THE UNIVERSITY OF CALGARY

Shop Floor Scheduling and Control with the Object-Oriented Analysis and
Design Approach

by

William O

A THESIS
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN
PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF MECHANICAL
AND MANUFACTURING ENGINEERING
CALGARY, ALBERTA

JUNE, 2000

© William O 2000

il

National Lib Bibliothéque nationale
of Canada id du Cal:\‘gga
uisitions and Acquisitions et
Bibliographic Services services bibliographiques
Ottawa ON K1A ONG Otas ON' K14 ON4
Canada Canada
Your Sle Votre réidrence
Qur fle Notre référance
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canadi

0-612-65007-3

ABSTRACT

Researchers have proposed various control architectures for shop floor manufacturing
systems, and each has its characteristics, advantages and disadvantages. Therefore when
designing a control system, it is important to obtain a natural decomposition of the
control algorithms so that the software control model can be decoupled from any
preconceived control structures. This provides researchers with the flexibility to
implement certain control algorithms in various control forms, and an objective
comparison of these alternative control methodologies can then be made.

In this research, we will first discuss why the object-oriented analysis and design
approach can be used to help achieve the above-mentioned objective. Some problems in
existing research in distributed control systems will be investigated and discussed. As
well, the COM/DCOM technology will be used to build some platform independent
software control modules that can be easily distributed to and implemented by other

researchers.

ACKNOWLEDGEMENTS

Science is nothing but

trained and organized common sense.

Thomas H. Huxley

First of all, I would like to express my special thanks to my supervisor, Dr. Robert W.
Brennan for the professional guidance and inspirations that he provided me throughout
this work, and for all his efforts in helping me correct the grammatical errors of this
thesis.

As well, I would also like to thank the Faculty of Graduate Studies, the
Department of Mechanical Engineering, and the Division of Manufacturing Engineering
for their generous financial support. And I am grateful to the support staff of the
Department of Mechanical Engineering for all their helps.

Finally, I would like to express my thanks to Dr. Robert C. Kremer and Dr.
Douglas H. Norrie for being on my examining committee, and to Dr. Norrie for his
inspiring teaching on the Object-Oriented technology. I also greatly appreciated all the

support from everyone in my family.

iv

TABLE OF CONTENTS

ApPProval Page ... el i
J-Xo 15 1 o 12 PP U ii
Acknowledgement.o e e v
Lol G R 0] 12 ¢ | RPN \
| ISR BT (PP vii
| T A0 Y A] U O X
CHAPTER ONE: INTRODUCTION ... 1
1.1 Control Activities in the Shop Floor Control Systemscoooiiiiiiiiiiiiiiienn. 2
1.2 Contro]l Architecturesouei it ettt e s 5
1.3 ThesiS OVerVIEW ...ttt et te et aeeaae e ean e d
CHAPTER TWO: LITERATURE REVIEW 9
2.1 Centralized Shop Floor Control Systemcoouiiiniiiiiiiiiii e e e 9
2.2 Decoupling the Control Function from the Scheduling Function 11
2.3 Distributed Scheduling Algorithms and Real-time Distributed Scheduling 13

2.4 Jobs Sequencing and Dispatching Routing Decision in Multi-agent Heterarchcial
[000) 011 () BN TS (1 1 - S O 15
2.5 Shop Floor Control Architectures.cooiiinitiiiiiiiiicii v e e ceaas 18

2.5.1 Structuring Control Algorithms with the Object-oriented Analysis and
Design Approach..........o.eiiiii i e 21
CHAPTER THREE: MOTIVATION FOR THIS RESEARCH23
3.1 Research ObBJeCtiVESooiuueiniii i e e anas 23
3.2 Research Approach ... 24
3.3 Anticipated Contributions of this Research ... 27

CHAPTER FOUR: EXPERIMENTAL MODEL DEVELOPMENT28

4.1 Characteristics of the Manufacturing Systemc.occoeemiiiiiiiiiiiiiiiaiineenens 29
4.2 Scheduling Algorithm e 30
4.3 Analysis and Design of the Scheduling Application with the Object-oriented
APPIOACH L e e 32
4.3.1 Scheduling Algorithm Walkthrough 34
4.3.2 Conceptual Model for the Scheduling Problem 40
4.3.3 Interaction Models for the Scheduling Problem 44
4.4 Identifying Control Agents for the Distributed Control System 56
4.5 The Experimental Testhedcoooiiiiiiiii it e e e 58

CHAPTER FIVE: CONTROL ALGORITHMS IN DISTRIBUTED

SCHEDULING AND CONTROL SYSTEMS ... e 63

5.1 Control System Flexibility against Disturbances for Different Planning Horizons ...64
5.2 The Performance of the Distributed Scheduling and Control System under Various

80001 (0 I 1 L P 68
S.2.1 Production Modelooiiiiiiiiiiiiiiiiiiiiii et e ee e 68
S2.2Experimentsand Resultst 70

5.2.2.1 Control Srategiesoooeiiiuiiiiiiiciiiiiinreatanan e 70

S22 2 EXPETIMENLS .. .oununnnneeiriiieieneretennnnceaecaseeanarannaaaeaannnss 76
5.2.2.2.1 Experiment 5A: Performance of Different Control
Strategies in Manufacturing Systems with Various Disturbance
Frequenciescoommiiiiiiii ittt ee e eaeenas 77
5.2.2.2.2 Experiment 5B: Performance of Different Control
Strategies in Manufacturing Systems with Various Processing

Varabilities ...l vt eeteeneeaneaneeeaneean 82

5.2.2.2.3 Experiment SC: Unpredictability of Heterarchical

Control SYSIEIMS .. o.ovvemiiii it ceereaeiceeaneenannaes 85
5.3 CONCIUSION . cnecniii et ettt et e e e 88

CHAPTER SIX: JOB SEQUENCING AND DISPATCHING
ROUTING DECISIONS IN THE MULTI-AGENT

HETERARCHICAL CONTROL SYSTEMS ... 91
6.1 Experimentsand Results ...t 92

6.1.1 Experimental Models........... ..o 93

6.1.2 Experiment 6A: Zero Disturbancesoooiiiiiiiiiiiiii 96

6.1.3 Experiment 6B: One Machine Failure Disturbance 98

6.1.4 Experiment 6C: Two Machine Failure Disturbance 99

6.1.5 Experiment 6D: Four Machine Failure Disturbances 100

6.1.6 Results DISCUSSIONouciiumniniiiieiiii e e eees 101

6.2 ConClUSION ...t e e 113

CHAPTER SEVEN: IMPLEMENTING CONTROL AGENTS AS

COM/DCOMOBIECTS ... e 115
7.1 Brief Introduction to COM/DCOM ...ttt eeeeaeeaes 116

7.2 Building a Distributed Manufacturing Control System with COM/DCOM118

7.2.1 Design Background ...t 118

7.2.2 Experimental Model Design and Implementation 120

.3 CONCIUSIONttt iiieiii it ee et e et e tee e e st taesaeensreaonaeeaannaseearaneen 134

Bl SUMMAIYoutiiititie e et erane e eaeannaaanneceeeaanarraaaenneannas 136
EeIP A 000) o1 151014 1) | - O 139
8.3 Further Research DITECHONScoounen i ieee ittt te e eere e eereeeeaaenes 141
REFERENQ CES.ottt anaees 143

Vi

2.1

23

2.4

4.1
4.2
43
4.4
4.5
4.6
4.7
4.8
49

5.1
5.2
53
54
55
5.6
57
5.8
5.9
5.10

5.11
5.12
5.13
6.1
6.2
6.3

64
6.5

LIST OF FIGURES

The main functional activities for shop floorcontrol...........ccooeeimiiiiiiiniiiaiinnne. 3
Messages passing between control entities and functional entities...................coo.oe.s 4
One of the possible configurations for the shop floor control system......................... 5
Four basic forms of control architecture (Diltsetal. 1991) ...l 5
The centralized shop floor control architecture 10
A holonic architecture for scheduling and on-line shop floor control (Valckenaers et al.
8L) S OSSP 12
Heterarchical manufacturing system scheduling and control, modified from (Duffie et al.
|52) U 14
The decomposition approaches for control systems with centralized, hierarchical and
heterarchical control form, respectivelyc.oooiiiiiiiiiiiiiii e 20
The conceptual model for the scheduling problem ... 43
Job ticket to record progress (Voris 1966) ..ottt veiaaaaens 44
The collaboration diagram for sending a job to the station for its next operation48
The collaboration diagram formethod 1o i, 50
The collaboration diagram formethod 2o 50
Collaboration diagram for steps 3and 4 in Algorithm 4.2 ... 52
The class diagram for the scheduling problem 54
The control structure for the experimental model ..o, 59
The scheduled task lists for workstations WS1and WS2 ..., 61
Gantt chart for the production system without any disturbance 65
Ganttchart formodel 1o oo i e 65
Ganttchart formodel 2 e 66
Ganttchart formodel 3 e as 67
The layout of the manufacturing SYSteIMcociiieuiumiiiii i raeaeeaees 69
Anexample Gantt Chartooviriiiiii ittt i ce e vrer e reaaernneraen 70
Anexample Gantt Chartot 72

The collaboration diagram regarding WS2 agent’s decision to call for rescheduling74
The collaboration diagram regarding WS1 agent’s decision to call for rescheduling75
The mean flow time (minute) of various control approaches in different ‘disturbance

freqUENCy’ teSt SCEMANIOS .. .u.viuniiiiiit it reittt sttt itasainnasrinaansanes 78
95% confidence interval cycle time for the WAIT_INTEL control approach in the 60%
disturbance teSt SCENATIO «..v.uvernnniiiiiiiitriiiiicsieaiat it riireeiiiiiseenesenenaanannes 79
Results of the rescheduling frequencies of the WAIT INTEL and NO_WAIT
approaches in various test SCEMATIOSoceeneinieuntereaetierreenmernreraeerenneeennes 81
The mean flow time (minute) of various control approaches in different ‘processing
variability’ teSt SCEMATIONS .-coueeiniiiiiiiiieiiiiiiicarraietaacertracnenaneareeeasssnnncons 83
An example task list for workstation WS1 o i 96
The mean flow time (minutes) of various control approaches in different test scenarios
fOr EXPErIMENE GAooiiiii it iiieiteeinneaeeeeaerensaaaneaaerarraranneannnnsasannns 97
The graphical interpretation for the results shownin Table 6.3 98
The graphical interpretation of the results showninTable 6.4 99
The graphical interpretation of the results shown in Table 6.5 100

vii

6.6

6.7(a)
6.7(b)
6.7(c)
6.7(d)
6.7(e)
6.7(f)
6.7(g)

6.7(h)
6.8

6.9

6.10
6.11
6.12

6.13

6.14
6.15

7.1
7.2
7.3
74
75
7.6
7.7
7.8
7.9
7.10
7.11
7.12

95% confidence interval result of the AUC_BID approach in Experiment 6B in the 70-

8] 3 (o o T S 101
Results for 10 Jobs ... ettt 103
Results for 20 Jobs ...t 103
Results fOr 25 JOBS ...oonnei et 103
Results for 30 Jobs ... e ettt 103
Results fOr 35 JObS ..o et 104
Results for 40 Jobs ...t 104
Results fOr 50 JODS ..ottt e 104
Results for 7O JODSoinii ittt et 104
The results of the AUC_BID control approach in various test scenarios 106
Results of the JSEQ control approach in various test SCenariosc..ceeeeeenen.. 107
The results of the COMT+AUC+JSEQ control approach in various test scenarios107
The results of the AUC+JSEQ control approach in various test scenarios 108
Performance ratio of the other control approaches versus the AUC+JSEQ control

approach inexperiment 6Ao it aen 110
Performance ratio of the other control approaches versus the AUC+JSEQ control

approach inexperiment 6Do 110

Results of the totChangeOffer and the totChangeQ frequencies in the experiment 6A .112
The results of the ratio of the totChangeQ versus the totChangeOffer in the experiment

. - O 112
ACOMO0bJect dia@rarmo.eiiieiieiiii it eee et ae e earreeaneeaanneen 117
Specification of machine holono i, 122
The mediator COM diagramooveueiiiiii i eeee e veeer e e aannanns 123
The job COM iagramoouiiieeiiie et eee i eeameeareeeaneeanneens 123
The machIntel COM diagramooniueiiiiniii i ee e eie e eeanes 124
The machSimp COM diagram e enaes 124
The station COM diagram ..ot ittt e 125
The production plant layoutoooiiiiiiiii i e aeaaanns 127
The containment diagram of the station object 131
The layout of the networking model ... e 132
The manufacturing resources on a nEtwWork COMPULETcoooiiciiiemiiiiieineaannnenn 133
The status of station 100 attime Ot eiciee e 133

viii

4.1
42
43
5.1
52
5.3
54
5.5
5.6
6.1
6.2
6.3
6.4
6.5

6.6

7.1

LIST OF TABLES

Process plan for the jobs (for the operation, x/y means x time units at station y) 34
Part of a non-delay schedule generation example ...t 35
The scheduled operation record (processing plan) forjob J1 ... 61
Process plan for the jobs (for the operation, x/y means X time units at station ¥) 64
Process plans and the number of jobs for the experimental models 77
The mean flow time (minute) of various control approaches in different ‘disturbance
freqUENCY’ tESt SCENATIOS «...tumitiinintiieiicete et eeaetan e aeeeanerteeneeareisraaneeasnnans 78
The mean flow time (minute) of various control approaches in different ‘processing
variability’ teSt SCENAMIOScuoineiiiiiniiii ittt ee it e 83
Process plans and the number of jobs for the experiment 5C 86
The mean flow time (minutes) of various control approaches in different test scenarios
for experiment SC ... e 88
Process plan of the various JOb types ..o 96
The mean flow time (minutes) of various control approaches in different test scenarios
forexperiment GA i 97
The mean flow time (minutes) of various control approaches in different test scenarios
forexperiment 6B i 98
The mean flow time (minutes) of various control approaches in different test scenarios
forexperiment 6C e e e 99
The mean flow time (minutes) of various control approaches in different test scenarios
forexperiment 6D i e 100

The results of the total number of times that the job agents in the COMT+AUCHISEQ
control system had been notified by the workstations about changes in their ‘quoted start
time’, and the total number of times that the jobs actually changed workstations 11t

Operation list forthe 3 JOb typescouiuiiiiiiiiii e 126

ix

CHAPTER 1

INTRODUCTION

Researchers have proposed various control architectures for shop floor manufacturing
systems, ranging from traditional centralized control to distributed control based on the
emerging distributed artificially intelligence (DAI). Recent researchers in intelligent
manufacturing systems have proposed to apply the agent technology, which is based on
the object-oriented control paradigm (Baker 1997), to shop floor control in order to

achieve objectives such as:

1) To improve the control system’s adaptability and fault-tolerance against disturbances

such as machine failures or rush orders etc.

2) To reduce the control software’s complexities so as to simplify the software

development, modification and maintenance.

Distributed scheduling algorithms have been used in many researches for
distributed control, but there is a general confusion regarding ‘decompose and distribute
the scheduling responsibilities’ and ‘eliminate the scheduling function’. In control
systems that still generate a pre-production schedule, it is important to loosen the
coupling between the control function and the scheduling function. This is an issue that
has not been discussed in most research that implements distributed contrel algorithms in
control systems. As a result, some of these distributed control systems might still have
difficulties with enhancing adaptability against disturbances in a stochastic

manufacturing environment. The market-based auction-bidding scheduling approach has

2
been commonly used by many researchers for distributed scheduling, but this approach

is mainly for exploring routing flexibility. To achieve certain global performance
objectives, job-sequencing mechanisms should also be considered and incorporated into
the control algorithms.

As mentioned above, researchers have proposed various control architectures, and
each has its characteristics, advantages and disadvantages (Diits et al. 1991). Research on
distributed control has primarily focused on control architecture issues (e.g., hierarchical
vs. heterarchical), but has not addressed the relationship between control algorithm and
control architecture. As a result, it is important to obtain a natural decomposition of the
control algorithms so that the software control model can be decoupled from any
preconceived control structures. This provides researchers with the flexibility to
implement certain control algorithms in various control forms, and an objective
comparison of these alternative control methodologies can then be made.

In this chapter, we will first describe the main control activities in shop floor
control systems. Then a brief discussion of current research in manufacturing control
architectures will be given. In the last section, an overview of the structure of this thesis

will be presented.

1.1 Control Activities in the Shop Floor Control Systems

A shop floor control systern mainly embodies decision-making responsibilities such as
part scheduling, part routing and resource allocations (Dilts et al. 1991). Bauer et al. have

defined the three main elements for shop floor control as (Bauer et al. 1994):

1) Scheduling — To develop a plan based on timely knowledge and data which will

ensure all the production requirements are fulfilled.

2) Dispatching — To implement that plan taking into account the current status of the

production system.

3) Monitoring — To monitor the status of vital components in the system during the

dispatching activity.

In shop floor control systems, scheduling, dispatching, monitoring, and machine
execution (i.e., loading code, and initializing, running, and stopping processes) are
functional activities, while control encompasses processes and procedures that ensure that
the functional activities are carried out in the desired manner (i.e., to ensure that the
functional activities take place in appropriate relationship to each other). Depending on
the control architecture of the system, functional activities such as scheduling,
dispatching and monitoring can be done by one entity in a system or can be distributed
over many structures. Similarly, control monitoring can be done by one entity in a system
or can be distributed over many structures. Figure 1.1 shows the main functional

activities for the shop floor control.

Functional Activities

roxa+4Z00

Figure 1.1: The main functional activities for shop floor control.

As mentioned above, shop floor control is concerned with processes and
procedures that ensure that the functional activities take place in appropriate relationship

to each other. As a result, messages will pass between control and functional entities as is

illustrated in Figure 1.2 below.

Control Entities

Messages between
&4 control/functional

oo _©

‘ Schedulez” Schedule
O O
OMoni r

O O Cg CBispatt.:h O

Functional Entities

Figure 1.2: Messages passing between control entities and functional entities.

As well, depending on the control architecture that is implemented, the control
and functional entities in a shop floor control system may be organized in various
configurations. Figure 1.3 below shows one of the possible configurations. The shop
floor control architectures will be further discussed in §1.2 below .

CONTROL FUNCTIONAL
STRUCTURE ACTIVITIES

__________________ » () Dispatching (e.g., to
"""""" three separate shop
floors)
___ (O Initial Scheduling

0ol

-
-
-
-
-
——
-

. 111 ----------------- ~>O Dispatching (e.g., to

machine groups in shop
floor A)

] » (O Rescheduling of

—————— machine X
® ® 4

Figure 1.3: One of the possible configurations for the shop floor control system.

1.2 Control Architectures

While reviewing the evolution of control architectures for the automated manufacturing
systems, Dilts et al. (1991) have identified the four basic forms of control architecture,
namely, centralized, proper hierarchical, modified hierarchical, and heterarchical as
shown in Figure 1.4. In the figure, the boxes represent control components, circles

represent manufacturing entities.

Centralized ﬁ ﬁ Heterarchical

Proper Modified
Hierarchical Hierarchical

Figure 1.4: Four basic forms of control architecture (Dilts et al. 1991).

6
The centralized control architecture has a single control unit responsible for all

planning, control, and information processing functions. Under this control structure,
overall system status information can be retrieved from a single source. Though the
central control unit’s accessibility to complete global information makes optimization a
more readily achievable prospect, the centralized control structure has drawbacks such as
slow and inconsistent speed of response (when the system gets larger), difficult to modify
control software, and the system’s survival relies totally on the reliability of a single
control unit (Dilts 1991).

The proper hierarchical control architecture is based on the concept of levels of
control, wherein several control components are arranged in a tree structure and strict
master/slave relationships are established between decision levels. Commands flow top-
down along the hierarchy tree while feedback information flow bottom-up and data are
aggregated at each level. The static and deterministic nature of the hierarchical control
architecture allows it to work well under environments of certainty and stability. But the
rigidity and highly-coupled decision levels of the control structure gives it the
disadvantages of having difficulties of making future unforeseen modifications and
dealing with dynamic adaptive control (Dilts 1991), and low response time and
robustness against disturbances in manufacturing system (Parunak 1993, Valckenaers et
al. 1997a, Bongaerts et al. 1998).

The modified hierarchical control architecture was introduced in an attempt to
overcome some of the shortcomings of the proper hierarchical structure. In modified
hierarchical form, the subordinates are granted some degree of local autonomy. So by
cooperating with some other peer subordinates, the subordinates might be able to release
some rudimentary responsibilities from the supervisory control level, and thus enable the
supervisor to respond more readily to subordinate requests. Also, by having the
subordinates act ““as an autonomous subsystem within the hierarchy, in the sense that they
do not require continuous supervision (they) are characterized by some degree of
robustness with respect to random disturbances™ (Dilts 1991). The drawbacks of the
modified hierarchical form are that it still bears most of the disadvantages of the proper
hierarchical form and has the connectivity problems with peer-to-peer communication

(Dilts 1991).

The heterarchical control architecture is a highly distributed form of control.
Every entity in the system has full local autonomy and there is no centralized or explicit
direct control (supervisor/subordinate) existing in the system. Control decisions are
reached via peer-to-peer co-operation and mutual agreement among the participating
entities, and information is exchanged freely among them. The claimed advantages of
heterarchical control architecture include: 1) enhancement of the control system’s
robustness, flexibility and expandability (Saad et al. 1997), 2) reduced software
complexity and development cost, improved fault tolerance, and higher maintainability
and modifiability due to enhanced modularity and self-configurabiitiy (Duffie & Prabhu
1994), 3) high robustness against disturbances in manufacturing (Bongaerts et al. 1998).
However, due to the fact that in a heterarchical control system, entities use purely
localized information and all forms of hierarchy are eliminated, heterarchical control
turned out to have problems with global optimization and predictability of system

behaviors (Valckenaers et al. 1997a, Bongaerts et al. 1998).

1.3 Thesis Overview

The objectives of this research are mainly concerned with identifying and investigating
some of the problems in the existing research in the shop floor control methodologies.

These probiems include:
- the decomposition approaches used for designing the control systems,

- confusions regarding the concepts of the ‘distributed scheduling” and ‘real-time

distributed control’,

- the impact of the routing flexibility and the job sequencing control mechanisms on

the performance of a multi-agent heterarchical control system, and

- how to enhance the collaboration between researchers in developing alternative

control methodologies.

In Chapter 2, we will review some of the above mentioned problems in the
existing research in manufacturing system control. In Chapter 3, more detailed
description of the research objectives will be given. Also, the research approach and the
anticipated contributions of this study will be discussed. In Chapter 4, we will use the
object-oriented analysis and design approach to develop an experimental testbed that will
be used for conducting various experiments in the following chapters. The reason for
using the object-oriented methodology to design the control system used in the
experimental testbed will be explained in Chapter 4 as well. Then in Chapter 5,
experiments will be conducted to investigate and identify the role of the ‘control’
algorithm in the control systems that use the distributed scheduling approach to perform
pre-production schedules. These experiments are used for clarifying the confusion in the
existing research regarding the concepts of ‘distributed scheduling’ and ‘real-time
distributed control’. In Chapter 6, experiments will be conducted to identify the impact of
the job routing and job sequencing control mechanisms on the performance of a multi-
agent heterarchical control system in different manufacturing environments.

In Chapter 7, an attempt will be made to explore the opportunity of enhancing the
collaboration between researchers by building some platform independent
(COM/DCOM) software control modules that can be easily distributed to and
implemented by other researchers. Finally, in Chapter 8, a conclusion regarding the work
in this study in the context of the general research objectives will be given. As well, the

contributions of this study and suggestions for future research work are discussed.

CHAPTER 2

LITERATURE REVIEW

In this chapter, we will first discuss some of the problems presented in traditional
centralized scheduling and control systems. While some researchers have showed that
decoupling the control function from the scheduling function can enhance the shop floor
control system’s flexibility against disturbances, current research in distributed
scheduling and control systems is mainly focused on discussing the distributed
scheduling algorithms, but fails to address the control algorithms. As resulted, some of
these distributed control systems might still have difficulties with enhancing adaptability
against disturbances in a stochastic manufacturing environment. We will further discuss
these issues in sections 2.2 and 2.3 below. In §2.4, we will discuss some of the problems
regarding the job sequencing and the job routing control mechanisms in current research
in the multi-agent heterarchical control systems. Then in §2.5, we will discuss some of
the approaches that researchers have used to design shop floor control systems, and see
why using the object-oriented analysis and design approach to structure the control
algorithms can help decouple the logical control model from any preconceived control

architectures.

2.1 Centralized Shop Floor Control System

Conventional shop floor control systems are centralized and usually implemented
with the control structures as shown in Figure 2.1 below. In Figure 2.1 (a) a, a central
computer plays both the roles of a scheduler and a controller, while in Figure 2.1 (b), the

10
scheduler and controller responsibilities are assigned to different processors. Both of

these control approaches are generally regarded as centralized shop floor control (Duffie
et al. 1994). In these approaches, the scheduler is responsible for doing all the decision-
makings regarding parts routing, operations sequencing, resources allocating etc., and the
controller is responsible for executing the plans generated by the scheduler and feeding

back the status of the shop floor to the scheduler when disturbances happen.

Central
Scheduler

Scheduler l T
¢ T Centrai

CENTRAL COMPUTER

Controller Controller
I\
A .
Resource J Part J Resource Part
Figure 2.1 (a) Figure 2.1 (b)

Figure 2.1: The centralized shop floor control architecture.

The tightly coupled master/slave relationship between the scheduler and

controller results in problems such as:

1) Low fault-tolerance. Failure of the scheduler, controller or central computer can cause

the control system to halt.

1
2) Compiex control software and difficulties with dealing with dynamic adaptive

control. The centralized control approach “leads to large, complex software systems
that are difficult to create, install, and modify, and yields schedules that are
vulnerable to changing circumstances on the shop floor” (Parunak 1993). Also, “It is
not unusual for schedule generation to take several hours and for shop floor
conditions to change significantly before the schedule is completely generated™
(Duffie et al. 1994), and this affects the control system’s response speed/adaptability

against disturbances.

2.2 Decoupling the Control Function from the Scheduling Function

Different agent-based shop floor scheduling and control approaches have been
proposed by a number of researchers to tackle the problems associated with the
centralized control system. These alternative approaches differ widely on what is
represented as an agent. In some approaches, an agent is assigned to each control node in
the hierarchical (centralized) control system (Parunak et al. 1998a, Bongaerts 1998),
while in the others, agents are associated with some physical manufacturing resources or
parts (Duffie et al. 1994, Sousa et al. 1997, Van Brussel et al. 1998). Shen et al. (2000)
have provided some classifications regarding agents in the manufacturing systems.

In control systems that contain a central scheduler, researchers have attempted to
enhance the control system’s adaptability against disturbances by loosening the coupling
between the scheduler and the lower level controllers (The term coupling refers to the
strength of the associations between objects or agents that is a result of connections
between them (Booch 1994, Shen 2000). This is accomplished by giving the controllers
which are responsible for executing the schedule a certain degree of intelligence and
autonomy so that they could handle the disturbances in real time. For instance, in
(Valckenaers et al. 1997b) (referring to Figure 2.2),

12
“Shop floor control is performed by both an on-line control system that reacts

to disturbances immediately and a reactive scheduler that does not react as fast,
but uses this larger time span to adapt the existing schedule to optimize giobal

performance”.

Reactive Scheduler Holon
On-iine Shop Floor Control Holon

T

Order Holon

(

Workstation
Holon

B!

Figure 2.2: A holonic architecture for scheduling and on-line shop floor control

(Vaickenaers et al. 1997b).

In Figure 2.2, each of the control entities in the system is represented by a holon,

which is defined as:

“An autonomous and cooperative building block of a manufacturing system for
transforming, transporting, storing, and/or validating information and physical
objects. The holon consists of an information processing part and often a physical

processing part. A holon can be part of another holon™ (Valckenaers et al. 1997a).

13
In this approach, scheduling is performed by the central (reactive) scheduler.

The local autonomy of the lower level control holons is mainly used for
dispatching/control purpose. That is, when disturbances happen and the (old) production
schedule is no longer feasible or the scheduler is not available or is busy in generating a
new schedule, the workstation, order or on-line control holons can make some local
decisions to react to disturbances in real time. This can enhance the control system’s

fault-tolerance and adaptability against disturbances.

2.3 Distributed Scheduling Algorithms and Real-time Distributed
Scheduling

Distributed scheduling algorithms have been used by many researchers (especially multi-
agent control systems) to generate a production schedule, but few have addressed how the
control agents should react in response to disturbances in real time. This might be
because of the confusion regarding the use of a distributed scheduling algorithm to
generate pre-production schedules and its use to implement real-time dynamic
scheduling. In the latter case, the scheduler role (or scheduling function) in the control
system is totally eliminated, and production decisions (resources allocation, part routings,

etc) are made in real time. In such an approach,

“Dynamic scheduling implies moving scheduling decisions from production pre-
planning to the FMS control system. Shifting these decisions into real-time
greatly increase over-all system performance by introducing the capability to
handle disturbances such as system component failures without operator
interaction” (Duffie et al. 1986).

But if the distributed scheduling algorithm is used to generate a pre-production
schedule, even in a heterarchical control system, there is still a tight coupling between the

local controllers and the generated schedule (referring to Figure 2.3).

14

Local
Scheduler

Local
Scheduler

Local
Scheduler

L T S T e T L L vipugUipi S U

Local
Controller

Local
Controller

Local
Controller

Manufacturing System

Figure 2.3: Heterarchical manufacturing system scheduling and control, modified from
(Duffie et al. 1986).

This is because a production schedule serves as a virtual contract that binds all the
participating control entities together to accomplish a certain tasks. For instance, in
control systems that use auction bidding scheduling algorithms (Duffie et al. 1994, Sousa
et al. 1997) to generate a schedule, once a schedule is generated, each part and resource
agent is committed to part of the common schedule (future plans). That is, a resource
agent is committed to provide its capacities to certain parts at certain time intervals, and a
part agent is committed to have its operations processed by certain resources at certain
times. When unexpected disturbances happen, if the affected control agents do not have
the responsive mechanism to react to these disturbances in real time so that the
production plans will be less affected, a rescheduling process will usually be invoked
(Duffie et al. 1994) for the control entities to generate a new schedule. Even using
distributed scheduling algorithms, a new schedule might still take some time to be
generated. In the meantime, the affected control agents (or production resources) have to
wait for the new schedule to be generated. Also, in the scheduling/rescheduling
processes, all the control entities have to take part in the process, and this might increase

the coupling and communications between the control entities. Therefore, relying on

15
rescheduling to react to disturbances might contradict some design principles of the

heterarchical control system, such as (Duffie et al. 1994):

- Time-critical responses should be contained within entities and should not be

dependent on time-critical responses from other entities.

- Scheduling and control functions should be contained within the same entity to avoid

time-critical response requirements and decrease communication requirements.

Distributed scheduling can enhance the scheduling performance “through parallel
computing and through the elimination of the processing bottleneck caused by global
scheduler” (Dilts et al. 1991). Localizing the scheduling and control functions within the
same control entity can enhance the control software’s modularity, reduce control system
complexity, and increase flexibility and fault-tolerance (Duffie et al. 1986). But as
mentioned above, in the distributed control system, it is also important that the control
entities have the local intelligence/autonomy (or reactive mechanism) to respond to
disturbances in real time so as to “avoid time-critical response requirements and decrease

communication requirements’’ (Duffie et al. 1986).

2.4 Jobs Sequencing and Dispatching Routing Decision in Multi-agent

Heterarchical Control Systems

While reviewing the implementation of dispatching rules in the multi-agent heterarchy,
Baker (1997) has mentioned that:

“It is most common to dispatch the routing decision in these architectures,
assuming sequencing can then be done at each resource... In the case of the

routing decision, a great deal of agent research has been with having the agents

16
making this decision by collecting bids from potential machines to which the

job can be routed”.

Most of the work on the distributed scheduling and control only dealt with
dispatching the routing decisions, and ignored the job sequencing issues. As a result,
most of these scheduling approaches performed scheduling by jobs on a First-Come-
First-Serve basis (Veeramani & Wang. 1998), and this approach sometimes will
compromise certain global performance objectives.

Some attempts have been made to incorporate the sequencing mechanism into the
distributed scheduling algorithm in order to optimize the global system performance. For
instance, in (Ramaswamy et al. 1995), an offline central computer is used to solve the
static optimal characterizations of the scheduling problem and forward the generated
Lagrange multipliers to the online control agents (machine and part agents). The online
control agents will then make use of this (global) information to decide the allocation and
sequencing of both processing and material handling tasks. Although the Lagrangian
relaxation technique seems very promising for heterarchical agent scheduling, “current
work in this area is only a beginning of the work which needs to be performed to pursue
these concepts fully” (Baker 1997).

In (Duffie et al. 1994), an attempt to incorporate the job sequencing mechanism
into the distributed scheduling algorithm is implemented by the cooperative scheduling
mechanism. In their control system, part agents generate local plans, which are then
evaluated by a central agent. The evaluated global performance measure will then pass
back to all the control agents. The part agents will then alter their local plans accordingly
and the afore-mentioned procedures are repeated until “a set of local schedules is found
that collectively achieves the global goals” (Duffie et al. 1994). Jobs sequencing is
accomplished in the manner that while a number of parts are in contention to reserve a
resource, the part agents with the looser due-date will change their local plans to delay
the reservation so that the parts with the tighter due-date can use the resource first.
Because lack of global information knowledge, the part agents do not know which part is
in most need of a particular resource. As a result, the part agents have to alter their local

plans on a trial-and-error basis to see how their changed plans will affect the global

17
performance. This trial-and-error approach also causes 5 out of 12 parts to be tardy,

even though in their experimental model, there was enough lead times for the production
of all the parts.

“The most common scheculing approach to job shops is to use priority
dispatching rules” (Sipper & Bulfin 1997). “For many practical applications, shop floor
control is dominated by heuristic dispatching, in which a simple decision rule determines
the next job to be processed at a given workstation” (Parunak 1994). A considerable
number of dispatching rules have been developed by researchers to help the control
system in achieving certain global performance objectives, and some of these dispatching
rules are simple and widely adopted by the manufacturing industry.

As described above, the ‘part-driven’ approach tends to have difficulties in
fulfilling the job sequencing responsibilities efficiently because of lack of global
information knowledge, and other more efficient approaches have yet to be
developed/studied. In (Duffie et al. 1994), it was mentioned that “future work should also
compare them with traditional dispatching rules and scheduling heuristics™.

In a distributed control system, while the part agents can use the bidding
mechanism to explore the routing or process sequencing opportunities, it is possible for
the resource agents to use the dispatching rules to sequence the jobs to help improve
certain global performance objectives. Having the resource agents responsible for job
sequencing will not compromise the design principles of the heterarchical system, as the
routing and sequencing decisions are made by job and resource agents, respectively,
locally. Although some researchers (Saad et al. 1997) have incorporated dispatching rules
in the market-based scheduling approach and have shown that this approach could
improve the system performance with respect to certain global performance measures,
few have discussed how the opportunistic behavior of the part agents and the adoption of
the dispatching rules will affect the commitments between the control agents, the overall
system performance, and the communication requirements. For instance, when the
resource agents submit bids to the part agents, the part agents will make the
routing/process sequencing decision based on the bids. But if the resource agents use the
dispatching rules to sequence the jobs, the resource agents might violate some of the

commitments they made to some of the part agents. When that happens, should the

18
affected part agents be informed so that they can explore some other routing

opportunities? And what impact will that make on the system performance and

communication requirements?

2.5 Shop Floor Control Architectures

Different control architectures have been proposed for shop floor scheduling and control,
ranging from traditional centralized control to the distributed multi-agent systems.
Although quantitative results are becoming available for these alternative methodologies,
it is difficult to evaluate these alternative control architectures from the existing literature
alone since different approaches tend to use different control algorithms. As a result, one
can not be certain if it is the control architecture or the control algorithm that is being
compared. In designing a control system, it is important to obtain a natural decomposition
of the control algorithms so that the resultant software control model can be decoupled
from any preconceived control architectures. This provides the researchers with the
flexibility to implement the software control modules in various control forms, and thus
an objective comparison of alternative control methodologies can then be made.

Figure 2.4 shows some of the control architectures that have been proposed for
shop floor manufacturing systems. Figure 2.4(a) represents the centralized shop floor
control architecture, wherein all the manufacturing scheduling and control are
characterized by a centralized computer and database (Parunak 1993). Figure 2.4(b)
represents the hierarchical control structure, wherein structural (functional) analysis
approach is used to functionally decompose the control activities into different control
modules. While reviewing the hierarchical control architecture, it was described in (Dilts
et al. 1991) that:

“The refinement process of breaking down aggregated decisions and the concept

that ‘sensory information at the higher levels is more abstract and requires the

19
integration of data over longer time intervals’ (Simpson et al. 1982) implies

that aggregated database will be found at each level”

Therefore, from centralized to hierarchical control, the design approach is shifted
from developing a monolith control program to modularizing different control functions
and their corresponding database in different control modules. “Software development
can be easily managed and modifiability can be easily achieved due to the modularity of
the hierarchical structure” (Dilts et al. 1991)

Figure 2.4 (d) represents the general multi-agent control architecture. Some mutli-
agent control systems use only the resource and part agents to perform the scheduling and
control (Duffie et al. 1994), while other control systems may involve some staff roles
(central scheduler or mediator, etc.) to perform the scheduling and control (Bongaerts et
al. 1998, Shen et al. 1999). These staff agents are represents as agents X and Y in Figure
2.4 (d). In multi-agent systems, the scheduling and control responsibilities are distributed
among some loosely-coupled cooperative control entities. The multi-agent control
architecture can enhance the modularity of the control systems. “The reduced coupling
between (software) modules reduces complexity and simplifies development and
maintenance (modifications and extensions)” (Dilts et al. 1991).

Most research in shop floor control developed the control systems from a “top-
down’ approach, wherein control architectures were first determined, then the control
algorithms were structured to fit in the preconceived control architectures. But this
approach limits the flexibility and increases the difficulty of changing a control system’s
control structure. Sometimes the physical environment (communication network’s
availability, computational limitations of certain control entities) of a control system
might favor certain control architecture, but this environment might change overtime.
Therefore, it is important that there is a natural decomposition of the control algorithms
so that the logical control model can be decoupled from any preconceived control
structure, and this provides the flexibility of implementing the logical control modules in

various control forms.

‘Kjoanoadsal ‘uuoj |onuod
{eolysesalay pue [eolydiessly ‘paziesuad Yim swaysAs |00 10} sayoeoidde uoysodwosep 8y} 4z anblj

{O4U0D ()

Jueby A

sa|qIsuodsay [0u0D

eied Jueby ued jueby a21nosey
«:am(X sepyiqIsuodsey (0AU0d sepqisuodsay |0ju0D
sepqisuodsay Bunpayds sepjjiqisuodsey Bujinpayds
sepnqisuodsey Bulnpsyds eeq
ejeqg
ejeqg
Buynpayos j
(9) (o= EEREE H 3 (q)
H " 1
<A 00[q0 | e1ea> m <ued | Emov". u.amsnomom | eyegs> | g | josuo) | eleg
t 1 “ [J
[] (Y 1
" i § . !
<X 199[60 | B1eQ>! <Med | BfeQs |<8oinosey | eleds | <—| bunpayos | eleq

@ U

joxuo ‘Buinpauds | eleg

21
2.5.1 Structuring Control Algorithms with the Object-oriented Analysis

and Design Approach

To obtain the natural decomposition of the control algorithms so that the logical control
model can be decoupled from any preconceived control architectures, object-oriented
analysis and design methodology appears to be the appropriate approach for
decomposing the control algorithms. Figure 2.4 (c) represents the software control model
wherein the object-oriented decomposition approach has been applied to structure the
scheduling and control algorithms.

Referring to Figure 2.4 (c), by applying the object-oriented decomposition
approach to structure the scheduling algorithm, roles that are involved in the process can
be identified, and their corresponding responsibilities and states can be encapsulated. It
would not be surprising that production entities such as machines, parts etc. will be
identified in most scheduling algorithms since scheduling is mainly concerned with
allocating operations to resources. It should be noted that objects identified from the
scheduling algorithms are not limited to objects that have a physical correspondence in
the real manufacturing system. Other objects may also be identified for certain design

purpose or to help accomplish the scheduling tasks.

“In analysis, we seek to model the world by discovering the classes and objects
that form the vocabulary of the problem domain, and in design, we invent the
abstractions and mechanisms that provide the behavior that this model requires”

(Booch 1994).

The control algorithms (for the control function) are usually structured around
some control roles that have a physical correspondence in the production system. These
control roles are responsible for executing the production plan and monitoring the
production activities of their physical correspondence. “One cannot make all the logical
design decisions before making all the physical ones, or vice versa; rather, these design

decisions happen iteratively” (Booch 1994).

As shown in Figure 2.4 (c), some roles (resource, part) in different control
functions are related to a particular entity. These roles (and their corresponding
responsibilities and data) can then be modularized in a single control component so that
this component will be responsible for the control behaviors of a particular entity, and
thus increase the cohesion of the control component (“Cohesion measures the degree of
connectivity among the elements of a single module” (Booch 1994)). With this approach,
roles in different control functions can be modularized into some low-coupling, high-
cohesion control components. These control components can then be implemented in a
distributed (multi-agent) control structure as shown in Figure 2.4 (d) to fulfill the required
control functions of the system.

As illustrated above, by applying the object-oriented methodology to decompose
the control functions in a control system (Figure 2.4 (c)), the resultant control modules
can be arranged to fit into various control architectures. For instance, one can retain the
functional structure in Figure 2.4 (c) to implement the hierarchical control (or even
implement all the control functions in a single computer to form the centralized control).
Or one can further modularized the control roles in different control functions to form
some low-coupling, high-cohesion control components, and implement these components
in a distributed control structure. Therefore, applying the object-oriented methodology to
structure the control functions can help achieving the objective of decoupling the control
algorithms from the control architectures. Also, by using the object-oriented analysis and
design approach to structure the control functions, notation (for example, UML-Unified
Modeling Language (Larman 1997)) for modeling systems using object-oriented
concepts can be used to capture (document) the static and interaction models of the
control processes. These artifacts will be helpful when modifications have to be made to
the logical control software in the future (or to reconfigure certain control roles into

different control modules).

23
CHAPTER 3

MOTIVATION FOR THIS RESEARCH

In this chapter, we will first describe the objectives of this research, and the
methodologies that will be used to investigate the problems in this study. Then the

anticipated contributions of this research will be given.

3.1 Research Objectives

The objectives of this research are mainly concerned with identifying and investigating
some of the problems in the existing research in the shop floor control methodologies.

These problems include:

1) Control system decomposition approaches — Various control methodologies have
been proposed for shop floor control, but most research tends to decompose the
control system from a ‘top-down’ approach. In this research, we will analyze some of
these approaches and try to use a natural decomposition approach to structure the
control algorithms so that the resultant software control model can be decoupled from

any preconceived control architectures.

2) Confusions regarding ‘Scheduling’ and ‘Control’ functions in the distributed shop
floor control systems — Distributed scheduling has been used in many researches,
some distribute the scheduling function to generate pre-production schedules, while

others distribute the control function to implement real-time distributed production

3)

4)

24
control (dispatching and monitoring). In this research, we will clarify this confusion

and identify some problems resulted from this confusion.

Routing flexibility and job sequencing — Most research using the market based
scheduling approach has not considered the job sequencing issue. As a result,
resource allocations are usually done by jobs on a first-come-first-serve basis, which
can compromise certain global performance measures. In this research, we will
investigate and identify the role of the job routing and job sequencing control
mechanisms in a multi-agent distributed control system, and discuss how these
control mechanisms will affect the performance of the control system in various

manufacturing environments.

Software reuse and distribution — As some researchers have proposed that different
researchers should compare their control algorithms on a common testbed, it will be
helpful if researchers can built their control modules as some platform-independent
software components that can be easily distributed across the network and integrated
into some other control systems. In this research, we will explore this opportunity by
trying to use the COM/DCOM technology to build some control modules and
distributed them across the network to implement the simulated distributed shop floor

control system.

3.2 Research Approach

As mentioned above, the research conducted in this thesis is mainly concermed with the

problems related to the shop floor manufacturing systems; particularly in distributed shop

floor scheduling and control. Since a lot of work has been done for shop floor scheduling

and control, some researchers have seen the need to develop a benchmark framework for

manufacturing control so that researchers can validate and assess the performance of their

algorithms on a common testbed. A recent formed research group, BENCH-MAS

25
(Cavalieri et al. 1999), has developed two benchmark proposals for a generic machining

system and a flexible assembly system, respectively. The generic machining system
proposed by (Cavalieri et al. 1999) is intended to serve as a testbed for comparing multi-
agent control systems, and will be adopted in this research as a common platform for
evaluating a variety of test scenarios.

The production system consists of four types of machines, and two machines per
type are present. Although it is proposed that the transport system is modeled as a set of
serial transporters (AGVs), these AGVs are assumed always available and transport times
are set equal to zero. Therefore in this research, the transportation entities and transport
times are not modeled in order to simplify the system. Two types of job shop problems
are proposed. For the first problem, products have a fixed process plan constituted by
four non-preemptive operations (one for each machine type), and the third machine to be
visited is the bottleneck resource (long-lasting operation). The second problem is similar
to the first one, except that in this problem, routing flexibility is introduced into the
system. That is, products have a flexible processing order of their operations (a
bottleneck resource is still present, but not necessary the third one to be visited). More
detailed descriptions of the production system and performance measures are covered in
chapter S.

As mentioned in §3.1, current research in distributed scheduling and control
systems mainly focuses on discussing the distributed scheduling issues, and ignored the
control issues. In this research, we will use the first job shop problem to investigate how
different control algorithms in the distributed control system will affect the control
system’s performance in a stochastic manufacturing environment. A heunistic scheduling
algorithm will be used to generate the production schedules. Although the heuristic
methods may not guarantee to generate an optimal schedule, these methods guarantee a
solution in a reasonable amount of time, and by far the most commonly used techniques
in industry (Baker 1997).

In the previous research on distributed (multi-agent) control systems, control
responsibilities are usually assigned to certain control agents (such as the part or machine
agents) that have a physical correspondence in the real manufacturing system. The
scheduling algorithm is then structured around these control agents (Duffie et al. 1986,

26
1994). Instead of using this ‘top-down’ approach to design the control agents for the

control system, in this research, we will first use the object-oriented analysis and design
approach to structure the scheduling algorithm so that roles (objects) that are involved in
the scheduling processes can be identified. Such an approach can allow us to identify a
broader set of possible agent candidates, and to design the logical scheduling model that
can be decoupled from any preconceived control structure. As would be expected, some
of the objects identified may have a correspondence in the physical production system,
since scheduling is about allocating jobs to resources. Since we are trying to investigate
control problems in a distributed control system, control responsibilities will then be
added to some of the objects identified in the scheduling decomposition process. With the
scheduling and control responsibilities, these objects will then behave as the control
agents for certain production entities. It should us noted that control agents are not
limited to the ‘physical’ control agents (Shen et al. 2000). Other agents may also be
created to help accomplishing the scheduling and control functions of the control system.
An experimental model will be constructed around the identified control agents. Different
control responsibilities will be introduced to the control entities, and the control system
performance will be tested under different stochastic disturbance scenarios.

As mentioned in §2.4, most of the work on multi-agent heterarchical control
systems only dealt with dispatching the routing decisions, but ignored the job sequencing
issues. Since routing flexibility is introduced to the products in the second proposed job
shop problem, we will use this problem to investigate the role of the job sequencing and
job routing control mechanisms in a distributed (multi-agent) control system.
Experiments will be conducted to test and evaluate the impact of the job sequencing and
Job routing control mechanisms on the control system’s performance under various
manufacturing environments.

As the benchmark framework (Cavalieri et al. 1999) is intended for different
researchers to compare their control methodologies on a common testbed, it would be
helpful if the control modules can be built into some platform independent software
components that can be easily distributed across the network and/or be integrated into
other researchers’ (software) control models for validation or testing. In the last section

of this research, we will try to explore this opportunity by using the COM/DCOM

27
technology (Bates 1999, Sing et al. 1998) to implement the control entities in a multi-

agent control system. These component objects will then be distributed across the

network for implementing the distributed control.

3.3 Anticipated Contributions of this Research

Through the work in this research, it is expected that the following objectives can be

achieved:

1) To provide some insights regarding the decomposition approaches for various control
methodologies, and the importance of decoupling the control algorithms from the

control architectures.

2) Clarify the confusing concepts regarding ‘distributed scheduling’ and ‘real-time
distributed control’. Identify the role of the ‘control’ algorithm in the control systems

that use the distributed scheduling approach to perform pre-production scheduling.

3) To provide some insights regarding the role and importance of the job sequencing and
dispatching routing decision control mechanisms in the multi-agent distributed

control system (in various manufacturing environments).

4) To explore the opportunity of enhancing the collaboration between researchers by
building some platform independent software that can be easily distributed to and

implemented by other researchers.

28
CHAPTER 4

EXPERIMENTAL MODEL DEVELOPMENT

As mentioned in the last chapter, the objectives of this research are mainly concerned
with investigating the control problems related to the distributed control systems. In the
current research in distributed scheduling and control systems (Duffie et al. 1994, Sousa
et al. 1997), production entities such as machines, workstations, and parts etc. are usually
associated with a corresponding control agent, which will control the production
activities of these entities. Scheduling algorithms are usually decomposed/structured
around these control agents. In this research, we will use the object-oriented analysis and
design approach to decompose the scheduling algorithm to identify the roles and
responsibilities that are involved in the scheduling processes. This will give us the
opportunities to explore other possible agent candidates (other than the pre-determined

‘physical’ (Shen et al. 2000) control agents).

“In selecting our agents, we want to begin with the broadest possible set of
candidates. While some entities may prove unnecessary, it’s easier to cast the net
broadly and leave some as stubs than to build an architecture into which omitted

entities cannot easily be added later”” (Parunak et al. 1998a).

As would be expected, some of the roles (objects) identified in the scheduling
algorithm may have a physical correspondence in the real manufacturing system, since
scheduling is about allocating operations to resources. The scheduling and control
responsibilities of these roles can then be modularized into some individual control

components. This, together with other agents that might be identified from the scheduling

29
algorithm, allows us to then implement a multi-agent (distributed) scheduling and conirol

structure.

Another advantage of using the object-oriented approach to decompose the
scheduling algorithm is that the software solution can be decoupled from any
preconceived control structure. For instance, in a distributed control system wherein the
control responsibilities are distributed among certain control agents, we can still
implement the (scheduling) software solution in an individual control module to
implement a centralized scheduling, distributed control structure. Or as described above,
we can incorporate the software solution into the distributed control system to implement
a distributed scheduling, distributed control system.

In this chapter, we will first describe the production model and the scheduling
algorithm that will be used in our experimental model. The object-oriented analysis and
design approach will then be used to decompose the scheduling algorithm so that the
roles that are involved in the scheduling processes can be identified. Some of these roles
may be the possible agent candidates, and the corresponding control responsibilities will
then be added to these roles so that a distributed scheduling and control system can be
built. Based on this distributed control model, we will then build an experimental model
for simulating the shop floor manufacturing and control activities. This experimental

model will be used in the later chapters for testing different control methodologies.

4.1 Characteristics of the Manufacturing System

The followings are some of the characteristics and assumptions that were made about the

manufacturing system.

1) The system contains a number of workstations/stations. Each station has a queuing

buffer (queue) and a number of resources/machines.

30
2) Each station can offer a single type of operation. That is, machines of the same station

have same function.

3) Resource (stations, machines) information, process plans for the jobs and order
details are stored in resource, production and order database, respectively. The
scheduling application has to access the corresponding database to retrieve the

relevant information.

4) Set-up time for each operation and transportation times for moving jobs between

stations are ignored.

5) No preemption. Once a machine starts processing a job, it will continue until it

completes the operation (that is, no machine breakdown will occur when the machine

is in operation).

6) When disturbances (like machine breakdowns or new order arrivals) happen, the

scheduling application might be invoked to do the rescheduling.

4.2 Scheduling Algorithm

In this research, the Giffler-Thompson (French 1990) algorithm will be used as the
scheduling algorithm. This algorithm is a heuristic scheduling algorithm for generating
non-delay schedules for the general job shop problem, n/m/G/B. Non-delay schedules are
schedules “where no machine is kept idle when it could start processing some operations”
(French 1990). For the general job shop scheduling problem, n/m/G/B, n = number of
jobs, m = number of machines, G = the general job-shop case, and B = the performance
measure. Although the heuristic methods may not guarantee to generate an optimal
schedule, these methods guarantee a solution in a reasonable amount of time, and by far

the most commonly used techniques in industry (Baker 1997). Also, there are strong

31
empirical reasons for using the non-delay scheduling approach. For example, in the

empirical studies conducted by (Conway et al. 1967), the results showed that in most
cases, the non-delay schedules far outperformed the active schedules (active schedules
are schedules in which an optimal solution is guaranteed in the set of schedules) in terms
of mean flow time. The Giffler-Thompson scheduling algorithm is described as follows

(French 1990):
“In the algorithm we shall schedule operations one at a time. We shall say that an
operation is schedulable if all those operations which must precede it within its

job have been already been scheduled. Since there are nm operations, the

algorithm will iterate through nm stages. At stage t, let
P, — be the partial schedule of the (t-1) scheduled operations;

S: — be the set of operations schedulable at stage t, i.e. all the operations that must

precede those in S; are in P,.
ok — be the earliest time that operation o in S, could be started;

¢« — be the earliest time that operation o, in S, could be finished, thatis, ¢x =o'«

+ px, where p is the processing time of operation o ;

...It is an easy matter to modify this (Giffler and Thompson) algorithm so that it

produces non-delay schedules.”

Algorithm 4.1 below shows the steps for generating a non-delay schedule.

Algorithm 4.1 (French 1990):

32
Step 1 Lett=1, P, being null. S, will be the set of all operations with no predecessors, in

other words, those that are first in their job.

Step 2 Find 6* =min gk insk {O« } and the machine M* on which o* occurs. If there is a

choice for M*, choose arbitrarily.

Step 3 Choose an operation o; in S, such that
(1) it requires M*, and

(2) o; =c*.

Step 4 Move to next stage by
(1) adding o; to P, so creating Py.;
(2) deleting o; from S; and creating S+ by adding to S, the operation that directly
follows oj in its job (unless o; completes its job);

(3) increment tby 1;

Step 5 If there are any operations left unscheduled (t <= nm), go to Step 2. Otherwise,

stop.

4.3 Analysis and Design of the Scheduling Application with the Object-

oriented Approach

There are a number of proven approaches for analysis that are relevant to object-oriented
systems. These approaches include the classical approaches, behavior analysis, domain
analysis, use-case analysis, CRC cards etc. (Booch 1994). In this thesis, since we are
trying to identify the objects that are involved in the scheduling processes, we will use an
approach that is similar to the behavior analysis and the use-case analysis approaches, as

these approaches are used for identifying roles / objects that are involved in certain

33
business processes. The followings are the descriptions for the behavior and use-case

analysis approaches.

Behavior Analysis — “Rubin and Goldberg offer an approach to identifying
classes and objects from system functions. As they suggest, ‘the approach we use
emphasizes first understanding what takes place in the system. These are the system
behaviors. We next assign these behaviors to parts of the system, and try to understand
who initiates and who participates in these behaviors.... Initiators and participants that
play significant roles are recognized as objects, and are assigned the behavioral
responsibilities for these roles’ (Rubin et al. 1992)” (Booch 1994).

Use-case Analysis — Use-case analysis was first formalized by Jacobson
(Jacobson et al.1992). This approach is typically used “to enumerate the scenarios that
are fundamental to the system’s operation. These scenarios collectively describe the
system functions of the application.... As the team walks through each scenario, they
must identify the objects that participate in the scenario, the responsibilities of each
object, and how those objects collaborate with other objects, in terms of the operations
each invokes upon the other” (Booch 1994).

In this research, we will first walk through each of the steps (scenarios) in the
scheduling algorithm to identify the objects that are involved in the scheduling processes.
Since the scheduling algorithm will be used to allocate operations to resources in the
simulated manufacturing system, we will interpret the scheduling algorithms in terms of
some of the physical production entities that are present in the manufacturing system. It
should be noted that objects identified in the scheduling algorithm are not limited to the
objects that have a physical correspondence in the manufacturing system. Other objects
might also be identified and in together, all these objects will collaborate with each other

to accomplish the scheduling processes.

“In analysis, we seek to model the world by discovering the classes and objects

that form the vocabulary of the problem domain, and in design, we invent the

34

abstractions and mechanisms that provide the behavior that this model requires”

(Booch 1994).

4.3.1 Scheduling Algorithm Walkthrough

In this section, we will first walkthrough a part of a non-delay schedule generation

example to see how the scheduling algorithm actually works. In the example, the system

has 2 stations; Station 1 & 2. Station 1 has 2 machines, M1 and M3, and station 2 has 1

machine, M2. 6 jobs have to be scheduled and their process plans are listed in Table 4.1

below. The process plans of the jobs are fixed in sequence: Operation 1 then Operation 2.

Table 4.2 shows part of a non-delay schedule generation example.

Job Operation 1 Operation 2

J1 6/1 8/2

J2 4/1 1/2

J3 8/2 6/1

J4 5/2 10/1

J5 3/1 4/2

J6 2/1 4/2
Table 4.1: Process plan for the jobs (for the operation, x/y means x time units at station
y)-

The first 4 stages of the scheduling processes are shown in Table 4.2 below.

At stage t=1,

Step 1. The schedulable operations in S, are: J1 to be processed in workstation WS1 for

its first operation, J2 to be processed in workstation WS1, J3 to be processed in

workstation WS2 for its first operation.. .etc. (i.e. all the ‘operation 1’ entries in

Table 4.1)

Step 2. 6*=0, and since 6* occurs in both WS1 and WS2, so we just select one (WS1)

arbitrarily.

35

Station next free at: Schedulable
Stage Station] Station2 ~ Operation Scheduled Operation
t M1 M3 M2 Ok in St Ok ¢k c* Priority 0 in P,
1 0* 0 0 JI, WS1 O 6 0 14 J1, WSI1
J2,WS1 0O 4 5
J3, WS2 O 8 14
J4, WS2 0 5 15
J5, WS1 O 3 7
J6, WS1 0 2 6
2 6 o0* 0 J2, WS1 O 4 5
J3, WS2 O 8 14
J4, WS2 0 5 15
J5, WS1 O 3 0 7 J5, WSI1
J6, WS1 O 2 6
JI, WS2 6 14 8
3 6 3* 0 J2, WS1 3 7 5
J3,WS2 O 8 14
J4, WS2 O 5 0 15 J4, WS2
J6, WS1 3 5 6
JI, WS2 6 14 8
J5, WS2 3 7 4
4 6 3* 5 J2, WS1 3 7 5
J3,WS2 5 13 14
J6, WS1 3 5 3 6 J6, WS1
JI, WS2 6 14 8
J5, WS2 5 9 4
J4, WS1 5 15 10
5 6 5* 5 J2,WS1 5§ 9 6

. Table 4.2: Part of a non-delay schedule generation example.

Step 3. Here we have 4 jobs, J1, J2, J5 and J6 that all satisfy: 1) it requires M* (WS1),
and 2) 6; = o*. The choice is made by applying the heuristic selection or priority

rules such as, SPT (shortest processing time), EDD (earliest due date), MOPNR

(most operations remaining) and MWKR (most work remaining) etc. MWKR is

used in this example and the priority of each job at each stage is listed in Table

36
4.2 (the priority is calculated as a job’s total processing time remaining). Which

priority rule to use is dependent on the measure of schedule desirability. For

example, SPT might be a good candidate for minimizing mean flow times, while
EDD would be a reasonable rule to use for minimizing tardiness. If there is still a
tie among some jobs after a priority rule is applied, a job is selected randomly. In

this case, J1 is selected for WS1 since it has the highest priority (14).

Step 4. (J1, WS1) is added to the scheduled operations set P, and deleted from S,. The
next operation of J1 is (J1, WS2) and is added to S.+. t is incremented by 1.

At stage t=2;

Step 2. Since WS1 has 2 machines, so after a job, J1, is added to one of its machines,
say M1, it still has one machine, M3 being available at time 0. Therefore, the
earliest time that J2, J5 and J6 could be started is still 0. Again, 6*=0 and it occurs
in both WS1 and WS2, we arbitrarily select one (WS1).

Step 3. J2, JS and J6 all satisfy: 1) it requires M* (WS1), and 2) 6; = 6*. By applying the
MWKR priority rule, JS is selected.

Step 4. (J5, WS1) is added to the scheduled operations set P, and deleted from S,. The
next operation of J5 is (J5, WS2) and is added to S,+;. t is incremented by 1.

At stage t=3:

Step 2. Now both machines of WS1 are assigned to a job, and the earliest one to be free is
M3 at time=3. Jobs waiting to be processed in WS1 can start their operation no
sooner than time =3. Therefore, the earliest start time for J2 and J6 has to be
changed from O to 3, and their corresponding earliest finish time (¢x) is changed

to 7 and 5, respectively. So at this stage, c*=0 and it occurs in WS2.

37

Step 3. Both J3 and J4 satisfy the conditions. By applying the priority rule, J4 is selected.

Step 4. (J4, WS2) is added to the scheduled operations set P,, and deleted from S,. The
next operation of J4 is (J4, WS1) and is added to S;+;. t is incremented by 1.

At stage t=4:

Step 2. Here WS2’s next available time will be at time=S5, so J3’s earliest start and finish
time have to be changed to S and 13, respectively. In this stage, 6*=3 and it

occurs in WSI.
Step 3. Both J2 and J6 satisfy the conditions. By applying the priority rule, J6 is selected.

Step 4. (J6, WS1) is added to the scheduled operations set P,, and deleted from S,. The
next operation of J6 is (J6, WS2) and is added to S;+;. t is incremented by 1.

At stage t=5:

The scheduling process continues until stage t=12 (n*m, where n=6 jobs, m=2
machines). The Giffler and Thompson algorithm disclosed in (French 1990) was made
under the following assumptions:

1) Each job has m distinct operations, one on each machine;

2) There is only one of each type of machine;

38
3) Machines never breakdown and are available throughout the scheduling period.

But in our system, we can have multiple machines with same function in a station
(to provide some functional redundancies in case some machine breaks down during the
scheduled period). Therefore, instead of having only one type of each type of machine,
we have only one type of each type of station. So steps 2 and 3 of the algorithm stated in

the problem specification are modified as,

Step 2 Find 6* =min kinsk {O« } and the workstation WS* on which 6* occurs. If

there is a choice for WS*, choose arbitrarily.

Step 3 Choose an operation 0j in S, such that
(1) it requires WS*, and

(2) ;=0c*.

Our next step is to investigate how we can interpret the scheduling algorithm
stated before from a production system’s perspective. Referring to the example, we see
that at stage t=1, S, contains (J1, WS1), (J2, WS1), (J3, WS2), (J4, WS2), (J5, WS1) and
(J6, WS1). In a production system, when the workstation that a job needs for processing
its next operation currently has no machining resource available, the job usually waits in
the queue of the workstation for its turn to be processed. So when viewed from a
production system’s perspective, what S, really contains are jobs 1, 2, 5 and 6 from (the
queue of) workstation 1, and jobs 3 and 4 from (the queue of) workstation 2.

This means that what we did for step 1 was to send all the jobs to queue in the
station which corresponds for their first operation. Then we found a job with the minimal
earliest start time and select the workstation that holds the job. In the example, since all
jobs have the same earliest start time (0), we selected WS1 arbitrarily. From WS1, since
there was more than one job with the same minimal earliest start time, we applied the
MWXKR priority rule to select J1 and assigned it to one of WS1°s machines, M1, and
added the operation record of (J1, WS1) to P,. We then moved on to stage t=2.

39
At stage t=2, we see that (J1, WS2) was in S;, which means that after the job J1

was assigned to the machine (M1) of WS1 at stage t=1, it was sent to the workstation
(WS2) which corresponds to its next operation. We then repeated the same procedures
that we did in stage t=1, and assigned J5 to M3 of WS1 and added the operation record of
(J5, WS1) to P,. We then moved on to stage t=3.

At stage t=3, we can see that in addition to the fact that (J5, WS2) was already
added to S,, the earliest start time of jobs 2 and 6 in workstation WS1 were also changed.
A workstation’s earliest available time is equal to min,-.,, {earliest available time of
machine k}, m= total number of machines the workstation has. So after a job is assigned
to a machine in a workstation, the workstation’s earliest available start time might be
changed. As it was at stage = 2, after the selected WS1 had assigned a job to its machine
(M3), its earliest available time was changed (from O to 3), so the queuing jobs (J2, J6) in
WSI also had to change their earliest possible start time accordingly. Again, similar
procedures (as what we did in the previous stages) were carried out in stage 3 and the
following stages until a complete schedule was generated.

Referring to the above example, we can re-interpret the scheduling algorithm 4.1

from a production system’s perspective as the Algorithm 4.2 listed below:
Algorithm 4.2:
Step 1. Send the jobs to the stations that correspond to their first operation.

Step 2. From all the workstations, find a queuing job that has the minimal earliest start
time o*, select the workstation WS* that holds that job. If 2 or more queuing jobs

from different workstations have the same o*, choose one workstation arbitrarily.

Step 3. From the selected workstation WS¥*, find a job whose earliest start time is o*. If
there are more than one jobs that have the earliest start time as ¢*, use priority
rule to choose one. If there is still a tie after the priority rule is applied, a second

priority rule can be used or the job can be chosen randomly.

40

Step 4. Assign the job to the first available machine of the workstation WS*. Send the job
to the workstation that corresponds to its next operation. Add the scheduled
operation record to P,. Update the earliest start time of the workstation WS*’s

remaining queuing jobs accordingly. Increase t by 1.

Step S. If there are any operations left unscheduled, go to Step 2. Otherwise, stop.

4.3.2 Conceptual Model for the Scheduling Problem

The first step in the analysis process is to develop the conceptual model for the
scheduling problem so that the objects that are involved in the scheduling processes, and

the associations of these objects can be identified.

“The quintessential object-oriented step in analysis or investigation is the
decomposition of the problem into individual concepts or objects—the things we
are aware of. A conceptual model is a representation of concepts in a problem

domain” (Larman 1997).

“One widely used technique for identifying objects in an object-oriented systems
analysis (Rumbaugh et al. 1991) is to extract the nouns from a narrative description of the
desired system behavior” (Parunak et al. 1997). By applying this approach, objects that
we identified from the scheduling algorithm 4.2 are:

Job Operation Machine Partial Schedule Queue
Scheduled Operation Unscheduled Operation Station

Referring to Algorithm 4.2, we need to have some staff roles to help accomplish
the scheduling steps and coordinate the activities of the other objects. For instance, in the

scheduling processes, because the resource (station, machine) and job objects do not have

41
the knowledge of the global time, we need to have someone to coordinate the activities of

these objects. Therefore, a new concept, the ‘System Mediator’ (Maturana & Norrie
1996), is added to the conceptual model of the scheduling problem. Also, since each
machine can only perform one operation type, we will add the concept ‘Operation Type’
to the conceptual model to help describe the static model of the scheduling problem. As

resulted, the conceptual model will also include the following objects:

System Mediator Operation Type

The conceptual model for the scheduling problem is shown in Figure 4.1, and is
represented in the UML (Unified Modeling Language) notation. The Unified Modeling
Language is a notation for modeling systems using object-oriented concepts (Larman
1997). In Figure 4.1, it states that:

- 1 job has 1 or many unscheduled operation(s)
- 1)ob has O or many scheduled operation(s)

- 1 job consults 1 system mediator

- An unscheduled operation is an operation

- A scheduled operation is an operation

- 1 scheduled operation is processed by 1 machine

- 1 scheduled operation is processed in 1 station

- 1 partial schedule records 1 or many scheduled operation(s)

- 1 or many scheduled operation(s) belongs to 1 job

1 station is responsible for 0 or many scheduled operation(s)

1 station has 1 or many machine(s)

1 station has 1 queue

1 queue holds O or many job(s)

1 system mediator provides station info to 1 or many job(s)

1 system mediator coordinates the (scheduling) activities of 1 or many station(s)

42

'wid]qoad Surnpayods oy 1oj [opows jerydaouod ayy, 'y 2InSiy

uj-pessadsoid-s| P

10}-9jqisuodsgy-
< y Pl 8] : sweNuoRoUNy - 4
1aBayu : AyjjIqelieae Xe] : aWeNUojoun)
1xa} : gjauydew 81 : gluoners
8ujyoew b sey 1 uoje)s L sey b enenp
l b T
JO-SepIAIloB-S8)BuU|pIO0D
A 1
Aq-pesseooid-s)
Jojepapy WajsA: i
PO mF sploy
0}-0jul-uojjels-sepiaoid v
v S)INsuod
o b }
! +0 — 10B8jut :daygiuaund
auwly] : awijipue JeBeju| : gaouenbas ejeq : ejegenp| .. 0
awy] : ewilyels > J1aBaju : 8w ssedord ueajoog : pajnpayasgs| ejeq :ejegesesjes| *
uojeiedQ pa|npeyos e-s) .xoﬁosm:A e-s| uopeiedo pajnpsyosun| | sey | o] : giqof <
R < 0] uoneiado qor
o}-sbuojaq p- I 3
SpJ028.
1 sey
8|npsyog |ejied

114

44
As shown in the conceptual model, we identified some of the attributes and

associations of the objects involved in the scheduling processes. Attributes/associations
of the objects are identified mostly from examples in the real world. For instance, Figure
4.2 shows a job ticket that can usually be found in the real manufacturing system (Voris
1966). In the job ticket, we can see that the data related to the jobs include the
identification of the job, the release date and due-date of the job, and the operations that
the job contains etc., and data that are related to the operation include the name of the
operation, the start and finish time of the operation, and the worker/machine that
processed the operation etc. These data are shown as attributes or associations of the job
and operation objects in Figure 4.1. Attributes and associations of the other objects are

also identified with similar approach.

JOB TICKET

Order No.

Date in Process:

Finish Date

Amount

Operation Date In Date Finish Worker

1
2
3

Work Finished

Figure 4.2: Job ticket to record progress (Voris 1966).

4.3.3 Interaction Models for the Scheduling Problem

Before we proceed to design the interaction models for the scheduling problem, we will
first briefly introduce some of the GRASP patterns that we might apply in assigning
responsibilities to objects. GRASP stands for General Responsibility Assignment
Software Patterns. These patterns describe fundamental principles of assigning

45
responsibilities to objects (Larman 1997). The patterns that are most relevant to our

application are:

1) Expert — “Assign a responsibility to the information expert- the class that has the
information necessary to fulfill the responsibility’” (Larman 1997).

2) Creator - “Assign class B the responsibility to create an instance of class A if one of
the following is true: 1) B aggregates A objects, 2) B contains A objects, 3) B records
instances of A objects, 4) B closely uses A objects, 5) B has the initializing data that
will be passed to A when it is created” (Larman 1997).

3) Low Coupling — “Assign a responsibility so that coupling remains low. Coupling is a
measure of how strongly one class is connected to, has knowledge of, or relies upon
other classes. A class with low (or weak) coupling is not dependent on too many other

classes” (Larman 1997).

4) High Cohesion — “Assign a responsibility so that cohesion remains high. Cohesion is
a measure of how strongly related and focused the responsibilities of a class are. A
class with highly related responsibilities, and which does not do a tremendous amount

of work, has high cohesion” (Larman 1997).

To design the interaction models for the scheduling problem, we will go through
each of the steps listed in the scheduling algorithm 4.2 to determine how the objects
involved in the scheduling processes can collaborate to fulfill all the scheduling steps.

Responsibilities will then be assigned to the objects accordingly.
STEP 1
To send a job to the station for its next operation, we first have to know what is the job’s

next operation. Referring to Figure 4.1, a job contains a number of unscheduled

operations, and thus has the knowledge of its own process plan. Therefore, by applying

46
the ‘Expert ¢ pattern, we assign the job the responsibility to send itself to the station that

corresponds to its next operation.

For a job to go to the station, first it has to know which station is responsible for
processing its next operation. One way to do this is to have the job broadcast to all
stations in the system to ask who can process its next operation, and have the
corresponding station responded to the job. If a broadcasting facility is not implemented
in the system, another way is to have the system mediator responsible for answering the
job’s question. This can be accomplished by having the station objects registered with the
system mediator when the scheduling system starts. The system mediator will then have
the knowledge of what stations are contained in the system, and what function each
station can perform.

After the job knows which station can process its next operation, it has to find out
the earliest possible start time for the operation. A job’s next operation’s earliest possible
start time is dependent on 2 factors, 1) the end time of the job’s previous operation, and
2) the earliest available time of the station that is responsible for its next operation. So a
job has to ask the corresponding station what its earliest availabie time will be, then it
must check the end time of its previous operation (if it’s the job’s first operation, the job
might check its release time), then decide when the earliest possible start time of its next
operation will be.

When a job enters a workstation, the station might insert the job into its queue in
accordance to some ranking rules. Referring to steps 2 and 3 in Algorithm 4.2, a station
will choose a job with the minimal earliest possible start time or with the highest priority
to be processed first. So the station will rank the arriving jobs by their earliest possible
start time. And if there is a tie, the jobs will be ranked by their priority, and if there is still
a tie, the jobs will be ranked by first-come-first-serve rule. Therefore, when a job arrives
at a workstation, the station needs to know about the job’s earliest possible start time and
priority to insert the job into its queue.

Figure 4.3 below shows the interaction model for sending a job to the station for
its next operation. As is shown in the figure, in Step 1, the jobs will be asked to move to
the stations for their first operation. Upon receiving the NextProcess() message, the job

will,

1) Find out its next operation (op) from its collection of unscheduled operations.

2) Ask the system mediator which station (st) is responsible for its operation.

3) Ask the station about its earliest available time (aTime).

4) Find out the priority (prior) for its operation.

5) Find out the earliest possible start time for its operation.

6) Add itself to the station.

6.1) The station inserts the job to its queue.

7) Mark the unscheduled operation (op) as scheduled.

8) Record (create) the scheduled operation.

9) Add the scheduled operation (op1) to its collection of scheduled operation.

47

48

{
: Sched Operation

9 : add(opl) —P

opl : Sched Operation

S: sTime := earliestStartTime()

4: prior := computePriority() A
* 8 : create(aJob, sTime, op)
nextProcess() | aJob : Job 6: addJob(aJob, sTime, st, prior) ——p» | st: Station

3: aTime := getEarliestFreeTime() —P»

1: op := getNextOperation()

-
: Unsched Operation _l

6.1 : insertJob(alob,
sTime, st, op)

7: isScheduled() 9 +
op : Unsched Operation

2: st := getStation(op)

v

: Queue

: System Mediator

Figure 4.3: The collaboration diagram for sending a job to the station for its next

operation.

STEP 2

To find the job with the minimal earliest possible start time, the system mediator can ask
each of the jobs about their earliest start time, then choose the one that has the minimal
earliest possible start time. The system mediator can then ask the selected job which
station is responsible for its operation. Upon receiving the answer, the system mediator
can then instruct the selected station to carry out the tasks for steps 3 and 4 in Algorithm
4.2 (to be explained later).

49
The other way to find out the c* and WS* is to have the system mediator ask

each station about the earliest start time for its next job. We should note that in step 1,
when a job arrives at a station, the station ranks the job by its earliest possible start time
and priority. Therefore, the first job in the station’s queue will have the minimal earliest
start time among all the jobs in the queue. So upon receiving the system mediator’s
request, the station will answer the system mediator with the earliest possible start time
that belongs to its first job in queue. After collecting the answers from all stations, the
system mediator can then select the station that has the minimal earliest possible start
time and instruct the station to carry out the tasks for steps 3 and 4.

The second method will be used in this thesis because the production system
usually will have much smaller number of stations than jobs. As a result, it would be
faster for the system mediator to find the job with minimal earliest possible start time by
consulting all the stations than by consulting all the jobs. Moreover, the first method will
couple the system mediator to the knowledge of the jobs in the system. And by the ‘Low
Coupling’ pattern, the second method is chosen. Figure 4.4 and 4.5 show the
collaboration diagrams for method 1 and 2, respectively. In Figure 4.5, it shows that:

1) The system mediator needs to find out which station has the job that has the minimal

earliest possible start time.

1.1) The system mediator consults each station about the earliest possible start time for

their first job in queue (1.1.1).

2) The system mediator informs the selected workstation to start the tasks for steps 3 and

4 in Algorithm 4.2 (to be explained next).

1 : theJob := selectiob()

/0

: System Mediator

L 1.1*: [for each] : aTime := getEarliestStartTime()
—

—

v

thelob : Job

2 : ws := findStation() 3 : startlob()

v

ws : Station

Figure 4.4: The collaboration diagram for method 1.

1 : ws = selectStation()

A]

1.1*: {for each] : aTime := getEarliestStartTime()
> L

: System Mediator

: Station

|

2 : startJob()

v

ws : Station

1.1.1: aTime := getEarliestStartTime()

v

N QUCU.C

Figure 4.5: The collaboration diagram for method 2.

STEP 3

51

As described in the previously steps, when a job enters a workstation, the workstation
will insert the job in its queue in according to their earliest possible start time and
priority. Therefore, to find a job in its queue with the minimal earliest possible start time

(or highest priority), the station just picks the first job in its queue.

STEP 4

The station finds the first available machine and then assigns the selected job to that
machine. After that, the station will inform the partial schedule about the scheduled
operation. Also, the station will record the scheduled operation that it will process. The
station will then update its earliest available time and have the remaining jobs in its queue
update their earliest possible start time accordingly. Finally, the station will notify the
selected job to proceed to its next operation, and instruct the queue to re-rank the
remaining queuing jobs. The reason for re-ranking the remaining queuing jobs is that, as
in the example described in §4.3.1, in stage 3, we can see that in workstation 2, J3 and
J4’s earliest possible start time = 0, and JS’s earliest possible start time = 3, so J5 will
queue behind J3 and J4. But after J4 is selected and assigned to machine M2, WS2’s
earliest available time changed from 0 to 5, so J3 and J5 will all update their earliest
possible start time accordingly (change the time from O to 5). In the example, because J3
has higher priority than J5, so JS is still queued behind J3. But if J3's priority were lower
than J5, then after updating their earliest possible start time, J5 would have queued in
front of J3, instead of queuing behind it. Figure 4.6 below shows the collaboration
diagram for steps 3 and 4 in Algorithm 4.2.

- Sched Operation

J op : Sched Operation

5 : add(op)

—>

* 4 : recordMach(aMach)

1
: Machine

+ 3 :aMach := findFreeMach()

10 : updateRanking()

StartJob() i
—» : Station

—

: Job

A

9.1": [for each] : updateStartTime(st)

—

9 : updateEarliestStartTime(st) :Queue

1 : aJob := getjob() >

A

8 : st := updateEarliestFreeTime()

6 : nextProcess() 7

2 :op := getOperation()

v

aJob : Job

: addRecord(this, op)

v

: Partial Schedule

Figure 4.6: Collaboration diagram for steps 3 and 4 in Algorithm 4.2.

Figure 4.6 shows that, upon receiving the message StartJob() from the system

mediator,

1) The station selects a job (aJob) from its queue.

2) The station gets the operation (op) information from the job.

52

3)

4)

5)

6)

7

8)

9)

53
The station finds out which of the machines (aMach) that it contains is available.

The scheduled operation (op) records the machine that will process the operation.
The station records the scheduled operation (op) that it will process.

The station instructs the selected job (aJob) to proceed to its next operation.

The station notifies the partial schedule about the scheduled operation. The partial
schedule will store the related information about the scheduled operation (e.g., the
operation’s start/end time, the machine/station that will process the operation, etc.) in
a permanent record (e.g., a relational database, a file record, etc.). This record will
then be used to generate the production schedule.

The station updates its earliest available time (st).

The station asks the queue to have its queuing jobs updated their earliest possible start

time (9.1).

10) The station asks the queue to re-rank its remaining queuing jobs after they have

updated their earliest possible start time.

STEP $

The system mediator increments the stage t by one. Steps 2~4 are repeated until no

schedulable operations are left.

‘wiapqoad Surnpayds ay) 10§ wreaSelp ssejd Y[, :L'y N1

us-tionesado-pajnpayas-spioads ol
O asaisapospaiepdn
1Xa], :atusNUOLOUN) {)qorums
soBoup Amiqejioan [,y sey | ()aw g ueigisalsaiad
1Xa] © (Jjoulydn ()atur g 2aspsoyeq1od 0 Cw___xzqmu_aﬂ:
()gorppe ul usiSIsaljiegaiepdn
| sey (Jowni ueiSisaljsegiad
AUROEN X3 AR UOnIUNy ! (Jqoruasul
| 1X9], :qluoness -
. 51215131
10)-2]q1suodsas-st ! +l : anand)
uoneig
| N !
|
0)-s12151321 1
1 (Juonesiaalas SnSU03
138010] :420uanbas Quonmgiad | 1
180107 : auny] ssaaosd spioy
u-passazosd-si a1, : sy P ——
L
uoneiadQ | |
o}-spuodsas !
teees3 () umgampdn
L] uv-si o1 (Quonesadia8
\, ol i ()Kiuougandwod
y () umGisal(18d
n {)ssaco1gixau
(arpsssosost LA Opanpaudsst | o 1a3a3u] :d1agiuaund
awy L pua . ol sey | ajeq :aeqganp
) :atu) uels UE3|00g -PANPAISS! aeq u:_comso_a_
%3], :qqol
woneadQ pajnpayas uoneiadQ pampayosun
qof
1 1 +0
SpI02aL | ! [
L
sey
(pi033yppe

0l-s8uojaq

aInpayds juked

55
With the completion of the interaction diagrams for the scheduling problem, we

can then proceed to create the design class diagrams to “identify the specification for the
software classes which participate in the software solution” (Larman 1997). The class
diagram for the scheduling application is shown in Figure 4.7. The class diagram not only
shows the attributes and methods of the classes, it also shows the associations,

navigability and dependency relationships between the classes.

“Each end of an association is called a role, and in the design-oriented diagrams
the role may be decorated with a navigability arrow.... The usual interpretation of
an association with a navigability arrow is attribute visibility from the source to
target class.... The UML includes a general dependency relationship which
indicates that one element has knowledge of another element. It is illustrated with
a dashed arrowed line. In class diagrams the dependency relationship is useful to
depict non-attribute visibility between classes: in other words, parameter, global,
or locally declared visibility”” (Larman 1997).

For example, referring to Figure 4.7, for the scheduled operation role, it needs to
have the knowledge of when the operation is scheduled to start, the process time of the
operation etc. In addition to that, the scheduled operation needs to know which job it
belongs to, which station it will be processed in, and by which machine. Therefore, the
scheduled operation role has the attribute visibility to the job, station and machine roles.
And for the job role, for instance, a job needs to have the attribute visibility to the system
mediator, since jobs have to ask the system mediator about the stations that can process
their operations. But the system mediator does not need to have attribute visibility to the
jobs. When a job sends a message to the system mediator, it will tell the system mediator
who it is (as parameter). The system mediator will then return the answer to that job.
Therefore, the system mediator only needs to have the parameter visibility (dependency
relationship, represented as dashed arrowed line) to the job role. The classes in the class
diagram, their attributes, methods, and associations etc. are mainly identified from the

conceptual model and interaction diagrams that we have developed in the previous

56
sections. After we have built the software solution for the scheduling problem, we will

discuss the design of the distributed scheduling and control agents in next section.
4.4 Identifying Control Agents for the Distributed Control System

As mentioned before, the objectives in this research are mainly concerned with the
control problems related to the distributed (multi-agent) control systems. To build the
distributed control system, instead of determining the control agents first and then
structuring the scheduling algorithm around these agents, we use the object-oriented
methodology to explore the possible agent candidates from the scheduling algorithm. In
§4.3, we used the object-oriented analysis and design approach to identify the objects that
participate in the scheduling processes (scheduling algorithm 4.2), and the associations
between these objects. We then assigned responsibilities to these objects so that they can
collaborate to fulfill all the required scheduling procedures.

Some researchers have used a similar approach to explore the possible agent
candidates while developing the agent architecture for shop floor scheduling and control.

For instance, in (Parunak et al. 1998b), it was described that:

“Previous research on agent-based factory control and scheduling (including our
own) differs widely on what is represented as an agent.... In selecting our agents,
we want to begin with the broadest possible of candidates.... As described in
(Parunak 1995), we identify candidate agents by constructing a set of declarative
sentences describing the domain. The nouns in such a sentence are candidate

agent instances, and their cases represent agent classes™.
Also, in (Wooldridge & Jennings 1999), it was mentioned that:

“We expect an agent-oriented view of software to complement — not replace — the

object-oriented view. Developers will typically implement agents using object-

57
oriented techniques, and there will usually be fewer agents in the system than

objects”.

In our model, some of the roles (objects) are potential agent candidates, while
others are only (software) objects for software design purposes. For instance, referring to
Figure 4.7, we can see that there are some roles such as station, machine, and job that
have a physical correspondence in the real manufacturing system. These physical entities
usually have a control agent associated with them (in a distributed control system). In
Figure 4.7, the station, machine and job roles only have the scheduling responsibilities.
However, control responsibilities (to be discussed in next chapter) can also be added to
these roles so that they can become the control agents that are responsible for the
scheduling and control behaviors of their physical correspondences in the real world.
Other objects might not have a physical correspondence in the real world, but they still
can be agent candidates because they can provide some distinct services (behaviors) or
play an active role in the scheduling process. For instance, the system mediator not only
provides station information to the jobs, it is also responsible for initiating some
scheduling steps during the scheduling processes. Therefore, the system mediator can act
as a staff agent.

For objects such as ‘scheduled operation’, ‘unscheduled operation’, ‘partial
schedule’, these objects in our model are only used for capturing certain data and
providing the accessing methods (Get(), Set()) to the data they stored. Therefore, they
will be served as software objects only. For instance, ‘scheduled operation’ stores the
information regarding an operation’s process time, start time, the job it belongs to, and
the station/machine that will process the operation. After the schedule is generated, the
job control agent will contain a collection of the ‘scheduled operation’ objects so that for
each operation, the job agent can determine which station to visit at what time to have its
operation processed. The station control agent will also contain a collection of
‘scheduled operation’ objects as its task list, so that it will know that it will know when
and where to load each job to start processing the operation. Since both the job and
station agent need to have scheduled operation knowledge, making the ‘scheduled

operation’ an object is for software reusability purpose and can save some coding. It

58
should be noted that whether certain roles (objects) are agent candidates or not,

sometimes it is dependent on the control algorithms that are adopted. For instance, in
(Parunak et al 1997, 1998b), in their AARIA agent architecture, the operation is modeled
as the ‘Unit Process’ agent, and is assigned with the responsibilities so that it can initiate
activities and is responsible for marshaling the inputs and resources needed to execute an
operation.

In distributed (multi-agent) control systems, part and resource control roles are
usually used to control the production activities of their physical counterparts in the
production plant. Since most of these roles are also identified in our scheduling
algorithm, we will then implement these roles as the control agents that are responsible
for the scheduling and control for their physical correspondence in the production system.
Therefore, in our distributed control system, we will have control agents such as
workstation agents, job agents and machine agents. Also, we will have the staff agent, the
system mediator, to help accomplish the scheduling tasks. In the next section, we will
implement these control agents in an experimental testbed to carry out the scheduling and
control responsibilities for a simulated shop floor production system. The experimental
testbed will be used to test/evaluate the system performances under different control

strategies.

4.5 The Experimental Testbed

Figure 4.8 shows the experimental model that will be used for testing and evaluating
different control methodologies. In our experimental model, a simulated production
system was set up in Arena (a discrete-event simulation software). The resource, order
and production databases were created in the format of MS-Access ODBC database. The
Microsoft Visual C++ block served as a control module.

In the experimental model, we have entities like workstations, machines and jobs
set up in Arena to represent the production entities in the real production system. The

workstation, machine and job entities in the production system (Arena model) are

MS-Access ODBC Database

Resource DB Order DB Production DB

System Mediator

Job | Station
A

Station AR) Job

Station Job Station Job

7N 7

Machine Machine Machine Machine

D LR T T R R L kR R T

Figure 4.8: The control structure for the experimental model.

R R R R I)

60
controlled by the corresponding control agents residing in the Visual C++ control

module. When the production system starts, a system mediator will be created in the C++
module. The system mediator will then access the resource, order and production
databases to create and initialize the workstation and job control agents. (The advantages
of having the system mediator access different databases to retrieve the necessary
information are that: 1) this practice can more likely reflect the situation in a real
manufacturing system, wherein the order and production information might be created by
different departments and stored in different databases, and 2) we don’t need to modify
the experimental model’s software program when we make changes to the manufacturing
system’s physical configuration, the orders or the production plans of the jobs.) These
agents will then be responsible for the control of their counterpart entity in the Arena
model.

From hereon, entity X in the C++ module will be referred as X agent, and its
counterpart in the Arena model will be referred as X. After all the agents in the C++
module are created and initialized, the three essential elements of the shop floor control

will be implemented as follows:

1) Scheduling

To do the scheduling, the system mediator, workstation agents and job agents will
interact with each other, in the same way as the system mediator, workstation and job
objects that were defined in §4.3 interacted, to generate a production schedule for all the
jobs. Referring to the example described in §4.3.1, after the scheduling process is done,
workstations WS1 and WS2 will have a scheduled task list as shown in Figure 4.9 and
each job will have a scheduled operation record (processing plan) as shown in the Table
43.

J1 Operation 1 | Operation 2
Start Time 0 13
Finish Time 6 21
Station WSI1 WS2
Machine Ml M2

61

Table 4.3: The scheduled operation record (processing plan) for job J1.

Workstation WS1:

M1 | J1 [12 | [13 |
0 6 10 i3 19

M3 [15 16] 74 I
0 3 5 15

Workstation WS2:

M2 [14 I J3 | J1 1 J5 [J6 [12]
0 5 13 21 25 29 30

Figure 4.9: The scheduled task lists for workstations WS1 and WS2.

2) Dispatching

To do the dispatching, each workstation agent will foliow the scheduled task list and
instruct its counterpart workstation in the Arena model to perform the operations
accordingly. For example, referring to Figure 4.9, WS1 agent will instruct workstation
WSI1 to have machines M1 and M3 start operating jobs J1 and JS, respectively, at time 0.
So at time=0, WS1 will look for jobs J1 and JS in its queue and load them to machines
M1 and M3, respectively. And for the job agents, each agent will follow their scheduled
operation record and instruct their counterpart in Arena model to go to the scheduled
workstation for its next operation. For example, referring to Table 4.3, J1 agent will have
job J1 in the Arena model to go (and wait) to workstation WS1 for its first operation.

After the operation is done, J1 agent will then instruct job J1 to go to workstation WS2.

62
3) Monitor

When a machine starts or finishes an operation, it will inform its workstation, and the
workstation will inform its counterpart control agent about the start/end time of the
operation. The informed workstation agent will in turn pass that information to the job
agent of the job being processed. For example, referring to Figure 4.9, when machine M1
starts processing job J1 at time 0, WS1 agent will be informed about the start time of the
operation, and WSt agent will record the data and pass that information to job J1 agent,
who will also record the data. These procedures are needed so that the workstation and
job agents will have the knowledge of the actual work progress of their counterparts in
the production system. And when disturbances happen, these progress records will be
used for rescheduling purpose. Also, this kind of data can be used to aid in securing labor
costs for the job, and for tracing the source of some quality problems (Voris 1966). A
workstation will also monitor the state of its machines (to see if there’s any breakdown or
restoration from failure). When disturbance happens, the workstation agent will then take
an appropriate action to handle the situation, based on what control scheme is
implemented in the system. When a workstation agent receives the message from its
counterpart workstation, it will pass the data to its corresponding machine agents. Each
workstation agent controls its contained machine agents. The main responsibilities of
these machine agents are to record the start/finish time of each operation, and the status

of its counterpart machine in the production system.

63
CHAPTERSS

CONTROL ALGORITHMS IN DISTRIBUTED SCHEDULING AND
CONTROL SYSTEMS '

Previous research on distributed scheduling and control has implemented scheduling
algorithms using various approaches. Some researchers have implemented the distributed
scheduling algorithms for real-time distributed scheduling (Duffie et al. 1986), wherein
there are no pre-production schedules generated, and the distributed scheduling
algorithms are used for making production decisions in real-time (dispatching). Other
researchers have used the distributed scheduling algorithms to generate schedules in
advance (Sousa et al. 1997), or used the algorithms and simulations to generate look-
ahead schedules (Duffie et al. 1994).

Control systems that implement the real-time distributed scheduling approach and
also control systems that generate advance schedules have different planning horizons
(and also different degrees of control agents’ commitments to the future plans). In control
systems that generate advance schedules, control agents are committed to a common
future plan that spans a certain planning period. As a result, “a schedule adds a level of
rigidity to a manufacturing system” (Baker 1997) and limits the control system’s
flexibility and adaptability against disturbances. In control systems that implement real-
time distributed scheduling (dispatching), production decisions are made in real-time and
the control agents make no commitments to any future plan. As a result, these control
systems are more flexible and adaptable to disturbances (Dilts et al. 1991, Bongaerts et
al. 1998).

In this chapter, we will first use some experimental examples to demonstrate how

control agents’ commitments to different planning horizons can affect the control

64
system’s flexibility and adaptability against disturbances. Then experiments will be

conducted to investigate and test the performance of a distributed scheduling and control
system under various control strategies in a stochastic manufacturing environment.
Results of the experiments will be discussed, and a conclusion will be presented in the

last section of this chapter.

5.1 Control System Flexibility against Disturbances for Different

Planning Horizons

In this section, we will develop three different models to test the flexibility against
disturbances of the control systems that perform scheduling with different planning
horizons. Table 5.1 shows the process plans of the jobs to be produced in the
experimental models, and the disturbance will be modeled by having job J1 delayed in
arriving in the production system by 16 minutes. Figure 5.1 shows the production
schedule for the production system without any disturbance. The schedule was generated
by using the non-delay scheduling algorithm (Algorithm 4.2) described in Chapter 4 with
the Most-Working-Remaining (MWKR) priority rule. The experimental testbed
described in §4.5 will be used for the tests.

Job Operation 1 Operation 2
J1 6/1 8/2

J2 4/1 1/2

J3 872 6/1

J4 5/2 10/1

JS 3/1 4/2

J6 2/1 4/2

Table 5.1: Process plan for the jobs (for the operation, Xx/y means x time units at station
y)-

65

MI[1 1 2 | [3 |
0 6 10 13 19

M3| 5 | 6] 4 |
0 3 5 15

wS2

M2l 4 [3] 1 T 5] 6 |2
o 5 13 21 25 2 30

9
Figure 5.1: Gantt chart for the production system without any disturbance.

MODEL 1 — Advanced Scheduling

In this model, the control agents will first co-operate to generate a pre-production
schedule. Then the control agents will execute the schedule in a strict order. That is,
workstation agents will process the jobs in the exact order as descrnibed in their scheduled
task list, and job agents will visit the workstations in the exact order as described in their
scheduled operation list. Figure 5.2 shows the Gantt Chart that describes the actual
production times for the jobs in this model. As shown in the figure, we can see that when
job J1 is late in arrival by 16 minutes, workstation WS1 will have machine M1 wait for
the job and start the operation at time = 16. The delay of job J1's arrival also affects its
next operation’s start time in workstation WS2. As a result of job J1’s arrival, all jobs in

workstations WS1 and WS2 that are scheduled behind job J1 are affected.

WSI1
M1 1 1 [2 | 3]
16 22 26 32
M3 5 | 6] 4 |
0 3 5 15
WS2
M2 4 | 3] [1 15 |6 2]
0 5 13 22 30 34 33
89

Figure 5.2: Gantt chart for model 1.

66
MODEL 2 — Scheduling One-step Ahead

In this model, instead of scheduling all the operations of the jobs at one time, a job’s
operation will be scheduled one step ahead. That is, the planning horizon for the jobs’
operations is reduced. When a machine starts the operation of a job, the job agent will
contact the workstation agent that corresponds to its next operation to reserve a resource.
For example, referring to Figure 5.1, when machine M1 starts processing job J1 at time =
0, the job agent will contact workstation WS2 agent to add it to its queue (J1 agent tells
WS2 agent that it will arrive at time = 6). Based on the arrival time that job J1 agent told
it, WS2 agent will insert job J1 to its queue accordingly. And when the scheduled
processing time is reached and the scheduled job hasn’t arrived yet, the corresponding
workstation will wait for the job.

Figure 5.3 shows the Gantt Chart that describes the actual production times for the
jobs in this model. As shown in the figure, we can see that even though job J1 is late in
arrival for 16 minutes, before time = 16, job J1 didn’t make any reservation for the
resource in workstation WS2. This keeps workstation WS2 agent from committing any
resource (machine M2’s time slot 13~21 (referring to figure 5.1)) to job J1. As resulted,
we can see that with shorter planning horizon, the control system’s flexibility against
disturbance can be enhanced, and the impact of the disturbance on the system

performance is minimized.

WwSI

Mil 5 | 6] 4 | 3 (12 |
]

3 5 15 222 26
1

M3 I 1 |

16 22
wS2
M2[4 | 3 | s 16 || 1 12]
) 5 13 17 2 22 3 31
1 0

Figure 5.3: Gantt chart for model 2.

67
MODEL 3 — Real-time Distributed Scheduling

In this model, the production decisions are made in real-time, and the control agents do
not commit to any pre-production plan /schedule. When a job arrives, the workstation
agent will rank the job by some adopted priority rules. Whenever there is a machine
available and there is a job in queue, the workstation agent will retrieve the first job in
queue and allocate it to be processed in the first available machine. Figure 5.4 shows the
Gantt Chart that describes the actual production times for the jobs in this model. As
shown in the figure, we can see that the disturbance caused by job J1’s late arrival is
transparent to both workstations WS1 and WS2. In model 2, aithough workstation WS2
is not affected by job J1’s late arrival, workstation WS1 is. This is because when the
production system started, job J1 agent assumed that J1 would be available at time =0,
and thus contacted workstation WS1 agent to reserve a machine for its operation.
Referring to Figure 5.3, WS1 agent then allocated one of its machines, M3 to job J1. This
caused it to hold machine M3 from processing other jobs until it had processed job J1. As
a result, we can see that in control systems that implement the real-time distributed
scheduling approach, the control agents make no commitment to any future plan, and
thus can enhance the control systems’ adaptability against disturbances, in comparison to

control systems that generate pre-production schedules.

WS
M 5 | | 4 | [1 I
0 3 5 116 22
5
M3[6] 2] [3 I
0 2 6 13 19
wS2
M2 4] 3 [6 15]2 1]
0 5 13 17 2 22 30

I

Figure 5.4: Gantt chart for model 3.

68
Referring to model 1 (Figure 5.2), we can see that in control systems that

implement the distributed scheduling approach to generate the pre-production plans, the
schedule still imposes a level of rigidity to the control system (Baker 1997). Therefore, in
order to enhance the control system’s flexibility against disturbances, it is important that
the control agents have some local reactive mechanisms to respond to disturbances in
real-time. Current research in distributed scheduling and control is mainly focused on
scheduling issues, and few researchers have addressed these control issues. In the
following sections, we will develop some experimental models to test and evaluate the
performance of a distributed scheduling and control system under various control

strategies in a stochastic manufacturing environment.

5.2 The Performance of the Distributed Scheduling and Control System

under Various Control Strategies

In this section, we will first introduce the characteristics of the production systems that
will be used in our experimental models. Then various experiments will be conducted to
test the performance of the distributed scheduling and control system’s performance
under various control strategies in the stochastic manufacturing environment, and the

results of these experiments will be discussed.

5.2.1 Production Model

The production system used in our experiments will be similar to the generic machining
system proposed in (Cavalieri et al. 1999) for the benchmark job shop scheduling

problem. The characteristics of the production system are summarized as follow:

69
- The production model

- The layout of the production system is shown in Figure 5.5. Each type of machine
can execute a single type of operation. 2 machines per type are present.

- Transportation times, set-up times are ignored.

- Process plan
- Products have a fixed process plan and are constituted by 4 non-preemptable
operations, one for each type of machine.

- The third machine to be visited by the products is a bottleneck resource.

- The manufacturing scenarios

- Stochastic variability on the machining times.

- Measure of performance

- The minimization of mean flow times.

Workstation 1 Workstation 2
Q Q
U u
E E
U U
E E
M1 4 2 1
M7 5 M8
o y
E
; ;
E E
Workstation 3 Workstation 4

Figure 5.5: The layout of the manufacturing system.

70
5.2.2 Experiments and Results

In this section, we will investigate how the control agents’ reactions to the uncertain
machining time disturbance will affect the overall system performance. We choose
minimizing mean flow time as the measure of system performance since in (French
1990), it has been proved that minimizing the mean flow time of jobs also minimizes
their mean completion time, mean waiting time and mean lateness. Also, this is the
performance measure that is proposed in (Cavalieri et al. 1999). The stochastic
manufacturing scenario in the experiments i1s modeled by having some machines always
delayed in finishing the jobs with a delay time generated by the triangular distribution
function. We will use the experimental testbed described in §4.5 to carry out the

experiments.

5.2.2.1 Control Strategies

In the experiments, the control agents (referring to Figure 4.8) will first cooperate to
generate a pre-production schedule. After the production schedule is generated, the
workstation agents will process the jobs in accordance with their scheduled task list. But
when a machine delays in finishing a job, this will affect some of the workstation agents’
production plan. For example, referring to Figure 5.6, if machine M2 delays in finishing
job J3 at time = 13, workstation WS1 cannot have machine M2 start processing job J2,
and workstation WS2 cannot have machine M3 start processing job J3 at time = 13 as

scheduled.

wSs2
M3 | J1 i 12 | [13]
0 6 10 13 19
WSt
M2 [J4 | J3 R
0 5 13 16

Figure 5.6: An example Gantt chart.

7
When this disturbance happens, workstations WS1 and WS2 agents can react in

one of the following 3 ways:

1) WS2 agent will do nothing and wait for J3 to arrive, then load J3 to machine M3 as
scheduled. WS1 agent will do nothing and wait for I3 to be finished, then have
machine M2 processing job J2 after J3 is done, as scheduled.

2) WS1 or WS2 agent can contact the system mediator to request a rescheduling

immediately.

3) The workstation agents will decide whether to wait or call for rescheduling

immediately based on some criteria (to be explained later).

Before we get to option 3, we need to address the rescheduling problem first. To
do the scheduling/rescheduling, we need to know when a machine will be free and when
a job’s operation will be finished, so that we can schedule a next job to a machine and
schedule the job’s next operation, respectively. But in the case of uncertain machine
delay times, we do not know when the machine will finish the job. To overcome this
problem, we will let the delayed machine’s corresponding control agent estimate the time
that it will finish its current job while doing rescheduling. But if a machine is prone to
delay in finishing jobs and the delay time is uncertain and varies from job to job, then we
need the machine’s control agent to make a good guess about its delay time while doing
rescheduling. This is because under or over estimation about the delay time can cause
some extra rescheduling or machine idle times, respectively. Therefore in our
experiments, during the production processes, each machine agent will learn from its
delay records and calculate the mean delay time and use it for estimating the current job’s
finish time while doing rescheduling.

Regarding option 3 and referring to Figure 5.7, lets assume that machine M1
delays in finishing job J3 at time = 13. In our experimental models, after the scheduling
process is complete, each workstation agent will compute the latest possible start time

LPST for all of its jobs. The computation steps for the LPST are as follows (referring to

72
WSI1 and jobs J2 and J3, whose first operation OP1 is done in WS1, and second operation

OP2 is done in WS2):

wSs2
M3 | J1 1 J6] | I3 17 12
0 6 10 13 19 22 24
WS
ML [J4 | J3 | 52 |
0 S 13 16
M2 [J7]
14 16

Figure 5.7: An example Gantt chart.

1) WSI1 agent will consult each of its jobs’ control agents about the latest start time LST
for its operation. The latest start time LST of a job’s current operation is equal to:
LST = start time of next operation — processing time of current operation. For
example, J3’s OP1’s processing time is 8 minutes, and the start time for its next
operation OP2 is at time = 13. So its latest start time LST for OP1 is (13-8) at time =
5. And for J2, its OP1’s processing time is 3 minutes, and the start time for its next
operation OP2 is at time = 22, so its latest start time LST for OP1 is (22-3) at time =
19. This means that WS1 can postpone the processing of J2 until time = 19 and still
will not interrupt the start time of J2’s next operation. (If a job’s current operation is
its last operation, then its LST is equal to: due-date — processing time of current
operation. For example, for J3 in WS2, say J3’s due-date is at time = 30, then its LST
for OP2 is equal to (30- 6 = 24.)

2) WSI1 agent will then figure out the times that it can delay processing a job without
affecting its next job’s operation. We will call this delay time as LST’. The LST’ fora
job is equal to: LST” = next job’s LST — current job’s current processing time. For
example, the LST’ for J3 in WS1 is equal to the LST of job J2 (19) — the processing

73
time (8) of J3’s operation OP1. Therefore, the LST’ for J3 is equal to (19-8)=11. And

since J2 is the last job in machine M1, it doesn’t have a LST’ (LST’ =).

3) The latest possible start time LPST for a job is equal to: LPST = MIN(LST, LST’).
For job J3, its LPST in WS1 is equal to MIN(S, 11) = 5. And the LPST for J2 is equal

to MIN(19,) = 19.

The latest possible start time LPST of a job represents the latest time that a
workstation can delay processing a job and without causing an impact on the remaining
operations of the job and the jobs that are scheduled behind that job.

For workstation WS2, at time = 13, when job J3 is late in arrival, WS2 agent will
contact J3 agent to see when it will arrive. J3 agent will in turn contact WS1 agent to see
when its machine M1 will finish J3’s operation OP1. WS1 agent will ask its
corresponding machine agent M1 to estimate its delay time DT and the job’s finish time
FT. Machine agent M1 estimates its delay time DT by calculating the mean from its past
delay time records, and job J3’s finish time is generated by adding job J3’s start time +
J3’s processing time + estimated delay time (DT) = job J3’s estimated finish time (FT).
After receiving the response from M1 agent, WS1 agent will then forward the answer
(FT) to job J3 agent. J3 agent will in turn pass that answer to WS2 agent. Upon receiving
the answer, WS2 agent will then see if the FT is less than or equal to J3’s LPST. If it is,
then WS2 agent will decide to wait for J3. And if it’s not, then WS2 will contact the
system mediator to call for the rescheduling immediately. If WS2 agent decides to wait
and J3’s latest possible start time LPST is reached and J3 still hasn’t arrived (M1 agent
underestimated its delay time), WS2 agent will contact the system mediator to call for
rescheduling. The collaboration diagram of the afore-mentioned processes is shown in

Figure 5.8 below.

74

2: st:=GetLPST(3) I: f:=GetFinishTime()
*L | —P i3:Job
ws2:Station
¢I 1: ft:=GetFinishTime(j3)
3: [ft>st] Reschedule() wsl:Station
‘ *l.l.!: ft:=GetFinishTime(j3)

aSysMed:System Mediator

ml:Machine

Figure 5.8: The collaboration diagram regarding WS2 agent’s decision to call for
rescheduling.

For workstation WSI1, at time = 13, WS1 agent finds out that it cannot load job J2

to machine M1 because M1 is not done with job J3 yet. WS1 agent will then take the

following actions:

1y

2)

3)

See if there’s another machine available at that time. For example, if machine M2 has

no job scheduled to it after time = 13, then WS1 agent will load job J2 to machine M2

instead.

If as shown in Figure 5.7, that machine M2 has a job (J7) scheduled to it after time =
13, then WS1 agent will determine job J7°s LPST. If the current time + J2’s OP1’s
processing time is less than or equal to job J7°s LPST, then WS1 agent will decide to
load job J2 to machine M2 instead.

If the above 2 options are not feasible, then WS1 agent will have its corresponding
machine agent M1 estimate its delay time DT and job J3’s finish time FT. WS1 agent
will then see if FT is less than or equal to job J2°s LPST. If it is, WS1 agent will
decide to wait for job J3’s completion and load job J2 to machine M1 as scheduled. If
it is not, then WS1 agent will call for rescheduling immediately. When J2’s latest

75
possible start time LPST is reached and if machine M1 still hasn’t finished job J3 yet

(M1 agent has under estimated the its delay time), WS1 agent will then call for the
rescheduling. The collaboration diagram of the afore-mentioned processes is shown

in Figure 5.9 below.

1: change:=IsChangeMachine(j2)

* 2: [not change] ft:=GetFinishTime(j3)

wsl:Station ’ ml:Machine

4

3: [not change] st:=GetLPST(j2)

¢ 4: [ft>st] Reschedule()

aSysMed:System Mediator

Figure 5.9: The collaboration diagram regarding WS1 agent’s decision to call for
rescheduling.

Before we proceed to the next section, we will summarize the control strategies

that will be used in the experiments as follows:

NO_WAIT - represents the control system wherein the affected workstation agents will

call for a rescheduling immediately whenever a machine delay disturbance happens.

WAIT - represents the control system wherein the affected workstation agents will just
wait for the disturbance to pass and never call for rescheduling whenever a machine delay

disturbance happens.

76
WAIT_INTEL - represents the control system wherein when a machine delay

disturbance happens, the affected workstation agents will decide whether to wait or call
for a rescheduling immediately, based on the criteria described in option 3 above (i.e.,

based on the collaborations described in Figures 5.8 and 5.9).

DIST - represents the control system wherein production decisions are made in real time.

The scheduling algorithm is implemented for the real-time distributed scheduling
purpose.

Although the above four control approaches use the same scheduling algorithm,
unlike the WAIT, NO_WAIT and WAIT_INTEL control approaches, the DIST approach
has no pre-production schedule generated. With the DIST approach, jobs are sent to the
corresponding station queue for their first operation, then the scheduling algorithm is

used to determine the processing order in real time.

5.2.2.2 Experiments

In this section, experiments will be conducted to test the performance of the afore-
mentioned control strategies in various stochastic manufacturing scenarios. The
stochastic manufacturing scenarios are modeled by providing machines in workstation
WS1 with uncertain machining times. We will test and evaluate the performance of the
alternate control methodologies in the manufacturing models with varying levels of
uncertainty. The uncertainty level of the manufacturing model is constituted by 2 factors:
1) the disturbance frequency (i.e. the number of times that the machines in workstation
WS1 will delay in finishing the jobs in production), and 2) the processing variability (i.e.
the variation of the delay-time). 40 jobs of 3 job types will be produced in the
manufacturing models. The process plan and the number of jobs for each job type are

shown in Table 5.2 below.

Operation (process time (min) / operation type)

Job ID 1 2 3 4 # of Jobs
JO1 6/1 8/2 13/3 5/4 12
JO2 3/4 6/2 15/1 4/3 14
Jo3 52 6/1 13/3 4/4 14

Table 5.2: Process plans and the number of jobs for the experimental models.

5.2.2.2.1 Experiment SA: Performance of Different Control Strategies in

Manufacturing Systems with Various Disturbance Frequencies

In this experiment, the machines M1 and M2 in workstation WS1 might delay in
finishing the jobs with the delay time generated by a triangular distribution function
TRIA (1,3,8). That is, the machine delay time varies from I minute to 8 minutes, with a
mean delay time of 3 minutes. To model the various disturbance-frequency scenarios, the

following test scenarios will be used:

1) The machines will always finish the jobs on time. That is, there is a 0% chance that

the machines will delay in finishing the jobs.

2) During the production of the 40 jobs, there is a 60% chance that the machines will

delay in finishing some of the jobs.
3) The machines will always (100%) delay in finishing the jobs.

The discrete probability function is used to generate the various disturbance
frequencies for machines M1 and M2 in the Arena model (the simulated production
system). The results of the tests are shown in Table 5.3 below. The results show the mean
flow time (minute) of each control approach in different test scenarios. For the results of

the WAIT _INTEL and NO_WAIT control methodologies, the number inside the

78
parenthesis shows the ‘total number of rescheduling’ instances. Figure 5.10 shows the

graphical interpretation of these results.

Disturbance Probability /
Control Strategy 0% Ll 100%
WAIT 169 185 197
WAIT _INTEL (Reschedule #) 169 171 (4) 172 (10)
NO_WAIT (Reschedule #) 169 172 (31) 176 (54)
DIST 169 170 172

Table 5.3: The mean flow time (minutes) of various control approaches in different
‘disturbance frequency’ test scenarios.

200
3
£ 0
]
‘g
'% 180
i
e 170
g

1& L3 4 L] L

0 20 40 60 80 100
Disturbance Probability (%)

-- @ --WAT — A~ WAIT_INTEL - & - NO_WAIT —¥—DIST

Figure 5.10: The mean flow time (minutes) of various control approaches in different
‘disturbance frequency’ test scenarios.

79
To ensure the consistency of each test result (that is, to make sure that a result

does not represent an extreme instance caused by the randomness in the machine delay-
time or disturbance frequency input data), each simulation is run for 30 replications. With
a 95% confidence interval, the variation of each result (half-width) is about £2% or less.
For example, Figures 5.11 shows the 95% confidence interval results of the

WAIT_ INTEL control approach in the 60% disturbance test scenario.

all | On

i =,

WAIT_MTEL (6% Disturbance) 9584 CL

-h
a

37~
B 2 2

Figure 5.11: 95% confidence interval cycle time result for the WAIT_INTEL control
approach in the 60% disturbance test scenario.

Referring to Table 5.3 and Figure 5.10, we can see that in control systems that
generate the pre-production schedules (i.e., WAIT, WAIT_INTEL, NO_ WAIT), when
there is no disturbance, all the control methodologies have the same performance. But
when there are disturbances, control systems (WAIT) that do not have the reactive
mechanisms to response to disturbances in real time have inferior performance (in terms
of mean flow time) than control systems (WAIT_INTEL and NO_WAIT) that can react to

disturbances in real time. This is because when ‘machining-time-delay’ disturbances

80
happen, with the NO_WAIT and WAIT_INTEL control approaches, available jobs in

other workstations can be re-scheduled to be processed first instead of waiting for the
delay job to arrive. But with the WAIT control approach, when a machine delays in
finishing a job, the workstation that corresponds to the delay job’s next operation might
have to wait for the job, and this might delay the processing of the other scheduled jobs,
which in turn might cause the processing of other jobs in other workstations to be
delayed. As resulted, the accumulated delay times can greatly affect the performance of
the control system. And the performance of the control system becomes worse as the
disturbance frequency increases.

Regarding the WAIT_INTEL and NO_WAIT control approaches, we can see that
the WAIT INTEL control approach far outperforms the NO_WAIT approach in terms of
‘rescheduling frequencies’ in all the tests (as shown in Figure 5.12). Referring to Figures
5.10 and 5.12, we can see that in the manufacturing systems with disturbances, the
rescheduling frequency of the NO_WAIT approach is significantly higher that that of the
WAIT_INTEL approach (especially in the 100% disturbance case). This high
rescheduling frequency also causes the NO_WAIT approach to have worse performance
than the WAIT _INTEL approach. This is because as mentioned in §5.3.1, when doing the
rescheduling, the machines with uncertain processing time have to estimate their delay
times. While under-estimation of the delay times may cause extra rescheduling, over-
estimation of the delay times may cause extra machine idle times, which will affect the
overall system performance. Control systems with higher rescheduling frequencies are
more likely to have this kind of estimation error, since higher rescheduling frequency
means more opportunities to generate faulty schedules. Also, in control systems wherein
the machines have large processing variability, it is more difficult to estimate the machine
delay time while doing the rescheduling. As a result, (larger) estimation faults are usually
incorporated in the new schedules, and thus will affect the system performance (we will

further discuss this issue in the next experiment).

81

Q

T T

60

S S0 T T //J'

52 40

2 3

g ® 30 /

ZG

Eé 20 1 /

'2 10 // /
60 80 100

o 20 40
Disturbance Probability (%)

[—e— WAIT_INTEL ——NO_WAIT |

Figure 5.12: Results of the rescheduling frequencies of the WAIT_INTEL and
NO_WAIT approaches in various test scenarios.

Referring to Figure 5.10, theoretically, the NO_WAIT and the DIST approaches
should have similar (if not the same) performance, since both approaches use the same
scheduling algorithm to allocate resources to the jobs. As well, in the NO_WAIT
approach, rescheduling is done whenever processing-delay disturbances happen.
Therefore, the results of both approaches represent the (non-delay) production schedules
of the control system with the machining delay times incorporated in them. But in
practice, with the NO_WAIT approach, rescheduling may incur some estimation faults in
the new schedules, and the DIST approach can avoid this kind of error. This is because in
DIST control, resources do not have to follow any pre-production schedules (production
decisions are made in real-time), and thus machines do not have to make any delay

estimates (for rescheduling purpose). As a result, the DIST approach always has better

performance.

82
5.2.2.2.2 Experiment SB - Performance of Different Control Strategies

in Manufacturing Systems with Various Processing Variabilities

In each of the test scenarios in this experiment, the machines in workstation WS1 will
have different processing variabilities, and the probability of the processing-delay
disturbance occurrence is 100%. The uncertain delay-time for the machines in each test

scenario is given as follows:

1) Zero processing variability — The machines will always finish the jobs on time (no

processing delays).

2) TRIA(0,3,5) — The machines will always delay in finishing the jobs. The delay-time
uncertainty is modeled by the triangular distributed function, which will generate a

delay-time between 0 — 5 minutes, with a mean of 3 minutes.

3) TRIA(0,3,8) — The machines will always delay in finishing the jobs. The delay-time
uncertainty is modeled by the triangular distributed function, which will generate a

delay-time between 0 — 8 minutes, with a mean of 3 minutes.

4) TRIA(0,3,12) — The machines will always delay in finishing the jobs. The delay-time
uncertainty is modeled by the triangular distributed function, which will generate a

delay-time between 0 — 12 minutes, with a mean of 3 minutes.

Table 5.4 shows the results of the performance (the mean flow time) of the 4
control approaches mentioned in §5.2.2.1 in each test scenario. Figure 5.13 shows the
graphical interpretation of the results in Table 5.4. Each simulation is run for 30

replications and the variation of each result is about 2% or less.

83

Experiment # /
ZERO TRIA(0,3,5) TRIA(0,3,8) | TRIA(0,3,12)
Control Strategy
WAIT 169 188 194 204
WAIT INTEL (Reschedule #) 169 170 (4) 172 (8) 176 (14)
NO_WAIT (Reschedule #) 169 171 (52) 175 (54) 182 (56)
DIST 169 170 171 174

Table 5.4: The mean flow time (minutes) of various control approaches in different
‘processing variability’ test scenarios.

210

200

190

180 -

170 +———— ==

Mean Flow Time (min)

160

Experiment Number

---@-- WAIT = A~ ~WAIT_INTEL —-m-~NO_WAIT ——DIST

Figure 5.13: The mean flow time (minutes) of various control approaches in different

‘processing variability’ test scenarios.

Referring to Table 5.4 and Figure 5.13, the increase of the ‘processing variability’

of the machines in workstation WS1 imposes 2 kinds of impacts on the performance of

the alternative control approaches:

1)

2)

84
Higher ‘processing variability’ implies that some of the machines’ processing delay-

times will be increased. As resulted, this will increase the processing time of some of
the jobs, and thus increase the cycle time of the production. This impact is reflected in
the results shown in Figure 5.13. In the figure, we can see that the mean flow time of
all the control approaches increase as a result of the increase of the processing
variability. When considering the control systems that generate pre-production
schedules, when there are disturbances, control systems that do not have the reactive
mechanisms to response to disturbances in real time (WAIT) have inferior mean flow
time performance than control systems that can react to disturbances in real time

(WAIT_INTEL and NO_WAIT).

With higher ‘processing variability’, it is more difficult for the machine agents to
estimate their delay-times while doing the rescheduling. As mentioned in the last
section, while under-estimating the delay-times may cause extra rescheduling, with
higher ‘processing variability’, there is a higher probability that the machine agents
will over-estimate their delay times. Higher ‘processing variability’ may also cause
larger estimation errors. As resulted, this will cause extra (larger) machine idle times,
and thus increase the cycle time of the production. This impact is reflected in the
results shown in Figure 5.13. In the figure, we can see that with increasing
‘processing variability’, the performance of the NO_WAIT control approach deviates
from the performance of the DIST approach with greater angles.

A paired-t zero rejection hypothesis test was performed to evaluate the differences

between the performance of the WAIT_INTEL and DIST control approaches. Even

though this test showed these differences to be statistically significant, the differences are

very small as can be seen in Figure 5.3. This is because whenever the machining delay

disturbances happen, instead of calling for rescheduling immediately, the workstation

control agents in the WAIT INTEL approach will decide to call for rescheduling or not

based on certain rescheduling-invocation criteria. As resulted, the rescheduling frequency
of the WAIT INTEL approach is significantly lower than that of the NO_WAIT

approach in all test scenarios. Higher rescheduling frequency means more opportunities

85
for generating faulty schedules. And as mentioned above, higher ‘processing variability’

might cause larger machining delay-time estimation errors, and thus cause extra (larger)
machines idle times. Therefore, with increasing ‘processing variability’, the performance
of the NO_WAIT approach deviates from the performances of the WAIT_INTEL and the
DIST approaches.

5.2.2.2.3 Experiment 5C: Unpredictability of Heterarchical Control

Systems

In experiments 5A and 5B, the results of the control system (DIST) that implements the
distributed scheduling algorithm for real-time control always has superior mean flow
time performance over other control approaches. This is because with the DIST control
approach, no pre-production plan is generated. As a result, the DIST control approach can
be more flexible to react to disturbances in real-time, and can avoid generating faulty
schedules (machining delay-time estimation errors generated during the rescheduling
processes).

Even though the DIST control approach uses the same scheduling algorithm as
the other control approaches to allocate jobs to resources, in some cases, the adopted
dispatching rule that is used in the scheduling algorithm might be violated in the DIST
control systems. As resulted, the performance of the control system becomes
unpredictable. For instance, in the DIST control systems, since there is no pre-production
plan, the workstation agents will process the arriving jobs in the order that is based on
some adopted dispatching priority rules. But in situations wherein there is an idle
machine in the workstation, and two jobs (say job A and job B) with different priority
arrive at the workstation at the same time but in different sequence. If job A has lower
priority than job B but arrives at the workstation first, the workstation agent will load job
A to the idle machine immediately. Then when job B arrives, it has to wait in the queue,
even though its priority is higher than job A’s. But in control systems with pre-production

schedules, since both jobs will be available at the workstation at the same time, the job

86
with the higher priority will be scheduled to be processed first. So in such control

systems, while executing the production schedule, the workstation control agent will
always process job B (higher priority, as scheduled) first, regardless of the arriving
sequence of jobs A and B.

To model this situation, we use the production data shown in Table 5.5 below to

conduct the tests.

Operation (process time (min) / operation type)
Job ID 1 2 3 4 # of Jobs
Ji 6/1 8/2 13/3 5/4 4
J2 4/1 3/2 8/3 3/4 4
J3 3/4 6/2 15/1 4/3 4
J4 5/2 . 6/1 13/3 4/4 4
I5 5/1 3/2 8/4 4/3 4

Table 5.5: Process plans and the number of jobs for the experiment 5C.

In this experiment, we will produce 20 jobs, 4 of each job type listed in Table 5.4.
In the table, we can see that jobs with job types J1, J2, and JS all need to have their first
operation processed in workstation WS1. In our scheduling algorithm (for the WAIT,
NO_WAIT, and WAIT_INTEL approaches), the Most-Work-Remaining (MWKR)
priority rule is used for ranking the jobs. Therefore, in the production schedule, at time =
0, since all jobs are available at that time, jobs with job type J1 will be scheduled to be
processed first in workstation WS, since they have higher priority (for operation 1) than
jobs with other job types. But in the DIST control system, at time = 0, it is possible for
jobs with other job types to arrive at the workstation WS1 first. And in such cases,
workstation WS1 agent will load the first arriving job to the first available machine. As a
result, some jobs with lower priority will be processed first.

The stochastic manufacturing scenario in this experiment is modeled by having
machines in workstation WS1 have an uncertain processing delay-time generated by the
triangular distribution function TRIA(0,2,4). In different test scenarios, we will have jobs
with different job types arrive at workstation WS1 in different sequences at the start of
the production (time = 0). And jobs with job types J3 and J4 will go to workstations WS4

87
and WS2, respectively, at time = for the processing of their first operation. The arrival

sequences (for workstation WS1) of the jobs in different test scenarios are:

1) (J1,J2, J5) — In the first test scenario, jobs with job type J1 will arrive (at workstation
WS at time = 0) first, then the jobs with job types J2 and J5 will arrive.

2) (J5,J2,J1) - In the second test scenario, jobs with job type J5 will arrive (at
workstation WS1 at time = 0) first, then the jobs with job types J2 and J1 will arrive.

3) (J2,1711, J5) - In the third test scenario, jobs with job type J2 will arrive (at workstation
WS1 at time = 0) first, then the jobs with job types J1 and J5 will arrive.

The results of the tests are shown in Table 5.6 below. In test scenario 2 (J5, J2,
J1), when the production system starts, jobs with job type J5 were modeled to arrive at
workstation WS1 first. In the DIST control system, the workstation WS1 agent will load
the first 2 arriving J5-type jobs to its 2 available machines (the remaining J5-type jobs
will then be ranked with other late arriving jobs). As resulted, two J5-type jobs that have
lower priority than the J1-type jobs will be processed first. Similar situations happened in
test scenario 3 (J2, J1, J5). The violation of the dispatching priority rule in test scenarios
2 and 3 had affected the overall system performance of the DIST control system. 30
replications have been run for each test, and the paired-t zero rejection hypothesis test has
showed that the differences between the DIST test result in different test cases are
statistically significant.

In the WAIT, NO_WAIT and WAIT_INTEL control approaches, since the pre-
production schedules are generated in these systems, the workstations will always process
the jobs as scheduled, regardless of the arriving sequence of the jobs. As resulted, the
performances of these control approaches do not change in all the test scenarios.

Referring to the above experiments 5A and 5B, and 5C, we can see that even
though the control systems (DIST) that make the production decisions in real time can be
more flexible against disturbances, sometimes the behaviors (or performance) of such

systems are hard to predict.

Test Scenario /
Control Strategy J1, 32, 35) Js, 32, 11) (32,11, 15)
WAIT 86 NO CHANGE | NO CHANGE
WAIT _INTEL (Reschedule #) 76.7 NO CHANGE | NO CHANGE
NO_WAIT (Reschedule #) 77.8 NO CHANGE | NO CHANGE
DIST 76.4 829 83.8

Table 5.6: The mean flow time (minutes) of various control approaches in different test
scenarios for experiment 5C.

5.3 Conclusion

Referring to the experiments described in §5.2, we can see that while implementing the
scheduling algorithm for real-time distributed scheduling and control can enhance the
control system’s flexibility against disturbances, sometimes it is hard to predict the
behavior and performance of such control systems. Therefore, sometimes it is still
necessary to develop the pre-production plans (advance schedules) to enhance the
predictability of the control systems.

Research in distributed scheduling and control systems has claimed that the

distributed scheduling approach can enhance the control systems’ adaptability against

88

disturbances (Dilts et al. 1991, Duffie et al. 1994, Sousa et al. 1997). But (referring to the

experiments described in §5.2) unless the distributed scheduling algorithm is
implemented for real-time distributed control, control systems that implement the
distributed scheduling algorithms to generate the pre-production schedule can still be
very susceptible to the impact of the disturbances. In the distributed scheduling and
control systems that generate pre-production schedules, implementing the distributed

scheduling approach can achieve advantages such as:

89
1) The scheduling performance can be enhanced “‘through parallel computing and

through the elimination of the processing bottleneck caused by global scheduler”
(Dilts et al. 1991)

2) The control system’s fault-tolerance can be improved (can avoid the single point of

failure problem of the centralized scheduling system).

3) The control system’s reconfigurability and adaptability can be enhanced (Dilts et al.
1991).

It is important to note though, that the control systems should have the proper
control algorithms to react to disturbances in real-time. Otherwise, the performance of the
control systems can be greatly affected (cf.., the WAIT control approach), especially in
the stochastic manufacturing environment.

If the control agents in the distributed control systems do not have the local
reactive control mechanisms to react to disturbances in real-time when disturbances
happen, the affected control agents have to invoke the rescheduling processes so that the
control system can respond to these disturbances (e.g., the NO_WALIT control approach).
Some researchers have used the rescheduling approach to help enhance the control
system’s adaptability against disturbances. For instance, in (Duffie et al. 1994), the
control agents in the control system continuously generate new ‘look-ahead’ schedules
via simulations. For each simulation, the current status of the production system is
modeled in the simulation model so that the control system can be “adaptable to faults”
(Duffie et al. 1994). But while doing the rescheduling, all the control agents in the system
have to be involved. Therefore, high frequency of rescheduling means that the control
agents will always be engaged in some communication processes and this might violate
some design principles of the distributed control systems. For instance, Duffie et al.
(1994) mention that:

90
“The fully distributed heterarchical manufacturing system scheduling and control

architecture is comprised of loosely coupled, highly autonomous entities retaining

minimal global information”.

But in (Smith 1980), the ‘loosely coupled’ is defined as:

“Loosely coupled means that individual KS’s (Knowledge Source) spend most of

their time in computation rather than communication”.

Therefore, we can see that the ‘loosely coupled, highly autonomous’ features of
the distributed scheduling and control systems require that the communication between
the control agents should be minimized. To achieve this goal, it is important that the
control agents should have the local reactive control mechanism (autonomy/intelligence)
to react to disturbances in real-time, and thus can minimize the rescheduling frequencies.

Referring to the experiments in §5.2, we can see that in control systems (e.g., the
WAIT_INTEL approach) wherein the control agents have the proper local reactive
control mechanisms to react to disturbances in real time, not only can the desirable
system performance can be achieved, but the control system’s adaptability against
disturbances can be enhanced, and the rescheduling frequencies can be minimized
significantly, in comparison to the NO_WAIT approach. As well, when reacting to the
machining delay disturbances, unlike the rescheduling approach (wherein all the control
agents have to be involved), in the WAIT _INTEL approach, only the affected control
agents will be contacted, and the unaffected control agents will not be bothered. As
resulted, with the WAIT_INTEL control approach, the “loosely coupled, highly
autonomous” features of the distributed scheduling and control systems can be fully

realized.

91
CHAPTER 6

JOB SEQUENCING AND DISPATCHING ROUTING DECISIONS IN
THE MULTI-AGENT HETERARCHICAL CONTROL SYSTEMS

Current research in multi-agent heterarchical control systems has commonly used the
dispatching routing approach to allocate jobs to resources (Duffie et al. 1986, Baker
1997). In such control approach, resource allocations are accomplished by having the
jobs collect bids from the potential machines that can process their operations. “The
contents of these bid are usually simple information such as cost, earliest start time, or
earliest finish time” (Baker 1997). The contract net auction-bidding protocol (Smith
1980) is commonly used in the multi-agent heterarchical control systems for the part

agents to make the routing decisions.

“Indeed, the preponderance of agent research for manufacturing has developed
agent architectures which implement different dispatching rules. It is most
common to dispatch the routing decision in these architectures, assuming
sequencing can then be done at each resource. ... In the case of the routing
decision, a great deal of agent research has been with having the agents make this
decision by collecting bids from potential machines to which the job can be
routed” (Baker 1997).

Most work in multi-agent distributed scheduling and control systems only deals
with dispatching the routing decisions, and the job sequencing issues are usuaily ignored.

As resulted, most of these approaches usually perform the scheduling by jobs on a First-

92
Come-First-Serve basis (Veeramani & Wang 1998), which sometimes compromises

certain global performance objectives.

In this chapter, we will investigate the impact of the job routing and job
sequencing decisions on the control system’s performance and its adaptability against
disturbances such as machine failure. The experimental testbed described in §4.5 will be
used for testing and evaluating the performance of vanious control algorithms in a multi-
agent heterarchical shop floor scheduling and control system. The experimental results

will then be discussed and a conclusion will be presented.

6.1 Experiments and Results

Current research in multi-agent heterarchical control systems usually implement ‘part
driven’ real-time scheduling algorithms, wherein the part agents use the auction-bidding
resource reservation protocol to explore the routing or process sequencing flexibility in
real-time. Traditional dispatching control systems usually implement ‘resource driven’
scheduling (dispatching) algorithms, wherein the resource controllers (agents) use
dispatching rules to sequence the processing of the arriving jobs, and the routing

decisions are usually determined in advance.

“Most dispatching rule research has been with dispatching which job a resource
will work on next. This sequencing decision can be made based on a job’s due-
date, its customer priority, similar setups, the shortest processing time
remaining.. .. Once a job is released into the factory, or once a job is finished at a
resource, the next decision is which resource to route it to next. Often, the routing
decision has been made in advance” (Baker 1997).

Although quantitative results are available for the traditional dispatching and the
bidding-based control approaches, few researchers have compared the performance of

these alternative approaches on a common platform. In (Duffie et al. 1994), wherein the

93
‘part driven’ real-time distributed scheduling and control algorithms are implemented, it

is proposed that “future work should compare them with traditional dispatching rules and
scheduling heuristics™ (Duffie et al. 1994).

In this section, we will conduct experiments to investigate the impact of the
dynamic job routing and job sequencing decisions on the control system’s performance
and adaptability against disturbances. The tested control systems will have varying
production volumes (to model the production system with looser/tighter schedules) and
disturbance frequencies, so that the impact of the job routing and sequencing decisions in
various manufacturing environments can be evaluated. In our experimental models,
routing flexibility is introduced into the production system by providing jobs with a
flexible processing order for their operations. That is, there is no technological constraint

on the processing sequence of the operations of the jobs.

6.1.1 Experimental Models

To evaluate the impact of dynamic job routing and job sequencing decisions in various
manufacturing environments, the following control strategies will be implemented in our

experimental models:

a) AUC_BID (AUCtion-BIDding) - In this control approach, the job control agents will
use the contract net auction-bidding protocol to collect bids from the workstations to
explore the process sequencing/routing flexibility. Job sequencing will not be
implemented in this control approach. That is, to decide which operation to process
next, for each of the job’s remaining unprocessed operations, the job agent will
contact the system mediator to find out which workstation is responsible for that type
of operation. Then the job agent will contact the corresponding workstation agent to
see when the workstation can start the operation. Since job sequencing is not
implemented, the workstation agent will rank the incoming jobs on the First-Come-

First-Serve basis, and respond to the job agent with the answer that states the earliest

b)

c)

94
possible start time for that operation. After receiving responses from all the

workstations that can process its remaining unprocessed operations, the job agent will
evaluate all the responses and pick the operation whose corresponding workstation

can start the job soonest to be processed next.

JSEQ (Job SEQuencing) — In this control approach, the workstation control agents
use the adopted priority dispatching rule to sequence the incoming jobs, and the jobs
do not explore the routing flexibility. That is, even though there is no technological
constraint for the operations of the jobs, the job agents will not explore the routing
flexibility, and will have their operations processed in some predetermined order (the
order that is originally stated in their process plan). When a job enters a workstation,
the workstation agent will rank the incoming jobs based on some adopted priority
rules. In our experiments, the Least Work Remaining (LWKR) heuristic priority
dispatching rule will be used. This is because the performance measure of our
experiments is the minimization of the mean flow time, and the empirical
experimental results conducted by other researchers (Conway et al. 1967) have

suggested that the LWKR rule can help minimize the mean flow time.

AUC + JSEQ — In this control approach, while the job agents will use the auction
bidding mechanism as stated in (a) to explore the routing flexibility, the workstation
agents will sequence the incoming jobs based on the dispatching rules as stated in (b).
That is, to decide which operation to process next, the job agents will collect bids
from the workstations that correspond to its remaining unprocessed operations.
Unlike in (a), when a workstation agent receives a bid request from a job agent,
instead of quoting the job’s earliest possible start time based on the First-Come-First-
Serve rule, the workstation agent will try to insert the job into its queue and quote the
job with the earliest possible start time that is based on the adopted priority
dispatching rule as stated in (b). After receiving the response from all the
workstations that correspond to its remaining unprocessed operations, the job agent
will evaluate all the responses and pick the operation whose corresponding

workstation can start the job soonest to be processed next.

95
d) COMT+AUC+HJSEQ (COMmitmenT + AUC + JSEQ) — One of the problems

regarding the control approach stated in (c) is the role of commitment in the auction-
bidding processes. In deciding which operation to be processed next, the job agent
will make the decision based on the returned ‘earliest start time’ quote of the
workstations that correspond to its remaining unprocessed operations. The returmed
quoted start time represents that the workstation is willing to commit some of its
resource capacities to process the job at certain times. But when the workstation
agents use the LWKR rule to sequence the incoming jobs, the workstation agents

might violate some of the previous commitments that it has made to some jobs.

For example, referring to Figure 6.1 below, at time = 3, if workstation WS1
agent has responded to the job J2 agent that it can start processing the job at time = 6,
and the job J2 agent, after evaluating some other bids, decided to join the workstation
WS1. Then at time = 4, a new job J5 that has smaller remaining work processing
times than job J2, asks WS1 when it can start processing the job. If workstation WS1
uses the LWKR rule to try to insert job JS into its queue, it will answer the job JS that
the earliest possible start time that it can process the job is at time = 6. And if job J5
decides to join workstation WS1, then workstation WS1 will violate the quoted start
time it sent to the job J2 previously. In this case, should the affected job J2 be notified
that its quoted start time has been changed, so that job J2 can explore other routing
opportunities to see if other workstations that correspond to its other remaining
unprocessed operations can start the job earlier? And how would this opportunistic
behavior of the job agents affect the performance and the communication
requirements of the control system? The COMT+AUC+JSEQ control approach will
be used to investigate these issues. In this control approach, when the workstation
agents insert a new job into its queue, the affected jobs will be notified so that they
can explore other routing opportunities. For the affected job agents, if no other
workstations can start their other remaining operations sooner, then they will decide
to stay in the original workstation. Otherwise, they will change the workstation (and

the process sequence).

WSt

)

Ml |

J1 |

0

4 6

10

Figure 6.1: An example task list for workstation WS1.

96

The process plan for the job types that will be used in the experimental models is

shown in Table 6.1 below.

Operation (process time (min) / operation type)

Job ID 1 2 3 4
J1 6/1 8/2 13/3 5/4
J2 4/1 3/2 8/3 Ya
J3 3/4 6/2 15/1 4/3
J4 52 6/1 13/3 4/4
J5 5/1 3/2 8/4 4/3

Table 6.1: Process plan of the various job types.

6.1.2 Experiment 6A — Zero Disturbances

In this experiment, we will evaluate the performance of the four control strategies

described in the §6.1.1 above in control systems with zero disturbances. Each of the four

control strategies will be implemented in control systems with varying production

volumes, so that the impact of the alternative control approaches in control systems with

various degree of tightness of schedules can be evaluated. In each test, equal amounts of

each of the job types described in Table 6.1 above will be produced. The results of the

tests are shown in Table 6.2 below. Figure 6.2 shows the graphical interpretations of the

results shown in Table 6.2.

g7

Number of Jobs /
Control Strate 10 15. 20 25 30 35 40 50 70
gy Jobs | Jobs | Jobs | Jobs | Jobs | Jobs | Jobs | Jobs | Jobs
AUC_BID 33.6 49 62.3 80.5 92.7 113.6 129 159 211
JSEQ 368 163 57.8 69.4 81.7 94.5 107.4 | 1337 180
COMT + AUC + JSEQ 33.4 42 475 55.6 64 725 81.3 976 13327
AUC + JSEQ 338 42 50.4 57.6 69.5 78.2 828 103.8 141.4

Table 6.2: The mean flow time (minutes) of various control approaches in different test

scenarios for experiment 6A.

230

180

130

80 A

Mean Flow Time (min)

30

Number of Jobs

80

---%-- AUC_BID —--- JSEQ —a&— COMT+AUC+JSEQ — -0- - AUC+JSEQ

Figure 6.2: The mean flow time (minutes) of various control approaches in different test

scenarios for experiment 6A.

98
6.1.3 Experiment 6B — One Machine Failure Disturbance

In this experiment, we will evaluate the performance of the four control strategies
described in the §6.1.1 above in control systems wherein one of the machines in
workstation WS1 will be down for 30 minutes after it processes the first job. With the
COMT + AUC +JSEQ approach, when the machine failure happens, the affected jobs in
workstation WS1 will be notified so that they can explore other routing opportunities.
The results of the tests are shown in Table 6.3 below. Figure 6.3 shows the graphical

interpretations of the results shown in Table 6.3.

Number of Jobs /
Contol Straegy sobs | Jobs | Jobs | Jobs | sobs | sobs | sobs | sobs | sobs
AUC_BID 39 559 68 86 102 117 131.7 159.7 218
JSEQ 46.0 59.0 722 87.0 96.6 1102 120.8 1448 191
COMT + AUC + JSEQ 38.6 45.5 52.7 61.2 68.7 7.7 87.2 104 138
AUC + JSEQ 39.8 47.0 533 64.2 75.8 80.6 89 110 148

Table 6.3: The mean flow time (minutes) of various control approaches in different test
scenarios for experiment 6B.

230
£ 180
E 130
&
§
£ 80
30
0 20 40 60 80
Number of Jobs
|---x--- AUC_BID —-@--JSEQ —a— COMT+AUC+JSEQ —-a-— AUC+JSEQ |

Figure 6.3: The graphical interpretation for the results shown in Table 6.3.
6.1.4 Experiment 6C — Two Machine Failure Disturbances

99

In this experiment, we will increase the machine failure disturbances by having both the
machines in workstation WS1 down for 30 minutes after they have done their first
operation. The results of the tests are shown in Table 6.4 below. Figure 6.4 shows the

graphical interpretations of the results shown in Table 6.4.

Number of Jobs /

Control Strategy 10 IS 20 25 30 35 40 50 70

Jobs Jobs Jobs Jobs Jobs Jobs Jobs Jobs Jobs

AUC_BID 533 64.4 79.7 91.6 110.1 | 1268 140 167.2 223
JSEQ 64.2 76.1 9t4 100.6 114 125.2 138 161.4 208

COMT + AUC + JSEQ 5L1 56 64.6 72 81.3 83.4 97 1131 147
AUC + JSEQ 514 61 65.7 76.8 887 92.1 10! 121.5 151

Table 6.4: The mean flow time (minutes) of various control approaches in different test
scenarios for experiment 6C.

230
3
£ 180
®
£
-
z 130
2
T
e
]
S 80 -
30 r r o
0 20 40 60 80

Number of Jobs

---%--- AUC_BID —--¢-~JSEQ —&— COMT+AUC+JSEQ --a-— AUC+JSEQ

Figure 6.4: The graphical interpretation of the results shown in Table 6.4.

6.1.5 Experiment 6D — Four Machine Failure Disturbances

100

In this experiment, we will increase the machine failure disturbances by having both the
machines in workstation WS1 down for 30 minutes after they have done their first
operation, and both machines in workstation WS2 down for 30 minutes after the
production has run for half an hour. It should be noted that since the operations of the
jobs are non-preemptable, when the scheduled downtime is reached and a machine is
operating on a job, the failure of the machine would be initiated after the job is finished.

The results of the tests are shown in Table 6.5 and Figure 6.5 below.

Number of Jobs /
Control Strategy Jtl)gs JcI:IS:s Jggs Jggs Jggs Jigs J:gs J(S)gs ngs
AUC_BID 56.3 65.8 82.7 93.2 107.7 125.2 139.5 171 226
JSEQ 64.2 77.9 92.8 103.5 117.2 128.2 141.5 | 166.6 213
COMT + AUC + JSEQ 50 56.3 66.2 734 80.7 88.1 97.1 112.5 146
AUC + JSEQ 51.4 61.1 7.7 76.8 88.5 92.7 100.2 | 196 156

Table 6.5: The mean flow time (minutes) of various control approaches in different test
scenarios for experiment 6D.

230

180

130

Mean Flow Time (min)

80

30 T — T
0 20 40 60 80

Number of Jobs

[---x--- AUC_BID —-¢--JSEQ —a— COMT+AUC+JSEQ —-0- — AUC+JSEQ |

Figure 6.5: The graphical interpretation of the results shown in Table 6.5.
6.1.6 Results Discussion

101

For each of the test in the above experiments, 50 replications have been run for each
simulation to ensure the consistency of the test results. With the 95% confidence interval,
the variation of each result is about +2% or less. For example, Figure 6.6 below shows
the 95% confidence interval of the AUC_BID approach in Experiment 6B in the 70-job

test case.

AUC_BID (T¢ jobs)

Figure 6.6: 95% confidence interval result of the AUC_BID approach in Experiment 6B
in the 70-job test case.

Referring to Figure 6.2, the experimental results with no disturbances show that,
control systems that allow jobs to explore routing flexibility but do not implement job
sequencing (AUC_BID) have worse performance than control systems that implemented
job sequencing, but do not explore routing flexibility (JSEQ). This is because with the
AUC_BID control approach, the workstations processed the jobs on a First-Come-First-
Serve basis. But with the JSEQ control approach, the workstations enforce the co-
operative behaviors of the jobs based on certain dispatching rules to ensure that certain

desirable global objectives can be achieved.

102
Referring to Figures 6.3~6.5, the experimental results show that when there are

machine failure disturbances, in control systems that have implemented the dispatching
routing decision-making control algorithm, the opportunistic behaviors of the job agents
can help them avoid the bottleneck workstation (workstation with down machines) while
making the routing decisions. And this can help improve the system performance, but
only in manufacturing environments with production volumes under certain limits. This
1s because as the manufacturing system’s production volume increases, each workstation
will be occupied by more jobs at any instant of time, and thus a job agent will have lesser
chance to find an alternative workstation that can start processing its other operation
sooner. As resulted, in control systems with high congestion, even when there are
disturbances, job sequencing can better improve the control systems performance than the
routing flexibility control mechanism.

To more clearly illustrate this point, we re-plot the experimental results in Tables
6.2~6.5 based on different production volume categories. Referring to Figures 6.7 (a) to
(h), for instance, Figure 6.7 (a) shows the performance of the 4 control strategies in
different machine failure test scenarios in control systems with production volume of 10
jobs, and Figure 6.7 (b) shows the results in control systems with production volume of

15 jobs, etc....

'sqol o 10 s)nsay :(p) L9 2and14 'sqof ¢z 10j synsay :(9) L'9 B4

0asr+0Ny ~ -0 — DISr+oNV+INOD —%— 03Sr+0NY — -0~ — DASr+ONV+INOD —¥—
oasr--e- - agony - X--- o3sr-- - - agony -~ X---
sujyIeW UMOQ JO Jegquny aujyoe | UMmoQ JO Jequuny
S 14 € 4 } 0
£ : : . o€ m
(14
] C T ="]
= . T . 06 2
w e ;51;?.!.1.!%.1#.1.1.411‘*.!.'”.%*‘ - %— m
oz ool & e e T T e T i =
S UGGt il) 11§ m S oLl m.
O - Lozl = (174
'sqof 0 Joj sinsay :(q) L'9 2n81q 'sqof o[10j s)nsay :(e) L'g a3y

DISr+ONY — -0+ ~ DIST+ONV+INCD —¥— 038r+0NY — -0 — GASMONY+INCO —¥—
ogsr--e- - agony - K- oasr--o-~ @g Ny -- K-
8UIYIR I UMOQ JO Jequinyg BUJYIBI UMog JO Jequiny
« f
M foy 2
n 2
g o &
Rr 3 ® 3
;|3:\:JK.I.1.4.1......,..,..:.r.‘K. AR L 08 bd oL s
s Te T T o~ 06 32 m
=) -~
oo = 08

(0]

'sqof 0, 10J siusay :(Y) £'9 231y

'sqof (g 10 s)nsay :(3) L'9 amBiy

D3Sr+oNY ~ -0~ — DISMH+ONV+INOD —¥—

o3sr-- o - asgony - X+
BUIYIB UMOQ JO JequInN
b ¢ z L 0
e e |
— mn|||u|||..|uw\\”!¢|..|.. 051
2t
e - 0L
— i a—.
S T et X - T (1] ¥4
I PP S S R e e 44
e K22 B —— 062
A

¥olL

(uw) sw) moyy uesyy

0ASr+0NY = -0~ — DASM+ONV+INCD —¥—

vasr-- - - agony -+ X---

aujyoRY UMO(4O Jequiny

(ujw) ewy) moyy usen

'sqof op 10§ s)ns3Y :(J) L9 2un31]

'sqof ¢¢ 10J s)nsay :(3) L 9 andig

OaSr+0NY — -0+ = DIST+ONV+INCD —¥—

pasr--&- - agony - - X
SUIYOR Y UMO(JO Jeguiny
b £ 4 | 0
T ,,_,y %
T T 3
A mm,
.\.&l.\.\. b

(ujw) swig s moj4 ueey

DISr+oNY — ~t+ — DIST+INV+INQD ——F—

ogsr--o-~ asony - X- -

oujyoR N UMOQ JO JequIny
€ 4 b 0

(Uw) swiy mojd urey

105
Referring to Figure 6.7 (a), we can see that when the production volume is small,

the jobs can take advantage of the routing flexibility to find a shortest-time path through
the production system. Thus in such systems, AUC_BID control approach outperform the
JSEQ approach. But as the production volume increase, the control system will have less
routing flexibility, and it is more important to coordinate the activities of the jobs to
ensure that certain global performance objectives can be achieved. For instance, referring
to Figures 6.7 (a) ~ (h), we can see that in control systems with 0 machines down, after
the production volume exceeds 20 jobs (Figures 6.7 (b) ~ (h)), the JSEQ approach
outperforms the AUC_BID approach.

When there are machine failure disturbances, the opportunistic behavior of the job
agents can help solving the control system’s bottleneck problem. Thus the AUC_BID
approach will outperform the JSEQ control approach. But after the production volume
exceeds a certain limit, the routing flexibility of the production system decreases, and the
importance of the job sequencing control mechanism starts to kick in. As resulted, the
JSEQ control approach will outperform the AUC_BID approach. Referring to Figures 6.7
(a) to (h), we can see that with more machine failure disturbances, the JSEQ control
approach will outperform the AUC_BID approach after the production volume exceeds
higher limits. For instance, in the 1-machine failure test scenarios, the AUC_BID
approach outperforms the JSEQ approach in situations where the production volume is
under 25 jobs (Figures 6.7 (a) ~ (c)). After the production volume exceeds 25 jobs, the
JSEQ approach outperforms the AUC_BID approach (Figures 6.7 (d) ~ (h)).

But in the 4-machine failure disturbance test scenarios, the AUC_BID approach
outperforms the JSEQ approach in situations where the production volume is under 40
jobs (Figures 6.7 (a) ~ (f)). After the production volume exceeds 40 jobs, the JSEQ
approach outperforms the AUC_BID approach (Figures 6.7 (g) ~ (h)).

This is because with more machine failures, the opportunistic behavior of the job
agents can help ease the production system’s bottleneck problems. But after the
production volume exceeds a certain limit, the importance of job sequencing start to
outweigh the importance of the routing flexibility. As resulted, the JSEQ approach
always outperforms the AUC_BID approach in high production volume systems,

106
regardless of the disturbance situations (in respect to the experimental resulits described

above).

Figures 6.8 to 6.11 show the performance of each of the control approaches,
respectively, in various test scenarios. From the figures, we can see that in control
systems wherein the jobs will explore the routing flexibility (the AUC_BID,
COMT+AUC+JSEQ, AUC+JSEQ), the performance of the control systems are less
sensitive to the machine failure disturbances (compared to the JSEQ control approach).
For instance, we can see that in Figure 6.8, the gaps between the performance lines of the
JSEQ control approach in the 4 difference machine-failure disturbance test scenarios are
larger than those of the other control approaches as shown in Figures 6.9, 6.10 and 6.11,

respectively.

230

180

130

Mean Flow Time (min)

o]
o

w
(=)

80

Number of Jobs

---%--- 0_DOWN --¢--1_DOWN ——2_DOWN - -o0- -4_DOWN

Figure 6.8: The results of the AUC_BID control approach in various test scenarios.

107

230
£ 180
Y
E
-

130 n
3
[T
c
[
2 80)

30
0 20 40 60 80
Number of Jobs
---%--- _DOWN —-o-~1_DOWN —a—2 DOWN --0--4_DOWN

Figure 6.9: Results of the JSEQ control approach in various test scenarios.

230
3
§, 180
]
£
=
130
3
[T
&
s 80
30 r
0 10 20 30 40 50 60 70 80
Number of Jobs
---x---0_DOWN --¢.~1_DOWN —a—2 DOWN - g--4_ DOWN

Figure 6.10: The results of the COMT+AUC+JSEQ control approach in various test
scenarios.

108

230

180 {———

130

Mean Flow Time (min)

80

30

80

Number of Jobs

---%--- 0_DOWN —--¢--1_DOWN —a— 2_DOWN - o - 4_DOWN

Figure 6.11: The results of the AUC+JSEQ control approach in various test scenarios.

Referring to Figures 6.2 ~ 6.5, we can see that as expected, the control systems
that incorporate both the job sequencing and routing flexibility control mechanisms
(COMT+AUCHISEQ, AUCHJSEQ) always have superior performance over control
systems that implement only the routing flexibility (AUC_BID) or the job sequencing
(JSEQ) control mechanism. This is because in such control systems, while the job agents
can explore the routing flexibility (and thus avoid the bottleneck stations when machine
failure disturbances happen), the workstation agents will sequence the processing of the
jobs to ensure that certain global performance objectives can be achieved.

In the AUC + JSEQ control approach, while deciding which operation to process
next, the jobs agents use the contract net auction-bidding approach to make the routing
decisions based on the bids (the quoted earliest possible start time) submitted by the
workstations. But after a job contracts its operation to a workstation, when the
workstation agent used the dispatching rule to sequence the arriving jobs, it might breach
the contract that it had made with some of the previously contracted jobs. That is, some
of the jobs’ ‘quoted start time’ might be violated. In the COMT + AUC + JSEQ control

approach, whenever a job’s contract with a workstation is violated, the job will be

109
notified about the situation, so that it can explore other routing opportunities. The

following discussion is concemed with the impact of the enhanced opportunistic behavior
of the job agents on the control system’s performance and communication requirements.

Referring to Figures 6.2 to 6.5, we can see that while the performance of the AUC
+ JSEQ control approach always significantly outperforms the AUC_BID and the JSEQ
control approaches (especially in the high production volume cases), the performances of
the AUC + JSEQ and the COMT + AUC + JSEQ control approaches are always very
close. To demonstrate these results, in Figures 6.12 and 6.13, we show the performance
ratio of the other control approaches versus the AUC + JSEQ control approach in
experiments 6A (zero machine failure) and 6D (4-machine failure), respectively.

Referring to Figures 6.12 and 6.13, we can see that in most cases, the results
(mean cycle time) of the AUC_BID and JSEQ control approaches are higher than the
results of the AUC + JSEQ approach by about 30~50%. But the results of the COMT +
AUC + JSEQ control approach only outperform the results of the AUC + JSEQ control
approach by about 6% or less in most cases (The experiments 6B and 6C also have
similar performance ratio results).

In the COMT + AUC + JSEQ control approach, although providing the job agents
with the updated information regarding their status in the workstations where they are
residing (queuing), can slightly improve the control system’s performance (compared to
the AUC + JSEQ control approach); this performance improvement though, comes with a
significant increase in the communications between the job and workstation control
agents (as to be explained next).

In the COMT + AUC + JSEQ control approach, whenever a job’s quoted start
time in a workstation is violated, the workstation will inform the affected jobs about the
situation. The affected jobs can then explore other routing opportunities to see if they
want to stay in the original workstation, or if there are other workstations that can process
their other operations sooner. In Table 6.6 below, we measured the total number of times
(totChangeOffer) that the jobs have been notified about the change in their ‘quoted start
time’ by the workstations, and the total number of times that the notified jobs actually
changed workstations (totChangeQ) in the COMT + AUC + JSEQ approach in

experiment 6A.

110

80

o
s S . 1.80
o 28
Q > o 1-60 T
: x =
< & L.~ feiesmemmeeaero- X
ES 2 1.40 - ".__',',._-.-.g--.._ ________ P
o - .
£ 89 120 T XX
® a W *---x*"
& 2‘ g 1.00 - Ak 2 —A
o 6 : e e S~ - e R R -+
225 o080+
gE<
o 0.60 T T T
0 20 40 60
Number of Jobs
---%--- AUC_BID v.s. AUC+JSEQ - -9 —JSEQ v.s. AUC+JSEQ
— -4 - = COMT+AUC+JSEQ v.s. AUC+ISEQ —aA— AUC+JSEQ v.s. AUC+JISEQ

Figure 6.12: Performance ratio of the other control approaches versus the AUC+JSEQ

control approach in experiment 6A.

39
?? 1.80
% R —
= -1 - -~

g§§] 2 X g @ .
€512 9 A

(-] .
£x < 1.00 LA T S e S LT e 3
% é 0.60 i] 0

3
® 0 20 40 60
Number of Jobs
— % — AUC_BID vs. AUC+JSEQ ---0--- JSEQv.s. AUC+ISEQ
— -4+ -=~AUC+JSEQV.s. AUC+JSEQ —t— COMT+ALIC+JSEQ v.s. AUC+JSEQ

80

Figure 6.13: Performance ratio of the other control approaches versus the AUC+JSEQ

control approach in experiment 6D.

111

10 15 20 25 30 35 40 S50 70
Jobs Jobs Jobs Jobs Jobs Jobs Jobs Jobs Jobs
totChangeOffer (A) 13 91 203 352 592 843 1055 | 2130 | 4817
totChangeQ (B) 1 69 136 196 281 329 330 581 933
Ratioof B/ A 0.85 0.76 0.72 0.56 0.47 0.39 0.31 027 0.19

Table 6.6: The results of the total number of times that the job agents in the COMT +
AUC +JSEQ control system had been notified by the workstations about changes in their
‘quoted start time’, and the total number of times that the jobs actually changed
workstations.

Figure 6.14 shows the graphical interpretation of the results shown in Table 6.6
and Figure 6.15 shows the ratio of the totChangeQ versus the totChangeOffer in the
various test scenarios. The totChangeOffer results represent the communication
frequency between the job and workstation control agents in each test scenario. Every
time a job is notified about the change in its ‘quoted start time’ by a workstation, the job
will start contacting other workstations to explore other routing opportunities. Therefore,
the higher the totChangeOffer frequency, the more the communications between the
control agents in the system.

Referring to Figure 6.14, we can see that the number of the totChangeOffer
increases exponentially as the total number of jobs increases. But in Figure 6.15, the
results show that as the total number of jobs increases, the ratio of the totChangeQ versus
the totChangeOffer decreases. This confirms our carlier explanation that as the
production volume increases, there will be less routing flexibility in the control system.
As a result, in control systems wherein the production volume exceeds a certain limit, as
the totChangeOffer frequency increases, the job agents will spend more time in doing
‘unproductive’ communications. That is, even though the job agents are being notified
about the changes in their ‘quoted start time’, after exploring other routing opportunities,
most job agents ultimately decide to stay in their original workstation (Other experiments

have similar totChangeOffer and totChangeQ results as described above).

112

Number of Times (Frequenc
o
3

0 — . T

0 20 40 60 80
Number of Jobs

| %~ totChangeOffer ——totChangeQ |

Figure 6.14: Results of the totChangeOffer and the totChangQ frequencies in the
experiment 6A.

0.90
0.80 -
0.70 A
0.60 -
0.50 -
0.40 -
0.30 -
0.20 -
0.10 -
0.00 T T - — T T T

0 10 20 30 40 50 60 70 80

Number of Jobs

Ratio of the totChangeQ versus
the totChangeOffer

Figure 6.15: The results of the ratio of the totChangeQ versus the totChangeOffer in the
experiment 6A.

113
6.2 Conclusion

In §6.1, we have conducted experiments to investigate and identify the role of the job
sequencing and the routing flexibility control mechanisms in different manufacturing
environments. The experimental results show that while the routing flexibility can help
enhance a control system’s flexibility and adaptability against disturbances such as
machine failure, it is important to incorporate the job sequencing control mechanism in
the control system to ensure that certain global performance objectives can be achieved
(especially in manufacturing systems with high production volume). As expected, the
control systems that implement both the job sequencing and routing flexibility control
mechanisms always have superior performance over control systems that implement only
the routing flexibility or the job sequencing control mechanism.

In control systems that implement job sequencing and job routing control
mechanisms, sometimes it is justifiable to compromise some of the commitments
between the workstation agents and the job agents in order to achieve certain global
performance objectives and minimize the communications between the control agents.
For instance, to strictly honor the commitments that they have made to the job agents, the
workstation agents will either sequence the jobs based on the First-Come-First-Serve
rule, or if they use another dispatching rule to sequence the jobs, the jobs has to be
notified when their contracts (‘quoted start time) with the workstations are violated, so
that the job agents can explore other routing opportunities. The experimental results show
that in the former case, the performance of the system will be compromised, and in the
later case, the communications between the control agents will be significantly increased.

As resulted, we can see that with the AUC + JSEQ and COMT+AUC+JSEQ
control approaches, the control systems can achieve certain desirable global objectives
(compared to the AUC_BID and JSEQ control approaches). And by having the resource
agents responsible for job sequencing (AUC+JSEQ), the communications between the
resource and job control agents can be minimized (compared to the COMT+AUC+JSEQ
control approach). As well, the AUC+JSEQ control approach also complies with the
design principle of distributed control systems, wherein the system consists of a group of

loosely-coupled, cooperative control agents: i.e., the control agents in the AUC+JSEQ

114
approach will spend most of their time in computation rather than communication (Smith

1980).

115
CHAPTER 7

IMPLEMENTING CONTROL AGENTS AS COM/DCOM OBJECTS

In the previous chapters, although the experimental control systems are implemented with
the distributed multi-agent control approach, the control agents are not actually
distributed in nature (they are all resided in a single processor). But when considering a
real-world system, one must face the fact that the agents described in the previous
chapters will be distributed across multiple processors. Hence, an inter-operational
approach is required. As well, since the benchmark framework (Cavalieri et al. 1999) is
intended for different researchers to compare their control methodologies on a common
testbed, it would be helpful if the control modules can be built into some platform
independent software components that can be easily distributed across a network and/or
be integrated into other researchers’ logical control models for validation or testing.

Although it is possible to use a variety of programming languages to do the
socket-layer programming to build the distributed object model, there are some available
technologies that can help simplify the network programming and realize component-
based software architecture. DCOM (Distributed Component Object Model) and CORBA
(Common Object Request Broker Architecture) are two popular distributed object models
that have emerged as standards (Chung et al., 1997).

“DCOM is the distributed extension to COM (Component Object Model) that
builds an object remote procedure call (ORPC) layer on top of DEC RPC to
support to remote objects... CORBA is a distributed object framework proposed
by a consortium of 700+ companies called the Object Management Group
(OMG). The core of the CORBA architecture is the Object Request Broker

116
(ORB) that acts as the object bus over which objects transparently interact with

other objects located locally or remotely.” (Chung et al., 1997)

The motivation for the work that follows in this chapter is to explore how
technologies such as the distributed object model could be used to create a framework to
implement the control structures described in Chapters 5 and 6. And for this research, the
COM/DCOM approach was chosen since it is fairly well used, its specifications are fairly
well defined, and its software implementation is fairly well prescribed. It should be noted
though that any of the other methods mentioned above are equally valid for this type of
application. In the following sections, a distributed multi-agent control system will be
built, and the control and production processes will be modeled by using the

COM/DOCM technology and the discrete-event simulation software, Arena.

7.1 Brief Introduction to COM/DCOM

Component Object Model (COM) is a platform-independent, distributed, object-oriented
system for creating binary objects that can interact. COM is not an object-oriented
language, but a standard. It specifies the object model and programming requirements
that enable COM objects to interact with each other. “By specifying the COM standard
on a binary level, one can attempt to arrive at a standard that is independent of the
operation system, the transmission medium, and the computer language used for
implementation. Extending this with a binary protocol standard, object inter-operation
can be made hardware platform and location independent” (Sing et al. 1998). The
essence of COM is an agreed binary interface that is based on Remote Procedure Call
(RPC) technology with some wrappers that form the concept of objects and interfaces
between the objects (Bates 1999).

As is defined in the Microsoft Developer Network CD (1998), “A critical part of
COM is how clients and servers interact. A COM server is any object that provides

services to clients. These services are in the form of implementations of COM interfaces

117
that can be called by any client who is able to get a pointer to one of the interfaces on the

server object. A COM client is whatever code or object gets a pointer to a COM server,
and uses its services by calling the methods of its interfaces. There are two main types of
servers, in-process and out-of-process. In-process servers are implemented in a dynamic
linked library (DLL), and out-of-process servers are implemented in an EXE file. Out-of-
process servers can reside either on the local machine or on a remote machine.” A COM
object can play the role of a server, a client or both. All clients must interact with a COM
server through its interfaces.

Figure 7.1 represents a COM object. The object is represented by a box and its
interfaces are represented by plugs. Each COM object can have several interfaces. An
interface is a table of function pointers, and it represents a well-defined binary contract

between the COM object and its client.

? IUnknown

IMyInterface =~ (O—
IMyInterface @O———]

Figure 7.1: A COM object diagram.

Conventionally, the interface on the top represents the [Unknown interface, which
is the base interface inherited by all other COM interfaces. The [Unknown interface
provides three functions (methods), namely AddRef(), Release() and QueryInterface().
AddRef() and Release() are reference counting mechanisms for COM objects to manage
their lifetimes. Each COM object has an internal counter that holds the number of users
referencing the component. As suggested by its name, QueryInterface() is used by a
client to query if a COM server supports a particular interface. If it does, a pointer to the
required interface will be returned to the client. Since all COM interfaces are based on

[Unknowr, they must also implement the AddRef(), Release() and QueryInterface()

118
methods. Therefore, given any interface pointer to an COM object, a client should also be

able to obtain any other interface supported by the object by calling QueryInterface() on
the existing interface pointer.
Distributed COM (DCOM) extends COM so that COM clients and servers can all

run on a single machine or be distributed across a wide area network.

7.2 Building a Distributed Manufacturing Control System with
COM/DCOM

7.2.1 Design Background

In order to enhance a control system’s adaptability and flexibility against disturbances
such as machine failure or uncertain processing times, researchers have proposed the
real-time distributed scheduling and control approach for shop floor manufacturing
system (Duffie et al. 1994, Saad et al. 1997, Zhang et al. 1999). The most commonly used
distributed scheduling and control approach is to use the contract-net (Smith 1980)
auction-bidding protocol to allocate manufacturing resources to jobs. In such an
approach, when a job arrives, it will request machines in the system to submit bids for its
first operation. Upon receiving the job’s request, machines that can perform the operation
will evaluate their task agenda, then reply to the job with a message containing
information such as the earliest time they can start/finish the operation, and/or the number
of jobs that have already reserved the usage of the machines. The job will then evaluate
all the responses based on some criteria and choose a machine to reward the operation to
it. The job will confirm with the selected machine about the reservation, so that the
machine can allocate a time slot in its task agenda for the job. The job will repeat the
afore-mentioned procedures to find a machine for its remaining operations.

Due to the fact that in a heterarchical control system, entities use purely localized
information and all forms of hierarchy are eliminated, heterarchical control result in

problems with global optimization and predictability of system behavior. In an attempt to

119
combine the best features of hierarchical ("top down") and heterarchical ("bottom up”,

"cooperative") control structures, some researchers (Van Brussel et al. 1998, Bongaerts et
al. 1998, Zhang et al. 1999) have proposed the Holonic Manufacturing concept to
preserve the stability of hierarchy while providing the dynamic flexibility of heterarchies.
Valckenaers et al. (1997a) have defined the Holonic Manufacturing System (HMS) as
“system components of autonomous modules and their distributed control. A holonic
manufacturing architecture shall enable easy (self-)configuration, easy extension and
modification of the system, and allow more flexibility and a larger decision space for
higher control level™.

The following list of definitions are developed by the HMS consortium to help
understand and guide the translation of holonic concepts into a manufacturing setting
(Van Brussel et al. 1998):

¢ Holon: An autonomous and co-operative building block of a manufacturing system
for transformation, transporting, storing and/or validating information and physical
objects. The holon consists of an information processing part and often a physical

processing part. A holon can be of another holon.

¢ Autonomy: The capability of an entity to create and control the execution of its own

plans and/or strategies.

¢ Co-operation: A process whereby a set of entities develops mutually acceptable plans

and executes these plans.

¢ Holarchy: A system of holons that can co-operate to achieve a goal or objective. The
holarchy defines the basic rules for co-operation of the holons and thereby limits their

autonomy.

A holonic control architecture also captures the concepts of aggregation and

specification. “Aggregated holons are defined as a set of related holons that are clustered

120
together and form in their turn a bigger holon with its own identity. As such, an

aggregation hierarchy is formed, which is open-ended at the top and at the bottom.” and
“specification separates the holons with respect to their characteristics “ (Van Brussel et
al. 1998). Although there is a rich literature on distributed (multi-agent) or holonic
control systems, most research is based on the architectural discussion, and few have
disclosed how modular control entities (agents or holons) can be built, distributed (across
a network) and integrated into a production control system. In this chapter, we will use
the above-mentioned distributed control approach and holonic concepts to build a shop
floor control system, and simulate the (distributed) control and production processes by

using the COM/DCOM technology and the discrete-event simulation software, Arena.

7.2.2 Experimental Model Design and Implementation
The characteristics of the production and control model are listed as follows:

1. The production system contains a number of manufacturing resources, which include

workstations and machines.
2. Each workstation or machine can offer a single type of operation.

3. Set-up time for each operation and transportation times for moving jobs between

manufacturing resources are ignored.
4. The processing order of a job’s operations is not important.

The roles and responsibilities of different holons presented in our model are

described as follows:

121
Job holon - Each job is represented by a job holon, which is responsible for initiating the

auction-based bidding process to find the resources for the job’s operations, and monitor

the job’s production progress.

Station holon - A workstation can contain a number of homogeneous machines.
Therefore, a station holon’s responsibilities are to assign tasks to the machines it
manages, to monitor the production progress of the machines and to response to the job

holon’s bidding request.

Machine holon — It was pointed out in (Dilts et al. 1991) that the functional limitations of
some commercially available low-level controllers can prevent the application of
intelligent subordinate controllers. Therefore in our experimental model, we define two
types of machine holons, namely machSimp (the simple machine) holon and machlntel
(the intelligent machine) holon. As was disclosed in the previous sections, in order to
carry out the resource bidding process, each resource must have the capability to respond
to a job holon’s bidding request. MachlIntel holon represents the machine with the
controller that has the information processing and communication capability to
participate in a bidding process, and bears similar responsibilities as a station holon.
MachSimp holon represents the machine with a controller that can only perform simple
operation recording duties. As we will see in the later, the machSimp holons are usually
aggregated with the station holon to form a workstation. Figure 7.2 shows the
specialization of machine holon in the UML (Unified Modeling Language) notation. The
arrow with the hollow triangular end indicates that both the machSimp and machlIntel

holons ‘is-a’ machine holon.

Machine Holon

MachSimp Holon

Machintel Holon

Figure 7.2: Specialization of machine holon.

Mediator holon — The mediator holon is similar to the Yellow Page agent defined in

(Shen et al. 1999). It is responsible for registering the manufacturing resources in the

122

system, and responding to the job holon’s query regarding which resource in the system

can perform a particular type of opreation.

Referring to the holon definition stated above, a holon consists of an information

processing part and often a physical processing part. In our experimental model, the

information processing part of a holon is represented by a COM object, and the physical

part is represented by the corresponding entity in the simulated production system in

Arena. The COM diagram for the 5 holons mentioned above are shown in Figures 7.3 —

7.7.

123

MEDIATOR
SetAttribute()

O IMediator - | AddResources()

FindResources()

Figure 7.3: The mediator COM diagram.

I

SetAttribute()

JOB

O IJobAttribute AddProcess()

AddMediator()

O IJobControl NextProcess()

. StartTask()
LJobMonitor
O

EndTask()

Figure 7.4: The job COM diagram.

MachlIntel
O_ IMachAttribute SetAttribute()
[ResControl Quote()
AddJob()
[ResMonitor StartTask()
O
EndTask()

Figure 7.5: The machIntel COM diagram.

MachSimp
IMachAttnibute :
O SetAttribute()
. RecStartTime()
IMachSim
O- P -
RecEndTime()

Figure 7.6: The machSimp COM diagram.

i

IStAttribute

STATION
SetAttribute()

124

125

Figure 7.7: The station COM diagram.

As we have mentioned earlier, each holon (except the meidator holon) represents
the controller of a corresponding manufacturing entity in the Arena model. In the
following, we will present an example to demonstrate the interaction model of the holons
and the production processes. In our example, the production system will contain the

following resources and job types:

1) A workstation (Station 100) contains 2 machines (Mach 10 and Mach 20 of
MachSimp type) and can provide the drilling operation.

2) A single machine (Mach 200 of MachlIntel type) that can perform the milling

operation.

3) A single machine (Mach 300 of Machintel type) that can perform the cutting

operation.

126
4) There are three job types. Each job has 2 operations and the processing order of the

operations is not important. Table 7.1 lists the operations for each of the job type.

Job Operation 1 Operation 2
Type A Drilling Milling
Type B Milling Cutting
Type C Drilling Cutting

Table 7.1: Operation list for the 3 job types.

The production plant layout is shown in Figure 7.8. At the beginning of the

simulation,

1) A mediator COM object is created.

2) A station and 2 machIntel COM objects are created.
- The attributes of the station and the machintel objects (such as resource number,
function type) are set via the SetAttribute method.
- As one can see for the station object, there is an AddMach method in its
IStAttribute interface, this is for creating and initializing the (MachSimp)

machines that it contains.
3) The instantiated station and machlIntel objects register with the mediator via the
AddResources method of its IMediator interface, so that the mediator will know what

resources are available in the system, and what function each resource can offer.

4) A job COM object is created for each of the jobs introduced into the system.

127
- Since a job has to contact the mediator to query about the resource that can

perform its operations, a job is informed about the existence of the mediator via

the AddMediator method of its IJobAttribute interface.

Station 100

Q

U

E

U

E

Mach 10 Mach 20

ENTER
EXIT

—

Mach 300

mcmco
mcmcoO

Mach 200

Figure 7.8: The production plant layout.

After the jobs and the manufacturing resources are instantiated, each of the jobs
will start finding the resources for their operations. From hereon, we will regard the

above-mentioned COM objects as holons. The resource reservation bidding processes are

as follows:

128
1) To find a resource for its next operation, the job holon will ask the mediator holon

(via the FindResource method of its IMediator interface) which resources can do the

selected operation type.

2) The mediator holon answers the job holon with the corresponding resource address.
The job holon then contacts the resources (station or machintel holon) for a quote

(when can it start the operation, how many queuing jobs are there now).

3) Since the processing sequence is not important for a job, a job holon will try to do an
operation that can start on a resource earliest. Therefore, the job holon repeats steps 1
and 2 for all of its remaining operations, and then select an operation with the
resource that has the best quote (can process the job earliest, or if there’s a tie, the

second criterion will be the one with the least jobs in queue).

4) The job holon contacts the selected resource to add itself to the resource’s reservation

fist.
5) The job moves to the selected resource’s location.

Referring to Figures 7.7 and 7.5, we can see that each station and machIntel COM
object has to support an [ResControl interface which provides the ‘Quote’ and ‘AddJob’
methods for a job COM object to request for a quote and confirm the resource
reservation, respectively. When the mediator holon answers the job holon with the
address of the resource, the job holon doesn’t need to know what the exact type of the
resource is. It will contact the resource through the same method (with the same
parameters) of the same interface (IResControl). This provides the robustness for using
different types of resource controllers. As long as the controllers support the IResControl
interface, how they implement the ‘Quote’ and ‘AddJob’ methods is irrelevant.

When it is time for a machine to start processing a job in the simulated production
system, the corresponding station/machlintel holon will be notified. The station/machlIntel
holon will then notify the job holon via its JobMonitor interface about the start of the

129
operation (so that a job holon can keep track of its production progress). For a machintel

holon, it will then record the start time of the operation (for some statistical study
purpose). For a station holon, after contacting the job holon, it will delegate the operation
recording duty to its selected, contained machine (machSimp) holon. Figure 7.9 shows
the containment diagram of a station object. Since the (machSimp) machine holon (or
controller) has the capability to record the operation time (refers to Figure 7.6), therefore,
it will be reasonable for the station holon to delegate this task to its contained machSimp
holon (each machine contained in a workstation is represented by a machSimp holon) via
the RecStartTime method of its IMachSimp interface. The same procedures are carried
out when a machine finishes an operation in the production system. Once again, one can
see that both the station and machlintel objects have to support the IResMonitor interface,
so that when the Arena application notifies the station/machintel holon about the start/end
operation event, it doesn’t need to know what exact type of resource it is communicating
with, even though the station and machintel holons implement the StartTask/EndTask
methods in different ways.

In the above, we have seen that how the different holons can interact with each
other to carry out the control of the production processes. After we have developed the
COM objects, we can actually distributed them over the network, and have them interact
with each other as described above to simulate the communication and co-operation of
the actually controllers distributed in a production plant. Figure 7.10 shows the layout of
our networking model. In our model, the Arena application was run on the same
computer as the mediator, job and mach 200 holons. The mach 300 and station 100
holons were distributed to another computer that was connected to the Arena computer.

The production simulation worked in the same way as described previously. To
monitor the status of the holons, we can have each holon log all its activities in a local
database. Since the job, machintel, and machSimp holons all keep records of the
operation start/end times, we have each of the holon record the times in a local file (local
database). This local data can provide a channel for someone (such as centralized staff
controller) to check on the status of these holons at any instant of time at any location by
viewing the data through a browser. For example, to view the status of the mach 300 and

station 100 holons from the Arena computer, we launch an internet browser to view what

130
resources are running on the ‘other computer’ (as shown in Figure 7.11). Then to view

the status of the station 100, we just choose the WStation item. Figure 7.12 shows the
status of the station 100 at time 0. As we can see, at time 0, job 4 first joined the station,
and the machines of the station were idle at that time (JX indicates no job is loaded on the
machine). Then job 4 was loaded to mach 10 and job 3 arrived. Then job 3 was loaded to
mach 20 and job 1 joined the station. Since no machine was available then, job 1 stayed

in the queue (In our example, a number of jobs with job types A, B and C were created).

"103(qo uotje)s ay) Jo wreielp JSUIUIBIU0D Y, :6°L IS

-
(awippugooy 5
Oawit [1eIS0aY dungyoeA
(0anguNyIaS pPRET— O
dungyoey OseLpug .
Oysepuers 10)UONSY]
Ogorppy
(Oaron) _obsoumoﬁé
OuoeAPPY o
(amquivies ANQUIVIS]
NOLLV.LS

LEL

"Jopow Suty10mIdu Y3 10} noKej Y, :01°L dm3L]

JOLVIAIN

ma,& !
001 NOILVIS

00t HOVIN

002 HOVIN

YALNdNOD VNTHV

WAINdIWOD YAHLO

cel

133

The Machining Resources Status:

W Stationi
Mach300

Figure 7.11: The manufacturing resources on a network computer.

L AMyl om\WStation Mictosolt internet | oxploners

S —=

Station Number = 100
Function Type = Drilling

Curcent Time = 0
Jobs In Queue: J4
Job In Qperation: Machl0: IJX Mach20: JX

Current Time = 0
Jobs In Queue:
Job In Operation: MachlD: J4 Mach20: JX

Current Time = O
Jobs In Queue: J3
Job In Qperation: MachlD: J4 Hach20: JX

Current Time = 0
Jobs In Queue: i
Job In Operation: MachlD: J4 Mach2D: J3 g

Current Time = 0
Jobs In Queue: J1
Joh In Operation: MachlOD:

Figure 7.12: The status of station 100 at time 0.

134
7.3 Conclusion

In this chapter, we have discussed how to develop the different control roles (or holons)
into the COM modules (objects) that can be easily distributed over a network of
computers. As one can see in the previous sections, it doesn’t matter who takes what role.
But for a controller (holon) to take a particular role, the controller must have the
capability to fulfill the responsibilities of that role. This provides the flexibility and
robustness that for various controllers (servers) that support the same interface, other
controllers (clients) can communicate with these controllers via the same interface,
without having to differentiate their types, and different controllers can implement the
responsibilities in different ways. Also, it’s easy to modify an entity’s (controller’s)
responsibilities by having it support/not support a certain interfaces. Referring to the
station and machSimp objects, it demonstrates the software reusable advantage wherein,
we can create an object that uses some of the functionality of an existing object without
duplicating that functionality in the new object.

With the help of object-oriented analysis and design technique, we can identify
the roles and responsibilities in a manufacturing control system, and then assign the roles
to the entities that have the capabilities to fulfill the corresponding responsibilities. These
(control) entities can be easily developed into COM objects, which can then be
distributed to work with whatever applications that need them (or distributed to other
researchers that might need to use or test the objects). “Rather than write large monolithic
object-oriented applications, you can write applications as small independent components
that can slot together to make a complete application. With a little extra work, your C++
objects can become COM objects. As COM objects, they are not as tightly tied to one
running process or computer as a conventional C++ object would be” (Bates 1999).

The other advantage of developing the manufacturing (control) entities as COM
objects is that some large industrial vendors such as GE Industrial System and Sisco, Inc.
already have the automation and control products that support the COM/DCOM
technology. Therefore, by using the COM/DCOM approach, we can close the gap

between the academic field and the manufacturing industry, and can also minimize the

135
logical (software) control model’s development lead times, by facilitating the process of

shifting from the design phase to the implementation phase.

136
CHAPTER 8

CONCLUSION AND FURTHER RESEARCH

In this chapter, we will first provide a summary of the work carried out in this research,
as well as a discussion of the results in the context of the general research objectives.
Next we will discuss the contributions of this study and finally, provide a brief discussion

of further research possibilities.

8.1 Summary

In Chapter 4, to design a distributed scheduling and control system, instead of using the
‘top-down’ approach to determine the control agents first and then structure the
scheduling and control algorithms around these agents, we used the object-oriented
analysis and design approach to structire the scheduling algorithm first. After identifying
the roles (objects) that are involved in the scheduling processes, we identified the
possible control agent candidates from these roles, and control responsibilities were then
added to some of these control agents accordingly.

The use of the object-oriented methodology to decompose the control algorithms
can help decouple the software control model from any preconceived control structure.
For instance, after we have developed the logical scheduling model, we can implement
the scheduling software solution in a single (control) processor to implement the
centralized scheduling scheme. Or as we have done in Chapter 4, we can identify some
possible control agent candidates from the logical scheduling model, and implement the

scheduling solution in a distributed scheduiing and control structure. Moreover, using the

137
object-oriented approach to decompose the control algorithms can allow us to explore a

broader set of possible control agent candidates. “While some entities may prove
unnecessary, it’s easier to cast the net broadly and leave some as stubs than to build an
architecture into which omitted entities cannot easily be added later” (Parunak et al.
1998a).

In Chapter 5, experiments were conducted to clarify the confusing concepts
regarding distributed scheduling and real-time distributed (dispatching) control, and to
identify the role of the ‘control’ mechanism in the control systems that use the distributed
scheduling approach to perform pre-production scheduling. The experimental results
have shown that while implementing the distributed scheduling algorithm for real-time
production control can enhance the control system’s flexibility against disturbances,
sometimes it is hard to predict the behavior and performance of such control systems. On
the other hand, in control systems that use the distributed scheduling algorithm to
generate (predictive) pre-production schedules, although the distribute scheduling
approach can help enhance the scheduling performance through parallel computing (Dilts
et al. 1991), the experimental results have shown that in such control systems, it is still
important that the control agents should have the proper local control mechanisms to
react to disturbances in real time, so that the control system’s adaptability against
disturbances can be enhanced.

Control issues are usually ignored in the current research that discusses the
distributed scheduling and control approaches. But referring to our experimental results,
we can see that different control algorithms can have various impacts on the control
system’s performance and communication requirements. For instance, in control systems
wherein the control agents do not have the proper local control mechanisms to react to
disturbances in real time, when disturbances happen, either the control agents will just
wait for the disturbances to pass (the WAIT approach), or a rescheduling process will be
invoked (the NO_WAIT approach). In the former case, the system performance will be
significantly degraded. And in the latter case, the communications between the control
agents will be increased due to the high rescheduling frequencies (especially in the

stochastic manufacturing environments).

138
Alternatively, in control systems wherein the control agents have the proper local

control mechanisms to react to disturbances in real time (the WAIT _INTEL approach),
not only can the desirable system performance be achieved, but the communications
between the control agents can also be minimized.

Most of the research on multi-agent heterarchical control systems only deals with
dispatching the routing decisions, and ignores the job sequencing issues. As a result, most
of these control systems performed scheduling by jobs on a First-Come-First-Serve basis.
In Chapter 6, we have conducted experiments to investigate and test the impact of the job
routing and job sequencing control mechanisms on the control system’s performance.
The experimental results have shown that while dispatching the routing decisions can
help enhance the control system’s flexibility and adaptability against disturbances, it is
important to incorporate the job sequencing control mechanism in the control system so
that certain global performance objectives can be achieved.

The experimental results show that, in the control system wherein the job agents
will exploit the routing flexibility, when the production volume is low, the opportunistic
behavior of the jobs agents can help improve the system performance (by helping the jobs
find a ‘shortest-time path’ through the production system), and enhance the system’s
adaptability against disturbances (by helping the jobs avoid the bottleneck ‘down’
resources). But as the production volume increases, the production system has less
routing flexibility, and the job sequencing control mechanism becomes more important
(especially in production systems with high production volume). This is because the job
sequencing control mechanism can help enforce the cooperative behavior of the job
agents and ensure that certain global performance objectives can be achieved. That is,
while in contention for the use of certain resources, based on the global performance
objectives and the dispatching priority rules adopted, jobs with lower priority ‘have to’ let
jobs with higher priority to use the resources first.

As expected, the control system that implements both the job routing and job
sequencing control mechanisms (the AUC + JSEQ control approach) can best improve
the control system’s performance and adaptability against disturbances. Although in the
AUC + JSEQ control approach, having resource agents use a dispatching rule to sequence

the jobs can violate the commitments between the resource agents and some of the jobs.

139
Our experimental results have shown that this did not affect the system performance

much (compared to the COMT + AUC + JSEQ control approach, wherein the job agents
will be notified whenever their ‘quoted start time’ is changed so that they can explore
other routing opportunities). Therefore, in control system that implements the job
sequencing and job routing control mechanisms, it is sometimes justifiable to
compromise some of the commitments between the workstation agents and the job agents
in order to achieve certain global performance objectives and minimize the
communications between the control agents (compared to the COMT + AUC + JSEQ
control approach).

As some researchers have proposed that control algorithms should be compared
on a common testbed, it wili be helpful if researchers can built their control modules as
some platform-independent software components that can be easily distributed across the
network and integrated into some other control systems. In Chapter 7, we have shown
that by using the COM/DCOM technology to build some control modules, we can easily
distributed them across the network to implement the simulated distributed shop floor
control system. By using the COM/DCOM technology to implement the control
algorithms, this provides an opportunity for researchers to explore the possibility of
developing some control modules with standardized interface, so that these control
modules can easily be distributed across the network. This allows researchers to easily
integrate some of their peers’ work into their own control model to test or validate some

of the proposed control modules.

8.2 Contributions

Through the work in this thesis, it is believed that this study can contribute to the research

in manufacturing system control in the following areas:

- To provide some insights regarding the decomposition approaches for various
control methodologies. The work in Chapters 2 and 4 has shown that the use of

the object-oriented analysis and design approach to structure control algorithms

140
can help decouple the software control model from any preconceived control

structure. Moreover, this approach can allow us to explore a broader set of

possible control agent candidates when designing a distributed control system.

- In Chapter 5, experiments were conducted to clarify the confusing concepts in
current research regarding the ‘distributed scheduling’ and ‘real-time distributed
control’. Due to the confusion of these concepts, many researchers have ignored
the control issues while discussing the distributed scheduling and control systems.
In this study, we have identified the role and importance of the ‘control’ algorithm
in the control systems that using the distributed scheduling approach to perform

pre-production scheduling.

- Most work in the multi-agent heterarchical control system only deals with
dispatching the routing decisions, and ignores the job sequencing control. As a
result, most of the proposed control approaches performed scheduling by jobs on
a First-Come-First-Serve basis. In this study, we have given some insights
regarding how the job routing and job sequencing control mechanisms can affect

the control system’s performance in various manufacturing environments.

- In Chapter 7, we have shown that by using the COM/DCOM technology to build
control modules, we can easily distributed them across the network to implement
the simulated distributed shop floor control system. This provides researchers an
opportunity to explore the possibilities of enhancing the collaborations between
each other by building some platform independent software that can be easily
distributed to and evaluated by other researchers.

8.3 Further Research Directions

141
In this study, we have shown that using the object-oriented methodology to decompose

the control algorithms can help decouple the software control model from any
preconceived control structures. This allows researchers to implement certain control
algorithms in various control forms, and an objective comparison of the alternative
control methodologies can then be made. In Chapters 5 and 6, experiments were
conducted to evaluate the performance of various control methodologies in different
manufacturing environments. Although the experiments conducted here do not represent
an exhaustive evaluation of the alternative control forms or algorithms for a multi-agent
control system, experimental results show that the performance of a control approach can
be affected by the characteristics of a manufacturing environment. This shares similar
views with the work of some other researchers in manufacturing control. For instance, in

(Brennan 1996), it has mentioned that:

“The hypothesis concerning the best choice of control architecture is that the
‘best’ choice of control architecture is a function of the controlled system’s

characteristics™.

Therefore in future research, while proposing or evaluating alternative control
approaches, researchers not only should identify the characteristics of the manufacturing
environment wherein a control approach is implemented, but efforts should also be made
to identify the parameters that might affect the validity or the performance of the
alternative control approaches. This can help open the opportunity for the development
of some intelligent control systems, wherein control agents will be able to select the
appropriate control algorithms to use in real time based on their knowledge of the current
status of the manufacturing environment.

The use of the object-oriented methodology can help facilitate the development
and evaluation of alternative control approaches. For instance, as discussed in this study,
the logical software objects can be organized into different control modules to
implement/evaluate various control forms. The abstraction and encapsulation properties
of the object models allow us to modify the implementations of a control agent’s control

logic/method easily, and the modifications will be transparent to the other control agents

142
that interact with it (as long as the communication interface is not changed). And as

discussed in Chapter 7, by using the COM/DCOM technology to build control modules,
we can easily distribute them across the network. With such an approach, the
collaborations between researchers can be enhanced in a way that researchers can easily
integrate each other’s proposed/developed COM control modules into their own control
models to test or validate the alternative control algorithms. But if the COM/DCOM
approach is to be adopted by researchers to develop the software control modules, further
research needs to be done in the area of developing some standards (or design patterns)
for designing the COM object interfaces in the context of manufacturing control systems.
Finally, in future research, when modeling different control approaches, efforts
should also be made to investigate what control resources are currently available in
industry, and what are the computation limitations, reliability and cost of these resources.
As by incorporating these factors into the modeling and evaluation of the altemnative
control approaches can make the research resulits be more realistic. As well, it can
facilitate the shifting from the academic practice into the industrial practice, as the
analysis of the justification of the expense and risk of installing the alternative control

systems can be incorporated into the research results.

143
REFERENCES:

1) Baker, A. D., “A Survey of Factory Control Algorithms which Can be Implemented
in a Multi-Agent Heterarchy’’, Journal of Manufacturing Systems, April 9, 1997.

2) Bates, Jonathan, “Creating Lightweight Components with ATL”, SAMS, 1999.

3) Bauer, Bowden, Browne, Duggan and Lyons, “Shop Floor Control Systems- From

design to implementation”, Chapman & Hall, 1994,

4) Bongaerts, L. Monostori, D. McFarlane, B. Kadar, “Hierarchy in distributed shop
floor control”, accepted for IMS-EUROPE 1998, the First Open Workshop of the
Esprit Working group on IMS, Lausanne 15-17 April 1998.

5) Bonagerts, L., “Integration of Scheduling and Control in Holonic Manufacturing
Systems”, (98D11), http://www. mech kuleuven.ac.be/~Ibongaer/doc/abstr.html,

doctoral dessertation, 1998.

6) Booch, Grady, “Object-Oriented Analysis and Design with Applications”, 2™
Edition, Addison-Wesley, 1994.

7) Brennan, R. W., “Appropriate Control Architecture for Automated Manufacturing
Systems”, the doctoral dissertation, Department of Mechanical Engineering of the
University of Calgary, December 1996.

8) Chung, P. E., Huang, Y., Yajnik S., Liang, D., Shih, J., Wang, C. Y., Wang, Y. M.,
“DCOM and CORBA Side by Side, Step by Step, and Layer by Layer”,
hitp://www.cs.wustl.edu/~schmidt/submit/Paper.html, 1997.

144
9) Cavalieri, S., Luc Bongaerts, Marco Macchi, Marco Taisch, Jo Wyns, “A Benchmark

Framework for Manufacturing Control”, Proc. of the Second International Workshop

on Intelligent Manufacturing Systems, Leuven, September 22-24, 1999.

10) Conway, R. W., Maxwell, W. L., and Miller, L. W_, “Theory of Scheduling”,
Addison-Wesley, 1967.

11) Dilts, D. M., N. P. Boyd, H. H. Whorms, “The evolution of control architectures for
automated manufacturing systems”, Journal of Manufacturing Systems, Vol. 10, No.
1, pp. 79-93, 1991.

12) Duffie, N. A,, R.S. Piper, B. J. Humphrey and J. P. Hartwick Jr., “Hierarchical and
non-hierarchical manufacturing cell control with dynamic part-oriented scheduling”,
Proceedings of NAMRC-XIV, 1-4, 1986.

13) Duffie, N. A., V. V. Prabhu, “Real-time distributed scheduling of heterarchical
manufacturing systems”, Journal of Manufacturing Systems, Vol. 13, No. 2, pp. 94-

107, 1994.

14) French, S., “Sequencing and Scheduling: An introduction to the Mathematics of the
Job-Shop”, Ellis Horwood, 1990.

15) Larman, G., “Applying UML And Patterns, An Introduction To Object-Oriented
Analysis and Design”, Prentice Hall, 1997.

16) Jacobson, I., Christerson, M., Jonsson, P., and Overgaard, G., 1992, “Object-oriented
Software Engineering”, Workingham, England, Addison-Wesley, p. viii.

17) Microsoft Developer Network (MSDN) Library, April 1998.

145
18) Maturana, F., and Norrie, D. H., “Multi-Agent Mediator Architecture for Distributed

Manufacturing”, Journal of Intelligent Manufacturing, v.7, pp. 257-270, 1996.

19) Parunak, H. V. D., “Manufacturing Experience with the Contract Net”, In M. N.
Huhns, ed., Distributed Artificially Intelligence, Pitman, 285-310, 1987.

20) Parunak, H. V. D., “Autonomous Agent Architectures: A Non-Technical
Introduction”, http://www.erim.org/~van/nontech.pdf, 1993.

21) Parunak, H. V. D., “Applications of distributed artificially intelligence in industry”,
Industrial Technology Institute, 1994.

22) Parunak, H. V. D., “Case Grammar: A Linguistic Tool for Engineering Agnet-Based
Systems”, ITI Technical Memorandum, http://www.iti.org/~van/casegram.ps,

Industrial Technology Institute, Ann Arbor, 1995.

23) Parunak, H. V. D,, “Case Grammar: A Linguistic Principles from Natural Agent
Systems”, Annals of Operations Research, 1998.

24) Parunak, H. V. D., John, S., and Steve, C., “Toward the Specification and Design of
Industrial Synthesis Ecosystems”, the Fourth International Workshop on Agent
Theories, Architectures, and Languages (ATAL 1997).

25) Parunak, H. V. D, “What can agents do in industry, and why? An overview of
industrially-oriented R&D at CEC”, CIA, 1998A.

26) Parunak, H. V. D,, Baker, A., Clark, S., “The AARIA Agent Architecture: From
Manufacturing Requirements to Agent-Based System Design”, Workshop on Agent-
Based Manufacturing, ICAA 1998b.

146
27) Ramaswamy, S. E., Joshi, S. B., “Distributed Control of Automated Manufacturing

Systems”, in Proceedings of 27" CIRP International Seminar on Manufacturing
Systems Proceedings, Ann Arbor, MI, May 21-23, 1995.

28) Rubin, k., and Goldberg, A., “Object Behavior Analysis”, Communications of the
ACM, vol. 35(9), p. 48, September 1992.

29) Rumbaugh, J., Blaha, M., Premerlani, W, Eddy, F., Lorensen, W., “Object-oriented
Modeling and Design”, Englewood Cliffs: Prentice Hall, 1991.

30) Saad, A., G. Biswas, K. Kawamura, E. M. Johnson, “Effectiveness of dynamic
rescheduling in agent-based flexible manufacturing systems”, SPIE Vol. 3203, pp.
88-99,1997.

31) Shen, W., Norrie, D.H., and Kremer, R., (1999) " Developing Intelligent
Manufacturing Systems Using Collaborative Agents”, Proc. of the 2nd International
Workshop on Intelligent Manufacturing Systems, Leuven, Belgium, pp. 157-166,
September 22-24, 1999.

32) Shen L., Brennan, R. W, Norrie, D. H., “Agent classification in manufacturing
systems”, the IASTED International Conference on Artificial Intelligence and Soft
Computing (ASC'2000), Banff, Canada, July 24-26, 2000.

33)Simpson, J. A., R. J. Hocken, J. S. Albus, “The automated manufacturing research
facility of the National Bureau of Standards”, Journal of Manufacturing Systems, Vol.
1, No. 1, 1982, pp. 18-31.

34) Sing Li, Panos Economopoulos, “Professional COM Applications with ATL”, Wrox
Press Ltd., 1998.

147
35) Sipper, D., R. L. Bulfin, Jr., “Production planning, control, and integration”,

McGraw-Hill, 1997.

36) Smith, R. G., “The Contract Net Protocol: High-Level Communication and Control in
a Distributed Problem Solver”, IEEE Transactions on Computers, vol. c-29, No. 12,
December 1980.

37) Sousa, P., Carlos Ramos, “Proposal of a Scheduling Holon for Manufacturing”,
Proceedings of the second International Conference and Exhibition on The Practical
Application of Agents and Multi-Agent Technology (PAAM’97), London, pp. 255-
268, UK, 21 to 23™ April 1997.

38) Valckenaers, P., H. V. Brussel, L. Bongaerts, J. Wyns, “Holonic Manufacturing
Systems”, Integrated Computer Aided Engineering, Vol. 4: 191-201, 1997a.

39) Valckenaers, P., H. V. Brussel, L. Bongaerts, P. Peeters, “Reactive Scheduling in
Holonic Manufacturing Systems: Architecture, Dynamic Model and Co-operation
Strategy”, http://www.mech.kuleuven.ac.be/~Ibongaer/ref/97p60.html, 1997b.

40) Van Brussel, H., Jo Wyns, Paul Valckenaers, Luc Bongaerts, Patrick Peeters,
“Reference Architecture for Holonic Manufacturing Systems: PROSA”, Computers
in Industry 37, pp. 255-274, 1998.

41) Veeramani, D. and Wang, K. J., “A Flexible Auction-based Shopfloor Control
Paradigm for Highly-Distributed Manufacturing Systems”,1998.

42) Voris, W., “Production Control Text and Cases™, Richard D. Irwin Inc., third edition,
1966.

43) Wooldridge, M. J., and Jennings, N. R., “Software Engineering with Agents: Pitfalls
& Pratfalls”, IEEE Internet Computing, May/June 1999, pp. 20-27.

148

44) Zhang, X., Norrie, D. H., “Holonic Control at the Production and Controller Level”,
Proc. of the 2" International Workshop on Intelligent Manufacturing Systems,
Leuven, Belgium, pp. 215-224, September 22-24, 1999.

