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Abstract 

The now classic optimization technique of Linear Quadratic (LQ) controller 

design is, in theory, one of the best design strategies possible. Practically, 

however, it has limitations. Specifically, it is a simple demonstration to show 

that LQ control techniques have no robustness margins when applied as an output 

feedback strategy to a noise-corrupted system. 

Alternatively, Sliding Mode Control (SLMC) is an extremely robust control 

strategy, provided the disturbances are bounded and matched. The primary 

drawback is that the resulting system performance is never optimal in an LQ sense 

of the word. 

ln a novel approach, this thesis blends these two design objectives. The 

resulting controller exhibits near-LQ performance, while adding the additional 

feature of robustness to bounded, matched disturbances. The controller is 

developed for both the state and output fecdback cases. The results are then 

applied to the problem of maintaining an inverted pendulum in the vertical 

position. 
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Chapter 1 

Introduction 

It is a basic fact of life that there is rarely a unique 'best' way of doing things. Of 

course, it is rarely the case that an optimal solution does not exist to a given situation. 

Frequently, this lack of a clear solution arises as a direct consequence of an unclear, or 

perhaps undecided objective. 

To illustrate this point in some very broad terms, let us consider the classic tale of 

the grasshopper and the ant We are all familiar with the story of the grasshopper who 

spends his days carelessly playing in the sun, only to meet a bitter demise come winter. 

The ant, however, carries on in comfort despite the cold, because he spent his summer 

fastdious[y preparing for the approaching winter. 

The moral of the story? Most would have us believe that this is a quaint allegory 

aimed at instilling a strong work ethic and ability to plan ahead in the reader. But is this in 

fact the case? Perhaps what we have here is a clear example of a situation in which there 

were multiple objectives, and the characters chose between one or the other. Consider 

fiat the grasshopper. Sure, he dies. But so what? His objective was to spend his days in 

the sun, living his life to fullest, and I dare say he achieved it. 

The ant, on the other hand, lives. His days are spent living a joyless life, toiling in 

the dirt, planning for the encroaching winter. His goal was a long life, and he achieved i t  

Was one objective more correct than the other'? That is not really a topic for discussion 

here, but it does set the stage for motivating this particular work. 

Consider a third option. The grasshopper didn't have to play every day, and the 



ant probably didn't need all the supplies he built up. Thus, it would seem that the 'best' 

option would have been to work on some days, and play on others. There is obviously 

some sort of merit to this plan, as it would seem that this is how a large portion of the 

human population lives. In this case, the 'best' solution is achieved by mixing objectives, 

and following the solution that allows one to enjoy the best of both worlds, as the saying 

goes. 

1.1 Motivation 

It is this basic philosophy that has motivated the following work. Of course, the topic at 

hand is a little more specific. Here, motivation for this thesis arises from the following 

Control Problem. 

Control Problem: A linear quadratic (LQ) optimal control strategy is, in theory, one 

of the best control laws available. However, it is a known fact that this strategy is not 

robust to any class of disturbances in the output feedback case [lo], when operating in 

a noisy environment. Conversely, sliding mode control (SLMC) is extremely robust 

to bounded matched disturbances [I I], yet typically leads to system performance that 

is not at all optimal. The control problem at hand, then, is to design a control law 

that will incorporate the positive aspects of both of these strategies. That is, design a 

controller that realizes LQ optimal (or near optimal) closed loop performance, while 

simultaneously achieving the SLMC result of an extremely robust controller. 



It turns out that this is by no means a trivial problem, the primary reason being that 

each control strategy utilizes decidedly different objectives for determining the closed 

loop structure of the system. Specifically, when designing an LQ controller, the feedback 

law applied leads to a set of closed loop eigenvalues that are placed anywhere on the open 

left hand complex plane. Conversely, application of SLMC leads to a situation where a 

fixed number of the closed loop eigenvalues musf be located at the origin, and only the 

remaining eigenvalues are k e  for placement (see Theorem 3.1). 

Thus, the problem at hand is not one of not deciding between two different 

objectives, but rather one of determining a strategy that allows us to mix them in a manner 

that is, in some sense, optimal. I t  is demonstrated in 94.3 that this mixing of objectives 

can be accomplished by modifying the classic LQ strategy in such a manner that .m closed 

loop eigenvalues are pre-selected, and the remaining ones are h e  to be optimized. In 

this way, the two strategies can be mixed, leading to a closed loop system that maintains 

near-optimal performance, with the added feature of robustness to matched disturbances. 

1.2 Previous Work and Related Literature 

Motivating Works 

By the 1970s, LQ control theory had started to reach maturity, and the method had become 

a practica1 design tool. At this point in time, the focus shifted from that of determining 

the viability of implementing an LQ strategy to that of determining the theoretical 

performance limits of LQ control. In particular, the question of robustness was of great 

interest. That is, given a cIosed loop, output feedback LQ system that is corrupted by 

noise, how well wiII the system perform? Or, what guaranteed robustness margins does 

this system have? It is now a standard result 121 to demonstrate these results for the 

state-feedback case ( is ,  u = Kx), but the question remained open for the output-feedback 



case (i.e., a = Kg). It was shown by Doyle [lo] in 1978 via counterexample that then 

are, in fact, no guaranteed robustness margins. A rather demoralizing result! 

Over the next few years, interest then grew in development of output feedback 

control laws that could exhibit some guaranteed robustness niargins, even if only to a 

specific class of disturbances. LQG / LTR results attempted to asymptotically recover the 

nominal (uncorrupted) state feedback results, but lost physical significance of the Kahan 

filter weights. Recently, output feedback sliding mode control has received a great deal 

of attention (191, [12], [13], [14], [IS], [19], [42], [4q, [48]). The problem with these 

types of control strategies is that they suffer from the same drawbacks as conventional 

state-feedback sliding mode control. That is, the resulting system performance is robust, 

but in no sense optimal. 

Various schemes have, in fact, been introduced to address this problem. Notably, 

in [471 and [32], additional dynamics were introduced into the control term, with the 

objective of achieving a smoother control law than possible with conventional SLMC. 

In this way, the resulting system performance has the potential of achieving closed loop 

performance that is closer to optimal. 

Further, in a recent work by Tang and Misawa [39], a result is presented that has 

essentially the same goal as  this thesis. That is, to design an LQ controller with a preset 

(real) eigenvalue, allowing the controller to exhibit the benefits of LQ performance as well 

as SLMC robustness. For reasons explained in $4.1 however, the method presented in [39] 

has been passed up in this work. In fact, the method employed in this work is drastically 

different from the one presented in [39]. 

1.3 Organization of Thesis 

A brief outline of the thesis is as follows. 



Chapter 2 is p u ~ l y  composed of the preliminary mathematical tools needed for 

this work. 

Chapter 3 presents a comprehensive ovewiew of sliding mode control, and gives 

insight into why SLMC and LQ control are conff icting design objectives. 

Chapter 4 presents the main result of the thesis. Here, conditions are derived that 

are necessary for the controller to work. That is, it is shown that the open loop system is 

required to be of the type 

(A, B) controllable, and (A, B, C) complete in the output feedback case. 

The robustness properties of the proposed controller are then demonstrated for both 

the state and output feedback situations. 

Chapter 5 gives a sample application of the proposed controller. Since the focus of 

this work was a theoretical development of the control law rather than the implementation 

of it, all results are simulated, rather than physically realized. 

Chapter 6 contains a summary of the main results and some direction for future 

work. 

1.4 Contributions of Thesis 

This thesis provides a method for designing a controller that closely mimics nominal, 

closed loop LQ system results in both the state and output feedback situations, while 

adding the result of a paranteed robustness margin in the presence of bounded, matched 

disturbances. Specaically, the main contributions are: 



The explicit development of the transformation matrix T needed for the result of 

( 4  This result transforms the closed loop system matrix to an upper block 

triangular form. In turn, this allows a K to be solved that simultaneously meets the 

objective of arbitrary eigenvalue placement for mclosed loop eigenvalues, while the 

remaining eigenvalues may be placed optimally. 

The derivation of the controller (4.24). Here, a controller is now created that 

induces a near optimal, closed loop system response, while adding the feature of 

invariance to bounded, matched disturbances. 

The derivation of a robust, output feedback controller in 54.4 

A demonstration of the robustness properties of the proposed controller in both the 

state and output feedback cases. 

In addition to these points, the thesis also provides a comprehensive overview of 

conventional SLMC control theory as it pertains to linear systems, as well as an overview 

of all the important mathematical tools needed for the analysis. 



Chapter 2 

Mathematical Preliminaries 

In this chapter, some basic facts that are essential to this work will be reviewed. No 

new concepts will be developed here. Rather, this section will serve as an introduction to 

the notation that will be employed throughout the work. 

2.1 Linear Algebra and Geometry 

In the following, the basic concepts that are of  particular importance to this work are 

developed. The material presented in 52.1 and 52.2 is based almost exclusively on the two 

excellent works of Lancaster and Tinenetsky [27J and Wonham 1451. 

2.1.1 Linear Spaces and Subspaces 

Let P denote a scalar field, and F denote an n-dimensional vector space over IF. That is, 

P is isomorphic to the n-fold Cartesian product of IF, where n is a finite integer. i.e. 

n - times 

Further, an additive element x E F" denotes a vector over the underlying field F. In 

this w o k  the attention will be limited to finite dimensional h e a r  spaces over W and C, 

the real and complex numbers. 

Since it is the nature of control problems to deal with elements in numerous 

different spaces at the same time, a notation will be adopted that will clarifL the operations. 

Calligraphic capitals X,y,. . . will be used to denote spaces, lower case roman characters 

x, y, . . . will be used to denote their elements, and scalars will be denoted with lower case 



Greek or Roman characters as appropriate. 

Of great importance when dealing with vectors are the operations of addition and 

scalar multiplication, or the fact that these operations are both apsociorive and distributive. 

For example, consider z1, x2 E X where X is defined over IF, and a, P E F. Then 

and 

Now, consider a subset Xo C X.  Since the operations of addition and scalar 

multiplication are defined for all elements of X, they are also defined for all elements of 

Xi. If these operations are dosed in Xo, in that 

for all o! E IF and 11, x2 21 Eo, then Xa is called asubspuce of X, and shall henceforth be 

denoted as Xi C X, where Xo # 0. 
As per the axioms of a linear space, X must contain the zero element, 0, typically 

as an origin. This implies then that a subspace Xo C X must also contain the same 

zero element, and if there is another subspace XI c X, then it is always me that 

0 C XI n & # 0, or bvo subspacu are never disjoint GeornetricaIIy, this means that one 

can view a subspace as a hyperplane passing through the origin of the original space. 

Wth the notion of a space in place, one can now define some properties of these 

spaces. First, define the spun of a set of elements E X as the minimal subspace 

A& generated by all hear combinations of the he over F. Thus 



This allows X to be termed finite dimensional it there exists a finite integer n and a set 

{x i )Ll  whose span is the whole of X. The minimal value of n, in the sense of linearly 

independent xi's that span X, is termed the dimension of X, denoted dim (X). When 

n # 0, this minimal spanning set forms a basis for X. 

A property that will be exploited to some degree in this work is the notion of a nun 

and direct sum of subspaces- Let XI, X2 C X. Define the sum XI + X2 as the set of all 

Note that Xl + X2 c X. Further, define the intersection of these subspaces as 

XI n X2 := {I : z E Xl and x E X'} (2.10) 

As before, & n & C X. If XI n X2 = 0, then any element z E XI + X2 admits a unique 

decomposition 

where XI  E XI and 2 2  E X2. Since this property can be quite usefbl, the space 

Xo = XL + X2 generated is referred to as the direct sum of XI and X2, and is denoted 

or, if& can be decomposed into k linearly independent subspaces, in that 

then the direct sum of these spaces is denoted 

Also of great importance in the orthogonal dkct  sum. This operation works in the 

same manner as  the direct sum, with the additional feature that 



where (, ) denotes the inner product. In other words, as well as the spaces being linearly 

independent, they are also orthogonal. The orthogonal direct sum is denoted 

2.1.2 Maps and Matrices 

In the manner previously defined, let X and Y denote linear spaces over F. A linear 

trmformation, or map, is a function p : X -r y such that 

for all X I ,  x2 E X, al, a2 E P. Maps will herein be denoted with capital roman characters 

A,B, ... 
Denote I: (X,Y) as the set of all linear maps A : X - Y. It follows that L ( X ,  Y )  

forms a linear space as well, and thus follows the rules of addition and multiplication by a 

scalar, i.e. 

for all x E X, Ar, A2 E I: (X, y). As per the definition, A1 E L (X, Y) and A1 : X -, y 

are equivalent statements, and wilt hence be interchanged freely from this point on. 

Let X be a linear space over IF, such that dim (X) = n. Further, let {x i }L ,  form a 

basis for X. Thus, ift E X then from the definition of a basis set, z may be represented 

by 



Forming a vector 

where a is then referred to as the representation of z with respect to (xi)bl. If this 

notion is expanded to a set of elements {2,);'=, E X, the corresponding set of { a j ) z l  

can be formed together to give the array 

where 

r-1 
for all 1 < j < n. The array A is known as the matrix representation of the (ordered) set 

( z j ) G 1  with respect to the basis {xi):=,. 

This definition of a matrix then applies directly to linear maps. To see this, 

consider a map M E L (X, y), where X is as before, and Y is a space over F such that 

dim (Y)  = m, and (yj)GL is a basis set for Y. Then, evaluating the images of {xi):=L 

yields 

j=L 

for all i = 1,2, . . . , n. Thus, expanding this notation to {T ( x i ) ) z l  yields the matrix 

A W , I ~ =  [a; a;] - -la.1 3 ij=l ntm E p X m  (225) 

ant *.* %n 

as before. The matrix is then referred to as the matrix representation of the map 

M E L (X ,  y) with respect to the basis pair ((2) , (y)). This ddinition, coupled with the 

fact that the focus of this work is concerned only with linear operations on linear spaces, 



allows one to easily drift between the notion of a map and a matrix. Hence, the two 

terms will be interchanged fieely throughout this work Thus, matrices will henceforth 

be denoted with capital roman letters A, B, . . . and the subscripts indicating bases will be 

dropped in most instances. 

We properties and operations of matrices are defined in the usual way. The symbol 

P X P  denotes the class of a11 n x p matrices over IF. These matrices form a linear space of 

dimension np over B by the operations of addition and multiplication by a scalar. 

As well, in the usual way, let AT denote the humpose of A via 

and let A* denote the complex conjugare mnspose of A, so that 

It is now usehi to look at some terms associated with linear maps / matrices. 

Let A E L: (X, Y ) .  The space X is referred to as the domain of A, the space Y is 
the co-damain. The h e 2  of A is the subspace 

ker A:= { x : z ~ X a n d A z = O )  C X  (2.28) 

Similarly, the inrage of A is the subspace 

Consistent with the terminology used thus far, we can define the rank of a linear 

mapping A E L (X, y) as 

rank (A) := dim (Im A) (230) 

Or, in terms of a matrix, the row (column) rank of a matrix is equal to the number of 

linearly independent rows (columns) in the matrix. 

Now* [et S c X, so that 



further, if R c y, then 

By definition, A*' is known as the inwrse imge&zction of the mapping A, and is thus 

(generally) an immersion mapping, A-' : Y -t X. To avoid confusion, the following 

notation will now be adopted. 

If dim (X) = dim (Y) ,  and Im (A)  = Y ,  Im (A-l)  = X ,  then the mapping is one 

to one and onto, and thus linear, since A is linear. In this case, the mapping A*' will be 

unique, and will simply be referred to as the inverse of A. Further, the mapping is said to 

be nonshguI[o. 

2.1.3 Similar Matrices, Equivalence Classes 

The notion of similar matrices arises from the notion that a mapping M E L (X, y )  is, 

typically, not unique. Consider the fact that the matrix representation of 1CI was derived 

fiom the set {x*):, which formed a basis for X. Now, while the pan of a basis set is 

unique, it is clear that the are many different bases available that have the same span. 

Thus, it is important to examine how the different basis sets can be transformed. 

Consider first the operation of a change of basis in X. Let {x*):=~ be a basis set for 

X, and {ri)k, be another. As per the definition of  a matrix 

is the matrix representation of {ri)El with respect to {xi)k,, so that 

r = T..zlx w x = ~ $ r  (234) 

Similarly, if dim (Y) = and {yj}GI and bj)gl are (possibly) different b s ~ s  for Y ,  



then 

p = T{,)Y y = 5;p 
Now, let M E C. (X, Y )  have a matrix representation 

in the bases pair ({x) , {y)). To transform this matrix to a different basis pair, say 

( {r) , Cp)), simple substitution of the above leads to 

The matrices and A{,),{yk are then said to be equivaIent, since they are both 

representations of M E C (X, y ) . 
A special situation arises when M E AC (X). Here, one need only look at the basis 

sets {I) and IT), so that 

r=Tx (23 8) 

Thus, in the bases {x), M E L (X) has a matrix representation 

and, a change of basis to (7)  leads to 

where 4,.. is the matrix representation of M E C (X) with respect to {r). This relation 

is quite important in linear algebra, so much so that it has been given a special name. If A 

and B are s q m  matrices, then A and B are termed similar if there exists a nonsinplar 



matrix T such that 

A = T @  (2.4 1) 

or, equivalently 

A = : B  (2.32) 

Assuming dim (X) = n, define the set of all matrix representations of Ad E f (X) with 

respect to different bases in X as an equivulence class of similar mutrices over Pxn. 

Denote this set as 4. This notion of similarity then gives the value of A E d!$ that is 

'simplest' relative to the problem at hand. 

2.1.4 Projection Maps, Idempotent Matrices, and Invariant 
Subspaces 

Due to the fact that projectors and idempotent mappings largely define the geometric 

nature of sliding mode contml, it is of great use to explore these maps at this point 

By definition, a map satisfies the condition of idempotency if, for some P E L (X), 

P = f2. Such a mapping is also termed aprojector. This concept will be explored after 

some preliminary properties are explored. 

Theorem 2.1 If P t3 idempotent, [hen 

Pmot  (1) is immediately verified by expansion of (I - P ) ~ ,  and the definition of an 

idempotent map. For (3, let y E ImP if and only if y = Pz for some x E X. Thus 



= (P- p2) z  

= 0 

=+ y ~ k = ( I - P )  

Alternativeiy, if we let y E ker ( I  - P) if and only if ( I  - P) y = 0 for some y E X. 

Then 

(3) is proved in a similar manner. . 
The above properties are important in that they allow a direct sum decomposition of 

X, as per the following Theorrm 

Theorem 2.2 I /P is iakmpotent, then X = ker P&Im P* 

P m t  For any x E X, one may write x = XI f xz, with xi = ( I  - P) x E ker P and 

2 2  = Px f Im P. Thus 

X =kerP+ImP 

Now examine the subspace generated by ker P n Im P. Here, 

Thus, the sum is direct. W 

It is then possible to form the decomposition 

where XI = ker P, X2 = I .  P. This allows the action of P to be visualized as the 

projection on XI along X2. ConverseIy, the map (I  - P) is the projection on X2 along 

XL - 



2.1.5 Invariant Subspaces 

Consider the subspace S C X, and let kf E (X) have the additional property that 

MS c S. S is then termed h1-invari-ant. This concept applies directly to some of the 

matrix theory deveioped in this work, and the following may now be stated. 

Let M E L (X), and let A: denote the equivalence class of similar matrices 

associated with M. Further, let X = X1+X2, such that MXl C XI, on the assumption 

that this is possible. Thus, the objective is to construct a matrix representation of M that 

is the most convenient-relative to this decomposition of X. To accomplish this, construct 

a basis 

{ ~ 1 , ~ 2 , - - - , ~ k , ~ k + l , - - ~ ~ ~ n )  (2-44) 

in X, where k = dim (XI) and the first k elements of the set constitute a basis for XI, and 

the remaining elements constitute the extension of the basis set to include all of X. Since 

c XI, lkf (xj) E XI for all j = 1,2,. . . , k. As per 82.1.2, a matrix representation 

of this mapping would be of the form 

Thus, if this matrix is continued for all j = 1,2,. . . , n, the matrix A E dl will be of the 

form 

L 4 

where A1 E IFkxk, A3 E lE'(n-k)x(n-k). Thus, A is the matrix representation of 

M E L (X) with respect to the basis set (2.44). So, a decomposition of X into the direct 

sum of two subspaces, one of which is h1-invariant, admits a matrix representation in 

block triangular form. 

Further, if X = X1$X2, where both MXr c XI and MX2 C X*, then by the same 

process as before amatrix A E A: will be obtained as 



where, again, A1 E gXk and Az E x(n-k). M itself then admits a decomposition 

M = M1+M2 with MI E E (XI), M2 E L (X2), so that A = A&A2. Accordingly, 

(2.47) is termed the d k t  mmix swr of A1 and A2. Expanding this to a set of p many 

matrices, the direct matrix sum is defined as 

which implies the following theorem. 

Theorem 23 A mapping M E t (X) htas a representation in A E dl in block diagonolfonn, 

consbting c f p  many blocks, rand only if M can be decomposed iwo the direct nun of p linear 

maps. 

The idea of a direct matrix sum, block diagonal, and block triangular matrices lead 

to some nice results, as will be seen in 52.1 -6. 

2.1.6 Eigenvalues, Eigenvecton, and the Characteristic Polynomial 

Consider a mapping M E L: (X). This map has the action of transforming elements 

x E X into diffennt elements z E X. That is, the vectors experience a transformation of 

magnitude and direction under the action of M. Consider, then, an element x such that 

Here, x constitutes a one dimensional, bf-invariant subspace of X, in that z experiences a 

change only in magnitude, not direction. In terms of a matrix A E A;, (2.49) takes the 

form 

&=Ax 



Such an element x + 0 is termed an eigenvector of A, and the conesponding scalar X is 

termed an eigemtuiue. 

Entire volumes can, and have, been devoted to the study of these entities. This 

work, however, will only consider the basic properties that are of direct importance. 

First, the characteristic polynomial. Consider equation (2.50), so that 

For a non-trivial value of z to occur, (XI - A) must be singular. Or, in other words 

0 bserve that 

where n (A) is referred to as the characteristic polynomiai of A E A%. From the 

construction of 7r (A), the following theorem may be stated 

Theorem 2.4 X E P ir m eigenvalue of A E PX ifand on& if A is n zero of the chmaeert3tic 

This allows the determination of the eigemlues of a matrix without determining 

the corresponding eigenvectors, which is very useful as far as control theory is concerned. 

Denote the set of roots of r (A) as o (A),  the spectrum of A, listed according to 

multiplicity. 

Some properties of the spectrum of a matrix that are pertinent to this work will now 

be examined. Unless otherwise stated, X will denote an n-dimensional vector space over 

IF, so that A E dl C FXn. 



Theorem 2.5 Similar matrices have the same spectrum. 

Proot See Lancaster and Tisrnenetsky [271, among others. 

Theorem 2.6 The s p e c m  o w e  s p m  mafrk 

is given by 

~ ( 4  =a(&) udA3) 

Proof. Construction of the characteristic polynomial yields the following: 

XI-Ar -A2 
det (Xi - A) = det 

L 

+ det (M - Al) det (M - A3) = 0 

o o (A)  = u (AI) U o (A3). W 

Note that the above generalizes to any (block) triangular matrix. 

Theorem 2.7 i f A  = A' (La. A ir Hermitian) then n ( A )  c IIP 

Prool See Lancaster and Timenets@ [273, among others. . 
Corollary 2.1 I /A = AT E RnXn (ie.. A iF ~ n l s y m n e ~ i c )  then n (A) c R 

Of course, there is a plethora of other interesting information available regarding 

the spectrum a mabin For the purposes of this work, however, the above will constiMe a 

sacient foundation. 



2.1.7 Linear Matrix Equations and the Kronecker Product 

In addition to the previously mentioned works by Lancaster and Tisrnenetsky 1271, and 

Wonham [45], the material in this particular subsection can also be found in [26], [3], and 

~ 9 1 .  

Of great importance to this thesis are equations of the form 

where 

known, and the objective is to solve the matrix X E Fxm which is assumed to exist. 

To attack this topic, we introduce the Kroneckr (or tensor) product of two matrices 

where 

It is interesting to note that the ddinition above does, in fact, follow from the formal 

definition of @ that arises in differential geometry.. To see this, let A : X -+ U, 

B:Y-,Vsothat 

A @ B : K @ Y - , U @ V  (2.61) 

Then, by ordering the basis elements xi 8 yj of X 8 Y as 



and doing the same for U O V leads to the result (2.60) when A 8 B is represented 

as a matrix. To see this result in its full splendor, however, requires a more rigorous 

deveIopment of @ that is not needed in this work. For this, the interested audience is 

referred to Wonham [45], among others. 

Rather, the objective of this section is to examine some to the properties of A @ B, 

when A and B are as previously defined. We note the following properties. 

Proposition 2.1 If A, 8. C, . . . are appropriately sized matrices over some field IF, then the 

following relations hold: 

3 .  ( A @ B ) @ D = A @ ( B @ C )  

4. ( A @  B)= - A = B B =  - 

5. ( A @ B ) ( C @ D ) = A C @ B D  

6. ( A  Q B)-' = A-I @ B-' (provided A and B are nonsingular) 

7. A @ B = ( A @ I ) ( r @ B ) = ( I @ B ) ( A @ I )  

8, det ( A  8 B) = det (A)m det (B)", when A E FXn, B E Pxm 

Pmof. Refer to [2q, [3]. and [29]. . 



Define now a vector vaiued function of a matrix as 

where A E FXm, and Aej denotes the jth column of A. Thus, vec (A) is the vector 

obtained by stacking up the columns of A, and this operation is termed the vec-frmcon. 

It immediately follows that vec (-) is linear, in that 

vet (aA + @B) = a vet (A) + p vet (B) (2.64) 

for any A, B E P7LXm, a,@ E F. Also, the matrices A1, A2,. . . , Ap are linearly 

independent in PXm if and only if vec (Al) , vec (A2) , . . . , vec (Ap) are linearly 

independent in lFm. 

The following theorem indicates the relation bemeen @ and vec (-). 

Theorem 2.8 i f A  E PXn, B E FXm, X E PXm, then 

Proof. Let (AXB)*, denote the jth column of the matrix (MB). This element may be 

expressed as 



extending this notation over all j = 1,2,. . . , rn yields 

Comlh y 23 TkJdlowing stdernenrs are immediate consequences ofrhe above. 

I .  vec (AX) = (I ,  @ A) vec (X) 

2. vec (XB) = (B= O 1,) vec(X) 

3. vec ((AX + XB) = ((I ,  GD A) -I- ( B ~  8 in)) vec (X) 

With this background, we are now in a position to examine equation (2.56) with 

some degree of success. Note that by taking the vec ( 0 )  operation on both sides, we obtain 

where 

which is now a familiar matrix-vector pmblem. In order to make any statements about 

exltstence and I or uniqueness of  solutions of (2.66), we generally need some information 

about o (G). Unfortunately, it is usually difficult to say an@ing of value about cr (G), 

even when a (4) and o (Bi) are known for all i. 



However, some special cases do arise that have nice properties. For the purposes 

of this work, we need only consider the special case where each A, (Bi) is a scalar 

polynomial in a fixed A E PXn (B E PXm). That is 

where aij  E F. That is, we define a polynomial in two scalar variables, say 7 and n, as 

then we may define a polynomial in two matri'x variables as 

P ( A ; B )  = @ ~j (2.72) 
i j  

Thus 

G = ( B ~ ;  A) (2.73) 

and the following relation between a (A), a (B) and the eigenvalues of p (A; B) can be 

stated 

Theorem 2.9 (C. Stephams, 1900) The spectun of the matru p (A; B) w the nm numbers of 

theform p (A, p,). where {L#}R1= 0 (A). b, = (B). 

PmF.  Refer to [27] and 1291, among others. U 

For the purposes of this work, we are concerned with two specializations of this 

result. 

Corollary 23 The e~emaiues of A 8 B am the nm munbers {A+s}:;gl. 

Corollary 2.4 (Sylvester: 1882) 7 k  eigetzvaIues of (Im ~9 A) + (B @ I,) are the nm numbers 

{& + P*I::I* 

As an example of an application of the above, consider the Ease where 



which appears in one form or another quite frequently in control theory. I f  

cz (A)  n o (-B) = 0, then X can be determined uniquely by 

((1 8 A) + ( B  63 I ) )  vet (X) = vet (C) (2.75) 

Gx = c 

x = G"C 

+ X = vec-I (x )  

where vec-' (0) denotes an un-stacking operator. Admittedly, this is an abuse of notation, 

but the operation is clear from the context. 

Of course, there is far more that can be said on this topic. The preceding, however, 

constitutes a sufficient foundation for this particular work. 

2.2 Linear Systems 

The material in this section can be found in virtually any textbook on control theory that 

utilizes state space methods. In particular, the material presented here makes use of the 

notation used in Wonham [451. Proofs of the Tkeorems can be found in this reference, 

among others. 

2.2.1 Definition 

In this work, only finite dimensional, time invariant, linear systems will be considered. 

These types of systems constitute a large class of engineering systems, and can be 

modelled as 

j. = h + B u  (2.77) 

y = C x  (2.78) 



fir t E I&, where s = x (t), u = u ( t ) ,  y = y (t), and x = $x. The elements z E X, 

u E U, y E Y are referred to as the state, connol, and ourput vectors respectively. Further, 

assume that 

with n 2 p 2 m. The term system will henceforth be understood to mean the set of 

differential equations (2.77) and (2.78). The majority of this work will primarily be 

concerned only with the system (2.77), which is equivalent to y = x, or C = Iaim(X). 

It is useful to then look at some of the general properties associated with (2.77) and 

(2.78). 

2.2.2 Controllability, Feedback, and Eigenvalue Assignment 

Denote the linear space of piecewise continuous controls u (t) C U as&. Further, the 

solution s (t) c X of (2.77) is uniquely determined by 

z ( t )  = rp (t;z0,u) = eAtx0 + je('-+)'~u (r) ck (2.82) 
0 

where xo = x (0). A state x E X is reachable if there exists t E [0, w] and u E U, 

such that x = rp (t;xo,u).  That is, there is a control available that can steer z (t) to x in 

some finite time. Denote & c X as the subspace of all states reachable from xo. The 

subspace is Q c X termed the confmflar6e subspace of the pair (A, B). If = X , 
then this implies that any z E X can be reached from 20  in finite time, and the pair (A, B) 

is then termed contmiIa61e. It can be shown that a system is controllable if and only if 



Feedbock is the term used to describe the application of a control u = Kz, where 

The whole purpose of state feedback is to alter the behavior of the free, uncontrollable 

system x = Az in some desirable way. Thus, by selecting a feedback map of the type 

(2.84), the chsed loop system becomes 

x = ( A + B K ) x  

x (t) = e(AfBK)txo 

indicating that the closed loop system behavior is governed largely by o ( A  + BK). The 

main concern here is that cr (A + BK) be stable, or 

a ( A +  BK) c @- (2.8 7) 

where C- := {a + ip : a < 0, P E W), so that x (t) + 0 as t + oo. The relation 

b w e e n  controllabi1ity and spectml assignment can be stated in the following manner. 

Theorem 2.10 The pair (A,  8) b contmf~able $and only jf@ every symmetric set {&}:,I c 
C, thereexistsarnap K :  X--Umchthatrr(A+ BK) = (&)L,. 

Proof. Refer to Wonham, Theorem 2.1 [45]. 

In this work, the notion of transforming a system into normd form will kquently 

be employed. Specifically, assume the controllable pair (A, B) admits a transformation 

where Bz E Pxm is nonsingular, and the blocks Q are of appropriate size. For some 

special cases, application of the control u = Kx leads a closed bop system matrix of the 

form 

(A+ BK) = I 41 +a,& 



Thus, o ( A  + BK) = o All + AL2K u a ( M )  where M is fixed by some process, and ( -1 
the design objective is to select a control law I? such that the performance of the subsystem - 
( A ~ ~  + AlzK is in some sense good. The following theom gives conditions for the - > 
controllability of the pair (Al1, Ala). 

Theorem 2.1 1 (All, A12) is controllable if (A, B) h contmllable. Fimhe,: ifB2 ir nonsingulm; 

then (AI AI2) conmllable hplies (A, B) contmllable as we& 

P m t  The Hautus criterion for controllability [I 81 says that (A, B) is controllable if and 

only if 

W i  (A, B) as in (2.88), we have 

If the matrix (2.90) has rank n for all A, then clearly 

for all X E @, which is equivalent to (Al1, A12) controllable. On the other hand, if (2.91) 

holds fn all X E C and B2 is nonsingufar, then hrn (2.90), [ X I  - A B ] has rank n 

for all X E C, so that (A, B) is controllable. . 
23.3 Observability and Observers 

The results of 522.2 are only partially useful, in that it is presumed that x is directly 

available for measurement at any instant in time. This, however, is often not the case. 

Consider, once again, the system (2.77), (2.78). The maps A, B, and C are known, 

as is u (t). I f  it is possible to compute x (t)  from this data, then the system is termed 

observable. More simply, if u (t) = 0, then the pair (C, A) is observable if y (t) = 0 only 

when x (t) = 0. 



Mathematically, this property implies that (G, A) is observable if 

From (2.92), it is immediate that (C, A) is observable if and only if (A*, C*) is 

controliable. Thus, if (A', C) is controllable then a (A* + C'L*) = {&):=, as before 

o a (A + LC) = where L : Y -r X. 
Further, if (A, B)  is controllable, and (C, A) is o bsewable, then the triple (A, B , C) 

is termed cornpZete. 

Assuming (C, A) observable, it is now possible to consauct a device that will 

calculate x (t) from y (t) and u (t). Such a device is termed an observer, and takes the 

form of a differential equation 

where q E X. The design variables are then L : Y -+ X, and W : X -, X. Define the 

observer error as 

so that 

where W = A + LC, and L is selected such that o ( A  + LC) is in some sense good. 



The objective at this point is to apply the control law K : X -+ U as u = Kg, where 

q ( t )  -r x (t) as t 4 oo, and the cascaded closed loop system becomes 

-LC ( A  + BC + LC) 
however, recalling (2.94) and (2.95), we see that (2.96) can equivalently be written as 

and the system performance is determined largely by o (A + BK) U c (A + LC). 

Typically, L is selected such that 

Rea(A+LC) ) 4Reu(A+ BK) (2.98) 

ensuring that the observer dynamics are fan in comparison to the system response. This 

strucm, when considered with Theorem 2.1 3, imp1 ies that o (A  + B K) can be assigned 

arbitrarily if (A, B, C) is complete. 

2.3 Lyapunov Stability 

The central concern of any control problem is stability. As it-pertains to linear systems, 

stability implies that a trajectory x (t) -r O as t -r a. Thus, a system that satisfies this 

condition is termed asymptotically stable. 

Lyapunov (1892) was concerned with general conditions for stability, and numerous 

conditions for classifiing stability without the explicit calculation of o (A). As it applies 

to this work, this creates an effective design tool when attempting to develop a control 

law that leads to an asymptotically stable system, In the interest of brevity, we will not 

delve too deeply into this rather large topic, and only focus on the resuIts that are directly 

important to this work. 



The main result can be summarized as follows. Let A E Rnxn and consider the 

autonomous system 

x=& (2,99) 

Defining a quadratic form u ( x )  as u ( x )  = ~ V X ,  when V is symmetric, so that 

6 ( x )  = ZTvz+xTvx 
= ~ ( A ~ V + V A ) Z  (2.100) 

and writing 

A=V + V A  = -PV (2. I0 I) 

Then W is real symmetric as well, so that v (x) = -u (x) = -SWX. Lyapunov 

noted that, given a positive definite W, then the stability of  A can be characterized by the 

existence of a positive definite solution matrix V. Intuitively, this implies that v (x) is a 

valid scalar measure of the 'magnitude' x. So, 6 ( x )  < 0 since W > 0 a w (z) > 0, and 

this implies that this 'magnitude' is always decreasing, and the system is asymptotically 

stable. 

In this, work, the ability to classify a point, or set of points, {I) c X as stable and 

globally attractive when the system under consideration is nonlinear and autonomous is of 

importance. That is 

x (t) = f (2; t )  (2.102) 

The following, then, is a restatement of Lyapunov's stability theorem as it pertains to 

systems of the type (2.102) [24]. 

Theorem 2.12 Let x = 0 be an equilibrium pointfor (2.102) ondV c X be a &main containing 

x = 0. Let V : D -, I[Q be a confinuously d ~ e r e n t i a b k ~ t i o n .  such that 

V(0 )  = O m d V ( x ) > O j o r a N x ~ ' D - 1 0 )  (2.103) 

V ( X )  6 O f o r a N x ~ D  (2.104) 

lkn, x = O  isstable Further: if 

V ( X )  < oforuilx E D - @} 



then x = 0 b asymptotically stable 

Pmot Given E > 0, choose r E (0, €1 such that 

Let a = min V (2). Then, from (2.103), a > 0. Select P E (0, a), and let 
Ilxli= 

= {x E By :V(z) < P )  

Then, na is in the interior of BT- From (2.104), we see that S2, has the property that 

any trajectory starting in Qfl at time t = 0 will remain in SIP. As well, since V (x) is 

continuous and V (0) = 0, there is a 6 > 0 such that 

Then, 

Ba C nb c B, 

and 

x(0) E Bs*x(O) E Q  * x ( t )  ~ R ~ * x ( t )  E BT 
Thus, 

Ilx(O)II < 6 * 11z(t)ll < T 6 r forall t 2 0 

which shows that the equilibrium point x = 0 is stable. Now, assume (2.105) holds as 

well. To show asymptotic stability, we need to show that x ( t )  - 0 as t -r CQ. That is, 

for every a > 0, the= is i > 0 such that 11x (t)ll < o for all t > 5. Repeating the previous 

arguments, we know that for every a > 0, we may choose b > 0 such that f ib  c B,. Thus, 

it is sufficient to show that V ( x  ( t )  ) -* 0 as t  -r w. Since V (x ( t )  ) is monotonically 

decreasing and bounded from below by zero, 

We show that c = 0 via contradiction. Assume c > 0. By continuity of V (z), there exists 

a d > 0 such that Bd c Qc. The limit V (z (t)) - e > 0 implies that the trajectory z (t)  

lies outside the baIl Bd for all t 3 0. Let -c = max v (z), which exists because the 
&llzllSr 



continuous function v ( x )  has a maximum over the compact set {d < llxll < r ). From 

(2.105), -c < 0 and it follows that 

Since the right hand side will eventually become negative, the inequality contradicts the 

assumption that c > 0. . 
Also of importance to this work is the following extension of Lyapunov's Theorem, 

known as the Barbashin-Krasovskii Theorem. 

Theorem2.13 Let x = 0 be an equilibrium pointfor (2.77). Let V : X x X + R+ be a 

contimcot~~ly direren I fable fiurction such that 

V(0)  = 0 and V ( x )  >Of i ra l [ x#O (2.106) 

Ilxll -, a0 + V ( x )  -.oo (2.107) 

~ ( z )  < O/OTalIz#O (2.108) 

then x = 0 b a global/y, aymptoticaIly stable point in A!. 

ProoT. See [24], Theorem 3.2. m 

2.4 Chapter Summary 

In this chapter, the basic mathematical tools necessary for this work were presented. 

Notation was introduced, the class of systems to be analyzed was defined, and some basic 

properties of these systems were covered. 



Chapter 3 

Sliding Mode Control 

3.1 Introduction 

As stated in 32.2, it is a well known fact that control of linear systems can be achieved via 

the application of feedback, K : X -r U. As will be explained in 94, it is also known that 

the resulting system 

x =  ( A + B K ) x  

can be, in some sense of the word, optimized by minimizing an associated costfimctional, 

or performance index 

J = [ (r*Qr + u8Ru) dt (3 -2) 

Theoretically, this type of control law is as good as it gets, and has thus emed its own 

title and line of study-linear quadratic (LQ) control. It does, however, suffer from some 

practical draw backs. 

Primarily, nonlinear effects in the input signal u form a very realistic I imiting factor 

on the effkctiveness of LQ control theory. Typically, these input nonlinearites appear 

as saturation levels in the actuators. For example, the output torque of a servomotor is 

subject to a maximum (saturated) value that is in propohon to the size of the motor. Thus, 

true optimal system performance may not be obtainable due simply to the size constraints 

on the actuators available. One method of bypassing this problem is to apply 'heavy 

penalties' to the constrained variables within the cost finctional (i-e., alter Q and R) until 

such time that a practical K is found. 

Of course, this idea has some intuitive drawbacks, in that it becomes apparent that 

the control law is, to some extent, decided at the onset of the design. Then the job almost 



becomes one of finding an appropriate index that justifies the control law as optimal. 

Further, in many realistic systems the only actuator available is a relay-type switch, 

since these actuators have the practical advantage of reduced complexity in comparison to 

a continuous valued actuator. Here, the notion of an LQ design scheme has no hope of 

succeeding. 

Thus, the analysis of systems with these particular control constraints within an LQ 

framework is cleariy not appropriate, and something different is required. Here enters the 

exciting field of variable structure control (VSC), so called because it takes advantage of 

the on-off switching nature of the actuator, rather than ignoring it 

While it would seem apparent that these particular systems do not lend themselves 

to classic LQ optimization, they are well adapted to optimization with respect to system 

response (time-optimal control), fuel expenditure (fuel-optimal control), or any number of 

other quantities. 

Optimal relay control was a topic of great interest throughout the period of (roughly) 

1945 - 1970. However, not much will be said about this topic here, since it is not of 

particular interest to the thesis. The interested reader is referred to Ryan 1341 for an 

historical account of VSC. 

Two results, pertinent to this work, came out of VSC. Firs& the somewhat intuitive 

result was proved that to achieve a time optimal control, the actuators had to operate 

at their saturation limits. This led to the idea of utilizing relay switching, rather than 

saturating actuators. Second, it can be shown that the switching sequence required for 

system optimization could be characterized by a manifold within the state space that 

acted as the decision mechanism for the switches. That is, if x E X is 'above' the 

manifold, then the controller switches to one structure, and if x is 'below' the man$old, 

the controller takes a different structurr. So, for an m-dimensional controller, each jth 



element would have the structure 

ujf (x ;  t) if + ( x )  > 0 
uj (2; t )  = 

u; (x; t )  if $ (5) < 0 

where the decision manifold, S, is characterized by the parametric equation 

This notion will be cl&fied in the sequel. 

Much interest in the design and analysis of optimal relay control systems occurred 

in the 1 9609s, as can be seen in the classic work of Bryson and Ho 141, and still continues 

to the present (Ailon and Segev, [I I). Of interest to this work is a special case that arose 

from the study of VSC's. Filippov (1960) is athibuted with much of the groundwork for 

analysis of systems with discontinuous right hand sides, such as a VSC (these results are 

presented in Ryan [34]). In particular, he was interested in the state behavior, x (t) , at the 

exact moment of the control switch. 

Of the various resuits obtained, the one that is of most interest (as far as this work 

is concerned) is the situation where both control stmctures lead to an x (t) that is directed 

towards the switching manifold S. That is, if x (t) is travelling towards S, and intercepts 

S at a time T, then the control structure switches, and an alternate trajectory is followed. 

However, this trajectory also is directed towards S, so that the net result is that x (t) travels 

in a dinction tangent to S. This type of motion is termed sliding* and a new branch of 

control theory emerged. 

From the above heuristic explanation, it is apparent that sliding motion is thus 

named because x (t) 'slides' along S. This motion was known to ocnv  in optimal VSC 

simply because at some point, S will coincide with a certain state trajectory. The idea then 

emerged of creating an arbitrary decision manifold, S, and imestigating the possibility of 

inducing sliding motion on this manifold by means of rapidly varying the structure of the 

controller. This idea became popular for a number of reasons. 



It was shown by Utkin [4O], and more generally by Decarlo et d [6] that a system 

could be stabilized by restricting x (t) to S, even if neither of the controls {uC, u-) alone 

led to an asymptotically stable system [a. Instead, it is simply required that each of 

{uf, u-) now has the effect of 'steering' x (t) towards S. Then, by rapidly varying the 

control structure (infinitely fast witching, ideally) the net result will be that the component 

of x (t) normal to S is zero, so all motion is tangent to S. It becomes apparent, then, that 

the shape of S determines the closed loop system dynamics, since x (t) will be restricted 

to S. Thus, with a well designed sliding manifold, SLMC can achieve the same goals of a 

standard control strategy, such as tracking and regulation. 

In addition to the properties of asymptotic stability and relatively simple closed loop 

dynamics, SLMC is a very robust control strategy. In an important work by DraienoviC, it 

was shown that SLMC has guaranteed stability margins in the face of bounded, matched 

disturbances / model uncertainties [I I], [38]. 

Thus, with the relatively recent advent of high speed digital computers and rapid 

switching circuitry, SLMC has become a practical reality, and an attractive option in many 

applications. 

The purpose of this chapter will be to provide an overview of some of the 

fundamental properties of SLMC. The key piece of information that will be omitted is 

a general discussion f derivation of some of the properties associated with discontinuous 

feedback control. The purpose of this omission is purely for the sake of  brevity, and the 

interested audience is, again, referred to Ryan [34] and the references contained therein 

for an in-depth treatment ofthis topic. 

The chapter will be organized as follows. 53 2 gives a brief introduction to manifold 

theory, with an emphasis on the development of a sliding manifold. 93.3 characterizes 

SLMC in the ideal situation. In 53.4, the witched control law is developed and shown to 

be invariant to matched disturbances. A chapter summary is presented in 83.5. 



3.2 Sliding Manifolds 

In this section, a sliding manifold S will be ddined. State behavior on S will then be 

examined when S is a linear manifold. 

3.2.1 General Manifold Theory 

The concept of a manifold is an exmmely rich mathematical topic. See, for example, 

Kobayashi and Nornizu (251. For the purposes of this work, a manifold may be viewed as 

the subspace generated by solution set of the equation 

+(XI = 0 (3 -5) 

Further, all spaces X,y,. . . may also be considered manifolds. 

3.2.2 Sliding Manifolds 

With this definition of manifold in place, we want to consider the sliding surface as a 

submanifold S immersed in X. This type of manifold can be described by 

where (I) denotes some continuous function of x. Equation (3.6) indicates that any 

general manifold can be chosen. This work, like most literature, only considers a special 

class of hem manifo Ids that can be described by 

S={x:Sz=O} (3 -7) 

Where S E L: (X, R) is, at this point, an arbitrary map. For a more general examination 

of nonliitear sliding manifolds, see Sira-Ramirez [3q, [371. Note that in the case under 

consideration 



The effwt of constraining the system (2.77) to S can now be examined 

3.3 Ideal Sliding Behavior 

In this section the pair (A,  B) is assumed controllable, rank (B) = m, and the map S is 

assumed to have full rank. 

The objective now is to design a control such that once x ( t )  intercepts S, sliding 

motion will commence and x ( t )  will remain on S for all subsequent time. If we assume 

an initial condition of xo E S, then 

Sx( t )  = 0 
=+ sx ( t )  = SAX (t) + SBu ( t )  rO 

Isolating u (t) in (3.10) results in (dropping the functional dependence on time) 

which is uniquely determined if (SB) is nonsingular. Substitution of (3.11) into (2.77) 

yields the equivalent system 

and the need for an additional switching will now be made clear. Let P = B (sB)-' S 

and notice that 

so that P is idempoten& and thus a projector. Thus, we can find { x }  t) X with 

xo E X that will induce sliding motion in (3.12) by observing the following. Begin by 



transforming (A, B) into normal form as per (2.88), so that 

Let S E PXm take the form 

and assume S2 E Pxm is nonsingular. Now 

so that 

Define now a transformation T as 

so that 
L - 

L J 
With this construction of (1 - P) A, we may now conveniently examine some of the 

properties of the closed Ioop system. 



Theorem 3.1 The closed loop system marrix 

& = ( I  - B ( s B ) - I S )  A 

has at least m zero eigenvdues, or 

Pmot Recalling Theorems 2.5 and 2.6, we see in (3.19) that 

c ( ( I  - P) A) = u (A11 + A I ~ S C ' S ~ )  u 4 (0) = (0, XI, A*, . . . , X p )  W 

Now, we wish to characterize the nature of x (t) under this particular feedback law. 

Begin by making the following assumption 

Assumption 3.1 The set 

is a symmetric set of distinct, nonzero elements over C-. 

Theorem 3.2 7k symmetric set (Att + A ~ ~ S F ' S ~ )  c C may be ussigned mbitrcvi&jt 

Pmof. From Theorem 2.1 1,  the pair (A1 AL2) is controllable. Thus, a map 5;' s1 can 

always be found such that o (Atl + A ~ ~ S C ' S ~ )  = {A+):;;" c C, where {&):? is an 

arbitrary symmetric set. 

Combining these facts with the heuristic definition of SLMC given in the 

introduction of this chapter, namely that the closed loop dynamics are determined by the 

'shape' of S, we can visualize the behavior of x (t) in a geometric manner. 

From Theorem 3.1 and Assumption 3.1, it is apparent that the matrix (I - P) A has 

a nontrivial kernel of dimension m. Any vector in ker ((I - P) A) is an equilibrium point 

for the closed loop system, so that the system has an equilibrium subspace rather than 

an equilibrium point Further, since S was designed to be an n - m dimensional linear 

manifold in X, it follows that the columns of the matrix All + A~~SC'S* constitute a 

(Wormed) basis for S. So, for an initial condition of zo 6 S, it follows that x (t)  will 



follow a path parallel to S, and achieve an equilibrium state (i.e., x = 0) anywhere on the 

subspace ker ( ( I  - P) A) C X. 

Thus, asymptotically stable sliding motion will no6 in general, occur without the 

advent of an additional control term such as a switching term, as indicated in 93.1. 

To conclude this section, we note the following compatibility condition on S and 

K, namely that K now has the specific structure 

which leads to a singular matrix (A + BK), as per (3.19). This constraint on design 

objectives is, in fact, one of the main motivations for this work, and will be addressed in 

54.3. 

3.4 Actual Sliding Behavior 

Ideally, once the state trajectory intercepts S, sliding will commence. However, as was 

shown in 93.3, z (t) will not, in general, intercept S unless xo E S. Thus, the task at 

hand is to now design a control that will force x (t) to intercept S, and ensure that sliding 

motion will comence at this point. As was was indicated in 53.1, sliding motion may be 

induced by application of a discontinuous control law. Thus, the task at hand is to design 

a VSC that will both induce sliding once x( t )  intercepts S, as well as ensuring that x (t) 

intercepts S. 

In this section, the structure of the switching control t e n ,  u, will be derived. 

Virious schemes exist to accomplish this objective, see for example 161, [23], [24], [40], 

and [4fl. In this work, the method presented will be based on the works of Decarlo 

[q, which uses a Lyapunov approach to design a conhalls which guarantees that S is a 

g1obaIIy attractive manifold. 

Recall tiom 53.1 that the controller will utilize a full state feedback law, u = u (x; t), 



and each jth entry uj (x; t )  of u (I; t ) has two possible structures [6J, [40]. 

uif (x; t )  if @ (2) > 0 
uj (x ;  t )  = 

u; (3; t) if @ (2) < 0 

Where {I : .rl (z) = 0) has previously been defined to be the sliding manifold S c X. At 

this point, X is necessarily a vector field over IR. since the inequalities (3.22) make no 

sense in C, since Q: is not an ordered field. The task at hand is to now give an effective 

algorithm for designing an appropriate switching contml term, u,. 

3.4.1 Switching Control Design 

Since no guidelines have been given for selecting a 'good' set of closed loop eigenvalues 

beyond u (Ad) C @- U {O) for asymptotic stability, it would be somewhat inappropriate 

to examine the problem of selecting the switching matrix, S. Of  course, numerous 

references on this problem exist, and the interested audience is referred to [q, [40], [32], 

[24], among others. For the remainder of this section, it will be assumed that S has been 

chosen, and is in some sense good. 

Let us now examine the slightly more involved problem of ensuring that sliding 

motion is actually induced on S. To do this, recall $2.3, in which Lyapunov stability was 

presented. Define a Lyapunov candidate V : X x X -r&, such that 

Then, S is a globally attractive manifold in X,  in that any trajectory x (t) will tend toward 

S in W t e  time. Further, since the dynamics on S have been defined to be 'good' (i.e., 

asymptotically stable), then the controller will be globally stabilizing. 



Defining z = Sx, and viewing llzll as a measure of the 'distance' from x to the 

manifold S when x $ S, we may construct 

So that 

j=1 

For global stability, it is required that 

(z, i )  < 0 (3.29) 

for all t 3 0 and z # 0. Sufficient conditions for satisfying (3.29) are to let 

* ij = -pj sign ( t j )  (3.3 I ) 

wherepj > 0 for all j = 1,2,. . . ,m. Thus, 

such that 

Thus 

u = - (sB)-' SAz - (sB)-' F sign (r)  (3 -3 4) 

= Ueq+UW (3 3) 

And the closed loop system becomes 



Now, as per Theorem 2.13, the switching term B (sB)-' F sign (r) ensures 

stability of the closed loop system. That is, application of this control will result in x (t) 

converging to S for all q E X, as well as ensuring that x (t) remains on S once x ( t )  

intercepts S. 

It is now appropriate to demonmate the primary adventage of SLMC-invariance to 

bounded, matched disturbances / uncertainties. 

3.4.2 Disturbance Rejection in Sliding 

As mentioned in 53.1, SLMC is invariant to bounded, matched disturbances only. That is, 

disturbances that enter the system via the same path as the control input. The analysis of 

Draienovif [ I  11, [38] illustrates the property extremely well. Let 

Where 6 is an unknown disturbance. If the initial state is on S, then Sx = 0 for all t 2 0, 

and 

For the sake of accuracy, note that if 6 is unknown in (3.38), then the controller cannot be 

expected to imitate i t  That aside, the closed loop system becomes 

x = AX-B(SB)-'SAX-B(SB)-'~6+6 

= (I - B (sB)~' S )  (Ax + 6) 

and, for 6 to have no effect on x (t), it is required that 

( I -B(SB)- 's )~ = o 

=+ 6 = B (sB)~' Sd 



Thus, if the controtter is to demonstrate invariance to disturbances, the disturbances must 

be matched. I f  the disturbances are in fact matched, then without loss o f  generality the 

disturbances can be modelled as 

Where [ is still unknown, but assumed norm-bounded, so that 

Where p E &. Now, to show that the controller can be designed to achieve the result of  

invanWance, consider again the Lyapunov candidate V : X x X -r R+ and 

for all t ) 0. Substitute (3.34), into (3.44) to achieve 

( s h  + SB (- (SB)-' SAz - (sB)-I F sign (r))  + SB~) < 0 (3.45) 

Thus 

Note that 

And, without loss o f  generality, let 

k=l 

That is, we define p to be the 1-norm of the disturbance vector c. SufEcient conditions for 

satisfying (3.46) are to then select each fi via 



* v j  >mku)(sB) jk l  k p (3 .so) 

This will ensure that (3.44) is negative definite as required, and the system (3.36) will 

converge to S. 

3.5 Summary 

This chapter presented a comprehensive development of SLMC. All the essential design 

features were developed for a certain class of linear systems, and the resulting controller 

was shown to have the desired robustness margins. 



Chapter 4 

Mixed Objective LQ / SLMC Control 

4.1 Introduction 

The problem of eigenvalue placement within specified regions of C is by no means a new 

problem. Descartes [8] is attributed as being the first person to get this study underway, 

when he showed in 1637 how to reduce geometrical problems to the solution of algebraic 

equations. 

Later, in the 19' century, there was great interest among mathematicians and 

engineers in the study of stability as it pertained to differential equations. Conditions for 

the eigenvalues of a matrix to lie in the open lee hand plane of @ were first implied by 

Hermite [20] in 1856, and later explicitly obtained by Routh [33] and Hurwih [21] in 1877 

and 1895, respectively. An alternative, but equivalent, solution to this problem was also 

developed in 1892 by Lyapunov [28]. 

In the 20" century, the focus shifted from stable eigenvaIue placement to that of 

optimal stable eigenvalue placement. An excellent treatment of this now classic topic can 

be found in Anderson and Moore 121. More recently, there has been a p a t  amount of 

interest in optimal e igenvalue placement within prescribed regions of @. Techniques for 

optimal placement within various geometric shapes @rips, circles, etc.) have been treated 

by Gutman and Jury (161, Haddad and Bemstein (171, and Wang and Berastein [43], 1441 
among others. 

More recently, the techniques applied in these works have been generalized in a 

paper by Chilali, et a2 [S]. In all of the above mentioned works, the basic technique has 

been to define an open region of C via a set of linear matrix inequalities, an LMI region. 



The Lyapunov hc t ion  associated with the problem is then modified in such a way that 

eigenvalues lying outside the prescribed regions are treated as unstable. 

In this chapter, a different approach is taken. Linear systems ofthe type introduced 

in 52.2 are considered, and the basic objective is to determine an optimal state feedback 

control law, K : X -+ U, that places at least m of the closed loop eigenvalues of (2.85) 

on the negative real axis. By doing this, an SLMC style switching term may then be added 

to the control law, creating a closed loop system that is in some sense optimal as well as 

robust to matched disturbances [I 11. 

Since the previously mentioned LMI techniques require that the entire closed loop 

spectrum lie entirely within an LMI region or, the intersection ofp of these open regions, 

the design objective of this chapter cannot be met with these techniques, in general, since 

W_ is a closed set in @. 

It is worth mentioning that this concept has previously been dealt with by Tang and 

Misawa (391. In that particular work, the approach was to select a state weighting matrix 

Qa in (3.2) and inspect the resulting closed loop spectrum. If there was at least one real 

eigenvalue, the problem was solved. If this did not occur, a real eigenvalue was selected, 

and an alternative Q was then found that was in some sense 'closest' to Qo. The problem 

with this method was that the resulting Q couid end up being arbitrarily far away, thus 

negating any physical significance that may be attached with Qo. 

In this work, a much simpler method is used that is a modification of a recent work 

by Iracleous and Alexandridis [22]. The idea is to find a similariq transform of the 

closed loop system matrix that a1 tows the system to be viewed as the cascaded sum of 

two subsystems. The feedback law is then found by using arbitrary pole placement for 

one subsystem, thus fixing m eigenvalues as real, and then optimizing the location of the 

remaining (n - m) eigenvalues. 

Once this feedback map K is obtained, focus is switched to SLMC. As outlined in 

93, SLMC is an attractive option in many applications, due to its robustness properties. 

The probIem is that the nominal closed loop performance of the sliding mode contmller 



is typically nowhere close to optimal, due to the fact that sliding mode control works by 

artificially reducing the order of the closed loop dynamics by an order of m. This situation 

has been dealt with to some degree by the author [35] by adding additional dynamics to 

the closed loop system in the form of a dynamic compensator that seeks to recover the 

missing dynamics. This work takes a much simpler approach, in that an original result 

states that for systems with a closed loop spectrum containing at least m distinct, real 

eigenvalues, an equivalent sliding mode controller can be constructed. Thus, the nominal 

closed loop dynamics are preserved, and the additional feature of invariance to bounded 

matched disturbances is added. 

The chapter will be organized as follows. 94.2 presents the derivation of an optimal 

state feedback map K : X -. U that places rn of the closed loop eigenvalues on IR. 

54.3 presents the main result, that being the development of a control law that pnsems 

nominal LQ system performance while adding a robustness margin to the closed loop 

system via a switching term on the controller. 94.4 e~ends  these results to an output 

feedback controller that utilizes a fuIl-order state estimator. Results are summarized in 

$4.5. 

4.2 An LQ Regulator With Preset Eigenvalues 

This section covers, in detail, the derivation of a gain map K : X -, U that allows the 

designer to specify m of the closed loop eigenvalues, and place the remaining (n - rn) 

poles at a location that is optimal with respect to some index+ The results are presented 

here using C as the underlying field only for the purpose of full generality. All results 

translate directly to 119. This method first appeared in 1221, but has been significantly 

altered for this work. 

As a quick aside, we note that the most intuitively simple way to accomplish this 

objective wouId be to decouple the open loop system into two controllable subsystems, so 



that 

and the problem is solved easily, since the two subsystems can be dealt with separately. 

However, it was shown by Moorse [3 11 and Molinari 001 that this result cannot be 

achieved in general. 

Consider, then, the system 

where A, B is completely controllable, x E X, u E U, and rank B = m = ( *  * )  ( ') 
dim (U) 6 dim (X) = n. Transforming A, B to normal form as per (2.88) gives ( '  *) 

where & E Pxm is nonsingular. Further, define two matrices XI E c("-")"("-~) 
and X2 E P ~ ( " - ~ ) ,  where XI is nonsingular. Thus, we may construct a nonsingular 

transformation T as 

Xz B2 
so that 

Now, consider the closed loop system (A + BK). Here, K will be of the form 

and application of the above transformation results in 



where 

Define a particular h1 such that o (M) C C-, and let 

Further, constrain the closed loop system by 

and the resulting closed loop system matrix becomes 

( A  + BK) x 
hl 1 

L 

And so, the closed loop spectrum is determined by 

The goal is to then use any method, potentially some LQ optimization technique [2] 

to assign o (Alr + A12x2). That is, the system can be viewed as 

where ill may be selected arbitran'ly, v E V, and the objective is to come up with a 

state fetdback law X2 : V -+ XI. To accomplish this, the pau (Al1, An) must be fully 
controllable. The following proposition gives conditions for this to occur. 



Proposition 4.1 Let (A, B) be given as in (2.88), with B2 nonsingular and (A, B) controllable. 

Let h .  E @nxm be given, and XI, X2 be any two matrices such that 

is well defined and nonsingular. Then, there is a K = K, K, such that [ I 

where 

and (Au, Atz) is control lab le. 

PmoE As per (4.9), (4.10), the required K is 

Further, from Theorem 2.1 1, (Arl, AI2) is a controllable pair. Thus, since XI is 

nonsingular, it easily follows that (All, All) is also a controllable pair. . 
Assuming the condition of Theorem 4.1 is met, the feedback law X2 : V -+ Xl 

can be designed. The design methodology used here will be that of classic LQ regulator 

design, [2], [45] but any of the specialized methods referenced in the introduction may 

now be applied as well. That is, if the cost functional, J, is defined as 



where Q 2 0, R > 0, and v is a pseudo-control term, then it is a standard rault to show 

that J is minimized by selecting v as 

(4. IS) 

(4-1 6 )  

where P is the maximal Hermitian solution of the algebraic Riccati equation (ARE) 

Note that the dynamics of x in X2 correspond to an uncontrollable subspace in X, relative 

to the control problem (4.13). K is now solved as 

The resulting structure of o (A + BK) will now be exploited further. Note that for 

the sequeI, kf must be defined in the following manner 

Assumption 4.1 M = M' < 0 9 0 (hi) c R. Further, assume that ail elements of a (Y) 

are distinct, 

4.3 Mixed LQ / SLMC Design 

Consider the fact that Theorem 3.1 implied that conventional SLMC and LQ design 

strategies were not compatible. Presented in this section is a proposed technique that will 

bridge the gap between these two powerful techniques. 

4.31 Lyapunov Design 

Assume that o (&) has already been designed via the technique of $42, and the god is 

to now find the map S and switching term u, as per 53.2 1 $3.4 that will allow the two 

design objectives to be compatible. 



Recall [7] that the switching controilcr can be designed via a Lyapunov approach by 

again viewing llzll = IISxl[ as a measure of the 'distance' from x to S, and a Lyapunov 

candidate V : X x X -, R+ as 

For global stability, it is required that 

for all t 3 0. Typically, this problem is solved by the approach outlined in 53.4. Consider, 

however, that an equally valid sufficient condition for satisfying (4.20) is to let 

where vjPj,rj > 0 forall j = 1,2,. . . ,m. Thus 

Solving (4.22), (4.23) for u and substituting this value into (2.77) yields 

u = - (sB)-' (SAX f GSx + F sign (2)) 

= - (sB)-' ( (SA + GS) x + Fsign (I)) (4-24) 

= Ueq +u, (4-25) 

a 5 = ( A  - B (SB) -' (SA + GS)) z - B (sB)-' F sign ( z )  (426) 

Now, comparison of (4.26) with the classic A + BK structure yields 



(4.27) can be restated as 

[(A: Q I,) + (In @ G)] vet (S) = 0 (4.28) 

Ha = 0 (4.29) 

=+ s ~ k e r ( H )  (43 0) 

where H = [(A: @ I,) i (I, @ G)] , s = vec (3). Since S is full rank by assumption, 

dim (ker H) ) m is required. Recall fmm 52.1.7 that 

where 

so that (4.29) is satimed non-trivially if each yi = -X, for each j and some p. Recall, 

though, that yi E I& by construction for all j = 1,2, . . . , n. To simplify matters, assume 

that all 7 are distinct, which implies that o ( A  + B K) must contain at least m distinct 

reaI eigenvalues to solve (4.29). This, however, is has been accomplished by 

Assumption 4.1, so that 

(W = {-Tj)Z1 (4.34) 

With this, S can then be determined non-trivially as 

S = VeC-I (s) 

giving the closed loop system 

x = (A  + BK) x - B (sB)-' F sign (r) 



Thus, the system is now like an LQ controller with an additional switching gain. It 

can now be shown that by adding the switching term u,, the system (4.36) is invariant to 

a certain class of disturbances. 

4.3.2 Robustness Properties of the Proposed Controller 

As mentioned earlier, SLMC is invariant to matched disturbances only. The proposed 

controller is no d i E e ~ n t  That is, the proposed controller is robust only against 

disturbances I modelling errors that enter the system via the same path as the control input 

Again we will employ the analysis of [I 11 to illustrate the property. Let 

where 6 is an unknown disturbance. Apply the control law 

which is flawed, in that if 6 is unknown, then the controller cannot be expected to imitate 

it. That aside, the system is now 

So, for 6 to have no effect on 5, it is required that 

So, if the controller is to demonstrate invariance to disturbances, the disturbances 

must be matched. Specifically, it will now be demonstrated how to select the elements of 

the switching gain matrix F to achieve this objective. 



If the disturbances are in fact matched, then without loss of generality the 

disturbances may again be modelled as 

where is still unknown, but assumed norm-bounded as in 834.2, so that 

IkII < P (4.42) 

where p E 4. To show that the controller can be designed to achieve the resuk of 

invari*ance, consider again the Lyapunov candidate V : X x X -r R+ and 

for all t 2 0. Substitute (4.36) into (4.43) to achieve 

0 > ( ~ 2 ) ~  ( S A ~  + SB (- (sB)-' (SA + GS) r - (sB)-' F sign ( z ) )  + S B ~ )  
0 > (sx)* (-GSz - Fsign (2) + SBC) (4,441 

Now 
m m m 

( s x ) ~  ( ~ S X  - F sign (2) + SBC) = C -7jz; + C - t j  vj sign (zj) + C * j  (SB) jk Sk 
J=I j=l ilk= 1 

= - C (rj IYI + v j )  Isj/ + 2 zj (SB) jk & (4.45) 
j=l j t k = l  

Note that 

and, once again, let p to be the 1-norm of the disturbance vector c, so that 



Sufficient conditions for satisfying (4.45) are to then select each pj via 

since rj > 0 for all j = 1,2, . . . , m, ensuring that the term C rj lsjkxkj I can only serve 
k 

to decrease (SB) IGI over all values of j. Thus, this choice of vj will ensure that 
k I JkI 

(4.43) is negative definite as nq uired, yielding the desired robustness characteristics. 

4.4 Extension to the Output Feedback Case 

4.4.1 Construction of The Observer 

In this section, consider the situation where x is not available for direct measumnent. 

That is, the system is now of the form (2.77), (2.78) 

where the triple (A, B, C) is complete. With this assumption, it is now possible, as per 

822.3, to design a f i l l  order observer for the system. Recall from (4.24) that 

= - (SB) -' ((SA + GS) x + Fsign (z) )  

when z was available for direct measurement Now, the objective is to use q, the h a t e  



of x instead, so that (4.24) becomes 

u = - (sB)-' ((SA + GS) (I + Fsign (2 ) )  (4.49) 

where 

z = sq 

Substitution of (4.49) into (2.77) then results in 

x = Az - B (sB)-' (SA + GS) - B (sB)-' F sign (i) (4.5 1 ) 

= r L + B K q -  B ( s B ) - ' F s ~ ~ ~ ( z )  (4.52) 

Applying the observer of 52.2.3, so that 

and the estimator dynamics now become 

4 = ( A  + LC) q - LCx - B ( s B ) - I  (SA + GS) q - B (sB)-' F sign (2) 

= ( A  + LC + BK) q - LCz - B (sB)-' F sign (i) (4.53) 

The resulting system is then 

"" I [:I-[ B (sB)-' F sign (2) I (4.54) 
-LC ( A  + LC + BK) B (sB)-' F sign (i) 

or, in terms of the error dynamics, e = x - q, the system may more conveniently be 

[:I = [(A+BW 0 

-BK ] [:I - [~(s~) - l i .m~i / s (z -e ) )  
(A  + LC) 0 1 

(4.55) 

Examination of (4.55) immediately reveals that by selecting o (A + LC) to be 

suitably fast in comparison to o (A + BK), (4.55) will reduce to (4.36) once the estimator 

converges, and the closed loop system will behave in the expected manner. That is, (4.55) 

will reduce to (4.26) when e vanishes. 



4.4.2 Robustness of the Closed Loop System 

The next point to examine is the robustness of the system (4.55). This analysis will be 

carried out as in previous sections via a Lyapunov approach. 

As before, assume that the disturbances are matched and bounded, so that the 

estimator dynamics are now governed by 

Noting (4.50), a Lyapunaov candidate V : X x X -r R+ may be constructed as 

and for the desired robustness property, it is required that 

d 
-V (2) = (sq)= (SQ) < 0 for all i # 0 
dt 

(4.58) 

Substitution of (4.24) into (4.50) then results in 

S* = S [ ( A  + LC) q - LCz - B (sB)-' (SA + GS) q - B ( s B ) - I  Fsign ( z )  + ~4 
= -SLC ( X  - q) - GSq - F sign (2) + SBC (4.59) 

which leads to 

(sqlT (S*) = - ( s ~ ) ~  SLCe - (sQjT GSz - (sQlT psign (Sq) + (sqlT S B ~  < O 
(4.60) 

Of 

 NO^ that 



which then immediately Ieads to 

and 

So that 

Final Iy 

And the final result of 

mm I (SB) P < qj k 
(4.67) 

is obtained. 

Thus, if each switching gain cpj is chosen according to (4.67) for all j = 1,2 . . . , m, 
then sufficient conditions for satisfying (4.58) will be achieved. In turn, the resulting 

closed loop system will exhibit the desired robustness properties. 

4.5 Summary 

This chapter has presented a practical, constructive algorithm to design a controller that is 

both near optima1 in terms of a cost functional, and robust in tenns of its ability to reject 

matched disturbances in the manner of an SLMC controller. 



Chapter 5 

Application-Inverted Pendulum 

In this chapter, we consider the application of the proposed control law to a 

cart-mounted inverted pendulum. The model under consideration appears m [41], and all 

numerical calculations were performed on the MATLAB softwan package. 

5.1 Problem Formulation 

Consider the inverted pendulum system illushated in Fig. 5.1. 

@H& -+ * 

Figure 5.1 Inverted Pendulum System 

The system consists of the following 

a A cart of mass M. 



a A uniform rod of mass m, length L, with an attached mass m, on the tip. 

The rod pivots without Friction on the cart in the plane of the page, while the cart 

rolls without slipping along the x axis. The cart is forced by the applied input u ( t ) ,  and 

the coefficient of viscous damping on the cart is b. 

Using Newton's Second Law o f  motion, the system can be modelled as 

1'8 + moLx cos 0 - mogL sin 19 = 0 

mtf + r n . ~ B  cos B - m 0 ~ e 2  + bi. = u ( t )  

where 

A detailed derivation of (5.1) may be found in [41]. 

We wish to now generate a linearized model of (5.1) of the form (2.77), (2.78). To 

accomplish this, define 

and a linear approximation o f  (5 -1) in companion form is found as 



where 

with 

This model is based on the assumption that only the position, x, of the cart is 

available for direct measurement. The calculations u ~ d  to achieve this particular 

(A,  B, C) an given in the Appendix. 

At this point, it becomes useful to introduce some numerical values in the interest 

of actually performing the simulation. That said, let 

(5.13) 

(5- I 4) 

(5. IS) 

(5.16) 

(5- 171 



which !e~ds to an open Ioop unstable system. That is 

o (A)  = (-4.77,0.45 f i5.00) (5.1 8) 

and the need for a stabilizing control is immediately seen. 

In this particular situation, we have (A, B) controllable and rank (B) = 1 = m. 

Thus, the methodology of $4 may be applied. 

5.2 The Control Law 

In this section, the controller will be given in three parts. First, the feedback law K will be 

solved as per 54.2. The switching term of 54.3 will be given next, and finally an observer 

of the type.52.2.3 1 54.4 will be constructed. 

5.2.1 The State Feedback Law 

Select XI in (??) as 

so that 

Recalling (4.8), we may construct All and &, so that X 2  may now be solved by 

(arbitrarily) selecting the weighting matrices Q and R in (4.14) as 

and by solving the associated ARE (4.17). This then a1 lows the construction of and 

Am as per (4.8). 



The next step is to select M as per Assumption 4.1. An acceptable choice is 

which then leads to the solution of the feedback law K as per (4.9) 1 (4.10) as 

The closed loop system matrix is now A + BK, and 

c ( A  + BK) = {-9.95, -3.00, -0.87 i0+50} (5.25) 

so the resulting system is now asymptotically stable. 

For the sake of compan*son, we can also construct a feedback law Kip based on 

conventional LQ theory by selecting 

and defining 

In this way, the two cost functionals J (i.e, (4.14)) and J'Q are as similar as possible, in 

the sense that all state and control elements are weighted equally relative to the system 

under consideration. An optimal KLQ is then found as 

resulting in 

Thus, the proposed algorithm does not seem to preserve the 'optimal' spectrum. 

This, however, should be expected since m of the eigernaiues are located arbitrarily in 

the proposed algorithm, whereas they are fm to be located anywhere m C- when an LQ 

strategy is employed. This difference in eigenvalue location is ckariy illustrated in Fig. 

5.2. 



Figure 53  Comparison of Eigenvalue Locations in C for Various Control Strategies 
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5.2.2 The Switching Term 

Open Loop: o 0 

- Pmpo~rd Fmbrck  Lm: x 

LQ Foedback Law 

- 
* 

= 0 n 8 * 

- 
0 

At this point, the task at hand is to determine the matrix S in (4.27), i.e. 

-1 2 -1 0 -0 -8 4 -2 0 Z 
Real 

so that 

Recall fmm (4.34) that a non-trivial S can be found by selecting G as 

which leads to 



All that remains at this point is to determine the switching gain matrix, F, in (4.36). 

For an appropriate choice of F, define a matched disturbance 

that is, 5 is my element of the evenly distributed, closed set [-0.20,0.20]. Thus, p = 0.20, 

and there results 

as per (4.48). The closed loop system (4.36) can now be simulated. This is done in 55.3. 

5.2.3 The Observer 

We now wish to design an observer of the type described in 82.23. Recall from (2.93) 

that the observer dynamics will take the form 

and that L should be chosen as per (2.98), so that 

Rea(A + LC) 2 4Reo(A + BK) 
Thus, an appropriate choice of c (A + LC) could be 

a ( A  + LC) = (-38, -41 f i3, -45) 

so that L may be constructed as 



and the closed loop system (4.55) may now be formed. 

We are now in a position to simulate the system. 

5.3 Simulation Results 

The results will be presented in two parts. For the first part, we introduce the following 

assumption. 

Assumption 5.1 (Temporary) C = 14. Thus, a full state fedback law u = Kx may be 

employed, and the observer is not needed. 

Further, all results are presented in (z ,  y) coordinates rather than (2, g) coordinates, 

simply because the latter have no physical meaning. On the other hand, the pau (2, y) 

comsponds to the tangible, physical properties of the model. 

As well, in all simulations the system is given an initial state of 

which comsponds to the situation of the cart and pendulum starting at rest, but not in 

the equilibrium position. That is, the system is let go with the pendulum about 5" fmm 

vertical. 

5.3.1 Full State Feedback Results 

It is useful to examine the system response on a case-by-case basis. Let us begin with the 

most basic situation, in which the switching term has been omitted. 



Figure 53 Compm*son of State Responses for (a) The Proposed Controller Without 
Switching and (b) Standard LQ Controller 

Case One: No Switching Present 

The objective here is to give some insight as to how well the proposed K derived 

in 95.2.1 b s  against the standard LQ result. Fig. 5.3 and Fig. 5.4 demonstrate the state 

responses and the control histories (respectively) for the two situations. 

We see that the date responses in Fig. 5.3 are, more or less the same-dimgarding 

the q response. That is, the response time is similar in both cases, the magnitude of the 

responses an similar, and Fig. 5.4 indicates that the control histories are also comparable. 

ln Fig. 5 3  we see the state q, the cart position, stabilizing very slowly in the LQ 

case. This is due to the Gict that the LQ designed controller leads to a dosed loop system 

matrix with a very 'slow' eigenvalue. To elaborate, note from Fig. 5 3  that 



Figure 5.4 Comparison of Control Histories for (a) The Proposed Controller Without 
Switching and (b) Standard LQ Controller 

which is quite close to zero. Since this value is quite small in comparison with the other 

elements of a (A + BKLq), the slow response is expected. Further, since the 1 3  value 

does not fully stabilize dun'ng the course of the simulation, the value of the comparison is 

somewhat questionable on a purely qualitative level. 

On a quantitative level, however, the results are quite nice. F i a  we examine of 

value of JLQ for each contm l la over the simulation, i.e. 

JLq = 63 when v = K i  

JLQ = 21 when u=KLQi  

These numbas on their own are meaningless except that the whole objective of an LQ 

strategy is to reduce the value of JLq, which has clearly been done. In addition, we 

note the proposed controller gives a result that is reasonabIy dose to the minimal value, 

in that the d u e s  of Jtg are both at least within the same order of magnitude. Thus, 



Figure 5.5 Closed Loop Response of the System Under the Proposed Controller, Zero 
Disturbances Present. (a) State Response and (b) Control History 

it is reasonable to assume that the objective of designing a controller that in some way 

preserves LQ pe~ormance characteristics has been achieved. 

Case Two: Switching Present, No Disturbances 

Fig. 5.5 demonstrates the nominal performance of the system with the switching 

term activated. The objective here is to examine the effect of the control switching on 

the state trajectorieAe idea being that they should be roughly the same as the results 

presented in Fig. 53, part (a). In facS this seems to be the case. 

In part (a) of Fig. 5 5, we r e  that the response of 8 has been somewhat altered. 

Rather than a smooth trajectory as in Fig. 5.3, the e trajectory is now strongly affected by 

the addition of the switching term, in that it takes a sharp turn about 0.2 seconds into the 

simulation (the time that the witching is activated) and proceeds to exhibit a first order 



Figure 5.6 Comparison of State Responses with Matched Disturbances Present (a) 
Proposed Controller and (b) Standard LQ Controller 

response. This would tend to indicate strong coupling beh~een and u. Other than that, 

however, we see in Fig. 5.5 that the remaining three states exhibit similar responses to 

those shown in Fig. 5.3, part (a). 

Thus, it is reasonable to assume that the objective of designing a switching controller 

that in some way preserves LQ performance characteristics has also been achieved. 

Note, as well, the expected control chatter exhibited in Fig. 5.5, part (b). 

Case Three: Matched Disturbances Preaent 

Hen, the primary advantage of the proposed controller is seen. Fig. 5.6 compares 

the performance of the proposed controller to that of the standard LQ controller, with 

noise of the type (5.34) injected. Fig. 5.7 shows the resulting control histories. In part (a) 

of Fig. 5.6, the expected result of complete disturbance rejection is shown, while part @) 
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Figure 5.7 Comparison o f  Control Histories for (a) Proposed Controller and (b) 
Standard LQ Controller. Matched Disturbances Present. 

demonstrates that the LQ controller is unable to completely stabilize the system. 

As well, part (a) of Fig. 5.7 demonstrates that the control history, once switching is 

activated, is identical to the case where no disturbances are present, i.e. Fig. 5.5. Part (b) 

of Fig. 5.7, however, further demonstrates the inability of the LQ control to fully cope 

with this particular disturbance. 

Note that as in Fig. 5.3, the steadily destabilizing value o f  z should again be 

ignored, as the result arises f h m  a numerical problem within the MATLAB software, 

rather than the system itself. 

5.3.2 Output Feedback Results 

position z is avaiIabIe for measurement 
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Figure 5.8 Estimator Response (a) and Error Dynamics (b) for the Simulated 
System-Zero Disturbances Present 

Again, the system was simulated using an initial state of 

and the estimator was initialized to zero. i.e. 



Figure 5.9 System Output (a) and Control Input (b) for the System-Zero Disturbances 
Present 

Note that unlike the state-feedback simulations, the simulations in this section were 

carried out for only four seconds, as opposed to ten. The nason for this is twofold. 

First, the primary goal of this simulation was to examine the response of the observer. 

Due to the relatively fast response of the error dynamics in comparison to those of the 

state dynamics, it makes it a rather contrived effort to run the simulation for the entire 

ten seconds. Second, the output variable (i.e. the cart position) is not prone to a 'large' 

response in this particular situation. Thus, as can easily be seen in Fig. 5.9 aad Fig. 5.1 1, 

it is hard to say anything of significance by examination of these plots alone. 

To elaborate on the first point, Fig. 5.8 demonstrates the f& response of the 

obsauer. By examination of Fig. 5.8 (b), we see that the emr tern drops to zero almost 

immediately (about 0.3 seconds). As expected, we see that the control chatter has no 

e f f i  on the enor term. 

As well Fig. 5.9 demonstrates the gratifjhg result that the proposed controller 



Figure 5.10 Estimator Response (a) and Error Dynamics (b) for the Simulated 
System-Matched Disturbances Present 

not only works, but works in a similar manner to that of the conventional state feedback 

model. This result is greatly clarified in Fig. 5.12 (a), where the cart position is shown 

for the state and output feedback controllers. Here we see the expected result, in that the 

output feedback controller exhibits a lag in response, followed by a period of convergence 

to the state feedback result That the lines do not completely intercept is an acceptable 

result in this situation, as this slow response can be attributed to the relatively slow closed 

loop eigenvalue of (A + B K) . 
As well, by comparing the results of Fig. 5.9 (b) and Fig. 5.5 (b), we see that 

the control histories in both simulations are virtually identical once the enor dynamics 

stabilize. Further, since the control does not 'leap' to some absurd value (for example, up 

to 100 for a short period, or some other impcstctical situation) in either case, it is reasonable 

to assume that the proposed controller constitutes a plausible strategy. 

A1 l that remains at this point is to examine the performance of the output feedback 
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Figure 5.11 System Output (a) and Control Input (b) for the System-Matched 
Disturbances Present 

controller in the presence of noise. By inspection, we see that Fig. 5.1 1 and Fig. 5.9 are 

virtually identical, once the control chattering begins. Inspection of Fig. 5.12 (b) fbrther 

illustrates this result. Thus, the goal of perfect nominal performance in the presence of 

bounded, matched disturbances is achieved. 

Further, comparison of Fig. 5.8 and Fig. 5.10 shows that the estimator and error 

dynamics are identical in each situation, indicating not only robustness in the closed loop 

(output feedback) system, but aIso in the estimator. This robustness is expected, however, 

due to the switching term as per (4.24). 

5.4 Summary 

In this chapter, the proposed controller was implemented on the now classic control 



Figure 5.U Comparison of Cart Positions Using State Feedback and Output 
Feedback. Zero Disturbances Present (a) and Bounded Matched Disturbances (b). 

problem of an inverted pendulum, and the results were promising. That is, the controller 

was shown to be asymptotically stabilizing h r n  an arbitrary, yet realistic, initial condition, 

and the resulting system was shown to have the expected robustness margins in both the 

state and output feedback systems. 



Chapter 6 

Summary and Recommendations 

6.1 Summary 

This thesis has provided a constructive algorithm for designing a mixed objective LQ I 

SLMC controller. The proposed controller was shown to exhibit the desired robustness 

properties of a conventional SLMC controller, while at the same time preserving near 

LQ performance. The development of this particular controller was made possible by 

exploiting a number of results developed within the thesis. 

First, a specific similarity transform T was explicitly found in $4.2. Application 

of this transformation to a generic closed loop, state feedback system matrix (A + BK) 

yielded the result (4.11). In turn, this allowed the control problem to be split into 

two parts. Specifically, this transformation allowed m elements of o (A + BK) to be 

arbitrarily determined by the designer, while the remaining (n - m) elements could be 

located via some optimization algorithm. For the sake of simplicity, conventional LQ 

design techniques were employed in $42, but it was noted that more specialized methods 

could also be used, 

This result allowed the solution of a feedback law K : U -. X that placed the 

elements of a (A + BK) in the mixed objective manner outlined above. In tum, the 

class of systems to which the proposed algorithm couId successfilIy be applied to was 

determined. As expected, Theorem 4.1 demonstrated that the pair (A, B) needs to be 

controllable, as well as rank (B) = m. 

N w  a Lyapunov design technique was employed in 54.3 that allowed us to solve 

the problem of mixing LQ and SLMC design objectives. Ia +cular, it was found tbat 



the objectives could be mixed ifa (A + BK) contained at least m distinct, real elements. 

With this, a sliding manifold S could then be designed that does not have the usual effect 

of eliminating rn elements of a (A + BK), as per Theorem 3.1. 

So, by employing the results of $4.2, the main result (4.24) of the thesis was solved. 

The resulting system was then shown to have the desired robustness abilities by selecting 

the gain matrix F in (4.22) appropriately. 

The result was then extended to the output feedback case in 54.4. In this section, 

a full-order observer was employed that was able to recover the results of the full state 

feedback case. More significantly, the result (4.67) showed that the proposed output 

feedback controller exhibits robustness to bounded, matched disturbances. Thus, this 

thesis has provided a significant result in that it has managed to contribute a practical, 

robust, output feedback controller for a certain class of linear systems. 

The algorithm was then demonstrated on a physically motivated example in $5, and 

the results were generally promising. That is, the resulting obtained by application of the 

proposed controller were shown to be reasonably similar to those obtained by LQ design 

methods, with the added feature of robustness to bounded, matched disturbances. 

As well, the output feedback controller was also simulated with the proposed f i l l  

order observer. The results indicated that the objective of designing a r o b u ~  output 

feedback controller was achieved. 

In addition to the above mentioned results, this thesis has also provided a reasonable 

exposition on the development of sliding mode control, as well as the mathematical tools 

necessary for the analysis. 

6.2 Recommendations 

One of the main result in this thesis was the selection of the matrix G in (4.22). A feasible 



controller was constructed by selecting 

0 (G) = -cr (kr) 

making it possibIe to construct a full rank S, which then defined the sliding manifold 

S = { x  : Sx = 0). This was fine. 

The problem, however, is the simplifying Assumption 4.1. Hen it was required 

that all m elements of o (M) were chosen to be distinct, making it simple to non-trivially 

solve (4.29). It is the belief of the author that this assumption should not be necessary. 

In fafS the same result may possibly be achieved by performing a slight variation on the 

method proposed in 54. 

Explicitly, if the matrix b .  in (4.11) were made to be a scalar, say -7, so that 

All E c("-1) x("-'1, or 

Then, it should be possible to optimize the resulting (n - 1) dimensional remaining 

subsystem, rather than an (n - rn) dimensional one. This would likely lead to results that 

are closer to a fully optimized system than the method presented in this work, while still 

achieving the result of invmiance to matched disturbances. G could then be selected as 

which should lead to dim (ker H) 3 m in (4.29). 

Of course, some problems ezcist with this proposition. 

First, a generalized transformation T that will accomplish the result (6.1) is not 

known at this time. Further, the size of dim (ker El) in (4.29) will no longer be obvious, 

as can be seen in [29]. That is, the result of dim (ker E) 3 m in (4.29) may not be 

achieved. 



These issues are, however, presented in the hope of possibly kindling hture research 

interest. 
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Appendix A 
Derivation of The Inverted Pendulum 

System 

Recall again the inverted pendulum system illustrated in Fig. 5.1, whose motion is 

described by (5.1). To generate a linearized model of (5.1) of the form (2.77), (2.78), 

recall that 

so that (5.1) becomes 

n, L cos ts IP IP 

m t ma L cos 23 'TTZoLz4 sh 23 

which leads to 

[:] = [ f2 (q747~3lf47Wt) f4 (~lt~3,z3,247~; t )  

So that, when viewed with (A. I), the system can be stated as 
I 

where i t  = 22, and $ = 24. A standard method of generating a linear approximation of 

(A.4) is to set 



So, via some tedious but straightforward calculations, the application of (A-5). (A.6) to 

(A.4) leads to 

and 

where 

Further, since only z is available for direct measurement, there results 

and the system becomes 

(A* I 0) 

(A, 12) 

(A. 13) 



and the triple A, B, C is complete, as can be verified by application (2.83), (2.92). 
' '> 

Applying now a particular nonsingular transformation To to (A.12), (A.13) gives the triple 

(A, B, C) of (5.8), (5.9), (5.10). In particular, To is found via the following steps. 

1. Calculate the Transfer Function of the system in the Laplace domain as 

allowing immediate construction of  the triple (A, B, C), as this triple is in 

controllable canonica1 form. 

2. Construct 

which will be nonsingular, since A, B is controllable. ( '  ') 
3. Construct 

which will also be nonsing~la~ 

4. Solve 

(A, 14) 

(A. I 5 )  



Now, via substitution of the numerical values given in 55.1, the system becomes 

(A. i 7) 

(A, 1 8) 




