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Abstract 

Osteoarthritis (OA) is one of the most common chronic diseases worldwide which can lead to disability. 

There is a desperate need for the efficient and reliable detection of OA at the early stage when patients 

are likely to benefit most from disease interventions. It has been shown in previous studies that 

inflammation plays important roles in cartilage degeneration, synovitis, remodeling of the subchondral 

bone and pain. The purpose of this thesis was to determine if a panel of inflammatory cytokines were 

distinct within individuals with pre-radiographic OA and/or an increased risk of developing OA. 

Serum inflammatory profiles were analyzed within a number of patient cohorts [i.e., radiographic OA 

patients (hip and knee), youth with a history of intra-articular knee injury, corresponding controls]; and 

it was found that inflammatory profiles were distinct between knee vs. hip OA patients. Additionally, 

a computation method was developed which identified a coordinated change in cytokine profiles in 

the youth knee injury cohort. This computational methodology highlighted a number of candidate 

biomarkers that contributed to this observed difference, including C-C motif chemokine 22 

(CCL22)/macrophage derived chemokine (MDC) which was selected for further study. In a pre-

clinical rat OA model, it was found that CCL22 plays a functional role in chondrocyte apoptosis and 

cartilage degeneration. Further, it was found that CCL22 treated synovial fibroblasts demonstrated 

altered expression of inflammatory factors. 

These results suggested that CCL22 may be a biomarker and potential drug target in early OA. These 

results also suggested that CCL22 may be associated with OA pain, yet this was not examined directly 

and an in vivo model where CCL22 expression could be regulated would be required to test this 

hypothesis. While it was observed that CCL22 is expressed in damaged cartilage and acts on human 

chondrocytes and synovial fibroblasts, additional studies are required to determine how CCL22 
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triggered these changes in synovial fibroblasts as these results suggest this is CCR4 independent. 

Furthermore, it would be essential to validate these findings in an independent cohort to examine the 

sensitivity and/or specificity of CCL22 as an early OA biomarker. 
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Chapter One: Introduction 

1.1 Background 

Osteoarthritis (OA) is a chronic disease which is characterized by the progressive 

degeneration of the articular cartilage. It is the leading cause of mobility disability in 

people aged 65 years and older worldwide (1). In Canada, it affects approximately 12% 

of the population. Within Alberta alone, productivity loss related to OA had a negative 

economic impact of $2.75 billion in 2010 (2). It is estimated that by 2040, more than 1 

in 4 Canadians will have OA, thereby affecting 30% of the labor force (2). While OA 

typically develops over years to decades, current clinical diagnosis of OA, which relies 

heavily on symptomatic (pain, loss of motion) and radiographic assessment (cartilage 

loss, joint space narrowing and osteophytes) can only be reliably made at a 

late/advanced stage of the disease (3). The main limitation of clinically diagnosing OA 

at later stages is at that point in the disease pathology, disease-modifying options are 

limited (4). Just how little we truly understand about the onset and pathogenesis within 

the early stages of OA, is demonstrated by the fact that over the last 40+ years of 

research into OA, no single diagnostic test for early (pre-radiographic) OA has been 

approved by the FDA or Health Canada as none have been demonstrated to be specific 

or sensitive enough to comprehensively classify early-stage OA patients (5). 

1.2 Risk factors of OA 

Identifying individuals at a high risk of developing OA is critical to provide early 
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disease identification/intervention aiming at reducing socioeconomic impact of OA by 

precisely allocating limited health-care and research resources. The multifactorial 

pathogenesis of OA, including aging, injury, and genetic predisposition may all act as 

contributing factors to the onset/progression of OA. Broadly, obesity is also widely 

accepted to have a strong association with the risk of developing OA (6). It should also 

be noted that many patients with OA would present with many of these and/or other 

risk factors making it difficult to tease out exactly how each one or combination(s) are 

increasing the risk of developing OA; or potentially an increased risked of accelerated 

progression of OA. However, risk factors such as injury and abnormal joint morphology 

are better understood. Previous studies report that 12-20 years post knee injury, there is 

a 10-fold increased risk of developing knee radiographic OA, compared to an uninjured 

population (7). In terms of abnormal morphology, infants with developmental dysplasia 

of the hip will have an increased chance to develop hip OA in adulthood (8), while 

femoroacetabular impingement has been also demonstrated to lead to cartilage wear 

and the eventual onset OA (9). These examples and many others (not covered in this 

thesis), demonstrate that onset and progression of OA is driven by numerous factors, 

often in combination with one another, and this has made the early identification of 

patients with OA a challenge to both health care providers and researchers. As 

previously stated, there are many potential risk factors for developing OA, however, in 

this thesis, more background will be provided for the two main factors (injury and 

abnormal joint morphology) central to the hip and knee cohorts being employed. 
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1.2.1 Joint injury 

While idiopathic OA typically develops in older adults, post-traumatic osteoarthritis 

(PTOA) has been shown to develop in young to middle-aged adults 12-20 years after 

joint injuries sustained in youth (10). Prospective studies report that knee injury 

increases the risk of developing radiographic knee OA 10-fold (11). It is estimated that 

12% of cases of symptomatic OA in the hip, knee, and ankle are due to previous injury. 

Moreover, evidences have shown that more than 50% of individuals with an anterior 

cruciate ligament (ACL) tear or meniscus injury go on to develop knee OA (12, 13). At 

present, there is a paucity of research examining outcomes early (<10 years post-injury) 

in the period between joint injury and disease onset when interventions have potential 

to delay or prevent progression to OA (4). Therefore, once joint injury has occurred it 

is imperative that individuals who have yet to display clinical signs of OA, but who are 

at high risk of developing the disease, are included in research studies as they may hold 

vital clues understanding the early/pre-structural changes in the disease. Understanding 

these processes may aid in the detection of early OA and development of interventions 

aimed at slowing disease progression. 

1.2.2 Bone abnormalities: 

Research over the past decade has revealed that some cases of idiopathic OA may be 

due to abnormal hip anatomy/morphology, such as dysplasia and femoracetabular 

impingement (14). When bones within the joint are abnormally shaped, they do not fit 

together properly, and therefore can cause damage to the joint. Hip dysplasia is a 
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developmental deformation of the femoral head, acetabulum, or both, caused by a 

developmental disorder in which the hip joint forms incorrectly during childhood. 

Several previous prospective studies have shown acetabular dysplasia is significantly 

associated with an increased risk of developing hip OA (15). 

 

 
Figure 1-1. Normal hip (left) and dysplasia hip (right) (adapted from (16)). 
 

Femoroacetabular impingement (FAI) is another common bony abnormality which is 

associated with OA. In FAI joints, the abnormality leads to atypical stresses between 

labrum and cartilage, these stresses separate the labrum from the cartilage as the labrum 

is pushed outwards and the cartilage is pushed centrally, this process eventually leads 

to articular degeneration and finally OA of the hip (14, 17). One subtype of FAI - Cam 

impingement (a nonspherical, cam-shaped abnormality which is caused by the extra 

bone formation at the anterolateral head–neck junction) has been strongly associated 

with the development of hip OA (18). 
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Figure 1-2. Normal hip (A and C) and cam lesion femoroacetabular impingement 
morphology (B and D) (from (19)). 
 

While other risk factors, such as obesity/metabolic disorders, heart disease, depression, 

smoking, and other co-morbidities, can’t be discounted to play a significant role in 

onset/development of OA with/without prior injury and/or abnormal bone morphology 

(and therefore contribute to the observations in this thesis); it is not feasible and in some 

cases not possible to obtain and/or control for the complete/accurate heath status (or 

history) in a given patient. However, a number of questionnaires were employed in 

when the cohorts were developed that are employed in this study to ascertain as much 

clinical data as possible on these individuals. 
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1.3 OA is an inflammatory disease 

Unlike other common forms of arthritis such as rheumatoid arthritis and psoriatic 

arthritis, which are generally categorized as autoimmune diseases, OA has long been 

considered as a mechanical “wear and tear” disease. However, recent studies have 

shown that physical wear alone is not necessarily the main driving force in the onset 

and development of OA and that inflammation plays a critical role (20). In the mouse 

model, Lapveteläinen et al. have found that the heavy use of the joint (lifelong voluntary 

wheel running) does not accelerate OA; on the contrary, it appears to protect the joint 

from the OA (21). Human studies have also observed similar results (22). Furthermore, 

after anterior cruciate ligament (ACL) tear, ACL reconstruction surgeries are often 

recommended to maintain patient’s knee joint stability by preventing abnormal 

mechanical loading on the cartilage; yet, it is clear that ACL reconstruction does not 

stop OA, even though it restores the stability of the joint to some extent (23).  

These kinds of observations have led the research community to ask: If it is not physical 

wear, what are the main contributors to the development of OA? One of the most 

accepted hypotheses is that OA starts from physical stimuli/trauma (e.g. knee injuries, 

overload of the joints, bone abnormalities). These stimuli can trigger complex 

inflammatory responses, which in turn disrupt the biochemical homeostasis of articular 

cartilage and other joint tissues, perpetuating the degeneration of the articular cartilage 

and structural/functional changes throughout the whole joint (20).  
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1.4 Initiation of the inflammatory response in OA 

Multiple pathways are involved in the initiation of the inflammatory response OA in 

both humans and pre-clinical models. The innate immune system, also known as non-

specific immune system, comprises the cells and mechanisms that defend the host from 

infection by foreign agents/organisms (24). This system can also trigger a sterile 

inflammation response without an exogenous pathogen. This is achieved by the binding 

of pattern-recognition receptors (PRRs) and damage-associated molecular patterns 

(DAMPs, also known as alarmins), released by stressed cells/damaged tissues as 

endogenous danger signals (e.g. chondrocytes undergoing necrosis following acute 

joint injury) (25). PRRs include membrane-bound PRRs such as Toll-like receptors 

(TLR), cytoplasmic PRRs such as NOD-like receptors (NLR), and secreted PRRs such 

as complement receptors (26). DAMPs vary greatly depending on the injured tissue and 

the type of cell. They can be remnants of cellular breakdown (e.g. DNA fragments) or 

extracellular matrix breakdown products (e.g., hyaluronan, collagen). Activation of 

PRRs triggers cell signaling that leads to the production of inflammatory cytokines, and 

the induction of downstream inflammatory responses. Other than PPR-mediated 

inflammatory pathway, the complement system, which is made up of a large number of 

distinct plasma proteins that react with one another to opsonize pathogens, can also 

induce a series of inflammatory responses that help to fight infection (27). The present 

of abundant pro-inflammatory cytokines in areas of OA damaged, further lead to 

macrophage and CD4+ T cell infiltrate into inflamed joint tissue (20). In the synovium 

of OA patients, it has been found that CD4+ Th1 subtype and macrophages are most 
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abundant cell types. These cells are responsible for the enhanced stimulation of innate 

immune cells and the activation of B cells which increase/perpetuate inflammation by 

producing autoantibodies specific for cartilage cell surface proteins such as osteopontin 

and collagen (28). 

 

1.5 Biochemical biomarkers in OA:  

Over the last 40+ years of research, no single biomarker for early (pre-radiographic) 

OA has been approved by the FDA or health Canada as none have been demonstrated 

to be specific or sensitive enough to comprehensively classify early-stage OA patients 

(5). Biochemical biomarkers are an ideal candidate for asymptomatic early stage OA as 

they may directly or indirectly participate in the biochemical processes of onset and/or 

progression of the disease. Therefore, it may be possible that inflammatory biomarkers 

which are likely upstream of cartilage breakdown products may be more accurate than 

traditional clinical measurements such as cartilage thickness or pain that would be 

downstream of the inflammatory cascade. In recent years, many studies have been 

conducted focusing on various OA biochemical biomarkers and a subset has been 

summarized based on studies that presented accuracy of their biomarkers in Table 2-1 

and Table 4-1. 

1.5.1 Metabolites as biomarkers: 

One common type/class of biomarkers that have been investigated is joint tissue 

metabolites. It has been observed that these metabolites are released into bodily fluids 
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(serum/plasma/synovial fluid) during tissue turnover (29) and therefore their 

concentration may directly reflect the metabolic rate of the joint tissues affect by OA.  

Cartilage oligomeric matrix protein (COMP) is non-collagenous extracellular matrix 

(ECM) glycoprotein which contains thrombospondin-like domains that can bind to 

different collagen types (30) and is responsible for collagen–collagen interactions and 

microfibril formation in the cartilage. It is believed that COMP is mainly produced by 

articular chondrocytes and its elevation in body fluid is related to cartilage damage. 

Serum COMP concentration has been found to be elevated in a number of independent 

OA cohorts, and has correlated with the severity of OA (30-33). Recent evidence has 

demonstrated that an elevated concentration of COMP can be detected in the synovial 

fluid of injured joints years after the injury (34) or in the serum of OA patients after 

physical exercise (35). These results and others suggest that COMP may be sensitive 

biomarker and might have potential for detecting the asymptomatic, early stages of OA. 

Further studies are underway to verify these results in the same youth injury cohort 

(PrE-OA) employed in this thesis.  

C-terminal telopeptide of collagen type II (CTX-II) is another commonly investigated 

OA biomarker. CTX-II is derived from the C-telopeptide portion of collagen type II. 

Since collagen type II is a major structural component of articular cartilage (60% of dry 

weight of cartilage) and cartilage is highly enriched for collagen type II expression vs. 

all other tissues (36), the fragments of collagen type II such as CTX-II might be 

representative biomarkers for cartilage degeneration/turnover and potentially for early 

OA(37). Similar to COMP, an increase of CTX-II has been observed in many 
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independent OA cohorts (38-41). Other type II collagen degradation products including 

collagen type II cleavage (C2C), matrix metalloproteinase-derived fragments of type II 

collagen (C2M), Coll2-1, Coll2-1-NO2 have been investigated in many studies, 

however, as diagnostic biomarkers for early OA, the reliability and accuracy vary 

among studies (42, 43). 

While most previous studies have focused on cartilage degeneration biomarkers, there 

are a few studies that have focused on cartilage synthesis biomarkers. Chondroitin 

sulfate epitope 846 (CS846) is an epitope present in newly synthetized aggrecan 

molecules. It is observed to be increased in OA patients (44) and after joint injury (45). 

These studies indicate that the synthesis/turnover of the proteoglycan content within the 

cartilage is increased in OA. N-terminal pro-peptide of collagen IIA (PIIANP), spliced 

from type II pro-collagen, is a biomarker for a collagen type II synthesis (46). Serum 

PIIANP is found decreased in patients with a greater burden of hip and knee OA (47), 

suggesting a decreased collagen synthesis in OA which is in opposition to the studies 

on CS846/proteoglycans. However, it should be noted that the changes of these 

biomarkers do not necessarily reflect a pathological increase or decrease in turnover of 

newly formed cartilage matrix. In fact, by using a radiocarbon dating method, 

Heinemeier et al. have shown that cartilage (specifically the collagen matrix) does not 

turnover after skeletal maturity regardless the occurrence of OA (48).  

1.5.2 Inflammatory Markers:  

While many of the commonly studied biomarkers in OA are based on the turnover of 
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the cartilage itself, an increased number of inflammatory markers have come to 

attention recently as the role of inflammation in OA onset/progression has become 

clearer. The inflammatory response can be triggered by the debris of damaged tissues 

within the joint (e.g. cartilage) as discussed earlier. Therefore, all the molecules 

(DAMPs, PPRs, cytokines and etc.) within these signaling pathways could potentially 

have use as biomarkers for detecting inflammation which may in turn lead to the onset 

and/or progression of OA. If it can be determined that a given inflammatory pathway 

is specific and or sensitive to OA vs. other diseases and/or general injury, then these 

may indeed have diagnostic potential in early OA. In the following paragraphs, a 

number of potential biomarkers native to the synovial joint will be introduced and how 

these factors may play a role in regulating the inflammatory response in OA will be 

discussed. 

Hyaluronic acid (HA), also known as hyaluronan, is a major component of synovial 

fluid and the extracellular matrix of the cartilage. It is believed that large molecular 

weight HA is responsible for lubricating the joint. However, in post-trauma or OA joints, 

the average molecular weight of HA and the viscosity of synovial fluid decreases 

significantly compared to normal individuals (49). Furthermore, small molecular 

weight (and potentially) HA fragments stimulates inflammation by binding to a number 

of cell surface PPRs (such as TLR4 and TLR2 as well as CD44) on various cell types 

including both leukocytes and non-leukocytes (such as fibroblasts and mesenchymal 

stem cells). While the molecular weight of HA decreases in OA, the overall abundance 

of HA was found to be elevated in multiple OA cohorts (50-53). 
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Proteoglycan 4 (PRG4/lubricin) is secreted by cells that reside in the superficial layer 

of articular cartilage and also within the synovium. It is generally accepted that lubricin 

has a protective effect on the cartilage due to its lubricating abilities. However, recent 

studies have demonstrated that lubricin may play a role in modulating inflammatory 

responses through interaction with CD44 and TLRs and regulate pro-inflammatory 

pathways in an HA independent manner (54). 

S100A8, S100A9, and S100A12 are a subgroup of the S100 protein family which are 

intracellular calcium-binding proteins that control key cellular pathways including the 

inflammatory response. In an antigen-induced arthritis mice model, the lack of 

S100A8/A9 prevented cartilage degradation, indicating that these proteins play a major 

role in cartilage degradation and development of inflammatory arthritis. Human studies 

suggest that chondrocytes respond to extracellular S100A8/S100A9 stimulation by 

upregulating catabolic markers (MMPs, IL-6, IL-8) and downregulating anabolic 

markers (aggrecan and type II collagen) through TLR-4-independent pathways (55). An 

in vitro study demonstrated that S100A12 treatment can promote MMP-13 and VEGF 

expression in human OA chondrocytes through a p38 MAPK and NF-κB dependent 

pathway (56). S100A12 is also found present in synovial fluid in knee of OA patients, 

and correlated with WOMAC scores, indicating that S100A12 might be a potential 

biomarker of OA severity. Zreiqat et al. demonstrated that S100A8 and S100A9 

expression is upregulated in early OA but reduced in late OA, suggesting that these 

proteins may initiate cartilage degradation by upregulating MMPs and ADAMTSs and 

hence the expression and/or activity of s100 proteins may also have potential as early 
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OA biomarkers (57). 

Cytokines are almost universally recognized as indicators of inflammation (pro and/or 

anti) as they are the major inflammatory signal mediators (58). Therefore, they deserve 

significant study to determine if any (or combination of any) cytokines may be potential 

biomarkers for OA. After the activation of innate immune signaling pathways through 

PRRs, a variety of cell types in joint tissues including (but not exclusively) synovial 

fibroblasts, macrophages, and chondrocytes start to produce soluble inflammatory 

mediators including both pro-inflammatory (e.g. IL-1β, TNFα, IL-6, IL-15) and anti-

inflammatory (e.g. IL-6, IL10, IL-13) cytokines (59-61). IL-1β and TNFα are 

considered key cytokines involved in the pathogenesis of OA. They are secreted by 

chondrocytes, osteoblasts, synoviocytes (type A and B cells) and mononuclear cells 

which infiltrate into joint during the inflammatory response. In patients with OA, levels 

of both IL-1α and TNFα are elevated in the synovial fluid, synovial membrane, 

subchondral bone and cartilage (22). The receptors of Il-1β include IL-1R1 and IL-1R2, 

with IL-1R2 becoming inactive after binding to IL-1β. IL-1R1 belongs to TLR family, 

with binding of IL-1β with IL-1R1 triggering a MyD88 dependent pathway similar to 

TLR4 (62). This signaling cascade ends with the activation of the transcription factors 

NF-κB, p38MAPK and c-Jun N-terminal kinase (JNK) (62). The expression of the IL-

1R1 is increased in patients with OA on the surface of chondrocytes and fibroblast-like 

synoviocytes (FLS) compared to treatment groups (23). TNFα binds to two receptors 

on the cell membrane, TNF receptor I (TNFRI or p55) and TNFRII (or p75). The 

binding of TNFα and TNF-R1 causes interaction between the TRADD adapter protein 
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with the DD domain and gradual binding of other adapter proteins such as TRAF2 and 

RIP, which then activate the multicomponent protein kinase IKK, resulting in the 

phosphorylation of the IKK complex and ultimately, the activation of the NF-κB 

pathway. However, because of the complexity (e.g. redundancy, routes of feedback and 

cross-talk) within cytokine signaling networks, it is difficult to understand the role of a 

given cytokine when studied in isolation and therefore, it might more 

comprehensive/informative to study multiple cytokines at the same time. In a previous 

study, by comparing the inflammatory profiles (38 cytokines), Heard et al., successfully 

classified OA and normal patients at considerable high sensitivity and specificity which 

is impossible to achieve with the use of any of these individual cytokines alone (63). 

As stated earlier, current clinical diagnosis of OA relies heavily on physical examination 

(e.g., pain, joint function/stiffness) and radiographic assessment (e.g., joint space 

narrowing) (64, 65). However, these symptomatic and structural changes can only be 

observed after degeneration of the joint tissue has already progressed and may be 

irreversible (3). Therefore, one of the most important characteristics of a novel OA 

(diagnostic) biomarker(s) is the ability to detect the early (pre-radiographic) phase of 

OA. Unfortunately, OA patient cohorts included in most of these studies discussed in 

this chapter, were identified based on post-radiographic OA criteria (K/L grade >= 2). 

One main reason for studies selecting advanced OA patients is that it is inherently 

difficult to detect pre-radiographic OA (hence a vicious circle), the approach to address 

this gap in the literature, was to employ a longitudinal study on a high risk group (joint 

injury) specifically the PrE-OA study group (https://ucalgary.ca/siprc/files/siprc/pre-

https://ucalgary.ca/siprc/files/siprc/pre-oa.pdf
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oa.pdf) (66). The PrE-OA group consists of 100 youth adults who had sustained a sport-

related intra-articular knee injury 3–10 years previously and 100 uninjured age, sex and 

sport (at time of injury) matched controls. Previous analyses suggested participants with 

history of injury suffered from more symptoms and poorer function, and are at greater 

risk of being overweight/obese 3-10 years post-injury compared to matched uninjured 

controls (66-68). Utilizing this type of cohort is essential to examine potential early OA 

biomarkers in patients when they have not developed radiographic OA and then 

clinically classify them when some of them develop radiographic OA years later. 

Therefore, longitudinal studies looking at the association between biomarkers and pre-

radiographic indicators such as MRI OA score and joint pain without radiographic 

symptoms are essential for developing new early OA biomarkers. 

 

1.6 High-throughput Technology in OA diagnostics: 

The complexity of immune activation and inflammation in the pathogenesis of complex 

diseases is becoming increasingly well recognized. Traditional studies focusing on 

quantitation of only one or a few biomarkers per study in correlation with disease state 

has become far from efficient. High-throughput techniques have demonstrated 

significant potential for biomarker development in diseases such as cancer (69, 70), 

cardiovascular disease (71, 72), Alzheimer’s (73) and other chronic diseases (74, 75). 

The most popular high-throughput technologies include RNA-seq (transcript 

identification), Mass spectrometry (MS) (protein identification), and multiplex bead 

https://ucalgary.ca/siprc/files/siprc/pre-oa.pdf
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arrays (protein identification). RNA-seq provides a revolutionary way to study 

transcriptome during the onset of diseases. It can also unveil some information at DNA 

level such as single nucleotide variants (76). Due to high cost and the low 

representativeness at the protein level, RNA-seq hasn’t been applied as widely as other 

technologies. MS based high-throughput technologies aid with the identification of 

differentially expressed proteins and their post-translational modifications during 

disease progression which can then be further examined/validated as biomarkers for 

early diagnosis and monitoring disease treatment (77). Despite the advances in the 

biomarker discovery application of MS, limitations still remain: MS demonstrates 

relatively low sensitivity (>ug/ml) in detecting serum analytes (usually range between 

50 pg/mL ~ 10 ng/mL) (78). Therefore, a number of studies interested in protein 

identification and quantification employ high-throughput ELISA technology (multiplex 

assays) such as Luminex and Meso Scale to examine panels of proteins (typically 

numbering between 20 and 60 an analytes per assay, with a current hardware limit of 

500 protein examined in a single assay) (79). Multiplex array technology is more 

sensitive (~pg/mL) than MS and therefore allows detection of minor perturbations of 

analytes which haven’t been recognized previously by other methods. 

High-throughput technologies have also demonstrated promise for the development of 

OA diagnostics at the advanced/late stage by our group and others using a broad range 

investigation of inflammatory profiles in different tissues and body fluids (80). Some 

of these studies successfully classified OA and normal patients at considerable high 

sensitivity and specificity by comparing their inflammatory profiles (e.g. not relying on 
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single analytes/biomarkers) (63). Serum and urine are the most commonly used body 

fluids for proteomic and metabolomics analysis of OA and have the most clinical 

potential as the access to them are non-invasive (81). However, since they are spatially 

removed from the affected tissues it is possible that some key proteins may be diluted. 

Synovial fluid (SF), although difficult to obtain, can be studied as a compromise of non-

invasiveness and sensitivity (82).  

The expansion of high-throughput technology application has brought its own 

challenges to biomarker discovery; analysis of a huge quantity of data (includes not 

only values but also relationships between values and biological meaning behind them). 

In the language of classical statistics, the traditional discovery of biomarkers from high-

throughput data can be modeled as selecting the most discriminating features (or 

variables) for classification and then testing whether the multivariate set of selected 

biomarkers differs between disease and control populations. In the last few years, high-

throughput studies of biological systems are rapidly accumulating a wealth of ‘big-data’, 

including single-interactome (e.g. genomics, transcriptomics, proteomics, 

metabolomics), interactions between single-interactome (e.g. protein-protein 

interaction) and interaction cross interactomes (e.g. signal pathway). The integration of 

data from different scales would greatly enhance the accuracy and efficiency of the 

analyses. For example, in proteomic data analysis, data dimensions could be reduced 

by removing the redundant proteins if it can be demonstrated that they have similar 

functions in the same signaling pathway. Another example is that some proteins have a 

non-linear relationship as they need to bind together to form a protein complex in order 
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to be functional, lacking any of them will lead to the interruption of the signal pathway. 

However, to integrate these complex relationships between variables is beyond a 

classical statistical approach, and therefore a new field of study “systems-biology” has 

emerged to fill the analyses gap created by “big-data”. 

Systems biology is an inter-disciplinary field of study that focuses on complex 

relationships within biological systems or biological experiments using computational 

modeling. The powerful capability of data analysis and arrangement makes systems 

biology an ideal tool for biological high-throughput “big-data” analysis. Network-based 

approaches have recently emerged as one of the powerful systems biology tools for 

biomarker discovery studies and understanding complex biological systems (83-85). 

One such study combined time-course microarray data and prior knowledge (protein-

protein interaction network), to identify dynamical network biomarkers (a group of 

proteins) for influenza, acute lung disease, and type 2 diabetes. These markers served 

as an early warning signal during disease initiation and progression with high sensitivity 

and accuracy (86). Current network-based approaches have limitations: most of them 

view networks as being fully connected without considering the actual network 

connections or merely downloaded biomolecular interaction networks from various 

databases (e.g. two proteins resident in different tissues will never interact in vivo, but 

still may be identified as binding partners in silico). Moreover, in living biological 

systems, even within one pathway, signals transfer back and forth between pathways 

comprising the entire cellular environment and these networks can change over time, 

which cannot be easily accounted for in a model. Current network models which are 
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constrained in single-interactome are limited in the analysis of entire disease 

progression. In a novel work conducted by Karagoz et al., the authors proposed a 

method combining transcriptomic and proteomic data to discover transcriptional 

control mechanisms of triple negative breast cancer (87). Overall, by taking advantage 

of massive computational resources and advanced data processing and analyses 

methods, system biology approaches to diagnostic medicine and biomarker 

development has had successes in the early detection of complex chronic diseases and 

in some cases has given us a deeper understanding of the molecular pathogenesis of 

disease (88). 

 

1.7 Limitation of Current OA diagnostic studies: 

Even though extensive high-throughput data has been developed to date in OA research, 

and many potential biomarkers have been proposed in the literature; their sensitivity, 

specificity and/or reliability has not reached a level sufficient for clinical use (89, 90). 

One possible explanation for this deficiency of biomarkers is the multifactorial 

pathogenesis of OA. Age, injury, genetic predisposition and additional factors (not 

covered) all may act as contributing factors in the onset and/or progression of OA, and 

consequently, single biomarkers diagnostics (to date) are not efficient enough to 

comprehensively classify all early stage OA patients of variable etiologies. Another 

explanation is that the change/delta within traditional biomarkers may be too subtle at 

the asymptomatic stage to efficiently distinguish patients from normal individuals (91), 
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and useful information can often be masked by the ‘noise’ generated by naturally 

occurring variation within a given population. Therefore, many groups have suggested 

that OA diagnosis should be considered in a more comprehensive manner (63). 

Though systems biology is an effective technique for interrogating complex diseases, 

very few studies have been conducted within OA. Olex et al. integrated time-course 

microarray gene expression data from a mouse model into a protein-protein interaction 

(PPI) network (92). However, genomic responses in mice are much different than those 

in humans following an injury and concluded that mouse models might not be 

representative to study human inflammatory diseases (93). Nacher et al. applied a 

PageRank-based diffusion algorithm to recognize OA-related proteins in a chondrocyte 

protein network (94), and have suggested that protein Q6EEV6 could play a key role in 

OA development. In another similar study, some of the top hub genes PPI network are 

also among the differentially expressed genes, indicating that these genes may be the 

potential targets for OA diagnosis and treatment (95). All these studies share some 

common limitations. First, further genetic and experimental studies are needed to 

eliminate the possibility of false positive results from computational analysis. Second, 

all these studies are trying to find one or a handful of candidate biomarkers, which 

departs from the original purpose of the systems biology which is to undertake a more 

unbiased comprehensive approach to understand the complex intracellular and 

intercellular networks as a whole instead of simply measuring the values of single 

biomarkers. It is possible that these groups lacked effective methods to biologically 

interpret their network analysis results and therefore could only use a candidate 
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approach in their analysis (96).  

Therefore, based on the current gaps of knowledge in the OA field regarding biomarkers 

in the earliest stages of OA, this thesis project was developed to fulfill the following 

objectives. 

 

10.1 Objective 

The overarching purpose of this thesis was to understand cytokine profiling in a number 

of distinct cohorts (including clinically diagnosed OA, high risk of OA and healthy 

controls) and potentially develop a biomarker indicative and possibly predictive of early 

stage (pre-radiographic) OA in a knee injury cohort. 

Primary Objective: To determine if serum inflammatory profiles are different between 

the following groups: youth knee injury, clinically diagnosed knee OA, clinically 

diagnosed hip OA, and control groups (youth non-injured and older non-OA controls). 

Hypothesis: Each group will have a unique inflammatory profile based on serum 

cytokine concentrations. 

Exploratory Objectives 1: Apply data mining (develop a new mathematical approach 

if needed) on all available datasets to identify cytokines which could be potential 

biomarkers (e.g. significantly differentially expressed cytokines in high risk group; 

cytokines that are significantly correlated with pain, etc.) for early stage OA. 

Exploratory Objectives 2: To validate the role of the most discriminative cytokine(s) 

from the patient cohorts in the onset/progression/mechanism of OA in vitro (using 

primary human cells) and in vivo (using an animal model of OA). 
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Chapter Two: Applying Computation Biology and ‘Big Data’ 

to Develop Multiplex Diagnostics for Complex Chronic 

Diseases Such as Osteoarthritis 

2.1 Abstract 

The data explosion in the last decade is revolutionizing the diagnostics research and the 

healthcare industry, offering both opportunities and challenges. These high-throughput 

“omics” techniques have generated more scientific data in the last few years than in the 

entire history of mankind. Here we present a brief summary of how “big data” has 

influenced early diagnosis of complex diseases. We will also review some of the most 

commonly used “omics” techniques and their applications in diagnostics. At last, we 

will discuss the issues brought by these new techniques when translating laboratory 

discoveries to clinical practices as well as several recent landmark cases in diagnostics 

industry. 

 

2.2 Computational techniques in early diagnosis 

The ability to provide effective treatments in early stage of a disease tends to lead to 

significantly better outcomes for the patient when compared to providing the same 

treatment at a significantly later stage of progression. This is particularly true for a 

number of diseases, such as cancer and cardiovascular diseases where any time lost can 

be a matter of life or death. However, early diagnosis of these diseases may be 
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challenging by traditional biochemical methods due to their asymptomatic nature and 

the lack of efficient detective technologies. In the last decade, an exponential increase 

in the amount of data has been produced by various high-throughput ‘omic’ 

technologies and we have now effectively entered the era of ‘big data’. Though 

requiring massive computational resources and advanced data processing and analyses 

methods, ‘big data’ approaches to diagnostic medicine and biomarker development has 

had successes in the early detection of complex chronic diseases and in some cases has 

given us a deeper understanding of the molecular pathogenesis of disease. In this review 

we will discuss the current state of ‘big data’ and computational techniques for early 

stage disease diagnosis and how advances in these techniques may promote a better 

understanding of complexity diseases. 

 

2.3 Big data in disease diagnosis 

Although great progress has been made within the last few decades, classical 

biomedical research methodology is still facing a challenge against diagnosis of 

complex diseases which are typically associated with the effects of multiple genes in 

combination with lifestyle and environmental factors. One of the reasons for this 

difficulty in early diagnosis (or prediction) is that the changes of traditional biomarkers 

can be too subtle at the asymptomatic stage to efficiently distinguish patients from 

normal individuals (97), and useful information can often be masked by the ‘noise’ 

generated by naturally occurring variation within a given population. Therefore, many 



 

25 
 

groups have suggested that the diagnosis should be considered in a more comprehensive 

manner. Hampel et al. suggested a combination of multiple biomarkers as well as 

genetic predisposition and environmental factors should all be take into account for 

early diagnosis and personalized therapies of complex diseases such as Alzheimer's 

disease (98). However such studies require large-scale measurements on a large number 

of individuals to eliminate over-fitting of predictive models. With the development of 

high-throughput “omics” techniques and the reduction in prices per sample, now make 

these types of analyzes a reality. An enormous amount of data has been generated, 

providing a global view with rich information on diseases and their diagnosis. One of 

the largest projects is The Cancer Genome Atlas (TCGA, http://cancergenome.nih.gov/), 

which contains clinical information, histopathology slide images and molecular 

information from over 8,000 tissue samples of 34 types of cancer. The goal of TCGA is 

to improve cancer early detection and treatment by understanding how DNA mutations 

interact to drive cancers. However, the interpretation of such rich information seems to 

be a “big data problem”. Big data is a concept that varies in different fields. In 

biomedical research, big data essentially refers to the computational analyses that help 

scientists make sense of the chaos of extremely large experimental and clinical data sets. 

Conceivably, big data is already impacting disease diagnosis. For example, by studying 

a large sample set, Chen et al. achieved considerable high specificity (98.9% and 91.9%) 

for non-invasive prenatal diagnosis of trisomy 13 and trisomy 18 using maternal plasma 

DNA sequencing (91). 

Big data in disease diagnosis shares the same IT challenges in other fields, including 
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data storage, transfer, access control and management (99, 100). Another challenge is 

the computational modeling of complex biology systems. Due to the large scale and 

diversity of the data, un-optimized models may fall into NP hard (Non-deterministic 

Polynomial-time hard) problems whose time complexity increase super-exponentially 

(100), moreover, sampling bias should not be neglected. According to the study of 

Kaplan et al., bigger data is not always better since large sample studies sometimes can 

actually magnify biases associated with error resulting from sampling or study design 

(101). 

 

2.4 Computational “Omics” techniques 

Diseases with an identifiable genetic component play a role in nine of the ten leading 

causes of death in the United States (102). A positive association between genetic 

variation and disease may not only help diagnose diseases at early stage, but also predict 

diseases before the initiation of pathogenesis. Genome-wide association study (GWAS) 

is one of the most common statistical approaches that involves rapidly scanning 

millions of markers (single-nucleotide polymorphisms, SNPs) at the same time across 

genome to find genetic variations associated with a common complex disease (103, 

104). Liu et al. reported that the inclusion of the GWAS genetic variants data 

significantly improved their breast cancer naïve Bayes diagnostic model (105). As 

technological improvements continue to decrease DNA sequencing costs, whole 

genome sequencing (WGS) or whole exome sequencing (WES, sequence protein-
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coding genes only) becomes more practical for clinical applications and might be a 

potential alternative to GWAS as it provides more information of whole genomes (106). 

However, WGS/WES generates large quantities of data which require tremendous 

computational analysis such as sequence alignment, variant calling, filtering and 

identifying disease susceptibility genes. In fact, sequence data is produced significantly 

faster than current computational resources can handle (107). Thus, more efficient 

algorithms and/or more powerful hardware need to be developed in the future (108). 

However, this may lead to an ‘arms race’ between hardware and software resulting in 

increased rates obsolesce in the field.  Therefore, it is clear that both how the data is 

acquired (hardware) and how it is analyzed (software) cannot be pursued independently 

of each other.    

Gene expression (transcriptomics) profiling provides an opportunity for accurate, 

definitive diagnosis (109, 110). High-throughput mRNA sequencing (RNA-Seq) is one 

of the most popular techniques in transcriptomics since this technology allows for 

investigating both known transcripts and uncovering new ones. Since transcripts (RNAs) 

need to be converted to cDNA and then sequenced, RNA sequence assembly algorithms 

for short, low-quality reads without references are required (111). While microarray 

suffers from a number of limitations compared to RNA-Seq (e.g., unbiased detection of 

transcripts, increased dynamic range, increased specificity/sensitivity, increased 

detection of rare/low-abundance transcripts) it can be used to measure large numbers 

of gene expression level simultaneously. In addition to regular clinical diagnosis, many 

recent articles reported the success of applying microarray in prenatal diagnosis (112, 
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113). 

Proteomics can also be used for the biomarkers detection of early stage disease such as 

cancer (114, 115), cardiovascular disease (71, 116), Alzheimer’s disease(117) and other 

chronic disease (118, 119). Mass spectrometers (MS) based proteomics can help the 

identification of all differentially expressed proteins and their post-translational 

modifications during disease progression which can be used as biomarkers for early 

diagnosis and monitoring disease treatment (77). The data process of MS relies heavily 

on open access public proteomics databases. Both our own group and others in the field 

have employed the use of high throughput ELISA technology such as Luminex and 

Meso Scale to examine panels of proteins (typically numbering between 20 and 60) in 

chronic diseases such as Osteoarthritis (120) and traumatic injuries (79). 

Metabolomics, while a younger field than the rest, is rapidly expanding in the 

diagnostics field in “post genomic era”. The metabolic characteristics and changes in 

the patients are influenced not only by which genes are transcribed, but also the 

composition of material that the cells obtain from their micro-environment. Many 

reviews have discussed the application of metabolomics in diagnostics using high-

throughput techniques such as nuclear magnetic resonance spectroscopy (NMR) and 

MS. Madsen et al. made a comprehensive summary of metabolomics in cancer, diabetes, 

cardiovascular and other complex disease diagnosis (121). Zhang et al. pointed out that 

saliva metabolomics can be a potential method for personalized therapy and treatment 

monitoring (122). This being said however, data analysis is crucial for metabolomics 

based diagnosis, though in some cases, one single marker from the metabolic profile 
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might be sufficient to detect the diseases specifically, in most cases, machine learning 

techniques are applied to recognize and classify metabolic profiles or fingerprints 

between normal and disease states. Among them the most widely used are linear 

discriminant analysis (LDA), artificial neural networks (ANN) and support vector 

machines (SVM). Principal component analysis (PCA) is often employed for data 

dimension reduction before model training in order to lower the chance of over-fitting 

the model. Another way to avoid model over-fitting is to apply cross-validation 

techniques at the model training step. 

 

2.5 System biology 

Not until the completion of Human Genome Project was it realized that gene sequence 

alone was not sufficient to identify all the biology origin of disease. The function of 

each protein and the complexities of protein–protein interactions are critical for 

understanding physiological processes. In addition, recent studies shows that non-

coding parts of the genome produce small conserved ribonucleic acids (non-coding 

RNA, ncRNA) which control molecular and cellular processes (123, 124). Thus, in 

order to develop effective diagnostic techniques and disease treatments, genomics, 

transcriptomics and proteomics should be studied integrally and systematically as a 

whole system.  

Through a system-based approaches, Aldons et al. integrated genomic, molecular, 

physiological data with traditional genetic and biochemical methods to study complex 
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disease including diabetes and cardiovascular disease. He pointed out that analyzing the 

individual components of the whole system is far from sufficient, since in reality, these 

components interact with each other and these interactions play crucial roles in 

development of diseases (125). 

A number of recent studies have successfully applied network models in describing and 

simplifying such complex systems (126-131). In these studies, network topology is used 

to investigate biological networks including metabolic networks, protein-protein 

interaction networks, gene regulatory networks, transcriptional profiling networks, etc., 

and their interactions. For example, in the gene network clusters created by Gilman et 

al. using NETBAG (network-based analysis of genetic associations), many proteins are 

found to participate in the formation of autism (130). These proteins may become new 

biomarkers for the diagnosis of autism. In another study conducted by Akutekwe et al., 

a biomarker identification method using a dynamic Bayesian network to model the 

temporal relationship among the stratified features for early diagnosis of ovarian cancer 

(131). Matthias et al. tried to bridge the gap between genotype–phenotype by studying 

the inference of genetically perturbed molecular networks based on a combination of 

genomics, proteomics, and phenomics data (132). All these innovative strategies may 

provide us a deeper understanding of disease development and help us discover new 

indicators for early stage diseases. 
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2.6 Diagnosis of Osteoarthritis 

Osteoarthritis (OA), one of the leading causes of chronic disability worldwide, is a form 

of arthritic disease which is characterized by the progressive destruction of articular 

cartilage. The pathogenesis of OA is multifactorial-aging, injury, genetic predisposition 

may all act as contributing factors which cause the joint cartilage degeneration. 

Currently, clinical diagnosis of OA relies on the radiographic assessment, pain 

symptoms and the mobility of the joint. Unfortunately, OA develops asymptomatically 

in early stage and when it becomes detectable, extensive and irreversible deterioration 

of joint has already occurred. Therefore, there is a need for new diagnosis methods, 

such as new specific biological markers, to detect OA at early stage before such 

deterioration happens. However, without understanding the biological mechanism of 

OA, the guideless search for effective biomarkers among billions of molecules for the 

early OA diagnosis is like finding a needle in a haystack. In the past few years, the 

development omics and bioinformatics techniques has impacted the etiology and 

diagnostics of complex disease like OA. High-throughput fast screening of biomarkers 

at whole omic level becomes a reality. Here we describe recent progress and challenge 

in OA diagnosis using these high-throughput techniques. 

 

2.6.1 Genomics in OA diagnosis 

GWAS have tested the association between thousands of SNPs in the whole genome 

and OA. So far, approx. 15 OA susceptibility loci have been identified by GWAS, 
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although some of them are gender or racial specific (133). Elliott et al. found significant 

overlap between OA and height and OA and body mass index (BMI) by comparing OA 

and BMI GWAS data, suggesting that OA and obesity may share genetic background 

(134). In a more comprehensive mate-analysis study, Rodriguez-Fontenla et al. 

summarized 9 GWAS of OA, they identified two genes (COL11A1 and VEGF) are 

significantly associated with hip OA development (135). 

In order to find the rare variants that are missed in common GWAS studies, Boer et al. 

conducted a whole exome-sequencing study of 1,524 participants, in which 199 had hip 

OA. Besides 3 genes which are already identified in previous GWAS studies, they found 

gene FGF3 may contribute to hip OA by suppressing endochondral bone formation 

(136). Unfortunately, to our knowledge this is the only OA related whole 

genome/exome sequencing study published to date. To obtain a better understanding of 

genomic architecture of OA, additional whole genome large-scale NGS studies on 

various cohorts should be undertaken. 

Several recent genome-wide DNA epigenetic studies using high-throughput arrays 

revealed new potential OA biomarkers. DNA methylation, one of the common DNA 

epigenetic modification at promoter region of the genomic DNA may influence DNA 

stability, chromatin structure and regulate the gene expression. Several studies have 

examined genome-wide DNA methylation profile of human articular chondrocytes in 

cartilage and trabecular bone samples from OA and healthy control to identify profiles 

of DNA methylation in OA disease (137, 138). They have all found significant 

differential methylation levels between the patient and normal groups and in the future 
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it is possible that these methylation sites and the genes which they are contained within 

could be used as new diagnostic markers. 

 

2.6.2 Transcriptomics in OA diagnosis 

Many microarray based gene expression studies on various tissue types from OA 

patients have identified differentially expressed genes and profiles which could 

contribute to the development of new biomarkers. For example, Blom et al. identified 

approximately 200 differential expressed genes (fold change ≥ ± 2) in synovium (139), 

whereas in peripheral blood, 86 genes were found expressed with at least 1.5-fold 

difference (140). As increased evidence indicates that the subchondral bone plays a 

major role in the initiation and progression of OA, Chou et al. performed a whole-

genome gene expression study of subchondral bone (141). They found a total of 972 

genes were differentially expressed (fold change ≥ ± 2) between normal and OA bone 

samples. Interestingly, however, between these studies, there are few differential 

expressed gene in common, suggesting that in OA, disease related gene expression 

change may be highly tissue and/or patient specific. Thought a few molecular models 

can explain a small portion of the tissue-dependent gene expression regulations, the full 

regulation mechanisms in different tissues are not clear (142). Nevertheless, it is 

essential that we consider the complex (and in some cases, non-canonical) roles of 

genes and their pathways in diverse tissue and cell types, and hence it is important to 

use expression data from the same tissues to maintain the comparability in order to 



 

34 
 

assess the association between genes and diseases in different studies. 

 

2.6.3 Proteomics and metabolomics in OA diagnosis 

Though proteomics and metabolomics approaches in OA diagnostic studies are 

relatively new, they have produced a great number of potential markers. A broad range 

investigation of proteomic profiles in different tissues has been conducted, including 

femoral head, humeral head, meniscus, explants, and etc. (80). Additional studies are 

more focused on human body fluid as the harvest is comparatively non-invasive and 

consequently will be easier to translate to clinical practices. Serum and urine are the 

most commonly used body fluids for proteomic analysis of OA (81). However, since 

they are spatially removed from the affected tissues it is possible that some key proteins 

may be diluted. Synovial fluid (SF), although sometimes difficult to obtain, can be 

studied as a compromise of non-invasiveness and sensitivity (143). A metabolomics 

analysis of synovial fluid has successfully classified the OA phenotypes into two 

metabolically distinct subgroups by the concentration of acylcarnitine which may be 

related to the carnitine metabolism pathway (144). These types of studies will help to 

unravel the complex pathogenesis of OA and simplify new biomarkers discovery by 

dividing OA into several subtypes. 

A problem of current proteomics and metabolomics study of early OA diagnosis is that 

abnormal protein or metabolite expression are relatively dynamic comparing to gene 

mutations. Usually samples are obtained from patients who are already clinically 
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diagnosed with OA, therefore the proteomic and metabolomics profiles can only 

represent the status of the patients at the advanced or even end stage of the disease. 

Without knowing the changes of the profiles during OA progression, we should be 

careful to assume those differential expressed proteins or metabolite in late OA are the 

potential biomarkers for early OA diagnosis. Takinami et al. conducted a study which 

followed knee OA patients for 2 years to overcome this problem (81). However, OA is 

known to have a much longer pathogenic in some patients (even up to decades), and 

some evidence shows that cartilage degeneration which could ultimately lead to OA 

could start at youth. Therefore, it is essential to develop long term follow-up studies 

now, so that the next generation will be too able to benefit from these types of diagnostic 

studies in OA. 

 

2.6.4 System Biology in OA diagnosis 

Extensive “omic” data was screened so far and many biomarkers have been proposed, 

but their sensitivity or specificity is not high enough for clinical use and the reliability 

varies among studies (Table 2-1). One of the possible explanations for this is the 

multifactorial pathogenesis of OA, including aging, injury, and genetic predisposition 

may all act as contributing factors which cause OA, and consequently, single 

biomarkers diagnostics are not efficient enough to comprehensively classify all early 

stage OA patients of varies etiologies. Though system biology is an effective technique 

for complex disease search, very few studies have been conducted on OA. Olex et al. 
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integrated time-course microarray gene expression data from a mouse model into a PPI 

network (92). However, injuries can trigger very different responses in mice than in 

humans in terms of genomic responses, suggesting that mouse models might not be 

representative to study human inflammatory diseases (93). Nacher et al. applied a 

PageRank-based diffusion algorithm to recognize OA-related proteins in a chondrocyte 

protein network (94), they found protein Q6EEV6 could play a key role in OA 

development. In another similar study, some of the top hub genes PPI network are also 

among the differentially expressed genes, indicating that these genes may be the 

potential targets for OA diagnosis and treatment (95). All these studies share some 

common limitations. First, further genetic and experimental studies are needed to 

eliminate the possibility of false positive results from computational analysis. Second, 

all these studies are trying to find one or several biomarkers, which departs from the 

original purpose of the system biology study in complex disease-to study the complex 

intracellular and intercellular networks as a whole instead of simply measuring the 

values of single biomarkers. Lacking of effective methods to biologically interpreted 

network analysis results might be one of the reasons. Pilot works are needed to put into 

perspective computational analysis in the future. 
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Table 2-1. Biomarker approaches examined for the diagnosis of osteoarthritis. 

Authors Date 
Biochemical 

Biomarkers 

Body 

Fluid 
Sample Size Age Gender Comparison Group 

Statistical 

Method 
Sensitivity/Specificity 

Singh et al. 
(53) 

2014.12 
Hyaluronic 

acid 
serum  100/50 (cases/controls) 

case51.28±7.93 

control46.08±4.81 

p<0.001 

Case:34 males, 

66females; 

Control:16 males 

34 females 

normal/mild OA 
ROC 

curve 
87.6%/86.0 % 

Siebuhr et 
al. (145) 

2014.01 
hsCRP, 

CRPM 
serum 

12/202/57/60 

(Mild/Moderate/Severe/TKR 
mean:65.3 

155 males 

176 females 
Mild/Moderate/Severe/TKR 

ROC 

curve 
33.3%/87.18% 

Wisniewski 
et al. (146) 

2014.02 TSG-6 

synovial 

fluid, 

serum 

91(OA)   high/low risk of rapid 

progression to end-stage OA 

ROC 

curve 
91%/82% 

Heard et al. 
(63) 

2014.06 38 cytokines serum 100/100 (cases/controls) 
normal40.0±9.5; 

OA60.4±10 
 normal/OA ANN 100%/100% 

Singh et al. 
(90) 

2014.08 COMP serum 100/50 (cases/controls) 
Cases:58.93±9.20; 

control:54.68±9.68 p=0.01 

50 males 

100 females 
normal/OA 

ROC 

curve 
98%/98% 

Tanishi et 
al. (147) 

2014.02 uCTX-II urine 
794/616 

(OA/normal) 

males: 

KL0,1:65.3±9.7 

KL2:72.3±5.3 

KL3:72.5±4.9 

KL4:74.7±3.2 

females 

KL0,1:60.7±9.5 

435 males 

605 females 
KL0,1/KL>2 

ROC 

curve 

≈60%/40%men 

≈70%/40%women

（ROC curve） 
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KL2:70.3±6.0 

KL3:71.6±6.1 

KL4:72.9±5.1" 

Zivanovic 
et al. (89) 

2011.02 COMP serum 
66/22 

(effusion/control) 
69.97±9.37 

20 males 

68 females 

with/without 

effusion(inflammation) 

ROC 

curve 
59%/50% 

Han et al. 
(148) 

2012.12 

S100A12 

and other 

two 

unknown 

proteins 

synovial 

fluid 
36/24(OA/RA) 

OA:70.2±5.4; 

RA:68.4±4.9 

OA: 9 males, 27 

females 

RA: 4 males, 20 

females 

OA/RA ANN 89.4%/91.2% 

Henrotin et 
al. (149) 

2012.07 
Fib3-1, Fib3-

2 
urine 10/5 (cases/controls) 

cases:76.0±5.0 

control:25.6±2.6 
15 females normal/late OA 

ROC 

curve 

Fib3-1: 68.4%/77.1%, 

Fib3-2: 74.6%/85.7 
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2.7 Caution Ahead 

Although these high throughput ‘omics’ platforms coupled with the application of complex 

bioinformatics approaches have had a number of successes in identifying potential biomarkers 

in complex diseases such as cancer (150, 151), sepsis (152), arthritis (63, 153) and others; it is 

important to realize that some, if not all complex diseases have numerous associated co-

morbidities and risk factors. Therefore, it is essential to have extremely well characterized 

patient cohorts so that we can be sure we are not identifying biomarkers associated with those 

co-morbidities and/or risk factors. This is particularly important in diseases where no early 

diagnostic tests exist to assist in the confirmation/validation of the novel biomarkers. 

 

 

2.8 Conclusion 

The high-throughput “omics” techniques bring new energy to diagnostics, offering a 

comprehensive data resource from micro (e.g. genomics) to macro (e.g. phenomics). Facing 

the “big data” generated by such techniques, more powerful computational resources and 

efficient models or algorithms are needed for data storage, transferring and mining. System 

biology is one of the most successful theories that study the biology process by integrating 

multiple data resource. Plenty of studies have applied network models in describing 

etiopathogenesis and immune responses which may help discovery novel biomarkers for early 

diagnosis. However, we should be careful when apply those models especially when we are 

not sure if the clinical data is biased or not and no other diagnostic tests are available for 

validation. Last but not the least, the clinical translation should not be neglected. Though the 

diagnosis industry was frustrated by several case rulings which forbidden patents of genes and 
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biomarkers, novel diagnostic assay methods, kits, and method-of-treatment, or diagnostic 

methods combined with treatment programs using novel therapeutics may still remain 

patentable. 
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Chapter Three: Serum and Synovial Fluid Cytokine Profiling in 

Hip Osteoarthritis Patients: Distinct from Knee Osteoarthritis and 

Correlated with Pain 

3.1 Abstract 

Background: Inflammation is associated with the onset and progression of osteoarthritis in 

multiple joints. It is well known that mechanical properties differ between different joints, 

however, it remains unknown if the inflammatory process is similar/distinct in patients with 

hip vs. knee OA. Without complete understanding of the role of any specific cytokine in the 

inflammatory process, understanding the ‘profile’ of inflammation in a given patient population 

is an essential starting point. The aim of this study was to identify serum cytokine profiles in 

hip Osteoarthritis (OA), and investigate the association between cytokine concentrations and 

clinical measurements within this patient population and compare these findings to knee OA 

and healthy control cohorts. 

Methods: In total, 250 serum samples (100 knee OA, 50 hip OA and 100 control) and 37 

synovial fluid samples (8 knee OA, 14 hip OA and 15 control) were analyzed using a multiplex 

ELISA based approach. Synovial biopsies were also obtained and examined for specific 

cytokines. Pain, physical function and activity within the hip OA cohort were examined using 

the HOOS, SF-36, HHS and UCLA outcome measures.  

Results: The three cohorts showed distinct serum cytokine profiles. EGF, FGF2, MCP3, 

MIP1α, and IL8 were differentially expressed between hip and knee OA cohorts; while FGF2, 

GRO, IL8, MCP1, and VEGF were differentially expressed between hip OA and control 

cohorts. Eotaxin, GRO, MCP1, MIP1β, VEGF were differentially expressed between knee OA 

and control cohorts. EGF, IL8, MCP1, MIP1β were differentially expressed in synovial fluid 
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from a sub-set of patients from each cohort. Specifically within the hip OA cohort, IL-6, MDC 

and IP10 were associated with pain and were also found to be present in synovial fluid and 

synovial membrane (except IL-6) of patients with hip OA. 

Conclusion: OA may include different inflammatory subtypes according to affected joints and 

distinct inflammatory processes may drive OA in these joints. IL6, MDC and IP10 are 

associated with hip OA pain and these proteins may be able to provide additional information 

regarding pain in hip OA patients.  

3.2 Introduction 

 Approximately 1 in 8 individuals are afflicted with Osteoarthritis (OA) and although it is 

more common in older populations, it is becoming a serious health and economical concern in 

young, active individuals (154, 155). Therefore, it is essential to further understand the factors 

involved in the onset and progression of the disease, so that more efficient diagnostics and 

treatments can be developed. 

 While much of the research focus in OA has been directed towards the knee, it is necessary 

to examine if the pathways and mechanisms in knee OA are conserved in other joints. For 

example, in the hip, recent literature have provided insight into mechanical causes of hip OA 

including impingement and dysplasia (156), while others have focused on potential genetic 

predispositions with or without mechanical risk factors (157). This suggests that, as in knee 

OA, there could be potentially many avenues of hip OA onset that eventually result in patients 

with diverse etiology converging later in the disease trajectory. Our previous work in knee OA 

looking at systemic and local inflammatory profiles suggests that inflammatory profiles are 

distinct in patients with knee OA from those without OA (63) and therefore that this approach 

may be able to discriminate systemic inflammatory differences between patients with knee vs. 

hip OA. 
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 More generally, there have been a number of studies and many biochemical markers that 

have been identified in knee OA (82, 158-161). Historically groups have focused on cartilage 

metabolism markers including which demonstrate changes in concentration and fragment 

species with the onset and progression of OA (41, 162-164). Inflammation is known to be 

present in OA and the changes in individual inflammatory markers have been correlated with 

both severity and progression and OA (59, 165). Regardless of the type of biochemical marker 

examined however, knee OA and hip OA are almost always grouped together or only one joint 

is examined within a given study (166). Most of the common OA biochemical markers 

(collagen fragments, cartilage oligomeric matrix protein (COMP), etc.) have been tested on 

both knee and hip cohorts, but only a very few studies looked at both joints and run comparisons 

(166). The uncontrolled variances (such as different definition of OA, cohort characteristic, 

experimental method) across studies make the results almost incomparable. Among the studies 

that contain both cohorts, the comparisons of biochemical markers between knees and hips are 

largely ignored (167, 168). It is well known that mechanical properties differ between joints 

(knee vs. hip) (169, 170), but as far as we are aware only two studies have directly compared 

between cohorts of hip and knee OA patients: the effectiveness of bone metabolism for OA 

prognostic (171) and the difference of association between COMP and OA symptoms (172). 

However, neither of them compared the absolute concentration of biochemical markers 

between two phenotypes. 

 In addition to biochemical markers, it is also important to gain a better understanding of 

pain in OA. Pain is the leading disabling symptom of OA (173). According to the American 

College of Rheumatology (ACR) criteria for OA, pain is a necessary condition for clinical 

diagnosis of OA, with the support by other sufficient conditions such as age, radiographic 

evidences or physical examinations. OA pain is hard to quantify from patient to patient based 

on a number of confounding factors (174) and its inconsistency with other symptoms such as 
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radiographic findings is not yet well understood. Recent studies have greatly improved our 

understanding of pain at the molecular level (175), and new biochemical markers have also 

been reported to be correlated with severity of OA pain in the past decade (Supplementary 

Table 9-1). Cytokines play an important role in the pain signal pathway from lesions to higher 

brain processing centers (176). While cytokines can change the sensitivity of peripheral 

receptors to nociceptive input by a variety of mechanisms in experimental animal models (177-

179), very few human studies have reported correlations between cytokines and OA pain. The 

chemokine sub-family of cytokines is also of specific interest in patients with arthritis since 

these small molecules are capable of recruiting additional immune and/or stem/progenitor cells 

to sites of injury and/or increased inflammation. 

 With our incomplete understanding of the role of any specific cytokine in the inflammatory 

process, understanding the ‘profile’ of inflammation in a given patient population is an essential 

starting point. Therefore, the primary aim of this study was to examine system and local 

inflammatory profiles in hip OA patients, using knee OA and non-OA control as comparator 

groups to identify if differences exist between hip and knee OA. Furthermore in the hip OA 

cohort, it was attempted to determine if there were any cytokine(s) that correlated with pain 

symptoms, as well as other clinical measurements. 

 

3.3 Methods 

3.3.1 Subjects and clinical evaluation 

 This study protocol was approved by the University of Calgary Human Research Ethics 

Board (REB15-0880). Participants (Table 3-1) provided written consent. In all patient cohorts 

a previous diagnosis of metabolic disease/disorder, diabetes and/or abdominal obesity excluded 

the individual from the current study. For all cohorts, prescription anti-inflammatory 
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medication use within the past three months also excluded the individual from the current study. 

Individuals from all cohorts presented in this study are a sub-set of a larger on-going cohort 

study at the University of Calgary and were selected based on the inclusion/exclusion criteria 

for this study. Sample sizes were based off our previous reported study [5].  

 Control (n = 100; mean age 40.0 ± 9.5 years): Individuals showed no clinical signs of OA 

or RA (based on ACR criteria), and were questioned (and potentially excluded) regarding 

personal (intraarticular joint injury, inflammatory arthritis, autoimmune diseases) and family 

(inflammatory arthritis including any autoimmune diseases) histories. Individuals (e.g. faculty, 

staff, students, volunteers) were recruited from the sports medicine program and human 

performance laboratory. 

 Knee Osteoarthritis (n = 100; mean age 60.4 ± 10 years): Inclusion criteria required a 

diagnosis of OA performed at the OA clinic (University of Calgary) based on clinical symptoms 

of 3 months or greater with radiographic (standing AP radiographs) evidence (Kellgren and 

Lawerence (K/L) grading: all radiographs were graded by a sports medicine physician and 

registered nurse first assistant: inter-reader reliability/kappa, κ = 0.84) of changes associated 

with OA in accordance with ACR criteria. A K/L grade of at least 1 was required for inclusion 

into the knee OA cohort. A previous diagnosis of hip, hand or spine OA resulted in exclusion 

and a clinical assessment was undertaken to identify potential undiagnosed OA in these joint 

was undertaken at the time of recruitment.  

 Hip Osteoarthritis (n=50; mean age 59 ± 9.5years): Inclusion criteria was based on a 

diagnosis of hip OA determined by patient symptoms, clinical exam and radiographic (K/L) 

evidence (all radiographs were graded by an orthopedic surgeon and registered nurse first 

assistant: κ = 0.87) in accordance with ACR criteria. A K/L grade of at least 1 was required for 

inclusion into the hip OA cohort. A previous diagnosis of knee, hand or spine OA resulted in 

exclusion and a clinical assessment was undertaken to identify potential undiagnosed OA in 
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these joints was undertaken at the time of recruitment. Two major etiologies were impingement 

(n=35) and dysplasia (n=7). 

 
Table 3-1. Demographics of 3 cohorts. 
 

Characteristic Knee OA (n=100) Hip OA (n=50) Control (n=100) 
Gender (% female) 46 42 75 
Age (SD) 60.2 (10.4) 59.0 (9.5) 40.0 (9.5) 
K/L 0 0 0 100 
K/L 1 72 0 0 
K/L 2 1 0 0 
K/L 3 28 14 0 
K/L 4 0 36 0 
Serum Sample 100 50 100 
Synovial Fluid Sample 8 14 15* 
Synovium Sample 5 5 5* 

Footnote: *these sample are collected from cadaveric donations 

 

3.3.2 Clinical Assessment of Hip OA Cohort 

 Patients were asked to consent to complete the following questionnaires at the time of 

surgery (Birmingham hip resurfacing or total hip replacement):  

1. The Harris Hip score (HHS) (180). The score has a maximum of 100 points (best possible 

outcome) covering pain (1 item, 0–44 points), function (7 items, 0–47 points), absence of 

deformity (1 item, 4 points), and range of motion (2 items, 5 points). 

2. Hip disability and osteoarthritis outcome score (HOOS) (181). It consists of 40 items 

assessing 5 subscales including pain, symptoms, activity limitations daily living, function in 

sport and recreation and hip related quality of life. Standardized answer options are given in 5 

Likert-boxes with scores from 0 to 4 (no, mild, moderate, severe and extreme). 

3. Short form 36 (SF36) (182). It consists 8 sections including vitality, physical functioning, 

bodily pain, general health perceptions, physical role functioning, emotional role functioning, 

social role functioning, mental health. Each measurement is scale from 0 (worst) to 100 (best). 

4. The University of California Los Angeles (UCLA) activity score (183). The evaluation has 
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10 descriptive activity levels ranging from wholly inactive and dependent on others (level 1), 

to regular participation in impact sports (level 10).  

The questionnaires were the most common ones in the literature concerning hip function and 

symptoms, and all of them had shown a good reliability. 

3.3.3 Sample collection 

 Serum samples were collected at rest by standard venipuncture with untreated vacuum 

tubes. Serum was immediately aliquoted and stored at -800C until required for analysis. All 

samples analyzed were only thawed once (at the time of analysis).  

 Synovial fluid (knee and hip OA cohorts) was aspirated from the knee joint by the 

attending orthopedic surgeon or sports medicine physician. Control synovial fluid samples 

were obtained from the Southern Alberta Tissue Donation Program. Criteria for control 

cadaveric donations were an age of 40 years or older, no history of arthritis, joint injury or 

surgery (including visual inspection of the cartilage surfaces during recovery), no prescription 

anti-inflammatory medications, no co-morbidities (such as diabetes/cancer), and availability 

within 4 hrs of death. Synovial fluid samples were collected without the use of lavage. The 

samples centrifuged at 3000g for 15 minutes after blood has clotted at 40C and stored at -800C. 

All samples analyzed were only thawed once (at the time of analysis). 

3.3.4 Synovium tissue collection 

 Control tissue samples were obtained from the Southern Alberta Tissue Donation Program 

based on the sample criteria for cadaveric donations as listed above. Synovial biopsies from 

OA subjects were taken during surgery.  
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3.3.5 Multiplexed arrays 

 Sample analysis was performed by Eve Technologies (Calgary, AB Canada) using the 

Milliplex MAP Human Cytokine/Chemokine Panel (Millipore), according to the 

manufacturer’s instructions. All samples (serum and synovial fluid) were assayed at least in 

duplicate and prepared standards were included in all runs. The following proteins were 

examined by Luminex in this study: EGF, Eotaxin, FGF2, Flt3L, Fractalkine, GCSF, GMCSF, 

GROα, IFNα2, IFNγ, IL1α, IL1β, IL1rα, IL2, IL3, IL4, IL5, IL6, IL7, IL8, IL9, IL10, IL12 

(p40), IL12 (p70), IL13, IL15, IL17A, IL18, IP10, MCP1, MCP3, MDC, MIP1α, MIP1β, 

PDGFAA, PDGFAB/BB, RANTES, sCD40L, TGFα, TNFα, TNFβ, VEGFA. The sensitivities 

of these makers range from 0.1 – 10.1 pg/mL (average 2.359 pg/ml) and the inter-array 

accuracies range from 3.5% – 18.9% coefficient of variation (average 10.7%). 

3.3.6 Immunohistochemistry 

 Immunofluorescence was performed on synovium specimens with fluorescent-conjugated 

antibodies were obtained as follows: PE Mouse Anti-Human MDC/CCL22 (Cat. No. 565950, 

BD), PE Mouse Anti-Human IP-10 (Cat. No. 555049, BD), FITC Rat Anti-Human IL-6 (Cat. 

No. 554544, BD).  

3.3.7 Statistical methods 

 The normality of each cytokines was assessed by QQ plots. Because many of the cytokine 

concentrations were not normally distributed, both t-test and Mann–Whitney–Wilcoxon 

(MWW) tests were utilized. T-test and MWW were performed to compare the ages and BMI 

between groups. Principle component analysis (PCA) was used to reduce the dimensionality 

of the cytokine dataset and the first 3 components were used for 3-D scatter plot. 

 For hip OA cohort, MWW were used to compare the means of cytokines with pain scores, 
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BMI between two subgroups-impingement and dysplasia. PCA was run to extract two factors 

from 10 HOOS pain questions. Pairwise associations between cytokines and clinical 

questionnaire scores were assessed using Spearman's rank correlation test. First, we tested the 

correlation between 7 cytokines which have been reported correlated with osteoarthritis pain 

previously (176) and pain levels (evaluated by HOOS pain sub scores and SF36 body pain 

score). Then, we screened all the associations between every single cytokines and the log 

transformed ratios of any two cytokines and clinical variables (i.e., age, gender, BMI and 

clinical questionnaire scoring). P-values were adjusted by two different multiple testing 

correction procedures: Bonferroni procedure with familywise error rate of 0.05 (α ≈ 0.001) and 

Benjamini–Hochberg procedure with a false discovery rate of 0.20. 

 For both hip and knee OA cohorts, multivariable linear regression was applied to test the 

potential confounding effects including age, gender, K/L grade and affected joint (hip or knee) 

on cytokine profiles. Statistical analyses were performed using Python version 2.7 with scipy 

package (for screening associations between all cytokines and clinical questionnaire scores) 

and SPSS 20.0 (SPSS, Inc., Chicago IL). P<0.05 (two-sided) was considered statistically 

significant, except for the tests whose p-values were adjusted by multiple testing correction. 

The 3-D scatter plots of PCA were generated by SPSS 20.0. The bar graphs were generated by 

GraphPad Prism 6 (Graphpad Software. San Diego, CA). 

 

3.4 Results 

3.4.1 Inflammatory Profile between Hip and Knee OA Cohorts 

 To uncover any differences in systemic inflammatory signaling in patients with hip OA vs 

knee OA or normal controls a multiplex approach was utilized in where we would quantify the 

levels of 42 cytokines (including lymphokines, interferons, colony stimulating factors and 
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chemokines, outlined in methods section) that are involved in many signaling pathways 

regulating inflammation and disease. Significant differences in serum cytokines levels were 

identified when comparing cohorts (hip OA vs. knee OA vs. control). While 5 cytokines were 

differentially expressed between knee and hip OA cohorts (Figure 3-1), 3 cytokines (GRO: 

growth-regulated oncogene aka C-X-C motif ligand 1/CXCL1, MCP1: monocyte 

chemoattractant protein aka C-C motif ligand 2/CCL2 and VEGF: vascular endothelial growth 

factor) were conserved in both hip and knee OA cohorts when compared to the control cohort 

(Figure 3-1). Overall, 10 cytokines were differentially expressed between all three cohorts. 

The first 3 components of PCA (explained 64.5% of total variance) clearly separated 3 cohorts 

(Figure 3-1). 
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Figure 3-1. Comparison of cytokine profiles in serum in control, hip OA and knee OA 
cohorts. The serum concentrations of cytokines that were found to be significantly differently 
between the cohorts examined (a). The significantly different cytokines in each cohort are 
present in more detail in (b) after Bonferroni correction (p < 0.0012) (* = Significantly different 
in both serum and synovial fluid). Scatter plot of first 3 components of PCA of cytokine profiles 
of 3 cohorts demonstrates that the serum cytokine profiles are capable of discriminating the 3 
different cohorts (c) 
 
  

 Synovial fluid cytokine profiles were also found to be distinct across 3 cohorts. Synovial 

fluid and serum shared common cytokines that were differentially expressed between cohorts: 

EGF (epidermal growth factor) differed between hip OA and knee OA; IL8 (interleukin 8) was 

different between hip OA and control; MCP1, MIP1β (macrophage inflammatory protein aka 
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C-C motif ligand 3/CCL3) differed between knee OA and control (Figure 3-2). 

 

 
Figure 3-2. Differently expressed cytokines in synovial fluid in control, hip OA and knee 
OA cohorts. Of the cytokines examined in the serum that were significantly different between 
the hip OA, knee and control cohorts; EGF, MCP1, MIP1β and IL8 protein levels were also 
found to be significantly different between the synovial fluid samples obtained from the cohorts. 
Bonferroni correction (*p < 0.001) 
 
 

 Previous studies showed age, sex and severity of OA might have effects on cytokine 

expression (184, 185). Therefore, a multivariable linear regression model ((𝑦𝑦𝐸𝐸𝐸𝐸𝐸𝐸 + 𝑦𝑦𝐹𝐹𝐹𝐹𝐹𝐹2 +

𝑦𝑦𝑀𝑀𝑀𝑀𝑀𝑀3 + 𝑦𝑦𝑀𝑀𝑀𝑀𝑀𝑀1𝛂𝛂 + 𝑦𝑦𝐼𝐼𝐼𝐼8) = 𝑓𝑓�𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑥𝑥𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑥𝑥𝑘𝑘/𝑙𝑙 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗� ) was applied to 

access the correlations between cytokines and potential confounding variables (age, gender and 

K/L grade of OA and affected joint) in OA cohorts (Table 3-1). For cytokines that were 

significantly different between hip and knee OA cohorts, none were found to be related to age, 

gender or K/L grade, suggesting there were minimal effects of these variables confounding the 

cytokine profiles observed. After adjusting for confounding variables, EGF, FGF2 (fibroblast 

growth factor 2), MCP3 (aka C-C motif ligand 7/CCL7), and IL8 remained different between 

hip and knee OA. 

 

Table 3-2. Multivariable linear regression result of associations between cytokines and 
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age, gender, K/L grade and affected joint (e.g. knee vs. hip). 
 

Cytokines Covariates Sig. 95% CI 
Lower Upper 

EGF 
 

Age 0.396 -1.440 0.573 
Gender 0.177 -34.025 6.343 

K/L Grade 0.437 -7.964 18.331 
Affected Joint* <0.001 -37.895 -14.098 

FGF2 
 

Age 0.370 -1.761 0.659 
Gender 0.195 -40.270 8.269 

K/L Grade 0.803 -13.809 17.809 
Affected Joint * 0.003 -36.048 -7.434 

MCP3 
 

Age 0.778 -0.751 1.001 
Gender 0.238 -28.085 7.046 

K/L Grade 0.909 -12.108 10.776 
Affected Joint * 0.005 -25.219 -4.508 

MIP1α 
 

Age 0.863 -1.426 1.197 
Gender 0.298 -40.207 12.400 

K/L Grade 0.572 -22.039 12.228 
Affected Joint 0.130 -3.555 27.458 

IL8 
 

Age 0.799 -0.881 0.680 
Gender 0.544 -20.479 10.832 

K/L Grade 0.731 -8.422 11.973 
Affected Joint * 0.049 -18.501 -0.042 

 

 

3.4.2 Correlations between cytokines and Clinical Data in Hip OA Cohort 

 To determine if any clinical outcome measures were associated with the cytokine profile 

of hip OA patients, the pain, physical function and activity limitations of hip OA cohort were 

assessed using the HOOS, SF-36, HHS and UCLA scores.  

 First the discriminativity of all clinical measurements was examined by comparing each 

measurement between different severity of OA (different K/L grade). Six sub-scores showed a 

difference between K/L grade 3 and 4 groups (significant threshold was corrected by 

Benjamini–Hochberg procedure with a false discovery rate of 0.20) (Supplementary Table 

9-2). These scores included the HOOS pain 5 (walking on a flat surface, p-value = 0.037), 
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HOOS pain 6 (going up or down stairs, p-value = 0.034), SF36 GH (general-health, p-value = 

0.023), SF36 MH (mental health, p-value=0.007), SF36 PCS (physical component summary, 

p-value = 0.018) and SF36 MCS (mental component summary, p-value = 0.024). None were 

significant after Bonferroni testing correction.  

 Previously reported OA pain related cytokines (TNFα, IL1β, IL6, IL15, IL10, MCP1 and 

Fractalkine) (176) were also examined within our hip OA cohort dataset (Supplementary 

Table 9-3). Only IL6 was found to be significant when correlated with HOOS pain score factor 

2 (correlation = 0.319, P-value = 0.024). When testing all 36 cytokines, 2 cytokines were found 

to be correlated with pain severity: MDC (macrophage-derived chemokine aka C-C motif 

chemokine 22/CCL22) was negatively correlated with BPSF36 (body pain SF36, correlation = 

-0.302, p-value = 0.033), IP10 was positively correlated with HOOS pain (correlation = 0.294, 

p-value = 0.038) and HOOS pain 8 (standing upright, correlation = 0.390, p-value = 0.005) 

(Figure 3-3).  
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Figure 3-3. Scatter plot of two cytokines and correlated pain scores. Left: IP10 (log 
transferred) was positively correlated with HOOS pain score (correlation = 0.294, p-
value = 0.038). Middle: IP10 (log transferred) was positively correlated with HOOS pain 
question 8 (correlation = 0.390, p-value = 0.005). Right: MDC (log transferred) was negatively 
correlated with SF36 body pain score (correlation = − 0.302, p-value = 0.033). 
 

3.4.3 Synovium Examination from Control, Hip OA and Knee OA Cohorts 

To determine if the cytokines that were correlated with hip pain could be originating from 

the joint environment, the expression of MDC, IL6 and IP10 were examined in synovial 
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membrane biopsies from a sub-set of the hip OA (n=5), knee OA (n=5) and control cohorts 

(n=5) (Figure 3-4). MDC and IP10 positive cells were observed in the synovium of patients 

with hip OA. IL6 positive cells were not regularly observed in the synovium of hip OA patients, 

but were observed in the synovium of patients with knee OA. MDC, IL6 or IP10 positive cells 

were not observed within the synovium of patients without OA. To further narrow down the 

potential source of the MDC, IL6 and IP10, synovial fluid and serum samples were examined 

in a sub-set of patients. High levels of MDC were observed in the serum of all cohorts, however, 

only patients with hip OA maintained high levels of MDC within their synovial fluid (Figure 

3-4, Supplementary Figure 9-1). While IP10 was present in serum at lower levels, high levels 

were observed in the synovial fluid of hip OA patients alone. IL6 levels were present at low 

levels in serum and synovial fluid of all cohorts examined (Figure 3-4, Supplementary Figure 

9-1). It is important to note that although multiple comparisons were not undertaken for this 

experiment, we chose to present the data (Figure 3-4) with the same multiple comparison 

correction as the previous results for consistency. However, a non-multiple comparison 

corrected version of the same data is presented in Supplementary Figure 9-1. 
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Figure 3-4. Presence of MDC, IL6 and IP10 in Hip OA, Knee OA and control synovium, 
synovial fluid and serum. Representative images demonstrating the presence of MDC (orange) 
positive (MDC: 3/5 hip OA, 0/5 knee OA, 0/5 control) and IP10 (purple) positive (3/5 hip OA, 
0/5 knee OA, 0/5 control) cells in synovium of Hip OA patients. IL-6 (green) positive cells 
within the synovium were not observed in the Hip OA cohort, but observed with the knee OA 
cohort (1/5 hip OA, 4/5 knee OA, 0/5 control) (a). Serum and synovial fluid levels of MDC, 
IL6 and IP10 were also examined in the three cohorts (b). Bonferroni correction (*p < 0.001) 
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3.5 Discussion 

 To our knowledge, few papers have discriminated which joint the OA is affecting when 

comparing OA with control groups. In this study, we have found that 4 cytokines (EGF, FGF2, 

MCP3, IL8) are expressed differently in knee OA patients versus hip OA patients after 

controlling for age, gender and K/L grade. Interestingly, when we compared these two OA 

cohorts with the control cohort, the picture became even more complex. EGF levels were 

similar between the hip OA and control cohorts but both differed from the knee OA cohort. 

MCP3 was similar between the knee OA and control cohorts but differed from the hip OA 

cohort. The scatter plot of first 3 components of PCA of the 3 cohorts (hip OA, knee OA and 

control) showed that, neither Hip OA nor Knee OA is “closer” to the control. The center of 

gravity of the 3 cohorts represents a triangle shape (Figure 3-1). This infers that the three 

cohorts have their own characteristic cytokine profiles (though knee OA and hip OA cohorts 

are more similar to each other than either is to the control cohort). This may suggest that, at 

least for serum cytokines, OA may have distinct inflammatory profiles with subtypes that vary 

according to the affected joint. Failing to treat them as separate groups may be one of the 

reasons that the accuracy of biochemical markers in OA varies among studies (186). This may 

partially explain why none of the biochemical markers that have been studied to date have been 

approved for diagnosis or prognosis of OA. Another possible reason might be the heterogenetic 

and multifactorial nature of OA itself. The existence of subgroups in OA might invalidate any 

statistical single biochemical marker comparison which considers OA as one group-one 

biochemical marker is not enough to classify all of these subgroups. Previous studies have 

looked into subgrouping OA before statistical analyses (187). For instance, by using serum 

metabolomics data of OA patients, Zhang et al. identified at least 3 distinct subgroups which 

were not associated with any known confounders including age, sex, BMI and comorbidities 

(144). The current study suggests that hip and knee OA cohorts may not be as similar in terms 
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of the disease as previously thought and this has implications that OA in other joints (hands, 

spine, etc.) may also cloud diagnostic efforts, however, this hypothesis will require further 

study and validation. 

 In specific regards to the inflammatory cytokines examined in the current study, it is 

believed that aging brings about changes in the expression of many cytokines. Aged-related 

changes in the immune system may elevate the concentrations of cytokines which some have 

postulated may ultimately lead to chronic inflammation (188). This being said, in our dataset 

none of the cytokines are statistically significantly correlated with age. This might be due to 

the fact that most patients have passed their middle-age and the age distribution of these two 

cohorts are relatively concentrated (mean = 59.9, SD = 10.1). Although the control cohort is 

significant younger than the two OA cohorts (mean = 40.0, SD = 9.5). A limitation of the current 

study is that we unfortunately do not have the linked age information for each patient sample 

in the control cohort (only the cohort level details) and therefore we are not able to run a 

correlation analysis. Additionally, many factors can confound cytokine concentrations, such as 

statistical errors and mismatched cohort characteristics (such as races, disease history, diet and 

etc.). While, it can be unrealistic to find two exactly matched cohorts, these mismatch factors 

may lead to changes in serum cytokine concentrations in an unpredictable way and highly 

controlled cohort studies will be required to address these discrepancies. 

 TNFα, IL1, IL6 and IL17 have been reported to be correlated with development of 

neuropathic pain in various animal models (176, 189); however, except for IL6, which had 

weak correlation with PCA factor 2 of 10 HOOS pain questions, none of these proteins were 

significantly correlated with pain level scores in our dataset. We have tested the correlation 

between our two different pain level scores-SF36 body pain and HOOS pain sub-score, they 

are significantly correlated (correlation = 0.569, p-value < 0.0001). This suggests the method 

that we chose to evaluate osteoarthritis pain levels was reliable between questionnaires. Among 
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all 36 cytokines, we found that MDC and IP10 were correlated with pain in the hip OA cohort. 

IP10 (CXCL10) belongs to CXC chemokine family. It is expressed by a variety of cell types. 

When IP10 binds to CXCR3, this can result in activation and recruitment of leukocytes, and 

also regulate cell growth and apoptosis (190). In specific regard to pain, IP10 has been reported 

to be involved in breast cancer-induced bone pain by activation of microglia in rat models (191). 

In our study, IP10 was positively correlated with pain in patients with hip OA. It is possible 

that IP10 could be inducing OA pain through a similar pathway by activation of microglia in 

the joint environment. MDC (CCL22) belongs to the CC chemokine family and it is expressed 

mainly by macrophages and dendritic cells. MDC recruits Th2, Th17 and regulatory T cells 

through the binding of trafficking receptor CCR4 (192, 193). To our knowledge, no publication 

has directly looked at MDC and pain.  

The concentrations of these cytokines in synovial fluid were consistent with the immuno-

histochemistry results; with MDC and IP10 higher in synovial fluid than in serum, and were 

higher in hip OA than knee OA or control cohorts. This strongly suggests that within the hip 

OA cohort, MDC and IP10 are being produced within the joint environment and then may 

diffuse into serum through the synovial fluid. In the knee OA cohort however, MDC and IP10 

were not present within the joint (synovium or synovial fluid) and therefore any detectable 

levels of these in the serum are most likely being generated in other tissues in the body. While, 

the concentration of IL6 was higher in hip and knee OA cohorts than controls, IL6 was not 

found in hip synovium. This suggests that there might be other tissues in the joint (cartilage, 

ligaments, etc) that produce IL6 in the hip OA cohort. The relationship between serum and 

synovial fluid cytokine levels are still poorly understood with previous studies demonstrating 

little correlation (194, 195) or high correlation (194, 195) between systemic vs. local levels. 

However, the biological basis behind these correlations (or lack thereof) remain unknown, and 
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further study will be required on specific markers to determine if the choice of sample local 

will impact the usefulness of the result obtained.  

 

3.6 Conclusions 

 These findings validate previous studies that cytokines are differently expressed in OA 

patients (165); and suggest that while cytokine profiles are generally similar between hip and 

knee OA, that there are specific differences that may be related to differential disease processes 

within a given joint. Furthermore, 3 cytokines (IL6, MDC and IP10) were identified that 

correlated with hip OA. These results set the ground work for future studies that will be 

required to understand: if cytokines play distinct roles in in the onset/pathogenesis of OA in 

different joints; and what is the pathway and/or mechanism by which the identified cytokines 

regulate OA pain.  
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Chapter Four: Biochemical Markers for the Early 

Identification of Osteoarthritis: Systematic Review and Meta-

Analysis 

4.1 Abstract 

Introduction:  

Osteoarthritis (OA) is a major cause of disability in elderly populations and a huge 

burden of healthcare systems in western countries. There is a desperate need for the 

efficient and reliable detection of OA at the early stage when patients are likely to 

benefit most from disease interventions. In the past decades, a variety of biochemical 

markers from diverse bodily fluids have been investigated. However, their reliability 

varies among studies. In this review, we aim to answer following questions: 1) Are there 

biochemical markers that differential expressed in early OA vs. healthy subjects, and 2) 

If so, what is the diagnostic value of these biomarkers for early OA.   

Methods:  

EMBASE, PubMed, and Web of Science were searched to obtain all relevant studies 

up to March 2018. The Down and Black checklist was used to assess for bias. 

Biomarkers that were investigated in 5 or more different populations were pooled for 

meta-analysis. A meta-regression analysis was performed to explore the possible 

explanations of the heterogeneity for studies. 

Results:  

Twenty five articles met the criteria for the qualitative synthesis and seventeen articles 
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(included 3 biomarkers) for the final quantitative synthesis. N-Terminal Crosslinked 

Telopeptide of Type I Collagen (NTX-I) was the only biomarker found to be differently 

expressed in early OA patients vs. controls without significant heterogeneity among 

studies (I2 = 0 %, χ 42 = 1.695, P = 0.792). The meta-regression analysis identified 

sample size and affected joint which might explain the heterogeneity among studies. 

Conclusions:  

Although a wide range of biomarkers have been investigated, the diagnostic value of 

these biomarkers cannot be determined due to the small number of studies. Large 

prospective and adequately powered studies are still needed to validate the role of these 

and other biomarkers for identifying early OA. 

 

4.2 Introduction 

Osteoarthritis (OA) is a chronic disease and major cause of disability in elderly 

populations (196, 197). According to World Health Organization, by 2050, 130 million 

people worldwide will suffer from OA and one-third of whom will be severely disabled 

by the disease (196). It is estimated that the economic cost of OA could be up to 2.5% 

of the gross domestic product (GDP) for westernized countries place more strain on 

already burden health care systems (198). OA is typically characterized by the 

progressive loss of articular cartilage with changes in other joint tissues such as 

subchondral bone and synovium. Current clinical diagnosis of OA heavily relies on 

symptoms (e.g. pain, swelling, stiffness) with the support of radiographic assessment 
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(cartilage loss, joint space narrowing and osteophytes) (19). Therefore, it is common 

for OA patients to seek medical consultation only when symptoms appear and/or when 

these symptoms become difficult to manage independently. Consequently, in the vast 

majority of the population, OA is only detected at advanced stages when significant, 

and possibly irreversible damage within the joint has already occurred. This issue is 

compounded by the fact that no non-surgical treatments have been approved by the 

FDA that can slow, stop or reverse the progression of OA (161). This typically results 

in patients suffering from OA undergoing symptom management until the patient is a 

candidate for joint arthroplasty, and even though this procedure is quite effective, and 

the overall patient satisfaction rate is variable. 

The American College of Rheumatology (ACR) criteria for the clinical diagnosis of 

knee OA was first published in 1986 (64), followed by hand and hip OA in 1990 (199) 

and 1991 (65). It is still the most widely accepted and clinically applied OA 

identification criteria worldwide. However, a reliable identification method of early OA 

is still lacking. Reasons behind this are that symptoms in the early stages can be 

sporadic/intermittent and structural changes within the joint are minimal and therefore 

it is difficult to detect non-invasively. Furthermore, not all sub-types of OA present with 

the same risk-factors and/or rate of progression. Despite these difficulties and others, 

there is a desperate need for the efficient and reliable detection of early OA. Because at 

the very least, patients are likely to benefit most from disease interventions in the 

earliest stages of the disease. Biochemical biomarkers are an ideal candidate for this 

asymptomatic early-stage OA as they may directly or indirectly participate in the 
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biochemical processes of onset and/or progression of the disease. In the past decades, 

despite the slow development of the understanding of the complex biological nature of 

OA, a variety of biochemical markers from diverse bodily fluids have been investigated. 

However, their reliability varies among studies. In this systematic review, we aim to 

summarize previous human studies of biochemical markers and address the following 

questions: 1) Are there biochemical markers that are differentially expressed in early 

OA vs. healthy subjects, and 2) If there are any biochemical markers differentially 

expressed between early OA vs. healthy subjects, what is the diagnostic value of these 

biomarkers for early OA.   

 

4.3 Methods 

This systematic review and meta-analysis were conducted according to the Preferred 

Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines 

(http://www.prisma-statement.org). 

4.3.1 Search strategy 

A comprehensive literature search was undertaken using EMBASE, PubMed, and Web 

of Science to obtain all relevant studies up to March 2018. In order to ensure inclusion 

of all available publications, the primary screening was split into 2 steps. First, a broad 

search was applied using the following search term: “early”[All Fields] AND 

“osteoarthritis”[All Fields]. Retrieved references were organized using EndNote X8. 

http://www.prisma-statement.org/
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Secondly, “marker” [All Fields] was used to refine our search using the search function 

in EndNote X8. Since the search in EndNote x8 was a simple “string match”, which 

finds all words contains the pattern “marker” (e.g. biomarker, biomarkers, bio-marker, 

biochemical-marker). Therefore, all possible derivations of “biomarker” were included. 

Titles and abstracts were then manually screened for eligibility, and potentially relevant 

studies were selected for full-text reading. Full texts were considered relevant and were 

selected for qualitative synthesis if met the following eligibility criteria. 

4.3.2 Eligibility criteria 

The diverse interpretations of “early OA” among researchers made it difficult to 

establish criteria for screening literature in this review. The majority of literature 

interpreted “early OA” as the “early stage” after clinically established OA, while the 

remainder followed a definition that early OA should be based on the fact that the 

patient cannot be classified as established OA (200). Therefore, we developed criteria 

4(a) and 4(b) to include both types of literature. 

 

Publications were therefore included for full-text review if they meet the following 

criteria: 1.) Evaluated biochemical marker(s); 2.) Included human subjects; 3.) The full 

text was available and in English, and; 4.) one of the following criteria: a.) case or 

cohort control study with both early OA* patients and non-OA participants as controls. 

b.) Longitudinal study included “non-OA” or “early-OA*” participants at baseline with 

the incidence of OA at follow up within 10 years 
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*: Early OA is defined by the authors (Table 4-1) 

 

The exclusion criteria for meta-analysis were as follows: 1.) Data was judged to be 

inconsistent or demonstrated to be invalid based on further research; 2.) Data format 

was unavailable for meta-analysis; 3.) a newer publication reported the same biomarker 

results from the same study population. 

4.3.3 Data extraction 

Data extraction was performed on published data only. The following information was 

extracted for qualitative synthesis: authors, publication year, race/country of subjects, 

gender, age, sample size, the OA affect joint of interest/study, biochemical biomarker(s) 

investigated, the fluid/tissue specimen from which the biomarkers were obtained, the 

experimental methodology used for measuring the biomarker(s). A study was included 

in the qualitative synthesis (meta-analysis) if it contained at least one of the following 

data: 1.) The mean and the standard deviation of the concentration of the biomarker in 

both early OA and a control population; 2.) The odds ratio and its confidence interval 

(CI) of the biomarker between early OA and a control population; 3.) Student's t-test p-

value for the biomarker between early OA and a control population; 4.) Data that can 

construct a 2×2 table (e.g. number of false positives, false negatives, true positives and 

true negatives, or the sensitivity and specificity or receiver operating characteristic 

(ROC)). 
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4.3.4 Risk of bias assessment 

The Down and Black checklist was used to assess the study quality regarding the risk 

of bias. Items related to an intervention were excluded (Items 4, 8, 12, 13, 14, 15, 19, 

23, 24). Item related to follow-ups (9, 17, 26) were excluded for cross-sectional studies. 

Therefore, the risk of bias was evaluated on the remaining 18 items for longitudinal 

studies and 15 items for cross-sectional studies. 

4.3.5 Statistical analysis 

R version 3.5.0 with metafor package was used to perform all statistical analyses. 

Where possible, data from studies looking at the same biomarker were pooled to 

conduct a meta-analysis. Data were normalized by calculating the standardized mean 

difference (SMD, Cohen׳s d), with 95% confidence intervals (CI) as an effect size (ES) 

estimate. The SMD for each biomarker was pooled using a random-effects model. 

According to Cohen, the magnitude of the SMD was considered small if SMD = 0.2; 

medium if SMD = 0.5; and large if SMD = 0.8. In order to maintain sufficient statistical 

power and to avoid bias, only the SMD for the biomarkers that were investigated in 5 

or more different populations were pooled for meta-analysis. Between-study 

heterogeneity was assessed using the Ι2 statistic and the χ2 test. Meta-regression analysis 

was performed to explore if participant characteristics could explain the heterogeneity 

for all studies. The covariates that were evaluated included sample size, the age 

difference between early OA and control group, sex, and affected joint using random 

effects models (restricted maximum likelihood estimators). 
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4.4 Results 

A total of 15,741 articles were obtained by the first step of the primary search. Eight 

hundred forty-five, 7351, and 7555 articles were retrieved from the Embase, Pubmed, 

and Web of Science databases, respectively. After the second step of the primary search, 

125, 645, and 703 articles from the 3 databases remained. Then 248 duplicates were 

removed, the remaining 1225 articles were screened for titles and abstracts and 147 

articles were selected for full-text review. 25 articles met the criteria for the qualitative 

synthesis and 17 articles for the final quantitative synthesis (Figure 4-1). The 

characteristics of the studies included in the final quantitative assessment are shown in 

Table 4-1. 
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Figure 4-1. Flow chart of the study protocol 
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Table 4-1. Characteristics of included studies in the qualitative analysis. 
 

ID 
Author 

Year 

Ethnicity / 

Country 
Study design 

No. of case 

/control 

Early OA 

Definition 

Sex 

(Female %) 

Age (baseline in 

longitudinal study) 
Biomarker(s) Studied Specimen Methodology Joint 

Sensitivity 

/Specificity 

Case vs. Control 

statistic 

(significant only) 

1 
Petersson 

1995 (201) 
Sweden 

longitudinal 

study 
23/15 

Incident of 

radiographic OA 

at follow up 

44.7% 47 (range 37-54) COMP,BSP Serum ELISA Knee  δCOMP: p=.002, 

δBSO: p=.004 

2 
Zhang 

2015 (202) 
China 

Cross-sectional 

cohort control 
20/20 K/L grade ≤ 3 50% 

Control: 56.3 ± 7.9, 

Early OA: 59.2 ± 8.3 
CRP, WBC, Creatinine Serum UPLC-MS Knee  p=.02 

3 
Zhang 

2014 (203) 
China 

Cross-sectional 

cohort control 
50/25 

Outerbridge 

grade ≤ 2 
51.2%* 40.5 ± 15* Ihh SF ELISA Knee  p=0.008 

4 
Xin 2017 

(204) 
China 

Cross-sectional 

cohort control 
19/20 K/L grade = 1 77% 

Control: 57.6± 6.1, 

Early OA: 56.7 ± 6.9 
CTX-II, Zn2+, Ca2+ Urine 

ELISA, ICP-

AES 
Knee  Zn2+: p<.05, 

Ca2+: p<0.5 

5 
Wakitani 

2007 (205) 
Japan 

Cross-sectional 

cohort control 
7/24 K/L grade ≤ 1 56.8%* range 20–80* 

KS, C6S, CS846, HA and 

COMP 
Serum ELISA, HPLC Knee  

KS: p<.05, 

HA: p<.05 

COMP: p<.05 

6 
Van Spil 

2015 (206) 

The 

Netherlands 

longitudinal 

study 

Knee: 132/298, 

Hip: 68/477 
K/L grade ≤ 2 79.0% 56 ± 5 

CTX-II, COMP, PIIANP, 

CS846, CTX-1, NTX-1, 

PINP, OC, HA, PIIINP 

Serum & urine ELISA 
 Knee 

& hip 
 p=0.033 

7 
Sugiyama 

2003 (207) 
Japan 

longitudinal 

study 

112/112(follo

w up/baseline) 

Incident of 

radiographic OA 

at follow up 

100% 50.2 ± 6.0 PIICP SF ELISA Knee    

8 
Steinbeck 

2007 (208) 
USA 

Cross-sectional 

cohort control 
11/4 

mild arthritic 

symptoms 
N/A 

Control: 43 ± 9.6, 

Early OA: 61 ± 17.4 
MPO SF ELISA Knee  p<.005 
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9 
Poole 2016 

(209) 
Canada 

longitudinal 

study 

120.1/34.4 

(weighted) 

MR cartilage 

scores > 2 & K/L 

grade < 2 

Control: 

58%, 

early OA: 

51.4% 

Control: 49.5 ± 9.9, 

early OA: 54.9 ± 9.4 
C2C urine ELISA Knee  p=.029 

10 
Marshall 

2005 (210) 
Canada 

Cross-sectional 

cohort control 
84/76 K/L grade ≤ 2 

Control: 

39.4%, 

early OA: 

40.5% 

Control: 36.9 (range 

20-67), 

early OA: 31.9 (range 

20-67) 

combination of 8 genes Serum DNA microarray Knee 76%/78%   

11 
Kosinska 

2014 (211) 
Germany 

Cross-sectional 

cohort control 
17/9 

Outerbridge 

grade ≤ 2 

Control: 

12.5%, 

early OA: 

35.3% 

Control: 22 (range 

21–25), 

early OA: 36 (25–49) 

a variety of 

sphingomyelins, 

hexosylceramides and 

rdihexosylceramides 

SF ESI-MS/MS Knee  p<.05 

12 
Kobayashi 

1997 (212) 
Japan 

Cross-sectional 

cohort control 
50/31 

radiological 

evaluation grade 

I 

83.1% 
68, 42–88 (median, 

range)  

procollagen II C-

propeptide 
SF ELISAS Knee    

13 
Jiao 2016 

(213) 
China 

Cross-sectional 

cohort control 
34/14 

Outerbridge 

grade ≤ 2 
54.4%* 

42.5±16.6 

(mean+sd)* 

COMP, HA, CTX-II, 

MMP-3, PIINP 
Serum ELISAS Knee    

14 
de Seny 

2011 (214) 
Belgium 

Cross-sectional 

cohort control 
68/36 K/L grade = 0 

Control: 

55.5%, 

early OA: 

69% 

Control: range 47-64, 

early OA: range 37-

79 

V65 vitronectin fragment, 

C3f, m/z value 3762, 

CTAPIII 

Serum SELDI-TOF-MS Knee  C3f: p<.001 

15 
Bassiouni 

2011 (215) 
Egypt 

Cross-sectional 

match sex 

control 

10/15 K/L grade = 1 58%* 

Control: range 20-43, 

early OA: range 40-

75 

TIMP-1, MMP-3 Serum ELISA Knee    

16 
Ahmed 

2015 (216) 
UK 

Cross-sectional 

cohort control 
30/37 

Outerbridge 

grade ≤ 2& 
N/A N/A multiple protein adducts Serum LC-MS/MS Knee 0.73/0.87   
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normal 

radiographs of 

the symptomatic 

knee 

17 
Vos 2013 

(217) 

The 

Netherlands 

longitudinal 

study 

183/183(follo

w up/baseline) 

sum K/L grade < 

4 
83.6% 55.5 ± 5.4 pentosidine, CTX-II Skin & urine HPLC, ELISA Knee  uCTX-II: p=.001 

18 
Ling 2009 

(218) 

96% 

Caucasian, 

USA 

longitudinal 

study 
66/22 K/L grade ≤ 1 

Control: 

59.0%, 

early OA: 

57.1% 

Control: 52.3±14.4 

(median), 

early OA: 58.0±15.2 

(median) 

combination of 16 

proteins 
Serum 

RCA & 

microarray 
Knee    

19 
Wei 2014 

(219) 
China 

Cross-sectional 

cohort control 
8/7 

Non-clinically 

diagnosed OA 
100% 

Control: 49 (mean), 

early OA: 73.6 

(mean) 

Aggrecan, COL2A1, 

COL1A1, COL10A1 
Cartilage qRT-PCR Hip    

20 
Livshits 

2009 (220) 
UK 

longitudinal 

study 

1,003 (cohort 

size) 
K/L grade ≤ 1 100% 45–64 IL-7, TNFα, CRP Serum ELISA Knee    

21 
Kumm 

2013 (221) 
Estonia 

longitudinal 

study 

161 (cohort 

size) 
K/L < 1 66% 45.0 ± 6.2 PINP, OC, MidOC Skin & urine ELISA Knee    

22 
Chaganti 

2008 (222) 

Caucasian, 

USA 

longitudinal 

study 
167/169 

Incident of 

radiographic OA 

at follow up 

100% 
Control: 69.6 ± 3.7, 

early OA: 70.8 ± 4.6 
COMP, NTX-I Serum ELISA Hip    

23 
Sowers 

1999 (223) 
USA 

longitudinal 

study 
9/473 K/L grade ≤ 1 100% 37.4 ± 4.8 Osteocalcin Serum 

Radioimmunoass

ay 
Knee    

24 
Kelman 

2006 (224) 

Caucasian, 

USA 

longitudinal 

study 

COMP: 

186/194, 

NTX: 198/199 

Incident of 

radiographic OA 

at follow up 

100% 
Control: 67.9 ± 3.8, 

early OA: 70.9 ± 4.6 
COMP, NTX-I Serum ELISA Hip  COMP: p<.05, 

NTX: p<.05 
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25 
Gebhard 

2003 (225) 
Germany 

Cross-sectional 

cohort control 
21/21 

Mankin’s grades 

3-5 
N/A 

Control: 56 (mean) 

39-76 (range), 

early OA: 65 (mean) 

39-91 (range) 

COL1, COL2, COL2A, 

COL3, COL10 
Cartilage qRT-PCR Knee    

26 
Cibere 

2009 (226) 
Canada 

Cross-sectional 

cohort control 
105/16 

MR cartilage 

scores ≧ 1 & 

K/L grade ≤ 1 

Control: 

50.0%, 

early OA: 

52.4% 

Control: 46.4 

(median), 

early OA: 55.2 

(median) 

CTX-II, C2C, C1,2C, 

CPII, NTX-I, CS846, 

COMP, HA 

Serum & urine ELISA Knee   

uC2C: OR 2.06, 

95% CI (1.05–

4.01), 

uC1,2C: OR 2.07, 

95% CI (1.12–

3.77) 
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4.4.1 Characteristics of included studies 

Among 26 publications, 11 were longitudinal studies and 15 were cross-sectional 

cohort/case-control studies. The definition of early OA varied among studies. 

Radiographs with K&L classification were the most common non-invasive method to 

quantify damage of OA within the joint. Four studies directly visualized (arthroscopy) 

and measured the damage in the cartilage and quantified with Outerbridge grading. The 

majority of publications (24 out of 26) investigated early OA in the knee joint, which 

included ~1369 early knee OA cases and ~1194 controls. Three publications examined 

hip joints, including 68 early hip OA cases and 653 controls. The average female 

percentage of all subjects was ~68.62%, with 6 studies including only female 

participants. The remained of the studies included both male and female subjects with 

female participant percentage ranging from 12.5% to 81.3%. Few studies reported the 

ethnicity details of the study subjects. However, since none of the studies reported 

ethnicity selection biases, we have made the assumption that the ethnicity of subjects 

was similar to the local population from where the studies undertook. A wide range of 

biomarkers was evaluated, including metabolisms, cytokines, metal ions, gene 

expressions and unknown proteins identified through mass spectrometry. The 

biomarkers in the studies selected were identified primarily from: serum, urine and/or 

synovial fluid. Two studies investigated biomarkers in the cartilage which were 

harvested from different sources including OA patients that underwent total joint 

arthroplasty, patients with a femoral neck fracture and healthy donors. 
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4.4.2 Quality assessment 

The methodological quality scores of the studies are presented in Supplementary 

Table 9-4. The scores ranged from 66.7% to 100%, with higher scores indicating higher 

quality assessment. While the majority of studies selected for analysis demonstrated 

adequate or above quality; in some studies, the confounders were not investigated, or 

were identified but without addressment in the statistical analysis. Furthermore, it was 

found in small number of studies examined that sample size had compromised the 

statistical power to detect a clinically important effect. 

 

4.4.3 Analysis of biomarkers 

In a total of 35 biomarkers were included in the 17 studies which qualified for 

quantitative synthesis. Unfortunately, most of the biomarkers in the selected studies 

were only examined in 1 or 2 manuscripts. Three biomarkers were investigated in more 

than 5 different populations, these included: Cartilage oligomeric matrix protein 

(COMP), Hyaluronic acid (HA) and N-Terminal Crosslinked Telopeptide of Type I 

Collagen (NTX-I). 

Seven studies assessed the COMP levels in serum. Of these, 4 were longitudinal and 3 

were cross-sectional. Five of these studies included both males and females, 2 consisted 

entirely of women. The overall SMD for COMP was small 0.128 (95% CI -0.102 to 
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0.358). Between-study heterogeneity was found among studies (I2 = 82.96 %, χ 72= 41.1, 

P < 0.001) (Figure 4-2a). Indeed, 5 studies did not find a significant difference in 

COMP level between early OA and control groups, while Wakitani et al. and Jiao et al. 

observed significantly increased COMP in early OA group and on the contrary Van Spil 

et al. found early OA group had lower serum COMP level. 

Serum HA was assessed in 4 studies. One was longitudinal, and all studies included 

both males and females. Similar to COMP, the studies reported variable findings. 

Wakitani et al. and Jiao et al. found elevated HA in early OA while Van Spil et al. and 

Cibere et al. did not observe any significant difference between early OA vs. control 

groups. The overall SMD for HA was 0.15 (95% CI -0.101 to 0.402). Between-study 

heterogeneity was found among studies (I2 = 75.83 %, χ 42= 16.551, P = 0.002) (Figure 

4-2b). 

NTX-I was evaluated in serum by Chaganti et al. and Kelman et al. and in urine by Van 

spil et al. and Cibere et al. One study was cross-sectional. Two studies were conducted 

on female subjects only. Kelman et al. reported a significant increased NTX-I in early 

OA group compared to control. Although the other studies observed a similar increment 

in NTX-I level in early OA group, the results did not reach significance. The overall 

SMD was small 0.066 (95% CI -0.015 to 0.147), with no significant heterogeneity 

found among studies (I2 = 0 %, χ 42= 1.695, P = 0.792) (Figure 4-2c). 

Although no statistical analysis applied, all other biomarkers were plotted in the same 

forest plot for easier representation of how results vary across the range of studies 

(Figure 4-3). The meta-regression analysis was applied on all studies and detected an 
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association between the SMD vs. sample size and affect joint (Table 4-2). 

 

 
Figure 4-2. Forest plot of the effect size of COMP 
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Figure 4-3. Forest plot of biomarkers 

 

 

 

 

 

 



 

80 
 

Table 4-2. Meta-regression of covariances related to heterogeneity 
  

Regression 
coefficient  

p 
value 

95% CI 
lower 

95% CI 
upper 

Age difference, early OA vs. 
control 

-0.0145 0.2774 -0.0405 0.0116 

Sex (female %) -0.3817 0.3329 -1.1543 0.3909 
Sample size -0.0012 0.0083 -0.0021 -0.0003 
Affect joint -0.283 0.0561 -0.5734 0.0074 

4.5 Discussion 

In this review we have evaluated 35 biomarkers examined in 26 studies to assess if any 

specific biochemical marker was differentially expressed in early OA vs. healthy 

individuals. Three biomarkers, COMP, HA, and NTX-I were then synthesized using a 

meta-analysis of seventeen studies. Below, we will discuss each of these markers, and 

all present new opportunities for marker discovery and analysis that may aid in the 

development of efficient markers for the detection of early OA in the future. 

Cartilage oligomeric matrix protein (COMP) is non-collagenous extracellular matrix 

(ECM) glycoprotein which contains thrombospondin-like domains that can bind to 

different collagen types (30) and is responsible for collagen–collagen interactions and 

microfibril formation in the cartilage. It is believed that COMP is primarily produced 

by articular chondrocytes and its elevation in bodily fluids is related to cartilage damage 

and/or turnover. Serum COMP concentration has been found elevated in multiple OA 

cohorts throughout many studies and is correlated with the severity of OA (30-33). 

Recent evidence has demonstrated that an elevated concentration of COMP can be 

detected in the fluid of injured joints years after the injury (34) or in the serum of OA 

patients after physical exercise (35) which indicates that COMP is a very sensitive 
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biomarker for asymptomatic early OA. However, despite all these studies, our review 

suggests that COMP levels in serum may not have a reliable diagnosis value for early 

OA. One reason behind this could be that subjects with early OA had not yet developed 

significant cartilage damage, therefore, the COMP level in the serum may dominated 

by the turnover of other types of cartilage in the body (e.g. costal cartilage) rather than 

the damage (if any) of the articular cartilage in the early OA joint. 

HA, also known as hyaluronan, is a major component of synovial fluid and the 

extracellular matrix of the cartilage. It is believed that large molecular weight HA is 

responsible for lubricating the joint. However, in post-trauma or OA joints, the average 

molecular weight and the viscosity of synovial fluid HA decreases significantly 

comparing to normal individuals (49). The small molecular weight fragmented HA 

stimulates inflammation by binding to a number of cell surface PPRs (such as TLR4 

and TLR2 as well as CD44) on various cell types including both leukocytes and non-

leukocytes (such as fibroblasts and mesenchymal stem cells). HA have been found 

elevated in many OA cohorts (50-53). However, similar to COMP, a significant 

heterogeneity was observed between studies that may have contributed to the lack of 

efficacy observed in this review. Therefore, highly controlled studies with large sample 

sizes may be required in the future to validate the diagnostic role of HA for early OA. 

N-terminal telopeptide of collagen type I (NTX-I) is another commonly investigated 

advanced OA biomarker. NTX-I is derived from the N-telopeptide portion of collagen 

type I. Since collagen type I is not the major structural component of articular cartilage 

(36), the level of NTX-I is unlikely to be a direct indicator for cartilage damage. It is 
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believed that subchondral bone turnover in the joints would affect the OA changes in 

some patients (147). In a prospective study, Doré et al. the authors found that 

subchondral bone changes may lead to cartilage damage. However, theoretically, It is 

difficult to use only NTX-I as an OA biomarker because systemic bone metabolism 

greatly affects its level (227). With that being said, we found that NTX-I was the only 

biomarker found to be significantly increased in early OA group by meta-analysis. This 

suggested that a complex relationship might exist between cartilage degeneration and 

bone turnover. 

While we were only able to identify enough studies to examine these 3 biomarkers by 

meta-analysis, there have been an increasing number of biomarker studies in OA and 

early OA as the definition and understanding of the disease have been shaped in the last 

decade. Specifically, there is increasing evidence that OA is a chronic low-grade 

inflammatory disease rather than merely a “wear and tear” disease of synovial joints 

(20). A new definition of OA has recently proposed by The Osteoarthritis Research 

Society International (OARSI), emphasizing the role of inflammatory processes at the 

very early stage of OA: 

 

“Osteoarthritis is a disorder involving movable joints characterized by cell stress and 

extracellular matrix degradation initiated by micro- and macro-injury that activates 

maladaptive repair responses including pro-inflammatory pathways of innate immunity. 

The disease manifests first as a molecular derangement (abnormal joint tissue 

metabolism) followed by anatomic, and/or physiologic derangements (characterized by 
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cartilage degradation, bone remodeling, osteophyte formation, joint inflammation and 

loss of normal joint function), that can culminate in illness” (228). 

 

Therefore, inflammatory biomarkers could be ideal candidates for asymptomatic early 

OA as they may directly or indirectly participate in the inflammatory processes that 

regulate the onset and/or progression of the disease. In fact, at the earliest stage of OA, 

it might be more feasible to detect inflammatory biomarkers rather than traditional 

cartilage metabolisms biomarkers which would be downstream of the inflammatory 

cascade. For example, in a cohort with traumatic meniscal injury but no radiographic 

evidence of OA, Scanzello et al. found that synovial inflammation was present in 43% 

of the patients and associated with pain and function scores (229). In another study 

conducted by Benito et al., synovial tissue from early OA (with normal radiographs) 

demonstrated increased inflammatory features than specimens from late stage OA 

patients, indicating that inflammation could activate pathophysiological pathways that 

contribute to downstream cartilage degradation. One main drawback of employing 

inflammatory mediators as biomarkers in OA is that many of the 

cytokines/chemokines/growth factors have little specificity for OA and/or early OA. 

Systemic inflammation can be regulated by a number of environmental and genetic 

confounding factors such as routine activity, obesity or even secondhand smoke 

exposure (230-232), which are difficult to control in cohort studies. In this review, we 

only found one study (220) investigating inflammatory biomarkers (IL-6, TNFα and 

CRP) in early OA, and disappointedly, its data format was not compatible for meta-
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analysis. In the future, studies conducted thorough investigations of a variety of 

inflammatory markers, with highly controlled human cohorts or animal models could 

benefit the discovery of the biomarkers in early OA. 

 

While the complexity of immune activation and inflammation in the pathogenesis of 

osteoarthritis is becoming increasingly well recognized, many biomarkers play 

redundant roles and involved in more than one signaling pathways which are not all 

related to the pathogenesis of OA. Moreover, it is difficult if not impossible to find a 

common molecular player in the multifactorial pathogenesis of early OA, including 

aging, injury, genetic predisposition and etc. Therefore, traditional studies focusing on 

quantitation of only one or a few biomarkers per experiment for correlation with a 

disease state is neither efficient nor effective for multifactorial diseases like OA. High-

throughput “omic” technologies have had a revolutionary impact on early diagnosis of 

complex diseases as it facilitates broad scope of screening biomarkers (233). In this 

review, 3 studies utilized a set of biomarkers identified through "omics" techniques to 

differentiate early OA and control (210, 216, 218). Marshall et al. achieved 77% 

accuracy for classifying early OA vs control using a logistic regression model which 

combined the expression of 8 target genes identified from microarray analysis. Ling et 

al. detected 16 proteins that were different between early OA and control using a rolling 

circle amplification assay which could examine 169 unique proteins in one run. They 

then employed a decision tree algorithm around these 16 proteins and successfully 

classified early OA vs. control with over 94% accuracy. Ahmed et al. developed a 
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diagnostic algorithm containing 3 biomarkers identified by LC-MS/MS. This algorithm 

identified early OA with 73% sensitivity and 87% specificity. These 3 studies are 

examples that speak to the increase in accuracy when classifying groups with multiple 

compared to single biomarkers. These results and others suggested that early OA 

diagnosis could be considered in a more comprehensive manner rather than the 

traditional one marker – one disease strategy. 

 

In the diagnosis of early OA it is also important to consider genetic factors, which in 

some cases can be a strong determinant of the disease (234). Genome-wide association 

studies conducted over the last decade have identified many SNPs that are associated 

with OA. However, in this review, inherited genetic disorders were not considered as 

biomarkers for early OA as they exist regardless the stage of the disease. Different from 

genetic factors, epigenetic factors can be dynamic. DNA-methylation and non-coding 

RNA are the most studied epigenetic factors in OA research (234). In the circulation, 

miRNAs are relatively stable, therefore, they might be promising easy-access 

biomarkers for early OA. Li et al. identified seven miRNAs which differentiate early 

and late knee osteoarthritis (235). Unfortunately, the study was lacking healthy control 

and therefore was not included in our qualitative analysis. lncRNAs also play a role in 

the development of OA. Pearson et al. discovered without two lincRNAs (CILinc01 

and CILinc02), the IL-1 stimulated secretion of proinflammatory cytokines were 

significantly enhanced. By comparing damaged and non-damaged human knee articular 

cartilage, Bonin et al. found hypermethylated protein-coding genes FOXP4 and 
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SHROOM1, which were linked to OA pathology (236). In this review, we found no 

studies directly looked at epigenetic biomarkers in early OA. One reason may be the 

cost prohibitive nature of these assays in for large cohort studies. Nevertheless, the 

epigenetics field is developing quickly, and as the sequencing price decreases, future 

studies will benefit from large scale cohort studies examining epi/transcriptome profiles 

in early OA. 

 

In conclusion, in this systematic review, 35 biomarkers for early OA were evaluated. 

Significant heterogeneity was observed in studies for COMP and HA, however, NTX-

I was identified to be significantly increased in early OA patients by meta-analysis. 

Except for COMP, HA, and NTX-I, estimations of the SMD for the most biomarkers 

was limited by the small number of included studies, preventing an adequate statistical 

power. Large prospective and adequately powered studies are needed to validate the 

role of these and other biomarkers for identifying early OA.
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Chapter Five: CCL22 is a biomarker of cartilage injury and 

plays a functional role in chondrocyte apoptosis  

5.1 Abstract 

Background: Knee osteoarthritis (OA) is one of the leading causes of disability 

worldwide. Previous history of knee injury is a significant risk factor for OA. Recently, 

it has been established that low-level chronic inflammation plays a pivotal role in the 

onset and pathogenesis of OA. The primary aim of this research was to determine if a 

history of knee joint injury is associated with systemic inflammation. A secondary aim 

was to determine if systemic inflammation is related to knee pain and joint structure.  

Methods: Differences in serum cytokine association networks, knee joint structural 

changes (MRI), and self-reported pain (i.e., Knee Injury and Osteoarthritis Outcome 

Score Pain subscale, KOOSPAIN and Intermittent and Constant Osteoarthritis Pain score, 

ICOAP) between individuals who had sustained a youth (aged 15-26 years) sport-

related knee injury 3-10 years previously and age- and sex-matched controls were 

examined. Proteins of interest were also examined in an OA rat model. 

Results: Cytokine association networks were found to differ significantly between 

study groups, yet no significant associations were found with KOOSPAIN or MRI-

defined OA. A group of cytokines (MCP1/CCL2, CCL22 and TNFα) were differentially 

associated with other cytokines between study groups. In a pre-clinical rat OA model, 

serum CCL22 levels were associated with pain (r=0.255, p=0.045) and structural 

changes to the cartilage. CCL22 expression was also observed in human OA cartilage 
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and furthermore, CCL22 induced apoptosis of isolated human chondrocytes.  

Discussion: These results suggest that CCL22 may be an early factor in the 

onset/pathogenic process of cartilage degeneration and/or related to pain OA.  

 

5.2 Introduction 

Knee osteoarthritis (OA) is one of the leading causes of disability worldwide and is 

universally recognized as a major public health concern (197). There is increasing 

evidence that previous history of knee injury is a significant contributor to OA. 

Prospective studies have reported that knee injury increases the risk of developing 

radiographic knee OA by ~10 times (11) and it is estimated that 12% of cases of 

symptomatic OA in the hip, knee, and ankle are due to post-traumatic OA (PTOA) (237). 

In fact, more than 50% of individuals with an anterior cruciate ligament (ACL) tear or 

meniscus injury go on to develop PTOA (12, 13). Furthermore, meta-analysis indicated 

that even after ACL reconstructive surgery, there is still a 3.62-fold risk (range, 2.40-

5.47; P < .00001) of developing PTOA 10 years after such injury (238). While this 

information speaks to the increased risk of developing PTOA following knee injury, the 

time from injury to OA can vary dramatically from years to decades (66). OA can only 

be clinically diagnosed at later stages when symptoms (e.g., pain, joint immobility) 

appear and joint damage/structural changes are severe enough to be detectable 

radiographically (3). Because of the lack of effective disease modifying treatments, 

knee arthroplasty aimed at restoring mobility and quality of life is often the final step 
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for patients with severe OA. Therefore, many researchers in the OA field, strongly 

believe that OA should be treated/managed at the earliest stages of the disease, when 

no symptoms have yet appeared and before radiographic evidence of OA is present (4, 

239). While this would be ideal, we are yet unable to definitively identify patients at 

these early stages of the disease, and therefore novel methods for identifying early-stage 

OA are still required. 

Early joint structural changes often include minor soft tissue damage, cartilage defects, 

meniscal damage, and bone marrow lesions (BMLs); most of these changes cannot be 

seen on radiographs and are observed using magnetic resonance imaging (MRI) (240). 

Sharma et.al reported that these MRI lesions could be representative of early OA as 

they were associated with the incidence of radiographic OA and subsequent persistent 

symptoms in participants who initially had Kellgren and Lawrence (K/L) = 0 (241). A 

similar study followed 50 individuals with knee scores of K/L = 0 that developed 

radiographic OA (K/L >= 2) 4 years later and found that cartilage T2 values at MRI 

could predict the development of radiological tibiofemoral OA (242). However, MRI 

identified minor tissue damage is also common in the general aged population (243), 

limiting the specificity of MRI-based prediction of future development of OA. 

Intermittent, activity related pain is another sign of early OA (244). Pain is the hallmark 

symptom in late stage OA and is the major cause of disability in OA patients (197). 

Evidence has shown that there is a poor association between pain and radiographic or 

MRI findings (245), suggesting that pain is the result of a more complex mechanism 

than simply early state structural changes. However, animal studies have suggested that 
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OA pain is strongly associated with peripheral and central sensitization throughout the 

continuum of disease, and this process involves a variety of chemical mediators 

including inflammatory cytokines (246).  

Based on pre-clinical and clinical research over the past decade, OA is no longer 

considered as simply “wear and tear”. Increasing evidence suggests that low-level 

chronic inflammation plays a pivotal role in the onset and pathogenesis of OA (247). 

Therefore, changes within the expression or activity of effector molecules (e.g. 

cytokines, growth factors, enzymes) could be prognostic before MRI detectable tissue 

damage or pain symptoms appear. Disappointingly, so far, no single biochemical 

marker has proven to be sufficiently robust for the diagnosis of early OA. One possible 

reason is the complex nature of the pathogenesis of OA, such that a single biochemical 

marker could be invalidated by various confounding variables including diet, physical 

activity, and systemic metabolism (19). To counteract these issues, high-throughput 

(omic) techniques with advanced, system-level analysis approaches have been 

employed for the development of OA diagnostics at the advanced/late stage by our 

group and others. However, these omic based approaches typically require using a 

broad range investigation of numerous factors (80). While not yet directly targeted to 

early OA, such assays consisting of broad-spectrum biomarkers combined with imaging 

and other techniques could be valuable for asymptomatic early stage OA. 

Therefore, the purpose of this research project is to assess the association between 

systemic cytokines and knee injury history as well as clinical outcome measures 

indicative of early PTOA (BMI, self-reported pain and MRI-defined OA based upon 
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MOAKS scoring) in a youth knee injury cohort and validate these findings in a pre-

clinical rat model of surgical induced OA. 

5.3 Materials and Methods 

5.3.1 Human Participants 

This study included a sub-sample of 145 youth/young adults (15-26 years) from 

the Alberta Youth Prevention of Early OA (Alberta PrE-OA) cohort for whom baseline 

serum cytokine and clinical MRI were completed. Specifically, participants included 

76 individuals who suffered a youth (under the age of 18 years) sport-related intra-

articular knee injury 3-10 year previously and age, sex and sport (at the time of injury) 

matched uninjured controls. A description of the Alberta PrE-OA cohort, definition of 

the intra-articular knee injury, and recruitment and injury diagnoses procedures have 

previously been reported (66). Briefly, sport-related intra-articular knee injury was 

defined as a clinical diagnosis of knee ligament, meniscal or other intra-articular 

tibiofemoral or patellofemoral injury that required both medical consultation and 

disrupted regular sport participation. Injury diagnoses were based upon diagnostic 

codes recorded on previous cohort study injury report forms or University Sport 

Medicine Centre medical records or physician records and confirmed by participants. 

Uninjured participants reported no previous time-loss knee injury (6). Exclusion criteria 

included pregnancy, non-steroidal anti-inflammatory use or cortisone injection within 

three months prior to testing, a musculoskeletal injury within the previous three months 

prior to testing that resulted in time loss (i.e., work, school or sport), other arthritides, 
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or any current medical problem that prevented participation in the functional testing 

aspect of the study (e.g., neurological conditions). Ethics approval was granted from 

the Conjoint Health Research Ethics Board at the University of Calgary (REB14-2212), 

Canada and all participants provide signed consent/assent and completed a Physical 

Activity Readiness Questionnaire (PAR-Q, 2002) prior to testing. All testing was 

carried out in accordance with the declaration of Helsinki. 

5.3.2 Procedures 

After completing a custom designed study questionnaire (i.e., demographics, knee 

injury, surgery, medical history) the Knee Injury and Osteoarthritis Outcome Score 

(KOOS) and Intermittent and Constant Osteoarthritis Pain score (ICOAP), participants 

had their height (cm) and weight (kg) measured before serum samples were collected 

by a certified phlebotomist using standard venipuncture, with vacuum, non-treated 

tubes (66, 67). Serum samples were immediately aliquoted into pyrogen/endotoxin-free 

polypropylene tube and stored at -800C until required for analysis. All samples were 

only thawed once (at the time of analysis). Participants were recruited months later (147 

days on average) for MRI studies at an offsite facility and reviewed by a 

musculoskeletal radiologist (JJ) with 13-years of imaging experience, blinded to injury 

history and intervention, using the MRI OA Knee Score (MOAKS). MRI defined-OA 

derived from MOAKS scores was based on established criteria (248, 249). 
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5.3.3 Body Mass Index 

Body mass index (kg/m2; BMI) was calculated from measurements of participants’ 

height (to the nearest 0.1 cm; shoes removed) and weight (to the nearest 0.1 kg) assessed 

using a medical scale and stadiometer (Model 402KL, Pelstar, USA). 

5.3.4 The Knee Injury and Osteoarthritis Outcome Score 

The KOOS is a self-reported measure designed to evaluate knee related symptoms and 

function in young active patients with knee injury and OA. It has been validated in 

different populations varying in age, disease duration and activity levels and it has been 

shown to have high test-retest reliability (250). The KOOS consists of 42 items in five 

subscales: pain (KOOSPAIN), other symptoms (KOOSSYMPTOMS), function in daily-

living (KOOSADL), function in sport and recreation (KOOSSREC), and knee-related 

quality-of-life (KOOSQOL)(251). Each item was scored on a 5-point Likert scale ranging 

from ‘no problems’ to ‘extreme problems’. Subscale scores were then summed, and the 

total sub-scale score transformed to a 0-100 scale (higher scores indicating better 

outcome). For these analyses, only the scores from the KOOSPAIN subscale was 

considered. 

5.3.5 Intermittent and Constant Osteoarthritis Pain Questionnaire 

The Intermittent and Constant OA Pain Questionnaire is a self-report measure designed 

to evaluate constant and intermittent pain intensity including frequency and impact on 

mood, sleep and quality-of-life in persons with hip and knee OA (252, 253). As many 
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patients with knee OA report that their initial presentation of pain was intermittent, often 

during tasks such as climbing the stairs (254), the ICOAP, which includes a subscale 

for intermittent symptoms was seen as particularly relevant to the cohort under 

investigation. This self-report questionnaire consists of 11 items forming two subscales 

(5 items addressing constant pain and 6 items addressing intermittent pain). The ICOAP 

has good internal consistency, test retest reliability (ICC=0.85) and construct validity 

when compared to KOOS and Western Ontario and McMaster Universities Arthritis 

Index Scores (252), Each item was scored on a 5-point Likert scale ranging from no 

pain to high (disability-severely limiting) pain. Sub-scale scores were then summed, 

and the total sub-scale score transformed to a 1-100 scale (higher scores indicating 

poorer outcome). 

5.3.6 Magnetic Resonance Imaging 

Participants underwent bilateral knee MRI studies using typical clinical projections and 

sequences. Sequences included: Sagittal proton density (PD) TR/TE 1500/10 ms, slice 

thickness 3.5 mm, field of view (FOV) 150x140 mm; Sagittal and coronal PD fat 

saturated (FS) with TR/TE 2660/28 ms slice thickness 3.5 mm, field of view (FOV) 

150x140 mm; and 3D gradient echo FIESTA sequence with TR/TE 10.5/4.2 ms, flip 

angle 55°, slice thickness 1.0 mm and isotropic voxels. All studies were rated by a 

musculoskeletal fellowship trained radiologist (JJ) with 13-years of imaging experience, 

blinded to injury history or surgical intervention using the semi-qualitative MRI OA 

Knee Score (MOAKS) (248, 255). MRI defined-OA derived from MOAKS scores was 
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based on established criteria (248). The intra and inter-rater reliability of MOAKS 

scoring for this sample has been previously reported (kappa=0.61–1.0) (67).  

5.3.7 Multiplexed Arrays (Human Samples) 

Sample analysis was performed by Eve Technologies (Calgary, AB Canada) using the 

Milliplex MAP Human Cytokine/Chemokine Panel (Millipore), according to the 

manufacturer’s instructions. All samples were assayed at least in duplicate and prepared 

standards were included in all runs. The following proteins were examined by Luminex 

in this study for human serum samples: EGF, Eotaxin, FGF2, Flt3L, Fractalkine, GCSF, 

GMCSF, GROα, IFNα2, IFNγ, IL1α, IL1β, IL1rα, IL2, IL3, IL4, IL5, IL6, IL7, IL8, 

IL9, IL10, IL12 (p40), IL12 (p70), IL13, IL15, IL17A, IL18, IP10, MCP1, MCP3, 

CCL22, MIP1α, MIP1β, PDGFAA, PDGFAB/BB, RANTES, sCD40L, TGFα, TNFα, 

TNFβ, VEGFA. The sensitivities of these makers range from 0.1 – 10.1 pg/mL (average 

2.359 pg/ml) and the inter-array accuracies range from 3.5% – 18.9% coefficient of 

variation (average 10.7%). 

5.3.8 Animal model 

Sham controls and standardized joint injuries (destabilization of the medial meniscus; 

DMM) (256) were induced on the left knee joints of rats (n=18). Three rats were 

sacrificed at one, two and three, weeks after injury, and nine rats sacrificed at the fourth 

week. To minimize the individual variance, only the nine rats sacrificed at the 4th week 

were used for repeat pain and serum cytokine profile studies starting before the injury 
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(day 0). Specifically, before injury and 3, 5, 10, 14, 20, 24 days after injury, serum 

samples were harvested and processed as described above for cytokine profile analysis.  

5.3.9 Multiplexed Arrays (Animal Model) 

Milliplex MAP Rat Cytokine/Chemokine Array 23-plex was used and the following 

cytokines were examined: EPO, IL13, IL10, IL18, IL1α, IL2, MCSF, IL1β, IL4, IFNγ, 

MIP3α, GMCSF, IL7, TNFα, VEGF, MCP1, IL5, GCSF, RANTES, IL6, GRO, IL17α, 

IL12p70. Unfortunately, a rat cytokine array matched with the human cytokine array 

was not available. Therefore, the concentration of CCL22 in rat serum was analyzed 

independently using sandwich ELISA (LS BIO) following the manufactures 

instructions. Missing data were imputed using regression imputation from RANTES in 

the Miliplex array (β=-0.684, constant=4511.337, p<0.001).  

5.3.10 Rat Grimace Scale (RGS) 

Application of the RGS was based on scoring randomised, blinded images of individual 

rats (257, 258). Briefly, each rat was video-recorded for 15 minutes at each time point 

in a plexiglass video chamber (W 14 cm x L 26.5 cm x H 20.5 cm). Recorded video 

was reviewed by a trained observer (blinded to treatment and time point) and an image 

captured every 3 minutes. No images were collected during the first minute of recording 

to allow the rat to acclimate. Image selection criteria were: absence of movement 

artifact, a clear view of all relevant facial features (nose, cheek, eyes, ears) and absence 

of directed behaviours (grooming, rearing, sleeping). Generation of a score with the 
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RGS requires assessment of four “action units”: orbital tightening, nose/cheek 

flattening, ear changes, and whisker change. Each action unit was assigned a score of 

0, 1 or 2, and the four scores averaged to generate a single RGS score for each image. 

A score of “0” reflects an absent action unit, a score of “1” indicates the moderate 

appearance of an action unit, and a score of “2” indicates the obvious appearance of an 

action unit (associated with a painful state).   

5.3.11 Histology and Immunofluorescent (IF) 

Both injured and uninjured (control) rat joints and human cartilage samples were fixed 

with formalin and embedded in paraffin. Intact knee joints were dissected and fixed in 

4% normal buffered formalin (Sigma, St. Louis, MO). Samples were decalcified and 

embedded in paraffin (VWR, Radnor, PA). Ten µm thick, longitudinal serial sections 

were stained with Safranin O (Fisher, Waltham, MA) to visualize proteoglycans. In the 

rat, whole joint sections, medial, lateral and the ACL/PCL insertion sites were graded 

for signs of OA according to the OARSI Guidelines for rat knee joints (259). Sections 

were deparaffinized in CitraSolv (Fisher Scientific; Fairlawn, NJ) and rehydrated 

through a series of graded ethanol to distilled water steps. Antigen retrieval (10mM 

sodium citrate, pH 6.0, brand) and blocking (1:500 dilution; 100μL rat serum (or goat 

serum for human samples): 50mL TRIS-buffered saline, 0.1% Tween 20 (TBST) for 

1hr), steps were performed prior to going through sequential wash (TBST) and primary 

antibody application steps. Primary antibodies directly conjugated to fluorescent probes 

(Abcam, dylight system) for CCL22 (rat: Cat. No. bs-1761R, Bioss) (human: Cat. No. 
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MAB336, R&D systems); cleaved caspase 3 (rat & human: Cat. No. 9661, Cell 

Signaling Technology) and the nucleic acid stain DAPI (Sigma) were applied to 

sections. After antibody staining, sections were mounted using FluorSave reagent 

(Calbiochem) and coverslipped. A Zeiss Axio Scan.Z1 microscope was used to detect 

the signal for each antibody. 

5.3.12 Human Cartilage Biopsies 

OA Cartilage biopsies were collected from knee OA patients (n = 8; 3M/5F, mean age 

55.5 ± 7.1 years) undergoing joint replacement. Samples were processes using methods 

outlined in Histology section. Normal cartilage samples (n=3; 2M/1F, mean age 54.2 ± 

5.3 years) were obtained from the Southern Alberta Tissue Donation Program. Criteria 

for control cadaveric donations were an age of 40 years or older, no history of arthritis, 

joint injury or surgery (including visual inspection of the cartilage surfaces during 

recovery), no prescription anti-inflammatory medications, no co-morbidities (such as 

diabetes/cancer), and availability within 4 hours of death. Samples were processes using 

methods outlined in Chondrocyte Isolation and Culture section. 

5.3.13 Chondrocyte Isolation and Culture 

Cartilage tissue was cut in pieces of approx. 2mm2, then incubated with 1mg/ml pronase 

(Roche, Cat. No. 1459643) for 30 minutes at 37°C (100 rpm). The cartilage was then 

incubated with 1mg/ml collagenase (Serva, Cat. No. 17465) for 24 hours at 37°C (100 

rpm). The resultant suspension was filtered (70μm) and centrifuged. The chondrocytes 
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were re-suspended in DMEM/F-12 (Gibco Cat. No. 31330) supplemented with 10% 

FBS and Anti-Anti. Chondrocytes were incubated with recombinant human CCL22 

(Peprotech) or PBS alone and analyzed for Annexin V staining (Thermo Cat. No. 

BMS500FI) using flow cytometry. Chondrocytes were also stained for CCR4 (Cat. No. 

557863, BD Biosciences). 

5.3.14 Data Analyses 

Statistical analyses were performed using SPSS and R. The participants with missing 

values were removed from the analyses. The differences of sex, age, BMI, and MRI-

defined OA between injured and uninjured group were evaluated using student’s t test 

(α=0.05). Univariate logistic regression was used to ascertain the effects of age, sex, 

BMI, KOOSPAIN and ICOAPTOTAL pain on the likelihood that participants had a 

previous knee injury. The between-group differences for individual cytokines were 

accessed by Student’s t test.  The correlations between cytokines and pain scores were 

determined using Spearman’s rank test. Multiple comparisons correction was not 

applied in this study as experiments were implemented to validate statistic findings. 

Cytokine association networks from cytokine profiles of participants with or without a 

history of injury were constructed independently using the ARACNe algorithm as 

followed (260). First, the pairwise mutual information (MI), which was considered as 

the strength of pairwise cytokine association were estimated for all cytokine pairs. 

Secondly, by applying the data processing inequality, most indirect associations (lowest 

strength, or smallest MI value of any 3-cytokine loops) were removed. Finally, 



 

100 
 

networks were constructed with cytokines as nodes and remaining associations as 

weighted connecting lines. To quantify these perceived differences between networks, 

the change of centrality (betweenness) of each cytokine was computed. Betweenness 

has been widely applied in the analysis of biological networks (261) and other types of 

networks in general (262). In graph theory, the betweenness of a node measures the 

number of times it acts as a bridge along the shortest path between all node pairs in the 

same network. Therefore, in this study, the cytokines with high betweenness can be 

considered as key connectors within the network, and the change of betweenness of a 

cytokine between two networks can therefore be considered as an indicator of the 

topological change of this cytokine. Networks were visualized using Cytoscape 3 with 

DyNet package (263, 264). 

Cytokine association networks of the rat at 7-time points (before and 3, 5, 10, 14, 20, 

24 days after injury) were created in the same method described above. The 

connectivity (average node betweenness centrality) of each network of 7 time-points 

were calculated for the correlation analysis with rat pain score data.  

5.4 Results 

5.4.1 Participant Demographics 

The demographics of the participants (n=145) are summarized in Table 5-1. The 

median age of participants was 23 years (range 15-27) and 88 were female. The median 

age of injury was 16 years (range 11-19) and the median time between injury and 

data/sample collection was 6.9 years (range 4-10). There were no significant differences 
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in sex, age between the injured and uninjured group (Table 5-1). The injured study 

group had lower BMI (p=0.003), lower KOOSPAIN (p<0.001) and more MRI-defined 

OA (p<0.001) than the uninjured group. 

 

Table 5-1. Participant Characteristics, BMI, KOOSPAIN, ICOAPTOTAL and MRI-
defined OA by Study Group 

 

5.4.2 Comparing individual cytokines in cytokine association network for 

injured vs. uninjured participants 

Cytokine association networks were created for both injured and uninjured groups 

based on the serum levels of 41 distinct analytes. It was found that most cytokines were 

visually different between two networks (injured vs. uninjured) in terms of their 

topological patterns (e.g. what “association partners” they connected to) (Figure 5-1).  

By comparing the betweenness of cytokines in two networks, MCP1/CCL2, CCL22 

Outcome Injured  
(n=76) 

Uninjured  
(n=69) 

p-value 
 

95% C.I. 
 

Lower Upper 

Sex (%female) 45 43 0.896 0.579 1.869 
Age (years; median, 
range) 23 (15– 27) 23 (18-27) 0.246 0.984 1.004 

BMI (kg/m2; median, 
range) 

23.8 (18.6-
31.3) 24.9 (19.4-38.9) 0.003* 1.056 1.294 

MRI defined OA (n) 44 19 <0.001* 0.202 0.628 

Pain  

KOOSPAIN 
(median, 
range) 

94 (58-100) 100 (69-100) <0.001* 0.808 0.939 

ICOAPTOTAL 
(median, 
range) 

5 (0-43) 2 (0-36) 0.144 0.871 1.020 
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and TNFα demonstrated the greatest difference in network connectivity between the 

injured vs. uninjured cytokine networks (Figure 5-1). 

 

 

 

Figure 5-1.  Networks comparison between injured and uninjured. The injured vs. 
uninjured cytokine networks were different in terms of the connectivity between 
cytokines. The connections that only existed in injured (green), uninjured (red) and both 
(grey) are presented. The absolute betweenness differences between injured vs. 
uninjured networks per cytokine were calculated and are represented by the shade of 
red color for each cytokine. The position of MCP1/CCL2, CCL22 and TNFα are 
marked by arrows. 

 

5.4.3 Comparing overall difference between injured vs. uninjured 

networks 

To statistically compare the overall difference between injured and uninjured networks, 

a permutation test was developed which involved a null hypothesis regarding the 
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average betweenness of cytokines in networks. The null hypothesis stated that if 

cytokine association networks N1 and N2 are randomly organized, then N1 and N2 

should have the same connectivity (average betweenness of all cytokines). Formally, 

the null hypothesis H0 is: 

H0: Cδ = 𝐶𝐶1��� – 𝐶𝐶2���  = 0 

Where 𝐶̅𝐶1 and 𝐶𝐶2��� are the average betweenness centrality of all cytokines in network 

N1 and N2. 

The distributions of Cδ were generated empirically through 100,000 permutations 

(randomly re-assigning group labels and repeated 100,000 times). The two-tailed p-

value was computed as 

𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡−𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =  
𝑁𝑁�Cδ𝑜𝑜𝑜𝑜𝑜𝑜�≤Cδ𝑠𝑠𝑠𝑠𝑠𝑠

𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
 

Where 𝑁𝑁�Cδ𝑜𝑜𝑜𝑜𝑜𝑜�≤Cδ𝑠𝑠𝑠𝑠𝑠𝑠
 is the number of simulated Cδ that are larger than the absolute 

value of observed Cδ𝑠𝑠𝑠𝑠𝑠𝑠. 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is the number of permutations which is 100,000 in 

this study. 

The connectivity was significantly higher in injured than uninjured network (p=0.006, 

Figure 5-2). On average, the injured network consisted of more “key cytokines” that 

demonstrated bridges/associations to the remainder of cytokines examined. This 

indicated a non-random or coordinated change in cytokine levels following injury, 

which suggested that cytokines in the injured group were more associated and co-

regulated with each other.  
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Figure 5-2. Permutation test of cytokine networks between the groups with or 
without a history of joint injury. The distributions were based on simulated data and 
𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 100,000 permutations. 

 

To test if the network results were distinct between females vs. males, the dataset was 

dichotomized by sex and the previous network analysis was run for both subsets 

separately. In the male subset, the 3 most differentially regulated cytokines were 

Eotaxin, IP10 and EGF. In the female subset, the 3 most differentially regulated 

cytokines were EGF, TGF and RANTES. The overall difference between injured vs. 

uninjured network was not significant in male (p= 0.381) or female (p= 0.379) subsets. 

 

5.4.4 Cytokine profile comparison using classic statistic approach 

While the network analysis was able to identify the difference between injured vs. 

uninjured cytokine networks as a whole and determine which nodes (individual 

cytokines) most differed between networks; this analysis was unable to determine if 
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any given cytokine demonstrated a difference in expression between injured vs. 

uninjured cohorts. Therefore, classical statistic approaches were applied to supplement 

the findings in the previous network analysis. Multivariate Analysis of Variance 

(MANOVA) was used to compare cytokine profiles between injured vs. uninjured 

cohorts. When all analytes were considered together, the two profiles were significantly 

different (p = 0.001). This was consistent with the analysis using cytokine association 

networks. However, no significant difference was found within any individual 

cytokines between two cohorts using Student’s t test with Bonferroni correction. 

Moreover, since the injured group tended to demonstrate worse pain scores and MRI-

OA scores than the uninjured cohort, the correlations between cytokines and pain and 

MRI-OA scores were tested, but none were found to be significant. Although not in 

direct disagreement with the previous finding, this strongly suggests that a factor other 

than cytokine concentration alone is responsible for the difference observed between 

networks. It is therefore very likely that cytokines association is playing a role in the 

network analysis and this is not accounted for with univariate methodologies. 

5.4.5 Cytokines correlated with pain in rat OA 

Among the most different cytokines, MCP1 and TNFα were found elevated in 

osteoarthritic joints in previous studies and shown to correlate with the initiation and 

progression of OA (265). However, very few studies have reported the correlation 

between CCL22 and OA. Since it was not possible to determine if CCL22 expression 

was directly related to the previous joint injury in the human cohort study, a pre-clinical 
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rat model was used to validate the cytokine association network analysis as well as the 

role of CCL22 in the initiation/early stages of OA. Standardized joint injuries 

(destabilization of the medial meniscus, DMM) were induced on the left knee joints of 

rats (N = 18). Half of the animals were used for repeated serum cytokine analysis, the 

remainder were sacrificed at different time points after injury for histology analysis of 

the joint and CCL22 expression/localization. 

The expression of twenty-four cytokines/chemokines/growth factors were examined in 

the serum of rats (pre-injury vs. after DMM) and found to be similar to the analysis 

conducted in the human cohort study, the connectivity of rat cytokine association 

network for uninjured (before injury) and injured (days 3-24) were calculated. The 

network connectivity was increased after the joint injury, which was consistent with the 

result from the human cohort. Moreover, the connectivity of the network was positively 

correlated with rat pain (r= 0.786, p = 0.036) at the different time points examined after 

DMM injury (Figure 5-3). This indicated that in this rat model, the induction of the 

injury led to an increase in pain, with a corresponding increase in connectivity of in the 

cytokine association network. Furthermore, CCL22 was also found positively 

correlated with pain (r=0.255, p=0.045) after joint injury within the rat model while 

most other cytokines were negatively correlated with pain (Supplementary Table 9-5).  
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Figure 5-3. In a rat DMM model, cytokine associations are correlated with joint 
pain after injury. The average pain score of rats that underwent DMM surgery (n=9) 
at different time points after surgery is shown in the bar graph. The connectivity of the 
cytokine network for each time point are represented as the red line. The bar graph and 
line demonstrated a similar relationship at each of the time points examined, and they 
were found to be statistically correlated (r= 0.786, p = 0.036). 

 

5.4.6 CCL22 association with structural changes within the rat joint 

Since it was observed that CCL22 was also correlated with MRI structural changes 

within the human cohort, the correlation between OARSI OA histological scoring and 

serum CCL22 concentration on before the scarification (4 weeks post injury) were 

accessed in the rat DMM model. Immunofluorescence (IF) was employed to detect the 



 

108 
 

presence and localization of CCL22 in uninjured rat joints in additional to rat injured 

joints harvested at 1, 2, 3 and 4 weeks after the induction of injury (DMM). The OARSI 

OA scores and IF findings of all joints are shown in Supplementary Table 9-6. Serum 

CCL22 expression levels were correlated with cartilage degeneration width (r=0.905, 

p=0.002) and surface matrix loss (r=0.786, p=0.021) (Supplementary Table 9-7). 

Upon examination of joint tissue with IF, CCL22 was detected in the cartilage or/and 

synovium in all joints (n=12) with visible damage (total degeneration width > 0 um) 

(Figure 5-4). Within injured joints without cartilage degeneration, osteophytes or 

synovial inflammation, CCL22 staining was present 3 out of 6 joints and through 

comparing the histology and IF staining of adjacent slides in these joints without visible 

damage, CCL22 were found to be only present in the areas of cartilage where noticiable 

proteoglycan loss was observed (Figure 5-4). 
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Figure 5-4. IF and histology staining of cartilage & synovium. IF and histology 
slices of serial sections are presented in each row. Safranin O stained sections depict 
proteoglycan staining (red), while IF staining demonstrates CCL22 staining (red) in 
relation to DAPI nuclear staining (blue). Scale bars = 100µm. 
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5.4.7 CCL22 association with chondrocyte apoptosis markers within rat 

cartilage 

Since chondrocyte death is a hallmark of OA and it was observed that chondrocytes in 

areas of cartilage damage stained positive for CCL22 expression (Figure 5-4) it was 

examined if CCL22 was co-localizing with markers of chondrocyte apoptosis. Healthy 

rat cartilage and areas of cartilage demonstrating increasing levels of damage were 

doubled stained with CCL22 and the apoptosis marker cleaved caspase 3 (Figure 5-5). 

In healthy cartilage, little to no CCL22 and/or cleaved caspase 3 was detected, however 

as cartilage damage increased, an increase in CCL22 and cleaved caspase 3 positive 

cells were observed (Figure 5-5). Furthermore, a high degree of co-localization 

between CCL22 and cleaved caspase 3 was observed in damaged cartilage (Figure 5-5).  
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Figure 5-5. Co-localization of CCL22 and cleaved Caspase 3 in chondrocytes. IF 
and histology slices of serial sections are presented in each row. Areas of cartilage were 
classified by increasing (worsening) OARSI degeneration score based on Safranin O 
stained sections (A,E,I,M). Serial sections were stained with CCL22 (red) and cleaved 
(Clv.) caspase 3 (green) (B,F,J,N). As the OARSI degeneration score increased, so did 
CCL22 and cleaved (Clv.) caspase 3 positive chondrocytes in the cartilage. Furthermore, 
apoptotic chondrocytes (cleaved caspase 3 positive) also presented with positive 
CCL22 staining. However, not all CCL22 positive cells were also positive for cleaved 
caspase. Scale bars = 100µm. 
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5.4.8 CCL22 association with chondrocyte apoptosis within the human 

cartilage 

To validate the expression of CCL22 and it co-localization within apoptotic 

chondrocytes in human cartilage, biopsies were obtained from patients undergoing joint 

arthroplasty and stained for CCL22 and cleaved caspase 3 (Figure 5-6). CCL22 and 

cleaved caspase 3 staining was observed in OA cartilage, while CCL22 expression was 

also observed in the subchondral bone and bone marrow. Furthermore, as observed in 

damaged rat cartilage, CCL22 positive staining was observed in chondrocytes 

undergoing apoptosis (e.g. cleaved caspase 3 positive) (Figure 5-6). 
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Figure 5-6. Co-localization of CCL22 and cleaved Caspase 3 in human 
cartilage/chondrocytes. Cartilage sections were stained with CCL22 (green) and 
cleaved (Clv.) caspase 3 (red) (A, C-H) or isotype controls (B). Chondrocytes within 
OA cartilage demonstrated expression of both CCL22 (C,D) and cleaved caspase 3 
(C,E). Furthermore, apoptotic chondrocytes (cleaved caspase 3 positive) also presented 
with positive CCL22 staining (F-H). Scale bars for A,B = 200µm; for C-E = 50µm; for 
F-H = 25µm. 
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5.4.9 CCL22 induces chondrocyte apoptosis 

To determine if CCL22 was playing a role in the apoptosis of chondrocytes compared 

to co-expression in areas of damaged/dying cartilage, human chondrocytes were 

isolated from cadaveric donors without OA/cartilage pathology and exposed to 

increasing concentrations of CCL22. Apoptosis was analyzed by Annexin V staining, 

and the cells were doubled labeled with CCR4, the only known receptor for CCL22. 

The concertation range of CCL22 employed was determined from previous studies on 

the concentration range of CCL22 in the synovial fluid of patients with OA (2953pg/ml 

+/- 3628pg/ml). The negative control (PBS) demonstrated minimal Annexin V staining 

(mean = 3.14%) while increasing concentrations of CCL22 increased in the percentage 

of apoptotic cells (Figure 5-7). The most profound effects were observed at 3ng/ml and 

10ng/ml where 57.23% and 82.21% of chondrocytes stained positive for Annexin V 

respectively (Figure 5-7). It should also be noted that while approx. half of 

chondrocytes expressed CCR4 in the PBS treated cells, the number of CCR4 positive 

chondrocytes in the population increased with increasing concentrations of CCL22. 
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Figure 5-7. Apoptosis in isolated human chondrocytes exposed to CCL22. 
Chondrocytes were isolated from individuals without OA and assayed for apoptosis 
(Annexin V) and CCR4 (CCL22 receptor) with increasing exposure to CCL22. As 
CCL22 concentrations exceeded 3ng/ml, increased levels of Annexin V / CCR4 double 
positive chondrocytes were observed. Chondrocytes treated with PBS (carried control) 
alone and/or 1ng/ml of CCL22 demonstrated minimal Annexin V staining. 
Chondrocytes from 2 donors are presented. 
 

5.5 Discussion 

This study investigated cytokine networks based on the expression of 41 cytokines in 

individuals that had suffered a sport-related intra-articular knee injury 3-10 years 

previously in their youth compared to age- sex- and - sport-matched (sport at the time 
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of injury) uninjured controls. Although many of the cytokines have been studied 

individually in advanced OA cohorts (165), to our knowledge, this is the first study 

focusing on cytokine networks as a whole in a young cohort without a clinical diagnosis 

of OA. 

Many studies have confirmed OA pain is not always consistent with radiographic or 

MRI structural changes (245, 266, 267). In fact, using the data from this cohort, we 

have previously reported that we found no evidence of a linear correlation between 

MRI–defined OA and knee symptoms or function (67). Although many cytokines have 

been reported to be responsible for OA pain (176), in this study, we have found no 

evidence of a correlation between cytokines and KOOSPAIN or ICOAPTOTAL scores. This 

might reflect that 1) most of the participants in the current study were pre-disease, 2) 

and/or regardless of disease state were generally asymptomatic, 3) it could be possible 

that any pain due to the previous injury and/or disease may also have been episodic, 4) 

and lastly, there may be no (or potentially a weak correlation between pain and structure.  

Cytokines are known to be pleiotropic and inter-dependent. As a result, when studying 

a specific cytokine, ignoring its dependency to/with other cytokines will result in the 

loss of important information, which could lead to an erroneous conclusion. For 

example, IL6 can be both anti- and pro-inflammatory through different signaling 

pathways at the same time (268). Therefore, it is reasonable to look at the relationships 

between IL6 and its downstream cytokine expressions rather than the level of IL6 alone, 

to determine which role IL6 is currently playing. In a recent study that analyzed the 

pairwise correlations between 17 cytokines, Wallner et al., found that drugs modulated 
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cytokine correlations differently instead of causing a general inhibition of the cytokines 

(269). This was similar to our finding that injury altered the inflammatory responses 

that were reflected in overall cytokine associations rather than simply 

increasing/decreasing the absolute concentration of each cytokine. Because of the 

complexity (e.g. redundancy, routes of feedback and cross-talk) of cytokine signaling, 

it is neither appropriate, nor practical, to isolate any single cytokine and its associations 

from the complete network of cytokines interactions and study them individually. The 

analysis of biological networks has shown its advantage in understanding complex 

biological systems as a whole (270-272). However, even though comparing network 

structure was involved in most of the studies, very few had statistically evaluated the 

topological difference between networks. In this study, we developed a permutation test 

to evaluate the difference of connectivity between networks. The result was consistent 

with MANOVA applied on original multivariate datasets. 

It is known that a history of injury is a significant contributor to knee OA, and chronic 

inflammation seems to play a pivotal role in the pathogenesis of OA (273). Does injury 

alter the local inflammatory environment leading the degeneration of the joint? To 

address this question, we compared cytokine profiles between participants with and 

without a history of injury. We found the two groups were significantly different when 

comparing the cytokine profile by computing the cytokine network connectivity or by 

using multivariate analysis. The network of injury group had a higher average 

betweenness, meaning that on average the cytokines of the previously injures 

participants had a stronger association with each other than seen in the uninjured 
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participants. This suggests that on average the cytokines of the previously injured 

participants are more highly co-regulated than in the uninjured participants. Although 

none of the individual cytokines were significantly different when comparing the means 

between injured vs. uninjured, most cytokines were generally different between the two 

groups in terms of their “connectivities” in the cytokine association networks. Among 

the most different cytokines, MCP1 and TNFα were found elevated in osteoarthritic 

joints by a variety of studies previously and have been shown to be correlated with the 

initiation and progression of OA (176, 274). But very few studies have reported a 

correlation between CCL22 and OA. CCL22 has a complex role in inflammation as it 

is chemokine for both Th2 and Treg cells (275, 276). It has been reported that CCL22 

and its receptor CCR4 were found in the synovial membrane of osteoarthritis patients 

(277) and expressed by subpopulations of sensory neurons (278). In the rat model of 

this study, CCL22 was found correlated with pain. Moreover, CCL22 was present not 

only in severely damaged joints in rats but also in the cartilage before the visible 

damage occurred. Furthermore, CCL22 expression was observed in chondrocytes 

undergoing apoptosis (cleaved caspase 3 positive cells), with almost all apoptotic cells 

being positive for CCL22.  This result was validated in human OA cartilage, and we 

were also able to demonstrate a functional role of CCL22 in the induction of apoptosis 

of human chondrocytes. While chondrocyte apoptosis is a hallmark of OA (279), to our 

knowledge CCL22 has not been previously implicated in the induction of apoptosis of 

chondrocytes and/or any other cell type. However, it has been previously demonstrated 

the TNFα plays a role in chondrocyte apoptosis (280) and that CCL22 expression is 
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correlated to TNFα activation (281).  Therefore, it may be possible that CCL22 is a 

mediator in TNFα induced chondrocyte apoptosis, yet further experiments will be 

required to examine this directly. Although the observed differences in cytokine profiles 

between post-injury and uninjured young adults did not associate to significant 

differences in clinical parameters, this is expected since the patients are young and not 

yet showing symptomatic OA.  This group will be ideal for further longitudinal 

follow-up. 

Overall, the findings present in rat models and human OA strongly suggest that CCL22 

could play a role in joint pain and initiation of cartilage degeneration. 

 

5.6 Conclusion 

In this study, the associations between cytokines in previously injured and uninjured 

participants were compared using network analysis. The overall cytokine association 

networks were significantly different, suggesting that injury had altered the 

inflammatory environment, which might contribute to joint degeneration. CCL2/MCP1, 

CCL22 and TNFα were the most different cytokines between two groups. Moreover, 

no association between cytokine expression knee injury history, self-reported pain 

symptoms and/or MRI-defined OA was found. In a rat model of OA CCL22 was 

correlated with pain and structural changes to the cartilage and CCL22 expression was 

found in damaged cartilage in addition to apoptotic chondrocytes. This result was 

validated in human cartilage and in isolated human chondrocytes, were CCL22 
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treatment induced apoptosis in a dose dependent manner. We propose that CCL22 is a 

novel potential biomarker in the earliest stages of cartilage damage and may also play 

a functional role in the degeneration of the articular cartilage through induction of 

chondrocyte apoptosis.
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Chapter Six: CCL22 Induces Inflammatory Changes in 

Synovial Fibroblasts from Healthy Donors but Not Patients 

with Osteoarthritis 

6.1 Abstract 

Background: Synovium inflammation (synovitis) is commonly observed in the joints 

of patients within the earlier stages of OA. Synovitis is also found to be strongly 

associated with OA pain and progression of the disease. In previous studies, we have 

demonstrated that the chemokine C-C motif chemokine 22 (CCL22) induces 

chondrocyte apoptosis in vitro and we also observed that its expression level in serum 

was correlated with OA pain. However, the effects of CCL22 on other joint tissues such 

as synovium remain unknown. Therefore, in this study, our goal was to evaluate the 

effect of CCL22 on cells that make up the synovium, specifically, synovial fibroblasts; 

in terms of cell survival, inflammatory cytokine production and gene expression in vitro. 

Methods: Synovial fibroblasts were harvested from synovial biopsies from healthy 

controls (n=10) and OA patients (n=9) and used in experiments before passage 5. Flow 

cytometry was employed to detect the presence of the receptor for CCL22, CC 

chemokine receptor 4 (CCR4). Cytokine protein expression and genome-wide gene 

expression were examined by Luminex Milliplex Assays and Affymetrix GeneChip 

Microarrays, respectively. qPCR was employed to validate the differentially expressed 

genes detected by microarray. 
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Results: No significant difference was observed in apoptosis rate and cell cycle 

between CCL22 treated synovial fibroblasts and untreated controls. CCL22 treatment 

significantly suppressed the anti-inflammatory cytokine IL10 at the protein level and 

promoted the pro-inflammatory protein S100A12 at the mRNA level in normal but not 

OA synovial fibroblasts. 

Conclusions: CCL22 appears to be involved in the initiation of pro-inflammatory 

pathways in synovial fibroblasts. These results suggest that CCL22 may play a role in 

the initiation of synovitis through CCR4-independent pathways. How CCL22 regulates 

the expression of IL10 and/or S100A12 independently of CCR4 remains unclear and 

further studies in are needed to understand this novel CCL22 signaling pathway. 

 

6.2 Introduction 

Osteoarthritis is among the most common chronic diseases worldwide which can lead 

to disability (197). Although OA is characterized by progressive destruction to articular 

cartilage and subchondral bone, it is now considered as a whole joint disease involves 

the pathologic changes of many other joint tissues such as synovium inflammation 

(synovitis) (19, 282). Synovium is the inner surface of joint capsule which seals the 

joint cavity and holds synovial fluid. The cells within the synovium are responsible for 

producing synovial fluid lubricants (e.g. lubricin/PRG4 and hyaluronic acid) as well as 

filtering plasma as a source of nutrients for chondrocytes (283). Inflamed synovium in 

OA is often assoicated with histological changes (e.g. synovial lining hyperplasia) and 

leukocytes infiltration of the synovial lining (283). Furthermore, synovitis is also 
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strongly associated with the onset and progression of OA and it often observed in OA 

joints from the earliest to advanced stages of the disease (284). Synovitis is also strongly 

associated with OA pain, with the synovium being a highly innervated tissue compared 

to the non-innervated cartilage (285).  

In previous studies, our lab and others have described an association between OA pain, 

cartilage degeneration and serum levels of C-C motif chemokine 22 (CCL22) (286). It 

is widely accepted that CCL22 is a chemokine that acts on CCR4+ cells including T 

cells, and dendritic cells (among others) (287). We have previously demonstrated that 

exogenous application of CCL22 to human chondrocytes induces apoptosis in a dose-

dependent manner in vitro. We further demonstrated that chondrocytes present within 

OA cartilage (human and rat models) co-expressed CCL22 and cleaved Caspase-3 (a 

marker of apoptosis) (chapter five). These results suggested that, besides chemotaxis, 

CCL22 may also be involved in additional pathways that regulate and/or lead to the 

degeneration of cartilage and potentially other joint tissues such as synovium. 

Interestingly, in another study, we found no evidence of CCL22 staining in synovium 

from OA patients (chapter three), with an independent study demonstrating minimal 

CCL22 expression in OA synovium and no expression in normal synovium (288). 

Therefore, to address these potentially conflicting results, and to determine if CCL22 

acts upon synovial fibroblasts; in the current study we evaluated the effects of CCL22 

on synovial fibroblast survival, inflammatory cytokine production and their gene 

expression in vitro. We also sought to determine if there was any difference in these 

outcome measures between synovial fibroblasts isolated from normal joints or from the 
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joint of patients with clinically diagnosed OA.  

6.3 Materials and methods 

6.3.1 Human participants 

This study protocol was approved by the University of Calgary Human Research Ethics 

Board (REB15-0005 and REB15-0880). All patients involved provided signed 

consent/assent the study was carried out in accordance with the declaration of Helsinki.  

Normal Group (n=10): Criteria for control cadaveric donations were an age of 18 years 

or older, no history of arthritis, joint injury or surgery (including visual inspection of 

the cartilage surfaces during recovery), no prescription anti-inflammatory medications, 

no co-morbidities (such as diabetes/cancer), and availability within 4 hours of death. 

Knee Osteoarthritis (n=9): Inclusion criteria was based on a diagnosis of OA performed 

by an orthopedic surgeon at the University of Calgary based on clinical symptoms with 

radiographic evidence of changes associated with OA in accordance with American 

College of Rheumatology (ACR) criteria. Radiographic evidence of OA of any 

compartment of the knee with collapsed or near collapsed joint space of any 

compartment of the knee.  

 

6.3.2 Synovial fibroblast derivation 

To obtain synovial fibroblasts for analysis, two biopsies (approximately 5mm in 

diameter) were obtained from each donor and placed in 1.5mL tubes with 1xDPBS 
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(ThermoFisher) added to keep the tissues hydrated. Each synovial membrane biopsy 

was then roughly minced with a sterile razor blade and digested, at 370C, for an hour 

and a half with filtered type IV collagenase (Sigma) at a concentration of 1 mg/mL in 

heat-inactivated FBS (ThermoFisher).   

The resultant cell suspension was filtered at 70µm (ThermoFisher) and centrifuged at 

5000 rpm for 6 minutes. The resultant cell pellet was washed twice with 1 ml of 

1xDPBS. Then cells were expanded in T25 culture flasks (Primaria, 

Corning/ThermoFisher) in media containing DMEM F12, 10% FBS, 1% Non-essential 

Amino Acids, and 1% Anti-anti (all ThermoFisher). Flasks were passaged when cells 

reached 80% confluence and all outcome measures were performed on cells before 

passage 5.  

 

6.3.3 Cell cycle analysis by flow cytometry 

Human synovial fibroblasts were plated at 50,000 cells per well in 6-well plates for 

each condition, allowed to adhere overnight, and treated with the respective condition. 

After treatment, the cells were fixed by suspending in ice cold PBS and vortexed gently 

while cold 70% ETOH was added dropwise to prevent clumping. The solution was 

stored overnight at 4oC. Cells were then washed twice with PBS, pelleted and stained 

with 50 µl of 100 µg/ml ribonuclease (Sigma-Aldrich, St. Louis, Missouri) and 200 µl 

of 50 µg/ml propidium iodide (Sigma) and incubated for 30 minutes at room 

temperature. Samples were then run on a BD LSR II Flow Cytometer and analyzed 
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using ModFit software. 

 

6.3.4 Cytokine expression analysis 

Cells were plated in 12 well Primaria dishes 24 hours before cytokine treatment. CCL22 

was added, so that the final concentrations 0.2ng/ml (N) and 3ng/ml (OA), which were 

the mean CCL22 concentrations in synovial fluid in vivo from normal control (N) and 

OA (OA) patients respectively based to our previous study (289). TNFα with a 

concentration of 5pg/ml were used as a positive control. Cells were then incubated for 

24 hours after cytokine treatment and culture media were collected for cytokine 

profiling analysis. Cytokine profiling analysis was performed by Eve Technologies 

(Calgary, AB Canada) using the Milliplex MAP Human Cytokine/Chemokine Panel 

(Millipore), according to the manufacturer’s instructions. All samples were assayed at 

least in duplicate and prepared standards were included in all runs. The following 

cytokines were examined by Luminex in this study: GM-CSF, IFNy, IL-1B, IL-2, IL-4, 

IL-5, IL-6, IL-8, IL-10, IL-12(p70), IL-13, MCP-1 and TNFα. The sensitivities of these 

makers range from 0.1 – 10.1 pg/mL (average 2.359 pg/ml) and the inter-array 

accuracies range from 3.5% – 18.9% coefficient of variation (average 10.7%). 

 

6.3.5 Micro-Array analysis 

RNA was extracted using Trizol Reagent (ThermoFisher) according to the 

manufacturer’s protocol. Total RNA was purified with RNeasy Plus Micro Kit (Qiagen) 
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to remove genomic DNA. The RNA integrity number (RIN) was measured with Agilent 

RNA 6000 NanoChips on a 2100 Bioanalyzer (Agilent Technologies). The quantity was 

measured with a NanoDrop 1,000 (NanoDrop Technologies). A total of 300 ng of each 

RNA sample with RIN higher than nine was labeled with GeneChip Whole Transcript 

(WT) Sense Target Labeling Assay (Affymetrix) and hybridized to Affymetrix 

GeneChip Human Gene 1.0 ST Arrays at 45_C for 16 hours. Arrays were stained and 

washed on Affymetrix GeneChip Fluidics 450 following the manufacturer’s protocol 

and scanned with an Affymetrix GeneChip Scanner 3000 7G System. 

 

6.3.6 Micro-array data analysis   

Statistical significant analysis was carried out on Transcriptome Analysis Console 

(TAC) Software (ThermoFisher). The fold change between normal and OA samples 

was based on the p<0.05 from a T-test (Asymptotic and Benjamini Hochberg FDR). 

 

6.3.7 Relative quantification of gene expression 

Total mRNA from each well was extracted and purified using Trizol in accordance with 

the manufactures instructions (ThermoFisher) and converted into cDNA according to 

the High Capacity cDNA Reverse Transcription Kits protocol (Applied Biosystems).  

Two microliters of cDNA was added to a 96 well qPCR plate along with S100A12 

TaqMan® validated probes/primers and TaqMan® Universal PCR Master Mix. In 

addition, an 18S RNA probe/primer was used as an endogenous control. Two replicates 
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of each time point and control sample were performed, and all cDNA used was from 

the same corresponding replicate to reduce variability.  

6.3.8 Data analysis 

SPSS 25 (SPSS, Inc., Chicago IL) was used for the statistical analysis. Paired t-test 

(treatment vs. negative control) was used to compare individual cytokine expression. 

Two sample t-test was used for all the other univariate comparisons when paired t-test 

was not applicable. Multivariate analysis of variance (MANOVA) was used to compare 

cytokine profiling between treatment and control. Functional annotation was performed 

through DAVID (http://david.abcc.ncifcrf.gov/) for GO terms. 

 

6.4 Results 

6.4.1 Apoptosis and cell cycle analysis 

Since we previously found that CCL22 induced apoptosis in chondrocytes in a dose 

dependent manner, we examined if the same range of CCL22 (0.2ng/ml (N) or 3ng/ml 

(OA)) induced apoptosis or alterations to the cell cycle in synovial fibroblasts derived 

from normal (n=3) or OA (n=3) patients. There was no significant change in the 

percentage of apoptotic cells after CCL22 treatment in normal or OA cell lines 

compared to the untreated control, while an increase in apoptosis was observed in OA 

cells after TNFα treatment (Figure 6-1). In normal synovial fibroblasts treated with 

0.2ng/ml CCL22, there was a trend towards fewer cells observed in the G1 and G2 

phase with a corresponding increase of cells in the S phase, compared to control. 

http://david.abcc.ncifcrf.gov/


 

129 
 

However, none of the differences reached statistical significance (Figure 6-1). TNFα 

treatment did not have an impact on cell cycle. 

 

 

Figure 6-1. Apoptosis and cell cycle analysis after CCL22 treatment in normal 
(n=3) and OA (n=3) synovial fibroblasts. Without CCL22 (or TNFα) treatment, no 
differences were observed in the number of cells undergoing apoptosis or percentage of 
cells in each stage of the cell cycle between normal or OA synovial fibroblasts. While 
CCL22 (or TNFα) treatment did not significantly affect the cell cycle or induce 
apoptosis, a trend of increased apoptosis and decreased percentage of cells in G2 (with 
corresponding increase in S) was observed in the lower concentration CCL22 group 
(N). No effects were observed with the higher CCL22 concentration group (OA). 

 

6.4.2 Cytokine expression analysis 

Normal (n=7) and OA (n=6) synovial fibroblast cell lines were included for cytokine 

expression analysis. OA and normal synovial fibroblast demonstrated similar intense 

response to TNFα treatment as expected. With TNFα treatment, three cytokines were 

significantly overexpressed in normal cells: IL-8 (>2000-fold, p=.004), GM-CSF (>30-

aim
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fold, p=.007) and TNFα (>30-fold, p=.001). In OA cells, IL-8 (>4000-fold, p<.001), 

GM-CSF (>30-fold, p<.001) and TNFα (>60-fold, p=.001), MCP-1 (>400-fold, p=.001) 

were significantly increased (Figure 6-2). It should be noted that the increases in TNFα 

expression have been considered in relation to the amount of TNFα added (e.g. the 

values reported have had the 5pg/ml of TNFα subtracted before analysis). CCL22 

treatment did not elicit a similar dramatic change in cytokine expression, however, a 

differential response was observed between normal and OA fibroblasts. In normal cells 

treated with the higher concentration of CCL22 (OA), the cytokine expression as a 

whole, was significantly altered (p<.001), however, this was not observed in OA 

fibroblasts (p=.842). In regard to specific cytokines, a trend was observed in the 

expression of IL8, IL4 and IL10, as the levels were increased in OA cells but suppressed 

in normal cells (relative to their respective negative controls), however, only IL10 levels 

reached significance (p=.047). Neither OA nor normal synovial fibroblasts responded 

to the lower concentration of CCL22 (N). 
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Figure 6-2. Cytokine expression response to CCL22 treatment. While TNFα 
treatment increased the expression of a number of cytokines examined, CCL22 
treatment did not increase the expression of any cytokine examined, and both 
concentrations tested had no effect on the cytokine expression in OA synovial 
fibroblasts. In normal synovial fibroblasts, the higher concentration treatment group 
(OA), significantly decreased the expression of IL10. *p<0.05. 

 

6.4.3 Transcriptomic analysis 

Since it was observed the CCL22 treatment could down regulate the expression of 

IL10 in normal synovial fibroblasts. Microarray analysis was used to explore the cell 

responses to CCL22 treatment in terms of genome-wide gene expression. Twelve 

genes were found significantly differentially expressed after normal synovial 

fibroblasts (n=3) were treated with the high concentration of CCL22 (OA) as shown 

in Table 6-1. No differentially regulated genes were detected in OA synovial 

fibroblasts (n=3) treated with high concentration of CCL22. These genes observed 

in normal fibroblasts treated with CCL22 were not significantly enriched in any GO 

term or signaling pathway (Table 6-2). While no changes in expression of IL10 was 

*

*

*

*

*

*

*

*
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observed with CCL22 treatment, S100A12, a protein associated with the 

pathogenesis of OA was significantly increased after CCL22 treatment. RT-qPCR 

was used to validate the effect of CCL22 on S100A12 expression. In accordance with 

the microarray results, S100A12 was significantly elevated (p<.001) in normal cells 

after CCL22 treatment (Figure 6-3). Meanwhile, S100A12 did not respond to CCL22 

treatment in OA synovial fibroblasts. 

 

 

 

 

Table 6-1. Differentially expressed gene in normal synovial cell 24h after CCL22 
treatment. 
 

Fold 
Change 

Gene Symbol Description 

-12.85 LINC00652 long intergenic non-protein coding RNA 652 
-6.47 VTRNA1-1 vault RNA 1-1 
-5.39 SNORD58A; 

RPL17 
small nucleolar RNA, C/D box 58A; ribosomal 

protein L17 
-5.25 LOC102724208 LOC102724208 
-2.14 ZNF443 zinc finger protein 443 
-2.14 RBMY1B/D/E RNA binding motif protein, Y-linked, family 1, 

member B/D/E 
-2.09 IGKV2D-29 immunoglobulin kappa variable 2D-29 
2.03 MGC39584 LOC441058 
2.05 LOC646029 LOC646029 
8.07 S100A12 S100 calcium binding protein A12 
12.38 GRAP GRB2-related adaptor protein 
22.46 EYS eyes shut homolog (Drosophila) 
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Table 6-2. DAVID functional annotation chart 
Category Term Genes P-Value Benjamini 
GOTERM_CC_DIRECT cytosol GRAP, S100A12, 

RPL17 
9.50E-02 5.90E-01 

GOTERM_CC_DIRECT nucleus S100A12, RPL17, 
ZNF443 

2.20E-01 6.70E-01 

 

 

 

 
Figure 6-3. S100A12 expression in CCL22 treated synovial fibroblasts. Normal 
(n=3) and OA (n=3) synovial fibroblasts were treated with the high concentration of 
CCL22 and the expression of S100A12 was quantified using RT-qPCR. While CCL22 
treatment significantly increased the expression of S100A12 in normal fibroblasts, no 
effect was observed in OA fibroblasts. *p<0.001. 

6.4.4 Absence of CCR4 on synovial fibroblasts 

Since CCR4 is the only known receptor for CCL22 and previous studies have 

demonstrated the absence of CCR4 in normal human synovium (288), flow cytometry 

analysis was used to determine if CCR4 was expressed on the cell surface of normal 

(n=2) or OA (n=2) synovial fibroblasts. Interestingly, none of synovial fibroblast cell 

***
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lines examined (normal or OA) demonstrated surface expression of CCR4 (Figure 6-4).  

 

 
 
Figure 6-4. Flow cytometric analysis of CCR4 on synovial cells. None of the cell 
lines examined demonstrated CCR4 an increase in positive staining compared to the 
negative control. 

6.5 Discussion 

The role of cytokines in the pathogenesis of OA has become increasingly recognized 

(290). Major pro-inflammatory cytokines such as TNFα and IL1β have a direct and 

destructive impact on articular cartilage not only by promoting the expression of 
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cartilage extracellular matrix proteinases (e.g. matrix metalloproteinases), but also by 

through induction of chondrocyte apoptosis (291-293). In the last decade, a variety of 

new cytokines had been found associated with tissue degeneration and pain in OA (294). 

In previous studies from our group and other, the chemokine CCL22 is known to be 

elevated in synovial fluid and serum from OA patients and is correlated with OA pain 

(286, 288, 289). CCL22 (Chemokine ligand 22), also named macrophage derived 

chemokine (MDC), is commonly produced by macrophages, activated B lymphocytes 

and dendritic cells. CCL22 has a complex role in inflammation and is recognized as a 

potent chemotactic molecule, recruiting both anti- and pro-inflammatory immune cells 

(275, 276). It has been recently reported by our lab that CCL22 can induce apoptosis in 

human chondrocytes in vitro and it is expressed in chondrocytes throughout the 

progression of OA in a rat model. These results suggest that it might play a role in the 

initiation of cartilage degeneration in OA. Therefore, the aim of the present study was 

to investigate if CCL22 could also trigger the inflammation or apoptosis in synovial 

fibroblasts from healthy donors and OA patients. While, we did not observe an increase 

in apoptosis in synovial fibroblasts with CCL22 treatment, we did find that CCL22 

regulated the expression of inflammatory cytokines in normal (but not OA) synovial 

fibroblasts. We also observed that CCL22 is an inducer of S100A12 expression, but this 

effect was only observed in normal fibroblasts as OA fibroblasts already demonstrate 

increased expression of S100A12. 

Synovitis is often observed in the earliest stages of OA (295), however, it is not clear 

whether synovitis is primarily caused by systemic immune responses or occur 
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secondarily to joint tissue damage. Prior research suggests that once a given threshold 

of inflammation is reached within the joint, a variety of cytokines including IL6 and 

TNFα in the inflamed synovial fluid could stimulate synovial cells to also produce 

inflammatory cytokines, magnifying the level of inflammation in the joint (296). In the 

current study, we found that CCL22 treatment significantly downregulated IL10 

expression and upregulated S100A12 expression in normal but not in OA synovial 

fibroblasts. IL10 is an anti-inflammatory cytokine, capable of suppressing the immune 

response through a variety of mechanisms, including inhibiting the synthesis of pro-

inflammatory cytokines such as IFNγ, and TNFα and GM-CSF (297). S100A12 is a 

pro-inflammatory cytokine-like protein. It is involved in OA development by up-

regulating MMPs and activating the NF-κB pathway (56). The change of IL10 (down-

regulation) and S100A12 (up-regulation) expression in normal synovial fibroblasts 

indicates that CCL22 might play in important role in initiating/promoting a pro-

inflammatory response in synovium. 

It is not uncommon for cytokines/chemokines to induce apoptosis (298), however, we 

found no significant change in the level of apoptosis, or any differential cell cycle 

regulation with CCL22 treatment. This might due to the fact that the incubation time 

was too short (24 hours) after treatment, yet we previously observed chondrocyte 

apoptosis in the same timeframe with using the same concentration of CCL22. It is also 

important to note that TNFα treatment significantly increased apoptosis only in OA 

cells. Therefore, there may be differences in the sensitivity of synovial fibroblasts to 

cytokine/chemokine induced apoptosis, and this may be related to the inflammatory 
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environment they have been previously exposed to in vivo. Furthermore, it may be 

possible that CCL22 induced apoptosis is indirect in synovial fibroblasts since it has 

been previously demonstrated that S100A12 can induce apoptosis (299). Therefore, 

longer time-points may have resulted in an increase in apoptosis if this effect is working 

through the S100A12 pathway. 

Since CCR4 is the only known receptor for CCL22 (287), and we observed changes to 

both IL10 and S100A12 expression after CCL22 treatment, we were surprised to find 

that neither normal nor OA synovial fibroblasts expressed CCR4 on the cell surface. 

These results are therefore truly conflicting and difficult to reconcile. While we most 

likely had a mixed population of cells in our fibroblast cultures, our flow cytometry 

data demonstrated no CCR4 positive cells (regardless if they were synovial fibroblasts 

or not), suggesting that there was not a contaminating population of CCR4 positive cells 

reacting to the CCL22. Therefore, we suggest that there may be additional receptors or 

co-receptors for CCL22. While we didn’t find any evidence for this in the literature, it 

is possible that CCL22 has additional binding partners other than CCR4 and this should 

be researched in the future. 

Unlike rheumatoid arthritis (RA), the inflammation in OA is often low-grade and 

confined within affect joints. Therefore, inflammation inhibitors targeting at the major 

pro-inflammatory cytokines (e.g. TNFα, IL6 and IL1B) that demonstrate benefit for RA 

patients, have not demonstrated significant efficacy in OA, at least at the early stage of 

the disease. Indeed, studies showed that many anti-inflammatory drugs directed at these 

cytokines had a less dramatic impact in OA patients than RA patients, and could lead to 
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many side effects such as increased risk of infection (300, 301). These results may 

suggest that these cytokines that drive the inflammatory process in RA, could be merely 

a secondary phenomenon followed by tissue damage or other inflammation pathways 

in OA. In this study, we found that CCL22 could induce inflammation by inhibiting 

IL10 and promoting S100A12 expression in normal synovial fibroblasts and on the 

surface, this result could be interpreted as driving a pro-inflammatory response. 

However, we concede it is unlikely that CCL22 is driving/perpetuating a chronic 

synovial inflammatory response as CCL22 failed to stimulate an increase in 

inflammation in OA synovial fibroblasts similar to TNFα. Therefore, additional studies 

in pre-clinical model including transgenic mice with altered CCL22 expression are 

needed to validate this hypothesis. 

 

6.6 Conclusions 

In this study, we investigated the effect of CCL22 on synovial fibroblasts from OA 

patients and healthy controls. We found CCL22 significantly suppressed the anti-

inflammatory cytokine IL10 and promoted the pro-inflammatory protein S100A12 in 

normal but not OA synovial fibroblasts. We therefore propose that CCL22 could be 

playing an important role in the initiation of synovitis and therefore its potential as a 

biomarker as well as a therapeutic target in the early stage of OA should be further 

researched.   
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Chapter Seven: Discussion and conclusions 

7.1 Discussion 

In this chapter, the key findings of the thesis are presented and discussed. Some of the 

challenges of performing prospective OA studies in humans and therefore the rationale 

for high-throughput data exploratory followed by in vivo and in vitro experimental 

validation are then discussed. The advantages and limitations of the study, including its 

potential clinical application are discussed, and finally, potential future directions are 

presented and discussed. 

 

7.2 Summary of Key Findings 

The overall goal of this thesis was to characterize serum inflammatory/cytokine 

profiling in participants who are at a high risk of developing OA, for the purpose of 

developing a biomarker indicative and possibly predictive of early stage (pre-

radiographic) OA in a youth knee injury cohorts. To achieve this goal, serum cytokine 

profiles in a number of distinct cohorts were analyzed and a candidate biomarker was 

selected and validated using in vivo and in vitro methodologies. Specifically, in this 

thesis, firstly, exploratory data analysis was applied on cytokine profiling data including 

comparing serum cytokine profiles between patients with hip OA, knee OA, 

participants with high risk of developing OA (knee injury) and healthy controls, and 

examining the association between clinical measurements and OA risk factors and 

serum cytokines. The analysis confirmed the value of serum cytokines profile in 
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differentiating these groups. Then focus was narrowed down to one specific candidate 

cytokine-CCL22 through the use of a novel computational method. Lastly, the 

biological role of CCL22 in the onset of OA was validated both in vivo (rat model of 

OA) and in vitro (human cartilage tissue and synovial fibroblast). The major findings 

are: 

(1) Serum cytokine profiles were significantly different between the cohorts 

examined in this thesis: In middle-aged and older adults, cytokine profiles were 

found to be significantly different between OA patients vs. healthy controls. 

Within OA patients, EGF, FGF2, MCP3, MIP1α, and IL8 were expressed 

differently according to affected joints (knee vs. hip); in young adults, serum 

cytokine profiles were significantly different in terms of cytokine associations 

(but not expression) in individuals with vs. without knee injury 3-10 years 

previously in their youth. MCP1, CCL22 and TNFα were the most altered 

cytokines in terms of their associations with other cytokines. 

(2) A potential early OA biomarker and therapeutic target - CCL22 was identified. 

In hip OA patients, CCL22 was associated with pain and found to be present in 

synovial fluid and synovial membrane. In knee OA patients, CCL22 was found 

present in the cartilage and able to induce apoptosis in articular chondrocytes in 

vitro. Moreover, CCL22 significantly suppressed the anti-inflammatory 

cytokine IL10 and promoted the pro-inflammatory protein S100A12 in synovial 

fibroblasts in vitro from healthy knee joints. In a rat model of early OA, CCL22 

was present chondrocytes in areas of cartilage lesions and co-localized with 
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markers of apoptosis. A summary of the potential roles that CCL22 played in 

the pathogenesis of OA is shown in Figure 7-1. 

 

 
Figure 7-1. CCL22 may act on multiple tissue in the onset and development of OA. 
While some of these effects are likely driven through a CCR4 mediated pathway; 
the actions of CCL22 in the synovium appear to be CCR4 independent.  

 

7.3 Strengths and Limitations 

In humans, the development of clinically diagnosable OA usually takes years or even 

decades. While ideal, it is impractical for a research group to conduct longitudinal 

studies following the same cohort for such a long period of time until a sufficient 

percentage of the cohort develops OA to ensure the study is adequately powered. On 

the other hand, many animal models of OA demonstrate a rapid progression of the 

disease, typically with significant cartilage damage within weeks (302). However, 

evidence has showed that animal models of OA have different responses vs. humans 

and hence might not be truly representative of human OA and/or inflammatory diseases 
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that affect the joint (93). Therefore, in this thesis a strategy combining cross-sectional 

and longitudinal human cohorts was adopted with an attempt to validate the human 

findings in vivo in a pre-clincal rat model of OA. Based on the findings of the rat study, 

it was then attempted to validate these findings in vitro using cultured human 

chondrocytes and synovial fibroblasts. Notwithstanding that a strategy designed to 

cross validate our human and pre-clinical animal model data was employed, the current 

thesis is not without limitations. The perceived strengths and limitations of the thesis 

will be discussed in the following sections.   

7.3.1 Study Strengths 

One of the main study strengths was that this thesis work included in a number of 

distinct cohorts including clinically diagnosed OA, high risk of OA and healthy controls. 

The pathogenesis of OA is known to be multifactorial; aging, injury, and genetic 

predisposition may all act as contributing factors lead to the joint degeneration. Many 

studies have suggested that OA is a collection of different subtypes/phenotypes (303). 

Therefore, one of the strengths that comes from including multiple cohorts with 

different backgrounds is that the result of the study may be more generalizable to the 

larger population and/or patient population. While previous studies have also 

demonstrated differentially expressed biomarkers in hip compared with knee OA (304). 

The current thesis is novel since OA patients with different affected joints (hip and knee) 

were included and discriminated as hip or knee when comparing OA with control (non-

OA) groups. Finally, in this thesis, individuals at different stages of OA were induced, 
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from those who are at high risk but have not yet developed the disease to the end-stage 

OA patients who underwent total knee replacement. The high risk cohorts are crucial in 

finding these candidate biomarkers in the earliest stages of the disease and thereby 

facilitating the developing of interventions for early OA. Without reliable biomarkers 

that can accurately diagnose pre-clinical OA, it is difficult to develop cohorts to test 

novel interventions in patients in the early stages of the disease. Therefore, stringently 

developed cohorts of individuals at high risk of developing OA may hold vital clues for 

understanding the early/pre-structural changes in the disease; which may help in the 

detection and development of interventions for early OA. 

Another strength of this thesis, was that this study utilized a Luminex multiplex array 

platform which allowed us to quantify 41 cytokines per sample per 96 well plate. The 

Luminex platform has the benefit of being more efficient than traditional ELISA 

approach which is commonly applied in similar studies. The Luminex approach 

significantly expanded the scope of the study by increasing the number of cytokines 

that could be examined, this was essential to since this study required a screening 

approach to identify candidates for further examination. Compared to other high-

throughput techniques such as microarray and MS, Luminex is more sensitive, with a 

lower detection limit of 0.1-10.1 pg/mL (with an average of 2.359 pg/ml) and therefore 

was superior in detecting (and fully quantifying) low-abundant biomarkers such as 

cytokines (cytokine concentration in serum can be as low as 1pg/ml while the sensitivity 

of MS is usually >10 pg/mL). 
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Another strength of the current thesis, is that our studies employed exploratory data 

analysis (EDA) with experimental validation. The purpose of EDA is to develop a 

detailed understanding of complex data sets such as non-uniformed clinical 

measurements and cytokine profiles from heterogeneous cohorts included in this study. 

Different from the hypothesis-driven analysis, which requires the researcher to be very 

specific about the analyses they wish to perform, EDA is open and flexible, similar to 

the detective work which involves repetitively examining the data, generating of 

hypotheses and assessing how well the tentative theories fit the data (305). For complex 

data sets such as biomedical data, without EDA, one may only find the information they 

look for, but will never discover insights that lie beyond prior knowledge. However, 

many statisticians argue that EDA can become “data dredging/fishing” which may 

damage scientific research if used incautiously (306). Therefore, EDA was applied in 

the first step of data analysis to maximize our potential/creativity in discovering patterns 

in data, followed by experimental validation to support the novel findings generated 

through EDA. 

 

7.3.2 Study Limitations 

A limitation of this thesis is that completely uniform clinical information was not 

available for each cohort. For example, the clinical measurements (e.g. pain and 

functionality) were only available for hip OA cohorts and PrE-OA cohorts; the age 

information for each patient sample in the mid-aged control cohort was unavailable due 
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to ethics constraints. Missing data points were also a limitation. Some participants in 

PrE-OA cohort were missing MRI information or dropped out during the study period. 

Therefore, it was not possible to run all analysis in all cohorts, making it impossible to 

conduct parallel comparison across cohorts. Additionally, many factors which could 

confound cytokine concentrations, such as individual characteristics (e.g. race, disease 

history, diet among other factors) were not collected. 

During the study period, none of the high-risk participants in PrE-OA developed 

clinically defined OA. Consequently, the inflammatory profile change in the whole 

transition process from beginning (normal) to end (disease) was not able to be 

monitored/quantified. However, it was still possbile to identify significant different 

cytokines between with vs. without a history of injury and conducted downstream 

experiments based on the finding. 

Consistently, all these findings supported that CCL22 plays an important role in the 

onset of cartilage degeneration. In human cohorts, CCL22 was found significantly 

different between individuals with and without a history of injury in terms of 

connectedness with other cytokines. It also significantly correlated with pain in hip OA 

patients. In the rat model of early OA, CCL22 was also found correlated with pain. 

Moreover, CCL22 was present not only in severely damaged joints in rats, but also in 

the cartilage before the visible damage occurred. Furthermore, CCL22 expression was 

observed in chondrocytes undergoing apoptosis (cleaved caspase 3 positive cells), with 

almost all apoptotic cells being positive for CCL22. However, with many of these 

results being observational/descriptional in nature, the cause and effect relationship 
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between CCL22 and cartilage degeneration/OA still remains elusive. Even though a 

functional role of CCL22 in the induction of apoptosis of human chondrocytes and the 

induction of a pro-inflammatory response in human synovial fibroblasts was 

demonstrated, these results do not necessarily imply that CCL22 will lead to cartilage 

degeneration in vivo. 

Another limitation is that this thesis did not clarify the source of CCL22 in the initial 

stage of OA. Although there was intensive positive CCL22 staining observed in rat 

cartilage (Figure 5-4), it does not necessarily mean that chondrocytes produce CCL22. 

In fact, in OA or healthy patients, the concentration of CCL22 was not significantly 

higher in synovial fluid than that in serum (Figure 3-4), indicating that the majority of 

CCL22 in serum was unlikely coming from the joints. Previous studies have 

demonstrated that in addition to macrophages and dendritic cells, epidermal cells such 

as keratinocytes are also a main source of CCL22 (307). Therefore, it is possible that 

the majority of CCL22 in circulation and synovial fluid is derived from these cells 

outside the joint environment. Future studies are needed to test this hypothesis. 

7.3.3 Significance 

Currently the clinical diagnosis of osteoarthritis (OA) is typically only made only if the 

patient is symptomatic (e.g. joint pain, loss of mobility). However, the difficulty of 

using symptoms to define the presence of early-stage OA is that these symptoms 

develop once the disease is advanced and possibly irreversible. In this thesis, a novel 

candidate early OA biomarker (CCL22) has been identified that may have promise to 



 

147 
 

identify patients in the early-stages of OA, before irreversible joint damage has 

occurred. If this biomarker can be validated in an independent cohort, it may have 

significant clinical potential as it could be easily added to a routine blood test. 

This thesis has also added to our understanding of the effect of an intra-articular knee 

injury on systemic inflammatory cytokine expression that may influence the future 

onset and/or progression of OA in this high risk cohort. By improving our understanding 

inflammatory factors in disease pathogenesis, this study have the potential to aid in 

increasing our fields ability to identify patients at greatest risk of OA; increase the 

accuracy of diagnosing early OA; and measuring treatment efficacy within pre-

radiographic OA cohorts. 

Further, since it was demonstrated that CCL22 may also play a functional role in the 

onset of OA, this knowledge may be useful as guidance to develop new effective 

management/treatment strategies for joint injuries with the purpose to prevent or 

postpone OA development. For example, if a drug targeting CCL22 could be developed 

and demonstrated efficacy for slowing the progression of OA; this could impact on how 

health care is delivered to early OA patients. Furthermore, it could also be possible that 

the inflammatory profiles themselves could be used to guide health care decisions. The 

need of arthroplasty surgery might be prioritized within individuals that have a 

biomarker profile similar to that of patients that were at the point of requiring joint 

replacement vs. those with clinically diagnosed but less severe OA. 
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7.1 Future Directions 

7.1.1 Follow up of PrE-OA cohort 

In the PrE-OA cohort, the association between cytokine profiles and pain was not 

significant. This is expected since the patients are still relatively young (e.g. mid 20’s) 

and not yet showing symptomatic OA. However, a small portion of participants were 

diagnosed with MRI-defined OA. We have started to focus on these individuals and in 

the Appendix, we demonstrate that participants with vs. without MRI-defined OA 

present with different cytokine profiles (when comparing the cytokine association 

networks). One question that remains unsolved due to the small number of participants 

with MRI-defined OA in the current thesis, is what is the value of cytokine in predicting 

MRI-defined OA (or, whether cytokines and MRI-defined structural changes are 

correlated) for each individual? Further, many studies have reported that MRI can detect 

minor cartilage lesions which could be representative of early OA, while others argue 

that the minor tissue damage was also common in the general population of a similar 

age (241-243). The other interesting question is what is the value of combining 

cytokines profiles and MRI results in detecting early OA? Although we were able to 

detect changes over time in cytokine profile in the PrE-OA cohort, the changes were 

not in the direction of either the control or clinically diagnosed OA groups (Appendix). 

Are there any another covariate (i.e., age, sex) influencing serum cytokine profile? As 

future work, the PrE-OA cohort will be ideal for the longitudinal follow-up to address 

these open questions. 
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7.1.2 The mechanism of CCL22 promoting joint tissue degeneration 

Base on the results of this thesis and previously published studies, it could be 

hypothesized that CCL22 might play multiple roles mediated through different 

pathways in different cell types and these functions may contribute to the degeneration 

of cartilage, and OA pain. 

In chondrocytes 

Although the in vitro experiments showed that CCL22 did not promote the expression 

of TNFα in synovial fibroblasts, it has been previously demonstrated that in 

chondrocytes, that CCL22 expression is correlated with the activation of TNFα which 

plays a role in chondrocyte apoptosis (280, 281). Giving the fact that in this study, 

CCR4 expressed in chondrocytes but not in synovial fibroblasts, it may be possible that 

CCL22 is a mediator in TNFα induced chondrocyte apoptosis through the CCR4 

pathway. Further experiments will be required to examine this hypothesis directly. 

In synovial fibroblasts 

In normal synovial fibroblasts, it was observed that CCL22 significantly suppressed the 

anti-inflammatory cytokine IL10 and promoted the expression of pro-inflammatory 

factor S100A12. Since CCR4 was not found expressed on the cell surface, there may 

be additional receptors or co-receptors for CCL22. While no evidence for this is found 

in the literature, it is possible that CCL22 has additional binding partners other than 

CCR4 and this should be studied in the future. It should also be noted that CCL22 had 
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limited effect on OA synovial fibroblasts. This might indicate that this “potential 

binding partner” may no longer be expressed in synovial fibroblasts after the onset of 

OA; or potentially that these pathways are already activated in OA and therefore are 

insensitive to further activation. However, these speculations require further 

investigation.  

In other cell types 

Although it is widely accepted that the chondrocyte is the main resident cell type in 

articular cartilage (36), recent evidence has demonstrated that cartilage may possibly 

contain other cell types such as mesenchymal stem cells (MSCs) (308). MSCs was 

believed to play an important role in tissue regeneration as well as regulate the 

inflammatory response (309). Previous studies have shown that a small percentage of 

MSCs expressed CCR4, indicating that CCL22 might also be able to regulate this cell 

type. If that is the case, and tissue resident MSCs (either in cartilage or synovium) 

contribute to cartilage repair in some form, then it is possible that CCL22 also acts on 

MSCs to disrupt this function, thereby promoting degeneration by impeding the 

regenerative/reparative role of MSCs (310). 

One of the best ways to verify the role of CCL22 in cartilage function and/or OA is 

using a transgenic knockout animal model, and in this case a conditional knockout 

mouse in where CCL22 could be deleted with chondrocytes alone would be preferable, 

since the function of CCL22 throughout the body is not well understood. Unfortunately, 

to our best knowledge, there is no conditional CCL22 knockout mouse currently 

available. Interestingly, a recent study using CCR4-/- mice and CCL17 gene-deficient 
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(CCL17E/E) mice demonstrated the pivot role of the CCR4 pathway in cartilage 

destruction, development of osteophytes and pain in a collagenase-induced OA model 

(311). This study is directly related to this thesis since the gene for CCL22 is mapped 

to chromosome 16q13 and is near to another chemokine, TARC/CCL17 (312), which 

also signals through CCR4 (313). It is likely that these two chemokines evolved through 

gene duplication, but in humans they share only 37% amino acid sequence identity and 

are not equivalent in their expression or function, with CCL22 the stronger driver of 

CCR4 (314). This study on CCL17 and OA was a solid confirmation of our finding in 

terms of the role of CCL22 in the joint tissue degeneration and the development of OA 

pain. However, the authors failed to explain why knocking out CCL17 alone but not 

CCL22 had the same protective effect as knocking out CCR4, given that CCL22 is also 

a robust (and dominant) ligand of CCR4. Future studies using CCL17 and CCL22 

double knockout mice would be an important step towards clarifying the relationship 

between CCR4 and CCL17/22 in the development of collagenase-induced OA. 

Moreover, it is also important to test if the CCR4-dependent pathway is also required 

in other OA models such as injury-induce OA. 

As previously discussed, one of the downsides of using a mice model is that the 

inflammatory response in mouse might not be representative for human. In this thesis, 

the microarray analysis identified that S100A12 was elevated in CCL22 treated 

synovial fibroblasts. However, rodents do not have functional S100A12 gene (315). 

Therefore, CCL4 induced inflammatory response in synovial fibroblasts might be a 

human specific phenomenon and therefore a similar effect may not be observed in a 
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mouse model. 

7.2 Summary 

This thesis has generated knowledge regarding cytokine expression in a variety of 

patient cohorts, including clinically diagnosed hip and knee OA, high risk of OA and 

healthy controls. Further I have identified a potential biomarker, CCL22 which could 

be indicative of early stage (pre-radiographic) OA in knee injury cohorts. The latter part 

of this thesis attempted to validate the serum based findings and understand the 

biological role of CCL22 in the initiation and development of OA. CCL22 knock-out 

mice and/or alternative approaches are required in future studies to further validate the 

role of CCL22 as a diagnostic and therapeutic target in the early stages of OA. 
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Chapter Nine: Supplementary Data 

 
 
 
 
 
 
 
 
 

 

Supplementary Figure 9-1 Presence of MDC, IL6 and IP10 in Hip OA, Knee OA and 
control synovium, synovial fluid and serum not corrected for multiple comparisons. 
Serum and synovial fluid levels of MDC, IL6 and IP10 were examined in the three cohorts. 
* p<0.05. Abbreviations used in figure legend: MDC (macrophage derived chemokine), 
IL6 (interleukin 6), IP10 (interferon gamma-induced protein 10), OA (osteoarthritis). 
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Supplementary Table 9-1. Biochemical markers that have been reported to be 
correlated with OA pain 

 
Abbreviations used in table:  CD (cluster of differentiation), NPY (neuropeptide Y), 
COMP (cartilage oligomeric matrix protein), IL (interleukin), hs-CRP (high-sensitivity C-
reactive protein), TNFα (tumor necrosis factor alpha), ARGS (aggrecan neo-epitope 
fragment), CTXII (carboxy-terminal telepeptides of type II collagen), NTX (n-telopeptides 
of type 1 collagen), HA (hyaluronan), CPII (proCollagen II c-propeptide), NHANES 
(National Health and Nutrition Examination Survey), AUSCAN (AUStralian CANadian 
Osteoarthritis Hand Index), WOMAC (Western Ontario and McMaster Universities 
Osteoarthritis Index), VAS (Visual Analogue Scale), JKOM (Japanese Knee Osteoarthritis 
Measure), KOOS (Knee injury and Osteoarthritis Outcome Score). 
  

Marker Pain Criterion  Population OA Joint Bodily Fluid Sample Size Citation # 
CD163 NHANES-I 

 
Knee Synovial fluid, blood 184 (316) 

CD14 NHANES-I 
 

Knee Synovial fluid, blood 184 (316) 
NPY Hideo Watanabe’s 

knee scoring system-
related pain score 

 
Knee Synovial fluid 100 (317) 

COMP AUSCAN pain 
 

Hand Serum 663 (30, 43) 
IL15 WOMAC pain score Chinese  Knee Serum  226 (318) 
IL6 VAS, JKOM-pain Japanese Knee Serum 160 (319) 
leptin WOMAC and VAS 

 
Knee, hip Synovial fluid 219  (320) 

hs-CRP WOMAC 
 

Knee Serum 149 (321) 
TNFα WOMAC 

 
Knee Serum 149 (321) 

ARGS KOOS pain 
 

Knee Synovial fluid 141 (322) 
CTXII VAS Japanese Knee  Urine 47 (323) 
NTX VAS Japanese Knee  Urine 47 (323) 
HA VAS Japanese Knee  Serum 47 (323) 
CPII VAS Japanese Knee  Serum 47 (323) 
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Supplementary Table 9-2. Questionnaire scores of hip OA cohort 
 

Questionnaire scores K/L grade 3 
(mean ± SD) 

K/L grade 4 
(mean ± SD) 

P-value Benjamini-
Hochberg 
critical value 

MHSF36 44.6 ± 8.1 52.3 ± 9.7 0.007** 0.007407 
GHSF36 48.8 ± 6.8 54.2 ± 7.8 0.013* 0.014815 
PCSSF36 32.8 ± 8.2 27.0 ± 5.7 0.018* 0.022222 

MCSSF36 45.9 ± 10.8 54.9 ± 11.8 0.024* 0.02963 

HOOSp6 2.5 ± 0.9 3.1 ± 0.9 0.034* 0.037037 
HOOSp5 3.1 ± 0.7 3.7 ± 0.9 0.037* 0.044444 
PFSF36 31.4 ± 9.4 25.5 ± 5.6 0.052 0.051852 
HOOS 48.4 ± 12.9 41.1 ± 11.0 0.082 0.059259 
HOOS Pain 32.1 ± 6.25 35.4 ± 5.0 0.083 0.066667 
HOOS Pain factor 1 0.41 ± 1.14 0.16 ± 0.91 0.084 0.074074 
HOOSp1 4.1 ± 0.7 4.5 ± 0.5 0.104 0.081481 
HOOSp10 3.5 ± 0.6 3.8 ± 0.8 0.176 0.088889 
HOOSp9 3.2 ± 0.8 3.5 ± 0.7 0.178 0.096296 
BPSF36 34.3 ± 4.9 32.5 ± 6.2 0.184 0.103704 
RPSF36 36.0 ± 10.7 32.1 ± 7.6 0.195 0.111111 
RESF36 38.8 ± 14.7 43.6 ± 14.4 0.199 0.118519 
HOOSp2 3.1 ± 0.9 3.4 ± 0.7 0.21 0.125926 
HOOSp4 3.0 ± 0.8 3.3 ± 0.8 0.224 0.133333 
SFSF36 37.1 ± 8.6 39.8 ± 11.8 0.33 0.140741 
HOOSp8 3.0 ± 0.8 3.2± 0.9 0.362 0.148148 
HOOSp7 3.0 ± 0.8 3.1 ± 0.8 0.432 0.155556 

UCLA 4.4 ± 1.8 4.0 ± 1.6 0.458 0.162963 
HHS 53.0 ± 11.9 56.6 ± 12.1 0.596 0.17037 
HOOSp3 3.6 ± 0.6 3.6 ± 0.8 0.68 0.177778 
BMI 32.4 ± 4.0 35.4 ± 5.0 0.871 0.185185 
VTSF36 44.8 ± 9.6 46.2 ± 9.6 0.871 0.192593 
HOOS Pain factor 2 0.02 ± 0.66 0.01 ± 1.11 0.931 0.2 
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Supplementary Table 9-3. Correlations between cytokine concentrations and hip pain 

 
Abbreviations used in table: IL (interleukin), MCP (monocyte chemoattractant protein), MDC (macrophage derived chemokine), IP10 (interferon 
gamma-induced protein), TNF (tumor necrosis factor), PC (principle component), HOOS (Hip disability and osteoarthritis outcome score), SF36 
(Short Form 36). 
  

  
HOOS 

BPSF36 
Total 1 2 3 4 5 6 7 8 9 10 PC1 PC2 

Fractalkine 
Corr. 0.18 -0.063 -0.001 -0.217 -0.268 -0.096 -0.095 -0.032 -0.089 -0.158 -0.107 -0.19 0.089 -0.067 
P-value 0.212 0.664 0.994 0.131 0.06 0.506 0.51 0.825 0.54 0.275 0.461 0.185 0.54 0.646 

IL10 
Corr. 0.091 -0.047 -0.183 -0.193 -0.016 0.061 0.021 -0.22 -0.124 0.044 0.01 -0.085 -0.045 -0.099 
P-value 0.53 0.746 0.202 0.18 0.912 0.673 0.884 0.125 0.392 0.763 0.944 0.558 0.756 0.493 

IL15 
Corr. 0.009 -0.101 0.077 -0.102 -0.029 0.126 0.031 -0.073 -0.096 0.043 0.13 0.007 -0.019 -0.179 
P-value 0.953 0.484 0.595 0.483 0.841 0.384 0.832 0.615 0.506 0.765 0.37 0.96 0.896 0.214 

IL6 
Corr. 0.036 0.285* 0.061 -0.014 -0.031 0.201 -0.081 -0.178 -0.213 0.05 0.025 -0.006 -0.319* -0.057 
P-value 0.804 0.045* 0.676 0.921 0.831 0.161 0.574 0.217 0.138 0.728 0.865 0.966 0.024* 0.696 

MCP1 
Corr. 0.028 -0.128 -0.078 0.042 -0.044 0.084 -0.025 -0.04 -0.046 -0.045 -0.016 -0.044 0.006 0.086 
P-value 0.848 0.374 0.589 0.771 0.762 0.564 0.862 0.782 0.75 0.754 0.911 0.763 0.967 0.553 

TNFa 
Corr -0.039 0.083 0.202 0.003 -0.019 0.169 -0.071 -0.057 -0.008 0.137 0.022 0.033 -0.131 -0.146 
P-value 0.79 0.568 0.159 0.986 0.895 0.242 0.623 0.697 0.953 0.342 0.88 0.82 0.363 0.312 

IP10 
Corr. -.294* 0.11 0.198 0.218 0.089 0.122 0.167 0.233 .390** 0.231 0.142 -0.223 0.11 0.198 
P-value 0.038* 0.447 0.168 0.128 0.54 0.397 0.246 0.103 .005** 0.106 0.326 0.12 0.447 0.168 

MDC 
Corr. 0.048 0.018 0.085 0.085 -0.077 0.109 0.03 -0.041 -0.071 0.005 0.064 -.302* -0.048 0.018 
P-value 0.74 0.901 0.558 0.558 0.594 0.45 0.838 0.779 0.626 0.971 0.659 .033* 0.74 0.901 
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Supplementary Table 9-4. The Down and Black bias assessment checklist 

  
  

Petersson 19Zhang 2015 Zhang 2014 Xin 2017 Wakitani 200Van Spil 201Sugiyama 20Steinbeck 20Poole 2016
Q1 Hypothesis/aim/objective clearly described 1 1 1 1 1 1 1 1 1
Q2 Main outcomes in Introduction or Methods 1 1 1 1 1 1 1 1 1
Q3 Patient characteristics clearly described 1 1 1 1 1 1 1 0 0
Q4 Interventions of interest clearly described
Q5 Principal confounders clearly described 0 1 0 0 1 1 1 0 0
Q6 Main findings clearly described 1 1 1 1 1 1 1 1 1
Q7 Estimates of random variability provided for main outcomes 1 1 1 1 1 1 1 1 1
Q8 All adverse events of intervention reported
Q9 Characteristics of patients lost to follow-up described 0 1
Q10 Probability values reported for main outcomes 1 1 1 1 1 1 1 1 1

Q11
Subjects asked to participate were representative of source
population

1 1 1 1 0 1 1 0 0

Q12
Subjects prepared to participate were representative of source
population

Q13
Location and delivery of study treatment was representative of
source population

Q14 Study participants blinded to treatment
Q15 Blinded outcome assessment
Q16 Any data dredging clearly described 1 1 1 1 1 1 1 1 1
Q17 Analyses adjust for differing lengths of follow-up 0 1
Q18 Appropriate statistical tests performed 1 1 1 1 1 1 1 1 1
Q19 Compliance with interventions was reliable
Q20 Outcome measures were reliable and valid 1 1 1 0 1 1 1 1 1
Q21 All participants recruited from the same source population 1 1 1 1 1 1 1 1 1
Q22 All participants recruited over the same time period 1 1 1 1 1 1 1 1 1
Q23 Participants randomized to intervention(s)

Q24
Allocation of intervention concealed from investigators and
participants

Q25 Adequate adjustment for confounding 0 0 0 0 0 1 1 0 1
Q26 Losses to follow-up taken into account 0 0

POWER
Q27

Sufficient power to detect clinically important effect at
significance level of 0.05

0 0 0 0 0 1 0 0 0

Sum 12 13 12 11 12 17 14 10 11

Percentage 66.67% 86.67% 80.00% 73.33% 80.00% 94.44% 93.33% 66.67% 73.33%

REPORTING

EXTERNAL VALIDITY

INTERNAL VALIDITY;
BIAS;

CONFOUNDING
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Marshall 200Kosinska 20 Kobayashi 19Jiao 2016 de Seny 201Bassiouni 20Ahmed 2015Vos 2013 Ling 2009
Q1 Hypothesis/aim/objective clearly described 1 1 1 1 1 1 1 1 1
Q2 Main outcomes in Introduction or Methods 1 1 1 1 1 1 1 1 1
Q3 Patient characteristics clearly described 1 1 1 1 1 0 1 1 1
Q4 Interventions of interest clearly described
Q5 Principal confounders clearly described 1 1 0 1 1 0 1 0 1
Q6 Main findings clearly described 1 1 1 1 1 1 1 1 1
Q7 Estimates of random variability provided for main outcomes 1 1 1 1 1 1 1 1 1
Q8 All adverse events of intervention reported
Q9 Characteristics of patients lost to follow-up described 0 1
Q10 Probability values reported for main outcomes 1 1 1 1 1 1 1 1 1

Q11
Subjects asked to participate were representative of source
population

1 1 1 1 1 1 1 1 1

Q12
Subjects prepared to participate were representative of source
population

Q13
Location and delivery of study treatment was representative of
source population

Q14 Study participants blinded to treatment
Q15 Blinded outcome assessment
Q16 Any data dredging clearly described 1 1 1 1 0 1 1 1 1
Q17 Analyses adjust for differing lengths of follow-up 1 1
Q18 Appropriate statistical tests performed 1 1 1 1 1 1 1 1 1
Q19 Compliance with interventions was reliable
Q20 Outcome measures were reliable and valid 1 1 1 1 1 0 1 1 1
Q21 All participants recruited from the same source population 1 1 1 1 1 1 1 1 1
Q22 All participants recruited over the same time period 1 1 1 1 1 1 1 1 1
Q23 Participants randomized to intervention(s)

Q24
Allocation of intervention concealed from investigators and
participants

Q25 Adequate adjustment for confounding 1 0 0 0 0 0 1 0 0
Q26 Losses to follow-up taken into account 0 0

POWER
Q27

Sufficient power to detect clinically important effect at
significance level of 0.05

1 0 1 0 1 0 0 0 1

Sum 15 13 13 13 13 10 14 13 16

Percentage 100.00% 86.67% 86.67% 86.67% 86.67% 66.67% 93.33% 72.22% 88.89%

REPORTING

EXTERNAL VALIDITY

INTERNAL VALIDITY;
BIAS;

CONFOUNDING
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Wei 2014 Livshits 2009Kumm 2013 Chaganti 200Sowers 1999Kelman 2006Gebhard 200Cibere 2009
Q1 Hypothesis/aim/objective clearly described 1 1 1 1 1 1 1 1
Q2 Main outcomes in Introduction or Methods 1 1 1 1 1 1 1 1
Q3 Patient characteristics clearly described 1 1 0 1 1 1 1 1
Q4 Interventions of interest clearly described
Q5 Principal confounders clearly described 1 1 1 1 1 1 0 1
Q6 Main findings clearly described 1 1 1 1 1 1 1 1
Q7 Estimates of random variability provided for main outcomes 1 1 1 1 1 1 1 1
Q8 All adverse events of intervention reported
Q9 Characteristics of patients lost to follow-up described 1 1 0 1 0
Q10 Probability values reported for main outcomes 1 1 1 1 1 1 1 1

Q11
Subjects asked to participate were representative of source
population

1 1 1 1 1 1 1 1

Q12
Subjects prepared to participate were representative of source
population

Q13
Location and delivery of study treatment was representative of
source population

Q14 Study participants blinded to treatment
Q15 Blinded outcome assessment
Q16 Any data dredging clearly described 1 1 1 1 1 1 1 0
Q17 Analyses adjust for differing lengths of follow-up 1 1 0 1 0
Q18 Appropriate statistical tests performed 1 1 1 1 1 1 1 1
Q19 Compliance with interventions was reliable
Q20 Outcome measures were reliable and valid 1 1 1 1 1 1 1 1
Q21 All participants recruited from the same source population 1 1 1 1 1 1 1
Q22 All participants recruited over the same time period 1 1 1 1 1 1 1 1
Q23 Participants randomized to intervention(s)

Q24
Allocation of intervention concealed from investigators and
participants

Q25 Adequate adjustment for confounding 0 1 1 1 1 1 0 0
Q26 Losses to follow-up taken into account 0 1 0 0 0

POWER
Q27

Sufficient power to detect clinically important effect at
significance level of 0.05

0 1 1 1 0 1 0 1

Sum 13 17 17 15 16 15 12 12

Percentage 86.67% 94.44% 94.44% 83.33% 88.89% 83.33% 80.00% 80.00%

REPORTING

EXTERNAL VALIDITY

INTERNAL VALIDITY;
BIAS;

CONFOUNDING
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Supplementary Table 9-5. Correlation between cytokines and pain scores in rat model 

 
 
 
 
  

CCL22 EPO IL13 IL10 IL18 IL1a IL2 MCSF
2376, 870.8 1480.9, 426.3 1572.1, 370.2 1800.2, 378 3089.4, 1258.8 2227.2, 689.8 2386.2, 1029.3 4406.4, 705.8

r .255* -0.144 -.327** -.282* -0.036 -.405** -0.147 -.482**

p-value 0.045 0.259 0.009 0.025 0.782 0.001 0.251 0.000
1178.9, 139.3 1479.2, 359.7 1290.9, 289 1538.2, 312.4 3696.2, 700 3116.6, 947.8 2062, 718.4 5039.3, 447.4

r 0.519 -0.627 -0.390 -0.186 -.729* -0.661 -0.136 -0.390

p-value 0.176 0.071 0.300 0.631 0.026 0.053 0.728 0.300
1614.4, 188.7 1463.3, 550.2 1559.6, 506 1722.9, 373 3056.4, 998.1 2232.2, 524.7 2201.8, 665 4903.7, 558.5

r 0.276 -0.417 -0.350 -0.517 -0.417 -0.367 -0.350 -.833**

p-value 0.499 0.277 0.371 0.161 0.277 0.346 0.371 0.003
1975, 315.2 1642.2, 521.7 1658.7, 396.8 2020.4, 524.2 3504.5, 1831.5 2238.5, 805.7 3066.7, 2202.6 4946.6, 677.6

r -0.318 0.452 -0.636 -0.134 0.544 -0.226 -0.126 -0.485

p-value 0.466 0.233 0.066 0.741 0.135 0.573 0.757 0.194
2531.7, 564.3 1514.1, 491.4 1658.2, 179 1863.1, 217.2 2980.4, 1184.9 2034.6, 427.9 2534.2, 673.7 4096.7, 548.5

r 0.558 -0.100 -0.617 -0.583 0.167 -0.100 -0.300 -.667*

p-value 0.161 0.806 0.078 0.102 0.680 0.806 0.448 0.049
2909.6, 717.3 1225.7, 414.9 1371.9, 408.7 1604.8, 443.5 2458.4, 845 1749.8, 454.2 2016.8, 825.2 3779.8, 625.9

r 0.078 0.017 -0.250 -0.167 0.300 -0.350 -0.167 -0.217

p-value 0.859 0.967 0.532 0.680 0.448 0.371 0.680 0.590
3286, 492 1587.1, 327.2 1687.4, 346.4 1901.3, 284.2 3322.7, 1790.4 2121.3, 377.1 2403.6, 482 4151.6, 448.9

r -0.080 0.286 -0.580 -0.412 -0.017 -0.235 -0.345 -0.345

p-value 0.869 0.472 0.105 0.284 0.967 0.557 0.379 0.379
3006.5, 727.7 1455, 256.8 1778.1, 179.9 1950.3, 219.9 2607.2, 850.7 2097.7, 337.9 2417.9, 419.7 3926.9, 238.9

r -0.066 0.135 -0.068 -0.042 0.354 -0.312 -0.042 -0.008

p-value 0.872 0.739 0.868 0.918 0.364 0.429 0.918 0.984

Mean, SD

Mean, SD

Mean, SD

Mean, SD

Mean, SD
Day 3

Day 5

Day 10

Day 14

Day 20

Day 24

Spearsman Correlation
with Pain Score

Spearsman Correlation
with Pain Score

Spearsman Correlation
with Pain Score

Spearsman Correlation
with Pain Score

Spearsman Correlation
with Pain Score

Spearsman Correlation
with Pain Score

Spearsman Correlation
with Pain Score

Spearsman Correlation
with Pain Score

Mean, SD

Mean, SD

Mean, SD

ALL

Day 1
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IL1b IL4 IFNg MIP3a GMCSF IL7 TNFa VEGF
1672.1, 391.1 1567.9, 407 1270.5, 428.4 1872.1, 478.3 1612.1, 373.2 3706, 1089.8 827, 284.3 2224.5, 370.2

r -.305* -0.222 -.322* -.328** -.359** -0.231 -0.212 -.479**

p-value 0.015 0.080 0.010 0.009 0.004 0.069 0.096 0.000
1397.9, 325 1224.3, 343.1 967.1, 355.2 1619.2, 379.1 1327.7, 325.1 3925.3, 1279 589, 243.3 2201.4, 315.6

r -0.458 -0.390 -0.373 -0.441 -0.390 -0.237 -0.254 -0.475

p-value 0.215 0.300 0.323 0.235 0.300 0.539 0.509 0.197
1682.6, 535 1500.1, 441.2 1283.3, 436.6 1832.2, 519.5 1610, 497.8 3962.1, 1323.4 819.5, 310.2 2363.2, 468.9

r -0.300 -0.383 -0.283 -0.517 -0.360 -0.150 -0.200 -0.483

p-value 0.448 0.322 0.476 0.161 0.356 0.711 0.619 0.196
1749.3, 424.5 1799.1, 546.1 1445.1, 445.7 2206.2, 717.8 1678.4, 375.7 3727.2, 891.3 892.9, 311.6 2226.4, 446.4

r -0.636 -0.310 -.770* -0.209 -0.552 -0.075 -.669* -0.636

p-value 0.066 0.433 0.012 0.603 0.128 0.853 0.047 0.066
1740.8, 185.1 1647.4, 182.1 1263.9, 362.8 1921.6, 310.5 1704.2, 179.4 3979.4, 1202.9 835.6, 173.9 2214.9, 215.3

r -0.583 -0.383 -0.433 -0.500 -0.617 -0.033 -0.050 -0.650

p-value 0.102 0.322 0.256 0.178 0.078 0.935 0.902 0.058
1463.4, 426.7 1412.4, 453.6 1140.4, 499.8 1562, 474.1 1407.1, 405.1 2984.4, 744 750.7, 301.3 1925.3, 420.1

r -0.250 -0.250 -0.583 -0.167 -0.383 -0.217 -0.433 -0.350

p-value 0.532 0.532 0.102 0.680 0.322 0.590 0.256 0.371
1793.7, 395.4 1649.6, 331.9 1365.2, 485.4 1950.1, 355.6 1758.8, 374 3632.8, 1147.4 924.8, 344.1 2289.8, 388

r -0.462 -0.345 -0.319 -0.555 -0.571 -0.202 -0.134 -0.462

p-value 0.221 0.379 0.418 0.126 0.112 0.616 0.740 0.221
1877.3, 175.5 1742.3, 223.9 1428.5, 307 2013.2, 239.4 1798.5, 180.2 3730.7, 949.4 976.5, 152 2350, 156.8

r -0.076 -0.084 -0.101 -0.354 -0.346 0.034 0.228 -0.152

p-value 0.852 0.836 0.803 0.364 0.377 0.934 0.570 0.708

Mean, SD

Mean, SD

Mean, SD

Mean, SD

Mean, SD
Day 3

Day 5

Day 10

Day 14

Day 20

Day 24

Spearsman Correlation
with Pain Score

Spearsman Correlation
with Pain Score

Spearsman Correlation
with Pain Score

Spearsman Correlation
with Pain Score

Spearsman Correlation
with Pain Score

Spearsman Correlation
with Pain Score

Spearsman Correlation
with Pain Score

Spearsman Correlation
with Pain Score

Mean, SD

Mean, SD

Mean, SD

ALL

Day 1
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MCP1 IL5 GCSF RANTES IL6 GRO IL17a IL12p70
4285.1, 864.7 1814.1, 359.1 1274.3, 390 7884.2, 2095.3 1196.6, 428.2 5480.9, 1427.4 2163.1, 512.6 1813.2, 426.6

r -.438** -.377** -.303* -.370** -.311* -0.247 -.352** -.362**

p-value 0.000 0.002 0.016 0.003 0.013 0.051 0.005 0.004
4744.6, 679.1 1559.6, 365.4 980.1, 346.7 11585.7, 1941.9 921.7, 329.5 6599.9, 1571.7 1976.7, 483.3 1484.6, 387.5

r 0.102 -0.509 -0.424 -0.356 -0.322 -0.220 -0.542 -0.424

p-value 0.795 0.162 0.256 0.347 0.398 0.569 0.131 0.256
4339.5, 464.9 1767.4, 417.1 1220.2, 430.4 9226.8, 1066.4 1216.9, 455.6 5658.5, 1462.4 2182.8, 567.3 1833.8, 602.2

r -.767* -0.517 -0.317 -0.400 -0.167 -0.267 -0.517 -0.450

p-value 0.013 0.161 0.422 0.299 0.680 0.503 0.161 0.235
5164.2, 1216.7 1935.6, 335.1 1451.9, 365 7826.4, 764.1 1350.5, 463 5527.8, 1423.1 2428.4, 472.6 1918.1, 435.4

r -0.611 -0.494 -.676* -0.611 -.770* 0.042 -0.084 -0.561

p-value 0.082 0.185 0.044 0.082 0.012 0.918 0.837 0.121
3948.4, 731.6 1890.4, 190.5 1318.7, 298 7106.1, 824.9 1183.5, 381.6 5609.5, 1440.6 2144, 474.3 1937.8, 230.2

r -0.317 -0.567 -0.450 -0.467 -0.383 0.017 -.683* -0.617

p-value 0.422 0.115 0.235 0.215 0.322 0.967 0.041 0.078
3741.4, 850.3 1605.4, 423.3 1140.1, 447.8 6665.5, 1535.4 1076, 488.8 4401.2, 805.1 1828, 642.6 1610.4, 462

r -0.200 -0.250 -0.583 -0.300 -.683* -0.200 -0.083 -0.200

p-value 0.619 0.532 0.102 0.448 0.041 0.619 0.838 0.619
4008.5, 668.9 1925, 353.8 1359.1, 433.6 6450.3, 684.9 1275, 499.1 5387.1, 1476.4 2249.8, 547.3 1927.7, 380.2

r -0.387 -0.639 -0.303 -0.067 -0.319 -0.151 -0.328 -0.529

p-value 0.318 0.064 0.444 0.869 0.418 0.709 0.405 0.149
4048.8, 460.4 2015.2, 179.7 1449.8, 248.3 6328.9, 438.7 1352.9, 305.9 5182.4, 1169.1 2331.8, 185.6 1980, 229.7

r -0.228 -0.245 -0.228 -0.498 -0.101 -0.160 0.354 -0.549

p-value 0.570 0.541 0.570 0.181 0.803 0.692 0.364 0.131

Mean, SD

Mean, SD

Mean, SD

Mean, SD

Mean, SD
Day 3

Day 5

Day 10

Day 14

Day 20

Day 24

Spearsman Correlation
with Pain Score

Spearsman Correlation
with Pain Score

Spearsman Correlation
with Pain Score

Spearsman Correlation
with Pain Score

Spearsman Correlation
with Pain Score

Spearsman Correlation
with Pain Score

Spearsman Correlation
with Pain Score

Spearsman Correlation
with Pain Score

Mean, SD

Mean, SD

Mean, SD

ALL

Day 1
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Supplementary Table 9-6. The OARSI OA scores and IF findings of all joints 

 
  

Surface 0%
Mid depth
50%

Tidemark
100%

Medial
Zone 1

Central
Zone 2

Lateral
Zone 3 Total

1 No 0 0 0 0 0 0 0 0 0 0 0
2 Yes 453 175 43 1 0 0 1 869 538 0 0
3 Yes 0 0 0 0 0 0 0 0 0 0 0

1wk mean 66.67% 151.00 58.33 14.33 0.33 0.00 0.00 0.33 289.67 179.33 0.00 0.00
4 No 0 0 0 0 0 0 0 0 0 0 0
5 Yes 435 0 0 3 5 5 14 2374 1126 0 4
6 No 0 0 0 0 0 0 0 0 0 0 0

2wk mean 33.33% 145.00 0.00 0.00 1.00 1.67 1.67 4.67 791.33 375.33 0.00 1.33
7 Yes 0 0 0 0 0 0 0 0 0 0 0
8 Yes 0 0 0 0 0 3 3 670 391 0 0
9 Yes 0 0 0 0 0 0 0 0 0 0 0

3wk mean 100% 0.00 0.00 0.00 0.00 0.00 1.00 1.00 223.33 130.33 0.00 0.00
10 Yes 1056 416 0 0 2 3 5 1108 611 4 4
11 Yes 924 508 0 0 5 5 10 1473 465 4 4
12 Yes 986 265 0 0 5 4 9 1279 596 4 4
13 Yes 932 366 0 0 2 5 7 1286 318 4 4
14 Yes 560 0 0 0 4 5 9 807 0 3 3
15 Yes 773 158 0 0 3 5 8 1233 140 4 4
16 Yes 777 0 0 0 2 5 7 965 149 4 4
17 Yes 1034 459 0 2 4 5 11 1438 678 4 4
18 Yes 847 337 0 0 3 4 7 1209 330 4 4

4wk mean 100% 876.56 278.78 0.00 0.22 3.33 4.56 8.11 1199.78 365.22 3.89 3.89

4

1

Significant
degeneration

width (um)
Osteophytes

Synovial
inflammation

2

3

Week Animal
CCL22

staining

Matrix Loss Width (um) Degeneration Score
Total degeneration

width (um)
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Supplementary Table 9-7 Correlation between CCL22 and OARSI scores 
 
  Matrix Loss Width (um) Degeneration Score Total 

degeneratio
n width 
(um) 

Significant 
degeneratio
n width 
(um)  

Osteophyt
es 

Synovial 
inflammati
on 

Surfac
e 0% 

Mid 
depth 
50% 

Tidemar
k 100% 

Medial 
Zone 1 

Central 
Zone 2 

Lateral 
Zone 3 

Total 

Spearman 
Correlation  
with OARSI 
Score 

r .786* 0.587 N/A 0.577 0.334 -0.483 0.337 0.476 .905** 0.577 0.577 
p-value 0.021 0.126 N/A 0.134 0.419 0.225 0.414 0.233 0.002 0.134 0.134 

 
 



 

185 
 

Chapter Ten: Appendix 

10.1 A Prospective Study of Serum Cytokine Profile in Individuals at Risk of Post-

traumatic Osteoarthritis (324) 

Authors: Guomin Ren, Jackie L. Whittaker, Carolyn. A. Emery, Roman J. Krawetz 

Purpose 

There is increasing evidence that low-level chronic inflammation plays a pivotal role in 

the onset and pathogenesis of osteoarthritis (OA). In previous studies, we successfully 

utilized cytokine association networks to identify a conserved signature for MRI-

defined OA in individuals at risk of post-traumatic OA. However, the value of MRI-

defined OA as an early OA diagnostic remains under debate. Therefore, the purpose of 

this study was to: 1) compare serum cytokine profiles in participants at risk of OA due 

to a youth sport-related intra-articular knee injury 3-10 years previously (with and 

without MRI-defined OA; MRI+ and MRI-) with healthy controls and individuals 

clinically diagnosed with knee OA; and 2) determine if participants at risk of OA with 

MRI-defined OA at baseline demonstrate inflammatory profiles more similar to 

participants with a clinical diagnosis of OA with successive annual follow-ups. 

 

Methods 

Participants: 

Risk of OA: A sub-sample (n=24) of the Alberta PrE-OA (Youth Prevention of Early 

Osteoarthritis) cohort that had completed baseline MRI studies and 3 years (baseline, 
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year 1 and year 2) serum cytokine profiling. This included 10 MRI + and 14 MRI - 

participants. 

Control: Healthy volunteers (n=30) recruited at the Human Performance Lab at the 

University of Calgary. 

OA: Individuals with a clinical diagnosis (Sport and Exercise Medicine Physician) of 

knee OA (n=30).  

 

Procedures: 

At baseline individuals at risk of OA underwent bilateral routine clinical MRI (axial, 

coronal and sagittal proton density and proton density fat saturation sequences; 1.5 

Tesla) studies. MRI defined-OA was based on established criteria and derived from 

MRI OA Knee Scores. Inflammatory profiles (41 cytokines) from serum samples 

collected at baseline, year 1 and year 2 were analyzed using the Human Cytokine Panel 

(Millipore) on the Luminex platform. 

 

Data Analysis 

One-way ANOVA, Principle component analysis (PCA) and visualization were 

performed using SPSS 24.0 (SPSS, Inc., Chicago IL) with α=0.001 (α=0.05/41 

comparisons≈0.001). Cytokine networks for Risk of OA (3-time points), Control and 

OA groups were created and analyzed using R and minet package as previously 

described. Briefly, for all cytokine pairs, the pairwise mutual information, which was 

considered as cytokine interaction strength, were calculated. Then, by applying the data 
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processing inequality, most indirect interactions (lowest strength, or smallest MI value 

of any 3-cytokine loops) were removed. Finally, weighted networks were constructed 

with cytokines as nodes and remaining interactions as connecting lines. Network 

connectivity was defined as the average betweenness of all cytokines in the network. 

 

Results 

The mean age of Risk of OA, Control and OA participants were 22.6 ± 2.3, 40.0 ± 9.5, 

60.4 ± 10, respectively. Nine individual cytokines (EGF, Eotaxin-1, GROa, CCL22, 

IP10, CCL2, MIP1a, MIP1b, RANTES, VEGFa) and overall cytokine profiles were 

significantly different across groups (Risk of OA, Control and OA). These differences 

could be easily visualized by plotting 3 components from PCA (Figure 10-1). Although 

overlap existed, and there was no difference between the MRI+ and MRI-, the changes 

between annual testing were statistically significant within the Risk of OA group. With 

that said, this group was slowly departing from, rather than moving towards, OA 

(regardless of MRI-defined OA status; Figure 10-2a, b). A similar result was found in 

cytokine association networks in terms of the network connectivity. The connectivity 

of Risk of OA (MRI+ and MRI- together) networks decreased at year 1 and year 2, 

increasing the gap between the Risk of OA and OA groups (Figure 10-2c). The OA 

network had the highest connectivity, indicating that cytokines in the OA group were 

more highly correlated with each other than the other groups. This is consistent with 

our previous studies. 
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Conclusions 

We have identified that individuals at risk of OA have a unique cytokine profile, which 

is distinct from controls and individuals with a clinical diagnosis of OA. Although the 

cytokine profile of the MRI+ and MRI- changed over time, it was not in the direction 

of either the control or clinically diagnosed OA groups. One possible explanation is that 

another covariate (i.e., age, sex) is influencing serum cytokine profile. Future studies 

with a larger sample size that enable multivariable analyses should be undertaken. 

 

 
Figure 10-1. Scatter plot of 3 principle components of all groups 
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Figure 10-2. Scatter plot of At Risk (MRI+ only) and OA. B. Scatter plot of PrE-
OA (MRI- only) and OA. C. Connectivity of networks for At Risk (3 time points 
separately) OA and control 

 

  



 

190 
 

10.2 Network Analysis of Cytokine Profiles Reveals Potential Biomarkers for 

MRI-defined OA 

Authors: Guomin Ren, Jackie L. Whittaker, Carolyn. A. Emery, Roman J. Krawetz 

Purpose 

Previous studies have shown that inflammatory mediators such as cytokines might be 

potential biomarkers for detecting the onset of osteoarthritis (OA). However, classical 

statistical methods (e.g. compare means of variables) might not be sufficient to 

interrogate the complexity (e.g. redundancy, routes of feedback and cross-talk) of 

cytokine signaling in the pathogenesis of OA. Network-based approaches have recently 

emerged as one of the powerful systems biology tools for biomarker discovery studies 

and understanding complex biological systems. The aims of this study were: 1. To 

construct two cytokine interaction networks for participants with and without MRI-

defined knee OA. 2. To compare two networks and identify the most different 

cytokine(s) between two networks. 

 

Methods 

Data acquirement 

Fifty participants who sustained a youth sport-related intra-articular knee joint injury 

and 50 non-injured controls with sex and sport matched to the knee injury cohort were 

included in this study. Cytokine profiles in serum samples from the cohorts were 

analyzed using the Human Cytokine Panel (Millipore) on the Luminex platform. The 

following cytokines were examined by Luminex in this study: EGF, Eotaxin, FGF2, 
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Flt3L, Fractalkine, GCSF, GMCSF, GROα, IFNα2, IFNγ, IL1α, IL1β, IL1rα, IL2, IL3, 

IL4, IL5, IL6, IL7, IL8, IL9, IL10, IL12 (p40), IL12 (p70), IL13, IL15, IL17A, IL18, 

IP10, MCP1, MCP3, MDC, MIP1α, MIP1β, PDGFAA, PDGFAB/BB, RANTES, 

sCD40L, TGFα, TNFα, TNFβ, VEGFA. MRI OA features including bone marrow 

lesion (BML), cartilage, meniscus, ligament and synovitis in both injured and non-

injured knees were evaluated using MRI OA scores (MOAKS). MRI-defined OA was 

based on established criteria using MOAKS. 

Network Construction 

Two networks were constructed independently from cytokine profiles of participants 

with and without MRI-defined OA followed the following steps. First, the pairwise 

mutual information (MI) were estimated for all cytokine pairs. MI is a measure of the 

mutual dependence between two variables similar to Pearson Correlation but more 

robust to manifest dependency. In this study, MI is considered as the strength of 

pairwise cytokine interaction. Second, by applying the data processing inequality (an 

information theoretic concept), most indirect interactions (lowest strength, or smallest 

MI value of any 3-gene loops) were removed. Finally, weighted networks were 

constructed with cytokines as nodes and remaining interactions as edges. ARACNe 

software was used for network construction. 

Network Analysis 

To quantify the topology of two networks, 6 node parameters (node betweenness, 

bridging, degree, eigenvector, radiality, stress) of both networks were computed using 

CentiScaPe plugin implemented in Cytoscape 3 software. To identify the most different 
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cytokines between 2 networks, the dynamic rewiring score (Dn-score), which is the 

standardized Euclidean Distance of node vectors in two networks was introduced to 

measure the “topological change” of each cytokine between 2 networks. Dn-scores 

were calculated using DyNet plugin implemented in Cytoscape 3 software.  

 

Results 

The topology of two networks were visually different (Figure 10-3). The average 

distance (interaction) of OA network (0.00697) was lower than that of non-OA network 

(0.00755). For most cytokines, different patterns were present in all 6 parameters 

between two networks (Figure 10-4).  The top 5 different cytokines were identified as 

follows: GROα, CCL22, Fractalkine, IP10 and PDGFBB based on degree corrected 

Dn-score of each cytokine. 

 

Conclusions 

We have constructed cytokine networks for participants with and without MRI-defined 

OA. The two networks presented different topologies even though the levels of each 

cytokine expression were relatively indiscriminate between the two groups. The results 

indicated that differences existed in cytokine interactions between two groups and the 

network-based analysis approach we use was sufficiently sensitive to detect these 

differences. Moreover, the OA network had a lower average distance than the non-OA 

network. This suggested that cytokine interactions/associations are stronger in MRI-OA 

participants than those in non-MRI-OA. We also identified top 5 different cytokines 
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between two networks. The results were consisted with our previous studies in which 

both CCL22 and IP10 were found correlated with OA pain and structural changes 

within the joint. Overall, we have developed a new method to investigate cytokine 

profiles for the onset of OA and identified potential biomarkers for MRI-defined OA. 

 

 

Figure 10-3. Cytokine networks of OA and non-OA group. Green edges: Interactions 
only exist in OA. Red edges: Interactions only exist in non-OA network. Grey edges: 
Interactions exist in both networks. 
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Figure 10-4. Heatmap of parameters of two networks. Network parameters are 
different between participants with vs without MRI-defined. 
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10.3 Copyright for Chapter Two 
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10.4 Copyright for Chapter Three 

  

Dear Guomin, 
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The open access articles published in BioMed Central's journals are 
made available under the Creative Commons Attribution (CC-BY) 
license, which means they are accessible online without any 
restrictions and can be re-used in any way, subject only to proper 
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citation).  
 
The re-use rights enshrined in our license agreement 
(http://www.biomedcentral.com/about/policies/license-
agreement) include the right for anyone to produce printed copies 
themselves, without formal permission or payment of permission 
fees. As a courtesy, however, anyone wishing to reproduce large 
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