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ABSTRACT 

A coupled pair of nonlinear parabolic partial differential equations, which describe 

two dimensional heat and current distribution within a thermistor, is reviewed and 

discussed. For certain boundary conditions two nonlinear parabolic one ( space) 

dimensional differential equations and their corresponding steady state differential 

equations with different properties are derived from these equations. As the two kinds 

of partial differential equations have different properties, which are called FTC and 

NTC respectively, they are discussed separately. Several different methods are used 

for the theoretical study of the equations. One method is to transform the differential 

equations into integral equations, through the proof of existence and uniqueness of 

integral equations, hence existence and uniqueness are obtained. Another method 

is to change the variables and to change the original boundary value problems to 

initial value problems. By proving existence and uniqueness for the initial value 

problems, existence and uniqueness are obtained again. The third one is a monotone 

method. By using the concept of upper and lower solution, existence and uniqueness 

(if applicable) are proved. Since the property of the Joule heating function for NTC 

problems is quite different from that for FTC problems, only existence is obtained 

and under some special meaning a uniqueness is also obtained. Many numerical 

experiments have been done. Numerical results are listed in tables and demonstrated 

by figures. The common property for time dependent problems with an external 

circuit is that the solutions have a surge. For some unstable solutions, a brief stability 

analysis is given. 
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CHAPTER 1. INTRODUCTION 1 

Chapter 1 

Introduction 

In this dissertation, attention is focused on a system of nonlinear parabolic 

( heat diffusion) differential equations which model the thermistor, an electrical 

device which is widely used for surge protection, etc. A review of results for the 

problem is given in chapter two. By considering different boundary conditions two 

different one ( space) dimensional problems are derived. One problem is called FTC 

problem and the other the NTC problem. This dissertation is devoted to both nu-

merical solutions and existence of theoretical solutions of these problems as they are 

related to thermistors. 

In recent years an active branch of numerical solutions for nonlinear partial dif-

ferential equations is in the solution of problems with moving boundaries. To solve 

such problems, a moving finite element method [23, 24, 25, 26, 27, 28] may be used. 

According to M.J. Baines [27, 28], this method was invented by K. Miller [25] who 

used it to approximate the solution of diffusion problems with steep moving fronts. 

The main idea is that the meshpoints are allowed to move according to the condi-

tions at the interface points ( or curve). The governing equations at the moving 

meshpoints are adjusted and the meshsize changes correspondingly. One possible 

application of moving boundary problems is to the problem of the thermistor. 

A typical mathematical description of heat distribution within the thermistor is 

given by nonlinear parabolic equations. Its corresponding steady state equation is 

a nonlinear elliptic equation. The boundary conditions considered here are Robin 
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boundary conditions. 

X. Chen and A. Friedman [37, 38, 39], by using the concept of weak solution, 

proved the existence of a solution for this problem. They also use a conformal 

mapping method to prove the existence and uniqueness. H. Xie and W. Allegretto 

[40, 41] discussed the existence of solutions under certain assumptions in which i(u) 

and k(u) take some special forms. D.R. Westbrook [1] gave some numerical methods 

for obtaining approximate solutions of some steady state problems. More recently 

A.C. Fowler, I. Frigaard and S.D. Howison[3] have used perturbation and numerical 

methods to examine a one dimensional time dependent problem which is a special 

case of the general problem ( this is the problem which is here called the NTC 

problem). 

Here we also concentrate on one dimensional equations. Numerical experiments 

are described and some theoretical proofs of existence and uniqueness of solutions 

have been studied. 

In § 3.1, § 3.2 and § 3.3, steady state problems have been considered. They 

are divided into two cases, NTC ( negative temperature characteristic) and PTC 

(positive temperature characteristic, both to be defined in § 2.1 ), which are quite 

different. The PTC problem has a unique solution for given parameters and bound-

ary conditions but the NTC problem may have more than one solution for some 

given parameters and boundary conditions. Therefore, different methods are needed 

to prove the existence ( also uniqueness if applicable). We define an operator to 

transform the differential equations into integral equations and then prove the equiv-

alence of the differential and integral equations. Though the operator itself is not a 

contraction operator, it can be proved that a power of that operator is a contraction 
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operator. Therefore, by using the fixed point principle, there is a fixed point for that 

operator. As has been mentioned, there are more than one solution for NTC, so that 

uniqueness is only proved for the PTC problem. Although the uniqueness is lost for 

NTC problems, the uniqueness is still true in some other sense ( refer § 3.3). The 

existence, uniqueness and nonuniqueness have also been studied both for NTC and 

PTC problems when an external circuit is connected. 

In chapter 4, many numerical experiments have been done. For the steady state 

situation, numerical results coincide very well with the theoretical ones. Approximate 

relations of parameters are also given for, one, two and three solutions. For time 

dependent problems, two methods are used. One is a moving mesh finite element 

method, the other is for fixed meshpoints. Numerical solutions by both methods 

converge to the numerical solutions of the steady state problems. If external circuitry 

is connected, for some parameters, there are more than one steady state solution, 

one of which is numerically unstable. The details and numerical experiments are 

given in chapter 4. The comparison of numerical results obtained by both methods 

has been made. Several figures have been given to demonstrate the results. 

In chapter 5, a brief review of stability and' instability is given. The analy-

sis of stability and instability is based on perturbation theory. It was found that 

all the steady state solutions could be obtained numerically, thus theoretically, the 

corresponding solutions of time dependent problems should converge to one of the 

solutions of the steady state problems. However, the numerical experiments show 

that for some steady state solutions there are no corresponding solutions of time 

dependent problems which converge to these steady state solutions. Hence, there 

is a need to discuss the stability of these solutions. The method is to investigate 
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the solutions for time dependent problems close to the corresponding solutions for 

steady state problems. If some increase rapidly in the neighborhood of solutions of 

the steady state problems, the corresponding solutions for time dependent problems 

are said to be unstable, otherwise they are stable. As the exact solutions are not 

explicit expressions, numerical estimates of the tendency in the neighborhood of the 

solutions are obtained. The numerical results coincide with and demonstrate the 

conclusion about the stability and instability. 
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Chapter 2 

Preliminaries and Historical Remarks 

In this chapter, we review the basic idea of the thermistor problem. In § 2.1, 

the basic definitions and conventions are given. From the same basic equation, 

two different kinds of one dimensional equation are derived under certain boundary 

conditions. One has the FTC property and the other has NTC property. Hence 

thereafter, one is called the PTC problem and the other is called the NTC problem. 

Most of the recent results have been listed in § 2.2. It can be seen that the most 

of them require special conditions. For time dependent problems, the nonlinear 

Joule heating terms are always assumed to be monotone, smooth with bounded 

derivatives for existence and uniqueness of solutions. A schematic representation of 

the thermistor is given in § 2.3. 

2.1 Basic Definitions and Conventions 

The equations here describe heat and current distribution within a thermistor. 

The thermistor is an electrical device made of ceramic material that can be used as a 

current surge regulator[1]. In appearance [3], this is a cylinder of typical radius 5mm 

and typical thickness 2mm, connected into its circuit via wires soldered to the top 

and bottom; these surfaces are covered with a thin conducting sheet of metal acting 

as contact. ( Figure 2.2.1 is a schematic view of the thermistor). The basis for its 
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performance is its temperature-dependent electrical resistivity, which varies strongly 

with temperature, increasing by about five orders of magnitude over a temperature 

range of 100-200°C ( see Figure 2.2.2). 

There are two kinds of thermistors:[3] negative temperature characteristic (NTC) 

thermistors, whose electrical conductivity o increases with temperature, and positive 

temperature characteristic (PTC) thermistors, for which o decreases with tempera-

ture. ( Here positive and negative refer to materials whose resistivity is an increasing 

or nonincreasing function of temperature respectively; conductivity is the inverse of 

resistivity. ) 

Figure 2.2.1 

Circuit Wire 

Side B 

A The rmistor 

Bottom 

Side ,A, 

The general equations to describe the heat distribution within the thermistor, 
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after some scaling of variables, are as follows ( in two dimensions): 

{V(cr(u)Vq5)=O au at = V(k(u)Vu) +'yo(u)IVI2 

,--a<x<a, —b<y<b 

J+/3uIa=O 
(2.1) 

This is a time dependent problem with the two dimensional geometry taken as Carte-

sian rather than axisymmetric ( It is felt that this will not lead to any qualitative 

Figure 2.2.2 

1(u) A 

0 
I I 

1 2 

Conductivity as A Function of Temperature 

U 

differences in the results). The corresponding steady state problem is as following: 

JV(o(u)Vq5) = 
V(k(u)Vu) + 'yo(u)Vq5f2 =0 au +,8ulan 

,—a<x<a, —b<y<b 

= 0 7 an 

(2.2) 
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where V is a gradient operator, A is Laplacian operator, 11 = [—a, a] x [—b, b], u is 

a scaled temperature, 0 is a scaled eledtrical potential, 'y and /3 are dimensionless 

Figure 2.2.3 

Switch 

R0 

The r,ni stor With External Circuit 

parameters, k(u) the thermal conductivity is assumed to be constant and the elec-

trical conductivity o(u) is a function of u which changes rapidly between u = 1 and 

u = 2 and is a constant when u < 1 or u > 2. The Figure 2.2.2 is a graph of such a 

function. Without loss of generality, it can be assumed that b and k(u) are equal to 

1. The boundary conditions for the potential 0 are 

on y=±1 (2.3) 
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and 

80 'go 

On = Ox 
on x = ±a (2.4) 

where v0 is an unknown constant. 

Now consider the case where /3 = 0 on x = a (i.e., on side A of Figure 2.2.1). 

Since = 0 on x = a, it is possible for u to be a function of y only. Similarly, = 0 ax 

on x = a and 4 may also be a function of y only. Thus from the first equation of 

Eq. (2.1) ( or (2.2)), 

a 

=0 
TY ay 

Since c(u) # 0 

O_ C 

- o(u) 

where C is a constant. Since the average current I is defined by 

i= ja ly=JdX CdX C 

Thus = . By symmetry, ay = 0 on y = 0. So Eq.(2.1) and q.(2.2) become 

I i_ - iL+.i! at  8!12 a(U) 

and for the steady state 

I 

,0 < 11< 1 

,u(1) + flu(1) = 0 

I-= o O<y<1 dy2 u(u) 

u(0) = 0 ,u(1) +/3u(1) = 0 

(2.5) 

(2.6) 

This problem is hereafter labelled NTC. 

Now consider the case where /3 = 0 on y = 1 (i.e., on the top of Figure 2.2.1). lLu 

Since = 0 on y = 1, the possible solution is that u is only dependent on x, 
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therefore, o(u) is only dependent upon x while 4) is still a function of y only. From 

the first equation of Eq.(2.1) ( or Eq.(2.2) ) 

8 84) 
=0 8Y 9y 

cr(u$=0 

Since a(u) # 0 

dy 

where C is constant. From (2.3), it is easy to see that 4) = v0y, i.e., C = vO. 

symmetry, = 0 on x = 0. So Eq.(2.1) and Eq.(2.2) become Ox 

I 
and 

au - 62tz + , o yvc(u) 

u(0) = 0 

,0 < x < a 

,u,(a) + 8u(a) = 0 

,0<x<a 

U'(0) = 0 ,'u(a) +/3t(a) = 0 

Having separated the two cases there is no loss in takiig a = 1. This case will be 

labelled the PTC problem. 

For Eq.(2.5), Eq.(2.6), Eq.(2.7) and Eq.(2.8), the external circuit is not consid-

ered. If the external circuit is connected as in Figure 2.2.3, then 

By 

(2.7) 

Rescale it as 

V=2V0+IRO 

(2.8) 

1=vo+Ip (2.9) 
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where v0 = 2. (unknown) and t = (parameter). For Eq.(2.5) and Eq.(2.6), 

there is 

f10 _ 11 I 1 vo=q5(1)= — dy— _dy=If 1 dy 
0 Oy o cr(u) o cr(u) 

From (2.9), there is 

1=I () dY+I/i 

thus 

1  

/1+f05dy 

Therefore, Eq.(2.5) and Eq.(2.6) become 

and 

Iau a2U  ° It  
- + (iz+f' ydy)2u(u) 

u(0) = 0 ,u(1) +18u(1) = 0 

,0 <y < 1 

=0 ,O <y<1 

u(0) = 0 ,u(1) +/3u(1) = 0 

For Eq.(2.7) and Eq.(2.8), there is q5 = v0y, hence the current is 

f l 1= cr(u)'idx=vo(u)dx 
- Jo 

Similarly, from (2.9), there is 

hence 

' 
1=vo+vo P j  cT(u)dx 

1 

vo= 1+pfJo(u)dx 
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Therefore, Eq.(2.7) and Eq.(2.8) become 

and 

I 
I 

ôu - 82u  '70•(IL)  

- + (i+f1())2 

U'(0) = 0 

d2tz yc7(1L)  = 

2 + (1+f0' u(tz)dz)2 

u(0)=0 

In most of this dissertation, o(u) is defined as 

,O < a < 1 

,u(1) +/ u(1) = 0 

,0 < a < 1 

,u(1) +/3u(1) = 0 

(2.12) 

(2.13) 

1 ,u<1 

01  = e'° ' , 1 ≤ u 2 (2.14) 

e 10 ,2<u 

This follows the definition used by Fowler et al [3] and has the appropriate behav-

ior. Thus by the definition of o(u) Eq.(2.5), Eq.(2.6), Eq.(2.10) and Eq.(2.11) have 

NTC property, Eq.(2.7), Eq.(2.8), Eq.(2.12) and Eq.(2.13) have the FTC property. 

Hereafter they are referred as FTC or NTC problems respectively. The difference 

for these two problems is that the nonlinear term in one is the reciprocal of that in 

the other. Therefore, the nonlinear function is monotonically nonincreasing for the 

PTC problem and the nonlinear function is monotonically increasing for the NTC 

problem. This difference leads to quite different properties for the solution of these 

problems. 

2.2 Development and Results 

Several papers have been written in this area. Most considered the steady state 
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equations ( in two dimensions) as follows 

JV(u(u)V)=O 
V(k(u)Vu) + acr(u)IVq5I2 = 0 I an + 6uç = 0, I y=±b = ±(j an  Ix=±a = 0 

(2.15) 

where is Laplacian operator, = V2, = [—a, a] x [—b, b], u is temperature, 

0 is electrical potential, c and /3 are dimensionless parameters, k(u) is thermal 

conductivity and electrical conductivity a(u) is defined by 

(2.16)Ou 
where is very small real positive number. For time dependent problems, 

{V(cr(u)V)=O ,—a<x<a ,—b<y<b 

= V(k(u)Vu) + acr(u)JVg5 2 , + /3uoc = , Iv=±b O, I2?=±a = 0 

(2.17) 

where t > 0. 

For the steady state, X. Chen and A. Friedman [37, 38, 39], G. Cimatti [35, 36], 

H. Xie and W. Allegretto [41], etc., use the transformation 

o kk(s) 
= + — ds 

cr(s) 
(2.18) 

(where 4' is electrical potential, u is temperature, k and cr are thermal and electrical 

conductivities, u0 is a constant) and give existence and uniqueness proofs for the 

problem. 

If we denote 

j u F(u) = k(s) —ds 
0 cr(s) 
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G. Cimatti, in [35, 36], proved that, if F(u) is bounded as u -+ oo, there are two 

cases, i.e., either there is only one solution for some boundary condition or there is 

no solution at all for other boundary conditions. Also, in [35], G. Cimatti proved 

that, if some more restrictions ( e.g., bounded, continuous) on k(s) and o(s) are 

given, the solution for Eq.(2.15) is bounded. 

In [37], X. Chen and A. Fiedman discussed the case in which 

(u) 
>0 , u < u 

cr  
=0 , u > u 

where u is critical temperature and u(u) is continuous at u. They construct a 

continuous and infinitely differentiable function a, (u) to approximate a(u). Then 

using a transformation similar to (2.18), they review the existence proof of a solution 

(, After introducing the concept of a weak solution, it is proved that (, u6) 

converges to a weak solution (, u) of Eq.(2.15). and u ≤ u. Also, in [38], a more 

specific situation, i.e., 

Ii ,u < u* - 

10 ,u>u 
is considered. A transformation similar to (2.18) and a conformal mapping are used 

to prove the existence and uniqueness. 

H. Xie and W. Allegretto [41], instead of discussing the Robin boundary condition 

in Eq. (2.15), discuss the Dirichlet boundary value problem. Under the hypothesis of 

that 

(u) = CiuLexp(_C2/Cau) 

and 

k(u) = (C4+C5u+C6u21 
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where C1, C2, C3, C4, C5 and C6 are physical positive constants and t is a small pos-

itive number or non positive number, they proved that there exists at least one 

solution to Eq.(2.15). 

For the time dependent problem (2.17), there is not as much literature as there is 

for steady state problem. H. Me and W. Allegretto [40], F.B. Weissler [33], H. Fujita 

[34] have done some research in the area of classic nonlinear parabolic equations 

similar to Eq.(2.17). However, F.B. Weissler and H. Fujita mainly contributed to 

the blow up problem, though the form of equations is the same, the properties of the 

nonlinear part are quite different. Here we put the emphasis on the case where the 

equations describe the heat distribution within thermistors. In [40], H. Xie and W. 

Allegretto assumed that 

a(u) = Ciuexp(—C2/u), 0< t < 1, C1, C2 >0 

and 

k(u)=(C3+C4u+C5u2)', C3,C4,C5≥0, C3+C4+C5>0 

Additionally, they replaced the first equation of Eq.(2.17) by the simple equation 

(o(u)q5 1) = 0, i.e., the derivative is taken with respect to only one spatial variable 

and assumed u(s) and k(s) locally Lipschitz continuous and bounded. Then they 

integrate the first equation of Eq.(2.17), change Eq.(2.17) into an integro-differential 

equation. After introducing several functional spaces and a variational form, an 

operator is determined by the variational form. By proving that there exists at least 

one fixed point for that operator, then the existence of a solution has been proved. 

For Eq.(2.17), it seems that it is quite difficult to obtain a general conclusion. 

All of the above results are theoretical ones. For numerical methods to get nu-
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merical solutions for Eq.(2.15) and Eq.(2.17), not many papers can be found. D.R. 

Westbrook [1] gave some good ideas for the numerical methods. A new function 

is constructed and then an iterative method is used. The method overcomes the 

difficulty to determine the point at which the temperature u = 1 ( after scaling) 

and lots of numerical experiments are done for different parameters a and 3. Also, 

A.C. Fowler, I. F'rigard and S.D. Howison [3] gave a perturbation analysis and a 

numerical method for the one dimensional time dependent NTC problem. They 

use equal stepsize for spatial direction and different time stepsize for time direction. 

From the numerical results, temperature surges appeared at some time point. They 

also noticed that there exist possible multiple solutions. 

In order to obtain numerical solutions for equations similar to Eq.(2.17), the 

possibility of a moving finite element method [20, 21, 23, 24, 25, 26, 27, 28] is also 

raised. In this method, the nodes are allowed to change positions with time. The 

spatial stepsizes are adjusted at every time step. The method is more accurate in 

some cases. 

2.3 Application 

There are many applications of thermistors. One of them is as a fuse. In the 

circuit of Figure 2.2.3, a short circuit is represented by closing the switch, causing a 

current surge driven by the external voltage V to pass through the circuit resistance 

R0 and the thermistor, thereby heating it. The consequent decrease in the electrical 

conductivity causes the current to fall until equilibrium is reached, with all the heat 
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generated within the thermistor being lost to its surroundings. In a well-designed 

thermistor, the final current should be a small fraction of the initial surge. 
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Chapter 3 

Existence and Uniqueness 

In this chapter existence and uniqueness are discussed. For convenience the 

steady state problems are discussed first and then the time dependent problems. In 

§ 3.1, the steady state problem for FTC thermistor has been studied. Before the 

proof of the existence and uniqueness, the properties of the solutions are thoroughly 

discussed. An integral operator is introduced so that the original differential equation 

is transformed into an equivalent operator equation. Since the operator equation 

has a solution, thus the existence of solution for the differential equation is proved. 

Using the nonincreasing property of f(u), uniqueness is obtained. In § 3.2, the NTC 

problem has been discussed. The method is similar to that used in § 3.1. Since in this 

case, g(u) is not a nonincreasing function, uniqueness is lost. In fact, there are three 

solutions for some parameters a and P. In § 3.3, a different method is used to prove 

the existence of solutions. The original boundary problems have been changed into 

initial value problems. Since the solutions for the initial value problem exist, then 

the existence of solutions for the boundary value problems is obtained. Here only 

the monotonic property is used, thus the method is good for both FTC and NTC 

problems. Though the uniqueness of the original boundary value problem is lost, it 

can be still proved that if initial value u0 and /3 are given, then there is a unique a 

such that u(x, u, P, a), a solution for initial value problem, is a unique solution for 

the original FTC or NTC problem. Since only the monotonic property is used in all 

proofs in § 3.3, the conclusion can be generalized to all monotonic functions. At the 
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end of § 3.3, the situation when external circuitry is connected is also discussed. The 

relations of parameters for which there are one, two or three solutions are given. In 

§ 3.5, a more general monotone method is reviewed. As in § 3.3, this method can 

be used to prove the existence for both NTC and PTC problems. In § 3.6, the last 

section of this chapter, existence for time dependent problems has been proved. 

3.1 Steady State Problem for PTC 

In this section the existence and uniqueness of solutions of the following problem 

are discussed. 

and 

+af(u)=O ,O<x<1 3;72-

U, (0)  = 0 ,u,(1) +/3u(1) = 0 

f(u)={ 
1 ,u<1 

1 ≤ u ≤ 2 

e10 ,2<u 

(3.1) 

(3.2) 

where a and ,8 are parameters. 

Theorem 3. 1.1 For Eq. (9.1) and Eq.(3.f), if u(x) ≤ 1.0 for 0 ≤ x < 1, then 

U(X) =+(1_ x2) 

is the unique solution. Similarly, if u(x) ≥ 2 for 0 ≤ a; < 1, then 

ae 10 ae'°  
+ 2 (12) 

is the unique solution. 
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Proof: For u(s) < 1, f(u(x)) = 1, from the first equation of Eq.(3.1) then 

u(s) = a + bx + Cs2 

Using the boundary conditions, hence 

u(s) =(i_X2) 

20 

The uniqueness is trivial since when u(s) ≤ 1, Eq.(3.1) is a linear differential equa-

tion. 

For u(s) ≥ 2, the proof is similar. 

Property 3.1.1 Suppose the solution of Eq.(3.1) exists and has second deriva-

tive, then u(s) is monotonically nonincreasing within the interval [0, 1], and also 

u(1)≥0. 

Proof: Integrate the first equation of Eq.(3.1) from 0 to x, we have 

U, (x) + 'a JO f(u)dx = 0 (3.3) 

Since f(u) > 0, the integral must be positive. That means u,(x) < 0, hence u(s) 

is strictly monotonically nonincreasing. 

As u(1) 0 and ,6 > 0, u(1) can not be negative because of the boundary 

condition of Eq.(3.l). 

Corollary 3.1.1 If u(1) is zero, then u(s) 0. 

This conclusion is trivial. Since u(s) is negative, ui(s) is monotonically non-

increasing. As u(0) = 0 and u(0) ≥ u,(x) ≥ u(1) = 0, hence u., (x) = 0, thus 

u(s) u(l) = 0 ( only possible if a = 0). 

Theorem 3.1.2 u(s) = a + (1— s2) is a solution of Eq. (3.1) if a (i.e., 



CHAPTER 3. EXISTENCE& UNIQUENESS 21 

.u(1) ≤ ) and u(x) = 1110  + c10 (1 2 ) is a solution of Eq. (3.1) if a> 2fle'° 
j6+2 2 

(i.e., u(l) ≥ 2). 

Proof: Here the proof is only given for a ≤ 20 . If a > 2/3e'°, the method is 

the  same. 

Necessity. If u(x) = + (1 - x2) is a solution, then it must satisfy Eq.(3.1), 

hence 

_a +af(+(1_ x2)) = O 

f(+(1_x2)) = 1 

so by the property of f, 

Since u(x) is nonincreasing, u(x) ≤ 1 if 2 + ≤ 1 for 0 ≤ x < 1, therefore a ≤ 

,6 2Sufficiency. If a < 20 , construct 
0+2 

u(x)= +(1_x2) 

hence u(x) ≤ + ≤ 1, and u(x) satisfy Eq.(3.1). # 

The more interesting problem is when 1 ≤ u(x) ≤ 2 for some x E [0, 1]. Does the 

solution exist? Is it unique? To answer those questions, we need to introduce more 

concepts and results. First, we construct an integral operator from Eq. (3.1), 

1 
Tu = ui[1 + (1 - x)] - af f(u(t))(t - x)dt (3.4) 
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where ul is an arbitrary real number. Consider the initial value problem 

U = Tu 

U(1) = ul 

u'(l) = —3u1 

(3.5) 

Actually, if u(x) = Tu(x), then u(1) = u1, and since u'(x) = —,3u1 + a f f(u(t))dt, 

hence u'(l) = —f3u. Therefore the problem is to find u such that 

U = Tu 

Before answering that question, the properties of T are discussed. In the following, 

when it is said u(x) < v(x), -it means that in the sense of that for every x E [0, 1], 

u(x) ≤ v(x). 

Property 3.1.2 T is a monotonically nondecreasing operator. 

Proof: If u(x) ≤ v(x), since f is a nonincreasing function, then 

f(u(t)) ≥ f(v(t)) 

(t - x)f(u(t)) ≥ (t - x)f(v(t)) if t ≥ x 

aj1 1 (t - x)f(u(t))dt ≥ af (t - x)f(v(t))dt 

—a j (t - x)f(u(t))dt ≤ —a j (t - x)f(v(t))dt 

1 

Tu = u1[1 + fl(1—x)]—af f(u(t))(t — x)dt 

≤ ui[1+fl(1—x)]—aj f (v (t)) (t — x) dt 

=Tv 

Thus T is a monotonically nondecreasing operator. # 
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Property 3.1.3 If u(x) is the cold ( then u1 = ) or hot ( then u1 = ae10 ) 

solution of Eq.(3.1), then 

u(x)=Tu(x) 

Proof: Since u(x) is the cold solution of Eq.(3.1), then u(x) = + (1 - X2) and 

f(u(t)) = 1, 

Tu a all 
(t—x)dt 

[1+/(1—x)] _ 4(t_ x)2 

+1(1_ x2) 

The result follows. 

Property 3.1.4 If u(x) is a solution of Eq.(3.1), then u(x) is a solution of 

Eq.(3.5) where u1 = u(1). 

Proof: Let u(x) be a solution of Eq.(3.1), change the variable in Eq.(3.1) into t, 

multiply the first equation with t - x and integrate from x to 1, then 

j1 1 
U (t) (t - x)dt + a j f (u(t)) (t - x) dt = 0 

Use integration by part for the first term of the above equation, thus 

so 

1 1 

Ut (t) (t - x)1 - L u(t)dt + a .L f(u(t)) (t - x)dt = 0 

1 

ut(1)(1—x)—u(t)I-i-aj f(u(t))(t— x)dt =0 
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by the boundary conditions of Eq.(3.1), then 

that is 

1 

- x) - u(1) + u(x) + af f(u(t))(t - x)dt = 0 

1 

u(x) = u(i)[i + 8(1 - x)] - af f(u(t))(t - x)dt 

u(x)=Tu(x) 

The proof is completed. # 

Definition 3.1.1 Let (X, p) a metric space, A be an operator from X to X, if 

ij, 0 < i < 1 such that Vx, Y E X, there is 

p(Ax,Ay) ≤ p(x,y) (3.6) 

then A is said to be a contraction operator on X. 

Lemma 3.1.1 [32] (Banach, fixed point principle) If B is a Banach space, A is 

a contraction operator on B, there exists one and only one f E B such that 

= Ax 

# 

Lemma 3.1.2 Let B be a Banach space, A be an operator from B to B. If there 

exists a natural number n such that An is a contraction operator on B, then there 

must exist one and only one fixed point for A. 

Obviously, if n = 1, this lemma is just lemma 3.1.1. 

Proof: Let K = Az, then K is a contraction operator on B, hence by lemma 

3.1.1 there exists a fixed point x'' E B: x" = Kx*. Now we say that x is a fixed 
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point for A. In fact, 

AK = AA' = A' = AM = KA 

therefore K(Ax*) = A(Kx*) = Ax*, so Ax* is also a fixed point for K. Since there 

exists one and only one fixed point for K, thus Ax* = 

If x' is any fixed point of A, since Ax1 = x1, then 

A72xl = A°1x' = ... = 

Thus x1 is also a fixed point for K = Az. Since there exists only one fixed point x" 

for K, therefore x1 = x. Then there exists one and only one fixed point for A. # 

Now denote C[O, 1] as a space of all continuous function defined on the interval 

[0, 1]. Define a norm II on C[0, 1] as 

Ilfil = sup If(x)I = max If(x)I 
O≤x≤1 O≤≤1 

(3.7) 

Then C[O, 1] is a Banach space. 

Theorem 3.1.3 Let T be defined on C[0, 1] by (3.4), and f be defined by (3.2), 

then for any a and 6, there exists one and only one continuous function u(x) € 

C[0, 1] such that 

1 

u=Tu (= ui[1+(1—x)]—af f(u(t))(t—x)dt) (3.8) 

where u1 is an arbitrary real number. 

Proof: Since Tu is defined as 

1 

Tu=ui[1+3(1—x)]—aj f (u (t)) (t — x) dt 
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For any u(x), v(x) € C[0, 1], x € [0, 1], by the mean value theorem and jf'(*)J ≤ 10, 
1 

iTu(x) - Tv(x) = a j  (f(v(t)) - f(u(t))) (t - x)dtf (3.9) 

= IaI I j f'(*)(v(t) - - x)dtl 
1 

≤ ioiai.iiu -_viif (t — x)dt 

- lolai 
- 2 iiuvil(1x) 

Now use induction to prove for x E [0,1] that 

IT— TvI ≤ (2n)I h1u1(1_x) 

For n = 2, use (3.9), by the mean value theorem and If'(*)l 10, 

IT2u(x) - T2v(x) I = Ic (f(Tv(t)) - f(Tu(t))) (t - x)dtj 

= IaI I j f'(*)(Tv(t) - Tu(t))(t - x)dtl 

<1021a I2 
 Ilu - vii 11(l - t)2(t - x)dt 

1021a 12 

- 1.2.3.4hhh1(1 

So for n = 2 it is true. Suppose (3.10) is true for n, then 

lT'u(x) - T'v(x) = Iaj'(f(Tv(t)) - I (Tu(t)))(t - x)dtl 

= la l-1 1. f'(*)(Tv(t) - Tu(t))(t - x)dtl 

≤ ioialj ITu—Tvi(t—x)dt 
1O +h Iain+l 1 

iiu—vil I (1—t)2 (t—x)dt 
(2n)! 

1O+hIail 

(2n)! -1• .L) 

1o+hIaIz+l  
Iiu—vil(1 — x)2'2 (2(n + 1))! 

(3.10) 
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Hence (3.10) is true. Now take a natural number n such that 

11= (2n)! < 1 

then 

IiTu - TzviI = sup ITIZU - Tvi ≤ Ii - vii 

so by lemma 3.1.2, there exists one and only one solution in C[0, 1]. 

If u(x) E C[0, 1] is a solution of Eq.(3.8), then u(x) is also a solution of (3.5). In 

fact, the following is true. 

Property 3.1.5 If u(x) E C[0, 1] is a solution of Eq.(3.8), then u(x) is a solution 

of Eq. (3.5); furthermore it has a second derivative. 

Proof: Since u(x) is a solution of Eq.(3.8), that is 

u(x) = u[1+ (1— x)] - afl f(u(t))(t - x)dt 

where f is defined by (3.2). Since f is continuous, thus the derivative of right hand 

side exists. Differentiate the above equation then 

1 
u'(x) = -' i + a j f(u(t))dt 

Therefore, u(1) = u1 and u'(l) = —/3u1, which means that u(x) is a solution of 

Eq.(3.5). Furthermore, from 

1 
u'(x) = —/3u + a j f(u(t))dt 

it is easy to see that the right hand side is still differentiable by the continuity of f. 

Differentiate both sides of above equation, we have 

u"(x) = —af(u(x)) 
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Therefore, u(x) has a second derivative. # 

Before we prove that if a and /3 are fixed there exists a u(x) for Eq.(3.1), a 

property of u(x) is discussed first. If u(x) is a solution of Eq.(3.5), it can be denoted 

as u(x, u1, a, /3) since u depends upon x, u1, a, /3. From property 3.1.5, u(x) is 

differentiable, so 

1 

u(x,ui,a,/3) = —/3u1 + af f(u(t,ui,a,/3))dt  

u(x,ui,a,fl) = —af(u(x,ui,a,,i3)) 

Thus from (3.11), if u(x) is a solution of (3.1), then 

' 
u(O,u1,a,/3) = —f3u1+ a j f(u(t,ui,a,)3))dt = 0 

so 

(3.12) 

ul = fo f (u (t, ul, a, 9)) dt 

From the definition of f by (3.2), e 10 < 1(u) ≤ 1, thus a necessary condition for 

u,(0,ui,a,fl) = 0 is that 

a 

This condition means for fixed a and /3 that Eq. (3.1) has a solution only if u1 is chosen 

in that region. Now we will prove that if u1, /3 are fixed nonnegative numbers, there 

is an a such that u(x, u1, a, 3) is a solution of Eq. (3.1). That means the following. 

Pràperty 3.1.6 For any given positive number u1 and /3, there exists a unique 

a, such that u(x, u1, a, /3) satisfies Eq. (3.1). 

Proof: For given positive u1 and 0, for any a, by theorem 3.1.3, there exists 

u(x,ui,a,/3) such that 

u(x,u1,a,fl) =Tu(x,ui,a,fl) 
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however in general, u(O,'ui,a,/3) 0 0. From (3.11), 

u,(0,ui3O,f3) = —/3u1 < 0 

and also from (3.11) 

u1, a, /3) = —/3u1 + a j f(u(t, u1, a, 3))dt> —/3u1 + af(ui) 

29 

by the nonincreasing property of f and u. Since f(u1) ≥ e 10 > 0 hence if a 

is chosen big enough, u(0,ui,a,/3) > 0. By the continuity of u(O,ui,a,/3) with 

respect to a, there must exist an a* such that u(0, u1, &, /3) = 0. In order to 

prove the uniqueness, the strictly monotonic property of u(0, u1, a, ,3) with respect 

to a is proved, hence uniqueness is obtained. Suppose there is another a** such 

that u., (0, Ul, &, /3) = 0. Without losing generality, suppose a** > &. Since both 

u(x,ui,a*,/3) and u(x,ui,a**,,8) are solutions of Eq. (3.1), i.e., solutions of Eq.(3.5), 

hence 

and 

but 

and 

u(1, ui,a*,/3) = u(1,ui,a**,/3) = U1 

u(1, u1, &, /3) = u(1, Ul, a**, /3) = 

uzz (1,ui,a*,fl) = .....a*f(u(1,ui,a*,/3)) = _a*f(ui) <0 

uvx (1,ui,a**,/3) = _a**f(u(1, ui,a**,/3)) = _a**f(ui) < _a*f(ui) <0 

therefore 

uvz (1, ui,a**,/3) < uzz (1, ui,a*,/3) < 0 
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which means that in a neighborhood of x = 1 the curves are concave down and 

u(x,ui,a**,fl) < u(x,ui,&,/3) (3.13) 

Now either the inequality (3.13) is true for all x e [0, 1], or there is a point x0 E [0, 1] 

such that 

u(xo,ui,a**,/3) = u(xo,ui,a*,/3) 

and 

u(x, u1, a**, ,8) < u(x, u1, a* 8) for x0 < x < 1 

hence by the nonincreasing property of f 

f(u(cc,ui,cr**,13)) ≥ f(u(x,ui,a*,/3)) 

and 

I
 1 1 f(u(t, ui ,a**,18))dt ≥ L f(u(t,ui,a*,/))dt 

thus 

u(x0, Ul, /3) - u(x0, u1, a*, /3) 

1•1 
= a**j f(u(t,ul,a** ,/3))dt -&J f(u(t, ui,a*,13))dt 

a'o 

>0 

since cE** > &. 

From (3.13) for x0 < x < 1 

u(x,ui,a**,,8)_u(xo,ui,a**,,8) < u(x,ui,o*,/3)_u(xo,ui,c*,f3) 

assume x is greater than x0 and divide the above inequality by x -  xO 

u(x,ui,a**,/3) _ u(xo,ui,c**,f3) < u(x)ui,a*,13) _ u(xo)ui,a*,/3) 

x — xo x—xo 

(3.14) 
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let x —+ x0 from right side thus 

ux(4,ui,a**,13) ≤ ua,(xt,u1,a*,,8) 

which contradicts (3.14). So there is no such x0 and (3.13) and hence (3.14) is 

true for all x E [0, 1]. In particular u(0, u1, a**, 8) > u(0, u1, a*, ,8), which means 

u(0, u1, a, ,3) is a strictly increasing function of a. Uniqueness then follows. 

In order to prove that u(x, u1, a, ,8) is continously dependent upon u1, Gronwall's 

inequality is used. Gronwall's inequality is first stated. 

Lemma 3.1.3 [30] If u(t) and v(t) are continuous nonnegative functions on 

interval 0 ≤ t ≤ L and M is a nonnegative constant, then 

u(t) ≤ M+jv(s)u(s)ds, 0≤t≤L 

implies 

u(t) :5 Mexp(J v(s)ds), 0 ≤ t ≤ L 

Property 3.1.7 The solution u(x, u, a, /3) of Eq. (8.5) for fixed a and is con-

tinuously dependent upon u1. That is V&> 0, 3J > 0 such that if 

then 

Iu-urI< 8 

Iu(x,u,a,I3) _u(x,u*,a,,8)I < 

Proof Since u is a solution of Eq.(3.5), thus 

u(x,u,a,f3) = Tu(x,u,a,fl) 

1 

= u[1 +/3(1— x)} — aj f(u(t,t4,a,fl))(t—x)dt 
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and 

u(x, u, a, jI) = Tu(x, ur, a , /3) 
1 

= u*[1 + 3(1 - x)] - a j f(u(t, ur, a, 8))(t - x)dt 

Thus 

Ju(x,4,a,j3) - u(x,u*,a,8)I 

= - u *)[1 + /3(1 - x)] - a f'(f(u(t, u, a, /3)) - f(u(t, ur, a, ,8)))(t - x)dt 

Iui - ui*K1 + 8) + 10af. Iu(t,u, a,13)) - u(t,u*,a,/3)I(t - x)dt 

where the Lipschitz condition f'(*) I ≤ 10 for f has been used. Then by lemma 3.1.3 

1 

Iu(x, u, a, /3) - u(x, ur, a, /)I ≤ Iu - u*I(1 + ,3)exp(j l0a(t - x)dt) 

so 

lu(x,u,a,,8) - u(x,u*,a,,8)I ≤ Iu - t4*I(1 + 3) exp(!(1 - x)2) 

hence 

Iu(x,u,a,/3) - u(x,u*,a,/3)I exp()(1+/3)Ju _ q* 

Therefore, W> 0, take S <  whenever Iu - uj <5 then 

Iu(x,u,a,i3) _u(x,u*,a,)3)I < 

The continuity of u(x, u1, a, 3) with respect to u1 follows. 

Corollary 3.1.2 u,, (X, u1, a, /3) is also continuously dependent upon u1 

Proof: From (3.11), 

1 

u(x,ui,a,fl) = —/3u1+ af f(u(t,ui,a,/3))dt 
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Then 

Iu(x,u,a,/3) - ux(x,u *, a,,8)I 
1 

= I/3(u* - u) + aj (f(u(x,u,a,i3)) - f(u(x,u*,a,,8)))dtI 

≤ i3Iu _u*I+a1Oj Iu(x,u,a,f3) _u(x,u*,a,I3)Idt 

** I ≤ /Iu — u1 +c1OlJu(x,u,a,/3) _u(x,u*, a ,/3)II 

where the Lipschitz condition for f is used. By property 3.1.7, the result is true. 

Theorem 3.1.4 For any given positive number a and /3, there exists one and only 

one u1 E [ 10, ] such that u(x, u1, a, /3) obtained through Eq. (3.5) is a solution of 

Eq. (3.1). 

Proof: As previously discussed, u1 E R] is a necessary condition. From 

(3.11), 
1 

u(0, ui,a,/3) = —3u1+ aj f(u(t,ui,a,13))dt 

hence by the property f(u) ≥ 

ae'° 1 

/3 , a, /3) = —ae'° + a f f(u(t, , a, 13))dt ≥ 0 

and 

u(0, , a,fl) = —a + af' f(u(t, , dt ≤ —a + a = 0 

since f ≤ 1. By corollary 3.1.2, u., (x, u,, a, 3) is a continuous function of u1, so there 

must exist u, in [e'°, ] such that u(0, u, a,,8) = 0. 

As for the uniqueness, this may be demonstrated by a method similar to that 

used for the proof of property 3.1.6. Suppose there exist two values u and u * which 

make 

u(O,u,a,/3) = ux(O,u*,a,fl) = 0 
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Without losing generality, suppose u > t4, for any u(x) E C[0, 1] define sequences 

= 

by 

= u z(x,u *,a, /3) 

U*  f 1 = u[1 +P(1—x)] -   f(u)(t - x)dt 

and 
1 

= T u = u*[1 + /3(1 - - a j f(u) (t - x)dt 

where n = 0,1,..., and u2 = u° = u(x), then 

1 _ p 0 
- 

= u[i + /3(1 - x)] - af' f(u(t))(t - x)dt 

> U**  + ,8(l - x)] - a f f(u(t)) (t - x)dt 

Pr 0_i 
.L - 

by property 3.1.2, T is monotone operator, it is easy to prove 

= Tu > 7u = u12 (x,u *,a, /3) 

In fact, by induction, suppose 

u, > 

hence by the nonincreasing property of f, 

thus 

f(u) < f(u) 

n+1_p n 

(3.15) 
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= u[1 + /3(1 - x)] - aft' f(u)(t - x)dt 

> u *[1+/3(1_ x)] - a f f(u)(t - x)dt 

= = 
** 

Therefore the inequality (3.15) is true. By lemma 3.1.2 and theorem 3.1.3, the two 

function sequences {u'  (x, u, a"8)}, and {u' (x, ur, a, are convergent. For 

convenience, denote the limits of them as u(x, u, a, /3) and u(x, ur, a, /3) respec-

tively. Hence 

u(x,u,a,/3) ≥ u(x,u*,a,/3) 

Equality is only possible if u = ur by Eq.(3.5). Suppose the inequality is true. By 

the nonincreasing property of f, 

f(u(x, UT, a,/3)) ≤ f(u(x,u*,a,/3)) 

hence 

u(0, u, a, /3) = —/3t4 + a jf(L(t, u, a,,3)) dt 

< _/3u *+ aj f(u(i,u,a,/3))dt 

≤ —,8ur + a JO f(u(t, ur, a, /3))dt 

In,U ** 
- Uu ,a, 

which means ul and ur can not make 'u(O, u1, a, /3) = 0 simultaneously. Thus the 

conclusion is obtained. 
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3.2 Steady State Problem for NTC 

In this section, the equation and boundary condition are the same as that in §3.1 

except that here f(u) is replaced by 1y. For convenience, denote g(u) = hence 

g(u) = 

1 ,u<1 

e'°'' , 1≤u ≤ 2 

e10 ,2 <u 

(3.16) 

and Eq.(3.1) can be rewritten as 

J+ag(u)=O ,0<x<1 (3.17) 

u(0)=O ,u(1)+,8u(1)=0 

Since g(u) is defined as the reciprocal of f(u), the properties of g(u) are changed. 

One of the important changes is that g(u) is a nondecreasing function. However 

there are still some similar results. For completeness, the conclusions are given in 

the following theorems and properties. 

Theorem 3.2.1 For Eq.(3.17) and g(u) defined by (8.16), if u(s) ≤ 1.0 for 

0≤x≤1, then 

u(x)= +(1_ x2) 

is the unique solution. Similarly, if u(s) ≥ 2 for 0 ≤ s < 1, then 

ae'0 ae'0 

is the unique solution. # 

Property 3.2.1 Suppose the solution of Eq.(3.17) exists and has second 

derivative, then u(s) is monotonically nonincreasing for s E [0,1], and also 

u(1)≥0. # 
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Corollary 3.2.1 If u(1.) is zero, them u(x) 0. # 

Theorem 3.2.2 u(x) = +(1—x2) is a solution of Eq. ('3.17) if ct ≤ ( i.e., 

u(1) ≤ *j)andu(x) = 1110  is a solution ofEq.(3.17)iffa≥2/3e'0 

(i.e., u(1) ≥ 2). ( Note that for fi +2 < e1O and 2/3e'° < c < 2,1 both solutions 

exist. ) 

As in § 3.1, an operator Q is defined as 

1 

Qu=ui[1+fl(1 — x)] — aj g(u(t))(t — x)dt 

and the corresponding initial value problem is as follows 

u = Qu 

U(1) = u1 

u'(l) = —flui 

(3.18) 

(3.19) 

Instead of being monotonically nondecreasing, the operator Q is monotonically non-

increasing. Thus 

Property 3.2.2 Q is a monotonically nonincreasing operator. 

Since g(u) is nondecreasing, the proof is obvious. 

Property 3.2.3 If u(x) is the cold ( then u1 = a ) or the hot ( them u1 = 

solution of Eq. (3.17), them 

u(x)=Qu(x) 

) 

Property 3.2.4 If u(x) is a solution of Eq.(3.17), them u(x) is a solution of 

Eq.(3.19) where u1 = u(1). 

Theorem 3.2.3 Let Q be defined on C[0, 1] by (3.18), and g be defined by 

(3.16), then for any a and /3, there exists one and only one continuous function 
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u(x) E C[0, 1] such that 

1 

= Qu (= ui[1 + fl(1— x)] - af g(u(t))(t .— x)dt) (3.20) 

where u1 is an arbitrary real number. 

The proof is as before except that, now n must be chosen large enough that 

an(10e 10)n 
97 =(2n)!  <1 

# 

Property 3.2.5 If u(x) E C[0, 1] is a solution of Eq.( 3.20), then u(x) is a 

solution of Eq. (3.19); furthermore it has a second derivative. # 

Although the following two results are true, it should be noted that we no longer 

have uniqueness of the solution of the boundary value problem when a is fixed. 

Property 3.2.6 For any given positive number u1 and 3, there exists an a, such 

that u(x, u1, a, 3) satisfies Eq. (3.17). 

Theorem 3.2.4 For any given real positive numbers a and ,8, there exists a 

U1 E [, 20 such that u(x, u1, a, ) obtained through Eq.(3.19) is a solution of 

Eq. (3.17). # 

In fact, from the numerical solutions obtained in chapter 4 it is easy to see that 

for given a and /3 the uniqueness with respect to u1 is broken. 
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3.3 Existence for Both PTC and NTC 

In §3.1 and §3.2, the existence of solutions for Eq.(3.1) and Eq.(3.17) has been 

proven. For Eq.(3.1) uniqueness is also obtained. Here another way is used to prove 

the existence. This method applies for both cases. For convenience, Eq.(3.1) and 

Eq.(3.17) are written in one form as 

J+ah(u)=0 ,0<x<1 

u(0)=O ,u(1)+/3u(1)=0 
(3.21) 

where h(u) can be either f(u) or g(u). In order to solve Eq.(3.21), a variable substi-

tution is made, i.e., let 6 = hence ux = ,/ ue and u = aug. So the Eq. (3.21) 

becomes 

ç+h(u)=O ,0<<4/ (322) 

u(0)=0 

As discussed in §3.1, the solution of Eq.(3.22) is monotonically nonincreasing and 

u(x) can not be negative. In order to prove the existence of solution for Eq. (3.22), 

an initial value problem corresponding to Eq.(3.22) is considered first. That is 

Jd2u +h(u)=0 
u(0) = u0 ,u(0) = 0 

(3.23) 

where u0 is an arbitrary positive real number. Formally, the solution of Eq.(3.23) is 

independent of a. 

Lemma 3.3.1 [30] Let a nonnegative and unbounded function b(x) be defined 

on [a, b) and ?/'(x) be integrable over interval [a, c] for any c < b. If there is a 

constant number ii (0 < v < 1 ) such that limb- (b - x)"i(x) exists, then the 
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integral f b(x)dx for unbounded function (x) converges. If for ii > 1, limb- (b - 

x)&(x) = d> 0, or limb- (b x)b(x) = + 00, then f b(x)dx diverges. # 

Theorem 3.3.1 There is a solution for Eq. (3.23). 

Proof: Multiply first equation of Eq.(3.23) with ue and integrate from 0 to e 
thus 

juud + f h(u)ude = o 
By property 3.1.1, u(e) is strictly monotonically decreasing, i.e., u(e) is an invertible 

function, so denote u(e) as u, the second term of the above integral can be written 

as 

r f 

u f O 
h(u)ude =  h(u)du = -  h(u)du = —H(u) 

0  

hence 

1 
uIo — H(u)= 0 

Using the boundary condition in Eq.(3.23), 

ut = 2H(u) 

By property 3.1.1, uC <0, hence 

—/2H(u) 

then 

 —1 
/2H(u) 

Since lim_(uo - u)/JH(u) = 1/Jh(uo) > 0, by the lemma 3.3.1 the integral 

f°   ds exists. Integrate the above equation from 0 to , thus 

fu UO  ds  e=  J2H(s) - (u) 
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Since 6. < 0, 6 is a monotonically decreasing function of u, the inverse function of 

(u) exists. Denote the inverse function of (u) as u = q5(), q5() is a solution of 

Eq. (3.23). # 

Theorem 3.3.2 For any given nonnegative real number v0, there is a unique a 

such that g5() ( obtained in theorem 3.3.1) is a solution of Eq. ('8.22). 

Proof: The problem is now to find an a that makes 4) a solution of Eq.(3.22). 

This means to find an a such that 

(u + /3u)Ii = (1/&ue + )k= = —/2aH(u(/&)) + flu(/) =0 

i.e., to find a such that 

—'s/2aH(cb(sj&)) + i3/&) =0 

Since IT(u) = —h(u) < 0 and c5'(C) = —t/2H(u) < 0, H and 0 are monotonically 

nonincreasing functions. Hence the composition (Hoçb) is monotonically nondecreas-

ing and then —y'2a(H o 4.)(/) + /3çt(/) = IF is monotonically nonincreasing. 

Obviously, '11(0) = f3u0 > 0. By the definition of the function h(u), we can assume 

m < h(u) < M for 0 <u < u, thus from Eq.(3.23) 

—M < u < —m 

Integrate the above inequality from 0 to 6 and use the boundary condition in 

Eq. (3.23), 

—Me < ut < —MC 

integrate the above inequality from 0 to 6 once more then 

uo_MC2<u<uo_mC2 
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therefore 

(a) = (/&u + flu) J < —ma + i3(uo — ma) 

That is IF (a) goes to —oo as a .—+ oo. Thus there is a unique a such that 0(e) is a 

solution of Eq.(3.22) for given u0, fl. # 

From theorem 3.3.2, for any given u0 there exists a unique a, thus this defines a 

function a = e(uo). As u(].) = = /) is also uniquely determined for each u0, 

u(1) is also a function of u0 which can be denoted as u(1) = U(uo). 

3.4 Existence of Solutions for the PTC and NTC Problems with 

External Circuit 

Now consider the solutions of the full problem with the circuit loop. The previous 

results allow us to draw a curve of " solutions" represented in the a, u(1) plane. This 

curve may be parameterized by u(0). In the all " cold" portion, by theorem 3.1.2 

and theorem 3.2.2, u(x) = + (1 - x2), when u(0) 1 which means that a 

hence u(1) = . It is preferable to draw the curve in the I, u(1) plane where a = 'y12 

and 'y = 150 is fixed. Then in the cold portion u(1) = 112, which is a parabola. 

As for the " hot" portion, the two cases arise. The FTC case is considered first. 

By theorem 3.1.2, in the hot portion, u(x) = me 0 10 + tb0(1 —x2), iffu(1) ≥ 2 which 

means a ≥ 2e105, hence u(1) = = 1CJ2 is a second parabola starting at 

I = This second parabola may be extended to oo in both u(1) and I. These 

two parabolas are connected by an I, u(1) curve. 

The external circuit leads to I = [1 + i f0' f(t)dx] 1. From the first equation of 
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Eq.(3.1), of' f(u)dx = —uJ1 0 = ,8u(1), therefore 

= +  
712 

or 

This gives the third parabola 

U(l) = .21(1 - 1) (3.24) 

with vertex at I = , u(1) = and passing through (0,0) and (1, 0). This curve 

obviously meets the I, u(1) curve of solution of Eq.(3.1) at least once giving one 

nontrivial solution to the problem with the external circuit, since the solution curve 

of Eq.(3.1) begins inside the parabola (3.24) and finishes outside of that parabola. We 

say that the intersections of those two curves are solutions for FTC problem (2.13). 

That is because the two curves are both parameterized by I and satisfy Eq.(3.1) and 

Eq.(3.24) respectively. Thus if there are points satisfying both equations, they will 

satisfy Eq.(2.13) too. The curves may meet twice or three times giving two or three 

solutions respectively. There will be three intersections, i.e., three solutions, if the 

point (I, u(1)) = (\/7(2)' ) is outside the parabola (3.24). This occurs if 

2 7/2/3  1 / 2/3  

/3+2 > p/3V'y(/3+2) V'y(fl+2) 

Simplify the above inequality, then 

2'y  
/3> 2(1+)2_7 

This gives a condition for the existence of three solutions. From the numerical 

results and figures in chapter 4, for the exponential functions if the point (I, u(1)) = 
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(V172' ) is on the parabola (3.24), that means 8 = 2(1+ji)2_ there are just 

two solutions ( intersections ). In chapter 4, the Figure 4.1.1, Figure 4.1.2 and 

Figure 4.1.3 demonstrate this. 

The case corresponding to Eq.(3.17) is similar and is briefly discussed here. In the 

hot portion, the solution is u(x) = + aelo.(1 x2), if u(1) ≥ 2, i.e., a > 2e'°, 

hence u(1) = = 12. a parabola starting at I = V2Pe'°7. Obviously, this 

parabola may be extended to oo in both I and u(1). Now the external circuit leads 

to I = [p + fol  From the equation af0' g(u)dx = = J3u(1), thus 

= [ + 
ly 12 

i+fl1) =. 
71 

which gives a parabola 

= 21(1 - p1) (3.25) 

with vertex at I = , u(1) = and passing through (0,0) and (, 0). Similarly, 

this curve obviously meets the I, u(1) curve of solution of Eq.(3.17) at least once 

giving one nontrivial solution, since the curve of solution of Eq.(3.17) begins inside of 

the parabola (3.25) and finishes outside of that parabola. If they meet twice or three 

times, there will be two or three solutions respectively. A condition for three possible 

solutions is that point (I, u(1)) = (\/7(2)' ) lies outside the parabola (3.25). 

Hence 

2 > 'yl  2)3 1,V_Y( 2,3  
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can be simplified as 

P> 2(1+)2_7 

This is a condition that there exist three solutions. Similarly, from the numerical 

results and figures in chapter 4. for the exponential functions, if 3 = there 

are two solutions. There are three figures in chapter 4 as Figure 4.3.2, Figure 4.3.3 

and Figure 4.3.4 which demonstrate these conclusions. 

Therefore, for both Eq.(3.1) and Eq.(3.17), when the circuit loop is considered, 

there is only one solution when /3 < 2(1+,)2_7 there are three solutions when /3 > 

2y and there are possibly two solutions when ,6 = 
2(1+z)2-'y 

It is easy to notice that the particular exponential functions chosen for o(u) 

are not necessary for the proof of all conclusions in §3.1, §3.2 and §3.3. The most 

important things are the monotonic decreasing or increasing, bounded properties 

and the Lipschitz condition. Thus we have following conclusions. 

Corollary 3.4.1 If f is monotonic nondecreasing or nonincreasing function, 

which satisfies 

O<m<f(u)≤M<+oo u(x)EC[O,l] 

and the Lipschitz condition 

If (u) - f(v)I ≤MoIu — vl Vu,v E CIO, 1] 

where m, M and M0 are constants, then for any given nonnegative a and /3 there 

exists at least one solution for Eq. (3.1). # 

In addition, if f is monotonic nonincreasing, a stronger conclusion is achieved, 

i.e., the uniqueness is obtained. 
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Corollary 3.4.2 Assume f satisfies all conditions in corollary 3.3.1, furthermore, 

f is monotonic nonincreasing function, then for any given nonnegative a and /3 there 

exists one and only one solution for Eq. (3.1). 

3.5 Monotone Method for the PTC and NTC Problems 

In §3.1, §3.2 and §3.3, existence and uniqueness under certain conditions have 

been proved for steady state FTC and NTC problems, i.e., Eq.(2.8) and Eq.(2.6). 

Here a monotone method[4] is worth a brief review though uniqueness is not obtained. 

Consider the general equation with the form 

Lu+f(x,u)=O ,xE) (3.26) 

Bu=s(x) ,XE8 

where L = i, f(x, u) is a nonlinear smooth function of x and u, s(x) is a given 

function and B is a boundary operator defined as 

1% 

Bu=5- +$(x)u, xEO 

Here 0 denotes the outward conormal derivative and /3(x) is assumed nonnegative On 

everywhere on the boundary On, i.e., /3(x) ≥ 0 for x E O. 

Definition 3.5.1 A smooth function u0 is said to be an upper solution of Eq. (3.26) 

if 

Luo+f(x,uo)≤0, Buo≥s 

similarly, v0 is called a lower solution of Eq. (3.26) if 

Lvo + f (x, vo) ≥ 0, By0 ≤ s. 
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The following lemma is then true [4]. 

Lemma 3.5.1 Let there exist two smooth functions u0 (x) ≥ vo(x) such that 

Luo+f(x,uo)≤O, Buo≥s 

and 

Lvo+f(x,vo)≥O, Bvo≤s. 

Assume f is smooth function and 21 is bounded on min v0 < u ≤ max u0. Then au 

there exists a regular solution w of 

Lw+f(x,w)=O, Bw=s 

such thatvo ≤ w≤uo. 

Therefore we have the following theorems. 

Theorem 3.5.lFor Eq.(3.1) and f is defined by (3.) 

uo(x)=K(.-l-(1_x2)) with K>a 

and 

vo(x) = 0 

are upper and lower solutions respectively. Hence there exists a regular solution w of 

Eq. (3.1) and Eq. (3.2) such that v0 < w ≤ u0. 

Proof: Since e 10 < f(u) ≤ 1 by definition of f, 

d2u0 
+ af(uo) = —K+ cf(uo) ≤ —K + Kf(uo) = K(f(uo) — 1) < 0 

and 

uo (0) = 0, uo(1) + flu(1) = 0, 
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hence u0 (x) is a upper solution. Similarly, since 

4+cif(vo)=O+af(vo)=af(vo) ≥O 

and 

VOX(0) = 0, vo(1) + flvo(1) = 0, 

thus vo(x) is a lower solution. By lemma 3.5.1, there exists a regular w of Eq.(3.1) 

and Eq.(3.2) such that v0 < w < u0. # 

Theorem 3.5.2For Eq. (3.17) and g is defined by (3.16) 

u0(x) = K( + (1 - x2)) with K> ac'° 

and 

vo(x)=0 

are upper and lower solutions respectively. Hence there exists a regular solution w of 

Eq.(3.17) and Eq.(3.16) such that vo ≤ w ≤ uo. 

The proof is same as that for theorem 3.5.1 except that now 1 ≤ g(u) < e1. 

3.6 Time Dependent Problem 

In this section, existence and uniqueness for time dependent problems are con-

sidered. A monotone method the same as that in § 3.5 is used. For convenience, a 

general form for the time dependent PTC and NTC problems is restated as follows. 

I at =Lu+ah(u) ,0<x< 1,0<t<t0 

u(t,0) = 0,u2,(t,1)+13u(t,1) =0 ,u(O,x) = s(x) 
(3.27) 
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where s(x) is in [0, a + a (1 - x2)] when h(x) is defined by (3.2) and s(x) is between 

0 and 1110 . + ç(i - x2), when h(x) is defined by (3.16). r = [0,11 X (o, to). 

In order to use monotone method, we need 

Definition 3.6.1 A smooth functionuo is said to be an upper solution of Eq. (3.27) 

if 

- i9u0 
Lu0 + ah(uo) 

-- 

Bu0≥s 

similarly, v0 is called a lower solution of Eq. (3.27) if 

Lvo+ah(vo)—J ≥ 0, Bv0 <s. 

where operator B is either a boundary operator or an initial value operator and s is 

0 when operator B is a boundary operator. Given upper and lower solutions u0 (t, x) 

and vo(t, x), with v0 u0 on rt, we choose C so large that ah +C > 0 on the region 

(x) t) E r, minr, v0 < u < maxr, u0. Then define u1 by 

JLu - Cu1 -  aul  = —[ah(uo) + Cuo] , x E r (3.28) 

u(t, 0) = 0, ui(t, 1) + flu,(t, 1) = 0 , ui(0, x) = s(x) 

By the maximum principle for parabolic equations it is easily seen that ui(t, x) ≤ 

uo(t,x) in r. The mapping uo(t,x) -+ ui(t,x) is denoted by u1 = Gu0. G is a 

monotone operator[4]. 

Lemma 3.6.1 [4] Let there exist an upper solution vo(t, x) : 

Lu0 + ah(uo)— auo ≤ 0, 
at 

and a lower solution vo(t,x): 

Buo≥s on OT, 

Lvo+ah(vo) --- ≥ 0, 
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By0 ≤ s on 

with v0 uo. Define sequences u, and v inductively by = Gun, = Gv. 

If C is chosen large enough so that 

Oh(u)  
a +C>O on mrnv0<u<maxu0, 

13u r r 

then the sequences {u} and {v} are monotone nonincreasing and nondecreasing 

respectively. As n tends to infinity they both tend to a unique fixed point u = Gu, 

which is a strong solution of 

Lu+ah(u)— Ou T  = 0, Bu=s on or, 

such that vo(t,x) u(t,x) ≤ uo(t,x) 

As in §3.5, there are 

Theorem 3.6.1 For Eq. (3.27) and h is defined by (3.2) 

uo(t,x)=K(+(1_x2)) with K>a 

and 

vo(t,x) = 0 

# 

are upper and lower solutions respectively. Hence there exists a unique regular solu-

tion w of Eq.(3.27) and Eq.(3.2) such that vo(t, x) ≤ w(t, x) ≤ uo(t, x). 

Proof: As h(u) is defined by (3.2), e 10 ≤ h(u) 1. Also vo(0, x) ≤ s(x) ≤ 

uo(0, x) is given condition. 

+ ah(uo) -  Ot  = —K + ah(uo) ≤ —K + Kh(uo) = K(h(uo) — 1) ≤ 0 

and 

uo(t, 0) = 0, U0, (t, 1) + /3u0 (t, 1) = 0 
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hence u0 (t, x) is an upper solution. It is easily seen that 

02v0 Ovo 
,9X2 Ot 

and 

vo(t, 0) = 0, vo (t, 1) + 13v0(t, 1) = 0 

thus vo(t, x) is a lower solution. By lemma 3.6.1, there exists a unique regular w of 

Eq.(3.27) and Eq.(3.2) such that vo(t, x) ≤ w(t, x) ≤ uo(t, x). 

For the same argument, it is easy to get 

Theorem 3.6.2 For Eq.(3.27) and h is defined by (3.16) 

and 

uo(t,x) = K( + (I_ x2)) with K> ae'0 

vo(t,x) = 0 

# 

are upper and lower solutions respectively. Hence there exists a unique regular solu-

tion w of Eq.(3Ja7) and Eq.(3.16) such that vo(t,x) ≤ w(t,x) ≤ uo(t,x). 

Now consider the existence and uniqueness of solution for Eq.(2.12). For consis-

tency, it is rewritten as 

iqU  

= =ax + f(U )d.)2 , <to (3.29) 

U, (t, 0) = 0, U' (t, 1) + 13u(t, 1) = 0 , u(0, x) = s(x) 

where f is defined by (3.2). 

It is not difficult to see that during the proof [4] of lemma 3.6.1 the important 

thing is to construct two monotone sequences, one is nondecreasing and the other 

is nonincreasing. For Eq.(3.29), though there is an integral as part of denominator, 
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the monotone sequences can be still constructed. Similarly, define an operator G: 

Un+1 u, as 

äun+i - r  y1f(u) + Gun] { Lu +i - CUfl+1 - at - t(1+fLf0 
,O< x < 1,0<t< to 

u+i,(t, 0) = 0, u+i,(t, 1) + flun+i(t, 1) = 0 , u,,4 (0, z) = s(x) 

we say G is monotone operator. In fact, suppose u > v, then 

'7f (u)  'yf(v) 
(L -  C - )(Gu - Gv) = +C(u—v)] 

(i + pf' f(u)dx)2 (1+ f' f(v)dx)2 p  

Now it is needed to prove that the right hand side is negative for a large enough 

constant C. In fact, when u > v, 1(u) ≤ f(v). Hence, 

(1+ /2e'°)2 ≤ (1+ p j' f(u)dx)2 (1+ p JO f(v)dx)2 ≤ (1+ p)2 

that is 

1 1 1  
> 

(1+ pe'°)2 (1+ p fo'f(u)dx)2 - (1+ p f f(v)dx)2 (1 + p)2 

therefore 

1(u)  1(v)  

(1+pfcf(u)dx)2 (1+pff(v)dx)2 

1(u)  1(v) 

- fol  fol  

f(u)—f(v)  

- (1+pff(v)dx)2 
> f(u)—f(v) fl(u*)(u_v) 

- (1 + pe 10)2 - (1 + pe'°)2 

where the fact of 1(u) - 1(v) ≤ 0 is used, u* is a function between u and v. As 

10-1  If'(u)I 10, take C large enough such that C> (1+e10)2 then the right hand side 
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is negative. By the maximum principle for parabolic equations, Gu ≥ Gv, or G is a 

monotone operator. Therefore, there is following theorem. 

Theorem 3.6.3 For Eq. (3.29) and f is defined by (3.2) 

uo(t,x) = K(+(1_ x2)) with K≥a 

and 

vo(t,x) =0 

are upper and lower solutions respectively. Hence there exists a unique regular solu-

tion w of Eq. (3.29) and Eq. (3.2) such that v0 (t, x) ≤ w(t, x) uo(t, x). 

Since the nonincreasing property of f(u) is used in the above proof, this method 

can not be used directly for the NTC problem where the g(u) is nondecreasing. 

However, it may still be possible to prove the uniqueness if the positive derivative is 

generalized as a positive operator. As it needs more concepts, such as weak form, 

weak solution, Banach space, etc., it is not discussed here in details. 
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Chapter 4 

The Numerical Results 

In this chapter, the numerical solutions for steady state and time dependent 

problems are given. There is agreement between the steady state solution calculated 

in §4.1 and the steady state solution of the time dependent problem as time increases. 

4.1 Steady State Problem for PTC 

In this part, the steady state problem for PTC is numerically solved for different 

parameters. The uniqueness and nonuniqueness of the solutions can be numerically 

obtained and demonstrated by graphs. 

4.1.1 Without External Circuit 

For convenience, the steady state problem is rewritten as following: 

and 

+af(u)=O ,O<x<1 

'u2,(0) = 0 ,u,(1) +/3u(1) = 0 

1 ,u<1 

1(u) = { e 101 , 1 <u < 2 

e 10 ,2<u 

(4.1) 

(4.2) 
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where a and /3 are parameters. Most of the effort is given to the case where 1 ≤ u ≤ 2 

for some x since the cases for u < 1 and u > 2 for all x are easy to treat. 

Actually, as has been stated in Chapter 3 

U = + (1 - x2) (4.3) 

is a solution whenever a < ( 1 1). Similarly 

u=+(l_ x2) ,u>2 (4.4) 

is a solution whenever 10 > 2 i.e. a > 2610/3. For a between these values u will 

be within [1,2] for some x and an explicit solution is difficult. 

In order to solve equation (4.1) numerically we rewrite it as a system of ordinary 

differential equations 

J u=v 
= —af(u) , v(1) + /3u(1) =0 

(4.5) 

To solve this problem the shooting method[17] is employed. For the details of 

existence and uniqueness of the method see [17, 18]. Now suppose u(0) = s, then we 

can get u(x, s), v(x, s) as the solution for 

I uz=v ,u(0)=s 

v=—af(tt) , v(0)=0 
(4.6) 

If s = s" is a solution of v(1, s) + /3u(1, s) = 0, then y(x) = u(x, s*) and z(x) = 

v(x, s*) is a solution of (4.5), i.e., a solution of (4.1). In order to obtain a solution s'' 

of v(1, s) + /3u(1, s) = 0, Newton's iterative method is used. We first make an initial 

guess s° for s, by solving (4.6) we get u(x,sz) and v(x,s?z). If v(1,s?z)+/3u(1,s?z) = 0, 
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is a solution. Otherwise, consider Sn + As as new tentative solution, and we 

try to satisfy v(1, s' + As) + /3u(1, Sn + As) = 0. Since v(1, s) and u(1, s) are 

not linear functions of s, we can't get an exact solution for As directly. Using a 

Taylor expansion, we get   as the approximation of As. Now put 
   

= S dVh:$fl?a.D2) as the next guess for s. Repeating the same method, we 
do 

can get s' 2, thuè theoretically a sequence {8m}_0. Also, we can get the solution 

s theoretically. In order to get the approximation of As, we assume that z(x, s) 

and v(x, s) are differentiable functions of s and differentiate the system (4.6) with 

respect to s, we introduce two new unknowns i = , = LV  , and a new system of 

differential equations can be rewritten as 

do 

u=v 

v=—af(u) , v(0)=0 

UX = —af'(u)i ,(0) = 0 

and As = v(1,s')+/3u(1,s') n = 0111 2) sO arbitrary. 

(4.7) 

Now the problem becomes an initial value problem for the system (4.7). On 

an IBM-RISC 6000 computer running a Unix operating system, we use the IMSL 

library routine IVPRK ( refer to Appendix A ) to solve the initial value problem 

(4.7). During the progress, we met an interesting phenomena. For some parameters 

a and fi if the initial value s0 is not close to the solution, then an interesting cycle 

appears. After 2 or 3 steps, a two cycle appears, so that '-+2 is the same as s n and 

S' 1 is the same as s" 1 with s' different from If we make an initial guess very 

close to the solution, it seems to converge very quickly for any parameters a and P. 

To overcome the problem of cycling a bisection method is introduced. The bisection 
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method guarantees convergence although the rate of convergence is slower than that 

obtained by Newton iterations. The technique used is that whenever oscillation 

appears or the increment of As is greater than 0.5 then the bisection subroutine is 

called and the condition for returning to Newton's iterative scheme is that /s is 

less than 0.5. Here we choose the condition that As is less than 0.5 by numerical 

experimental experience. Actually, without the bisection method, oscillation will 

occur, whenever As is greater than 1.0. 

The bisection routine is used for choosing the initial value for Newton iteration 

method. The technique is as follows. From any initial value for s and parameters a, 

3, the scheme is as following: 

(1) Using IMSL library routine WPRIC solve initial value problem (4.7) to get 

values of u(l, 812), v(1, s's), i(1, s's) and u(1, 12). Set As =   and 

T12 = v(1, + ,8u(1, 12). Goto step (2). 

(2) Set 512+1 = Sn + As and solve (4.7) to get values of u(1, 8n+1), v(1, S12+'), 

(1 gn+1) and (1, s''). Calculate As =   and T 1 = v(1, s'') 

+/3u(1,s''), goto step (3). 

(3) If As ≤ 0.5, return to Newton iterations, else goto step (4). 

(4) If T12+1 x T12 ≥ 0, goto step (1), else goto step (5). 

(5) Using S12+2 = n+1+n as initial guess for s to get values of u(1, sn+2), v(1, S' 2), 

'z(1, s' 2) and (1, sn+2), calculating As =   and T = v(1, sn+2) + 

18u(1, s' 2). If As ≤ 0.5, return to Newton iteration, else goto step (6)-

(6) If T X T ≥ 0, then T = T, S12 = n+2, goto step (5), else T12+i = T, S12+l = 

goto step (5). 

The main idea for bisection is as follows: Assume s to be the root of v(1, s) + 
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/3u(1, s) = 0, first find two points sO and s1 such that v(1, s) +,6u(1, s) takes different 

signs at the two points. Then from these two points, we bisect the interval [s°, s'] 

and get a new point s2, evaluate the sign of v(1, s) + 3u(1, s) at point s2 to choose 

{s°'s 2]  or [s2, s'] as the new interval. Every time there are two points which make 

v(1, s) + /3u (1, s) take different signs. Repeating this procedure, a sequence {slc}, 

k = 1,2,... is obtained. Theoretically, s' —+ s. As it is known, the convergent 

rate of this method is linear, so it is used to choose an initial value for Newton's 

iterative method. In the above bisection scheme, step (1) to step (4) are used to 

find two points such that v(1, s) + fiu(1, s) assumes two different signs at these two 

points; step (5) to step (6) are used to further bisect the interval until the increment 

As < 0.5 and then a return to Newton's iterative method is made. 

From the numerical results we can see that for some parameters c and /3 there are 

several shifts back and forth between Newton's method and the bisection method, 

and the method is convergent for any parameters and initial values. During the nu-

merical experimental procedure, an interesting phenomenon is found. If the solutions 

are between 1 and 2, then for any parameters and initial values, the total number 

of Newton iterations is almost the same except that the bisection subroutine is used 

a different number of times. Also, whenever the solutions are bigger than 2 or less 

than 1, the number of Newton's iterations is always 2 although the number of times 

the bisection subroutine is used is quite different. Some data are summarized in the 

Table 4.1.1, where column 6 represents the number of Newton iterations, column 

7 represents the number of times that bisection was used, column 8 represents the 

number of times the bisection routine was called, s represents the initial guess and * 

means total number of times bisection was used. 
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Table 4.1.1 

Solutions of FTC Problem for Various Parameter a, fi 

a P s u(0) u(1) 6 7 8 

999.000 0.005 0.5 9.0936 9.0709 2 19 1 

999.000 0.010 0.5 4.5581 4.5355 2 18 1 

999.000 0.100 0.5 1.8891 1.8106 11 14 1 

750.000 0.100 0.5 1.8615 1.7840 10 15 1 

500.000 0.100 0.5 1.8226 1.7465 9 13 1 

100.000 0.100 0.5 1.6684 1.5981 13 11 1 

75.000 0.100 0.5 1.6410 1.5716 12 12 1 

50.000 0.100 0.5 1.6023 1.5344 9 10 1 

25.000 0.100 0.5 1.5363 1.4709 8 9 1 

15.000 0.100 0.5 1.4878 1.4242 8 10 1 

14.000 0.100 0.5 1.4812 1.4179 13 12* 3 

10.000 0.100 0.5 1.4493 1.3872 7 8 1. 

7.500 0.100 0.5 1.4221 1.3611 7 9 1 

5.000 0.100 0.5 1.3837 1.3242 8 7 1 

1.000 0.100 0.5 1.2323 1.1787 7 5 1 

0.850 0.100 0.5 1.2171 1.1641 10 5 1 

0.500 0.100 0.5 1.1675 1.1165 6 4 1 

0.250 0.100 0.5 1.1030 1.0546 9 3 1 
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Table 4.1.1 (continued) 

a /3 s u(0) u(1) 6 7 8 

0.100 0.100 0.5 1.0113 0.9642 6 2* 2 

0.050 0.100 0.5 0.5250 0.5000 2 1 1 

0.005 0.100 0.5 0.0525 0.0500 2 1 1 

Col. 6—No. of Newton iterations, Col. 7—No. of times bisection used, 

Col. 8—No. of calls to bisection routine. 

From Table 4.1.1 it is easy to see that the numerical solutions are exactly the 

solutions (4.3), (4.4) whenever u < 1 or u > 2. For cases where u is between 1 and 

2, it is possible to make some checks on the numerical solutions. Multiply the first 

equation by u in (4.1) and integrate from 0 to 1 with respect to x, then we get 

J
1 uudx+aJO f(u)udx=0 (4.8) 

Denote tz0 and u1 as the values of u at 0 and 1 respectively thus 

+ aJ f(u)du = 0 

2 X0and also use the boundary conditions in (4.1). Hence we have 

1 p2 U2 - elO1l) - e 10 °' = 0 
2 10 

(4.9) 

(4.10) 

If we substitute a, /3, and u0, u1, obtained by the numerical method, into the left 

hand side of equation(4.10), it is seen that the error is very small ( about 10-6 ) 

That suggests that u0 and u1 are approximations of the exact solution. 

From Table 4.1.1 it is easy to see that for some parameters we can get solution 

in which critical values of u (i.e., 1 or 2) are obtained, but there do not seem to be 
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values of parameters make u greater than 2 at some points and less than 1 at some 

other points within the interval [0,1]. Using the same IMSL library routine we can 

estimate the locations at which u reaches the critical values 1 or 2. The Table 4.1.2 

describes this for some cases, where means the value at which u(e) = 1 or u(e) = 2. 

Here only the estimated intervals are given. These results give some indication of 

the situation for the time dependent problem. 

Table 4.1.2 

a /3 u(0) u(1) 

440.000 0.010 2.0090 1.9990 [0.92,0.96] 

0.100 0.100 1.0109 0.9638 [0.48,0.52] 

0.096 0.100 1.0029 0.9554 [0.24,0.28] 

Location of interface e for some a, P. 

4.1.2 With External Circuit 

Here the steady state one dimensional problem with the extra conditon is con-

sidered ( An external circuit connected to the thermistor). Numerical solutions are 

discussed. 

The equations are now as follows I  d2u 

+af(u) =0 

U' (0) = 0 

1 = I+ 41)  
jI 

,0 < a; < 1 

,u,,(1) +/3u(1) = 0 

a = 712 

(4.11) 
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where 'y and /3 are fixed parameters and f(u) is defined by (4.2). In order to solve 

Eq.(4.11), it is decomposed into two parts, one as Eq.(4.1) and the other as 

3.0 

2.0 

1.0 

U(1) = 
p18 

Figure 4.1.0 
D=0.25 

(4.12) 

0.0   
0.0 2.0 4.0 6.0 8.0 10.0 

I 

Plot of u(1) and I for solution of (4.1), 0 < I < 10. 

For convenience, we rewrite the cold and hot solutions of (4.1) here. In fact, as 

we know, the cold solution ( u < 1) of (4.1) can be written as 

1̂ J2 
u(x)= 
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and hot solution ( u ≥ 2) of (4.1) can be written as 

U (x) 712e10 + 712e'°  
- ,13 2 (1—a,2) 

Figure 4.1 .Oa 
f3=O.25 

I 

Plot of u(1) and I for solution of (4L1), 0 ≤ I ≤ 1. 

By the property discussed in Chapter 3, u(x) is monotonically nonincreasing 

function of x, so for the cold solution 

(4.13) 
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if u(0) = 'yI2( + ) ≤ 1 and for the hot solution 

U(1) = 'yle 

if u(1) - "° ≥ 2. 
- 

3.0 

2.5 

2.0 

Figure 4.1 .Ob 
3=0.25 

(4.14) 

1.5   
00 2.0 4.0 6.0 

I 

8.0 10.0 

Plot of u(1) and I for solution of (4.1), 1 ≤ I ≤ 10. 

In fact, Eq.(4.1) is solved already. Now the problem is how to include (4.12). If 

-y and /3 are fixed, the solution of (4.1) is a function of I, so it can be denoted as 

U(x, I). Let x = 1, if U(1, I) is a solution of (4.11), U(1, I) should coincide with 

(4.12), i.e., U(1, I) = u(1). Problem (4.11) may be solved by iteration. The method 
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is as follows. For a given initial 10, evaluating a0 = 7102, use the shooting method 

mentioned in §4.1.1 to solve (4.1) for the fixed a0, then get u(1, lo). Now use (4.12) 

to determine I. Since Eq.(4.12) is quadratic in I two I are obtained, we choose the 

Figure 4.1 .1 
=0.25 

8.0 

6.0 

4.0 

2.0 

There is only one intersection point 

0.0   
0.0 0.2 0.4 0.6 

I 
0.8 10 

Graphs of u(1) and I for solution of (4.1) and solution of (4.1). 

Intersection point represents solution of coupled problem. 

greater one for /3 = 0.25 as I. Next a u(1, I) is obtained as a solution of Eq.(4.1) 

with a = -yl?. Repeating this procedure, two sequences {I} and {u(1, I)} are 

obtained. If 1I, —I,1 and Iu(1, I+) — u(1, I)1 are less than a given tolerance, stop 

otherwise continue until the sequences converge. Therefore the numerical solutions 
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of (4.11) are obtained. The sequences converges because as it is seen in Figure 4.1.1, 

at the intersection ( i.e., solution of Eq.(4.11) ) of the two curves, the absolute value 

of the product of the derivatives one with respect to I and one with respect to u(1) 

of the two curves is less than 1. Hence the combination of the two curves makes a 

contraction operator about I, therefore the sequence u(1, I) is convergent. 

Figure 4.1.2 
3=O.4O9836O65 

I 

Graphs of u(1) and I for solution of (4.1) and solution of (4.12). 

Intersection points are solutions of coupled problem. 

The solution to Eq.(4.11) may not be unique. This can be demonstrated graphi-

cally. If the solution of (4.1) at x = 1 is drawn as in Figure 4.1.0 ( for fixed /3 = 0.25 
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for consistency, c = -y12,7 = 150, it may be noted that the figure consists of three 

parts, the two critical points are I. = 0.038490017 and 12 = 8.568637736. When 

I ≤ I and I ≥ 12, u(1) is defined by (4.13) and (4.14) respectively; when 4 ≤ I ≤ 1, 

u(1) is obtained by the method discussed in 4.1.1. For ease of reading the Fig-

ure 4.1.0, it is decomposed into two figures as Figure 4.1.0a and Figure 4.1.0b ), 

Figure 4.1.3 
3=0.6O 

There are three intersection points 

0.4 
I 

0.6 0.8 

Graphs of u(1) and I for solution of (4.1) and solution of (4.1). 

Intersection points are solutions of coupled problem. 

10 

it is easy to see that when condition (4.12) is put into that graph, three cases may 

occur. One is that (4.12) and (4.1) have one intersection point. The second is that 
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(4.12) and (4.1) have two intersection points and the third is that (4.12) and (4.1) 

have three intersection points. The three cases can be obtained by adjusting the 

parameter 3 when -y = 150 and i = 20 are fixed. The method is as follows. 

Consider that (4.13) touches with (4.12), hence, 

-Y1 (1I)- 712 
flm J6 

(4.15) 

therefore, 10 = That means that (4.13) meets with (4.12) whenever I = 10. 

However it must be noted that the intersection of (4.12) with (4.13) has meaning 

only if u(0) = 7Io2( + ) < 1. From u(0) = 7I( + ) :51, there is 3 ≥ ( j)2 

y 2 

We say that 13o 1 - 0.409836065 is a critical value. When /3 = /3o, (4.13) 
2 

just touches (4.12) which means that there are two solutions; /3 > /3o, (4.13) has 

one intersection point with (4.12) and the end of (4.13) goes above the parabola 

(4.12) which means that there are three solutions; 8 <180, (4.13) can not meet with 

(4.12) which means that there is only one solution. The Figure 4.1.1 (/3 = 0.25), 

Figure 4.1.2 ( /3 = 0.409836065) and Figure 4.1.3 ( /3 = 0.60 ) demonstrate this. 

A similar situation can be discussed when (4.14) intersects, does not intersect and 

just intersects with (4.12) ( here just intersects means that the end point of parabola 

(4.14) is just on the parabola (4.12)). 

4.2 Time Dependent Problem for PTC 

Here the time dependent one dimensional FTC problem is considered. Numerical 

solutions are discussed. 
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The equation is as follows 

I 
and 

8tz - 82u -—j+af(u) ,O<x<1 

u(0) = 0 , u(1) + 3u(1) = 0 

f(u) = 

where a and /3 are parameters. 

1 ,u≤1 

1 < U < 2 

e10 ,2≤u 

4.2.1 Moving Meshpoints Method 

(4.16) 

(4.17) 

In order to get the numerical solution of Eq.(4.16), the finite element method is 

used. At first we expect that the whole solution is within the "cold" region. So the 

Crank-Nicholson method is used to find the time when the first critical temperature is 

reached at one point. Whenever the critical temperature is reached, a finite element 

method is used. Initially, suppose the whole region to be cold, uj u(ih,jt), i = 

0,. .. , N, and h = 1.0/N, then the Crank-Nicholson difference scheme is as following 

- UiJ - .: rUi+1J+1 - 2u,5+i + Ui_l,j.l.l + Uj - + Uj_1J + a 

At 2 h2 h2 

r r 
— ui+i,j+i + (1 + r)ujJ+1 - uI_l,j+l 

r r 
= ui+i,j + (1 - r)u, + + aLt (4.18) 

where r = , i = 0, . . . N. For the boundary conditions, the central difference is 

used for good accuracy. In order to use the central difference formula it is necessary 
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to introduce the "fictitious" temperature u_1,5 at the external mesh point (—h, jt), 

by imagining the thermistor to be extended a distance h at this end. That is 

I 
Ui+1JUi_l,j - 

2h - 

UN1,j-UN_1,j  
2h +/3UNJ :=O 

u1,j = u_1J 'i=O 

= UN-1j - 2h/3uN,J , i = N 
(4.19) 

The temperature u—,,j is unknown and necessitates another equation. This is 

obtained by assuming that Eq.(4.16) is satisfied at the end point x = 0. The u_,, 

can be eliminated between these equations. A similar method is used for the other 

end point x = 1. 

When the solution at x = 0 reaches 1, the interface point appears. The problem 

at the next timestep is to choose the new position of the interface point and time 

stepsize. In order to solve this problem, the following method is employed. 

Suppose x = xi(t) to be the interface at which the temperature is the critical 

temperature u = 1 ( i.e., o(u) = 1). Define new variables e = = t ( is 

relative coordinate). Then 

X . X1 196 

O_O th1 8 

X, 196 

0 10 

Ox - 

(4.20) 

Let u = u(e, r), note 8u1,r) = 0 for all r because u(1, r) = 1 for all T. The Eq. (4.16) 

becomes 

0u th1Ou 1 02u 
- —- = — j +ocr(u(,r)X1 1  (4.21) 

8ui i 8u 
At = 1,0— 1k=' = Ie=1+a, since k=o = 0,ii = = 
x1 f dx 2 1 fZ1 82u 

- JO dx and _ xihi[if 1 dx] = Ix=xi + a, it is now 

assumed that a Jf changes very little for x1 small ( or let x1 -* 0, ± j -+ oo), then 

02u 
= a (4.22) 
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o2 82izt ____ a _(a because = Iz=o - a,z.e.,x1x1 = —1 - -  ()=o ko 

k 32 o --  is estimated from the previous time step. Thus it is assumed that 

d 2 a 
(x) = 2(--1) Tt (4.23) 

(Note that x1d = 
Hence at first step if x1 is determined by the following method. The time step 

At can be chosen as x/2(- - 1). In the actual program, x1 is first assigned a value ko 

of h/8 where h is the mesh length and At chosen as above. Thereafter the problem 

is solved in two phases. 

Denote the interface point as x = C2. The interval [0,1] is divided into two 

segments, [0, e2] and, [e2, 1]. Since e2 is very small at the beginning, it is not necessary 

to put any points within [0, e2]. [e2, 1] is divided into nc equal segments. Thus the 

total number of node points is nt = nc + 2. Denote hc = (1 - e2)/nc, node points 

by x. Hence x1 = 0, x2 = e2, X1 z 2e2+ ,i = 3,...,nt. Since e2 is not fixed, 
nc 

xi depends upon time t. Define trial and test function as 

1(x,t) 
  , [x_1, x1J ={ (4.24) 

zi+1 - xi 

Multiply Eq.(4.16) by q5(x,t) and integrate from 0 to 1, then 

,i ôu 02u J (---'— acr(u))ct(x,t)dx=0, (4.25) 

57 where  = 1,...,nt, i.e., 

<ut,q5 > + < U., 0j": > —/3u(1,t)S0, - a < o'(u),q51 >= 0, (4.26) 
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where j = 1, .. . , nt. Replace u by the approximate form E7 1 u5çb5 where uj are 

functions of t and ç1j are functions of x and t, and integrate by parts, then 

nt 

<q5, c5j > +uj < çbj,, q5, > +uj < , 4, >) - 
i=1 

nt 

/3u(1, nt)5 t, - a < o( q5j >= 0, (4.27) 
i=' 

where j = 1,. . . , nt and < qf, q55 >= f0' q5q55dx. Hence 

i=1, (4.28) 

ui,t+U1 U2 
- T +  e2 2(U12 

ae2 -1O(u2--1) - 

[e10(u1_1) + 6 
10(u2—ui) 10(u2—ui) 

i = 2, (4.29) 

2U1,t + (x3 - e2)u3,t + 2u1 + - ( 2 + 

Ul 1 1 U3  ahc 
-- +u2(— +  

e2 e2 2;3 - e2 x3 - e2 = 2 
ae2 2l) 610(U21) - 610(i1) 

- u1) [e'° + 1O(u2 - u') 

i=3' 

hcu3, + hcu4, + - (— U2 + 2u3 - u4) + 
3nc-2  
6 u2e2 

__L32 3nc  = ahc 
3nc 6nc 

i=4, ... ,nt-1, 

hc 3nt-3i+1 2 
+ 4ui,t + u+i,) + e2( - — z 

6nc 6nc 
3nt-3i-1 1 

u+1) + — (— Ui_l + 2u1 - u1+1) = ahc 
6nc hc 

(4.30) 

(4.31) 
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i = nt, (4.32) 

hc 
+ 1 + - e2(u_1 - u) + —(—u_i + u) 6nc 1 hc 

+#Unt = hc 

Now denote Le2 and At as increments of e2 and t respectively. Use 

ftt f(t)dt (f(t+ A t) + f(t))t 

and 

ft'+At ftgdt (f (t + t) - f(t)) (g(t+t)+g(t)) 

Integrate the equations i = 1,. . . , nt,using the above approximations. Simplifying 

the equations we get 

i=1, 

(e2 + + 2(e2 At  + Le2) )u' - ( + 12 

At At At 
2 (e2+e2) 2+)U 

1 - e_ 10(144+l_1) 

-- 10(1 - ur') (e_b0(_1) + 10(1 - u 1) ) 
1 -  e 10 '_'  

+ 10(1 - fl) (e'°(_') + 10(1 - U!) )J =0 

i = 2, 

At  n+l + (U i 

12 

nc—i aLS.t t(  1  

6nc + + 4nc )z2+ e2+e2 

hc 1 At 
 ' 72+1 

- - 2(hc— k ))U3 - ( e2 + 6 262 1 
nd 

n 
U3 

l2nc 

nc 

(4.33) 

(4.34) 
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hc At / t At ahct  

c 3 2e2 2hc 2 

1  '°('_' 
OL t[ e2+ e2  (1+ - e 10(1-. u') ) 
2 10(1—ur') 

1 - e_lO(ul) 

10(1 - u) (1+ 10(1 - u) )} =0 

i= 3,  (4.35) 

2  A6 At  

- 2(1 - 2) + hc(hc - )+1 + ( 4('—e2) 
nc 

At  3nc-5 3nc-2  

2hc(hc - )u' + 2(6(1 e2) 12(1— e2) 4 + 6(1 - 2) 
nc 

aIt At 2 it 

2(1—e2) 2hc(hc— ) (3 hc 
nc 

1 At it 
—(+)u——azt=0 

i=4 .... ,nt-1, (4.36) 

1 3nt-3i At 2 

+ 12(1 - 2) - 2hc(hc - )u j' +nc  - 2(1 - 2) 

At 1 3nt-3i At  

+hc(h ju1 + - 12(1 - e2) 2 2hc(hc— 

aZt  
nc 

3i+2 3nt— 

+2( e2) u + 6(1 2) 12(1 2(1 - 

1 At 2 it At 
-( + -)u - ( - -)u - ( + ThC2-)u+ -  cxlXt = 0 

i = nt, (4.37) 

1  At 1  L 
- 2hc(hc - -2-I )u1 + ( A6nc 3 4(1 - e2) 

It /3Lt 
+ 2h(h \ + . )utz+l + 2( +  

6(1—.e2) 12(1—e2) nc 

aL1t 1 At 1 At f3zt 
4(1— e2) jj)ut=O 
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In Eq. (4.33), since u1 is very close to 1 at the beginning, a Taylor series expansion 

suggest that we use e2 to replace 

e2 + A62  (e_10( _1) + 1 - e'°4'') 
10(1 - ur') 

+ 10(1e2  (e 10 ') + 1 - e ( a )) 
—ut) 10(1—u) 

A similar method was used in Eq.(4.34). For later times the original equations are 

used. It is very clear that system is nonlinear in (u1, ' e2, u3,. . . , u,,). Here it must 

be noted that the second unknown ' e2 is the increment of 2 since U2 is always 

assumed to be 1. In order to solve equations (4.33-4.37), Newton's method is again 

applied. Since the variable is different from others, some special techniques 

are used to solve for it. If the system is denoted as F(ui, L2, u3,. . . , u,) = 0 

where u = (u1, AC2, U3,... , unt)T,the Newtonian iterative scheme can be written as 

Un+l = Un 
- (VF(uz))_lF(uTh). Let zu = - u's, hence [VF(u2)]u = F(u?z) 

must be solved. First let us examine the form of Jacobian VF(u?t). Obviously most 

of the entries are zero, and for convenience ajj means that entry is not zero. The 

second column corresponds to Le2. 

all a12 0000 0 

a21 a22 a23 0 0 0 0 

0 a32 a33 a34 

0 a42 a43 

0 a52 

0 a2 

a44 

00 0 

a45 

0 aM a55 

0 

a56 

0 0 0 0 ... 

0 

0 

(4.38) 
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The problem then is to solve a system Ax = b where x = (x1, X2,. .. , Int )T 

b = (b1, . . . , b,t)". Denote a2 = (a32 ,. .. ,ant2)T , = (b3,.. . ,bt)T, 

C= 

I  a33 a34 0 0 

a43 a44 a45 0 0 

Oa54 a55 a55 0 

00 0 ... 

and 

(4.39) 

= (xi,... , x)" and x2 = (x2 2 'T Solve Cx1 = b' and Cx2 = a2 first 3,.. 

(where C is a tridiagonal matrix). Then let x = (xi, x2, x - x2x,.. .. , x - x2x)T 
nt 

and choose x1 and x2 so that the remaining equations of the systems Ax = b are 

satisfied. This method allows the Au to be found, and hence u' 1. Repeat this until 

either ' e2 ≤ 0 or e2 ≥ . If Ae2 :50 for the first time step after the introduction nt 

of the interface, this means that the interface point e2 is almost equal to 0, i.e., the 

temperature reaches its critical value ( which here is 1) only at the point x = 0. If 

2 > , then [0, 2] is partitioned into two pieces. As e2 increases, more node points nt 

will be added to the interval [0, 2], i.e., this interval is partitioned into ns equal 

segments. 

In the actual algorithm, when the temperature at the center point becomes "hot", 

the program uses four subroutines. The first subroutine is devoted to the case in 

which only one point is a hot point. As time increases, e2 increases. When e2 is 

greater than h, more nodal points will be added, then the next subroutine is called. 

The second subroutine deals with the case where there are more than one mesh 

point on both sides of the interface point. If e2 keeps moving forward, the number 

of mesh points at the right side of interface point reduce to one. Hence, the third 
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subroutine is engaged. When e2 is very close to the right end point ( x = 1), it 

is considered that the whole region is within the transient region. Therefore, the 

fourth subroutine is applied. Repeat using the fourth subroutine until the absolute 

value of biggest difference between newly obtained values and old values at all points 

satisfies a specified tolerance and then stop. 

Table 4.2.1 

a /3 u(0) u(1) v(0) v(1) error 

7.50 0.250 1.362675 1.240080 1.362729 1.240063 0.00005 

3.50 0.250 1.289988 1.172719 1.290052 1.172717 0.00006 

2.50 0.250 1.257984 1.143097 1.258052 1.143100 0.00006 

1.00 0.250 1.171109 1.062799 1.171199 1.062828 0.00009 

0.90 0.250 1.161152 1.053608 1.161241 1.053635 0.00008 

0.80 0.250 1.150019 1.043332 1.150117 1.043369 0.00009 

0.70 0.250 1.137422 1.031710 1.137516 1.031741 0.00009 

0.50 0.250 1.105845 1.002560 1.106811 1.002506 0.00005 

0.40 0.250 1.084141 0.981651 1.084082 0.981590 0.00005 

0.35 0.250 1.069982 0.966818 1.069938 0.966847 0.00004 

0.30 0.250 1.051984 0.947115 1.051951 0.947085 0.00003 

End point values of solutions for various a, P. 

u is the solution of the time dependent problem as t -+ 00. 

v is the numerical solution of the steady state problem. 

In the first three subroutines, similar methods are used to solve [VF(u)]zu = 
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_F(u z). The criterion for adding and removing nodal points is as follows: when 

e2 :5 0.5 and e2 ≥ the nodal points between 0 and e2 are doubled. In this way, 

when C2 is very close to the middle point, the number of nodal points between 0 and 

2 is the same as the total number which is taken initially when the whole region was 

considered as a cold region. When 1 — e2 ≤ ≥ 0.75 and nc> 1, half of nodal 

points are removed. This means when e2 moves towards 1, less and less nodal points 

between e2 and 1 remain, the number of nodal points are determined by how close 

e2 is to 1. When the sum of increment e2 + 4 e2 is greater than 1, the whole region is 

considered as a transient region. The timestep At is also adjusted according to the 

ratio of previous values of ze2 and At. 

The Table 4.2.1 gives the results obtained using the above mentioned program, 

where u(0) and u(1) represent numerical solutions of Eq.(4.16) at points 0 and 1 re-

spectively after the steady state conditions have been attained and v(0) and v(1) the 

corresponding numerical solutions of the steady state problem (4.1) corresponding to 

Eq.(4.16). "Error" means the maximum error of the two numerical solutions corre-

sponding to Eq.(4.16) and the steady state problem (4.1). From the Table 4.2.1 it is 

easy to see that biggest error is 0.00009 and smallest 0.00003. Also from Table 4.2.1 

it can be seen that when a is between 0.4 and 0.3 inclusively, two phases appear. 

One phase is for the cold region and another one is for the transient region. This 

means that for those a the whole region is not in the transient state and therefore 

the interface point e2 needs to be located. 

The Table 4.2.2 gives the results obtained by two methods. One is the program 

mentioned above and the other is the IMSL shooting method. From the results it 

can be seen that the outcomes match very well. The value of e2 on the fifth column 
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is obtained by the above mentioned program and the approximated interval of e2 

on the eighth column is obtained by using the IMSL subroutine for the steady state 

problem. 

Table 4.2.2 

a /3 u(0) u(i) 6 v(0) v(1) e2 

0.40 0.25 1.084141 0.981651 0.920 1.084082 0.981590 [0.88,0.92] 

0.35 0.25 1.069982 0.966818 0.846 1.069938 0.966847 [0.84,0.88] 

0.30 0.25 1.051984 0.947115 0.731 1.051951 0.947085 [0.72,0.76] 

Position of the " interface " point of 62 from the time dependent solution as 

t —+ co and from the steady state solution. 

Also through the program, e2 can be traced during the whole time period before 

the solution reaches steady state. For some a and /3 pictures are given for demon-

stration. From the pictures it is easy to see that for fixed /3, when a increases, the 

time to become hot decreases and the time period for the temperature to reach a 

pseudo-steady state is also shortened. When the temperature reaches pseudo-steady 

state, it still needs some Newton iterations for the temperature to reach steady state. 

The results from the pictures match very well with the theoretical conclusion, i.e. 

when a is bigger, which means the heat source is stronger, the temperature increases 

rapidly and reaches the steady state very quickly. Otherwise, the temperature in-

creases very slowly and it takes a longer time to reach steady state. 
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4.2.2 Fixed Meshpoints Method 

A fixed meshpoints method is now used to solve (4.16) where f(u) is defined 

by (4.2). Here the unconditionally stable Crank-Nicholson difference scheme is used 

throughout. The x direction stepsize is Ax = (we choose this number for compar-
32 

ison with the results of §4.2.1 ) and time direction stepsize At is chosen arbitrarily 

of course r = is kept reasonably bounded). The scheme is as follows: 

- - if  - + u_.i,+i + - 2u1,5 + u...i,5 
- (A X)2 ( x)2 

1' r 
—uj.1,j+1 + (1 + r)uij+1 - 

= + (1 - r)u, + + cv.itf(u1,) 

+ af(u j) 

(4.40) 

where r =  At , i= 0,.. . , N. For the boundary conditions, a similar central differ-

ence at endpoints x = 0 and x = 1 is used as in §4.2.1. That is 

I 
tti+1,j - ui._1,i - 

2%3c - 
= .U...i,j I  = 0 

tLN+1,5UN..1,j  2Iz + I3UN,j = 0 , UN+1,j = UN-1j -  2&C/3UNJ , i = N 
(4.41) 

The advantage of the fixed ineshpoints method is that the scheme is easy to form 

and the numerical solutions are easy to obtain. Actually, the system obtained by 

discretization is a tridiagonal system. So it is very easy to solve. The disadvantage 

of this method is that there is no indication where the interface point , where 
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u(t, ) = 1, is located. The numerical results are summarized in Table 4.2.3 where 

u(0) and u(1) is the numerical solution of (4.16) at endpoints x = 0 and x = 1 

respectively and v(0) and v(1) is the numerical solution of (4.1) at endpoints x = 0 

and x = 1 respectively. 

Table 4.2.3 

a 8 u(0) u(l) v(0) v(1) error 

7.50 0.250 1.362750 1.240166 1.362729 1.240063 0.00010 

3.50 0.250 1.290071 1.172801 1.290052 1.172717 0.00008 

2.50 0.250 1.258070 1.143189 1.258052 1.143100 0.00009 

1.00 0.250 1.171216 1.062906 1.171199 1.062828 0.00008 

0.90 0.250 1.161258 1.053703 1.161241 1.053635 0.00007 

0.80 0.250 1.150134 1.043435 1.150117 1.043369 0.00007 

0.70 0.250 1.137532 1.031807 1.137516 1.031741 0.00007 

0.50 0.250 1.105827 1.002569 1.106811 1.002506 0.00098 

0.40 0.250 1.084067 0.981579 1.084082 0.981590 0.00002 

0.35 0.250 1.069945 0.966875 1.069938 0.966847 0.00003 

0.30 0.250 1.051941 0.947079 1.051951 0.947085 0.00001 

End point values of solutions. 

u is the solution of the time dependent solution as t -+ 00. 

v is the steady state solution. 

Comparing with Table 4.2.1, it is seen that the errors with the fixed meshpoint 

method are almost ten times bigger than the errors with the moving meshpoint 
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method. The biggest error in Table 4.2.3 ( for parameters a = 0.5 and /3 = 0.25) 

is 0.00098 while the biggest in Table 4.2.1 is 0.00009. That is to say, though the 

moving meshpoints method is more complicated than the fixed meshpoints method, 

the moving meshpoints method gives more accurate numerical solutions. Also the 

moving meshpoints method gives a more accurate location of interface point than the 

fixed meshpoints method, which only gives a possible interval in which the interface 

point is located. 

The above numerical solution is only for a fixed. Now the situation for a is 

function of u(x, t) is considered in the following. For convenience, the time dependent 

equation is written as follows: 

Ou ;' \ 
Ot - Ox2 

= 0 ,u(1) +/3u(1) = 0 

where /3, p and 'y are parameters, f(u) is defined by (4.2) and a is a function of u, i.e., 

a =  . This arises when the external circuit is included. A reasonable 
(f f())2 

value for 'y is 150 and for p a value of 20. Comparing with Eq.(4.16), Eq.(4.42) 

is more complicated since a is dependent on u(x, t). In order to solve Eq.(4.42), 

a semi-implict difference scheme is used. Here semi-implicit means that the linear 

part is implicit but the nonlinear part is explicit. This makes it easy to handle the 

integral term. That is 

- -  - 2u+i + ui_i,j+i +  
At - (AX)2 integral 

(4.42) 
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- rui+l,j+l + (1 + 2r)u,+i - ru_i,1+i 

- 

—U2,3 + integral (4.43) 

where r = At ()2 and i = 0, 1, - , N, integral = [1 + px E2[f(u_1,5) + f(ui,j)]]2 

i.e., a trapezoidal rule over the values of u at the gridpoints ( time step j ) is 

used. For the boundary condition, the central difference (4.41) is employed. Since 

in Eq.(4.42) a is no longer constant, the numerical experiments are done for various 

/3. As it is mentioned in Chapter 3, as time increases, Eq.(4.42) reaches its steady 

state, therefore the steady state solutions of Eq.(4.42) should match the solutions 

of Eq.(4.11). Thus for different 3 there should exist one, two or three solutions to 

Eq.(4.42). The numerical results are summarized in following Table 4.2.4, where 

I = J, and a = ( if u(0) and u(1) represent the numerical solutions 

at both endpoints x = 0 and x = 1) obtained when the initial values u,o are 

all zeros; v(0) and v(1) represent the numerical solutions obtained when the initial 

values u1,0 are greater than 1.0. Theoretically, when /3 > 0.4098 there should be 

three solutions, one is that the whole solution is in the cold region, the second one 

is a solution spanning both cold and transient regions, the third one is the whole 

solution in the transient region; when /3 < 0.4098 there is only one solution in the 

transient region. From the Table 4.2.4 it is easy to see that when /3 < 0.4098 

(critical value for /3), there is only one numerical solution; when /3 > 0.4098, there 

are two solutions, one is the whole solution in the cold region and another one is the 

whole solution in the transient region. How about the one which spans both cold 

and transient region? Why are we unable to get it numerically? The problem is that 

that steady state solution is unstable. As for the case 6 = 0.4098, v(0) reaches 1.0 
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for the cold branch and it agrees with the numerical results in §4.1.2. 

Table 4.2.4 

I u(0) u(1) I v(0) v(1) 

.6000 .4762E-1 .7369E+0 .5668E+0 .8771E+0 .1588E+1 .1348E+1 

.5000 .4762E-1 .8503E+0 .6802E+0 .8974E+0 .1599E+1 .1381E+1 

.4500 .4762E-1 .9258E+0 .7558E+0 .9074E+0 .1605E+1 .1400E+1 

.4100 .4762E-1 .9996E+0 .8295E+0 .9154E+0 .1611E-+-1 .1416E+1 

.4099 .4762E-1 .9998E+0 .8297E+0 .9155E+0 .1611E+1 .1416E+1 

.4098 .4762E-1 .1000E+1 .8299E+0 .9155E+0 .1611E-+.1 .1416E+1 

.4000 .9174E+0 .1612E+1 .1420E+1 .9174E+0 .1612E+1 .1420E+1 

.3500 .9274E+0 .1620E+1 .1443E+1 .9274E+0 .1620E+1 .1443E+1 

.3000 .9373E+0 .1629E+1 .1469E+1 .9373E+0 .1629E+]. .1469E+1 

.2500 .9473E+0 .1640E+1 .1498E+1 .9473E+0 .1640E+1 .1498E+1 

.2000 .9573E+0 .1654E+1 .1533E+1 .9573E+0 .1654E+1 .1533E+1 

84 

End point values of solutions of time dependent problem with external circuit as 

t -+ co. U and v are solutions obtained from different initial values. 
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4.3 Numerical Solutions for NTC Problem 

In this section, numerical solutions for the NTC problems are given. As in § 4.2, 

the figures and tables are also included. Numerical results show that the characteris-

tics of solutions of Eq. (3.1) and Eq.(3.17) are mainly determined by the nondecreas-

ing or nonincreasing property of the functions at the right hand side. 

Figure 4.3.0 
f3=O.25 

Plot of u(1) and I for solution of (4.45), 0 ≤ u(1) ≤ 2. 
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4.3.1 Without External Circuit 

As for NTC problem, the function for right hand side is defined as ( reciprocal 

of f defined by (4.2)) 

20000.0 

15000.0 

10000.0 

5000.0 

1 ,u≤1 

g(u) = { elO(u_l) , 1<u <2 

e10 ,2≤u 

Figure 4.3.1 

(4.44) 

0.0 
0.000 

Parabola (hot branch) 

0.010 0.020 

I 
0.030 0.040 

Plot of u(1) and I for solution of (4.45), 2 ≤ u(1) ≤ 20000 (large range). 
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and the problem is as follows 

J+ag(u)=O , O<x<1 

[ u,,(0)=O , u(1)+ 18u(1)=O 

Figure 4.3.2 

I 

Graphs of u(1) and I for solution of (4.50) and solutions of (4.52). 

Intersection point represents solution of coupled problem. 

(4.45) 

Comparing to the original problem discussed in §4.1.1, the only difference is the 

nonlinear function g(u). However this difference of functions makes the solution u(x) 

very different. That is, for some fixed a and /3, the solution u(x) is not unique. Again 
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as in §4.1.1, 

a a 2 
(4.46) 

18 

if u ≤ 1 in the interval [0, 1] and 

10 10 

U(X) = 5— + —(1 - x2) (4.47) 

if u ≥ 2 in the interval [0, 1]. For (4.46) if u(0) ≤ 1 then 

< 1 2/3  
— 2+/3 

and for (4.47) if u(1) ≥ 2 then 

(4.48) 

a > 2/3e'° (4.49) 

Hence for a E [2/3e'°, 216 ], (4.46) and (4.47) can both be solutions of (4.45). These 

are the easily found ones. In fact there exists u(x) between 1 and 2. Thus for certain 

a and /3 there exist three solutions. For demonstration, /3 = 0.25 is fixed, hence 

for a E [0.000022699,0.222222222], there exist three solutions. For convenience, the 

graphs demonstrate the relations of u(1) and a ( for consistency, here a = yI2, y = 

150). The graphs are called Figure 4.3.0 and Figure 4.3.1. 

4.3.2 With External Circuit 

Here the steady state one dimensional problem for the NTC with the external 

circuit is considered. The numerical solution is discussed. The equation is as follows: 

to find I and u(x), 0 < x < 1 such that 

d2U J dX2 + ag(u) = 0 , 0 < a; < 1 (4.50) 

u(0)=0 
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a=712 (4.51) 

where 7 and ,8 are fixed parameters and g(u) is defined by (4.44). 

From Eq.(4.50) and (4.51) it can be seen that a = 712 and u(1) are related. 

Thus it is more complicated to solve Eq.(4.50) and (4.51) than (4.45). In order to 

get the numerical solution of Eq.(4.50) and (4.51), the IMSL routine is used as in 

the PTC problem. So the strategy here is to fix I, therefore a, use the shooting 

method ( usually with more than one iteration ) to obtain u(1), then modify a 

according to u(1) by using the relation (4.51) and continue iterating, until both I 

and u(1) converge to some values and a numerical solution to Eq.(4.50) and (4.51) 

is obtained. 

From the equation of Eq.(4.51), it is easy to see that 

u(1) = 
13 

(4.52) 

so u(1) is a parabolic function of I. On the other hand, from Eq.(4.50) and the 

definition of g(u) by (4.44), the following are obvious 

28 (4.53) provided u U(X) = + (1— x) < 1 or a < - #+ 2 

and 

lo  
U(X) = 5- + aelo ç (1 - x2), provided 2 u or a> 2fle'° (4.54) 

Now we see that if 'y and /9 are fixed, the solution to Eq.(4.50) and (4.51) for any 

given I is not unique. Actually, the region of I for nonuniqueness can be determined 

as follows. From (4.3), if u(0) = + 2 ≤ 1, then u(x) ≤ 1 for 0 ≤ x < 1 because 

u(x) is nonincreasing function of x. Thus, a = 712 ≤ .r4r, i.e., 12 ≤ 7(+2) (e.g., 



CHAPTER 4. NUMERICAL RESULTS 90 

if 8 = 0.25, -y = 150, then I ≤ 0.03849 ). From (4.54), it is easy to see that, if 

u(1) = .12lO ≥ 2, then u(x) ≥ 2 for 0 ≤ x ≤ 1. Hence, 10 ≥ 2, i.e., 12 ≥ 216 

(e.g., if 3 = 0.25, -y = 150, then I ≥ 0.0003890 ). Therefore, for I E 7(2)]' 

the number of solutions to Eq.(4.50) and (4.51) is at least two. The Figure 4.3.0 

and Figure 4.3.1 are demonstration graphs for the nonuniqueness corresponding to 

I. The graphs consist of three parts, i.e., Figure 4..0 for zt(1) ≤ 1,1 ≤ u(1) ≤ 2 and 

Figure 4.3.1 for 2 ≤ tt(1) within the same region of I. That is to say, the graphs are 

drawn for the relation of u(1) to I. The numerical results are given in Table 4.3.1. 

Where /3 = 0.25 and y = 150 are fixed, I is a parameter changed within the interval 

mentioned above with stepsize of 20th of the interval length, u(1) and u(0), v(1) and 

v(0), w(1) and w(0) represent the solutions with respect to u(x) ≥ 2, 2 ≥ u(x) ≥ 1 

and 1 ≥ u(x). From Table 4.3.1, it can be seen that at both ends of the interval 

the two branches of the solution almost joined together. At I = 0.3890E - 3, the 

difference of u(1) and v(1) is 0.052, at I = 0.3850E - 1, the difference of v(1) and 

w(1) is 0.0003, much smaller and almost negligible. From Figure 4.3.0, Figure 4.3.2, 

Figure 4.3.3 and Figure 4.3.4, it is easy to see that the cold and transient solutions 

joined together at the right end of the interval. Thus the solution u(x) is apparently 

not differentiable with respect to the parameter a at the joint point. That means 

there is a wedge at the joint point. 

If the values of the solutions are considered at the right end point x = 1 and a 

is replaced by 7J2, then 
U(J) 

= _, u 1 (4.55) 



CHAPTER 4. NUMERICAL RESULTS 

Table 4.3.1 

91 

I u(0) u(1) v(0) v(1) w(0) w(i) 

.3890E-3 .2250E+1 .2000E+1 .2197E+1 .1948E+1 .9079E-4 .1021E-3 

.2295E-2 .7828E+2 .6958E+2 .1680E+1 .1438E+1 .3554E-2 .3159E-2 

.4200E-2 .2623E+3 .2331E+3 .1546E+1 .1326E-i-1 .1191E-1 .1058E-1 

.6106E-2 .5543E+3 .4927E+3 .1462E+1 .1257E+1 .2516E-1 .2237E-1 

.8011E-2 .9542E+3 .8482E+3 .1401E+1 .1206E+1 .4332E-1 .3851E-1 

.9917E-2 .1462E+4 .1300E+4 .1353E+1 .1166E+1 .6638E-1 .5901E-1 

.1182E-1 .2078E+4 .1847E+4 .1313E+1 .1133E+1 .9434E-1 .8386E-1 

.1373E-1 .2802E+4 .2491E+4 .1279E+1 .1105E+1 .1272E+O .1131E+O 

.1563E-1 .3634E+4 .3230E+4 .1250E+1 .1080E+1 .1650E+O .1466E+O 

.1Th4E-1 .4574E+4 .4065E+4 .1224E+1 .1058E+1 .2076E+O .1846E+O 

.1944E-.1 .5621E+4 .4997E+4 .1200E+1 .1038E+1 .2552E+O .2269E+O 

.2135E-1 .6777E+4 .6024E+4 .1179E+1 .1020E+1 .3077E+O .2735E+O 

.2326E-1 .8041E+4 .7147E+4 .1159E+1 .1004E+1 .3651E+O .3245E+O 

.2516E-.1 .9413E+4 .8367E+4 .1141E+1 .9887E+O .4273E+O .3799E+O 

.2707E-1 .1089E+5 .9682E+4 .1124E+1 .9747E+O .4945E+O .4396E+O 

.2897E-1 .1248E+5 .1109E+5 .1107E+1 .9616E+O .5666E+O .5036E+O 

.3088E-1 .1418E+5 .1260E+5 .1090E+1 .9492E+O .6436E+O .5721E+O 

.3278E-1 .1598E+5 .1420E+5 .1073E+1 .9372E+O .7255E+O .6448E+O 

.3469E.-1 .1789E+5 .1590E+5 .1055E+1 .9253E+O .8122E+O .7220E+O 

.3659E-1 .1991E+5 .1770E+5 .1035E+1 .9123E+O .9039E+O .8035E+O 

.3850E-1 .2204E+5 .1959E+5 .1001E+1 .8896E+O .1001E+1 .8893E+O 

na point values for multiple solutions u, v, w of the steady state NTC problem. 
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and 

u(1) = 712e10 2 

Figure 4.3.3 
3=O.4O9836O65 

I 

Graphs of u(1) and I for solution of (4.50) and solutions of (4.52). 

Intersection points are solutions of coupled problem. 

(4.56) 

Now consider the solution of Eq.(4.50) and (4.51), that is, condition (4.52) is in 

force for Eq.(4.45). As it is seen, (4.52) is a parabola, which has two intersection 

points, I = 0 and I = , when u(1) = 0. The maximum of u(1) is reached at I = 
21, 1 

and the maximum value of u(1) is which depends on 3 if y and i are fixed. 

If (4.52) is drawn on Figure 4.3.0, it is obvious that, except for the trivial solution 
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(i.e., a = 0 and u = 0 ), there are three possible cases. Case one, there is only 

one solution, case two there are two solutions, case three there are three solutions. 

Since (4.55) is also a parabola about I, it is easy to see that, if (4.55) for some /3 just 

reaches (4.52) with u(0) < 1 on the I> 1 side, there are exactly two solutions, if 

(4.55) does not reach (4.52), that means only one solution, if (4.55) intersects with 

(4.52) and goes outside that parabola, then there are three solutions. In fact, the 

Figure 4.3.4 
13=0.6 

4.0 

3.0 

Z 2.0 

•1.0 

0.0 
0.000 0.020 0.040 

There are three intersection points  

I 

Graphs of u(1) and I for solution of (4.50) and solutions of (4.52). 

Intersection points are solutions of coupled problem. 

0.060 

region of 6 can be determined for the three cases. Consider that (4.55) just reaches 
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(4.52), hence = 7j.(1—pl), then I = From (4.3), u(0) = and u(0) can 

be at most 1, thus + = 1, i.e., /3 = 0.409836065 = /30. We say that this value is 

critical value for /3. Obviously, (4.3) is true for all u(0) ≤ 1, especially for u(0) = 1, 

hence a = 216 = 2— 4 which means a is an nondecreasing function of P. Denote 

10 = ( also a0 = -yI ) corresponding to /3, then if /3 > /3o, I = VIE, 10, 

which means that right end of (4.55) goes outside of (4.52). So the curves shown 

in Figure 4.3.0 and Figure 4.3.1 should have three intersection points. The Figure 

4.3.2, Figure 4.3.3 and Figure 4.3.4 demonstrate this. 

In the above only the intersection of the right end of the "all cold" branch meeting 

with the parabola (4.52) is discussed. For the all hot branch a similar result can be 

considered. 

4.4 Time Dependent Problem for NTC 

For completeness, the numerical solution for the time dependent NTC problem is 

also done. As it is discussed in § 4.3, the NTC problem has three solutions. For the 

steady state NTC problem all three solutions can be numerically obtained. However, 

for the time dependent NTC problem, whenever it has three solutions, one of them 

is unstable. In fact, starting with initial value u = 0, the numerical solution always 

converges to all cold solution for a E [2fle'°, ]. Starting with initial value u > 2, 

the numerical solution always converges to the all hot solution for a E [2/3e10, ], 

in which interval there exist three solutions. Of course, for a is outside that interval 

there is only one solution either cold or hot. Hence the numerical solution always 
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converges to the corresponding cold or hot solution even if the initial value is between 

o and 2. Thus for a E [2/3e'°, 216 ], the third solution is unstable. It can not be 2+0 

numerically obtained. Therefore, the moving meshpoint method is not tried since 

only the simple all hot or all cold solutions are obtained. For the case with external 

circuit connected, the results are given in § 4.7. The instability is briefly discussed 

in Chapter 5. 

4.5 Numerical Solutions for Smooth Functions 

The given functions for f(u) taken from [3] have discontinuous first derivatives 

at u = 1 and u = 2. For comparison, numerical results are also obtained for smooth 

functions, that is, the functions have continuous first derivatives. In § 4.5.1, a smooth 

function corresponding to the PTC problem is considered. In § 4.5.2, a smooth 

function related to the NTC problem is studied. 

4.5.1 Smooth Function for PTC Problem 

For comparison, the function or(u) and hence f(u) for problem (4.1) is modelled 

by a smooth function. The choice of smooth function is a cubic Hermite interpolation 

for the function o = 1 for u < 1 and o = e 10 for u ≥ 2. This is given by 

1 ,u<1 

P(u) = (2u— 1)(u-2)2+e_'°(5-2u)(u-1)2 1< u <2 

e 10 ,2<u 

(4.57) 
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and the derivative of p(u) is as follows 

o ,u<]. 

p'(u) = 6(1—e'°)(u--2)(u-1) , 1≤u≤2 

o ,2<u 

c . 
CO 

Figure 4.5.1 

U 

Graph of nonlinear functions for FTC problems. 

(4.58) 
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In order to solve (4.59), the method discussed in 4.1.1 is applied. Similarly, the 

numerical solutions are summarized in Table 4.5.1. Comparing with Table 4.1.1, it 

is easy to find that when 1 ≤ u < 2, the numerical solutions of (4.59), with a, ,6 the 

same, are greater than the solutions of (4.1). In Table 4.5.1 column 6 represents the 

number of Newton iterations, column 7 represents the number of times that bisection 

was used, column 8 represents the number of times the bisection routine was called, 

s represents the initial guess. * means total number of bisection times. 

Table 4.5.1 

a # s u(0) u(1) 6 78 

999.000 0.005 0.5 9.0936 9.0709 2 40 1 

999.000 0.010 0.5 4.5581 4.5355 2 34 1 

999.000 0.100 0.5 2.0072 1.9752 1 31 1 

750.000 0.100 0.5 2.0040 1.9669 1 31 1 

500.000 0.100 0.5 1.9985 1.9679 10 94* 4 

100.000 0.100 0.5 1.9884 1.9432 5 59 2 

75.000 0.100 0.5 1.9840 1.9363 5 29 1 

50.000 0.100 0.5 1.9802 1.9285 1 29 1 

25.000 0.100 0.5 1.9667 1.9127 1 25 1 

15.000 0.100 0.5 1.9534 1.8950 1 23 1 

14.000 0.100 0.5 1.9509 1.8940 1 22 1 

10.000 0.100 0.5 1.9412 1.8721 10 18 1 

7.500 0.100 0.5 1.9293 1.8582 12 19 1 

5.000 0.100 0.5 1.9089 1.8356 7 18 1 
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Table 4.5.1 (continued) 

a 6 s u(0) u(1) 6 7 8 

1.000 0.100 0.5 1.7644 1.6875 4 12 1 

0.850 0.100 0.5 1.7415 1.6649 3 11 1 

0.500 0.100 0.5 1.6504 1.5760 3 15 1 

0.250 0.100 0.5 1.4794 1.4110 2 8 1 

0.100 0.100 0.5 1.0465 0.9968 3 2 2* 

0.050 0.100 0.5 0.5250 0.5000 2 1 1 

0.005 0.100 0.5 0.0525 0.0500 2 1 1 

Solution of PTC problem for various a, P. Col. 6—No. of Newton iterations. 

Col. 7—No. of times bisection used. Col. 8—No. of calls to bisection routine. 

4.5.2 Smooth Function for NTC Problem 

For the NTC problem (4.45) with function f(u) defined by (4.44), the smooth 

function for (4.44) is not the directly Hermitian interpolation of (4.44) but the re-

ciprocal of (4.57), that is 

q(u)= { 

(2u-1) (u-2)2+e'°(5-2u) (u—i)2 

e10 

1 

(4.60) 
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and the derivative of q(u) is as follows 

q'(u) = 

10 ,u<1 

6(1—e- 10) (u-2)(u-1)  I [(2u_1)(u_2)2+e_10(5_2u)(u_1)2]2 1 < U ≤ 
0 2 

Figure 4.5.2 

,2<u 

U 

Graph of nonlinear functions for NTC problems. 

Thus the problem (4.45) becomes 

J+aq(u)=0 , 0<x<1 

u(0)=0 ,u(1)+,8u(1)=0 

(4.61) 

(4.62) 
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Similarly, the numerical results are summarized in Table 4.5.2. Comparing with 

Table 4.3.1, it is easy to see that when u ≤ 1 and u > 2, the solutions are the same; 

but for 1 ≤ u ≤ 2, solutions in Table 4.5.2 are greater than those in Table 4.3.1 with 

the same a and 5. However, because of the smoothness of q(u), the properties of 

the solution have been changed accordingly. From Table 4.3.1, the three branches of 

the solution can join together at two ends separately. However, from Table 4.5.2, 

Figure 4.5.3 
f3=O.25 

Plots of u(1) and I for solution of (4.60) and (4.62). 

we can see different results. The difference of the values at the right end of the cold 

and transient solutions is quite different. Also the same method is not convergent 
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for I beyond I = 0.385E - 1. An alternative method is used, that is, fixing u(0) to 

find a by the shooting method. Now for fixed /3, u(0), denote i = du , U = as 
dce 

two new unknowns, use the similar method as in §4.1.1. A new system of differential 

equations can be obtained from (4.62) as follows: 

u=v ,u(0)=s 

VX = —a°f(u) 

u2 = V 

V. = _azfI(u)i_ 1(u) ,U(0) = 0 

Figure 4.5.4. 
f3=O.25 

(4.63) 

I 

Plots of u(1) and I for solution of the smooth NTC problem using the shooting 

method (. 63). 
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where s is fixed, an+l = a?z + La, 4a =   n = 0,1,2,***, ao is 

arbitrary. Here a numerical method similar to that in § 4.1.1 is used to get a. The 

results are summarized in Table 4.5.3, where u(0) is changed by small stepsize then 

different values for a are obtained. Using the data obtained in Table 4.5.3, a graph is 

drawn as Figure 4.5.4 and also Figure 4.5.3 is drawn according to the data in Table 

4.5.2 ( note, for consistency, here the x coordinate has been changed to I, where 

a = 712, 7 = 150). Comparing these two graphs, it is easy to see that two graphs 

Figure 4..55 

2.0 

1.6 

1.0 sr 

0.5 

0.0 
0.000 0.010 0.020 0.030 

I 
0.040 

Combined plot of u(1) and I for the smooth NTC problem. 

0.050 

can be connected. The graph in Figure 4.5.4 is just that part missed in Figure 4.5.3. 
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Figure 4.5.5 is the combination of Figure 4.5.3 and Figure 4.5.4. The two graphs 

joined perfectly. Also from Figure 4.5.4, it seems that the derivatives of u(1, a) with 

respect to a is infinite at the end of the interval for I. So that's why we need to use 

Table 4.5.2 

I u(0) u(i) v(0) v(i) w(0) w(i) 

.2295E-2 .7828E+2 .6958E+2 .1998E+1 .1616E+1 .3554E-2 .3159E-2 

.4200E-2 .2623E+3 .2331E+3 .1990E+1 .1611E+1 .1191E-1 .1058E-1 

.6106E-2 .5543E+3 .4927E+3 .1978E+1 .1619E+1 .2516E-1 .2237E-1 

.8011E-2 .9542E+3 .8482E+3 .1958E+1 .1627E+1 .4332E-1 .3851E-1 

.9917E-2 .1462E+4 .1300E+4 .1944E+1 .1625E+1 .6638E-1 .5901E-1 

.1182E-]. .2078E+4 .1847E+4 .1924E+1 .1622E+1 .9434E-1 .8386E-1 

.1373E-1 .2802E+4 .2491E+4 .1897E+1 .1617E-i-1 .1272E+O .1131E+0 

.1563E.-1 .3634E+4 .3230E+4 .1876E+1 .1605E+1 .1650E+0 .1466E+O 

.1754E-1 .4574E+4 .4065E+4 .1852E+1 .1592E+1 .2076E+0 .1846E+0 

.1944E.-1 .5621E+4 .4997E+4 .1825E+1 .1576E+1 .2552E+0 .2269E+0 

.2135E-1 .6777E+4 .6024E+4 .1783E+1 .1562E+1 .3077E+0 .2735E+0 

.2326E-1 .8041E+4 .7147E+4 .1758E+1 .1538E+1 .3651E+0 .3245E+0 

.2516E-1 .9413E+4 .8367E+4 .1730E+1 .1514E+1 .4273E+O .3799E+0 

.2707E-1 .1089E+5 .9682E+4 .1698E+1 .1487E+1 .4945E+0 .4396E+0 

.2897E-1 .1248E+5 .1109E+5 .1662E+1 .1458E+1 .5666E+0 .5036E+O 

.3088E.-1 .1418E+5 .1260E+5 .1623E+1 .1426E-i-1 .6436E+O .5721E+0 

.3278E-1 .1598E+5 .1420E+5 .1580E+1 .1390E+1 .7255E+0 .6448E+0 

.3469E-1 .1789E+5 .1590E+5 .1531E+1 .1349E+1 .8122E+0 .7220E+0 
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Table 4.5.2 ( continued) 
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I u(0) u(1) v(0) v(1) w(0) w(1) 

.3659E-1 .1991E+5 .1770E+5 .1473E+1 .1300E+l .9039E+0 .8035E+0 

.3850E.-1 .2204E+5 .1959E+5 .1399E+1 .1237E+1 .1001E+1 .8893E+0 

End point values of the multiple solution u, v, w of the steady state NTC problem 

with (4.60). 

Table 4.5.3 

u(0) u(1) a u(0) u(1) a 

0.99500000 0.88444442 0.22111109 1.17499995 1.04273701 0.24741493 

1.00000000 0.88888890 0.22222222 1.17999995 1.04710269 0.24757470 

1.00500000 0.89333266 0.22333126 1.18499994 1.05146742 0.24770039 

1.00999999 0.89777416 0.22443224 1.19000006 1.05583107 0.24779195 

1.01499999 0.90221232 0.22552381 1.19500005 1.06019342 0.24784940 

1.01999998 0.90664661 0.22660190 1.20000005 1.06455481 0.24787290 

1.02499998 0.91107804 0.22766449 1.20500004 1.06891501 0.24786241 

1.02999997 0.91550541 0.22871037 1.20500004 1.06891501 0.24786241 

1.03499997 0.91992903 0.22973785 1.21000004 1.07327390 0.24781790 

1.03999996 0.92434883 0.23074605 1.21500003 1.07763171 0.24773957 

1.04499996 0.92876470 0.23173484 1.22000003 1.08198822 0.24762738 

1.04999995 0.93317693 0.23270294 1.22500002 1.08634341 0.24748141 
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Table 4.5.3( continued) 
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u(0) u(1) a u(0) u(1) a 

1.05499995 0.93758607 0.23364586 1.23000002 1.09069741 0.24730173 

1.10000002 0.97712988 0.24094184 1.23500001 1.09505010 0.24708843 

1.14999998 1.02089286 0.24610418 1.24000001 1.09940147 0.24684161 

1.15499997 1.02526367 0.24643457 1.24500000 1.10375130 0.24656127 

1.15999997 1.02963352 0.24673088 1.25000000 1.10809994 0.24624757 

1.16499996 1.03400230 0.24699304 1.29999995 1.15150189 0.24129973 

1.16999996 1.03837013 0.24722104 1.35000002 1.19472814 0.23316069 

Values of u(1) and a for given u(0) using shooting method (4.63). 

a different method to find the relation of u and a. A similar result can be obtained 

at the other end of the I interval. 
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4.6 Time Dependent Problems for Smooth Functions 

Now the time dependent problems with smooth functions are considered. Nu-

merical results for the FTC problem are considered first followed by those for the 

NTC problem. 

4.6.1 Smooth Function for PTC Problem 

There are two cases considered here. One is that the a and / are fixed. The 

other is that a depends upon u. Here the smooth function is defined by (4.57). For 

convenience, the time dependent problem with smooth function is written as 

au J-Ft OX 2 
=+ap(u) ,0<x<1 

u(0)=0 

Use the Crank-Nicholson difference scheme defined by (4.40) and (4.41). The numer-

ical results are summarized in Table 4.6.1 where u(0) and u(1) is the steady state of 

the numerical solution of (4.64) at endpoints x = 0 and x = 1 respectively and v(0) 

and v(1) is numerical solution of (4.59) at endpoints x = 0 and x = 1 respectively. 

The biggest error in Table 4.6.1 is 0.00025 and the smallest error is 0.000004. Com-

paring with Table 4.2.3, it is easy to see that for the same parameters the values of 

u(0) and u(1) in Table 4.6.1 are greater than that in Table 4.2.3. 

For the case when a depends on u(x, t), the equation is the same as (4.64) except 

that a = . The scheme (4.43) and boundary central difference scheme 

(4.41) are used. The numerical results are summarized in Table 4.6.2. Similarly as 

(4.64) 
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in § 4.2.2, I = VT  and a = (1+IA f1'7Udz)2 u(0) and u(1) represent the numerical 

solutions ( at both endpoints r = 0 and x = 1) obtained with initial values u,o all 

zeros; v(0) and v(1) represent the numerical solutions obtained with initial values 

u,o greater than 1.0. 

Table 4.6.1 

a /3 u(0) u(1) v(0) v(1) error 

3.50 0.250 1.836574 1.674007 1.836824 1.674157 0.000250 

2.50 0.250 1.797332 1.631792 1.797487 1.631837 0.000155 

1.00 0.250 1.641450 1.476472 1.641456 1.476449 0.000023 

0.90 0.250 1.617426 1.453506 1.617425 1.453485 0.000021 

0.80 0.250 1.588639 1.426191 .1.588637 1.426177 0.000014 

0.70 0.250 1.553291 1.392912 1.553296 1.392908 0.000004 

0.50 0.250 1.448911 1.295864 1.448927 1.295889 0.000025 

0.40 0.250 1.363989 1.217883 1.364019 1.217913 0.000030 

0.35 0.250 1.304856 1.163926 1.304904 1.163972 0.000048 

0.30 0.250 1.225620 1.091959 1.225690 1.092025 0.000070 

0.25 0.250 1.106199 .984013 1.106335 0.984140 0.000136 

End point values of the time dependent solution 

as t -+ cc and of the steady state solution. 

From Table 4.6.2, it is easy to see that when /3 < 0.4098, only one numerical 

solution is obtained; when /3 ≥ 0.4098, there are two numerical solutions obtained. 

Actually, there are three steady state solutions when /3 > 0.4098. However, from 
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Table 4.6.2, only two solutions are obtained. The reason is the same as in § 4.2.2, 

i.e., the third steady state solution is unstable so it is not obtained numerically. Also, 

comparing Table 4.6.2 with Table 4.2.4, it is seen that, when ,8 < 0.4098, the cold 

solutions are the same in Table 4.2.4 and Table 4.6.2. They should of course be the 

same since when ,5 < 0.4098, u(0) and u(1) are values for the all cold solution. When 

8 < 0.4098, the one solution in Table 4.6.2 is greater than that in Table 4.2.4. 

Table 4.6.2 

I u(0) u(1) I v(0) v(1) 

.6000 .4762E-1 .7369E+0 .5668E+0 .8237E+0 .1984E+1 .1815E+1 

.5000 .4762E-1 .8503E+0 .6802E+0 .8568E+0 .1985E+1 .1840E.+-1 

.4500 .4762E-1 .9258E-f.0 .7558E+0 .8726E+0 .1986E+J. .1852E+1 

.4100 .4762E-1 .9996E+0 .8295E-i-0 .8850E+0 .1986E+1 .1862E+1 

.4099 .4762E-1 .9998E+0 .8297E+0 .8850E+0 .1986E+1 .1862E+1 

.4098 .4762E-1 .1000E+1 .8299E+0 .8850E+0 .1986E+1 .1862E+1 

.4000 .8706E+0 .1987E+1 .1865E+1 .8880E+0 .1987E+1 .1865E+1 

.3000 .9176E+0 .1988E+1 .1890E+1 .9176E+0 .1988E+1 .1890E+1 

.2500 .9319E+0 .1989E+1 .1904E+1 .9319E+0 .1989E+1 .1904E+1 

.2000 .9459E+0 .1990E+1 .1917E+1 .9459E+0 .1990E+1 .1918E+1 

End point values of time dependent solutions as t -+ oo for different initial values. 
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4.6.2 Smooth Function for NTC Problem 

As in § 4.6.1, two cases are considered. One case is that a is fixed and the other 

is that a is a functional of u(x,t). For convenience, the time dependent problem is 

written as 

{8tz - 82u at OX 2 +aq(u) 

u(0)=0 

,0 < a < 1 

,u(1) +/3u(1) = 0 
(4.65) 

where a and /3 are fixed constant parameters, q(u) is defined by (4.60). The numerical 

results are summarized in Table 4.6.3. Similarly as in § 4.3, there should be three 

solutions for I E [0.3890 x 10, 0.3850 x 10—'] ( where I = However, only 

two solutions are obtained. The solution which is in transient region is unstable, so 

it is impossible to get it numerically. From Table 4.6.3, it is easy to see that the two 

solutions are either less than 1 or greater than 2, actually for these two cases the 

exact solutions are given. Thus it is practical to compare the numerical results and 

exact solutions. They match very well. 

As for a depends upon u(r, t), the problem is same as Eq.(4.65) and except that 

a =  1 1  which is different from PTC problem. The numerical results are (sa+f0 q(u)d_)2 
listed in Table 4.6.4, where u(0), u(1) and v(0), v(1) are numerical solutions at the 

end points x = 0 and x = 1 respectively, and also the numerical solutions of u and v 

are obtained by the same program except that the initial values u(j),j = 1,... , 51 

for u are all zero and initial values v(j),j = 1,.• , 51 for v are greater than 1. From 

Table 4.6.4, it is easy to see that, when /3 is close to or greater than 0.4098, there 

are two numerical solutions ( actually, there should be three solutions, one of them 
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I u(0) u(1) w(0) w(1) 

.3890E-03 .225076E+01 .200426E+01 .102417E-03 .907926E-04 

.2295E-02 .783094E+02 .696083E+02 .355357E-02 .315874E-02 

.4200E-02 .262269E-i-03 .233128E+03 .119053E-01 .105825E-01 

.6106E-02 .554322E+03 .492731E+03 .251645E-01 .223685E-01 

.8011E-02 .954162E-i-03 .848144E+03 .433173E-01 .385043E-01 

.9917E-02 .146221E+04 .129974E-j--04 .663825E-01 .590067E-01 

.1182E-01 .207723E+04 .184642E+04 .943042E-01 .838260E-01 

.1373E-01 .280278E+04 .249136E+04 .127245E+00 .113106E-i-00 

• 1563E-01 .363217E+04 .322860E+04 .164899E+00 • 146577E+00 

• 1754E-01 .457412E+04 •406589E-l-04 .207663E+00 .184590E+00 

• 1944E-01 •561877E-i-04 .499446E+04 •255090E+00 .226747E+00 

.2135E-01 .677711E+04 .602410E+04 •307679E+00 .273492E+00 

•2326E-01 •804392E+04 •715016E+04 •365192E-+.00 •324615E-i-00 

•2516E-01 •941174E+04 •836599E+04 •427291E+00 .379814E+00 

•2707E-01 •108949E+05 •968440E+04 •494629E+00 •439670E+00 

•2897E-01 .124780E+05 .110916E+05 .566500E+00 .503555E+00 

•3088E-01 •141776E-+-05 .126023E+05 .643662E+00 •572144E+00 

.3278E-01 .159759E+05 .142008E+05 •725306E+00 .644716E+00 

.3469E-01 •178919E+05 •159039E+05 .812291E+00 •722037E+00 

.3659E-01 .199055E.+-05 .176938E+05 .903708E+00 .803296E+00 

•3850E-01 .220379E+05 .195892E+05 .100052E+01 •889349E+00 

End point values of solutions as t - 4 oo of (4.65). 
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is unstable, so it is difficult to get it numerically). For /3 < 0.4098, there is only one 

solution. It is noticed that both Table 4.6.2 and Table 4.6.4 have same phenomena, 

that is, the temperatures at center point are almost the same while the temperatures 

at right end point increase as /3 decreases. 

Table 4.6.4 

/3 I u(0) u(1) I v(0) v(1) 

.6000 .4762E-1 .7369E+0 .5668E+0 .5502E-2 .1996E-+-1 .1268E+1 

.5000 .4762E-1 .8503E+0 .6802E+0 .4794E-2 .1996E+1 .1352E+1 

.4500 .4762E-1 .9258E+0 .7558E+0 .4414E-2 .1996E+1 .1399E+1 

.4100 .4762E-1 .9996E+0 .8295E+0 .4096E-2 .1996E+1 .1438E+1 

.4099 .4762E-1 .9998E+0 .8297E+0 .4095E-2 .1996E+1 .1438E+1 

.4098 .4762E-1 .1000E+1 .8299E+0 .4095E-2 .1996E+1 .1438E+1 

.4000 .4762E-1 .1020E+1 .8496E+0 .4015E-2 .1996E+1 .1449E+1 

.3000 .4015E-2 .1996E+1 .1560E+1 .4015E-2 .1996E+1 .1560E+1 

.2500 .2681E-2 .1996E+1 .1622E+1 .2681E-2 .1996E+1 .1622E+1 

.2000 .2183E-2 .1996E+1 .1689E+1 .2183E-2 .1996E+1 .1689E+1 

End point values for solutions of coupled NTC problem 

as t -+ eQ for different initial values. 

4.7 Conclusion for the Numerical Results 

In the above several sections, different numerical methods are used. The numeri-
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cal experiments for steady state PTC and NTC problems, time dependent PTC and 

NTC problems, PTC and NTC problems with smooth functions are 

Figure 4.7.1 
Surge For PTC Problem 

t 

Lower curve is u(1) and upper curve is u(0) as functions oft 

performed. From the numerical results, the properties of PTC and NTC problems 

are quite different. One of the important different properties is that if the external 

circuit is not connected for certain fixed c and 16 PTC problems have only one 

solution but NTC problems have three solutions. However, if the external circuit is 

connected, the situations are the same and they all have one, two or three solutions 

with respect to different parameters a and P. Another common property is that 
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all time dependent solutions with the external circuit have surges. For Figure 4.7.1, 

Figure 4.7.2, Figure 4.7.3 and Figure 4.7.4, /3 = 0.25 is fixed. The value /3 = 0.25 is 

chosen because for this /3 there is only one solution which is greater than 1, thus the 

surges will appear. 

Figure 4.7.2 
Surge For Smooth PTC Problem 

t 

Lower curve is u(1) and upper curve is u(0) as functions oft 

In order to get data for the four figures in this section, the. Crank-Nicholson 

difference scheme is used. The interval [0, 1] is divided into 50 equidistant pieces 

so that there &e 51 unknowns. In the figures, u(0) and u(1) are the numerically 

obtained values at end points x = 0 and x = 1 respectively. t coordinate is for time. 
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For Figure 4.7.1 and Figure 4.7.2, the equations are as follows: 

{8u_02tz   i - + (1+1410 Au)( or 
f(u)( or p(u)) 

p(u))dz)2 ,O < x < 1 

U(0)  0  ,ua,(1) +,3u(l) = 0 

where f is defined by (4.2) and p(u) is defined by (4.57), ,6 is a fixed parameter. As 

Figure 4.7.3 
Surge For NTC Problem 

t 

Lower curve is u(1) and upper curve is u(0) as functions oft 

for Figure 4.7.3 and Figure 4.7.4, the equations are as follows: 
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where g(u) is defined by (4.44) and q(u) is defined by (4.60). The difference of the 

two equations above is in the denominator of the second term on the right hand 

side. This difference makes the figures look a little bit different. For Figure 4.7.1 

and Figure 4.7.2, the graphs change smoothly when surges appear. For Figure 4.7.3 

and Figure 4.7.4, the graphs change rapidly and steeply when surges appear. Also 

the difference between u(0) and u(1) for FTC problems are smaller than that for 

NTC problems. 

Figure 4.7.4 
Surge For Smooth NTC Problem 

t 

Lower curve is u(1) and upper curve is u(0) as functions oft 

From the four figures, it is easy to see that for smooth functions more time 
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is required to reach their steady state. For the smooth functions, whenever the 

solutions reach their steady states, they will satisfy the stopping criterion ( the 

absolute maximum of difference between two time steps at each nodes is less than a 

fixed small number) very quickly. Another common property for the problems with 

smooth functions is that the numerical values are greater than that obtained from 

the corresponding original ones. 

As it is known, when @ < 0.4098, there is only one solution which is greater than 

1 and the surges also appear. Thus the numerical experiments are also done for /3 = 

0.40, 0.35, 0.30, 0.20, 0.15, 0.10 and 0.05, the results and figures look similar. They 

all are between 1 and 2. The difference between u(0) and u(1) for NTC problems 

is greater than that for FTC problems. The graphs for NTC problems change more 

rapidly and steeply than for FTC problems. 
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Chapter 5 

Convergence and Stability Analysis 

Since the steady state solutions for time dependent problems are not unique 

for some parameters, is it possible to get all solutions numerically? In the actual 

numerical experiments, it seems difficult to obtain some solutions. As mentioned in 

4.2.2 for Eq. (4.42), it is difficult to get the numerical solution, corresponding to the 

one spanning cold and transient regions, which theoretically exists. Now through 

discussion of linear stability, though a direct proof is not obtained, the numerical 

results would give some indication for that situation. 

5.1 Linear Stability Analysis 

Here a general idea of linear stability analysis [13, 14, 29, 30, 31, 49] is discussed. 

Generally for 

du 
t>0 & u(0,x)_—uo(x)dt 

where F(x, u) is a continuously differentiable function of x and u, x is a space 

coordinate in the interval [0,1] and 1 is a constant, u0 (x) is a function of x and 

independent on t. Let u1 (x) satisfy 

F(x, u) = 0 (5.2) 
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Then u1 (x) is said a steady state solution of (5.1) with initial value u1 (x). 

Definition 5.1 Suppose the solution of Eq. (5.1) exists and is denoted as u(t, x). 

A steady state solution u1 (x) is said to be stable if for any e there exists a S such 

that 

Iu(t,x)—ui(x)I≤e, t>O 

whenever Iu(O, x) - ui(x)I <Se. If a steady state solution of (5.1) is not stable, it is 

said to be unstable. 

Obviously, if a steady state solution of (5.1) is unstable, it is hard to get that 

solution by a numerical method because any error for initial values will grow. How-

ever, is it possible for us to know for what kind of function F the corresponding 

solution is stable? 

Let ui(x) be a solution of (5.2) and u(t, a,) be a solution of (5.1) corresponding 

to the initial value u0 (x) which is close to u1 (x). Let S be an arbitrary small number 

and v(t, x) an arbitrary function such that 

u(t,x) = ui(x) +Sv(t,x) 

Substitute u(t, x) into (5. 1), thus 

= F(x, u1(x) + Sv(t,x)) - F(x,ui(x)) 
dt 

= F(x,ui(x))5v(t,x) + R(x,ui(x),v(t,x),5) 

(5.3) 

If S is very small and R is of higher order in 8, lim,o LL = 0, it would appear that 

the behavior of the solution of (5.3) is determined by the linearized equation 

dv 
= F(x,ui(x))v(t,x) (5.4) 
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A basic result about stability may be stated as follows. For convenience, denote 

F(x,ui(x)) (5.5) 

Theorem 5.1 [13, 14, 29, 31, 49] Let ui(x) be a steady state solution of (5.1) 

and assume that 

F(x,ui(x) + 8v(t,x)) = F(x,ui(x))5v(t,x) + R(x,ui(x),v(t,x),5) 

where the remainder term R is 0(52) for 5 sufficiently small. Then u1(x) is stable 

if ,c < 0 and unstable if ic > 0, where ic is given by (5.5). # 

The theorem 5.1 is for the case where Fu is a scalar function of x and u, etc.. If 

it is an operator, the result is true except that instead of using the sign of Fu the 

sign of the eigenvalues is used. The more general result may be stated as follows: 

Theorem 5.2 [14, 29, 31, 49] Let ui(x) be a steady state solution of (5.1) and 

assume that 

F(x,ui(x) + 5v(t,x)) = F(x,ui(x))Sv(t,x) + R(x,ui(x),v(t,x),5) 

where the remainder term R is 0(52) for S sufficiently small and F is a self-adjoint 

operator. Then u1 (x) is stable if all eigenvalues of F are less than zero and unstable 

if at least one of the eigenvalues of Fu is greater than zero. # 

To find an eigenvalue for our operator is not easy. However, for a self-adjoint 

operator, even if it is not easy to find its eigenvalues, it is still possible to tell 

whether the operator has a negative eigenvalue or not. This result is based on the 

Rayleigh quotient. If A : X - X is a self-adjoint operator, where X is a Hubert 

space, 

R(x) --  (Ax, x)  
(X7 X) 
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is said to be the Rayleigh quotient[14, 31]. If IJxII = 1, then R(x) = (Ax,x). It is 

easy to see that if x is an eigenvector and A is an eigenvalue, then R(x) = A. Define 

LA = inf R(x) = mi (Ax, x) (5.6) 
zEX,xO aEX,IIxfl=1 

and 

UA = sup R(x) = sup (Ax, x) (5.7) 
xEX,0 XEX,lIzfl=1 

Hence, if A is bounded below, LA is finite; if A is bounded above, UA is finite. 

Theorem 5.3 [14, 31] Let A be symmetric and bounded below. If there is an 

element x E X for which the infimum in (5.6) is attained, (LA, x) is an eigenpair 

and LA is the lowest eigenvalue of A. Similarly, if there is an element y E X for 

which the supremum in (5.7) is attained, (UA, y) is an eigenpair and UA is the largest 

eigenvalue of A. 

From theorem 5.3, if A is a self-adjoint operator and there is a function which 

makes the Rayleigh quotient negative, then there is at least one negative eigenvalue 

for A. Similarly, if there is a function which makes the Rayleigh quotient positive, 

then A has at least one positive eigenvalue. 

5.2 The Numerical Results for Stability and Stability Analysis 

Based on the general ideas in §5.1, the NTC problem met in §4.4 and §4.6.2 will. 

be discussed now. Suppose u0(x), a0 = 7102 is a steady state solution of (2.10). Thus { d2fu0(x) 
2 +aog(uo(x))=0 , 0<x<1 

uo,(t, 0) = 0 1 uo,,(t, 1) + /3u0 (t, 1) = 0 
(5.8) 
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where g is defined by (3.16) ( or ) )' a0 = 71, 10 = 

Using the linearized stability analysis method, set 

u(t,$) = U0 (X) + 5v(t,$) (5.9) 

with 5 small. Substituting in (2.10), then 

JJ=J+7I2g(u) ,0<x<1 
[ u(t,0)=0 ,u(t,1)+ flu (t,1)=0 

where I = Since = 0 and u0(x) satisfies (5.8), therefore 

J&Lv = . a + &0.2 L2"- + 'yl2g(uo + Sv) , 0 <s < 1 

v(t,0) =0 ,v(t,1)+,8v(t,1) =0 

So if we can solve Eq.(5.10) and get v(t, x), then according to the decaying or growing 

of v(t, x) we can say that the steady state solution of (2.10) is stable or unstable. 

However it is not easy to get the solution to Eq.(5.10). A linearized method is used 

to obtain an approximate solution to Eq.(5.10). Using a Taylor expansion, thus 

g(uo + Sv) = g(u0) + g'(uo)Sv + R1 

where R1 is of higher order in 5, and 

1= 

p+f g(to)dz+5f0' g'(to)vdz+... 

-  Jo  
- 1+61of01g'(uo)vdz+... 

1 

p + f(g(uo) + g'(uo)Sv + Ri)dx 
1 

* + 5f g'(uo)vdx + .. 
10(1-5Ioj g'(uo)vdx+...) 

(5.10) 

where means the omitted part contains terms with higher order ( at least 2) of 

J. Similarly, using the above results 

712 = 102  - 2510 j  g'(uo)vdx +...) 
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and 

712g(u) = 7I(1 - 2810 JJ g' (vo)vdx + • .)(g(uo) + g'(uo)Sv +..) 

= 7Ig(uo) + 5(7Ig'(tto)v - 271g(u0) fJ g'(uo)vdx) + 

If we omit all terms which contain higher orders of 5 and divide by S on both sides, 

then Eq.(5.1O) becomes 

{ v - 82v 
- + 'yIg'(uo)v - 2'yIg(uo) f0' g'(uo)vdx , 0 < x < 1 

v(t,O) = 0 ,v(t,1) +,8v(t,1) = 0 
(5.11) 

As it is known, the operator on the right hand side of Eq.(5.11) is not a self-

adjoint operator. Even if there is a function which makes the right hand side to be 

negative, it could not be said that there is a negative eigenvalue for that operator. 

However, in the NTC problem since g'(uo) > 0 the term —2'yI3g'(u) f0' g(tio)vdx is 

a stablizing term ( by experience), adding this term to the right hand side makes 

the right hand side operator self-adjoint. If the modified operator is unstable, the 

original operator should be more unstable. Thus, instead of considering Eq. (5.11), 

the following equation is considered. 

{ 
= ,92 + 'yIg'(uo)v - 27Ig(uo) f L g'(uo)vdx 

—271W(uo) fc;L g(uo)vdx , 0 < x < 1 

v(t,O) =0 ,v(t, 1)+f3v(t, 1) =0 

(5.12) 

Therefore, if the operator on the right hand side of Eq.(5.12) has positive eigen-

value, then the steady state solution uo(x) is unstable. The following method is just 

one to demonstrate that the right hand side operator of Eq.(5.12) has positive eigen-

value. To form the Rayleigh quotient (Ax, x)/IIxII2, now multiply the right hand 
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side of the first equation of (5.12) by v and integrate from 0 to 1 with respect to x, 

thus 

R(v) J1 v2dx = f v3,vdx + -y102j' g'(uo)v2dx - 47I f03  g(tto)vdx g'(u)vdx 
0 JO 

Simplifying 

R(v) j v2dx = vv - j vdx + 7I j g' (uo)v2dx - 47I j g(zto)vdx j g'(uo)vdx 

Using the boundary conditions 

R(v) j1 v2dx = —13v2(1) - f' vdx + 7I j g'(uo)v2dx (5.13) 

—4-y 103 j y(uo)vdx j g'(uo)vdx 

To examine if there is a function which makes the right hand side of Eq.(5.13) to be 

positive or not choose v(x) = cos(Ax) then 

hence 

R(v) jo Cos 2(Ax)dx = —$cos2) - j' A2sin2(Ax)dx 

+'yI j g'(uo)cos27tx)dx 1 

—4'yI f g(uo)cos(Ax)dx j g(uo)cos(Ax)dx 

R(v)(1 + sin(2A)) = —j3c0s2(A) - A2 sin(2A) 2A 

+_Y102j' g'(uo)cos2(Ax)dx 

For convenience, denote 

(5.14) 

—4-y103 j' g(uo)cos(Ax)dx g'(uo)cos(Ax)dx 

R(v) = A(uo,c,p,3,A) = 1  
(1+ sin(2A))1 kos2 (5.15) 
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1(1 sin (2A)) + 7Ij'g'(uo)cos2 
2 2A (Ax)dx 

—4,yIO3 f' g(uo)cos(Ax)dx f1 g'(uo)cos(Ax)dx] 
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Thus (5.15) is the Rayleigh quotient. That's why in the following the sign of 

A(uo, c, p, /3, A) is discussed. Considering the boundary conditions, choose A so that 

v,(0) = 0, v(1) +,8v(1) = 0 

Therefore 

—Asin(A) + /3cos(A) = 0 

Atan(A) = 3 (5.16) 

As it is known, there are infinitely many solutions to Eq.(5.16). However, to prove 

that the operator on the right hand side of Eq.(5.12) has a positive eigenvalue, if 

we can find one A for which cos(Ax) makes A(uo, a, p, /3, A) positive, then based on 

the general discussion in § 5. 1, the operator on the right hand side of Eq.(5.12) has 

positive eigenvalue, so the smallest positive solutions of (5.16) can be taken. Results 

obtained giving A for various /3 are summarized in Table 5.1.1. 

Table 5.1.1 

A # A /3 A /3 A 

.100 .31105286 .250 .48009443 .400 .59324193 .550 .68005705 

.150 .37787765 .300 .52179116 .450 .62444466 .600 .70506549 

.200 .43284073 .350 .55922329 .500 .65327120 .650 .72850811 

Smallest solution A of (5.16) for given P. 
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Now we have the values of /3 and A. The three solutions of Io (i.e., ao) and u0 

for the steady state situation can be obtained numerically. Thus, when /3> 0.4098, 

there are three solutions, that means there exist three different values of a for a fixed 

P. 

Table 5.1.2 

/3 A a /3 A a 

0.450 0.62444466 

0.34013605e+00 

0.500 0.65327120 

0.34013605e+00 

O.24069230e-O2 0.28149190e-02 

0.33633682e+00 0.33233449e+00 

0.550 0.68005705 

0.34013605e+00 

0.600 0.70506549 

0.34013605e+00 

0.32305950e-02 0.36516950e-02 

0.32855827e+00 0.32496199e+00 

0.650 0.72850811 

0.34013605e+00 

0.700 0.75055808 

0.34013605e+00 

0.40758720e-02 0.45013170e-02 

0.32153054e+00 0.31825082e+00 

Values of a and A for given P. 

As discussed in §4.3.2, there always exists a cold solution with 

-y12 71 

thus 10 = j-f. Therefore for /3> 0.4098, there always exists a cold solution with 
10 = 1 i.e., a0 is fixed though /3 is different. It is easy to see from Figure 4.3.4, 
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one other a ( corresponding to the solution spanning cold and transient regions) 

should be close to a0 and the third one corresponding to the whole solution in the 

Table 5.1.3 

A a u(0) u(1) A(uo,a,p,f3,A) 

0.45 0.62444466 

0.34013605E+0 0.92592603 0.75585800 -0.77986223 

0.33633682E+0 1.03792620 0.83581495 2.38273615 

0.24069231E-2 1.64676213 1.22786081 -33.17415905 

0.50 0.65327120 

0.34013605E-i-0 0.85034019 0.68027216 -0.85352647 

0.33233449E+0 1.06160045 0.82755232 3.27942348 

0.28149190E-2 1.64484048 1.18660295 -35.73973656 

0.55 0.68005705 

0.34013605E+0 0.78849727 0.61842924 -0.92495513 

0.32855827E+0 1.08037066 0.81649649 3.87784278 

0.32305950E-2 1.64317393 1.14788091 -38.15972233 

0.60 0.70506549 

0.34013605E+0 0.73696148 0.56689346 -0.99423480 

0.32496199E+0 1.09650326 0.80412000 4.42084587 

0.36516951E-2 1.64167249 1.11149311 -40.44283008 

0.65 0.72850811 

0.34013605E+0 0.69335431 0.52328628 -1.06144810 

0.32153055E+0 1.11053240 0.79098970 4.90334769 

0.40758718E-2 1.64029598 1.07726705 -42.60123539 

0.70 0.75055808 

0.34013605E+0 0.65597671 0.48590869 -1.12667477 

0.31825081E+0 1.12317467 0.77747375 5.25375581 

0.45013172E-2 1.63901687 1.04503202 -44.64574623 

Table to demonstrate the stability of solution of the NTC problem. 
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transient region is far away from the other two. The different values of a correspond-

ing to the 6 and A are listed in Table 5.1.2. The values of a and /5' are obtained by 

the methods discussed in § 4.1.2 and 4.2.2. 

Now the value of A(uo, a, p, /3, A) can be numerically evaluated. Using the data 

given in Table 5.1.2 and the corresponding u0(x) ( actually the values are numerically 

obtained at meslipoints), the numerical values of A(uo, a, p, /3, A) and the values of 

uo(0) and uo(1) are listed in Table 5.1.3. Here the integrals in (5.15) are evaluated by 

a trapezoidal rule over the values of u at the meshpoints. From Table 5.1.3, it is found 

that the values of A(uo, a, /17,8, A) assume positive numbers for the solution spanning 

cold and transient regions, that means that the operator on the right hand side of 

Eq.(5.12) has positive eigenvalue, thus the corresponding solutions are unstable. 

So this numerical result gives some indication why we can not get that solution 

for the time-dependent problem even if we take the initial values very close to the 

solution. As for the other two solutions, it seems that they are stable ( the values 

of A(uo, a, p, P, A) assume negative numbers at those solutions) and the numerical 

results for steady state problems agree very well with the numerical results obtained 

for time-dependent problems. 
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Chapter 6 

Conclusion 

In this dissertation, attention has been focused on a system of nonlinear parabolic 

equations which model the thermistor. First, a partial differential equation which 

describes the heat and current distribution within a thermistor is given, then under 

some specified boundary conditions two types of nonlinear one ( space) dimensional 

parabolic equations are derived. One type has the PTC property, and the other has 

NTC property. 

Theoretically, existence and uniqueness ( whenever applicable) are studied both 

for steady state and time dependent problems. The properties of the solutions 

are thoroughly discussed. Three methods are employed to prove the existence and 

uniqueness for steady state problems. One is to transform the original differential 

equations into integral equations. By proving the existence and uniqueness of the 

solutions for integral equations, existence and uniqueness for original problems are 

obtained. 

The other method is to change the variables. Instead of the original boundary 

value problems being considered, corresponding initial value problems are studied. 

From the relationship of the original boundary value problems and the initial value 

problems, the existence and uniqueness are obtained again. 

The third method is a monotone method. By using concept of upper and lower 

solutions, existence and uniqueness for steady state problems are obtained. As for 

the time dependent problems, if the external circuit is not connected, existence and 
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uniqueness are obtained too. If the external circuit is connected, existence and 

uniqueness are obtained only for the PTC type problem. 

Many numerical experiments are done both for steady state problems and time 

dependent problems. There are three methods used to obtain numerical solutions. 

The first one is a shooting method which is used for steady state problems. The 

second one is moving meshpoint method in which the stepsize, interval length and 

the number of meshpoints are changing according to some interface conditions. The 

third one is fixed meshpoints in which the stepsize, interval length and the number of 

meshpoints are fixed. Obviously, the moving meshpoint method is more complicated 

than the fixed meshpoint method. Numerical results showed that accuracy of the 

numerical solutions obtained by the moving meshpoint method is better than that. 

obtained by the fixed meshpoint method. Since the algorithm for the moving mesh-

point method is much more complicated than that for the fixed meshpoint method, 

the advantage of the moving meshpoint method is jeopardized though the precision 

is improved by using moving meshpoint method. The fixed meshpoint method gives 

steady state solutions which agree sufficiently with those obtained by other meth-

ods. Hence the moving meshpoint method is only used once for PTC problem. For 

most problems considered the conductivity used is continuous but not differentiable 

everywhere, for comparison, the same problems with smooth conductivity are nu-

merically solved. Many numerical results are obtained. Numerical results for typical 

parameters are listed in several tables and some of them are demonstrated in figures. 

The solutions for the problems with smooth conductivity change more smoothly at 

interface points than the solutions for original problems with the non-differentiable 

conductivity. 
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As one of the three ( if there are three) solutions can not be found numerically, 

the concept of stability and instability is reviewed. Thus the stability and instability 

of solutions are briefly discussed. 

In this dissertation, not only the NTC problem is studied as in most other liter-

ature [3, 4, 35, 36, 37, 38, 40, 41], the PTC problem is also studied in detail. The 

different properties of PTC and NTC problems are also reflected in their solutions. 

Those properties are studied thoroughly. For FTC problem, if the external circuit 

is not connected, for the given parameters a and 8, there always exists one solu-

tion. But for NTC problem, if the external circuit is not connected, for some given 

parameters a and P, there exist three solutions, for some other given parameters a 

and /3, there exist only one solution. All solutions of the steady state PTC and NTC 

problems can be numerically obtained. As for time dependent problems without 

external circuit, the solution of the PTC problem can be numerically obtained since 

there is only one solution and the numerical solution agrees sufficiently well with 

the numerical solution of the corresponding steady state PTC problem. The NTC 

problem has three solutions, but only two of them can be numerically obtained. One 

of them seems quite unstable and for any initial value the solution converges to one 

or another of the stable solutions, the third solution can not be obtained numerically 

even if it exists theoretically. If the external circuit is connected, both for FTC and 

NTC problems there exist three situations. That is, there exist one, two or three 

solutions for different parameters a and P. If there exist three solutions for the time 

dependent external circuit connected problems, the common property of the solu-

tions for FTC and NTC problems is that one of the three solutions is numerically 

unstable. If there exist one or two solutions, all of them can be numerically obtained. 
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Though many theoretical and numerical results have been obtained, there are 

still some uncertainties, such as uniqueness ( at most locally) for NTC problems 

and a direct proof of the instability, etc. Currently, there seems to be little literature 

contributed to two dimensional problems. 
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Appendix A 

IMSL Subroutine IVPRK[50] 

There are lots of IMSi subroutines installed in AIX machines. Here only the 

related subroutine is included. 

Name: IVPRK ( Single Precision) 

Purpose: Solve an iniatial-value problem for ordinary differential equations 

using the Runge-Kutta-Verner fifth-order and sixth-order method. 

Usage: CALL IVPRK(IDO,N,FCN,T,TEND,TOL,PARAM,Y) 


