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Abstract 

Finite ridgelet transform (FRIT) has emerged very recently as a prospective transform for 

the next generation image compression standards. It is particularly suitable for natural 

images with lots of edges, where it proves its superiority over the 2-D discrete wavelet 

transform (DWT) by preserving the edge modeling of the image. There is no VLSI 

architecture for FRIT in the literature so far due to its relatively new introduction. Thus, 

this thesis introduces two original architectures for the finite ridgelet transform. The 

proposed architectures are prototype of FRIT for 7x7 block size images. The proposed 

architectures are coded in Verilog HDL, simulated by ModelSim and synthesized by 

Xilinx ISE development tools. The performance analysis of the two proposed 

architectures shows significant improvement over a direct implementation of the FRIT 

algorithm for real time applications. 
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Chapter 1  
Introduction 

1.1 Introduction 

Over the last two decades, there has been an enormous increase in the storage and 

transmission of information. Digital video and still images are the most important 

medium for communicating visual information. Unfortunately, this requires large channel 

bandwidth for transmission and large storage space for archival. In addition, due to the 

large number of pixels in a high resolution image, manipulation of digital images is 

feasible only with low complexity algorithms. Because of this, reliable and fast 

compression techniques are desirable. Most of today's compression techniques are 

dependent on a mathematical process called transform. The major setback in using the 

transform is computational time. Even with the advent of the digital computer, the 

techniques to reduce computational time were generally unknown until 1965 when James 
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W. Cooley and John W. Tukey published their mathematical algorithm which has 

become known as the fast Fourier transform (FFT) [1][2]. This was a revolution in the 

field of digital signal processing (DSP). After that, over the years a wide range of 

orthogonal transforms have come into existence. Among them, the two most popular 

transforms used in the field of still image and video compression are the discrete cosine 

transform (DCT) [3] and the discrete wavelet transform (DWT) [4]. 

To meet the growing need for image compression and to ensure compatibility, the 

International Organization for Standardization (ISO) proposed the JPEG [5] and the 

MPEG [6] standards for image and video compression respectively almost a decade ago. 

These standards are based on discrete cosine transform (DCT) of small image blocks and 

are very effective in reducing the spatial redundancy in images. However, DCT coding 

has the drawbacks of blockiness and aliasing distortion in the reconstructed image at high 

compression ratios. Recently, JPEG2000 [7] has been proposed, which is the new 

generation standard of JPEG. This new standard is based on the discrete wavelet 

transform (DWT). DWT was first applied to image coding by Mallat [8][9]. The 

implementation of DWT is very similar to subband coding. However, subband coding 

emphasizes on improving the frequency selectivity of the filters whereas wavelet 

emphasizes the smoothness properties of the basis functions. Combining the advantages 

of multiresolution analysis and transform coding, wavelet offers a wide variety of useful 

features [10] and these are: 

• Computational complexity of 0(N); here N is the number of pixels. 

• Efficient VLSI implementation. 
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• Reconstructed images without blocking artifacts. 

• Lower aliasing distortion. 

• Inherent scalability. 

In this family of transform, a new member was introduced in 1999 by Candes and 

Donoho [11] of which a discrete version has been proposed very recently by Do and 

Vetterli [12] and is called the finite ridgelet transform (FRIT). FRIT preserves the edge 

modeling, which allows a better restoration mechanism for edges. In contrast to the 2-D 

DWT, which leads to a poor performance especially when the image has many edges, 

FRIT shows a significant visual enhancement. Surveying the literature, no VLSI 

implementation has been found so far for the finite ridgelet transform. In this thesis, we 

present two original VLSI architectures of the finite ridgelet transform for the first time. 

1.2 Video and Image Compression - Why? 

The term image compression refers to the process of reducing the amount of image data 

required to represent an image while maintaining an acceptable subjective quality. This is 

done in order to meet a certain bit rate requirement. Video as a sequence of video frames 

involves a huge amount of data. For an example, if we assume the video frame of 

common intermediate format (CIF) [13] resolution, which is 352 x 288 pixels, then to 

achieve real-time full motion video broadcasting we need a channel bandwidth of 352 x 

288 x 8 x 3 x 30 = 72,990,720 bits per second (bps). Here, "3" is the number of colors of 

RGB color space and "8" is the number of bits to represent each color for each pixel. If 

we compare this bandwidth requirement with the present public switched telephone 



4 

network (PSTN) modem, which can operate at a maximum bit rate of 56,600 bps, then 

the revealed fact is that we need to compress the video data by at least 1290 times in 

order to accomplish video transmission over this medium. 

1.2.1 Principles of Compression 

Video and image compression is not only possible but also feasible because of the 

following two redundancies present in images. By eliminating these redundancies, we 

can achieve video and image compression [13]. 

L Statistical redundancy - It is the correlation between neighboring pixels of an 

image frame (spatial redundancy) and between the pixels from successive frames in a 

temporal image or video sequence (temporal redundancy). 

ii. Psychovisual redundancy - It is the redundancy that originates from the 

characteristics of the human visual system (HVS). 

In the case of still image compression, which is the aim of this research, spatial 

redundancy is reduced as much as possible in order to achieve a low bit rate suitable for 

the intended application. But the human visual system can also be exploited to further 

increase the compression ratio. 

1.2.2 Compression Techniques 

Most of the image compression techniques are based on the concept of information 

theory first formulated by Shannon [14] and can be broadly classified into two groups: 

i. Lossless compression techniques - These are Huffinan coding, run-length 

coding and arithmetic coding, which preserve all the information present in an image, i.e., 
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the original image is exactly recoverable. There is considerable interest in lossless 

techniques, especially in applications which require very high fidelity reconstructed 

images such as medical imaging. 

ii. Lossy compression techniques - Predictive coding, transform, subband 

coding, vector quantization and fractal coding fall into this group, which provide a better 

coding performance compared to lossless techniques. Lossless techniques usually result 

in a low compression ratio (typically 2 to 3). Because of this, lossless compression 

techniques are not employed when a high compression ratio is required. In lossy 

compression techniques the objective is therefore to reduce the bit rate while maintaining 

some constraints on the image quality. 

One of the computational stages in this lossy compression technique is the 

transform. There are two possible methods of implementation of this transform and these 

are software and hardware implementation. But a software encoder may not meet the real 

time processing requirement especially when the mathematical transform is very 

complex. So hardware implementation is the only solution to enhance the performance. 

1.3 Research Objective 

The objective of the research behind this thesis is to present VLSI architectures for the 

finite ridgelet transform which has emerged as a prospective image compression 

technique for the next generation standards. 

The motivation behind this research is based on the performance of the finite 

ridgelet transforms that have proven to be superior over the discrete wavelet transform 

(DWT) in the case with images that have many edges. The FRIT is similar to the majority 
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of other mathematical transformations where the direct implementation suffers from high 

computational cost. Though its computational complexity is higher than the DCT or 

DWT and requires much larger resource allocation for implementation in FPGAs, the 

introduction of fast and low cost VLSI techniques may prove the feasibility of the FRIT 

in the near future. 

1.4 Thesis Outline 

This thesis is organized in six chapters and three appendices. In Chapter 2, a brief review 

of video and image compression is given. Chapter 3 presents the finite ridgelet transform 

(FRIT). The theory and motivation is covered in detail in this chapter. Then the proposed 

architecture for FRIT follows in Chapter 4. Two architectures for this transform have 

been presented in Chapter 4. Simulation and synthesis results are shown in Chapter 5 

where a performance analysis of the proposed designs, in terms of power, throughput, 

used components and real time analysis of the architectures is provided. A Comparison 

between the proposed architectures is also given in Chapter 5. Chapter 6 concludes the 

thesis by summarizing the accomplishments of the research and giving some 

recommendations for future work. 

The appendices include additional information that complements the work 

presented in the thesis body. Appendix A and Appendix B contain the MATLAB and 

Verilog HDL codes used in modeling, simulation and synthesis of the proposed FRIT 

architectures. Finally, the thesis ends with Appendix C, which contains the list of 

publications and seminars that have resulted during this M.Sc research work. 
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Chapter 2  
Brief Review of Image Compression 

2.1 Introduction 

Due to high degree of pixel correlation in the spatial domain, implementation of the 

lossless algorithms practically yields relatively low compression ratios. This correlation 

means that the energy is spread out over the entire image. If the energy of a pixel is 

directly related to its importance, then in the pixel domain there are many important 

coefficients making the selection for elimination extremely difficult. For this reason, 

most of the image compression literatures investigate transform based methods for 

compression. These systems use a reversible linear transform in combination with lossy 

techniques to achieve greater and more accurate compression than operating in the pixel 

domain. This improvement is due to the transform's ability to decorrelate the image data, 

thus packing the energy into a few significant coefficients. Karhunen L6 eve Transform 
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(KLT) [15] is considered the optimal transform for energy compaction, i.e., it places as 

much energy as possible in as few coefficients as possible. But it suffers from high 

computational cost. The KLT is a linear transform where the basis functions are taken 

from the statistics of the signal, and can thus be adaptive. The DCT is an approximation 

for the KLT with much less computation than the KLT. This is the reason why the DCT 

is so popular in video compression applications. 

Three major steps comprise a typical transform based compression algorithm. 

These are transformation, quantization and entropy coding [15][16][17], as shown in 

Figure 2.1. 

Image   
Samples 

Transformation 

Transform 
Coefficients 

Quantization 

Symbol   
Stream 

Entropy Coding 

Bit 
Stream 

Figure 2.1: Block diagram of transform based image compression technique. 

2.2 Transform 

A transform is a map, or function, from an N-dimension space to an M-dimension space 

[18]. It creates a new set of values according to the definition used. No compression or 

information loss occurs in this step, but rather in the stages that follow. In addition to 

decorrelating image data for image compression, transforms such as the DCT and DWT 

are also used in signal processing to display characteristics of the signal not visible in the 

original representation. This allows for easier techniques to analyze and represent the 

signal. 
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2.2.1 Discrete Cosine Transform (DCT) 

The DCT can be defined for any rectangular array of pixels, but in image compression 

the basic block is generally an 8x8 array or 64 pixels. The equation of the DCT, as used 

in JPEG and similar compression schemes, is given in equation 2.1. 

F(u,v) = f(x, y) COS ((2X + 1)u7rj 
x=oy=o 16 cos((2Y 16+ 1)v,r J (2.1) 

where, x and y are indices into an 8x8 array of samples, and u and v are indices into an 

8x8 array of DCT coefficients. Cuand C are defined by 

* for u=O 
Cu=  

1 otherwise 

r1 
forv_—O 

Li otherwise 

(2.2) 

So, a special case happens when both u and v are zero, which means that the top left DCT 

coefficient, according to equations 2.1 and 2.2, is 

F(O,O) = !  AX, y) (2.3) 
x=O Y=O 

So, the first DCT coefficient represents the DC value of all 64 samples. 

2.2.2 Wavelet Transform 

Wavelet means small wave and can be viewed as a burst of energy with a dominant 

frequency. Such a wavelet is shown in Figure 2.2. As with the Fourier transform, if this 

wavelet is multiplied with a signal and integrated, the result would give a nonzero 

coefficient. The multiplication by the wavelet picks out the detail from the signal. 
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Obviously, the result would depend on the placement of the wavelet on the original 

signal. 

Figure 2.2:,4 wavelet function, /1ab (t) 

So in the wavelet transform, the weighted moving average of the signal is calculated with 

the wavelet, i.e, the sequence of discrete values of the wavelet, flipped back to the front. 

This process is known as convolution and is depicted in Figure 2.3. 

 I W.2 W.1 W0 WI W2 

S3 S4 55 S6 57 S8 S9 S10 S11 S12 13 S14 S - 

Figure 2.3: Convolution operation offive sample wavelet (9 and signal samples (5). 

In Figure 2.3, the wavelet is shown operating on sample 57, and the output of the 

convolution is a new value 57' 

' 
S7 —W.S5 +W..1.S6 +W0.S., +W2.S9 (2.4) 

In this way, the convolution operation over the entire set of the signal samples results in a 

new set of values (Sj', 52', 53', )  This process is similar to the operation of a digital 

filter of which the classical representation is shown in Figure 2.4. Here, the samples of 

the input signal, S, pass through four delays, Z4, equal to the sample interval. The output 
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of this filter is 57' when sample 57 is at the center of the filter. The wavelet shape shown 

in Figure 2.2 is the impulse response of the filter shown in Figure 2.4. So, the convolution 

technique gives us a system's output when an input signal and the systems impulse 

response is given. 

Figure 2.4: Afive-tapfilterforfive-sample wavelet. 

2.2.2.1 Continuous Wavelet Transform (CWT) 

This idea of moving a wavelet over the image and picking out the detail shows how 

wavelets can give both frequency and location information. Now, let us take a look at the 

mathematical definition of the wavelet. 

A function u(t) is called a mother wavelet if it satisfies the following properties 

[4][19]: 

1. The function integrates to zero, or 

CO 
Jyi(t)dt =0 

2. The function is square integrable i.e. the function has finite energy 

Co 

1Ii'(t2dt <cc 

(2.5) 

(2.6) 
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3. The function satisfies the admissibility condition 

00 
C=f1'1  (2.7) 

The first property suggests a signal that oscillates and has a wavy appearance, 

hence the name "wavelet". The second property suggests that for the wavelet most of the 

energy should be contained in a finite duration, thus giving rise to the locality property. 

The third property ensures the existence of an inverse transform. u(w) is the Fourier 

transform of iu(t). When a mother wavelet 11(t) is found, the wavelet transform of a 

functionflt) is defined as 

F(a, b) Sf(t)v1a,b (t)dt 
—00 

Where the mother wavelet Wa,b (t), with respect to the variable a and b, is defined as 

"a,b (t) ii1' 
a h .L.) 

(2.8) 

(2.9) 

Here a and b denote the scale and translation parameter of the wavelet, respectively. The 

a' 12 term in equation 2.9 is the normalization term which ensures that the energy stays 

the same for all values of a and b. If a > 1, uab (t) stretches along the time axis and if 

o < a <1, Y'ab (t) contracts along the time axis. On the other hand, by changing the 

translation parameter, b, the location of the wavelet with respect to the signal can be 

changed. So by changing a, different frequency ranges can be covered and by changing b, 

the length of the signal for analysis can be covered. These translated and scaled versions 
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of the mother wavelet constitute the basis function and are referred to as daughter 

wavelets. 

2.2.2.2 Disërete Wavelet Transform (DWT) 

The wavelet transform defined in equation 2.8 is highly redundant since here the one 

variable function 'ab (t) is represented as a function of two variables, a and b. This 

redundancy can be removed by discretizing a and b, such that the dilation and translation 

parameters a and b take the form a = 21 and b= 2 k I  (k and 1 are non-negative integers), 

respectively. This method of sampling (a, b) coordinates is called dyadic sampling as the 

consecutive values of the discrete scale differ by a factor of two. The DWT of this type 

results in a non-redundant wavelet representation. 

In 1989, Mallat [9] utilized the fact that the basis functions are dilated and 

translated versions of the mother wavelet to show that the wavelet coefficients of any 

scale or resolution could be computed from the wavelet coefficients of the previous stage, 

which is known as the Mallat's tree algorithm. This is the basic foundation of the 

implementation of the DWT and can be expressed by the following two equations 

CJ+l,k = cj,,, .h[m - 2k] 
'it 

=1 cj,m .g[m - 2k] 
in 

(2.10) 

where Cp,q and dp,q are the low-pass or scaling coefficients and the high-pass or wavelet 

coefficients ofpth scale and qth location respectively. h[n] and g[n] are the low-pass and 

high-pass filter coefficients corresponding to the mother wavelet respectively. Figure 2.5 

shows a two level decomposition of signal f(t). The symbol 2 '1 stands for down-
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sampling by a factor of two for decimating the filter results (i.e., to remove 

redundancies). The signal produced from the low-pass filter is called the approximation 

signal and is a smoothed version of the original and the high-pass filter produces the 

detailed signal which contains the high frequencies or sharp edges of the input signal. 

At) 

Cj 

Figure 2.5: Two level signal decomposition. 

dj+J 

2.2.3 Finite Ridgelet Transform (FRIT) 

In 1999, the ridgelet transform [11] was introduced as a sparse expansion for functions on 

continuous spaces that are smooth away from discontinuities along lines. Inspired by the 

performance of this ridgelet transform, Do and Vetterli proposed an orthonormal version 

of the ridgelet transform for discrete and finite size images in 2003, which is known as 

the finite ridgelet transform (FRIT) [12]. The FRIT preserves edge modeling, which 

allows a better restoration mechanism for edges. In contrast to the 2-D DWT, which leads 

to a poor performance especially when the image has many edges, the FRIT shows a 

significant visual enhancement. The finite ridgelet transform (FRIT), which is the main 

topic of this thesis, is discussed in detail in Chapter 3. 
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2.3 Quantization 

If the transform step is effective then the energy of the signal is concentrated into the 

low-frequency coefficients while many of the remaining coefficients are small. The lossy 

compression step discards near-zero coefficients and rounds the remaining components to 

a smaller representative set of integers. Thus, the output of the quantization stage is a 

stream of small integers, many of which are zero, called the symbol stream. Techniques 

for accomplishing this task range from very simple to highly complex and include 

uniform quantization, scalar quantization and vector quantization [13]. 

2.4 Entropy Coding 

This final stage of compression is a lossless step, which removes redundancies and 

provides a final measure of compaction. Entropy coding considers how often each 

symbol occurs in the stream and replaces the stream with a more efficient alphabet based 

on these occurrences. Symbols that appear more frequently are represented with shorter 

code words than rare symbols. Two of the more commonly used entropy coding methods 

are Huffman coding [20] and arithmetic coding [21]. 

2.5 Performance Measures 

In order to measure the integrity of a compression algorithm, several performance 

measures are used. The first measure is the compression ratio, which measures the 

amount of compression obtained. It compares the original and compressed file size by 

using the following equation 
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CR Size of the original image  

Size of the compressed image 
(2.11) 

The bit rate offers an alternative measure for determining the amount of compression 

using the following equation 

bit rate = 
Compressed image size (bits)  

Number of pixels in original image 
(2.12) 

For example, an image of size 512x5 12x8 compressed to 16,384 bytes has a compression 

ratio of 16:1 or a bit rate of 0.5 bpp (i.e bits per pixel). 

The second measure, called the mean square error (MSE), represents the amount 

of error present in the reconstructed image. In other words, it measures how closely a 

reconstructed image resembles the original. The formula for MSE is 

MSE [f(i, j) - F(i, f)]2  
= 

N2 
(2.13) 

where f(i,f) is the original source image of size NxN and F(ij) is the reconstructed image. 

Finally, the peak signal to noise ratio (PSNR) is probably the most commonly 

used metric of image quality in the literature. Closely related to the MSE, it measures the 

quality of a reconstructed image compared with an original image. Reconstructed images 

with higher metrics are judged better, and two identical images would have an infinite 

PSNR. This measure is calculated by 

PSNR =2Ologio(RMSE 
255 ) (2.14) 

where RMSB is simply the square root of MSE. It is important to keep in mind that this 

measure has a limited relationship with the perceived errors noticed by the human visual 
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system. In fact, two images could have identical PSNR values but one may look better 

than the other. So, higher PSNR values do not always mean a perceptually better image. 

2.6 Summary 

The purpose of this chapter was to briefly review the image and video compression 

techniques. The technique that leads to a lossy compression has been discussed. Lossy 

compression is the only way of achieving high compression ratio for video broadcasting. 

The discussion has been limited to a transform based lossy compression technique. 

Finally, the different performance measures for measuring the integrity of a compression 

algorithm have been presented. 
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Chapter 3  
The Finite Ridgelet Transform 

3.1 Introduction 

In 1999, the ridgelet transform was introduced as a sparse expansion for functions on 

continuous spaces that are smooth away from line discontinuities [11]. Inspired by the 

performance of this ridgelet transform, Do and Vetterli in 2003, proposed an orthonormal 

version of the ridgelet transform for discrete and finite size images, which is known as 

the finite ridgelet transform (FRIT) [12]. Their construction uses the finite Radon 

transform (FRAT) [22] as a building block and it has been shown that FRIT outperforms 

wavelet transforms in approximating and denoising images with straight edges. 

The Radon transform [23] has long been used for many line detection applications 

within image processing, computer vision, and seismics. But it never drew much 
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attention of researchers in the field of image compression until the finite Radon transform 

was introduced for image representation. 

3.2 Ridgelet Transform 

The ridgelet transform was proposed to overcome this weakness of wavelet transforms in 

2-D. The wavelet transform has proved to be a good transform over the years mainly due 

to its strong performance for piecewise smooth functions in one dimension. However, in 

higher dimensions such as in 2-D, where singularities can be lines, or in 3-D, where 

singularities can be planes, the discrete wavelet transform does not provide good results. 

In essence, wavelets are good at catching zero dimensional or point singularities, but 2-D 

piecewise smooth signals of images may have one dimensional or line singularities; i.e, 

smooth regions are separated by edges and consequently, the DWT does not show good 

performance in reconstructing those edges. Figure 3.1 shows a reconstructed image using 

the DWT and the FRIT. From this figure, the smoothness along edges of the 

reconstructed image using the FRIT is apparent compared to the one using the DWT. 

(b) Using FRIT 

Figure 3.1: Reconstructed image using D WT and FRITfrom 256 most significant 

coefficients, out of 65536 coefficients [12]. 
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The ridgelet transform is basically a conjunction of two transforms - the Radon 

transform and the wavelet transform, as shown in Figure 3.2. The idea is to map the line 

singularities into point singularities using the Radon transform and then to apply the 

wavelet transform. Since the wavelet transform can effectively handle the point 

singularities, the overall transform thus gives better performance than using only the 

wavelet transform in 2-D. 

Input 
Image 

Radon  Wavelet 
Transform Transform 

Ridgelet Trasnform 

Figure 3.2: Block diagram of ridgelet transform 

3.2.1 Continuous Ridgelet Transform (CRT) 

FRIT 
Coefficients 

The continuous ridgelet transform [11] of a bivariate integrable functionf(x) is defined as 

CRTf (a, b, e) = JY'a,b,8 (x)f(x)dx (3.1) 

where the ridgelets, 1/'abO (x), in 2-D are defined from a wavelet type function in 1-D, 

as 

—1/2 (x1cosG+x2sin8—b 
Y1a,b,O (x) = a a (3.2) 

this function is constant along ridges x1 cos O+X2 sinO = const and wavelet transverses 

these ridges; hence the name "ridgelet". So, a ridgelet can be thought of concatenating 
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1-D wavelets along lines, which actually motivated the use of ridgelets in image 

processing since, in images, point singularities are often joined together along edges or 

contours. As a result, the ridgelet transform can be very efficient in catching such 

singularities. Figure 3.3 shows an example of a ridgelet function, which is oriented at an 

angle 8. 

00 
X2 

Figure 3.3: A ridgelet function, 'a,b,O (XI , x2) 

In 2-D, points and lines are related via the Radon transform, which is why 

equation 3.1 can be split into two, as shown in equations 3.3 and 3.4. Equation 3.3 is the 

Radon transform of the bivariate function, fix), and it produces slices (or projections) of 

Radon coefficients, Rf (8, t). The ridgelet transform is the application of a 1 -D wavelet 

transform to these slices, as shown in equation 3.4. 

R1(9,t)= Jf(x)8(xj COS  + x2 sin9 —t)dx (3.3) 
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CR7'1 (a, b, e) = JY'a,b (t)R1 (e, t)dt (3.4) 
1R2 

Here 'ab (t) is the mother wavelet and is the same as defined in equation 2.9, in Chapter 

2. For convenience, equation 2.9 is rewritten in the following as equation 3.5. 

—1/2 (t—b 
YJa,b(t) _1 '11L 

Here a and b denote the scale and translation parameters of the wavelet, respectively. 

(3.5) 

3.2.2 Finite Ridgelet Transform (FRIT) 

The finite ridgelet transform is the discrete ridgelet transform applied to finite length 

signals. The finite ridgelet transform can be computed by using the finite Radon 

transform (FRAT) on the input signal samples and then applying the 1-D discrete wavelet 

transform (DWT) to the FRAT slices produced in the first stage, as shown in Figure 3.4. 

3 

Spatial 
Domain 

FRAT 
Input Image 

FRAT ERIT 
Domain Domain 

k k 

IKai 
In 
I.. 
I.. 
I.. 

mr 

S.. 

1-D DWT 

Figure 3.4: Process flow diagram for computing FRIT 
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3.2.2.1 Finite Radon Transform (FRAT) 

The finite Radon transform [22][24] is defined as the summation of image pixels over a 

certain set of "lines". These "lines" are defined in a finite geometry, Z,2, where p is a 

prime number. The equation of the FRAT is given below 

rk[l] FRAT1(k,l) = p"2 f[i,j] (3.6) 
(i,j)ELk, 

A 

F'I 'MM 

(a) k = 0 

A 

(d) k = 3 

A 

(g) k=  6 

A 

(b) k=  1 

(e) k = 4 

OKI 

(h) k = 7 

* 

4t; 

Put 

(c) k = 2 

A 

p. 

(f) k =5 

Figure 3.5.• Lines for 7x7 FRLIT. One line per slope has been shown in shaded gray color. 

For each slope, there would be six more lines parallel to the line shown in the figure. 
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The prime dimension ensures that no two points of the 2-D array of pixels belong more 

than one line. This results unique projection patterns which makes the inverse transform 

simple and can be done by simple additive operations rather than more general algebraic 

transformation. 

For best energy compaction, the mean value from the image j[i,j] is subtracted 

before calculating the FRAT coefficients. Lk,l, in equation 3.6, denotes the set of "lines" 

on Z,,2 and is defined as follows: 

L f{(i,j):j_—ki+l(modp),iZ} for O≤k<p 
{(Q) :jEZ} fork=p 

(3.7) 

Figure 3.5 shows examples of such lines (in shaded gray) for 7x7 size blocks. One line 

has been shown in the figure for each slope, k. So, for each slope, we obtain 7 lines 

defined in this way by changing the value of 1 from 0 to 6 (i.e., 0 top-i). 

3.2.2.2 Optimal Ordering of FRAT Coefficients 

The set of lines for the FRAT, defined by equations 3.7, is not the best way to describe 

lines on a finite grid over zj. The best way would be to define these lines in terms of 

normal vectors as follows: 

Labt = {(i,j) G Z : qi+bj -t = 0 (mod p)} a,b,t Z, and (a,b)# (o,o) (3.8) 

Here (a, b) is the normal vector and t is the translation parameter. So, for a fixed normal 

vector, La,b,t is a set of p parallel lines since t E Z. So, for the same slope k, where 

k = —a/b, equation 3.7 and 3.8 define the same set of p parallel lines. Moreover, k = 0 

signifies the horizontal lines and k = p signifies the vertical lines and the set of lines with 
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normal vector (a, b) is equal to the set of lines with the normal vector (na, nb), for each 

n = 1, 2, 3, ..., (p-i). With this definition of lines the new FRAT equation can be written 

as 

ra,b[t] = FRA TV,. (a,b,t) = p 112 Ai, j] 
(i,j)ELb, 

(3.9) 

The usual FRAT expressed by equation 3.6 uses the set of (p+l) normal vectors Uk, where 

U  = 

f(—k,l) for k=0,l,2, p—i 

(i, 0) fork= p 
(3.10) 

For the new FRAT defined by equation 3.9, (p+l) normal vectors (ak,bk) are needed 

such that they cover all (p+l) directions as represented by Uk, and there are (p-i) possible 

choices for that. Do and Vetterli [12] showed that the best choice for the set of normal 

vectors can be defined as 

(a*,a k , bk) arg mm Il(c (ak), C,, ) 
(ak ,bk ){nuk:1≤n≤p-1 }t I 

S.:. Cp(b/)≥O 

(3.11) 

Here C, (x) denotes the centralized function of period p, defined as 

C,, (x) = x - p. round (x/p). So, (c,, (ak ), C,, (b,) represents the length of the normal 

vectors and the optimal choice among these vectors for each k is the one with smallest 

length. Figure 3.6 shows the usual set and the optimal set of normal vectors for  = 7. As 

can be seen from the figure, the optimal set provides uniform angular coverage. It also 

ensures least wrap around effect due to periodization which in turns ensures that the 

FRAT projections are smooth or low frequency dominated so that it can be presented 

well by the wavelet transform later. 
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-6 -5 -4 -3 -2 -1 0 I 

(a) Usual ordering 

-2 -1 0 

(b) Optimal ordering 

Figure 3.6: The set of normal vectors for p = 7. 

2 

Some points from this discussion which are worthy to note for calculating the FRAT are 

1. Total number of defined lines are (p2+p) 

2. Each of these lines contains p points. 

3. Any two distinct points belong to just one line. 

4. For a particular slope, there are p parallel lines that provide the complete coverage 

of the plane, Z,,2. 

From the first three points stated above, the computational complexity of FRAT can 

be calculated. The third point suggests that the summation of any two distinct pixels can 

be used only for calculating a single FRAT coefficient and can not be used for calculating 

any of the remaining FRAT coefficients. Thus, the number of additions required is 

(p2+p)(p-l) and the multiplication by a factor of p-112 for each FRAT coefficient gives us 

the computational complexity of the FRAT equal to O(p2 M + p3 A). Here, p is the prime 

dimension of a square image, "M" denotes multiplication and "A" denotes addition 

operation. This third order complexity of the direct approach poses a huge workload and 

restricts the FRAT from being a potential candidate for use in image compression 

systems. VLSI architectures neither for the finite Radon transform nor for the finite 



27 

ridgelet transform have been found after surveying the literature at the time of this 

writing. 

3.2.2.3 1-D Discrete Wavelet Transform (DWT) 

The 1-D discrete wavelet transform (DWT) is used, on each of the FRAT slices (rk[O], 

rk[ 1], ..., rk[p-l]) computed in the first stage for calculating the finite ridgelet transform. 

This is done after performing a periodic extension of the Radon slices to make them 

dyadic. The discrete wavelet transform is discussed in detail in Chapter 2. Here we shall 

discuss Daubechies D4 wavelet filter coefficients [25] [26]. Several wavelet filters, such 

as Haar, Symlets, Gaussian, Mexican hat etc., have been defined over the past few years 

for compression algorithms. In this research, Daubechies D4 wavelet filter coefficients 

have been used. It is simple and the most localized member among Daubechies wavelets 

and provides excellent performance in image compression applications. The subscript "4" 

represents the number of filter taps or the number of the filter coefficients. 

The properties of the scaling filter, h[n], can be used as criteria in the design of a 

wavelet system. Given a scaling filter that satisfies the desired properties, the scaling and 

wavelet functions can be calculated. A very important class of wavelet systems is that 

with compact support. This gives rise to simple finite impulse response (FIR) filters with 

convenient time-localization properties. The most fundamental property of these filters is 

that the length of the filter must be even. For a filter length of 4, the minimal 

requirements of the scaling filter can be summarized as follows [27]: 

1. Length of the filter, N =4 

2. h[O]+h[1]+h[2]+h[3]= 
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3. h2[O]+h2[l]+h2[2]+h2[3]l 

4. h[Ojh[2]+ h[ljh[3] 0 

The degree of freedom here is N/2 —1 = I, which means there is still one degree of 

freedom remaining after the minimal requirements have been satisfied. Letting a 

represent this degree of freedom parameter, we can formulate the scaling filter coefficient 

equations in the form: 

h[oI— l— cos a+ sin a ' 141]— l+cosa+sina 
2I 2,r 2-

h[2] l+ cos a— sin a 143] 1—cosa—sina  

- 2,12— ' - 2J 

(3.12) 

"a" in the above equations can be adjusted to give a wavelet system with the desired 

properties. The Daubechies wavelet with filter length 4 arises from a = iz'/3, which gives 

the four scaling filter coefficients as follows 

h[O] -  hFll_ 3+V h121—  h131—  313 — Li — ' 4 J2Li— ' Li — (• ) 

From these low pass (scaling) filter coefficients, the high pass (wavelet) filter coefficients 

can be computed using the following relation 

g[n]= (_1)lh[N_ n _1] (3.14) 

which gives us the following four high pass (wavelet) filter coefficients 

ri 3—'J - 3+-J r 1 i+ -J  
g[O] =  •,_ , g1j = - , g2j = •,_ , gj3j = (3.15) 
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Figure 3.7 shows the Daubechies D4 scaling, çp(t) and wavelet, 1r(t) functions. 

1.2 

0.8 

0.8 

0.4 

0.2 

0 

.02 

(a) Scaling function, p(t) (b) Wavelet function, t1(t) 

Figure 3.7: Daubechies D4 scaling and wavelet functions. 

3.3 Architectures for 1-D DWT 

This section presents recent 1-D DWT architectures introduced by various authors. The 

first one was proposed by Knowles [28] and is shown in Figure 3.8. It is a fully pipelined 

architecture but it is not particularly suitable for VLSI implementation as it requires large 

area, complex control and routing. The experimental results showed that implementing 

this circuit with 4 fixed coefficients and 3 octaves would require a NEC CMOS5 gate 

array with 1500 gates and it would be able to run at 6 MHz. Aware Inc. introduced a 

wavelet transform processor (WTP) [29], almost at the same time when Knowles 

proposed his architecture, which allows up to 6 coefficients and can operate at a speed of 

30 MHz. The user chooses the wavelet coefficients, either specifying the coefficient 

values or the pre-loaded 6 coefficient Daubechies transform. Later, two architectures, 

folded and digit serial for 1-D DWT, were proposed by Parhi and Nishitani [30], as 

shown in Figure 3.9. These architectures assumed a filter of 4 taps. So, a wavelet with 

more coefficients requires more registers which ultimately affects the area and latency in 
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the final design and also the use of carry ripple adders affects the speed of the overall 

design. Vishwanath et. al. [31] proposed a linear systolic array architecture. But their 

architecture computes N-point DWT in 2N cycles. This architecture suffers from a large 

delay (latency) and complex routing requirement. Recently, Chang et. al. [32] proposed 

an architecture claimed to be suitable for MPEG4 applications. Their architecture can 

compute N-point DWT in N/2 cycles, but contains a large number of multipliers which 

increases the cost of the implementation. Figure 3.10 shows this architecture. 

shift 1 Ct shiftm-1 ctm_i(i) 

ct10.....i - N +1) i - N +1) 

mux 

N filter 

G filter 

D 
E 
M 

demux 

0 

M 
U 
X 

_aCtm 

—C2 

—'-C; 

Figure 3.8: D WT architecture proposed by Knowles [28] 
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(a) Folded architecture (b) Digit serial architecture 

Figure 3.9: D WT architectures proposed by Parhi et. al. (3-level) [3 0] 
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go gz 

Figure 3.1O. D WT architecture proposed by Chang et. al. (3-level) [32] 

In this thesis, a distributed arithmetic (DA) based 1-D DWT architecture is used for 

computing the FRIT low pass and high pass coefficients. The main objective of the 

architecture was to keep it simple and fully multiplication free. The proposed architecture 

can compute one low pass and one high pass coefficient at every clock cycle, which 

inherently doubles its throughput. This means that the architecture can compute an N-

point DWT in N/2 clock cycles. 

3.4 Distributed Arithmetic 

Distributed arithmetic (DA) [33][34][35] has been used most often in the VLSI 

implementation of digital signal processing (DSP) architectures. It is an efficient method 

of computing vector inner products, which are required in many DSP systems. In most 

DSP algorithms the main computational block is a multiply / accumulate (MAC) 

structure [36], which is most often implemented using a standard multiplier and adder 

unit. The MAC unit can be implemented using DA, with the main advantage of pre-
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computing all the possible products and storing them in a ROM. But the major drawback 

of this approach is the exponential growth of the ROM size with the number of inputs 

[37]. A different approach using DA is to distribute the coefficients to the input, one such 

example is the NEDA [3 8] architecture for the computation of the discrete cosine 

transform (DCT). This architecture relies on finding redundant computations in the vector 

inner product. In this thesis, for the l-D DWT, we propose a DA based architecture 

where the DWT coefficient inner product is distributed over the input. The result is an 

efficient solution when the area of implementation is a concern for a given specification 

of input, output and coefficient word lengths. The architecture therefore is free of both 

multipliers and a ROM and is implemented using only adders. 

3.4.1 DA Principle 

Distributed arithmetic (DA) is an efficient strategy when one of the vectors is fixed. The 

one-dimensional inner product computation between two vectors x and c, where x is the 

input vector and c is the fixed coefficinet vector can be represented by 

Y = c.x = (4.1) 

Here c=[cO,cl ,c2 , ... ,ck_l} is the fixed coefficient vector and x=[xO,xl,x2,...,xk_l] is 

the input vector. If cj is represented in 2's complement form then 

ni—i 

C nij +c1,.2' O≤j≤k-1 (4.2) 
1=11 

Here m is the sign bit and n is the least significant bit. The output, y, can then be given by 
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k-i rn-i I k-i 

= Crn,j•Xj•2 ni + 

1=0 i=n (j=0 

(4.3) 

The above coefficient matrix is distributed, resulting in the following representation, 

which demonstrates the distribution of the bits of the coefficients over the input. 

y = [- 2" 2rn-1 2ni-2 

3.5 Summary 

2'I 

Crn,0 

Crn_i3O 

Crn_2,0 

Cl',0 

C nij C,,, Cfl,,k..i 

cm-1,2 Cfl,i,k..1 

C m-2,1 C M-2,2 C,,,..2,ki 

Cfl i C,,,2 Cfl,ki - Xk_i 

The theory of finite ridgelet transform has been presented in this chapter. The motivation 

behind the research has also been discussed. The recent architectures for the 1-D DWT 

which is one of the building blocks of the finite ridgelet transform have been shown in 

this chapter. Finally, the chapter ends with the discussion of distributed arithmetic; the 

technique that has been used in the proposed l-D DWT architecture. 
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Chapter 4 
The Proposed FRIT Architectures 

4.1 Introduction 

As discussed in Chapter 3, the FRIT is a two-stage computational algorithm. In the first 

stage, the finite Radon transform is performed on input samples. This operation results in 

1-D slices of Radon coefficients; in the second stage these l-D slices of Radon 

coefficients are processed by a l-D DWT that ultimately produces the FRIT low pass and 

high pass coefficients. So, the overall architecture for the FRIT can be presented in two 

distinct parts - the architecture for the finite Radon transform (FRAT) and the 

architecture for the discrete wavelet transform (DWT). In this thesis, these two distinct 

parts are first presented separately and then at the end of this chapter the overall look of 

the architecture is shown. 
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4.2 FRAT Architecture 

The simplified block diagram of the architecture for the finite Radon transform is shown 

in Figure 4.1. Three distinct blocks are apparent from the figure - Address Generator, 

Memory Block or MUX depending on whether the architecture is with memory or 

without memory, respectively, and finally the Accumulator. 

Input Matrix 

Address 
Generator 

Memory / 
MUX 

Accumulator 
Slices of 
FRAT Coefficients 

Figure 4.1: Simplified block diagram of the proposed FRAT architectures 

4.2.1 Algorithm 

In this research, we were interested in building a prototype for an 7x7 size block of an 

image. From Chapter 3, the optimal ordered normal vectors for p = 7, in increasing 

angular sequence, can be tabulated as shown in Table 4.1. 

Table 4.1: Normal vectors for 7x7FRAT 

k A b 
0 1 0 
4 2 1 
1 1 1 
2 1 2 
7 0 1 
5 -1 2 
6 -1 1 
3 -2 1 
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If we index the elements of a 7x7 image matrix as shown in Figure 4.2, the simple pseudo 

code of Figure 4.3 will give us the Radon coefficient slices of eight directions. 

0 7 1421 283542 

1 8 1522293643 

2 9 1623303744 

3 10 172431 3845 

4 111825323946 

5 12 19 26 3340 47 

6 1320 27 34 41 48 

Figure 4.2: A 7x7 image matrix f[iJ 

For (V projections) 

{ 
Initialize ip = 0 and R = 0; 
If (a <0) a = a (modp); i.e., mapping a to Z,,2. 
If (b <0) b = b (modp); i.e., mapping b to Z2. 

For (j=0top-l) 

{ 
t = b *j (modp); i.e., computing the starting index of the Radon slice R. 

For ( i = 0 to p-i) 
{ 

R[t] = R[t] + f[i + ip]; i.e., adding the pixels for Radon coefficients. 

t = (t + a)(modp); i.e., advancing t for indexing next coefficient. 

} 

ip = ip + p; i.e., advancing ip for indexing the start of next column of the 
image matrixf. 

} 
} 

Figure 4.3: Pseudo code for computing Radon coefficient of the image matrix shown in 

Figure 4.2 
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This pseudo code computes the Radon coefficients of the eight Radon slices, shown in 

Figure 4.4, which are tabulated in Table 4.2. 

(a) k = 0 

(d) k= 2 

(g)k=6 

(b) k = 4 

(e)k=7 

(h) k = 3 

(c) k= 1 

(f) k=  5 

Figure 4.4: Lines ofFRATfor 7x7 blocks ize image. Coefficient's orders are signified by 

increasing gray level for each direction. 
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Table 4.2: Radon coefficients of eight Radon slices; the pixels locations are given in 

(row, column) format for the 7x7 image block shown in Figure 4.5 

Radon 
Slices 
(a, b) 

Radon 
Coefficients 

Pixels of which values are added for each of the coefficients 

(1,0) C[1] (0,0) (0,1) (0,2) (0,3) (0,4) (0, 5) (0,6) 
C[2] (1,0) (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) 
C[3] (2,0) (2,1) (2,2) (2,3) (2,4) (2, 5) (2,6) 
C[4] (3,0) (3,1) (3,2) (3,3) (3,4) (3, 5) (3,6) 
C[5] (4,0) (4,1) (4,2) (4,3) (4,4) (4, 5) (4,6) 
C[6] (5, 0) (5, 1) (5, 2) (5, 3) (5,4) (5,5) (5,6) 
C[7] (6,0) (6,1) (6,2) (6,3) (6,4) (6, 5) (6,6) 

(2,1) C{1] (0,0) (3,1) (6,2) (2,3) (5,4) (1, 5) (4,6) 
C[2] (4,0) (0,1) (3,2) (6,3) (2,4) (5,5) (1, 6) 
C{3] (1,0) (4,1) (0,2) (3,3) (6,4) (2, 5) (5,6) 

C[4] (5, 0) (1, 1) (4,2) (0,3) (3,4) (6, 5) (2,6) 
C[5J (2, 0) (5, 1) (1,2) (4,3) (0,4) (3, 5) (6,6) 
C[6] (6,0) (2,1) (5, 2) (1,3) (4,4) (0,5) (3,6) 
C[7] (3,0) (6,1) (2,2) (5,3) (1,4) (4,5) (0,6) 

(1, 1) C[1] (0,0) (6, 1) (5, 2) (4,3) (3,4) (2, 5) (1,6) 
C[2] (1,0) (0,1) (6,2) (5, 3) (4,4) (3, 5) (2,6) 
C 3 (2,0) (1, 1) (0,2) (6,3) (5,4) (4,5) (3,6) 
C[4] (3,0) (2,1) (1,2) (0,3) (6,4) (5,5) (4,6) 
C[5] . (4, 0) (3,1) (2,2) (1,3) (0,4) (6, 5) (5,6) 
C[6] (5, 0) (4,1) (3,2) (2,3) (1,4) (0, 5) (6,6) 
C[7] (6,0) (5, 1) (4,2) (3,3) (2,4) (1, 5) (0,6) 

(1,2) C[1] (0,0) (5, 1) (3,2) (1,3) (6,4) (4, 5) (2,6) 
C[2] (1,0) (6,1) (4,2) (2,3) (0,4) (5,5) (3,6) 
C[3] (2,0) (0,1) (5, 2) (3,3) (1,4) (6, 5) (4,6) 
C[4] (3,0) (1, 1) (6,2) (4,3) (2,4) (0, 5) (5,6) 
C[5] (4, 0) (2,1) (0,2) (5, 3) (3,4) (1, 5) (6,6) 
C[6] (5, 0) (3,1) (1,2) (6,3) (4,4) (2, 5) (0,6) 
C[7] (6,0) (4,1) (2,2) (0,3) (5,4) (3, 5) (1,6) 

(0,1) C[1] (0,0) (1,0) (2,0) (3,0) (4,0) (5, 0) (6,0) 
C[2] (0,1) (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) 
C[3] (0,2) (1,2) (2,2) (3,2) (4,2) (5, 2) (6,2) 
C[4] (0,3) (1,3) (2,3) (3,3) (4,3) (5,3) (6,3) 
C[5] (0,4) (1,4) (2,4) (3,4) (4,4) (5,4) (6,4) 
C[6] (0, 5) (1, 5) (2, 5) (3, 5) (4,5) (5,5) (6,5) 
C[7J (0,6) (1,6) (2,6) (3,6) (4,6) (5,6) (6,6) 

Table continued on the next page 
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Radon 
Slices 
(a, b) 

Radon 
Coefficients 

Pixels of which values are added for each of the coefficients 

(-1,2) C[1] (0,0) (2,1) (4,2) (6,3) (1,4) (3, 5) (5,6) 
C[2] (6,0) (1, 1) (3,2) (5, 3) (0,4) (2, 5) (4,6) 
C[3] (5, 0) (0,1) (2,2) (4,3) (6,4) (1, 5) (3,6) 
C[4] (4,0) (6,1) (1,2) (3,3) (5,4) (0, 5) (2,6) 
C[5] (3,0) (5, 1) (0,2) (2,3) (4,4) (6, 5) (1,6) 
C[6] (2,0) (4,1) (6,2) (1,3) (3,4) (5,5) (0,6) 
C[7] (1,0) (3,1) (5, 2) (0,3) (2,4) (4, 5) (6,6) 

(-1, 1) C[1] (0,0) (1, 1) (2,2) (3,3) (4,4) (5,5) (6,6) 
C[2] (6,0) (0,1) (1,2) (2,3) (3,4) (4, 5) (5,6) 
C[3] (5, 0) (6,1) (0,2) (1,3) (2,4) (3, 5) (4,6) 
C[4] (4,0) (5, 1) (6,2) (0,3) (1,4) (2, 5) (3,6) 
C[5] (3,0) (4,1) (5, 2) (6,3) (0,4) (1, 5) (2,6) 
C[6] (2,0) (3,1) (4,2) (5, 3) (6,4) (0, 5) (1,6) 

C[7] (1,0) (2,1 (3,2) (4,3) (5,4) (6,5) (0,6) 
(-2,1) C[1] (0,0) (4,1) (1,2) (5, 3) (2,4) (6, 5) (3,6) 

C[2] (3,0) (0,1) (4,2) (1,3) (5,4) (2, 5) (6,6) 
C[3] (6,0) (3,1) (0,2) (4, 3) (1,4) (5,5) (2,6) 
C[4] (2,0) (6,1) (3,2) (0, 3) (4,4) (1, 5) (5,6) 
C[5J (5,0) (2,1) (6,2) (3,3) (0,4) (4, 5) (1,6) 
C[6] (1,0) (5, 1) (2,2) (6,3) (3,4) (0, 5) (4,6) 
C[7] (4,0) (1, 1) (5, 2) (2,3) (6,4) (3, 5) (0,6) 

(0,0) (0,1) (0,2) (0,3) (0,4) (0,5) (0,6) 

(1,0) (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) 

(2,0) (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) 

(3,0) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) 

(4,0) (4,1) (4,2) (4,3) (4,4) (4,5) (4,6) 

(5,0) (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) 

(6,0) (6,1) (6,2) (6,3) (6,4) (6,5) (6,6) 

Figure 4.5: 7x7 image block showing the address of the pixel locations in (row, column) 

format. 
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C[7] coefficients in Table 4.2 have to be calculated twice, once at the beginning and once 

at the end of each slice. This would make C[7] coefficients available for periodic 

extension in order to make the Radon slices dyadic. 

4.2.2 Proposed FRAT Architecture with Memory 

The proposed FRAT architecture with memory is shown in Figure 4.6. This is actually 

the detailed view of the block diagram shown in Figure 4.1. 

Address Logic Initializer 

Input [7.0] 

m r 

Aecumulatorl 

4  

AccunmIator2 

Memory Blocki 4  

MUX2 

 * Memory Block2 4 

MUX3 

V 

AVG[15:0] 

  Accumulator3 4  

FRAT [11:0] 

C 

0 

N 

T 

a 

0 

L 

L 

E 

B. 

Figure 4.6: Proposed FRAT architecture with memory 
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Address Logic Initializer, MUM and Accumulatorl constitute the Address Generator. If 

we denote m, c and r that satisfy the equations 4.1, 4.2 and 4.3 respectively, we can 

formulate the Table 4.3. 

= (C1[7]7 + m) (modp) (4.1) 

C:[j]k = (Cj[/Jk+i + r) (modp) (4.2) 

C1[f+1]i = (C1[/]7 + c) (modp) (4.3) 

In the above three equations, Cf[j]k denotes the kth pixel for the jth coefficient of slice i. 

Table 4.3: Values of m, r and cfor the Radon slices 

m r c 
6 0 1 
4 3 0 
6 6 0 
6 5 6 
6 1 1 
2 2 1 
2 1 0 
4 4 0 

From the architecture we see that the Address Logic Initializer outputs m, r and c values 

according to the look up table (Table 4.3) for each FRAT slices. MUX1, controlled by the 

controller, outputs one of these values at every clock cycle and Accumulatorl 

accumulates the output value of MUX1. This gives the row address of the pixels. The 

column address is generated by a counter included in the controller. Accumulatorl is a 

3-bit l's complement accumulator which actually performs the mod 7 operation for 

generating the correct row address of each successive pixel of each successive 

coefficient. Accumulator2 and MUX2 give the mean of the image. This mean value is 
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subtracted from the image for best energy compaction. Actually, the output of MUX2 is 

seven times the mean value, so it is subtracted once after adding the seven pixels for each 

FRAT coefficient. The two Memory Blocks are of size 70, and for transforming images 

these two memory blocks are first loaded with successive image blocks of size 70. Two 

memory blocks have been used to keep the pipeline always full (a double buffered 

architecture). Computation of the Radon coefficients is immediately started when 

Memory Block 1 is loaded with the first image block. While the computation of 

coefficients for Memory Blocki is carried out, Memory Block2 is loaded with the second 

image block. IvIIJX2 is used to select one of the registered mean values of Accumulator2, 

because the loading of Memory Block2 and computation of the mean value for this block 

will be finished before the end of the computation of coefficients for Memory Blocki. In 

this way, both the average and the image are available for the immediate start of 

computation for the second Memory Block at the end of the first one. Both registers and 

dual port block RAMs have been used as Memory Blocks in the simulation and synthesis 

of the architecture and the results are given in Chapter 5. 

4.2.3 Proposed Memoryless FRAT Architecture 

The proposed memoryless architecture for FRAT is shown in Figure 4.7. This is actually 

a parallel input architecture. The AGs are the Address Generator blocks for the seven 

pixels of each of the FRAT coefficients. Here the Address Logic Initializer outputs two 

values for each of the seven AGs. These two values are m and c, where m is the row 

address of the first pixel of the first coefficient i.e., C[7] and c is the value that satisfies 

the equation 4.4. 
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= (CI[j]k+ c) (modp) (4.4) 

Here CI[j]k denotes the kth pixel for thejth coefficient of slice i. This gives us Table 4.4. 

ilpoo[70] 
ilp0l[7:0] 
1p02[7:0] 
VpO3[7:O] 
ifpO4[7:O] 
11p05[7.0] 
iJpO6[7.O] 
ilplO[7.0] 

i1p66[7.0] 

CONTROLLER 

Address Bus (Column) 
V 

Address Logic Initializer 

V 

AGI 

11111111 
AG2 AG3 AG4 AG5 

LLlL 
AG6 AG7 

Address Bus (Row) 

 P. 

 0. 

 J. 

M 

U 

x 

- IN 
A 
D 
D 
E 
R 

Figure 4.7: Proposed memoryless FRAT architecture 

01 AVG[I5:0] 

 FRAT [11:0] 

Table 4.4: Values of ml, m2, m3, m4, m5, m6, m7 and cfor the Radon slices 

ml m2 m3 m4 m5 m6 m7 c (for every AG) 
6 6 6 6 6 6 6 1 
3 6 2 5 1 4 0 4 
6 5 4 3 2 1 0 1 
6 4 2 0 5 3 1 1 
0 1 2 3 4 5 6 0 
1 3 5 0 2 4 6 6 
1 2 3 4 5 6 0 6 
4 1 5 2 6 3 0 3 
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The AGs are 3-bit I's complement accumulators. So, the mod 7 operation is performed 

internally. The controller provides the column addresses which are fixed for each of the 

seven AGs except for the case of vertical lines. This special case is also handled by the 

controller. The (row, column) addresses are then used to select the inputs of the IvIUX. 

The seven pairs of (row, column) addresses select seven inputs for computing each of the 

Radon coefficients. These seven outputs of the MUX are then added by an adder 

compressor array and stored internally in a queue of seven registers. So, when all seven 

coefficients of the first slice are available, the Adder sequentially outputs the Radon 

coefficients and AVG of the image matrix. Again, this AVG is seven times the mean of 

the input image matrix. 

4.3 Proposed DWT Architecture 

The proposed DWT architecture is shown in Figure 4.8. The architecture is based on a 

Daubechies D4 wavelet filter bank. 

Input [11:0] Delay Line  01 
Adder Butterfy 

Network 

Adder Compressor 
Array 

(Low Pass and 
High Pass) 

-* L[15:0] 

-' H[15:0] 

Figure 4.8: Proposed DWT architecture 

The forward transform uses two analysis filters h (low pass) and g (high pass) with filter 

coefficients as given in equations 4.5 and 4.6. These are actually the floating point 

representations of up to six decimal places of equations 3.13 and 3.15. These irrational 
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numbers forced us to choose a precision for the purpose of implementation. Hence we 

have chosen to represent the coefficients with an accuracy of 13 bits. The assumption is 

reasonable since 13 bits representation gives high enough accuracy for the fixed-point 

implementation. 

h[01 = 0.482963, h[l] = 0.836516, h[2] 0.224144, h[3] = -0.129409 (4.5) 

g[0] —0.129409, g[l] = -0.224144, g[2] = 0.836516, g[3] = -0.482963 (4.6) 

One operation that we did not include in the FRAT architectures of the previous section 

is the multiplication of the FRAT coefficients by the normalization factor, p"2 as 

shown in equation 3.6. This operation can be equivalently performed by using the pre-

divided filter coefficients shown in equation 4.7 and 4.8 in the DWT architecture. 

h[O] = 0.182543, h[1]= 0.316173, h[2]=0.084718, h[3]= -0.048912 (4.7) 

g[O] = -0.048912, g[l] = -0.084718, g[2] = 0.316173, g[3] = -0.182543 (4.8) 

The above coefficient matrices can be distributed into 13 bits (coefficient word length) as 

shown in Figure 4.9. "."in the matrices represents the binary point. 

For the computation of the DWT, the serial input data is passed through a delay 

line, as shown in Figure 4.10, which provides parallel data to the computational block-

Adder Butterfly Network, shown in Figure 4.11. The two MUXs used in Figure 4.10 

solve the dyadic problem of the FRAT slices. The adder butterfly network is found by 

finding the computational redundancy in the coefficient matrices (Figure 4.9) by 

considering the computation of both the low and high pass coefficients. Table 4.5 shows 

the adder butterfly network outputs. In total, there are fourteen partial products for low 

pass and high pass coefficients. These products are then passed through two identical 
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parallel arrays of adders (Figure 4.12) called the Adder Compressor Array. This finally 

gives the DWT coefficients, which are in fact the FRIT low pass and high pass 

coefficients of the combined (FRAT plus DWT) architecture. Table 4.6 shows how the 

outputs of the adder butterfly network are connected to various inputs of the adder 

compressor array. 
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Figure 4.9: Low pass and high pass filter coefficients matrices. 
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Figure 4.11: Adder butterfly network 

Table 4.5: Operation performed by the adder butterfly network 

Outputs Expression 
wol xo 

w02 xo+xI 

w03 xo+x1+x2 

w04 x2 

w05 xo+xI+x3 

w06 xo+x2 

w07 x0+x2+x3 

wos xo+x3 

w09 x0+x1+x2+x3 

Wi0 X1+X3 
Wi1 xl 

Wi2. x1+x2+x3 

Wi3 x2+x3 

Wi4 x3 
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LJH01 

UH02 

VH03 

L1H04 

VH05 

LJH06 

U}T07 

L1H08 

JJH09 

UH10 

L1H11 

L1H12 

JJH13 

IJH14 

LJH 

Figure 4.12: Parallel adders of adder compressor array 

Table 4.6: Assignments of inputs of the adder compressor array 

Inputs For low pass For high pass 
'1' '1' 

L/H02 W 14 W05 
L1H03 W 14 W 05 
L1H04 W 10 V'709 
L/H05 W08 Wo2 
L/.H06 Vu 2 W07 
L/H07 \V01 'Wi1 
T ITT 
JI1O8 VV1T O6 U 

L/H09 W 08 
L/H10 W 13 Iwo8 
L/lT11 VT03 V.104 
L/H12 W 10 Wo9 
L/H13 \\T09 VT06 
L/H14 Wo9 V.106 
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4.4 The FRIT Prototype 

This section shows the proposed FRIT architecture by combining the proposed 

architectures for FRAT and DWT of the previous two sections. Figures 4.13 and 4.14 

show the proposed FRIT architectures with memory and without memory, respectively. 

The proposed architectures are coded in Verilog HDL [39]. For simulation of the Verilog 

codes (Appendix B), the ModelSim HDL simulator [40] is used. In order to generate the 

image bit-stream for the hardware and to reconstruct the image from the output FRIT 

coefficient bit-stream of the hardware, MATLAB programs are written (Appendix A). 
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Figure 4.13: Proposed FRIT architecture with memory 
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Chapter 5  
Performance Analysis 

5.1 Introduction 

This chapter presents the simulation and synthesis results of the two proposed FRIT 

architectures discussed in the previous chapter. By doing only waveform simulation it is 

very difficult to judge whether or not the designed system meets the standard 

requirements. So a system simulation method has to be performed in order to confirm 

that the system meets the requirements. To do so, a system simulation test bench has been 

developed which provides an efficient way to process data and display the processed data 

dynamically during the simulation process. Several standard test bench images have been 

used. The performance measure that has been used is the peak signal to noise ratio 

(PSNR) discussed earlier in this thesis. 
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5.2 Simulation Results 

The proposed architectures are coded using Verilog HDL. The Verilog codes are then 

compiled and simulated by ModelSim software. In order to interface the image with the 

hardware, MATLAB programs are written. CIF and QCIF image types are used for 

simulation. First the image is read by a MATLAB program that generates a binary input 

file. This file is used for simulation of the hardware by ModelSim, which generates two 

binary output files. One contains the low pass FRIT coefficients and the other contains 

the high pass FRIT coefficients. Then another MATLAB program is used for the inverse 

transform. Here, the number of retained coefficients can be specified. This overall 

process results in a reconstructed image of the original input, which is then used for 

performance measures; i.e., PSNR calculation. 

5.2.1 FRIT Architecture with Memory 

Figure 5.1 and Table 5.1 give the I/O interface description of the Verilog model. Figure 

5.2 shows a snapshot of the simulation waveforms. The core latency is 76 cycles, hence 

the first pair of low and high pass output is available after 76 cycles and thereafter, the 

core outputs a pair of coefficients every 14 cycles. 

Input [7:0] 

Clock 

Reset 

FRIT module with 
Memory 

 L[15:0] 

 H[15:0] 

 AVG [15:0] 

 OP—ready 

 C_ready 

Figure 5.1. I/O ports of the FRIT module with memory 
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Table 5. 1: I/O signal description of the FRIT module with memory 

Signal I/O Description 
Input [7:0] Input 8-bit wide pixel data-in of a 7x7 block 
Clock Input Core clock signal 
Reset Input Core reset signal, active low 
L [15:0] Output 16 bit (11 bit digit and 5 bit decimal places) low pass 

FRIT coefficient output 
H [15:0] Output 16 bit (11 bit digit and 5 bit decimal places) high pass 

FRIT coefficient output 
AVG [15:0] Output 16 bit (11 bit digit and 5 bit decimal places) average 

value output of the input image matrix 
OP—ready Output Active high indicate the availability of each new FRIT 

coefficients at the output 
C_ready Output Active high indicate core is ready to take input. Goes 

low as the memory is filled with the next image block. 
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3000 4u 

Figure 5.2. Snapshot ofModelSim simulation of the FRIT architecture with memory 

After start/reset, "C—ready" goes low when both of the memory blocks are loaded with 

successive blocks of image data. Thereafter it goes high when the core computes all the 

FRIT coefficients of one of the embedded memory blocks. This allows the memory block 

to be loaded with the next image block, while the core computes the FRIT coefficients of 

the other image block. 
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5.2.2 Memoryless FRIT Architecture 

Figure 5.3 and Table 5.2 give the port description of the written code for the memoryless 

FRIT architecture. 

i/poo [7:0] 
i/pOl [7:0] 
i/pO2 [7:0] 

i/p66 [7:0] 

Clock 
Reset 

L[15:0] 

H[15:0] 

AVG [15:0] 

OP—ready 

C_ready 

Figure 5.3: I/O ports of the memoryless FRIT module 

Table 5.2:1/0 signal description of the memoryless FRIT module 

Signal I/O Description 
i/poo [7:0] to i/p66 [7:0] Inputs 49 8-bit wide pixel data-in of a 7x7 block 
Clock Input Core clock signal 
Reset Input Core reset signal, active low 
L [15:0] Output 16 bit (11 bit digit and 5 bit decimal places) 

low pass FRIT coefficient output 
H [15:0] Output 16 bit (11 bit digit and 5 bit decimal places) 

high pass FRIT coefficient output 
AVG [15:0] Output 16 bit (11 bit digit and 5 bit decimal places) 

average value output of the input image 
matrix 

OP—ready Output Active high indicate the availability of each 
new FRIT coefficients at the output 

C ready Output Active high indicate core is ready to take 
input. Stays low as long as the core computes 
the FRIT coefficients of the input image block 

Figure 5.4 shows a snapshot of the simulation waveforms. The core latency is 10 cycles, 

hence the first pair of low and high pass outputs is available after 10 cycles and thereafter 

the core outputs a pair of coefficients every 2 cycles. 
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Figure 5.4: Snapshot of ModelSim simulation of the memo,yless architecture 

"C—ready" stays low while the core computes the FRIT coefficients of an image block. 

After that "C—ready" goes high to indicate the core is ready to process the next image 

block. 

Since the VO and internal signal precision in the proposed two architectures are 

kept equal, the simulation results of the two architectures produced identical 

reconstructed images; i.e., equal PNSR for the same compression ratios. Figure 5.5 shows 

the reconstructed "Lena" image of resolution 352x288 (CIF resolution), for five different 

compression ratios. Table 5.3 shows the PSNR values of the reconstructed "Lena" images 

achieved with the precision that has been used in the architectures for various 

compression ratios and Figure 5.6 shows this graphically. 
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(a) Original image 

(c) Compression ratio - 4:1 

(b) Compression ratio - 2:1 

(d) Compression ratio - 8:1 

(e) Compression ratio - 16:1 (f) Compression ratio - 32:1 

Figure 5.5: Original and reconstructed "Lena" images of different compression 

Table 5.3: Comparison of PSNR of "Lena" image for different compression ratios 

Compression ratio PSNR (dB) 
2:1 39.38 
4:1 33.08 
8:1 29.54 
16:1 26.94 
32:1 25:15 
64:1 23.95 
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Figure 5.6: Plot ofpercentage of retained coefficients vs. PSNR 

Table 5.4 shows another analysis of the proposed architectures. This table illustrates that 

the two proposed architectures conform to the real time processing requirement. 

Table 5.4: Comparison of time required for transforming CIF and QCIF images with a 

core speed of 50MHz 

Architecture Latency (ns) Image 1 frame (ms) 30 frames (ms) 
With Memory 1,520 QCIF 4.8 144 

OF 19.2 576 
Memoryless 200 QCIF 0.7 21 

CIF 2.74 83 
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5.3 Synthesis Results 

The proposed architectures have been synthesized using Xilinx ISE development tools 

[41]. The synthesis target device is the xc2v3 000 of the Virtex-II device family. For 

power estimation, the Xilinx foundation series utility "XPower" has been used. The 

calculated power dissipation shown in Table 5.5, is for a 1.5 volt supply voltage with a 

clock frequency of 50 MHz and a capacitive load of 10 pF, assuming an ambient 

temperature of 25° C. 

Table 5.5: Synthesis results of the proposed architectures 

Architecture # of Slices # of 4-input 
LUTs 

Gate Count Speed 
(MHz) 

Power 
(mW) 

With 
Memory 

826 1,187 17,629 84.33 140.05 

Memoryless 1,115 2,098 21,485 66.35 290.06 

Table 5.6 gives a comparison in terms of components used in the architectures. The table 

shows that the two proposed architectures are free of multipliers and implemented using 

only adders. This is the most attractive feature of the proposed architectures. Various bit 

length adders have been used throughout the architecture to meet the accuracy 

requirement. 

Table 5.6: Comparison of number of components used in the architectures 

Architecture # of BRAMs # of Adders # of REG. 
(FFs) 

With 
Memory 

2 
(Eqv. 131,078 GC) 

47 
(Eqv. 1008, 1-bit cells) 

672 

Memoryless - 69 
(Eqv. 1090, 1-bit cells) 

339 
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The proposed with memory and memoryless FRIT architectures require only 47 and 69 

adders, respectively. This is equivalent to using 1008 and 1090 1-bit adder cells. Figure 

5.7 and 5.8 show the Xilinx Engineering Capture System (ECS) view of the synthesized 

architectures. 

Figure 5.7: Xilinx ECS view of the proposed FRIT architecture with memory 

Figure 5.8: Xilinx ECS view of the proposed memoryless FRIT architecture 
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The most significant difference between the two proposed architectures is that 

they access the input matrix in two different ways. The first architecture (with memory) 

is a serial input architecture, while the second one (memoryless) is a parallel input 

architecture. This imposes a constraint on the inputs of the second architecture; the inputs 

(entire image block) should be available before the start of the computation and should 

not be changed until the computation of coefficients for the entire block is over. From 

this point of view the first architecture (with memory) is a more practical implementation. 

The architecture with memory uses two 49x8 dual port block RAMs while the other one 

uses a large MUX for inputs. Although there is not that much of a difference in speed, 

gate count and the number of adders used in the two proposed architectures, there is a 

substantial difference in the power consumption. This is because of the difference in the 

throughput of the two architectures at the same operating frequency. The second 

architecture's throughput is seven times that of the first one. So in order to compare the 

power dissipation, the second architecture was again simulated, while maintaining the 

same throughput as the first architecture, and the power dissipation was found to be 41.25 

mW. This is almost 3.5 times less consumption than the first architecture, which 

consumes 140.05 mW for the same throughput. 36 adders have been used for computing 

the 1 -D DWT coefficients and the rest (11 for the first and 33 for the second architecture) 

have been used for computing the FRAT coefficients and addressing pixels in both of the 

proposed two architectures. Direct implementation of the FRIT requires 7 adders plus 1 

multiplier for computing the FRAT coefficients and 8 multipliers plus 6 adders for 

computing the 1-D DWT coefficients. This means that for 13 bit precision, the 
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improvement of the proposed two architectures over a direct implementation is 61.15% 

and 42.97%, respectively. From a quality point of view, the reconstructed images from 

the two proposed architectures are identical because same level of precision has been 

used in designing the architectures. 
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Chapter 6  
Conclusions and Future Work 

6.1 Summary of Accomplishments 

In this thesis, two original VLSI architectures for the finite ridgelet transform (FRIT) 

have been proposed. This is original in the sense that these two are the first ever proposed 

VLSI architectures for this transform based on a comprehensive literature survey. 

Moreover, within the proposed two FRIT architectures, two original architectures for the 

finite Radon transform (FRAT) and a state-of-the-art architecture for the l-D discrete 

wavelet transform (DWT) are also proposed. Although the Radon transform has long 

been used in many edge detection applications, the finite Radon transform which was 

developed for representing images did not receive sufficient attention. This most likely 

explains why no VLSI architectures have been found in the literature for this transform. 

The first part of the two proposed FRIT architectures therefore present two new VLSI 
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architectures for the finite Radon transform. The DWT part of both architectures is also 

novel and is based on the NEDA architecture for computation of DCT coefficients. The 

simulation and synthesis results of the two proposed architectures conform to the real 

time processing requirements for QCIF as well as OF image sequences. 

6.2 Recommendations for Future Work 

In order to reduce complexity, the CIF/QCIF images have been partitioned into 7x7 size 

image blocks for processing by the architectures. This has introduced block artifacts into 

the reconstructed images, similar to those introduced by the DCT, which are noticeable 

with a high compression ratio. One of the recommendations for future work is therefore 

to explore the feasibility of adaptive blocking which would allow a tradeoff between the 

complexity and the quality of the reconstructed images. This scheme would adaptively 

partition the image into various sizes of suitable blocks where edges look straight. A 

filtering approach may also be exploited for smoothing the artifacts. 

The application of the FRIT results better reconstructed images over the DWT 

only in the case of images with many lines. This suggests that a hybrid type transform 

should be studied which would adaptively choose between the DWT and the FRIT 

depending on the image contents. 

In this thesis, an architectural solution for the FRIT algorithm has been presented, 

which has been demonstrated for a 1-level forward transform. For more levels, the same 

proposed 1-D DWT framework can be used with the proposed FRAT architectures. This 

solution may be further explored, optimizing parameters of the architectures such as area, 

power, accuracy, etc. 
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Finally, an inverse transform architecture for the finite ridgelet transform is yet to 

be proposed. A low complexity solution suitable for integration with the proposed 

forward transform architectures would make them useful for the next generation 

standards of image compression. 
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Appendix A 
MATLAB Codes 

A.1 Introduction 

This section of appendix contains the MATLAB files that have been used for interfacing 

between image data and hardware designed in Verilog HDL. 

A.2 MATLAB Codes 

There are 3 MATLAB .m files - "IMGinput.m", "IMGoutput.m" and "PSNR.m". 

A.2.1 "IMGinput.m" 

This program reads CIF/QCIF images and generates binary input file name 'ipframe.txt'. 

* 

01 Reads CIF/QCIF images and generates binary input file name 
tjpframetxt 
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File Name: IMGinput.m 
Design Type: MPTLAB .m file 

Input: 
image : Input CIF/QCIF image 

Output: 
x : Input CIF/QCIF image matrix 

This utility program is originally developed by Choudhury Ashiq 
Rabman 

{rahmanc@enel.ucalgary.ca} as a part of M.Sc research work. 

* 

function x = IMGinput (image) 

Read image and save in in x 

[x] = imread(image); 

if (size (x) 
BLOCKS 

end 
if (size (x) 

BLOCKS 
end 

== [288, 352]) 
= 2142; for CIF 

== [144, 176]) 
= 546; 9.for QCIF 

Create binary input stream file 
fid = fopen('ipframe.txt','w'); 

B= im2col(x, [7 7], Idistinctt). 

for ± = 1:BLOCKS 

y = B(:,i); 
y1 = [y(1:7) y(8:14) y(15:21) y(22:28) y(29:35) y(36:42) 
yl = y1'; 
yl = 

for j 
ytemp 
ybO = 

ybl = 

yb2 = 

yb3 = 

yb4 = 

yb5 = 

yb6 = 

yb7 

= 1:49 
= double(yl); 
mod (ytemp(j) ,2); 
mod(ytemp(j) ,2); 
mod (ytemp(j) ,2); 
mod (ytemp(j) ,2); 
mod (ytemp(j) ,2); 
mod (ytemp(j) ,2); 
mod(ytemp(j) ,2); 
mod(ytemp(j) ,2); 

ytemp(j) = fix(ytemp(j)/2); 
ytemp(j) = fix(ytemp(j)/2); 
ytemp(j) = fix(ytemp(j)/2); 
ytemp(j) = fix(ytemp(j)/2); 
ytemp(j) = fix(ytemp(j)/2); 
ytemp(j) = fix(ytemp(j)/2); 
ytemp(j) = fix(ytemp(j)/2); 

%Write image to the binary input file 

y(43:49)] 
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fprintf(fid, ', yb7, yb6, yb5, yb4, yb3, yb2, 
ybi, ybO); 

end 

fprintf(fid, '\n'); 

end 

fclose(fid); 

A.2.2 "IMGoutput.m" 

This program reconstructs images with the specified number of most significant 

coefficients from the two binary input files 'frit_LP .txt' and 'frit_HP.txt'. 'fritLP.txt' 

contains the low pass FRIT coefficients and the average value of the input image and 

'frit_HP.txt' contains the high pass FRIT coefficients. It uses the function 'ifrit', originally 

developed by Minh N. Do for inverse FRIT transform. This function is available in the 

frit toolbox that can be downloaded from the following link 

http://www.ifp.uiuc.eduJ-minhdo/software/ 

* 

% Reconstructs images with the specified number of most significant 

% coefficients from the two binary input files 'frit_LP.txt' and 
'frit_HP.txt'. tfrit_LP.txtt contains the low pass FRIT coefficients 
and the average value of the input image and 'frit_HP.txt' contains 
the high pass FRIT coefficients. It uses the function 'ifrit', 
originally developed by Mirth N. Do for inverse FRIT transform. This 
function is available in the frit toolbox that can be downloaded from 

% the following link 
% http://www.ifp.uiuc . edu/-minhdo/software/ 

File Name: IMGoutput.m 
6 Design Type: MATIJAB .m file 

Input: 
nofCOFF Number of most significant coefficients to use for 

inverse transform 

% Output: 
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X : Reconstructed image matrix 

01 This utility program is originally developed by Choudhury Ashiq 

Rabman 

{rabmanc©enel.ucalgary.ca} as a part of M.Sc research work. 

* 

function X = IMGoutput (nofCOFF) 

dwtmode(' per '); 

Reading output binary stream file 

[LPDi1O, LPDi9, LPDi8, LPDi7, LPDi6, LPD±5, LP]Ji4, LPDi3, LPDi2, LPDil, LPDiO, LPD 
el, LPDe2,LPDe3, LPDe4, LPDe5, AVGDi10, AVGDi9, AVGDi8, AVGDi7, AVGD16, 

AVGDi5, AVGDi4, AVGDi3, AVGDi2, AVGDil, AVGDIO, 

AVGDel,AVGDe2 ,AVGDe3 ,AVGDe4 ,AVGDe51 = textread( 'frit LP .txt', 'c c c 

%C c c c c c c c c c 'c c %c P.c c c c c c c c c c c 

%C %c c c c'); 

[HPDi1O, ,HPDi8, HPDi7, HPDi6, HPDi5, HPDi4, HPDi3, HPDi2, HPDi1, HPDiO, HPD 

el,HPDe2,HPDe3,HPDe4,HPDe5] = textread('frit_HP.txt','c Osc Oic c c c 

c c tc tc tc tc 'c %c c c'); 

y = 0; 
z = 1; 

LP = magic(8); 

HP = magic(8); 

LP = LP(:); 

HP = HP(:); 

1 = [447]; 

for k=l: size (LPDilO, 1) 

LP(z) = (LPDilO(i)_48)*1024 + (LPDi9(i)_48)*512 + (LPDi8(i)_48)*256 

+ (LPDi7(i)_48)*128 + (LPDi6(i)_48)*64 + (LPDi5(i)_48)*32 + (LPDi4(i)-
48)*16 + (LPDi3(i)_48)*8 + (LPDi2(i)_48)*4 + (LPDil(i)_48)*2 + 

(LPDi0(i)-48) + (LPDe1(i)_48)*0.5 + (LPDe2(i)_48)*0.25 + (LPDe3(i)-

48)*0.125 + (LPDe4(i).48)*O.0625 + (LPDe5(i)_48)*O.03125; 

if ((LPDi10(i)-48) == 1) 

LP(z) = LP(z) -2048; 

end 

HP(z) = (HPDi10(i)_48)*1024 + (HPDi9(i)_48)*512 + (HPDi8(i)_48)*256 

+ (HPDi7(i)_48)*128 + (HPDi6(i)_48)*64 + (HPDi5(i)_48)*32 + (HPDi4(i)-

48)*16 + (HPDi3(i)_48)*8 + (HPDi2(i)_48)*4 + (HPDil(i)_48)*2 + 

(HPDi0(i)-48) + (HPDel(i)_48)*0.5 + (HPDe2(i)_48)*0.25 + (HPDe3(i)-

48)*0.125 + (HPDe4(i)48)*0.0625 + (HPDe5(i)_48)*0.03125; 
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if ((HPDi10(i)-48) == 1) 

HP(z) = HP(z) -2048; 
end 

if (mod(i,32)==0) 

y = y + 1; 
z = 1; 

A = [LP(1:4) LP(5:8) LP(9:12) LP(13:16) LP(17:20) LP(21:24) 

LP(25:28) LP(29:32); HP(l:4) HP(5:8) HP(9:12) HP(13:16) HP(17:20) 

HP(21:24) HP(25:28) HP(29:32)]; 

DC = (AVGDi10(i)_48)*1024 + (AVGDI9(i)_48)*512 + (AVGDi8(i)-

48)*256 + (AVGDi7(i)_48)*128 + (AVGDi6(i)_48)*64 + (AVGDi5(i)_48)*32 + 

(AVGDi4(i)_48)*16 + (AVGDi3(i)_48)*8 + (AVGDi2(i)_48)*4 + (AVGDi].(i)-

48)*2 + (AVGDi0(i)-48) + (AVGDel(i)_48)*0.5 + (AVGDe2(i)_48)*0.25 + 

(AVGDe3(i)_48)*0.125 + (AVGDe4(i)48)*0.0625 + (AVGDe5(i)_48)*0.03125; 

Taking most significant coefficients 

C = A(:); 

form= 1:64 

mdx = 0; 

for n = 1:64 

if (abs(C(m))<abs(C(n))) 
mdx = mdx + 1; 

end 

end 

if (mdx > (nofCOFF-1)) C(m) = 0; 

end 

end 

C = [C(1:8) C(9:16) C(17:24) C(25:32) C(33:40) C(41:48) 

C(49:56) C(57:64)]; 

im7x7 = ifrit (C, 1, DC, 'db2'); 
img (: , y) = 1m7x7 (:); 

else z = z + 1; 

end 

i = i + 1; 
end 

if (size(LPDi10,1) == 68544) 

X= col2im(img, [7 71,[288 352], 'distinct'); for CIF 

image = 'CIF'; 

end 

if (size(LPDi10,1) == 17472) 

X= col2im(img,[7 7],[144 176], distinct'); for QCIF 

image = 'QCIF'; 

end 

X = uint8 (X); 

imshow (x) 
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n2 = int2str(nofCOFF); 

name = strcat(image,tt,n2,t.jpgt) ; 

imwrite(X,name, tjpgt); 

A.2.3 "PSNR.m" 

This program computes the peak signal to noise ratio (PSNR) of the reconstructed image. 

* 

Gives the Peak Signal to Noise Ratio (PSNR) of the reconstructed 
image. 

96 File Name: PSNR.m 
Design Type: MATLAB .m file 

Input: 
image : Input image 
est : Reconstructed image matrix 

% Output: 
s : Peak Signal to Noise Ratio (PSNR) 

This utility program is originally developed by Choudhury Ashiq 
Rabman 

{rahmanc@enel.ucalgary.ca} as a part of M.Sc research work. 

* 

function s = PSNR (image, est) 
in= imread(image); 

in = douiDle(in); 
est = double(est); 

error = in - est; 
[x yl = size(in); 

temp = sum(error(:)/2)/(x*y); 

s = 20 * loglO (255 I sqrt(temp)); 
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Appendix B  
Verilog HDL Codes 

Bi Introduction 

This section of appendix contains the Verilog HDL files of the two proposed FRIT 

architectures. Verilog 2000 syntax has been using in coding. 

B.2 Codes for FRIT Architecture with Memory 

There are 15 Verilog HDL files in total for this architecture. These are - "stimulus.v", 

"module_top.v", "logic_rNIT.v", "mux3to 1.v", "acc_row.v", "memoryblock.v", 

"sum_for_avg.v", "avgperline.v", "mux2to 1 .v", "acc_FRAT.v", "delay_line.v", 

"adder_bfly.v", "adr_compressor.v", "counter.v" and "controller.v". 
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B.2.1 "stimulus.v" 

I-
/I 
I-
/I 

I-
II 
I-
II Last Modified: Dec, 2003 
II Copyright (c) 2004 

II All Right Reserved. 

Stimulus for simulation 

File Name: stimulus.v 
Design Type: Verilog .v file 

This hardware utility is originally developed by Choudhury Ashiq 
Rahman {rabmanc@enel.ucalgary.ca} as a part of M.Sc research work. 

module stimulus 
#(parameter Width = 8, Qblocks = 546, BElements = 49, TElements = 
104958) 

II TElements = 104958 for CIF and 26754 for QCIF 
reg [Width-1:0] memory_input [0:TElements-l]; 
reg [Width-l:0] IP; 

reg clk, rst; 
wire [Width+7:0] L, H, AVG; 

integer i, k, fuel, file2; 

module— top m_top(L, H, AVG 1 OP— ready, C_ready, IP, clk, rst); 

initial 
begin 

rst = ltbo; 
clk = l'bl; 

i = 0; 
k = 0; 

$readmemb (' ipframe.txt" I; 
filel = $fopen(h1fritLP.txtt); 

fi1e2 = $fopen(h1fritHP.txthl); 

#15 rst = -rst; 
end 

always #10 clk = 

always@ (AVG) 
if (i == TElements && k) begin 

$fclose(filel); 
$fclose(fi1e2); 

$ stop; 
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end else k = 

always® (OP_ready) 
if (OP— ready && rst) begin 

$f display (filel, "th th tb ib", L[15:51, L[4:01, AVG[15:5], 

AVG [4:01); 
$fdisplay(file2, "th H[15:51, H[4:01); 

end 

always® (posedge clk) 
if (C— ready) 

begin 
if (i == TElements) IP = 0; 
else begin 

IP = memory input [1]; 
i = i + 1; 

end 
end 

endrnodule 

B.2.2 "module top.v" 

II Top Module 
I-
II File Name: module_top.v 
II Design Type: Verilog .v file 

I-
II This hardware utility is originally developed by Choudhury Ashiq 
II Rabman {rahmanc@enel.ucalgary.ca} as a part of M.Sc research work. 
I-
II Last Modified: Dec, 2003 

II Copyright (c) 2004 
II All Right Reserved. 

module module top 
#(parameter Width = 8) 
(output [Width+7:0] L, H, AVG, 
output OP— ready, C_ready, 
input [Width-l:0] inpt, 
input clk, rst); 

wire [Width-G:0} count, m, C. r, op_mux, col, row, col_dummy, countj; 
wire [Width-1:0] val, vall, va12; 
wire [Width+3:0] FRAT; 
wire [Width+5:01 Ml, M2, Mlor2; 
wire [Width+15:0] xO, xl, x3; 

wire [Width-i-13:0] x2; 
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wire [Width+14:O] n_avg; 

wire [Width+7:O] w3; 
wire [Width+12:O] w7, w12, w13; 
wire [Width+13:O] w8; 
wire [Width+14:O] w6, w9, wlO; 

wire [Width+16:O] w2, w5; 
wire [Width-3:O] ADDW, ADDR; 
wire [Width+2:O] L_Digit, H_Digit, avg_Digit; 
wire (Width-4:01 L_Decimal, H_Decimal, avg_Decimal; 

assign L = {L_Digit, L_Decimal}; 
assign H = {H_Digit, HDecimal}; 
assign AVG = {avg_Digit, avg_Decimal}; 

or (C- ready, el, e2); 

sum_for_avg sfavg (Ml, M2, inpt, el, e2, clk, rst); 
mux2t01 4t(Width+G) mux_avg (Mlor2, Ml, M2, eni, en2); 
avg_perline avgline (avg_Digit, avg_Decimal, n_avg 1 Mlor2, count_j, 

row, col, clk); 

counter countr (count, nc, clk, rst); 
logiclNlT lINIT (m, C. r, count); 
mux3t01 mux_init (op_mux, m, c, r, i, j); 

acc_row 
acci (row, op_mux, clk, rst, el, e2); 

controller contri (col, col_dummy, i, j, nc, count_j, ADDW, ADDR, 
el, e2, enl, en2, OP-ready, row, count, clk, rst); 

memoryblock mem7x7_l (vail, inpt, ADDW, ADDR, el, clk); 
memoryblock mem7x7_2 (va12, inpt, ADDW, ADDR, e2, clk); 
mux2tol mux_op (val, vail, va12, enl, en2); 

accFRAT acc2 (FRAT, val, {l'bl, n_avg[22:12]}, col_dunìmy, clk, rst, 

el, e2) 
delay- line dl (xo, xl, x2, x3, {FRAT, n_avg [11:0] }, count_j, col_dunimy, 
clk) ;, 

adder bfly bfly (w2, w3, w5, w6, w7, w8, w9, wlo, w12, w13, xo, xl, x2, 
x3, coldunimy, clk, rst); 

adr_compressor lowPass CL_Digit, L_Decimal, {x3[23], x3}, wlo, w8, w12, 
{xo[23],xo[23:5]}, w6[22:4], w13[20:4], w3, w9[22:9], count_j, 

col_dummy, clk); 
adr compressor highPass (H-Digit, HDecimal, w5, w9, w2[24:3], w7, 

(xi [231 ,xl[23:5] }, 
19'b0000000000000000000, w8[21:5], {x2[211,x2[21:7]}, wG[22:9], 

count_j, coidunimy, clk); 

endmodule 
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A modified version of this "module_top.v" file is given below when using array of 

registers as memory. 

I-
II 
I-
II Design Type: Verilog .v file 

I-
II This hardware utility is originally developed by Choudhury Ashiq 
II Rabman {rahmanc@enel.ucalgary.ca} as a part of M.Sc research work. 
I-
II Last Modified: Dec, 2003 

II Copyright (c) 2004 
II All Right Reserved. 

Top Module 

File Name: module_top.v 

module module top 
#(parameter W_idth = 8) 
(output [Width+7:0] L, H, AVG1 
output OP— ready, C_ready, 
input [Width-l:0] inpt, 
input cik, rst); 

wire 
wire 
wire 
wire 
wire 

wire 
wire 

wire 
wire 
wire 
wire 
wire 
wire 
wire 

[Width-6:0] count, m, c, r, op_mux, col, row, col_dummy, count_i; 
[Width-l:0] val, vail, va12; 
[Width+3:0] FRAT; 

[Width+5:0] Ml, M2, Mlor2; 
[Width+lS:0] x0, xl, x3; 

[Width+13:0] x2; 
[Width-i-14: 0] n_avg; 

[Width+7 : 0] 
[Width+12 : 0] 
[Width+13 : 0] 
[Width+14 :0] 
[Width+16 : 0] 
[Width+2 :0] 
[Width-4 :01 

w3; 
w7, w12, w13; 
w8; 
w6, w9, w10; 
w2, w5; 

L_Digit, H_Digit, avg_Digit; 
LDecimal, H_Decimal, avg_Decimal; 

assign L = {L_Digit, LDecimal}; 
assign H = {H_Digit, H_Decimal}; 
assign AVG = {avg_Digit, avg_Decimal}; 

or (C— ready, el, e2); 

sum_for_avg sfavg (Ml, M2, inpt, el, e2, clk, rst); 
mux2tol #(Width+6) mux_avg (Mlor2, Ml, M2, enl, en2); 
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avg_perline avgline (avg_Digit, avg_Decimal, navg, 
row, col, clk); 

Mlor2, count_j, 

counter countr (count, nc, clk, rst); 
logiclNlT uNIT (m, c, r, count); 
mux3t01 muxinit (opmux, m, c, r, i, j) ; 
acc_row 

acci (row, op_mux, clk, rst, el, e2); 
controller contrl (col, coldunmiy, i, j, nc, count_j, 
clk, el, e2, rst); 

OP- ready, row, 

memoryblock mem7x7_l (vail, el, enl, l'bo, 1'bl, e2, inpt, row, col, 
count, i, j, clk, rst); 
memoryblock mem7x7_2 (va12, e2, en2, l'bl, 1'bo, el, inpt, row, col, 
count, i, j, clk, rst); 
mux2t01 muxop (val, vail, va12, enl, en2); 

accFR2T acc2 (FR1T, val, {i bl, n_avg[22 :12] }, col dummy, clk, rst, 

el, e2); 
delay- line dl (xo, xl, x2, x3, {FRAT, n_avg [11:0] }, count_j, col_dummy, 
clk); 

adder _bfly bfly (w2, w3, w5, w6, w7, w8, w9, 
x3, col_dummy, clk, rst); 

adr_compressor lowPass (L-Digit, L_Decimal, 
{xo[23],xO[23:5]}, w6[22:4], w13[20:4] 

col_dummy, clk); 
adr_compressor highPass (H-Digit, H_Decimal, 

{xl[23] ,xl[23:5] }, 
19'b0000000000000000000, w8[21:5], {x2[21],x2[21:7]}, w6[22:9], 

count_j, col_dummy, clk); 

endmodule 

B.2.3 "logic_INIT.v" 

wl0, w12, w13, x0, xl, x2, 

{x3 [23], x3}, w10, w8, w12, 
w3, w9[22:91, count_j, 

w5, w9, w2[24:3], w7, 

Address Logic Initializer, generates m, c and r values. 

I-
II File Name: logiclNlT.v 
II Design Type: Verilog .v file 

I-
/I This hardware utility is originally developed by Choudhury Ashiq 
II Ralirnan {rabmanc@enel.ucalgary.ca} as a part of M.Sc research work. 

II 
Last Modified: Dec, 2003 

II Copyright (c) 2004 
II All Right Reserved. 
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module logiclNlT 
#(parameter width = 3) 
(output reg [width-1:01 m, c, r, 
input (width-1:01 count); 

always@(count) 

case (count) 
3'b000: begin 

m = 3'bllO; c = 3'bOOl; r = 3'bOOO; 
end 

3'bOOl: begin 
m = 3'blOO; C = 3'bOOO; r = 3'b011; 
end 

3'bOlO: begin 
m = 3'bllO; c = 3'bOOO; r = 31b110 ; 

end 
3'b011: begin 

m = 3'bllO; c = 31b110 ; r = 31b101 ; 

end 
3'blOO: begin 

in = 3'bllO; C = 3'bOOl; r = 3'bOOl; 
end 

3'b101: begin 
m = 3'bOlO; c = 3'bOOl; r = 3'bOlO; 
end 

3'bllO: begin 
in = 3'bOlO; c = 3'bOOO; r = 3'bOOl; 
end 

3'blll: begin 
m = 3'blOO; c = 3'bOOO; r = 3'blOO; 
end 

endcase 
endmodule 

B.2.4 "mux3tol.v" 

II MtJXl, selects one of the inputs (m, c or r) for Accumulatorl 

I-
II File Name: mux3tol.v 

Design Type: Verilog .v file 

I-
/I This hardware utility is originally developed by Choudhury Ashiq 

Rabman {rabmanc@enel.ucalgary.ca} as a part of M.Sc research work. 

II 
Last Modified: Dec, 2003 

II Copyright (c) 2004 
II All Right Reserved. 
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module mux3t01 
if (parameter Width = 3) 
(output reg [Width-1:01 out, 
input [Width-l:0] ml, in2, in3, 
input select_i, select_i); 

always@(inl, in2, 1n3, select!, select_j) 
begin 

casex ({selectj, select_i}) 
2'boo: out = ml; 
2'bol: out = in2; 
2'blx: out = in3; 
endcase 

end 
endmodule 

B.2.5 "ace—row-VI 

I-
/I 
I-
/I 

This hardware utility is originally developed by Choudhury Ashiq 
II Rahman {rahmanc@enel.ucalgary.ca} as a part of M.Sc research work. 
I-
II Last Modified: Dec, 2003 
II Copyright (c) 2004 
II All Right Reserved. 

Accumulatorl, generates row addresses of the pixels. 

File Name: a.cc_row.v 
Design Type: Verilog .v file 

module acc_row 
#(parameter Width = 3) 
(output [Width-l:01 accout, 
input [Width-l:0] acc_in, 
input clock, reset, el, e2); 

reg carry; 
reg [Width-l:0} sum; 

always@(posedge clock, negedge reset) 
begin 

if (-reset) 
begin 

sum <= 1; 
carry <= 0; 

end 
else if (-el 11 -e2) 
begin 
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carry, sum) <= sum + acc_in + carry; 
end 

end 

assign acc_out = sum + carry; 

encimodule 

B.2.6 "memoryblock.v" 

II Memory Block (Xilinx Dual Port Block RAM) 

I-
II File Name: memoryblock.v 
/1 Design Type: Verilog .v file 

I-
II This hardware utility is originally developed by Choudhury Ashiq 
1/ Rabman {rahmanc@enel.ucalgary.ca} as a part of M.Sc research work. 
II 
/I Last Modified: Dec, 2003 
II Copyright (C) 2004 
II All Right Reserved. 

module memoryblock 
#(parameter Element = 49, BitLength = 8) 
(output reg [BitLength-1:0] memvalue, 
input EBitLength-i:01 inpt, 
input [5:01 2DDW, 
input [5:0] 2\DDR, 
input empty, 
input cik); 

reg [BitLength-i:0] memory [Element-1: 0]; 

always@ (posedge clk) 
begin 

if (empty) memory[ADDW] <= inpt; 
memvalue <= memory[ADDRI 

end 

endmodule 

A modified version of this "memoryblock.v" file is given below when using array of 

registers as memory. 
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II Memory Block (using array of 8 bit registers) 

I-
II File Name: memoryblock.v 
1/ Design Type: Verilog .v file 

I-
II This hardware utility is originally developed by Choudhury Ashiq 
II Rahman {rahmanc@enel.ucalgary.ca} as a part of M.Sc research work. 
II 
I! Last Modified: Dec, 2003 
II Copyright (c) 2004 
II All Right Reserved. 

module memoryblock 

#(parameter Column = 7, BitLength = 8) 
(output reg [BitLength-l:0] memvalue, 
output reg empty, 
output reg enable, 

input p1, p2, e_other, 
input [BitLength-i:0] inpt, 
input [2:0] row, col, count, 

input i, j, 
input clk, reset); 

reg [5:0] 2DDR; 
reg [BitLength-1:0] memory_rO [Column-1: 0]; 
reg [BitLength-1:0] memory_ri [Column-1: 0]; 
reg [BitLength-i:0] memory_r2 [Column-1: 0]; 
reg [BitLength-i:0] memory_r3 [Column-1: 0]; 

reg [BitLength-i:0] memory_r4 [Column-1: 0]; 
reg [BitLength-i:0] memory_r5 [Column-1: 0]; 
reg [BitLength-i:0] memory_r6 [Column-1: 0]; 

always@(posedge clk, negedge reset) 
begin 

if (-reset) 
begin 
2DDR <= 1; 
empty <= 1; 
enable <= 0; 
memvalue <= 0; 
memory_ro[0] <= 0; 

memory ro[1] <= 0; 
memory rO[2] <= 0; 
memory ro[3] <= 0; 
memory ro[4] <= 0; 
memory ro[5] <= 0; 
memory ro[6] <= 0; 
memory_ri[0] <= 0; 
memory rl[1] <= 0; 
memory_ri[2] <= 0; 
memory_rl[3] <= 0; 
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memory rl[4] <= 0; 
memory rl[5] <= 0; 

memory_rl[6] <= 0; 
memory— r2[0] <= 0; 
memory r2[l] <= 0; 
memory—r2[21 <= 0; 
memory—r2[3] <= 0; 
memory_r2 [4] <= 0; 
memory_r2 [5] <= 0; 
memory— r2[61 <= 0; 
memory—r3[01 <= 0; 
memory— r3[l] <= 0; 
memory—r3[21 <= 0; 
memory_r3 [3] <= 0; 
memory—r3[41 <= 0; 
memory— r3[51 <= 0; 
memory—r3[6] <= 0; 
memory— r4[01 <= 0; 
memory— r4[l] <= 0; 
memory— r4[2] <= 0; 
memory— r4[3] <= 0; 
memory— r4[4] <= 0; 

memory_r4E5] <= 0; 
memory_r4[6] <= 0; 
memoryr5 [0] <= 0; 
memory_r5[1] <= 0; 

memory_r5[2] <= 0; 
memory— r5[31 <= 0; 
memory— r5[4] <= 0; 
memory— r5[51 <= 0; 
memory— r5[6] <= 0; 
memory— r6[01 <= 0; 
memory—r6[11 <= 0; 
memory— r6[2] <= 0; 

memory— r6[3] <= 0; 
memory— r6[4] <= 0; 
memory_r6[5] <= 0; 

memory r6[6] <= 0; 
end 

else begin 
if (empty && (pl<p2 11 -e_other)) 
begin 

enable <= 0; 
case (ADDR) 

6'bOOOOOl : memory rO[0] <= inpt; 
6'bOOOOlO memory_ro[l] <= inpt; 
6'bOOO011 : memory_rO[2] <= inpt; 
6'bOOOlOO memory_rO[3] <= inpt; 
6'bOOO101 : memory_ro[4] <= inpt; 
6'b000llo memory_rO[5] <= inpt; 
6'b000lll memory_rO[6] <= inpt; 
6bOOlOOO : memory_rl[0] <= inpt; 
6'boolool : memory_rl[l] <= inpt; 
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6'bOO101O : memory rl[21 <= inpt; 
6'bOO101]. : memory rl[31 <= inpt; 
6'bO011OO : memory_rl[41 <= inpt; 
6'bO01101 : memory_rl[5] <= inpt; 
6'bO011lO memory_rlE61 <= inpt; 
6'bO011ll memory_r2[O] <= inpt; 
6'bOlOOOO : memory_r2E11 <= inpt; 
6'bOlOOOl : memory r2[2] <= inpt; 
6'bOlOOlO : memory r2[3] <= inpt; 
6'bOlO011 : memory_r2[4] <= inpt; 
6'bO101OO : memory r2[51 <= inpt; 
6'bO10101 : memory r2[61 <= inpt; 
6'bO1011O : memory_r3[O] <= inpt; 
6'bO1011l : memory_r3[11 <= inpt; 
6'b011OOO : memory—r3[21 <= inpt; 
6'b011OOl : memory_r3[3] <= inpt; 
6'b01101O : memory_r3[41 <= inpt; 
6'b011011 : memory_r3[5] <= inpt; 
6'b011lOO memory_r3[6] <= inpt; 
6'b011101 : memory_r4[O] <= inpt; 
6'b011llO : memory_r4[l] <= inpt; 
6'b011lll : memory_r4[21 <= inpt; 
6'blOOOOO : memory_r4[31 <= inpt; 
6'blOOOOl : memory_r4[4] <= inpt; 
6'blOOOlO : memory_r4[51 <= inpt; 
6'blOO011 memory r4[6] <= inpt; 
6'blOOlOO : memory _r5[O1 <= inpt; 
6'blOO101 : memory_r5[1] <= inpt; 
6'blO011O : memory_r5[21 <= inpt; 
6'blO011l : memory_r5[3] <= inpt; 
6'b101OOO : memory_r5[41 <= inpt; 
6'b101OOl memory_r5[5] <= inpt; 
6'b10101O : memory_r5 [6] <= inpt; 
6'b101011 : memory_r6[0] <= inpt; 
6'b1011OO : memory_r6[1] <= inpt; 
6'b101101 : memory_r6[21 <= inpt; 
6tb101110 memory_r6[3] <= inpt; 
6'b1011ll : memory_r6[4] <= inpt; 
6'bllOOOO : memory_r6[5] <= inpt; 
6'bllOOOl : begin 

memory—r6[6] <= inpt; 
empty <= 0; 

end 
endcase 

ADDR <= ADDR + 1; 
end 

if ((enable 11 e_other) && empty) 
begin 

enable <= 1; 
if (ADDR == 50) ADDR <= 1; 

case (row) 
3 tbOOl: memvalue <= memory_rO [col-li; 
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31b010: memvalue <= memory rl[col-l]; 

3'b011: memvalue <= memory r2[col-l]; 
3'blOO: - memvalue <= memory_r3[col-l]; 
3 'b101: memvalue <= memory— r4 [col-1]; 
3'bllO: memvalue <= memory r5[col-l]; 
default: memvalue <= memory rG[col-l]; 
endcase 

if (count == 0 && row == 1 && col == 7 && -i && 
empty <= 1; 

end 
end 

end 
endmodule 

B.2.8 "avg_perline.v" 

-.j) 

2nd part of Accumulator2 (Accumulator2 has been divided into two 
parts, the other part is sum _ for _avg.v), it computes the 7 times 

II mean value of the input image. 
I-
II File Name: avgperline.v 
II Design Type: Verilog .v file 

I-
II This hardware utility is originally developed by Choudhury Ashiq 
II Rahman {rahmanc@enel.ucalgary.ca} as a part of M.Sc research work. 

II Last Modified: Dec, 2003 
II Copyright (C) 2004 
II All Right Reserved. 

module avg_perline 
#(parameter Width = 23) 
(output reg [Width-13:O] avg_Digit, 
output reg [Width-19:0] avg_Decimal, 
output [Width-l:0] n_avg, 
input [Width-10:0] z, 
input [2:0] cj, row, col, 
input clk); 

wire [Width-1:0] wi, w2, w3; 

assign wl = z, 9'b000OO000) + {3'b000,z,6'b000000}; 
assign w2 = {6'b000000,z,3'b000} + {9'b000000000,z}; 
assign w3 = wi + w2; 
assign n_avg = -w3 + 1; 

always® (posedge clk) 
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if (cj == 3 && row == 3 && col == 6) 
begin 

avg Digit <= w3[22:12]; 
avg Decimal <= w3[11:7]; 

end 

endmodule 

B.2.9 "mux2tol.v" 

MUX2 or MtJX3, for selecting input to the Accuinu1ator3 

I-
II File Name: mux2t01.v 
II Design Type: Verilog .v file 

I-
II This hardware utility is originally developed by Choudhury Ashiq 

Rabman {rahmanc©enel.ucalgary.ca} as a part of M.Sc research work. 

I-
II Last Modified: Dec, 2003 
II Copyright (c) 2004 
II All Right Reserved. 

module mux2tol 

#(parameter Width = 8) 
(output [Width-1:0] out, 
input [Width-1:0] ml, in2, 
input eni, en2); 

assign out = eni ? ml : (en2? in2 : 8'bxxxxxxxx); 

endmodule 

A modified version of this "mux2to 1.v" file is given below when using array of registers 

as memory. 

II MUX2 or MUX3, for selecting input to the Accumu1ator3 

I-
II File Name: mux2t01.v 
II Design Type: Verilog .v file 

I-
II This hardware utility is originally developed by Choudhury Ashiq 
II Rabman {rabmanc©enel.uáalgary.ca} as a part of M.Sc research work. 
I-
/I Last Modified: Dec, 2003 
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II Copyright (c) 2004 
II All Right Reserved. 

module mux2tol 
(parameter Width = 8) 
(output reg [Width-1:01 out, 
input [Width-l:0] ml, 1n2, 
input enl, en2); 

always@(inl, in2, enl, en2) 
begin 

out = 0; 
if (eni) out = ml; 
else if (en2) out = in2; 

end 
endmodule 

B.2.1O "acc_FRAT.v" 

II Accumulator3, generates FRAT coefficients 
I-
II File Name: acc_FRT.v 
II Design Type: Verilog .v file 

I-
II This hardware utility is originally developed by Choudhury Ashiq 
II Rabman {rabmanc@enel.ucalgary.ca} as a part of M.Sc research work. 
I-
II Last Modified: Dec, 2003 

II Copyright (c) 2004 
II All Right Reserved. 

module accFRAT 
# (parameter Width = 8) 
(output reg signed [Width+3:0] acc_out, 
input [Width-l:0] acc_in, 
input [Width+3:0] avg1 
input [2:0] col, 
input clock, reset, el, e2); 

reg [Width+3:0] sum; 

always@(posedge clock, negedge reset) 
begin 

if (-.reset) 
begin 

sum <= 0; 
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acc_out <= 0; 
end 

else if (-el I -e2) 
begin 

if (col 1) sum <= sum + ace in; 
else 
begin 

ace—out <= sum + ace— in + avg; 
sum <= 0; 

end 
end 

end 

endmodule 

B.2.11 "delay_Jine.v" 

II Delay Line module 
I-
II File Name: delay_line.v 

Design Type: Verilog .v file 

II This hardware utility is originally developed by Choudhury Ashiq 
II Rabman {rabmanc@enel.ucalgary.ca} as a part of M.Sc research work. 
I-
II Last Modified: Dec, 2003 
II Copyright (c) 2004 
II All Right Reserved. 

module delay_line 
#(parameter Width = 24) 
(output reg [Width-l:0] xo, xl, 
output reg [Width-3:01 x2, 
output reg [Width-l:0] x3, 
input signed [Width-l:0] ip, 
input [2:0} ci, c2, 
input elk); 

reg [Width-i:01 zi, z2, z3, z4, z2temp, z3temp, iptemp; 
reg [Width-3:0] zitemp; 

always® (posedge elk) 
begin 

if (c2 == 2) 
begin 

z4 <= z3; 
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z3 <= z2; 
if (ci == 1) z2 <= ip; 

else z2 <= zi; 
zi <= ip; 

end 

if (c2 == 3) 
begin 

if ((ci[O] ci[1] I Ic1[211) 
begin 

z3temp <= z3; 
z2temp <= z2; 
zitemp <= zi[23:2]; 
iptemp <= ip; 

end 

if (ci[O] && (ci[i] H ci[2])) 
begin 

xO <= z4; 
xi <= z3; 
x2 <= z2[23:2]; 
x3 <= zi; 

end 

else if (cl[O] && -ci[i] && -..ci[2]) 
begin 

xO <= z3temp; 
xi <= 22temp; 
x2 <= zitemp; 
x3 <= iptemp; 

end 
end 

end 
endinodul e 

B.2.12 "adder_bfly.v" 

II Adder Butterfly, generates the partial products for low pass and 
II high pass FRIT coefficients. 
I-
II File Name: adder _bfly.v 
1/ Design Type: Verilog .v file 

I-
II This hardware utility is originally developed by Choudhury Ashiq 
II Rabinan {rahmanc@enel.ucalgary.ca} as a part of M.Sc research work. 
I-
II Last Modified: Dec, 2003 
II Copyright (c) 2004 
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II All Right Reserved. 

module adder bfly 
# (parameter Width = 
(output reg signed 
output reg signed 
output reg signed 
output reg signed 
output reg signed 
output reg signed 
output reg 
output reg 
output reg 
output reg 

25) 
(Width-l:0] w2, 
[Width-10:0] w3, 

[Width-l:0] w5, 
[Width-3:0] w6, 
[Width-5:0] W7, 

[Width-4:0] w8, 
signed [Width-3:0] w9, 
signed [Width-3:0] wlo, 
signed [Width-5:0] w12, 
signed [Width-5:O] w13, 

input signed [Width-2:O] xO, xl, 
input signed [Width-4:0] x2, 
input signed [Width-2:0] x3, 
input [2:0] ci, 
input cik, reset); 

always@(posedge cik, negedge reset) 
begin 

if (-reset) 
begin 

w2 <= 0; w6 <= 0; 
W8 <= 0; w10 <= 0; 
w13 <= 0; w3 <= 0; 
w5 <= 0; w7 <= 0; 
w9 <= 0; w12 <= 0; 

end 
else begin 

if (CI == 4) 
begin 

w2 <= {xo[23]1x0} + {xi 

W6 <= {xo[23],xo[23:2]} 

w8 <= {xo[23],xO[23:3]} 
wl0 <= {xl[23],xlE23:2] 
w13 <= {x2[21],x2[21:2] 

end 
else if (ci == 5) 
begin 

end 
end 

end 
endmodule 

[23] ,xi); 
+ {x2 [21] 
+ {x3[23], 
+ {x3[23] 

} + {x3 [23] 

x2 ); 
x3 [23:31 }; 
,x3[23:21 1; 
,x3[23:41 1; 

w3 <= w2[24:9] + {x2[21],x2[21:7]}; 

w5 <= w2 + {x3[23],x3}; 

w7 <= w6[22:2] + {x3[23],x3[23:4]}; 
W9 <= w6 + wl0; 
w12 <= w13 + {xl[23],xl[23:4]}; 
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B.2.13 "adr_compressor.v" 

Adder Compressor Array, gives the low pass and high pass FRIT 
coefficients. 

File Name: adr_compressor.v 
Design Type: Verilog .v file 

This hardware utility is originally developed by Choudhury Ashiq 
Rabman {rabmanc@enel.ucalgary.ca} as a part of M.Sc research work. 

Last Modified: Dec, 2003 
Copyright (c) 2004 
All Right Reserved. 

module adr_compressor 

#(parameter Width = 8) 
(output reg signed [Width+2:0] LorH_Digit, //llbit 
output reg [Width-4:0] LorH Decimal, //5bit 
input signed [Width+16:0] zl, 

input signed [Width-i-14:0] z2, 
input signed [Width+13:0] z3, 

input signed [Width+12:0] z4, 
input signed [Width-i-11:0] z5, 
input signed [Width+10:0] z6, 
input signed [Width+8:0] z7, 
input signed [Width+7:01 z8, 
input signed [Width+5:01 z9, 
input [2:01 ci, c2, 
input clk); 

wire [24:01 LH, zlinv; 

assign zl_inv = -zi + 1; 

assign LH = zl_inv + 

{zl[24],zl[24:i]} + 

{z2[22],z2[22],z2} + 

{z3[21],z3[21],z3[211,z3} + 

{z4[20],z4[20],z4[20],z4[20],z4} + 

{z5[19] ,z5[19] ,z5 [19] ,z5[19],z5[19] ,z5} + 

{z6El81 ,z6[18] ,z6[18] ,z6[18] ,z6[18] ,z6[18] ,z6} + 

{z3 [211 ,z3 [211 ,z3 [21] ,z3 [21] ,z3 [21] ,z3 [21] ,z3 [211 ,z3 [21:41 } + 
{z7[16] ,z7[16] ,z7[16j ,z7[16] ,z7[16] ,z7[16] ,z7[16] ,z7[161 ,z7} + 

{z8 [15] , z8 [15] , z8 [151 , z8 [15] , z8 [151 , z8 [151 , z8 [15] , z8 [151 , z8 [15] , z 

{z2 [22] , z2 [22] , z2 [221 , z2 [221 , z2 [22] , z2 [22] , z2 [22] , z2 [22] , z2 [22] , z 

2[22],z2[22:8]} + 
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{z9[13],z9[13] ,z9[13],z9[13] ,z9[131 ,z9[13] ,z9[13] ,z9[13] ,z9[13] ,z 
9[13],z9[13],z9} + 

{z9[13],z9[13],z9[13] ,z9[13],z9[131 ,z9[13] ,z9[13] ,z9E13J ,z9[13] ,z 
9[13],z9[13] ,z9(13],z9[13:l]}; 

always@ (posedge clk) 
begin 

if (ci 0 && c2 == 6) 
begin 

LorH_Digit <= LH[22:121; 
LorH Decimal <= LH[ii:7]; 

end 
end 

endmodul e 

B.2.14 "counter.v" 

II Counter module, this is actually a part of controller, coded 
II separately. 
I-
II File Name: counter.v 

Design Type: Verilog .v file 

I-
II This hardware utility is originally developed by Choudhury Ashiq 
II Rahnian {rabrnanc@enel.ucalgary.ca} as a part of M.Sc research work. 
II 
1/ Last Modified: Dec, 2003 
II Copyright (c) 2004 
II All Right Reserved. 

module counter 
#(paraineter width = 3) 
(output reg [width-1:01 count, 
input nextcount, cik, rst); 

always@(posedge cik, negedge rst) 
if (-rst) count <= 3'bOOO; 
else if (-next— count) 
begin 

if (count == 3'biii) count <= 3'b000; 
else count <= count + 3'bOOi; 

end 
endinodule 
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B.2.15 "controller.v" 

II CONTROLLER 
I-
II File Name: controller.v 
II Design Type: Verilog .v file 

I-
II This hardware utility is originally developed by Choudhury Ashiq 
II Rahman {rahmanc@enel.ucalgary.ca} as a part of M.Sc research work. 
I-
II Last Modified: Dec, 2003 
II Copyright (c) 2004 
II All Right Reserved. 

module controller 
#(parameter Width = 3) 
(output reg [Width-i:0] col, 
output reg [Width-i:0] col_dummy, 
output reg i, j, 
output reg next_count, 

output reg [Width-i:0] int_count_j, 
output reg [5:0] IDDW, 
output [5:0] ADDR, 
output reg empty_i, empty_2, eni, en2, 
output reg OP— ready, 
input [Width-i:0] row, count, 
input clk, reset); 

reg complete _sc, enable _i, enable- 2; 
reg [Width-l:01 count_sc; 
reg switch, ready; 
reg [5:0] int_col; 

assign ADDR = int_col + col; 

always@ (row) 
case (row) 
3'booi: int col <= 6'biiiill; 
3'bOlO: int col <= 6'b000llo; 
3'b011: int_col <= 6'bO01101; 
3'blOO: begin 

int_col <= 6'bOiOlOO; 
ready <= I'M; 
end 

3'b101: int col <= 6'bOilOil; 
3'b110: int col <= 6'bi000lo; 
3'bill: int col <= 6'bioiool; 
default: int_col <= 6'bxxxxxx; 
endcase 
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always@(posedge clk, negedge reset) 
begin 

if (-reset) 
begin 

col <= 3'bOOO; 
i <= 0; j <= 0; 
next count <= 1; 
int_count_j <= 0; 
count so <= 4; 
col_dunimy <= 0; 
completesc <= 0; 
switch <= 0; 

PDDW <= 0; 

empty_i <= 1; 
empty-2 <= 1; 
enable_i <= 0; 
enable-2 <= 0; 
OP— ready <= 0; 
ready <= 0; 
eni <= 0; 
en2 <= 0; 

end 

else begin 

eni <= enable 1; 
en2 <= enable_2; 

if (count _sc == 0 && (-empty_i II -empty_2)) 
begin 

if (col _dummy == 3tbi10) 

begin 
j <= 0; 
next count <= 1; 

col_duxnmy <= col— dummy +1; 
if (ready) OP— ready <= -OP— ready; 

if (int_count_j == 3blii 
begin 

i <= 0; 
in€countj <= 0; 
count_sc <= 1; 

end 
else int_count_j <= int_count_j + 1; 

end 
else if (int_count_j == 3'biil && col_dummy 
begin 

next count <= 0; 
col_dunimy <= col— dummy +1; 

3 'biOl) 
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J 

end 

<= 1; 
<= 1; 

else if (col_dummy == 3'biii) 
begin 

col_dummy <= 3'bOOi; 
if (complete _sc) 

begin 
if (col == 7) col <= 3'bOOl; 
else col <= col +1; 

end 
else complete_sc <= -complete_sc; 

j <= 1; 
i <= 1; 
next count <= 1; 

end 

else 
begin 

col_dummy <= col_dummy +1; 
<= 1; 

i <= 1; 
next count <= 1; 

end 
end 

else if (col_dummy == 3'biiO && (-empty_i II -empty_2)) 
begin 

j <= 0; 
next count <= 1; 
col_dummy <= col_dummy +1; 
col <= col + 'bi; 
if (ready) OP— ready <= -OP— ready; 

if (int_count_j == 3'bill 
begin 

i <= 0; 
int_count_j <= 0; 

if (count_sc 7) 
count_sc <= count_sc + 1; 

else 
begin 

count_sc <= 0; 
complete_sc <= 0; 

end 
end 

else int_count_j <= int_count_j + 1; 
end 

else if (int_count_j == 3'biii && col_dummy == 3'biol && 
(-empty_i 11 -empty_2)) 
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begin 
next count <= 0; 

col_dummy <= col_dummy +1; 
col <= col + 'bi' 

j <= 1; 
I <= 1; 

end 

else if (col— dummy == 3 'bill && (-'empty_i 11 -empty_2)) 
begin 

col_dummy <= 3'bOOi; 
col <= 3'bOOi; 

j <= 1; 
i <= 1; 
next count <= 1; 

end 

else if (-empty-1 11 -'empty_2) 
begin 

col_dummy <= col_dummy +1; 
col <= col + 'bi; 

j  
I 

next— count <= 1; 
end 

if (empty_i 11 empty_2) 

begin 

if (ADDW == 48) 
begin 

ADDW <= 0; 

if (-switch) begin 
empty_i <= 0; 
switch <= -'switch; 
end 

else begin 

empty —2 <= 0; 
switch <= -'switch; 
end 

end 
else ADDW <= ADDW + 1; 

end 

if (-'empty_i && -enable- 2) 
begin 

if (count == 0 && row == l,&& col 
begin 

empty_i <= 1; 
enable_i <= 0; 

enable-2 <= 1; 
end 
else begin 

enable — 1 <= 1; 

7 && -i && -j) 
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enable-2 <= 0; 
end 

end 

if (-empty _2 && -enable- 1) 
begin 

if (count == 0 && row 
begin 

empty-2 <= 1; 
enable — 1 <= 1; 
enable-2 <= 0; 

end 
else begin 

enable 1 
enable_2 

end 
end 

end 

end 

endmodule 

<= 0; 
<= 1; 

1 && col 7 && •-i && -j) 

A modified version of this "controller.v" file is given below when using array of registers 

as memory. 

II CONTROLLER 
I-
II File Name: controller.v 
/1 Design Type: Verilog .v file 

I-
II This hardware utility is originally developed by Choudhury Ashiq 
II Rabman {rabmanc@enel.ucalgary.ca} as a part of M.Sc research work. 

II Last Modified: Dec, 2003 
II Copyright (c) 2004 
/7 All Right Reserved. 

module controller 

#(parameter Width = 3) 
(output reg [Width-1:O] col, 
output reg [Width-l:01 col— 
output reg i, j, 
output reg next count, 
output reg [Width-1:01 int_count_j, 
output reg OP— ready, 
input [Width-1:0] row, 
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input cik, el, e2, reset); 

reg complete _sc, ready; 
reg (Width-1:01 cpuntsc; 

always@(posedge clk, negedge reset) 
begin 

if (-'reset) 
begin 

col <= 3'bOOO; 
i <= 0; j <= 0; 
next— count <= 1; 
int_count_j <= 0; 
count_sc <= 4; 
col_dunixny <= 0; 
complete_sc <= 0; 
OP—ready <= 0; 
ready <= 0; 

end 

else if (count so == 0 && (-el 11 -e2)) 
begin 

if (row == 4) ready <= 
if (col_duinmy == 3'bllo) 
begin 

j <= 0; 
next count <= 1; 
col—dummy <= col—dummy +1; 
if (ready) OP—ready <= -OP—ready; 

if (int_count_j == 3'blll 
begin 

i <= 0; 
int_count_j <= 0; 
Count so <= 1; 

end 
else int_count_j <= int_count_j + 1; 

end 
else if (int_count_j == 3'bll]. && col_dummy == 3'b101) 
begin 

next count <= 0; 
col_dummy <= col_dummy +1; 

<= 1; 
i <= 1; 

end 

else if (col—dummy == 3'blll) 
begin 

col _dummy <= 3'bOOl; 
if (complete _sc) 

begin 
if (co]. == 7) col <= 3'bOOl; 
else col <= col +1; 

end 
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else complete_sc <= -complete_sc; 

j <= 1; 
i <= 1; 
next count <= 1; 

end 

else 
begin 

col_dummy <= col_dummy +1; 
j <= 1; 
i <= 1; 
next count <= 1; 

end 
end 

else if (col_dummy == 3 'bl].O && (-el II -e2)) 
begin 

if (row == 4) ready <= l'bl; 
j <= 0; 
next count <= 1; 
col_dummy <= col—dummy +1; 
col <= co]. + 'bi; 
if (ready) OP—ready <= -OP—ready; 

if (int_count_j == 3'blii 
begin 

i <= 0; 
int_count_j <= 0; 

if (count_sc 7) 
countsc <= count_sc + 1; 

else 
begin 

count_sc <= 0; 
complete_sc <= o; 

end 
end 

else int_count_j <= int_count_j + 1; 

-e2)) 

end 

else if (int_count_j == 3'blll && col_dummy == 3'b101 && (-el 

begin 
if (row == 4) ready <= i'bl; 
next— count <= 0; 
col_dummy <= col_dummy +1; 
col <= col + 'bi; 
j <= 1; 
i <= 1; 

end 

else if (col_dummy == 3 'bill && (-el II -e2)) 
begin 

II 
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if (row == 4) ready <= l'bl; 
col_dunimy <= 3tb001; 
col <= 3'bOOl; 

j <= 1; 
± <= 1; 
next count <= 1; 

end 

else if (-el I -e2) 
begin 

if (row == 4) ready <= l'bl; 
col_dummy <= col dummy +1; 
col <= col + 'bi; 

j  

next count 
end 

end 
endmodule 

B.3 Codes for Memoryless FRIT Architecture 

There are 12 Verilog HDL files in total for this architecture. These are - "stimulus.v", 

"module _top.v", "logic_INIT.v", "add_gen.v", "muxip.v", "add...pixels.v", "frat.v", 

"delay_line.v", "adder_bfiy.v", "adr_compressor.v", "counter.v" and "controller.v". 

8.3.1 "stimulus.v" 

/1 Stimulus for simulation 
I-
II File Name: stimulus.v 
II Design Type: Verilog .v file 

I-
II This hardware utility is originally developed by Choudhury Ashiq 
II Rabman {rahmanc@enel.ucalgary.ca} as a part of M.Sc research work. 
'I 
II Last Modified: Dec, 2003 
II Copyright (c) 2004 
II All Right Reserved. 

module stimulus 
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#(parameter Width = 8, Qblocks = 546, BElements = 49, TElements = 

104958) 

II TElements = 104958 for CIF and 26754 for QCIF 
reg [Width-1:01 memory input [0 :TElements-11; 
reg [Width-l:0] ipoo, ipOl, ip02, ip03, ip04, ip05, ip06, 

iplO, ipli, ipl2, ip13, ip14, ipis, ip16, 
ip20, ip21, ip22, ip23, ip24, ip25, ip26, 
ip30, ip31, ip32, ip33, ip34, ip35, ip36, 
ip40, ip41, ip42, ip43, ip44, ip45, ip46, 
ip50, 1p51, ip52, ip53, ip54, ip55, ip56, 
ip60, ip61, ip62, ip63, ip64, ip65, ip66; 

reg cik, rst; 
wire [Width+7:01 L, H, AVG; 

integer i, k, fuel, file2; 

module- top rn_top (L, H, AVG, OP- ready, C_ready, 
ipoo, ipOl, ipo2, 
iplO, ipli, ipi2, 
1p20, ip2i, ip22, 
ip30, ip3l, ip32, 
ip40, ip41, ip42, 
ipso, ipsl, ip52, 
ip60, ip6i, ip62, 

initial 
begin 

rst = 1'bO; 
clk = 1'bi; 

i = 0; 
k = 0; 

ip03, 
ipl3, 
ip23, 
ip33, 
ip43, 
ip53, 
ip63, 

ip04, ip05, 
ipl4, ip15, 
ip24, ip25, 
ip34, ip35, 
ip44, ip45, 
ip54, ip55, 
ip64, ip65, 

ip06, 
1p16, 
ip26, 
ip36, 
1p46, 
ip56, 
1p66, cik, rst); 

$readmenib ( 'ipframe .txt ' ,memory input); 
fuel = $fopen("frit_LP.txt"); 
fi1e2 = $fopen("frit_HP.txt"); 

#15 rst = -rst; 
end 

always #10 cik = -cik; II a clock of 10 tu period 

always@ (AVG) 
if (i == TElements && -k) begin 

$fclose(filei); 
$fclose(file2); 
$stop; 

end else k = 

always@ (OP_ready) 
if (OP _ready && rst) begin 

$fdisplay(filei, "O-.b b th ib", L[15:5], LE4:01, AVG[15:5], 
AVG [4:01); 
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$f display (file2, 11 b tb", H[15:5], H[4:O]); 
end 

always@ (posedge cik) 
if (C— ready) 

begin 

if (i == TElements) 
begin 

ipOO = 0; 
ipOl = 0; 
ip02 = 0; 
ip03 = 0; 
ip04 = 0; 
ipO5 = 0; 
ip06 = 0; 
iplO = 0; 
ipli = 0; 
ipl2 = 0; 
ipl3 = 0; 
ipl.4 = 0; 
ipl5 = 0; 
ipl6 = 0; 

ip20 = 0; 
ip2l = 0; 
ip22 = 0; 
ip23 = 0; 
ip24 = 0; 
ip25 = 0; 
ip26 = 0; 
ip30 = 0; 
ip3l = 0; 
ip32 = 0; 

ip33 = 0; 
ip34 = 0; 
ip35 = 0; 
ip36 = 0; 
ip40 = 0; 
ip4]. = 0; 
ip42 = 0; 
ip43 = 0; 
ip44 = 0; 
ip45 = 0; 
ip46 = 0; 
ip50 = 0; 
ipsl = 0; 
ip52 = 0; 
ip53 = 0; 
ip54 = 0; 
ip55 = 0; 
ip56 = 0; 
ipGO = 0; 
ip6l = 0; 
ip62 = 0; 
ip63 = 0; 
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ip64 = 0; 
ip65 = 0; 
ip66 = 0; 

end 
else 
begin 

ipoo = memory_input[i]; 
ipO]. = memory_input [i+l]; 
ipo2 = memory_input [i+2]; 
ip03 = memory_input [i+3]; 
ip04 = memory_input[i+4]; 
ip05 = memory_input [i+5]; 
ip06 = memory_input [1+6]; 
iplO = memory_input [1+7]; 
ipli = memory_input[i+8]; 
ipl2 = memory_input[i+9]; 
ipl3 = memory_input[i+1O]; 
ipl4 = memory_input [i+11]; 

ipl5 = memory_input [1+12]; 
ipl6 = memory_input [1+13]; 
1p20 = memory_input [i+14]; 
ip2l = memory_input [i+15]; 
1p22 = memory_input [i+16]; 
ip23 = memory_input [1+17]; 
1p24 = memory_input [1+18]; 
1p25 = memory_input [i+19]; 

ip26 = memory_input [1+20]; 
ip30 = memory_input [1+21]; 
ip3l = memory_input [i+22]; 
1p32 = memory_input [1+23]; 
1p33 = memory_input [i+24]; 
ip34 = memory_input [i+25]; 
1p35 = memory_input [i+26]; 
ip36 = memory_input[i+27]; 
ip40 = memory_input [i+28]; 
ip4l = memory_input[i+29]; 
1p42 = memory_input (i+30]; 
1p43 = memory_input [1+311; 
1p44 = memory_input [1+32]; 

ip45 = memory_input[1+33]; 
1p46 = memory_input [i+34]; 
ip50 = memory_input [1+35]; 
ip5l = memory_input [1+36]; 
1p52 = memory_input [i+371; 
1p53 = memory_input [1+381; 
1p54 = memory_input [i+39]; 
ip55 = memory_input[i+40]; 
ip56 = memory_input [1+41]; 
ip60 = memory_input [i+42]; 
ip6]. = memory_input [i+43]; 
ip62 = memory_input [i+44]; 
ip63 = memory_input [i+45]; 
ip64 = memory_input Ei+46]; 
1p65 = memory_input [i+47]; 
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1p66 = memory_input[i+48]; 

± = i + 49; 
end 

end 
endmodule 

B.3.2 "module_top.v" 

II Top Module 
I-
II File Name: module top.v 
II Design Type: Verilog .v file 

1/ 
1/ This hardware utility is originally developed by Choudhury Ashiq 
/1 Rabman {rahmanc@enel.ucalgary.ca} as a part of M.Sc research work. 
I-
II Last Modified; Dec, 2003 
II Copyright (C) 2004 
II All Right Reserved. 

module module top 

*(parameter Width = 8) 
(output [Width+7:0] L, H, AVG 1 
output OP ready, C ready, 
input [Width-1:0] ipoo, ipOl, ip02, ip03, ipO4, ip05, ip06, 

iplO, ipil, ipl2, ip13, ip14, ip15, ipl6, 
ip20, ip21, ±p22, ip23, ip24, ip25, ip26, 
1p30, ip3l, ip32, ip33, ip34, ip35, ip36, 
ip40, ip4l, ip42, ip43, ip44, ip45, 1p46, 
ip50, 1p51, ip52, ip53, ip54, ip55, ip56, 
ip60, ip61, ip62, ip63, 1p64, ip65, ip66, 

input clk, rst); 

wire [Width-6:01 coll, co12, c013, co14, co15, co16, co17, 
addi, add2, add3, add4, add5, add6, add7, 
count, ml, m2, m3, m4, m5, m6, m7, c, col_dummy; 

wire [Width-4:01 LDecimal, H_Decimal, avg_Decimal; 
wire [Width-l:01 opi, 0p2, 0p3, 0p4, 0p5, 0p6, 0p7; 

wire signed [Width+2:01 ap_out, L_Digit, H_Digit, avg_Digit; 

wire [Width+7:0] w3; 
wire [Width+12:0} w7, w12, w13; 
wire [Width+13:0] w8; 

wire [Width+14:0] w6, w9, w10; 
wire EWidth+16:01 w2, w5; 
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wire [Width+13:OJ x2; 

wire [Width+15:O} xO, xl, x3, opf rat; 

assign L = {L_Digit, L_Decimal}; 
assign H = {H_Digit, HDecimal}; 
assign AVG = {avg_Digit, avg_Decimal}; 

counter countr (count, nc, cik, rst); 
logiclNlT uNIT (ml, m2, m3, m4, m5, m6, m7, c, count); 

add_gen add _i 
add_gen add2 
add_gen add_3 
add_gen add_4 
add_gen add__5 
add_gen add6 
add_gen add__7 

muxip 

ip03, 

ip23, 

ip43, 

ip63, 

c014, 

(addi, 
(add2, 

(add3, 
(add4, 
(add5, 

(add6, 
(add7, 

ml, 
m2, 
m3, 
m4, 
m5, 
m6, 
m7, 

mux_ip (op]., 0p2, 0p3, 
ip04, ip05, ip06, 

iplO, ipil, ip12, 
1p24, ip25, ip26, 

ip30, ip31, ip32, 
ip44, ip45, ip46, 

ip50, ip51, ip52, 
ip64, ip65, ip66, 

addi, add2, add3, 
coi.5, co16, co17); 

i, cik, 
i, cik, 
i, clk 
i, cuk, 

cik, 
cik, 

i, cik, 

rst); 
rst); 
rst); 

rst) ;• 

rst); 
rst); 
rst); 

0p4, op5, 0p6, 0p7, ipOO, ipOl, 1p02, 

1p13, ip14, ip15, 1p16, ip20, ip21, ip22, 

ip33, ip34, ip35, ip36, ip40, ip41, ip42, 

ip53, ip54, ip55, ip56, ip60, ip61, ip62, 

add4, add5, add6, add7, coil, c012, co13, 

add_pixels ap (ap_out, opi, 0p2, 0p3, 0p4, 0p5, 0p6, 
if rat fratop (opf rat, avg_Digit, avg_Decimal, ap_out, 
nc, i, cik, rst); 

0p7); 
count, col_dun'tmy, 

controller contri (coil, c012, co13, co14, co15, c016, co17, col_dummy, 
C_ready, OP- ready, i, nc, count, cik, rst); 
delay- line dl (xO, xl, x2, x3, opfrat, coldunimy, cik); 

adder bfiy bfly (w2, w3, w5, w6, w7, w8, w9, wiO, w12, w13, xO, xl, x2, 

x3) 

adr_compressor lowPass (LDigit, L_Decimal, {x3[231, x3}, wlO, w8, w12, 

{xO[23],xO[23:5]}, w6[22:4], w13[20:4], w3, w9[22:9]); 
adr_compressor highPass (H-Digit, HDecimal, w5, w9, w2[24:3], w7, 
{xl [231 ,xl[23:51 }, 

19tb0000000000000000000, w8[21:5], {x2[211,x2[21:7]}, w6[22:9]); 

endmodui e 
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B.3.3 "logic_INIT.v" 

II Address Logic Initializer, generates ml, m2, m3, m4, m5, m6, m7 
II and c values. 
I-
II 
I-
II 
I-
/I 
I-
II Last Modified: Dec, 2003 
II Copyright (c) 2004 
7/ All Right Reserved. 

File Name: logiclNlT.v 
Design Type: Verilog .v file 

This hardware utility is originally developed by Choudhury Ashiq 
Rabman {rahmanc©enel.ucalgary.ca} as a part of M.Sc research work. 

module logiclNlT 

#(parameter width = 3) 
(output reg [width-l:0] ml, m2, m3, m4, m5, m6, m7, c, 
input [width-1:01 count); 

always® (count) 
case (count) 

3'b000: begin 
ml <= 3'blll; m2 <= 3'blll; m3 
m5 <= 3'blll; m6 <= 3'blll; m7 
end 

3'bOOl: begin 
ml <= 3'blOO; m2 <= 3'blll; m3 
m5 <= 3'bolo; m6 <= 3'b101; m7 
end 

3'bolo: begin 
ml <= 3'blll; m2 <= 3'bllo; m3 
mS <= 31b011 ; m6 <= 3'bOlO; m7 

end 
3'b011: begin 

ml <= 3'blll; m2 <= 3'b101; m3 
m5 <= 3'bllO; m6 <= 31b100 ; m7 

end 
3'blOO: begin 

ml <= 3'bOOl; m2 <= 31b010; m3 
m5 <= 3'blol; m6 <= 3'bllO; m7 
end 

3'b101: begin 
ml <= 3'bOlO; m2 <= 3'blOO; m3 
m5 <= 3'b011; m6 <= 3'b101; m7 
end 

3'bllO: begin 
ml <= 3'bOlO; m2 <= 3'boll; m3 
m5 <= 3'bllO; m6 <= 3'blll; m7 
end 

<= 3'blll; m4 <= 3'blll; 
<= 3'blll; c <= 3'bool; 

<= 3'b011; m4 <= 3'bllO; 
<= 3'bOol; c <= 3'bloo; 

<= 3'blol; m4 <= 3'blOO; 
<= 3'bool; c <= 3'bool; 

<= 3'boll; m4 <= 3'bool; 
<= 3'bOlO; c <= 3'bOOl; 

<= 3'b011; m4 <= 3'blOO; 
<= 3!blll; c <= 3'b000; 

<= 3'bllO; m4 <= 3'bOOl; 
<= 3'blll; c <= 3'bllO; 

<= 3'blOo; m4 <= 3'b101; 
<= 3'bOOl; c <= 3'bllo; 
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3'blll: begin 
ml <= 3'b101; m2 <= 3'bOlO; m3 <= 3'bllO; m4 <= 3'b011; 
m5 <= 3'blll; m6 <= 3'blOO; m7 <= 3'bOOl; c <= 3'b011; 
end 

endcase 
endmodul e 

B.3.4 "add_gen.v" 

II AG, generates row addresses of the pixels. 

I-
/I File Name: add_gen.v 
II Design Type: Verilog .v file 

I-
II This hardware utility is originally developed by Choudhury Ashiq 
II Rabman {rabmanc@enel.ucalgary.ca} as a part of M.Sc research work. 
I-
/I Last Modified: Dec, 2003 
II Copyright (c) 2004 
II All Right Reserved. 

module add_gen 
# (parameter Width = 3) 
(output reg [Width-1:0] addr, 
input [Width-l:0] m, c, 
input j, clock, reset); 

reg carry; 
reg [Width-l:0] sum; 

always@(posedge clock, negedge reset) 
begin 

if (-reset) 
begin 

addr <= 0; 
carry <= 0; 
sum <= 0; 

end 
else 
begin 

if (-j) 
begin 

addr <= m; 

{carry, sum} <= m + c; 
end 

else 
begin 

addr <= sum + carry; 
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carry, sum) <= sum + c + carry; 
end 

end 
end 

endmodule 

B.3.5 "muxip.v" 

II 
II 

MUX module, selects 7 inputs every cycle for computing FRAT 
coefficients. 

File Name: muxip.v 
Design Type: Verilog .v file 

This hardware utility is originally developed by Choudhury Ashiq 
Rahinan {rabmanc@enel.ucalgary.ca} as a part of M.Sc research work. 

Last Modified: Dec, 2003 
Copyright (c) 2004 
All Right Reserved. 

module muxip 
# (parameter Width = 8) 
(output reg [Width-l:0] opi, op2, op3, 0p4, op5, 0p6, 0p7, 
input [Width-l:0] ipoo, ipOl, ip02, ip03, ipO4, 

ipli, ipl2, ip13, 
ip20, 

ip33, ip34, ip35, 
ip40, 

ip53, ip54, ip55, 
ip60, 

input [Width-6: 
c012, c013, c014, 

ip05, 1p06, iplO, 
1p14, ip15, ip16, 
ip21, ip22, ip23, ip24, ip25, ip26, 
ip36, 
ip4l, ip42, ip43, ip44, ip45, ip46, 
ip56, 
ip6l, ip62, ip63, ip64, ip65, ip66, 

0] addl, add2, add3, add4, add5, add6, 
c015, co16, c017); 

ip30, ip3l, ip32, 

ip50, ip51, ip52, 

add7, coll, 

always®(ipoo, ipOl, ip02, ip03, ip04, ip05, ipO6, iplO, ipll, ip12, 
ip13, ip14, 

ip20, 
ip34, ip35, 

ip40, 
ip54, ip55, 

ip60, 
add5, add6, 

coil, 
begin 

ip15, ip16, 
ip21, ip22, 
ip36, 
ip41, ip42, 
ip56, 
ip61, ip62, 
add7, 
co12, co13, 

ip23, 

ip43, 

ip63, 

co14, 

case({addl, coll}) 
6'bOOlOOl: opi = ip00; 
6'bOlOOOl: opi = iplO; 

ip24, 

ip44, 

ip64, 

col5, 

ip25, 

ip45, 

ip65, 

co16, 

ip26, 

ip46, 

ip66, 

c017) 

ip30, 

ip50, 

addi, 

ip31, 

ip51, 

add2, 

ip32, 

ip52, 

add3, 

ip33, 

ip53, 

add4, 



111 

G'b011OOl: opi = 1p20; 
6'blOOOOl: opi = ip30; 
6'b101OOl: opi = ip40; 
6'bll000l: opi = ip5O; 
6'blllOOl: op]. = ip60; 
6'bOO101O: opi = ipOl; 
6tb001011: opi = ip02; 
6'bO011OO: opi = ip03; 
6'bO01101: opi = 1p04; 
61b001110: op]. = ip05; 
6'bO011ll: opl = ip06; 
default: op]. = 0; 
endcase 

case({add2, c012}) 
6'bOO101O: 0p2 = ipOl; 
6'bO].00lO: 0p2 = ipli; 
6'bOl].O].O: 0p2 = ip21; 
6'blOOOlO: 0p2 = ip31; 
6'b10101O: 0p2 = ip41; 
6'bllOOlO: 0p2 = ip5l; 
6'bll101O: 0p2 = ip6].; 
6'bOlOOOl: 0p2 = iplO; 
6'bOlOO].l: 0p2 = ipl2; 
6'bOlolOo: 0p2 = ip].3; 
6tbOl0101: 0p2 = ip14; 
6'bOi.O11O: 0p2 = ip15; 
6'bO1011l: 0p2 = ipiG; 
default: 0p2 = 0; 
endcase 

case({add3, c013}) 
6'boO1011: 0p3 = ip02; 
6'bOlO011: op3 = ipl2; 
6'b011011: 0p3 = ip22; 
6'blOO011: op3 = ip32; 
6'b101011: 0p3 = 1p42; 
6'bllO011: 0p3 = ip52; 
6'bll1011: op3 = ip62; 
6'b011OO].: 0p3 = ip20; 
6'b01101O: 0p3 = ip21; 
6'b011lOO: 0p3 = 1p23; 
6'b011101: op3 = 1p24; 
6'b011llO: 0p3 = ip25; 
G'b011lll: op3 = ip26; 
default: op3 = 0; 
endcase 

case({add4, c014}) 
6'bOO].].00: 0p4 = ip03; 
6'bO101OO: 0p4 = ip13; 
6'bOl].lOO: 0p4 = ip23; 
6'b100100: op4 = ip33; 
6'b1011OO: op4 = 1p43; 
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61b110100: 0p4 
6'bllllOO: 0p4 
6'bl0000l: op4 
6'blOOOlO: op4 
6'blOO011: op4 
6'blOO101: op4 
6'blO011O: 0p4 
6'blO011l: 0p4 
default: 0p4 = 

endcase 

= ip53; 
= 1p63; 
= 1p30; 
= 1p31; 
= ip32; 
= ip34; 
= ip35; 
= 1p36; 
0; 

case({add5, col5}) 
6'bO01101: 0p5 = ip04; 
6'bO10101: 0p5 = ip14; 
6'b0ll101: op5 = ip24; 
6'blOO101: 0p5 = ip34; 
6'b101101: 0p5 = 1p44; 
6'bl10101: 0p5 = ip54; 
6'blll101: 0p5 = ip64; 
6'b101OOl: 0p5 = 1p40; 
6'b10101O: op5 = ip41; 
6'blo1011: 0p5 = ip42; 
6'b1011OO: op5 = 1p43; 
6'b1011lO: op5 = ip45; 

6'b1011ll: op5 = ip46; 
default: op5 = 0; 
endcase 

case({add6, c016}) 
6'bOOi.11O: 0p6 = ip05; 
6'bO1011o: 0p6 = ipl5; 
6'b011llO: 0p6 = ip25; 
6'blO011O: 0p6 = ip35; 
6'b1011lO: op6 = ip45; 
6'bl1011O: 0p6 = ip55; 
6tb111110: op6 = ip65; 
6'bllOOol: op6 = 1p50; 
6'bllOOlO: op6 = ip51; 
6'bllO011: op6 = 1p52; 
6'bl101OO: 0p6 = ip53; 
6'bl10101: 0p6 = 1p54; 
6'bl1011l: 0p6 = ip56; 
default: op6 = 0; 
endcase 

case({add7, 
6 'bO011il: 
6'bO1011l: 
6'b011lll: 
6'blO011l: 
6'b1011ll: 
6'bl1011l: 
6 'blilill: 
6'blllOOl: 

C017)) 
op7 = 1p06; 
op7 = ip16; 
0p7 = ip26; 
op7 = 1p36; 
op7 = 1p46; 
0p7 = ip56; 
op7 = ip66; 
op7 = 1p60; 
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6'bll101O: op7 = 1p61; 
6'bll1011: op7 = ip62; 
6'bllllOO: op7 = ip63; 
6'blll101: op7 = ip64; 
6'bll].l].O: op7 = 1p65; 
default: 0p7 = 0; 
endcase 

end 
endmodule 

B.3.6 "add_pixels.v" 

/1 1st part of Adder block, (Adder block has been divided into two 
II parts, the other part is frat.v), adds 7 outputs of MtJX module 
7/ every cycle for computing FRAT coefficients. 
I-
II File Name: adcl_pixels.v 

7/ Design Type: Verilog .v file 
I-
II This hardware utility is originally dveloped by Choudhury Ashiq 

Rahinan {rahmanc@enel.ucalgary.ca} as a. part of M.Sc research work. 

I-
I/Last Modified: Dec, 2003 
II Copyright (c) 2004 
II All Right Reserved. 

module add_pixels 
# (parameter Width = 8) 
(output tWidth+2:0] op, 
input [Width-1:0] xl, x2, x3, x4, x5, x6, x7); 

wire [Width+2:0] wl, w2, w3, w4, w5; 

assign wl = xl + x2; 
assign w2 = x3 + x4; 
assign w3 = x5 + x6; 
assign w4 = wl + x7; 
assign w5 = w2 + w3; 
assign op = w4 + w5; 

endmodule 
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B.3.7 "frat.v" 

2st part of Adder block, (Adder block has been divided into two 
parts, the other part is add_pixels.v), computes 7 times mean 
value of the input image and the FRAT coefficients. 

File Name: frat.v 
Design Type: Verilog .v file 

This hardware utility is originally developed by Choudhury Ashiq 
Rabman {rahmanc@enel.ucalgary.ca} as a part of M.Sc research work. 

Last Modified: Dec, 2003 
II Copyright (c) 2004 

II All Right Reserved. 

module f rat 

#(parameter Width = 8) 
(output [Width+15:O] opf rat, 
output reg (Width+2:0] avg_Digit, 
output reg (Width-4:0] avg_Decimal, 
input [Width+2:0] ap_out, 
input [Width-6:0] count, 
input (Width-6:01 col_dummy, 
input no, i, olk, rst); 

reg [Width+2:0] qi, q2, q3, q4, q5, q6, q7; 

wire [Width+3:0] opfrat_temp; 
reg [Width+5:0] sum, sum out; 
wire [Width+14:0j avg, wi, w2, w3, op; 

assign wi. = {sum_out,9'b000000000} + (3tb000,sum_out,Gtb000000} ; 
assign w2 = {6tb000000,sum_out,3tb000} + {9'b000000000,sum_out}; 

assign avg = Wi + w2; 

assign op = -avg + 1; 
assign opfrat temp = qi + {l'bl,0p[22:12]); 
assign opf rat = {opfrat_temp, opthl:0]}; 

always@(posedge cik, negedge rst) 
begin 

if (-rst) 
begin 

sum <= 0; 
sum—out <= 0; 
qi <= ii'b 
q2 <= li'b 
q3 <= ii'b 
q4 <= ii'b 
q5 <= li'b 
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q6 <= ll'bxxxxxxxxxxx; 
q7 <= 11'bxxxxxxxxxxx; 
avg_Digit <= 0; 
avg_Decimal <= 0; 

end 
else 
begin 

if (col— dummy == 2) 
begin 

avg_Digit <= avgt22:12]; 
avg_Decimal <= avg[ll:7]; 

end 

if (count == 0 && i) 
begin 

if (nc) sum <= sum + ap_out; 
else 
begin 

sum out <= sum + ap_out; 
sum <= 0; 

end 
end 

qi <= q2; 

q2 <= q3; 
q3 <= q4; 
q4 <= q5; 

q5 <= q6; 
q6 <= q7; 
q7 <= ap_out; 

end 
end 

endmodule 

B.3.8 "delay_line.v" 

II Delay Line module 
I-
II File Name: delay_line.v 
II Design Type: Verilog .v file 

I-
/I This hardware utility is originally developed by Choudhury Ashiq 
II Rabman {rahmanc@enel.ucalgary.ca} as a part of M.Sc research work. 
I-
II Last Modified: Dec, 2003 
II Copyright (c) 2004 
II All Right Reserved. 
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module delay_line 

if (parameter Width = 24) 
(output reg [Width-1:01 xO, xl, 
output reg [Width-3:O1 x2, 
output reg [Width-1:01 x3, 
input signed [Width-1:01 ip, 
input [Width-22:O] ci, 
input clk); 

reg [Width-1:01 zi, z2, z3; 

always® (posedge cik) 
begin 

z3 <= z2; 
z2 <= zi; 
zi <= ip; 

if (Cl == 4 11 ci == 6) 
begin 

xO <= z3; 
xi <= z2; 

x2 <= zl[23:2]; 
X3 <= ip; 

end 
else if (CI == 2) 
begin 

xO<=z2; 
xi <= z2; 
x2 <= z1t23:2]; 
x3 <= ip; 

end 

else if (ci == 0) 
begin 

xO <= z3; 
xl <= z2; 

x2 <= zl[23:2]; 
x3 <= zl; 

end 

end 
endmodul e 

B.3.9 "adder_bfly.v" 

II Adder Butterfly, generates the partial products for low pass and 
II high pass FRIT coefficients. 
I-
II File Name: adder _bfly.v 
II Design Type: Verilog .v file 
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I-
II This hardware utility is originally developed by Choudhury Ashiq 
II Rabman {rahmanc@enel.ucalgary.ca} as a part of M.Sc research work. 
I-
II Last Modified: Dec, 2003 
II Copyright (c) 2004 
II All Right Reserved. 

module adder _bfly 
#(parameter Width = 25) 
(output signed [Width-1:01 w2, 
output signed [Width-10:01 w3, 
output signed [Width-l:0] w5, 
output signed [Width-3:0] w6, 
output signed [Width-5:0] w7, 

output signed [Width-4:0J w8, 
output signed [Width-3:0I w9, 
output signed [Width.-3:0] wlo, 
output signed [Width-5:0] w12, 
output signed [Width-5:0] w13, 
input signed [Width-2:0] xO, xl, 

input signed [Width-4:0] x2, 
input signed [Width-2:0] x3); 

assign w2 = {xo[23],xo} + {xl[23],xl}; 
assign w6 = {xo[23],xo[23:2]} + {x2E21],x2}; 
assign w8 = {xo[23],x0E23:3]} + {x3[23],x3E23:3]}; 
assign w10 = {xl[23],xl[23:2]} + {x3[23],x3[23:2]}; 
assign w].3 = {x2E21],x2[21:2]} + {x3[23],x3[23:4]}; 
assign w3 = w2t24:9] + {x2[21],x2[21:7]}; 
assign w5 = w2 + {x3[23],x3}; 
assign w7 = w6t22:21 + {x3t23],x3t23:4]}; 
assign w9 = wG + wlo; 
assign w12 = w13 + {xl[23],xl[23:4]}; 

endmodule 

B.3.1O "adr_compressor.v" 

Adder Compressor Array, gives the low pass and high pass FRIT 
II coefficients. 
I-
II File Name: adr_compressor.v 
II Design Type: Verilog .v file 

I-
/I This hardware utility is originally developed by Choudhury Ashiq 
II Rabman {rahmanc@enel.ucalgary.ca} as a part of M.Sc research work. 
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I-
II Last Modified: Dec, 2003 
II Copyright (c) 2004 
II All Right Reserved. 

module adr_compressor 

#(parameter Width = 8) 
(output reg signed [Width+2:0] LorH Digit, //llbit 
output reg [Width-4:0] LorH Decimal, //5bit 

input signed [Width-i-16:0] zl, 
input signed [Width+14:0] z2, 
input signed [Width+13:0] z3, 
input signed [Width+12:0] z4, 
input signed [Width+11:0] z5, 
input signed [Width+lo:0] z6, 
input signed [Width+8:0] z7, 
input signed [Width+7:0] z8, 
input signed [Width+5:0] z9); 

wire [24:0] LH, zl_inv; 

assign zi mv = -zi + 1; 

assign LH = zl_inv + 
{zl[24],zl[24:1]} + 

{z2 [22] ,z2 [22] ,z2} + 
{z3[21] ,z3[21] ,z3[21] ,z3} + 
{z4[20],z4[20],z4[20],z4[20],z4} + 

{z5[19] ,z5[19] ,z5 [19] ,z5[19] ,z5[19] ,z5} + 

{z6[18] ,z6[18] ,z6[18] ,z6[18] ,z6[18] ,z6[18] ,z6} + 
{z3 [21] ,z3 [21] ,z3 [21] ,z3 [21] ,z3 [21] ,z3 [21] ,z3 [21] ,z3 [21:4] } + 
{z7 [16] , z7 [16] , z7 [16] , z7 [16] , z7 [161, z7 [16] , z7 [16] , z7 [16] , z7} + 
{z8 [15] , z8 [15] , z8 [15] , z8 [15] , z8 [15] , z8 [15] , z8 [15] , z8 [15] , z8 [15] , z 

8} + 
{z2[22],z2[22] ,z2[22] ,z2[22] ,z2[22] ,z2[22] ,z2[22] ,z2[22] ,z2[22] ,z 

2[22],z2[22:8]} + 
{z9 [13] , z9 [13] , z9 [13] , z9 [13] , z9 [13] , z9 [13] , z9 [13] , z9 [13] , z9 [13] , z 

9[13] ,z9[13] ,z9} + 

{z9 [13] , z9 [13] , z9 [13] , z9 [13] , z9 [13] , z9 [13] , z9 [13] , z9 [13] , z9 [131 , z 

9 [13] , z9 [13] , z9 [13] , z9 [13:1] }; 

always@ (LH) 
begin 

LorH _Digit <= LH[22:12]; 
LorH Decimal <= LH[ll:7]; 

end 
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B.3.11 "counter.v" 

II 

II 

Counter module, this is actually a part of controller, coded 
separately. 

File Name: counter.v 
Design Type: Verilog .v file 

This hardware utility is originally developed by Choudhury Ashiq 
Rahman {rahmanc@enel.ucalgary.ca} as a part of M.Sc research work. 

Last Modified: Dec, 2003 
Copyright (c) 2004 
All Right Reserved. 

module counter 

#(parameter width = 3) 
(output reg [width-1:01 count, 
input next count, cik, rst); 

always@(posedge cik, negedge rst) 
if (-rst) count <= 3'bOOO; 
else if (-next— count) 
begin 

if (count == 3'blll) count <= 3'bOOO; 
else count <= count + 3'bOOl; 

end 
endmodule 

B.3.12 "controller.v" 

II CONTROLLER 
I-
II File Name: controller.v 
II Design Type: Verilog .v file 

I-
II This hardware utility is originally developed by Choudhury Ashiq 
II Rabxnan {rabmanc@enel.ucalgary.ca} as a part of M.Sc research work. 
II 
II Last Modified: Dec, 2003 
II Copyright (c) 2004 
II All Right Reserved. 

module controller 
#(parameter Width = 3) 
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(output reg [Width-1:0] coil, 
output reg (Width-1:0] co12, 
output reg [Width-1:01 co13, 
output reg [Width-1:0] co14, 
output reg [Width-1:01 co15, 
output reg [Width-1:01 co16, 
output reg (Width-1:01 co17, 
output reg [Width-1:01 col dummy, 
output reg C ready, OP— ready, 1, 
output reg next— count, 
input [Width-1:01 count, 
input cik, reset); 

reg [width-1:01 count_sc; 
reg ready; 

aiways@(posedge cik, negedge reset) 
begin 

C_ready <= 0; 

if (-reset) 
begin 

coil <= 3'boOl; 

co12 <= 3'bOlO; 
co13 <= 3'boll; 
co14 <= 3'blO0; 
co15 <= 3'blol; 
c016 <= 3'bllO; 
c017 <= 3'blll; 
i <= 0; 

next— count <= 1; 
count_sc <= 4; 
col_dummy <= 0; 
C_ready <= 1; 
OP— ready <= 0; 
ready <= 0; 

end 

else if (count_sc == 0 
begin 

if (count[O] && coi_dummy[l]) ready <= 1; 
if (ready) OP_ready <= -OP— ready; 
if (count == 7 && -next— count) C_ready <= 1; 
if (col_dummy == 0) 
begin 

coil <= 31b111; 
co12 <= 3'blli; 
co13 <= 3'blil; 
c014 <= 3'blll; 
co15 <= 3'blll; 
c016 <= 31b111; 
co17 <= 3'blll; 
col_dummy <= col_dummy +1; 
next count <= 1; 
i <= 1; 
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end 
else 
begin 

if (col_dummy == 3'blll) 
begin 

next count <= 1; 
i <= 0; 
count sc <= count sc + 1; 
col_dummy <= 3'bOOO; 

end 
else 
begin 

if (col_dummy == 3'bllO) next— count <= 0; 
else next— count <= 1; 
col_dummy <= col_dummy +1; 
i <= 1; 

end 

if (colt == 7) 
begin 

coil <= 3'bOOl; 
co12 <= 3'bOOl; 
co13 <= 3'bOOl; 
co14 <= 3'bOOl; 
c015 <= 3,b001; 
co16 <= 3'bOOl; 
c017 <= 3'bOOl; 

end 
else 
begin 

coil <= coil + 3'bOOl; 
c012 <= co12 + 3'bOOl; 
co13 <= co13 + 3'bOOl; 
c014 <= co14 + 3'bOOl; 
co15 <= c015 + 3'bOol; 
co16 <= co16 + 3'bOOl; 
co17 <= c017 + 3'bool; 

end 
end 

end 

else if (col dummy == 3'blll 
begin 

if (count[O} && col_dummyEll) ready <= 1; 
if (ready) OP— ready <= -OP _ready; 
if (count == 7 && -next— count) C_ready <= 1; 
coil <= 3'b001; 
co12 <= 3'bOlO; 
c013 <= 3'b011; 
co14 <= 3'blOO; 
co15 <= 3'b101; 
co16 <= 3'bllO; 
co17 <= 3'blll; 
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col—dummy <= 3'b000; 
± <= 0; 
next count <= 1; 

if (count_sc == 3'blll 
begin 

countsc <= 0; 
end 

else count sc <= count sc + 1; 

end 

else 
begin 

if (count[O1 && col _dummy [1]) ready <= 1; 
if (ready) OP_ready <= -OP _ready; 
if (count == 7 && -next— count) C_ready <= 1; 

coll <= 3'bOOl; 
co12 <= 3'bOlO; 
co13 <= 3'b011; 
co14 <= 3'blOO; 
co15 <= 3'blol; 
co16 <= 3'bllO; 
col7 <= 3'blll; 
col_dunimy <= col— dummy +1; 
if (col—dummy == 3'bllO) next— count <= 0; 
else next— count <= 1; 
i <= 1; 

end 

end 
endinodul e 
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Appendix C  
Publications and Presentations 

C.i Publications 

1. C. A. Rahman and W. Badawy, "A VLSI Architecture for Finite Ridgelet 

Transform", Accepted for publication in the proceedings of the 46th IEEE 

Midwest Symposium on Circuits and Systems- MWSCAS 2003, Dec 27-30, Cairo, 

Egypt, 2003. 

2. C. A. Rahman and W. Badawy, "VLSI Architectures for Finite Radon 

Transform", Accepted for publication in the proceedings of the Canadian 

Conference on Electrical and Computer Engineering- CCECE 2004, May 2-5, 

Niagara Falls, Ontario, Canada, 2004. 

3. M. Alam, C. A. Rahman, W. Badawy and G. Jullien, "Efficient Distributed 

Arithmetic Based DWT Architecture for Multimedia Applications", Proceedings 
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of the 3rd IEEE International Workshop on System-on-Chip for Real-Time 

Applications- IWSOC 2003, June 30- July 2, Calgary, AB, Canada, 2003, Page(s): 

333-336. 

4. C. A. Rahman, W. Badawy and Abmad Radmanesh, "A Real Time Vehicle's 

License Plate Recognition System", Proceedings of the IEEE Conference on 

Advanced Video and Signal Based Surveillance- AVSS 2003, July 21-22, Miami, 

FL, USA, 2003, Page(s): 163-166. 

C.2 Presentations / Workshops / Seminars 

1. Presenter, "A VLSI Architecture for Finite Ridgelet Transform (FRIT)", 

Graduate Seminar Course (ENEL 605), November 5, 2003, Department of 

Electrical and Computer Engineering, University of Calgary, Canada. 

2. Instructor, "Image Processing and Digital System Design", Workshop, August 

10-20, 2003, Organized by Department of Electrical and Electronic Engineering, 

Bangladesh University of Engineering and Technology (BUET), Dhaka, 

Bangladesh. 

3. Presenter, "The Finite Ridgelet Transform - An Overview", LIVS Research 

Group Seminar, June 3, 2003, Organized by Laboratory for Integrated Video 

Systems (LIVS), Department of Electrical and Computer Engineering, University 

of Calgary, Canada. 


