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Abstract

The now classic optimization technique of Linear Quadratic (LQ) controller
design is, in theory, one of the best design strategies possible. Practically,
however, it has limitations. Specifically, it is a simple demonstration to show
that LQ control techniques have no robustness margins when applied as an output
feedback strategy to a noise-corrupted system.

Alternatively, Sliding Mode Control (SLMC) is an extremely robust control
strategy, provided the disturbances are bounded and matched. The primary
drawback is that the resulting system performance is never optimal in an LQ sense
of the word.

In a novel approach, this thesis blends these two design objectives. The
resulting controller exhibits near-LQ performance, while adding the additional
feature of robustness to bounded, matched disturbances. The controller is
developed for both the state and output feedback cases. The results are then
applied to the problem of maintaining an inverted pendulum in the vertical

position.

.
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Chapter 1
Introduction

It is a basic fact of life that there is rarely a unique ’best’ way of doing things. Of
course, it is rarely the case that an optimal solution does not exist to a given situation.
Frequently, this lack of a clear solution arises as a direct consequence of an unclear, or
perhaps undecided objective.

To illustrate this point in some very broad terms, let us consider the classic tale of
the grasshopper and the ant. We are all familiar with the story of the grasshopper who
spends his days carelessly playing in the sun, only to meet a bitter demise come winter.
The ant, however, carries on in comfort despite the cold, because he spent his summer
fastidiously preparing for the approaching winter.

The moral of the story? Most would have us believe that this is a quaint allegory
aimed at instilling a strong work ethic and ability to plan ahead in the reader. But is this in
fact the case? Perhaps what we have here is a clear example of a situation in which there
were multiple objectives, and the characters chose between one or the other. Consider
first the grasshopper. Sure, he dies. But so what? His objective was to spend his days in
the sun, living his life to fullest, and [ dare say he achieved it.

The ant, on the other hand, lives. His days are spent living a joyless life, toiling in
the dirt, planning for the encroaching winter. His goal was a long life, and he achieved it.
Was one objective more correct than the other? That is not really a topic for discussion
here, but it does set the stage for motivating this particular work.

Consider a third option. The grasshopper didn’t have to play every day, and the



ant probably didn’t need a/l the supplies he built up. Thus, it would seem that the best’
option would have been to work on some days, and play on others. There is obviously
some sort of merit to this plan, as it would seem that this is how a large portion of the
human population lives. In this case, the ’best’ solution is achieved by mixing objectives,
and following the solution that allows one to enjoy the best of both worlds, as the saying

goes.

1.1 Motivation

It is this basic philosophy that has motivated the following work. Of course, the topic at
hand is a little more specific. Here, motivation for this thesis arises from the following

Control Problem.

Control Problem: A linear quadratic (LQ) optimal control strategy is, in theory, one
of the best control laws available. However, it is a known fact that this strategy is not
robust to any class of disturbances in the output feedback case [10], when operating in
a noisy environment. Conversely, sliding mode control (SLMC) is extremely robust
to bounded matched disturbances [11], yet typically leads to system performance that
is not at all optimal. The contro! problem at hand, then, is to design a control law
that will incorporate the positive aspects of both of these strategies. That is, design a
controller that realizes LQ optimal (or near optimal) closed loop performance, while

simultaneously achieving the SLMC result of an extremely robust controller.



It turns out that this is by no means a trivial problem, the primary reason being that
each control strategy utilizes decidedly different objectives for determining the closed
loop structure of the system. Specifically, when designing an LQ controller, the feedback
law applied leads to a set of closed loop eigenvalues that are placed anywhere on the open
left hand complex plane. Conversely, application of SLMC leads to a situation where a
fixed number of the closed loop eigenvalues must be located at the origin, and only the
remaining eigenvalues are free for placement (see Theorem 3.1).

Thus, the problem at hand is not one of not deciding between two different
objectives, but rather one of determining a strategy that allows us to mix them in a manner
that is, in some sense, optimal. [t is demonstrated in §4.3 that this mixing of objectives
can be accomplished by modifying the classic LQ strategy in such a manner that m closed
loop eigenvalues are pre-selected, and the remaining ones are free to be optimized. In
this way, the two strategies can be mixed, leading to a closed loop system that maintains

near-optimal performance, with the added feature of robustness to matched disturbances.

1.2 Previous Work and Related Literature

1.2.1  Motivating Works

By the 1970s, LQ control theory had started to reach maturity, and the method had become
a practical design tool. At this point in time, the focus shifted from that of determining
the viability of implementing an LQ strategy to that of determining the theoretical
performance limits of LQ control. In particular, the question of robustness was of great
interest. That is, given a closed loop, output feedback LQ system that is corrupted by
noise, how well will the system perform? Or, what guaranteed robustness margins does
this system have? It is now a standard result [2] to demonstrate these results for the
state-feedback case (i.e., © = Kz), but the question remained open for the output-feedback



case (i.e., u = Ky). It was shown by Doyle [10] in 1978 via counterexample that there
are, in fact, no guaranteed robustness margins. A rather demoralizing result!

Over the next few years, interest then grew in development of output feedback
control laws that could exhibit some guaranteed robustness margins, even if only to a
specific class of disturbances. LQG / LTR resuits attempted to asymptoticaily recover the
nominal (uncorrupted) state feedback results, but lost physical significance of the Kalman
filter weights. Recently, output feedback sliding mode control has received a great deal
of attention ([9], [12], [13], [14], [15], [19], [42], [46], [48]). The problem with these
types of control strategies is that they suffer from the same drawbacks as conventional
state-feedback sliding mode control. That is, the resulting system performance is robust,
but in no sense optimal.

Various schemes have, in fact, been introduced to address this problem. Notably,
in [47] and [32), additional dynamics were introduced into the control term, with the
objective of achieving a smoother control law than possible with conventional SLMC.

[n this way, the resulting system performance has the potential of achieving closed loop
performance that is closer to optimal.

Further, in a recent work by Tang and Misawa [39], a result is presented that has
essentially the same goal as this thesis. That is, to design an LQ controller with a preset
(real) eigenvalue, allowing the controller to exhibit the benefits of LQ performance as well
as SLMC robustness. For reasons explained in §4.1 however, the method presented in [39]
has been passed up in this work. In fact, the method employed in this work is drastically

different from the one presented in [39].

1.3 Organization of Thesis

A brief outline of the thesis is as follows.



Chapter 2 is purely composed of the preliminary mathematical tools needed for
this work.

Chapter 3 presents a comprehensive overview of sliding mode control, and gives
insight into why SLMC and LQ controi are conflicting design objectives.

Chapter 4 presents the main result of the thesis. Here, conditions are derived that
are necessary for the controller to work. That is, it is shown that the open loop system is

required to be of the type

o (A, B) controllable, and (A, B,C) complete in the output feedback case.
o rank(B)=m

The robustness properties of the proposed controller are then demonstrated for both
the state and output feedback situations.

Chapter 5 gives a sample application of the proposed controller. Since the focus of
this work was a theoretical development of the control law rather than the implementation
of it, all results are simulated, rather than physically realized.

Chapter 6 contains a summary of the main results and some direction for future

work.

1.4 Contributions of Thesis

This thesis provides a method for designing a controller that closely mimics nominal,
closed loop LQ system results in both the state and output feedback situations, while
adding the resuit of a guaranteed robustness margin in the presence of bounded, matched
disturbances. Specifically, the main contributions are:



¢ The explicit development of the transformation matrix T needed for the result of
(4.11). This result transforms the closed loop system matrix to an upper block
triangular form. In turn, this allows a K to be solved that simultaneously meets the
objective of arbitrary eigenvalue placement for mclosed loop eigenvalues, while the

remaining eigenvalues may be placed optimally.

o The derivation of the controller (4.24). Here, a controller is now created that
induces a near optimal, closed loop system response, while adding the feature of

invariance to bounded, matched disturbances.
o The derivation of a robust, output feedback controller in §4.4

e A demonstration of the robustness properties of the proposed controller in both the

state and output feedback cases.

In addition to these points, the thesis also provides a comprehensive overview of
conventional SLMC control theory as it pertains to linear systems, as well as an overview

of all the important mathematical tools needed for the analysis.



Chapter 2

Mathematical Preliminaries

In this chapter, some basic facts that are essential to this work will be reviewed. No
new concepts will be developed here, Rather, this section will serve as an introduction to

the notation that will be employed throughout the work.

2.1 Linear Algebra and Geometry

In the following, the basic concepts that are of particular importance to this work are
developed. The material presented in §2.1 and §2.2 is based almost exclusively on the two

excellent works of Lancaster and Tismenetsky [27] and Wonham [45].

2.1.1  Linear Spaces and Subspaces

Let F denote a scalar field, and F™ denote an n-dimensional vector space over F. That is,

F™ is isomorphic to the n-fold Cartesian product of IF, where n is a finite integer. i.e.

F*=FxFx..-xF
N e 2.1

n — times
Further, an additive element z € F™ denotes a vector over the underlying field F. In
this work, the attention will be limited to finite dimensional /inear spaces over R and C,
the real and complex numbers.
Since it is the nature of control problems to deal with elements in numerous
different spaces at the same time, a notation will be adopted that will clarify the operations.
Calligraphic capitals X,),. . . will be used to denote spaces, lower case roman characters

Z,Y, - .- will be used to denote their elements, and scalars will be denoted with lower case



Greek or Roman characters as appropriate.
Of great importance when dealing with vectors are the operations of addition and
scalar multiplication, or the fact that these operations are both associative and distributive.

For example, consider z;,z2 € X where X is defined over F, and o, € F. Then

ar; € X 2.2)
T1+10 € X 2.3)
and
(af)z1 = a(Bzi) (2.4)
a(zy+z2) = az+ax (2.5)

Now, consider a subset X5 C X. Since the operations of addition and scalar
multiplication are defined for all elements of X, they are also defined for all elements of

Ap. Ifthese operations are closed in Xy, in that

ar; € Ap (2.6)
1+ € A 2.7

forall « € F and 1,23 € A, then A is called a subspace of X, and shall henceforth be
denoted as Xy C X, where Xy # 0.

As per the axioms of a linear space, X must contain the zero element, 0, typically
as an origin. This implies then that a subspace Xy C A" must also contain the same
zero element, and if there is another subspace A} C X, then it is always true that
0 C X1 N Ay # 0, or two subspaces are never disjoint. Geometrically, this means that one
can view a subspace as a hyperplane passing through the origin of the original space.

With the notion of a space in place, one can now define some properties of these
spaces. First, define the span of a set of elements {z;};..; € X as the minimal subspace
Ao generated by all linear combinations of the z; over F. Thus

span {z1,Z2,...,Zn} = {zeX:z:Ea;xg,a,- EF} (2.8)

i=l



This allows X to be termed finite dimensional it there exists a finite integer n and a set
{z:};., whose span is the whole of X. The minimal value of =, in the sense of linearly
independent z;’s that span X, is termed the dimension of X, denoted dim (X). When
n # 0, this minimal spanning set forms a basis for X.

A property that will be exploited to some degree in this work is the notion of a sum
and direct sum of subspaces. Let X}, X2 C X. Define the sum X + &) as the set of all
sums

X+ X = {z)+12:131 € X1,22 € A} 2.9)
Note that X} + X2 C X. Further, define the intersection of these subspaces as

XiNX:={z:z€ X and z € Xp} (2.10)

As before, X1 N Az C X. [f X3 N Ay =0, then any element z € &} + A3 admits a unique
decomposition

z=z1+22 (2.11)
where z; € X) and z2 € X;. Since this property can be quite useful, the space
Xo = X1 + X> generated is referred to as the direct sum of A’; and &3, and is denoted

Xo = X1+ (2.12)

or, if Xp can be decomposed into k linearly independent subspaces, in that

A% =0 (2.13)

=1

then the direct sum of these spaces is denoted
X = Xt+X+---+X
k
= 21 -X; (2.14)

Also of great importance in the orthogonal direct sum. This operation works in the

same manner as the direct sum, with the additional feature that

(z1,Z3) =0 forall 21 € &, Zp € &2 (2.15)
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where (,) denotes the inner product. In other words, as well as the spaces being linearly

independent, they are also orthogonal. The orthogonal direct sum is denoted

X = o --®X
k
= DA (2.16)
=1

2.1.2  Maps and Matrices

In the manner previously defined, let X and ) denote linear spaces over . A linear

transformation, or map, is a function ¢ : X — ) such that
@ (121 + aazp) = a1 (z1) + agp (2) .17

forall z),z2 € X, a1, a2 € F. Maps will herein be denoted with capital roman characters
AB,...

Denote £ (X,Y) as the set of all linear maps A : X — Y. [t follows that £ (X, )
forms a linear space as well, and thus follows the rules of addition and multiplication by a

scalar, i.e.

(Al + Az : =Aiz+ Az (2.18)
(ad)z : =a(A12) (2.19)

forallz € X, A, A2 € L(X,)). As per the definition, A; € L(X,)Y)and A; : X — Y
are equivalent statements, and will hence be interchanged freely from this point on.

Let X be a linear space over F, such that dim (X) =n. Further, let {z;},_, forma
basis for X. Thus, if 2 € X then from the definition of a basis set, z may be represented
by

Z2=o01T] + a2y + -+ Qpln (2.20)
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Forming a vector
(431

az
a=| . (2.21)

Qn

where a is then referred to as the representation of z with respect to {z;};._,. If this

m

notion is expanded to a set of elements {2;}72, € X, the comresponding set of {a;}7,

can be formed together to give the array

aip -+ 0im
Agp=| P =gl e FET (2.22)
Qpi - COnm
where
5= ayz: 2.23)

=1

forall 1 € j < n. The array A is known as the matrix representation of the (ordered) set
{2}, with respect to the basis {z:}7_.,.

This definition of a matrix then applies directly to linear maps. To see this,
consider a map M € L(X,)), where X is as before, and ) is a space over F such that
dim (V) = m, and {y;};2, is a basis set for Y. Then, evaluating the images of {z:}%
yields

m
M (a:,-) = '21 a,-jyj (2.24)
J=
foralli =1,2,...,n. Thus, expanding this notation to {T (z;)}L, yields the matrix
aiy -+ Gm
Agpwr=| D =gl € FVT (2.25)
Qny -*c Onm

as before. The matrix A(},(y} is then referred to as the matrix representation of the map
M € L (X,)) with respect to the basis pair ({z} , {y}). This definition, coupled with the

fact that the focus of this work is concerned only with linear operations on linear spaces,
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allows one to easily drift between the notion of a map and a matrix. Hence, the two
terms will be interchanged freely throughout this work. Thus, matrices will henceforth
be denoted with capital roman letters A, B, ... and the subscripts indicating bases will be
dropped in most instances.

The properties and operations of matrices are defined in the usual way. The symbol
F™*P denotes the class of all n x p matrices over F. These matrices form a linear space of
dimension np over F by the operations of addition and multiplication by a scalar.

As well, in the usual way, let AT denote the transpose of A via

A=[ogli, & AT = [az)Pm (2.26)

"
i,j=1

and [et A* denote the complex conjugate transpose of A, so that

A=loylii, & A" =[xl (2.27)

[t is now useful to look at some terms associated with linear maps / matrices.
Let A€ L(X,)). The space X is referred to as the domain of A, the space Y is
the co-domain. The kernel of A is the subspace

ker A=={z:z€Xand Az=0}C X (2.28)
Similarly, the image of A is the subspace
ImA={Az:ze X} C)Y (2:29)

Consistent with the terminology used thus far, we can define the rank of a linear
mapping A € L(X,)) as
rank (A) := dim (Im A) (2.30)
Or, in terms of a matrix, the row (column) rank of a matrix is equal to the number of
linearly independent rows (columns) in the matrix.
Now, let S C &, so that

AS:={Az:zeS}C)y (231)



13

further, if R C ), then
A'R:={z:ze€XandAzeR}C X (2.32)

By definition, A~! is known as the inverse image function of the mapping A, and is thus
(generally) an immersion mapping, A~! : Y — X. To avoid confusion, the following
notation will now be adopted.

If dim (X) = dim (Y), and Im (4) = Y, Im (A™!) = X, then the mapping is one
to one and onto, and thus linear, since A is linear. In this case, the mapping A~! will be
unique, and will simply be referred to as the inverse of A. Further, the mapping is said to

be nonsingular.

2.1.3  Similar Matrices, Equivalence Classes

The notion of similar matrices arises from the notion that a mapping M € L(X,)) is,
typically, not unique. Consider the fact that the matrix representation of M was derived
from the set {z;}.; which formed a basis for X. Now, while the span of a basis set is
unique, it is clear that the are many different bases available that have the same span.
Thus, it is important to examine how the different basis sets can be transformed.

Consider first the operation of a change of basis in X. Let {z;},.., be a basis set for

X, and {r;}]_, be another. As per the definition of a matrix

Tit - Tin
Ty =| : P | eFxn (2.33)

Tat - Tan

is the matrix representation of {r;};.., with respectto {z:}._,, so that
r=Tgce =Ty I}r 2.34)

z

Similarly, if dim (V) = m, and {y;}7=; and {p;}]., are (possibly) different bases for J,
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then
p=Tyyey=Tgp (2.35)

Now, let M € £(X,Y) have a matrix representation

Y = Az}, ()% (2.36)

in the bases pair ({z},{y}). To transform this matrix to a different basis pair, say

({r}, {p}), simple substitution of the above leads to

TP = AahwTay
= p=TyAeLuTe"
= Ao = T Ahiw Te (2.37)
The matrices A(r},(p} and A(z} (y} are then said to be equivalent, since they are both
representations of M € L (&,)).

A special situation arises when M € L (X). Here, one need only look at the basis
sets {z} and {r}, so that

r=Tz (2.38)

Thus, in the bases {z}, M € L (X) has a matrix representation
a=Agb, a,beX (2.39)
and, a change of basis to {r} leads to
T = AT
= o =TALHT™Y
= Ap =TAgmT™ (2.40)

where Ay, is the matrix representation of M € L () with respect to {r}. This relation
is quite important in linear algebra, so much so that it has been given a special name. If A

and B are square matrices, then A and B are termed similar if there exists a nonsingular



15

matrix T such that
A=TBT! (241)
or, equivalently
A=B (2.42)
Assuming dim (X’) = n, define the set of all matrix representations of M € L (X) with
respect to different bases in X as an equivalence class of similar matrices over F**™,
Denote this set as A%. This notion of similarity then gives the value of A € A that is

‘simplest’ relative to the problem at hand.

2.1.4  Projection Maps, [dempotent Matrices, and Invariant
Subspaces

Due to the fact that projectors and idempotent mappings largely define the geometric
nature of sliding mode control, it is of great use to explore these maps at this point.

By definition, a map satisfies the condition of idempotency if, for some P € £ (X),
P = P2, Such a mapping is also termed a projector. This concept will be explored after

some preliminary properties are explored.

Theorem 2.1 [f P is idempotent, then

L (I — P) is idempotent.
2  ker(I-P)=ImP
3 Im (I — P) =ker P

Proof. (1) is immediately verified by expansion of (I — P)2, and the definition of an

idempotent map. For (2), lety € Im P if and only if y = Pz for some z € X'. Thus

(I-P)y = (I-P)Pz
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= (P-P)z
=0
= yeEker(l-P)

Alternatively, if we lety € ker (I ~ P) ifand only if (/ - P)y = 0 for some y € X.
Then

(I-Ply =0
= y=Py
= yelmP

(3) is proved in a similar manner. @
The above properties are important in that they allow a direct sum decomposition of

X, as per the following Theorem

Theorem 2.2 [f P is idempotent, then X = ker P+Im P.

Proof. Forany z € X, one may write z = z + xo, with z; = (I — P)z € ker P and
T3 = Pz € Im P. Thus
X =kerP+4+ImP
Now examine the subspace generated by ker PN Im P. Here,
kerPNImP = {z:Pzr=0and (/-P)xz=0}
=0
Thus, the sum is direct. @
It is then possible to form the decomposition

X =X+4, (2.43)

where X; = ker P, X = Im P. This allows the action of P to be visualized as the
projection on X; along A2. Conversely, the map (I — P) is the projection on A; along
X
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2.1.5 Invariant Subspaces

Consider the subspace S C X, and let M € L£(X) have the additional property that
MS C §. S isthen termed M-invariant. This concept applies directly to some of the
matrix theory developed in this work, and the following may now be stated.

Let M € L(X), and let A denote the equivalence class of similar matrices
associated with M. Further, let X = X;+X5, such that M X; C X, on the assumption
that this is possible. Thus, the objective is to construct a matrix representation of M that
is the most convenient relative to this decomposition of X'. To accomplish this, construct
a basis

{z1, %2, Tky Tkt1s-- -1 Tn} (2.44)
in X, where k£ = dim (}) and the first & elements of the set constitute a basis for X}, and
the remaining elements constitute the extension of the basis set to include all of X. Since
MX, C X, M (zj) e Xy forall j =1,2,...,k. Asper§2.1.2, a matrix representation

of this mapping would be of the form
k
M (zj) = Z Q5 Ty, J = 1, 2, cenry k (245)
i=1

Thus, if this matrix is continued forall j = 1,2,...,n, the matrix A € A% will be of the

form

A=

At 4 } (2.46)

0 Az
where A; € FF*k A3 € F(n—k)x(n—k)  Thys, A is the matrix representation of

M € L (X) with respect to the basis set (2.44). So, a decomposition of X into the direct
sum of two subspaces, one of which is M-invariant, admits a matrix representation in
block triangular form.

Further, if X = X;+A%, where both MX; C X] and MX> C X>, then by the same
process as before a matrix A € A% will be obtained as

A= A 0 (2.47)
0 A
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where, again, A; € F¥** and A; € F("=F)x("—k)_ A itself then admits a decomposition
M = M+M, with M; € L(X), M; € L(X), sothat A = A;+Aj. Accordingly,
(2.47) is termed the direct matrix sum of A; and A;. Expanding this to a set of p many

matrices, the direct matrix sum is defined as

Ay
Az

= YA (2.48)

which implies the following theorem.

Theorem 2.3 A mapping M € L (X) has a representation in A € AY in block diagonal form,
consisting of p many blocks, if and only if M can be decomposed into the direct sum of p linear

maps.

The idea of a direct matrix sum, block diagonal, and block triangular matrices lead

to some nice results, as will be seen in §2.1.6.

2.1.6 Eigenvalues, Eigenvectors, and the Characteristic Polynomial

Consider a mapping M € £ (X). This map has the action of transforming elements
z € X into differentelements z € X'. That is, the vectors experience a transformation of

magnitude and direction under the action of M. Consider, then, an element z such that
M(z) =)z (2.49)

Here, z constitutes a one dimensional, M-invariant subspace of X', in that = experiences a
change only in magnitude, not direction. In terms of a matrix A € AY, (2.49) takes the
form

Az = Ar (2.50)
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Such an element = # 0 is termed an eigenvector of A, and the corresponding scalar A is

termed an eigenvalue.

Entire volumes can, and have, been devoted to the study of these entities. This
work, however, will only consider the basic properties that are of direct importance.

First, the characteristic polynomial. Consider equation (2.50}, so that

0 = (W—-Az
= zeker (M - A) @.51)

For a non-trivial value of z to occur, (AI — A) must be singular. Or, in other words
det (A — A) =0 (2.52)
Observe that

det(’\I—A) = 70+71’\+"'+7n.’\n’ 7n=1

= ‘Z“,w\‘ (2.53)
1=0
= :mw(A) (2.54)

where () is referred to as the characteristic polynomial of A € AY. From the
construction of 7 (), the following theorem may be stated

Theorem 2.4 ) € F is an eigenvalue of A € F™*™ if and only if ) is a zero of the characteristic
polynomial of A.

This allows the determination of the eigenvalues of a matrix without determining
the corresponding eigenvectors, which is very useful as far as control theory is concerned.

Denote the set of roots of 7 (A) as o (A), the spectrum of A, listed according to
multiplicity.

Some properties of the spectrum of a matrix that are pertinent to this work will now
be examined. Unless otherwise stated, X’ will denote an n-dimensional vector space over

F, so that A € AY C F™*™.
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Theorem 2.5 Similar matrices have the same spectrum.

Proof. See Lancaster and Tismenetsky [27], among others. B

Theorem 2.6 The spectrum of the square matrix

A As
A=
0 A3
is given by
a(A) =0 (A1) Uc(43) (2.55)

Proof. Construction of the characteristic polynomial yields the following:

=0

M- ~A
det(M - A4) = det[ A 2 }

0 Al - A3
= det (M — Ay)det (M — A3) =0

&0(A)=c(A)Uc(4;3). B
Note that the above generalizes to any (block) triangular matrix.

Theorem 2.7 I[fA = A’ (ie, Ais Hermitian) thena (A) CR.

Proof. See Lancaster and Tismenetsky [27], among others. @l

Corollary 2.1 [fA = AT e R™*" (i.e, A is real symmetric) thena (A) CR

Of course, there is a plethora of other interesting information available regarding
the spectrum a matrix. For the purposes of this work, however, the above will constitute a
sufficient foundation.
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2.1.7 Linear Matrix Equations and the Kronecker Product

In addition to the previously mentioned works by Lancaster and Tismenetsky [27], and
Wonham [45], the material in this particular subsection can also be found in [26], [3], and
[29].

Of great importance to this thesis are equations of the form

Ai1XB)+ A2 XBy+---+ ApXBp, =C (2.56)
where
A Ay, ... by € FPX° (2.57)
Bl,Bg,...,Bp e [Fmxm (2.58)
Cc e ™ (2.59)

are known, and the objective is to solve the matrix X € F™**™ which is assumed to exist.
)

To attack this topic, we introduce the Kronecker (or tensor) product of two matrices

as -
cainB appB -+ ainB W
ag anB --- azB
A@B=| B 7% nZ | g prmxam (2.60)
antB an2B --- annB
where

It is interesting to note that the definition above does, in fact, foillow from the formal
definition of ® that arises in differential geometry.. To see this, let A : X — U,
B:Y — Vsothat

A@B:X®Y—-URV (2.61)
Then, by ordering the basis elements z; ® y; of X ® ) as

T1®YL .- T1®Ym, 2@ Y1,.--, 22 BYmy-- -, Zn O Ym (2.62)



and doing the same for I/ ® V leads to the result (2.60) when A ® B is represented
as a matrix. To see this result in its full splendor, however, requires a more rigorous
development of ® that is not needed in this work. For this, the interested audience is
referred to Wonham [45], among others.

Rather, the objective of this section is to examine some to the properties of A ® B,

where A and B are as previously defined. We note the following properties.

Proposition 2.1 If A, B,C,... are appropriately sized matrices over some field F, then the

following relations hold:

Leta €F. Then (cA)®@ B=A®(aB) =a(A® B)
(A+B)®(C+D)=A®C+AQ®D+BQC+B®D
(AR B)® D=A®(B®C)

(A9 B)T = AT@ BT

(A® B)(C®D)=AC®BD

(A®B)"! = A~1 @ B~! (provided A and B are nonsingular)
A@B=(AQ)(I®B)=(I®B)(AQI)

det (A ® B) = det (A)™ det (B)", where A € F***, B ¢ Fm*™

Proof. Refer to [26], [3],and [29]. B
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Define now a vector valued function of a matrix as

-~ -

Aal

A.
vec(d)=| "7 | eFm 2.63)

Aem

L -

where A € F**™, and A.; denotes the j** column of A. Thus, vec (A) is the vector
obtained by stacking up the columns of A, and this operation is termed the vec-function.

It immediately follows that vec (-) is linear, in that
vec (@A + BB) = a vec (A) + S vec(B) (2.64)

forany A,B € F**™ a,( € F. Also, the matrices A;, A, ..., Ap are linearly
independent in F**™ if and only if vec (A;),vec(Az),...,vec(Ap) are linearly
independent in F™™,

The following theorem indicates the relation between ® and vec (-).

Theorem 2.8 [fA € F**" B F™*™, X € F**™, then

vec(AXB) = (BT ® A) vec(X) (2.65)

Proof. Let (AX B),; denote the j* column of the matrix (AX B). This element may be

expressed as
m
(AXB),; = 3 (AX).cbs
k=1

m

= E bk]' (AX)tk
k=1
m

= Y (bgjA) Xek
=1

[ b4 basA - b |vec(X)
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extending this notation overall j = 1,2,...,m yields

buA -+ bmA
vec(AXB) = : : vec (X)
bimA -+ bpmA
= (BT ® A) vec(X)

Corollary 2.2 The following statements are immediate consequences of the above.

vec (AX) = (In ® A) vec (X)
vec (XB) = (BT ® I,) vec(X)
vec (AX + XB) = ((In ® A) + (BT ® L)) vec (X)

With this background, we are now in a position to examine equation (2.56) with

some degree of success. Note that by taking the vec (-) operation on both sides, we obtain

Gr=c (2.66)
where
G = f BT ® A; (2.67)
i=1
z = vec(X) (2.68)
c = vec(C) (2.69)

which is now a familiar matrix-vector problem. In order to make any statements about
existence and / or uniqueness of solutions of (2.66), we generally need some information
about o (G). Unfortunately, it is usually difficult to say anything of value about o (G),

even when o (4;) and o (B;) are known for all 2.
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However, some special cases do arise that have nice properties. For the purposes
of this work, we need only consider the special case where each A (B;) is a scalar
polynomial in a fixed A € F**" (B € F®*™), Thatis

P L
C= ) ajAXB’ (2.70)
ig=1

where a;; € F. That is, we define a polynomial in two scalar variables, say n and x, as
P(z,y) = L aijn's? .71)
i

then we may define a polynomial in two matrix variables as

P(A;B) = Y aijA' ® B (2.72)
4J
Thus
G=p(BT;A) (2.73)

and the following relation between o (A}, o (B) and the eigenvalues of p (A; B) can be

stated

Theorem 2.9 (C. Stephanos, 1900) The spectrum of the matrix p (A; B) are the nm numbers of
the form p (Me, u,), where {Aep,}7_) = 0 (A), {p,}, = o (B).

Proof. Refer to [27] and [29], among others. W
For the purposes of this work, we are concerned with two specializations of this

result.
Corollary 2.3 The eigemvalues of A ® B are the nm numbers {Arpiy} 7 re .

Corollary 2.4 (Sylvester, 1882) The eigenvalues of (I, ® A) + (B ® I,,) are the nm numbers
{’\r + i, }:'t,:l";l'

As an example of an application of the above, consider the case where

AX+XB=C (2.74)
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which appears in one form or another quite frequently in control theory. If

c(A)N o (—B) =0, then X can be determined uniquely by

(I® A) +(B®I)) vec(X) = vec(C) 2.75)
or
Gz = ¢
z = Gle
= X =vec ! (z) (2.76)

where vec™! (-) denotes an un-stacking operator. Admittedly, this is an abuse of notation,
but the operation is clear from the context.
Of course, there is far more that can be said on this topic. The preceding, however,

constitutes a sufficient foundation for this particular work.

2.2 Linear Systems

The material in this section can be found in virtually any textbook on control theory that
utilizes state space methods. [n particular, the material presented here makes use of the
notation used in Wonham [45]. Proofs of the Theorems can be found in this reference,

among others.

2.2.1 Definition

In this work, only finite dimensional, time invariant, linear systems will be considered.
These types of systems constitute a large class of engineering systems, and can be
modelled as

& = Az+Bu 2.77)
y = Cz (2.78)
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fort e Ry, wherez = z(t),u=u(t),y =y(t),and z = %:z:. The elements z € X,
u € U,y € Y are referred to as the state, control, and output vectors respectively. Further,

assume that

dim(X) = = (2.79)
dm@$) = m (2.80)
dm(Y) = p (2.81)

with n 2 p 2 m. The term system will henceforth be understood to mean the set of
differential equations (2.77) and (2.78). The majority of this work will primarily be
concerned only with the system (2.77), which is equivalenttoy = z, or C' = Igm ).

It is useful to then look at some of the general properties associated with (2.77) and
(2.78).

22.2  Controllability, Feedback, and Eigenvalue Assignment

Denote the linear space of piecewise continuous controls u (t) C U asU.. Further, the

solution z (t) C X of (2.77) is uniquely determined by
t
z(t) = p(t;z0,u) = elzg + [elt=4Bu(r)dr (2.82)
0

where 2o = z(0). A state z € X is reachable if there exists t € [0,00] and u € U,
such that = = ¢ (¢; zg, ). That is, there is a control available that can steer z (t) to z in
some finite time. Denote Ry C X as the subspace of all states reachable from zo. The
subspace is Rg C & termed the controllable subspace of the pair (A, B). IfRo = &,
then this implies that any z € A can be reached from z; in finite time, and the pair (A, B)
is then termed controllable. It can be shown that a system is controllable if and only if

A.’=Im[B AB A2B ... A"1B ] (2.83)
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Feedback is the term used to describe the application of a control uw = Kz, where
K:X—-U (2.84)

The whole purpose of state feedback is to aiter the behavior of the free, uncontrollable
system £ = Az in some desirable way. Thus, by selecting a feedback map of the type
(2.84), the closed loop system becomes

& = (A+BK)z (2.85)

= z(t) = e(A+BK)tg, (2.86)

indicating that the closed loop system behavior is governed largely by o (A + BK). The

main concern here is that o (A + BK) be stable, or
c{(A+BK)cC. (2.87)

where C_ := {a+if:a <0, € R}, so that z(t) — 0 ast — oco. The relation
between controllability and spectral assignment can be stated in the following manner.

Theorem 2.10 The pair (A, B) is controllable if and only if; for every symmetric set { A}, C
C. there existsamap K : X — U such that 7 (A + BK) = { M},

Proof. Refer to Wonham, Theorem 2.1 [45]. B
In this work, the notion of transforming a system into normal form will frequently
be employed. Specifically, assume the controllable pair (A, B) admits a transformation

By~ [ |4 A ] 0 2.88)
A Ax By

where B, € F™*™ is nonsingular, and the blocks Aj;; are of appropriate size. For some
special cases, application of the control © = Kz leads a closed loop system matrix of the

form

(2.89)

An+ApK A
(A+BK) ~ 11 + A 12
0 M
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Thus,c (A+ BK) =¢ (Au + ApK ) Uo (M) where M is fixed by some process, and
the design objective is to select a control law K such that the performance of the subsystem
(Au + ApK ) is in some sense good. The following theorem gives conditions for the
controllability of the pair (A1, A12).

Theorem 2.11  (Ay1, Ai2) is controllable if (A, B) is controllable. Further, if Bs is nonsingular,
then (Av1, A12) controliable implies (A, B) controllable as well,

Proof. The Hautus criterion for controllability [18] says that (A, B) is controllable if and
only if

rank[ M~-A B ] =n forallAeC
With (A, B) as in (2.88), we have

Mip_my—An  -An 0

[ar-4 B]= (2.90)
—An Mm—An B
If the matrix (2.90) has rank n for all ), then clearly
rank[ M-Ay -Ap ] =n-m @91

for all A € C, which is equivalent to (A}, A;2) controllable. On the other hand, if (2.91)
holds for all A € C and B; is nonsingular, then from (2.90), [ M—-A B ] has rank n
forall A € C, so that (A, B) is controllable. B

2.2.3  Observability and Observers

The results of §2.2.2 are only partially useful, in that it is presumed that z is directly
available for measurement at any instant in time. This, however, is often not the case.
Consider, once again, the system (2.77), (2.78). The maps A, B, and C are known,

as is u (t). If it is possible to compute z (t) from this data, then the system is termed
observable. More simply, if u (t) = 0, then the pair (C, A) is observable if y (£) = 0 only
when z(t) =0.
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Mathematically, this property implies that (C, A) is observable if

- c .
CA
ker | CA? | =0 (2.92)
C An-—l
L o

From (2.92), it is immediate that (C, A) is observable if and only if (A*,C*) is
controllable. Thus, if (A*,C*) is controliable then o (A* + C*L*) = {\:}, as before
& a(A+LC) = {M}i;, where L: Y — X.

Further, if (4, B) is controilable, and (C, A) is observable, then the triple (A4, B, C)
is termed complete.

Assuming (C, A) observable, it is now possible to construct a device that will
calculate z (t) from y (¢) and u (t). Such a device is termed an observer, and takes the

form of a differential equation
§=Wgq—Ly+ Bu (2.93)

where ¢ € X. The design variables arethen L : Y — X,and W : X — X. Define the

observer error as
e=zx—gq (2.94)
so that
é = —-¢
= (A+LC)z-Wq
= (A+LC)e (2.95)

where W = A + LC, and L is selected such that o (A + LC) is in some sense good.
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The objective at this point is to apply the control law K : X — U asu = Kq, where

g (t) — z(t) as t — oo, and the cascaded closed loop system becomes

z A BK T
= (2.96)
{q} {—LC (A+BC+LC) [q“

however, recalling (2.94) and (2.95), we see that (2.96) can equivalently be written as

l:z} [(A-i—BK) —BK Hx}
- 2.97)
é 0 (A+LC) || e

and the system performance is determined largely by ¢ (A + BK)U o (A + LC).

Typically, L is selected such that
Rec(A+ LC) > 4Rec (A + BK) (2.98)

ensuring that the observer dynamics are fast in comparison to the system response. This
structure, when considered with Theorem 2.13, implies that o (A + BK) can be assigned
arbitrarily if (4, B, C) is complete.

2.3 Lyapunov Stability

The central concern of any control problem is stability. As it pertains to linear systems,
stability implies that a trajectory = (t) — 0 as ¢ — oo. Thus, a system that satisfies this
condition is termed asymptotically stable.

Lyapunov (1892) was concerned with general conditions for stability, and numerous
conditions for classifying stability without the explicit calculation of o (A). As it applies
to this work, this creates an effective design tool when attempting to develop a control
law that leads to an asymptotically stable system. In the interest of brevity, we will not
delve too deeply into this rather large topic, and only focus on the results that are directly
important to this work.
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The main result can be summarized as follows. Let A € R™*™ and consider the
autonomous system
= Az (2.99)
Defining a quadratic form v (z) as v (z) = 2T Vz, where V is symmetric, so that
v(z) = FVz+2TVi
= 2T (ATV +VA)z (2.100)
and writing
ATV +VA=-W (2.101)
Then W is real symmetric as well, so that 9 (z) = —w(z) = ~zT Wz. Lyapunov
noted that, given a positive definite W, then the stability of A can be characterized by the
existence of a positive definite solution matrix V. Intuitively, this implies that v (z) is a
valid scalar measure of the *magnitude’ z. So, v(z) < Osince W > 0 & w(z) > 0, and
this implies that this 'magnitude’ is always decreasing, and the system is asymptotically
stable.

In this, work, the ability to classify a point, or set of points, {z} C X as stable and
globally attractive when the system under consideration is nonlinear and autonomous is of
importance. That is

&(t) = f (1) 2.102)
The following, then, is a restatement of Lyapunov’s stability theorem as it pertains to
systems of the type (2.102)[24].

Theorem 2.12 Letz = 0 be anequilibrium point for (2.102) and’ D C X be a domain containing
z=0. Let V : D — R be a continuously differentiable function, such that
V(@ = 0andV (z)>0forallzeD- {0} (2.103)
V(z) € OforallzeD (2.104)
Then, = 0 is stable. Further, if

V(z) <0forallz € D - {0} (2.105)
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then = = O is asymptotically stable.

Proof. Given e > 0, choose r € (0, € such that
Br={zeX:|z|<r}cCD

Leta = "txr?,i:; V (z). Then, from (2.103), & > 0. Select 8 € (0, ), and let

Qg ={zeB,:V(z)< B}

Then, Qg is in the interior of B,. From (2.104), we see that g has the property that
any trajectory starting in Qg at time ¢ = 0 will remain in Qg. As well, since V' (z) is
continuous and V' (0) = 0, there is a § > 0 such that

lzf d=V(z)<B

Then,
Bs CQgC B,
and
z(0)€Bs=>z(0)eQg=>z(t)eQg=>z(t) € B,y
Thus,

2@ <6=flz(®)| <r <eforallz>0
which shows that the equilibrium point z = 0 is stable. Now, assume (2.105) holds as
well. To show asymptotic stability, we need to show that = (t) — Oast — oco. Thatis,
for every a > 0, there is £ > 0 such that ||z (t)|| < a for all t > £. Repeating the previous
arguments, we know that for every a > 0, we may choose b > 0 such that Q@ C B,. Thus,
it is sufficient to show that V (z (t)) — O as t — oco. Since V' (z(t)) is monotonically

decreasing and bounded from below by zero,
V(z(t)) >c20ast >0
We show that ¢ = 0 via contradiction. Assume ¢ > 0. By continuity of V' (z), there exists

ad > 0 such that By C Q.. The limit V (z(t)) — ¢ > 0 implies that the trajectory z (t)

lies outside the ball By forall ¢ > 0. Let —§ = e V (), which exists because the
KT
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continuous function V (z) has a maximum over the compact set {d < ||z}| < r}. From

(2.105), —€ < 0 and it follows that
V(z(t)) =V(z(0)+ z' 1f’(:lr:('r)) dr <V (z(0) -¢&t

Since the right hand side will eventually become negative, the inequality contradicts the
assumption thatc > 0. l

Also of importance to this work is the following extension of Lyapunov’s Theorem,
known as the Barbashin-Krasovskii Theorem.

Theorem 2.13 Let = = 0 be an equilibrium point for (2.77). LetV : X x X — R, bea
continuously differentiable function such that

V(O = 0and V(z)>0 forallz#0 (2.106)
flzl = co=V(z)—oo (2.107)
V(z) < 0forallz#0 (2.108)

then = = 0 is a globally, asymptotically stable point in X.

Proof. See {24], Theorem3.2. B

2.4 Chapter Summary

In this chapter, the basic mathematical tools necessary for this work were presented.
Notation was introduced, the class of systems to be analyzed was defined, and some basic

properties of these systems were covered.
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Chapter 3
Sliding Mode Control

3.1 Introduction

As stated in §2.2, it is a well known fact that control of linear systems can be achieved via
the application of feedback, K : X — U. As will be explained in §4, it is also known that
the resulting system
t=(A+BK)z 3.1
can be, in some sense of the word, optimized by minimizing an associated cost functional,
or performance index
J= /m (z*Qz +v"Ru)dt (3.2)
Theoretically, this type of control Iav?r is as good as it gets, and has thus earned its own
title and line of study-/inear quadratic (LQ) control. It does, however, suffer from some
practical drawbacks.
Primarily, nonlinear effects in the input signal u form a very realistic limiting factor
on the effectiveness of LQ control theory. Typically, these input nonlinearites appear
as saturation levels in the actuators. For example, the output torque of a servomotor is
subject to a maximum (saturated) value that is in proportion to the size of the motor. Thus,
true optimal system performance may not be obtainable due simply to the size constraints
on the actuators available. One method of bypassing this problem is to apply 'heavy
penalties’ to the constrained variables within the cost functional (i.e., alter @ and R) until
such time that a practical K is found.
Of course, this idea has some intuitive drawbacks, in that it becomes apparent that
the control law is, to some extent, decided at the onset of the design. Then the job almost
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becomes one of finding an appropriate index that justifies the control law as optimal.

Further, in many realistic systems the only actuator available is a relay-type switch,
since these actuators have the practical advantage of reduced complexity in comparison to
a continuous valued actuator. Here, the notion of an LQ design scheme has no hope of
succeeding.

Thus, the analysis of systems with these particular control constraints within an LQ
framework is clearly not appropriate, and something different is required. Here enters the
exciting field of variable structure control (VSC), so called because it takes advantage of
the on-off switching nature of the actuator, rather than ignoring it.

While it would seem apparent that these particular systems do not lend themselves
to classic LQ optimization, they are well adapted to optimization with respect to system
response (time-optimal control), fuel expenditure (fuel-optimal control), or any number of
other quantities.

Optimal relay control was a topic of great interest throughout the period of (roughly)
1945 - 1970. However, not much will be said about this topic here, since it is not of
particular interest to the thesis. The interested reader is referred to Ryan [34] for an
historical account of VSC.

Two results, pertinent to this work, came out of VSC. First, the somewhat intuitive
result was proved that to achieve a time optimal control, the actuators had to operate
at their saturation limits. This led to the idea of utilizing relay switching, rather than
saturating actuators. Second, it can be shown that the switching sequence required for
system optimization could be characterized by a manifold within the state space that
acted as the decision mechanism for the switches. That is, if z € X is 'above’ the
manifold, then the controller switches to one structure, and if z is "below’ the manifold,

the controller takes a different structure. So, for an m-dimensional controller, each j#
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element would have the structure

u; (z:8) = u}‘(z;t) if ¥(z); >0 (3.3)
7 u; (z;t) if ¥(z); <0

where the decision manifold, S, is characterized by the parametric equation
S:={z:¢(z) =0} 3.4)

This notion will be clarified in the sequel.

Much interest in the design and analysis of optimal relay control systems occurred
in the 1960’s, as can be seen in the classic work of Bryson and Ho [4], and still continues
to the present (Ailon and Segev, [1]). Of interest to this work is a special case that arose
from the study of VSC’s. Filippov (1960) is attributed with much of the groundwork for
analysis of systems with discontinuous right hand sides, such as a VSC (these results are
presented in Ryan [34]). In particular, he was interested in the state behavior, = (), at the
exact moment of the control switch.

Of the various results obtained, the one that is of most interest (as far as this work
is concerned) is the situation where both control structures lead to an z (¢) that is directed
towards the switching manifold S. That is, if z (t) is travelling towards S, and intercepts
S at a time T, then the control structure switches, and an alternate trajectory is followed.
However, this trajectory also is directed towards S, so that the net result is that z () travels
in a direction tangent to S. This type of motion is termed s/iding, and a new branch of
control theory emerged.

From the above heuristic explanation, it is apparent that sliding motion is thus
named because z (t) ’slides’ along S. This motion was known to occur in optimal VSC
simply because at some point, S will coincide with a certain state trajectory. The idea then
emerged of creating an arbitrary decision manifold, S, and investigating the possibility of
inducing sliding motion on this manifold by means of rapidly varying the structure of the

controller. This idea became popular for a number of reasons.
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It was shown by Utkin [40], and more generally by Decarlo et al [6] that a system
could be stabilized by restricting z (t) to S, even if neither of the controls {u*,u"} alone
led to an asymptotically stable system [6]. Instead, it is simply required that each of
{u*,u"} now has the effect of *steering’ z (t) towards S. Then, by rapidly varying the
control structure (infinitely fast switching, ideally) the net result will be that the component
of z (t) normal to S is zero, so all motion is tangent to S. It becomes apparent, then, that
the shape of S determines the closed loop system dynamics, since = (t) will be restricted
to S. Thus, with a well designed sliding manifold, SLMC can achieve the same goals of a
standard control strategy, such as tracking and regulation.

In addition to the properties of asymptotic stability and relatively simple closed loop
dynamics, SLMC is a very robust control strategy. [n an important work by Drazenovié, it
was shown that SLMC has guaranteed stability margins in the face of bounded, matched
disturbances / model uncertainties [11], [38].

Thus, with the relatively recent advent of high speed digital computers and rapid
switching circuitry, SLMC has become a practical reality, and an attractive option in many
applications.

The purpose of this chapter will be to provide an overview of some of the
fundamental properties of SLMC. The key piece of information that will be omitted is
a general discussion / derivation of some of the properties associated with discontinuous
feedback control. The purpose of this omission is purely for the sake of brevity, and the
interested audience is, again, referred to Ryan [34] and the references contained therein
for an in-depth treatment of this topic.

The chapter will be organized as foliows. §3.2 gives a brief introduction to manifold
theory, with an emphasis on the development of a sliding manifold. §3.3 characterizes
SLMC in the ideal situation. I[n §3.4, the switched control law is developed and shown to
be invariant to matched disturbances. A chapter summary is presented in §3.5.
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3.2 Sliding Manifolds

In this section, a sliding manifold S will be defined. State behavior on S will then be

examined when S is a linear manifold.

3.2.1 General Manifold Theory

The concept of a manifold is an extremely rich mathematical topic. See, for example,
Kobayashi and Nomizu {25]. For the purposes of this work, a manifold may be viewed as

the subspace generated by solution set of the equation
Y(z)=0 (3.5)

Further, all spaces X,),. .. may also be considered manifolds.

3.22  Sliding Manifolds

With this definition of manifold in place, we want to consider the sliding surface as a
submanifold S immersed in X'. This type of manifold can be described by
S={z:¢v(x)=0} (3.6)

where ¥ (z) denotes some continuous function of z. Equation (3.6) indicates that any
general manifold can be chosen. This work, like most literature, only considers a special

class of /inear manifolds that can be described by
S={z:S5z=0} (3.7

Where S € £L(X,R) is, at this point, an arbitrary map. For a more general examination
of nonlinear sliding manifolds, see Sira-Ramirez [36], {37]. Note that in the case under
consideration
ImS = RcC&X (3.8)
kerS = § 39
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The effect of constraining the system (2.77) to S can now be examined

3.3 Ideal Sliding Behavior

In this section the pair (A, B) is assumed controllable, rank (B) = m, and the map S is
assumed to have full rank.

The objective now is to design a control such that once z (t) intercepts S, sliding
motion will commence and z (t) will remain on S for all subsequent time. If we assume

an initial condition of g € S, then

Sz(t) = 0
= Si(t)=SAz(t)+ SBu(t) =0 (.10)

[solating u (t) in (3.10) results in (dropping the functional dependence on time)
u=—(SB)"! SAz (3.11)

which is uniquely determined if (SB) is nonsingular. Substitution of (3.11) into (2.77)
yields the equivalent system

&= (I-B (sB)~! s) Az (.12)

and the need for an additional switching will now be made clear. Let P = B(SB)™'S

and notice that

i

P? B(SB)"'SB(SB)"'S
= B(SB)'S

= P (3.13)

so that P is idempotent, and thus a projector. Thus, we can find {z} C X with
T € X that will induce sliding motion in (3.12) by observing the following. Begin by
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transforming (A, B) into normal form as per (2.88), so that
A A 0

(4, B) ~ 11 A2 ’
A Ap By

Let S € F™**™ take the form

|

s=[s ] (3.14)

and assume Sz € F™*™ is nonsingular. Now

P = B(SB)™'S

_ Otn—m)x(n—m) 0
| Bz (S2B2)"' Sy B2(S2B:)7'S:
[ 0 o0
(3.15)
S8 In
so that
Iae 0 Ag A
([-P)A = n-m 1 A2
-S{l51 0 Ay Agx
[ 4 A
- 11 12 (3.16)
-S{I.S&An —5;1514412
Define now a transformation 7" as
I _ 0
T = ("I"" G.17)
| S‘; Sl Im
i = | Ym0 (3.18)

so that

Ay +ApS7iST A

(I-P)A= (3.19)

0 Omxm
With this construction of (I — P) A, we may now conveniently examine some of the

properties of the closed loop system.



42

Theorem 3.1 The closed loop system matrix
Ay = (I - B(SB)™! s) A
has at least m zero eigenvalues, or
a(Aa)={0, M, 2,..., 0}, p€<n-m (3.20)

Proof. Recalling Theorems 2.5 and 2.6, we see in (3.19) that
o((I-P)A) =0 (A + A1357'S1) Ua (0) = {0, A1, A2, ..., Ap}. B
Now, we wish to characterize the nature of z () under this particular feedback law.

Begin by making the following assumption

Assumption 3.1 The set

o (A + ASsiS1) = (Mg

i=1

is a symmetric set of distinct, nonzero elements over C._.

Theorem 3.2 The symmetric set o (A, + A1255 I.5'1) C C may be assigned arbitrarily.

Proof. From Theorem 2.11, the pair (A1}, A12) is controllable. Thus, a map S;'S; can
always be found such that o (A1 + 41255 1.':?'1) = (M} C C, where { N} isan
arbitrary symmetric set. @l

Combining these facts with the heuristic definition of SLMC given in the
introduction of this chapter, namely that the closed loop dynamics are determined by the
'shape’ of S, we can visualize the behavior of z (t) in a geometric manner.

From Theorem 3.1 and Assumption 3.1, it is apparent that the matrix (I — P) A has
a nontrivial kernel of dimension m. Any vector in ker ((I — P) A) is an equilibrium point
for the closed loop system, so that the system has an equilibrium subspace rather than
an equilibrium point. Further, since S was designed to be an n — m dimensional linear
manifold in X, it follows that the columns of the matrix A;1 + A125; 15, constitute a

(transformed) basis for S. So, for an initial condition of zg € S, it follows that z (¢) will
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follow a path parallel to S, and achieve an equilibrium state (i.e., £ = 0) anywhere on the
subspace ker ((I — P) A) C X.

Thus, asymptotically stable sliding motion will not, in general, occur without the
advent of an additional control term such as a switching term, as indicated in §3.1.

To conclude this section, we note the following compatibility condition on S and

K, namely that K now has the specific structure
K=-(SB)"'5A (3.21)

which leads to a singular matrix (A + BK), as per (3.19). This constraint on design
objectives is, in fact, one of the main motivations for this work, and will be addressed in
§4.3.

3.4 Actual Sliding Behavior

Ideally, once the state trajectory intercepts S, sliding will commence. However, as was
shown in §3.3, z (¢) will not, in general, intercept S unless zg € S. Thus, the task at
hand is to now design a control that will force z (t) to intercept S, and ensure that sliding
motion will comence at this point. As was was indicated in §3.1, sliding motion may be
induced by application of a discontinuous control law. Thus, the task at hand is to design
a VSC that will both induce sliding once z (t) intercepts S, as well as ensuring that z (t)
intercepts S.

In this section, the structure of the switching control term, u,,, will be derived.
Various schemes exist to accomplish this objective, see for example [6], [23], [24], [40],
and [47]. In this work, the method presented will be based on the works of Decarlo
[7], which uses a Lyapunov approach to design a controller which guarantees that S is a
globally attractive manifold.

Recall from §3.1 that the controller will utilize a full state feedback law, u = u (z;t),



and each j** entry u; (z;t) of u (z;t) has two possible structures [6], [40].

T .
s (@r8) = { u (zit) i $(z); >0 02

ui (z;t) if ¥(z); <0

Where {z : 1 (z) = 0} has previously been defined to be the sliding manifold S C X. At
this point, X’ is necessarily a vector field over R, since the inequalities (3.22) make no
sense in C, since C is not an ordered field. The task at hand is to now give an effective

algorithm for designing an appropriate switching control term, wgy.

34.1 Switching Control Design

Since no guidelines have been given for selecting a *good’ set of closed loop eigenvalues
beyond o (Ay) C C- U {0} for asymptotic stability, it would be somewhat inappropriate
to examine the problem of selecting the switching matrix, S. Of course, numerous
references on this problem exist, and the interested audience is referred to (6], {40], [32],
[24], among others. For the remainder of this section, it will be assumed that S has been
chosen, and is in some sense good.

Let us now examine the slightly more involved problem of ensuring that sliding
motion is actually induced on S. To do this, recall §2.3, in which Lyapunov stability was
presented. Define a Lyapunov candidate V : X x X —Ry, such that

V(S) = 0 (3.23)
V(z) > Oforallz¢S (3.24)

flzll; — ooifandonlyif V(z) - coforallz ¢S (3:25)
V(z) < Oforallz¢s (3.26)

Then, S is a globally attractive manifold in X, in that any trajectory z (¢) will tend toward
S in finite time. Further, since the dynamics on S have been defined to be *good’ (i.e.,
asymptotically stable), then the controller will be globally stabilizing.
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Defining z = Sz, and viewing ||z|| as a measure of the ’distance’ from z to the

manifold S when z ¢ S, we may construct

So that

d . .

EV = (z, Z) = ZZij
For global stability, it is required that

(2,2) <0
forall t > 0 and z # 0. Sufficient conditions for satisfying (3.29) are to let
5 = —pjlzl
= #; = —yp;sign(2;)

where p; > 0forall j =1,2,...,m. Thus,

¥1
: = - sign (z)
Pm
= —F'sign(2)
such that
2=S%=SAz+ SBu
Thus
u = —(SB)"!SAz - (SB)~! Fsign(z2)

And the closed loop system becomes

&= (r- B(SB)™! s) Az — B(SB)~! Fsign(2)

(3.27)

(3.28)

(3.29)

(3.30)
(3.31)

(3.32)

(3.33)

(3.34)
(3.35)

(3.36)
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Now, as per Theorem 2.13, the switching term B (SB)~! F'sign (z) ensures
stability of the closed loop system. That is, application of this control will result in z (t)
converging to S for all zg € X, as well as ensuring that z (t) remains on S once z (t)
intercepts S.

[t is now appropriate to demonstrate the primary advantage of SLMC—invariance to

bounded, matched disturbances / uncertainties.

3.42  Disturbance Rejection in Sliding

As mentioned in §3.1, SLMC is invariant to bounded, matched disturbances only. That is,
disturbances that enter the system via the same path as the control input. The analysis of

DraZenovic¢ [11], [38] illustrates the property extremely well. Let
T=Az+Bu+é 3.37)

Where § is an unknown disturbance. Ifthe initial state ison S, then Sz =0 forallt > 0,
and
St = 0=SAz+SBu+ 56
= u=-(SB)"'S(Az +4) (3.38)

For the sake of accuracy, note that if § is unknown in (3.38), then the controller cannot be
expected to imitate it. That aside, the closed loop system becomes

& = Az—B(SB)"!SAz-B(SB)™'S6+6
= (I - B(SB)™! s) (Az +6) (3.39)
and, for § to have no effect on z (t), it is required that
(I— B(SB)™! s) § = 0 (3.40)
= §=B(SB)"'Ss
= écImB (3.41)
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Thus, if the controtler is to demonstrate invariance to disturbances, the disturbances must
be matched. If the disturbances are in fact matched, then without loss of generality the

disturbances can be modelled as
d = B¢ (3.42)
Where £ is still unknown, but assumed norm-bounded, so that

el < e (3.43)

Where p € R;. Now, to show that the controller can be designed to achieve the result of

invariance, consider again the Lyapunov candidate V : X x X — R, and

d m
av = ZZ:,'Z-J'
j=1
= (§2)T(S£) <0 (3.44)
forall t > 0. Substitute (3.34), into (3.44) to achieve

(Sz)T (SA::: +3B (- (SB)~! SAz - (SB)~! Fsign (z)) + SBE) <0 (3.45)

Thus
m m
(Sz)T (~Fsign(z) + SBE) = Y —zv;sign(z) + 2 2 (SB)ués
J= e=
m m
= 3 —pilzil+ X 2 (SB); & <0 (3.46)
Jj=1 Jk=1
Note that
m m
S 2(SB)uée < X lail|(SB)y| lel (3.47)
k=1 k=1
And, without loss of generality, let
m
IEDM (3.48)
k=1

That is, we define p to be the 1-norm of the disturbance vector . Sufficient conditions for
satisfying (3.46) are to then select each o via

m m
—Y ol < - X ll|SB) il
=1 Jk=1
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Se; > 3 [sB)e (3.49)
j=1 k=1
> p; >mex I(SB)].,,| 0 (3.50)
This will ensure that (3.44) is negative definite as required, and the system (3.36) will
converge to S.
3.5 Summary

This chapter presented a comprehensive development of SLMC. All the essential design
features were developed for a certain class of linear systems, and the resulting controller

was shown to have the desired robustness margins.
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Chapter 4
Mixed Objective LQ / SLMC Control

4.1 Introduction

The problem of eigenvalue placement within specified regions of C is by no means a new
problem. Descartes [8] is attributed as being the first person to get this study underway,
when he showed in 1637 how to reduce geometrical problems to the solution of algebraic
equations.

Later, in the 19" century, there was great interest among mathematicians and
engineers in the study of stability as it pertained to differential equations. Conditions for
the eigenvalues of a matrix to lie in the open left hand plane of C were first implied by
Hermite [20] in 1856, and later explicitly obtained by Routh [33] and Hurwitz [21] in 1877
and 1895, respectively. An alternative, but equivalent, solution to this problem was also
developed in 1892 by Lyapunov [28].

In the 20% century, the focus shifted from stable eigenvalue placement to that of
optimal stable eigenvalue placement. An excellent treatment of this now classic topic can
be found in Anderson and Moore [2]. More recently, there has been a great amount of
interest in optimal eigenvalue placement within prescribed regions of C. Techniques for
optimal placement within various geometric shapes (strips, circles, etc.) have been treated
by Gutman and Jury {16], Haddad and Bernstein [17], and Wang and Bernstein [43], [44]
among others.

More recently, the techniques applied in these works have been generalized in a
paper by Chilali, et al [S]. In all of the above mentioned works, the basic technique has

been to define an open region of C via a set of /inear matrix inequalities, an LMI region.
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The Lyapunov function associated with the problem is then modified in such a way that
eigenvalues lying outside the prescribed regions are treated as unstable,

In this chapter, a different approach is taken. Linear systems of the type introduced
in §2.2 are considered, and the basic objective is to determine an optimal state feedback
control law, K : X — U, that places at least m of the closed loop eigenvalues of (2.85)
on the negative real axis. By doing this, an SLMC style switching term may then be added
to the control law, creating a closed loop system that is in some sense optimal, as well as
robust to matched disturbances [11].

Since the previously mentioned LMI techniques require that the entire closed loop
spectrum lie entirely within an LMI region or, the intersection of p of these open regions,
the design abjective of this chapter cannot be met with these techniques, in general, since
R_ isaclosed set in C.

It is worth mentioning that this concept has previously been dealt with by Tang and
Misawa [39]. In that particular work, the approach was to select a state weighting matrix
Qo in (3.2) and inspect the resulting closed loop spectrum. If there was at least one real
eigenvalue, the problem was solved. I[f this did not occur, a real eigenvalue was selected,
and an alternative Q was then found that was in some sense ’closest’ to Qg. The problem
with this method was that the resulting Q couid end up being arbitrarily far away, thus
negating any physical significance that may be attached with Q.

In this work, a much simpler method is used that is a modification of a recent work
by Iracleous and Alexandridis [22]. The idea is to find a similarity transform of the
closed loop system matrix that allows the system to be viewed as the cascaded sum of
two subsystems. The feedback law is then found by using arbitrary pole placement for
one subsystem, thus fixing m eigenvalues as real, and then optimizing the location of the
remaining (n — m) eigenvalues.

Once this feedback map K is obtained, focus is switched to SLMC. As outlined in
§3, SLMC is an attractive option in many applications, due to its robustness properties.

The problem is that the nominal closed loop performance of the sliding mode controller
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is typically nowhere close to optimal, due to the fact that sliding mode control works by
artificially reducing the order of the closed loop dynamics by an order of m. This situation
has been dealt with to some degree by the author [35] by adding additional dynamics to
the closed loop system in the form of a dynamic compensator that seeks to recover the
missing dynamics. This work takes a much simpler approach, in that an original result
states that for systems with a closed loop spectrum containing at least m distinct, real
eigenvalues, an equivalent sliding mode controller can be constructed. Thus, the nominal
closed loop dynamics are preserved, and the additional feature of invariance to bounded
matched disturbances is added.

The chapter will be organized as follows. §4.2 presents the derivation of an optimal
state feedback map K : X — U that places m of the closed loop eigenvalues on R__.
§4.3 presents the main result, that being the development of a control law that preserves
nominal LQ system performance while adding a robustness margin to the closed loop
system via a switching term on the controller. §4.4 extends these results to an output
feedback controller that utilizes a full-order state estimator. Results are summarized in
§4.5.

4.2 An LQ Regulator With Preset Eigenvalues

This section covers, in detail, the derivation of a gain map K : X — U that allows the
designer to specify m of the closed loop eigenvalues, and place the remaining (n — m)
poles at a location that is optimal with respect to some index. The results are presented
here using C as the underlying field only for the purpose of full generality. All results
translate directly to R. This method first appeared in [22], but has been significantly
altered for this work.

As a quick aside, we note that the most intuitively simple way to accomplish this

objective would be to decouple the open loop system into two controliable subsystems, so
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AR

and the problem is solved easily, since the two subsystems can be dealt with separately.
However, it was shown by Moorse [31] and Molinari [30] that this result cannot be
achieved in general.

Consider, then, the system
&= Az + Bu 4.2)
where (/i, B) is completely controllable, z € X, ©v € U, and rank (B) =m=
dim (i) € dim (X) = n. Transforming (A, B) to normal form as per (2.88) gives

. A
(A,B)z w0 4 B) 4.3)
Ay Ax By

where By € C™*™ s nonsingular. Further, define two matrices X € C{»~m)x(n-m)

and X, € C™*(™=m) where X is nonsingular. Thus, we may construct a nonsingular

transformation T as
X, 0
T=|"" (4.4)
X3 By
so that
. X7t 0
T = 4.5)
-BylX, X7t Bt
Now, consider the closed loop system (A + BK). Here, K will be of the form
K =[ K eCommixm ki e cmxm | 4.6)
and application of the above transformation results in
Ay +ApX. A;B
T-Y(A+BK)T = ) 11 12’2 i 1252
(A22 +K2) X + (Am + K1) X1 (Azz + K3) B2

(CN)
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where

An A | Xt Au X, XA 43)
Ay Axm B7'(An - X2X['Au) B3t (As — Xo X[t Ay) '

Define a particular M such that o (M) € C_, and let

(4‘122 + Kz) B, = M
Ky, = MBy - Ay
= MB;' - B;! (An - X2 X[ Ap) (4.9)

Further, constrain the closed loop system by

0 = (An+K)Xo+ (An+ K1) Xy
0 = MB;'Xp+ (An+ K1) Xa
= K =-MB;'X.X[! - Ay
= Ky =-MB7'XoX[! - B! (A1 - XXt Ay) (4.10)

and the resulting closed loop system matrix becomes

(4.11)

Ay +AppX, ApB
(A+BK)z|V 11 + A12A2 12 2}

0 M

And so, the closed loop spectrum is determined by
oc(Ay)=0 (Au + /112)(2) Uo (M) 4.12)

The goal is to then use any method, potentially some LQ optimization technique [2]
to assign o (A;1 + A12X3). That is, the system can be viewed as

i An ApB A
] _ 11 A1202 Il + 12| @.13)
T2 0 M ) 0
where M may be selected arbitrarily, v € V, and the objective is to come up with a

state feedback law X3 : V — X;. To accomplish this, the pair (411, A;2) must be fully

controllable. The following proposition gives conditions for this to occur.
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Proposition 4.1 Let (A, B) be given as in (2.88), with B nonsingular and (A4, B) controllable.
Let M € C™>™ be given, and X1, X, be any two matrices such that

r

is well defined and nonsingular. Then, there isa K = [ K K ] such that

A+ 41X, AwpB; 0
T-l(A-i-BK)T: , T"'B=

0 M In
where
Ay = X['Auxa
An = X{'Aw

and (A;y, A12) is controllable.

Proof. As per (4.9), (4.10), the required K is

Ki = —MB7'XoX{! - B! (An — X2 X[ A11)
Ky, = 1\'132-1 - B;I (Azz - XzXl-IAm)

Further, from Theorem 2.11, (A1, A12) is a controllable pair. Thus, since X is
nonsingular, it easily follows that (A}, A7) is also a controllable pair. W

Assuming the condition of Theorem 4.1 is met, the feedback law X, : V — X
can be designed. The design methodology used here will be that of classic LQ regulator
design, [2], [45] but any of the specialized methods referenced in the introduction may
now be applied as well. That is, if the cost functional, J, is defined as

J= /Q (z3Qz2 +v"Rv)dt 4.19)
(]
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where @ > 0, R > 0, and v is a pseudo-control term, then it is a standard result to show

that J is minimized by selecting v as
v = R7'A},Pr, (4.15)
= X,=RT'A}LP (4.16)
where P is the maximal Hermitian solution of the algebraic Riccati equation (ARE)
PA)) + A} P — PApR1'AL,P+Q =0 (4.17)

Note that the dynamics of z in A, correspond to an uncontrollable subspace in X, relative

to the control problem (4.13). K is now solved as
k=[x K| 4.18)
The resulting structure of o (A + BK') will now be exploited further. Note that for

the sequel, M must be defined in the following manner

Assumption4.1 M = M* <0 & o (M) C R_. Further, assume that all elements of o (M)
are distinct.

43 Mixed LQ /SLMC Design

Consider the fact that Theorem 3.1 implied that conventional SLMC and LQ design
strategies were not compatible. Presented in this section is a proposed technique that will

bridge the gap between these two powerful techniques.

43.1 Lyapunov Design

Assume that o (A.;) has already been designed via the technique of §4.2, and the goal is
to now find the map S and switching term w4, as per §3.2 / §3.4 that will allow the two
design objectives to be compatible.
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Recall [7] that the switching controller can be designed via a Lyapunov approach by

again viewing [|z[] = [|Sz|| as a measure of the “distance’ from z to S, and a Lyapunov

candidate V : X x X — Ry as
1 d )
V= 5 (z,z) = Et-V = (z,z)
For global stability, it is required that

(2,2) <0

4.19)

(4.20)

forallt > Q. Typically, this problem is solved by the approach outlined in §3.4. Consider,

however, that an equally valid sufficient condition for satisfying (4.20) is to let
3. = . 2
zjzj = —p;lzi| —v;%;
= % = —p;sign(z;) —v;2;

where p;,v; >0forallj =1,2,...,m. Thus

“ N
: = - sign (2) — z
Pm Tm
= -—Fsign(z) -Gz
= SAz+ SBu

Solving (4.22), (4.23) for « and substituting this value into (2.77) yields

v = =(SB)"!(SAz+ GSz + Fsign(2))
= —(SB)"'((SA +GS)z + Fsign(z))
= Ueq T Uswy
= i= (A- B(SB)~! (SA+GS)) z - B(SB)~! Fsign(z)
Now, comparison of (4.26) with the classic A + BK structure yields

A+BK = A-B(SB) '(SA+GS)

(4.21)

(4.22)
(4.23)

(4.24)
(4.25)
(4.26)
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K = —(SB)'(SA+GS)
S(A+BK)+GS = 0
SAu+GS = 0 (4.27)
(4.27) can be restated as
(4% ® In) + (In ® G)] vec(S) = 0 (4.28)
Hs = 0 (4.29)
= s€ker(H) (4.30)

where H = [(A% ® Im) + (In ® G)], s = vec(S). Since S is full rank by assumption,
dim (ker H) > m is required. Recall from §2.1.7 that

o(H)={M+7} 0, (4.31)

where
o(43) = (W) (4.32)
a(@) = {w} (4.33)

so that (4.29) is satisfied non-trivially if each y; = —A, for each j and some p. Recall,
though, that v; € R4 by construction forall j = 1,2,...,m. To simplify matters, assume
that all y; are distinct, which implies that o (A + BK’) must contain at least rn distinct
real eigenvalues { —7; };’;I to solve (4.29). This, however, is has been accomplished by

Assumption 4.1, so that
o (M) = {-; };":1 (4.34)

With this, S can then be determined non-trivially as
S = vec™! (s) (4.35)
giving the closed loop system

#=(A+BK)z - B(SB) ! Fsign(z) (4.36)
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Thus, the system is now like an LQ controiler with an additional switching gain. It
can now be shown that by adding the switching term u,,,, the system (4.36) is invariant to

a certain class of disturbances.

43.2 Robustness Properties of the Proposed Controller

As mentioned earlier, SLMC is invariant to matched disturbances only. The proposed
controller is no different. That is, the proposed controller is robust only against
disturbances / modelling errors that enter the system via the same path as the control input.
Again we will employ the analysis of [11] to illustrate the property. Let

T=Azr+Bu+6 (4.37)
where § is an unknown disturbance. Apply the control law
uv=K(z-¥) (4.38)

which is flawed, in that if § is unknown, then the controller cannot be expected to imitate

it. That aside, the system is now

& = AT+BK(z-6)+6
= (A+BK)z+(I-BK)é 439)

So, for § to have no effect on Z, it is required that

(I-BK)§ = 0
= 6=BKé
= 6cImB (4.40)

So, if the controller is to demonstrate invariance to disturbances, the disturbances
must be matched. Specifically, it will now be demonstrated how to select the elements of

the switching gain matrix F' to achieve this objective.
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If the disturbances are in fact matched, then without loss of generality the

disturbances may again be modelled as
6 = B¢ (441)
where £ is still unknown, but assumed norm-bounded as in §3.4.2, so that

€Il < p (4.42)

where p € R... To show that the controller can be designed to achieve the result of

invariance, consider again the Lyapunov candidate V : X x X — R.. and

d m
77 = Yz
=1
= (Sz)T(5%) <0 (4.43)
forall t > 0. Substitute (4.36) into (4.43) to achieve

0 > (Sz)T (SAz +SB (- (SB)~! (SA +GS)z — (SB)~! Fsign (z)) + sse)
0 > (Sz)T (~-GSz - Fsign(z) + SBE) (4.44)

Now

(Sz)T (~GSz ~ Fsign(z) + SBE) = 3° -2+ f;l — 2,00, sign (23) + ;f:: (5Bt
= I

=1

m m
= - Z'('szgg +@; |2j|) + )z (SB)i &k
Jj=1 sk=1

= -~ (sl +e)lal+ 3 2 (5Bt ¢49)
= k=

Note that

m

2 4Bk < 3 I21|(SB)u] el (3.46)
Jk=1 sk=1

and, once again, let p to be the !-norm of the disturbance vector &, so that

p=3 l&
k=1
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Sufficient conditions for satisfying (4.45) are to then select each ¢; via

-5 ko)l < = 3 1z |(SB) leal
j=1 k=1

Y. (ylzl+e;) > 3 |(5B)led
Jk=1

j=1

Jé w; > j'kil (I(SB)jkl €kl — v; |3jk$kj|) (4.47)
> ;> m:x'(SB)jkl p (4.48)

since v; > Q forall j =1,2,...,m, ensuring that the term 3 v, |s;xZ«;| can only serve
k

to decrease ) I(SB) J"‘I [€k| over all values of j. Thus, this choice of @, will ensure that
k

(4.43) is negative definite as required, yielding the desired robustness characteristics.

44 Extension to the Qutput Feedback Case

4.4.1 Construction of The Observer

In this section, consider the situation where z is not available for direct measurement.
That is, the system is now of the form (2.77), (2.78)

£ = Az+Bu
y = Cz

where the triple (A, B,C) is complete. With this assumption, it is now possible, as per
§2.2.3, to design a full order observer for the system. Recall from (4.24) that

u=-(SB)"! ((SA+GS)z + Fsign(z))

when z was available for direct measurement. Now, the objective is to use g, the estimate
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of z instead, so that (4.24) becomes
u=—(SB)"' ((SA + GS) q + Fsign (3)) (4.49)

where
z2=29q (4.50)

Substitution of (4.49) into (2.77) then results in

£ = Az -B(SB)"'(SA+GS)q—-B(SB)™! Fsign(3) (4.51)
= Az + BKq—- B(SB)™! Fsign(3) (4.52)

Applying the observer of §2.2.3, so that
§=(A+LC)q— Ly + Bu
and the estimator dynamics now become
¢ = (A+LC)q—LCz - B(SB)™'(SA+GS)g—- B(SB)™! Fsign(2)
= (A+LC+BK)q-LCzx— B(SB)™! Fsign(3) (4.53)
The resuiting system is then
£ A BK z B(SB)™! Fsign(3)
{ g } - [ _LC (A+LC+BK) ] l . ‘ - { B(SB)™ Fsign(3) ] #9
or, in terms of the error dynamics, e = = — g, the system may more conveniently be

written as

| | (A+BK) -BK z
é } B [ 0 (A+LO) || e
(4.55)
Examination of (4.55) immediately reveals that by selecting o (A + LC) to be
suitably fast in comparison to ¢ (4 + BK), (4.55) will reduce to (4.36) once the estimator

0

~ [ B(SB)~! Fsign(S(z - e)) ]

converges, and the closed loop system will behave in the expected manner. That is, (4.55)

will reduce to (4.26) when e vanishes.
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44.2  Robustness of the Closed Loop System

The next point to examine is the robustness of the system (4.55). This analysis will be

carried out as in previous sections via a Lyapunov approach.

As before, assume that the disturbances are matched and bounded, so that the

estimator dynamics are now governed by
§=(A+LC)q—-LCz+ B (u+§) (4.56)
Noting (4.50), a Lyapunaov candidate V : X x X — R, may be constructed as
V(2) =(2,2) >0 forall Z#0 (4.57)
and for the desired robustness property, it is required that
%v (3) = (Sq)T (S4) <0 forall 3#0 (4.58)
Substitution of (4.24) into (4.50) then results in
Sqg = § [(A +LC)q—-LCz - B(SB)™' (SA+GS)q - B(SB)"! Fsign(z) + BE]
= —SLC(z-q)—-GSq- Fsign(z)+SB¢ (4.59)
which leads to

(Sq)T (S4) = — (5q)T SLCe ~ (Sq)T GSz - (Sq)T Fsign (Sq) + (Sq)T SBE < 0

(4.60)
or
=3 @) (SLO,(e) - 3o (327~ L lsl ey + o (2)(SB)(€) < 0
ip=1 i=1 =1 hr=l
Y (2)(SIO)jp (ep) + L. (2)* 75+ L. Izl 9 = 3 (%) (SB)ju (&) > 0
ir=1 =1 j=1 jp=1
3 (2)(SLO), (o) + 35 ()2 + 52 lzile; > 3 (23) (SB)e(6)  (461)
Jp=l J=1 =1 hp=1
Note that

Y @)L, (e) < 3 Iasl|(SLO) |l )
Jp=1 =l
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S @) (B < B Iul|sB) i (463)
Jp=1 1

jp=
which then immediately leads to

E (2) (SLC)p (ep) < f: |41 I(SB)j]cI €kl < "f (2i) (SLC),p (ep)+§ (Zj)z’Yj'*'i |2j] @;
Jg=l 7p=1 =1 =1

=1
(4.64)
and
m mn m m
3 [(5B)e] el < 30 |(SLC),|leol + X Izl v + X 5
hp=l sp=1 j=1 i=!
So that
m m mn m m
3 |(5B)|leel < 3 max|(SB) | o < X |(SLC),|lepl + 3 lzsl v+ 3 v
ip=1 =1 F ir=l i=1 =1
(4.65)
Finally

mpx|(SB) | o = [(SZC), lepl ~ esl7; < max|(SB)e[ 0 <5 (466
And the final result of
max I(SB)J'I:I pP<g; (4.67)
is obtained.
Thus, if each switching gain ¢ ; is chosen according to (4.67) forallj = 1,2...,m,
then sufficient conditions for satisfying (4.58) will be achieved. In turn, the resulting
closed loop system will exhibit the desired robustness properties.

4S5 Summary

This chapter has presented a practical, constructive algorithm to design a controller that is
both near optimal in terms of a cost functional, and robust in terms of its ability to reject
matched disturbances in the manner of an SLMC controller.



Chapter 5
Application—Inverted Pendulum

In this chapter, we consider the application of the proposed control law to a
cart-mounted inverted pendulum. The model under consideration appears in {41], and all

numerical calculations were performed on the MATLAB software package.

5.1 Problem Formulation

Consider the inverted pendulum system illustrated in Fig. 5.1.

' —— Ufl)

&\\\\TW
! T!
R

M
fono iy
72/
Figure 5.1 Inverted Pendulum System

The system consists of the following

e A cartof mass M.
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e A uniform rod of mass m, length L, with an attached mass m,. on the tip.

The rod pivots without friction on the cart in the plane of the page, while the cart
rolls without slipping along the z axis. The cart is forced by the applied input « (t), and
the coefficient of viscous damping on the cart is b.

Using Newton’s Second Law of motion, the system can be modelled as

I8 +meLZcosd — megLsing =0

- .2 (5.1)
myZ + mgLBcos@ — m,LE~ + bt = u(t)
where
me = M+m+m (5.2)
me = -’; +me (5.3)
m
L = (F+me)L? (5.4)

A detailed derivation of (5.1) may be found in [41].
We wish to now generate a linearized model of (5.1) of the form (2.77), (2.78). To

accomplish this, define

(z}_- [ ]

T
2= |2 =" (5.5)
23 6
24 9
and a linear approximation of (5.1) in companion form is found as
ié = A2+ Bu (5.6)
- :

g = Cz [CN))
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where
0 1 0 o |
0 0 1 0
A = (5.8)
0 0 0 1
| 0 onos —omas a3 oo j
0
0
B = (5.9
0
1
C = [ anf; —asfy 0 B, O ] (5.10)
with
. r Lb (maL)?
22 Q3 = (moL)* =I,m, (m..[.)’-—lfm. (5 11)
o —m,Lb mymoL '
42 @43 | L (mol)*~Lym.  (moL)*=Im.
- r -~
{ B2 — (MmoL) =T,m, } (5.12)
=W
ﬁ‘l J L (mol) ~Iym,

This model is based on the assumption that only the position, z, of the cart is
available for direct measurement. The calculations used to achieve this particular
(A, B, C) are given in the Appendix.

At this point, it becomes useful to introduce some numerical values in the interest

of actually performing the simulation. That said, let

I, = 020 (5.13)
Mo = 022 (5.14)
me = 050 .15)
L =1 (5.16)

b = 1 (5.17)
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which l=ads to an open loop unstable system. That is
oc(A) ={-4.77,0.45 £15.00} (5.18)

and the need for a stabilizing control is immediately seen.
In this particular situation, we have (A, B) controllable and rank(B) = 1 = m.
Thus, the methodology of §4 may be applied.

5.2 The Control Law

In this section, the controller will be given in three parts. First, the feedback law K will be
solved as per §4.2. The switching term of §4.3 will be given next, and finally an observer
of the type.§2.2.3 / §4.4 will be constructed.

§.2.1  The State Feedback Law
Select X in (??) as

X1=13 (5.19)
so that

(5.20)

I 0
T =
X 1

Recalling (4.8), we may construct A;; and Ajz, so that X2 may now be solved by
(arbitrarily) selecting the weighting matrices @ and R in (4.14) as

Q = 1003 (5.21)
R 1 (5.22)

and by solving the associated ARE (4.17). This then allows the construction of Ag; and
Agg as per (4.8).
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The next step is to select M as per Assumption 4.1. An acceptable choice is
M=-3 (5.23)
which then leads to the solution of the feedback law K as per (4.9) / (4.10) as
K=|-2000 5549 —3241 1081 | (5.24)
The closed loop system matrix is now A + BK, and
o (A + BK) = {-9.95,-3.00, —0.87 +£140.50} (5.25)

so the resulting system is now asymptotically stable.
For the sake of comparison, we can also construct a feedback law Kj, based on

conventional LQ theory by selecting
QLo = 10014 (5.26)

and defining
Jig = /Q (=7 Qrqz + u” Ru) dt (5.27)
0

In this way, the two cost functionals J (i.e, (4.14)) and J.q are as similar as possible, in
the sense that all state and control elements are weighted equally relative to the system

under consideration. An optimal Kq is then found as

Ky = [ ~1000 4.84 -3351 —9.62] (5.28)

resulting in
o (A+ BKq) = {-8.96,-2.22 +42.92,-0.08} (5.29)

Thus, the proposed algorithm does not seem to preserve the ’optimal’ spectrum.
This, however, should be expected since m of the eigenvalues are located arbitrarily in
the proposed algorithm, whereas they are free to be located anywhere in C_ when an LQ
strategy is employed. This difference in eigenvalue location is clearly illustrated in Fig.
5.2.
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Figure 52 Comparison of Eigenvalue Locations in C for Various Control Strategies

5.2.2

The Switching Term

At this point, the task at hand is to determine the matrix S in (4.27), i.e.

so that

S(A+BK)+GS =0

[((A+BK)T®I,,,) + (I @G)] vee (S) =0

Recall from (4.34) that a non-trivial S can be found by selecting G as

which leads to

G=-M=3

S= [ 10.00 18.27 11.68 1.00]

(5.30)

(5.31)

(5.32)

(5.33)
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All that remains at this point is to determine the switching gain matrix, F, in (4.36).

For an appropriate choice of F', define a matched disturbance
£€{-0.20,0,20| cR (5.34)

that is, £ is any element of the evenly distributed, closed set [—0.20,0.20}. Thus, p = 0.20,

and there results

F > mgxl(SB)dp:OQO
= F =0250 (5.39)

as per (4.48). The closed loop system (4.36) can now be simulated. This is done in §5.3.

523 The Observer

We now wish to design an observer of the type described in §2.2.3. Recall from (2.93)

that the observer dynamics will take the form

¢ = Wg—-Ly+ Bu
= (A+LC)q-LCz+Bu

and that L should be chosen as per (2.98), so that
Rec (A + LC) 2> 4Rec (A + BK)

Thus, an appropriate choice of ¢ (A + LC) could be

c(A+LC) = {-38, —41 +13, -45} (5.36)
so that L may be constructed as
[ _818.3 |
~-223.0
L= (537
8789.1
-60.5




n

and the closed loop system (4.55) may now be formed.

We are now in a position to simulate the system.

5.3 Simulation Results

The results will be presented in two parts. For the first part, we introduce the following

assumption.

Assumption 5.1 (Temporary) C' = I;. Thus, a full state feedback law 4 = Kz may be

employed, and the observer is not needed.

Further, all results are presented in (z,y) coordinates rather than (2, jj) coordinates,
simply because the latter have no physical meaning. On the other hand, the pair (z,y)
corresponds to the tangible, physical properties of the model.

As well, in all simulations the system is given an initial state of

-~ - - -

0 T
0 T
2= = (5.38)
0.09 ]
0 é

which corresponds to the situation of the cart and pendulum starting at rest, but not in
the equilibrium position. That is, the system is let go with the pendulum about 5° from

vertical.

53.1 Full State Feedback Results

It is useful to examine the system response on a case-by-case basis. Let us begin with the

most basic situation, in which the switching term has been omitted.
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Figure 5.3 Comparison of State Responses for (a) The Proposed Controller Without
Switching and (b) Standard LQ Controller

Case One: No Switching Present

The objective here is to give some insight as to how well the proposed K derived
in §5.2.1 fares against the standard LQ resuit. Fig. 5.3 and Fig. 5.4 demonstrate the state
responses and the control histories (respectively) for the two situations.

We see that the state responses in Fig. 5.3 are, more or less, the same-disregarding
the z3 response. That is, the response time is similar in both cases, the magnitude of the
responses are similar, and Fig. 5.4 indicates that the control histories are also comparable.

In Fig. 5.3 we see the state 2, the cart position, stabilizing very slowly in the LQ
case. This is due to the fact that the LQ designed controller leads to a closed loop system
matrix with a very ’slow’ eigenvalue. To elaborate, note from Fig. 5.3 that

-008 € oc(A+ BK.q) (5.39)
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Figure 5.4 Comparison of Control Histories for (a) The Proposed Controller Without
Switching and (b) Standard LQ Controller

which is quite close to zero. Since this value is quite small in comparison with the other
elements of ¢ (A + BKq), the slow response is expected. Further, since the 23 value
does not fully stabilize during the course of the simulation, the value of the comparison is
somewhat questionable on a purely qualitative level.

On a quantitative level, however, the results are quite nice. First, we examine of

value of Jq for each controller over the simulation, i.e.

Jig = 63 whenu=K2z (5.40)
Jiq = 21 when u=K|q2 (5401

These numbers on their own are meaningless, except that the whole objective of an LQ
strategy is to reduce the value of Jy g, which has clearly been done. [n addition, we
note the proposed controller gives a result that is reasonably close to the minimal value,
in that the values of Jzq are both at least within the same order of magnitude. Thus,
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Figure 5.5 Closed Loop Response of the System Under the Proposed Controller, Zero
Disturbances Present. (a) State Response and (b) Control History

it is reasonable to assume that the objective of designing a controller that in some way

preserves LQ performance characteristics has been achieved.

Case Two: Switching Present, No Disturbances

Fig. 5.5 demonstrates the nominal performance of the system with the switching
term activated. The objective here is to examine the effect of the control switching on
the state trajectories—the idea being that they should be roughly the same as the results
presented in Fig. 5.3, part (a). In fact, this seems to be the case.

In part (a) of Fig. 5.5, we see that the response of § has been somewhat altered.
Rather than a smooth trajectory as in Fig. 5.3, the g trajectory is now strongly affected by
the addition of the switching term, in that it takes a sharp turn about 0.2 seconds into the

simulation (the time that the switching is activated) and proceeds to exhibit a first order
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Figure 5.6 Comparison of State Responses with Matched Disturbances Present. (a)
Proposed Controller and (b} Standard LQ Controller

response. This would tend to indicate strong coupling between 8 and u. Other than that,
however, we see in Fig. 5.5 that the remaining three states exhibit similar responses to
those shown in Fig. 5.3, part (a).

Thus, it is reasonable to assume that the objective of designing a switching controller
that in some way preserves LQ performance characteristics has also been achieved.

Note, as well, the expected control chatter exhibited in Fig. 5.5, part (b).

Case Three: Matched Disturbances Present

Here, the primary advantage of the proposed controller is seen. Fig. 5.6 compares
the performance of the proposed controller to that of the standard LQ controller, with
noise of the type (5.34) injected. Fig. 5.7 shows the resulting control histories. In part (a)
of Fig. 5.6, the expected result of complete disturbance rejection is shown, while part (b)
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Figure 5.7 Comparison of Control Histories for (a) Proposed Controller and (b)
Standard LQ Controller. Matched Disturbances Present.

demonstrates that the LQ controller is unable to completely stabilize the system.

As well, part (a) of Fig. 5.7 demonstrates that the control history, once switching is
activated, is identical to the case where no disturbances are present, i.e. Fig, 5.5. Part (b)
of Fig. 5.7, however, further demonstrates the inability of the LQ control to fully cope
with this particular disturbance.

Note that as in Fig. 5.3, the steadily destabilizing value of = should again be
ignored, as the result arises from a numerical problem within the MATLAB software,
rather than the system itself.

53.2  Output Feedback Results

We now remove Assumption 5.1, and let C = [ 1000 J, so that only the cart

position z is available for measurement.
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Figure 5.8 Estimator Response (a) and Emor Dynamics (b) for the Simulated

System—Zero Disturbances Present

Again, the system was simulated using an initial state of

20 =

and the estimator was initialized to zero. i.e.

o O o O

(5.42)
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Figure 59 System Output (a) and Control Input (b) for the System~Zero Disturbances
Present

Note that unlike the state-feedback simulations, the simulations in this section were
carried out for only four seconds, as opposed to ten. The reason for this is twofold.
First, the primary goal of this simulation was to examine the response of the observer.
Due to the relatively fast response of the error dynamics in comparison to those of the
state dynamics, it makes it a rather contrived effort to run the simulation for the entire
ten seconds. Second, the output variable (i.e. the cart position) is not prone to a ’large’
response in this particular situation. Thus, as can easily be seen in Fig. 5.9 and Fig. 5.11,
it is hard to say anything of significance by examination of these plots alone.

To elaborate on the first point, Fig. 5.8 demonstrates the fast response of the
observer. By examination of Fig. 5.8 (b), we see that the error term drops to zero aimost
immediately (about 0.3 seconds). As expected, we see that the control chatter has no
effect on the error term.

As well, Fig. 5.9 demonstrates the gratifying result that the proposed controller
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Figure 5.10 Estimator Response (a) and Error Dynamics (b) for the Simulated
System~Matched Disturbances Present

not only works, but works in a similar manner to that of the conventional state feedback
model. This result is greatly clarified in Fig. 5.12 (a), where the cart position is shown
for the state and output feedback controllers. Here we see the expected result, in that the
output feedback controller exhibits a lag in response, followed by a period of convergence
to the state feedback result. That the lines do not completely intercept is an acceptable
result in this situation, as this slow response can be attributed to the relatively slow closed
loop eigenvalue of (A + BK).

As well, by comparing the results of Fig. 5.9 (b) and Fig. 5.5 (b), we see that
the control histories in both simulations are virtually identical once the error dynamics
stabilize. Further, since the control does not ’leap’ to some absurd value (for example, up
to 100 for a short period, or some other impractical situation) in either case, it is reasonable
to assume that the proposed controller constitutes a plausible strategy.

All that remains at this point is to examine the performance of the output feedback
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controller in the presence of noise. By inspection, we see that Fig. 5.11 and Fig. 5.9 are
virtually identical, once the control chattering begins. Inspection of Fig. 5.12 (b) further
illustrates this result. Thus, the goal of perfect nominal performance in the presence of
bounded, matched disturbances is achieved.

Further, comparison of Fig. 5.8 and Fig. 5.10 shows that the estimator and error
dynamics are identical in each situation, indicating not only robustness in the closed loop
(output feedback) system, but also in the estimator. This robustness is expected, however,
due to the switching term as per (4.24).

S4 Summary

In this chapter, the proposed controller was implemented on the now classic control
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Figure 5,12 Comparison of Cart Positions Using State Feedback and Output
Feedback. Zero Disturbances Present (a) and Bounded Matched Disturbances (b).

problem of an inverted pendulum, and the results were promising. That is, the controller

was shown to be asymptotically stabilizing from an arbitrary, yet realistic, initial condition,
and the resulting system was shown to have the expected robustness margins in both the
state and output feedback systems.
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Chapter 6

Summary and Recommendations

6.1 Summary

This thesis has provided a constructive algorithm for designing a mixed objective LQ /
SLMC controller. The proposed controiler was shown to exhibit the desired robustness
properties of a conventional SLMC controller, while at the same time preserving near
LQ performance. The development of this particular controller was made possible by
exploiting a number of results developed within the thesis.

First, a specific similarity transform T was explicitly found in §4.2. Application
of this transformation to a generic closed loop, state feedback system matrix (A + BK)
yielded the resuit (4.11). In turn, this allowed the control problem to be split into
two parts. Specifically, this transformation allowed m elements of o (A + BK) to be
arbitrarily determined by the designer, while the remaining (n — m) elements could be
located via some optimization algorithm. For the sake of simplicity, conventional LQ
design techniques were employed in §4.2, but it was noted that more specialized methods
could also be used.

This result allowed the solution of a feedback law K : & — X that placed the
elements of o (A + BK) in the mixed objective manner outlined above. In turn, the
class of systems to which the proposed algorithm could successfully be applied to was
determined. As expected, Theorem 4.1 demonstrated that the pair (A, B) needs to be
controllable, as well as rank (B) = m.

Next, a Lyapunov design technique was employed in §4.3 that allowed us to solve
the problem of mixing LQ and SLMC design objectives. In particular, it was found that
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the objectives could be mixed if & (4 + BK) contained at least m distinct, real elements.
With this, a sliding manifold S could then be designed that does not have the usual effect
of eliminating m elements of o (A + BK), as per Theorem 3.1.

So, by employing the results of §4.2, the main result (4.24) of the thesis was solved.
The resulting system was then shown to have the desired robustness abilities by selecting
the gain matrix F in (4.22) appropriately.

The result was then extended to the output feedback case in §4.4. In this section,
a full-order observer was employed that was able to recover the results of the full state
feedback case. More significantly, the result (4.67) showed that the proposed output
feedback controller exhibits robustness to bounded, matched disturbances. Thus, this
thesis has provided a significant result in that it has managed to contribute a practical,
robust, output feedback controller for a certain class of linear systems.

The algorithm was then demonstrated on a physically motivated example in §5, and
the results were generally promising. That is, the resulting obtained by application of the
proposed controller were shown to be reasonably similar to those obtained by LQ design
methods, with the added feature of robustness to bounded, matched disturbances.

As well, the output feedback controller was also simulated with the proposed full
order observer. The results indicated that the objective of designing a robust, output
feedback controller was achieved.

[n addition to the above mentioned results, this thesis has also provided a reasonable
exposition on the development of sliding mode control, as well as the mathematical tools

necessary for the analysis.

6.2 Recommendations

One of the main result in this thesis was the selection of the matrix G in (4.22). A feasible
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controller was constructed by selecting
o (G) = -0 (M)

making it possible to construct a full rank S, which then defined the sliding manifold
S = {z : Sz =0}. This was fine.

The problem, however, is the simplifying Assumption 4.1. Here it was required
that all m elements of o (M) were chosen to be distinct, making it simple to non-trivially
solve (4.29). It is the belief of the author that this assumption should not be necessary.
In fact, the same result may possibly be achieved by performing a slight variation on the
method proposed in §4.

Explicitly, if the matrix M in (4.11) were made to be a scalar, say —, so that
Au c C(n—l)x(n—l), or

Ad ~ [ A Au ] (6.1)
0 -7
Then, it should be possible to optimize the resulting (n — 1) dimensional remaining
subsystem, rather than an (n — m) dimensional one. This would likely lead to results that
are closer to a fully optimized system than the method presented in this work, while still

achieving the result of invariance to matched disturbances. G could then be selected as

v
G= " € R™™

Y

which should lead to dim (ker H) > m in (4.29).

Of course, some problems exist with this proposition.

First, a generalized transformation T that will accomplish the result (6.1) is not
known at this time. Further, the size of dim (ker H) in (4.29) will no longer be obvious,
as can be seen in [29]. That is, the result of dim (ker H) > m in (4.29) may not be
achieved.
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These issues are, however, presented in the hope of possibly kindling future research

interest.
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Appendix A
Derivation of The Inverted Pendulum
System

Recall again the inverted pendulum system illustrated in Fig. 5.1, whose motion is
described by (5.1). To generate a linearized model! of (5.1) of the form (2.77), (2.78),
recall that

2 T
2 T
= (A.D)
23 8
24 é

so that (5.1) becomes

moelL cos 23 Ip | moL cos z3 Ip 29 + moegLsin z3
m melL coszz 24 ™ meLz4sin z3 24

- b

which leads to

¢ - 123,23, 24, Ui L
2.2 _ | fo(z1:25,28,24,) A3)

2 | fa(21,23, 23,24, 8)

So that, when viewed with (A.1), the system can be stated as
z=F(z,u;t) (A4)

where 3; = 27, and 23 = z4. A standard method of generating a linear approximation of

(A.4) is to set

_ o] T
A= 3z ﬁ] (A.5)
L el $,J=1
-~ n,m
afi
B = | —=— (A.6)
-auk "z::“::] ik=1




So, via some tedious but straightforward calculations, the application of (A.5), (A.6) to

(A.4) leads to

1

0
{l,,,_b (m.L)*g
0

o = O O

K
0
0
0
0

0a22a230
0 0 0 1

0 as2 aq3 O

= -

and

0
¢

B = aa

=m,L

where
Y = (m.L)? - Lm,

Further, since only z is available for direct measurement, there results
¢=[1000]
and the system becomes
t = Az+Bu
y = Cz

(A7)

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)
(A.13)
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and the triple (A, B, C’) is complete, as can be verified by application (2.83), (2.92).
Applying now a particular nonsingular transformation T, to (A.12), (A.13) gives the triple
(A,B,C) of (5.8), (5.9), (5.10). In particular, T, is found via the following steps.

Calculate the Transfer Function of the system in the Laplace domain as

G(s) = C (31’4 —A'L)dlB

B15% + (238, — ca3fy)

= 84‘ - 02283 - a4332 - (023042 . f'“c;!!.;;;) 8 (A.l4)
allowing immediate construction of the triple (A, B, C), as this triple is in
controliable canonical form.
Construct
wi=[8 AB A28 A3B} (A.15)

which will be nonsingular, since (A, B) is controllable.

Construct

Ws

[ B AB 428 4%B]
= T.[B is &8 iB]
= T,W

which will also be nonsingular.

Solve

T, = W, W ! (A.16)
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Now, via substitution of the numerical values given in §5.1, the system becomes

<

0
0
0
0

b

1

0

0
—120.29

0

1

0
~20.91

[0 3305 4.6 0]2

0

0

1
-3.88

W

u

(A.17)

(A.18)





