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ABSTRACT

A coupled pair of nonlinear parabolic partial differential equations, which describe
two dimensional heat and current distribution within a thermistor, is reviewed and
discussed. For certain boundary conditions two nonlinear parabolic one ( space )
dimensional differential equations and their corresponding steady state differential
equations with different properties are derived from these equations. As the two kinds
of partial differential equations have different properties, which are called PTC and
NTC respectively, they are discussed separately. Several different methods are used
for the theoretical study of the equations. One method is to transform the differential
equations into integral equations, through the proof of existence and uniqueness of
integral equations, hence existence and uniqueness are obtained. Another method
is to change the variables and to change the original boundary value problems to
initial value problems. By proving existence and uniqueness for the initial value
problems, existence and uniqueness are obtained again. The third one is a monotone
method. By using the concept of upper and lower solution, existence and uniqueness
(if applicable ) are proved. Since the property of the Joule heating function for NTC
problems is quite different from that for PTC problems, only existence is obtained
and under some special meaning a uniqueness is also obtained. Many numerical
experiments have been done. Numerical results are listed in tables and demonstrated
by figures. The common property for time dependent problems with an external
circuit is that the solutions have a surge. For some unstable solutions, a brief stability

analysis is given.
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CHAPTER 1. INTRODUCTION 1

Chapter 1
Introduction

In this dissertation, attention is focused on a system of nonmlinear parabolic
( heat diffusion ) differential equations which model the thermistor, an electrical
device which is widely used for surge protection, etc. A review of results for the
problem is given in chapter two. By considering different boundary conditions two
different one ( space ) dimensional problems are derived. One problem is called PTC
problem and the other the NTC problem. This dissertation is devoted to both nu-
merical solutions and existence of theoretical solutions of these problems as they are
related to thermistors.

In recent years an active branch of numerical solutions for nonlinear partial dif-
ferential equations is in the solution of problems with moving boundaries. To solve
such problems, a moving finite element method [23, 24, 25, 26, 27, 28] may be used.
According to M.J. Baines [27, 28], this method was invented by K. Miller [25] who
used it to approximate the solution of diffusion problems with steep moving fronts.
The main idea is that the meshpoints are allowed to move according to the condi-
tions at the interface points ( or curve ). The governing equations at the moving
meshpoints are adjusted and the meshsize changes correspondingly. One possible
application of moving boundary problems is to the problem of the thermistor.

A typical mathematical description of heat distribution within the thermistor is
given by nonlinear parabolic equations. Its corresponding steady state equation is

a nonlinear elliptic equation. The boundary conditions considered here are Robin
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boundary conditions.

X. Chen and A. Friedman [37, 38, 39], by using the concept of weak solution,
proved the existence of a solution for this problem. They also use a conformal
mapping method to prove the existence and uniqueness. H. Xie and W. Allegretto
[40, 41] discussed the existence of solutions under certain assumptions in which ()
and k(u) take some special forms. D.R. Westbrook [1] gave some numerical methods
for obtaining approximate solutions of some steady state problems. More recently
A.C. Fowler, 1. Frigaard and S.D. Howison[3] have used perturbation and numerical
methods to examine a one dimensional time dependent problem which is a special
case of the general problem ( this is the problem which is here called the NTC
problem ).

Here we also concentrate on one dimensional equations. Numerical experiments
are described and some theoretical proofs of existence and uniqueness of solutions
have been studied.

In § 3.1, § 3.2 and § 3.3, steady state problems have been considered. They
are divided into two cases, NTC ( negative temperature characteristic ) and PTC
( positive temperature charactefistic, both to be defined in § 2.1 ), which are quite
different. The PTC problem has a unique solution for given parameters and bound-
ary conditions but the NTC problem may have more than one solution for some
given parameters and boundary conditions. Therefore, different methods are needed
to prove the existence ( also uniqueness if applicable ). We define an operator to
transform the differential equations into integral equations and then prove the equiv-
alence of the differential and integral equations. Though the operator itself is not a

contraction operator, it can be proved that a power of that operator is a contraction
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operator. Therefore, by using the fixed point principle, there is a fixed point for that
operator. As has béen mentioned, there are more than one solution for NTC, so that
uniqueness is only proved for the PT'C problem. Although the uniqueness is lost for
NTC problems, the uniqueness is still true in some other sense ( refer § 3.3 ). The
existence, uniqueness and nonuniqueness have also been studied both for NT'C and
PTC problems when an external circuit is connected.

In chapter 4, many numerical experiments have been done. For the steady state
situation, numerical results coincide very well with the theoretical ones. Approximate
relations of parameters are also given for one, two and three solutions. For time
dependent problems, two methods are used. One is a moving mesh finite element
method, the other is for fixed meshpoints. Numerical solutions by both methods
converge to the numerical solutions of the steady state problems. If external circuitry
is connected, for some parameters, 1';here are more than one steady state solution,
one of which is numerically unstable. The details and numerical experiments are
given in chapter 4. The comparison of numerical results obtained by both methods
has been made. Several figures have been given to demonstrate the results.

In chapter 5, a brief review of stability and-instability is given. The analy-
sis of stability and instability is based on perturbation theory. It was found that
all the steady state solutions could be obtained numerically, thus theoretically, the
corresponding solutions of time dependent problems should converge to one of the
solutions of the steady state problems. However, the numerical experiments show
that for some steady state solutions there are no corresponding solutions of time
dependent problems which converge to these steady state solutions. Hence, there

is a need to discuss the stability of these solutions. The method is to investigate
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the solutions for time dependent problems close to the corresponding solutions for
steady state problems. If some increase rapidly in the neighborhood of solutions of
the steady state problems, the corresponding solutions for time dependent problems
are said to be unstable, otherwise they are stable. As the exact solutions are not
explicit expressions, numerical estimates of the tendency in the neighborhood of the
solutions are obtained. The numerical results coincide with and demonstrate the

conclusion about the stability and instability.
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Chapter 2
Preliminaries and Historical Remarks

In this chapter, we review the basic_ idea of the thermistor problem. In § 2.1,
the basic definitions and conventions are given. From the same basic equation,
two different kinds of one dimensional equation are derived under certain boundary
conditions. One has the PTC property and the other has NTC property. Hence
thereafter, one is called the PTC problem and the other is called the NTC problem.
Most of the recent results have been listed in § 2.2. It can be seen that the most
of them require special conditions. For time dependent problems, the nonlinear
Joule heating terms are always assumed to be monotone, smooth with bounded
derivatives for existence and uniqueness of solutions. A schematic representation of

the thermistor is given in § 2.3.

2.1 Basic Definitions and Conventions

The equations here-describe heat and current distribution within a thermistor.
The thermistor is an electrical device made of ceramic material that can be used as a
current surge regulator[1}. In appearance [3], this is a cylinder of typical radius 5mm
and typical thickness 2mm, connected into its circuit via wires soldered to the top
and bottom; these surfaces are covered with a thin conducting sheet of metal acting

as contact. ( Figure 2.2.1 is a schematic view of the thermistor ). The basis for its
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performance is its temperature-dependent electrical resistivity, which varies strongly
with temperature, increasing by about five orders of magnitude over a temperature
range of 100-200°C ( see Figure 2.2.2 ).

There are two kinds of thermistors:[3] negative temperature characteristic (NTC)
thermistors, whose electrical conductivity o increases with temperature, and positive
temperature characteristic (PTC) thermistors, for which o decreases with tempera-
ture. ( Here positive and negative refer to materials whose resistivity is an increasing
or nonincreasing function of temperature respectively; conductivity is the inverse of

resistivity. )

Figure 2.2.1

Circuit Wire

TT——

Top Solder

Side B Thermistor Side A

A Thermistor

’

The general equations to describe the heat distribution within the thermistor,
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after some scaling of variables, are as follows ( in two dimensions ):

V(o(u)Ve) =0 y—a<z<a, -b<y<b
% = V(k(@)V0) +70()| Ve 5t + Bulon =0

(2.1)

This is a time dependent problem with the two dimensional geometry taken as Carte-

sian rather than axisymmetric ( It is felt that this will not lead to any qualitative

Figure 2.2.2

fCa)

Conductivity as A Function of Temperature

differences in the results ). The corresponding steady state problem is as following:

V(o(u)Ve) =0 y,—e<z<a, -b<y<b
V(k(u) V) + 70 @)V =0 , 8%+ Bulsa =0

(2.2)
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where V is a gradient operator, A is Laplacian operator, Q@ = [—a,a] X [—b,b], u is

a scaled temperature, ¢ is a scaled eleétrical potential, v and 3 are dimensionless

Figure 2.2.3

Switch
/
+VO
R
o Thermistor
Yo

<

Thermistor With External Circuit

parameters, k(u) the thermal conductivity is assumed to be constant and the elec-
trical conductivity o(u) is a function of u which changes rapidly between u = 1 and
u = 2 and is a constant when < 1 or u > 2. The Figure 2.2.2 is a graph of such a
function. Without loss of generality, it can be assumed that b and k(%) are equal to

1. The boundary conditions for the potential ¢ are

¢=%vy on y==1 (2.3)
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and

9¢ _ 09
5 = B =0 on z=za (2.4)

where vg is an unknown constant.

Now consider the case where § = 0 on z = a (i.e., on side A of Figure 2.2.1).

Smce 8“

= 0 on z = a, it is possible for u to be a function of y only. Similarly, %f =0
on z = a and ¢ may also be a function of y only. Thus from the first equation of

Eq.(2.1) (or (2.2) ),

9¢
2oW3H) =
Since o(u) # 0
9 _ C_
o(u)

where C is a constant. Since the average current I is defined by
/ (u) |y_1d:1: = / Cdz=C
Thus s';_z;é = -0{7) By symmetry, %5 =0 on y =0. So Eq.(2.1) and Eq.(2.2) become

‘;’,’;=§§’;+a(u) 0<y<l

(2.5)
uy(0) =0 yUy(1) + Bu(l) =
and for the steady state
d2u =
v + L= a(u) 0 ,0<y<1 (26)
uy(0) =0 2 Uy(1) + Bu(l) =

This problem is hereafter labelled NTC.

Now consider the case where § = 0 on y = 1 (i.e., on the top of Figure 2.2.1).

Since % = 0 on y = 1, the possible solution is that u is only dependent on z,
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therefore, o(u) is only dependent upon z while ¢ is still a function of y only. From

the first equation of Eq.(2.1) ( or Eq.(2.2) )

0 09,
B_y( (U)'ég) =0
ie.,
d?
a(u)d—;g =0
Since o(u) # 0
d¢ _
dy

where C is constant. From (2.3), it is easy to see that ¢ = vy, i.e., C = v. By

symmetry, 3% = 0 on 7 = 0. So Eq.(2.1) and Eq.(2.2) become

%:3—:1;-+7v§a(u) ,0<z<a @)
L0 =0 ,ue)+pula) =0
and
dPu 2
4 yyso(u) =0 ,0<z<a

u5(0) =0 s uz(a) + Pu(a) =0
Having separated the two cases there is no loss in taking a = 1. This case will be

labelled the PTC problem.
For Eq.(2.5), Eq.(2.6), Eq.(2.7) and Eq.(2.8), the external circuit is not consid-

ered. If the external circuit is connected as in Figure 2.2.3, then
V=2W+ 1R,

Rescale it as

l=vy+ Ip (2.9)
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where vy = 22 (unknown ) and p = £ ( parameter ). For Eq.(2.5) and Eq.(2.6),

there is

. 18, 1] 11
v = ¢(1) = b By dy= | mdy— I/o ;(u—)dy
From (2.9), there is

1_1/ AR

thus
-1
g+ o s
Therefore, Eq.(2.5) and Eq.(2.6) become
du _ 9%u al
ot — 9y? + (p+f Ly )2e(e) 0<y<l (2.10)
uy(0) =0 ytuy(1) + Bu(l) =0
and
Pu Y =
& T G e 0 0 <y<d (2.11)
4y (0) =0 »uy(1) + Bu(l) =

For Eq.(2.7) and Eq.(2.8), there is ¢ = vgy, hence the current is

I= /01 a(u)%%lyﬂdz = vy /01 o(u)dz

Similarly, from (2.9), there is

1
l=wv+ ;wo/O o(u)dz

hence

T 1+ p ) o(u)dz
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Therefore, Eq.(2.7) and Eq.(2.8) become

u . 9%u o(u

ou _ &%u
ot 92 + (1+llj;) o(u)de)? ,0 <z<l
u-(0) =0 y Uz (1) + fu(l) =0
and
Loy 20— g<z<1
& T (p To(udo)? ’
u.(0) =0 yuz(1) + pu(l) =0
In most of this dissertation, o(u) is defined as
1 ,u<l
ofu) =4 00D 1<y<2
e~10 ,2<u

12

(2.12)

(2.13)

(2.14)

This follows the definition used by Fowler et al [3] and has the appropriate behav-

ior. Thus by the definition of o(u) Eq.(2.5), Eq.(2.6), Eq.(2.10) and Eq.(2.11) have

NTC property, Eq.(2.7), Eq.(2.8), Eq.(2.12) and Eq.(2.13) have the PTC property.

Hereafter they are referred as PTC or NTC problems respectively. The difference

for these two problems is that the nonlinear term in one is the reciprocal of that in

the other. Therefore, the nonlinear function is monotonically nonincreasing for the

PTC problem and the nonlinear function is monotonically increasing for the NTC

problem. This difference leads to quite different properties for the solution of these

problems.

2.2 Development and Results

Several papers have been written in this area. Most considered the steady state
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equations ( in two dimensions ) as follows

V(e(w)Ve) =0 y—e<z<a, -b<y<b

V(k(U)VU) + aa(u)|V¢|2 =0 ,% + ﬂulan = 0a¢|y=:l:b = i¢0a %?;I::::}:a =0
(2.15)

where A is Laplacian operator, A = V2, Q = [—a,qa] x [-b,b], u is temperature,
¢ is electrical potential, @ and § are dimensionless parameters, k(u) is thermal

conductivity and electrical conductivity o(u) is defined by

1 ,u<l1
o(u) = (2.16)
é ,u>1

where § is very small real positive number. For time dependent problems,

V(o(u)V¢) =0 y—a<zr<a , —b<y<b
%% = V(k(u)vu) + QO'(U)IV(]SP ’ 'g_‘:' + :Bulaﬂ =0 ,¢Iy=:l:b = i¢07 ggl:::::ha =0
(2.17)
where t > 0.

For the steady state, X. Chen and A. Friedman [37, 38, 39], G. Cimatti [35, 36],

H. Xie and W. Allegretto [41], etc., use the transformation

6= %¢2+ /u: -é% s (2.18)

( where ¢ is electrical potential, u is temperature, k and o are thermal and electrical
conductivities, ug is a constant ) and give existence and uniqueness proofs for the
problem.

If we denote
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G. Cimatti, in [35, 36], proved that, if F(u) is bounded as u — 00, there are two
cases, i.e., either there is only one solution for some boundary condition or there is
no solution at all for other boundary conditions. Also, in [35], G. Cimatti proved
that, if some more restrictions ( e.g., bounded, continuous ) on k(s) and o(s) are
given, the solution for Eq.(2.15) is bounded.

In [37], X. Chen and A. Friedman discussed the case in which

>0 ,uu*
o(u) (2.19)

=0 ,u>u*
where u* is critical temperature and o(u) is continuous at u*. They construct a
continuous and infinitely differentiable function o.(u) to approximate o(u). Then
using a transformation similar to (2.18), they review the existence proof of a solution
(@e, ue). After introducing the concept of a weak solution, it is proved that (¢, ue)
converges to a weak solution (¢, u) of Eq.(2.15). and u < u*. Also, in [38], 2 more

specific situation, i.e.,

1 ,u<u”

o(u) =
0 ,u>u*

is considered. A transformation similar to (2.18) and a conformal mapping are used
to prove the existence and uniqueness.

H. Xie and W. Allegretto [41], instead of discussing the Robin boundary condition
in Eq.(2.15), discuss the Dirichlet boundary value problem. Under the hypothesis of
that

o(u) = C1u’ exp(—Cy/Csu)
and

k(u) = (04 + Csu + Cs’u2)_1
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where Cy, Cs, C3,Cy, Cs and Cg are physical positive constants and ¢ is a small pos-
itive number or non positive number, they proved that there exists at least one
solution to Eq.(2.15).

For the time dependent problem (2.17), there is not as much literature as there is
for steady state problem. H. Xie and W. Allegretto [40], F.B. Weissler [33], H. Fujita
[34] have done some research in the area of classic nonlinear parabolic equations
similar to Eq.(2.17). However, F.B. Weissler and H Fujita mainly contributed to
the blow up problem, though the form of equations is the same, the properties of the
nonlinear part are quite different. Here we put the emphasis on the case where the
equations describe the heat distribution within thermistors. In [40], H. Xie and W.

Allegretto assumed that
o(u) = Ciuexp(—Cs/u), 0<:<1l, C1,Co>0

and

k(u) = (C3 + Cou+ Csu®)™!, C3,C4,C5>0, C3+Cy+C5>0

Additionally, they replaced the first equation of Eq.(2.17) by the simple equation
(0(u)Pzy )2, = 0, i.e., the derivative is taken with respect to only one spatial variable
and assumed o(s) and k(s) locally Lipschitz continuous and bounded. Then they
integrate the first equation of Eq.(2.17), change Eq.(2.17) into an integro-differential
equation. After introducing several functional spaces and a variational form, an
operator is determined by the variational form. By proving that there exists at least
one fixed point for that operator, then the existence of a solution has been proved.
For Eq.(2.17), it seems that it is quite difficult to obtain a general conclusion.

All of the above results are theoretical ones. For numerical methods to get nu-



CHAPTER 2. HISTORICAL REMARKS & DEVELOPMENf 16

merical solutions for Eq.(2.15) and Eq.(2.17), not many papers can be found. D.R.
Westbrook [1] gave some good ideas for the numerical methods. A new function
is constructed and then an iterative method is used. The method overcomes the
difficulty to determine the point at which the temperature u = 1 ( after scaling )
and lots of numerical experiments are dene for different parameters @ and 5. Also,
A.C. Fowler, 1. Frigaard and S.D. Howison [3] gave a perturbation analysis and a
numerical method for the one dimensional time dependent NTC problem. They
use equal stepsize for spatial direction and different time stepsize for time direction.
From the numerical results, temperature surges appeared at some time point. They
also noticed that there exist possible multiple solutions.

In order to obtain numerical solutions for equations similar to Eq.(2.17), the
possibility of a moving finite element method [20, 21, 23, 24, 25, 26, 27, 28] is also
raised. In this method, the nodes are allowed to change positions with time. The
spatial stepsizes are adjusted at every time step. The method is more accurate in

some cases.

2.3 Application

There are many applications of thermistors. One of them is as a fuse. In the
circuit of Figure 2.2.3, a short circuit is represented by closing the switch, causing 2
current surge driven by the external voltage V to pass through the circuit resistance
Ry and the thermistor, thereby heating it. The consequent decrease in the electrical

conductivity causes the current to fall until equilibrium is reached, with all the heat
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generated within the thermistor being lost to its surroundings. In a well-designed

thermistor, the final current should be a small fraction of the initial surge.
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Chapter 3
Existence and Uniqueness

In this chapter existence and uniqueness are discussed. For convenience the
steady state problems are discussed first and then the time dependent problems. In
§ 3.1, the steady state problem for PTC thermistor has been studied. Before the
proof of the existence and uniqueness, the properties of the solutions are thoroughly
discussed. An integral operator is introduced so that the original differential equation
is transformed into an equivalent operator equation. Since the operator equation
has a solution, thus the existence of solution for the differential equation is proved.
Using the nonincreasing property of f(u), uniqueness is obtained. In § 3.2, the NTC
problem has been discussed. The method is similar to that used in § 3.1. Since in this
case, g(u) is not a nonincreasing function, uniqueness is lost. In fact, there are three
solutions for some parameters @ and §. In § 3.3, a different method is used to prove
the existence of solutions. The original boundary problems have been changed into
initial value problems. Since the solutions for the initial value problem exist, then
the existence of solutions for the boundary value problems is obtained. Here only
the monotonic property is used, thus the method is good for both PTC and NTC
problems. Though the uniqueness of the original boundary value problem is lost, it
can be still proved that if initial value uo and 3 are given, then there is a unique &
such that u(z,ug, 3, @), a solution for initial value problem, is a unique solution for
the original PTC or NTC problem. Since only the monotonic property is used in all

proofs in § 3.3, the conclusion can be generalized to all monotonic functions. At the
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end of § 3.3, the situation when external circuitry is connected is also discussed. The
relations of parameters for which there are one, two or three solutions are given. In
§ 3.5, a more general monotone method is reviewed. As in § 3.3, this method can
be used to prove the existence for both NT'C and PTC problems. In § 3.6, the last

section of this chapter, existence for time dependent problems has been proved.

3.1 Steady State Problem for PTC

In this section the existence and uniqueness of solutions of the following problem

are discussed.

{ﬁ—;‘+af(u)=() 0<z<1

(3.1)
u-(0) =0 yuz(1) + Bu(l) =0
and
1 ,u<l
flu) =4 eW0e-D 1<y<2 (3.2)
e 10 ,2<u

where ¢ and § are parameters.
Theorem 3.1.1 For Eq.(3.1) and Eq.(3.2), if u(z) < 1.0 for 0 <z <1, then

o
g

is the unique solution. Similarly, if u(z) > 2 for 0 <z <1, then

u(e) = % + 5 (1 —2?)

w(z) = 2 + ae;lo (- o

is the unique solution.
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Proof: For u(z) <1, f(u(z)) = 1, from the first equation of Eq.(3.1) then
u(z) = a + bzr + cz?
Using the boundary conditions, hence

u(z) = 5t 5(1=2°)

The uniqueness is trivial since when u(z) < 1, Eq.(3.1) is a linear differential equa-
tion.
For u(z) > 2, the proof is similar. #
Property 3.1.1 Suppose the solution of Eq.(3.1) exists and has second deriva-
tive, then u(z) is monotonically nonincreasing within the interval [0,1], and also
u(1l) > 0.

Proof: Integrate the first equation of Eq.(3.1) from 0 to z, we have

uz(2) + @ /: flw)dz =0 (3.3)

Since f(u) > 0, the integral must be positive. That means u,(z) < 0, hence u(z)
is strictly monotonically nonincreasing.

As u,(1) < 0 and 8 > 0, u(1) can not be negative because of the boundary
condition of Eq.(3.1). #

Corollary 3.1.1 If u(1) is zero, then u(z) = 0. #

This conclusion is trivial. Since u,.(z) is negative, u,(z) is monotonically non-
increasing. As u,(0) = 0 and u,(0) > u.(z) > u,(1) = 0, hence u,(r) = 0, thus
u(z) = u(1) = 0 ( only possible if & =0 ).

Thgorem 3.1.2 u(z) = §+5(1 —2?) is a solution of Eq.(3.1) iff o < F%% (ie.,
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—10

u(l) < %5 p+2 ) and u(z) = 25— e 4 2e—(1—z?) is a solution of Eq.(3.1) iff & > 2Be'®
(ie,u(l)>2).

Proof: Here the proof is only given for o < 2. If a > 28¢!°, the method is

ﬁ+2

the same. .
Necessity. If u(z) = § + (1 - z?%) is a solution, then it must satisfy Eq.(3.1),
hence

—a+af(G+5(1-2%) =0

B

ie.,

f( +3 (1—:32)) =1
so by the property of f,
Z+20-a) <1

B
Since u(z) is nonincreasing, u(z) < 1iff §+§ < 1for 0 <z < 1, therefore o < FJ%
Sufficiency. If o < 524%’ construct
u(z) = 5+5(1~27)
2
hence u(z) < § +§ < 1, and u(z) satisfy Eq.(3.1). #

The more interesting problem is when 1 < u(z) < 2 for some z € [0,1]. Does the
solution exist? Is it unique? To answer those questions, we need to introduce more

concepts and results. First, we construct an integral operator from Eq.(3.1),

Tu=wfl+5(1-2)] o C F ()t — o)t (3.4)
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where u; is an arbitrary real number. Consider the initial value problem

(7 = Tu
u(]_) = (35)
w(l) = —Pfuyy

Actually, if u(z) = Tu(z), then u(1) = uy, and since v'(z) = —fu; + a 2 f(u(t))dt,
hence %/(1) = —Bu;. Therefore the problem is to find u such that

u=Tu

Before answering that question, the properties of T' are discussed. In the following,
when it is said u(z) < v(z), it means that in the sense of that for every z € [0, 1],
u(z) < v(z).

Property 3.1.2 T is a monotonically nondecreasing operator.

Proof: If u(z) < v(z), since f is a nonincreasing function, then
F(u) > F6(6)
(t - D) > ¢ - 2)fo) ft2s
o [t =Dttt > a [ - 2)f0)
~a [ (6= ) ()it < —a [ (6 - 2) Fo))dt

x

Tu = wll+B(1—-2)]—a /: F@)(t - z)dt
< wll+p0-2)~a [ Fo)e-a)d

= Tv

Thus T is a monotonically nondecreasing operator. #
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Property 3.1.3 If u(z) is the cold ( then u; = § ) or hot ( then u; = "‘e;m )
solution of Eq.(3.1), then

u(z) = Tu(z)

Proof: Since u(z) is the cold solution of Eq.(3.1), then u(z) = §+%(1—2?% and
Flu@) =1,

Tu = Sl+p(1-a) -—a/:(t—a:)dt
= S+p0- o) -t -
= % + %(1 — %)
= u(z)
The result follows. #

Property 3.1.4 If u(z) is a solution of Fq.(3.1), then u(z) is a solution of
Eq.(3.5) where uy = u(1).
Proof: Let u(z) be a solution of Eq.(3.1), change the variable in Eq.(3.1) into ¢,

multiply the first equation with ¢ — z and integrate from z to 1, then

[ w6 - o)+ a [ @)~ )it =0

Use integration by part for the first term of the above equation, thus

w(®)t - )i - | " wt)dt + a / ' F(ul®)(t — )t =0

z

SO

w(1)(1-2) ~u@k +a [ F@))E-a)dt =0
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by the boundary conditions of Eq.(3.1), then

~pu(1)(1 ~ 2) ~ (1) +u(e) +e [ C )t — )t =0

ie.,
u(e) = w1 + 6L~ )]~ [ F(u())(6 ~ a)a
that is
u(z) = Tu(z)
The proof is completed. #

Definition 3.1.1 Let (X, p) a metric space, A be an operator from X to X, if
dn, 0 <n <1 such thatVz,y € X, there is

p(Az, Ay) < np(z,y) (3.6)

then A is said to be a contraction operator on X.
Lemma 3.1.1 [32] (Banach, fized point principle ) If B is a Banach space, A is

a contraction operator on B, there ezists one and only one z* € B such that
z* = Az*

#
Lemma 3.1.2 Let B be a Banach space, A be an operator from B to B. If there

exists a natural number n such that A™ is a contraction operator on B, then there
must exist one and only one fized point for A.

Obviously, if n = 1, this lemma is just lemma 3.1.1.

Proof: Let K = A", then K is a contraction operator on B, hence by lemma

3.1.1 there exists a fixed point 2* € B: 2* = Kz*. Now we say that z* is a fixed
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point for A. In fact,
AK = AA" = A" = A"A = KA

therefore K (Az*) = A(Kz*) = Az*, so Az* is also a fixed point for K. Since there
exists one and only one fixed point for K, thus Az* = z*.

If 2! is any fixed point of A, since Az = z!, then
Anzl = An—lxl . £L’1

Thus z! is also a fixed point for K = A”. Since there exists only one fixed point z*
for K, therefore z! = z*. Then there exists one and only one fixed point for A. #
Now denote C[0,1] as a space of all continuous function defined on the interval

[0,1]. Define a norm || - |} on C[0,1] as

7]l = sup 1f(2)] = max |£(z)| (3.7)

0<z< 0<z<1

Then C[0, 1] is a Banach space.
Theorem 3.1.3 Let T' be defined on C[0,1] by (3.4), and f be defined by (3.2),

then for any a and 3, there exists one and only one continuous function u(z) €

C[0,1] such that

u=Tu (=ull+p(1-o)-a L P @) (t - 2)dt ) (3.8)

where uy is an arbitrary real number.

Proof: Since T'u is defined as

1
Ty = uwl + Bl —2)] - & / Flu()(t — z)dt
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For any u(z), v(z) € C[0,1], z € [0,1], by the mean value theorem and /()] < 10,

[Te(@) ~To(@) =l [ (7)) ~ Fu) (¢ —=)at (5.9)
= ol [ 76)(0) ~u(®)(t ~ )t
< 10/a]- ||u-—-v||/:(t-a:)dt

10|
20l — i1 - 22

Now use induction to prove for z € [0, 1] that

la|™10"
(2n)!

For n = 2, use (3.9), by the mean value theorem and |f'(*)| < 10,

[Ty — T™| < |z —2||(1 — )% (3.10)

Tu(e) ~ (@) = o [ (FTo() ~ FTt))(t - 2)at
= lol-| [ F()@o) - Tu(t)(t - )it

2 2

< Wl o [0 -t -ar
102|a|2 4

= mllu—vll(l"ﬂ’)

So for n = 2 it is true. Suppose (3.10) is true for n, then

[T™u(e) = T0(E)| = o [ (FT"0(0) ~ FTu@))(¢ - )t
lof | [ @) ~ Tu(0)(¢ - a)a

1
< 10]of / IT™u — T™|(t ~ )dt
n41y . |n+1
< 0__|9_‘_|_||u v”/ £)2(t — )
10"“!64"+1 [l — ||

el Bt enin T

10n+1 n+1
= ot — a2

2(n+ 1)
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Hence (3.10) is true. Now take a natural number n such that

_a"10”

=Gy <1
then
[|[T"% —T"0|| = sup |T"u—T"v| < 7l — ||
0<z<1
so by lemma 3.1.2, there exists one and only one solution in C[0, 1]. #

If u(z) € C[0,1] is a solution of Eq.(3.8), then u(z) is also a solution of (3.5). In
fact, the following is true.

Property 3.1.5 Ifu(:z:) € C[0,1] is a solution of Eq.( 3.8), then u(z) is a solution
of Eq.(3.5); furthermore it has a second derivative.

Proof: Since u(z) is a solution of Eq.(3.8), that is

1
u(z) = wfl + Bl — 2)] — & / Flu(t)) ¢ — z)dt

where f is defined by (3.2). Since f is continuous, thus the derivative of right hand

side exists. Differentiate the above equation then

¥(0) = ~pu+a [ " F(u(t))dt

Therefore, (1) = u; and 4/(1) = —pu;, which means that u(z) is a solution of

Eq.(3.5). Furthermore, from

¥(s) = ~fur +a | " f(u(t))dt

z

it is easy to see that the right hand side is still differentiable by the continuity of f.

Differentiate both sides of above equation, we have

v'(z) = —af (u(z))
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Therefore, u(x) has a second derivative. #

Before we prove that if o and § are fixed there exists a u(z) for Eq.(3.1), a
property of u(z) is discussed first. If u(z) is a solution of Eq.(3.5), it can be denoted
as u(z,u1,a, ) since u depends upon z, u;, @, B. From property 3.1.5, u(z) is

differentiable, so
1
Uy, %1, 0, B) = —Puy + a/; flu(t, vy, e, B))dt (3.11)

ua:a:(xaul, a, ﬁ) = —af(u(a:, u, a, ﬂ)) (312)

Thus from (3.11), if u(z) is a solution of (3.1), then

1
ux(0,u1, 0, B) = —Puy + a/o fu(t,uy,0,0))dt =0
0
|
w=2 [ Flult,us, 0, B))d
From the definition of f by (3.2), e7° < f(u) < 1, thus a necessary condition for

u(0,u1, e, B) =0 is that
ae™10 o
<u < —
B ='=5

This condition means for fixed o and B that Eq.(3.1) has a solution only if u; is chosen

in that region. Now we will prove that if u;, § are fixed nonnegative numbers, there
is an o such that u(z,u;, ¢, §) is a solution of Eq.(3.1). That means the following.
Property 3.1.6 For any given positive number u; and (3, there ezists a unique
a, such that u(z,u1, e, B) satisfies Eq.(3.1).
Proof: For given positive u; and , for any «, by theorem 3.1.3, there exists

u(z, u1, e, B) such that

u(z, vy, 0, B) = Tu(z, vy, a, §)
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however in general, u.(0, u1, @, §) # 0. From (3.11),
um(oaul)o’ﬁ) = '—ﬂul <0

and also from (3.11)

uz(o’ulia’ :3) = _ﬁul + a[: f(U(t, ul,a,ﬂ))dt > —:Hul + af(u’l)

by the nonincreasing property of f and u. Since f(u;) > €' > 0 hence if o
is chosen big enough, u.(0,%;,@,8) > 0. By the continuity of u.(0,u,, 8) with
respect to «, there must exist an o* such that u,(0,u;,0*,8) = 0. In order to
prove the uniqueness, the strictly monotonic property of %, (0,41, , 8) with respect
to a is proved, hence uniqueness is obtained. Suppose there is another o** such
that u,(0,u;, 0, 8) = 0. Without losing generality, suppose o™ > a*. Since both

u(z,u,0*, B) and u(z, vy, a™, B) are solutions of Eq.(3.1), i.e., solutions of Eq.(3.5),

hence
u(l,u, 0", B) = u(l,uy, ™, 8) =y
and
uy(1,u1,0", B) = us (1,43, 0™, 8) = —fuy
but
Uzz(1, 21,07, ) = —a" f(u(l,uy, 0", B)) = —a" f(u1) < 0
and

Uge (1,1, ™, B) = —a™ f(u(l,uy, @™, B)) = —a™ f(uy) < —a*f(u;) < 0

therefore

uzz(l, ul’a**,ﬂ) < um:(]-auha*,ﬁ) <0
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which means that in a neighborhood of z = 1 the curves are concave down and
u(z,u1, 0™, B) < u(z,u1,0*,B) (3.13)

Now either the inequality (3.13) is true for all z € [0, 1], or there is a point zo € [0, 1]
such that
u(zo, u1, 0™, B) = u(Zo, u1, ", f)
and
u(z, uy,a™, ) < u(z,u1,e*,8) for zp<z<1

hence by the nonincreasing property of f

f(u(xvul,a**’ ﬁ)) 2 f(u(a:, ul)a*,ﬂ))

and
1 1
[ ft v, o, p)dt 2 [ fwt,u,0,8)dt
thus
uz(mo’ula a**, :3) - um(xmul’ a*, ﬂ) (314)
1 1
— o™ / Flult, u1, 0™, B))dt — a* / Flult,ur, a*, B))dt
> 0

since a** > o*.
From (3.13) forzp <z < 1
u(x,ul’a**,ﬂ) - u($0au1’a**’ﬁ) < u(m,uha*’ﬁ) - u(x01u1’a*:ﬂ)

assume z is greater than z¢ and divide the above inequality by z — z

u(a:, U, a**7ﬁ) - U(xo,ul,a**,ﬂ) < U(.T, ulaa*aﬁ) - U(xo,ul,a*, ﬁ)
T — Ty r —Tp
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let £ — ¢ from right side thus

Uz (zf, u1, 0, B) < up (27, u1, 0", B)
which contradicts (3.14). So there is no such zo and (3.13) and hence (3.14) is
true for all € [0,1]. In particular u,(0,u1, 0™, ) > u,(0,u;,*, ), which means
u(0, u1, e, B) is a strictly increasing function of a. Uniqueness then follows. #
In order to prove that u(z,u;, @, 8) is continously dependent upon u;, Gronwall’s
inequality is used. Gronwall’s inequality is first stated.
Lemma 3.1.3 [30] If u(t) and v(t) are continuous nonnegative functions on
interval 0 <t < L and M is a nonnegative constant, then
u(t) <M+ /Ot v(s)u(s)ds, 0<t<L
implies
u(t) < Memp(]()tv(s)ds), 0<t<L

#
Property 8.1.7 The solution u(z,u1, e, ) of Eq.(3.5) for fized o and 3 is con-

tinuously dependent upon u;. That is Ve > 0, 36 > 0 such that if
|lui —ui*| <6
then

lu(z,u], o, B) — u(z,ul™, 0, B)| <€

Proof: Since u is a solution of Eq.(3.5), thus

u(z, ul, o, B) = Tu(z, v}, a, )

= wl+80-2)]-a [ {008 - )it
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and

u(z, ui”, a, f) = Twu(z, ui*, a, §)
= wl+80-2)~a [ fultut,a )t - o)

Thus

lu(z, i, a, B) — u(z, ul*, o, B)|
= |(uf —uf)[l +B(1 - 2)] - @ [ (f(ult, u}, 0, 8)) — f(u(t,u}*, 0, B)))(t — z)dt

< Iu’i‘ - u;*l(l + :B) + 100[}2 lu(t1 uIa @, ﬁ)) - u(ta 'U,I*,Ot, ﬂ)l(t - x)dt
where the Lipschitz condition |f/(*)| < 10 for f has been used. Then by lemma 3.1.3

1
ju(z, v, 0, 8) — u(a, uf*, o, B)] < fof — ui7|(1 + Bezp( | 100(t — o))

S0

* KK * skok 10a
Iu(x7u1,a7 ﬂ) - 'LL(:II, Uy 7a7ﬂ)| < lul —U I(l + IB) exp(_z-(l - x)2)

hence
* Ak loa %* Rk
Iu(:z:, Uy, @, :B) - u(x? U, &, ,3)[ < eXp(T)(l + ﬂ)lul — U I
Therefore, Ve > 0, take § < es—aé—;—ﬁje, whenever |u} — u}*| < § then

|u(z, ul, o, B) — u(z,ui*, 0, 8)] < €

The continuity of u(z,u1, &, 8) with respect to u; follows. #

Corollary 3.1.2 u,(z,u1,a, ) is also continuously dependent upon u,

Proof: From (3.11),

ux($7u1,aaﬁ) = _ﬁul =+ a/: f(U(t, u, @, ﬁ))dt
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Then

[ue(z, ul, @, B) — u-(z,u}*, @, B)]
1Bz~ i) +a [ (e, v, ) - Flule, i, 0, )|

Blut = w57l + 010 [ ful, 3, 8) — (e ui", )

IA

< Bluf —ui*| + al0l|u(z, v, o, B) — u(z, ui*, o, )]

where the Lipschitz condition for f is used. By property 3.1.7, the result is true. #

Theorem 3.1.4 For any given positive number o and 3, there exists one and only

one u; € “e;m » 5] such that u(z,u1, e, B) obtained through Eq.(3.5) is a solution of
Eq.(3.1).

Proof: As previously discussed, u; € [“e;m, %] is a necessary condition. From

(3.11),
uz(oa ug, @, :8) = —fu; + a/: f(u(ta U1, a’ﬁ))dt

hence by the property f(u) > e™10
=10

B

-10

2.(0, 25—, 0, ) = —~ae™ + a / Flult, 25—, e )it 2 0

and
o 1 o
us(0,5:2,6) = —a+a /0 F(u(t, 5,0 6))ds < ~at-a=0

since f < 1. By corollary 3.1.2, u,(z, u1, @, ) is a continuous function of u;, so there
must exist u] in [§e™%, §] such that u,(0,4},, 8) = 0.

As for the uniqueness, this may be demonstrated by a method similar to that
used for the proof of property 3.1.6. Suppose there exist two values u} and u}* which

make

u,(0,u7, @, B) = u,(0,u}",,0) =0
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Without losing generality, suppose uj > u}*, for any u(z) € C[0,1] define sequences

. Uf = un(a::u;.‘,a,ﬁ), 'U,:* = un(xvu’{*aa,ﬁ)

ut =Tl = o1+ (1~ )] ~a [ C F ()t — 2)dt
and
upt = Toul, = oL+ AL - o)l — e [ Fi)(e - z)dt
where n. = 0,1,+, and 20 = o0, = u(z), then
ul = Tyl
= uffl+6(1—2)] —af} flu))(t - z)dt
> up[l+B(L—2)] — e f; f(u(®))(t — z)dt

1

= T**ug* = Upn
by property 3.1.2, T' is monotone operator, it is easy to prove

u"(z,u], o, B) = Tpu > Tpu = u(z, 47, a, ) (3.15)

In fact, by induction, suppose

Uy > uy,

hence by the nonincreasing property of f,
fuy) < Ful,
thus

ntl n
uttl = T,u?
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= u[l+8(1~2)] - af; ful)(t—2)dt
> uf[l+B(1-2)] - e f; flul)(—z)dt

—_ n _— ,,nt+l
- T**u** = Uyy

Therefore the inequality (3.15) is true. By lemma 3.1.2 and theorem 3.1.3, the two
function sequences {u"(z, uf, o, 8)}2; and {u®(z,u}*, @, B)}, are convergent. For
convenience, denote the limits of them as u(z,u,a,8) and u(z,u}*,a, ) respec-

tively. Hence
'Z.L(IB, u;: a, ﬁ) 2> u(x, u’{*7a, ﬂ)

Equality is only possible if u} = u}* by Eq.(3.5). Suppose the inequality is true. By

. the nonincreasing property of f,

Fu(z, v, 0, ) < f(u(z, 47", @, B))

hence

w(0,u5,0,8) = —pui+a [ Fultui,06)d
< —purta [ futu00)d
< —puptta [ Sl e 0)d

= uz(oa u’{*’ a, :3)

which means 4] and »3* can not make u,(0,u;,a, 8) = 0 simultaneously. Thus the

conclusion is obtained. #
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3.2 Steady State Problem for NTC

In this section, the equation and boundary condition are the same as that in §3.1

except that here f(u) is replaced by 7(—113 For convenience, denote g(u) = f—(l;J, hence

1 yu<l
g(u) =< el0(u-1) J1<u<? (3.16)
ell ,2<u

and Eq.(3.1) can be rewritten as

%i—%‘+ag(u) =0 ,0<z<1
u:(0) =0 yuz(1) + Bu(l) =0

(3.17)

Since g(u) is defined as the reciprocal of f(u), the properties of g(u) are changed.
One of the important changes is that g(u) is a nondecreasing function. However
there are still some similar results. For completeness, the conclusions are given in
the following theorems and properties.

Theorem 3.2.1 For Eq.(3.17) and g(u) defined by (3.16), if u(z) < 1.0 for

0<z<1, then

=% %2
u(m)—ﬁ+2(1 z°)
is the unique solution. Similarly, if u(z) > 2 for 0 <z <1, then
10 10
u(z) = 9—;— + gt;—“(1 — z?)
is the unique solution. _ #

Property 3.2.1 Suppose the solution of Eq.(3.17) exists and has second

derivative, then u(x) is monotonically nonincreasing for z € [0,1], and also

u(1) 2 0. #
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Corollary 3.2.1 If u(1) is zero, then u(z) = 0. #

Theorem 3.2.2 u(z) = %+9‘-(1—-x ) is a solution of Eq.(3.17) iff & < ﬂ+2 28 (ie.,
u(l) < ﬂ+2 ) and u(z) = °‘em Qe ae "‘e 2(1~22) is a solution of Eq.(3.17) iff a > 28e~10
(i.e, u(l) 22 ). (Note that for § +2 < €!° and 28¢™1° < a < 2 both solutions
exist. ) #

Asin § 3.1, an operator @ is defined as

1
Qu =1l +B(1—1)] - a / 9(u(®))(t — )dt (3.18)
and the corresponding initial value problem is as follows
u = Qu
u(l) = (3.19)
¥(1) = —Pu

Instead of being monotonically nondecreasing, the operator @) is monotonically non-
increasing. Thus

Property 3.2.2 @ is a monotonically nonincreasing operator. #

Since g(u) is nondecreasing, the proof is obvious.

Property 3.2.3 If u(z) is the cold (then uy = § ) or the hot ( then u; = “e 2 )
solution of Eq.(3.17), then

u(z) = Qu(z)
#

Property 3.2.4 If u(z) is a solution of Eq.(3.17), then u(z) is a solution of
Eq.(3.19) where uy = u(1). #

Theorem 3.2.3 Let ) be defined on C[0,1] by (3.18), and g be defined by

(3.16), then for any o ‘and B, there exists one and only one continuous function
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u(z) € C[0,1] such that

u=Qu (=wll+p(l-a)]-a[ gu@)t-)it)  (320)

x

where uy is an arbitrary real number. #

"The proof is as before except that, now n must be chosen large enough that

7(10010\7
Property 3.2.5 If u(z) € C[0,1] is a solution of Fq.( 3.20), then u(z) is a
solution of Eq.(3.19); furthermore it has a second derivative. #
Although the following two results are true, it should be noted that we no longer
have uniqueness of the solution of the boundary value préblem when ¢ is fixed.
Property 3.2.6 For any given positive number uy and (3, there exists an «, such
that u(z, vy, o, B) satisfies Eq.(3.1 7).l #
Theorem 3.2.4 For any given real positive numbers o and 3, there exists a
u; € [-;—, ﬁeﬁlg] such that u(z,u;,a,B) obtained through Eq.(8.19) is a solution of
Eq.(3.17). #

In fact, from the numerical solutions obtained in chapter 4 it is easy to see that

for given « and § the uniqueness with respect to u; is broken.
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3.3 Existence for Both PTC and NTC

In §3.1 and §3.2, the existence of solutions for Eq.(3.1) and Eq.(3.17) has been
proven. For Eq.(3.1) uniqueness is also obtained. Here another way is used to prove
the existence. This method applies for both cases. For convenience, Eq.(3.1) and

Eq.(3.17) are written in one form as

L4 L ah(u) =0 ,0<z<1

u.(0) =0 yUz(1) + Pu(l) =0

(3.21)

where h(u) can be either f(u) or g(u). In order to solve Eq.(3.21), a variable substi-
tution is made, i.e., let { = /o, hence u, = \/au; and u,, = aug. So the Eq.(3.21)

becomes
L4 hu) =0 ,0<é<ya

w0)=0 ,aug(y/a +fu(ya) =0

As discussed in §3.1, the solution of Eq.(3.22) is monotonically nonincreasing and

(3.22)

u(z) can not be negative. In order to prove the existence of solution for Eq.(3.22),

an initial value problem corresponding to Eq.(3.22) is considered first. That is

Le+hu)=0 ,0<¢
w0 =1vy  ,ue(0) =0

(3.23)

where ug is an arbitrary positive real number. Formally, the solution of Eq.(3.23) is
independent of a.

Lemma 3.3.1 [30] Let a nonnegative and unbounded function ¢(zx) be defined
on [a,b) and ¥(z) be integrable over interval [a,c] for any ¢ < b. If there is a

constant number v ( 0 < v < 1 ) such that lim,_,;- (b — z)*¢(x) exists, then the
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integral {2 1(z)dz for unbounded function Y(z) converges. If for v > 1, lim,_- (b —
z)’P(x) = d >0, or lim,y;- (b — 2)"9(z) = 400, then [P (x)dz diverges. #
Theorem 3.3.1 There is a solution for Eq.(3.23).
Proof: Multiply first equation of Eq.(3.23) with u; and integrate from 0 to &,
thus

3 3
/0 ugeuedt + /0 h(w)ugd = 0
By property 3.1.1, u(£) is strictly monotonically decreasing, i.e., u(£) is an invertible

function, so denote u(¢) as u, the second term of the above integral can be written

Ji ® h(u)ugdé = / h(wdu =~ [* hu)du = ~H(w)

hence

. :
§u§|§ ~H(u)=0

Using the boundary condition in Eq.(3.23),
2 _
ug = 2H (u)

By property 3.1.1, ug < 0, hence

ug = —/2H (u)

then
Ug

\2H (u)
Since limu—mg (uo — u)%/ VH (v) =1/ \/h(uo) > 0, by the lemma 3.3.1 the integral
u 1 . )
b T ds exists. Integrate the above equation from 0 to £, thus

=1

v ds
€=_/1; m—q’(u)
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Since &, < 0, £ is a monotonically decreasingl function of u, the inverse function of
®(u) exists. Denote the inverse function of ®(u) as u = ¢(¢), ¢(¢) is a solution of
Eq.(3.23). ‘ #
Theorem 3.3.2 For any given nonnegative real number uy, there is a unique «

such that ¢(&) ( obtained in theorem 3.3.1 ) is a solution of Eq.(3.22).
" Proof: The problem is now to find an o that makes ¢(¢) a solution of Eq.(3.22).

This means to 'ﬁnd an « such that
(e + Bu)lo=1 = (Vaug + Bu)le=ya = —y/20H (u(v@)) + fu(v/a@) = 0
i.e., to find o such that

—V2eH(¢(Va)) + fp(va) =0

Since H'(u) = —h(u) < 0 and ¢'(§) = —/2H(u) < 0, H and ¢ are monotonically

nonincreasing functions. Hence the composition (H o¢) is monotonically nondecreas-

ing and then —\/ 20(H o ¢)(v/a) + fé(+/a) = ¥(a) is monotonically nonincreasing.
Obviously, ¥(0) = Bug > 0. By the definition of the function A(u), we can assume
m < h(u) < M for 0 < u < ug, thus from Eq.(3.23)

-M < Uge < —M

Integrate the above inequality from 0 to £ and use the boundary condition in
Eq.(3.23),

-ME< U < —mé

integrate the above inequality from 0 to £ once more then

1 1
up — §M§2 <u<uy— -2-m£2
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therefore
1
¥(a) = (Vaue + fu)le=ya < —ma + B(ug — :?l-ma)

That is ¥(e) goes to —oo as & —» co. Thus there is a unique @ such that ¢(¢) is a
solution of Eq.(3.22) for given ug, 8. #

From theorem 3.3.2, for any given ug there exists a unique «, thus this defines a
function o = ©(ug). As u(1) = u(¢ = \/a) is also uniquely determined for each u,

u(1) is also a function of ug which can be denoted as u(1) = U(uy).

3.4 Existence of Solutions for the PTC and NTC Problems with
External Circuit

Now consider the solutions of the full problem with the circuit loop. The previous
results allow us to draw a curve of “solutions ” represented in the @, u(1) plane. This
curve may be parameterized by u(0). In the all “ cold ” portion, by theorem 3.1.2
and theorem 3.2.2, u(z) = §+ §(1 —2?), when u(0) < 1 which means that o < -/32_5—2,
hence u(1) = §. It is preferable to draw the curve in the I, u(1) plane where a = vI?
and v = 150 is fixed. Then in the cold portion (1) = %I 2, which is a parabola.

As for the “ hot ” portion, the two cases arise. The PTC case is considered first.

-10

By theorem 3.1.2, in the hot portion, u(z) = 2= + ae—(1—2?), iff u(1) > 2 which

B
means o > 2¢!°83, hence u(l) = -&e;io = 75;—13I 2 is a second parabola starting at

I=, g‘ti;i This second parabola may be extended to co in both (1) and I. These

two parabolas are connected by an I, u(1) curve.

The external circuit leads to J = [1 + g fy f(«)dz]~!. From the first equation of
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Eq.(3.1), a f} f(u)dz = —u,|} = Bu(1), therefore

I=[1+ [;7}9)]‘1
or
+ uﬁ;tI(l) _
This gives the third parabola
u(l) = ——I (1-1) (3.24)

with vertex at I = £, u(1) = 7.5 and passing through (0,0) and (1,0). This curve
obviously meets the I, u(1) curve of solution of Eq.(3.1) at least once giving one
nontrivial solution to the problem with the external circuit, since the solution curve
of Eq.(3.1) begins inside the parabola (3.24) and finishes outside of that parabola. We
say that the intersections of those two curves are solutions for PTC problem (2.13).
That is because the two curves are both parameterized by I and satisfy Eq.(3.1) and
Eq.(3.24) respectively. Thus if there are points satisfying both equations, they will
satisfy Eq.(2.13) too. The curves may meet twice or three times giving two or three
solutions respectively. There will be three intersections, i.e., three solutions, if the

point (Z,u(1)) = (/532;, 5%) is outside the parabola (3.24). This occurs if

_2 [ 2 1- _%_ﬂ___)
B+27 puB\v(6+2) v(B+2)
Simplify the above inequality, then
2y
e 201+ p)—

This gives a condition for the existence of three solutions. From the numerical

results and figures in chapter 4, for the exponential functions if the point (I,u(1)) =
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(\/%, 5%5) is on the parabola (3.24), that means 8 = ’é‘(i'ﬁrﬁ‘-':," there are just
two solutions ( intersections ). In chapter 4, the Figure 4.1.1, Figure 4.1.2 and
Figure 4.1.3 demonstrate this.

The case corresponding to Eq.(3.17) is similar and is briefly discussed here. In the

hot portion, the solution is u(z) = °‘—f,£ + 0‘—‘;;-2(1 —z2), iff u(1) > 2, i.e., a > 28e710,

hence u(l) = "‘—‘Z,E = -'";,—mI 2, a parabola starting at I = 1/2fe~104. Obviously, this

:para,bola, may be extended to co in both I and u(1). Now the external circuit leads

to I =[u+ fy g(u)dz]™. From the equation e [ g(u)dz = —u,[} = Bu(1), thus

I=[p+ ﬂ;tj(i)]_l
ie.,
r+240) _
I
which gives a parabola
u(l) = %1(1 —ul) (3.25)

with vertex at I = 5, u(1) = %5 and passing through (0,0) and (50). Similarly,
this curve obviously meets the I, u(1) curve of solution of Eq.(3.17> at least once
giving one nontrivial solution, since the curve of solution of Eq.(3.17) begins inside of
the parabola (3.25) and finishes outside of that parabola. If they meet twice or three
times, there will be two or three solutions respectively. A condition for three possible

solutions is that point (I, u(l)) = (\/7_7%, ﬂ%) lies outside the parabola (3.25).

2 v 28 2B
vz B3+ MG+

Hence
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can be simplified as
2y
b> 21+ p) -

This is a condition that there exist three solutions. Similarly, from the numerical

results and figures in chapter 4 for the exponential functions, if 8 = there

P
are two solutions. There are three figures in chapter 4 as Figure 4.3.2, Figure 4.3.3
and Figure 4.3.4 which demonstrate these conclusions.

Therefore, for both Eq.(3.1) and Eq.(3.17), when the circuit loop is considered,
there is only one solution when § < m—fﬁ')—z_—,y, there are three solutions when 8 >
2(1—57)—2-_7 and there are possibly two solutions when § = 2—(1-_'_—2#7)7_—7 |

It is easy to notice that the particular exponential functions chosen for o(u)
are not necessary for the proof of all conclusions in §3.1, §3.2 and §3.3. The most
important things are the monotonic decreasing or increasing, bounded properties
and the Lipschitz condition. Thus we have following conclusions.

Corollary 3.4.1 If f is monotonic nondecreasing or nonincreasing function,

which satisfies

O<m< flu)SM<+o00o  u(z)€Cl0,1]

and the Lipschitz condition
|f (@) = f(v)| < Molu—v|  Vu,veC[0,1]

where m, M and My are constants, then for any given nonnegative o and 3 there
exists at least one solution for Eq.(3.1). #
In addition, if f is monotonic nonincreasing, a stronger conclusion is achieved,

i.e., the uniqueness is obtained.
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Corollary 3.4.2 Assume f satisfies all conditions in corollary 3.8.1, furthermore,
f is monotonic nonincreasing function, then for any given nonnegative o and  there

exists one and only one solution for Eq.(3.1). #

3.5 Monotone Method for the PTC and NTC Problems

In §3.1, §3.2 and §3.3, existence and uniqueness under certain conditions have
been proved for steady state PTC and NTC problems, i.e., Eq.(2.8) and Eq.(2.6).
Here a monotone method[4] is worth a brief review though uniqueness is not obtained.

Consider the general equation with the form

Lu+ f(z,u) =0 ,z€Q
Bu = s(x) ,x € 00

(3.26)

where L = A, f(z,u) is a nonlinear smooth function of z and u, s(z) is a given

function and B is a boundary operator defined as

Bu=%+ﬁ(x)u, z €00
Here ’a% denotes the outward conormal derivative and §(z) is assumed nonnegative
everywhere on the boundary 0, i.e., B(z) > 0 for z € 9Q.
Definition 3.5.1 A smooth function wg is said to be an upper solution of Eq.(3.26)
if
Lug + f(z,u0) <0 Bug > s

—

similarly, vy is called a lower solution of Eq.(3.26) if

Lvy + f(z,v) 2> 0, Byy < s.
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The following lemma, is then true [4].

Lemma 3.5.1 Let there exist two smooth functions ug(z) > vo(z) such that
LUQ-l-f(ID,’U,o) SO, BU()ZS
and
Lvy + f(z,v0) >0, Byy < s.

Assume f is smooth function and %5 s bounded on minvy < u < maxug. Then

there exists a regular solution w of
Lw + f(z,w) =0, Bw=s

such that vy < w < ug. : #
Therefore we have the following theorems.

Theorem 3.5.1For Eq.(3.1) and f is defined by (3.2)

+ ~1-(1 —z?))  with K>a

uo(z) = K 5

R R

and
vo(:v) =0

are upper and lower solutions respectively. Hence there exists a regular solution w of
Eq.(3.1) and Eq.(3.2) such that vy < w < up.
Proof: Since ¢71% < f(u) < 1 by definition of f ,

%29 + af(ugy) = —-K7+ af(ug) < —K + K f(ug) = K(f(uo) —1) <0

and

u9-(0) = 0, uoz(1) + Bu(l) =0,
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hence ug(z) is a upper solution. Similarly, since

T 4 af(o) = 0+ af(o) = af(un) 2 0

and
v0:(0) =0,  vp,(1) + Bu(1) = 0,
thus vg(z) is a lower solution. By lemma 3.5.1, there exists a regular w of Eq.(3.1)

and Eq.(3.2) such that vy < w < u,. #
Theorem 3.5.2For Eq.(3.17) and g is defined by (3.16)

uo(z) = K(% +5(-aY)  with K> ocl

and

vo(z) =0

are upper and lower solutions respectively. Hence there exists a regular solution w of
Eq.(3.17) and Eq.(3.16) such that vy < w < uy. #

The proof is same as that for theorem 3.5.1 except that now 1 < g(u) < €'°.

3.6 Time Dependent Problem

In this section, existence and uniqueness for time dependent problems are con-
sidered. A monotone method the same as that in § 3.5 is used. For convenience, 2

general form for the time dependent PTC and NTC problems is restated as follows.

% = Lu+ ah(u) 0<z<1,0<t <t
uy(t,0) = 0,u,(¢,1) + fu(t,1) =0 ,u(0,z) = s(z)

(3.27)
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where s(z) is in [0, § + §(1 — 2?)] when h(z) is defined by (3.2) and s(z) is between

0 and "‘;;o + 22(1 — 2?), when h(z) is defined by (3.16). T, = [0,1] x (0,%).

In order to use monotone method, we need

Definition 3.6.1 A smooth function ug is said to be an upper solution of Eg.(3.27)
if

Luy + ah(up) — % <0, Bug >s -

similarly, vo is called a lower solution of Eq.(3.27) if

Ly + ah(vy) — %%g >0, By < s.

where operator B is either a boundary operator or an initial value operator and s is
0 when operator B is a boundary operator. Given upper and lower solutions u(t, z)
and vy (¢, z), with vp < ug on I'y, we choose C so large that ah, +C > 0 on the region

(z,t) € I'y, minp, vg < u < maxr, ¢g. Then define u; by

Luy — Cuy — 22 = —[ah(ug) + Cug] ,z €T
u15(t,0) = 0,u1,(¢,1) + Bus(¢,1) =0 ,u;(0,2) = s(z)

(3.28)

By the maximum principle for parabolic equations it is easily seen that u;(t,2) <
up(t,z) in I';. The mapping ug(t,z) — u1(¢,z) is denoted by u; = Gug. G is a
monotone operator[4].

Lemma 3.6.1[4] Let there exist an upper solution ug(t,z) :

Lugy + ah(u) — ??:_io_ <0,

Bug>s on 0T,

and a lower solution vy(t,z):

Ly + ah(vg) — %%’- >0,
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Byy<s on 0I,

with vo < ug. Define sequences u,, and v, inductively by up4y = Gy, Vpy = Gu,.
If C is chosen large enough so that

Oh{u .
a—(-—-)-+C'>0 on minvy <u < maxu,
t k3

Ou
then the sequences {u,} and {v,} are monotone nonincreasing and nondecreasing
respectively. As n tends to infinity they both tend to a unique fized point u = Gu,

which is a strong solution of

Lu + ah(u) — % =0, Bu=s on QI
such that vo(t, z) < u(t,z) < up(t, z) #
As in §3.5, there are

Theorem 3.6.1 For Eq.(3.27) and h is defined by (3.2)

wo(t,z) = K(% + -;-(1 —2?)  with K>a
and
v(t,z) =0

are upper and lower solutions respectively. Hence there ezists a unique regular solu-
tion w of Eq.(3.27) and Eq.(3.2) such that vy(t,z) < w(t, z) < ue(t,z).

Proof: As h(u) is defined by (3.2), e < A(u) < 1. Also %(0,z) < s(z) <
uo(0, z) is given condition.

2
220+ ah(u) ~ 20 = _K + ah(uo) < ~K + Kh(uo) = K(h(ur) —1) <0

and

qu(t, 0) =0, ’llo,,(t, 1) + ﬁuo(t, 1) =0



CHAPTER 3. EXISTENCE & UNIQUENESS 51

hence ug(t, z) is an upper solution. It is easily seen that

32 3’00
a2+ah( V) — §=O+ah(vo)20
and

'an,(t, 0) =0, ’Uo,,(t, 1) + ,B’vo(t, 1) =0

thus vp(t, z) is a lower solution. By lemma 3.6.1, there exists a unique regular w of
Eq.(3.27) and Eq.(3.2) such that vo(t, z) < w(t, z) < uo(t, z). #
For the same argument, it is easy to get

Theorem 3.6.2 For Eq.(3.27) and h is defined by (3.16)

+ l(1 ~2z%)) with K> ae'®

uO(t,x) =K( 9

Y

and

v(t,z) =0

are upper and lower solutions respectively. Hence there exists a unique regular solu-
tion w of Eq.(3.27) and Eq.(3.16) such that v(t,z) < w(t,z) < up(t,x). #
Now consider the existence and uniqueness of solution for Eq.(2.12). For consis-

tency, it is rewritten as

_32'u #L__ 0<2<1,0<t<ty

A+n f; flu)dz)? (3.29)
u(t,0) = 0,u,(¢,1) + Su(t,1) =0 ,u(0,z) = s(z)
where f is defined by (3.2). |
It is not difficult to see that during the proof [4] of lemma 3.6.1 the important
thing is to construct two monotone sequences, one is nondecreasing and the other

is nonincreasing. For Eq.(3.29), though there is an integral as part of denominator,
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the monotone sequences can be still constructed. Similarly, define an operator G :

Upy1 — Uy 3S

_ _ Ouny —_ Un
Lupgy — Ctgyy — =522 [—iﬁ(—)—(lﬂ REERY=D +Cu,] ,0<2<1,0<t<%

Un+1,,,(t, 0) = 0’ un-l-l,:c(t: 1) + ,Bun-i-l(t, 1) =0 ,un+1(0,$) = 8(:1:)

we say G is monotone operator. In fact, suppose u > v, then

-8\ u— o) = — 7 () _ 1f(v) v
(= C =g (Gu =) = @y~ GxpifwamE T o)

Now it is needed to prove that the right hand side is negative for a large enough

" constant C. In fact, when u > v, f(u) < f(v). Hence,

(1+pe2 < (14 f ' flu)dn)? < (1+ 4 /01 F(0)dz)? < (1+ p)?

that is
1 1 1 1
T+ e = (F u i F@da) = A+ 4 F@dP = T+ AP
therefore
O )
A +ply f)dz)?  (1+ply fv)dz)?
f(w) _ f(v)
AL +ply f@R)dz)2 (L+pf; fv)ds)?
f(w) — f(v)

= Wt uly Fo)dap
f)—fl) _ f(w)(u—v)
(14 pe=10)2 = (1 4 pe—10)2

where the fact of f(u) — f(v) < 0 is used, u* is a function between » and v. As

|f'(u)] < 10, take C large enough such that C' > (T;-i—c%)—,-, then the right hand side
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is negative. By the maximum principle for parabolic equations, Gu > Gv, or G is a
monotone operator. Therefore, there is following theorem.

Theorem 3.6.3 For Eq.(3.29) and f is defined by (3.2)
11, .
up(t, ) =K(-I§+§(1—a: ) with K2>a

and

v(t,z) =0

are upper and lower solutions respectively. Hence there exists a unique reqular solu-
tion w of Eq.(3.29) and Eq.(3.2) such that v(t,z) < w(t,z) < up(t,z). #

Since the nonincreasing property of f(u) is used in the above proof, this method
can not be used directly for the NTC problem where the g(u) is nondecreasing.
However, it may still be possible to prove the uniqueness if the positive derivative is
generalized as a positive operator. As it needs more concepts, such as weak form,

weak solution, Banach space, etc., it is not discussed here in details.
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Chapter 4

The Numerical Results

In this chapter, the numerical solutions for steady state and time dependent
problems are given. There is agreement between the steady state solution calculated

in §4.1 and the steady state solution of the time dependent problem as time increases.

4.1 Steady State Problem for PTC

In this part, the steady state problem for PTC is numerically solved for different
parameters. The uniqueness and nonuniqueness of the solutions can be numerically

obtained and demonstrated by graphs.

4.1.1 Without External Circuit

For convenience, the steady state problem is rewritten as following:

ﬁ—;‘+af(u)=0 Lozl

(4.1)
4s(0) = 0 (1) + Bu(l) = 0
and
1 ,u<l
flu) =q e 0D 1<cy<? (4.2)

e 10 2<u
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where o and [ are parameters. Most of the effort is given to the case where 1 < u < 2
for some z since the cases for u < 1 and u > 2 for all z are easy to treat.
Actually, as has been stated in Chapter 3

(61

B

u= +§u—x% (4.3)

is a solution whenever a < (-—;-'-IT-‘-T Similarly
2

—-10 —10
u=“; +a2 (1—22) ,u>2 (4.4)

is a solution whenever %1—0- > 21ie. a > 2e°8. For o between these values u will
be within [1,2] for some = and an explicit solution is difficult.
In order to solve equation (4.1) numerically we rewrite it as a system of ordinary

differential equations

Uy =V ,Q)(O):O

v =—af(u) ,v(l)+Bu(l)=0

(4.5)

To solve this problem the shooting method[17] is employed. For the details of
existence and uniqueness of the method see [17, 18]. Now suppose u(0) = s, then we

can get u(z,s), v(z, s) as the solution for

Uy =V ,u(O):s

v, = —af(u) ,v(0)=0

(4.6)

If s = s* is a solution of v(1,s) + Bu(l,s) = 0, then y(z) = u(z,s*) and 2(z) =
v(z, s*) is a solution of (4.5), i.e., a solution of (4.1). In order to obtain a solution s*
of v(1,s) + fu(l,s) = 0, Newton’s iterative method is used. We first make an initial

guess s for s, by solving (4.6) we get u(z, s*) and v(z, s*). If v(1, s")+Bu(1,s") =0,
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s™ is a solution. Otherwise, consider s” + As as new tentative solution, and we
try to satisfy v(1,s" + As) + fu(l,s" + As) = 0. Since v(1,s) and u(l,s) are
not linear functions of s, we can’t get an exact solution for As directly. Using a
Taylor expansion, we get — as the approximation of As. Now put
sl = g7 — as the next guess for s. Repeating the same method, we

can get s"t2

, thus theoretically a sequence {s™}%_,. Also, we can get the solution
s* theoretically. In order to get the approximation of As, we assume that #(z,s)

and v(z,s) are differentiable functions of s and differentiate the system (4.6) with

respect to s, we introduce two new unknowns 7 = %’ T = %;—’, and a new system of
differential equations can be rewritten as
’ Uy = ,u(0) = s
) v, =—af(w) ,v(0)=0, @
T =T ,(0) =1
| T = —af'(v)T ,7(0) =0

and As = —ggi—;%%;—i}, n=0,1,2,---, s° arbitrary.

Now the problem becomes an initial value problem for the system (4.7). On
an IBM-RISC 6000 computer running a Unix operating system, we use the IMSL
library routine IVPRK ( refer to Appendix A ) to solve the initial value problem
(4.7). During the progress, we met an interesting phenomena. For some parameters
a and B if the initial value s® is not close to the solution, then an interesting cycle
appears. After 2 or 3 steps, a two cycle appears, so that s**2 is the same as s® and
s"*! is the same as s"~! with s* different from s"~1. If we make an initial guess very

close to the solution, it seems to converge very quickly for any parameters a and 3.

To overcome the problem of cycling a bisection method is introduced. The bisection
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method guarantees convergence although the rate of convergence is slower than that
obtained by Newton iterations. The technique used is that whenever oscillation
appears or the increment of As is greater than 0.5 then the bisection subroutine is
called and the condition for returning to Newton’s iterative scheme is that As is
less than 0.5. Here we choose the condition that As is less than 0.5 by numerical
experimental experience. Actually, without the bisection method, oscillation will
occur, whenever As is greater than 1.0.

The bisection routine is used for choosing the initial value for Newton iteration
method. The technique is as follows. From any initial value for s and parameters ¢,
B, the scheme is as following;:

(1) Using IMSL library routine IVPRK solve initial value problem (4.7) to get
values of u(1,s"), v(1,s"), w(1,s") and 7(1,s"). Set As = —%, and
T, = v(1,5") + Bu(l, s"). Goto step (2).

(2) Set s™*! = s® + As and solve (4.7) to get values of u(1,s™*?), v(1,s™*?),

%(1,s"*!) and B(1, s"*1). Calculate As = —;&::m:g;g;xi;, and T4y = v(1, ™)

+ Bu(l,s™*1), goto step (3).
(3) If As < 0.5, return to Newton iterations, else goto step (4).

(4) If T,41 X T, 2 0, goto step (1), else goto step (5).

(5) Using s™+2 = £54" ag initial guess for s to get values of u(1, s"+2), v(1, s™2),

%(1,s"*?) and 7(1, s”"”), calculating As = —;&j:::;i%g;:ig, and T = v(1,s"+2) +
Bu(l,s™+2). If As < 0.5, return to Newton iteration, else goto step (6).

(6) f T x T, > 0, then T}, = T, s® = s"*2, goto step (5), else T4y = T, s =
§"*2, goto step (5).

The main idea for bisection is as follows: Assume s* to be the root of v(1,s) +
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Bu(1,s) =0, first find two points s® and s! such that v(1, s)+Bu(l, s) takes different
signs at the two points. Then from these two points, we bisect the interval [s%, s!]
and get a new point s2, evaluate the sign of v(1,s) + Bu(l,s) at point s2 to choose
[s%,5?] or [s% 5] as the new interval. Every time there are two points which make
v(1,s) + Pu(l,s) take different signs. Repeating this procedure, a sequence {s*},
k = 1,2,... is obtained. Theoretically, s* — s*. As it is known, the convergent
rate of this method is linear, so it is used to choose an initial value for Newton’s
iterative method. In the above bisection scheme, step (1) to step (4) are used to
find two points such that v(1,s) + Bu(l, s) assumes two different signs at these two
points; step (5) to step (6) are used to further bisect the interval until the increment
As < 0.5 and then a return to Newton’s iterative method is made.

From the numerical results we can see that for some parameters o and 3 there are
several shifts back and forth between Newton’s method and the bisection method,
and the method is convergent for a,.ny parameters and initial values. During the nu-
merical experimental procedure, an interesting phenomenon is found. If the solutions
are between 1 and 2, then for any parameters and initial values, the total number
of Newton iterations is almost the same except that the bisection subroutine is used
a different number of times. Also, whenever the solutions are bigger than 2 or less
than 1, the number of Newton’s iterations is always 2 although the .number of times
the bisection subroutine is used is quite different. Some data are summarized in the
Table 4.1.1, where column 6 represents the number of Newton iterations, column
7 represents the number of times that bisection was used, column 8 represents the
number of times the bisection routine was called, s represents the initial guess and *

means total number of times bisection was used.
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Solutions of PTC Problem for Various Parameter a, 8

Table 4.1.1

al B s w0) | w(1)| 6| 7
999.000 | 0.005 | 0.5 | 9.0936 | 9.0709 | 2| 19
999.000 | 0.010 | 0.5 | 4.5581 | 4.5355 | 2| 18
999.000 | 0.100 | 0.5 | 1.8891 | 1.8106 | 11 | 14
750.000 | 0.100 | 0.5 | 1.8615 | 1.7840 { 10 | 15
500.000 | 0.100 | 0.5 | 1.8226 | 1.7465 | 9| 13
100.000 | 0.100 | 0.5 | 1.6684 | 1.5981 | 13 | 11

75.000 | 0.100 | 0.5 | 1.6410 | 1.5716 | 12| 12
50.000 | 0.100 | 0.5 | 1.6023 | 1.5344 | 9| 10
25.000 | 0.100 | 0.5 | 1.5363 | 1.4709 | 8 9
15.000 { 0.100 | 0.5 | 1.4878 | 1.4242 | 8| 10
14.000 | 0.100 | 0.5 | 1.4812 | 1.4179 | 13 | 12*
10.000 | 0.100 | 0.5 | 1.4493 [ 1.3872| 7 8
7.500 { 0.100 | 0.5 | 1.4221 | 1.3611 | 7 9
5.000 | 0.100 { 0.5 | 1.3837 | 1.3242 | 8 7
1.000 | 0.100 { 0.5 | 1.2323 | 1.1787 | 7 )
0.850 { 0.100 | 0.5 | 1.2171 | 1.1641 | 10 5
0.500 | 0.100 | 0.5 | 1.1675 | 1.1165 | 6 4
0.250 | 0.100 | 0.5 | 1.1030 | 1.0546 | 9 3

99



CHAPTER 4. NUMERICAL RESULTS 60

Table 4.1.1(continued)

a| B s u(0) | «(1)|[6]| 7|8
0.100 ( 0.100 | 0.5 | 1.0113 { 0.9642 | 6 | 2* | 2
0.050 | 0.100 { 0.5 1 0.5250 { 0.5000 } 2| 111
0.005 | 0.100 { 0.5 { 0.0525 [ 0.0500 |2 | 1|1

Col. 6—No. of Newton iterations, Col. 7—No. of times bisection used,

Col. 8—No. of calls to bisection routine.

From Table 4.1.1 it is easy to see that the numerical solutions are exactly the
solutions (4.3), (4.4) whenever u < 1 or u > 2. For cases where u is between 1 and
2, it is possible to make some checks on the numerical solutions. Multiply the first

equation by u, in (4.1) and integrate from 0 to 1 with respect to z, then we get

/1 dz + [lf() dz =0 (4.8)
| YestadT+o | f(W)usde = )

Denote ug and u; as the values of « at 0 and 1 respectively thus

1 ap “ =
2uz|0 + a/uo f(u)du =0 (4.9)

and also use the boundary conditions in (4.1). Hence we have

1
5FPR(L) — e - o] = g (4.10)

If we substitute o, 8, and ug, u;, obtained by the numerical method, into the left
hand side of equation(4.10), it is seen that the error is very small ( about 1076 ).
That suggests that u and u; are approximations of the exact solution.

From Table 4.1.1 it is easy to see that for some parameters we can get solution

in which critical values of u ( i.e., 1 or 2 ) are obtained, but there do not seem to be
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“values of parameters make u greater than 2 at some points and less than 1 at some
other points within the interval [0,1]. Using the same IMSL library routine we can
estimate the locations at which v reaches the critical values 1 or 2. The Table 4.1.2
describes this for some cases, where £ means the value at which u(¢) = 1 or u(¢) = 2.
Here only the estimated intervals are given. These results give some indication of

the situation for the time dependent problem.

Table 4.1.2

ol B | u0)] 1) 3
440.000 | 0.010 | 2.0090 | 1.9990 | [0.92,0.96]

0.100 | 0.100 | 1.0109 | 0.9638 | [0.48,0.52]

0.096 | 0.100 | 1.0029 | 0.9554 | [0.24,0.28]

Location of interface & for some a, (.

4.1.2 With External Circuit

Here the steady state one dimensional problem with the extra conditon is con-
sidered ( An external circuit connected to the thermistor ). Numerical solutions are
discussed.

The equations are now as follows

Ly tof(u)=0 ,0<z<1 |
4:(0) =0 Lz (1) + Bu(l) = 0 (4.11)
1=I+4  a=qP
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where v and f are fixed parameters and f(u) is defined by (4.2). In order to solve

Eq.(4.11), it is decomposed into two parts, one as Eq.(4.1) and the other as

u(l) = Z—;(l ~1) (4.12)

Figure 4.1.0
B=0.25

0.0 2.0 4.0 6.0 8.0 10.0
X

Plot of u(1) and I for solution of (4.1), 0 < I < 10.

For convenience, we rewrite the cold and hot solutions of (4.1) here. In fact, as

we know, the cold solution ( u < 1) of (4.1) can be written as

u(z) = 7712 + 121—2(1 — %)
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and hot solution ( » > 2 ) of (4.1) can be written as

’)’126-10 ’)’.[28_10

B 2

u(z) = (1 - 2?)

Figure 4.1.0a
B=0.25

Plot of u(1) and I for solution of (4.1),0<I<1.

By the property discussed in Chapter 3, u(z) is monotonically nonincreasing

function of z, so for the cold solution

_ e
u) =1 (4.13)



CHAPTER 4. NUMERICAL RESULTS 64

iff u(0) = I 2(% + 1) < 1 and for the hot solution

v J2e—10

u(l) = 5

(4.14)

—10

iff u(l) = L2 > 2,

Figure 4.1.0b
B=0.25

Plot of u(1) and I for solution of (4.1), 1 < I <10.

In fact, Eq.(4.1) is solved already. Now the problem is how to include (4.12). If
v and B are fixed, the solution of (4.1) is a function of I, so it can be denoted as
U(z,I). Let z = 1, if U(1,I) is a solution of (4.11), U(1,I) should coincide with
(4.12), i.e., U(1,I) = u(1). Problem (4.11) may be solved by iteration. The method
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-1s as follows. For a given initial Iy, evaluating ap = vIZ, use the shooting method
mentioned in §4.1.1 to solve (4.1) for the fixed oy, then get u(1,Ip). Now use (4.12)

to determine I. Since Eq.(4.12) is quadratic in I two I are obtained, we choose the

Figure 4.1.1

B=0.25

8.0

6.0 - -
= 4.0 .

2.0 -

There is only one intersection point
0.0 ) . : )
0.0 0.2 0.4 0.6 0.8 1.0

) §

Graphs of u(1) and I for solution of (4.1) and solution of (4.12).

Intersection point represents solution of coupled problem.

greater one for § = 0.25 as I;. Next a u(1,];) is obtained as a solution of Eq.(4.1)
with & = 7I{. Repeating this procedure, two sequences {I,} and {u(1,I,)} are
obtained. If |I,41—I,,| and |u(1, I+1) —u(1, I,,)| are less than a given tolerance, stop

otherwise continue until the sequences converge. Therefore the numerical solutions
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of (4.11) are obtained. The sequences converges because as it is seen in Figure 4.1.1,
at the intersection ( i.e., solution of Eq.(4.11) ) of the two curves, the absolute value
of the product of the derivatives one with respect to I and one with respect to u(1)
of the two curves is less than 1. Hence the combination of the two curves makes a

contraction operator about I, therefore the sequence u(1,I,) is convergent.

Figure 4.1.2
B=0.409836065

uft)

T~ —\

There are two intersection points

0.0

0.0 0.2 0.4 0.6 0.8 1.0
I

Graphs of u(1) and I for solution of (4.1) and solution of (4.12).

Intersection points are solutions of coupled problem.

The solution to Eq.(4.11) may not be unique. This can be demonstrated graphi-
cally. If the solution of (4.1) at z = 1 is drawn as in Figure 4.1.0 ( for fixed 8 = 0.25
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for consistency, a@ = yI2,y = 150, it may be noted that the figure consists of three
parts, the two critical points are I; = 0.038490017 and I, = 8.568637736. When
I < I and I > I, u(1) is defined by (4.13) and (4.14) respectively; when I} < I < I,
u(1) is obtained by the method discussed in §4.1.1. For ease of reading the Fig-
ure 4.1.0, it is decomposed into two figures as Figure 4.1.0a and Figure 4.1.0b ),

Figure 4.1.3
B=0.60

1.0 | -
~—

-
There are three intersection points

0.0 0.2 0.4 0.6 0.8 1.0

Graphs of u(1) and I for solution of (4.1) and solution of (4.12).

Intersection points are solutions of coupled problem.

it is easy to see that when condition (4.12) is put into that graph, three cases may

occur. One is that (4.12) and (4.1) have one intersection point. The second is that
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(4.12) and (4.1) have two intersection points and the third is that (4.12) and (4.1)

have three intersection points. The three cases can be obtained by adjusting the

parameter  when v = 150 and g = 20 are fixed. The method is as follows.
Consider that (4.13) touches with (4.12), hence,

v, 12
D=

therefore, Jo = —17. That means that (4.13) meets with (4.12) whenever I = I,

(4.15)

However it must be noted that the intersection of (4.12) with (4.13) has meaning
only if u(0) = 7I§(5 + 3) < 1. From u(0) = 7I3(5 +3) < 1, there is 8 > ——LL-—Q—
We say that Gy = -m-g-—— = 0.409836065 is a critical value. When 8 = f, (4 13)
just touches (4.12) Whlch2 means that there are two solutions; 8 > fo, (4.13) has
one intersection point with (4.12) and the end of (4.13) goes above the parabola
(4.12) which means that there are three solutions; 8 < S, (4.13) can not meet with
(4.12) which means that there is only one solution. The Figure 4.1.1 ( 8 = 0.25),
Figure 4.1.2 ( § = 0.409836065 ) and Figure 4.1.3 ( 8 = 0.60 ) demonstrate this.
A similar situation can be discussed when (4.14) intersects, does not intersect and

just intersects with (4.12) ( here just intersects means that the end point of parabola

(4.14) is just on the parabola (4.12) ).

4.2 Time Dependent Problem for PTC

Here the time dependent one dimensional PTC problem is considered. Numerical

solutions are discussed.
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The equation is as follows

%%=%Z%+af(u) ,0<z<1

(4.16)
uz(0) =0 yuz(1) + Bu(l) =0
and
1 ,u<l
flu) = e 0@-D) 1 <y<? (4.17)
e 10 ,2<u

where o and 8 are parameters.

4.2.1 Moving Meshpoints Method

In order to get the numerical solution of Eq.(4.16), the finite element method is
used. At first we expect that the whole solution is within the “cold ” region. So the
Crank-Nicholson method is used to find the time when the first critical temperature is
reached at one point. Whenever the critical temperature is reached, a finite element
method is used. Initially, suppose the whole region to be cold, u;; = u(ih, jAL),i =

0,...,N,and h = 1.0/N, then the Crank-Nicholson difference scheme is as following

Uil = Uiy 1 Uig1j41 — 20541 + Uicr i1 | Uigrj — 205 + Uiy
At 3l B + 72 I+

ie.,

T r

~gUistgt + (L + 1)U = SUio1in
T T
= §u,-+1,j + (1 - r)u,-,,- + :—z-ui_l,j + alt (4.18)

where r = %f-,z' =0,...,N. For the boundary conditions, the central difference is

used for good accuracy. In order to use the central difference formula it is necessary
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to introduce the “fictitious” temperature u_; ; at the external mesh point (—h, JAL),

by imagining the thermistor to be extended a distance & at this end. That is
SLiZHL] = () YULG = U_p , =10 (419)
SULEEEE + Bun; =0 uny1; = un-1j — 2hPun; ,i=N

The temperature u_; ; is unknown and necessitates another equation. This is
obtained by assuming that Eq.(4.16) is satisfied at the end point £ = 0. The u_;;
can be eliminated between these equations. A similar method is used for the other
end point z = 1.

When the solution at z = 0 reaches 1, the interface point appears. The problem
at the next timestep is to choose the new position of the interface point and time
stepsize. In order to solve this problem, the following method is employed.

Suppose x = z;(t) to be the interface at which the temperature is the critical
temperature u, = 1 ( i.e., o(u;) = 1 ). Define new variables £ = T =t (s

relative coordinate ). Then

0 0 =z.,0 0 0

ot =5;_x%x16§ ar 1z, 8¢

a 120
Let u = u(&,7), note ﬂual;ﬂ = 0 for all 7 because u(1,7) =1 for all 7. The Eq.(4.16)
becomes
Ou ,1;0u 10%
—_— i = 21
a,r z aé- .'17% 362 + aa’(u(f, T)) (4 )
AtE=1,0-2% , = ;lg%leﬂ + @, since ezo = 0,%lemy = J§ GHd¢ =

z1 9y — 2 1 21 8% . 11 21 8%u — 0% P
Ty e = 215 J5 5 dr and —mid (- 5 54de] = $hle—s, + @, it is now

assumed that 32712‘ changes very little for x; small ( or let ; — 0,47 — o), then

0%u
(1 +2181)(—55le=0) = @ (4.22)
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because :1:1:&1(%2;‘2‘-)|z=0 = (azz)lx_o a,i.e,rf; = —1 — T “) = (g - 1).
922 /2=0
ko= %]ap:o is estimated from the previous time step. Thus it is assumed that
d,, o
— =2(——1 4.2
76 =25 -1 (4.23)

( Note that zy8; = 14(22)).

Hence at first step if z; is determined by the following method. ’fhe time step
At can be chosen as z2/ 2(& —1). In the actual program, z; is first assigned a value
of h/8 where h is the mesh length and At chosen as above. Thereafter the problem
is solved in two phases.

Denote the interface point as = &. The interval [0,1] is divided into two
segments, [0, &) and [, 1]. Since &, is very small at the beginning, it is not necessary
to put any points within [0,&)]. [£2,1] is divided into nc equal segments. Thus the
total number of node points is nt = nc+ 2. Denote ke = (1 — &) /nc, node points
by z;. Hence 1 = 0, 25 = &, #; = 226 + £2§ = 3,..., nt. Since & is not fixed,

z; depends upon time ¢. Define trial and test function as

sl [z, @)
bilo,t) ={ T (4.24)
s [m 3]

Multiply Eq.(4.16) by ¢;(z,t) and integrate from 0 to 1, then
1oy  O%u
/0 (-ét— 3 ao(u))g;(z,t)dz = 0, (4.25)
where j =1,...,nt, i.e.,

< Uty @5 > + < Ugy Pjp > —Pu(l,t)0n; — @ < (u),d; >=0, (4.26)
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where j = 1,...,nt. Replace u by the approximate form E;-‘f_:l u;P; where u; are

functions of ¢ and ¢; are functions of = and ¢, and integrate by parts, then

Do (Uip < Giy by > Ui < gy 5 > Ui < Pigy Bip >) —
i=1

nt
Bu(l,nt)bn; — a < o(D_ uidi), $; >=0, (4.27)
i=1
where j = 1,...,nt and < ¢;,¢; >= f01 ¢:ip;dz. Hence

i=1, (4.28)

1 U Ug 1.
352 wte T g 652( 1 — ug)

%% [e~106a=) g~ 100z—1) _ g~10(u1—1)
10(U2 - 'u]_) 10(U2 _ ul)

i=2, (4.29)

1 1. 1. 1. 1.
'6'€2u1,t + g(xs - €2)u3t + —§2u1 + g%uz — (§§2 + gws)us
1 1 ug ahe
—_— + ( — =
5 52 z3—& w3—& 2

o [e100e=D) 4 e—10(u2~1) _ o~10(u1-1)

IO(U2 - 'u,]_) 10(’&2 - ul)

i=3, (4.30)

2 1 1 3nc—2 .
ghcus,t + 6hcu4,t + E(—ulz + 2ug -—3u4) + g ugéy
. 3nc—

~3oU ugla — oy §2u4 = ahe

i=4,... nt—1, (4.31)
3nt—3i+1 2

(uz-—l ¢+ AU+ uipyy) + 52(Tuz—1 - 6?:”’

__3nt —-3i—-1 1

e Uiy1) + E(-—u,-_l + 2u; — u;41) = ahe
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i =nt, (4.32)
he

1 1
6 —(Unt—1,t + 2unss) + —'52 (Unt—1 — Une) + %(_unt—l + Upe)

6ne
a
+Btp: = Ehc

Now denote A¢; and At as increments of & and ¢ respectively. Use
L f)dt m (f(t+ A) + F(2) At
and
LE fegdt & (F(E+ At) — £(2)) (LE0G0)
Integrate the equatic;ns t =1,...,nt,using the above approximations. Simplifying

the equations we get

i=1, (4.33)

At ur 1 _’Lﬁ
"m) + (— + 12)A§2
At

_____Ai____.i.( é’ + At ) n_ T
26+ A&) TS T
e—10(urt1-1)

62 + A§2 —10(u®—1 1

—_— At 2 T TS2 (u3-1)

[ ( n+1) (6 ! + 10(1 — il-i-l)
11— e—lO(’ui‘—l)

&2 ~10(u?—1) —
- T Toag=a N0

1 1
('552 + ZAfz +

+

1=2, (4.34)
1 1 At n+1 ul 3nc - 2 n
(Gt 7083 20 +A§2))“1 (33~ “one ¥
nc—1 aAt At 1 1

6nc | dnc )AL+ (€ + A&y + éni?-)

+

(— - —Afz ~ g ust - ( &2+ 5'52')“?

( )
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he At . At At ahcAt
B A AT i
_aAt [ b + A& a 1— e‘m(“"ﬂL ))
10(1 — uf*h) 10(1 — u}*h)
Afg 1 — e~ 10(u7-1) _
- Toag—ap L=
i=3, (4.35)
2 Aée At +1, /1 nc—1
=— + w3t + (5 — ——=A
G- g Thee- )% T AT
At +1 ug 3nc—5 3nc—2
n A )
2hc(hc-— ))u + 52(6(1 &) 12(1 - &) “st 6(1 — &)
+ alt ) — At _(_2_ At)
2(1-&)"  2hc(hc—482) '3 he?
1 At At

i=d,...mt—1, (4.36)
1 3z At A

(g+ ( €) W——g—)) I'_+11+( T =6
+Eﬁ—5;§)u§‘+l+(é 1?;5 %) Aé — (hcAt_ %))uw
AT g~ o0 32)2“?“ ooy
_(1+24222) -1 @ I?ci) %*‘;;Xz) Uiy — oAt =0

i =nt, (4.37)
_]_' At ut! A€2
(&~ Shehe— 25y G G- Iy

At + ,BAt) n+1 +A€ ( nt— + Unt

2hc(hc 86y " 2he 6(1-&)  12(1-&)
aAt 1 At 1 At BAL, .
i) ~ Gt e e G g~ gt =0



CHAPTER 4. NUMERICAL RESULTS 75

In Eq.(4.33), since u, is very close to 1 at the beginning, a Taylor series expansion

suggest that we use & to replace

_ "'H_

10(1—u«.’f“) T
82 (et0-n) 1 — g~100-)
10(1 ) 1001 = a1)

A similar method was used in Eq.(4.34). For later times the original equations are
used. It is very clear that system is nonlinear in (ug, Aés, us, ..., us:). Here it must
.be noted that the second unknown A&, is the increment of & since uy is always
assumed to be 1. In order to solve equations (4.33-4.37), Newton’s method is again
applied. Since the variable A, is different from others, some special techniques
are used to solve for it. If the system is denoted as F(uj, A, u3,...,%n) = 0
where u = (uy, A, us, ..., Un)T ,the Newtonian iterative scheme can be written as
u™ = ¢ — (VF(u"))"'F(u"). Let Au = v+ — u*, hence [VF(u")]Au = —F(u?)
must be solved. First let us examine the form of Jacobian VF(u"). Obviously most
of the entries are zero, and for convenience a;; means that entry is not zero. The

second column corresponds to Af,.

(

ai; a9 0 0 0

0

as; agz a3 0 0 O ...
0 azp a3 aze 0 O
0

A=| 0 o as au ass (4.38)

o O o o o

0 aso 0 asy ass ase

\ 0 (170 0 0 0 0 ... antnt)
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The problem then is to solve a system Az = b where z = (z1,xs,... ,Znt)T and

b= (b,...,bn)T. Denote as = (asa, ..., anw)7, b' = (b3,...,b)7,
( agz azgg 0 O ... 0 )
013 ay ags 0 ... 0
C= 0 ass as5 asg ... 0 (4.39)

\ 0 0 0 0 ... anmt}
ot = (z},...,25,)T and 22 = (23,...,22,)T. Solve Cz! = b! and Cz? = a, first
( where C is a tridiagonal matrix ). Then let z = (21, %a, 2} — 2223, . ., 2L, — z922,)T
and choose z; and z so that the remaining equations of the systems Az = b are
satisfied. This method allows the Au to be found, and hence u™+!. Repeat this until
either Aé, < 0 or & > ;11; If A& < 0 for the first time step after the introduction
of the interface, this means that the interface point &, is almost equal to 0, i.e., the
temperature reaches its critical value ( which here is 1 ) only at the point z = 0. If
& > ;1;, then [0, &] is partitioned into two pieces. As & increases, more node points
will be added to the interval [0,&5], i.e., this interval is parfitioned into ns equal
segments.

In the actual algorithm, when the temperature at the center point becomes “hot”,
the program uses four subroutines. The first subroutine is devoted to the case in
which only one point is a hot point. As time increases, & increases. When & is
greater than h, more nodal points will be added, then the next subroutine is called.
The second subroutine deals with the case where there are more than one mesh

point on both sides of the interface point. If £ keeps moving forward, the number

of mesh points at the right side of interface point reduce to one. Hence, the third
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subroutine is engaged. When &, is very close to the right end point (z=1),it
is considered that the whole region is within the transient region. Therefore, the
fourth subroutine is applied. Répeat using the fourth subroutine until the absolute
value of biggest difference between newly obtained values and old values at all points

satisfies a specified tolerance and then stop.

Table 4.2.1

B

u(0)

u(l)

v(0)

v(1)

€ITor

7.50

0.250

1.362675

1.240080

1.362729

1.240063

0.00005

3.50

0.250

1.289988

1.172719

1.290052

1.172717

0.00006

2.50

0.250

1.257984

1.143097

1.258052

1.143100

0.00006

1.00

0.250

1.171109

1.062799

1.171199

1.062828

0.00009

0.90

0.250

1.161152

1.053608

1.161241

1.053635

0.00008

0.80

0.250

1.150019

1.043332

1.150117

1.043369

0.00009

0.70

0.250

1.137422

1.031710

1.137516

1.031741

0.00009

0.50

0.250

1.105845

1.002560

1.106811

1.002506

0.00005

0.40

0.250

1.084141

0.981651

1.084082

0.981590

0.00005

0.35

0.250

1.069982

0.966818

1.069938

0.966847

0.00004

0.30

0.250

1.051984

0.947115

1.051951

0.947085

0.00003

End point values of solutions for various o, f3.

u 1s the solution of the time dependent problem as t —» oco.

In the first three subroutines, similar methods are used to solve [VF(u")]Au =

v is the numerical solution of the steady state problem.
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—F(u"). The criterion for adding and removing nodal points is as follows: when
& < 0.5and & > L;h-, the nodal points between 0 and &; are doubled. In this way,
when & is very close to the middle point, the number of nodal points between 0 and
&2 is the same as the total number which is taken initially when the whole region was
considered as a cold region. When 1 —§, < &2"—'5, & 2 0.75 and nc > 1, half of nodal
points are removed. This means when & moves towards 1, less and less nodal points
between & and 1 remain, the number of nodal points are determined by how close
& is to 1. When the sum of increment & + A&, is greater than 1, the whole region is
considered as a transient region. The timestep At is also adjusted according to the
ratio of previous values of A&, and At.

The Table 4.2.1 gives the results obtained using the above mentioned program,
where u(0) and (1) represent numerical solutions of Eq.(4.16) at points 0 and 1 re-
spectively after the steady state conditions have been attained and v(0) and v(1) the
corresponding numerical solutions of the steady state problem (4.1) corresponding to
Eq.(4.16). “Error” means the maximum error of the two numerical solutions corre-
sponding to Eq.(4.16) and the steady state problem (4.1). From the Table 4.2.1 it is
easy to see that biggest error is 0.00009 and smallest 0.00003. Also from Table 4.2.1
it can be seen that when « is between 0.4 and 0.3 inclusively, two phases appear.
One phase is for the cold region and another one is for the transient region. This
means that for those o the whole region is not in the transient state and therefore
the interface point &, needs to be located.

The Table 4.2.2 gives the results obtained by two methods. One is the program
mentioned above and the other is the IMSL shooting method. From the results it

can be seen that the outcomes match very well. The value of & on the fifth column
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is obtained by the above mentioned program and the approximated interval of &

on the eighth column is obtained by using the IMSL subroutine for the steady state

problem.

Table 4.2.2

«a

B

u(0)

u(1)

&2

v(0)

(1)

&

0.40

0.25

1.084141

0.981651

0.920

1.084082

0.981590

[0.88,0.92]

0.35

0.25

1.069982

0.966818

0.846

1.069938

0.966847

[0.84,0.88]

0.30

0.25

1.051984

0.947115

0.731

1.051951

0.947085

[0.72,0.76]

Position of the “ interface ” point of & from the time dependent solution as

t — oo and from the steady state solution.

Also through the program, &; can be traced during the whole time period before

the solution reaches steady state. For some o and § pictures are given for demon-

stration. From the pictures it is easy to see that for fixed 3, when a increases, the

time to become hot decreases and the time period for the temperature to reach a

pseudo-steady state is also shortened. When the temperature reaches pseudo-steady

state, it still needs some Newton iterations for the temperature to reach steady state.

The results from the pictures match very well with the theoretical conclusion, i.e. ,

when « is bigger, which means the heat source is stronger, the temperature increases

rapidly and reaches the steady state very quickly. Otherwise, the temperature in-

creases very slowly and it takes a longer time to reach steady state.
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4.2.2 Fixed Meshpoints Method

A fixed meshpoints method is now used to solve (4.16) where f(u) is defined
by (4.2). Here the unconditionally stable Crank-Nicholson difference scheme is used
throughout. The z direction stepsizeis Az = % ( we choose this number for compar-
ison with the results of §4.2.1 ) and time direction stepsize At is chosen arbitrarily

( of course r = (TA;)? is kept reasonably bounded ). The scheme is as follows:

Uijpl = Uij _ L 8iga g1 — 2041 + Uimr g1 | Uirnj — 2Uij + i1, B
A -3l (Ao * a1 ef ()

ie.,

T T
—gUistgrr + (L 1)U = SUie1i4
r
= St + (1= )iy + stioyj + @At (ui) (4.40)

2 2

where r = (TAz%z—,z' =0,...,N. For the boundary conditions, a similar central differ-

ence at endpoints £ = 0 and = = 1 is used as in §4.2.1. That is

Uig1,j=Uiml,j - . ) =
—'*‘—*-'——‘J-Mz = yULG = Uy j ,t0=10

(4.41)
e+ Bun =0 ,ungy = un-1; — 28zfu; i=N

The advantage of the fixed meshpoints method is that the scheme is easy to form
and the numerical solutions are easy to obtain. Actually, the system obtained by
discretization is a tridiagonal system. So it is very easy to solve. The disadvantage

of this method is that there is no indication where the interface point £, where
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u(t,€) = 1, is located. The numerical results are summarized in Table 4.2.3 where
2(0) and u(1) is the numerical solution of (4.16) at endpoints £ = 0 and z = 1

respectively and v(0) and v(1) is the numerical solution of (4.1) at endpoints z = 0

and x = 1 respectively.

Table 4.2.3

u(0)

u(l)

v(0)

v(1)

€rror

7.50

0.250

1.362750

1.240166

1.362729

1.240063

0.00010

3.50

0.250

1.290071

1.172801

1.290052

1.172717

0.00008

2.50

0.250

1.258070

1.143189

1.258052

1.143100

0.00009

1.00

0.250

1.171216

1.062906

1.171199

1.062828

0.00008

0.90

0.250

1.161258

1.053703

1.161241

1.053635

0.00007

0.80

0.250

1.150134

1.043435

1.150117

1.043369

0.00007

0.70

0.250

1.137532

1.031807

1.137516

1.031741

0.00007

0.50

0.250

1.105827

1.002569

1.106811

1.002506

0.00098

0.40

0.250

1.084067

0.981579

1.084082

0.981590

0.00002

0.35

0.250

1.069945

0.966875

1.069938

0.966847

0.00003

0.30

0.250

1.051941

0.947079

1.051951

0.947085

0.00001

End point values of solutions.

u is the solution of the time dependent solution as t — oo.

Comparing with Table 4.2.1, it is seen that the errors with the fixed meshpoint

method are almost ten times bigger than the errors with the moving meshpoint

v is the steady state solution.
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method. The biggest error in Table 4.2.3 ( for parameters & = 0.5 and 8 = 0.25 )
is 0.00098 while the biggest in Table 4.2.1 is 0.00009. That is.to say,.though the
moving meshpoints method is more complicated than the fixed meshpoints method,
the moving meshpoints method gives more accurate numerical solutions. Also the
moving meshpoints method gives a more accurate location of interface point than the
fixed meshpoints method, which only gives a possible interval in which the interface
point is located.

The above numerical solution is only for o fixed. Now the situation for « is
function of u(z,t) is considered in the following. For convenience, the time dependent

equation is written as follows:

~g—’t‘=§:;%+af(u) ,0<z<1
42(0) = 0 (1) + Bu(l) = 0

where 3, 1 and 7y are parameters, f(u) is defined by (4.2) and « is a function of u, i.e.,

(4.42)

a = ——-———, This arises when the external circuit is included. A reasonable
(Wn Jy F@)de) |
value for 7 is 150 and for- p a value of 20. Comparing with Eq.(4.16), Eq.(4.42)
is more complicated since o is dependent on u(z,%). In order to solve Eq.(4.42),
a semi-implict difference scheme is used. Here semi-implicit means that the linear

part is implicit but the nonlinear part is explicit. This makes it easy to handle the

integral term. That is

Uight = Uig _ Yirlrr = ijpr +Uimren VS (i)
At (Az)? integral

ie.,
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=TUip1,g41 + (L + 2r) i1 — i g

e s . YA (i)
" " integral

(4.43)

where r = (_AAf)'f and i =0,1,---, N, integral = [1 + pAzs SN [f(uiz1;) + Fluwi )]
le., a trapezoidal rule over the values of u at the gridpoints ( time step j ) is
used. For the boundary condition, the central difference (4.41) is employed. Since
in Eq.(4.42) « is no longer constant, the numerical experiments are done for various
B. As it is mentioned in Chapter 3, as time increases, Eq.(4.42) reaches its steady
state, therefore the steady state solutions of Eq.(4.42) should match the solutions
of Eq.(4.11). Thus for different 3 there should exist one, two or three solutions to
Eq.(4.42). The numerical results are summarized in following Table 4.2.4, where

I= \/g and o = (—IW, 4(0) and u(1) represent the numerical solutions
( at both endpoints z = 0 and = 1 ) obtained when the initial values u;q are
all zeros; v(0) and v(1) represent the numerical solutions obtained when the initial
values u;q are greater than 1.0. Theoretically, when 8 > 0.4098 there should be
three solutions, one is that the whole solution is in the cold region, the second one
is a solution spanning both cold and transient regions, the third one is the whole
solution in the transient region; when 8 < 0.4098 there is only one solution in the
transient region. From the Table 4.2.4 it is easy to see that when 8 < 0.4098
( critical value for § ), there is only one numerical solution; when 3 > 0.4098, there
are two solutions, one is the whole solution in the cold region and another one is the
whole solution in the transient region. How about the one which spans both cold

and transient region? Why are we unable to get it numerically? The problem is that

that steady state solution is unstable. As for the case § = 0.4098, v(0) reaches 1.0
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for the cold branch and it agrees with the numerical results in §4.1.2.

Table 4.2.4

84

B

I

u(0)

u(1)

I

v(0)

v(1)

.6000

4762E—1

.7369E-+0

HD668E+0

BT71E+0

.1588E+1

.1348E+1

.5000

4762E~1

.8503E4-0

.6802E+-0

.8974E+0

1599E+1

1381E+1

4500

4762E—1

9258E+0

.7358E4-0

9074E+-0

.1605E+1

.1400E+1

4100

4762E—1

9996E+-0

.8295E4-0

9154E+4-0

J1611E+1

1416E-+1

4099

4762E-1

.9998E4-0

.8297E+0

9155E+-0

J1611E+1

.1416E+41

4098

4762E-1

.1000E+1

8299E+-0

9155E+0

JA1611E+1

.1416E+1

4000

9174E4-0

1612E4-1

.1420E4-1

9174E+0

J1612E+1

.1420E+1

.3500

9274E4-0

.1620E+1

1443E41

9274E+0

.1620E+1

1443E+1

.3000

9373E+0

.1629E+1

1469E+1

9373E+0

1629E+1

.1469E+1

.2500

9473E+40

.1640E+-1

1498E+1

9473E+40

.1640E+1

.1498E+1

.2000

9573E+0

1654E+1

1533E+1

9573E4-0

.1654E+1

J1533E+1

End point values of solutions of time dependent problem with external circuit as

t — 00. u and v are solutions obtained from different initial values.
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4.3 Numerical Solutions for NTC Problem

In this section, numerical solutions for the NT'C problems are given. As in § 4.2,
the figures and tables are also included. Numerical results show that the characteris-
tics of solutions of Eq.(3.1) and Eq.(3.17) are mainly determined by the nondecreas-

ing or nonincreasing property of the functions at the right hand side.

Figure 4.3.0
B=0.25

1.5 -

End point of parabola

o.o 1 I3 L
0.000 0.010 0.020 0.030 0.040

) 1

Plot of u(1) and I for solution of (4.45), 0 < u(1) <2
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4.3.1 Without External Circuit

As for NTC problem, the function for right hand side is defined as ( reciprocal
~ of f defined by (4.2) )

1 ,u<l1
glu) =1 01 1<y <2 (4.44)
el? ,2<u

Figure 4.3.1

B=0.25
20000.0 ,

15000.0 Parabola (hot branch )

= 10000.0

5000.0

0.0 !
0.000 0.010

0.020 0.030 0.040
I

Plot of u(1) and I for solution of (4.45), 2 < u(1) < 20000 ( large range ).
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and the problem is as follows

2—:%‘-+ag(u)=0 0<z<1

(4.45)
2,(0) =0 yuz(1) + Bu(l) =0
Figure 4.3.2
B=0.25
8.0
6.0 |- .
= 4.0 | 4
| One intersection point |
ol / -
0.0 // L
0.000 0.010 0.020 0.030 0.040 0.050

I

Graphs of u(1) and I for solution of (4.50) and solutions of (4.52).

Intersection point represents solution of coupled problem.

Comparing to the original problem discussed in §4.1.1, the only difference is the
nonlinear function g(u). However this difference of functions makes the solution u(z)

very different. That is, for some fixed o and S, the solution u(z) is not unique. Again
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as in §4.1.1,
=2 L %12
u(z) = 5 + 2(1 z*) (4.46)
iff ¥ <1 in the interval [0, 1] and
10 10 :
u(z) = “—;- +2-(1-4? (4.47)

= (4.48)
and for (4.47) if u(1) > 2 then
o > 2Be”10 (4.49)

Hence for o € [2f8e~1°, 2,—2_!%], (4.46) and (4.47) can both be solutions of (4.45). These
are the easily found ones. In fact there exists u(z) between 1 and 2. Thus for certain
a and f there exist three solutions. For demonstration, 8 = 0.25 is fixed, hence
for o € [0.000022699, 0.222222222], there exist three solutions. For convenience, the

graphs demonstrate the relations of «(1) and a ( for consistency, here a = 712,y =

150 ). The graphs are called Figure 4.3.0 and Figure 4.3.1.

4.3.2 With External Circuit

Here the steady state one dimensional problem for the NTC with the external
circuit is considered. The numerical solution is discussed. The equation is as follows:

to find I and u(z), 0 < z < 1 such that

%}+ag(u)=0 0<z<1

| (4.50)
u;(0) =0 yuz(1) + Pu(l) =0
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1=pul + -ﬂ% a=I? (4.51)

where v and 3 are fixed parameters and g(u) is defined by (4.44).

From Eq.(4.50) and (4.51) it can be seen that a = vI? and u(1) are related.
Thus it is more complicated to solve Eq.(4.50) and (4.51) than (4.45). In order to
get the numerical solution of Eq.(4.50) and (4.51), the IMSL routine is used as in
the PTC problem. So the strategy here is to fix I, therefore @, use the shooting
method ( usually with more than one iteration ) to obtain u(1), then modify o
according to u(1) by using the relation (4.51) and continue iterating, until both I
and u(1) converge to some values and a numerical solution to Eq.(4.50) and (4.51)
is obtained.

From the equation of Eq.(4.51), it is easy to see that

u(l) = lﬁf(l — ul) (4.52)

so u(1) is a parabolic function of I. On the other hand, from Eq.(4.50) and the

definition of g(u) by (4.44), the following are obvious

u(z) = —;— + %(l —2?%), provided u<1 or a< -B% (4.53)
and
ael®  geld \ . i
u(z) = 5 + T(l —2°), provided 2<u or a>2fe (4.54)

Now we see that if v and 3 are fixed, the solution to Eq.(4.50) and (4.51) for any
given I is not unique. Actually, the region of I for nonuniqueness can be determined
as follows. From (4.3), if u(0) = § + § < 1, then u(z) < 1 for 0 < z < 1 because

u(z) is nonincreasing function of z. Thus, a = vI? < T, le, P < 2B (e.g.,
7tz 71(8+2)
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if § = 0.25,7 = 150, then I < 0.03849 ). From (4.54), it is easy to see that, if

u(l) = 7—13[,& > 2, then u(z) > 2 for 0 < z < 1. Hence, e > 2 ie., 12> 2

B ~ell
(e.g., if B = 0.25,7 = 150, then I > 0.0003890 ). Therefore, for I € [,—ﬁ%, ——-"——7(; _|_2)],

the number of solutions to Eq.(4.50) and (4.51) is at least two. The Figure 4.3.0
and Figure 4.3.1 are demonstration graphs for the nonuniqueness corresponding to
I. The graphs consist of three parts, i.e., Figure 4.§.0 foru(l) <1,1 <u(l) <2and
Figure 4.3.1 for 2 < (1) within the same region of I. That is to say, the graphs are
drawn for the relation of u(1) to I. The numerical results are given in Table 4.3.1.
Where 8 = 0.25 and v = 150 are fixed, I is a parameter changed within the interval
mentioned above with stepsize of 20th of the interval length, (1) and u(0), v(1) and
v(0), w(1) and w(0) represent the solutions with respect to u(z) > 2, 2 > u(z) > 1
and 1 > u(z). From Table 4.3.1, it can be seen that at both ends of the interval
the two branches of the solution almost joined together. At I = 0.3890F — 3, the
difference of u(1) and v(1) is 0.052, at I = 0.3850F — 1, the difference of v(1) and
w(1) is 0.0003, much smaller and almost negligible. From Figure 4.3.0, Figure 4.3.2,
Figure 4.3.3 and Figure 4.3.4, it is easy to see that the cold and transient solutions
joined together at the right end of the interval. Thus the solution u(z) is apparently
not differentiable with respect to the parameter « at the joint point. That means
there is a wedge at the joint point.

If the values of the solutions are considered at the right end point z = 1 and «
is replaced by yI2, then

u(l) = Fousl (4.55)
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Table 4.3.1

91

I

u(0)

u(l)

v(0)

v(1)

w(0)

w(1)

.3890E-3

2250E+1

.2000E+-1

2197E4-1

1948E+1

9079E—4

1021E-3

2295E-2

.7828E4-2

6958E+2

.1680E+1

1438E+1

3554E—2

3159E~-2

4200E-2

.2623E+3

.2331E+4-3

1546E+1

J1326E+1

1191E-1

1058E-1

.6106E-2

5543E+3

4927E+3

.1462E+1

J257E+1

2516E—1

2237E~1

.8011E-2

9542E+3

8482E4-3

1401E+1

J1206E+1

4332E-1

.3851E—1

9917E-2

1462E4-4

.1300E+4

1353E+1

J1166E+1

.6638E—1

5901E-1

J1182E-1

.2078E+4

1847E+4

J1313E+1

J1133E+1

9434E~1

.3386E—1

1373E-1

.2802E+-4

2401E+-4

J1279E+1

J1105E+1

A272E+0

1131E40

1563E-1

.3634E+4

.3230E+4

J1250E+1

.1080E+1

.1650E+-0

.1466E+0

J1754E-1

45T4E-+4

4065E-+4

J1224E4-1

.1058E+1

2076E+0

1846E+0

J1944E-1

5621E+-4

4997TE+-4

.1200E+1

.1038E+1

.25562E+0

2269E+-0

2135E-1

B7TTE+4

.6024E--4

1179E+1

.1020E+1

3077E+0

2735E4+0

2326E-1

.8041E+-4

T147E+-4

J1159E+41

J004E+1

.3651E+0

.3245E4-0

2516E-1

.9413E4-4

.8367E+4

J1141E+1

9887E+0

4273E+0

3799E4-0

2707E-1

.1089E+5

.9682E+4

1124E4-1

9747E4-0

4945E+0

4396E4-0

2897E-1

1248E+5

1109E+5

J107E4-1

.9616E+0

.5666E4-0

.5036E4-0

3088E-1

1418E+5

1260E+5

.1090E+1

9492E4-0

.6436E4-0

5721E40

.3278E-1

1598E+5

.1420E+5

1073E+1

9372E40

.7255E+0

.6448E+0

.3469E-1

1789E+5

1590E+5

1055E+1

9253E+0

.8122E4-0

.7220E4-0

.3659E-1

J1991E+5

1770E+5

J1035E+1

9123E4-0

.9039E+0

.8035E+-0

3850E-1

2204E+5

1959E+5

1001E+1

.8896E+-0

1001E+1

.8893E+-0

End point values for multiple solutions u,v,w of the steady state NTC problem.
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and
v I2 elO

'u(l) = ;

2<u (4.56)

Figure 4.3.3
B3=0.409836065

There are two intersection points

L

o.o 13 3 1
0.000 0.010 0.020 0.030 0.040 0.050

X

Graphs of u(1) and I for solution of (4.50) and solutions of (4.52).

Intersection points are solutions of coupled problem.

Now consider the solution of Eq.(4.50) and (4.51), that is, condition (4.52) is in
force for Eq.(4.45). As it is seen, (4.52) is a parabola, which has two intersection
points, I = 0 and I = 4, when u(1) = 0. The maximum of u(1) is reached at I = ot
and the maximum value of u(1) is Il% which depends on £ if v and p are fixed.

If (4.52) is drawn on Figure 4.3.0, it is obvious that, except for the trivial solution
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(ie., @ = 0and u = 0 ), there are three possible cases. Case one, there is only
one solution, case two there are two solutions, case three there are three solutions.
Since (4.55) is also a parabola about I, it is easy to see that, if (4.55) for some g just
reaches (4.52) with »(0) < 1 on the I > 51; side, there are exactly two solutions, if
(4.55) does not reach (4.52), that means only one solution, if (4.55) intersects with

(4.52) and goes outside that parabola, then there are three solutions. In fact, the

Figure 4.3.4
B=0.6

There are three intersection poIntsﬁ =

o.o (] 1
0.000 0.020 0.040 0.060

I

Graphs of u(1) and I for solution of (4.50) and solutions of (4.52).

Intersection points are solutions of coupled problem.

region of § can be determined for the three cases. Consider that (4.55) just reaches
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(4.52), hence :%i = %(1 —upl), then I = #—i—l- From (4.3), u(0) = §+§ and 4(0) can
be at most 1, thus % + £ =1,ie., B =0.409836065 = ;. We say that this value is
critical value for 8. Obviously, (4.3) is true for all u(0) < 1, especially for (0) = 1,
hence a = F?‘f—z =2— -ﬂ—‘*_ﬁ, which means « is an nondecreasing function of 3. Denote
Iy = ;T}-T (also ap = «I¢ ) corresponding to By, then if 8 > By, I = \/§ > Iy,
which means that right end of (4.55) goes outside of (4.52). So the curves shown
in Figure 4.3.0 and Figure 4.3.1 should have three intersection points. The Figure
4.3.2, Figure 4.3.3 and Figure 4.3.4 demonstrate this.

In the above only the intersection of the right end of the “all cold” branch meeting
with the parabola (4.52) is discussed. For the all hot branch a similar result can be

considered.

4.4 Time Dependent Problem for NTC

For completeness, the numerical solution for the time dependent NTC problem is
also done. As it is discussed in § 4.3, the NT'C problem has three solutions. For the
steady state NTC problem all three solutions can be numerically obtained. However,
for the time dependent NTC problem, whenever it has three solutions, one of them
is unstable. In fact, starting with initial value u = 0, the numerical solution always
converges to all cold solution for a € [28e~19, 2%%] Starting with initial value u > 2,

the numerical solution always converges to the all hot solution for & € [28¢19, 2—2_1%],

in which interval there exist three solutions. Of course, for « is outside that interval

there is only one solution either cold or hot. Hence the numerical solution always
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converges to the corresponding cold or hot solution even if the initial value is between
0 and 2. Thus for o € [2Be710, 5%%], the third solution is unstable. It can not be
numerically obtained. Therefore, the moving meshpoint method is not tried since
only the simple all hot or all cold solutions are obtained. For the case with external

circuit connected, the results are given in § 4.7. The instability is briefly discussed

in Chapter 5.

4.5 Numerical Solutions for Smooth Functions

The given functions for f(u) taken from [3] have discontinuous first derivatives
at v = 1 and u = 2. For comparison, numerical results are also obtained for smooth
functions, that is, the functions have continuous first derivatives. In § 4.5.1, a smooth
function corresponding to the PTC problem is considered. In § 4.5.2, a smooth

function related to the NTC problem is studied.

4.5.1 Smooth Function for PTC Problem

For comparison, the function o(u) and hence f(u) for problem (4.1) is modelled
by a smooth function. The choice of smooth function is a cubic Hermite interpolation

for the function o = 1 for ¥ < 1 and ¢ = 71 for u > 2. This is given by

1 ,u<l
plu) =9 2u—1)(u=22+e 05 -2u)(u—1)% ,1<u<? (4.57)

e~10 ,2<u
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and the derivative of p(u) is as follows

0 yu<l
Pu)=1 6(1—e)u—-2)(u—1) ,1<u<?2 (4.58)
0 2<u

Figure 4.5.1

flu) & ple)

u

Graph of nonlinear functions for PTC problems.

The difference of p(u) and o(u) is that o(u) is only continuous but p() has continuous
first derivative. Now the problem (4.1) can be written as

o 4 oap(u) =0 ,0<z<1

uz(0) =0 yUz (1) + Bu(l) =0

(4.59)
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In order to solve (4.59), the method discussed in §4.1.1 is applied. Similarly, the
numerical solutions are summarized in 'i‘able 4.5.1. Comparing with Table 4.1.1, it
is easy to find that when 1 < u < 2, the numerical solutions of (4.59), with «, § the
same, are greater than the solutions of (4.1). In Table 4.5.1 column 6 represents the
number of Newton iterations, column 7 represents the number of times that bisection
was used, column 8 represents the number of times the bisection routine was called,

s represents the initial guess. * means total number of bisection times.

Table 4.5.1
al B s u(0)| w(@)| 6 7|8
999.000 | 0.005 | 0.5 | 9.0936 | 9.0709 | 2| 40 |1
999.000 | 0.010 { 0.5 | 4.5581 | 4.5355 | 2| 34 |1
999.000 { 0.100 | 0.5 | 2.0072 | 1.9752 | 1| 31 |1
750.000 | 0.100 [ 0.5 | 2.0040 | 1.9669 | 1| 311
500.000 | 0.100 } 0.5 | 1.9985 | 1.9679 | 10 | 94* | 4
100.000 { 0.100 | 0.5 | 1.9884 | 1.9432 | 5| 59* | 2
75.000 | 0.100 | 0.5 |1 1.9840 [ 1.9363 | 5| 291
50.000 { 0.100 | 0.5 | 1.9802 | 1.9285| 1| 29|1
25.000 1 0.100 { 0.5 | 1.9667 | 1.9127 | 1| 25(1
15.000 | 0.100 | 0.5 [ 1.9534 [ 1.8950 | 1| 23 {1
14.000 { 0.100 [ 0.5 | 1.9509 { 1.8940} 1| 22 |1
10.000 { 0.100 | 0.5 { 1.9412 [ 1.8721 | 10| 1811
7.500 | 0.100 { 0.5 1 1.9293 | 1.8582 (12| 19 |1
5.000 { 0.100 { 0.5 { 1.9089 | 1.8356 | 7| 18 |1
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Table 4.5.1(continued)

al B s | uw0)| ()

6| 7] 8
1.000 | 0.100 | 0.5 | 1.7644 | 1.6875 |4 | 12| 1
0.850 | 0.100 | 0.5 | 1.7415 1 1.6649 | 3 [11 | 1
0.500 { 0.100 [ 0.5 | 1.6504 | 1.5760 {3 | 15| 1
0.250 | 0.100 [ 0.5 | 1.4794 | 1.4110 |2 | 8| 1
0.100 | 0.100 { 0.5 | 1.0465 | 0.9968 | 3 | 2| 2*
0.050 { 0.100 [ 0.5 | 0.5250 { 0.5000 [ 2| 1| 1
0.005 | 0.100 { 0.5 | 0.0525 | 0.0500 | 2| 1| 1

Solution of PTC problem for various a, 3. Col. 6— No. of Newton iterations.

Col. 7—No. of times bisection used. Col. 8—No. of calls to bisection routine.

4.5.2 Smooth Function for NTC Problem

For the NTC problem (4.45) with function f(u) defined by (4.44), the smooth
function for (4.44) is not the directly Hermitian interpolation of (4.44) but the re-
ciprocal of (4.57), that is

1 ,yu<l

= 1
q(u) - (2u_1)(u_2)2+e—10(5_2u)(u_1)2 9 1 S u S 2 (4.60)

el? ,2<u
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and the derivative of g(u) is as follows

0 ,u<l

= 6(1~—e~19) (u—2)(u—1)
¢(u) = _[(2u—1)(u—2e)2+e"'1;°(5--2u)('u—1)2]2 1sux<2 (4.61)

0 ,2<u

Figure 4.5.2

30000.0
20000.0
=
=
=
=
o
=
=
10000.0
1/£(u)
1/p(u)
0.0 s j
1.0 1.2 1.9 1.6 1.8 2.0

u

Graph of nonlinear functions for NTC problems.

Thus the problem (4.45) becomes

%21*+aq(u) =0 ,0<z<1
uz(0) = 0 1tz (1) + Bu(l) =0

(4.62)
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Similarly, the numerical results are summarized in Table 4.5.2. Comparing with
Table 4.3.1, it is easy to see that when u < 1 and u > 2, the solutions are the same;
but for 1 < u < 2, solutions in Table 4.5.2 are greater than those in Table 4.3.1 with
the same o and . However, because of the smoothness of ¢(u), the properties of
the solution have been changed accordingly. From Table 4.3.1, the three branches of

the solution can join together at two ends separately. However, from Table 4.5.2,

Figure 4.5.3
B=0.25

1.5 -

The cold branch and /
transient branch can

not join together \

0.0 ) ) :
0.000 0.010 0.020 0.030 0.040
I

Plots of u(1) and I for solution of (4.60) and (4.62).

we can see different results. The difference of the values at the right end of the cold

and transient solutions is quite different. Also the same method is not convergent
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for I beyond I = 0.385E — 1. An alternative method is used, that is, fixing u(0) to
find « by the shooting method. Now for fixed 3, u(0), denote T = %:—:-, T = j—z as
two new unknowns, use the similar method as in §4.1.1. A new system of differential

equations can be obtained from (4.62) as follows:

]

Up =V yu(0) =s
v, = —a" f(u ,v(0) =0
e =~ (u) ©) ws3)
Uy =T ,7(0) =0
| 7o =—a"f'(w)a— f(u) ,5(0)=0
Figure 4.5.4 .
B=0.25

1.30
1.20 -
1.10 -
1.00 |- -
0.90 | -
0'80(30380 0.0l390 0.0:400 0.0410

I

Plots of u(1) and I for solution of the smooth NTC problem using the shooting
method (4.63).
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where s is fixed, a"*! = o® + A, Aa = —%%:g—:ﬁ%_:‘—‘%ﬁ—:%, n=0,12-, a%is
arbitrary. Here a numerical method similar to that in § 4.1.1 is used to get o. The
results are summarized in Table 4.5.3, where u(0) is changed by small stepsize then
different values for « are obtained. Using the data obtained in Table 4.5.3, a graph is
drawn as Figure 4.5.4 and also Figure 4.5.3 is drawn according to the data in Table

4.5.2 ( note, for consistency, here the = coordinate has been changed to I, where

o =~I%, v =150 ). Comparing these two graphs, it is easy to see that two graphs

Figure 4.5.5

1.5 .

(o}

.o 1 1 1 1
0.000 0.010 0.020 0.030 0.040 0.050
X

Combined plot of u(1) and I for the smooth NTC problem.

can be connected. The graph in Figure 4.5.4 is just that part missed in Figure 4.5.3.
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Figure 4.5.5 is the combination of Figure 4.5.3 and Figure 4.5.4. The two graphs
joined perfectly. Also from Figure 4.5.4, it seems that the derivatives of u(1, @) with

respect to ¢ is infinite at the end of the interval for I. So that’s why we need to use

Table 4.5.2

I u(0) u(1) v(0) v(1) w(0) w(1)
.2295E-2 | .7828E+2 | .6958E+-2 | .1998E+1 | .1616E+1 | .3554E—2 | .3159E—2

A200E-2 | .2623E+3 | .2331E+3 | .1990E+1 | .1611E+1 | .1191E—1 | .1058E—1

.6106E-2 | .5543E+-3 | .4927E+3 | .1978E+1 | .1619E+1 | .2516E—1 | .2237E~1

B8011E-2 | .9542E+3 | .8482E+-3 | .1958E+1 | .1627E+1 | .4332E—1 | .3851E—1

9917E-2 | .1462E+4 | .1300E+4 | .1944E+1 | .1625E+1 | .6638E—1 | .5901E—1

1182E-1 | .2078E+4 | .1847E+4 | .1924E+1 | .1622E+1 | .9434E~1 | .8386E—1

A373E-1 | .2802E+4 | .2491E+4 | .1897E+1 | .1617E+1 | .1272E+0 | .1131E+0

1563E-1 | .3634E+4 | .3230E+4 | .1876E+1 | .1605E+1 | .1650E+0 | .1466E+0

1754E-1 | .4574E+4 | .4065E+4 | .1852E+1 | .1592E+1 | .2076E+0 | .1846E+0

1944E-1 | .5621E+4 | .4997E+4 | .1825E+1 | .1576E+1 | .2552E+40 | .2269E+0

-2135E-1 | .677T7E+4 | .6024E+4 | .1783E+1 | .1562E+1 | .3077E+0 | .2735E+0

2326E-1 | .8041E+4 | .7147TE+4 | .1758E+1 | .1538E+1 | .3651E+0 | .3245E4-0

.2316E-1 | .9413E+4 | .8367E+4 | .1730E+1 | .1514E+1 | .4273E+0 | .3799E+0

2707E-1 | .1089E+5 | .9682E+4 | .1698E+1 | .1487E+1 | .4945E+0 | .4396E+0

2897E-1 | .1248E+5 | .1109E+5 | .1662E+1 | .1458E+1 | .5666E-+0 | .5036E+0

.3088E-1 | .1418E+5 | .1260E+5 | .1623E+1 | .1426E+1 | .6436E+-0 | .5721E+0

-3278E-1 | .1598E+5 | .1420E4-5 | .1580E+1 | .1390E+1 | .7255E+0 | .644SE+-0

.3469E-1 | .1789E+5 | .1590E+5 | .1531E+1 | .1349E+1 | .8122E4-0 | .7220E+0
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Table 4.5.2 ( continued )

I u(0) u(1) v(0) v(1) w(0) w(1)

.3659E-1

J991E+5

1770E+5

J473E+1

.1300E+1

.9039E+-0

.8035E+4-0

.3850E-1

.2204E4-5

.1959E+-5

1399E+1

J1237E41

.1001E+1

.8893E+-0

End point values of the multiple solution u,v,w of the steady state NTC problem

with (4.60).

Table 4.5.3

u(0)

u(l)

(44

u(0)

u(1)

(8

0.99500000

0.88444442

0.22111109

1.17499995

1.04273701

0.24741493

1.00000000

0.88888890

0.22222222

1.17999995

1.04710269

0.24757470

1.00500000

0.89333266

0.22333126

1.18499994

1.05146742

0.24770039

1.00999999

0.89777416

0.22443224

1.19000006

1.05583107

0.24779195

1.01499999

0.90221232

0.22552381

1.19500005

1.06019342

0.24784940

1.01999998

0.90664661

0.22660190

1.20000005

1.06455481

0.24787290

1.02499998

0.91107804

0.22766449

1.20500004

1.06891501

0.24786241

1.02999997

0.91550541

0.22871037

1.20500004

1.06891501

0.24786241

1.03499997

0.91992903

0.22973785

1.21000004

1.07327390

0.24781790

1.03999996

0.92434883

0.23074605

1.21500003

1.07763171

0.24773957

1.04499996

0.92876470

0.23173484

1.22000003

1.08198822

0.24762738

1.04999995

0.93317693

0.23270294

1.22500002

1.08634341

0.24748141
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Table 4.5.3( continued )

u(0)

u(l)

«a

u(0)

u(l)

(04

1.05499995

0.93758607

0.23364586

1.23000002

1.09069741

0.24730173

1.10000002

0.97712988

0.24094184

1.23500001

1.09505010

0.24708843

1.14999998

1.02089286

0.24610418

1.24000001

1.09940147

0.24684161

1.15499997

1.02526367

0.24643457

1.24500000

1.10375130

0.24656127

1.15999997

1.02963352

0.24673088

1.25000000

1.10809994

0.24624757

1.16499996

1.03400230

0.24699304

1.29999995

1.15150189

0.24129973

1.16999996

1.03837013

0.24722104

1.35000002

1.19472814

0.23316069

Values of u(1) and o for given u(0) using shooting method (4.63).

a different method to find the relation of » and a. A similar result can be obtained

at the other end of the I interval.




CHAPTER 4. NUMERICAL RESULTS 106

4.6 Time Dependent Problems for Smooth Functions

Now the time dependent problems with smooth functions are considered. Nu-
merical results for the PTC problem are considered first followed by those for the
NTC problem.

4.6.1 Smooth Function for PTC Problem

There are two cases considered here. One is that the @ and B are fixed. The
other is that o depends upon u. Here the smooth function is defined by (4.57). For

convenience, the time dependent problem with smooth function is written as

B FvLapu) ,0<z<1 (4.64)

Use the Crank-Nicholson difference scheme defined by (4.40) and (4.41). The numer-
ical results are summarized in Table 4.6.1 where u(0) and u(1) is the steady state of
the numerical solution of (4.64) at endpoints = 0 and z = 1 respectively and v(0)
and v(1) is numerical solution of (4.59) at endpoints £ = 0 and x = 1 respectively.
The biggest error in Table 4.6.1 is 0.00025 and the smallest error is 0.000004. Com-
paring with Table 4.2.3, it is easy to see that for the same parameters the values of
u(0) and »(1) in Table 4.6.1 are greater than that in Table 4.2.3.

For the case when o depends on u(z,t), the equation is the same as (4.64) except
that a = ——————. The scheme (4.43) and boundary central difference scheme

(142 f, plu)dz)?
(4.41) are used. The numerical results are summarized in Table 4.6.2. Similarly as
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in § 422, I = ‘/§ and a = u(0) and (1) represent the numerical

T e [ plu)de)?
solutions ( at both endpoints = 0 and z = 1) obtained with initial values u;¢ all
zeros; v(0) and v(1) represent the numerical solutions obtained with initial values

u;,0 greater than 1.0.

Table 4.6.1

B

u(0)

u(l)

v(0)

v(1)

€rror

3.50

0.250

1.836574

1.674007

1.836824

1.674157

0.000250

2.50

0.250

1.797332

1.631792

1.797487

1.631837

0.000155

1.00

0.250

1.641450

1.476472

1.641456

1.476449

0.000023

0.90

0.250

1.617426

1.453506

1.617425

1.453485

0.000021

0.80

0.250

1.588639

1.426191

.1.588637

1.426177

0.000014

0.70

0.250

1.553291

1.392912

1.553296

1.392908

0.000004

0.50

0.250

1.448911

1.295864

1.448927

1.295889

0.000025

0.40

0.250

1.363989

1.217883

1.364019

1.217913

0.000030

0.35

0.250

1.304856

1.163926

1.304904

1.163972

0.000048

0.30

0.250

1.225620

1.091959

1.225690

1.092025

0.000070

0.25

0.250

1.106199

984013

1.106335

0.984140

0.000136

End point values of the time dependent solution

ast —» oo and of the steady state solution.

From Table 4.6.2, it is easy to see that when 8 < 0.4098, only one numerical
solution is obtained; when 8 > 0.4098, there are two numerical solutions obtained.

Actually, there are three steady state solutions when 8 > 0.4098. However, from
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Table 4.6.2, only two solutions are obtained. The reason is the same as in § 4.2.2,
i.e., the third steady state solution is unstable so it is not obtained numerically. Also,
comparing Table 4.6.2 with Table 4.2.4, it is seen that, when 8 < 0.4098, the cold
solutions are the same in Table 4.2.4 and Table 4.6.2. They should of course be the
same since when f < 0.4098, «(0) and (1) are values for the all cold solution. When

B < 0.4098, the one solution in Table 4.6.2 is greater than that in Table 4.2.4.

Table 4.6.2

B

I

u(0)

u(l)

I

v(0)

v(1)

.6000

4762E—1

.7369E+0

.5668E+0

.8237E+0

J984E+1

J1815E+1

.5000

AT62E-1

.8503E+0

.6802E-+0

8568E+0

1985E+1

.1840E+1

4500

4762E-1

9258E40

.7558E+-0

.8726E+0

1986E+1

1852E+1

4100

A4762E—-1

.9996E+-0

8295E+0

.8850E+4-0

.1986E+1

1862E+1

.4099

4762E—~1

.9998E+-0

8297E4-0

.8850E+0

1986E+1

1862E+1

.4098

4762E—1

.1000E+1

.8299E+-0

.8850E+-0

1986E+1

.1862E+1

.4000

.8706E+-0

J987E+1

.1865E+1

.8880E+0

J987E+1

1865E+1

.3000

I176E+0

J1988E+1

1890E+1

9176E4-0

.1988E+1

.1890E+1

.2500

9319E+-0

J989E+1

J1904E+1

9319E4-0

J1989E+1

.1904E+1

.2000

9459E+0

J1990E+1

J917E+1

9459E+0

.1990E+1

1918E+1

End point values of time dependent solutions as t — oo for different initial values.
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4.6.2 Smooth Function for NTC Problem

Asin § 4.6.1, two cases are considered. One case is that « is fixed and the other
is that « is a functional of u(z,t). For convenience, the time dependent problem is

written as

-Z—’t‘=327’2‘+aq(u) 0<z<l1 (465)
u.(0)=0 yUuz(1) + Bu(l) =0

where a and 3 are fixed constant parameters, g(u) is defined by (4.60). The numerical
results are summarized in Table 4.6.3. Similarly as in § 4.3, there should be three
solutions for I € [0.3890 x 10~3,0.3850 x 10~1] ( where I = \/% ). However, only
two solutions are obtained. The solution which is in transient region is unstable, so
it is impossible to get it numerically. From Table 4.6.3, it is easy to see that the two
solutions are either less than 1 or greater than 2, actually for these two cases the
exact solutions are given. Thus it is practical to compare the numerical results and
exact solutions. They match very well.

As for o depends upon u(z,t), the problem is same as Eq.(4.65) and except that

o= which is different from PTC problem. The numerical results are

(ut f, q(u)dz)?
listed in Table 4.6.4, where u(0), u(1) and v(0), v(1) are numerical solutions at the
end points x = 0 and = = 1 respectively, and also the numerical solutions of  and v
are obtained by the same program except that the initial values u(j),j = 1,---,51
for u are all zero and initial values v(j),j = 1,---,51 for v are greater than 1. From

Table 4.6.4, it is easy to see that, when # is close to or greater than 0.4098, there

are two numerical solutions ( actually, there should be three solutions, one of them
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Table 4.6.3

I

u(0)

u(1)

w(0)

w(1)

.3890E—03

.225076E+01

.200426E+4-01

.102417E-03

.907926E—04

2295E—02

.783094E+02

.696083E+-02

.355357E—02

.315874E—02

4200E—-02

.262269E+-03

.233128E+-03

.119053E-01

.105825E—01

.6106E—02

.554322E+03

492731E4-03

.251645E~01

.223685E—01

.8011E-02

.954162E+-03

.848144E+03

433173E~-01

.385043E—-01

9917E—-02

146221 E+04

129974E+04

.663825E—01

.590067E—-01

1182E-01

.207723E+-04

.184642E+04

.943042E—-01

.838260E—01

1373E—-01

.280278E+-04

.249136E4-04

.127245E+00

.113106E+-00

1563E—01

.363217E+-04

.322860E+04

.164899E+-00

146577E+4-00

.1754E-01

457412E4-04

406589E+04

.207663E4-00

.184590E+-00

.1944E—01

561877TE+04

499446 E+-04

.255090E4-00

.226747E4-00

2135E—~01

B77711E4-04

.602410E+-04

.307679E+-00

273492E4-00

2326E—01

.804392E4-04

.715016E4-04

.365192E+00

.324615E4-00

.2516E~01

941174E404

.836599E+-04

427291E4-00

.379814E4-00

.2707E—01

.108949E+-05

.968440E4-04

.494629E+-00

4396 70E+-00

2897E—01

.124780E4-05

.110916E+-05

.566500E+-00

.503555E4-00

.3088E—-01

141776E+-05

.126023E4-05

.643662E+-00

.572144E4-00

.3278E—-01

159759E4-05

.142008E+-05

.725306E+-00

.644716E4-00

.3469E—01

178919E+05

.159039E+-05

.812291E+-00

.722037E+00

.3659E—~01

.199055E4-05

.176938E+-05

.903708E+-00

.803296E+-00

.3850E—01

.220379E+-05

.195892E4-05

.100052E+-01

.889349E4-00

End point values of solutions as t — co of (4.65).

110
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is unstable, so it is difficult to get it numerically }. For 8 < 0.4098, there is only one

solution. It is noticed that both Table 4.6.2 and Table 4.6.4 have same phenomena,

that is, the temperatures at center point are almost the same while the temperatures

at right end point increase as 8 decreases.

Table 4.6.4

I

u(0)

u(1)

I

v(0)

v(1)

.6000

4762E~-1

7369E+0

5668E+-0

5502E—2

1996E+1

J1268E+1

.5000

4762E—-1

.8503E+0

.6802E4-0

4794E-2

1996E+1

1352E+1

4500

4762E—1

9258E+0

.7558E+0

4414E-2

1996E+1

1399E+1

4100

AT762E-1

9996E+-0

.8295E4-0

4096E—2

1996E+-1

.1438E+-1

4099

AT762E—-1

9998E+0

8297E4-0

4095E—2

1996E+1

1438E+1

4098

4762E—-1

.1000E+1

.8299E+-0

4095E—-2

1996E+1

.1438E+1

.4000

4762E~1

.1020E+1

.8496E4-0

4015E—-2

J996E+1

1449E+1

.3000

4015E-2

J996E+1

.1560E+1

4015E—-2

J996E+1

.1560E+1

.2500

2681E—2

1996E+1

J1622E+1

2681E—2

J996E+1

1622E41

.2000

2183E-2

J1996E+1

.1689E+1

.2183E—~2

.1996E+1

1689E+1

End point values for solutions of coupled NTC problem

as t — oo for different initial values.

4.7 Conclusion for the Numerical Results

In the above several sections, different numerical methods are used. The numeri-
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cal experiments for steady state PTC and NTC problems, time dependent PTC and
NTC problems, PTC and NTC problems with smooth functions are

Figure 4.7 .1
Surge For PTC Problem

1.5 4

W) &)
o

Lower curve is u(1) and upper curve is u(0) as functions of t

performed. From the numerical results, the properties of PTC and NTC problems
are quite different. One of the important different properties is that if the external
circuit is not connected for certain fixed o and # PTC problems have only one
solution but NT'C problems have three solutions. However, if the external circuit is
connected, the situations are the same and they all have one, two or three solutions

with respect to different parameters @ and . Another common property is that
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all time dependent solutions with the external circuit have surges. For Figure 4.7.1,
Figure 4.7.2, Figure 4.7.3 and Figure 4.7.4, 8 = 0.25 is fixed. The value 8 = 0.25 is
chosen because for this 3 there is only one solution which is greater than 1, thus the

surges will appear.

Figure 4.7.2
Surge For Smooth PTC Problom

1.5 | -

o) ()
>

Lower curve is u(1) and upper curve is u(0) as functions of ¢

In order to get data for the four figures in this section, the Crank-Nicholson
difference scheme is used. The interval [0, 1] is divided into 50 equidistant pieces
so that there are 51 unknowns. In the figures, 4(0) and (1) are the numerically

obtained values at end points z = 0 and z = 1 respectively. ¢ coordinate is for time.
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For Figure 4.7.1 and Figure 4.7.2, the equations are as follows:

o
(tp f) F)( or  p(u))dz)?

u(0) = 0 yuz(1) + Bu(l) =0

2
=g

ot f@( or p(u)) ,0<z<1

where f is defined by (4.2) and p(u) is defined by (4.57), 8 is a fixed parameter. As

Figure 4.7.3
Surge For NTC Problem

(o) &uft)
>

Lower curve is u(1) and upper curve is u(0) as functions of ¢

for Figure 4.7.3 and Figure 4.7.4, the equations are as follows:

du . 9% o
ot oz2 + (#+J;)1 g@w)( or q(u))dz)2g(u)( or q(u)) ’O <z<l

uz(0) =0 »Uz(1) + Bu(l) =0
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where g(u) is defined by (4.44) and ¢(u) is defined by (4.60). The difference of the
two equations above is in the denominator of the second term on the right hand
side. This difference makes the figures look a little bit different. For Figure 4.7.1
and Figure 4.7.2, the graphs change smoothly when surges appear. For Figure 4.7.3
and Figure 4.7.4, the graphs change rapidly and steeply when surges appear. Also
the difference between #(0) and u(1) for PTC problems are smaller than that for
NTC problems.

Figure 4.7.4
Surge For Smooth NTC Problem

u(0) & u(1)

15.0

Lower curve is u(1) and upper curve is u(0) as functions of t

From the four figures, it is easy to see that for smooth functions more time
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is required to reach their steady state. For the smooth functions, whenever the
solutions reach their steady states, they will satisfy the stopping criterion ( the
absolute maximum of difference between two time steps at each nodes is less than a
fixed small number ) very quickly. Another common property for the problems with
smooth functions is that the numerical values are greater than that obtained from
the corresponding original ones.

As it is known, when § < 0.4098, there is only one solution which is greater than
1 and the surges also appear. Thus the numerical experiments are also done for 8 =
0.40, 0.35, 0.30, 0.20, 0.15, 0.10 and 0.05, the results and figures look similar. They
all are between 1 and 2. The difference between 2(0) and u(1) for NTC problems
is greater than that for PTC problems. The graphs for NTC problems change more
rapidly and steeply than for PT'C problems.
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Chapter 5

Convergence and Stability Analysis

Since the steady state solutions for time dependent problems are not unique
for some parameters, is it possible to get all solutions numerically? In the actual
numerical experiments, it seems difficult to obtain some solutions. As mentioned in
§4.2.2 for Eq.(4.42), it is difficult to get the numerical solution, corresponding to the
one spanning cold and transient regions, which theoretically exists. Now through
discussion of linear stability, though a direct proof is not obtained, the numerical

results would give some indication for that situation.

5.1 Linear Stability Analysis

Here a general idea of linear stability analysis [13, 14, 29, 30, 31, 49] is discussed.
Generally for

du

= =F@u), t>0 & u(0,2) = ua) (5.1)

where F(z,u) is a continuously differentiable function of z and u, x is a space
coordinate in the interval [0,1] and ! is a constant, uo(z) is a function of z and

independent on t. Let u;(z) satisfy

F(z,u)=0 (5.2)
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Then u; () is said a steady state solution of (5.1) with initial value u; (z).
Definition 5.1 Suppose the solution of Eq.(5.1) exists and is denoted as u(t, z).
A steady state solution ui(x) is said to be stable if for any € there exists a 8, such

that

whenever |u(0, ) — u1(z)| < 8. If a steady state solution of (5.1) is not stable, it is
said to be unstable.

Obviously, if a steady state solution of (5.1) is unstable, it is hard to get that
solution by a numerical method because any error for initial values will grow. How-
ever, is it possible for us to know for what kind of function F the corresponding
solution is stable?

Let u;(z) be a solution of (5.2) and u(t,z) be a solution of (5.1) corresponding
to the initial value ug(z) which is close to u; (z). Let § be an arbitrary small number

and v(t,z) an arbitrary function such that
u(t,z) = w1 (z) + dv(t, z)

Substitute u(t,z) into (5.1), thus

5% = Flo,u(z) +6v(t, 2)) — F(z, u(z)) (5.3)

= Fu(z,u1(z))ov(t,z) + R(z,u1(z),v(t, z),6)

If 4 is very small and R is of higher order in 4, lim;s_, J—f—,ﬂ = 0, it would appear that

the behavior of the solution of (5.3) is determined by the linearized equation

dv

= = Fula, u(@))o(t,2) (5.4)
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A basic result about stability may be stated as follows. For convenience, denote
k = Fy(z,u1(z)) (5.5)

Theorem 5.1 [13, 14, 29, 31, 49] Let ui(z) be a steady state solution of (5.1)

and assume that
F(z,u1(x) + 0v(t, z)) = Fu(z,ui(z))dv(t, 2) + R(z, u1(z), v(t, z),0)

where the remainder term R is O(6%) for § sufficiently small. Then u;(z) is stable
if £ < 0 and unstable if k > 0, where & is given by (5.5). #
The theorem 5.1 is for the case where F,, is a scalar function of z and u, etc.. If
it is an operator, the result is true except that instead of using the sign of F, the
sign of the eigenvalues is used. The more general result may be stated as follows:
Theorem 5.2 [14, 29, 31, 49] Let u;(z) be a steady state solution of (5.1) and

assume that
F(z,u1(z) + 0v(t,z)) = Fy(z,u1(z))év(t, z) + R(z, u1 (z),v(¢, ), 0)

where the remainder term R is O(82) for & sufficiently small and F, is a self-adjoint
operator. Then uy(z) is stable if all eigenvalues of F, are less than zero and unstable
if at least one of the eigenvalues of F, is greater than zero. #

To find an eigenvalue for our oi)erator is not easy. However, for a self-adjoint
operator, even if it is not easy to find its eigenvalues, it is still possible to tell
whether the operator has a negative eigenvalue or not. This result is based on the
Rayleigh quotient. If A : X — X is a self-adjoint operator, where X is a Hilbert

space,

e =
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is said to be the Rayleigh quotient[14, 31]. If ||z|| = 1, then R(z) = (Az,z). It is

easy to see that if  is an eigenvector and A is an eigenvalue, then R(z) = A. Define

Ly= zeﬁgg;eo R(z) = v iﬂi‘”:l(Ax, z) (5.6)
and
Us= sup R(z)= sup (Az,z) (5.7)
zE€X x5#0 2€X,||z]j=1

Hence, if A is bounded below, L4 is finite; if A is bounded above, Uy is finite.
Theorem 5.3‘ [14, 31] Let A be symmetric and bounded below. If there is an
element x € X for which the infimum in (5.6) is attained, (La,z) is an eigenpair
and L, is the lowest eigenvalue of A. Similarly, if there is an element y € X for
which the supremum in (5.7) is attained, (Uy,y) is an eigenpair and Uy is the largest
eigenvalue of A. #
From theorem 5.3, if A is a self-adjoint operator and there is a function which
makes the Rayleigh quotient negative, then there is at least one negative eigenvalue
for A. Similarly, if there is a function which makes the Rayleigh quotient positive,

then A has at least one positive eigenvalue.

5.2 The Numerical Results for Stability and Stability Analysis
Based on the general ideas in §5.1, the NT'C problem met in §4.4 and §4.6.2 will .
be discussed now. Suppose uo(z), ag = vIZ is a steady state solution of (2.10). Thus

52—3:—2(’—”1 + apg(uo(z)) =0 ,0<z<1
'I.Lo,z(t, 0)=0 ,Uo,x(t, 1) + Buy(t, 1) =0

(5.8)
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i 1 = ]2 = 1
where gis defined by (3.16) ( or o) ), Qo = ’)’IO, Io = W.

Using the linearized stability analysis method, set
u(t,z) = uo(z) + dv(t, z) (5.9)

with ¢ small. Substituting in (2.10), then

& = -3272‘+'ylzg(u) O0<z<l
u5(t,0) =0 ,Uz(t,1) + Bu(t,1) =0

where I = ——1—-?—);; Since —“°-@ = 0 and uo(z) satisfies (5.8), therefore

6‘9" = 8.'1:2 62;,’ + 7Izg(uo +6v) ,0<z<1 (5.10)

v,(,0) =0 »Uz(8,1) + Bo(t,1) =0
So if we can solve Eq.(5.10) and get (¢, z), then according to the decaying or growing
of v(t,x) we can say that the steady state solution of (2.10) is stable or unstable.
However it is not easy to get the solution to Eq.(5.10). A linearized method is used

to obtain an approximate solution to Eq.(5.10). Using a Taylor expansion, thus
9(uo + 6v) = g(uo) + ¢'(u0)6v + Ry

where R; is of higher order in 4, and

—_ 1
I= 1 -~
ko o(u)de 1+ I (g(uo) + ¢ (wo)bv + Ry)dz
1
— 1 _
T i [~ L8 1 g (uo)oda+ -
1
= Io = - , “ v e
- 1+5Io£g'(uo)vdz+... - IO(]' 610/0 g (’uo)'vdm -+ )

where - - - means the omitted part contains terms with higher order ( at least 2 ) of

0. Similarly, using the above results

1
Y12 = yI2(1 — 261, /0 J (uo)vdz + - )
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and

vI2g(u) =~I3( — 261 fy o (wo)vdz + - - -)(g(wo) + ¢ (ug)6v + - )
= vI2g(uo) + 6(vI¢g (uo)v — 27139 (uo) f & (wo)vdz) + - --

If we omit all terms which contain higher orders of § and divide by & on both sides,
then Eq.(5.10) becomes

% = % + I3 (uo)v — 2vI3g(uo) fol g (w)vdz ,0<z<1
v,(¢,0) =0 ,U2(t,1) + Bo(t,1) =0

(5.11)

As it is known, the operator on the right hand side of Eq.(5.11) is not a self-
adjoint operator. Even if there is a function which makes the right hand side to be
negative, it could not be said that there is a negative eiéenvalue for that operator.
However, in the NTC problem since ¢(ug) > 0 the term —2vI3¢ (uo) fy g(uo)vdz is
a stablizing term ( by experience ), adding this term to the right hand side makes
the right hand side operator self-adjoint. If the modified operator is unstable, the
original operator should be more unstable. Thus, instead of considering Eq.(5.11),

the following equation is considered.

8 = T4 + 7159 (uo)v — 27139 (uo) Jy ¢ (uo)vd
~27I84 (uo) Jo 9(uo)vdz 0<z<l (5.12)
v:(¢,0) =0 ,U(t,1) + pu(t,1) =0

Therefore, if the operator on the right hand side of Eq.(5.12) has positive eigen-
value, then the steady state solution ug(z) is unstable. The following method is just
one to demonstrate that the right hand side operator of Eq.(5.12) has positive eigen-

value. To form the Rayleigh quotient (Az,z)/||z||?, now multiply the right hand
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side of the first equation of (5.12) by v and integrate from 0 to 1 with respect to z,

thus

1 1 1 1 1
2 g0 — 2 ! 2 70 3 !
R(v)/0 v d:z:-/o vm,vdx-i-’yIO[; g (wp)v*dz 47I0‘/(; g(uo)vda:/o g (wo)vdz
Simplifying
1 1 1 1 1
R(v) /0 v dz = vu |5 — /0 vidz+vI3 /0 g (wo)v?dz — 4yI3 /0 g(up)vdz /(; g (wo)vdz
Using the boundary conditions
1 1 1
27 — a1 — [ 2 2 [* 2
R(v) /0 v’z = —poi(l) /0 v2dz + 12 /0 J (uo)v?dz (5.13)

1 1
N H /0 g(up)vdz /0 g (uo)vdz

'To examine if there is a function which makes the right hand side of Eq.(5.13) to be

positive or not choose v(z) = cos(Az) then

R(v) /0 1 cos’(Az)dz = —Pcos?()) — /0 1 Asin*(\z)dz
+yI2 /0 ' g (uo)cos?(\z)dz
1 1
—4I3 /0 g(uo)cos(Az)dx /0 g (up)cos(Az)dz
hence
1 1 . ' 22 in (2
§R(v)(1 + ﬁsm(2/\)) = —,Bcos25)\) - -—2-(1 ~ ﬂ1-12%---)-) (5.14)
+yI2 /0 ' (uwo)cos®(\z)dx

1 1
—4yI3 /0 g(wo)cos(Az)dz /0 g (wo)cos(\z)dz

For convenience, denote

1

R =A b b 3 ,A = .
('U) (uo,, 1, B ) %(1+§1stn

) [—Bcos®(N) (5.15)
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2 sin 1
50~ 412 [* g wo)eos?(hc)da

—4yI3 /0 ' g(uo)cos(Az)dz /(; ' ¢ (ug)cos(Az)dz)

Thus (5.15) is the Rayleigh quotient. That’s why in the following the sign of

A(ug, @, i, B, ) is discussed. Considering the boundary conditions, choose A so that
v.(0)=0, v.(1)+pv(l)=0

Therefore

—Asin(A) + Beos(A) =0

ie.,
Man(A) = 3 (5.16)

As it is known, there are infinitely many solutions to Eq.(5.16). However, to prove
that the operator on the right hand side of Eq.(5.12) has a positive eigenvalue, if
we can find one A for which cos(Az) makes A(ug, o, i, 8, A) positive, then based on
the general discussion in § 5.1, the operator on the right hand side of Eq.(5.12) has
positive eigenvalue, so the smallest positive solutions of (5.16) can be taken. Results
obtained giving A for various # are summarized in Table 5.1.1.

Table 5.1.1

g A 4 A 4 A 4 A
100 | .31105286 | .250 | .48009443 | .400 | .59324193 | .550 | .68005705

150 | .37787765 | .300 | .52179116 | .450 | .62444466 | .600 | .70506549

.200 | .43284073 | .350 | .55922329 | .500 | .65327120 | .650 | .72850811

Smallest solution X of (5.16) for given (.
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Now we have the values of § and A. The three solutions of Iy ( i.e., ap ) and up
for the steady state situation can be obtained numerically. Thus, when 3 > 0.4098,

there are three solutions, that means there exist three different values of « for a fixed

B.

Table 5.1.2
B A o B A ' o
0.34013605e+00 0.34013605e+-00
0.450 | 0.62444466 | 0.24069230e—02 | 0.500 | 0.65327120 | 0.28149190e—02
0.33633682e4-00 0.33233449e+00
0.34013605e+-00 0.34013605e+00
0.550 | 0.68005705 | 0.32305950e—02 | 0.600 | 0.70506549 | 0.36516950e—02
0.32855827e+-00 0.32496199e+-00
0.34013605e+-00 0.34013605e+00
0.650 | 0.72850811 | 0.40758720e—02 | 0.700 | 0.75055808 | 0.45013170e—02
0.32153054e+-00 0.31825082e--00

Values of a and X for given (.

As discussed in §4.3.2, there always exists a cold solution with

1 _ I
BB

thus Iy = T—%;’I Therefore for § > 0.4098, there always exists a cold solution with

(1 —pl)

Iy = -1-:1;;, i.e., ap is fixed though @ is different. It is easy to see from Figure 4.3.4,
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one other o ( corresponding to the solution spanning cold and transient regions )

should be close to ap and the third one corresponding to the whole solution in the

Table 5.1.3
4 A a u(0) u(l) | Aluo, 0,8,
0.34013605E+0 | 0.92592603 | 0.75585800 | —0.77986223
0.45 | 0.62444466 | 0.33633682E+0 | 1.03792620 | 0.83581495 | 2.38273615
0.24069231E—2 | 1.64676213 | 1.22786081 | —33.17415905
0.34013605E+0 | 0.85034019 | 0.68027216 | —0.85352647
0.50 | 0.65327120 | 0.33233449E+0 | 1.06160045 | 0.82755232 | 3.27942348
0.28149190E—2 | 1.64484048 | 1.18660295 | —35.73973656
0.34013605E-+0 | 0.78849727 | 0.61842924 | —0.92495513
0.55 | 0.68005705 | 0.32855827E+0 | 1.08037066 | 0.81649649 | 3.87784278
0.32305950E—2 | 1.64317393 | 1.14788091 | —38.15972233
0.34013605E-0 | 0.73696148 | 0.56689346 | —0.99423480
0.60 | 0.70506549 | 0.32496199E+0 | 1.09650326 | 0.80412000 | 4.42084587
0.36516951E—2 | 1.64167249 | 1.11149311 | —40.44283008
0.34013605E+-0 | 0.69335431 | 0.52328628 | —1.06144810
0.65 | 0.72850811 | 0.32153055E+0 | 1.11053240 | 0.79098970 | 4.90334769
0.40758718E—2 | 1.64029598 | 1.07726705 | —42.60123539
0.34013605E+-0 | 0.65597671 | 0.48590869 | —1.12667477
0.70 | 0.75055808 | 0.31825081E+0 | 1.12317467 | 0.77747375 | 5.25375581
0.45013172E—2 | 1.63901687 | 1.04503202 | —44.64574623

Table to demonstrate the stability of solution of the NTC problem.
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transient region is far away from the other two. The different values of o correspond-
ing to the § and X are listed in Table 5.1.2. The values of o and 3 are obtained by
the methods discussed in § 4.1.2 and §4.2.2.

Now the value of A(uo, @, t,3,A) can be numerically evaluated. Using the data
given in Table 5.1.2 and the corresponding ug(z) ( actually the values are numerically
obtained at meshpoints ), the numerical values of A(ug,a, i, 8,) and the values of
up(0) and ug(1) are listed in Table 5.1.3. Here the integrals in (5.15) are evaluated by
a trapezoidal rule over the values of u at the meshpoints. From Table 5.1.3, it is found
that the values of A(ug, o, 11, 8, A) assume positive numbers for the solution spanning
cold and transient regions, that means that the operator on the right hand side of
Eq.(5.12) has positive eigenvalue, thus the corresponding solutions are unstable.
So this numerical result gives some indication why we can not get that solution
for the time-dependent problem even if we take the initial values very close to the
solution. As for the other two solutions, it seems that they are stable ( the values
of A(ug,a, i, 8,)) assume negative numbers at those solutions ) and the numerical
results for steady state problems agree very well with the numerical results obtained

for time-dependent problems.
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Chapter 6

Conclusion

In this dissertation, attention has been focused on a system of nonlinear parabolic
equations which model the thermistor. First, a partial differential equation which
describes the heat and current distribution within a thermistor is given, then under
some specified boundary conditions two types of nonlinear one ( space ) dimensional
parabolic equations are derived. One type has the PTC property, and the other has
NTC property.

Theoretically, existence and uniqueness ( whenever applicable ) are studied both
for steady state and time dependent problems. The properties of the solutions
are thoroughly discussed. Three methods are employed to prove the existence and
uniqueness for steady state problems. One is to transform the original differential
equations into integral equations. By proving the existence and uniqueness of the
solutions for integral equations, existence and uniqueness for original problems are
obtained.

The other method is to change the variables. Instead of the original boundary
value problems being considered, corresponding initial value problems are studied.
From the relationship of the original boundary value problems and the initial value
problems, the existence and uniqueness are obtained again.

The third method is a monotone method. By using concept of upper and lower
solutions, existence and uniqueness for steady state problems are obtained. As for

the time dependent problems, if the external circuit is not connected, existence and
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uniqueness are obtained too. If the external circuit is connected, existence and
uniqueness are obtained only for the PTC type problem.

Many numerical experiments are done both for steady state problems and time
dependent problems. There are three methods used to obtain numerical solutions.
The first one is a shooting method which is used for steady state problems. The
second one is moving meshpoint method in which the stepsize, interval length and
the number of meshpoints are changing according to some interface conditions. The
third one is fixed meshpoints in which the stepsize, interval length and the number of
meshpo.ints are fixed. Obviously, the moving meshpoint method is more complicated
than the fixed meshpoint method. Numerical results showed that accuracy of the
numerical solutions obtained by the moving meshpoint method is better than that .
obtained by the fixed meshpoint method. Since the algorithm for the moving mesh-
point method is much more complicalted than that for the fixed meshpoint method,
the advantage of the moving meshpoint method is jeopardized though the precision
is improved by using moving meshpoint method. The fixed meshpoint method gives
steady state solutions which agree sufficiently with those obtained by other meth-
ods. Hence the moving meshpoint method is only used once for PTC problem. For
most problems considered the conductivity used is continuous but not differentiable
everywhere, for comparison, the same problems with smooth conductivity are nu-
merically solved. Many numerical results are obtained. Numerical results for typical
parameters are listed in several tables and some of them are demonstrated in figures.
The solutions for the problems with smooth conductivity change more smoothly at
interface points than the solutions for original problems with the non-differentiable

conductivity.
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As one of the three ( if there are three ) solutions can not be found numerically,
the concept of stability and instability is reviewed. Thus the stability and instability
of solutions are briefly discussed.

In this dissertation, not only the NTC problem is studied as in most other liter-
ature [3, 4, 35, 36, 37, 38, 40, 41], the PTC problem is also studied in detail. The
different properties of PTC and NTC problems are also reflected in their solutions.
Those properties are studied thoroughly. For PTC problem, if the external circuit
is not connected, for the given parameters @ and (3, there always exists one solu-
tion. But for NT'C problem, if the external circuit is not connected, for some given
parameters o and f3, there exist three solutions, for some other given parameters a
and f3, there exist only one solution. All solutions of the steady state PTC and NTC
problems can be numerically obtained. As for time dependent problems without
external circuit, the solution of the PTC problem can be numerically obtained since
there is only one solution and the numerical solution agrees sufficiently well with
the numerical solution of the corresponding steady state PTC problem. The NTC
problem has three solutions, but only two of them can be numerically obtained. One
of them seems quite unstable and for any initial value the solution converges to one
or another of the stable solutions, the third solution can not be obtained numerically
even if it exists theoretically. If the external circuit is connected, both for PTC and
NTC problems there exist three situations. That is, there exist one, two or three
solutions for different parameters a and 3. If there exist three solutions for the time
dependent external circuit connected problems, the common property of the solu-
tions for PTC and NTC problems is that one of the three solutions is numerically

unstable. If there exist one or two solutions, all of them can be numerically obtained.
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Though many theoretical and numerical results have been obtained, there are
still some uncertainties, such as uniqueness ( at most locally ) for NTC problems
and a direct proof of the instability, etc. Currently, there seems to be little literature

contributed to two dimensional problems.
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Appendix A
IMSL Subroutine IVPRK][50]
There are lots of IMSI subroutines installed in AIX machines. Here only the

related subroutine is included.

Name: IVPRK ( Single Precision )
Purpose: Solve an iniatial-value problem for ordinary differential equations

using the Runge-Kutta-Verner fifth-order and sixth-order method.
Usage: CALL IVPRK(IDO,N,FCN,T,TEND,TOL,PARAM,Y)



