 (3.10) 

which is valid for a return plane at infinite depth. 

Equation (3.10) shows that the impedance of the loop is: 

Z = V/I = j/I . (3.11) 

The calculation of Z requires that the flux 0, produced 

by I, be determined. 

By letting h = 0, we obtain the complex depth p as the 

distance between the two planes of FIG.3.2b, for which the 

flux between the planes equals the total flux in the earth, 

from its surface to infinity. 

By denoting the current per unit width as I we have: 

I-10 =H(0) = 1 in A/rn (3.12) 

where H(x) is the magnetic field intensity at depth x. The 

related Maxwell's differential equations are [3.11]: 



dE/dx = -jwp 0H 

dH/dx = 
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(3 . 13 . a) 

(3 . 13 .b) 

and their solution is, for the layer numbered K, referring 

to FIG.3.3 

EK 

HK 

AK BK 

CK DK 

EK1 HKl 

EK1 

E H 
 . 
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Pk 

L\k 

E  HK 

FIG.3.3 Layer no. K. 

(3.14) 

The solution of (3.14) is analogous to that of a number 

of transmission lines connected in cascade [3.12, 3.13]. 

A,B,C and D are called the Generalized Circuit Constants of 

the transmission line and they are defined as follows: 

AK = DK = '°K + 1"°K"2 = cosh(L.) = cosh(/pK) (3.15) 

Zk ( eK - 1"°K' /2 = zkS.L nh ('Y'k) = ZkSi nh 
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CK = l/zk(GK - = 1/zksinh(k) = 1/zksinh(/pK) 

where 

PK = 1/(jwpQK)1/2 

Zk = (jwO/cK) 
112 

= exp(/pk) 

If F and B denote the forward and backward wave 

E = EF+EB 

H = HF+HB 

and 

(3-16) 

(3.17) 

E  = ZlHF (3.18) 

ED 

HP = HF,K_lexp(_e/pK) 

HE = HB , K-i exp 

If there are n + 1 layers, in the last one, which 

extends to infinity, there will be no backward wave. 

Therefore: 

E/H = z 
IT fl n+i (3.19) 

or in the homogeneous earth case, where n = 0 

E0/HQ = = z (3.19a) 

and equation (3.18) gives 



47 

H = H0exp(-x/p) 

so that the total flux in the earth is 

(3.20) 

= 110 ro H dx = p 0H0 . (3.21) 

The complex depth p is defined by means of FIG . 3 . 2b. as 

the depth which gives the same flux . Therefore, for a 

homogeneous earth where 

P = 1/(jw 0 a) 12 . (3.22) 

The depth p is related to the real skin depth 

S = 1/(f) 12 (3.23) 

by 

1/p = (1 + j)1/6 . (3.24) 

In the multi-layer case equation (3.14) can be applied 

sequentially to obtain 

EK 

HK 

AKQ 8Ko 

CKO AKQ 

For K = n (3.25) becomes 

E 
n 

H 
11 

A B no no 

C A no no 

with the aid of (3.19) 

H0 

H0 

(3.25) 

(3.26) 
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H0 

A -B 
no no 

-C A 
no no 

z 
n+1 

1 
(3.27) 

or, eliminating H: 

= HQ(Z +1A o - Bn o)' no - z+iCo). (3.28) 

Since H0 = I, E, can be calculated from (3.28)., and all EK, 

H. will be obtained from (3.25). Consequently, the flux in 

each layer K is obtained by integrating (3.13a): 

= 0 
jo 

k H dx = 1/(jw) (EK _l - EK) (3.29) 

This permits us to calculate the complex depth of equation 

(3.21) to give the result 

P = E (3.30) 

The real and imaginary parts of the complex depth are 

shown in FIG.3.4.a-b for uniform and 3 layer earth. The 

first layer is 100 Ohm-rn and 10 in deep, second layer 200 

Ohm-rn and 20 in deep and the third layer resistance is 300 

Ohm-rn extending to infinity. 

The derivation provided in this chapter indicates that 

the asymptotic formulation of Carson's equation is also 

easily evaluated, although the original equation requires 
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computer analysis or approximate graphical data, Carson's 

equations can be evaluated only for specific frequency 

ranges. The self-impedance, given by (3.2) using the 

equivalent depth of ground return D and discounting the 

conductor's resistance and reactance, is 9% smaller than 

that given by the closed form equation (3.5). The complex 

plane approach results in simple formulae which are valid 

from very low frequencies to several MHz and can be 

conveniently evaluated on a personal computer. Equations 

(3.25) to (3.30) are integrated into the transmission line 

model in Chapter 5, Section 2, to calculate the multi-layer 

ground return impedance of up to five layers. The program 

can be easily modified to handle more layers than five if 

necessary. 

The final form of the series impedance of the pipeline 

of outside radius a is given by [3.7] 

zs = jwj/(2ir)1n((a+p)/a) . (3.34) 

These values are also evaluated in the attached 

computer program in Appendix B a for multi-layer earth. 
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CHAPTER 4 

ELECTRICAL MODEL OF THE GROUND BED 

AND THE SHORTED PIPELINE CASING 

4.1 GENERAL 

A very important aspect of the transmission line system 

deals with the current passage into and out of the earth. 

This current passage is provided for by ground electrodes 

or ground beds which already exist as part of the pipeline 

cathodic protection system [4.1]. The actual ground bed 

analysis is often quite complicated, but with practical 

approximations the problem can be simplified to an extent 

where application of classical circuit theory methods can 

result in closed form mathematical expressions. 

Another important aspect of the transmission line model 

deals with the electrical model of an electrical short 

between the pipeline casing and the pipeline. A casing is 

required by codes and regulations of governmental agencies 

for pipelines crossing under roads and railways as 

illustrated in FIG.4.1. The shorted casing ( i.e. a casing 

is shorted to the pipeline) forms a metallic shield around 

the pipe and diverts cathodic protection current from 

normally entering the inside of the casing, thereby leaving 

a large section of the pipeline unprotected. This casing 

short serves as a reflection point for EM waves on the 
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pipeline transmission line. 

FIG.4.l SHORTED PIPELINE CASING. 

The present chapter deals with practical numerical 

processes for evaluating ground beds and pipeline casing 

located in the uniform earth, where both vertical and 

horizontal oriented ground beds will be considered. When 

the results of this chapter are combined with the result of 

Chapter 2 and 3, a complete transmission line model will be 

available which can be used to provide the attenuation, the 

phase shift and the characteristic impedance of a given 

buried pipeline. 

4.2 ELECTRODE RESISTANCE 

Although there are structural differences between 

electrodes used for a.c. system grounds and ground beds 
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used for pipeline cathodic protection, the objective is the 

same, and that is to provide low resistance current passage 

into the ground. The analysis following here is based on 

the following assumptions: 

- The frequency is low enough that static conditions 

apply, therefore the resistance to ground calculation of 

the two grounding systems for different shapes and 

orientations of conductors or groups of conductors is 

basically the same as the calculation of capacitance and 

has been available for some time [4.2, 4.3]. 

- Conductors are in direct contact with the earth. 

Measurements indicate that this is not strictly true, even 

after grounds have been installed for a long time, and as a 

result of contact resistance at the surface of the 

conductor, the resistance of grounds may be some 20% higher 

than calculated [4.4]. At higher frequencies, this contact 

resistance is bridged by capacitive admittance between 

conductors and ground, and the resistance is thus somewhat 

reduced. 

- The ground beds are short and the voltage drop along 

the bed conductor may be neglected in comparison with the 

potential of the ground bed structure. In general this 

will be the case even for ground beds with maximum 

dimensions of a few hundred meters. 

One of the simplest forms of an electrode is the driven 

rod as shown in FIG.4.2. There is, however, no exact 
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formula for the capacitance of a cylinder isolated in free 

space. The idea is to treat the flow of electrical current 

\ 

from the cylinder into and through the ground in the same 

way as the flow of dielectric flux from an isolated 

cylinder. The successive approximation calculation [4.3] 

initially assumes a uniform distributions of charge and 

then other distributions of charge are successively added, 

to keep the potential of the cylinder the same throughout. 

This method is accurate but quite complicated to use. 

I 
I, 

L 2a 
—> 

FIG.4.2 DRIVEN ROD WITH IMAGE. 

There are two approximations to the above method for 

calculating the electrostatic capacitance of the electrode 

buried in the uniform earth, and they provide sufficiently 

good results. In both cases the electrodes are combined 

with their images above the surface of the ground: 

1) Considering the ground electrode as half an 

ellipsoid of revolution in which the major axis £ is very 
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large compared with the minor axis a. The capacitance of 

such an ellipsoid embedded in an infinite medium with 

relative permittivity c r is given by [4.5] 

47rE € O - a 2 ) 
c  r 

in ((L + (L2 -a2))/a) 

where e is the permittivity of free space. It follows 

from the above equation that the resistance between one-

half of the ellipsoid of revolution embedded in the earth 

of resistivity p and the point at infinity is 

R= 
P 

27r4./(L2 - a 2 ) 
in ((L + v'(L2 -a2))/a) (4.2) 

P 
- in (2L/a) , for L >> a 
2 7r 

2) An alternative method of calculation which becomes 

very useful in complicated grounding systems has been used 

by Dwight [4.6] and can be described simply as the uniform 

charge method. This consists of assuming uniform charge 

density over the surface of the conductor and calculating 

the average potential. Then the approximate capacitance is 

taken as equal to the total charge divided by the average 

potential. This method gives a resistance that is correct 

to within 1 percent for the cylinder, if it is very long. 
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Let us consider the same electrode as before as shown in 

FIG.4 . 3. 

L L 
< > 

ring 

> 

2a P 
<—x--> I <—y—> <—dy 

FIG.4.3 DRIVEN ROD - UNIFORM CHARGE. 

Let the charge per unit length on the surface be q, then 

the charge on the incremental section of rod dy is 

The potential at any point P due to this charge can be 

shown to be [4.6] 

V = dy/a fa/r - 1/22 a3/r3 (3y2/r2 - 1) + (4.3) 

where r2 = a2 + y2 and y is the distance from P to the 

ring. To obtain the total potential, (4.3) must be 

integrated 

y=L+x. 

integrated 

from y=O 

If this 

from x = 0 

be obtained. This is 

to y = L - x and also from y = 0 to 

is then multiplied by dx/L and 

to x = I,, the average potential will 

V,j/(2q) = ln(4L/a) - 1 + a/L(1/2 + 1/8 + 1/128 + ...) - 

a2/L2 (3/16 - 1/32 ...) + a4/L4 (1/64 - 1/1024 ...) 
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Since in all practical rod electrodes, the a/L ratio is 

very small, the terms involving powers of a/L may be 

neglected. The capacitance then becomes 

1/C = V/(L2q) = 1/L [ln(4L/a) - 1] 

and the resistance is 

R = p/(27rL)(ln(4L/a) - 1) . (4.4) 

A set of curves calculated from the above two formulae 

(4.2) and (4.4) are given in FIG.4.4 for earth resistance 

of 100 ohm-m. In general, formula (4.4) gives values which 

are slightly lower than those given by the ellipsoid 

formula (4.2). The actual difference is 

p/(6.283L)(ln(2L/a)-ln(4L/a) + 1) = 0.3069p/(6.28L) 

For 100 ohm-rn this becomes 4.88/I,. Therefore, for a 0.3 in 

rod the difference is 16.3 ohms or about 8 per cent, while 

for a 30 in rod the difference is .163 ohms or about 4 per 

cent. Such differences may not be very important since it 

is doubtful whether the value of p is generally known with 

this accuracy, and other factors can also cause error. In 

this work the more accurate method is prefered since it is 

no more difficult to use. 



RESISTANCE OF THE DRIVEN ROD (3" DIAMETER). 

1000 

ELLIPSOID FORMULA 

RESISTANCE IN 
OHMS 

100 

10 

1 
3.0 

LENGTH Era] 
FIG.4.4 

03 

• 4 
0 

UNIFORM CHARGE FORMULA ... 

+ 

30. 



60 

4.3 RODS CONNECTED IN PARALLEL, IN A STRAIGHT LINE 

The driven rod or pipe is an economical and simple 

means of making connection to the earth but, except 

sometimes in the case of a deep-well ground [4 .1], the 

resistance of a single rod is not sufficiently low and it 

is necessary to use a number of them connected in parallel 

in a straight line. This is a typical arrangement for 

pipeline applications. The parallel connection does not 

necessarily comply with the usual law of resistance in 

parallel, therefore further analysis is required to 

determine what reduction in the total resistance can be 

obtained. 

In order to calculate the combined resistance, it is 

necessary first to calculate the capacitance of the 

analogous case as before using the uniform charge method. 

To reduce the complexity of the calculation the rod 

electrode is replaced by a hemisphere having the same 

resistance. The resistance of a hemisphere buried in the 

surface is 

R = p/2irr 

where r is the hemisphere radius. If this is equated to 

the resistance of the driven rod (4 . 4), then 
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p/2irr = p/2irL (in (4L/a - 1) 

then 

L 

in (4L/a) - 1 
(4.5) 

The values of this radius for various lengths and 

diameters of rods or pipes are calculated and given in 

FIG.4 . 5. 

Suppose there are two rods connected in parallel at a 

distance d apart. Each rod can be replaced by its 

equivalent hemisphere of radius r carrying a charge Q. 

Then the potential of either rod will be 

V=Q/r+Q/d=Q/r(1+r/d) = Q/r(1+m) 

where m .= r/d and r is defined by (4.5). 

The total charge is 2Q, and the capacitance C is given by 

1/C = V12  = 1/2r(1 + in) 

Therefore the combined resistance of the , two rods in 

parallel is 

R2 = p/2irC = p/4irr (1 + in) (4.6) 

The resistance of one rod is R1 = p/2irr, and so the ratio 
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of the total resistance and the resistance of one rod is 

R2/R1 = (1 + in) 12 

This resistance ratio has been calculated and the results 

are given in FIG.4.6 for different diameters and length. 

The ideal value for this ratio is 0.5, and these curves 

approach this value rapidly. For instance, two 3 in rods 

placed 3 in apart produce a resistance ratio of 0.615, and 

the distance d would have to be increased very 

significantly to produce any substantial reduction in this 

ratio. 

In the case of three rods in parallel the charge on the 

center rod will be different from those on the outer rods. 

Let the charge on each outer rod be Q1 and the charge on 

the center rod be Q2. Then the potential of either of the 

outer rods are 

+ Q2 Id + Q1/2d = 1/r (Q1 (1 + m/2) + Q2 in) 

The potential of the center rod will be 

+ 2Q1/d = 1/r (Q12m + Q2) 

These two potentials must be equal 
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Q1 (1 + m/2) + Q2m = Q1 2m + Q2 

From here 

= Q1 (1 - 3m/2)/(1 - in) = kQ1 

Substituting this into the potential of the center rod 

1/r (Q12m + kQ1) = Q1/r (2m + k) 

The total charge = Q1 (2 + k) and the capacitance is 

1/C = 1/r (2m + k)/(2 + k) 

Therefore the total resistance of three rods in parallel 

R3 = p/2irr (2m + k)/(2 + k) (4.7) 

The resistance ratio of three rods in parallel to the 

resistance of one rod is 

R3/R1 = (2m + k)/(2 + k) = (2 + in - 4m2)/(6 - 7in) 

Values of this ratio for various rods are given in FIG.4.7. 

The resistance R n for n number of rods in the same 

plane at equal spacing d can be obtained by calculating the 
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resistance with respect to each rod and taking the average 

value [4.6] 

R = 1/n (R1 (a) + 2/n ((n-1)R1 (d) + (n-2)R1 (2d) +. . .+ 

R1 (nd-d))] 

When d ? L, with a = pd, R1 ('pd) = p/(2irpd), the above 

equation becomes 

R = 1/n (R1 (a) + p/ ( ird) (1/2 + 1/3 + 1/4 + . . + 1/n) 

For large number of rods (1/2 + 1/3 + 1/4 + . . .+ 1/n) 

approaches to 1n(n/€) , the resistance becomes 

= 1/n p/2irl, (ln(4L/a) - 1 + 2L/d 1n(-in/)] 

where = 1.781..., and e = 2.718... 

4.4 THE HORIZONTAL ELECTRODE 

(4 .8) 

The vertically buried rod is a convenient and 

economical form of electrode but there are cases where it 

is not practical. For instance, it is not practical if 

there is a layer of rock a few meters below the ground 

surface. In such cases, buried horizontal electrodes or 

ground beds are used. The ground beds are usually beds of 
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coke about 30-50 cm square with a metal center, buried 

about 1 in with lengths of up to 100 m. The calculation for 

the square bed is identical to that of the circular 

electrode with the same circumference. 

The analysis following here is also applicable to 

pipeline casing, when modeled as a large horizontal 

electrode. 

As before, the resistance to ground can be determined 

by first calculating the electrostatic capacitance. In 

order to take account of the effect of the ground surface 

and the depth of burial, it is necessary to consider the 

buried electrode and its image above the surface of the 

ground, as illustrated in FIG.4.8. 

dy 

-y->I-

s/2 
/ 
/ 

I I 

 L > 

—x—> 

'I 
P 

/ 

 2L > 

II 

FIG.4.q A BURIED HORIZONTAL ELECTRODE. 

A uniform charge q per meter exists on both the electrode 

and its image, and it is necessary to calculate the average 
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potential of each electrode due to this charge [4-3]. The 

potential of the electrode due to its own charge is the 

same as for the driven rod [4.7] 

Vav = [ln(4L/a) - 1] 

The average potential of the electrode due to the uniform 

charge on the image can be calculated as follows. The 

potential at any point P on the electrode at distance x 

from the center due to an element of charge qLdy on the 

image is 

V = qdy/J(s2 + y2) 

To calculate the potential at this point due to the whole 

of the image it is necessary to integrate the above 

expression in y from 0 to (L + x) and y from 0 to (L - x). 

V= 

"0 0 

qdy/J(s2 + y2) 

The average pdtential on an electrode due to a uniform 

charge on the image is obtained by multiplying the result 

of the above integration by dx/L and further integrating 

from x = 0 to L, and the result is 
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V = 2q(ln (2L+J(s2+4L2))/s + s/(2L) - J(s2+4L2))/(2L) J. 

The total potential is 

V =• 2(ln(4L/a) -1 +ln (2L+J(s2+4L2))/s 

+ s/(2L) _I s2+4L2))/(2L) ] 

If this is divided by the total charge L4q on the 

electrodes, this gives the values of 1/C for the two 

electrodes and this in turn leads to the following 

resistance 

R = p/(4irL) (ln(4L/a) - 1 + ln(2L+J(s2+4L2))/s 

+ S/ (2L) - /(s2+4L2) )/2LJ . (4.9) 

Values calculated from (4.9) are plotted in curves of 

FIG.4.8.a for 100 ohm-rn earth resistivity 

that the depth of burial and diameter 

effect on the over all resistivity. 

• It is evident 

has very little 

For any other 

resistivity than 100 ohm-m, the values of the curves must 

be multiplied by the appropriate resistivity ratio. 

4.5 GROUND BEDS IN PARALLEL 

By connecting ground beds in parallel that are properly 
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spaced, the total resistance can be reduced to less than 

that of a single bed [4.7] with twice the length and this 

is common practice for cathodic protection. In FIG.4.9 AB 

and EF are two ground beds in question. In order to carry 

out the calculation it is necessary to consider the images 

CD and GH above the surface of the ground. As before, it 

is assumed that there is a uniform charge of qL per in 

length on both beds and their images. 

C D G Q 

III 

A 

d 

fL H 

d 

II IIIuII , tI 11111 I I 

1-1 

P B E R 

< £ 
<—x—> 
 > <-5---> 

IL 
F 

<—z—> 
<  I, > 

FIG.4.9 TWO GROUND BEDS CONNECTED IN PARALLEL. 

The charges in the bed AB and its image CD result an 

average potential over AB equal to V1 . The total charge is 

£2q and, if AB is the only ground bed, then the 

capacitance is 1/C = V/(L2q), and the resistance is 

R = pV/(L41rq). 

Considering the effect of the second ground bed EF and 

its image GH, and at first, the potential at any point P, 



73 

distant x from B. 

1) Potential due to GH. At any point Q there is a 

charge q dy and the potential at P due to this is 

V=qdy/J(4d2+ (x+y+s)2) 

The total potential at P due to GH is then 

qdy/J(4d2 + (x+y+s)2) = q(1n(L+x+s+J(4d2 + (x+y+s)2) 

(4 . 10) 

0 

- 1fl((X+S)+/(4d2 + (X+S) 2 )] 

2) Potential due to EF. At any point R there is a 

charge qdz and the potential at P due to this is 

dz/(x + s + z). 

The total potential at P due to EF is given after 

integrating this from z = 0 to L 

+ s + z) = q(ln(L+x+s) -ln(x+s)] 

r " 

The total potential at P due to EF and its image GH is 
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V = q(mn( x+s+J(4d + (x+y+s) 2 )) - in((x+s) + 

/(4d2 + (x+s) 2) + (in(L+x+s)-in(x+s)J 

The average potential of AB due to EF and GH is accordingly 

qLB = qLIL (l n (L+x+s+J(4d2 +(x+y +s)2 )) - in( (x+s) + 

'0 

%4d2+(x+s) 2) + in(L+x+s) -in(x+s)J dx 

(2L+s+J(4d2 + (2L+s) 2 )) 2 (2L + s) 2 

= /L f L in (L+s+ J(4d2 + (2L+s) 2 )) 2 (L + 
+ 

(2L-i-s-I-v"('4d2 + (2L+s) 2 )) 2 (2L + s) (s + 1(4 C12 + s2 )) s 

sin I 4 d  + (2L+s)2))2(L + 

J(4d2 + (2L+s) 2) + 2v1(4d2 + (L+s) 2) - /(4d2 + s2) } 
The total potential of AB = v1+qB and the total charge is 

and the capacitance is 

1/C = (V1 + B)/(L4) 

The resistance is 

R = p(V1 + qB)/(L81rq) = PV1/(L81rq) + pB/8irL. (4.11) 

The first term is one half the resistance of one 
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isolated bed and so the quantity pB/(8irL) is the amount by 

which the resistance of two beds in parallel exceeds half 

the value of one bed. The quantity pB/8irL can be written 

as F(p/L) and in general s/L is small, F can be written 

as [4.7] 

F=1/(8ir)(41n(2+s/L)+2s/L ln((2+s/L)s/L) -4(1+s/L)ln(1+s/L)J. 

(4 . 12) 

In FIG.4.2O a set of curves calculated from (4.9) and 

(4.12) is provided to illustrate the resistance of two 

ground beds in parallel. 

The preceding derivations can be extended to the case 

of two-layer and multi-layer soil. However, derivations 

and expressions start to become significantly more 

extensive and complicated, and that is outside of the scope 

of this work. This subject is reasonably well documented 

in the open literature [4.7]. 

Equation (4.11) and (4.12) are integrated into our 

transmission line model to calculate the resistance at the 

injection point, as illustrated in Appendix B, in a Fortran 

source segment. 

Formulae and curves have been given in this chapter for 

the change in resistance of driven rods and 

ground beds connected in parallel in a uniform 

is shown that in order to attain the full 

horizontal 

earth. It 

effect of 
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resistance in parallel, the rods or beds must be a certain 

distance apart, and the rods or beds must not overlap. The 

calculation of the combined resistance, especially when a 

large number of rods is involved is difficult, and can be 

very lengthy and laborious. Furthermore, it is shown that 

two horizontal ground beds connected in parallel, properly 

spaced, can result in less than half of the resistance of a 

single bed with twice the length. More exact calculations 

are not necessarily advantageous over the approximate 

ones, as any calculation assumes ideal conditions, such as 

homogeneous soil, and such conditions are never met in 

practical cases. These practical formulae are applied 

directly to our transmission line model, and they complete 

the requirements to model the pipeline for EM wave 

propagation. Resistances derived for the single horizontal 

electrode, equation (4.9) and FIG.4.8.a, will also be used 

in our transmission line model in the next chapter for 

calculating load impedance, and to model a casing short as 

a reflection point for EM waves. 
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CHAPTER 5 

COMPUTER SIMULATION OF DATA TRANSMISSION 

ON THE PIPELINE 

5.1. GENERAL 

In this chapter the performance of a given arrangement 

of pipeline with ground return and ground bed, for data 

transmission will be considered using a computer simulation 

method. The purpose of the analysios is to find the maximum 

channel capacity of the transmission line for digital 

signal transmission and to provide specifications related 

to actual field conditions. The methodologies applied here 

are similar to those developed for telephone cable twisted 

pair transmission lines [5.1]. First, transmission line 

equations are obtained, using classical transmission line 

theory to suit the pipeline application, then the transfer 

function of the transmission network is found, to assist in 

the final evaluation. Different patterns of eight bit 

words are applied to the transmission line by the Fast 

Fourier Transfer (FFT) process, the resulting spectrum is 

multiplied by the pipeline transfer function and then it is 

transferred back to the time domain by the inverse Fast 

Fourier Transfer (FFT 1). The advantage of using digital 

signal processing, which deals with transformations of 

signals that are discrete in both amplitude and time, can 
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be realized using the flexibility of general-purpose 

digital computers. 

5.2 TRANSMISSION LINE MODEL 

The pipe, the coating and the ground return are treated as 

a uniform electrical transmission line as shown in FIG.5.1. 

V(1) 

Lz1 

A 

V(1+,A1) 

1 
> > 

FIG.5.l. EQUIVALENT CIRCUIT OF AN INFINITESIMAL PORTION 

OF THE UNIFORM TRANSMISSION LINE. 

The differential equations for a uniform transmission line 

are found by focusing on an infinitesimal section of length 

z1, located at coordinate 1 on the line, remote from the 

line termination. This line section has the following 

values 

Rz.1 series resistance, where R = R + R 
pipe ground 

Lz1 series inductance, where L = L + L 
pipe ground 

CzXZ shunt capacitance, where C = Cpjpe 
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The pipe resistance and inductance values are derived from 

equation (2.20) and (2.21). When the pipe parameters 

(diameter, thickness, conductivity and permeability) are 

known, Rpjpe and Lpipe are found by using the computer 

program in Appendix .8, entitled: Skin Effect Resistance and 

Reactance Calculation. The ground resistance R and 
ground 

inductance Lgroufld are found using equations (3.30) and 

(3 . 34) . These values are computed using the above 

mentioned program listed in Appendix B. The capacitance of 

the transmission line model is calculated using equation 

(2.28). The inside and the outside radii and the 

permittivity of the pipe coating must be known, in these 

analysis the pipe permittivity is taken to be e = 

The shunt conductance, usually considered in a 

transmission line model, of the pipeline plastic material 

coating is very low over the frequency range of interest 

and is equated to zero. 

First we write two phasor equations from FIG.5.1., 

V(1+t1) - V(1) = A V(1) = - Rz1 1(1) - jwL/XZ 1(1) 

1(1+i1) - 1(1) = i 1(1) = - jwCLuL V(1) 

and then we form the differential equations by letting A.Z 

approach to zero 



dV/dl = -(R + jwL)I 

dl/di = -jwCV 

Solving these simultaneous linear first order equations 

with constant coefficients for separate equations in V 

and I, produces two second order equations 

d2 V/d1 2 - (R + jwL)jwCV = 0 

d21/d1 2 - (R + jwL)jwCl = 0 

(5.3) 

(5.4) 

The solution of (5.3) and (5.4) gives the transmission 

line equations for the pipeline [5.2] 

"in = VLcoshjl + ILZQsinh .-11 

1112 ILcoshil + VL/Zosinhyl 

(5.5) 

(5.6) 

Where the complex propagation costant 'j and the complex 

characteristic impedance Z0 are defined by the expressions: 

Z0 = [(R + jwL)/jC] 1"2 (5 . 7) 

= [(R + jwL)jwC]12 (5.8) 

When the pipeline is driven by a Thevenin equivalent 

source, the resulting electrical transmission network, as 

illustrated in FIG.5.2., is suitable for computer 

simulation. The source impedance is equal to the ground 



82 

bed resistance. The load impedance is either equal to 

the characteristic impedance for a transmission system, or 

it is equal to the casing short resistance connected in 

parallel with the impedance of the remaining pipeline as 

for a Time-Domain Ref lectometry system. 

z  

vs 

V. 
in 

pipeline with 
ground return VL 

FIG.5.2 THE TRANSMISSION NETWORK. 

ZL 

To find the transfer function of the transmission line 

from FIG..5.2 we write the following equations: 

yin = vS - i1z . 

= VL/ZL 

where 

ZL 
RL• Z  

RL+ZO 
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and R  is the load resistance. Substituting (5.5) and 

(5.10) into (5.9) 

VL(cosh'jl+Zo/ZLsinh•)lJ = V8 - V(Z/Zcosh.-j1 + Zs/Zosinhll] 

The transfer function is then found to be: 

Vc:: 
V -   

£ (1 + Zs/ZL) cosh"jl + (Zo/ZL + Zs/Zo) sinh'yl 

5.3 PULSE RESPONSE OF THE PIPELINE 

(5.11) 

To determine the performance of the pipeline for data 

transmission, we assume that a repetitive eight bit word, 

representing one mark and seven spaces, is applied to the 

transmission line input. The output pulse of the 

transmission line is then examined for distortion and data 

recognizability. This analysis is performed with the 

application of the Discrete Fourier Transform. 

The first step in applying the discrete transform is to 

choose the number of samples N and the sample interval T. 

One of the properties of the discrete transform is that it 

approximates rather poorly the continuous transform for the 

higher frequencies. To approximate the continuous 

transform it is necessary to make the number of samples 
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large, until the computational time is intolerable. The 

graphic program, Microsoft Chart, which is used for 

graphical presentation of the data limits the size of N. 

The number of data points that the chart program can import 

from another program is limited. Therefore the chosen 

values are: N = 32 and T = 0.01 sec. The samples, 0 to 31, 

are illustrated in FIG.5.3. The eight bit word, one mark 

and 7 spaces is sampled N = 32 times or 4 times per bit, 

and transfered into the frequency domain with the aid of a 

FFT program [5.3]. 

1 

> 

01 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 k 

FIG.5.3 THE PULSE APPLIED TO THE TRANSMISSION LINE. 

The discrete Fourier transform is computed by the following 

formula [5.4]: 

H(n/NT) = 

N-i 

k=0 

n = 0,1,...,N-1 (5.12) 

The results are shown in FIG.5.4 up to n = N/2. We note 

that the real part of the discrete transform is symmetrical 
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about n = N/2. This follows from the fact that the real 

part of the transform is an even function and that results 

for n > N/2 are simply negative frequency results. The 

imaginary part is an odd function with respect to n = N/2, 

and those results for n > N/2 are also to be interpreted as 

negative frequency results. 

In the frequency domain the spectrum of the pulse is 

multiplied by the pipeline transfer function and then 

transfered back to the time domain by means of an inverse 

discrete Fourier transform [5.4]. 

N-i 

h(kT) = 

where 

X(n) = (R(n&?) + jl(n&)] 

and zf is the sample interval 

n=0 

N = 32 and f = 6.25. 

Since 

frequency 

fold R(f) 

k = 0,1,...,N-1 (5.13) 

in frequency. Assuming 

we know that R(f), the real part of the complex 

function, must be an even function, we can then 

about the sample point n = N/2. We simply sample 

the frequency function up to the point n = N/2 and then 

fold these values about n = N/2 to obtain the remaining 
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samples. To simplify the computation process, an alternate 

inversion formula [5.4] is used instead of (5.13), which 

provides equivalent results. 

h(kT) = Af 

* 
N-i - 

\ t * 

/> X 

n=o 

/ k = O,i,...,N-1 (5.14) 

To use this formula, we first conjugate the complex 

frequency function. Since the resulting time function is 

real, the final conjugation operation illustrated in 

equation (5.14) can be omitted, and we simply compute 

h(kT) = 

N-i 

(R(nif) +j (-1)I(nif) jei2k/N ; k-O , i, .  

n-O (5.15) 

Computation of (5.15) yields a complex function whose 

imaginary part is approximately zero and whose real part is 

the transmission network time domain response for different 

field conditions, as illustrated in FIG.5.5. From an 

examination of this figure it appears that the transmission 

system would function for distances of up to 30 and 

possibly 40 Km. The output pulse of the 50 Km line has 

broadened substantially and probably would not be 

distinguishable amongst multiple ones and zeros. 
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5.4. PULSE CODE MODULATION SIMULATION 

A more clear indication of the effects of pulse 

spreading and pulse amplitude changes on data 

recognizability can be gained by creating a simulated eye 

diagram. This diagram is used for evaluation of 

degradation of data while transmitted on a channel. 

This simulation treats Return to Zero Alternate Mark 

Inversion (RZAMI) pulses, one word is one mark and 7 

spaces, the other word is alternating mark zero mark, as 

illustrated in FIG.5.3 and FIG.5.6 respectively. These 

words are treated separately, they are Fourier transformed 

(FFT) and the spectrum is multiplied by the pipeline 

transfer function and then the results are inverse FFTed. 

Each of the time domain output waveforms is plotted with 

one bit time shift and voltage inversions to obtain a 

comprehensive eye diagram. 

1 

0 

-1 

- - - -  > 

31 n 

FIG.5.6 RETURN TO ZERO ALTERNATE MARK PULSES. 
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The final results are illustrated in FIG . 5 . 7.a-c. These 

eye diagrams provide engineers with a powerful analysis 

tool. The eye diagrams as derived by the computer 

simulation of a digital signal on a pipeline provide a 

guide for the evaluation of the pipeline as an electrical 

transmission medium. The size of the openings in the eye 

diagram compared with noise levels at the receiver end of 

the pipeline are critical for good communication. The 

simulations produce the required eye diagrams for PCM 

signals over a very large range of variables, such as: 

- pipeline length 

- line loading such as casing short 

- bit rate 

- pipeline inside and outside diameters 

pipe permeability 

pipe insulation 

pipe resistivity 

- ground bed resistance 

- ground bed burial depth 

- ground bed length 

- ground bed separation 

- ground return resistance for multi-layered earth 

- layers separation. 

The sample eye diagrams indicate that data transmission 
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rate of 12.5 Hz can be achieved on a 20" 30Km pipeline. 

5.5 TINE-DOMAIN REFLECTOMETRY (TDR) 

TDR is a special form of impulse or step-function test 

in which the signal viewed is the series of reflections 

produced by imperfections in the transmission line. In 

earlier frequency-domain reflectometers in which either the 

standing wave ratio or the reflection coefficient is 

measured as a function of frequency, the interpretation of 

the results for what might be causing the reflections is 

often quite difficult, especially when many reflections are 

present. In TDR the various echos are spread out in time 

just as in a radar display, the distance along the time 

axis corresponds to distance down the transmission line, 

and the relative amplitude of the reflected signal 

correlates with the magnitude of the impedance 

discontinuity. 

Results of the simulated reflections on a 20" pipeline 

are shown in FIG.5.8. The pulse is viewed at the load with 

different values of the load resistance or casing short. 

The value of the casing short is calculated in the 

previous chapter, equation (4.9) , and it represents 

realistic field conditions. The transfer function of the 

network is calculated by equation (5.11) and with the aid 

of FIG.5.9. The FFT process, described earlier, is applied 
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to the one mark seven zero word which is illustrated in 

FIG . 5.3. 

Z  

Vs 

> 
Z  

> 

V. 
in 

pipeline with ground return 

VI, I I RI, 
-•-> 00 

FIG.5..9 TRANSMISSION NETWORK WITH DISCONTINUITY. 

Again, equation (5.9) is 

V.= V, slin V - (Z5/Z.) V. 
in 

and the transfer function is given by 

= V 

in 

where Zin is defined with the aid of (5.5) and (5.6) 

and 

V in . cosh -11 + (Zç/ZI,)Sflh1 
Z. 
in 

'in (l/ZI,)Cosh-11 + (1/Z0) sinh-71 

RI,. Z0 

RI,+ZQ 

(5.16) 

(5.17) 

The reflected pulses are calculated and plotted without 
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the incident pulse in FIG.5.9.a. The transfer function in 

this case is given by 

V = VsZ/(Zo+Zs)e 2"1. F (5.18) 

where r is the complex reflection coefficient defined as 

r - ZL  - ZO  

ZL+ZO 

(5.19) 

Analyzing the time delay, magnitude, and shape of these 

reflected waveforms under field conditions, would permit us 

to determine the approximate location and nature of the 

impedance variation in the pipeline. In this simulation 

they clearly show that casing short of 6 Ohm or less can be 

detected and measured on a 30Km pipeline. This is 

illustrated in FIG.5.9.b The distance of the short from 

the signal input can be determined by the the time-domain 

pulse separation between incident and reflected pulse. 

Simulations of three shorts 20 Km apart are shown in 

FIG.5.10.a and the effect of load variation is further 

emphasized in FIG.5.1O.b. The transfer function in this 

case is calculated with the aid of FIG.5.11. 
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FIG.5.11 TRANSMISSION NETWORK WITH TWO LOADS. 

-> 00 

Reflected pulses are again calculated and separated 

from the incident pulse and the transfer function can be 

calculated as follows. First, we find the input impedance 

of the above network 

where 

and 

ZLi 

- cosh-111 + (Zc/ZLl)sinhIl l 

Iin  (l/ZLi)coshjli + (1/Z0)sinh-11 1 

= RLi • Zin2 

R 1 +Z. 
Li n2 

= cosh-11 2 + (Zc/ZL2)sinh1l2 

1n2 (l/ZL2)cosh 1 2 + (i/Z0)sinb1 2 

(5.19) 
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r 

where 

z RL2•ZO 

L2 RL2+ZO 

The transfer function of this multiple reflection case 

is then given by 

V. = • zo z. - z ml 0 

in z. + z 
0 S ml 0 

(5.20) 

where Z is defined by (5.19). The above transfer 

function shows that the initial voltage pulse at the input 

terminals of the line is 

V • Z 
V. 0 , 
in 

since the input impedance of the line is equal to its 

characteristic impedance when there is pulse traveling in 

only one direction on the line. This initial pulse then 

will undergo multiple reflections, caused by the loads, and 

this effect is taken care of by the second term of equation 

(5.20). 

Comparison of the simulated data and form of FIG . 5 . 1O.a 

and FIG . 5 . 10.b shows that multiple casing shorts of 6 to 50 
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Ohm, 20 Km apart can be detected, if the order and location 

of the shorts are favorable to the simulation, that is, 

they must be in the range of the applied FFT process 

accuracy. Simulation accuracy may be improved by 

increasing the word length of the applied FFT. 



105 

CHAPTER 6 

DETERMINATION OF TRANSMISSION LINE CHARACTERISTICS 

FROM IMPEDANCE MEASUREMENTS 

6.1 GENERAL 

During the course of this study a series of 

measurements were conducted at the University of Calgary to 

prove the correctness of the methodologies adapted in the 

previous chapters for impedance and capacitance 

calculation. The experiment was conducted on a # 18 AWG 

insulated wire with three different arrangements: 

1.) Wire was laid on the ground on a straight line. 

2.) Lifted 0.1 in above ground. 

3.) Lifted 0.2 in above ground and looped back to 

itself. 

Our objective was to obtain characteristic values from 

the measurement of the wire, from which we can find the 

capacitance as a function of distance above ground. 

Furthermore, our expectation was that the results obtained 

could be tabulated and applied for the case of a pipe 

buried underground. The measurements were made in the 

frequency domain and we used high frequencies so that the 

wire would simulate a pipeline with low frequency 

excitation. Setup of the measurement is shown in FIG.6.1. 



106 

A 

CH.A CH.B 

50 Ohm 
coax 2 in 

C 

50 Ohm coax 2m 

B 

100 in 

# 18 AWG 
under test 

D 

50 Ohm 
coax 1 in 

E C 

3m 3m 

1< >1<  
fencing posts 

grounding 
electrodes 

FIG. 6.1 IMPEDANCE MEASUREMENT ON A #18 AWG WIRE. 

6.1.1 LIST OF INSTRUMENTS: 

A ; Vector Voltmeter 
Model No.: HP 8405A 
Scale on meter A : -70 to +10 db 

Scale on meter B : 0 to 180 degree 

B ; Signal Generator 
Model No.: Marconi Inst. # 2022 
Output Impedance = 50 Ohm 

C ; 50 Ohm Termination 

D ; Directional Coupler MCL 

• Model No.: ZFDC-20-5 
20 db coupling 

E ;.HP 50 Ohm Tee 
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6.2 MEASUREMENTS AND CALCULATIONS 

Transmitted and reflected signal magnitude and phase 

angle values along with the calibration data are recorded 

and tabulated in the attached computer program data 

segments. From this data we calculate the open and short 

circuit impedance of the wire. When the wire or 

transmission line is terminated in an open circuit or a 

short circuit, its input impedance is determined by the 

propagation factors c and fl , the characteristic impedance 

and the line length 1. The input impedance is defined 

with the aid of (5.5) and (5.6) 

V. n 

in 
'in 

cosh'yl + (ZQ/ZL)sinh11 

(l/ZL)coshl + (1/Z0)sinh1 

and the normalized input impedance is 

Z in =  ZJ:,/Z0 + tanh-11 

1 + (ZL/ZQ) tanh-'1 

(6.1) 

(6.2) 

It is easily seen that in the simplest case of Z = 

this above equation reduces to Zm/Zo = 1, consistent with 

transmission line terminated by a ivathed load. When 

= cc, the input impedance Z0 of a line of length 1 with 

an open circuit termination is 
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= Z0coth-11 (6.3) 

The input impedance Z sc of the same line with short circuit 

termination is 

z Sc = Z0tanh -11 (6.4) 

If Z Sc and Z oc are measured at the same frequency, then 

Z0, a,j9 and 1 will have the same values in both of the 

equation (6.3) and (6.4). Multiplying together the 

corresponding sides of these equations gives for a general 

case 

Z 0 = (Z scZ oc )1/2 (6.5) 

In our case ZI = 0 cannot be physically achieved, any 

grounding electrode has a definite resistance, as shown in 

Chapter 4. The measured value of the rods in parallel were 

110 Ohm, which is in good agreement with the theoretically 

obtainable values shown in FIG.4.4 and FIG.4.6. This 

measured resistance, has to be accounted for, and the 

general solution for equation (6.5) is not applicable. 

Therefore ! Z0 is derived with the aid of (6.2) and (6.3), 

and the result is 
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Z0 = (Z(ZOC + ZL) - ZLZQCJ1/2 (6.6) 

The propagation constant 7 can also be calculated from the 

measured impedances Z0 , and Using equation (6.4) 

1 - e 2 '11 
tanh-)'i = -   

z 1+e 2 ''1 
oc 

which gives 

l+Z 
e21 =  cr/Z oc 

Taking logarithms of both sides gives 

1 11+Z/ 
CT Z OC 

= - in 
21 11-Z/Z 

IT OC f 

(6.7) 

(6.8) 

(6.9) 

From (5.7), (5.8) and (6.9) we can determine the capacitance 

per unit length 

C = 'y/(jwZ0) . (6.10) 

FIG.6.2.1 to FIG.6.2.3 illustrate the results which are 

calculated in the attached computer program for the # 18 AWG 

wire. These results show a good deal of scatter as a 

function of frequency. Also shown on these charts is the 

theoretical calculation of Z based on the theory of the 
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foregoing chapters. The probable cause of the scatter is 

the measurement frequencies and the near surface layering 

of the earth. The frequency was high and therefore the 

skin-depth of the ground return was small, in the range of 

0.5 - 4 in. Dipole-dipole apparent resistivity measurements 

on the earth surface, with change of dipole separation also 

revealed a highly variable ground resitivity with depth. 

At such a small skin-depth the ground layer variation will 

dominate the impedance variation as the frequency varies. 

In order to obtain reliable results we would have to make 

the measurement over a homogeneous ground that is 

homogeneous over the full range of skin-depths. 

Furthermore simple analysis indicated that the pipeline 

insulation completely dominates the capacitive susceptance 

term in the transmission line equations. Capacitive radial 

currents and radial resistances in the earth have 

negligible effect compared with pipeline insulation 

capacitance. 

Our conclusions, resulting from the test, is that for 

definitive results further measurements are needed under 

more favorable conditions. These conditions would be 

high frequency measurement over previously quantified 

uniform earth. Values derived from our test should only be 

used as a general indication of the correctness of the 

foregoing theory. 
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CHAPTER 7 

SUMMARY AND CONCLUSIONS 

This work has used existing theory from a broad range 

of fields to investigate an original topic of research. 

These theories had to be adapted to fit the research topic 

and the computer simulation applied to the problem. 

The mathematical development has been given for 

modeling an isolated buried pipeline as an electrical 

transmission line. The derivations also include 

mathematical approximations which are required for 

evaluating complex trancendental functions. Both field 

theory and circuit theory have been employed to provide a 

simple and accurate computer model. In one case we see 

that the exact calculation of skin effect and multi-layer 

earth return must be performed by a computer to be 

practical. In another case we see that earth layered 

effects for ground rod resistance calculation are neglected 

to keep the scope of work manageable. A number of useful 

formulae which have been developed over the years for 

calculation of series impedances are derived and presented. 

When multiple solutions or approximations were encountered 

during the derivation process, this work presented them in 

increasing accuracy. 

Computer simulations performed on sample pipelines show 

that the pipeline may be used as a communication channel. 
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The simulations provide a method for designing and 

evaluating this communication channel under a wide variety 

of conditions and determining its feasibility before 

installation. 

Time domain reflectometry methods appear to have 

applicability to holiday detection in pipelines. Time 

domain reflectometry methods require a significant 

impedance discontinuity at the holiday. Thus the holiday 

itself must have a low resistance to ground because the 

pipeline characteristic impedance is low ( Z0 3 Ohm ) 

An initial coating resistance profile along a new pipeline 

could serve as a reference to which similar data taken in 

later years may be compared. Such comparison could reveal 

information on the long term performance of the coating. 

A substantial amount, about 50%, of all pipeline 

leakages occur at road and river crossings. In a road 

crossing failure the pipeline first contacts the pipeline 

casing. This has a low impedance to ground and should give 

a good impedance discontinuity to give a good reflected 

pulse. In a typical scenario of a failing river crossing, 

the pipeline " floats" out of the river bed into the river 

at spring break-up. Rocks and debris being carried down 

the river remove the coating, giving a large surface 

connection to the ground via the water. This again should 

give a good return signal for TDR measurement. 

It is not anticipated that small holidays will be 
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detectable with TDR, and due to pulse dispersion within the 

pipeline ( as a transmission channel) the time delay of the 

returned pulse will give only an approximate location of 

the large holiday. 

It would appear that TDR holiday detection methods 

merit further investigation with possibly a field trial. 
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APPENDIX A 

1. BESSEL FUNCTIONS OF ORDER ZERO, 

WITH SMALL VALUES OF x ( x < 10 ) 

1.1 BESSEL FUNCTION OF THE FIRST KIND OF ORDER ZERO 

ber x = 1 

00 

(1/2 X) (1/2 x) 8 
  +   
(2!) 2 (4!) 2 

(1/2 x)41) 

(2n - 2)!(2n - 2)! 

(1/2 

(2n - 2)!(2n - 2)! 

(1/2 x) 2 (1/2 x) 6 (1/2 x) 10 
beix-  

(1!) 2 

00 

) ' (_,) n-1 

(3!) 2 (51) 2 

(1/2 X) 4n-2 

(2n - 1)! (2n - 1)! 

(1/2 

(2n - 1)!(2n - 1)! 
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2(1/2 x) 3 4 (1/2 x) 6(1/2 
ber'x = -   

(2!) 2 + (4!) 2 (6!) 2 

2n(1/2 x) 4n-1 

(2n) ! (2n)! 

00 

(-1) 

n=1 

1/2 x 
beI'x =     4-

(1!) 2 

00 

n=, 

2n(1/2 X) 4n-1 

(2n) ! (2n)! 

3(1/2 x) 5 5(1/2 x) 9 

(3!) 2 (5!) 2 

n-i (2n - 1)(1/2 x) 4' 3 

(2n - 1)!(2n - 1)! 

n-i (2n - 1) (1/2 
(-1)  

(2n - 1)! (2n - 1)! 

1.2 BESSEL FUNCTION OF THE SECOND KIND OF ORDER ZERO 

It (1/2 x) 4 
ker x = ber x(1n2 - - mx) + - bei x - (1+1/2) 2 

4 (2!) 
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(1/2 x)8 

+ (1 + 1/2 + 1/3 + 1/4) 
(41) 2 

(1/2 
+ ( l)'(l+ 1/2 + 113...+ 1/2n)   +... 

(2n) I (2n) I 

ir 
= ber x(1n2 - - mx) + bei x + 

4 

00 
1 (1/2 

+ (-1)(1 + -)   
n=1 2n (2n) ! (2n)! 

(1/2 x) 2 
kel x = bei x(1n2 - - mx) ber x +   

4 (1!) 2 

- (1 + 1/2 + 1/3) 
(1/2 x)6 

(3!) 2 

1 (1/2 x) 4n-2 
+ (-1)  )   n-1 (1+ 1/2 + 1/3... + 2n-1 (2n-1)!(2n-1)! 

ber x(1n2 - - mx) + bei x + 
4 
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00 
1 (1/2 

+ >. (_1)n-1(1 +  )   
2n-1 (2n-l) ! (2n-1)! 

n=1 

1 It 

ker'x = ber'x(1n2 - - mx) ber x + bei ' x 
x 4 

(1/2 x) 3 (1/2 x) 7 
-(1+1/2)  + (1 + 1/2 + 1/3 + 1/4)  

2!1! 4!3! 

1 (1/2 x) 4n-1 

+ (_1)fl(1 1/2 + 1/3...+ -)  2n (2n)!(2n-1)! 

1 It 

= ber'x(1n2 - - mx) - ber x + bei ' x 
x 4 

00 1 (1/2 

(1 + -)   
+  7 ( l)'  n=1 2n (2n)!(2n-1)! 

1 it 

kei ' x = bei ' x(1n2 - - mx) - - bei x - ber'x 

x 4 

1/2 x (1/2 x) 5 
+  2 (1+1/2+1/3)   + 

(1!) 3!21 
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4n-3 
1 (1/2 x) 

 )   + ( 1)fll(1 + 1/2 + 113. .. + 2n-1 (2n-1)!(2n-2)! 

1 
= bei ' x(1n2 - - mx) - bei x 

x 

00 

+ 

ir 

4 

1 (1/2 x) 4n-3 
(_1)fl_1(1 +  )   

2n-1 (2n-1)! (2n-2)! 

ber'x 

where 7 is the Euler's constant ; I = 0.5772157 

ber x 

beix 

where 

2. BESSEL FUNCTIONS OF ORDER ZERO, 

WITH LARGE VALUES OF x ( x > 10 ) 

e" V2 

e X1,12 

/(2 lrx) 

I 

f 

X 

Lo (X) cos(. - - - ) - M(x) sin( 
\/2 8 

M0 (x) COS ( 
x 

-) 
8 

2 22 
1 71 . 3 2  

L (x) = 1 +   cos - +  2 Cos  - + 
1!8x 4 2! (8x) 4 

x 

8 

ir 

8 

) 

) 
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12 .32 . .(2p - 1) 2 pr 

ber'x 

bei ' x 

where 

cos - + 
4 

12 32 2 i 

  sin— -   sin--... 
1!8x 4 2!(8x) 2 4 

12.32 ...(2p - 1) 2 

  sin--- 
4 

e V2 

/(2irx) 

e 2 

v'(2irx) 

{ 

f 

x 
50 (x) cos( - + -) - T0 (x) 

/2 8 

To (X)cos( 
X 
- + - ) + M(x) 
'2 8 

1.3 7r 12 .3.5 2 i 

So (X) =  1 -   cos - -   cos - + 
1!8x 4 2!(8x) 2 4 

+ 

X 
sin( - + - 

v'2 8 
) 

X ir 

sin( - + - ) 
/2 8 

12.32 ...(2p - 3) 2 (2p - 1)(2p + 1) p7r 
cos - + 

4 
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1.3 7r 12 .3.5 2 ir 

T0 (x) =   sin - 2 sin - + 
118x 4 2!(8x) 4 

12.32 ...(2p - 3) 2 (2p - 1)(2p + 1) pir 
+   sin —  + 

4 

ker x =   e2 LO (-x) cos( X - + Ir -)  
/(2x) /2 8 

x it 

+ M0 (-x) sin( - + - ) 
/2 8 f 

kei x =   x/2 { (-x) cos(  - • -) x it 

/(2x) /2 8 

X ii• 

- L0 (-x) sin( - + - ) 
V2 8 J 

where L0 (-x) and are obtained by changing x to - x in 

equation L0 (x) and M0 (x). 

Or   
ker'x =   e / 2 (-x) x cos( - - -) { 0  

/('2x) v'2 8 
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X it 

+ T0 (-x) sin( - - - ) 
/2 8 

kei ' x =  Vr e'\1'2 To { (-x x) cos( - - it 

/(2x) /2 8 

x it 

- S0 (-x) sin( - - -) } 
V2 8  

where 50 (-x) and T0 (-x) are obtained by changing x to - x in 

equation S0 (x) and T0(x). 
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APPENDIX B 

* 

* 

* EYE - DIAGRAMS ON PIPELINE 
* 

* 

* 

* UNIVERSITY OF CALGARY 

* 

* DEPARTMENT OF ELECTRICAL ENGINEERING 
* 

* THESIS 

* 

* AN ELECTRICAL TRANSMISSION LINE MODEL 

* OF A PIPELINE 

* 

* BY ZSIGMOND PAL 

* ID 809797 

* 

*  

* THIS FORTRAN SOURCE PROGRAM ALLOWS THE USER TO DETERMINE THE 

* FREQUENCY RESPONSE OF A PIPELINE BY PLOTTING THE EYE DIAGRAM OF THE 

* OUTPUT OF THE TRANSMISSION LINE. 

* THE PROGRAM CALCULATES THE PARAMETERS FOR A PIPELINE 

* WHICH IS MODELED AS AN ELECTRICAL TRANSMISSION LINE FOR A GIVEN 

* ARRANGEMENT. EACH ELEMENT OF THE TRANSMISSION LINE, THE PIPE, THE 

* COATING, THE SURROUNDING EARTH AND THE GROUND BED IS CALCULATED BASED 

* ON THE USER'S ENTRY IN SUBROUTINES, WHICH ARE CALLED FROM THIS MAIN 

* PROGRAM. 

* FORTRAN SOURCE SEGMENT NAMED PBESS COMPUTES THE SKIN EFFECT RESISTANCE 

* AND REACTANCE RATIO OF THE PIPE IN THE FORM OF SERIES 

* THE PROGRAM USES RETURN TO ZERO ALTERNATE MARK INVERSION PULSES 
*  

IMPLICIT COMPLEX*16 ( Z) 

INTEGER IN 

REAL DAT1(32),DAT2(32),LENGTH,TAU,RL1 

COMPLEX GAMMA(17),ZO(17), DAT(32),TRANS(32) 

COMPLEX SPR(2,17),CSHYP,SNHYP,TEMp(2,64) 

DATA DAT1/i,1,O,O,O,O,O,O,O,O,O,O,O,O,O,O, 

C 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0/ 

DATA DAT2/1,1,O,O,-1,-1,O,O,1,i3O,O,-1,-1,O,O, 

c 1,1,0,0,-i, - 1,0,0,1,1,0,0,-i, - 1,0,0/ 

OPEN(1,FILEZ'EYE.PRN') 
* 

* READ INPUT PULSE TRAIN DAT1 AND TAKE THE FFT 
* 

DO 20 IN=1,32 
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DAT( IN )=CMPLX(DAT1( IN) 0. 0) 

20 CONTINUE 

N=32 

ISI=.1 

CALL FOUREA (DAT,N,ISI) 

DO 23 IN1,16 

SPR(1,IN)DAT(IN) 

23 CONTINUE 

* 

* READ INPUT PULSE TRAIN DAT2 AND TAKE THE FFT 
* 

DO 25 IN=1,32 

DAT(IN)=CMPLX(DAT2(IN),0.0) 

25 CONTINUE 

N32 

ISI=-1 

CALL FOUREA (DAT,N,ISI) 

DO 27 IN1,16 

SPR(2,IN)DAT(IN) 

27 CONTINUE 

* 

* TRANSMISSION LINE TRANSFER FUNCTION 
* 

WRITE(*,*)IENTER LENGTH OF THE PIPELINE IN METER' 

READ (* * ) LEN GTH 

WRITE(*,*)IENTER THE LOAD RESISTANCE' 

READ(*,*)RL1 

ZL1=CMPLX(RL1,O.0) 

PI2=8.0*ATAN(1 . 0) 

TAU=O.O1 

ZIMAG=CMPLX(O. 0, 1.0) 

CALL PBESS(TAU,RDC,ZS,ZO,GAMMA) 

WRITE(*,*)tRDC [Ohm/rn] =', RDC 

WRITE(*,*) 

WRITE(*,*)' FREO Zin ZO 

C Ztoacl' 

WRITE(*,*)' Hz REAL IMAG REAL IMAG 

C REAL IMAG' 

WRITE(*,*) 

DO 10 IN=1,17 

FREQ=(IN-1 )/( TAU*8.0) 

IF ( IN.EQ.1) THEN 

ZO(IN)=CMPLX(SQRT(RDC/1.OE-06),O.0) 

GAMMA(IN)=CMPLX(SQRT(RDC*1.OE.06),O.0) 
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ENDIF 

GAMMA(IN)=LENGTH*GAMMA(IN) 

CSHYP=(CEXP(GAMMA(IN)) + CEXP(-GAMMA(IN)))/2.O 

SNHYP=(CEXP(GAMMA(IN)) - CEXP(-GAMMA(IN)))/2.O 

ZL=ZO( IN)*ZL1/(ZO( IN)+ZL1) 

* 

* ASSUMING THE SOURCE VOLTAGE (Vs) TO BE 2.OV 

* EYE DIAGRAM AT THE LOAD 
* 

TRANS(IN)=2.O/((1+ZS/ZL)*CSHYP+(ZO( IN)/ZL+ZS/ZO(IH))* 

C SNFIYP) 

WRITE(*,200)FREQ,ZIN,ZO(IN),ZL 

200 FORMAT(E9.3,2x,6(E9.3,2x)) 

10 CONTINUE 

* 

* CALCULATE OUTPUT SPECTRUM 

* 

DO 80 IK=1,2 

IN1 

DAT( IN)SPR(IK, IN)*REAL(TRANS( IN)) 

DO 50 1N2,17 

1=34- IN 

DAT ( IN )=SPR( 1K, IN )*TRANS( IN) 
* 

* MAKE DATA SYMMETRICAL AT THE 17 TH. DATA POINT 

* 

DAT(I )=CMPLX(REAL(DAT( IN)), - AIMAG(DAT( IN))) 

50 CONTINUE 

N32 

ISI=1 

CALL FOUREA (DAT,N,ISI) 

DO 90 IN=1,32 

TEMP( 1K, IN ) DAT( IN) 

TEMP(IK,IN+32)=DAT(IN) 

90 CONTINUE 

80 CONTINUE 

* 

* SAVE DATA 

* 

DO 100 IN=1,32 

WRITE(1,4O)(REAL(TEMP(1,IK*4+1N)),REAL(TEMp(1, 1K*4+IN)), 

C IK0,7),REAL(TEMP(2, IN)),REAL(-TEMP(2, IN)) 

40 FORMAT(16(E12.6, ', '), E12.6,', ', E12.6) 

100 CONTINUE 
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WRITE(1,*) 

CLOSE(1,STATUS='KEEP') 

STOP 

END 
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* 

* 

* TIME-DOMAIN REFLECTOMETRY ON PIPELINE 
* 

*  

* 

* UNIVERSITY OF CALGARY 
* 

* DEPARTMENT OF ELECTRICAL ENGINEERING 
* 

* THESIS 

* 

* AN ELECTRICAL TRANSMISSION LINE MODEL 

* OF A PIPELINE 
* 

* BY ZSIGMOND PAL 

* ID : 809797 
* 

*  

* THIS FORTRAN SOURCE PROGRAM ALLOWS THE USER TO DETERMINE THE 

* TDR OF A PIPELINE BY PLOTTING THE REFLECTED PULSE AT THE INPUT OF 

* THE TRANSMISSION LINE. 

* THE PROGRAM CALCULATES THE PARAMETERS FOR A PIPELINE 

* WHICH IS MODELED AS AN ELECTRICAL TRANSMISSION LINE FOR A GIVEN 

* ARRANGEMENT. EACH ELEMENT OF THE TRANSMISSION LINE, THE PIPE, THE 

* COATING, THE SURROUNDING EARTH AND THE GROUND BED IS CALCULATED BASED 

* ON THE USER'S ENTRY IN SUBROUTINES, WHICH ARE CALLED FROM THIS MAIN 

* PROGRAM. 

* FORTRAN SOURCE SEGMENT NAMED PBESS COMPUTES THE SKIN EFFECT RESISTANCE 

* AND REACTANCE RATIO OF THE PIPE IN THE FORM OF SERIES - 

*  

IMPLICIT COMPLEX*16 ( Z) 

INTEGER IN,ANSWER 

REAL DATI(32),DAT2(32),LEN1,LEN2,TAU,RL1,RL2 

COMPLEX GAMMA(17),GAMMA1(17),GAMMA2(17),ZO(17),DAT(32),rRANs(32) 

COMPLEX SPR(2,17),CSHYP,SNHYP,TEMP(2,64) 

DATA DAT1/1,1,O,O,O,O,O,O,O,O,O,O,O,O,O,O, 

C 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 

OPEN(1,FILE='TDR.PRN') 
* 

* READ INPUT PULSE TRAIN DAT1 AND TAKE THE FFT 
* 

DO 20 IN=1,32 

DAT( IN )=CMPLX(DAT1( IN) , 0.0) 

20 CONTINUE 

N=32 

ISI=-1 

CALL FOUREA (DAT,N,ISI) 

DO 23 IN=1,16 
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SPR(1, IN)=DAT(IN) 

23 CONTINUE 

* 

* TRANSMISSION LIME TRANSFER FUNCTION 

* 

WRITE(*,*)ITIME DOMAIN REFLECTOMETRY ON PIPELINES' 

WRITE(-,-)' THE FOLLOWING OPTIONS ARE AVAILABLE' 

WRITE(*,*)ul = MONITOR SENDING AND RETURNING PULSE AT THE INPUT' 

WRITE(*,*)I2 = MONITOR ONLY RETURNING PULSE AT THE INPUT' 

WRITE(*,*)I3 = MONITOR ONLY SENDING PULSE AT THE LOAD' 

WRITE(*,*)14 = MONITOR MULTIPLE REFLECTION AT THE INPUT' 

WRITE(*,*)IENTER YOUR CHOICE' 

READ(* , ) ANS WER 

WRITE(*,*)IPIPELINE SECTION IS MEASURED FROM SOURCE TO LOAD' 

IF (ANSWER.EQ.4) THEN 

WRITE(*,*)IENTER LENGTH OF THE FIRST SECTION OF PIPELINE' 

WRITE(*,*)IUPTO THE LOAD, IN METER' 

READ(*,*)LEN1 

WRITE(*,*)IENTER THE FIRST LOAD RESISTANCE' 

READ(*,*)RL1 

WRITE(*,*)NOW ENTER THE SECOND SECTION PARAMETERS' 

ENDIF 

WRITE(*,*)ILENGTH OF THE PIPELINE UPTO THE LOAD, IN METER ?' 

READ(*,*)LEN2 

WRITE(*,*)ILOAD RESISTANCE ?' 

IEAD(*,*)RL2 

IF (ANSWER.EO.4) THEN 

LEN2=LEN2-LEN1 

ENDIF 

P12=8. O*ATAN( 1. 0) 

TAU=O.O1 

ZIMAG=CMPLX(00, 1.0) 

CALL PBESS(TAU,RDC,ZS,ZO,GAMMA) 

WRITE(*,*) 

WRITE(*,*)' FREQ Zin ZO 

C Zload' 

WRITE(*,*)' Hz REAL IMAG REAL IMAG 

C REAL IMAG' 

WRITE(*,*) 

DO 10 IN=1,17 

FREQ=(IN.1)/(TAU*8.0) 

IF ( IN.EQ.1) THEN 

ZO(IN)=CMPLX(SQRT(RDC/1.OE-06),0.0) 
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GAMMA(IN)=CMPLX(SQRT(RDC*1.OEO6),O.0) 

END I F 

GAMMA2( IN)=LEN2*GAMMA(IN) 

CSHYPr(CEXP(GAMMA2(LN)) + CEXP(-GAMMA2(IN)))/2.O 

SNHYP=(CEXP(GAMMA2(IN)) - CEXP(-GAMMA2(IN)))/2.O 

ZL2=ZO( IN)*RL2/(ZO( IN)+RL2) 

ZIN2=(CSHYP+ZO(IN)/212*SNHYP)/ 

C (1.O/ZL2*CSHYP+(1.O/ZO(IN))*SNHYP) 
* 

* ASSUMING THE SOURCE VOLTAGE (Vs) TO BE 2.OV 

* 

* 

* TDR DIAGRAM AT THE INPUT WITH BOTH SENDING AND RETURNING 

* PULSES 

* 

IF ( ANSWER.EQ.1) THEN 

TRANS(IN)=2.O*ZIN2/(ZIN2+ZS) 

* 

* TDR DIAGRAM AT THE INPUT WITH RETURNING PULSES ONLY 
* 

ELSEIF ( ANSWER.EQ.2) THEN 

TRANS(IN)=2.O*CEXP( 2.O*GAMMA2( IN))*(ZL2.ZO( IN))/ 

C (ZL2+ZO(IN))*ZO(IN)/(ZO(IN)+ZS) 
* 

* TDR DIAGRAM AT THE LOAD WITH SENDING PULSES ONLY 
* 

ELSEIF ( ANSWER.EQ.3) THEN 

TRANS( IN)=2.O/((1+ZS/ZLZ)*CSHYP+(ZO( IN)/ZL2+ZS/ZO( IN))* 

C SNHYP) 
* 

* MULTIPLE TDR DIAGRAM AT THE INPUT 
* 

ELSEIF (ANSWER.EO.4) THEN 

GAMMA1( IN)=LEN1*GAMMA( IN) 

CSHYP=(CEXP(GAMMA1(IN)) + CEXP(-GAMMA1(IN)))/2.O 

SNHYP=(CEXP(GAMMA1(IN)) - CEXP(-GAMMA1(IN)))/2.O 

ZL1=ZIN2*RL1/(ZIN2+RL1) 

ZIN1=(CSHYP+ZO(IN)/ZL1*SNHYP)/ 

C (1.O/ZL1*CSHYP+(1.O/ZO(IN))*SNHYp) 

TRANS(IN)=2.O*ZO( IN)/(ZO( IN)+ZS)*(ZIN1ZO(IN))/(ZIN1+ZO( IN)) 

ENDIF 

300 CONTINUE 

WRITE(* ,200)FREQ,ZIN2,zO(IN),2L2 

200 FORMAT(E9.3,2x,6(E9.3,2x)) 

10 CONTINUE 

* 

* CALCULATE OUTPUT SPECTRUM 
* 

IK=1 
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IN=1 

DAT(IN)=SPR(IK, IN)*REAL(TRANS(IN)) 

DO 50 IN=2,17 

1=34- IN 

DAT(IN)=SPR(IK, IN)*TRANS(IN) 
* 

* MAKE DATA SYMMETRICAL AT THE 17 TH. DATA POINT 

* 

DAT(I)=CMPLX(REAL(DAT(IN)), -AIMAG(DAT(IN))) 

50 CONTINUE 

N=32 

1sI=1 

CALL FOUREA (DAT,N,ISI) 

DO 90 IN1,32 

TEMP( 1K, IN )=DAT( IN) 

TEMP(IK,IN+32)=DAT(IN) 

90 CONTINUE 

* 

* SAVE DATA 

* 

DO 100 IN=1,32 

WR ITE ( 1, 40 ) REAL(TEMP( 1, IN)) 

40 FORMAT(E12.6) 

100 CONTINUE 

WRITE(1,*) 

CLOSE( 1,' 

STOP 

END 
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*  

* 

* SKIN EFFECT RESISTANCE AND REACTANCE CALCULATION 

* 

*  

* 

* UNIVERSITY OF CALGARY 
* 

* DEPARTMENT OF ELECTRICAL ENGINEERING 
* 

* THESIS 

* 

* AN ELECTRICAL TRANSMISSION LINE MODEL 

* OF A PIPELINE 

* 

* BY : ZSIGMOND PAL 

* ID 809797 
* 

*  

* THIS FORTRAN SOURCE PROGRAM CALCULATES THE PARAMETERS FOR A PIPELINE 

* WHICH IS MODELED AS AN ELECTRICAL TRANSMISSION LINE FOR A GIVEN 

* ARRANGEMENT. EACH ELEMENT OF THE TRANSMISSION LINE, THE PIPE, THE 

* COATING, THE SURROUNDING EARTH AND THE GROUND BED IS CALCULATED BASED 

* ON THE USER'S ENTRY. 

* THE SKIN EFFECT RESISTANCE AND REACTANCE RATIO OF THE PIPE 

* IN THE FORM OF SERIES ARE CALCULATED. 

* BESSEL FUNCTIONS OF THE FIRST KIND AND SECOND KIND OF ORDER ZERO 

* ARE COMPUTED BY A SUBROUTINE FOR LARGE AND FOR SMALL VALUES OF 

* THE ARGUMENT 

* THE OUTPUT IS STORED IN THE OUTPUT DATA FILE FOR FURTHER PROCESSING 
* 

* CONSTANTS  
* 

* 

* EULER = .5772157 EULER'S CONSTANT 

* P1 3.14159265 CONSTANT 

* MUD = 1.256E-06 PERMEABILITY OF FREE SPACE (H/rn] 

* MUR = 500 PIPE RELATIVE PERMEABILITY 

* EPS 4*PI*8854E..12 PERMITTIVITY OF FREE SPACE [ F/ml 

* EPSR = 3.7 PIPE INSOL. REL. PERMITTIVITY 

* RHOP = 2.5E-07 PIPE RESISTIVITY [Ohrn*rn] 

* INS = 0.003 INSOLATION THICKNESS [rn] 
* 

* VARIABLES  

* 

* R=RR/2 OUTSIDE RADIUS OF THE PIPE 

* Q=QQ/2 INSIDE RADIUS OF THE PIPE 

* RHOE GROUND RESISTIVITY [Ohrn*rn] 

* GAMMA PROPAGATION CONSTANT 

* ZO CHARACTERISTIC IMPEDANCE 

* TAU PULSE WIDTH 
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* ZS GROUND BED RESISTANCE 
* 

* 10 AND GAMMA ARE ONE DIMENSIONAL COMPLEX ARRAYS 

* 

*  

SUBROUTINE PBESS(TAU,RDC,ZS,ZO,GAMMA) 

IMPLICIT REAL*8 (AH,K,M,X),COMPLEX*16 ( Z),INTEGER ( I-J,L) 

COMPLEX GAMMA(17),ZO(17),RADC(17) 

REAL*4 INS,TAU,SKIN,MAGNITU 

INTEGER*4 P,ANS 

DIMENSION BES(8,2),BESS(8,100),Z12(1,100),SKIN(100) 

WRITE(*,*)IOUTSIDE DIAMETER OF THE PIPE Em] 

READ(* * ) RR 

WRITE(*,*)* INSIDE DIAMETER OF THE PIPE [m] =' 

READ(*,*)QQ 

EULER = .5772157 

P1 = 3.14159265 

MUO = 1.256E-06 

MUR 500.0 

EPS = 4.0*PI*8.854E.12 

EPSR = 3.7 

RHOP = 2.5E-07 

INS = .003 

*  

* 

* GROUND BED RESISTANCE CALCULATION 

* 

*  

WRITE(*,*)IGROUND RESISTIVITY FOR GROUND BED [Ohm- ml 

READ (* * ) RHO 

WRITE(*,*)IGROUND BED DIAMETER Em] 

READ(*,*)D 

WRITE(*,*)IGROUND BED LENGTH Em] =' 

READ(*,*)L 

WRITE(*,*)IDEPTH OF GROUND BED [m] 

READ (* * )S 

WRITE(*,*)ISEPARATION OF THE GROUND BEDS [m]' 

READ(**)T 

S=S*2 

A=D/2 

ZS=RHO/(8*PI *L)*((LOG(4*L/A).1+LOG((2*L+SQRT(s**2+4*L**2))/5)+ 

c S/(2*L).(SQRT(S**2+4*L**2))/(2*L))+4*LOG(2+T/L)+2*TIL*LOG(T,L* 

C (2+T/L))4*(1+T/L)*LOG(1+T/L)) 

WRITE(*,*) 

WRITE(*,*)' GROUND BED RESISTANCE IN Ohm =', REAL(ZS) 

WRITE(*,*) 
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RT2SQRT(2.0) 

R=RR/2.O 

QQQ/2.O 

T=R-Q 
* 

* PIPE DC RESISTANCE /rn 

* 

RDC=RHOP/(PI*(R**2Q**2)) 

*  

* 

* CALCULATE MULTI- LAYER GROUND RESISTANCE 

* 

*  

CALL GROUND(RR,TAU,Z12,SKIN) 

*  

* 

*CALCULATE SKIN EFFECT RESISTANCE AND REACTANCE RATIO OF THE PIPE 

* 

*  

WRITE(*,*)' FREQ MT RAC/RDC GAMMA/rn 

WRITE(*,*)' Hz REAL IMAG' 

WRITE(*,*) 

DO 100 IN2,17 

FREQ=( IN-i )/( TAU*8.) 

MSQRT ( 2. OP I * FREQ*MUR*MIJO/RHOp) 

MRM*R 

MQM*Q 

MT=M*T 

Z7'=CMPLX(OO,l.0) 

* 

* FOR MT GREATER THAN 4 , THE SKIN EFFECT IN A TUBE IS SOLVED 

* BY THE ASYMPTOTIC FORMULA 
* 

IF (MT.GT.4) THEN 

RADC( IN )=M*(R**2Q**2)/(2. O*R*RT2)*( 1. 0+1. O/(MR*RT2 )+3 . 0/ 

C (80*MRr2)) 

GOTO 10 

ENDIF 

* 

* FOR MT LESS THAN 4 , THE ASYMTOTIC FORMULA CAN NOT BE USED TO 

* OBTAIN PRACTICAL VALUES OF SKIN EFFECT RATIOS . IN A CASE LIKE THIS 

* THE PRECISE METHODE OF CALCULATION IS REQUIRED 
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* 

DO 30 1=1 , 2 

IF ( I.EQ.1) THEN 

X=MR 

ELSEIF (I.EQ.2) THEN 

X=MQ 

END IF 

CALL BESSEL(X,BER,BEI,BERR,BEII,KER,KEI,KERR,KEII) 

BES(1,I)=BER 

BES(2, I ) BEI 

BES(3, I )=BERR 

BES(4, I )=BEI I 

BES(5, I)=KER 

BES(6, I)KEI 

BES(7, I ) KERR 

BES(8, I ) KEI I 

30 CONTINUE 

* 

* USING CALCULATED BESSEL FUNCTIONS SOLVE REST OF THE EQUATION 

* 

Z1=CMPLX(BES(1, 1),BES(2,1)) 

22=CMPLX(BES(5, 1), BES(6, 1)) 

Z3CMPLX(BES(3, 1),BES(4, 1)) 

24CMPLX(BES(7,1),BES(8,1)) 

Z5CMPLX(BES(3,2) , BES(4,2)) 

Z6CMPLX(BES(7, 2), BES(8,2)) 

Z=Z7*M* (R**2OQ**2.0)/(2.0*R)*(Z1+(.Z5/Z6)*Z2)/(Z3+( . Z5/Z6)*Z4) 

RADC(IN)=Z 

10 CONTINUE 
* 

* PIPE CAPACITANCE TO GROUND un 
* 

CAP = 2.0*PI *EPS*EPSR/LOG((R+.004)/R) 

* 

* PROPAGATION CONSTANT Z1O AND CHARACTERISTIC IMPEDANCE CALCULATION 
* 

Z1O=CDSQRT( Z7*2*P I*FREQ*CAP*( RADC( IN )*RDC+REAL( Z12( 1, IN)) ) 

GAMMA( IN)=Z1O 

ZO( IN )=CDSQRT( ( RADC( IN )*RDC+Z12(1, IN) ) RZ7*2*PI*FREQ*CAp)) 

WR ITE(* , 700 ) FREQ , MT , REAL(RADC( IN) ) , GAMMA( IN) 

700 FORMAT(E9.3,2x,4(E9.3,2x)) 

100 CONTINUE 

WRITE(*,*) 

WRITE(*,*)' CAPACITANCE =', CAP 
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WRITE(*,*) 

RETURN 

END 

*  

* SUBROUTINE 

* 

* BESSEL FUNCTION CALCULATION 
* 

* THIS SUBROUTINE CALCULATES BESSEL FUNCTIONS OF ORDER ZERO IN THE 

* FORM OF SERIES FOR LARGE VALUES ( X > 10.0 ) AND SMALL VALUES 

* ( X < 10.0 ) OF THE ARGUMENT 
* 

* BER,BEI,BERR AND BEll ARE THE BESSEL FUNCTION OF THE FIRST KIND, 

* ORDER ZERO 

* KER,KEI,KERR AND KEII ARE THE BESSEL FUNCTION OF THE SECOND KIND, 

* ORDER ZERO 

*  

SUBROUTINE BESSEL(X,BER,BEI,BERR,BEII,KER,KEI,KERR,KEII) 

IMPLICIT REAL*8 (A-H,K,M,X),INTEGER ( I-J,L) 

BERO.O 

BE I 0 . 0 

BERRO.0 

BE! I0.0 

KER=0.O 

KEIO.0 

KERR=0.0 

KEI 1=0.0 

EULER = .5772157 

P1 = 3.14159265 

RT2SQRT ( 2 . 0) 

D=0 . 0 

* 

*BER FUNCTION CALCULATOION 
* 

IF (X.LT.10.0) GOTO 110 

A=.3989425*EXP(X/RT2)/SQRT (X) 

BER=A*((1.O+.7071/(8.0*X))*C0S(X/RT2..3927)+.7071/(8.0*x)*SIN(X, 

RT2- . 3927)) 

GOTO 120 

110 DO 50 1=1 , 10 

A=(1.0)**(I.1) 

B(.5*X)**(4.O*(l1)) 

L=2*I -2 

CALL FACTOR(L,D) 
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BERBER+A*B/D**2 . 0 

50 CONTINUE 

120 CONTINUE 

* 

*BEI FUNCTION CALCULATION 

* 

IF ( X.LT.1O.0) 0010 130 

A= . 3989425*EXP ( X/RT2 )/SQRT ( X) 

BEI=A*((1.0+.7071/(8.O*X))*SIN(X/RT2. . 3927)- . 7071/(8.0*x)*COs(X/ 

C RT2- . 3927)) 

0010 140 

130 DO 51 1=1 , 10 

A(1.0)**(I.1) 

B=( 5*X)**(40*I - 2.0) 

L2*I - 1 

CALL FACTOR(L,D) 

BEI BEI+A*B/D**Z.O 

51 CONTINUE 

140 CONTINUE 

* 

*BERI FUNCTION CALCULATION 
* 

IF ( X.LT.1O.0) GOTO 150 

A . 3989425*EXP(X/RT2 )/SQRT ( X) 

BERR=A*((1.O.2.12131(80*X))*COS(X/RT2+.3927).2.1213/(8.O*x)*sIN 

c (X/RT2+.3927)) 

GOTO 160 

150 DO 52 1=1 , 1O 

B=2.O*I*(.5*X)**(40*I.1) 

L2*I 

CALL FACTOR(L,D) 

BERR=BERR+A*B/D**2 0 

52 CONTINUE 

160 CONTINUE 

* 

*BEII FUNCTION CALCULATION 
* 

IF (XLT.1O.0) GOTO 170 

A . 3989425*EXp(X/RT2)/SQRT ( X) 

BEII=A*((1.O -2 - 1213/(8. O*X) )*SIN ( X/RT2+ . 3927)+2. 1213/ ( 8. OX )*COS 

C (X/RT2+.3927)) 

GOTO 180 

170 DO 53 1=1 . 10 

A=(1.0)**(I1) 
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B=(2. 0* 1 1)*( 5*)( )**(4 0* 1-3 . 0) 

L=2*I1 

CALL FACTOR(L,D) 

BEI I=BEI I+A*B/D**2.O 

53 CONTINUE 

180 CONTINUE 

* 

*KER FUNCTION CALCULATION 

* 

H=O.O 

IF ( X.LT.1O.0) GOTO 190 

A=1.2533141*EXP(.X/RT2)/SORT(x) 

KER=A*((1.O1.O/(8.O*X))*COS(X/RT2+.3927)+.7O71/(8.0*x)*sIN 

(X/RT2+.3927)) 

GOTO 200 

190 DO 54 I1 , 1O 

A=(1.0)**I 

B=(.5*X)**(4.0*I) 

E=0.0 

DO 55 J1 ,( 2*I) 

EE1.O/J 

EE+EE 

55 CONTINUE 

L=2*I 

CALL FACTOR(L,D) 

HH + A*E*B/D**2.0 

54 COIITINUE 

KER(LOG(2.0).EULER.LOG(X))*BER + BEI*PI/4.0+ H 

200 CONTINUE 

* 

KEI FUNCTION CALCULATION 
* 

G=O. 0 

IF (X.LT.10.0) GOTO 210 

A=1.2533141*EXP(X/RT2)/SoRT(x) 

KEIA*((1.0 ..7071/(8.0*X))*SIN(X/RT2+.3927)+.7O71,(8.O*x)*c0s 

C (X/RT2+.3927)) 

GOTO 220 

210 DO 56 1=1 , 10 

A=(1.0)**(I.1) 

B=(.5*X)**(4.O*I2.0) 

E=O . 0 

DO 57 J=1 ,( 2*I.1) 

F=1.0/J 

E=E+F 

57 CONTINUE 

L2*I1 
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CALL FACTOR(L,D) 

GG + A*E*B/D**2.O 

56 CONTINUE 

KEI=(LOG(2.0).EULERLOG(X))*BEI - BER*PI/4.0+ G 

220 CONTINUE 

* 

*KERI FUNCTION CALCULATION 

* 

G=O.O 

H=O. 0 

IF ( X.LT.1O.0) GOTO 230 

A=.1.2533141*EXP( - X/RT2)/SQRT(X) 

KERRA* ( ( 1. 0+2. 1213/(8. O*X ) )*COS( X/RT2- . 3927) - 2. 1213/ ( 8. OX 

SIN(X/RT2- . 3927)) 

GOTO 240 

230 DO 59 1=1 , 10 

B=(.5*X)**(4.O*I1) 

E=0.0 

DO 58 J1 ,( 2*I) 

F1.O/J 

EE+F 

58 CONTINUE 

L2*I*1 

CALL FACTOR(L,D) 

DDD 

L2*I 

CALL FACTOR(L,D) 

GG + A*E*B/(DD*D) 

59 CONTINUE 

KERR=(LOG(2.0)EULER.LOG(X))*BERR BER/X+BEiI*PI/4.0+ C 

240 CONTINUE 

* 

*KEII FUNCTION CALCULATION 
* 

G=O. 0 

H=O. 0 

IF ( X.LT.1O.0) GOTO 250 

A=-1 . 2533141*EXP( -XIRT2)/SQRT(X) 

KEII=A*(.(1.O 12.1213/(8.0*X))*SIN(x/RT2.3927).2.1213/(8O*x)* 

C COS(X/RT2- . 3927)) 

GOTO 260 

250 DO 60 1=1 , 10 

A=(1.0)**(I1.) 

B=( . 5*X)**(4.0*I -3.0) 

E=0.0 

00 61 J=1 ,( 2*I.1) 
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F=1 . 0/J 

E=E+F 

61 CONTINUE 

L=2*I - 2 

CALL FACTOR(L,D) 

DD=D 

L=2*I - 1 

CALL FACTOR(L,D) 

GG + A*E*B/(DD*D) 

60 CONTINUE 

KEI I=(LOG(2.0).EULERLOG(x))*BEI I BEI/XBERR*PI/4.O+G 

260 CONTINUE 

RETURN 

END 

* 

* SUBROUTINE FOR FACTORIAL CALCULATION 
* 

SUBROUTINE FACTOR(L,D) 

REAL*8 D 

INTEGER*4 J,L 

IF ( L.EQ.0) THEN 

L=1 

ENDIF 

D=1.0 

DO 20 J1 , L 

DD*J 

20 CONTINUE 

RETURN 

END 

*  

* SUBROUTINE 

* 

* PIPELINE GROUND RETURN SELF IMPEDANCE 

* CALCULATION 

* 

*  

SUBROUTINE GROUND(RR,TAU,Z12,SKIN) 

IMPLICIT REAL*4 ( M,R),COMPLEX*16 (A-H,P,T,Z),INTEGER ( I- L) 

REAL*4 PI,SIGMA,FREQ,DELTA,TAU,SKIN 

DIMENSION RHOE(5),SIGMA(5),A(2,2,5),C(2,2),DELTA(4) 

DIMENSION Z12(1,100),Z10(1,100),sKIN(100) 

WRITE(*,*)IENTER THE NUMBER OF GROUND LAYERS 2,3,4 OR 5 

READ(* , * ) KLAY ER 

WRITE(*,*)IGROUND RESISTIVITY OF EACH LAYER' 
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WRITE(*,*)ISTARTlNG FROM THE TOP lOhm*m] 

DO 300 K=1,KLAYER 

READ(*,*)RHOE(K) 

300 SIGMA(K)=1.O/RHOE(K) 

WRITE(*,*)IENTER THE VALUE OF EACH LAYER THICKNESS 

WRITE(*,*)ISTARTING FROM THE TOP Em] 

DO 301 K=1,KLAYER-1 

READ(*,*)DELTA(K) 

301 CONTINUE 

P1=3.14159265 

MU04*PI*1.OE.07 

R=RRI 2 

ZIMAG=CMPLX(O.O, 1.0) 

WRITE(*,*)ITAU= , TAU 

WRITE(*,*) 

WRITE(*,*)' FREQ COMP.DEPTH MLAYER [m] GROUND IMP.' 

WRITE(*,*)' Hz REAL IMAG REAL IMAG' 

DO 100 L2,17 

FREQ(L.1)/(TAU*8.) 

*  

* COMPLEX PENETRATION DEPTH FOR HOMOGENEOUS EARTH , MUO=MUOO 
*  

* 

* 

PUNIF=CDSQRT(1.0/(ZIMAG*2*PI*FREO*MUO*SIGMA(1))) 

URITE(*,*)IP uniform earth= ', PUNIF 

* CLOSED FORM SOLUTION FOR UNDERGROUND IMPEDANCE C/mi CALCULATION 
* 

Z10(1 , L)=ZIMAG*FREO*MUO*CDLOG((R+pUNIF),R) 

* WRITE(*,*)IZ ( series) uniform earth=',ZlO(l,L) 

*  

* COMPLEX DEPTH CALCULATION FOR MULTI- LAYER EARTH 
*  

DO 500 K=1 , KLAYER-1 

P1.O/CDSQRT(ZIMAG*2.O*PI*FREQ*MUO*SIGMA(K)) 

ZETA=CDSQRT(ZIMAG*2.0*PI*FREQ*MUO/SIGMA(K)) 

THETA=CDEXP(DELTA(K )/P) 
* 

* CALCULATION OF GENERALIZED CIRCUIT CONSTANTS A,B,C AND D , A=D 

* IN THE MATRIX A(ROW,COL,K). NOTE THE WAY A(1,1,K) AND A(1,1,K1) 

* IS PASSED TO THE SUBROUTINE MATMUL 
* 
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A(1, 1,K)=(THETA+1.0/THETA)/2.0 

A(1,2,K)=ZETA*(THETA.1.0/THETA)/2.0 

A(2, 1,K)=(THETA .1.0/THETA)/(2.O*ZETA) 

A(2,2,K)=A(1,1,K) 

500 CONTINUE 

* 

*100K OUT FOR TWO LAYERED EARTH 
* 

IF ( KLAYER . EQ. 2) THEN 

DO 602 1=1,2 

DO 602 J=1,2 

C(I,J)=A(I,J,1) 

602 CONTINUE 

0010 601 

ENDIF 

DO 600 K1 , KLAYER-1 

IF ( K . EQ. KLAYER-1) 0010 603 

CALL MATMUL (A(1,1,K+1),A(1,1,K),C) 

603 CONTINUE 

DO 600 I1,2 

DO 600 J=1,2 

A(I,J,K+1)=C(I,J) 

600 CONTINUE 

601 CONTINUE 

* 

* CALCULATE ZETA FOR THE LAST LAYER 
* 

ZETA=CDSQRT(ZIMAO*2.O*PI *FREQ*MUO/SIGMA(KLAYER)) 
* 

* ED CAN BE CALCULATED , AT THE TOP OF THE FIRST LAYER 

* HO=CURRENT AND THEREFORE 
* 

EO=( ZETA*C( 1, 1) - C(1, 2) )/( C( 1, 1) zETA*C(2,1) ) 

P=EO/( ZIMAG*2 Q*p *IQ*4JJo) 

Z12(1,L)=ZIMAG*FREQ*MUD*CDLOG((R+p),R) 

SKIN(L)=REAL(P) 

WRITE (* , 700) FREQ , P, Z12( 1,1 

700 FORMAT(E9.3,2x,4(E9.3,2x)) 

100 CONTINUE 

WRITE(*,*) 

RETURN 

END 

*  

* SUBROUTINE 
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* MATRIX MULTIPLICATION 
* 

* A(L,M) IS MULTIPLIED BY B(M,N) 

* RESULT IS STORED IN C(L,N) 

* 

*  

SUBROUTINE MATMUL ( A,B,C) 

COMPLEX*16 A,B,C,SUM 

DIMENSION A(2,2),B(2,2),C(2,2) 

DO 10 1=1,2 

DO 10 K1,2 

SUM(O.O,O.0) 

DO 20 J=1,2 

20 SUM=SUM+A(I,J)*B(J,K) 

10 C(I,K)=SUM 

RETURN 

END 
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*  

* 

* SUBROUTINE : FOUREA 

* COOLEY-TUKEY FAST FOURIER TRANSFORM 
* 

*  

* 

* UNIVERSITY OF CALGARY 
* 

* DEPARTMENT OF ELECTRICAL ENGINEERING 
* 

* THESIS 

* 

* AN ELECTRICAL TRANSMISSION LINE MODEL 

* OF A PIPELINE 

* 

* BY : ZSIGMOND PAL 

* ID : 809797 
* 

*  

* THIS FORTRAN SOURCE PROGRAM ALLOWS THE USER TO CALCULATE THE 

* FAST FOURIER TRANSFORM OF A DISCRETE FUNCTION. 

* DATA IS A ONE-DIMENSIONAL COMPLEX ARRAY WHOSE LENGTH, N, IS A 

* POWER OF TWO. ISI IS +1 FOR AN INVERSE TRANSFORM AND - 1 FOR A 

* FORWARD TRANSFORM. TRANSFORM VALUES ARE RETURNED IN THE INPUT 

* ARRAY, REPLACING THE INPUT. 

* TRANSFORM(J)SUM(DATA(I)*W**(J.1)), WHERE I AND J RUN 

* FROM 1 TO N AND W = EXP ( ISI*2*PI*SORT(.1)/N). PROGRAM ALSO 

* COMPUTES INVERSE TRANSFORM, FOR WHICH THE DEFINING EXPRESSION 

* IS INVERT ( J)(1,N)*SUM(DATA(I )*W**((I.1)*(J1))) 

* RUNNING TIME IS PROPORTIONAL TO N*LOG2(N), RATHER THAN TO THE 

* CLASSICAL N**2. 

* THIS IS A VERY SHORT VERSION OF THE FFT AND IS INTENDED 

* MAINLY FOR DEMONSTRATION. PROGRAMS ARE AVAILABLE IN 

* IEEE COLLECTION WHICH RUN FASTER AND ARE NOT 

* RESTRICTED TO POWERS OF 2 OR TO ONE-DIMENSIONAL ARRAYS. 

* SEE IEEE TRANS AUDIO ( JUNE 1967), SPECIAL ISSUE ON FF1. 
*  

SUBROUTINE FOUREA (DATA, N, ISI) 

COMPLEX DATA(1) 

COMPLEX TEMP, W 
* 

P1 = 4. *( j) 

FM = N 
* 

* THIS SECTION PUTS DATA IN BIT- REVERSED ORDER 
* 

J1 

DO 80 I=1,N 

* 

* AT THIS POINT, I AND J ARE A BIT REVERSED PAIR ( EXCEPT FOR THE 
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* DISPLACEMENT OF + 1) 

* 

IF ( I- J) 30, 40, 40 
* 

* EXCHANGE DATA(I) WITH DATA(J) IF I.LT.J. 
* 

30 TEMP = DATA(J) 

DATA(J) = DATA(I) 

DATA(I) = TEMP 
* 

* IMPLEMENT J=J4-1, BIT- REVERSED COUNTER 

* 

40 M=N/2 

50 IF ( J- M) 70, 70, 60 

60 J=J - M 

N = (M+1)/2 

GO TO 50 

TO J=J1M 

80 CONTINUE 
* 

* NOW COMPUTE THE BUTTERFLIES 

* 

MMAX = 1 

90 IF (MMAX-N) 100, 130, 130 

100 ISTEP = 2*MMAX 

DO 120 M=1,MMAX 

THETA = PI*FLOAT(ISI*(M.1))/FLOAT(MMAX) 

W = CMPLX(COS(THETA),SIN(THETA)) 

DO 110 I=M,N,ISTEP 

J = I + MMAX 

TEMP = W*DATA(J) 

DATA(J) = DATA(I) - TEMP 

DATA(I) = DATA(I) + TEMP 

110 CONTINUE 

120 CONTINUE 

MMAX = ISTEP 

GO TO 90 

130 IF ( ISI) 160, 140, 140 
* 

* FOR INV TRANS -- ISI=1 -- MULTIPLY OUTPUT BY 1/N 
* 

140 DO 150 I=1,N 

DATA(I) = DATA(I)/FN 

150 CONTINUE 

160 RETURN 

END 
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* 

* 

* DETERMINATION OF TRANSMISSION LINE CHARACTERISTICS FROM 

* IMPEDANCE MEASUREMENT 

* 

*  

* 

* UNIVERSITY OF CALGARY 
* 

* DEPARTMENT OF ELECTRICAL ENGINEERING 
* 

* THESIS 

* 

* AN ELECTRICAL TRANSMISSION LINE MODEL 

* OF A PIPELINE 
* 

* BY : ZSIGMOND PAL 

* ID : 809797 
* 

*  

* 

* THIS PROGRAM CALCULATES THE CHARACTERISTIC IMPEDANCE 

* OF A WIRE, BASED ON IMPEDANCE MEASUREMENT. THE WIRE IS 100 m LONG 

* AND IT IS LAID ON THE GROUND IN THE FIRST CASE, LIFTED 0.1 m 

* ABOVE GROUND IN THE SECOND CASE, AND LOOPED BACK TO ITSELF, 

* 0.2 m ABOVE THE GROUND, IN THE THIRD CASE. 
* 

* PCALIB IS THE RECEIVED POWER AT THE TIME OF CALIBRATION 

* FROM THE OPEN COAX LINE NOT CONNECTED TO THE WIRE 

* ZOPEN(I) AND ZTERM(I) IMPEDANCE VALUES FOR OPEN AND 

* TERMINATED CIRCUITS 

* Z(0) CHARACTERISTIC IMPEDANCE 
*  

IMPLICIT COMPLEX ( Z) 

COMPLEX PROCOM , PRTCOM,GAMMA, Y 

REAL PCALIB,PHASE1,PHASEO,PHASET,PRMAGO,PRMAGT,FREQ,cAp 

DIMENSION PCALIB(7),PHASE1(7),PROCOM(7),PRTCOM(7) 

DIMENSION FREQ(7),CAP(7),ZOPEN(7),ZTERM(7),ZO(21),GAMt4A(21) 

DIMENSION PRMAGO(21),PHASEO(21),PRMAGT(21),PHAsET(21) 

DATA PRMAGO/ -21.3,-19.5,-18.5,-18.6,-18.9,-18.9,-19.O, 

c -17.0, -17.3,-18.1,- 17.3,-17.2,-17.9,-17.8, 

C -16.9,-18.2,-18.O,-17.O,-17.1,-17.9,-17.8/ 

DATA PHASEO/-31.O,-15.O,-42.O,-75.O, - 103., 145.,-60.O, 

C -11.0,-20.0,-41 . 0,-71.0,-105., 143.,-62.O, 

C - 8.5,- 18.O,- 41.O,- 72.O,-106., 142.,-62.O/ 

DATA PRMAGT/-19.2,-18.3,-18.7,-185,-18.8,-18.8,-18.8, 
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C -19.4, -18.3, -18.0, -17.6,-17.6,-18.0,-17.9, 

c -21.1, -18.0, -17.5, -17.1-,-17.2,-18.0,-17.9/ 

DATA PHASET/ - 3.0,-22.O,-42.0,-75.0,-103., 145.,-58.O, 

C -10.5,-24.0,-44.0,-71.0,-105., 145.,-64.0, 

c -15.0,-30.0,-41.0,-72.0,-105., 142.,-62.0/ 

DATA PCALIB/-16.2, - 15.9, - 15.5,-15.2, - 15.2, - 15.6, - 16.0/ 

DATA PHASE1/-7.5,-20.0,-40.0,-73.0,-103.0,144.0,-58.0/ 

DATA FREQ/1.0,2.0,4.0,7.0,10.0,20.0,40.0/ 

OPEN(1,FILE='WIRETEST.PRN') 

RAD=57. 2957 

RTERM120.0 
* 

* CALCULATE REFLECTED POWER OF THE OPEN CIRCUITED LINE 

* 

DO 40 K=O,2 

WRITE(*,*) 

WRITE(*,*) 

WRITE(*,*)IVALUES FOR OPEN CIRCUIT' 

DO 10 1=1,7 

WRITE(*,*) 

WRITE(*,*)IFREOUENCY IN MHz =', FREQ(I) 

PRO = PRMAGO(K*7+I) - PCALIB(I) 

WRITE(*,*)IPOWER MAGNITUDE IN db ', PRO 

PRO = 1O.0**(PRO/20.0) 

PHASE=PHASEO(K*7+I) - PHASE1(1) 

WRITE(*,*)IPHASE ANGLE =', PHASE 

PHASE=PHASE/RAD 

PROCOM(I)=CMPLX(COS(PHASE)*PRO,SIN(pHAsE)*PRO) 

WRITE(*,*)IREFLECTION COEFFICIENT =', PRO 

10 CONTINUE 

WRITE(*,*) 

WRITE(*,*) 

* 

* CALCULATE REFLECTED POWER OF THE TERMINATED WIRE 
* 

WRITE(*,*)IVALUES FOR TERMINATED CIRCUIT' 

WRITE(*,*) 

DO 20 1=1,7 

WRITE(*,*)IFREOUENCY IN MHz =', FREQ(I) 

PRT = PRMAGT(K*7+I) - PCALIB(I) 

WRITE(*,*)IPOWER MAGNITUDE IN db =', PRT 

PRT = 1O.O**(PRT/20) 
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PHASE=PHASET(K*7+I) - PHASE1(I) 

WRITE(*,*)IPHASE ANGLE =', PHASE 

PHASE=PHASE/RAD 

PRTCOM(I)=CMPLX(COS(PHASE)*PRT,SIN(PHASE)*pRT) 

WRITE(*,*)tREFLECTION COEFFICIENT =', PRT 

WRITE(*,*) 

20 CONTINUE 

WRITE(*,*) 

* 

* CALCULATE INPUT IMPEDANCE OF THE OPEN AND TERMINATED WIRE 
* 

DO 30 1=1,7 

ZOPEN(I)=(1.O+PROCOM(I))/(1pRoCoM(I))*5O.O 

WRITE(*,*)' OPEN CIRCUITED WIRE INPUT IMPEDANCE =', ZOPEN(I) 

ZTERM(I)(1.O+PRTCOM(I))/(1.O.PRTCOM(I))*50.O 

WRITE(*,*)ITERMINATED WIRE INPUT IMPEDANCE ', ZTERM(I) 

* 

* CALCULATE CHARACTERISTIC IMPEDANCE 
* 

ZO(K*7+I ) CSQRT(ZTERM( I )( ZOPEN( I )+RTERM) - ZOPEN( I )*RTERM) 

GAMMA(K*7+I ) 1 O/(2*10O.0)*LOG((1.0+ZO(K*T+I )/ZOPEN(I ))/ 

C (1.0.ZO(K*7+I)/ZOPEN(I))) 

WRITE(*,*)tGAMMA(K*7+i) 1,GAMMA(K*7+I) 

YGAMMA(K*7+I )/ZO(K*7+I) 

CAP( I )=AIMAG(Y)/(6.28*FREQ( I )* 1 . 0Ei-06) 

WRITE(*,*)ICHARACTERISTIC IMPEDANCE IN OFIMS=l,ZO(K*7+I) 

WRITE(*,*)ICONDUCTANCE IN MHOS=',REAL(Y) 

WRITE(*,*)fCAPACITANcE IN FARADS=',CAP(I) 

WRITE(*,*) 

30 CONTINUE 

40 CONTINUE 

DO 50 1=1,7 

WRITE(1,1000)(ZO(K*7+1 ), GAMMA(K*7+I ), K=O,2) 

1000 FORMAT ( 11(E12.6,, l,E12.6),*, 1,E12.6,t,I,E12.6) 

50 CONTINUE 

CLOSE(1,STATUS='KEEP') 

STOP 

END 


