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Abstract 

Code improvement techniques are used to overcome the inherent inefficiencies 

present in automatic, machine based code generation. One of these techniques 

involves the examination of flow patterns within the program to determine where 

such problems are occurring and to derive suitable corrections. 

This thesis describes a code improvement system called GO (for Global op-

timizer which applies the techniques of flow analysis to machine executable object 

modules. The analysis is performed without benefit of a symbol table, linkage 

map or any other form of assistance from the compilation system. 

Presented are details of the implementation of the GO control flow and data 

flow analysis subsystems as well as discussions on how the information gathered 

by these procedures may be used to effect improvements in machine generated 

code. 
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Preface 

This thesis describes a code improver called "GO" (for Global Optimizer) 

which is currently under development. GO is being implemented in the C pro-

gramming language and is to run on the DEC VAX 11/780* running the UNIX 

operating system. Though it should work with code generated by compilers for 

almost any language, the improver is designed to accept code generated from C. 

In consideration of these facts, all examples of "real" code (as opposed to 

pseudo-code) given in this thesis will be in C or VAX assembler. For the reader 

who is unfamiliar with the VAX assembler language, a brief overview is given in 

the Appendix (page 102). 

The reader is also referred to [20] for a description of the C programming 

language and to [14] and [25] for more detailed information on the VAX assembly 

language. 

*DEC and VAX are trademarks of Digital Equipment Corporation 
tUNIX is a registered trademark of AT&T Bill Laboratories 

xl' 



Chapter 1 

Introduction 

Computer Science is a discipline obsessed with the concept of efficiency. This 

obsession is a holdover from the infancy of the field, when computers were slow, 

expensive, unreliable and somewhat limited in their capabilities. Under such 

constraints a fast (time efficient) and compact (space efficient) program was an 

absolute necessity. 

In more recent times, computers have improved greatly in all areas. The most 

precious commodity in the computing industry is no longer the computer but its 

programmer, or more correctly, the programmer's time. 

It was because of this desire to make the most productive use of this re-

source that so-called "high level languages" and their associated compilers were 

developed. Much of the time spent when programming in machine or assembler 

language is devoted to translating a small number of relatively straight-forward 

ideas into the elementary and highly repetitive instructions required by a com-

puter. Such tasks as these are the computer's forte and automation of them is an 

obvious solution to this problem. 

High-level languages, then, permit the programmer to compose a rough outline 

of the solution to a problem and have the computer supply the details of its 

implementation. The programmer's time may therefore be addressed to more 

meaningful tasks. 

1 
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Machine generated code, unfortunately, is usually of poor quality. Why is 

the quality of machine produced code so low? How can the process be altered 

to achieve better quality? To answer these questions an examination of how 

compilers operate is required. 

As stated above, the purpose of.a high-level language compiler is to translate a 

given source program into a series of machine instructions. This is conventionally 

done in two stages. The first phase, lexical analysis, involves the partitioning of 

the source into a series of basic expressions. This is followed by a code generation 

phase in which each of the sequences detected in the first step is matched with a 

predefined sequence of machine instructions that performs the same computation. 

The result is a translation of the original input program into machine executable 

code. 

This technique has two desirable traits: it is fast and it is easy to implement. 

Unfortunately, it also has a major flaw. Because each input expression is treated 

in isolation, the compiler cannot detect and capitalize on trends that are caused 

by interactions between segments as a human coder would. The result is poor 

code. 

To solve this problem it is necessary to introduce a code improvement or opti-

mization phase into the compilation process. 

Code improvers (optimizers) operate by manipulating a given program to pro-

duce a new program that is equivalent in every respect except that the latter 

exhibits more desirable characteristics in some facet of its execution (i.e. the orig-

inal program is translated into a new program that works "better"). There are 

many aspects of a program that may be improved. These include the amount 



3 

of time the program takes in execution, the amount of memory space a program 

requires and how it interacts with the operating system. The decision on-what 

area should be enhanced is up to the programmer and is usually -based on the 

environment in which the program is to run. 

1.1 Code Improvement: An Overview 

1.1.1 Methods of Improving Code 

The first question that arises in the design of a code improvement system is 

how should it go about performing it's task? In [3], Aho and Ullman point out that 

the greatest source of program enhancement is achieved through the selection of 

the appropriate algorithm for the task being undertaken. They give as an example 

of this the reduction in the amount of computation required when a quick sort is 

used in lieu of a bubble sort (0(n 1092 ri) as compared to 0(n2)). Unfortunately, 

this type of code improvement mus be done by the programmer as it is beyond 

the scope of most automated systems. 

Another important method of improving code one that may be performed un-

der program control—is the proper allocation and use of CPU registers. Through 

careful manipulation of a computation, it is possible to reduce the number of 

memory references by keeping intermediate results in high speed CPU registers. 

Since the access time for memory is usually several times slower that that of reg-

isters, the resultant savings in execution time can be great. Memory reference 

instructions also tend to be "longer" (require more storage to represent) than 

corresponding register reference instructions, thus one sees a decrease in program 

size as well. 
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A third source of code improvement is peephole optimization. An early paper 

on the subject by McKeeman [24] describes this technique as "... a method which 

consists of a local inspection ... to identify and modify inefficient sequences ...". 

In actuality, the term peephole optimization refers to a broad class of heuristics 

which all use the tactic of "local inspection". Some of these are listed here. 

• Constant Folding 

This entails locating all constant values in a computation and coalescing 

them into a single term. For example, given the expression 

x+2*3-1 

an application of constant folding would result in 

x+5 

• Redundant Instruction Elimination 

Typically, this involves finding sequences that result in no real change in the 

program environment. An example of such a situation is as follows. Given 

the source code: 

X = y + 1; 
Z = x + 1; 

It is plausible that the following series of machine instructions would be 

generated: 

movw y,rO # temp _. y 
incw rO # temp 4- temp + .1 
movw rO,x x - temp 
movw x,rO # temp - r 
incw rO # temp - temp +1 
movw rO,z z - temp 
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Here, the fourth instruction is redundant as the value of x is already in the 

temporary register, thus the instruction may be safely eliminated. 

Instruction Upgrading 

Often a compiler will use only a small fraction of the instructions in a ma-

chine's repertoire. This is because some instructions are highly specialized 

or their functions span what would be several expressions in the source 

program (this is a classic example of the deficiencies of the "standard" com-

piler described previously). Instruction upgrading is the process by which 

the code improver attempts to locate sequences of instructions that may be 

replaced by a series of more specialized instructions which will execute in 

less time or occupy less space. (one instruction sequence is "upgraded" to 

a better one). Consider the following code fragment: 

do { 

x = x + 
} while (x < 10); 

Compiled on a VAX, the code generated for this may look something like: 

loop: # Top of loop 

# Loop body 
incw x # X4X+1 

cmpw x,$10 Compare value of x to limit 

bit loop # If not at limit, branch to top of loop 

However, the VAX, like many modern computers, has a loop instruction of 

the form "add a value to variable, compare. result to a second value and 

branch if a certain condition is met". Thus, the entire code fragment given • 

above could be replaced by: 
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loop: 

acbw $ 1O,$1,x,loop # x - x + 1, 

# if x < 10 branch to loop 

• Jump to Jump Elimination 

Since statements and sometimes parts of statements are treated separately 

in the compiler described above, it is almost certain that the situation will 

arise where an instruction causes a transfer of control to another control 

transfer instruction, All that is involved in the application of this heuristic 

is to locate such instances and have the first instruction simply refer to the 

final destination, thereby eliminating the, intermediate step. 

These examples show that the effect of the peephole optimizer is to "blur" the 

sharp boundaries between code segments caused by the conventional code genera-

tion process. This technique does little to capitalize on the trends that take place 

over more than a few instructions so the improvements are highly localized. To ex-

ploit the trends which take place over larger sections of a program, it is necessary 

to use another class of code improvement techniques: global optimizations. 

Global optimizers use a data gathering technique known as flow analysis to 

determine how a program will behave when it is run. The flow analysis process 

is generally performed in two stages. The first part is the analysis of flow of 

control. In this phase, a series of graphs are generated that illustrate how the 

various parts of the program interact (i.e. for any given point in the program, 

the graphs indicate which points may next gain control). The second step is to 

use these graphs to determine how information is processed in the program. This 
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involves determining how variables are used or modified and where these uses or 

modifications occur. The result of this analysis is a graph of how data flows within 

the program. 

The control and data flow graphs form one of many different representatioiis 

of a program (the original source program and the compiler's output are two 

others). In this form, however, the structure of the program and the interactions 

of its components become more evident. The improvement of code is performed by 

looking for specific patterns in these graphs and applying some straight forward 

transformations. The procedures for performing the various analyses and the 

methods for using the results obtained to achieve improvements in code will be 

discussed in subsequent chapters. 

1.1.2 When to Improve Code 

The next decision to be made in the design of a code improver is at what 

point in the compilation process the code improvement phase should be done. 

The various stages of the compilation process are outlined in Figure 1.1. As 

shown, code improvement can be performed at any of three points: 

• by manipulating the source code before lexical analysis, 

• by altering the intermediate representation of the code as output by the 

lexical analyzer, 

• by transforming the machine executable program image which is the final 

product of the compiler. 

Performing code improvement on the input program before submission to the 

compiler (i.e. on the source code) has been proposed by Loveman [22] and by 
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Figure 1.1: Stages of compilation 

Standish et al. [27]. Systems using this technique take the programmer's code and 

generate a new source program for input to the compiler. 

Both the Loveman and Standish systems use databases of transformation rules. 

These rules specify how constructs commonly found in programs may be trans-

lated into code and data structures that are converted into more efficient sequences 

of machine instructions. A simple example of a transformation rule (paraphrased 

from [27]) is given in Figure 1.2. 

The result of the application of this transformation is the elimination of a 

superfluous if statement. 

It should be pointed out, however, that an experienced programmer (one who 

understands the nuances of the target machine and the compiler used) will tend 

to apply transformations such as these when first coding the program. Therefore, 

code improvement techniques of this form are best used to correct deficiencies in 
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Provided j < b, a statement of the form: 
for ( lc = a; k < b; Ic = Ic + 1) 

if ( Ic < j) 
perform operation. X 

else 

perform operation Y 
may be translated into: 

for ( Ic = a; Ic < j; k = Ic + 1) 

perform operation X 
for ( /* Ic.j*/; k< b; k-= k+ 1) 

perform operation Y 

Figure 1.2: An example source manipulation translation rule 

the coding style of the programmer as they do nothing to enhance the quality of 

code produced by the compiler. 

Another advocate of manipulation at this level is Rosen[26] who does data flow 

analysis on the original source code. This is necessary, Rosen argues, because there 

is too much loss qf information when going from the source level to that of the 

intermediate code. It is interesting to note that these are the same reasons cited 

by advocates of intermediate code manipulation over object code manipulation. 

Intermediate code manipulation is a much more accepted form of code im-

provement. This entails the rewriting of the intermediate code generated by the 

first pass of the compiler using one or more of the methods described previously. 

There are a several advantages to improving code at this stage: 

• The source program has already been broken up into its constituent parts 

and checked for syntactic correctness. 
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• The information is complete with regard to the program elements under 

scrutiny. That is, the intermediate code contains all the information given 

in the original source (variable types, form of data and control structures, 

etc.), but in a much more convenient form. 

• In a well designed compiler, the intermediate code would be in a target 

machine independent form. This allows the code improver to be written in 

a portable fashion. 

There are, unfortunately, two major problems associated with performing code 

improvements at this stage. First, although complete information is available for 

the section of the program being compiled, there will be no information about the 

rest of the program. This is most evident if the program has been broken up into 

many separately compiled modules (as in most large programs) or if extensive use 

is made of library routines. Lack of this information can be crippling to a code 

improver using flow analysis as the improver must assume a worst case scenario 

in such instances (i.e. the missing code modifies all variables and invokes all the 

routines in the module being compiled). The second flaw with this technique is 

that improvement of the intermediate code does little to improve the quality of 

the final output. The code generator will still work with the various sections of 

the intermediate code in isolation. 

Manipulation of the output from the compiler (the object code) is also a 

popular form of code improvement (13]. Not surprisingly, the areas in which this 

technique are good are precisely those in which intermediate code improvement 
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fails. Those facets in which object code improvement is poor are the ones in which 

intermediate code improvement excel: 

• The machine code must be "disassembled" by the improver and encoded 

into an intermediate form for processing. 

• The complete program is available to the object code improver, not just a. 

single module. However, most of the details about variable types and data 

structures have been lost. 

• Although some of the major elements of th'e code improver can be written 

in a machine independent way, mudh of it must be machine specific. 

• As this represents the final stage in the generation of the target program, 

the improver directly controls the quality of code produced. 

1.2 The "GO" Code Improver 

1.2.1 Design Issues 

A survey of the literature shows that, for the most part, global optimizations 

are done on the intermediate representation nd peephole optimizations are per-

formed on the object code. There seem to be no "production" systems which 

utilize source code manipulations of any form. This may be due to in large part 

to tradition (code improvement is always done on intermediate or object code) 

but a more likely answer is that such transformations are too far removed from 

the code generation phase to have a significant effect on code quality. 

The timing of the peephole code improvements is primarily because such op-

erations as instruction upgrading and jump-to-jump elimination may only be per-
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formed at this stage. The reasons for performing global improvements at the 

intermediate code stage (instead of after code generation) are less clear. 

There are two main arguments for doing flow analysis and the subsequent code 

improvements between the lexical analyzer and the code generator. First, there 

is the view that much relevant information is lost in the code generation process 

and without this data, it is not possible to build the flow graphs correctly [18]. 

The second point is closely related: it is hot possible to distinguish instructions 

from data in the object program. Both of these objections are unfounded. 

The key to understanding this assertion is the realization that the original 

source program, the intermediate code and the object code are merely representa-

tions of the same algorithm. Furthermore, each form details the implementation 

in precisely the same manner as the others (an analogy to this is the relationship 

between the numbers 7410, 1128, 4A16 and the ASCII letter ' J'). Each form con-

tains the same information as the others but the details of the representation of 

this information vary. Given that the information is present, it should be possible 

to extract it and build the appropriate flow graphs. 

The point that it is impossible to differentiate instructions from data is clearly 

false as evidenced by the fact the computer- musi differentiate between the two as 

it runs the program. The technique for distinguishing between the two is to apply 

a rule that all assembler programmers learn at the beginning of their careers: if 

the computer attempts to execute it, it is an instruction. 

It is theoretically possible, then, to perform global optimizations on the final 

output of a compiler. One of the principle areas of investigation in the design 

and implementation of GO is to see if this theory can be put into practice. Us-
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ing only the information available to the computer when it executes a program 

(the executable binary image of the program itself) GO will determine what the 

control and data flow patterns within the program are. It will then attempt to 

"rearrange" the code in order to improve the programs execution characteristics. 

(An explanation as to why one would want to perform global optimizations at this 

level will be presented in the concluding chapter.) 

Another key issue in the design of a code improver is machine independence. 

The implementation of a code improver is not a trivial task. It is therefore useful 

to design the code improver so that it may be easily "ported" to different systems. 

Unfortunately, when dealing with programs at the machine code level, complete 

machine independence is an impossibility. Nevertheless, by careful partitioning 

of the tasks in the code improver, it should be possible to isolate most machine 

dependencies to a few small modules. This is done in GO. 

1.2.2 Implementation of GO 

GO is implemented as a series of relatively independent modules as depicted in 

Figure 1.3. The first four modules, the instruction decoder, the data flow prepro-

cessor, the basic block generator and the call graph generator work in concert to 

produce a usable representâiion of the target program. The basic block and call 

graph generators also form the first part of the control flow analysis subsystem. 

The second part of the control flow analyzer is the interval generation code. The 

information generated by control flow analysis and by the data flow preproces-

sor is used in the data flow analysis subsystem. The actual code improvement is 

performed by a series of modules which utilize the information gathered by the 
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Figure 1.3: Structure of the GO code improver 
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various analysis phases to identify inefficiencies. Collectively, these modules form 

the code improvement subsystem. Finally, the output of the code improver is 

passed to the cleanup module which recodes GO's internal representation of the 

program into a new machine executable object image. 

To achieve machine independence, most of the operations which require a 

knowledge of the machine architecture are isolated in two modules. These are the 

instruction decoder and the cleanup module. Machine dependencies are further 

reduced by performing the operations in these modules in a table driven manner. 

To do this, a table is generated which enumerates each of the target machines 

instructions. Each table entry details the basic information about the instruction: 

number and type of operands, instruction opcode, type of instruction (e.g. test, 

branch, arithmetic), and so forth. Each entry contains sufficient information for 

the module to identify and usually completely process the instruction. 

1.3 Thesis Overview 

The rest of this thesis is an in-depth look at the operation of the various 

components of the GO system. The discussion starts off in the next chapter with 

a description of the control flow analysis code. This is followed by details of the 

operation of the data flow analyzer in chapter three. The techniques for doing the 

actual code improvement are outlined in the fourth chapter and the concluding 

arguments are presented in the final chapter. 



Chapter 2 

Control Flow Analysis 

2.1 Overview of the Control Flow Analyzer 

2.1.1 Function 

The GO ' control flow analyzer performs several tasks: 

• It examines the input program and differentiates the instructions from the 

data. 

• It identifies the subroutines that make up the program and determines how 

the subroutines are organized with respect to each other. 

• It determines the basic flow patterns within each subroutine. 

• It identifies the loops within each subroutine. 

These tasks are performed in two stages. The first three tasks are dealt with in 

the first stage and the loop identification is performed in the second stage. 

2.1.2 Input 

The GO control flow analyzer takes a complete executable program image as 

input. For the most part, this is all that is required for a complete flow analysis. 

2.1.3 Output 

The output of the control flow analyzer can be thought of as a hierarchy of 

graphs, each of which details the flow of control at some level of the program. At 

16 
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the highest level is the graph of subroutine calls (the call graph). This structure 

serves to outline the operation of the program as a whole. Next comes a series 

of interval graphs that show where the loops are located in each subroutine. The 

highest level (n 1h order) interval graph consists of a single node and corresponds 

to a complete subroutine (i.e. a node in the call graph). The lowest level (ist 

order) interval graph gives the locations of the innermost loops of the subroutine. 

The lowest level of the hierarchy is the basic block graph. It details the basic flow 

patterns within each subroutine. 

2.2 Separating Instructions and Data Areas 

An executable program image contains at least three types of information. 

These are a sequence of machine instructions for the àomputer, data areas which 

are manipulated by the computer in the course of interpreting the instructions 

and environmental information. 

Environmental information comprises information about the context in which 

the program is to be run such as memory requirements and program entry point. 

This data is usually interpreted by the operating system when loading the pro-

gram. It may not be explicitly present in the program image but must be inferred 

from i. For example, if the initial memory allocation is not given explicitly, it 

may be safely assumed that a region of memory equal in size to the image being 

loaded is required. 

If present, the environmental information is usually of a fixed size and in a fixed 

location in the program image. Unfortunately, this is not true of the instruction 



18 

and data regions of the program. Furthermore, it is probable that instructions 

and data are intermingled throughout the executable image. 

The first major task required of the control flow analyzer is to differentiate be-

tween the instruction and data regions of the program. To accomplish this, each 

instruction in the prpgram must be examined in turn starting with the instruc-

tion at the program entry point (the location of this intruction is determined 

from the environmental information). The effect of this process is to "trace" the 

instructions in the program. 

By noting regions of the image into which control is transferred and then re-

cursively examining each of these regions, it is possible to determine which regiohs 

of program could possibly be executed. By definition, these are the instruction 

regions of the program (if the computer attempts to execute it, it's an instruction) 

and all other areas are data regions 

2.3 Call Graph Generation 

The process of' tracing the instructions within a program will also permit the 

identification of the subroutines within it and the structure of the subroutines. 

GO relies on two properties of subroutines to assist in the task of identifying them: 

1. At some point in the program, the subroutine must be invoked via a standard 

subroutine invocation sequence. A' "standard" call sequence is defined either, 

by the machine architecture or by language conventions. 

2. There are a finite number of paths through the subroutine. Each of these 

paths begins at a common entry point and ends with a standard subroutine 

termination sequence. 
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Algorithm 2.1: GraphSubrCalls 

PURPOSE: To generate the subroutine call graph for a program. 

INPUT: The address of the start of the main procedure. 

OUTPUT: The graph of all subroutine calls. 

METHOD: Recursive function as outlined in Figure 2.1. 

As shall be shown shortly, GO makes active use of the first property to identify 

the subroutine entry points and build the call graph. The use of the second prop-

erty, however, results as a side effect of the analyses of the subroutines' internal 

structures. 

The method GO uses to generate the call graph is outlined in Algorithm 2.1. 

Informally, the call graph generator operates as follows. If the subroutineunder 

scrutiny has been encountered previously, the call graph node corresponding* to 

the subroutine is located and returned to the calling routine. Otherwise a new 

call graph node is created and added to the call graph. The instruction stream 

is then scanned until a subroutine call sequence is encountered (this procedure is 

outlined below). At this point the call graph generator invokes itself recursively 

with the address of the called subroutine. The recursive routine repeats the 

scanning process, except in this instance, the instruction stream is that of the 

new subroutine. When the end of the subroutine is encountered the recursive call 

terminates. Upon regaining control the initial instance of the graph generator 

creates a link in the call graph from the node representing the subroutine under 
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recursive function GraphSubrCalls(integer Addr) : call-graph-node 
call-graph-node ThisNode 
call-graph-node NextNode 
if call graph node for subroutine at Addr exists then 

ThisNode := call graph node for subroutine at Addr 
else 

ThisNode := new call-graph-node 
add ThisNode to the call graph 
while not at the end of subroutine do 

look for a subroutine call sequence 
NextNode := GraphSubrCalls( address of called subroutine) 
add graph arc (ThisNode, NextNode) to call graph 

endwhile 
endif 
return ThisNode 

endfunction 

Figure 2.1: Function to graph subroutine calls 

scrutiny to that of the subroutine that has just been processed. The net output 

from this process is a graph detailing the overall structure of the program. A 

sample program and its call graph are depicted in Figure 2.2. 

2.4 Basic Block Graph Generation 

The generation of the basic block graph proceeds in conjunction with the 

generation of the call graph. In addition to revealing the fine details of flow 

control within each subroutine, this procedure has two important side effects. 

First, it performs the instruction/data differentiation and second, it locates the 

subroutine call sequences for the call graph generator. 
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subr3() 
main() { 
{ 

} 

subrio) 

{ 

} 

subr2() 

{ 

} 

subrlQ; } 
subr20; 

subr30; subr4() 

subr40; 

subr50; 

subrsO; 

(a) 

{ 

} 

subr5() 

{ 

} 

subr6() 

{ 

} 

subr30; 

8ubr60; 

(b) 

Figure 2.2: A program (a) and its call graph (b) 
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2.4.1 Identifying Basic Blocks 

A basic block is a contiguous sequence of instructions in which execution pro-

ceeds linearly from lowest address to highest address and where the instruction 

at the lowest address is always the first executed. 

In [3], an algorithm is introduced which determines basic blocks in compiler 

intermediate code. This is a two stage process. The first stage is the identification 

of all leaders. A leader is either the first statement, the target of a "goto" (i.e. a 

control transfer) statement or the statement immediately following a conditional 

goto statement, The second stage is to divide the code into basic blocks which 

are delineated by leaders, each section begins with a leader and ends with the 

statement just prior to the next leader. When dealing with intermediate code, 

these tasks are straightforward. To accomplish it, one makes a single pass through 

the code noting the positions of all goto statements and all instructions with labels 

associated. Unfortunately, when dealing with pure binaries as in GO, the problem 

becomes more complex. 

The difficulty with binary data is that there are no labels conveniently pointing 

out targets of branch instructions. What appears to be a branch instruction may 

simply be an instruction's operand. As stated previously, GO surmounts this 

problem by "tracing" the instructions much the same as the computer would do 

when it executes the program. This process is actually quite simple and is outlined 

in Algorithm 2.2. 

It should be noted that this algorithm does npt require knowledge of what 

the input to the program will be, nor is the issue of whether the program under 

scrutiny will ever terminate a factor. This is because what is being looked for 
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Algorithm 2.2: FindBBlocks 

PURPOSE: To partition an instruction sequence into basic blocks. 

INPUT: The address of the instruction at which to start partitioning, 

OUTPUT: The instruction stream is broken up into a series of basic blocks. 

METHOD: Recursive procedure as outlined in Figure 2.3. 

are potential control transfer points. The question of whether a transfer of con-

trol occurs at any given point actually happens when the program is run is not 

important. What is important is that a transfer of control may occur. 

As an example of the operation of this algorithm, consider the code to compute 

Ackermann's function as given in Figures 2.4, 2.5 and 2,6. FindBBlocks would 

be invoked with the address of the function ack (00) as its parameter. As 'no 

instructions have yet been processed, the procedure would create a new basic 

bloèk (block 1) and begin examining instructions. The initial instruction, a test, 

does not cause a transfer of control, so it is simply added to the current basic 

block. The second instruction is also added to the current basic block. As it is a 

branch, it denotes the end of the current block. The instruction is a conditional 

transfer, so two recursive calls are made (Figure 2.7a). 

.In the first recursive call, the address passed is that of the instruction following 

the branch (05). As this instruction has never been processed, a second basic block 

is created. 
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recursive procedure FindBBlocks(integer Addr) 
integer NextAddr 
instruction Curinstr 
basic-block CurBBlock 

if Addr is in an existing block then 

if Addr is not the first address of that block then 
split block containing Addr in two at Addr 

endif 
else 

CurBBlock new basic-block 
NextAddr := Addr 
repeat 

Curinstr := instruction at NextAddr 
add Curinstr to CurBBlock 
NextAddr := address of next instruction 
if Curinstr is a branch then 

if Curinstr is conditional then 
call FindBBlocks(NextAddr) 

endif 

call FindB Blocks (branch address) 
endif 

until Curinstr is a return instruction V 
Curinstr is a branch instruction V 
NextAddr is in an existing block 

endif 
endprocedure 

Figure 2.3: Procedure to find basic blocks 
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Ack(n, y) = 

y+l 

Ack(n - 1,1) 

if n= 0 

if y = 0 

Ack(n - 1, Ack(n, y - 1)) otherwise 

Figure 2.4: Simplified Ackermann's function (from [11]) 

Processing of this block proceeds normally until the return instruction (address 

OA) is encountered. As a return instruction is one of the three conditions which 

signal the end of a basic block, the repeat loop terminates and the recursive call 

on FindBBlocks subsequently returns. 

The third basic block is generated in the second recursive call which starts 

processing at the branch target address, OB (Figure 2.7b). In this instance, pro-

cessing proceeds until the branch at address OE is seen. Again, this is a conditional 

branch, so two more recursive calls are made. The first of the second level re 

ack(n, y) 
mt n; 
mt y; 
{ 

if (n == 0) 
return y + 1; 

else if (y == 0) 
return ack(n  

else 

return ack(n - 1, ack(n, y  

} 

Figure 2.5: Implementation of Simplified Ackermann's function in C 



26 

ack: tstl 4(ap) 

jneq acki 

add13 $1,8(ap),rO 

ret 

acki: tstl 8(ap) 

jneq ack3 

pushi $1 

ack2: subl3 $1,4(ap),-(sp) 

calls $2,ack 

ret 

ack3: subl3 $1,8(ap),-(Sp) 

pushi 4(ap) 

calls $2,ack 

pushl rO 

jbr ack2 

# test n. = 0 
# branch if not 
# return value <- y + 1 
# exit subroutine 
# test y = 0 
# branch if not 
# stack f- 1 (2nd recursive call param.) 
# stack - n - 1 (Vt parameter) 
# recursive call 
# exit subroutine 
# stack - y - 1 (2' parameter) 
# stack - n. (131 parameter) 
# first recursive call 
# stack - ack(n, y - 1) (2nd param.) 
# do second recursive call 

Figure 2.6:' Ackermann's function in assembler 

cursive calls generates the fourth basic block. It starts processing at address 10 

and terminates with the return at address 1E. The other recursive call starts pro-

cessing at address iF and locates the boundaries of the fifth basic block in the 

function (Figure 2.7c). 

Unlike the previous blocks, block five ends with an unconditional branch. 

Therefore there is only a single recursive call made. The start address in this 

call is 12. In this instance, the first target instruction has already been processed. 

Furthermore, thi's instruction is located in the middle of an existing block. In 

this situation, no further processing of instructions is performed. Instead, the 

basic block containing the target instruction is split into two new basic blocks. 

The first contains all of the instruction from the start of the original block to the 
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00 ack: tstl 4(ap) 

03 jneq ack 

05 addl3 $1,8(ap),ro w 
OA ret 

OB acki: tstl. 8(ap) 

OE jneq ack3 

10 pushi $1• 

12 ack2: sub13 $1,4(ap),-(sp) 

17 calls $2,ack 

1E ret 

IF ack3: sub13 $1,8(ap),-(Sp) 

24 pushi 4(ap) 

27 calls $2,ack 

2E pushi rO 

30 jbr ack2 

IBlock 1 indicates the position of 
Curinstr for the Nth recursive in-
stance of FindBBlocks. N is 0 for 
the base level instance. 

> Unprocessed 

Current state: Processing of block 1 complete; processing of block 2 about to commence. 

(a) 

Figure 2.7: Partitioning Ackermann's function into basic blocks 

continued on page 28 
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00 ack: tstl 4(ap) Block 03 jneq ack1ii 

05 add13 $1,8(ap),ro I 
OA rat Block 2 

0B ackl: tstl 8(ap) w 
OE jneq ack3 

10 pushi $1 

12 ack2: sub13 $1,4(ap),-(sp) 

17 calls $2,ack 

1E rat 

iF ack3: sub13 $1,8(ap),-(sp) 

24 pushl 4(ap) 

27 calls $2,ack 

2E pushi rO 

30 jbr ack2 

j indicates the position of 
Curinstr for the Nth recursive in-
stance of FindBBlocks. N is 0 for 
the base level instance. 

Unprocessed 

Current state: Processing of blocks 1 & 2 completed; processing of block 3 about to 
commence. 

(b) 

Figure 2.7 continued 

continued on page 29 
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00 ack: tstl 4(ap) 

03 jneq acki IBlock 1 
05 add].3 $1,8(ap),r0 I 
OA ret > Block 2 

OB acki: tstl 8(ap) I 
0E jneq ack3 in Block 3 

10 pushi $1 

12 ack2: sub13 $1,4(ap),-(sp) 
17 calls $2,ack 

1E ret 

IF ackS: sub13 $1,8(ap),-(sp) 

24 pushi 4(ap) 

27 calls $2,ack 

2E pushi rO 

30 jbr ack2 M 

Block 4 

Block 5 

El indicates the position of 
Curinstr for the Nth recursive in-

stance of FindB Blocks. N is 0 for 
the base level instance. 

Current state: Processing of blocks 1 through 5 completed; 3rd level recursive call with 
address 12 about to be made. 

(c) 

Figure 2.7 continued 

continued on page 30 
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00 ack: tstl 4(ap) 

03 jneq acki 

05 add13 $1,8(ap),ro 
OA ret 

OB acki: tstl 8(ap) 

OE jneq ack3 iii 

10 pushi $1 

12 ack2: sub13 $1,4(ap),-(sp) 

17 calls $2,ack 

1E ret 

iF ack3: sub].3 $1,8(ap),-(sp) 

24 pushl 4(ap) 

27 calls $2,ack 

2E pushi rO 

30 jbr ack2 ri 

} Block 1 

} Block 2 

j indicates the position of 
Curinstr for the Ntl1 recursive in-
stance of FindBBlocks. N is 0 for 
the base level instance. 

} Block 3 

New block 4 

D 

Block 6 

Block 5 

Original block 4 

Current state: All blocks processed; stack unwind about to start with termination of 3M 
recursive call. 

(d) 

Figure 2:7 continued 
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instruction preceding the target instruction. The second new block contains the 

remaining instructions (Figure 2.7d). 

At this point there are four instances of FindBBlocks active: 

1. the original call, generating block 1 with NextAddr set to 05, 

2. the call which generated block 3 with NextAddr set to 10, 

3. the call which generated block 5 with NextAddr set to 32, 

4. the current call, which has created block 6 by splitting block 4. 

The current instance returns immediately after having split up block 4, as no fur-

ther processing is required. When this happens, the third instance is reactii.rated. 

In this case, Curinstr is a branch instruction, which causes the repeat loop to 

terminate and control to be passed back to the second instance of FindBBlocks. 

This instance also terminates immediately as the instruction just processed was 

another branch. The original invocation of FindBBlocks is now the only one 

active. It too has just processed a branch instruction and terminates. 

The entire program has now been scanned and all of its component basic blocks 

have been identified. 

2.4.2 Graphing the Basic Blocks 

Each recursive call of FindBBlocks corresponds to an arc in the basic block 

flow graph. The reader may wish to compare the description of the execution of 

FindBBlocks given previously with the flow graph for Ackermann's function given 

in Figure 2.8. The generation of the basic block flow graph requires some simple 

changes to FindBBlocks as outlined in Algorithm 2.3. 
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Figure 2.8: Flow graph for Ackermann's function 

Algorithm 2.3: GraphBBlocks 

PURPOSE: To generate a flow graph of basic blocks in a subroutine. 

INPUT: The address of the instruction at which to start partitioning. 

OUTPUT: A flow graph of the basic blocks in the subroutine. 

METHOD:' The procedure of Algorithm 2.2 is changed to a function. The return 

value of the function is the basic block it generates (NextBBlock). 

After every recursive call a graph are is added between the'basic 

block currently being processed (CurrentBBlock) and NextBBlock. 
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2.5 Call Graphs Revisited 

As stated earlier, one of the side effects of the process of graphing the ba-

sic blocks was the detection of subroutine call sequences. Because of this, the 

call graph generation procedure and the basic block graph generation procedure 

effectively form a pair of coroutines. 

The operation of these coroutines is as follows. First, GraphSubrCalls is in-

voked with the address of the program's entry point, which is considered to be 

the start of the first subroutine. GraphSubrCalls then invokes GraphBBlocks with 

the entry point value. Processing of the subroutine proceeds as outlined in the 

previous section. If a subroutine call sequence is encountered during processing, 

GraphSubrCalls is invoked recursively with the. address of the new subroutine. In 

turn, GraphSubrCalls invokes a recursive instance of GraphEBlocks and so on. 

Processing of the program as a whole is complete when the initial instance of 

GraphSubrCalls regains control. 

2.6 Loop Identification 

The second phase of control flow analysis in GO is the identification of the 

loops within individual subroutines. Loop identification is the most important 

endeavour of control flow analysis as it forms the basis for the subsequent data 

flow analysis. It also locates local "hot spots" in the program which is of great 

use in the application of actual code improvement heuristics. 
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Figure 2.9: Cycles which do not form loops 

2.6.1 What is a Loop? 

The first task in identifying loops is to define exactly what a loop is. One might 

be tempted to define a loop as simply a cycle in the flow graph of a subroutine. 

Unfortunately, this definition is weak as it does not take into consideration the 

proper nesting of loops. For example, consider the flow graph in Figure 2.9. There 

are two cycles within the flow graph; the first is defined by the path 1-23-1 and 

the second by the path 2-3-4-2. Neither can be called a loop however due to the 

fact that the two overlap. 

A better model of a loop is given with the interval as defined by Cocke and 

Allen [4,9] which is a refinement of the use of dominators in the detection of loops 

as outlined by Lowry and Medlock [23]. 

An interval is a portion of a flow graph having the following properties: 
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1. It is strongly connected. That is, there exists a path from every node to 

every other node. 

2. There exists at least one node which is on all paths through the flow graph. 

Furthermore, this node will be visited before any other node in each iteration 

of the loop. This node is said to dominate all other nodes in the loop and 

is termed the head node of the interval or interval header. 

3. It is maximal—no other interval for the same flow graph contains it as a 

subset. 

A corollary to the second property is that entry to the loop is only via the inter-

val header. This precludes the invalid nesting of loops resulting from the cycle 

definition. 

Hecht [17] gives the following formal definition of an interval: 

The interval with header h, denoted 1(h) is the subset of [a flow graph 
with entry node s] constructed as follows: 

1(h) := { h} 

while 3 a node m such that in 1(h) A in 54 sA all arcs 
entering in leave nodes in 1(h) do 

1(h) := 1(h) U{m} 
endwhile 

In [4], Allen gives an algorithm for the partitioning of a flow graph into inter-

vals. This algorithm is refined and codified by Hecht. Algorithm 2.4 is based on 

Hecht 's procedure. 

The algorithm operates by performing a series of breadth first traversals of the 

flow graph. Each traversal is anchored at a header node. As the first header is 

defined to be the flow graph entry point node, the ordering of visits is the same 
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Algorithm 2.4: Findlntervals (based on the algorithm in [17]) 

PURPOSE: To partition a flow graph into intervals. 

INPUT: Aflow graph. 

OUTPUT: A list of intervals. 

METHOD: The procedure is given in Figure 2.10. ICurrent, Mending and Head-

ers are lists of graph nodes which represent the current interval, the 

unprocessed nodes of the current interval and the list of potential 

headers, respectively. Count[x] is the number of arcs flowing into 

graph node v which have not yet been accounted for. Reach[x] 'is 

the header node for the interval containing x. 

Note: Hecht specifies that the ndes in Mending and Headers be 

processed in a first-in-first-out basis. There seems to be no rea-

son for doing this with Mending. Processing Headers in this order, 

though, results in a breadth first traversal of the graph as opposed 

to a depth first traversal achieved with last-in-first-out. 
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as the execution order. Once all arcs into a node have been followed, it is added 

to the current interval. The only case in which all arcs are not followed during 

the processing of a given interval, is when a back are (i.e. one originating from a 

node occurring later in the execution order) is present. A back are to any node 

save the header in an interval is not possible, so the node must be the header 

of another interval. Processing terminates when a traversal has been performed 

from each header. 

2.6.2 Interval Ordering 

A fundamental property of the interval partitioning algorithm is that it per-

forms a partial topological sort on the nodes contained in each interval. That is, 

no node is placed in the interval list until all of its predecessors have been placed 

procedure Findlntervals(graph with n nodes and with start mode s) 
list ICurrent 
list Mending 
list Headers 
integer Count[1..n] 
graph-node Reach[1. .n] 

foreach node n in do 
Count[n] := number of arcs entering n 
Reach[n] undefined 

endforeach 
Reach[s] := s 

Headers := { s } 

Figure 2.10: Procedure to locate intervals in a flow graph 

continued on page 38 
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while Headers 54 0 do 
select a node H from Headers 
Headers : = Headers - { H } 
Mending := { H } 
while Mending 0 0 do 

select a node H from Mending 
Headers := Mending - { H } 
foreach arc (X, Y) in do 

'Count[Y] Count[Y) - 1 
if Reach[Y] = undefined then 

Reach[Y] H 
if Count[Y] = 0 then 

Mending := Mending + { Y } 
ICurrent := ICurrent + { Y } 

elseifY 0 Headers then 
Headers := Headers + { Y } 

endif 
elseif Reach[Y] = H A Count[Y] = 0 then 

Mending := Mending + { Y } 
ICurrent := ICurrent + { Y } 
if Y E Headers then 

Haders. : = Headers - { Y } 
endif 

endif 
endforeach 

endwhile 
add ICurrent to list of intervals 

endwhile 
endprocedure 

Figure 2.10 continued 
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Algorithm 2.5: Graphlntervals 

PURPOSE: To generate a graph of intervals from a list of intervals. 

INPUT: A flow graph and a list of intervals contained in it. 

OUTPUT: An interval flow graph. 

METHOD: A function as given in Figure 2.11. 

in the list. The only exception is a header node which may have back arcs enter-

ing it. In this case, the back arcs are ignored (the header is treated as if it only 

had a single inflowing arc which originates outside of the interval). This sequence 

is known as the interval' ordering. As shall be shown in the next chapter, this 

property becomes useful in the analysis of data flow. 

2.6.3 Interval Graphs 

Using the information in the original flow graph and obtained via Findlnter-

vals, it is possible to generate an interval graph. This structure details how the 

inner most loops of the subroutine are organized. The procedure for generating 

these graphs is given in Algorithm 2.5. Basically, all that is done is to generate 

a new graph node for each interval. The, arcs flowing out of this node are the 

collection of arcs flowing out of the original flow graph nodes which comprise the 

interval. 
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function Graphlntervals(graph go, list £) : graph 
graph 91 
foreach interval I in £ do 

if 2 a node in g, for I then 
X1 := the node in 91 representing I 

else 
X1 new graph-node 
add X1 to 91 

endif 

foreach node X0 contained in I do 
foreach arc (X0, Yo) in go do 

J the interval in £ containing Y0 
ifJ 54 Ithen 

it  a node in g1 for J then 
:= the node in 91 representing J 

else 
Y,1 := new graph-node 
add Y1 to 

endif 
add an arc (X1, Y1) to c1 

endif 
endforeach 

endforeach,, 
endforeach 
return g, 

endprocedure 

Figure 2.11: Procedure to graph intervals 
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2.6.4 Nested Loops 

The result of the application of Findlntervals and Graphlntervals to the ba-

sic block flow graph is termed the first order interval graph. Nested loops are 

found by generating higher order flow graphs (Figure 2.12), that is by applying 

Findlntervals to a previously generated interval graph. 

Repeated applications of Findlnterval will eventually result in one of two stable 

graphs (i.e. applying Findlnterval to the graph results in the same graph). The 

first is a graph consisting of a single node that corresponds to the entire subroutine. 

In this instance, the original graph is termed reducible. The second is a graph 

similar to that depicted in Figure 2.13. If this situation arises, the flow graph is 

called irreducible. 

The distinction between reducible and irreducible flow graphs is important 

because the presence of an irreducible graph makes subsequent data flow analysis 

using the interval graphs difficult. Fortunately it is possible to transform an 

irreducible graph to a reducible graph via the technique of node spliing. 

Studies [21] have shown, however, that irreducible graphs occur very infre-

quently in "real life" programs. Furthermore, there are indications that the flow 

graphs of all programs conforming to "structured programming" techniques are 

reducible. In light of this, GO does not attempt to handle programs whose flow 

graphs are irreducible. 

2.7 Problems with the Control Flow Analyzer 

The control flow analyzer as described is capable of processing almost all "real" 

programs. However, there is one class of programs which it is definitely not able 
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T2 
J.i 

T2 

1 
4 

(b) 1 order 
interval graph 

T3 
.1.1 

(c) 2nd order 
interval graph 

14 
Ji 

(b) 3rd order 

interval graph 
(fully reduced) 

(a) Basic block 
graph 

Figure 2.12: A sequence of derived interval graphs 
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Figure 2.13: An irreducible flow graph 

to handle., These are the programs which make use of jump tables or other similar 

coding techniques. 

The inability to handle these programs arises because the control flow analyzer 

cannot determine the target address of a control transfer instruction which is 

càmputed at run time This problem is also present in conventional systems; 

however, in those cases, it is not as crippling a problem as there is no need to 

separate the instructions from data. 

There are a number of ways in which to surmount this problem. These are 

detailed in chapter 5. . 



Chapter 3 

Data Flow Analysis 

3.1 Overview of the Data Flow Analyzer 

3.1.1, Function 

If one thinks of GO's control flow analyzer a tool for generating a "road map" 

of a program, then its data flow analyzer may be thought of as a tool for studying 

the traffic patterns along each road. That is, it details how information is moved 

and used in a program. There are two principle forms of "traffic" which are of 

interest in this form of flow analysis: variables and expressions. 

in GO, any operation which effects the state of the program is considered to 

be an expression. This state is embodied in the program's variables. To clarify, 

if a program is thought of as passing through a series of stages during the course 

of execution, then the program's variables indicate which is the current stage and 

its expression cause the program to move from one stage to the next. 

It should be noted that the definitions given above are subtly different from 

those normally used. In GO, not only are the instructions for, arithmetic and 

logical operations considered expressions, but so are control transfer instructions. 

Also implied is the fact the the machine's program counter and condition codes 

are considered to be variables (however, GO does not attempt data flow analysis 

on the program counter for obvious reasons).. 

44 
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Close inspection of the variables used in a program will reveal where they 

are defined (assigned new values) and where they are referenced. Application of 

data flow analysis techniques to this information yields the "scopes" of both the 

definitions and references. That is, for each definition of a variable, flow analysis 

will show where all possible uses of the result of that definition occur. Likewise, 

analysis will show which definitions are likely to be in force when a given reference 

to a variable occurs. 

Using the information gained about variables it is poàsible to ascertain a num-

ber of interesting facts about the expressions in a program: 

• what expressions are computed, 

• where each instance of a given expression is computed, 

• what the scope of each computation of an expression is (i.e. at which points 

the result of an instance is no longer valid), 

• where the instance of a given expression is redundant (i.e. where the scopes 

of different instances of the same expression. overlap) 

3.1.2 Input 

As stated in the previous chapter, the output of the control flow analyzer 

forms the basis for the operation of the the data flow analyzer. Pure control 

flow information, though, is insufficient. In order to work, the data flow analyzer 

needs information about the operations carried out at the very lowest level, that 

is, within each basic block. 
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This information is generated during a "preprocess" phase that runs in con-

junction with the basic block generator portion of the control flow analyzer. The 

operation of this module is outlined below. 

3.1.3 Output 

The output of the data flow analyzer can be thought of as a series of anno-

tations to each basic block of the control flow graphs. These annotations are in 

the form of a series of sets. Each set enumerates the possible solutions to a given 

data flow problem. 

For example, one set may indicate which variables will have been modified 

within its associated basic block when control leaves that block. Another set may 

indicate which expressions are guaranteed to have been computed when control 

enters a block (that is, the expression has been computed and is valid along each 

path leading into the block). 

3.2 The Data Flow Preprocessor 

The main task of the data flow preprocessor is to encode the internal structure 

of a basic block into a form usable during the actual data flow analysis. This 

entails three separate operations. The first is the identification of the variables 

which occur in the block. Second is the identification of the block's component 

expressions. Finally, there is the task of locating and encoding the specialized 

information required for data flow analysis. 
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3.2.1 Identification of Variables 

There are a number of variable types which have fundamentally different uses. 

The principle task of variable identification is to determine the type of each vari-

able and to create a unique descriptor for it, based on the type. In more con-

ventional systems this information would be available from the compiler symbol 

table. However, as GO deals with executable program images alone, it must resort 

to inspection of the program code to determine this information. 

f 

Classes of Variables 

GO distinguishes between four classes of variables. These are global variables, 

local variables, argument (procedure parameter) variables and temporary vari-

ables. The main distinguishing factors between the various classes is the method 

by which they are addressed and their scope. 

The primary feature of global variables is that they may be referenced from 

any point in the program. References to these variables are through their absolute 

memory addresses, as displacements off of the prograth counter or through a base 

register. Regardless of the method of addressing them their locations are static 

throughout the execution of the program. It should be noted that the definition of 

a global variable does not imply that it is referenced throughout a program, merely 

that the possibility exists for this to be done. Therefore, a variable declared to be 

"static" in a C procedure, although generally considered to be a local variable, is 

treated as a global variable in GO. 

The local variables are the converse of the global variables. Access to this 

class is restricted to the procedure in which they are defined. Variables of this 
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sort logically exist only during the execution of their defining procedure and each 

instance of this procedure has a unique copy of its set of local variables. In general, 

local variables are allocated in a special pool (usually the stack) for each instance 

of a procedure and access to these variables is via a frame pointer. 

Argument variables are similar to local variables and on some machines are 

addressed through the frame pointer. For example, on the PDP-11, arguments are 

transmitted via the stack which also serves as the storage area for local variables. 

The local variables are addresses with negative displacements relative to the frame 

pointer. Arguments have positive displacements. On other machines, like the 

VAX-11, a special register, the argument pointer, is maintained but is used in 

precisely the same manner as the frame pointer. 

The last class of variables, the temporaries, are not normally considered vari-

ables. As implied by the name, temporary variables have a very restricted scope. 

They usually do not span more than a few basic blocks and most are only valid 

for the portion of a single block. 

The most obvious temporary variables are the machines general purpose reg-

isters. For the most part, these are used to store intermediate results from calcu-

lations. On machines with a limited register set the stack may be used for storage 

of intermediate results. The stack can therefore be thought of as a sequence of 

temporary variables as well. 

Categories of Variables 

GO recognizes two categories of variables: normal and pointers. A normal 

variable is one which contains a binary value. Whether this value represents an 
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integer, a floating point number or a character is irrelevant. As far as GO (and 

for that matter the computer) is concerned it is simply a stream of binary digits. 

Pointer variables contain the addresses of other variables. They can undergo the 

same operations as normal variables (addition, subtraction, etc.) but at some 

point the computer will attempt to use the value in the pointer as the address of 

another variable in memory. 

One may think it naive to recognize only two types of variables, given the host 

of types which are usually supported by high level languages. This is not the 

case. There are no types in a high level language which can not be expressed in 

terms of either a normal or pointer variables. For example, an array is simply a 

series of normal variables. When referenced, a pointer' is created to reference the 

first element. This pointer is then manipulated by addition of the array index to 

refer to the target element. The target is then referenced indirectly through the' 

modified pointer. 

3.2.2 Identification of Expressions 

The second major task of the preprocessor is to identify the expressions within 

each basic block. This is not done directly however; it is a side effect of the 

conversion of the target program into an internally usable form. This internal 

representation is a reflection of the overall structure of the basic block. 

From a control flow standpoint, a basic block is simply a sequence of instruc-

tions which is executed in a strictly linear fashion having no real internal structure. 

The data flow view is somewhat more complex. 
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Sequential execution of the instructions in a basic block does not preclude the 

existence of a number of parallel computations. This concept is illustrated in the 

following code fragment: 

addl3 b,c,a # a4—b+c 
movi s,q 
subl3 $5,x,z # z4— à-5 
divl2 t,q # q - q/t 
movi y,rO # temp  
shi rO, 1 # temp -. temp * 2 
mull2 rÔ,z # z4—z*temp 

- muli2 d,a # a4—d*a 

Casual inspection would seem to indicate that there are six individual expres-

sions calculated in a serial fashion: (note that the fifth expression is carried out 

in three stages with the intermediate results kept in a temporary variable) 

a=b+c 
q  
Z = 

q = q/t 
z = z 2 
a = a  

However, after a simple rearrangement of the instructions (which does not 

effect the results of the computations), it can be seen that there are really three 

independent calculations proceeding in parallel: 

a = b+c*d 
q = s/i 
z = (x.-5)*2y 
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3.2.3 Representation of Basic Blocks 

The internal representation of blocks used in GO is derived from those of 

Allen[7] and Aho and Ullman[3]. A primary feature of the data structure used is 

that it attempts to record as much information about the relationships between 

the various components as possible (for example, whether a given expression oc-

curs elsewhere in a basic block or where the operands of an expression where last 

set) The representation is based on five tables: the global, local and argument 

variable tables and the global and local expression tables. Separation of the vari-

ables into three tables is made necessary by the different mechanisms used to 

identify them. 

The global variable table contains descriptions of each global variable identified 

during the preprocess stage. The table index for a'given variable is the absolute 

address of the variable in the target address space. 

Unlike the global variable table, there are local and argument variable tables 

associated with each call graph node. This reflects the transient nature of these 

classes of variables. The index for each of these variables is its offset from either 

the frame pointer or argument pointer, as appropriate. 

The global expression table records all of the instruction/operand combina-

tions which occur in the program. Each descriptor in the table contains a descrip-

tion of the instruction in terms of its function (branch, data manipulation, null 

operation, etc.) and its operands (number, size of each, whether a given operand 

is read or written, etc.). Paired with each operand description is a pointer to the 

description of the actual variable which resides in one of the variable tables. How-

ever, if the variable is a temporary, a flag is set to indicate this and the pointer 
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is treated as a numeric identifier for the temporary. The scope of a temporary is 

the subroutine in which it occurs, so temporary variable identifiers are reused be-

tween subroutines. Constant values are also treated as a special case in the global 

expression table. The presence 9f a constant is noted via a flag in the table. The 

value of the constant is simply stored in place of the variable pointer. 

Entries in the global expression table are clustered in groups. All the ex-

pressions within a group have identical instruction descriptors. Furthermore all 

"input" operands for the expressions in a group are the same. However, each 

expression in the group has a different "result" operand. This organization facili-

tates easy expression matching when performing common expression elimination 

(this will be covered in chapter 4). 

The global expression table enumerates all the basic expressions which occur 

in a program, however, it does not give, an indication as to where each instruction 

occurs. This is the function of the local expression tables. There is a local 

expression table associated with each basic block in a program. It contains a 

descriptor for each expression occurring in the block. The ordering of descriptors 

is that of the occurrence of the expressions they describe in the basic block. 

Each local expression descriptor contains a pointer to the occurrence of the 

particular instruction/operands combination in the global expression table for the 

instruction it describes. In addition to this, there is a pointer corresponding to 

each operand which indicates which previous instruction in the block which most 

recently modified that operand (Figure 3.1)., If no previous instruction in the 

basic block modified the operand, the pointer is nil. 



53 

Local Expression 
Table 

Expression Descriptor 

Operand Descriptor 

Operand Descriptor 

Operand Descriptor 

Expression Descriptor 

Operand Descriptor 

Operand Descriptor 

Expression Descriptor 

Operand Descriptor 

• Global Expression 
Table 

Instruction Descriptor 

Variable Descriptor 

Variable Descriptor 

Instruction Descriptor 

Variable Descriptor 

Variable Descriptor 

Instruction Descriptor 

Figure 3.1: Organization of local and global expression tables 



54 

3.2.4 Used and Defined Sets 

The preprocessor uses two sets, USED and DEFINED to pass the facts it has 

learned about the variables in a basic block to the main data flow analyzer. USED 

details which vaiiables are referenced in each basic block whereas DEFINED shows 

which variables are set (assigned new values). The possibility exists that a vari-

able may be both used and defined within the same basic block. This presents a 

problem as the main data flow analyzer treats basic blocks as monolithic units. 

It is therefore necessary for the preprocessor to "filter" out this seemingly con-

tradictory information. For'example, a number of differeht situations exist in the 

following code fragment. 

addl3 a,b,c # c — a+b 
add].3 c,d,b # b — c+d 

All four variables are referenced and variables b and c are assigned new values. 

The data flow preprocessor would mark both b and c as being members of the 

DEFINED set, however, it would place only variables a, b and d in the USED set. 

This reflects the fact that the use of a variable is only of concern backwards along 

the control flow paths, thus the use of c is obscured by its definition. Variable .b, 

however, is used before being set therefore its use is upwardly exposed (visible to 

previous blocks). 

3.2.5 Computed and Obsolete Sets 

Two additional sets, COMPUTED and OBSOLETE are defined with respect 

to expressions as are USED and DEFINED with respect to variables. If an ex-

pression is evaluated during the course of execution of a basic block, it is placed 
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in the COMPUTED set. If one of the terms in an expression is redefined (i.e. a 

component variable is assigned a new value or a subexpression re-evaluated) then 

it is placed in the OBSOLETE set. 

As with variables, the preprocessor must act as a filter for the main data 

flow analyzer. In This case the situations to be eliminated are those in which an 

expression is computed and subsequently made obsolete within the same basic 

block. 

3.3 Intraprocedural Data Flow Analysis 

The task of the main data flow analysis code is the investigation of flow pat-

terns within each subroutine. Once the basic infrastructure has been constructed 

by the data flow preprocessor and the control flow analysis code, it is possible 

to begin this phase of analysis. The operation of the main data flow analyzer is 

straightforward. It propagates the information gained by the preprocessor over 

the graphs generated by the control flow analyzer with a view towards solving a 

number of predefined data flow problems. 

There are many possible data flow problems which may be investigated. How-

ever, many are rather specialized (i.e. the information they yield is not useful in 

a wide range of optimizations). This renders them too expensive to be used. In 

light of this, the GO data flow analyzer solves only the four most basic data flow 

problems [17,291. All four problems are similar, making implementation simple. 

Ullman[29] notes that each of these problems may be likened to a system of 

simultaneous linear equations and that they may be solved through techniques 

similar to Gaussian Elimination. The similarity arises because each basic block in 
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the subroutine under scrutiny contributes a single equation to the overall prob-

lem. The equation relates a single unknown, the solution to the problem, to the 

solutions of its neighbouring blocks. There are N equations for N blocks with 

N unknowns which is a solvable system of equations. The general form of the 

equation is: 

Xi = ((Va E A,.F(Xa)) - Ra)U Ga 

Where 

• A is the set of basic blocks "adjacent" to block i. Depending on the problem 

these could be either block i's predecessors (those blocks from which i may 

gain control) or it successors (those blocks to which i may pass control). 

• .F(X) is determined by the data flow problem under investigation. It is 

either the union of all sets X or the intersection of those sets. 

• X1 is the set of solutions to the problem at block i. 

• Xa is the solution to the problem in the adjacent block a. 

• Ra is the subset of solutions which are removed by the operations in block a. 

• Ga is the. subset of solutions to the problem generated in block a. 

3.3.1 Available Expressions 

An expression is said to be available at a given point in a program, if it has 

been computed at sometime along each of the paths which arrive at that point. 

Furthermore, none of the component variables of the expression may have been 

modified since the expression was computed. 

As an example, consider the flow graph fragment in Figure 3.2. Of interest is 
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s+t 

a =... 

AVAIL = y, s + t 

Figure 3.2: Illustration of the available expressions problem 

the set of available expressions at block 5. The first expression x + y is computed 

in block 1. From this block to block 5 are two paths: 1-2-4-5 and 1-3-5. Neither 

X, nor y is redefined in any of the blocks along either path. Therefore, x + y is 

said to be available at block 5. 

The expression a + b, is also computed in block 1. However, in this case, the 

variable a is redefined in block 2. Since the expression is only valid on one of the 

paths entering block 5, it is not considered available. 

A similar situation is presented with the expression .s +L Although in this case 

the expression is reevaluated in block 4. There is a valid instance of the expression 

in force on entry to block 5 along either path. Here again, the expression is, 

considered available. 

There are three elements to the solution of the available expressions problem: 

1. The problem concerns itself with equations, so the solution involves the 

COMPUTED and OBSOLETE sets defined by the preprocessor. 
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Figure 3.3: Illustration of the live variables problem 

2. Information is propagated in the direction of control flow. Thus the data 

flow equation for this problem must operate over the set of predecessors of 

the block being processed. 

3. For an expression to be considered available, it must have been computed 

along every path to the block. Therefore the set of solutions must be based 

on the intersection of the sets of its adjacent blocks. 

The equation for solving the available expressions problem is: 

AVAILi = (( fl AVAIL,) - OBSOLETED) U COMPUTED 
pEP 

where P is the set of predecessor blocks to i. 

3.3.2 Live Variables 

Variables are said to be "alive" at a given point in a program if there is a 

references between that point and the next redefinition of the variable. Consider 

the skeletal flow graph in Figure 3.3. In the entry block three variables are set: x, y 

and z. Variable x is used in both blocks which can potentially gain control after the 

entry block. In both cases, x is used before being assigned a new value. Variable y 

appears in-only one of the subsequent blocks, however, it too is referenced before 
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being set. Both variables x and y are considered live on exit from the entry block. 

Variable z, however, is in both cases redefined before it is used. It is therefore 

considered "dead". 

The parameters for this problem are: 

1. The sets USED and DEFINED are used as this problem is associated with 

variables. 

2. The flow of information is backwards (against the flow of control) as the 

issue is the disposition of variables after the current block. Thus, the data 

flow equation operates over the successors to the current block. 

3. The function relating all information from the successor block is set union as 

a use of the variable in any successor is sufficient for it to be considered live. 

The corresponding equation is 

LIVEi U LIVE,) - DEFINED) U USED 
3ES 

where S is the set of successor blocks. 

3.3.3 Very Busy Expressions 

If an expression is computed in a given block and is subsequently used on all 

paths originating from that block, it is considered a very busy expression. An 

illustration of this problem is given in Figure 3.4. The object of the exercise here 

is to determine the set of very busy expression at the exit points of node 1. The 

expression x + y is computed along two of the paths leaving node I, specifically 

in nodes 2 and 4. However, the expression is not computed in node 3 or any path 
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Figure 3.4: Illustration of the very busy expressions problem 

leading away from node 3. Therefore, x + y is not a very busy expression with 

respect to 1. The other expression, a + b is computed in nodes 2 and 5, but not 

in either of 3 or 4. There exist paths from both of these nodes to node 5, thus an 

exposed use of the expression is visible along all paths leading away from node 1 

and the expression is considered very busy. A similar situation is presnted with 

the expression s + t. However, in this case, the redefinition of the variable t masks 

the occurrence of .s + 1 along the 1-3-5 path. For this reason, the expression is not 

very busy with respect to node 1. 

The parameters of the equation for this problem are: 

1. This is an expression problem so it operates on the COMPUTED and OB-

SOLETE sets. 

2. The problem relates conditions in the current block to those in its successors. 

3. By definition, the solution to the problem is a function of the intersection 

of the solutions to neighbouring blocks. 
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O1 X+Y 
'I! 

u+w 

REACH = x + y 

REACH = a+b,u+w,x+y 

Figure 3.5: Illustration of the reaching definitions problem 

which yield the following equation: 

VBUSYi = (( fl VBUSYS) - OBSOLETE.) U COMPUTED, 
3ES 

where S is once again the set of successor blocks to i. 

3.3.4 Reaching Definitions 

The reaching definitions problem gives the "scope" of each expression. It is 

similar to the available expressions problem in that it gives the history of an 

expression on entry to the block in question. It differs in that an operation that 

occurs on any incoming path is of interest as opposed to available expression in 

which only operations which occur on all paths are of interest. 

An example reaching definitions problem is given in Figure 3.5. Of interest in 

this example are the definitions that reach the nodes 4 and 7. There is only one 

path leading into node 4. Along this path are computed two expressions: x + y and 

U + W. The former is transmitted through node 3 unscathed. The latter, however, 
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is made obsolete by the setting of variable u. The set of definitions reaching node 

4 therefore contains the single expression x + y. Two paths lead into node 7: 1-3-

5-7 and 2-6-7. Along the latter path are computed two expressions. An element 

of one of the expressions is redefined, though, so only one of them, a + b reaches 

node 7. The 1-3-5-7 path gives the most complex situation. Once agdn, the one 

of the expressions computed in node 1 is masked by a redefinition of one of its 

terms in node 3. The same expression is recomputed in node 5 and is thereby 

made available at 7. The set of definitions reaching node 7 then comprises three 

expressions: x + y, u + w and a + b. 

The elements involved in the solution of this problem are: 

1. The solution to the problem involves the use of the COMPUTED and OB-

SOLETE sets. 

2. Of interest are the set of expressions which may have been computed at 

entry to the block, therefore the data flow equation must operate over the 

predecessor blocks. 

3. Definitions tend to accumulate. That is, the solution to the problem for 

any given block will be based on the union of the sets of solutions of its 

predecessors. 

The equation used to solve this particular data flow problem is: 

REACH = (( U REACH) - OBSOLETED) U COMPUTED 
PEP 

where P is the set of predecessor blocks. 
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3.3.5 Solving the Data Flow Equations 

Solution of the various data flow analysis problems is achieved by propagating 

the data flow information around the control flow graph. The extent of propaga-

tion of information is controlled by the various data flow equations. 

The process would be trivial if control flow in a program were strictly linear. 

The solution for the entry block would simply be the values determined by the 

preprocessor. Solutions for subsequent blocks would be derived by applying the 

data flow equations. Unfortunately, programs are rarely this simple. 

The existence of loops in programs opens up the possibility of "feed back" 

from blocks which have yet to be processed. This is a classic "chicken and egg" 

problem: the data flow information for subsequent blocks cannot be determined 

without first knowing the data flow information for the current block, however, 

this information cannot be determined without solving the data flow equations 

for the subsequent blocks. 

Earlier on, it was stated that techniques similar to Gaussian elimination could 

be used to solve the data flow problems. The simplest of these (the Round-Robin 

iechmique) is to first make some minor assumptions about the solutions for each 

block based upon the information derived by the preprocessor (i.e. assume that 

each blocks operates in isolation, thus the solution for each block is the information 

derived by the preprocessor). Each block is then visited in a round robin fashion. 

At each visit, the data flow equations are computed. The processing terminates 

when there has been no change in the solution for any block during one complete 

pass. 
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The major problem with this technique is that the solutions to some of the 

blocks will stabilize before others, therefore reprocessing them is an unnecessary 

expense. A variant on this method (the Workli3l technique) surmounts this dif-

ficulty by keeping lists of blocks whose solutions are still in transition. Neither 

technique, however, is very cost effective in terms of processing time. 

In GO, the solution of the data flow analysis problems is achieved through a less 

expensive, though more complex technique known as interval analysis (6,9,12,17,291 

which uses the interval graphs generated by the control flow analyzer. 

The interval analysis technique (Algorithm 3.1) operates in two phases. In the 

first phase, data flow information is from the basic block graph (which may be 

thought of as the 01h order interval graph) through each higher 'order interval flow 

graph until the highest order flow graph is reached. The second phase reverses 

the process and propagates information from the highest order graph back down 

to the basic block graph. 

This technique worksp due to the nature of intervals. All paths in an inter-

val involve the interval header, by definition of an interval. This means that if 

one could obtain a solution to the data flow equations for the header node, the 

solutions for the other nodes in each interval may be solved for easily by a single 

application of the data flow equations. 

There are two sources of data flow information entering the interval header. 

Both must be consulted before generating a solution. The first source is from 

within the interval, through the back arcs to the header. This information is 

obtained in the first phase of interval analysis. The second source is from prede-
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Algorithm 3.1: AnalyzeDataFlow 

PURPOSE: Perform data flow analysis using intervals 

INPUT: A derived series (co' 91, 2,•.. ,) a basic block graph, 91 is the first 

order interval graph, 92 of flow graphs. Where o is is the second 

order interval graph, etc. The output of the data flow preprocessor. 

The set 0 containing the set of solutions arriving from outside the 

subroutine. (In GO, this set is always empty.). 

OUTPUT: A data flow solution set for each basic block node. 

METHOD: The first pass of interval analysis is outlined in Figure 3.6. The 

second pass is given in Figure 3.7. The driving procedure for both 

passes is given in Figure 3.8. 

cessors to the header which lie outsid6 of the interval. The propagation of this 

information is handled in the second phase of interval analysis. 

There is one problem associated with performing interval analysis as outlined 

above. Within an interval, there may be a number of different control flow paths. 

It is unlikely that the set of generated definitions, G and the set of removed defini-

tions, R, would be the same along each path. At the level of the interval, however, 

the existence of these different paths is masked. An assumption made in the pre-

sentation of data flow equations was that data flow information is associated with 

graph nodes. How then are the different generated and removed sets for each path 

through the interval be transmitted to the higher order graphs? 
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procedure IntervalAna1ysis1(graph , - 1) 
ifgz4g0 then 

foreach arc i in G,, do 
Locate corresponding are j in 

which exits interval header node h 
R=R 

G1=(Xh—R)UG 
endforeach 

foreach arc i exiting the header node do 

G=G1 
endforeach 

foreach exit arc i of node N in Gn processed in interval order do 
foreach arc j entering node N do 

R = RR 
G=GG3 

endforeach 

G=(G—Rj)uG 
endforeach 

/* Xh is an estimate at the solution to the data flow problem 
at the interval header node h */ 

Xh=O 
foreach back arc i in the interval with header h do 

Xh=XhJG 
endforeach 

endprocedure 

Figure 3.6: Procedure to perform the first pass of interval analysis 
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procedure Interva1Ana1ysis2(graph  
foreach node N1 in c+1 do 

/* Node h is the header node in gn 
for the interval represented by node N1 */ 

Xh = Xh F XNI 

endforeach 
foreach node N1 in c+1 do 

foreach arc i exiting the header node h do 
/ X is the intermediate data flow solution at arc i / 
X= (Xh —RI)uGI 

endforeach 

/* Note: In the following loop, "forward" problems (available 
expressions and reaching definitions) handled by processing nodes in 

interval order. For "backwards" problems (very busy expressions and 
live variables) the notes are visited in reverse interval order */ 
foreach node Nj in the interval represented by N1 do 

XN— O 
foreach arc p entering node Nj do 
xj=xjpx 

endforeach 
foreach arc .s exiting node j do 

X=(X—R3)uG3 
endforeach 

endforeach 
endforeach 

endprocedure 

Figure 3.7: Procedure to perform the second pass of interval analysis 
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procedure IntervalAnalysis(graph go, 91, 92,.  

IntervalAna1ysis1(ç0, nil) 
foreach graph ç, i1,2,...,n-1do 

IntervalAnalysis 1(gj, c_1) 
endforeach 

There is a single node in . For this node, X = 0 
foreach graph c, j = n - 1, n - 2,.. . , 1 do 

Interva1Analysis2(g, g1+1) 
endforeach 

endprocedure 

Figure 3.8: Driver routine for interval analysis 

The solution to this problem is to associate the two sets with the graph arcs 

exiting each interval instead of the interval node itself. This works because the set 

of control paths associated with each exit are would all produce the same answers 

to the data flow problems.. 

Each arc in an interval graph at level N corresponds to an are in the interval 

graph at level N - 1. Therefore, the solution to both arcs is the same. The only 

problematic situation occurs between the first level interval graph and the basic 

block graph. If the basic block graph is treated as the O' level interval graph, all 

that need to be done is to find a mapping of solutions associated with basic block 

graphs nodes to their exit arcs. This is trivial. 

By definition, all exit arcs from a basic block graph node must have the same 

solutions to the data flow problems. Therefore, each exit arc from a basic block 

is associated with the solution for the basic block. 
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Algorithm 3.2: GenerateUDChain 

PURPOSE: Determine the use-definition chain for a given use of a variable 

INPUT: A basic block flow graph with data flow annotations, the descriptor 

for the variable for which the chain is to be generated and a pointer 

to local expression table entry in which the use appears 

OUTPUT: A use-definition chain' 

METHOD: Procedure as outlined in Figure 3.9. 

3.3.6 Use-Definition and Definition-Use chains 

There are a number of useful pieces of information that may be derived from 

the various data flow sets. Chief among these are use-definition and definition-use 

chains [6]. 

A use-definition chain relates each instance of a variable to the specific in-

stances of the expressions which defined them. That is it relates a point in the 

basic block graph where a specific variable is used to the points in the graph where 

it could have been set. The use-definition chain for a variable is determined by 

examining the REACH, AVAIL and DEFINED sets. The procedure is given in 

Algorithm 3.2. 

The converse of a use-definition chain is the definition-use chain. In this struc-

ture, the location of a given expression is related to the locations of the uses of this 

variable it defines. This structure is found by examination of the REACH, LIVE 
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procedure Generate[JDChain(graph 9, vardesc V, Ioca1expr E0) 
if Eo.OperandDesc[V] 0 nil then 

add eo.OperandDesc[V] io the use- definition chain 
else 

foreach El E REACH of block containing e0 do 
if S, defines V then 

foreach path 2 entering block containing 5o do 

Locate the node H on 2 in w hich S 0 AVAIL 
then locate the definition of V in node H and 
add it to the use- definition chain 

endforeach 
endif 

endforeach 
endif 

endprocedure 

Figure 3.9: Procedure to generate a use-definition chain 

and USED sets. The procedure is similar to that used to determine use-definition 

chains. 

3.4 Interprocedural Data Flow Analysis 
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For the most part, call graphs are far simpler in structure than basic block 

graphs. Loops in call graphs exist only in the presence of recursive subroutines 

and these occur infrequently. In light of this fact, using interval analysis to obtain 

interprocedural flow information is a waste of effort. More appropriate techniques 

would be the round robin or worklist methods which were briefly mentioned ear-

her. 

In GO, only a rudimentary interprocedural analysis is performed. . Its sole 

purpose is to determine which variables are referenced or defined in a subroutine. 

There are USED and DEFINED sets associated with each call graph node to 

record this information. The technique used is as follows. 

Before data flow analysis commences, the basic block and interval graphs 

for each subroutine are modified. The modification entails the addition of two 

"dummy" basic block or interval nodes. The first node is added prior to the entry 

node for the graph in question. The dummy node for each interval graph maps 

to the dummy node of the immediately inferior graph. The second node is a 

dummy exit node. Links are added between each real exit node in the graph and 

the dummy. Like the dummy entry node, each dummy exit node in the interval 

graphs is mapped to the equivalent node in the inferior graph. The USED, DE-

FINED, COMPUTED and OBSOLETE sets for all the dummy nodes are initially 

empty. 

A topological sort is then performed on the call graph. Each node in the 

call graph is processed in reverse topological order. When a node is visited an 

intraprocedural data flow analysis is performed on the subroutine. The USED 

set for the call graph node is the LIVE set of the dummy entry node for the 
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subroutine with all local, argument and temporary variables removed. Likewise, 

the DEFINED set is the REACH set belonging to the dummy exit node with only 

the global variables preserved. 

In order to make use of the interprocedural information, the basic block graphs 

for each subroutine undergoes ,a "fixup" procedure prior to commencement of the 

intraprocedural analysis. This is required because side effects may result when 

a subroutine call occurs. Specifically, global variables which may on the surface 

appear to be untouched may be referenced or redfined in the subroutine. If the 

intraprocedural analyzer does not know of these, erroneous data flow results will 

definitely arise. 

The fixup procedure involves scanning each basic block node for subroutine 

calls. If a call is foulid, the DEFINED and USED sets of the block in which 

it occurs are merged with the corresponding sets of the called subroutine (i.e. a 

set union is performed). In addition, the local expression table for the block is 

searched for operand pointers which span the subroutine call. If any of these links 

are for variables in the called routines DEFINED set, the links are broken (i.e. 

the operand pointer is set to nil). 



Chapter 4 

Heuristics for Code Improvement 

4.1 Overview 

Control and data flow analysis provide GO with a vast amount of information 

about a program. Raw informtion, though, is of limited use. Ideally there would 

be a simple, algorithmic method of processing this raw data and producing an 

optimal variant of the program. Unfortunately, no such technique exists that can 

be guaranteed to run in a finite amount of time. Instead GO resorts to heuristic 

programming techniques. Basically, all that is done is to search the the flow graphs 

of the input program for predetermined patterns which can be manipulated in a 

systematic way in order to produce better code. 

For the most part none of these patterns, or the manipulations performed on 

them, is complex. Nor does any transformation result in a massive improvement 

in program performance. However, they do occur with great frequency. Thus the 

cumulative effect may be quite pronounced. 

Code improvement, then, is achieved through brute force rather than elegance 

of design or subtlety of implementation. 

4.1.1 Constraints on the Application of Heñristics 

A cardinal rule in code improvement is' that an alteration may affect the man-

ner in which results are obtained but not the results themselves. There are a 
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number of facets to this rule which Kennedy[lb] summarizes as three constraints 

on the optimization process: 

1. The functional equivalence constraint 

The optimized sequence must generate the same output as the original pro-

gram for all legal input data. Output for illegal input data is not so con-

strained (the program still fails, but for a different reason). 

2. Legal data set constraint 

The set of legal inputs to the optimized program must be the same as, or a 

superset of, that of the unoptimized pro'gram; the new program may handle 

additional classes of input but it must not handle fewer classes. 

3. Safety Constraint 

The code resulting from optimization should not generate errors which the 

original code did not generate. That is, if a computation was valid under 

the old program, it must be valid after optimization. However, the reverse 

need not be true. Also permissible is a change in the timing of errors. That 

is, an error may occur at a different stage in the execution that it would 

have in the unimproved program. Furthermore, a great deal of flexibility is 

available in the application of this constraint. For example, at the discretion 

of the programmer, it may be acceptable to sacrifice some loss in precision 

of floating point calculations when an optimization is applied. 

All of the heuristics presented below conform to these guidelines. 
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4.2 Performing Code Improvement 

In most code improvement systems each optimization heuristic is implemented 

as a separate entity. This is not true of GO. One of the major goals in its design 

was the use of a modular programming discipline in order to reduce the redundan-

cies in the code. The implementation of the code improvement heuristics reflects 

this goal. 

GO's repertoire of optimization heuristics have two common traits. First, 

the information required to implement each optimization is given directly in the 

the results of the control and data flow analysis phases.. Second, the heuristics 

are for the most part machine independent. They operate primarily through 

man11 ipulation of the flow graphs rather than recoding of the program. 

The flow graph manipulations required to implement the various heuristics 

are few in number. The most rudimentary is the creation of new basic blocks. 

All that is entailed for this is the addition of a basic block skeleton in front of 

an existing block. The new block takes from the existing block all of the latter's 

infiowing forward graph arcs. A single new arc is then added between the two 

blocks. Any back arcs are retained by the original block. The new node becomes 

a component of the interval which contains its predece380r. 

A related manipulation is the splitting of a basic block. When this is done, 

the local expression table is divided at a specified instruction. The first node 

gains the first part of the table and all incoming arcs (back arcs included). The 

second node consists of the rest of the local expression table and retains all of the 

outfiowing arcs of the original. Both nodes are members of the same interval that 

contained the original node. 



76 

Some heuristics require the ability to "create" new expressions. Actually, the 

process is not so much a matter of creating a totally new expression as making 

minor modification to an existing one. To do this a copy of an entry in the global 

expression table is made. One of the operands is then altered to suit the needs 

of the heuristic. If the altered' operand is the one which receives the result of the 

expression's calculation its new value is usually a fresh temporary variable. For 

example, a "move value to local variable" instruction may be changed into "move 

value to temporary variable". 

A manipulation which is used in close conjunction with the previous one is the 

allocation of new temporary variables. During processing of a program, GO acts as 

if an infinite supply of temporary variables are available for use. A new temporary 

may be allocated from this pool at will. The actual assignment of temporaries to 

memory locations and registers is performed by the code regeneration part of the 

improver. 

Another important manipulation is the insertion of expressions into basic 

blocks. To do this a reference to an entry in the global expression table is pro-

vided. A reference to the destination block is also supplied. A new entry that 

refers to the given global expression is added to the block's local expression table. 

The appropriate operand pointers are then generated to link the new expression 

into the existing basic block structure. Finally, the data flow information for the 

basic block graph must be updated. Each path leading away from the modified 

block is traversed. As each node is visited, the various data flow sets are updated 

as appropriate (e.g. the expression will be added to the node's AVAIL set). The 

traversal of each path terminates when an exit node is reached, when a redefini-
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tion of one of the expression's components is found in the visited block or when 

the expression is found to already be in the node's AVAIL set. 

The final important flow graph transformation is the removal of expressions 

from blocks. All that is needed to accomplish this is to remove the appropriate 

entry from the local expression table and update and references to it from other 

expressions in the block. An expression is never removed unless it is unused, that 

is, the result it produces is never referenced in subsequent expressions. There is 

no need update the graph's data flow information a's any information relating to 

the expression will be ignored anyway. 

4.3 The Heuristics 

The catalogue of possible optimizations is constrained only by one's imagina-

tion. However, many heuristics have limited applicability and so are not suitable 

for a general purpose code improvement system. A number of heuristics, though, 

are almost universally applicable. These heuristics are well covered in the litera-

ture [3,7,8]. 

GO actually has very few code improvement heuristics. This reflects the fact 

that the code improver is a research tool rather than a production system. The 

heuristics were chosen in order to show that code improvement is possible under 

the constraints put forth in the design of the improver. 

The heuristics are detailed below. The order of presentation reflects the order 

in which the heuristics are applied. This order is crucial to the proper operation 

of the system. 
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4.3.1 Inline Subroutine Expansion 

One of the most expensive operations in terms of both machine cycles and 

storage is the subroutine call/entry/exit sequence. Because of this, it would seem 

prudent to limit the number of subroutine calls in a program. Unfortunately, good 

programming technique dictates the use of many subroutines. Here then, lies an 

excellent opportunity to affect code improvement [1O,15]. 

What is called for is an optimization heuristic that will convert hierarchies of 

many small subroutines into, ideally, one large routine. This procedure is known 

as inlin,e subroutine expansion. As the name implies, this heuristic involves the 

"textual" replacement of a subroutine call with the body of the actual subroutine, 

thus eliminating the expensive subroutine overhead. 

Anatomy of a subroutine call 

The invocation of a standard subroutine can be thought of as progressing 

through five discrete stages. In order of execution, these are: 

1. Call set up 

In this stage, the calling procedure arranges for any parameters to be passed 

to the subroutine. It also records the address to which the subroutine is to 

return control upon termination. Finally, it does the actual transfer of 

control to the subroutine. 

• 2. Subroutine entry 

Here, the called subroutine saves any registers which it uses (except, of 

course, any which are used to transmit information to the calling routine) 

and any other elements of machine state which it modifies. It also performs 
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any initialization functions required for the normal operation of the sub-

routine. This includes such functions as creating a stack frame, allocating 

space for local variables and setting up dynamic and static links. 

3. Subroutine body 

At this point, the actual execution of the subroutine proceeds. 

4. Subroutine exit 

This phase is primarily concerned with undoing the effects of the second 

stage: local variables storage is released and the saved machine state is 

restored. If the subroutine is a function type (i.e. it sends information 

back to the caller) the return value is placed into a standard location for 

the calling routine (usually one of the general purpose registers). Finally, 

control is passed back to the address recorded in the first stage. 

5. Call cleanup 

After regaining control from the called subroutine, the caller releases any 

storage it allocated for passing of parameters and retrieves any information 

passed back from the subroutine. 

Except for the third stage, all of this processing is directed at maintenance of the 

machine's operating environment rather than towards the solution of a problem. 

The goal behind this particular optimization is the elimination of as many of these 

nonproductive sequences as possible. 
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Selecting subroutines to expand in line 

The first stage in performing the optimization is the selection of the subrou-

tines which are to be expanded. A subroutine is suitable for inline expansion if 

either of the following criteria is met. 

• The subroutine is only invoked at one point. 

• The "cost" of the subroutine body is less than that of the subroutine invo-

cation sequence given above. 

The concept of cost in the second case is a nebulous one. The cost of a sequence 

of code is entirely dependent on the situation in which the sequence is computed. 

For example, if a program were close to the maximum size the computer could 

handle and the code sequence would cause the program to exceed this limit,then 

the cost of the segment would be considered unacceptably high. 

In general, the cost of a code sequence is determined by the goals of the 

optimizer. For example, if speed enhancement is the objective, a small increase 

is program size in exchange for a large reduction in execution time would be 

acceptable. What constitutes a small decrease in size or a large reduction in time 

is determined by the programmer in accordance with his needs. 

All other things being equal though, the relative costs of two sequences of 

code may be determined by comparing like characteristics of the sequences. To 

meet the second criteria for inline expansion then, the subroutine body would 

have to take up less space and execute in less time than the associate subroutine 

invocation sequence. 

The procedure for expanding subroutines inline is given in Algorithm 4.1. 
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Algorithm 4.1: InhineSubrExpansion 

PURPOSE: Procedure to expand subroutine calls inline 

INPUT: The call graph, the basic block graph and a pointer to the instance 

of a subroutine call to be expanded 

OUTPUT: Modified basic block and call graphs with the subroutine expanded 

inline 

METHOD: The procedure is as follows. 

1. A duplicate copy of call graph node for the subroutine and all 

its associated data structures (local and argument tables, basic 

block graph, etc.) is made. All modifications to the subroutine 

are made to this copy, thus any other calls to the routine will 

not be affected. 

2. The subroutine's local variable table is adjusted. This entails 

adding ih6 size of the caller's stack frame to the offsets of each 

entry in the local variable table. 

3. The ,subroutine's local variable table is merged with the calling 

routine's local variable table and the calling routine's stack 

frame is enlarged by the size of the subroutine's stack frame. 

4. A mapping of procedure argument variables to the actual pa-

rameters in the calling routine is established. 

continued on page 82 
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Algorithm 4.1: InhineSubrExpansion (continued) 

5. Each instance of a procedure argument variable in the subrou-

tine's basic block graph is replaced with the actual parameter. 

Once all of the procedure argument variables have been pro-

cessed in this manner, the argument variable table is discarded. 

6. The names of the temporary variables in the subroutine are 

made unique with respect to the caller's temporaries. 

7. The basic block which invokes the subroutine is split in two 

at the subroutine call. The subroutine invocation code in the 

caller and the entry/exit code in the called routine are dis-

carded. If the calling routine performs a stack clean up after 

the subroutine returns, the clean up code is also discarded. Any 

code in the called subroutine which is used to return a value 

to the caller and the corresponding code to retrieve the value 

in the caller is retained. However, this code is probably redun-

dant and will be eliminated during subsequent manipulation of 

the program. 

8. The basic block graphs for the two routines is then merged. A 

single graph arc is added from the first part of the newly split 

block to the entry node of the called subroutine basic block 

graph. Graph arcs are also added between each exit in the 

called subroutines graph and the second new block. 
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4.3.2 Invariant Computations in Loops 

A well known maxim of computer science is the 80/20 rule: eighty percent of 

the time is spent executing 20 percent of the code. This is merely an observation 

that most useful work in a program is done in loops. The code which exists outside 

.of any loop is generally involved in loop maintenance: setting up for entry to the 

loop and cleaning up after exit. Also contained in these sections are the various 

operations involved with maintenance of the program as a whole (i.e. variable 

initialization, subroutine entry and termination, etc.). As most "real work" is 

done inside loops, the greatest improvement in code quality would be realized by 

optimizing the code within loops[16]. 

The most obvious loop optimization is to locate invariant computations and 

move them out of the loop. An invariant comjutation is one which will result in 

the same value on each iteration of the loop. For example, the following code: 

for (a = 0; a < 10; a++) 

for (b = 0; b < 10; b++) 

c = a * 3 + b; 

would likely be compiled into: 

movi $0,a # a4-0 
loopi: movi $0,b # b4-0 
loop2: mull3 $3,a,c # c-3*a 

addl2 b, c. # c — c+b 
acbl $10,$1,b,loop2 

• b - b+ 1, if b < 10, branch 
acbl $1O,$1,a,loop2 

#a— a+1; if a< 10, branch 

The third instruction in this case is invariant with respect to the second loop 

and may be moved out of it. The procedure for performing this optimization is 
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Algorithm 4.2: InvariantCodeMotion 

PURPOSE: To perform loop invariant code motion. 

INPUT: A series of interval graphs and the corresponding basic block graph. 

OUTPUT: The basic block graph is modified so that all invariant computations 

are moved out of loops. 

METHOD: Procedure as outlined in Figure 4.1. 

given in Algorithm 4.2. When this algorithm is applied to the above example, the 

following code sequence results: 

mov]. $0,a # a4-0 
loopi: movi $0,b # b-0 

mull3 $3,a,c # added instruction. 
].00p2: mull3 $3a,c # c-3*a 

add].2 b,c # c —c+b 
acbl $1O,$1,b,loop2 

# b - b+ 1; if b < 10, branch 
acbl $1O,$1,a,].00p2 

a +- a+1; if a < 10, branch 

A new instance of the multiply instruction has been placed before the body of 

the second loop. However, the original instance is not removed. The new instance 

renders the old one redundant, though, so it will be removed by the common 

expression elimination heuristic. 

4.3.3. Code Hoisting 

There are instances in which a given expression is computed along all paths 

leading away from a given basic .block. This situation is indicated by the presence 
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procedure InvariantCodeMotion(graph , Q2, 93, 
foreach 9j, i= 1, 2, 3, ... n do 

foreach interval I in 1j do 
foreach block B in I do 

/* Intially, all expressions in B are unmarked */ 
foreach expression e in B do 

Examine the use-definition chain for each 
variable in E. If no definition of the 
variable occurs in a block which is in I, 
then mark E. 

endforeach 
endforeach 
if any expression was marked then 

Create a new block B in front of the header node of I. 
Add an instance of each marked expression to B 

endif 
endforeach 

endforeach 
endprocedure 

Figure 4.1: Procedure to perform invariant code motion 

of the expression on the VBTJSY set of the block. In such cases, an optimization 

that may be applied is to have one instance of the expression in the given block and 

make the result available along each exit path. This is known as code hoisting. Tie 

procedure for code hoisting is given in Algorithm 4.3. As in the case of the loop 

invariant expression heuristic, the net effect of this algorithm is the introduction 

of a new instance of a given expression which will render the subsequent instances 

redundant. However, there is a subtle feature of this algorithm which should be 

noted. The feature is illustrated in Figure 4.2. 
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Algorithm 4.3: Codelloist 

PURPOSE: To perform code hoisting. 

INPUT: A basic block graph with VBUSY data flow annotations. 

OUTPUT: The basic block graph modified in accordance to the code hoisting 

heuristic. 

METHOD: Each basic block in the graph is examined. If any expressions are 

designated as very busy with respect to that block, a copy of the 

expression is inserted at the end of the block. 

VBUSY = x+y, s+t 

VBUSY = 

VBUSY = .s+t 

'U 5 6 s+t 
.s+t 

Figure 4.2: Illustration of problems in code hoisting 
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In this situation we have the expression x + y present in nodes 3 and 4 and 

the expression .s + t present in nodes 3, 4 and 5. As a result, x + y is considered 

very busy with respect to node 1 and s + t is very busy with respect to nodes 

0; 1 and 2. Thus, after application of the code hoisting procedure, x + y will be 

duplicated in node 1. Careful inspection reveals that moving this expression from 

nodes 3 and 4 to node 1 as would seem to be indicated is unsafe as the expression 

would not be computed should control pass through node 2. This, however,is not 

the case. The common expression elimination heuristic, which is responsible for 

eliminating redundant expressions will recognize that an unsafe conditions exists 

and will not attempt to use the expression in node 1 to eliminate those in nodes 

3 and 4. The net result is that the new expression in node 1 will be unreferenced 

and thus be eliminated in later processing. 

A second subtlety exists with expression s + t. As this expression is very busy 

with respect to all three higher level nodes, it will be duplicated in all three. In 

this case, the duplicates in nodes 1 and 2 will be, in turn, found to be redundant 

with respect to the instance in node 0. Thus the expression will be correctly 

hoisted two levels to node 0 and all other instances will be eliminated. 

4.3.4 Common Expression Elimination 

All of the heuristics discussed thus far have involved the insertion of code into 

various points in basic block graphs. In the last two heuristics, the result was 

to deliberately introduce redundancies. There is a high probability that the first 

heuristic, inline subroutine expansion, would also have introduced redundancies. 

It is the task of the common expression elimination heuristic to set the stage 
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for the removal of these redundancies [1,2,12,28]. (Note: in most systems, the 

heuristic for common expression elimination does the actual removal of code. 

In GO, the heuristic merely changes the flow graphs so that later instances of 

common expressions are unreferenced. It is left up to the dead expression heuristic 

(discussed later) to actually remove expressions.) 

The preceding heuristics, however, are not the only source of redundant ex-

pressions. Consider the following program fragment: 

a = b + C * d; 
b = a + b + 
C = a + C * 
d = a + C * 

The code generated would likely be: 

mu].13 d,c,rO # temp 4—c*d 
addl3 b rO , a a - b + temp 
addl3 c,a,rO # temp 4—a+c 
addl3 d,rO,b # b4—d+temp 

mull3 d,c,rO # temp 4—c*d 
addl3 a,rO , c c - a + temp 
mull3 d,c,rO # temp 4—c * d 
add].3 a,rO,d # d - a+temp 

Here an obvious optimization would be to reuse the value computed for the 

subexpression c * d. This is the function of common expression elimination. 

There are two variants of the common expression problem. The first deals 

with the elimination of redundancie within basic blocks and the second with 

elimination between basic blocks. The former is applicable in the above example. 

The procedure for common expression elimination within a basic block is out-

lined in Algorithm 4.4. The procedure for performing this optimization between 
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Algorithm 4.4: CommonExprElim 

PURPOSE: To eliminate common expressions within a basic block. 

INPUT: A basic block. 

OUTPUT: The block is modified so that any redundant computation is left 

unreferenced. 

METHOD: 1. Locate the common expressions is the block under scrutiny. 

(Call the first instance E1 and the second E2) Common expres-

sions have the following characteristics: 

(a) They belong to the same group in the global expression 

table. 

(b) None of the input operands are redefined between the oc-

currence of E1 and E2. This can be determined by exam-

ining the result operands of the interving instructions. 

2. If the result operand of E1 is redefined before the occurrence 

of E2, create a new expression (En) based on E1. The result 

operand of E is a fresh temporary. E is inserted into the 

basic block immediately after expression E1 . Each expression 

on El's definition-use chain is then modified to reference E in-

stead. Thus, El's definition-use chain become En's definition-

use chain. El's chain is then set to empty. 

3. Each expression in E2's definition-use chain is then modified to 

reference E1 (or E, if it was created). 
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blocks is identical except that common expressions are identified by examining 

the AVAIL set. 

When this procedure is applied to the above example, the resultant would be: 

(T is a fresh temporary variable). 

mull3 d,c,rO # temp — c*d 
mull3 d,c,T # added instruction 
addl3 b,r0,a # a — b+temp 
addl3 b,T,a # added instruction 
addl3 c,a,rO # temp — a+c 

addl3 d,r0,b # b — d+temp 
mull3 d,c,rO # temp — c*d 
addl3 a,rO,c # c — a+temp 
mull3 a,T,c # added ins&uction 
mul].3 d,c,rO # temp — c*d 

addl3 a,r0 , d # d <- a + temp 

As each of the added instructions masks the result of the instruction it is 

intended to replace, the result of the old expression is unreferenced and will be 

removed by the dead variable/expression heuristic. 

4.3.5 Dead Variable/Dead Expression Elimination 

The final code improvement heuristic performed is the elimination of useless 

expressions and variables. The primary sources of these are the other improvement 

heuristics. This heuristic can therefore be thought of as the final cleanup phase 

of the code improver. 

Dead variables and expressions also occur "naturally" in unoptimized code. 

This is caused by the fact that subroutines often proceed through "stages" of 

execution. Each stage usually comprises a single loop or a series of nested loops. 

In each stage, two types of information are generated: that which will be used in 
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subsequent stages and "support" information which is used to actually implement 

the loops and carry out the necessary computations. The usefulness of the latter 

type ends with the termination of the stage it is associated with and may be safely 

discarded. 

A variable is considered dead at the end of a block if no use is made of it 

between that point and the next definition of the variable. To determine whether 

a variable is alive or dead, one simply has to consult the LIVE set for the block. 

The presence of the variable in this set indicates that a subsequent use of the 

variable does occur and it should be left untouched. 

The possibility exists that a variable will be dead on exit from a 'block, but 

still be alive between the exit point and its last definition within the block. To 

determine if this is the case, the local expression table is searched in reverse order 

until the definition of the variable or a reference to it is encountered. If a reference 

is encountered, no further processing is required at this stage. If no reference is 

found, then the variable is truly dead and the dead expression heuristic may be 

applied. 

If the variable is indeed dead, then so is the expression that defines it. This is 

known to be true because if a later instance of the expression occurs before one 

of the expression components has been redefined, common expression elimination 

would have removed the later evaluation in favour of the current one. As this 

situation does not exist, there isno need to retain that particular instance of the 

expression, so it is removed from the local expression table. 
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4.4 Improvements During Recoding 

Once the code improver has completed execution, all that remains is to recode 

the flow graphs into machine instructions. Strictly speaking, this is a minor utility 

task—GO's main objective has already been accomplished. However, there are a 

few code improvements that occur as a side effect of the recoding process. 

The simplest of these is jump-to-jump elimination. As stated in the first chap-

ter, this is normally considered a peephole optimization. However, one finds that 

it also fits nicely into the realm of control flow analysis. To perform this opti-

mization, the recoding procedure need only watch out for basic blocks containing 

only an unconditional control transfer instruction. By definition, such constructs 

represent redundant jumps. To eliminate the branch, all that needs to be done is 

to replace the branch target address of the original transfer instruction with that 

of the redundant instruction. 

Another major "free" optimization is the optimal use of local and temporary 

variables. The code improver is very generous in the allocation of temporary vari-

ables. It is not feasible to allocate real storage for each temporary. To circumvent 

this problem, the recoder generates a "map" of when a given variable contais 

valid information. It then attempts to "overlay" the various maps in order to find 

the best possible fit. In this way, it locates sets of variables whose valid periods are 

mutually exclusive. Such variables may be coalesced into single variable that is 

in use almost all of the time. The result is the best use of variable space possible. 



Chapter 5 

Summary 

5.1 Incidental Points 

The preceding chapters have discussed in broad terms the various mechanisms 

used to do code improvement in the GO system as well as descriptions of the 

overall implementation. There are some details of the implementation, however, 

that have not been addressed. These are discussed here. 

5.1.1 Treatment of Pointers 

A major problem in data flow analysis is the existence of aliases. Aliases exist 

if there are two variables which reference the same memory location. The problem 

with this situation is that a definition of one variable w ill result in a definition of 

both, however, this fact is not apparent to the data flow analyzer. 

In GO, aliases manifest themselves in the form of pointer variables. GO cannot 

know if two pointers reference the same memory location or if a pointer references 

a given variable. An indirect reference through a pointer, then, could result in a 

hidden definition of or reference to some other variable. 

Given this set of circumstances GO treats the pointer as though it references 

all variables. If a memory location is defined indirectly through a pointer, the 

result GO assumes that all variables in the program may have been set. If an 

indirect reference to a location is encountered, all variables are assumed to have 

been referenced. 
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This mechanism, of course, severely limits the usefulness of the data flow 

analysis process. A possible remedy to this 'problem is given below. 

5.1.2 Treatment of Calls to the Operating System 

A similar problem arises with calls to the operating system. How does' one 

determine the side effects they cause? In GO, this is done by handling system 

calls as a special case of the general subroutine call mechanism. When GO is 

started, it builds a series of "dummy" call graph nodes, one for each operating 

system service. As the operations carried out in a system call are rigidly defined, 

it is possible to supply each system call node with complete data flow information. 

Thus it is possible to account for the effect of each system call. 

5.2 Evaluation 

Unfortunately, at the time of writing the GO code improver was still under-

going development so a number of key questions regarding performance must go 

unanswered. However, a number of qualitative observations may be made: 

• In its current form, GO is strictly an experimental tool. Its deficiencies 

would render it useless in any production environment as it can only handle 

the simplest of programs. 

• The emphasis in the design of GO is simplicity and generality. The im-

plementation of GO stresses modularity of code. Each module is made as 

general as possible so as to allow its use in a number of capacities. This 

was accomplished by making use of "canned" utility functions and data 
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structures. The penalty for this is increased memory usage and execution 

time. 

• Another major design decision was to attempt to incorporate as much ma-

chine independence as possible. This was accomplished by using a table 

driven instruction decoder and defining a set of machine independent "basic 

operations" which were implemented as small machine dependent routines. 

An unexpected result of this decision was a restriction on the number and 

type of optimizations which could be performed. This is primarily because 

without knowledge of what each instruction in a block actually does, all 

code improvement must be done through simple pattern matching. 

• The design decision that makes the greatest impact, however, is the decision 

to attempt to directly optimize machine executable code. It effects almost 

every facet of the system. The merits of this decision will be discussed later. 

Regardless of any difficulties this decision caused, though, the basic philos-

ophy is sound: flow analysis of a executable program using no supplemental 

information from the code generation system is feaible. 

5.3 Possible Extensions to GO 

As noted above in an attempt to make GO relatively machine independent, 

the ability to perform a number of optimizations was lost. This is due to the fact 

that GO cannot interpret what each instruction does, and thereby discover its 

effect, except in the most general terms. 

The most obvious method of enabling GO to "understand" the expressions 

it sees is to code some knowledge of the target machine instruction set into the 
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code improvement heuristics. Unfortunately this would make the system almost 

completely machine specific. An elegant alternative technique exists which would 

preserve some measure of machine independence by sacrificing efficiency. 

This technique involves supplementing GO's instruction description tables 

(which are used to properly decode the input program) with descriptions of how 

each instruction operates. One way in which this could be done would be to 

supply a simple stack machine description of each instruction. This information 

would be used by a stack machine emulator which operates as part of the data 

flow preprocessor. 

The major benefit resulting from this mechanism is the ability to completely 

determine the values of computations involving constants. This permits the re-

moval of some of the more severe restrictions placed on the system due to the 

presence of pointers. To understand how this is possible requires some consider-

ation of the manner in which pointers are used. 

In general, pointers have two uses. The first use is as a position marker. This 

may be done explicitly by the programmer to implement complex data structures 

such as linked lists or implicitly as with array and string references. The second 

use is to introduce generality into code. By using a pointer, it is possible to merge 

two or more sections of code which do the same computations, but on different sets 

of data. A classic example of this is a "pass by reference" procedure parameter. 

In either of these cases, the contents of the pointer is a value that is determined 

at compile time. The number of applications in which the value of a pointer could 

be legitimately obtained from an external source is very limited. Furthermore, 

all computations involving pointers deal invariably with constants. However, this 
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might not always be readily apparent. For example, if an array bounds is read 

in from an external source, good programming technique dictates that a range 

check be performed before attempting to use it. The range check values must he 

constants. Thus they implicitly define the values which may be accepted as the 

index. 

In the discussion of control flow analysis, it was pointed out that a major 

flaw in the control flow analysis procedure GO employs is its inability to handle 

computed control transfer addresses. Using this stack machine system and capi-

talizing on the above observations, the solution to this problem becomes trivial. 

One need only use the techniques for propagation of constants to determine what 

the possible values of any given pointer are at any time during the execution of a 

program. This technique is equally applicable to pointers to variables. Thus it is 

possible to circumvent the problems with aliases that were outlined earlier in this 

chapter. 

5.4 Concluding Remarks 

The need for code improvement systems and research into such systems is 

obvious. That this should be accomplished via flow analysis of machine executable 

object modules is less obvious. There are, however, valid reasons for doing it in 

this manner. To understand these reasons, one must consider the history of the 

computing industry. 

The information processing sciences and related disciplines are relatively new 

with respect to the more established areas of study. It has only been in the 



98 

past decade, however, that any really fundamental change has been made in the 

industry. 

At one time, everything associated with computers was big: they were expen-

sive, large and slow. Support in terms of software for computers came principally 

from two sources, the manufacturer and the system support staff. If any third 

party software support was to be found, the software was written in either assem-

bler or in a primitive high level language for which the manufacturer supplied the 

development system. As the language compilers and optimizers were supplied by 

one party, it was possible to devise intricate optimizers which were an integral 

part of the overall system. 

The computer industry of today is a vastly different. The advent of microelec-

tronics and inexpensive "personal" computers has given rise to a situation where 

systems produced by different manufacturers have essentially the same design. 

The emphasis has passed from hardware manufacturer supplied software to third 

party support. For any given system, it is possible to find any number of com-

pilers by different software manufacturers. Unfortunately, in such a case as this, 

there are only two sets of standards to which the compiler has to adhere: the 

standards for the input language and those, of the machine on which the program 

has to run. And even the former need not be strictly adhered to. It is highly 

unlikely that the intermediate representations of programs generated by any two 

third party compilers is the same. Furthermore, as it is now profitable to market 

software systems alone (as opposed to producing software as an incentive to the 

selling of hardware as was the case in the past) it is not in the best interests 

of the compiler writer to reveal the details of his implementation. This includes 
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information about the intermediate code, symbol table and linkage information. 

An individual writing a code improvement system, then, has very little to work 

with. 

• There is only one common denominator with respect at all the compiler sys-

tems available. That is the architecture of the machine for which all the systems 

must produce code. In other words, the final executable image is the only form 

of the program for which there is guaranteed to be information available. 

It is for this reason that investigation of the direct optimization of machine 

executable code, as in Go, is a necessary and inevitable endeavour. 
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Appendix 

An Overview of VAX Architecture 

The VAX series of computers comprise a range of machines of varying power 

which are generally classed as "supermini" computers. All of the machines in the 

series share the same instruction set. 

A.1 Principal Architectural Features 

A.11 Instruction Set 

The VAX is described as a complex instruction set computer (CISC) with a 

32 bit architecture. In addition to the basic arithmetic/logical, test and branch 

instructions, it has a number of specialized instructions for high level language 

support (loop implementation, string manipulation and array handling), operat-

ing system support (queue manipulation) and scientific calculations (polynomial 

evaluation). The instructions take from zero to six operands and all of the arith-

metic operations have two operand (x = x + y) and three operand (x = y + z) 

forms. The arithmetic operations are also orthogonal with respect to the integer 

and-floating point data types (i.e. any arithmetic operation can be performed on 

any numeric data type). 

A.1.2 Data Types 

The basic data types supported are integers, packed decimal strings, character 

strings and floating point numbers. The principle sizes of integers are byte (8 
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bits), word (16 bits) and long word (32 bits). The main floating point data types 

are F-floating (single precision - 32 bits: 1 bit sign, 23 bits mantissa and 8 bits 

excess- 128 exponent) and D-floating (double precision— 64 bits: 1 bit sign, 55 bits 

mantissa and 8 bits excess- 128 exponent). Both floating point formats represent 

the mantissa as a normalized binary fraction (i.e. high order bit is always a one) 

with the high order bit not stored. The effective size of the mantissa is therefore 

increased by one bit (24 bits for F floating, 64 bits for D floating). 

A.2 Programming Features 

A.2.1 The Stack 

A principle feature of the VAX architecture is the stack. The stack is a last-

in first-out data structure which is used for transmission of arguments between 

subroutines, for subroutine linkage and for temporary storage. The stack "grows 

downwards". That is, new elements are placed on the stack at memory addresses 

which are less than older members. The machine maintains a stick pointer (see 

below) which indicates the loèation of the most recently "pushed" value. Under 

the UNIX operating system, the stack is allocated at the highest point in the 

user's address space and is automatically extended as more items are place in it. 

A.2.2 Registers 

The VAX has 17 CPU registers which are of interrest to most programmers. 

The processor status word (PSW) is a 16 bit register which controls the operation 

of the CPU and records various aspects of CPU state (e.g. if an arithmetic overflow 

condition exists). The remaining 16 registers are known as the "general purpose" 
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registers and are all 32 bits wide. They are general purpose in that that the 

instruction set is orthogonal with respect to their use as opposed to true generality 

of use. The first twelve registers (RU through RU) can be termed "all purpose" 

registers. They are available for any function desired by the programmer, however, 

some of the specialized instructions (especially those which manipulate strings) 

alter one or more of the first six registers (RU through R5) indiscriminately. The 

other four registers have the following functions assigned to them by the hardware: 

Argument Pointer (AP or R12) 

The specialized procedure call instructions use this register to point to the 

list of arguments being transmitted to a subroutine. It is automatically 

saved on procedure entry and restored on exit. 

Frame Pointer (FP or R13) 

This register is set up on procedure entry to show the location on the stack 

of the local (automatic) variables and other data structures which are unique 

to a particular instance of a procedure. Like the argument pointer, it is also 

preserved across procedure calls and is maintained by the procedure call and 

return instructions. 

Stack Pointer (SP or R14) 

The SF points to the last item placed on the machine stack. 

Program Counter (PC or R15) 

The program counter points to the next instruction memory which is to 

be executed (during instruction processing, it points to the next byte in 

memory of the current instruction). 
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A.2.3 Addressing M odes* 

One of most appealing aspects of the VAX architecture is its rather elegant 

set of addressing modes. The addressing modes are, for the most part, orthogonal 

with respect to all instructions and all of the general purpose registers. That is, 

any address mode may be used for any operand of any instruction (with certain 

obvious limitations; for example, it is not possible to use any of the "constant-

contained-in-instruction-stream" modes to specify an operand which is to be writ-

ten). The addressing modes are summarized below. 

Literal/Immediate 

The operand is a constant value which is specified in the instruction stream'. 

In the case of a literal, the constant is a small value which is encoded in 

the addressing mode spedification itself. Immediate values are kept in the 

memory locations following the instruction. (Immediate mode is actually 

a shorthand notation for autoincrement mode used with the PC.) Syntax: 

$ eons 7ani 

Register 

The operand is contained in register n. Syntax: Rn 

Register Deferred 

The address of the operand is contained in register n. Syntax: (Rn) 

* Note: The syntax for the various addressing modes usea is that of the standard VAX/UNIX 
assembler (see [25]) and not the ones used by the manufacturer as given in [14]. 
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Autodecrement 

The value of register n. is decremented by the size of the operand (1 for byte, 

2 for word, etc.) and the value is then used as the address of the operand. 

Syntax: -(Rn) 

Autoincrement 

The, operand's address is contained in register ii. After accessing the 

operand, the value of the register is incremented by the size of the operand. 

Syntax: (Rn)+ 

Autoincrement Deferred 

The same as autoincrement, except that the register contains the address of 

the address of the operand (two levels of indirection). Syntax: * (Rn) + 

Byte/Word/Longword Displacement 

The address of the operand is the value of the sum of the (byte, word 

or longword sized) displacement and the contents of register n. Syntax: 

X' di.9p (Rn) where X is 'B' for byte displacements, 'W' for word displacements 

or 'L' for longword displacements. 

Byte! Word/Longword Displacement Deferred 

The same as the regular displacement modes, except .that the value of the 

sum is the address of the address of the operand. Syntax: *X' disp (Rn) 

Absolute 

Address is the absolute address in memory of the operand. This is actually a 

shorthand notation for autoincrement deferred mode with the PC. Syntax: 

*$ address 
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Byte/Word/Longword Relative 

The instruction stream contains the offset of Address from the current PC 

value. This is a shorthand notation for the regular displacement modes used 

with the PC. Syntax: X disp 

Byte/Word/Longword Relative Deferred 

The same as the regular relative modes except that an additional level of 

indirection is imposed. This is a shorthand notation for the deferred dis-

placement modes with the PC. Syntax: *X' disp 

A.2.4 Machine Instructions 

Listed below are most the VAX instructions which may be found in the ex-

amples in this thesis. A complete list of VAX instructions can be found in [14]. 

Details on features unique to the VAX/UNIX assembler can be found in [25]. 

MOVE 

The move instruction transfers a the value one operand to another ope1and. 

There are several variants of the move instruction, one for each data type. 

The mnemonic for the move instruction mov with a single character suffix 

to specify operand type. Examples: movb x,y means "move a byte sized 

value from x to y and movw $1 , a means "move the constant value 1 to the 

variable a". 

PUSH LONG WORD 

The push long word operand moves the value of its single operand onto 

the stack. This instruction is typically used to move constant values and 
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the contents of simple variables onto the stack as a prelude to subroutine 

invocation. The mnemonic for this instruction is pushi. Examples: pushi 

$123 means place the value 123 onto the stack and pushi xyz means place 

the value of variable XJZ on the stack. Note: this operation may also be 

performed using a move instruction: mov]. rO , - (sp). 

ADD 

There are a number of variants of the add (perform two's complement addi-

tion) instruction. The two principle forms are add two operand and add 

three operand. The two operand instruction adds the value of its first 

operand to the value of its second operand, leaving the result in the second 

operand. The three operand variant leaves the result in its third operand. 

For both of these forms, there are variants for each type of operand. The 

mnemonic for the add instruction is add with an additional character in-

dicating type of operand and either a "2" or a "3" to indicate number of 

operands. Examples: addl2 a, rO means add the value of a to the value in 

register zero and leave the result there and addl3 $2 , x , y means add the 

constant value 2 to x with the result placed in y. 

SUBTRACT 

The subtract operation has the same set of variants as add instruction. The 

mnemonic for subtract is sub with the appropriate affixes. Examples: subl3 

s,t,u and subl2 (rO) , abc. 

INCREMENT 

This instruction simply adds the constant one to its single operand, leaving 
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the result there. It has the same variants with respect to type as the other 

arithmetic/logical instruction. The mnemonic is inc with the appropriate 

suffix for type. Example: incw r9. 

DECREMENT 

The same as the increment instruction, except the constant one is sub-

tracted. Mnemonic: dec with suffix. Example: decb -(r6). 

TEST 

The value of the single operand is compared to zero and the machine condi-

tion code set appropriately. No other action is performed. The instruction 

has variants for all data types. Mnemonic: tst with type suffix. Example: 

tstw r5. 

COMPARE 

The values of the two operands are compared to each other. The condition 

codes are set as appropriate with no other action taken. There are vari-

ants for each data type. Mnemonic: cznp with type suffix. Example: cmp 

$43,foo. 

JUMP IF NOT EQUAL 

This instruction causes a conditional branch (based on the current condition 

code settings) to the target address specified by the operand if the result of 

the last arithmetic operation or comparison was non-zero (not equal). Unlike 

the operands for most other instructions, the operand is always a program 

counter relative displacement. Mnemonic: jneq].. Example: jneql label. 
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JUMP IF EQUAL 

The same as the j neqi instruction except that the branch conditions are 

reversed. Mnemonic: j eqi. 

UNCONDITIONAL BRANCH 

This instruction always causes a transfer of control to the target address 

specified by its operand. The same restrictions with regard to operands 

exist with this instruction as with the other branch instructions. Mnemonic: 

jbr. 

Note: The branch instructions detailed above are actually pseudo instruc-

tions to the UNIX assembler. There are actually a number of variants of each 

instruction with differiiig branch displacement sizes. The assembler chooses 

the correct displacement size based upon distance to the target address. 

CALL PROCEDURE WITH STACK ARGUMENTS 

A standard VAX procedure call is initiated. This entails the construction 

of a new stack frame, the saving of registers and the set up of the argument 

pointer. The arguments for the subroutine are placed on the stack prior to 

execution of this insti'uction. Two operands are supplied. The first is the 

number of arguments which are to be transmitted. The second operand is 

the address of the target subroutine. Mnemonic: calls. Example: calls 

$2,subr. 

RETURN FROM PROCEDURE 

This instruction terminates a procedure call which was initiated by a calls 

instruction. The calling routines registers are automatically restored and 
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current stack frame is discarded. All elements of saved machine state are 

also restored. In addition, the space on the stack taken up by the procedure 

parameters is automatically recovered. This instruction takes no operands, 

all necessary information is retrieved from the stack frame. Mnemonic: ret. 


