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An aerothermal optimization study of two-dimensional hypersonic leading edge geome-
tries has been performed. The accuracy of a simplified model and a reduced order numerical
model was assessed through comparison to simulations of the compressible Navier-Stokes
equations performed in OpenFOAM. Specifically, the estimated surface pressure, and lam-
inar convective heating distributions have been compared. The simplified model was found
to have compromised accuracy in regions of high and low surface curvature. The reduced
order numerical model was found to give accurate results with significantly reduced com-
putational cost compared to complete Navier-Stokes simulations. Optimizations were then
performed using the simplified analysis technique, and the reduced order numerical model.
The performance of the optimized hypersonic leading edge geometries was analyzed us-
ing OpenFOAM. The results show that both methods achieve a similar geometric result.
However, the quality of the optimization is improved by using the reduced order numer-
ical model. An analysis was performed in the design space immediately surrounding the
optimized geometry to assess the impact of small geometric changes on aerothermal per-
formance. The results show that even small changes in leading edge geometry can have a
significant influence on aerothermal performance.

Nomenclature

ai...an NASA polynomial coefficients

Sutherland’s constant

C1,C5,C3  Empirical constants for Kays laminar heating method

Cp Coefficient of pressure

Cp maz Stagnation point coefficient of pressure

Cp Constant pressure specific heat capacity (J/kg - K)
Co Constant volume specific heat capacity (J/kg - K)
H Total enthalpy (J/kg), Leading edge height (m)
P Pressure, (Pa)

Qoo Free-stream dynamic pressure (Pa)

q’ Wall heat-flux (W/m?)

U Velocity magnitude (m/s)

R Axi-symmetric body radius (m)

R, Gas constant (J/ (kg - K))

r Radius of curvature (m)

S Entropy (J/K)

St Stanton number
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T Temperature (K)

0 Flow deflection angle (°)

K Thermal conductivity (W/ (m - K))
W Viscosity (N - s/m?)

o Sutherland’s reference viscosity (N - s/m?)
p Density (kg/m3)

10} Angular leading edge coordinate (°)
Subscript

aw Adiabatic wall properties

e Boundary layer edge properties

w Wall properties

00 Free-stream properties

I. Introduction

High lift-to-drag ratio (L/D) supersonic and hypersonic bodies are designed to have sharp leading edges
in order to minimize drag.!»? However, sharp leading edges are limited by both manufacturability and by
excessive convective heating loads at high Mach number.>? It is known that heating can be reduced by
increasing the bluntness of the leading edge as stagnation point heating obeys an inverse relationship with
the square of the local body radius at the stagnation point.> However, it is a concern for the designers of high
speed flight vehicles such as waveriders that blunt leading edge effects could adversely affect the aerodynamic
performance of the vehicle. Vehicle drag is increased by the detached bow shock induced by a blunt leading
edge. Additionally, the shape of the blunt leading edge alters the stream-wise pressure gradient and therefore
can adversely impact the stability of the laminar boundary layer. Drag and heating reduction associated
with a laminar flow design can be significant. Design studies have been performed regarding finite leading
edge geometries using power law curves? and Bezier curves.!»® The accuracy of using simplified methods to
assess the performance of these geometries is not well understood.

In recent work, genetic algorithm (GA) and particle swarm optimization (PSO) was used to optimize a
leading edge for heat transfer and pressure drag reduction.!® Bezier curves were utilized due to the increased
geometric flexibility available compared to power-law based geometries. The study by Rodi! produced an
optimized shape resulting in a decrease in laminar convective heating of 23.4 % and an increase in pressure
drag of 17.1 % for the hypersonic laminar conditions investigated. The optimization utilized simplified
analysis techniques for the prediction of drag and convective heating. It is of interest to investigate the effect
of using simplified analysis techniques on the optimization.

In general, the effectiveness of any optimization routine is limited by the accuracy of its model. An
optimization routine executed up to a high precision could still have a less than desirable accuracy. The
design space being explored must reflect the region where the analysis technique is sufficiently accurate.
Failure to do so could result in non-physical or artificial minima. Additionally, within an appropriate design
space, due to reduced accuracy in response to geometric changes, the location of local and global minima
may change. Consequently, this question is a major focus of the present work. Do the locations of the
minima change due to an increase in physical accuracy?

In the present work, applications of a simplified analysis technique, numerical solutions to the Euler equa-
tions plus the boundary layer equations, and simulations of the compressible Navier-Stokes equations are
compared. In general, Computational Fluid Dynamics (CFD) simulations of the compressible Navier-Stokes
Equations offers the most robust and accurate means of studying a high speed flow problem numerically.
Currently, this approach is expensive with regard to both time and computer resources. The expensive na-
ture of the Navier-Stokes equations makes them unsuitable for optimizations with a relatively large and/or
complicated design space. For this reason simplified analysis techniques such as the modified Newton’s
method are employed. In many cases a compromise can be made between the speed of highly simplified
analysis techniques and solutions to the Navier-Stokes equations. Herein, a code used for analyzing blunt
body flows at the University of Calgary (HyPE2D) is used as an intermediate fidelity analysis tool. The
accuracy from three different analysis techniques are compared for a few representative leading edge ge-
ometries. An optimization is performed with both the simplified analysis technique (referred to, from here
on, as the Newton-Kays model) and HyPE2D. The aerothermal performance of the optimized geometries is
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analyzed using rhoCentralFOAM (regarded as the benchmark for accuracy in this study) and compared to
the lower fidelity models.

II. Performance Analysis Details

A. Simplified Analysis Details (Newton-Kays Model)

The fastest analysis technique used here is a combination of a simple model for the inviscid external flow,
and an integral approach to the laminar boundary layer heat transfer. These are typical engineering style
approaches that are highly useful early in a design process but are often supplanted by more sophisticated
techniques when more accurate results are required.

A.1. Modified Newton’s Method

The modified Newton’s method is a simple analytical tool based on the body inclination angle and a prediction
of the maximum pressure coefficient in the shock-layer.? The calculation is given in Equations 1 and 2.

Cp = Cpmag sin? 6 (1)
where:
P~ Pco
C,=—-— 2
P 0.5pU2 @

Here, Cp maz = 1.8316 is found using the normal shock relations to calculate the stagnation pressure behind
the fore-body shock assuming constant specific heats. The flow deflection angle 6 is the difference between the
body surface inclination angle and the angle of the oncoming free-stream flow. Once the pressure distribution
along the surface is known, the other flow parameters (T, U, p) along the body are calculated using the
isentropic flow relations.

A.2. Kays Laminar Heating Method

Once the inviscid flow properties are known, the Kays laminar heating method® is used to calculate the
distribution of the Stanton number (St) around the leading edge. The calculation is given in Equation 3.

0.5 pCs ~0.08 —0.04
St — 01/1, RGE — <T‘8> (Taw> (3)
(i GE R2az) " e Te

Here, G. = pue, p is the viscosity (evaluated at film temperature), and Cy, Cs, and C5 are empirical
constants. R is the axisymmetric body radius and cancels out of the equation in the two-dimensional case
as in this study.

B. HyPE2D Simulation Details

Fast and accurate design tools offer significant advantages over both highly simplified approaches and high
quality CFD when applied to optimization design problems. Simplified approximations typically suffer from
decreased accuracy, whereas CFD suffers from high computational cost. HyPE2D is a fast and accurate
simulation tool for solving two dimensional hypersonic flow over blunt bodies. HyPE2D was developed
using the shock-fitting principles outlined by Salas” and the boundary layer modelling described by Schetz.
The solution in the present work is solved assuming that there is no significant viscous-inviscid interaction.
However, a correction for viscous-inviscid interactions is easily applicable for low Reynolds number cases
as has been performed in a related study pertaining to the expanding flow on the aft-body of a circular
cylinder.? In the present formulation, a result for the flow-field is achieved on a personal computer in
approximately 100 seconds. The speed of the solution can be increased or decreased by increasing the
resolution of the computational grids. The grid resolutions used to solve the Euler equations, and the
boundary layer equations, in the genetic algorithm were selected to balance accuracy and computational
time. Sufficient accuracy is required to correctly guide the optimization, but fast enough solution time is
necessary for the process to remain feasible. The working grids were used in the comparison shown in Section
IIT and gave adequate results, as well as an acceptable solution time.
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B.1. Inviscid Flow (Euler Equations)

HyPE2D solves the inviscid flow using the shock-fitting principles outlined in the textbook by Salas.” A
finite difference grid is generated between the leading-edge body and an empirically estimated initial bow
shock-wave location. The grid is then transformed to a rectangular grid through a coordinate system
transformation. A typical grid is shown in Figure 1 for a geometry from Rodi.! The unsteady Euler
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Figure 1. Typical HyPE2D Shock-Fitted Grid

equations are solved on the grid using the MacCormack method.®” At each step forward in pseudo-time,
the location of the shock and the flow properties behind it are updated. The solution is progressed until the
field is converged to an acceptable level (wall temperature distribution converged to 1x 1073 %). Equilibrium
properties are recalculated at each time-step using the thermo-physical models outlined in Section D, and
are used to calculate the jumps across the shock boundary. The shock-wave is solved numerically using
the shock-jump conservation equations. The solution for these equations is achieved iteratively using the
Newton-Raphson method for solving non-linear systems of equations.

B.2.  Viscous Flow (Boundary Layer Equations)

The viscous flow is solved numerically using the approach outlined by Schetz for solving non-similar com-
pressible boundary layers.® The location of the stagnation point, as well as the properties along the body
are taken from the inviscid flow model described in Section B.1. The initial velocity and enthalpy profiles
are calculated at the stagnation point using the similarity solution outlined by Cohen and Reshotko.!® The
solution is then marched forward in the stream-wise direction away from the stagnation point along the
upper and lower surface of the leading edge using a semi-implicit Crank-Nicholson method. The gas specific
heats (cp, ¢y), viscosity (u), and thermal conductivity () are calculated at each stream-wise step using the
models in Section D.

C. OpenFOAM Simulation Details

C.1. Compressible Flow Solver

Two-dimensional Navier-Stokes simulations were performed using the open-source software, OpenFOAM.!!
Specifically, the high speed flow solver rhoCentralFoam was used in the simulation. The solver rhoCentral-
Foam is a density based solver of the unsteady, compressible Navier-Stokes equations.!'? RhoCentralFoam
has been shown to give close agreement to experimental data for similar high-speed flows.3:
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C.2.  Geometry and Boundary Conditions

The flow-field around each Bezier Curve Leading Edge (BCLE) was meshed using the OpenFOAM native
meshing software, blockMesh. A schematic of the domain geometry and boundary conditions are shown in
Figure 2. The domain was generated in such a way so as to allow mesh clustering near the shock wave, and
clustering of cells in the boundary layer. The outlet boundary on the lower surface of the leading edge was
generated on an angle to ensure adequate orthogonality of the cells along the leading edge surface. Grid
convergence was checked for the rhoCentralFoam simulations using Richardson extrapolation for peak heat
flux, and integrated heat flux. The refined grids typically resulted in less than 2% error in integral heat flux,
and less than 5% error in peak convective heat flux, from the Richardson extrapolation prediction.
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Figure 2. Schematic of OpenFOAM simulation geometry
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Figure 3. Typical mesh close to wall (see Figure 2 for location)

The simulation inlet conditions are specified with free-stream static pressure (p., = 1365.78 Pa), static
temperature (Too = 225.636 K), and velocity (Usx, = 3014 m/s). These inlet conditions correspond to a
Mach number of M = 10, and a free-stream dynamic pressure of ¢o, = 9.5604 x 10* Pa (2000 psf) as used
in the previous work by Rodi."»® The wall of the leading edge is specified with a constant wall temperature
(T, = 311.11 K), and the no slip condition for velocity. All outlet boundaries are specified with a zero-

5o0f 13

American Institute of Aeronautics and Astronautics



gradient boundary condition for all properties. This treatment is suitable as long as the flow is supersonic at
the boundary.® The field is initialized with a zero velocity field at the free-stream static pressure and static
temperature. The steady state solution of the flow-field is then achieved by marching forward in time until
changes in the properties of the flow field are negligible.

D. Thermophysical Properties

In order to account for the large temperature changes in the simulation, the fluid’s thermodynamic properties
are modelled. The gas specific heats are modelled using a 7-coefficient NASA polynomial for JANAF
thermophysical data.'® The polynomials are given in Equations 4 to 6.

cp = Ry(ar + axT + a3T? + agT? + asT*) (4)
H = R,T(a1T + asT?/2 + a3T? /3 + asT* /4 + a5T° /5 + ag) (5)
S = Ry(arInT + asT + azT?/2 + asT? /3 + asT* /4 + a7) (6)
The viscosity is modelled using Sutherland’s law® 6 shown in Equation 7.
T,+C (T\*?
= o — 7
n=nrre (z) 7)

The thermal conductivity can also be modelled using Sutherland’s law, but for these calculations it is
modelled using the modified Eucken Method given in Equation 8.

(8)

1.
K = [Cy <1.32 + 77Rg>

Cv

III. Comparison of Flow-field Predictions

Analysis has been performed at the properties described in Section C.2 for a selected arbitrary test
geometry. Figure 4 shows Mach number isolines for the geometry shown in Figure 1. The geometry was
intentionally selected to test the accuracy of the HyPE2D flow simulation and the Newton-Kays model
compared to rhoCentralFoam. This geometry is an appropriate test case due to its relatively high curvature
corners, and low curvature in the vicinity of the stagnation point. We can see that both results show good
qualitative agreement, with little noticeable difference between the two flow-fields.

Figure 4. Mach number iso-lines using rhoCentralFoam (Left) HyPE2D (Right)
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The predicted laminar heat flux for the BCLE has been compared in Figure 5 for the three different
analysis techniques described in Section II. The quality of the results found from HyPE2D is evident due
to the close agreement with OpenFOAM. The locations of the peaks in wall heat flux distribution coincide
closely and the magnitudes are only marginally over-predicted. A major deficiency of the Newton-Kays
model (Section A) is seen at the regions with either significantly high curvature or low curvature. The
curvature is low close to the stagnation point and this results in a significant under-prediction of the local
wall heat flux. Around the corners where the curvature is high, the heat transfer is over-predicted. However,
the Newton-Kays model correctly approximates the qualitative response to changes in local curvature and
pressure gradient. A major deficiency of both HyPE2D and the Newton-Kays model is the poor performance
close to the stagnation point. In order to obtain smooth data in this region using HyPE2D, a very fine
discretization in the stream-wise direction is required. Therefore in both of these methods, the region very
close to the stagnation point (+5°) is interpolated through from points outside this region, yielding smooth
results.

x 10
7 : :
L Newton-Kays
6l ! - - =HyPE2D
1
H —rhoCentralFoam
1

Figure 5. Comparison of predicted wall heat flux (W/m?) distribution

Predictions for pressure distribution along the BCLE surface are compared in Figure 6. The surface
pressure distribution is important for the prediction of drag, as well as the effect of the shape on the stability
of the laminar boundary layer. The predicted pressure distributions show reasonable qualitative agreement
between all three analysis methods. However, the predicted gradients in pressure around the sharp corners
are exaggerated by the modified Newton’s method. A deficiency of the Newton-Kays model is it’s ability
to predict the post-shock stagnation pressure. The value of C) 1,4, is calculated using frozen gas properties
(constant specific heats) which affects the post-shock properties. While the value of Cp 45 could be corrected
by performing an equilibrium shock calculation, the primary deficiency of the method is with the modified
Newton’s method itself, not the specific value of Cp ;2. The predicted pressure distributions from HyPE2D
and rhoCentralFoam match closely. This agreement indicates that for these flow conditions, the assumption
that the boundary layer does not significantly impact the inviscid flow is valid. Additionally, the adequate
accuracy of the numerical solution to the equilibrium jump equations is indicated by the closely matching
stagnation point pressure.

The comparison of the predictive methods raises important questions about the applicability of the
Newton-Kays model for a shape optimization routine. In the present study, and in previous work," > Bezier
curves were utilized because of their increased flexibility, and because they generate continuous geometries
with continuous derivatives. However, a more robust physics model is required in order to accurately account
for increased geometric complexity. For example, the Bezier curve approach allows for geometries that incor-
porate local regions of high and low curvature. We have seen here that the modified Newton’s method, when
coupled with Kays laminar heating, results in decreased accuracy in both of these cases. Thus, it is possible
that when an optimization objective function requires evaluation of either a low or high curvature geometry,
the optimized result will be unsatisfactory using the Newton-Kays model. For such a case, attention should
be paid to limiting the design space to ensure accuracy. Additionally, an important consideration when using
Newton-Kays model is the quality of the analysis itself. For example, in the best case, the Newton-Kays
model may arrive at the same optimized geometry as a more sophisticated analysis. However, a designer
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must then check the result in order to avoid over-predicting any performance benefits of the new geometry,
or failing to predict changes in flow-field topology such as boundary layer separation or turbulent transition.
Some of these points are discussed in Section IV using the current optimization results.

IV. Optimization Results

A. Peak Heat Flux Minimization Using Newton-Kays Model

Optimizations were performed to achieve a minimum peak wall heat flux on the leading edge of an 8 degree
wedge. The leading edge geometries are generated by changing the location of 4 Bezier curve control points.
The genetic algorithm in Matlab’s Optimization Toolbox!” was used in this work. In order to keep the
geometries physically realistic, a penalty function was used to limit the resulting geometries to have a similar
cross-sectional area for a Hemi-Cylindrical Leading Edge (HCLE). The objective function for geometries with
a cross-sectional area beyond +1% of that of a HCLE were penalized. This penalty function was also used
by Rodi in his optimization study.® Optimizations were first performed using the Newton-Kays model. A
major benefit of this technique is the low computational cost. Consequently, large sample populations can be
evaluated for many generations to ensure a highly resolved optimal result. The optimizations were performed
using a population of 3000 and were run until a convergence of 1070 in the objective function was reached.
The results typically converged in less than 400 generations. Optimizations were repeated to ensure that
the results were correct and not dependent on the choice for the initial population. The non-linear and
asymmetrical nature of the problem leads to two possible optimized geometries. One solution involves a
reduced radius of curvature corner at the upper surface, and the other involves a reduced radius of curvature
corner at the lower surface. The two optimized results are shown in Figure 7. The two geometries result in
nearly the same peak convective heat flux with only a 0.2% difference. The optimal result with the sharp
corner at the upper surface is similar to the geometry found in the previous work performed by Rodi® using
particle swarm optimization and is therefore the focus of the proceeding analysis.

B. Peak Heat Flux Minimization Using HyPE2D

HyPE2D offers a significant advantage over full Navier-Stokes simulations in terms of the required compu-
tational resources. However, the cost associated with HyPE2D is still much higher than simplified analysis
techniques. In order to reduce the time required for the HyPE2D optimizations, the design space was lim-
ited to a +5% region of the design space for each control point encapsulating the optimized result from the
optimization using the Newton-Kays model. Additionally, this ensured that the improved optimization was
working in the design space close to the previous optimized result. The size of the reduced design space
region was chosen arbitrarily and then checked to ensure that the correct peak heat flux minima was in
fact located within the design space. Due to difficulties in visualizing the design space in these dimensions,
random geometries within the design space were generated and the limits of the space were found in the X-Y
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Figure 7. Optimized geometries using the Newton-Kays model

plane, and for curvature. The limits of the design space for the HyPE2D optimization are shown in Figure
8. The flexibility of the design space when using Bezier curves is clear from 8. By reducing the design space,
the optimization was limited to varying the radial dimension close to the stagnation point, and the radius
of curvature at the upper surface. The optimization using the HyPE2D flow model was performed using a
population of 102 (run in parallel on a 6 processor CPU), and was run until the mean change in the fitness
function was less than 1%. A converged result was achieved after 100 generations (10302 unique HyPE2D
flow simulations). A typical convergence for the HyPE2D optimizations performed is shown in Figure 9.
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Figure 8. Design space limits for HyPE2D optimization (dashed line corresponds to optimized shape)

The optimized geometries using the Newton-Kays model and HyPE2D are shown in Figure 10. The
improved flow model changes the optimal geometry slightly. A smaller radius of curvature is found at the
top, while a larger radius of curvature is found in the vicinity of the stagnation point. Table 1 shows
the performance of the two optimized geometries compared to the HCLE. All of the analysis methods
show a significant decrease in peak heat flux compared to the HCLE. Both optimization methods have
resulted in a leading edge that performs significantly better than the HCLE. However, the shape found using
HyPE2D performs slightly better. As is expected the Newton-Kays model predicts a greater decrease in
peak convective heat flux for the optimized geometry found using the same method. The predicted heat flux
profiles along the leading edge surface are shown in Figure 11. These profiles show that the different result
is due to the Newton-Kays model’s over-prediction of convective heat flux in regions of high curvature. This
over-prediction means that a more conservative shape is selected when in fact, a higher curvature can be
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tolerated.

Table 1. Percent decrease in peak heat flux compared to hemi-cylindrical leading edge

Newton-Kays HyPE2D

rhoCentralFoam
ShapeNewton_Kays 19.4% 13.6% 15.6%

Another important consideration in these optimizations is the increase in drag as a result of the decreased
peak convective heat flux. The pressure drag coefficient was calculated for each geometry using the pressure
calculated by rhoCentralFoam. The HyPE2D optimized shape resulted in a pressure drag increase of 8.67%,
and the Newton-Kays model optimized shape resulted in an increase of 6.66%. The present study only

optimized for minimum peak heat flux, and thus the drag cost was not accounted for. Future analysis could
include a multi-objective optimization for the reduction of both drag and heat flux.

C. Sensitivity of Peak Heating to Displacement and Curvature

In order to examine the relative performance compared to geometries close within the design space, an
analysis was performed using random generation of geometries within a significantly reduced design space.
The geometries were created by randomly relocating the Bezier curve control points within the design space.
Here, approximately 5 x 10° geometries were created and then filtered to only include those within +1%
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Figure 11. Heat transfer predictions for the optimized results in Figure 10

of the cross-section area of the geometry. This is to ensure consistency between the current method and
the genetic algorithm fitness function. After filtering, approximately 36000 geometries that met the area
requirement were evaluated and compared against the optimal geometry from Section IV. The random
geometries were binned based on their maximum percent difference in radial dimension. Because of the
large number of calculations performed in this brute force method, the Newton-Kays model was used for the
performance evaluation. In each bin, the mean, maximum and minimum percentage change in peak heat
flux was calculated. The results are shown in Figure 12. It is clear from the results that the optimization has
performed well. A small change in the radial dimension results in a significant increase in peak convective
heat flux. For example, a 2%-3% uncertainty in the leading edge geometry would result in, at minimum, a
3% increase in peak heat flux. However, it could result in up to a 14% increase, and on average would result
in a 7% increase. The relationship between surface geometry imperfections and a heat flux penalty could
provide the means for a vehicle designer to account for factors such as fabrication tolerances when designing
leading edges. For example, in the worst case, a machine tolerance of 10/1000 of an inch in the fabrication
of a 1 inch radius leading edge could result in a 5% penalty in the peak heat flux.

V. Conclusion

A simplified model (modified Newton’s method with Kays laminar heating) and a new reduced-order
model (HyPE2D) were used to optimize the two-dimensional leading edge geometry at Mach 10 based on a
peak laminar heat flux. The performance of each model was assessed based on comparisons to fully com-
pressible two-dimensional Navier Stokes simulations using OpenFOAM’s rhoCentralFoam solver. HyPE2D
showed excellent agreement with the rhoCentralFoam results for both pressure and convective heat flux
distributions. However, HyPED2D required the use of the simplified model to initially reduce the size of
the design space such that the HyPE2D optimization could complete in a practical amount of time. The
simplified model, on its own, failed to accurately predict the surface heat flux in areas of high or low radius
of curvature. Despite this deficiency, both models produced a very similar optimized shape. The heat flux of
each optimized shape was compared to that of a hemi-cylindrical leading edge geometry using OpenFOAM.
The optimized geometry obtained from the simplified model resulted in a 15.5% decrease in peak heat flux
and a 6.7% increase in pressure drag. The optimized geometry using HyPE2D resulted in a 17.7% decrease
in peak heat flux and a 8.67% increase in pressure drag. Analysis of the design space around the optimal
geometry was performed to quantify the sensitivities between small changes in geometry and the associated
heat flux penalty. It was found that a significant heat flux penalty (= 5%) can occur, even for very small
deviations in the leading edge radius (< 1%).
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