
UNIVERSITY OF CALGARY

Architectures for the Finite Ridgelet Transform

by

Choudhury Ashiq Rabman

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

CALGARY, ALBERTA

JANUARY, 2004

© Choudhury Ashiq Rabman 2004

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of Graduate

Studies for acceptance, a thesis entitled "Architectures for the Finite Ridgelet Transform"

submitted by Choudhury Ashiq Rabman in partial fulfilment of the requirements of the

degree of Master of Science.

Supiisor, Dr. W. Badawy,
Department of Electrical and Computer Engineering.

Dr. G. Jullien,
Department of Electrical and Computer Engineering.

Date:

Department of Mechanical and Manufacturing Engineering.

11

Abstract

Finite ridgelet transform (FRIT) has emerged very recently as a prospective transform for

the next generation image compression standards. It is particularly suitable for natural

images with lots of edges, where it proves its superiority over the 2-D discrete wavelet

transform (DWT) by preserving the edge modeling of the image. There is no VLSI

architecture for FRIT in the literature so far due to its relatively new introduction. Thus,

this thesis introduces two original architectures for the finite ridgelet transform. The

proposed architectures are prototype of FRIT for 7x7 block size images. The proposed

architectures are coded in Verilog HDL, simulated by ModelSim and synthesized by

Xilinx ISE development tools. The performance analysis of the two proposed

architectures shows significant improvement over a direct implementation of the FRIT

algorithm for real time applications.

111

Acknowledgements

First of all, I would like to express my gratitude to my M.Sc thesis supervisor Dr. Wael

Badawy for introducing me to this exciting world of image compression. His continuous

guidance, encouragement and superintended support in course of my research work

provided me a great deal of confidence. He also provided me with an environment

conducive to learning and quality research.

I am very grateful to Dr. Graham Jullien, Department of Electrical and Computer

Engineering and Dr. Ron Hugo, Department of Mechanical and Manufacturing

Engineering for examining the thesis meticulously and giving their valuable comments.

I would also like to thank all the researchers of the Laboratory for Integrated

Video Systems (LIVS). My special thanks to Mr. Mehboob Alam for interesting

discussions and help during this research.

Last but not least, I would like to thank my parents, and my loving sister for their

patience, affection, endless love, understanding, and constant support.

iv

To my family

V

Table of Contents

Approval Page ii
Abstract iii
Acknowledgements iv
Table of Contents vi
List of Tables viii
List of Figures ix
List of Abbreviations xi

Chapter 1: Introduction 1
1.1 Introduction 1
1.2 Video and Image Compression - Why? 3

1.2.1 Principles of Compression 4
1.2.2 Compression Techniques 4

1.3 Research Objective 5
1.4 Thesis Outline 6

Chapter 2: Brief Review of Image Compression 7
2.1 Introduction 7
2.2 Transform 8

2.2.1 Discrete Cosine Transform (DCT) 9
2.2.2 Wavelet Transform 9

2.2.2.1 Continuous Wavelet Transform (CWT) 11
2.2.2.2 Discrete Wavelet Transform (DWT) 13

2.2.3 Finite Ridgelet Transform (FRIT) 14
2.3 Quantization 15
2.4 Entropy Coding 15
2.5 Performance Measures 15
2.6 Summary 17

Chapter 3: The Finite Ridgelet Transform 18
3.1 Introduction 18
3.2 Ridgelet Transform 19

3.2.1 Continuous Ridgelet Transform (CRT) 20
3.2.2 Finite Ridgelet Transform (FRIT) 22

3.2.2.1 Finite Radon Transform (FRAT) 23
3.2.2.2 Optimal Ordering of FRAT Coefficients 24

vi

3.2.2.3 1-D Discrete Wavelet Transform (DWT) 27
3.3 Architectures for 1-D DWT 29
3.4 Distributed Arithmetic 31

3.4.1 DA Principle 32
3.5 Summary 33

Chapter 4: The Proposed FRIT Architectures 34
4.1 Introduction 34
4.2 FRAT Architecture 35

4.2.1 Algorithm 35
4.2.2 Proposed FRAT Architecture with Memory 40
4.2.3 Proposed Memoryless FRAT Architecture 42

4.3 Proposed DWT Architecture 44
4.4 The FRIT Prototype 49

Chapter 5: Performance Analysis 51
5.1 Introduction 51
5.2 Simulation Results 52

5.2.1 FRIT Architecture with Memory 52
5.2.2 Memoryless FRIT Architecture 54

5.3 Synthesis Results 58

Chapter 6: Conclusions and Future Work 62
6.1 Summary of Accomplishments 62
6.2 Recommendations for Future Work 63

References 65

Appendix A: MATLAB Codes 69

Appendix B: Veriog RDL Codes 75

Appendix C: Publications and Presentations 123

vii

List of Tables

Table 4.1: Normal vectors for 7x7 FRAT 35

Table 4.2: Radon coefficients of eight Radon slices; the pixels locations are given in

(row, column) format for the 7x7 image block shown in Figure 4.5 38

Table 4.3: Values of m, r and c for the Radon slices 41

Table 4.4: Values of ml, m2, m3, m4, m5, m6, m7 and c. for the Radon slices 43

Table 4.5: Operation performed by the adder butterfly network 47

Table 4.6: Assignments of inputs of the adder compressor array 48

Table 5.1: I/O signal description of the FRIT module with memory 53

Table 5.2: I/O signal description of the memoryless FRIT module 54

Table 5.3: Comparison of PSNR of "Lena" image for different compression ratios 56

Table 5.4: Comparison of time required for transforming CIF and QCIF images with a

core speed of 50MHz 57

Table 5.5: Synthesis results of the proposed architectures 58

Table 5.6: Comparison of number of components used in the architectures 58

viii

List of Figures

Figure 2.1:

Figure 2.2:

Figure 2.3:

Figure 2.4:

Figure 2.5:

Figure 3.1:

Figure 3.2:

Figure 3.3:

Figure 3.4:

Figure 3.5:

Figure 3.6:

Figure 3.7:

Figure 3.8:

Figure 3.9:

Figure 3.10:

Figure 4.1:

Figure 4.2:

Figure 4.3:

Figure 4.4:

Block diagram of transform based image compression technique. 8

A wavelet function, Y'ab (t) 10

Convolution operation of five sample wavelet (W) and signal samples (S).10

A five-tap filter for five-sample wavelet. 11

Two level signal decomposition. 14

Reconstructed image using DWT and FRIT from 256 most significant

coefficients, out of 65536 coefficients [12]. 19

Block diagram of ridgelet transform 20

A ridgelet function, Y1a,b,9 (x1 , x2) 21

Process flow diagram for computing FRIT 22

Lines for 7x7 FRAT. One line per slope has been shown in shaded gray

color. For each slope, there would be six more lines parallel to the line

shown in the figure 23

The set of normal vectors forp = 7 26

Daubechies D4 scaling and wavelet functions. 29

DWT architecture proposed by Knowles [28] 30

DWT architectures proposed by Parhi et. al. (3-level) [30] 30

DWT architecture proposed by Chang et. al. (3-level) [32] 31

Simplified block diagram of the proposed FRAT architectures 35

A 7x7 image matrixj[i] 36

Pseudo code for computing Radon coefficient of the image matrix shown in

Figure 4.2 36

Lines of FRAT for 7x7 block size image. Coefficient's orders are signified

by increasing gray level for each direction. 37

ix

Figure 4.5: 7x7 image block showing the address of the pixel locations in (row, column)

format. 39

Figure 4.6: Proposed FRAT architecture with memory 40

Figure 4.7: Proposed memoryless FRAT architecture 43

Figure 4.8: Proposed DWT architecture 44

Figure 4.9: Low pass and high pass filter coefficients matrices 46

Figure 4.10: Delay line 46

Figure 4.11: Adder butterfly network 47

Figure 4.12: Parallel adders of adder compressor array 48.

Figure 4.13: Proposed FRIT architecture with memory 49

Figure 4.14: Proposed memoryless FRIT architecture 50

Figure 5.1: I/O ports of the FRIT module with memory 52

Figure 5.2: Snapshot of ModelSim simulation of the FRIT architecture with memory 53

Figure 5.3: I/O ports of the memoryless FRIT module 54

Figure 5.4: Snapshot of ModelSim simulation of the memoryless architecture 55

Figure 5.5: Original and reconstructed "Lena" images of different compression 56

Figure 5.6: Plot of percentage of retained coefficients vs. PSNR 57

Figure 5.7: Xilinx ECS view of the proposed FRIT architecture with memory 59

Figure 5.8: Xilinx ECS view of the proposed memoryless FRIT architecture 59

x

List of Abbreviations

1-D One Dimension
2-D Two Dimension
CIF Common Intermediate Format
CRT Continuous Ridgelet Transform
CWT Continuous Wavelet Transform
DA Distributed Arithmetic
DCT Discrete Cosine Transform
DFT Discrete Fourier Transform
DHT Discrete Hartley Transform
DSP Digital Signal Processing
DST Discrete Sine Transform
DWT Discrete Wavelet Transform
FFT Fast Fourier Transform
FIR Finite Impulse Response
FPGA Field Programmable Gate Array
FRAT Finite Radon Transform
FRIT Finite Ridgelet Transform
HDL Hardware Description Language
HT Haar Transform
HVS Human Visual System
ISO International Organization for Standardization
JPEG Joint Photographic Experts Group
KLT Karhunen Lôeve Transform
LUT Look Up Table
MPEG Motion Picture Experts Group
MSE Mean Square Error
NEDA New Distributed Arithmetic
PSNR Peak Signal to Noise Ratio
PSTN Public Switched Telephone Network
QCIF Quarter Common Intermediate Format
RAM Random Access Memory
RGB Red-Green-Blue
RMSE Root Mean Square Error
ROM Read Only Memory
VLSI Very Large Scale Integration
WTP Wavelet Transform Processor

xi

I

Chapter 1
Introduction

1.1 Introduction

Over the last two decades, there has been an enormous increase in the storage and

transmission of information. Digital video and still images are the most important

medium for communicating visual information. Unfortunately, this requires large channel

bandwidth for transmission and large storage space for archival. In addition, due to the

large number of pixels in a high resolution image, manipulation of digital images is

feasible only with low complexity algorithms. Because of this, reliable and fast

compression techniques are desirable. Most of today's compression techniques are

dependent on a mathematical process called transform. The major setback in using the

transform is computational time. Even with the advent of the digital computer, the

techniques to reduce computational time were generally unknown until 1965 when James

2

W. Cooley and John W. Tukey published their mathematical algorithm which has

become known as the fast Fourier transform (FFT) [1][2]. This was a revolution in the

field of digital signal processing (DSP). After that, over the years a wide range of

orthogonal transforms have come into existence. Among them, the two most popular

transforms used in the field of still image and video compression are the discrete cosine

transform (DCT) [3] and the discrete wavelet transform (DWT) [4].

To meet the growing need for image compression and to ensure compatibility, the

International Organization for Standardization (ISO) proposed the JPEG [5] and the

MPEG [6] standards for image and video compression respectively almost a decade ago.

These standards are based on discrete cosine transform (DCT) of small image blocks and

are very effective in reducing the spatial redundancy in images. However, DCT coding

has the drawbacks of blockiness and aliasing distortion in the reconstructed image at high

compression ratios. Recently, JPEG2000 [7] has been proposed, which is the new

generation standard of JPEG. This new standard is based on the discrete wavelet

transform (DWT). DWT was first applied to image coding by Mallat [8][9]. The

implementation of DWT is very similar to subband coding. However, subband coding

emphasizes on improving the frequency selectivity of the filters whereas wavelet

emphasizes the smoothness properties of the basis functions. Combining the advantages

of multiresolution analysis and transform coding, wavelet offers a wide variety of useful

features [10] and these are:

• Computational complexity of 0(N); here N is the number of pixels.

• Efficient VLSI implementation.

3

• Reconstructed images without blocking artifacts.

• Lower aliasing distortion.

• Inherent scalability.

In this family of transform, a new member was introduced in 1999 by Candes and

Donoho [11] of which a discrete version has been proposed very recently by Do and

Vetterli [12] and is called the finite ridgelet transform (FRIT). FRIT preserves the edge

modeling, which allows a better restoration mechanism for edges. In contrast to the 2-D

DWT, which leads to a poor performance especially when the image has many edges,

FRIT shows a significant visual enhancement. Surveying the literature, no VLSI

implementation has been found so far for the finite ridgelet transform. In this thesis, we

present two original VLSI architectures of the finite ridgelet transform for the first time.

1.2 Video and Image Compression - Why?

The term image compression refers to the process of reducing the amount of image data

required to represent an image while maintaining an acceptable subjective quality. This is

done in order to meet a certain bit rate requirement. Video as a sequence of video frames

involves a huge amount of data. For an example, if we assume the video frame of

common intermediate format (CIF) [13] resolution, which is 352 x 288 pixels, then to

achieve real-time full motion video broadcasting we need a channel bandwidth of 352 x

288 x 8 x 3 x 30 = 72,990,720 bits per second (bps). Here, "3" is the number of colors of

RGB color space and "8" is the number of bits to represent each color for each pixel. If

we compare this bandwidth requirement with the present public switched telephone

4

network (PSTN) modem, which can operate at a maximum bit rate of 56,600 bps, then

the revealed fact is that we need to compress the video data by at least 1290 times in

order to accomplish video transmission over this medium.

1.2.1 Principles of Compression

Video and image compression is not only possible but also feasible because of the

following two redundancies present in images. By eliminating these redundancies, we

can achieve video and image compression [13].

L Statistical redundancy - It is the correlation between neighboring pixels of an

image frame (spatial redundancy) and between the pixels from successive frames in a

temporal image or video sequence (temporal redundancy).

ii. Psychovisual redundancy - It is the redundancy that originates from the

characteristics of the human visual system (HVS).

In the case of still image compression, which is the aim of this research, spatial

redundancy is reduced as much as possible in order to achieve a low bit rate suitable for

the intended application. But the human visual system can also be exploited to further

increase the compression ratio.

1.2.2 Compression Techniques

Most of the image compression techniques are based on the concept of information

theory first formulated by Shannon [14] and can be broadly classified into two groups:

i. Lossless compression techniques - These are Huffinan coding, run-length

coding and arithmetic coding, which preserve all the information present in an image, i.e.,

5

the original image is exactly recoverable. There is considerable interest in lossless

techniques, especially in applications which require very high fidelity reconstructed

images such as medical imaging.

ii. Lossy compression techniques - Predictive coding, transform, subband

coding, vector quantization and fractal coding fall into this group, which provide a better

coding performance compared to lossless techniques. Lossless techniques usually result

in a low compression ratio (typically 2 to 3). Because of this, lossless compression

techniques are not employed when a high compression ratio is required. In lossy

compression techniques the objective is therefore to reduce the bit rate while maintaining

some constraints on the image quality.

One of the computational stages in this lossy compression technique is the

transform. There are two possible methods of implementation of this transform and these

are software and hardware implementation. But a software encoder may not meet the real

time processing requirement especially when the mathematical transform is very

complex. So hardware implementation is the only solution to enhance the performance.

1.3 Research Objective

The objective of the research behind this thesis is to present VLSI architectures for the

finite ridgelet transform which has emerged as a prospective image compression

technique for the next generation standards.

The motivation behind this research is based on the performance of the finite

ridgelet transforms that have proven to be superior over the discrete wavelet transform

(DWT) in the case with images that have many edges. The FRIT is similar to the majority

6

of other mathematical transformations where the direct implementation suffers from high

computational cost. Though its computational complexity is higher than the DCT or

DWT and requires much larger resource allocation for implementation in FPGAs, the

introduction of fast and low cost VLSI techniques may prove the feasibility of the FRIT

in the near future.

1.4 Thesis Outline

This thesis is organized in six chapters and three appendices. In Chapter 2, a brief review

of video and image compression is given. Chapter 3 presents the finite ridgelet transform

(FRIT). The theory and motivation is covered in detail in this chapter. Then the proposed

architecture for FRIT follows in Chapter 4. Two architectures for this transform have

been presented in Chapter 4. Simulation and synthesis results are shown in Chapter 5

where a performance analysis of the proposed designs, in terms of power, throughput,

used components and real time analysis of the architectures is provided. A Comparison

between the proposed architectures is also given in Chapter 5. Chapter 6 concludes the

thesis by summarizing the accomplishments of the research and giving some

recommendations for future work.

The appendices include additional information that complements the work

presented in the thesis body. Appendix A and Appendix B contain the MATLAB and

Verilog HDL codes used in modeling, simulation and synthesis of the proposed FRIT

architectures. Finally, the thesis ends with Appendix C, which contains the list of

publications and seminars that have resulted during this M.Sc research work.

7

Chapter 2
Brief Review of Image Compression

2.1 Introduction

Due to high degree of pixel correlation in the spatial domain, implementation of the

lossless algorithms practically yields relatively low compression ratios. This correlation

means that the energy is spread out over the entire image. If the energy of a pixel is

directly related to its importance, then in the pixel domain there are many important

coefficients making the selection for elimination extremely difficult. For this reason,

most of the image compression literatures investigate transform based methods for

compression. These systems use a reversible linear transform in combination with lossy

techniques to achieve greater and more accurate compression than operating in the pixel

domain. This improvement is due to the transform's ability to decorrelate the image data,

thus packing the energy into a few significant coefficients. Karhunen L6 eve Transform

8

(KLT) [15] is considered the optimal transform for energy compaction, i.e., it places as

much energy as possible in as few coefficients as possible. But it suffers from high

computational cost. The KLT is a linear transform where the basis functions are taken

from the statistics of the signal, and can thus be adaptive. The DCT is an approximation

for the KLT with much less computation than the KLT. This is the reason why the DCT

is so popular in video compression applications.

Three major steps comprise a typical transform based compression algorithm.

These are transformation, quantization and entropy coding [15][16][17], as shown in

Figure 2.1.

Image
Samples

Transformation

Transform
Coefficients

Quantization

Symbol
Stream

Entropy Coding

Bit
Stream

Figure 2.1: Block diagram of transform based image compression technique.

2.2 Transform

A transform is a map, or function, from an N-dimension space to an M-dimension space

[18]. It creates a new set of values according to the definition used. No compression or

information loss occurs in this step, but rather in the stages that follow. In addition to

decorrelating image data for image compression, transforms such as the DCT and DWT

are also used in signal processing to display characteristics of the signal not visible in the

original representation. This allows for easier techniques to analyze and represent the

signal.

9

2.2.1 Discrete Cosine Transform (DCT)

The DCT can be defined for any rectangular array of pixels, but in image compression

the basic block is generally an 8x8 array or 64 pixels. The equation of the DCT, as used

in JPEG and similar compression schemes, is given in equation 2.1.

F(u,v) = f(x, y) COS ((2X + 1)u7rj
x=oy=o 16 cos((2Y 16+ 1)v,r J (2.1)

where, x and y are indices into an 8x8 array of samples, and u and v are indices into an

8x8 array of DCT coefficients. Cuand C are defined by

* for u=O
Cu=

1 otherwise

r1
forv_—O

Li otherwise

(2.2)

So, a special case happens when both u and v are zero, which means that the top left DCT

coefficient, according to equations 2.1 and 2.2, is

F(O,O) = ! AX, y) (2.3)
x=O Y=O

So, the first DCT coefficient represents the DC value of all 64 samples.

2.2.2 Wavelet Transform

Wavelet means small wave and can be viewed as a burst of energy with a dominant

frequency. Such a wavelet is shown in Figure 2.2. As with the Fourier transform, if this

wavelet is multiplied with a signal and integrated, the result would give a nonzero

coefficient. The multiplication by the wavelet picks out the detail from the signal.

10

Obviously, the result would depend on the placement of the wavelet on the original

signal.

Figure 2.2:,4 wavelet function, /1ab (t)

So in the wavelet transform, the weighted moving average of the signal is calculated with

the wavelet, i.e, the sequence of discrete values of the wavelet, flipped back to the front.

This process is known as convolution and is depicted in Figure 2.3.

 I W.2 W.1 W0 WI W2

S3 S4 55 S6 57 S8 S9 S10 S11 S12 13 S14 S -

Figure 2.3: Convolution operation offive sample wavelet (9 and signal samples (5).

In Figure 2.3, the wavelet is shown operating on sample 57, and the output of the

convolution is a new value 57'

'
S7 —W.S5 +W..1.S6 +W0.S., +W2.S9 (2.4)

In this way, the convolution operation over the entire set of the signal samples results in a

new set of values (Sj', 52', 53',) This process is similar to the operation of a digital

filter of which the classical representation is shown in Figure 2.4. Here, the samples of

the input signal, S, pass through four delays, Z4, equal to the sample interval. The output

11

of this filter is 57' when sample 57 is at the center of the filter. The wavelet shape shown

in Figure 2.2 is the impulse response of the filter shown in Figure 2.4. So, the convolution

technique gives us a system's output when an input signal and the systems impulse

response is given.

Figure 2.4: Afive-tapfilterforfive-sample wavelet.

2.2.2.1 Continuous Wavelet Transform (CWT)

This idea of moving a wavelet over the image and picking out the detail shows how

wavelets can give both frequency and location information. Now, let us take a look at the

mathematical definition of the wavelet.

A function u(t) is called a mother wavelet if it satisfies the following properties

[4][19]:

1. The function integrates to zero, or

CO
Jyi(t)dt =0

2. The function is square integrable i.e. the function has finite energy

Co

1Ii'(t2dt <cc

(2.5)

(2.6)

12

3. The function satisfies the admissibility condition

00
C=f1'1 (2.7)

The first property suggests a signal that oscillates and has a wavy appearance,

hence the name "wavelet". The second property suggests that for the wavelet most of the

energy should be contained in a finite duration, thus giving rise to the locality property.

The third property ensures the existence of an inverse transform. u(w) is the Fourier

transform of iu(t). When a mother wavelet 11(t) is found, the wavelet transform of a

functionflt) is defined as

F(a, b) Sf(t)v1a,b (t)dt
—00

Where the mother wavelet Wa,b (t), with respect to the variable a and b, is defined as

"a,b (t) ii1'
a h .L.)

(2.8)

(2.9)

Here a and b denote the scale and translation parameter of the wavelet, respectively. The

a' 12 term in equation 2.9 is the normalization term which ensures that the energy stays

the same for all values of a and b. If a > 1, uab (t) stretches along the time axis and if

o < a <1, Y'ab (t) contracts along the time axis. On the other hand, by changing the

translation parameter, b, the location of the wavelet with respect to the signal can be

changed. So by changing a, different frequency ranges can be covered and by changing b,

the length of the signal for analysis can be covered. These translated and scaled versions

13

of the mother wavelet constitute the basis function and are referred to as daughter

wavelets.

2.2.2.2 Disërete Wavelet Transform (DWT)

The wavelet transform defined in equation 2.8 is highly redundant since here the one

variable function 'ab (t) is represented as a function of two variables, a and b. This

redundancy can be removed by discretizing a and b, such that the dilation and translation

parameters a and b take the form a = 21 and b= 2 k I (k and 1 are non-negative integers),

respectively. This method of sampling (a, b) coordinates is called dyadic sampling as the

consecutive values of the discrete scale differ by a factor of two. The DWT of this type

results in a non-redundant wavelet representation.

In 1989, Mallat [9] utilized the fact that the basis functions are dilated and

translated versions of the mother wavelet to show that the wavelet coefficients of any

scale or resolution could be computed from the wavelet coefficients of the previous stage,

which is known as the Mallat's tree algorithm. This is the basic foundation of the

implementation of the DWT and can be expressed by the following two equations

CJ+l,k = cj,,, .h[m - 2k]
'it

=1 cj,m .g[m - 2k]
in

(2.10)

where Cp,q and dp,q are the low-pass or scaling coefficients and the high-pass or wavelet

coefficients ofpth scale and qth location respectively. h[n] and g[n] are the low-pass and

high-pass filter coefficients corresponding to the mother wavelet respectively. Figure 2.5

shows a two level decomposition of signal f(t). The symbol 2 '1 stands for down-

14

sampling by a factor of two for decimating the filter results (i.e., to remove

redundancies). The signal produced from the low-pass filter is called the approximation

signal and is a smoothed version of the original and the high-pass filter produces the

detailed signal which contains the high frequencies or sharp edges of the input signal.

At)

Cj

Figure 2.5: Two level signal decomposition.

dj+J

2.2.3 Finite Ridgelet Transform (FRIT)

In 1999, the ridgelet transform [11] was introduced as a sparse expansion for functions on

continuous spaces that are smooth away from discontinuities along lines. Inspired by the

performance of this ridgelet transform, Do and Vetterli proposed an orthonormal version

of the ridgelet transform for discrete and finite size images in 2003, which is known as

the finite ridgelet transform (FRIT) [12]. The FRIT preserves edge modeling, which

allows a better restoration mechanism for edges. In contrast to the 2-D DWT, which leads

to a poor performance especially when the image has many edges, the FRIT shows a

significant visual enhancement. The finite ridgelet transform (FRIT), which is the main

topic of this thesis, is discussed in detail in Chapter 3.

15

2.3 Quantization

If the transform step is effective then the energy of the signal is concentrated into the

low-frequency coefficients while many of the remaining coefficients are small. The lossy

compression step discards near-zero coefficients and rounds the remaining components to

a smaller representative set of integers. Thus, the output of the quantization stage is a

stream of small integers, many of which are zero, called the symbol stream. Techniques

for accomplishing this task range from very simple to highly complex and include

uniform quantization, scalar quantization and vector quantization [13].

2.4 Entropy Coding

This final stage of compression is a lossless step, which removes redundancies and

provides a final measure of compaction. Entropy coding considers how often each

symbol occurs in the stream and replaces the stream with a more efficient alphabet based

on these occurrences. Symbols that appear more frequently are represented with shorter

code words than rare symbols. Two of the more commonly used entropy coding methods

are Huffman coding [20] and arithmetic coding [21].

2.5 Performance Measures

In order to measure the integrity of a compression algorithm, several performance

measures are used. The first measure is the compression ratio, which measures the

amount of compression obtained. It compares the original and compressed file size by

using the following equation

16

CR Size of the original image

Size of the compressed image
(2.11)

The bit rate offers an alternative measure for determining the amount of compression

using the following equation

bit rate =
Compressed image size (bits)

Number of pixels in original image
(2.12)

For example, an image of size 512x5 12x8 compressed to 16,384 bytes has a compression

ratio of 16:1 or a bit rate of 0.5 bpp (i.e bits per pixel).

The second measure, called the mean square error (MSE), represents the amount

of error present in the reconstructed image. In other words, it measures how closely a

reconstructed image resembles the original. The formula for MSE is

MSE [f(i, j) - F(i, f)]2
=

N2
(2.13)

where f(i,f) is the original source image of size NxN and F(ij) is the reconstructed image.

Finally, the peak signal to noise ratio (PSNR) is probably the most commonly

used metric of image quality in the literature. Closely related to the MSE, it measures the

quality of a reconstructed image compared with an original image. Reconstructed images

with higher metrics are judged better, and two identical images would have an infinite

PSNR. This measure is calculated by

PSNR =2Ologio(RMSE
255) (2.14)

where RMSB is simply the square root of MSE. It is important to keep in mind that this

measure has a limited relationship with the perceived errors noticed by the human visual

17

system. In fact, two images could have identical PSNR values but one may look better

than the other. So, higher PSNR values do not always mean a perceptually better image.

2.6 Summary

The purpose of this chapter was to briefly review the image and video compression

techniques. The technique that leads to a lossy compression has been discussed. Lossy

compression is the only way of achieving high compression ratio for video broadcasting.

The discussion has been limited to a transform based lossy compression technique.

Finally, the different performance measures for measuring the integrity of a compression

algorithm have been presented.

18

Chapter 3
The Finite Ridgelet Transform

3.1 Introduction

In 1999, the ridgelet transform was introduced as a sparse expansion for functions on

continuous spaces that are smooth away from line discontinuities [11]. Inspired by the

performance of this ridgelet transform, Do and Vetterli in 2003, proposed an orthonormal

version of the ridgelet transform for discrete and finite size images, which is known as

the finite ridgelet transform (FRIT) [12]. Their construction uses the finite Radon

transform (FRAT) [22] as a building block and it has been shown that FRIT outperforms

wavelet transforms in approximating and denoising images with straight edges.

The Radon transform [23] has long been used for many line detection applications

within image processing, computer vision, and seismics. But it never drew much

(a) Using DWT

19

attention of researchers in the field of image compression until the finite Radon transform

was introduced for image representation.

3.2 Ridgelet Transform

The ridgelet transform was proposed to overcome this weakness of wavelet transforms in

2-D. The wavelet transform has proved to be a good transform over the years mainly due

to its strong performance for piecewise smooth functions in one dimension. However, in

higher dimensions such as in 2-D, where singularities can be lines, or in 3-D, where

singularities can be planes, the discrete wavelet transform does not provide good results.

In essence, wavelets are good at catching zero dimensional or point singularities, but 2-D

piecewise smooth signals of images may have one dimensional or line singularities; i.e,

smooth regions are separated by edges and consequently, the DWT does not show good

performance in reconstructing those edges. Figure 3.1 shows a reconstructed image using

the DWT and the FRIT. From this figure, the smoothness along edges of the

reconstructed image using the FRIT is apparent compared to the one using the DWT.

(b) Using FRIT

Figure 3.1: Reconstructed image using D WT and FRITfrom 256 most significant

coefficients, out of 65536 coefficients [12].

20

The ridgelet transform is basically a conjunction of two transforms - the Radon

transform and the wavelet transform, as shown in Figure 3.2. The idea is to map the line

singularities into point singularities using the Radon transform and then to apply the

wavelet transform. Since the wavelet transform can effectively handle the point

singularities, the overall transform thus gives better performance than using only the

wavelet transform in 2-D.

Input
Image

Radon Wavelet
Transform Transform

Ridgelet Trasnform

Figure 3.2: Block diagram of ridgelet transform

3.2.1 Continuous Ridgelet Transform (CRT)

FRIT
Coefficients

The continuous ridgelet transform [11] of a bivariate integrable functionf(x) is defined as

CRTf (a, b, e) = JY'a,b,8 (x)f(x)dx (3.1)

where the ridgelets, 1/'abO (x), in 2-D are defined from a wavelet type function in 1-D,

as

—1/2 (x1cosG+x2sin8—b
Y1a,b,O (x) = a a (3.2)

this function is constant along ridges x1 cos O+X2 sinO = const and wavelet transverses

these ridges; hence the name "ridgelet". So, a ridgelet can be thought of concatenating

21

1-D wavelets along lines, which actually motivated the use of ridgelets in image

processing since, in images, point singularities are often joined together along edges or

contours. As a result, the ridgelet transform can be very efficient in catching such

singularities. Figure 3.3 shows an example of a ridgelet function, which is oriented at an

angle 8.

00
X2

Figure 3.3: A ridgelet function, 'a,b,O (XI , x2)

In 2-D, points and lines are related via the Radon transform, which is why

equation 3.1 can be split into two, as shown in equations 3.3 and 3.4. Equation 3.3 is the

Radon transform of the bivariate function, fix), and it produces slices (or projections) of

Radon coefficients, Rf (8, t). The ridgelet transform is the application of a 1 -D wavelet

transform to these slices, as shown in equation 3.4.

R1(9,t)= Jf(x)8(xj COS + x2 sin9 —t)dx (3.3)

22

CR7'1 (a, b, e) = JY'a,b (t)R1 (e, t)dt (3.4)
1R2

Here 'ab (t) is the mother wavelet and is the same as defined in equation 2.9, in Chapter

2. For convenience, equation 2.9 is rewritten in the following as equation 3.5.

—1/2 (t—b
YJa,b(t) _1 '11L

Here a and b denote the scale and translation parameters of the wavelet, respectively.

(3.5)

3.2.2 Finite Ridgelet Transform (FRIT)

The finite ridgelet transform is the discrete ridgelet transform applied to finite length

signals. The finite ridgelet transform can be computed by using the finite Radon

transform (FRAT) on the input signal samples and then applying the 1-D discrete wavelet

transform (DWT) to the FRAT slices produced in the first stage, as shown in Figure 3.4.

3

Spatial
Domain

FRAT
Input Image

FRAT ERIT
Domain Domain

k k

IKai
In
I..
I..
I..

mr

S..

1-D DWT

Figure 3.4: Process flow diagram for computing FRIT

23

3.2.2.1 Finite Radon Transform (FRAT)

The finite Radon transform [22][24] is defined as the summation of image pixels over a

certain set of "lines". These "lines" are defined in a finite geometry, Z,2, where p is a

prime number. The equation of the FRAT is given below

rk[l] FRAT1(k,l) = p"2 f[i,j] (3.6)
(i,j)ELk,

A

F'I 'MM

(a) k = 0

A

(d) k = 3

A

(g) k= 6

A

(b) k= 1

(e) k = 4

OKI

(h) k = 7

*

4t;

Put

(c) k = 2

A

p.

(f) k =5

Figure 3.5.• Lines for 7x7 FRLIT. One line per slope has been shown in shaded gray color.

For each slope, there would be six more lines parallel to the line shown in the figure.

24

The prime dimension ensures that no two points of the 2-D array of pixels belong more

than one line. This results unique projection patterns which makes the inverse transform

simple and can be done by simple additive operations rather than more general algebraic

transformation.

For best energy compaction, the mean value from the image j[i,j] is subtracted

before calculating the FRAT coefficients. Lk,l, in equation 3.6, denotes the set of "lines"

on Z,,2 and is defined as follows:

L f{(i,j):j_—ki+l(modp),iZ} for O≤k<p
{(Q) :jEZ} fork=p

(3.7)

Figure 3.5 shows examples of such lines (in shaded gray) for 7x7 size blocks. One line

has been shown in the figure for each slope, k. So, for each slope, we obtain 7 lines

defined in this way by changing the value of 1 from 0 to 6 (i.e., 0 top-i).

3.2.2.2 Optimal Ordering of FRAT Coefficients

The set of lines for the FRAT, defined by equations 3.7, is not the best way to describe

lines on a finite grid over zj. The best way would be to define these lines in terms of

normal vectors as follows:

Labt = {(i,j) G Z : qi+bj -t = 0 (mod p)} a,b,t Z, and (a,b)# (o,o) (3.8)

Here (a, b) is the normal vector and t is the translation parameter. So, for a fixed normal

vector, La,b,t is a set of p parallel lines since t E Z. So, for the same slope k, where

k = —a/b, equation 3.7 and 3.8 define the same set of p parallel lines. Moreover, k = 0

signifies the horizontal lines and k = p signifies the vertical lines and the set of lines with

25

normal vector (a, b) is equal to the set of lines with the normal vector (na, nb), for each

n = 1, 2, 3, ..., (p-i). With this definition of lines the new FRAT equation can be written

as

ra,b[t] = FRA TV,. (a,b,t) = p 112 Ai, j]
(i,j)ELb,

(3.9)

The usual FRAT expressed by equation 3.6 uses the set of (p+l) normal vectors Uk, where

U =

f(—k,l) for k=0,l,2, p—i

(i, 0) fork= p
(3.10)

For the new FRAT defined by equation 3.9, (p+l) normal vectors (ak,bk) are needed

such that they cover all (p+l) directions as represented by Uk, and there are (p-i) possible

choices for that. Do and Vetterli [12] showed that the best choice for the set of normal

vectors can be defined as

(a*,a k , bk) arg mm Il(c (ak), C,,)
(ak ,bk){nuk:1≤n≤p-1 }t I

S.:. Cp(b/)≥O

(3.11)

Here C, (x) denotes the centralized function of period p, defined as

C,, (x) = x - p. round (x/p). So, (c,, (ak), C,, (b,) represents the length of the normal

vectors and the optimal choice among these vectors for each k is the one with smallest

length. Figure 3.6 shows the usual set and the optimal set of normal vectors for = 7. As

can be seen from the figure, the optimal set provides uniform angular coverage. It also

ensures least wrap around effect due to periodization which in turns ensures that the

FRAT projections are smooth or low frequency dominated so that it can be presented

well by the wavelet transform later.

26

-6 -5 -4 -3 -2 -1 0 I

(a) Usual ordering

-2 -1 0

(b) Optimal ordering

Figure 3.6: The set of normal vectors for p = 7.

2

Some points from this discussion which are worthy to note for calculating the FRAT are

1. Total number of defined lines are (p2+p)

2. Each of these lines contains p points.

3. Any two distinct points belong to just one line.

4. For a particular slope, there are p parallel lines that provide the complete coverage

of the plane, Z,,2.

From the first three points stated above, the computational complexity of FRAT can

be calculated. The third point suggests that the summation of any two distinct pixels can

be used only for calculating a single FRAT coefficient and can not be used for calculating

any of the remaining FRAT coefficients. Thus, the number of additions required is

(p2+p)(p-l) and the multiplication by a factor of p-112 for each FRAT coefficient gives us

the computational complexity of the FRAT equal to O(p2 M + p3 A). Here, p is the prime

dimension of a square image, "M" denotes multiplication and "A" denotes addition

operation. This third order complexity of the direct approach poses a huge workload and

restricts the FRAT from being a potential candidate for use in image compression

systems. VLSI architectures neither for the finite Radon transform nor for the finite

27

ridgelet transform have been found after surveying the literature at the time of this

writing.

3.2.2.3 1-D Discrete Wavelet Transform (DWT)

The 1-D discrete wavelet transform (DWT) is used, on each of the FRAT slices (rk[O],

rk[1], ..., rk[p-l]) computed in the first stage for calculating the finite ridgelet transform.

This is done after performing a periodic extension of the Radon slices to make them

dyadic. The discrete wavelet transform is discussed in detail in Chapter 2. Here we shall

discuss Daubechies D4 wavelet filter coefficients [25] [26]. Several wavelet filters, such

as Haar, Symlets, Gaussian, Mexican hat etc., have been defined over the past few years

for compression algorithms. In this research, Daubechies D4 wavelet filter coefficients

have been used. It is simple and the most localized member among Daubechies wavelets

and provides excellent performance in image compression applications. The subscript "4"

represents the number of filter taps or the number of the filter coefficients.

The properties of the scaling filter, h[n], can be used as criteria in the design of a

wavelet system. Given a scaling filter that satisfies the desired properties, the scaling and

wavelet functions can be calculated. A very important class of wavelet systems is that

with compact support. This gives rise to simple finite impulse response (FIR) filters with

convenient time-localization properties. The most fundamental property of these filters is

that the length of the filter must be even. For a filter length of 4, the minimal

requirements of the scaling filter can be summarized as follows [27]:

1. Length of the filter, N =4

2. h[O]+h[1]+h[2]+h[3]=

28

3. h2[O]+h2[l]+h2[2]+h2[3]l

4. h[Ojh[2]+ h[ljh[3] 0

The degree of freedom here is N/2 —1 = I, which means there is still one degree of

freedom remaining after the minimal requirements have been satisfied. Letting a

represent this degree of freedom parameter, we can formulate the scaling filter coefficient

equations in the form:

h[oI— l— cos a+ sin a ' 141]— l+cosa+sina
2I 2,r 2-

h[2] l+ cos a— sin a 143] 1—cosa—sina

- 2,12— ' - 2J

(3.12)

"a" in the above equations can be adjusted to give a wavelet system with the desired

properties. The Daubechies wavelet with filter length 4 arises from a = iz'/3, which gives

the four scaling filter coefficients as follows

h[O] - hFll_ 3+V h121— h131— 313 — Li — ' 4 J2Li— ' Li — (•)

From these low pass (scaling) filter coefficients, the high pass (wavelet) filter coefficients

can be computed using the following relation

g[n]= (_1)lh[N_ n _1] (3.14)

which gives us the following four high pass (wavelet) filter coefficients

ri 3—'J - 3+-J r 1 i+ -J
g[O] = •,_ , g1j = - , g2j = •,_ , gj3j = (3.15)

29

Figure 3.7 shows the Daubechies D4 scaling, çp(t) and wavelet, 1r(t) functions.

1.2

0.8

0.8

0.4

0.2

0

.02

(a) Scaling function, p(t) (b) Wavelet function, t1(t)

Figure 3.7: Daubechies D4 scaling and wavelet functions.

3.3 Architectures for 1-D DWT

This section presents recent 1-D DWT architectures introduced by various authors. The

first one was proposed by Knowles [28] and is shown in Figure 3.8. It is a fully pipelined

architecture but it is not particularly suitable for VLSI implementation as it requires large

area, complex control and routing. The experimental results showed that implementing

this circuit with 4 fixed coefficients and 3 octaves would require a NEC CMOS5 gate

array with 1500 gates and it would be able to run at 6 MHz. Aware Inc. introduced a

wavelet transform processor (WTP) [29], almost at the same time when Knowles

proposed his architecture, which allows up to 6 coefficients and can operate at a speed of

30 MHz. The user chooses the wavelet coefficients, either specifying the coefficient

values or the pre-loaded 6 coefficient Daubechies transform. Later, two architectures,

folded and digit serial for 1-D DWT, were proposed by Parhi and Nishitani [30], as

shown in Figure 3.9. These architectures assumed a filter of 4 taps. So, a wavelet with

more coefficients requires more registers which ultimately affects the area and latency in

1

30

the final design and also the use of carry ripple adders affects the speed of the overall

design. Vishwanath et. al. [31] proposed a linear systolic array architecture. But their

architecture computes N-point DWT in 2N cycles. This architecture suffers from a large

delay (latency) and complex routing requirement. Recently, Chang et. al. [32] proposed

an architecture claimed to be suitable for MPEG4 applications. Their architecture can

compute N-point DWT in N/2 cycles, but contains a large number of multipliers which

increases the cost of the implementation. Figure 3.10 shows this architecture.

shift 1 Ct shiftm-1 ctm_i(i)

ct10.....i - N +1) i - N +1)

mux

N filter

G filter

D
E
M

demux

0

M
U
X

_aCtm

—C2

—'-C;

Figure 3.8: D WT architecture proposed by Knowles [28]

G

2.43

h,,l1

H

G

Cv.G

OdO

Ev.,H

Odd

H

H

(a) Folded architecture (b) Digit serial architecture

Figure 3.9: D WT architectures proposed by Parhi et. al. (3-level) [3 0]

z

z.

31

go gz

Figure 3.1O. D WT architecture proposed by Chang et. al. (3-level) [32]

In this thesis, a distributed arithmetic (DA) based 1-D DWT architecture is used for

computing the FRIT low pass and high pass coefficients. The main objective of the

architecture was to keep it simple and fully multiplication free. The proposed architecture

can compute one low pass and one high pass coefficient at every clock cycle, which

inherently doubles its throughput. This means that the architecture can compute an N-

point DWT in N/2 clock cycles.

3.4 Distributed Arithmetic

Distributed arithmetic (DA) [33][34][35] has been used most often in the VLSI

implementation of digital signal processing (DSP) architectures. It is an efficient method

of computing vector inner products, which are required in many DSP systems. In most

DSP algorithms the main computational block is a multiply / accumulate (MAC)

structure [36], which is most often implemented using a standard multiplier and adder

unit. The MAC unit can be implemented using DA, with the main advantage of pre-

32

computing all the possible products and storing them in a ROM. But the major drawback

of this approach is the exponential growth of the ROM size with the number of inputs

[37]. A different approach using DA is to distribute the coefficients to the input, one such

example is the NEDA [3 8] architecture for the computation of the discrete cosine

transform (DCT). This architecture relies on finding redundant computations in the vector

inner product. In this thesis, for the l-D DWT, we propose a DA based architecture

where the DWT coefficient inner product is distributed over the input. The result is an

efficient solution when the area of implementation is a concern for a given specification

of input, output and coefficient word lengths. The architecture therefore is free of both

multipliers and a ROM and is implemented using only adders.

3.4.1 DA Principle

Distributed arithmetic (DA) is an efficient strategy when one of the vectors is fixed. The

one-dimensional inner product computation between two vectors x and c, where x is the

input vector and c is the fixed coefficinet vector can be represented by

Y = c.x = (4.1)

Here c=[cO,cl ,c2 , ... ,ck_l} is the fixed coefficient vector and x=[xO,xl,x2,...,xk_l] is

the input vector. If cj is represented in 2's complement form then

ni—i

C nij +c1,.2' O≤j≤k-1 (4.2)
1=11

Here m is the sign bit and n is the least significant bit. The output, y, can then be given by

33

k-i rn-i I k-i

= Crn,j•Xj•2 ni +

1=0 i=n (j=0

(4.3)

The above coefficient matrix is distributed, resulting in the following representation,

which demonstrates the distribution of the bits of the coefficients over the input.

y = [- 2" 2rn-1 2ni-2

3.5 Summary

2'I

Crn,0

Crn_i3O

Crn_2,0

Cl',0

C nij C,,, Cfl,,k..i

cm-1,2 Cfl,i,k..1

C m-2,1 C M-2,2 C,,,..2,ki

Cfl i C,,,2 Cfl,ki - Xk_i

The theory of finite ridgelet transform has been presented in this chapter. The motivation

behind the research has also been discussed. The recent architectures for the 1-D DWT

which is one of the building blocks of the finite ridgelet transform have been shown in

this chapter. Finally, the chapter ends with the discussion of distributed arithmetic; the

technique that has been used in the proposed l-D DWT architecture.

34

Chapter 4
The Proposed FRIT Architectures

4.1 Introduction

As discussed in Chapter 3, the FRIT is a two-stage computational algorithm. In the first

stage, the finite Radon transform is performed on input samples. This operation results in

1-D slices of Radon coefficients; in the second stage these l-D slices of Radon

coefficients are processed by a l-D DWT that ultimately produces the FRIT low pass and

high pass coefficients. So, the overall architecture for the FRIT can be presented in two

distinct parts - the architecture for the finite Radon transform (FRAT) and the

architecture for the discrete wavelet transform (DWT). In this thesis, these two distinct

parts are first presented separately and then at the end of this chapter the overall look of

the architecture is shown.

35

4.2 FRAT Architecture

The simplified block diagram of the architecture for the finite Radon transform is shown

in Figure 4.1. Three distinct blocks are apparent from the figure - Address Generator,

Memory Block or MUX depending on whether the architecture is with memory or

without memory, respectively, and finally the Accumulator.

Input Matrix

Address
Generator

Memory /
MUX

Accumulator
Slices of
FRAT Coefficients

Figure 4.1: Simplified block diagram of the proposed FRAT architectures

4.2.1 Algorithm

In this research, we were interested in building a prototype for an 7x7 size block of an

image. From Chapter 3, the optimal ordered normal vectors for p = 7, in increasing

angular sequence, can be tabulated as shown in Table 4.1.

Table 4.1: Normal vectors for 7x7FRAT

k A b
0 1 0
4 2 1
1 1 1
2 1 2
7 0 1
5 -1 2
6 -1 1
3 -2 1

36

If we index the elements of a 7x7 image matrix as shown in Figure 4.2, the simple pseudo

code of Figure 4.3 will give us the Radon coefficient slices of eight directions.

0 7 1421 283542

1 8 1522293643

2 9 1623303744

3 10 172431 3845

4 111825323946

5 12 19 26 3340 47

6 1320 27 34 41 48

Figure 4.2: A 7x7 image matrix f[iJ

For (V projections)

{
Initialize ip = 0 and R = 0;
If (a <0) a = a (modp); i.e., mapping a to Z,,2.
If (b <0) b = b (modp); i.e., mapping b to Z2.

For (j=0top-l)

{
t = b *j (modp); i.e., computing the starting index of the Radon slice R.

For (i = 0 to p-i)
{

R[t] = R[t] + f[i + ip]; i.e., adding the pixels for Radon coefficients.

t = (t + a)(modp); i.e., advancing t for indexing next coefficient.

}

ip = ip + p; i.e., advancing ip for indexing the start of next column of the
image matrixf.

}
}

Figure 4.3: Pseudo code for computing Radon coefficient of the image matrix shown in

Figure 4.2

37

This pseudo code computes the Radon coefficients of the eight Radon slices, shown in

Figure 4.4, which are tabulated in Table 4.2.

(a) k = 0

(d) k= 2

(g)k=6

(b) k = 4

(e)k=7

(h) k = 3

(c) k= 1

(f) k= 5

Figure 4.4: Lines ofFRATfor 7x7 blocks ize image. Coefficient's orders are signified by

increasing gray level for each direction.

38

Table 4.2: Radon coefficients of eight Radon slices; the pixels locations are given in

(row, column) format for the 7x7 image block shown in Figure 4.5

Radon
Slices
(a, b)

Radon
Coefficients

Pixels of which values are added for each of the coefficients

(1,0) C[1] (0,0) (0,1) (0,2) (0,3) (0,4) (0, 5) (0,6)
C[2] (1,0) (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
C[3] (2,0) (2,1) (2,2) (2,3) (2,4) (2, 5) (2,6)
C[4] (3,0) (3,1) (3,2) (3,3) (3,4) (3, 5) (3,6)
C[5] (4,0) (4,1) (4,2) (4,3) (4,4) (4, 5) (4,6)
C[6] (5, 0) (5, 1) (5, 2) (5, 3) (5,4) (5,5) (5,6)
C[7] (6,0) (6,1) (6,2) (6,3) (6,4) (6, 5) (6,6)

(2,1) C{1] (0,0) (3,1) (6,2) (2,3) (5,4) (1, 5) (4,6)
C[2] (4,0) (0,1) (3,2) (6,3) (2,4) (5,5) (1, 6)
C{3] (1,0) (4,1) (0,2) (3,3) (6,4) (2, 5) (5,6)

C[4] (5, 0) (1, 1) (4,2) (0,3) (3,4) (6, 5) (2,6)
C[5J (2, 0) (5, 1) (1,2) (4,3) (0,4) (3, 5) (6,6)
C[6] (6,0) (2,1) (5, 2) (1,3) (4,4) (0,5) (3,6)
C[7] (3,0) (6,1) (2,2) (5,3) (1,4) (4,5) (0,6)

(1, 1) C[1] (0,0) (6, 1) (5, 2) (4,3) (3,4) (2, 5) (1,6)
C[2] (1,0) (0,1) (6,2) (5, 3) (4,4) (3, 5) (2,6)
C 3 (2,0) (1, 1) (0,2) (6,3) (5,4) (4,5) (3,6)
C[4] (3,0) (2,1) (1,2) (0,3) (6,4) (5,5) (4,6)
C[5] . (4, 0) (3,1) (2,2) (1,3) (0,4) (6, 5) (5,6)
C[6] (5, 0) (4,1) (3,2) (2,3) (1,4) (0, 5) (6,6)
C[7] (6,0) (5, 1) (4,2) (3,3) (2,4) (1, 5) (0,6)

(1,2) C[1] (0,0) (5, 1) (3,2) (1,3) (6,4) (4, 5) (2,6)
C[2] (1,0) (6,1) (4,2) (2,3) (0,4) (5,5) (3,6)
C[3] (2,0) (0,1) (5, 2) (3,3) (1,4) (6, 5) (4,6)
C[4] (3,0) (1, 1) (6,2) (4,3) (2,4) (0, 5) (5,6)
C[5] (4, 0) (2,1) (0,2) (5, 3) (3,4) (1, 5) (6,6)
C[6] (5, 0) (3,1) (1,2) (6,3) (4,4) (2, 5) (0,6)
C[7] (6,0) (4,1) (2,2) (0,3) (5,4) (3, 5) (1,6)

(0,1) C[1] (0,0) (1,0) (2,0) (3,0) (4,0) (5, 0) (6,0)
C[2] (0,1) (1,1) (2,1) (3,1) (4,1) (5,1) (6,1)
C[3] (0,2) (1,2) (2,2) (3,2) (4,2) (5, 2) (6,2)
C[4] (0,3) (1,3) (2,3) (3,3) (4,3) (5,3) (6,3)
C[5] (0,4) (1,4) (2,4) (3,4) (4,4) (5,4) (6,4)
C[6] (0, 5) (1, 5) (2, 5) (3, 5) (4,5) (5,5) (6,5)
C[7J (0,6) (1,6) (2,6) (3,6) (4,6) (5,6) (6,6)

Table continued on the next page

39

Radon
Slices
(a, b)

Radon
Coefficients

Pixels of which values are added for each of the coefficients

(-1,2) C[1] (0,0) (2,1) (4,2) (6,3) (1,4) (3, 5) (5,6)
C[2] (6,0) (1, 1) (3,2) (5, 3) (0,4) (2, 5) (4,6)
C[3] (5, 0) (0,1) (2,2) (4,3) (6,4) (1, 5) (3,6)
C[4] (4,0) (6,1) (1,2) (3,3) (5,4) (0, 5) (2,6)
C[5] (3,0) (5, 1) (0,2) (2,3) (4,4) (6, 5) (1,6)
C[6] (2,0) (4,1) (6,2) (1,3) (3,4) (5,5) (0,6)
C[7] (1,0) (3,1) (5, 2) (0,3) (2,4) (4, 5) (6,6)

(-1, 1) C[1] (0,0) (1, 1) (2,2) (3,3) (4,4) (5,5) (6,6)
C[2] (6,0) (0,1) (1,2) (2,3) (3,4) (4, 5) (5,6)
C[3] (5, 0) (6,1) (0,2) (1,3) (2,4) (3, 5) (4,6)
C[4] (4,0) (5, 1) (6,2) (0,3) (1,4) (2, 5) (3,6)
C[5] (3,0) (4,1) (5, 2) (6,3) (0,4) (1, 5) (2,6)
C[6] (2,0) (3,1) (4,2) (5, 3) (6,4) (0, 5) (1,6)

C[7] (1,0) (2,1 (3,2) (4,3) (5,4) (6,5) (0,6)
(-2,1) C[1] (0,0) (4,1) (1,2) (5, 3) (2,4) (6, 5) (3,6)

C[2] (3,0) (0,1) (4,2) (1,3) (5,4) (2, 5) (6,6)
C[3] (6,0) (3,1) (0,2) (4, 3) (1,4) (5,5) (2,6)
C[4] (2,0) (6,1) (3,2) (0, 3) (4,4) (1, 5) (5,6)
C[5J (5,0) (2,1) (6,2) (3,3) (0,4) (4, 5) (1,6)
C[6] (1,0) (5, 1) (2,2) (6,3) (3,4) (0, 5) (4,6)
C[7] (4,0) (1, 1) (5, 2) (2,3) (6,4) (3, 5) (0,6)

(0,0) (0,1) (0,2) (0,3) (0,4) (0,5) (0,6)

(1,0) (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)

(2,0) (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

(3,0) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

(4,0) (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

(5,0) (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

(6,0) (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

Figure 4.5: 7x7 image block showing the address of the pixel locations in (row, column)

format.

40

C[7] coefficients in Table 4.2 have to be calculated twice, once at the beginning and once

at the end of each slice. This would make C[7] coefficients available for periodic

extension in order to make the Radon slices dyadic.

4.2.2 Proposed FRAT Architecture with Memory

The proposed FRAT architecture with memory is shown in Figure 4.6. This is actually

the detailed view of the block diagram shown in Figure 4.1.

Address Logic Initializer

Input [7.0]

m r

Aecumulatorl

4

AccunmIator2

Memory Blocki 4

MUX2

 * Memory Block2 4

MUX3

V

AVG[15:0]

 Accumulator3 4

FRAT [11:0]

C

0

N

T

a

0

L

L

E

B.

Figure 4.6: Proposed FRAT architecture with memory

41

Address Logic Initializer, MUM and Accumulatorl constitute the Address Generator. If

we denote m, c and r that satisfy the equations 4.1, 4.2 and 4.3 respectively, we can

formulate the Table 4.3.

= (C1[7]7 + m) (modp) (4.1)

C:[j]k = (Cj[/Jk+i + r) (modp) (4.2)

C1[f+1]i = (C1[/]7 + c) (modp) (4.3)

In the above three equations, Cf[j]k denotes the kth pixel for the jth coefficient of slice i.

Table 4.3: Values of m, r and cfor the Radon slices

m r c
6 0 1
4 3 0
6 6 0
6 5 6
6 1 1
2 2 1
2 1 0
4 4 0

From the architecture we see that the Address Logic Initializer outputs m, r and c values

according to the look up table (Table 4.3) for each FRAT slices. MUX1, controlled by the

controller, outputs one of these values at every clock cycle and Accumulatorl

accumulates the output value of MUX1. This gives the row address of the pixels. The

column address is generated by a counter included in the controller. Accumulatorl is a

3-bit l's complement accumulator which actually performs the mod 7 operation for

generating the correct row address of each successive pixel of each successive

coefficient. Accumulator2 and MUX2 give the mean of the image. This mean value is

42

subtracted from the image for best energy compaction. Actually, the output of MUX2 is

seven times the mean value, so it is subtracted once after adding the seven pixels for each

FRAT coefficient. The two Memory Blocks are of size 70, and for transforming images

these two memory blocks are first loaded with successive image blocks of size 70. Two

memory blocks have been used to keep the pipeline always full (a double buffered

architecture). Computation of the Radon coefficients is immediately started when

Memory Block 1 is loaded with the first image block. While the computation of

coefficients for Memory Blocki is carried out, Memory Block2 is loaded with the second

image block. IvIIJX2 is used to select one of the registered mean values of Accumulator2,

because the loading of Memory Block2 and computation of the mean value for this block

will be finished before the end of the computation of coefficients for Memory Blocki. In

this way, both the average and the image are available for the immediate start of

computation for the second Memory Block at the end of the first one. Both registers and

dual port block RAMs have been used as Memory Blocks in the simulation and synthesis

of the architecture and the results are given in Chapter 5.

4.2.3 Proposed Memoryless FRAT Architecture

The proposed memoryless architecture for FRAT is shown in Figure 4.7. This is actually

a parallel input architecture. The AGs are the Address Generator blocks for the seven

pixels of each of the FRAT coefficients. Here the Address Logic Initializer outputs two

values for each of the seven AGs. These two values are m and c, where m is the row

address of the first pixel of the first coefficient i.e., C[7] and c is the value that satisfies

the equation 4.4.

43

= (CI[j]k+ c) (modp) (4.4)

Here CI[j]k denotes the kth pixel for thejth coefficient of slice i. This gives us Table 4.4.

ilpoo[70]
ilp0l[7:0]
1p02[7:0]
VpO3[7:O]
ifpO4[7:O]
11p05[7.0]
iJpO6[7.O]
ilplO[7.0]

i1p66[7.0]

CONTROLLER

Address Bus (Column)
V

Address Logic Initializer

V

AGI

11111111
AG2 AG3 AG4 AG5

LLlL
AG6 AG7

Address Bus (Row)

 P.

 0.

 J.

M

U

x

- IN
A
D
D
E
R

Figure 4.7: Proposed memoryless FRAT architecture

01 AVG[I5:0]

 FRAT [11:0]

Table 4.4: Values of ml, m2, m3, m4, m5, m6, m7 and cfor the Radon slices

ml m2 m3 m4 m5 m6 m7 c (for every AG)
6 6 6 6 6 6 6 1
3 6 2 5 1 4 0 4
6 5 4 3 2 1 0 1
6 4 2 0 5 3 1 1
0 1 2 3 4 5 6 0
1 3 5 0 2 4 6 6
1 2 3 4 5 6 0 6
4 1 5 2 6 3 0 3

44

The AGs are 3-bit I's complement accumulators. So, the mod 7 operation is performed

internally. The controller provides the column addresses which are fixed for each of the

seven AGs except for the case of vertical lines. This special case is also handled by the

controller. The (row, column) addresses are then used to select the inputs of the IvIUX.

The seven pairs of (row, column) addresses select seven inputs for computing each of the

Radon coefficients. These seven outputs of the MUX are then added by an adder

compressor array and stored internally in a queue of seven registers. So, when all seven

coefficients of the first slice are available, the Adder sequentially outputs the Radon

coefficients and AVG of the image matrix. Again, this AVG is seven times the mean of

the input image matrix.

4.3 Proposed DWT Architecture

The proposed DWT architecture is shown in Figure 4.8. The architecture is based on a

Daubechies D4 wavelet filter bank.

Input [11:0] Delay Line 01
Adder Butterfy

Network

Adder Compressor
Array

(Low Pass and
High Pass)

-* L[15:0]

-' H[15:0]

Figure 4.8: Proposed DWT architecture

The forward transform uses two analysis filters h (low pass) and g (high pass) with filter

coefficients as given in equations 4.5 and 4.6. These are actually the floating point

representations of up to six decimal places of equations 3.13 and 3.15. These irrational

45

numbers forced us to choose a precision for the purpose of implementation. Hence we

have chosen to represent the coefficients with an accuracy of 13 bits. The assumption is

reasonable since 13 bits representation gives high enough accuracy for the fixed-point

implementation.

h[01 = 0.482963, h[l] = 0.836516, h[2] 0.224144, h[3] = -0.129409 (4.5)

g[0] —0.129409, g[l] = -0.224144, g[2] = 0.836516, g[3] = -0.482963 (4.6)

One operation that we did not include in the FRAT architectures of the previous section

is the multiplication of the FRAT coefficients by the normalization factor, p"2 as

shown in equation 3.6. This operation can be equivalently performed by using the pre-

divided filter coefficients shown in equation 4.7 and 4.8 in the DWT architecture.

h[O] = 0.182543, h[1]= 0.316173, h[2]=0.084718, h[3]= -0.048912 (4.7)

g[O] = -0.048912, g[l] = -0.084718, g[2] = 0.316173, g[3] = -0.182543 (4.8)

The above coefficient matrices can be distributed into 13 bits (coefficient word length) as

shown in Figure 4.9. "."in the matrices represents the binary point.

For the computation of the DWT, the serial input data is passed through a delay

line, as shown in Figure 4.10, which provides parallel data to the computational block-

Adder Butterfly Network, shown in Figure 4.11. The two MUXs used in Figure 4.10

solve the dyadic problem of the FRAT slices. The adder butterfly network is found by

finding the computational redundancy in the coefficient matrices (Figure 4.9) by

considering the computation of both the low and high pass coefficients. Table 4.5 shows

the adder butterfly network outputs. In total, there are fourteen partial products for low

pass and high pass coefficients. These products are then passed through two identical

46

parallel arrays of adders (Figure 4.12) called the Adder Compressor Array. This finally

gives the DWT coefficients, which are in fact the FRIT low pass and high pass

coefficients of the combined (FRAT plus DWT) architecture. Table 4.6 shows how the

outputs of the adder butterfly network are connected to various inputs of the adder

compressor array.

_0 0 0 1

0

0

1

0

1

1

1

0

1

0

1

1

001

101

001

111

000

010

001

011

110

101

111

g=

l 1 0 l

• • • •

1101

1111

1100

1011

0100

0000

1100

1001

0010

1111

1010

1 0 1 0

Figure 4.9: Low pass and high pass filter coefficients matrices.

XO
ZI

9 X3

Figure 4.1O. Delay line

47

/

Wol

W02

W 03

W 04

W o5

W 06

W07

W08

W 09

W I0

W I1

Wi2

W I3

W I4

Figure 4.11: Adder butterfly network

Table 4.5: Operation performed by the adder butterfly network

Outputs Expression
wol xo

w02 xo+xI

w03 xo+x1+x2

w04 x2

w05 xo+xI+x3

w06 xo+x2

w07 x0+x2+x3

wos xo+x3

w09 x0+x1+x2+x3

Wi0 X1+X3
Wi1 xl

Wi2. x1+x2+x3

Wi3 x2+x3

Wi4 x3

48

LJH01

UH02

VH03

L1H04

VH05

LJH06

U}T07

L1H08

JJH09

UH10

L1H11

L1H12

JJH13

IJH14

LJH

Figure 4.12: Parallel adders of adder compressor array

Table 4.6: Assignments of inputs of the adder compressor array

Inputs For low pass For high pass
'1' '1'

L/H02 W 14 W05
L1H03 W 14 W 05
L1H04 W 10 V'709
L/H05 W08 Wo2
L/.H06 Vu 2 W07
L/H07 \V01 'Wi1
T ITT
JI1O8 VV1T O6 U

L/H09 W 08
L/H10 W 13 Iwo8
L/lT11 VT03 V.104
L/H12 W 10 Wo9
L/H13 \\T09 VT06
L/H14 Wo9 V.106

49

4.4 The FRIT Prototype

This section shows the proposed FRIT architecture by combining the proposed

architectures for FRAT and DWT of the previous two sections. Figures 4.13 and 4.14

show the proposed FRIT architectures with memory and without memory, respectively.

The proposed architectures are coded in Verilog HDL [39]. For simulation of the Verilog

codes (Appendix B), the ModelSim HDL simulator [40] is used. In order to generate the

image bit-stream for the hardware and to reconstruct the image from the output FRIT

coefficient bit-stream of the hardware, MATLAB programs are written (Appendix A).

Input [7:0]

4
Accumulator2

Address Logic Initializer

M C

MUM

Accumulator! I

 -* Memory Blocki 4

MUX2

 Memory Block2

N

I

R

0

L

L
4-

B

MUX3

Accumulator3

Adder Compressor
Array

(Low Pass and
High Pass)

-•# L{15:0]

- ' V H[I5:0]

Adder Butterfy
Network

Delay Line

Figure 4.13: Proposed FRIT architecture with memory

AVG[l5]

50

CONTROLLER

Address Bus (Column)J,

Address Logic Initializer

i/pOO[7:O]
ifpOl[7:O]
i/pO2[7.O]
11p03[7:O]
i1p04E7.OJ
i1p05[7.O]
i/p06[7.O]
i/plO[7.O]

i/p66[7.O]

IIIIliUliliII
AG1 AG2 AG3 AG4 AGS AG6 AG7

TTTTTTT
Address Bus (Row) >

0.

 +

M

U

x

A
D
D
E
R

Delay
Line

—+AVG[15:O]

Adder Butterfy
Network

v,v

—+L[150]
Adder Compressor

Array
(Low Pass and
High Pass)

Figure 4.14: Proposed memoryless FPJT architecture

— IHt15O]

51

Chapter 5
Performance Analysis

5.1 Introduction

This chapter presents the simulation and synthesis results of the two proposed FRIT

architectures discussed in the previous chapter. By doing only waveform simulation it is

very difficult to judge whether or not the designed system meets the standard

requirements. So a system simulation method has to be performed in order to confirm

that the system meets the requirements. To do so, a system simulation test bench has been

developed which provides an efficient way to process data and display the processed data

dynamically during the simulation process. Several standard test bench images have been

used. The performance measure that has been used is the peak signal to noise ratio

(PSNR) discussed earlier in this thesis.

52

5.2 Simulation Results

The proposed architectures are coded using Verilog HDL. The Verilog codes are then

compiled and simulated by ModelSim software. In order to interface the image with the

hardware, MATLAB programs are written. CIF and QCIF image types are used for

simulation. First the image is read by a MATLAB program that generates a binary input

file. This file is used for simulation of the hardware by ModelSim, which generates two

binary output files. One contains the low pass FRIT coefficients and the other contains

the high pass FRIT coefficients. Then another MATLAB program is used for the inverse

transform. Here, the number of retained coefficients can be specified. This overall

process results in a reconstructed image of the original input, which is then used for

performance measures; i.e., PSNR calculation.

5.2.1 FRIT Architecture with Memory

Figure 5.1 and Table 5.1 give the I/O interface description of the Verilog model. Figure

5.2 shows a snapshot of the simulation waveforms. The core latency is 76 cycles, hence

the first pair of low and high pass output is available after 76 cycles and thereafter, the

core outputs a pair of coefficients every 14 cycles.

Input [7:0]

Clock

Reset

FRIT module with
Memory

 L[15:0]

 H[15:0]

 AVG [15:0]

 OP—ready

 C_ready

Figure 5.1. I/O ports of the FRIT module with memory

53

Table 5. 1: I/O signal description of the FRIT module with memory

Signal I/O Description
Input [7:0] Input 8-bit wide pixel data-in of a 7x7 block
Clock Input Core clock signal
Reset Input Core reset signal, active low
L [15:0] Output 16 bit (11 bit digit and 5 bit decimal places) low pass

FRIT coefficient output
H [15:0] Output 16 bit (11 bit digit and 5 bit decimal places) high pass

FRIT coefficient output
AVG [15:0] Output 16 bit (11 bit digit and 5 bit decimal places) average

value output of the input image matrix
OP—ready Output Active high indicate the availability of each new FRIT

coefficients at the output
C_ready Output Active high indicate core is ready to take input. Goes

low as the memory is filled with the next image block.

w-k /n!rL

vJJIHD
/ /04De,,r

u 0-0_

-

A'O

JiJ!LTJL(L1t1L 1TT1•ao flhT1tI1

1

D(0Y141
0
31O0
1101311
730-3
01o30

I I I I I t I I
(-1 II 10 1-1 12 I- 1-1 ID 1-4 10

I I I I I I i I I
(-2 1-5 1 ID Ii I 14 00 1-1 0-2
00111 111 00q 110001 I0001 010110 IO100I 000111 001 04 011110 I
b1Q10111111Q100
03

J 1 JL_j 1 J 1 J 1 JLJ 1 flL

4 L

500 1&
I

1500
I I I

3000 4u

Figure 5.2. Snapshot ofModelSim simulation of the FRIT architecture with memory

After start/reset, "C—ready" goes low when both of the memory blocks are loaded with

successive blocks of image data. Thereafter it goes high when the core computes all the

FRIT coefficients of one of the embedded memory blocks. This allows the memory block

to be loaded with the next image block, while the core computes the FRIT coefficients of

the other image block.

54

5.2.2 Memoryless FRIT Architecture

Figure 5.3 and Table 5.2 give the port description of the written code for the memoryless

FRIT architecture.

i/poo [7:0]
i/pOl [7:0]
i/pO2 [7:0]

i/p66 [7:0]

Clock
Reset

L[15:0]

H[15:0]

AVG [15:0]

OP—ready

C_ready

Figure 5.3: I/O ports of the memoryless FRIT module

Table 5.2:1/0 signal description of the memoryless FRIT module

Signal I/O Description
i/poo [7:0] to i/p66 [7:0] Inputs 49 8-bit wide pixel data-in of a 7x7 block
Clock Input Core clock signal
Reset Input Core reset signal, active low
L [15:0] Output 16 bit (11 bit digit and 5 bit decimal places)

low pass FRIT coefficient output
H [15:0] Output 16 bit (11 bit digit and 5 bit decimal places)

high pass FRIT coefficient output
AVG [15:0] Output 16 bit (11 bit digit and 5 bit decimal places)

average value output of the input image
matrix

OP—ready Output Active high indicate the availability of each
new FRIT coefficients at the output

C ready Output Active high indicate core is ready to take
input. Stays low as long as the core computes
the FRIT coefficients of the input image block

Figure 5.4 shows a snapshot of the simulation waveforms. The core latency is 10 cycles,

hence the first pair of low and high pass outputs is available after 10 cycles and thereafter

the core outputs a pair of coefficients every 2 cycles.

55

110211 1I
01-f 100tkilCi -0

o - L of72

EI-

L
•; JntoV00 -

01- /00riAVG

'-

1rn_l&Do0

0i-i i/Jot_Dc
I1L1ksA0

ff3.-.0 i0uI00_top-I_0k)t
- /rnHD
•

Cli

010101111

2
170010

SIC

010

(01102101

01102J01
coii02ilo

lilfiflfl 1sLanmrnnnrLlnh1nrnmJlnnaInRrul1J1nnswm-LnrL 1 1flSL1LflJ1.

1010101111 101100

1703

00002 I 101102 4
I 1 1 ill

1-1 Ii TO 1-1 12

11211

LJ III

2-2 1-1 10 1-4 II

II I I

IT I I

I I I I 1 1 1 I

14 1-3 33 I-i T-2J II 1-1 14

I I I I III I I

I I I III 3

1 1

1-2 1-3 12
II

II

5 -2 4 11 0-4 I-i .21 11 V- -

 nrnnu_r JUL

400

UUL

Figure 5.4: Snapshot of ModelSim simulation of the memo,yless architecture

"C—ready" stays low while the core computes the FRIT coefficients of an image block.

After that "C—ready" goes high to indicate the core is ready to process the next image

block.

Since the VO and internal signal precision in the proposed two architectures are

kept equal, the simulation results of the two architectures produced identical

reconstructed images; i.e., equal PNSR for the same compression ratios. Figure 5.5 shows

the reconstructed "Lena" image of resolution 352x288 (CIF resolution), for five different

compression ratios. Table 5.3 shows the PSNR values of the reconstructed "Lena" images

achieved with the precision that has been used in the architectures for various

compression ratios and Figure 5.6 shows this graphically.

56

(a) Original image

(c) Compression ratio - 4:1

(b) Compression ratio - 2:1

(d) Compression ratio - 8:1

(e) Compression ratio - 16:1 (f) Compression ratio - 32:1

Figure 5.5: Original and reconstructed "Lena" images of different compression

Table 5.3: Comparison of PSNR of "Lena" image for different compression ratios

Compression ratio PSNR (dB)
2:1 39.38
4:1 33.08
8:1 29.54
16:1 26.94
32:1 25:15
64:1 23.95

20

57

45

40

15

0 10 20 30 40 50 60

Percentage of Retained Coefficients (%)

Figure 5.6: Plot ofpercentage of retained coefficients vs. PSNR

Table 5.4 shows another analysis of the proposed architectures. This table illustrates that

the two proposed architectures conform to the real time processing requirement.

Table 5.4: Comparison of time required for transforming CIF and QCIF images with a

core speed of 50MHz

Architecture Latency (ns) Image 1 frame (ms) 30 frames (ms)
With Memory 1,520 QCIF 4.8 144

OF 19.2 576
Memoryless 200 QCIF 0.7 21

CIF 2.74 83

58

5.3 Synthesis Results

The proposed architectures have been synthesized using Xilinx ISE development tools

[41]. The synthesis target device is the xc2v3 000 of the Virtex-II device family. For

power estimation, the Xilinx foundation series utility "XPower" has been used. The

calculated power dissipation shown in Table 5.5, is for a 1.5 volt supply voltage with a

clock frequency of 50 MHz and a capacitive load of 10 pF, assuming an ambient

temperature of 25° C.

Table 5.5: Synthesis results of the proposed architectures

Architecture # of Slices # of 4-input
LUTs

Gate Count Speed
(MHz)

Power
(mW)

With
Memory

826 1,187 17,629 84.33 140.05

Memoryless 1,115 2,098 21,485 66.35 290.06

Table 5.6 gives a comparison in terms of components used in the architectures. The table

shows that the two proposed architectures are free of multipliers and implemented using

only adders. This is the most attractive feature of the proposed architectures. Various bit

length adders have been used throughout the architecture to meet the accuracy

requirement.

Table 5.6: Comparison of number of components used in the architectures

Architecture # of BRAMs # of Adders # of REG.
(FFs)

With
Memory

2
(Eqv. 131,078 GC)

47
(Eqv. 1008, 1-bit cells)

672

Memoryless - 69
(Eqv. 1090, 1-bit cells)

339

59

The proposed with memory and memoryless FRIT architectures require only 47 and 69

adders, respectively. This is equivalent to using 1008 and 1090 1-bit adder cells. Figure

5.7 and 5.8 show the Xilinx Engineering Capture System (ECS) view of the synthesized

architectures.

Figure 5.7: Xilinx ECS view of the proposed FRIT architecture with memory

Figure 5.8: Xilinx ECS view of the proposed memoryless FRIT architecture

60

The most significant difference between the two proposed architectures is that

they access the input matrix in two different ways. The first architecture (with memory)

is a serial input architecture, while the second one (memoryless) is a parallel input

architecture. This imposes a constraint on the inputs of the second architecture; the inputs

(entire image block) should be available before the start of the computation and should

not be changed until the computation of coefficients for the entire block is over. From

this point of view the first architecture (with memory) is a more practical implementation.

The architecture with memory uses two 49x8 dual port block RAMs while the other one

uses a large MUX for inputs. Although there is not that much of a difference in speed,

gate count and the number of adders used in the two proposed architectures, there is a

substantial difference in the power consumption. This is because of the difference in the

throughput of the two architectures at the same operating frequency. The second

architecture's throughput is seven times that of the first one. So in order to compare the

power dissipation, the second architecture was again simulated, while maintaining the

same throughput as the first architecture, and the power dissipation was found to be 41.25

mW. This is almost 3.5 times less consumption than the first architecture, which

consumes 140.05 mW for the same throughput. 36 adders have been used for computing

the 1 -D DWT coefficients and the rest (11 for the first and 33 for the second architecture)

have been used for computing the FRAT coefficients and addressing pixels in both of the

proposed two architectures. Direct implementation of the FRIT requires 7 adders plus 1

multiplier for computing the FRAT coefficients and 8 multipliers plus 6 adders for

computing the 1-D DWT coefficients. This means that for 13 bit precision, the

61

improvement of the proposed two architectures over a direct implementation is 61.15%

and 42.97%, respectively. From a quality point of view, the reconstructed images from

the two proposed architectures are identical because same level of precision has been

used in designing the architectures.

62

Chapter 6
Conclusions and Future Work

6.1 Summary of Accomplishments

In this thesis, two original VLSI architectures for the finite ridgelet transform (FRIT)

have been proposed. This is original in the sense that these two are the first ever proposed

VLSI architectures for this transform based on a comprehensive literature survey.

Moreover, within the proposed two FRIT architectures, two original architectures for the

finite Radon transform (FRAT) and a state-of-the-art architecture for the l-D discrete

wavelet transform (DWT) are also proposed. Although the Radon transform has long

been used in many edge detection applications, the finite Radon transform which was

developed for representing images did not receive sufficient attention. This most likely

explains why no VLSI architectures have been found in the literature for this transform.

The first part of the two proposed FRIT architectures therefore present two new VLSI

63

architectures for the finite Radon transform. The DWT part of both architectures is also

novel and is based on the NEDA architecture for computation of DCT coefficients. The

simulation and synthesis results of the two proposed architectures conform to the real

time processing requirements for QCIF as well as OF image sequences.

6.2 Recommendations for Future Work

In order to reduce complexity, the CIF/QCIF images have been partitioned into 7x7 size

image blocks for processing by the architectures. This has introduced block artifacts into

the reconstructed images, similar to those introduced by the DCT, which are noticeable

with a high compression ratio. One of the recommendations for future work is therefore

to explore the feasibility of adaptive blocking which would allow a tradeoff between the

complexity and the quality of the reconstructed images. This scheme would adaptively

partition the image into various sizes of suitable blocks where edges look straight. A

filtering approach may also be exploited for smoothing the artifacts.

The application of the FRIT results better reconstructed images over the DWT

only in the case of images with many lines. This suggests that a hybrid type transform

should be studied which would adaptively choose between the DWT and the FRIT

depending on the image contents.

In this thesis, an architectural solution for the FRIT algorithm has been presented,

which has been demonstrated for a 1-level forward transform. For more levels, the same

proposed 1-D DWT framework can be used with the proposed FRAT architectures. This

solution may be further explored, optimizing parameters of the architectures such as area,

power, accuracy, etc.

64

Finally, an inverse transform architecture for the finite ridgelet transform is yet to

be proposed. A low complexity solution suitable for integration with the proposed

forward transform architectures would make them useful for the next generation

standards of image compression.

65

References

[1] H. J. Nussbaumer, Fast Fourier transform and convolution algorithms,

Heidelberg, Germany: Springer-Verlag, second edition, 1981, 1982.

[2] H. V. Sorensen, C. S. Burrus, and M. T. Heideman, Fast Fourier transform

database, Boston: PWS Publishing, 1995.

[3] N. Ahmed, T. Nataranjan, and K. R. Rao, "Discrete Cosine Transform," IEEE

Transaction on Computers, vol. C-23, pp. 90-93, January 1974.

[4] R. M. Rao and A. S. Bopardikar, Wavelet Transforms: Introduction to Theory and

Application, Addison Wesley Longman Inc. Reading, Massachusetts, 1998.

[5] G. K. Wallace, "The JPEG still picture compression standard", Communications of

the ACM, vol. 34, pp. 30-45, April 1991.

[6] D. L. Gall, "MPEG: a video compression standard for multimedia applications",

Communications of the ACM, vol. 34, pp. 46-58, April 1991.

[7] ISO! IEC JTC1/ SC29! WG1, Document N390R, New York Item: JPEG 2000

image coding system, March 21, 1997.

[8] S. Mallat, "Multifrequency channel decompositions of images wavelet models",

IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 37. no. 12, pp.

2091-2110, December 1989.

[9] S. Mallat, "A theory for multiresolution signal decomposition: The Wavelet

Representation", IEEE Transaction on Pattern Analysis and Machine Intelligence,

vol. 11, no. 7, pp. 674-693, July 1989.

[10] W. R. Zettler, J. Huffman and D. C. P. Linden, ."Application of compactly

supported wavelets to image compression", Proceedings of SPIE: Image

Processing Algorithms and Techniques, vol. 1244, pp. 150-160, 1990.

66

[11] B. J. Candes and D. L. Donoho, "Ridgelets: a key to higher- dimensional

intermittency," Phil. Trans. R. Soc. Lond. A., pp. 2495-2509, 1999.

[12] M. N. Do and M. Vetterli, "The finite ridgelet transform for image representation,"

IEEE Transactions on Image Processing, vol-12, issue-1, pp. 16-28, Jan 2003.

[13] A. M. Tekalp, Digital video processing, Prentice Hall, New Jersey, 1995.

[14] C. E. Shannon, "A mathematical theory of communication", Bell System Technical

Journal, vol. 27, pp. 379-423 (part I), pp. 623-656 (part II), 1948.

[15] K. Sayood, Introduction to Data Compression, Morgan Kaufmann Publishers Inc.,

San Francisco, California, 1996.

[16] K. R. Castleman, Digital Image Processing, Prentice Hall, Englewood Cliffs, New

Jersey, 1996.

[17] M. V. Wickerhauser, "High-resolution still picture compression", Digital Signal

Processing: A Review Journal, vol. 2, pp. 204-226, 1992.

[18] Complex Number Operators, Waveforms, and Phasors, class notes for EE 205,

College of Engineering, University of Tennessee, Spring 1999.

[19] 0. Rioul and M. Vetterli, "Wavelets and signal processing," IEEE Signal

Processing Magazine, pp. 14-38, October 1991.

[20] D. A. Huffman, "A method for the construction of minimum redundancy codes,"

Proceedings of the I.R.E., pp. 1098-1101, September 1952.

[21] N. Abramson, Information Theory and Coding, McGraw Hill, New York, 1963.

[22] F. Matus and J. Flusser, "Image representation via a finite Radon transform," IEEE

Trans. on Pattern Analysis and Machine Intelligence, vol. 15, no. 10, pp. 996-1006,

October 1993.

[23] S. R. Deans, The Radon Transform and Some of its Applications, John Wiley &

Sons, 1983.

[24] B. D. Bolker, "The finite Radon transform," in Integral Geometry (Contemporary

Mathematics, vol. 63), S. Helgason, R. L Bryant, V. Guillemin and R. 0. Wells Jr.,

Eds., pp. 27-50, 1987.

67

[25] I. Daubechies, "Orthonormal bases for compactly supported wavelets,"

Communications on Pure and Applied Mathematics, vol. 41, pp. 909-996,

November 1988.

[26] I. Daubechies, "Ten lectures on wavelets," Regional Conference Series in Applied

Mathematics, vol. 61, SIAM, 1992.

[27] S. Mallat, A wavelet tour of signal processing, Academic Press, London, UK,

second edition, 1999.

[28] G. Knowles, "VLSI architecture for the discrete wavelet transform", lEE

Electronics Letters, vol. 26, no. 15, pp. 1184-1185, July 1990.

[29] Aware Wavelet Transform Processor (WTP) Preliminary, Aware Inc., Cambridge,

MA, 1991.

[30] K. Parhi and T. Nishitani, "VLSI architectures for discrete wavelet transforms",

IEEE Transactions on VLSI Systems, vol. 1, no. 2, pp. 191-202, June 1993.

[31] M. Vishwanath, R. M. Owens and M. J. Irwin, "VLSI architectures for the discrete

wavelet transform," IEEE Transaction on Circuits and Systems- II, vol. 42, no. 5,

pp. 305-316, May 1995.

[32] S. J. Chang; M. H. Lee and J. Y. Park, "A high speed VLSI architecture of discrete

wavelet transform for MPEG-4," IEEE Transaction on Consumer Electronics, vol.

43, issue. 3, pp. 623-627, August 1997.

[33] A. Peled and B. Liu, "A new hardware realization of digital filters," IEEE

Transactions on ASSP, vol. 22, no. 6, pp. 456-462, December 1974.

[34] D. F. Elliott, Handbook of Digital Signal Processing, Academic Press, pp. 964-

972, 1987.

[35] W. P. Burleson, "A VLSI Design Methodology for Distributed Arithmetic,"

Kluwer Journal of VLSI Signal Processing, vol. 2, pp. 235-252,1991.

[36] G. K. Ma and F. J. Taylor, "Multiplier policies for digital signal processing," IEEE

ASSP Magazine, pp. 6-19, January 1990.

[37] S. A. White, "Applications of distributed arithmetic to digital signal processing: a

tutorial review," IEEE ASSP Magazine, pp. 4-19, July 1989.

68

[38] A. Shams, W. Pan, A. Chidanandan, and M.A Bayoumi, "A low power high

performance distributed DCT architecture," Proceedings of the IEEE Computer

SocietyAnnual Symposium on VLSI, pp. 21 —27, April 2002.

[39] 1364-2001 IEEE Standard for Verilog Hardware Description Language, IEEE,

ISBN 0-7381-2827-9,2001.

[40] http://www.model.com/, ModelSim,'A Mentor Graphics Products, 2003.

[41] Synthesis and Simulation Design Guide, Xilinx Development System, Xilinx Inc.,

2002.

69

Appendix A
MATLAB Codes

A.1 Introduction

This section of appendix contains the MATLAB files that have been used for interfacing

between image data and hardware designed in Verilog HDL.

A.2 MATLAB Codes

There are 3 MATLAB .m files - "IMGinput.m", "IMGoutput.m" and "PSNR.m".

A.2.1 "IMGinput.m"

This program reads CIF/QCIF images and generates binary input file name 'ipframe.txt'.

*

01 Reads CIF/QCIF images and generates binary input file name
tjpframetxt

70

File Name: IMGinput.m
Design Type: MPTLAB .m file

Input:
image : Input CIF/QCIF image

Output:
x : Input CIF/QCIF image matrix

This utility program is originally developed by Choudhury Ashiq
Rabman

{rahmanc@enel.ucalgary.ca} as a part of M.Sc research work.

*

function x = IMGinput (image)

Read image and save in in x

[x] = imread(image);

if (size (x)
BLOCKS

end
if (size (x)

BLOCKS
end

== [288, 352])
= 2142; for CIF

== [144, 176])
= 546; 9.for QCIF

Create binary input stream file
fid = fopen('ipframe.txt','w');

B= im2col(x, [7 7], Idistinctt).

for ± = 1:BLOCKS

y = B(:,i);
y1 = [y(1:7) y(8:14) y(15:21) y(22:28) y(29:35) y(36:42)
yl = y1';
yl =

for j
ytemp
ybO =

ybl =

yb2 =

yb3 =

yb4 =

yb5 =

yb6 =

yb7

= 1:49
= double(yl);
mod (ytemp(j) ,2);
mod(ytemp(j) ,2);
mod (ytemp(j) ,2);
mod (ytemp(j) ,2);
mod (ytemp(j) ,2);
mod (ytemp(j) ,2);
mod(ytemp(j) ,2);
mod(ytemp(j) ,2);

ytemp(j) = fix(ytemp(j)/2);
ytemp(j) = fix(ytemp(j)/2);
ytemp(j) = fix(ytemp(j)/2);
ytemp(j) = fix(ytemp(j)/2);
ytemp(j) = fix(ytemp(j)/2);
ytemp(j) = fix(ytemp(j)/2);
ytemp(j) = fix(ytemp(j)/2);

%Write image to the binary input file

y(43:49)]

71

fprintf(fid, ', yb7, yb6, yb5, yb4, yb3, yb2,
ybi, ybO);

end

fprintf(fid, '\n');

end

fclose(fid);

A.2.2 "IMGoutput.m"

This program reconstructs images with the specified number of most significant

coefficients from the two binary input files 'frit_LP .txt' and 'frit_HP.txt'. 'fritLP.txt'

contains the low pass FRIT coefficients and the average value of the input image and

'frit_HP.txt' contains the high pass FRIT coefficients. It uses the function 'ifrit', originally

developed by Minh N. Do for inverse FRIT transform. This function is available in the

frit toolbox that can be downloaded from the following link

http://www.ifp.uiuc.eduJ-minhdo/software/

*

% Reconstructs images with the specified number of most significant

% coefficients from the two binary input files 'frit_LP.txt' and
'frit_HP.txt'. tfrit_LP.txtt contains the low pass FRIT coefficients
and the average value of the input image and 'frit_HP.txt' contains
the high pass FRIT coefficients. It uses the function 'ifrit',
originally developed by Mirth N. Do for inverse FRIT transform. This
function is available in the frit toolbox that can be downloaded from

% the following link
% http://www.ifp.uiuc . edu/-minhdo/software/

File Name: IMGoutput.m
6 Design Type: MATIJAB .m file

Input:
nofCOFF Number of most significant coefficients to use for

inverse transform

% Output:

72

X : Reconstructed image matrix

01 This utility program is originally developed by Choudhury Ashiq

Rabman

{rabmanc©enel.ucalgary.ca} as a part of M.Sc research work.

*

function X = IMGoutput (nofCOFF)

dwtmode(' per ');

Reading output binary stream file

[LPDi1O, LPDi9, LPDi8, LPDi7, LPDi6, LPD±5, LP]Ji4, LPDi3, LPDi2, LPDil, LPDiO, LPD
el, LPDe2,LPDe3, LPDe4, LPDe5, AVGDi10, AVGDi9, AVGDi8, AVGDi7, AVGD16,

AVGDi5, AVGDi4, AVGDi3, AVGDi2, AVGDil, AVGDIO,

AVGDel,AVGDe2 ,AVGDe3 ,AVGDe4 ,AVGDe51 = textread('frit LP .txt', 'c c c

%C c c c c c c c c c 'c c %c P.c c c c c c c c c c c

%C %c c c c');

[HPDi1O, ,HPDi8, HPDi7, HPDi6, HPDi5, HPDi4, HPDi3, HPDi2, HPDi1, HPDiO, HPD

el,HPDe2,HPDe3,HPDe4,HPDe5] = textread('frit_HP.txt','c Osc Oic c c c

c c tc tc tc tc 'c %c c c');

y = 0;
z = 1;

LP = magic(8);

HP = magic(8);

LP = LP(:);

HP = HP(:);

1 = [447];

for k=l: size (LPDilO, 1)

LP(z) = (LPDilO(i)_48)*1024 + (LPDi9(i)_48)*512 + (LPDi8(i)_48)*256

+ (LPDi7(i)_48)*128 + (LPDi6(i)_48)*64 + (LPDi5(i)_48)*32 + (LPDi4(i)-
48)*16 + (LPDi3(i)_48)*8 + (LPDi2(i)_48)*4 + (LPDil(i)_48)*2 +

(LPDi0(i)-48) + (LPDe1(i)_48)*0.5 + (LPDe2(i)_48)*0.25 + (LPDe3(i)-

48)*0.125 + (LPDe4(i).48)*O.0625 + (LPDe5(i)_48)*O.03125;

if ((LPDi10(i)-48) == 1)

LP(z) = LP(z) -2048;

end

HP(z) = (HPDi10(i)_48)*1024 + (HPDi9(i)_48)*512 + (HPDi8(i)_48)*256

+ (HPDi7(i)_48)*128 + (HPDi6(i)_48)*64 + (HPDi5(i)_48)*32 + (HPDi4(i)-

48)*16 + (HPDi3(i)_48)*8 + (HPDi2(i)_48)*4 + (HPDil(i)_48)*2 +

(HPDi0(i)-48) + (HPDel(i)_48)*0.5 + (HPDe2(i)_48)*0.25 + (HPDe3(i)-

48)*0.125 + (HPDe4(i)48)*0.0625 + (HPDe5(i)_48)*0.03125;

73

if ((HPDi10(i)-48) == 1)

HP(z) = HP(z) -2048;
end

if (mod(i,32)==0)

y = y + 1;
z = 1;

A = [LP(1:4) LP(5:8) LP(9:12) LP(13:16) LP(17:20) LP(21:24)

LP(25:28) LP(29:32); HP(l:4) HP(5:8) HP(9:12) HP(13:16) HP(17:20)

HP(21:24) HP(25:28) HP(29:32)];

DC = (AVGDi10(i)_48)*1024 + (AVGDI9(i)_48)*512 + (AVGDi8(i)-

48)*256 + (AVGDi7(i)_48)*128 + (AVGDi6(i)_48)*64 + (AVGDi5(i)_48)*32 +

(AVGDi4(i)_48)*16 + (AVGDi3(i)_48)*8 + (AVGDi2(i)_48)*4 + (AVGDi].(i)-

48)*2 + (AVGDi0(i)-48) + (AVGDel(i)_48)*0.5 + (AVGDe2(i)_48)*0.25 +

(AVGDe3(i)_48)*0.125 + (AVGDe4(i)48)*0.0625 + (AVGDe5(i)_48)*0.03125;

Taking most significant coefficients

C = A(:);

form= 1:64

mdx = 0;

for n = 1:64

if (abs(C(m))<abs(C(n)))
mdx = mdx + 1;

end

end

if (mdx > (nofCOFF-1)) C(m) = 0;

end

end

C = [C(1:8) C(9:16) C(17:24) C(25:32) C(33:40) C(41:48)

C(49:56) C(57:64)];

im7x7 = ifrit (C, 1, DC, 'db2');
img (: , y) = 1m7x7 (:);

else z = z + 1;

end

i = i + 1;
end

if (size(LPDi10,1) == 68544)

X= col2im(img, [7 71,[288 352], 'distinct'); for CIF

image = 'CIF';

end

if (size(LPDi10,1) == 17472)

X= col2im(img,[7 7],[144 176], distinct'); for QCIF

image = 'QCIF';

end

X = uint8 (X);

imshow (x)

74

n2 = int2str(nofCOFF);

name = strcat(image,tt,n2,t.jpgt) ;

imwrite(X,name, tjpgt);

A.2.3 "PSNR.m"

This program computes the peak signal to noise ratio (PSNR) of the reconstructed image.

*

Gives the Peak Signal to Noise Ratio (PSNR) of the reconstructed
image.

96 File Name: PSNR.m
Design Type: MATLAB .m file

Input:
image : Input image
est : Reconstructed image matrix

% Output:
s : Peak Signal to Noise Ratio (PSNR)

This utility program is originally developed by Choudhury Ashiq
Rabman

{rahmanc@enel.ucalgary.ca} as a part of M.Sc research work.

*

function s = PSNR (image, est)
in= imread(image);

in = douiDle(in);
est = double(est);

error = in - est;
[x yl = size(in);

temp = sum(error(:)/2)/(x*y);

s = 20 * loglO (255 I sqrt(temp));

75

Appendix B
Verilog HDL Codes

Bi Introduction

This section of appendix contains the Verilog HDL files of the two proposed FRIT

architectures. Verilog 2000 syntax has been using in coding.

B.2 Codes for FRIT Architecture with Memory

There are 15 Verilog HDL files in total for this architecture. These are - "stimulus.v",

"module_top.v", "logic_rNIT.v", "mux3to 1.v", "acc_row.v", "memoryblock.v",

"sum_for_avg.v", "avgperline.v", "mux2to 1 .v", "acc_FRAT.v", "delay_line.v",

"adder_bfly.v", "adr_compressor.v", "counter.v" and "controller.v".

76

B.2.1 "stimulus.v"

I-
/I
I-
/I

I-
II
I-
II Last Modified: Dec, 2003
II Copyright (c) 2004

II All Right Reserved.

Stimulus for simulation

File Name: stimulus.v
Design Type: Verilog .v file

This hardware utility is originally developed by Choudhury Ashiq
Rahman {rabmanc@enel.ucalgary.ca} as a part of M.Sc research work.

module stimulus
#(parameter Width = 8, Qblocks = 546, BElements = 49, TElements =
104958)

II TElements = 104958 for CIF and 26754 for QCIF
reg [Width-1:0] memory_input [0:TElements-l];
reg [Width-l:0] IP;

reg clk, rst;
wire [Width+7:0] L, H, AVG;

integer i, k, fuel, file2;

module— top m_top(L, H, AVG 1 OP— ready, C_ready, IP, clk, rst);

initial
begin

rst = ltbo;
clk = l'bl;

i = 0;
k = 0;

$readmemb (' ipframe.txt" I;
filel = $fopen(h1fritLP.txtt);

fi1e2 = $fopen(h1fritHP.txthl);

#15 rst = -rst;
end

always #10 clk =

always@ (AVG)
if (i == TElements && k) begin

$fclose(filel);
$fclose(fi1e2);

$ stop;

77

end else k =

always® (OP_ready)
if (OP— ready && rst) begin

$f display (filel, "th th tb ib", L[15:51, L[4:01, AVG[15:5],

AVG [4:01);
$fdisplay(file2, "th H[15:51, H[4:01);

end

always® (posedge clk)
if (C— ready)

begin
if (i == TElements) IP = 0;
else begin

IP = memory input [1];
i = i + 1;

end
end

endrnodule

B.2.2 "module top.v"

II Top Module
I-
II File Name: module_top.v
II Design Type: Verilog .v file

I-
II This hardware utility is originally developed by Choudhury Ashiq
II Rabman {rahmanc@enel.ucalgary.ca} as a part of M.Sc research work.
I-
II Last Modified: Dec, 2003

II Copyright (c) 2004
II All Right Reserved.

module module top
#(parameter Width = 8)
(output [Width+7:0] L, H, AVG,
output OP— ready, C_ready,
input [Width-l:0] inpt,
input clk, rst);

wire [Width-G:0} count, m, C. r, op_mux, col, row, col_dummy, countj;
wire [Width-1:0] val, vall, va12;
wire [Width+3:0] FRAT;
wire [Width+5:01 Ml, M2, Mlor2;
wire [Width+15:0] xO, xl, x3;

wire [Width-i-13:0] x2;

78

wire [Width+14:O] n_avg;

wire [Width+7:O] w3;
wire [Width+12:O] w7, w12, w13;
wire [Width+13:O] w8;
wire [Width+14:O] w6, w9, wlO;

wire [Width+16:O] w2, w5;
wire [Width-3:O] ADDW, ADDR;
wire [Width+2:O] L_Digit, H_Digit, avg_Digit;
wire (Width-4:01 L_Decimal, H_Decimal, avg_Decimal;

assign L = {L_Digit, L_Decimal};
assign H = {H_Digit, HDecimal};
assign AVG = {avg_Digit, avg_Decimal};

or (C- ready, el, e2);

sum_for_avg sfavg (Ml, M2, inpt, el, e2, clk, rst);
mux2t01 4t(Width+G) mux_avg (Mlor2, Ml, M2, eni, en2);
avg_perline avgline (avg_Digit, avg_Decimal, n_avg 1 Mlor2, count_j,

row, col, clk);

counter countr (count, nc, clk, rst);
logiclNlT lINIT (m, C. r, count);
mux3t01 mux_init (op_mux, m, c, r, i, j);

acc_row
acci (row, op_mux, clk, rst, el, e2);

controller contri (col, col_dummy, i, j, nc, count_j, ADDW, ADDR,
el, e2, enl, en2, OP-ready, row, count, clk, rst);

memoryblock mem7x7_l (vail, inpt, ADDW, ADDR, el, clk);
memoryblock mem7x7_2 (va12, inpt, ADDW, ADDR, e2, clk);
mux2tol mux_op (val, vail, va12, enl, en2);

accFRAT acc2 (FRAT, val, {l'bl, n_avg[22:12]}, col_dunìmy, clk, rst,

el, e2)
delay- line dl (xo, xl, x2, x3, {FRAT, n_avg [11:0] }, count_j, col_dunimy,
clk) ;,

adder bfly bfly (w2, w3, w5, w6, w7, w8, w9, wlo, w12, w13, xo, xl, x2,
x3, coldunimy, clk, rst);

adr_compressor lowPass CL_Digit, L_Decimal, {x3[23], x3}, wlo, w8, w12,
{xo[23],xo[23:5]}, w6[22:4], w13[20:4], w3, w9[22:9], count_j,

col_dummy, clk);
adr compressor highPass (H-Digit, HDecimal, w5, w9, w2[24:3], w7,

(xi [231 ,xl[23:5] },
19'b0000000000000000000, w8[21:5], {x2[211,x2[21:7]}, wG[22:9],

count_j, coidunimy, clk);

endmodule

79

A modified version of this "module_top.v" file is given below when using array of

registers as memory.

I-
II
I-
II Design Type: Verilog .v file

I-
II This hardware utility is originally developed by Choudhury Ashiq
II Rabman {rahmanc@enel.ucalgary.ca} as a part of M.Sc research work.
I-
II Last Modified: Dec, 2003

II Copyright (c) 2004
II All Right Reserved.

Top Module

File Name: module_top.v

module module top
#(parameter W_idth = 8)
(output [Width+7:0] L, H, AVG1
output OP— ready, C_ready,
input [Width-l:0] inpt,
input cik, rst);

wire
wire
wire
wire
wire

wire
wire

wire
wire
wire
wire
wire
wire
wire

[Width-6:0] count, m, c, r, op_mux, col, row, col_dummy, count_i;
[Width-l:0] val, vail, va12;
[Width+3:0] FRAT;

[Width+5:0] Ml, M2, Mlor2;
[Width+lS:0] x0, xl, x3;

[Width+13:0] x2;
[Width-i-14: 0] n_avg;

[Width+7 : 0]
[Width+12 : 0]
[Width+13 : 0]
[Width+14 :0]
[Width+16 : 0]
[Width+2 :0]
[Width-4 :01

w3;
w7, w12, w13;
w8;
w6, w9, w10;
w2, w5;

L_Digit, H_Digit, avg_Digit;
LDecimal, H_Decimal, avg_Decimal;

assign L = {L_Digit, LDecimal};
assign H = {H_Digit, H_Decimal};
assign AVG = {avg_Digit, avg_Decimal};

or (C— ready, el, e2);

sum_for_avg sfavg (Ml, M2, inpt, el, e2, clk, rst);
mux2tol #(Width+6) mux_avg (Mlor2, Ml, M2, enl, en2);

80

avg_perline avgline (avg_Digit, avg_Decimal, navg,
row, col, clk);

Mlor2, count_j,

counter countr (count, nc, clk, rst);
logiclNlT uNIT (m, c, r, count);
mux3t01 muxinit (opmux, m, c, r, i, j) ;
acc_row

acci (row, op_mux, clk, rst, el, e2);
controller contrl (col, coldunmiy, i, j, nc, count_j,
clk, el, e2, rst);

OP- ready, row,

memoryblock mem7x7_l (vail, el, enl, l'bo, 1'bl, e2, inpt, row, col,
count, i, j, clk, rst);
memoryblock mem7x7_2 (va12, e2, en2, l'bl, 1'bo, el, inpt, row, col,
count, i, j, clk, rst);
mux2t01 muxop (val, vail, va12, enl, en2);

accFR2T acc2 (FR1T, val, {i bl, n_avg[22 :12] }, col dummy, clk, rst,

el, e2);
delay- line dl (xo, xl, x2, x3, {FRAT, n_avg [11:0] }, count_j, col_dummy,
clk);

adder _bfly bfly (w2, w3, w5, w6, w7, w8, w9,
x3, col_dummy, clk, rst);

adr_compressor lowPass (L-Digit, L_Decimal,
{xo[23],xO[23:5]}, w6[22:4], w13[20:4]

col_dummy, clk);
adr_compressor highPass (H-Digit, H_Decimal,

{xl[23] ,xl[23:5] },
19'b0000000000000000000, w8[21:5], {x2[21],x2[21:7]}, w6[22:9],

count_j, col_dummy, clk);

endmodule

B.2.3 "logic_INIT.v"

wl0, w12, w13, x0, xl, x2,

{x3 [23], x3}, w10, w8, w12,
w3, w9[22:91, count_j,

w5, w9, w2[24:3], w7,

Address Logic Initializer, generates m, c and r values.

I-
II File Name: logiclNlT.v
II Design Type: Verilog .v file

I-
/I This hardware utility is originally developed by Choudhury Ashiq
II Ralirnan {rabmanc@enel.ucalgary.ca} as a part of M.Sc research work.

II
Last Modified: Dec, 2003

II Copyright (c) 2004
II All Right Reserved.

81

module logiclNlT
#(parameter width = 3)
(output reg [width-1:01 m, c, r,
input (width-1:01 count);

always@(count)

case (count)
3'b000: begin

m = 3'bllO; c = 3'bOOl; r = 3'bOOO;
end

3'bOOl: begin
m = 3'blOO; C = 3'bOOO; r = 3'b011;
end

3'bOlO: begin
m = 3'bllO; c = 3'bOOO; r = 31b110 ;

end
3'b011: begin

m = 3'bllO; c = 31b110 ; r = 31b101 ;

end
3'blOO: begin

in = 3'bllO; C = 3'bOOl; r = 3'bOOl;
end

3'b101: begin
m = 3'bOlO; c = 3'bOOl; r = 3'bOlO;
end

3'bllO: begin
in = 3'bOlO; c = 3'bOOO; r = 3'bOOl;
end

3'blll: begin
m = 3'blOO; c = 3'bOOO; r = 3'blOO;
end

endcase
endmodule

B.2.4 "mux3tol.v"

II MtJXl, selects one of the inputs (m, c or r) for Accumulatorl

I-
II File Name: mux3tol.v

Design Type: Verilog .v file

I-
/I This hardware utility is originally developed by Choudhury Ashiq

Rabman {rabmanc@enel.ucalgary.ca} as a part of M.Sc research work.

II
Last Modified: Dec, 2003

II Copyright (c) 2004
II All Right Reserved.

82

module mux3t01
if (parameter Width = 3)
(output reg [Width-1:01 out,
input [Width-l:0] ml, in2, in3,
input select_i, select_i);

always@(inl, in2, 1n3, select!, select_j)
begin

casex ({selectj, select_i})
2'boo: out = ml;
2'bol: out = in2;
2'blx: out = in3;
endcase

end
endmodule

B.2.5 "ace—row-VI

I-
/I
I-
/I

This hardware utility is originally developed by Choudhury Ashiq
II Rahman {rahmanc@enel.ucalgary.ca} as a part of M.Sc research work.
I-
II Last Modified: Dec, 2003
II Copyright (c) 2004
II All Right Reserved.

Accumulatorl, generates row addresses of the pixels.

File Name: a.cc_row.v
Design Type: Verilog .v file

module acc_row
#(parameter Width = 3)
(output [Width-l:01 accout,
input [Width-l:0] acc_in,
input clock, reset, el, e2);

reg carry;
reg [Width-l:0} sum;

always@(posedge clock, negedge reset)
begin

if (-reset)
begin

sum <= 1;
carry <= 0;

end
else if (-el 11 -e2)
begin

83

carry, sum) <= sum + acc_in + carry;
end

end

assign acc_out = sum + carry;

encimodule

B.2.6 "memoryblock.v"

II Memory Block (Xilinx Dual Port Block RAM)

I-
II File Name: memoryblock.v
/1 Design Type: Verilog .v file

I-
II This hardware utility is originally developed by Choudhury Ashiq
1/ Rabman {rahmanc@enel.ucalgary.ca} as a part of M.Sc research work.
II
/I Last Modified: Dec, 2003
II Copyright (C) 2004
II All Right Reserved.

module memoryblock
#(parameter Element = 49, BitLength = 8)
(output reg [BitLength-1:0] memvalue,
input EBitLength-i:01 inpt,
input [5:01 2DDW,
input [5:0] 2\DDR,
input empty,
input cik);

reg [BitLength-i:0] memory [Element-1: 0];

always@ (posedge clk)
begin

if (empty) memory[ADDW] <= inpt;
memvalue <= memory[ADDRI

end

endmodule

A modified version of this "memoryblock.v" file is given below when using array of

registers as memory.

84

II Memory Block (using array of 8 bit registers)

I-
II File Name: memoryblock.v
1/ Design Type: Verilog .v file

I-
II This hardware utility is originally developed by Choudhury Ashiq
II Rahman {rahmanc@enel.ucalgary.ca} as a part of M.Sc research work.
II
I! Last Modified: Dec, 2003
II Copyright (c) 2004
II All Right Reserved.

module memoryblock

#(parameter Column = 7, BitLength = 8)
(output reg [BitLength-l:0] memvalue,
output reg empty,
output reg enable,

input p1, p2, e_other,
input [BitLength-i:0] inpt,
input [2:0] row, col, count,

input i, j,
input clk, reset);

reg [5:0] 2DDR;
reg [BitLength-1:0] memory_rO [Column-1: 0];
reg [BitLength-1:0] memory_ri [Column-1: 0];
reg [BitLength-i:0] memory_r2 [Column-1: 0];
reg [BitLength-i:0] memory_r3 [Column-1: 0];

reg [BitLength-i:0] memory_r4 [Column-1: 0];
reg [BitLength-i:0] memory_r5 [Column-1: 0];
reg [BitLength-i:0] memory_r6 [Column-1: 0];

always@(posedge clk, negedge reset)
begin

if (-reset)
begin
2DDR <= 1;
empty <= 1;
enable <= 0;
memvalue <= 0;
memory_ro[0] <= 0;

memory ro[1] <= 0;
memory rO[2] <= 0;
memory ro[3] <= 0;
memory ro[4] <= 0;
memory ro[5] <= 0;
memory ro[6] <= 0;
memory_ri[0] <= 0;
memory rl[1] <= 0;
memory_ri[2] <= 0;
memory_rl[3] <= 0;

85

memory rl[4] <= 0;
memory rl[5] <= 0;

memory_rl[6] <= 0;
memory— r2[0] <= 0;
memory r2[l] <= 0;
memory—r2[21 <= 0;
memory—r2[3] <= 0;
memory_r2 [4] <= 0;
memory_r2 [5] <= 0;
memory— r2[61 <= 0;
memory—r3[01 <= 0;
memory— r3[l] <= 0;
memory—r3[21 <= 0;
memory_r3 [3] <= 0;
memory—r3[41 <= 0;
memory— r3[51 <= 0;
memory—r3[6] <= 0;
memory— r4[01 <= 0;
memory— r4[l] <= 0;
memory— r4[2] <= 0;
memory— r4[3] <= 0;
memory— r4[4] <= 0;

memory_r4E5] <= 0;
memory_r4[6] <= 0;
memoryr5 [0] <= 0;
memory_r5[1] <= 0;

memory_r5[2] <= 0;
memory— r5[31 <= 0;
memory— r5[4] <= 0;
memory— r5[51 <= 0;
memory— r5[6] <= 0;
memory— r6[01 <= 0;
memory—r6[11 <= 0;
memory— r6[2] <= 0;

memory— r6[3] <= 0;
memory— r6[4] <= 0;
memory_r6[5] <= 0;

memory r6[6] <= 0;
end

else begin
if (empty && (pl<p2 11 -e_other))
begin

enable <= 0;
case (ADDR)

6'bOOOOOl : memory rO[0] <= inpt;
6'bOOOOlO memory_ro[l] <= inpt;
6'bOOO011 : memory_rO[2] <= inpt;
6'bOOOlOO memory_rO[3] <= inpt;
6'bOOO101 : memory_ro[4] <= inpt;
6'b000llo memory_rO[5] <= inpt;
6'b000lll memory_rO[6] <= inpt;
6bOOlOOO : memory_rl[0] <= inpt;
6'boolool : memory_rl[l] <= inpt;

86

6'bOO101O : memory rl[21 <= inpt;
6'bOO101]. : memory rl[31 <= inpt;
6'bO011OO : memory_rl[41 <= inpt;
6'bO01101 : memory_rl[5] <= inpt;
6'bO011lO memory_rlE61 <= inpt;
6'bO011ll memory_r2[O] <= inpt;
6'bOlOOOO : memory_r2E11 <= inpt;
6'bOlOOOl : memory r2[2] <= inpt;
6'bOlOOlO : memory r2[3] <= inpt;
6'bOlO011 : memory_r2[4] <= inpt;
6'bO101OO : memory r2[51 <= inpt;
6'bO10101 : memory r2[61 <= inpt;
6'bO1011O : memory_r3[O] <= inpt;
6'bO1011l : memory_r3[11 <= inpt;
6'b011OOO : memory—r3[21 <= inpt;
6'b011OOl : memory_r3[3] <= inpt;
6'b01101O : memory_r3[41 <= inpt;
6'b011011 : memory_r3[5] <= inpt;
6'b011lOO memory_r3[6] <= inpt;
6'b011101 : memory_r4[O] <= inpt;
6'b011llO : memory_r4[l] <= inpt;
6'b011lll : memory_r4[21 <= inpt;
6'blOOOOO : memory_r4[31 <= inpt;
6'blOOOOl : memory_r4[4] <= inpt;
6'blOOOlO : memory_r4[51 <= inpt;
6'blOO011 memory r4[6] <= inpt;
6'blOOlOO : memory _r5[O1 <= inpt;
6'blOO101 : memory_r5[1] <= inpt;
6'blO011O : memory_r5[21 <= inpt;
6'blO011l : memory_r5[3] <= inpt;
6'b101OOO : memory_r5[41 <= inpt;
6'b101OOl memory_r5[5] <= inpt;
6'b10101O : memory_r5 [6] <= inpt;
6'b101011 : memory_r6[0] <= inpt;
6'b1011OO : memory_r6[1] <= inpt;
6'b101101 : memory_r6[21 <= inpt;
6tb101110 memory_r6[3] <= inpt;
6'b1011ll : memory_r6[4] <= inpt;
6'bllOOOO : memory_r6[5] <= inpt;
6'bllOOOl : begin

memory—r6[6] <= inpt;
empty <= 0;

end
endcase

ADDR <= ADDR + 1;
end

if ((enable 11 e_other) && empty)
begin

enable <= 1;
if (ADDR == 50) ADDR <= 1;

case (row)
3 tbOOl: memvalue <= memory_rO [col-li;

87

31b010: memvalue <= memory rl[col-l];

3'b011: memvalue <= memory r2[col-l];
3'blOO: - memvalue <= memory_r3[col-l];
3 'b101: memvalue <= memory— r4 [col-1];
3'bllO: memvalue <= memory r5[col-l];
default: memvalue <= memory rG[col-l];
endcase

if (count == 0 && row == 1 && col == 7 && -i &&
empty <= 1;

end
end

end
endmodule

B.2.8 "avg_perline.v"

-.j)

2nd part of Accumulator2 (Accumulator2 has been divided into two
parts, the other part is sum _ for _avg.v), it computes the 7 times

II mean value of the input image.
I-
II File Name: avgperline.v
II Design Type: Verilog .v file

I-
II This hardware utility is originally developed by Choudhury Ashiq
II Rahman {rahmanc@enel.ucalgary.ca} as a part of M.Sc research work.

II Last Modified: Dec, 2003
II Copyright (C) 2004
II All Right Reserved.

module avg_perline
#(parameter Width = 23)
(output reg [Width-13:O] avg_Digit,
output reg [Width-19:0] avg_Decimal,
output [Width-l:0] n_avg,
input [Width-10:0] z,
input [2:0] cj, row, col,
input clk);

wire [Width-1:0] wi, w2, w3;

assign wl = z, 9'b000OO000) + {3'b000,z,6'b000000};
assign w2 = {6'b000000,z,3'b000} + {9'b000000000,z};
assign w3 = wi + w2;
assign n_avg = -w3 + 1;

always® (posedge clk)

88

if (cj == 3 && row == 3 && col == 6)
begin

avg Digit <= w3[22:12];
avg Decimal <= w3[11:7];

end

endmodule

B.2.9 "mux2tol.v"

MUX2 or MtJX3, for selecting input to the Accuinu1ator3

I-
II File Name: mux2t01.v
II Design Type: Verilog .v file

I-
II This hardware utility is originally developed by Choudhury Ashiq

Rabman {rahmanc©enel.ucalgary.ca} as a part of M.Sc research work.

I-
II Last Modified: Dec, 2003
II Copyright (c) 2004
II All Right Reserved.

module mux2tol

#(parameter Width = 8)
(output [Width-1:0] out,
input [Width-1:0] ml, in2,
input eni, en2);

assign out = eni ? ml : (en2? in2 : 8'bxxxxxxxx);

endmodule

A modified version of this "mux2to 1.v" file is given below when using array of registers

as memory.

II MUX2 or MUX3, for selecting input to the Accumu1ator3

I-
II File Name: mux2t01.v
II Design Type: Verilog .v file

I-
II This hardware utility is originally developed by Choudhury Ashiq
II Rabman {rabmanc©enel.uáalgary.ca} as a part of M.Sc research work.
I-
/I Last Modified: Dec, 2003

89

II Copyright (c) 2004
II All Right Reserved.

module mux2tol
(parameter Width = 8)
(output reg [Width-1:01 out,
input [Width-l:0] ml, 1n2,
input enl, en2);

always@(inl, in2, enl, en2)
begin

out = 0;
if (eni) out = ml;
else if (en2) out = in2;

end
endmodule

B.2.1O "acc_FRAT.v"

II Accumulator3, generates FRAT coefficients
I-
II File Name: acc_FRT.v
II Design Type: Verilog .v file

I-
II This hardware utility is originally developed by Choudhury Ashiq
II Rabman {rabmanc@enel.ucalgary.ca} as a part of M.Sc research work.
I-
II Last Modified: Dec, 2003

II Copyright (c) 2004
II All Right Reserved.

module accFRAT
(parameter Width = 8)
(output reg signed [Width+3:0] acc_out,
input [Width-l:0] acc_in,
input [Width+3:0] avg1
input [2:0] col,
input clock, reset, el, e2);

reg [Width+3:0] sum;

always@(posedge clock, negedge reset)
begin

if (-.reset)
begin

sum <= 0;

90

acc_out <= 0;
end

else if (-el I -e2)
begin

if (col 1) sum <= sum + ace in;
else
begin

ace—out <= sum + ace— in + avg;
sum <= 0;

end
end

end

endmodule

B.2.11 "delay_Jine.v"

II Delay Line module
I-
II File Name: delay_line.v

Design Type: Verilog .v file

II This hardware utility is originally developed by Choudhury Ashiq
II Rabman {rabmanc@enel.ucalgary.ca} as a part of M.Sc research work.
I-
II Last Modified: Dec, 2003
II Copyright (c) 2004
II All Right Reserved.

module delay_line
#(parameter Width = 24)
(output reg [Width-l:0] xo, xl,
output reg [Width-3:01 x2,
output reg [Width-l:0] x3,
input signed [Width-l:0] ip,
input [2:0} ci, c2,
input elk);

reg [Width-i:01 zi, z2, z3, z4, z2temp, z3temp, iptemp;
reg [Width-3:0] zitemp;

always® (posedge elk)
begin

if (c2 == 2)
begin

z4 <= z3;

91

z3 <= z2;
if (ci == 1) z2 <= ip;

else z2 <= zi;
zi <= ip;

end

if (c2 == 3)
begin

if ((ci[O] ci[1] I Ic1[211)
begin

z3temp <= z3;
z2temp <= z2;
zitemp <= zi[23:2];
iptemp <= ip;

end

if (ci[O] && (ci[i] H ci[2]))
begin

xO <= z4;
xi <= z3;
x2 <= z2[23:2];
x3 <= zi;

end

else if (cl[O] && -ci[i] && -..ci[2])
begin

xO <= z3temp;
xi <= 22temp;
x2 <= zitemp;
x3 <= iptemp;

end
end

end
endinodul e

B.2.12 "adder_bfly.v"

II Adder Butterfly, generates the partial products for low pass and
II high pass FRIT coefficients.
I-
II File Name: adder _bfly.v
1/ Design Type: Verilog .v file

I-
II This hardware utility is originally developed by Choudhury Ashiq
II Rabinan {rahmanc@enel.ucalgary.ca} as a part of M.Sc research work.
I-
II Last Modified: Dec, 2003
II Copyright (c) 2004

92

II All Right Reserved.

module adder bfly
(parameter Width =
(output reg signed
output reg signed
output reg signed
output reg signed
output reg signed
output reg signed
output reg
output reg
output reg
output reg

25)
(Width-l:0] w2,
[Width-10:0] w3,

[Width-l:0] w5,
[Width-3:0] w6,
[Width-5:0] W7,

[Width-4:0] w8,
signed [Width-3:0] w9,
signed [Width-3:0] wlo,
signed [Width-5:0] w12,
signed [Width-5:O] w13,

input signed [Width-2:O] xO, xl,
input signed [Width-4:0] x2,
input signed [Width-2:0] x3,
input [2:0] ci,
input cik, reset);

always@(posedge cik, negedge reset)
begin

if (-reset)
begin

w2 <= 0; w6 <= 0;
W8 <= 0; w10 <= 0;
w13 <= 0; w3 <= 0;
w5 <= 0; w7 <= 0;
w9 <= 0; w12 <= 0;

end
else begin

if (CI == 4)
begin

w2 <= {xo[23]1x0} + {xi

W6 <= {xo[23],xo[23:2]}

w8 <= {xo[23],xO[23:3]}
wl0 <= {xl[23],xlE23:2]
w13 <= {x2[21],x2[21:2]

end
else if (ci == 5)
begin

end
end

end
endmodule

[23] ,xi);
+ {x2 [21]
+ {x3[23],
+ {x3[23]

} + {x3 [23]

x2);
x3 [23:31 };
,x3[23:21 1;
,x3[23:41 1;

w3 <= w2[24:9] + {x2[21],x2[21:7]};

w5 <= w2 + {x3[23],x3};

w7 <= w6[22:2] + {x3[23],x3[23:4]};
W9 <= w6 + wl0;
w12 <= w13 + {xl[23],xl[23:4]};

93

B.2.13 "adr_compressor.v"

Adder Compressor Array, gives the low pass and high pass FRIT
coefficients.

File Name: adr_compressor.v
Design Type: Verilog .v file

This hardware utility is originally developed by Choudhury Ashiq
Rabman {rabmanc@enel.ucalgary.ca} as a part of M.Sc research work.

Last Modified: Dec, 2003
Copyright (c) 2004
All Right Reserved.

module adr_compressor

#(parameter Width = 8)
(output reg signed [Width+2:0] LorH_Digit, //llbit
output reg [Width-4:0] LorH Decimal, //5bit
input signed [Width+16:0] zl,

input signed [Width-i-14:0] z2,
input signed [Width+13:0] z3,

input signed [Width+12:0] z4,
input signed [Width-i-11:0] z5,
input signed [Width+10:0] z6,
input signed [Width+8:0] z7,
input signed [Width+7:01 z8,
input signed [Width+5:01 z9,
input [2:01 ci, c2,
input clk);

wire [24:01 LH, zlinv;

assign zl_inv = -zi + 1;

assign LH = zl_inv +

{zl[24],zl[24:i]} +

{z2[22],z2[22],z2} +

{z3[21],z3[21],z3[211,z3} +

{z4[20],z4[20],z4[20],z4[20],z4} +

{z5[19] ,z5[19] ,z5 [19] ,z5[19],z5[19] ,z5} +

{z6El81 ,z6[18] ,z6[18] ,z6[18] ,z6[18] ,z6[18] ,z6} +

{z3 [211 ,z3 [211 ,z3 [21] ,z3 [21] ,z3 [21] ,z3 [21] ,z3 [211 ,z3 [21:41 } +
{z7[16] ,z7[16] ,z7[16j ,z7[16] ,z7[16] ,z7[16] ,z7[16] ,z7[161 ,z7} +

{z8 [15] , z8 [15] , z8 [151 , z8 [15] , z8 [151 , z8 [151 , z8 [15] , z8 [151 , z8 [15] , z

{z2 [22] , z2 [22] , z2 [221 , z2 [221 , z2 [22] , z2 [22] , z2 [22] , z2 [22] , z2 [22] , z

2[22],z2[22:8]} +

94

{z9[13],z9[13] ,z9[13],z9[13] ,z9[131 ,z9[13] ,z9[13] ,z9[13] ,z9[13] ,z
9[13],z9[13],z9} +

{z9[13],z9[13],z9[13] ,z9[13],z9[131 ,z9[13] ,z9[13] ,z9E13J ,z9[13] ,z
9[13],z9[13] ,z9(13],z9[13:l]};

always@ (posedge clk)
begin

if (ci 0 && c2 == 6)
begin

LorH_Digit <= LH[22:121;
LorH Decimal <= LH[ii:7];

end
end

endmodul e

B.2.14 "counter.v"

II Counter module, this is actually a part of controller, coded
II separately.
I-
II File Name: counter.v

Design Type: Verilog .v file

I-
II This hardware utility is originally developed by Choudhury Ashiq
II Rahnian {rabrnanc@enel.ucalgary.ca} as a part of M.Sc research work.
II
1/ Last Modified: Dec, 2003
II Copyright (c) 2004
II All Right Reserved.

module counter
#(paraineter width = 3)
(output reg [width-1:01 count,
input nextcount, cik, rst);

always@(posedge cik, negedge rst)
if (-rst) count <= 3'bOOO;
else if (-next— count)
begin

if (count == 3'biii) count <= 3'b000;
else count <= count + 3'bOOi;

end
endinodule

95

B.2.15 "controller.v"

II CONTROLLER
I-
II File Name: controller.v
II Design Type: Verilog .v file

I-
II This hardware utility is originally developed by Choudhury Ashiq
II Rahman {rahmanc@enel.ucalgary.ca} as a part of M.Sc research work.
I-
II Last Modified: Dec, 2003
II Copyright (c) 2004
II All Right Reserved.

module controller
#(parameter Width = 3)
(output reg [Width-i:0] col,
output reg [Width-i:0] col_dummy,
output reg i, j,
output reg next_count,

output reg [Width-i:0] int_count_j,
output reg [5:0] IDDW,
output [5:0] ADDR,
output reg empty_i, empty_2, eni, en2,
output reg OP— ready,
input [Width-i:0] row, count,
input clk, reset);

reg complete _sc, enable _i, enable- 2;
reg [Width-l:01 count_sc;
reg switch, ready;
reg [5:0] int_col;

assign ADDR = int_col + col;

always@ (row)
case (row)
3'booi: int col <= 6'biiiill;
3'bOlO: int col <= 6'b000llo;
3'b011: int_col <= 6'bO01101;
3'blOO: begin

int_col <= 6'bOiOlOO;
ready <= I'M;
end

3'b101: int col <= 6'bOilOil;
3'b110: int col <= 6'bi000lo;
3'bill: int col <= 6'bioiool;
default: int_col <= 6'bxxxxxx;
endcase

96

always@(posedge clk, negedge reset)
begin

if (-reset)
begin

col <= 3'bOOO;
i <= 0; j <= 0;
next count <= 1;
int_count_j <= 0;
count so <= 4;
col_dunimy <= 0;
completesc <= 0;
switch <= 0;

PDDW <= 0;

empty_i <= 1;
empty-2 <= 1;
enable_i <= 0;
enable-2 <= 0;
OP— ready <= 0;
ready <= 0;
eni <= 0;
en2 <= 0;

end

else begin

eni <= enable 1;
en2 <= enable_2;

if (count _sc == 0 && (-empty_i II -empty_2))
begin

if (col _dummy == 3tbi10)

begin
j <= 0;
next count <= 1;

col_duxnmy <= col— dummy +1;
if (ready) OP— ready <= -OP— ready;

if (int_count_j == 3blii
begin

i <= 0;
in€countj <= 0;
count_sc <= 1;

end
else int_count_j <= int_count_j + 1;

end
else if (int_count_j == 3'biil && col_dummy
begin

next count <= 0;
col_dunimy <= col— dummy +1;

3 'biOl)

97

J

end

<= 1;
<= 1;

else if (col_dummy == 3'biii)
begin

col_dummy <= 3'bOOi;
if (complete _sc)

begin
if (col == 7) col <= 3'bOOl;
else col <= col +1;

end
else complete_sc <= -complete_sc;

j <= 1;
i <= 1;
next count <= 1;

end

else
begin

col_dummy <= col_dummy +1;
<= 1;

i <= 1;
next count <= 1;

end
end

else if (col_dummy == 3'biiO && (-empty_i II -empty_2))
begin

j <= 0;
next count <= 1;
col_dummy <= col_dummy +1;
col <= col + 'bi;
if (ready) OP— ready <= -OP— ready;

if (int_count_j == 3'bill
begin

i <= 0;
int_count_j <= 0;

if (count_sc 7)
count_sc <= count_sc + 1;

else
begin

count_sc <= 0;
complete_sc <= 0;

end
end

else int_count_j <= int_count_j + 1;
end

else if (int_count_j == 3'biii && col_dummy == 3'biol &&
(-empty_i 11 -empty_2))

98

begin
next count <= 0;

col_dummy <= col_dummy +1;
col <= col + 'bi'

j <= 1;
I <= 1;

end

else if (col— dummy == 3 'bill && (-'empty_i 11 -empty_2))
begin

col_dummy <= 3'bOOi;
col <= 3'bOOi;

j <= 1;
i <= 1;
next count <= 1;

end

else if (-empty-1 11 -'empty_2)
begin

col_dummy <= col_dummy +1;
col <= col + 'bi;

j
I

next— count <= 1;
end

if (empty_i 11 empty_2)

begin

if (ADDW == 48)
begin

ADDW <= 0;

if (-switch) begin
empty_i <= 0;
switch <= -'switch;
end

else begin

empty —2 <= 0;
switch <= -'switch;
end

end
else ADDW <= ADDW + 1;

end

if (-'empty_i && -enable- 2)
begin

if (count == 0 && row == l,&& col
begin

empty_i <= 1;
enable_i <= 0;

enable-2 <= 1;
end
else begin

enable — 1 <= 1;

7 && -i && -j)

99

enable-2 <= 0;
end

end

if (-empty _2 && -enable- 1)
begin

if (count == 0 && row
begin

empty-2 <= 1;
enable — 1 <= 1;
enable-2 <= 0;

end
else begin

enable 1
enable_2

end
end

end

end

endmodule

<= 0;
<= 1;

1 && col 7 && •-i && -j)

A modified version of this "controller.v" file is given below when using array of registers

as memory.

II CONTROLLER
I-
II File Name: controller.v
/1 Design Type: Verilog .v file

I-
II This hardware utility is originally developed by Choudhury Ashiq
II Rabman {rabmanc@enel.ucalgary.ca} as a part of M.Sc research work.

II Last Modified: Dec, 2003
II Copyright (c) 2004
/7 All Right Reserved.

module controller

#(parameter Width = 3)
(output reg [Width-1:O] col,
output reg [Width-l:01 col—
output reg i, j,
output reg next count,
output reg [Width-1:01 int_count_j,
output reg OP— ready,
input [Width-1:0] row,

100

input cik, el, e2, reset);

reg complete _sc, ready;
reg (Width-1:01 cpuntsc;

always@(posedge clk, negedge reset)
begin

if (-'reset)
begin

col <= 3'bOOO;
i <= 0; j <= 0;
next— count <= 1;
int_count_j <= 0;
count_sc <= 4;
col_dunixny <= 0;
complete_sc <= 0;
OP—ready <= 0;
ready <= 0;

end

else if (count so == 0 && (-el 11 -e2))
begin

if (row == 4) ready <=
if (col_duinmy == 3'bllo)
begin

j <= 0;
next count <= 1;
col—dummy <= col—dummy +1;
if (ready) OP—ready <= -OP—ready;

if (int_count_j == 3'blll
begin

i <= 0;
int_count_j <= 0;
Count so <= 1;

end
else int_count_j <= int_count_j + 1;

end
else if (int_count_j == 3'bll]. && col_dummy == 3'b101)
begin

next count <= 0;
col_dummy <= col_dummy +1;

<= 1;
i <= 1;

end

else if (col—dummy == 3'blll)
begin

col _dummy <= 3'bOOl;
if (complete _sc)

begin
if (co]. == 7) col <= 3'bOOl;
else col <= col +1;

end

101

else complete_sc <= -complete_sc;

j <= 1;
i <= 1;
next count <= 1;

end

else
begin

col_dummy <= col_dummy +1;
j <= 1;
i <= 1;
next count <= 1;

end
end

else if (col_dummy == 3 'bl].O && (-el II -e2))
begin

if (row == 4) ready <= l'bl;
j <= 0;
next count <= 1;
col_dummy <= col—dummy +1;
col <= co]. + 'bi;
if (ready) OP—ready <= -OP—ready;

if (int_count_j == 3'blii
begin

i <= 0;
int_count_j <= 0;

if (count_sc 7)
countsc <= count_sc + 1;

else
begin

count_sc <= 0;
complete_sc <= o;

end
end

else int_count_j <= int_count_j + 1;

-e2))

end

else if (int_count_j == 3'blll && col_dummy == 3'b101 && (-el

begin
if (row == 4) ready <= i'bl;
next— count <= 0;
col_dummy <= col_dummy +1;
col <= col + 'bi;
j <= 1;
i <= 1;

end

else if (col_dummy == 3 'bill && (-el II -e2))
begin

II

102

if (row == 4) ready <= l'bl;
col_dunimy <= 3tb001;
col <= 3'bOOl;

j <= 1;
± <= 1;
next count <= 1;

end

else if (-el I -e2)
begin

if (row == 4) ready <= l'bl;
col_dummy <= col dummy +1;
col <= col + 'bi;

j

next count
end

end
endmodule

B.3 Codes for Memoryless FRIT Architecture

There are 12 Verilog HDL files in total for this architecture. These are - "stimulus.v",

"module _top.v", "logic_INIT.v", "add_gen.v", "muxip.v", "add...pixels.v", "frat.v",

"delay_line.v", "adder_bfiy.v", "adr_compressor.v", "counter.v" and "controller.v".

8.3.1 "stimulus.v"

/1 Stimulus for simulation
I-
II File Name: stimulus.v
II Design Type: Verilog .v file

I-
II This hardware utility is originally developed by Choudhury Ashiq
II Rabman {rahmanc@enel.ucalgary.ca} as a part of M.Sc research work.
'I
II Last Modified: Dec, 2003
II Copyright (c) 2004
II All Right Reserved.

module stimulus

103

#(parameter Width = 8, Qblocks = 546, BElements = 49, TElements =

104958)

II TElements = 104958 for CIF and 26754 for QCIF
reg [Width-1:01 memory input [0 :TElements-11;
reg [Width-l:0] ipoo, ipOl, ip02, ip03, ip04, ip05, ip06,

iplO, ipli, ipl2, ip13, ip14, ipis, ip16,
ip20, ip21, ip22, ip23, ip24, ip25, ip26,
ip30, ip31, ip32, ip33, ip34, ip35, ip36,
ip40, ip41, ip42, ip43, ip44, ip45, ip46,
ip50, 1p51, ip52, ip53, ip54, ip55, ip56,
ip60, ip61, ip62, ip63, ip64, ip65, ip66;

reg cik, rst;
wire [Width+7:01 L, H, AVG;

integer i, k, fuel, file2;

module- top rn_top (L, H, AVG, OP- ready, C_ready,
ipoo, ipOl, ipo2,
iplO, ipli, ipi2,
1p20, ip2i, ip22,
ip30, ip3l, ip32,
ip40, ip41, ip42,
ipso, ipsl, ip52,
ip60, ip6i, ip62,

initial
begin

rst = 1'bO;
clk = 1'bi;

i = 0;
k = 0;

ip03,
ipl3,
ip23,
ip33,
ip43,
ip53,
ip63,

ip04, ip05,
ipl4, ip15,
ip24, ip25,
ip34, ip35,
ip44, ip45,
ip54, ip55,
ip64, ip65,

ip06,
1p16,
ip26,
ip36,
1p46,
ip56,
1p66, cik, rst);

$readmenib ('ipframe .txt ' ,memory input);
fuel = $fopen("frit_LP.txt");
fi1e2 = $fopen("frit_HP.txt");

#15 rst = -rst;
end

always #10 cik = -cik; II a clock of 10 tu period

always@ (AVG)
if (i == TElements && -k) begin

$fclose(filei);
$fclose(file2);
$stop;

end else k =

always@ (OP_ready)
if (OP _ready && rst) begin

$fdisplay(filei, "O-.b b th ib", L[15:5], LE4:01, AVG[15:5],
AVG [4:01);

104

$f display (file2, 11 b tb", H[15:5], H[4:O]);
end

always@ (posedge cik)
if (C— ready)

begin

if (i == TElements)
begin

ipOO = 0;
ipOl = 0;
ip02 = 0;
ip03 = 0;
ip04 = 0;
ipO5 = 0;
ip06 = 0;
iplO = 0;
ipli = 0;
ipl2 = 0;
ipl3 = 0;
ipl.4 = 0;
ipl5 = 0;
ipl6 = 0;

ip20 = 0;
ip2l = 0;
ip22 = 0;
ip23 = 0;
ip24 = 0;
ip25 = 0;
ip26 = 0;
ip30 = 0;
ip3l = 0;
ip32 = 0;

ip33 = 0;
ip34 = 0;
ip35 = 0;
ip36 = 0;
ip40 = 0;
ip4]. = 0;
ip42 = 0;
ip43 = 0;
ip44 = 0;
ip45 = 0;
ip46 = 0;
ip50 = 0;
ipsl = 0;
ip52 = 0;
ip53 = 0;
ip54 = 0;
ip55 = 0;
ip56 = 0;
ipGO = 0;
ip6l = 0;
ip62 = 0;
ip63 = 0;

105

ip64 = 0;
ip65 = 0;
ip66 = 0;

end
else
begin

ipoo = memory_input[i];
ipO]. = memory_input [i+l];
ipo2 = memory_input [i+2];
ip03 = memory_input [i+3];
ip04 = memory_input[i+4];
ip05 = memory_input [i+5];
ip06 = memory_input [1+6];
iplO = memory_input [1+7];
ipli = memory_input[i+8];
ipl2 = memory_input[i+9];
ipl3 = memory_input[i+1O];
ipl4 = memory_input [i+11];

ipl5 = memory_input [1+12];
ipl6 = memory_input [1+13];
1p20 = memory_input [i+14];
ip2l = memory_input [i+15];
1p22 = memory_input [i+16];
ip23 = memory_input [1+17];
1p24 = memory_input [1+18];
1p25 = memory_input [i+19];

ip26 = memory_input [1+20];
ip30 = memory_input [1+21];
ip3l = memory_input [i+22];
1p32 = memory_input [1+23];
1p33 = memory_input [i+24];
ip34 = memory_input [i+25];
1p35 = memory_input [i+26];
ip36 = memory_input[i+27];
ip40 = memory_input [i+28];
ip4l = memory_input[i+29];
1p42 = memory_input (i+30];
1p43 = memory_input [1+311;
1p44 = memory_input [1+32];

ip45 = memory_input[1+33];
1p46 = memory_input [i+34];
ip50 = memory_input [1+35];
ip5l = memory_input [1+36];
1p52 = memory_input [i+371;
1p53 = memory_input [1+381;
1p54 = memory_input [i+39];
ip55 = memory_input[i+40];
ip56 = memory_input [1+41];
ip60 = memory_input [i+42];
ip6]. = memory_input [i+43];
ip62 = memory_input [i+44];
ip63 = memory_input [i+45];
ip64 = memory_input Ei+46];
1p65 = memory_input [i+47];

106

1p66 = memory_input[i+48];

± = i + 49;
end

end
endmodule

B.3.2 "module_top.v"

II Top Module
I-
II File Name: module top.v
II Design Type: Verilog .v file

1/
1/ This hardware utility is originally developed by Choudhury Ashiq
/1 Rabman {rahmanc@enel.ucalgary.ca} as a part of M.Sc research work.
I-
II Last Modified; Dec, 2003
II Copyright (C) 2004
II All Right Reserved.

module module top

*(parameter Width = 8)
(output [Width+7:0] L, H, AVG 1
output OP ready, C ready,
input [Width-1:0] ipoo, ipOl, ip02, ip03, ipO4, ip05, ip06,

iplO, ipil, ipl2, ip13, ip14, ip15, ipl6,
ip20, ip21, ±p22, ip23, ip24, ip25, ip26,
1p30, ip3l, ip32, ip33, ip34, ip35, ip36,
ip40, ip4l, ip42, ip43, ip44, ip45, 1p46,
ip50, 1p51, ip52, ip53, ip54, ip55, ip56,
ip60, ip61, ip62, ip63, 1p64, ip65, ip66,

input clk, rst);

wire [Width-6:01 coll, co12, c013, co14, co15, co16, co17,
addi, add2, add3, add4, add5, add6, add7,
count, ml, m2, m3, m4, m5, m6, m7, c, col_dummy;

wire [Width-4:01 LDecimal, H_Decimal, avg_Decimal;
wire [Width-l:01 opi, 0p2, 0p3, 0p4, 0p5, 0p6, 0p7;

wire signed [Width+2:01 ap_out, L_Digit, H_Digit, avg_Digit;

wire [Width+7:0] w3;
wire [Width+12:0} w7, w12, w13;
wire [Width+13:0] w8;

wire [Width+14:0] w6, w9, w10;
wire EWidth+16:01 w2, w5;

107

wire [Width+13:OJ x2;

wire [Width+15:O} xO, xl, x3, opf rat;

assign L = {L_Digit, L_Decimal};
assign H = {H_Digit, HDecimal};
assign AVG = {avg_Digit, avg_Decimal};

counter countr (count, nc, cik, rst);
logiclNlT uNIT (ml, m2, m3, m4, m5, m6, m7, c, count);

add_gen add _i
add_gen add2
add_gen add_3
add_gen add_4
add_gen add__5
add_gen add6
add_gen add__7

muxip

ip03,

ip23,

ip43,

ip63,

c014,

(addi,
(add2,

(add3,
(add4,
(add5,

(add6,
(add7,

ml,
m2,
m3,
m4,
m5,
m6,
m7,

mux_ip (op]., 0p2, 0p3,
ip04, ip05, ip06,

iplO, ipil, ip12,
1p24, ip25, ip26,

ip30, ip31, ip32,
ip44, ip45, ip46,

ip50, ip51, ip52,
ip64, ip65, ip66,

addi, add2, add3,
coi.5, co16, co17);

i, cik,
i, cik,
i, clk
i, cuk,

cik,
cik,

i, cik,

rst);
rst);
rst);

rst) ;•

rst);
rst);
rst);

0p4, op5, 0p6, 0p7, ipOO, ipOl, 1p02,

1p13, ip14, ip15, 1p16, ip20, ip21, ip22,

ip33, ip34, ip35, ip36, ip40, ip41, ip42,

ip53, ip54, ip55, ip56, ip60, ip61, ip62,

add4, add5, add6, add7, coil, c012, co13,

add_pixels ap (ap_out, opi, 0p2, 0p3, 0p4, 0p5, 0p6,
if rat fratop (opf rat, avg_Digit, avg_Decimal, ap_out,
nc, i, cik, rst);

0p7);
count, col_dun'tmy,

controller contri (coil, c012, co13, co14, co15, c016, co17, col_dummy,
C_ready, OP- ready, i, nc, count, cik, rst);
delay- line dl (xO, xl, x2, x3, opfrat, coldunimy, cik);

adder bfiy bfly (w2, w3, w5, w6, w7, w8, w9, wiO, w12, w13, xO, xl, x2,

x3)

adr_compressor lowPass (LDigit, L_Decimal, {x3[231, x3}, wlO, w8, w12,

{xO[23],xO[23:5]}, w6[22:4], w13[20:4], w3, w9[22:9]);
adr_compressor highPass (H-Digit, HDecimal, w5, w9, w2[24:3], w7,
{xl [231 ,xl[23:51 },

19tb0000000000000000000, w8[21:5], {x2[211,x2[21:7]}, w6[22:9]);

endmodui e

108

B.3.3 "logic_INIT.v"

II Address Logic Initializer, generates ml, m2, m3, m4, m5, m6, m7
II and c values.
I-
II
I-
II
I-
/I
I-
II Last Modified: Dec, 2003
II Copyright (c) 2004
7/ All Right Reserved.

File Name: logiclNlT.v
Design Type: Verilog .v file

This hardware utility is originally developed by Choudhury Ashiq
Rabman {rahmanc©enel.ucalgary.ca} as a part of M.Sc research work.

module logiclNlT

#(parameter width = 3)
(output reg [width-l:0] ml, m2, m3, m4, m5, m6, m7, c,
input [width-1:01 count);

always® (count)
case (count)

3'b000: begin
ml <= 3'blll; m2 <= 3'blll; m3
m5 <= 3'blll; m6 <= 3'blll; m7
end

3'bOOl: begin
ml <= 3'blOO; m2 <= 3'blll; m3
m5 <= 3'bolo; m6 <= 3'b101; m7
end

3'bolo: begin
ml <= 3'blll; m2 <= 3'bllo; m3
mS <= 31b011 ; m6 <= 3'bOlO; m7

end
3'b011: begin

ml <= 3'blll; m2 <= 3'b101; m3
m5 <= 3'bllO; m6 <= 31b100 ; m7

end
3'blOO: begin

ml <= 3'bOOl; m2 <= 31b010; m3
m5 <= 3'blol; m6 <= 3'bllO; m7
end

3'b101: begin
ml <= 3'bOlO; m2 <= 3'blOO; m3
m5 <= 3'b011; m6 <= 3'b101; m7
end

3'bllO: begin
ml <= 3'bOlO; m2 <= 3'boll; m3
m5 <= 3'bllO; m6 <= 3'blll; m7
end

<= 3'blll; m4 <= 3'blll;
<= 3'blll; c <= 3'bool;

<= 3'b011; m4 <= 3'bllO;
<= 3'bOol; c <= 3'bloo;

<= 3'blol; m4 <= 3'blOO;
<= 3'bool; c <= 3'bool;

<= 3'boll; m4 <= 3'bool;
<= 3'bOlO; c <= 3'bOOl;

<= 3'b011; m4 <= 3'blOO;
<= 3!blll; c <= 3'b000;

<= 3'bllO; m4 <= 3'bOOl;
<= 3'blll; c <= 3'bllO;

<= 3'blOo; m4 <= 3'b101;
<= 3'bOOl; c <= 3'bllo;

109

3'blll: begin
ml <= 3'b101; m2 <= 3'bOlO; m3 <= 3'bllO; m4 <= 3'b011;
m5 <= 3'blll; m6 <= 3'blOO; m7 <= 3'bOOl; c <= 3'b011;
end

endcase
endmodul e

B.3.4 "add_gen.v"

II AG, generates row addresses of the pixels.

I-
/I File Name: add_gen.v
II Design Type: Verilog .v file

I-
II This hardware utility is originally developed by Choudhury Ashiq
II Rabman {rabmanc@enel.ucalgary.ca} as a part of M.Sc research work.
I-
/I Last Modified: Dec, 2003
II Copyright (c) 2004
II All Right Reserved.

module add_gen
(parameter Width = 3)
(output reg [Width-1:0] addr,
input [Width-l:0] m, c,
input j, clock, reset);

reg carry;
reg [Width-l:0] sum;

always@(posedge clock, negedge reset)
begin

if (-reset)
begin

addr <= 0;
carry <= 0;
sum <= 0;

end
else
begin

if (-j)
begin

addr <= m;

{carry, sum} <= m + c;
end

else
begin

addr <= sum + carry;

110

carry, sum) <= sum + c + carry;
end

end
end

endmodule

B.3.5 "muxip.v"

II
II

MUX module, selects 7 inputs every cycle for computing FRAT
coefficients.

File Name: muxip.v
Design Type: Verilog .v file

This hardware utility is originally developed by Choudhury Ashiq
Rahinan {rabmanc@enel.ucalgary.ca} as a part of M.Sc research work.

Last Modified: Dec, 2003
Copyright (c) 2004
All Right Reserved.

module muxip
(parameter Width = 8)
(output reg [Width-l:0] opi, op2, op3, 0p4, op5, 0p6, 0p7,
input [Width-l:0] ipoo, ipOl, ip02, ip03, ipO4,

ipli, ipl2, ip13,
ip20,

ip33, ip34, ip35,
ip40,

ip53, ip54, ip55,
ip60,

input [Width-6:
c012, c013, c014,

ip05, 1p06, iplO,
1p14, ip15, ip16,
ip21, ip22, ip23, ip24, ip25, ip26,
ip36,
ip4l, ip42, ip43, ip44, ip45, ip46,
ip56,
ip6l, ip62, ip63, ip64, ip65, ip66,

0] addl, add2, add3, add4, add5, add6,
c015, co16, c017);

ip30, ip3l, ip32,

ip50, ip51, ip52,

add7, coll,

always®(ipoo, ipOl, ip02, ip03, ip04, ip05, ipO6, iplO, ipll, ip12,
ip13, ip14,

ip20,
ip34, ip35,

ip40,
ip54, ip55,

ip60,
add5, add6,

coil,
begin

ip15, ip16,
ip21, ip22,
ip36,
ip41, ip42,
ip56,
ip61, ip62,
add7,
co12, co13,

ip23,

ip43,

ip63,

co14,

case({addl, coll})
6'bOOlOOl: opi = ip00;
6'bOlOOOl: opi = iplO;

ip24,

ip44,

ip64,

col5,

ip25,

ip45,

ip65,

co16,

ip26,

ip46,

ip66,

c017)

ip30,

ip50,

addi,

ip31,

ip51,

add2,

ip32,

ip52,

add3,

ip33,

ip53,

add4,

111

G'b011OOl: opi = 1p20;
6'blOOOOl: opi = ip30;
6'b101OOl: opi = ip40;
6'bll000l: opi = ip5O;
6'blllOOl: op]. = ip60;
6'bOO101O: opi = ipOl;
6tb001011: opi = ip02;
6'bO011OO: opi = ip03;
6'bO01101: opi = 1p04;
61b001110: op]. = ip05;
6'bO011ll: opl = ip06;
default: op]. = 0;
endcase

case({add2, c012})
6'bOO101O: 0p2 = ipOl;
6'bO].00lO: 0p2 = ipli;
6'bOl].O].O: 0p2 = ip21;
6'blOOOlO: 0p2 = ip31;
6'b10101O: 0p2 = ip41;
6'bllOOlO: 0p2 = ip5l;
6'bll101O: 0p2 = ip6].;
6'bOlOOOl: 0p2 = iplO;
6'bOlOO].l: 0p2 = ipl2;
6'bOlolOo: 0p2 = ip].3;
6tbOl0101: 0p2 = ip14;
6'bOi.O11O: 0p2 = ip15;
6'bO1011l: 0p2 = ipiG;
default: 0p2 = 0;
endcase

case({add3, c013})
6'boO1011: 0p3 = ip02;
6'bOlO011: op3 = ipl2;
6'b011011: 0p3 = ip22;
6'blOO011: op3 = ip32;
6'b101011: 0p3 = 1p42;
6'bllO011: 0p3 = ip52;
6'bll1011: op3 = ip62;
6'b011OO].: 0p3 = ip20;
6'b01101O: 0p3 = ip21;
6'b011lOO: 0p3 = 1p23;
6'b011101: op3 = 1p24;
6'b011llO: 0p3 = ip25;
G'b011lll: op3 = ip26;
default: op3 = 0;
endcase

case({add4, c014})
6'bOO].].00: 0p4 = ip03;
6'bO101OO: 0p4 = ip13;
6'bOl].lOO: 0p4 = ip23;
6'b100100: op4 = ip33;
6'b1011OO: op4 = 1p43;

112

61b110100: 0p4
6'bllllOO: 0p4
6'bl0000l: op4
6'blOOOlO: op4
6'blOO011: op4
6'blOO101: op4
6'blO011O: 0p4
6'blO011l: 0p4
default: 0p4 =

endcase

= ip53;
= 1p63;
= 1p30;
= 1p31;
= ip32;
= ip34;
= ip35;
= 1p36;
0;

case({add5, col5})
6'bO01101: 0p5 = ip04;
6'bO10101: 0p5 = ip14;
6'b0ll101: op5 = ip24;
6'blOO101: 0p5 = ip34;
6'b101101: 0p5 = 1p44;
6'bl10101: 0p5 = ip54;
6'blll101: 0p5 = ip64;
6'b101OOl: 0p5 = 1p40;
6'b10101O: op5 = ip41;
6'blo1011: 0p5 = ip42;
6'b1011OO: op5 = 1p43;
6'b1011lO: op5 = ip45;

6'b1011ll: op5 = ip46;
default: op5 = 0;
endcase

case({add6, c016})
6'bOOi.11O: 0p6 = ip05;
6'bO1011o: 0p6 = ipl5;
6'b011llO: 0p6 = ip25;
6'blO011O: 0p6 = ip35;
6'b1011lO: op6 = ip45;
6'bl1011O: 0p6 = ip55;
6tb111110: op6 = ip65;
6'bllOOol: op6 = 1p50;
6'bllOOlO: op6 = ip51;
6'bllO011: op6 = 1p52;
6'bl101OO: 0p6 = ip53;
6'bl10101: 0p6 = 1p54;
6'bl1011l: 0p6 = ip56;
default: op6 = 0;
endcase

case({add7,
6 'bO011il:
6'bO1011l:
6'b011lll:
6'blO011l:
6'b1011ll:
6'bl1011l:
6 'blilill:
6'blllOOl:

C017))
op7 = 1p06;
op7 = ip16;
0p7 = ip26;
op7 = 1p36;
op7 = 1p46;
0p7 = ip56;
op7 = ip66;
op7 = 1p60;

113

6'bll101O: op7 = 1p61;
6'bll1011: op7 = ip62;
6'bllllOO: op7 = ip63;
6'blll101: op7 = ip64;
6'bll].l].O: op7 = 1p65;
default: 0p7 = 0;
endcase

end
endmodule

B.3.6 "add_pixels.v"

/1 1st part of Adder block, (Adder block has been divided into two
II parts, the other part is frat.v), adds 7 outputs of MtJX module
7/ every cycle for computing FRAT coefficients.
I-
II File Name: adcl_pixels.v

7/ Design Type: Verilog .v file
I-
II This hardware utility is originally dveloped by Choudhury Ashiq

Rahinan {rahmanc@enel.ucalgary.ca} as a. part of M.Sc research work.

I-
I/Last Modified: Dec, 2003
II Copyright (c) 2004
II All Right Reserved.

module add_pixels
(parameter Width = 8)
(output tWidth+2:0] op,
input [Width-1:0] xl, x2, x3, x4, x5, x6, x7);

wire [Width+2:0] wl, w2, w3, w4, w5;

assign wl = xl + x2;
assign w2 = x3 + x4;
assign w3 = x5 + x6;
assign w4 = wl + x7;
assign w5 = w2 + w3;
assign op = w4 + w5;

endmodule

114

B.3.7 "frat.v"

2st part of Adder block, (Adder block has been divided into two
parts, the other part is add_pixels.v), computes 7 times mean
value of the input image and the FRAT coefficients.

File Name: frat.v
Design Type: Verilog .v file

This hardware utility is originally developed by Choudhury Ashiq
Rabman {rahmanc@enel.ucalgary.ca} as a part of M.Sc research work.

Last Modified: Dec, 2003
II Copyright (c) 2004

II All Right Reserved.

module f rat

#(parameter Width = 8)
(output [Width+15:O] opf rat,
output reg (Width+2:0] avg_Digit,
output reg (Width-4:0] avg_Decimal,
input [Width+2:0] ap_out,
input [Width-6:0] count,
input (Width-6:01 col_dummy,
input no, i, olk, rst);

reg [Width+2:0] qi, q2, q3, q4, q5, q6, q7;

wire [Width+3:0] opfrat_temp;
reg [Width+5:0] sum, sum out;
wire [Width+14:0j avg, wi, w2, w3, op;

assign wi. = {sum_out,9'b000000000} + (3tb000,sum_out,Gtb000000} ;
assign w2 = {6tb000000,sum_out,3tb000} + {9'b000000000,sum_out};

assign avg = Wi + w2;

assign op = -avg + 1;
assign opfrat temp = qi + {l'bl,0p[22:12]);
assign opf rat = {opfrat_temp, opthl:0]};

always@(posedge cik, negedge rst)
begin

if (-rst)
begin

sum <= 0;
sum—out <= 0;
qi <= ii'b
q2 <= li'b
q3 <= ii'b
q4 <= ii'b
q5 <= li'b

115

q6 <= ll'bxxxxxxxxxxx;
q7 <= 11'bxxxxxxxxxxx;
avg_Digit <= 0;
avg_Decimal <= 0;

end
else
begin

if (col— dummy == 2)
begin

avg_Digit <= avgt22:12];
avg_Decimal <= avg[ll:7];

end

if (count == 0 && i)
begin

if (nc) sum <= sum + ap_out;
else
begin

sum out <= sum + ap_out;
sum <= 0;

end
end

qi <= q2;

q2 <= q3;
q3 <= q4;
q4 <= q5;

q5 <= q6;
q6 <= q7;
q7 <= ap_out;

end
end

endmodule

B.3.8 "delay_line.v"

II Delay Line module
I-
II File Name: delay_line.v
II Design Type: Verilog .v file

I-
/I This hardware utility is originally developed by Choudhury Ashiq
II Rabman {rahmanc@enel.ucalgary.ca} as a part of M.Sc research work.
I-
II Last Modified: Dec, 2003
II Copyright (c) 2004
II All Right Reserved.

116

module delay_line

if (parameter Width = 24)
(output reg [Width-1:01 xO, xl,
output reg [Width-3:O1 x2,
output reg [Width-1:01 x3,
input signed [Width-1:01 ip,
input [Width-22:O] ci,
input clk);

reg [Width-1:01 zi, z2, z3;

always® (posedge cik)
begin

z3 <= z2;
z2 <= zi;
zi <= ip;

if (Cl == 4 11 ci == 6)
begin

xO <= z3;
xi <= z2;

x2 <= zl[23:2];
X3 <= ip;

end
else if (CI == 2)
begin

xO<=z2;
xi <= z2;
x2 <= z1t23:2];
x3 <= ip;

end

else if (ci == 0)
begin

xO <= z3;
xl <= z2;

x2 <= zl[23:2];
x3 <= zl;

end

end
endmodul e

B.3.9 "adder_bfly.v"

II Adder Butterfly, generates the partial products for low pass and
II high pass FRIT coefficients.
I-
II File Name: adder _bfly.v
II Design Type: Verilog .v file

117

I-
II This hardware utility is originally developed by Choudhury Ashiq
II Rabman {rahmanc@enel.ucalgary.ca} as a part of M.Sc research work.
I-
II Last Modified: Dec, 2003
II Copyright (c) 2004
II All Right Reserved.

module adder _bfly
#(parameter Width = 25)
(output signed [Width-1:01 w2,
output signed [Width-10:01 w3,
output signed [Width-l:0] w5,
output signed [Width-3:0] w6,
output signed [Width-5:0] w7,

output signed [Width-4:0J w8,
output signed [Width-3:0I w9,
output signed [Width.-3:0] wlo,
output signed [Width-5:0] w12,
output signed [Width-5:0] w13,
input signed [Width-2:0] xO, xl,

input signed [Width-4:0] x2,
input signed [Width-2:0] x3);

assign w2 = {xo[23],xo} + {xl[23],xl};
assign w6 = {xo[23],xo[23:2]} + {x2E21],x2};
assign w8 = {xo[23],x0E23:3]} + {x3[23],x3E23:3]};
assign w10 = {xl[23],xl[23:2]} + {x3[23],x3[23:2]};
assign w].3 = {x2E21],x2[21:2]} + {x3[23],x3[23:4]};
assign w3 = w2t24:9] + {x2[21],x2[21:7]};
assign w5 = w2 + {x3[23],x3};
assign w7 = w6t22:21 + {x3t23],x3t23:4]};
assign w9 = wG + wlo;
assign w12 = w13 + {xl[23],xl[23:4]};

endmodule

B.3.1O "adr_compressor.v"

Adder Compressor Array, gives the low pass and high pass FRIT
II coefficients.
I-
II File Name: adr_compressor.v
II Design Type: Verilog .v file

I-
/I This hardware utility is originally developed by Choudhury Ashiq
II Rabman {rahmanc@enel.ucalgary.ca} as a part of M.Sc research work.

118

I-
II Last Modified: Dec, 2003
II Copyright (c) 2004
II All Right Reserved.

module adr_compressor

#(parameter Width = 8)
(output reg signed [Width+2:0] LorH Digit, //llbit
output reg [Width-4:0] LorH Decimal, //5bit

input signed [Width-i-16:0] zl,
input signed [Width+14:0] z2,
input signed [Width+13:0] z3,
input signed [Width+12:0] z4,
input signed [Width+11:0] z5,
input signed [Width+lo:0] z6,
input signed [Width+8:0] z7,
input signed [Width+7:0] z8,
input signed [Width+5:0] z9);

wire [24:0] LH, zl_inv;

assign zi mv = -zi + 1;

assign LH = zl_inv +
{zl[24],zl[24:1]} +

{z2 [22] ,z2 [22] ,z2} +
{z3[21] ,z3[21] ,z3[21] ,z3} +
{z4[20],z4[20],z4[20],z4[20],z4} +

{z5[19] ,z5[19] ,z5 [19] ,z5[19] ,z5[19] ,z5} +

{z6[18] ,z6[18] ,z6[18] ,z6[18] ,z6[18] ,z6[18] ,z6} +
{z3 [21] ,z3 [21] ,z3 [21] ,z3 [21] ,z3 [21] ,z3 [21] ,z3 [21] ,z3 [21:4] } +
{z7 [16] , z7 [16] , z7 [16] , z7 [16] , z7 [161, z7 [16] , z7 [16] , z7 [16] , z7} +
{z8 [15] , z8 [15] , z8 [15] , z8 [15] , z8 [15] , z8 [15] , z8 [15] , z8 [15] , z8 [15] , z

8} +
{z2[22],z2[22] ,z2[22] ,z2[22] ,z2[22] ,z2[22] ,z2[22] ,z2[22] ,z2[22] ,z

2[22],z2[22:8]} +
{z9 [13] , z9 [13] , z9 [13] , z9 [13] , z9 [13] , z9 [13] , z9 [13] , z9 [13] , z9 [13] , z

9[13] ,z9[13] ,z9} +

{z9 [13] , z9 [13] , z9 [13] , z9 [13] , z9 [13] , z9 [13] , z9 [13] , z9 [13] , z9 [131 , z

9 [13] , z9 [13] , z9 [13] , z9 [13:1] };

always@ (LH)
begin

LorH _Digit <= LH[22:12];
LorH Decimal <= LH[ll:7];

end

119

B.3.11 "counter.v"

II

II

Counter module, this is actually a part of controller, coded
separately.

File Name: counter.v
Design Type: Verilog .v file

This hardware utility is originally developed by Choudhury Ashiq
Rahman {rahmanc@enel.ucalgary.ca} as a part of M.Sc research work.

Last Modified: Dec, 2003
Copyright (c) 2004
All Right Reserved.

module counter

#(parameter width = 3)
(output reg [width-1:01 count,
input next count, cik, rst);

always@(posedge cik, negedge rst)
if (-rst) count <= 3'bOOO;
else if (-next— count)
begin

if (count == 3'blll) count <= 3'bOOO;
else count <= count + 3'bOOl;

end
endmodule

B.3.12 "controller.v"

II CONTROLLER
I-
II File Name: controller.v
II Design Type: Verilog .v file

I-
II This hardware utility is originally developed by Choudhury Ashiq
II Rabxnan {rabmanc@enel.ucalgary.ca} as a part of M.Sc research work.
II
II Last Modified: Dec, 2003
II Copyright (c) 2004
II All Right Reserved.

module controller
#(parameter Width = 3)

120

(output reg [Width-1:0] coil,
output reg (Width-1:0] co12,
output reg [Width-1:01 co13,
output reg [Width-1:0] co14,
output reg [Width-1:01 co15,
output reg [Width-1:01 co16,
output reg (Width-1:01 co17,
output reg [Width-1:01 col dummy,
output reg C ready, OP— ready, 1,
output reg next— count,
input [Width-1:01 count,
input cik, reset);

reg [width-1:01 count_sc;
reg ready;

aiways@(posedge cik, negedge reset)
begin

C_ready <= 0;

if (-reset)
begin

coil <= 3'boOl;

co12 <= 3'bOlO;
co13 <= 3'boll;
co14 <= 3'blO0;
co15 <= 3'blol;
c016 <= 3'bllO;
c017 <= 3'blll;
i <= 0;

next— count <= 1;
count_sc <= 4;
col_dummy <= 0;
C_ready <= 1;
OP— ready <= 0;
ready <= 0;

end

else if (count_sc == 0
begin

if (count[O] && coi_dummy[l]) ready <= 1;
if (ready) OP_ready <= -OP— ready;
if (count == 7 && -next— count) C_ready <= 1;
if (col_dummy == 0)
begin

coil <= 31b111;
co12 <= 3'blli;
co13 <= 3'blil;
c014 <= 3'blll;
co15 <= 3'blll;
c016 <= 31b111;
co17 <= 3'blll;
col_dummy <= col_dummy +1;
next count <= 1;
i <= 1;

121

end
else
begin

if (col_dummy == 3'blll)
begin

next count <= 1;
i <= 0;
count sc <= count sc + 1;
col_dummy <= 3'bOOO;

end
else
begin

if (col_dummy == 3'bllO) next— count <= 0;
else next— count <= 1;
col_dummy <= col_dummy +1;
i <= 1;

end

if (colt == 7)
begin

coil <= 3'bOOl;
co12 <= 3'bOOl;
co13 <= 3'bOOl;
co14 <= 3'bOOl;
c015 <= 3,b001;
co16 <= 3'bOOl;
c017 <= 3'bOOl;

end
else
begin

coil <= coil + 3'bOOl;
c012 <= co12 + 3'bOOl;
co13 <= co13 + 3'bOOl;
c014 <= co14 + 3'bOOl;
co15 <= c015 + 3'bOol;
co16 <= co16 + 3'bOOl;
co17 <= c017 + 3'bool;

end
end

end

else if (col dummy == 3'blll
begin

if (count[O} && col_dummyEll) ready <= 1;
if (ready) OP— ready <= -OP _ready;
if (count == 7 && -next— count) C_ready <= 1;
coil <= 3'b001;
co12 <= 3'bOlO;
c013 <= 3'b011;
co14 <= 3'blOO;
co15 <= 3'b101;
co16 <= 3'bllO;
co17 <= 3'blll;

122

col—dummy <= 3'b000;
± <= 0;
next count <= 1;

if (count_sc == 3'blll
begin

countsc <= 0;
end

else count sc <= count sc + 1;

end

else
begin

if (count[O1 && col _dummy [1]) ready <= 1;
if (ready) OP_ready <= -OP _ready;
if (count == 7 && -next— count) C_ready <= 1;

coll <= 3'bOOl;
co12 <= 3'bOlO;
co13 <= 3'b011;
co14 <= 3'blOO;
co15 <= 3'blol;
co16 <= 3'bllO;
col7 <= 3'blll;
col_dunimy <= col— dummy +1;
if (col—dummy == 3'bllO) next— count <= 0;
else next— count <= 1;
i <= 1;

end

end
endinodul e

123

Appendix C
Publications and Presentations

C.i Publications

1. C. A. Rahman and W. Badawy, "A VLSI Architecture for Finite Ridgelet

Transform", Accepted for publication in the proceedings of the 46th IEEE

Midwest Symposium on Circuits and Systems- MWSCAS 2003, Dec 27-30, Cairo,

Egypt, 2003.

2. C. A. Rahman and W. Badawy, "VLSI Architectures for Finite Radon

Transform", Accepted for publication in the proceedings of the Canadian

Conference on Electrical and Computer Engineering- CCECE 2004, May 2-5,

Niagara Falls, Ontario, Canada, 2004.

3. M. Alam, C. A. Rahman, W. Badawy and G. Jullien, "Efficient Distributed

Arithmetic Based DWT Architecture for Multimedia Applications", Proceedings

124

of the 3rd IEEE International Workshop on System-on-Chip for Real-Time

Applications- IWSOC 2003, June 30- July 2, Calgary, AB, Canada, 2003, Page(s):

333-336.

4. C. A. Rahman, W. Badawy and Abmad Radmanesh, "A Real Time Vehicle's

License Plate Recognition System", Proceedings of the IEEE Conference on

Advanced Video and Signal Based Surveillance- AVSS 2003, July 21-22, Miami,

FL, USA, 2003, Page(s): 163-166.

C.2 Presentations / Workshops / Seminars

1. Presenter, "A VLSI Architecture for Finite Ridgelet Transform (FRIT)",

Graduate Seminar Course (ENEL 605), November 5, 2003, Department of

Electrical and Computer Engineering, University of Calgary, Canada.

2. Instructor, "Image Processing and Digital System Design", Workshop, August

10-20, 2003, Organized by Department of Electrical and Electronic Engineering,

Bangladesh University of Engineering and Technology (BUET), Dhaka,

Bangladesh.

3. Presenter, "The Finite Ridgelet Transform - An Overview", LIVS Research

Group Seminar, June 3, 2003, Organized by Laboratory for Integrated Video

Systems (LIVS), Department of Electrical and Computer Engineering, University

of Calgary, Canada.

