
THE UNIVERSITY OF CALGARY

Shop Floor Scheduling and Control with the Object-Oriented Analysis and
Design Approach

William 0

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN

PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF MECHANICAL

AND MANUFACTURING ENGINEERING

CALGARY, ALBERTA

JUNE, 2000

0 William 0 2000

National Library 1+1 of,,
BiiiotMque nationale
du Canada

uisitions and Acqui6itiions el
Btb lographic Services services bibliographiques '9
395 W.lirrooon Street 395, rue WeUing(orr
O(Pawol0N K1AOFW OttawaON K1AON4
Canada Canada

The author has granted a non-
exclusive licence allowing the
National L i h q of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accorde une licence non
exclusive peanettant a la
Biblioth&que nationale du Canada de
repro-, p r k , distnbuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L'auteur conserve la propriete du
droit d'auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou autrement reproduits sans son
autorisation.

ABSTRACT

Researchers have proposed various control architectures for shop floor manufacturing

systems, and each has its characteristics, advantages and disadvantages. Therefore when

designing a control system, it is important to obtain a natural decomposition of the

control algorithms so that the software control model can be decoupled from any

preconceived control structures. This provides researchers with the flexibility to

implement certain control algorithms in various control forms, and an objective

comparison of these alternative control methodologies can then be made.

In this research, we will first discuss why the object-oriented analysis and design

approach can be used to help achieve the above-mentioned objective. Some problems in

existing research in distributed control systems will be investigated and discussed. As

well, the COM/DCOM technology will be used to build some platform independent

software control modules that can be easily distributed to and implemented by other

researchers.

Science is nothing but

trained and organized common sense.

Thomas H. Huxley

First of all, I would like to express my special thanks to my supervisor, Dr. Robert W.

Brennan for the professional guidance and inspirations that he provided me throughout

this work, and for all his efforts in helping me correct the grammatical errors of this

thesis.

As well, I would also like to thank the Faculty of Graduate Studies, the

Department of Mechanical Engineering, and the Division of Manufacturing Engineering

for their generous financial support. And I am gratefbl to the support staff of the

Department of Mechanical Engineering for all their helps.

Finally, I would like to express my thanks to Dr. Robert C . Kremer and Dr.

Douglas H. Norrie for being on my examining committee, and to Dr. Nome for his

inspiring teaching on the Object-Oriented technology. I also greatly appreciated all the

support from everyone in my family.

TABLE OF CONTENTS

. . .. Approval Page .I i Abstract 111

... Acknowledgement iv
.. Table of Content v List of Figures WI

... List of Tables -ix

... CHAPTER ONE: INTRODUCTION 1
..................................... 1 . 1 Control Activities in the Shop Floor Control Systems 2

... 1 -2 Control Architectures 5
... 1 -3 Thesis Overview 7

CHAPTER TWO: LITERATURE REVIEW .. 9
.. 2.1 Centralized Shop Floor Control System 9

2.2 Decoupling the Control Function &om the Scheduling Function 11
2.3 Distributed Scheduling Algorithms and Real-time Distributed Scheduling 13
2.4 Jobs Sequencing and Dispatching Routing Decision in Multi-agent Weterarchcial
Control Systems .. 15
2.5 Shop Floor Control Architectures ... -18

2.5.1 Structuring Control Algorithms with the Object-oriented Analysis and
Design Approach ... -21

CHAPTER THREE: MOTIVATION FOR THIS RESEARCH 23
3.1 Research Objectives .. -23
3.2 Research Approach ... -24
3.3 Anticipated Contributions of this Research ... -27

CHAPTER FOUR: EXPERIMENTAL MODEL DEVELOPMENT 28
4.1 Characteristics of the Manufacturing System .. 29
4.2 Scheduling Algorithm .. -30
4.3 Analysis and Design of the Scheduling Application with the Object-oriented
Approach32

... 4.3.1 Scheduling Algorithm Walkthrough 34
4.3.2 Conceptual Model for the Scheduling Problem 40
4.3.3 interaction Models for the Scheduling Problem 44

4.4 Identi-g Control Agents for the Distributed Control System 56
... 4.5 The Experimental Testbed .. .58

CHAPTER FIVE: CONTROL ALGORITHMS IN DISTRIBUTED
....................................... SCAEDULING AND CONTROL SYSTEMS -63

5.1 Control System Flexibility against Disturbances for Different Planning Horizons ... 64
5.2 The Performance of the Distributed Scheduling and Control System under Various
Control Strategies ... -68

.. 5.2.1 Production Model 68
5 .2.2 Experiments and Results ... -70

5 .2.2.1 Control Strategies ... -70

.. 5 .2.22 Experiments 76
5.2.2.2.1 Experiment 5 A: Performance of Different Control
Strategies in Manufacturing Systems with Various Disturbance
Frequencies ... -77
5.2.2.2.2 Experiment 5B: Performance of Different Control
Strategies in Manufacturing Systems with Various Processing

.. Variabilities 82
5.2.2.2.3 Experiment SC: Unpredictability of Heterarchical
Control Systems85

5.3 Conclusion ... -88

CHAPTER SIX: JOB SEQUENCING AND DISPATCHING
ROUTING DECISIONS IN THE MULTI-AGENT
HETERARCHICAL CONTROL SYSTEMS ... 91

6.1 Experiments and Results .. -92
6.1.1 Experimental Models ... 93
6.1.2 Experiment 6A: Zero Disturbances .. 96
6.1 -3 Experiment 6B: One Machine Failure Disturbance 98
6.1.4 Experiment 6C: Two Machine Failure Disturbance 99
6.1.5 Experiment 6D: Four Machine Failure Disturbances -100

... 6.1.6 Results Discussion 101
.. 6.2 Conclusion 1 13

CHAPTER SEVEN: IMPLEMENTING CONTROL AGENTS AS
.. COMLDCOM OBJECTS I IS

7.1 Brief Introduction to COM/DCOM ... 1 16
7.2 Building a Distributed Manufacturing Control System with COM/DCOM 1 18

.. 7.2.1 Design Background - 1 18
7.2.2 Experimental Model Design and Implementation 1 20

.. 7.3 Conclusion - 1 34

CHAPTER EIGHT: CONCLUSION AND FURTHER RESEARCH .. 136
8.1 Summary 136

... 8.2 Contributions -139
8.3 Further Research Directions .. -14 I

... REFERENCES 1 43

LIST OF FIGURES

The main functional activities for shop floor control .. 3
Messages passing between control entities and functional entities 4
One of the possible configurations for the shop floor control system 5
Four basic forms of control architecture milts et al . 1991) -5

The centralized shop floor control architecture ... -10
A holonic architecture for scheduling and on-line shop floor control (Valckerraers et a1 .
199%) .. 12
Heterarchical manufacturing system scheduling and control, modified fiom @uffie et a1 .
1986) ... 14
The decomposition approaches for control systems with centralized, hierarchical and
heterarchical control form, respectively ... 20

The conceptual model for the scheduling problem ... 43
Job ticket to record progress (Voris 1 966) .. 44
The collaboration diagram for sending a job to the station for its next operation -48
The collaboration diagram for method I ... -50

.. The collaboration diagram for method 2 SO
Collaboration diagram for steps 3 and 4 in Algorithm 4.2 - 3 2
The class diagram for the scheduling problem .. -54
The control structure for the experimental model ... -59
The scheduled task lists for workstations WS t and WS2 -61

Gantt chart for the production system without any disturbance 65
Gantt chart for model I65
Gantt chart for model 2 .. -56
Gantt chart for model 3 ... -67
The layout of the manufacturing system ... 69
An example Gantt chart .. -70
An example Gantt chart ,. ... 72
The collaboration diagram regarding WS2 agent's decision to call for rescheduling 74
The collaboration diagram regarding WS1 agent's decision to call for rescheduling 75
The mean flow time (minute) of various control approaches in different 'disturbance
frequency' test scenarios .. -78
95% confidence interval cycle time for the WAIT-INTEL control approach in the 60%
disturbance test scenario ... 79
Results of the rescheduling fkequencies of the WAIT-INTEL and NO-WAIT
approaches in various test scenarios ... 81
The mean flow time (minute) of various control approaches in different 'processing
variability' test scenarios .. 83

An example task list for workstation WS 1 .. 96
The mean flow time (minutes) of various control approaches in diffetent test scenarios
for experiment 6A ... -97
The graphical interpretation for the results shown in Table 6.3 98
The graphical interpretation of the results shown in Table 6.4 99
The graphical interpretation of the results shown in Table 6.5 100

vii

95% confidence interval result of the AUC-BID approach in Experiment 6B in the 70-
job test case .. 101
Results for I0 jobs .. 103
Results for 20 jobs .. 103
Results for 25 jobs .. 103
Results for 30 jobs .. 103
Results for 35 jobs .. 104
Results for 40 jobs .. 104
Results for 50 jobs .. 104
Results for 70 jobs .. 104
The results of the AUC-BID control approach in various test scenarios 106
Results of the JSEQ control approach in various test scenarios 107
The results of the COMT+AUC+JSEQ control approach in various test scenarios 107
The results of the AUC+JSEQ control approach in various test scenarios -108
Performance ratio of the other control approaches versus the AUC+JSEQ control
approach in experiment 6A .. I10
Performance ratio of the other control approaches versus the AUC+JSEQ control
approach in experiment 6D ... -110
Results of the totchangeoffer and the totChangeQ frequencies in the experiment 6A . 112
The results of the ratio of the totChangeQ versus the totchangeoffer in the experiment

A COM object diagram ... 117
Specification of machine holon ... 122
The mediator COM diagram ... 123
The job COM diagram ... 1 23
The machhtel COM diagram, 124
The machSimp COM diagram ... -124
The station COM diagram ... 125
The production plant layout ... 127
The containment diagram of the station object .. 131
The layout of the networking model .. 132
The manufacturing resources on a network computer 133
The status of station 100 at time 0 .. 133

viii

Process plan for the jobs (for the operation. x/y means x time units at station y) -34
... Part of a non-delay schedule generation example -35

The scheduled operation record (processing plan) for job J1 61

Process plan for the jobs (for the operation. x/y means x time units at station y) -64
Process plans and the number of jobs for the experimental models -77
The mean flow time (minute) of various control approaches in different 'disturbance

.. frequency' test scenarios ... 78
The mean flow time (minute) of various control approaches in different 'processing

.. variability' test scenarios 83
Process plans and the number of jobs for the experiment 5C -86
The mean flow time (minutes) of various control approaches in different test scenarios

.. for experiment 5C 88

... Process plan of the various job types -96
The mean flow time (minutes) of various control approaches in different test scenarios

... for experiment 6A -97
The mean flow time (minutes) of various control approaches in different test scenarios

... for experiment 6B ,., .. 98
The mean flow time (minutes) of various control approaches in different test scenarios

... for experiment 6C -99
The mean flow time (minutes) of various control approaches in different test scenarios

.. for experiment 6D .. 100
The results of the total number of times that the job agents in the COMT+AUC+JSEQ
control system had been notified by the workstations about changes in their 'quoted start
time', and the total number of times that the jobs actually changed workstations 111

.. Operation list for the 3 job types 126

CHAPTER 1

Researchers have proposed various control architectures for shop floor manufacturing

systems, ranging £?om traditional centralized control to distributed control based on the

emerging distributed artificially intelligence (DAI). Recent researchers in intelligent

manufacturing systems have proposed to apply the agent technology, which is based on

the object-oriented control paradigm (Baker 1997)' to shop floor control in order to

achieve objectives such as:

1) To improve the control system's adaptability and fault-tolerance against disturbances

such as machine failures or rush orders etc.

2) To reduce the control software's complexities so as to simplify the software

development, modification and maintenance.

Distributed scheduling algorithms have been used in many researches for

distributed control, but there is a general confusion regarding 'decompose and distribute

the scheduling responsibilities' and 'eliminate the scheduling function'. In control

systems that still generate a pre-production schedule, it is important to loosen the

coupling between the control function and the scheduling function. This is an issue that

has not been discussed in most research that implements distributed contrcl algorithms in

control systems. As a result, some of these distributed control systems might still have

difficulties with enhancing adaptability against disturbances in a stochastic

manufacturing environment. The market-based auction-bidding scheduling approach has

2
been commonly used by many researchers for distributed scheduling, but this approach

is mainly for exploring routing flexibility. To achieve certain global performance

objectives, job-sequencing mec hanisrns should also be considered and incorporated into

the control algorithms.

As mentioned above, researchers have proposed various control architectures, and

each has its characteristics, advantages and disadvantages (Dilts et al. 1 99 1). Research on

distributed control has primarily focused on control architecture issues (e-g., hierarchical

vs. heterarchical), but has not addressed the relationship between control algorithm and

control architecture. As a result, it is important to obtain a natural decomposition of the

control algorithms so that the software control model can be decoupled fkom any

preconceived control structures. This provides researchers with the flexibility to

implement certain control algorithms in various control forms, and an objective

comparison of these alternative control methodologies can then be made.

In this chapter, we will first describe the main controi activities in shop floor

control systems. Then a brief discussion of current research in manufacturing control

architectures will be given. In the last section, an overview of the structure of this thesis

will be presented.

1.1 Control Activities in the Shop Floor Control Systems

A shop floor control system mainly embodies decision-making responsibilities such as

part scheduling, part routing and resource allocations (Dilts et al. 1991). Bauer et al. have

defined the three main elements for shop floor control as (Bauer et al. 1994):

1) Scheduling - To develop a plan based on timely knowledge and data which will

ensure all the production requirements are fulfilled.

2) Dispatching - To implement that plan taking into account the current status of the

production system.

3) Monitoring - To monitor the status of vital components in the system during the

dispatching activity.

In shop floor control systems, scheduling, dispatching, monitoring, and machine

execution (i.e., loading code, and initializing, running, and stopping processes) are

functional activities, while control encompasses processes and procedures that ensure that

the hctional activities are carried out in the desired manner (i.e., to ensure that the

hctional activities take place in appropriate relationship to each other). Depending on

the control architecture of the system, functional activities such as scheduling,

dispatching and monitoring can be done by one entity in a system or can be distributed

over many structures. Similarly, control monitoring can be done by one entity in a system

or can be distributed over many structures. Figure 1.1 shows the main functional

activities for the shop floor control.

Functional Activities

I I l n l

Figure 1.1 : The main functional activities for shop floor control.

4
As mentioned above, shop floor control is concerned with processes and

procedures that ensure that the hctional activities take place in appropriate relationship

to each other. As a result, messages will pass between control and functional entities as is

illustrated in Figure 1.2 below.

Control Entities

n

Functional Entities

Figure 1.2: Messages passing between control entities and functional entities.

As well, depending on the control architecture that is implemented, the control

and functional entities in a shop floor control system may be organized in various

configurations. Figure 1.3 below shows one of the possible configurations. The shop

floor control architectures will be fkrther discussed in 8 1.2 below .

CONTROL
STRUCTURE

FUNCTIONAL
ACTlVlTl ES

a 1 + --------------- -------------+o Dispatching (e.gm1 to
three separate shop
floors) -_* 0 Initial Scheduling

_-eeC

c--

_CC---

----- ------------+ 0 Dispatching (e-g.. to
machine groups in shop

----- I floor A)
Rescheduling of
machine X

Figure 1.3: One of the possible configurations for the shop floor control system.

1.2 Control Architectures

While reviewing the evolution of control architectures for the automated manufacturing

systems, Dilts et al. (1991) have identified the four basic forms of control architecture,

namely, centralized, proper hierarchical, modified hierarchical, and heterarchical as

shown in Figure 1.4. In the figure, the boxes represent control components, circles

represent manufacturing enti ties.

Centralized

Proper Modified
Hierarchical Hierarchical

c&-z-zl
Heterarchical

Figure 1.4: Four basic fonns of control architechme (Dilts et al. 1991).

6
The centralized control architecture has a single control unit responsible for all

planning, control, and information processing functions. Under this control structure,

overall system status information can be retrieved fiom a single source. Though the

central control unit's accessibility to complete global information makes optimization a

more readily achievable prospect, the centralized control structure has drawbacks such as

slow and inconsistent speed of response (when the system gets larger), dimcult to modifL

control software, and the system's sunrival relies totally on the reliability of a single

control unit (Dilts 1991).

The proper hierarchical control architecture is based on the concept of levels of

control, wherein several control components are arranged in a tree structure and strict

master/slave relationships are established between decision levels. Commands flow top-

down along the hierarchy tree while feedback information flow bottom-up and data are

aggregated at each level. The static and deterministic nature of the hierarchical control

architecture allows it to work well under environments of certainty and stability. But the

rigidity and highly-coupled decision levels o f the control structure gives it the

disadvantages of having difficulties of making future unforeseen modifications and

dealing with dynamic adaptive control (Dilts 1991), and low response time and

robustness against disturbances in manufacturing system (Parunak 1 993, Valckenaers et

al. 1997% Bongaerts et al. 1998).

The modified hierarchical control architecture was introduced in an attempt to

overcome some of the shortcomings of the proper hierarchical structure. In modified

hierarchical form, the subordinates are granted some degree of local autonomy. So by

cooperating with some other peer subordinates, the subordinates might be able to release

some rudimentary responsibilities from the supervisory control level, and thus enable the

supervisor to respond more readily to subordinate requests. Also, by having the

subordinates act "as an autonomous subsystem within the hierarchy, in the sense that they

do not require continuous supervision (they) are characterized by some degree of

robustness with respect to random disturbances" (Dilts 1991). The drawbacks of the

modified hierarchical form are that it still bears most of the disadvantages of the proper

hierarchical form and has the connectivity problems with peer-to-peer communication

(Dilts 199 1).

7
The heterarchical control architecture is a highly distributed form of control.

Every entity in the system has fill local autonomy and there is no centralized or explicit

direct control (supervisor/subordinate) existing in the system. Control decisions are

reached via peer-to-peer co-operation and mutual agreement among the participating

entities, and information is exchanged freely among them. The claimed advantages of

heterarchical control architecture include: 1) enhancement of the control system's

robustness, flexibility and expandability (Sad et al. 1997), 2) reduced software

complexity and development cost, improved fault tolerance, and higher maintainability

and modifiability due to enhanced modularity and self-configurabiltiy @uEe & Prabhu

1994), 3) high robustness against disturbances in manufacturing (Bongaerts et al. 1998).

However, due to the fact that in a heterarchical control system, entities use purely

localized information and all forms of hierarchy are eliminated, heterarchical control

turned out to have problems with global optimization and predictability of system

behaviors (Valckenaers et al. 1997a, Bongaerts et al. 1998).

1.3 Thesis Overview

The objectives of this research are mainly concerned with identifying and investigating

some of the problems in the existing research in the shop floor control methodologies.

These problems include:

- the decomposition approaches used for designing the control systems,

- confusions regarding the concepts of the 'distributed scheduling' and 'real-time

distributed control',

- the impact of the routing flexibility and the job sequencing control mechanisms on

the performance of a multi-agent heterarchical control system, and

8
- how to enhance the collaboration between researchers in developing alternative

control methodologies.

In Chapter 2, we will review some of the above mentioned problems in the

existing research in manufacturing system control. In Chapter 3, more detailed

description of the research objectives will be given. Also, the research approach and the

anticipated contributions of this study will be discussed. In Chapter 4, we will use the

object-oriented analysis and design approach to develop an experimental testbed that will

be used for conducting various experiments in the following chapters. The reason for

using the object-oriented methodology to design the control system used in the

experimental testbed will be explained in Chapter 4 as well. Then in Chapter 5,

experiments will be conducted to investigate and identi& the role of the 'control7

algorithm in the control systems that use the distributed scheduling approach to perform

pre-production schedules. These experiments are used for clarifying the confusion in the

existing research regarding the concepts of 'distributed scheduling' and 'real-time

distributed control7. In Chapter 6, experiments will be conducted to identify the impact of

the job routing and job sequencing control mechanisms on the performance of a rnulti-

agent heterarchical control system in different manufacturing environments.

In Chapter 7, an attempt will be made to explore the opportunity of enhancing the

collaboration between researchers by building some platform independent

(COMDCOM) software control modules that can be easily distributed to and

implemented by other researchers. Finally, in Chapter 8, a conclusion regarding the work

in this study in the context of the general research objectives will be given. As well, the

contributions of this study and suggestions for future research work are discussed.

CHAPTER 2

LITERATURE REVIEW

In this chapter, we will first discuss some of the problems presented in traditional

centraiized scheduling and control systems. While some researchers have showed that

decoupling the control function from the scheduling function can enhance the shop floor

control system's flexibility against disturbances, current research in distributed

scheduling and control systems is mainly focused on discussing the distributed

scheduling algorithms, but fails to addrcss the control algorithms. As resulted, some of

these distributed control systems might still have difficulties with enhancing adaptability

against disturbances in a stochastic manufacturing environment. We will further discuss

these issues in sections 2.2 and 2.3 below. In 52.4, we will discuss some of the problems

regarding the job sequencing and the job routing control mechanisms in current research

in the multi-agent heterarchical control systems. Then in $2.5, we will discuss some of

the approaches that researchers have used to design shop floor control systems, and see

why using the object-oriented analysis and design approach to structure the control

algorithms can help decouple the logical control model from any preconceived control

architectures.

2.1 Centralized Shop Floor Control System

Conventional shop floor control systems are centralized and usually implemented

with the control structures as shown in Figure 2.1 below. In Figure 2.1 (a) a, a central

computer plays both the roles of a scheduler and a controller, while in Figure 2.1 (b), the

10
scheduler and controller responsibilities are assigned to different processors. Both of

these control approaches are generally regarded as centralized shop floor control (Duffie

et a]. 1994). In these approaches, the scheduler is responsible for doing all the decision-

makings regarding parts routing, operations sequencing, resources allocating etc., and the

controller is responsible for executing the plans generated by the scheduler and feeding

back the status of the shop floor to the scheduler when disturbances happen.

CENTRAL COMPUTER

piiq
I I

Controller

1

/ / r I 1 .
Resource Part - -

Central
Scheduler

1 Controller I

I I /

Resource - Part -

Figure 2- 1 (a) Figure 2.1 (b)

Figure 2.1 : The centralized shop floor control architecture.

The tightly coupled master/slave relationship between the scheduler and

controller results in problems such as:

1) Low fault-tolerance. Failure of the scheduler, controller or central computer can cause

the control system to halt.

11
2) Complex control software and difficulties with dealing with dynamic adaptive

control. The centralized control approach "leads to large, complex software systems

that are difficult to create, install, and modifl, and yields schedules that are

vulnerable to changing circumstances on the shop floor" (Parunak 1993). Also, "It is

not unusual for schedule generation to take several hours and for shop floor

conditions to change significantly before the schedule is completely generated"

(Duffie et al. 1994), and this affects the control system's response speed/adaptability

against disturbances.

2.2 Decoupling the Control Function from the Scheduling Function

Different agent-based shop floor scheduling and control approaches have been

proposed by a number of researchers to tackle the problems associated with the

centralized control system. These alternative approaches differ widely on what is

represented as an agent. In some approaches, an agent is assigned to each control node in

the hierarchical (centralized) control system (Parunak et al. 1998a, Bongaerts 1998),

while in the others, agents are associated with some physical manufacturing resources or

parts (Duffie et al. t 994, Sousa et al. 1997, Van Brussel et al. 1998). Shen et al. (2000)

have provided some classifications regarding agents in the manufacturing systems.

In control systems that contain a central scheduler, researchers have attempted to

enhance the control system's adaptability against disturbances by loosening the coupling

between the scheduler and the lower level controllers (The term coupling refers to the

strength of the associations between objects or agents that is a result of connections

between them (Booch 1994, Shen 2000). This is accomplished by giving the controllers

which are responsible for executing the schedule a certain degree of intelligence and

autonomy so that they could handle the disturbances in real time. For instance, in

(Valckenaers et al. 1997b) (referring to Figure 2.2),

12
"Shop floor control is performed by both an on-line control system that reacts

to disturbances immediately and a reactive scheduler that does not react as fast,

but uses this larger time span to adapt the existing schedule to optimize global

performance".

Figure 2.2: A holonic architecture for scheduling and on-line shop floor control

(Valckenaers et al. 1 997b).

Reactive Scheduler Holon

In Figure 2.2, each of the control entities in the system is represented by a holon,

which is defined as:

-..-.--

"'An autonomous and cooperative building block of a manufacturing system for

transforming, transporting, storing, and/or validating information and physical

objects. The holon consists of an information processing part and often a physical

processing part. A holon can be part of another holon" (Valckenaers et d. 1997a).

A

t
On-line Shop Floor Control Holon

4 4

,.._---.-_-._ _ _.__--.- _._ .-.-.... __ . .-..-...-..........

I * v
1 t I r w

Workstation + Order Holon
Holon

-'

13
In this approach, scheduling is performed by the central (reactive) scheduler.

The local autonomy of the lower level control holons is mainly used for

dispatchingfcontrol purpose. That is, when disturbances happen and the (old) production

schedule is no longer feasible or the scheduler is not available or is busy in generating a

new schedule, the workstation, order or on-line control holons can make some local

decisions to react to disturbances in real time. This can enhance the control system's

fault-tolerance and adaptability against disturbances.

2.3 Distributed Scheduling Algorithms and Real-time Distributed

Scheduling

Distributed scheduling algorithms have been used by many researchers (especially multi-

agent control systems) to generate a production schedule, but few have addressed how the

control agents should react in response to disturbances in real time. This might be

because of the confirsion regarding the use of a distributed scheduling algorithm to

generate pre-production schedules and its use to implement real-time dynamic

scheduling. In the latter case, the scheduler role (or scheduling function) in the control

system is totally eliminated, and production decisions (resources allocation, part routings,

etc) are made in real time. In such an approach,

"Dynamic scheduling implies moving scheduling decisions kom production pre-

planning to the FMS control system. Shifting these decisions into real-time

greatly increase over-all system performance by introducing the capability to

handle disturbances such as system component failures without operator

interaction" (Duffie et al. 1986).

But if the distributed scheduling algorithm is used to generate a pre-production

schedule, even in a heterarchicd control system, there is still a tight coupling between the

local controllers and the generated schedule (referring to Figure 2.3).

--
I I

Virtual Central Scheduler I
I
I

I I
I I
I

A

Manufacturing System I
Figure 2.3: Heterarchical manufacturing system scheduling and control, modified from

(Duffie et al. 1986).

This is because a production schedule serves as a virtual contract that binds a11 the

participating control entities together to accomplish a certain tasks. For instance, in

control systems that use auction bidding scheduling algorithms (Duffie et al. 1994, Sousa

et al. 1997) to generate a schedule, once a schedule is generated, each part and resource

agent is committed to part of the common schedule (fbture plans). That is, a resource

agent is committed to provide its capacities to certain parts at certain time intervals, and a

part agent is committed to have its operations processed by certain resources at certain

times. When unexpected disturbances happen, if the affected control agents do not have

the responsive mechanism to react to these disturbances in real time so that the

production plans will be less affected, a rescheduling process will usually be invoked

(Duffie et al. 1994) for the control entities to generate a new schedule. Even using

distributed scheduling algorithms, a new schedule might still take some time to be

generated. In the meantime, the aEected control agents (or production resources) have to

wait for the new schedule to be generated. Also, in the scheduling/rescheduling

processes, all the control entities have to take part in the process, and this might increase

the coupling and communications between the control entities. Therefore, relying on

15
rescheduling to react to disturbances might contradict some design principles of the

heterarchical control system, such as (Duffie et al. 1994):

- Time-critical responses should be contained within entities and should not be

dependent on time-critical responses &om other entities.

- Scheduling and control functions should be contained within the same entity to avoid

time-critical response requirements and decrease communication requirements.

Distributed scheduling can enhance the scheduling performance "through parallel

computing and through the elimination of the processing bottleneck caused by global

scheduler" (Dilts et al. 1991). Localizing the scheduling and control fimctions within the

same control entity can enhance the control software's modularity, reduce control system

complexity, and increase flexibility and fault-tolerance (Duffie et al. 1986). But as

mentioned above, in the distributed control system, it is also important that the control

entities have the local intelligence/autonomy (or reactive mechanism) to respond to

disturbances in real time so as to "avoid time-critical response requirements and decrease

communication requirements" (Duffie et al. 1 986).

2.4 Jobs Sequencing and Dispatching Routing Decision in Multi-agent

Heterarchical Control Systems

While reviewing the implementation of dispatching rules in the multi-agent heterarchy,

Baker (1 997) has mentioned that:

"It is most common to dispatch the routing decision in these architectures,

assuming sequencing can then be done at each resource.. . In the case of the

routing decision, a great deal of agent research has been with having the agents

16
making this decision by collecting bids from potential machines to which the

job can be routed".

Most of the work on the distributed scheduling and control only dealt with

dispatching the routing decisions, and ignored the job sequencing issues. As a result,

most of these scheduling approaches performed scheduling by jobs on a First-Come-

First-Serve basis (Veerarnani & Wang. 1998), and this approach sometimes will

compromise certain global performance objectives.

Some attempts have been made to incorporate the sequencing mechanism into the

distributed scheduling algorithm in order to optimize the global system performance. For

instance, in (Rarnaswarny et al. I995), an omine central computer i s used to solve the

static optimal characterizations of the scheduling problem and forward the generated

Lagrange multipliers to the online control agents (machine and part agents). The online

control agents will then make use of this (global) information to decide the allocation and

sequencing of both processing and material handling tasks. Although the Lagrangian

relaxation technique seems very promising for heterarchical agent scheduling, "current

work in this area is only a beginning of the work which needs to be performed to pursue

these concepts fully" (Baker 1997).

In (Duffie et al. 1994), an attempt to incorporate the job sequencing mechanism

into the distributed scheduling algorithm is implemented by the cooperative scheduling

mechanism. In their control system, part agents generate local plans, which are then

evaluated by a central agent. The evaluated global performance measure will then pass

back to all the control agents. The part agents will then alter their local plans accordingly

and the afore-mentioned procedures are repeated until "a set of local schedules is found

that collectively achieves the global goals" (Duffie et al. 1994). Jobs sequencing is

accomplished in the manner that while a number of parts are in contention to reserve a

resource, the part agents with the looser due-date will change their local plans to delay

the reservation so that the parts with the tighter due-date can use the resource first.

Because lack of global information knowledge, the part agents do not know which part is

in most need of a particular resource. As a result, the part agents have to alter their local

plans on a trial-and-error basis to see how their changed plans will affect the global

17
performance. This trial-and-error approach also causes 5 out of 12 parts to be tardy,

even though in their experimental model, there was enough lead times for the production

of all the parts.

'"The most common scheduling approach to job shops is to use priority

dispatching rules" (Sipper & Bulfin 1997). "For many practical applications, shop floor

control is dominated by heuristic dispatching, in which a simple decision rule determines

the next job to be processed at a given workstation7' (Parunak 1994). A considerable

number of dispatching rules have been developed by researchers to help the control

system in achieving certain global performance objectives, and some of these dispatching

rules are simple and widely adopted by the manufacturing industry.

As described above, the 'part-driven' approach tends to have difficulties in

fulfilling the job sequencing responsibilities efficiently because of lack of global

information knowledge, and other more efficient approaches have yet to be

developed/studied. In (Duffie et al. 1994), it was mentioned that "fbture work should also

compare them with traditional dispatching rules and scheduling heuristics".

In a distributed control system, while the part agents can use the bidding

mechanism to explore the routing or process sequencing opportunities, it is possible for

the resource agents to use the dispatching rules to sequence the jobs to help improve

certain global performance objectives. Having the resource agents responsible for job

sequencing will not compromise the design principles of the heterarchical system, as the

routing and sequencing decisions are made by job and resource agents, respectively,

locally. Although some researchers (Saad et al. 1997) have incorporated dispatching rules

in the market-based scheduling approach and have shown that this approach could

improve the system performance with respect to certain global performance measures,

few have discussed how the opportunistic behavior of the part agents and the adoption of

the dispatching rules will affect the commitments between the control agents, the overall

system performance, and the communication requirements. For instance, when the

resource agents submit bids to the part agents, the part agents will make the

routing/process sequencing decision based on the bids. But if the resource agents use the

dispatching rules to sequence the jobs, the resource agents might violate some of the

commitments they made to some of the part agents. When that happens, should the

affected part agents be informed so that they can explore some other routing

opportunities? And what impact will that make on the system performance and

communication requirements?

2.5 Shop Floor Control Architectures

Different control architectures have been proposed for shop floor scheduling and control,

ranging from traditional centralized control to the distributed multi-agent systems.

Although quantitative results are becoming available for these alternative methodologies,

it is difficult to evaluate these alternative control architectures fiom the existing literature

alone since different approaches tend to use different control algorithms. As a result, one

can not be certain if it is the control architecture or the control algorithm that is being

compared. In designing a control system, it is important to obtain a natural decomposition

of the control algorithms so that the resultant software control model can be decoupled

from any preconceived control architectures. This provides the researchers with the

flexibility to implement the software control modules in various control forms, and thus

an objective comparison of alternative control methodologies can then be made.

Figure 2.4 shows some of the control architectures that have been proposed for

shop floor manufacturing systems. Figure 2.4(a) represents the centralized shop floor

control architecture, wherein all the manufacturing scheduling and control are

characterized by a centralized computer and database (Parunak 1993). Figure 2.4(b)

represents the hierarchical control structure, wherein structural (functional) analysis

approach is used to fimctionally decompose the control activities into different control

modules. While reviewing the hierarchical control architecture, it was described in (Dilts

et al. 1991) that:

"The refinement process of breaking down aggregated decisions and the concept

that 'sensory information at the higher levels is more abstract and requires the

19
integration of data over longer time intervals' (Simpson et al. 1982) implies

that aggregated database will be found at each level"

Therefore, from centralized to hierarchical control, the design approach is shifted

from developing a monolith control program to rnodularizing different control fhctions

and their corresponding database in different control modules. "Software development

can be easily managed and modifiability can be easily achieved due to the modularity of

the hierarchical structure" @ilts et al. 199 1)

Figure 2.4 (d) represents the general multi-agent control architecture. Some mutli-

agent control systems use only the resource and part agents to perform the scheduling and

control (Duffie et al. 1994), while other control systems may involve some staff roles

(central scheduler or mediator, etc.) to perform the scheduling and control (Bongaerts et

al. 1998, Shen et al. 1999). These staff agents are represents as agents X and Y in Figure

2.4 (d). In multi-agent systems, the scheduling and control responsibilities are distributed

among some loosely-coupled cooperative control entities. The multi-agent control

architecture can enhance the modularity of the control systems. "The reduced coupling

between (software) modules reduces complexity and simplifies development and

maintenance (modifications and extensions)" (Dilts et al. 199 1).

Most research in shop floor control developed the control systems from a "top-

down" approach, wherein control architectures were first determined, then the control

algorithms were structured to fit in the preconceived control architectures. But this

approach limits the flexibility and increases the difficulty of changing a control system's

control structure. Sometimes the physical environment (communication network's

availability, computational limitations of certain control entities) of a control system

might favor certain control architecture, but this environment might change overtime.

Therefore, it is important that there is a natural decomposition of the control algorithms

so that the logical control model can be decoupled fiom any preconceived control

structure, and this provides the flexibility of implementing the logical control modules in

various control forms.

27
2.5.1 Structuring Control Algorithms with the Object-oriented Analysis

and Design Approach

To obtain the natural decomposition of the control algorithms so that the logical control

model can be decoupled h m any preconceived control architectures, object-oriented

analysis and design methodology appears to be the appropriate approach for

decomposing the control algorithms. Figure 2.4 (c) represents the software control model

wherein the object-oriented decomposition approach has been applied to structure the

scheduling and control algorithms.

Referring to Figure 2.4 (c), by applying the object-oriented decomposition

approach to structure the scheduling algorithm, roles that are involved in the process can

be identified, and their corresponding responsibilities and states can be encapsulated. It

would not be surprising that production entities such as machines, parts etc. will be

identified in most scheduling algorithms since scheduling is mainly concerned with

allocating operations to resources. It should be noted that objects identified fiom the

scheduling algorithms are not limited to objects that have a physical correspondence in

the real manufacturing system. Other objects may also be identified for certain design

purpose or to help accomplish the scheduling tasks.

"In analysis, we seek to model the world by discovering the classes and objects

that form the vocabulary of the problem domain, and in design, we invent the

abstractions and mechanisms that provide the behavior that this model requires"

(Booch 1994).

The control algorithms (for the control function) are usually structured around

some control roles that have a physical correspondence in the production system. These

control roles are responsible for executing the production plan and monitoring the

production activities of their physical correspondence. "One cannot make all the logical

design decisions before making all the physical ones, or vice versa; rather, these design

decisions happen iteratively" (Booch 1994).

22
As shown in Figure 2.4 (c), some roles (resource, part) in different control

hc t ions are related to a particular entity. These roles (and their corresponding

responsibilities and data) can then be modularized in a single control component so that

this component will be responsible for the control behaviors of a particular entity, and

thus increase the cohesion of the control component ("Cohesion measures the degree of

connectivity among the elements of a single module" (Booch 1994)). With this approach,

roles in different control hc t ions can be modularized into some low-coupling, high-

cohesion control components. These control components can then be implemented in a

distributed (multi-agent) control structure as shown in Figure 2.4 (d) to fulfill the required

control functions of the system.

As illustrated above, by applying the object-oriented methodology to decompose

the control fhctions in a control system (Figure 2.4 (c)), the resultant control modules

can be arranged to fit into various control architectures. For instance, one can retain the

functional structure in Figure 2.4 (c) to implement the hierarchical control (or even

implement all the control hc t ions in a single computer to form the centralized control).

Or one can fiuther modularized the control roles in different control hc t ions to fonn

some low-coupling, high-cohesion control components, and implement these components

in a distributed control structure. Therefore, applying the object-oriented methodology to

structure the control bc t i ons can help achieving the objective of decoupling the control

algorithms from the control architectures. Also, by using the object-oriented analysis and

design approach to structure the control h c tions, notation (for example, UML-Uni fied

Modeling Language (Larman 1997)) for modeling systems using object-oriented

concepts can be used to capture (document) the static and interaction models of the

control processes. These artifacts will be helpful when modifications have to be made to

the logical control software in the future (or to reconfigure certain control roles into

different control modules).

CHAPTER 3

MOTIVATION FOR THIS RESEARCH

In this chapter, we will f i s t describe the objectives of this research, and the

methodologies that will be used to investigate the problems in this study. Then the

anticipated contributions of this research will be given.

3.1 Research Objectives

The objectives of this research are mainly concerned with identimng and investigating

some of the problems in the existing research in the shop floor control methodologies.

These problems include:

1) Control system decomposition approaches - Various control methodologies have

been proposed for shop floor control, but most research tends to decompose the

control system fiom a 'top-down' approach. h this research, we will analyze some of

these approaches and try to use a natural decomposition approach to structure the

control algorithms so that the resultant software control model can be decoupled from

any preconceived control architectures.

2) Confusions regarding 'Scheduling' and 'Control' functions in the distributed shop

floor control systems - Distributed scheduling has been used in many researches,

some distribute the scheduling function to generate pre-production schedules, while

others distribute the control hction to implement real-time distributed production

24
control (dispatching and monitoring). In this research, we will clarify this confiision

and identify some problems resulted from this confusion.

Routing flexibility and job sequencing - Most research using the market based

scheduling approach has not considered the job sequencing issue. As a result,

resource allocations are usually done by jobs on a first-come-first-serve basis, which

can compromise certain global performance measures. In this research, we will

investigate and identi@ the role of the job routing and job sequencing control

mechanisms in a multi-agent distributed control system, and discuss how these

control mechanisms will affect the performance of the control system in various

manufacturing environments.

4) Sofbvare reuse and distribution - As some researchers have proposed that different

researchers should compare their control algorithms on a common testbed, it will be

helpfbl if researchers can built their control modules as some platform-independent

software components that can be easily distributed across the network and integrated

into some other control systems. In this research, we will explore this opportunity by

trying to use the COMLDCOM technology to build some control modules and

distributed them across the network to implement the simulated distributed shop floor

control system.

3.2 Research Approach

As mentioned above, the research conducted in this thesis is mainly concerned with the

problems related to the shop floor manufacturing systems; particularly in distributed shop

floor scheduling and control. Since a lot of work has been done for shop floor scheduling

and control, some researchers have seen the need to develop a benchmark fiamework for

manufacturing control so that researchers can validate and assess the performance of their

algorithms on a common testbed. A recent formed research group, BENCH-MAS

25
(Cavalieri et al. 1999), has developed two benchmark proposals for a generic machining

system and a flexible assembly system, respectively. The generic machining system

proposed by (Cavalieri et al. 1999) is intended to serve as a testbed for comparing multi-

agent control systems, and will be adopted in this research as a common platform for

evaluating a variety of test scenarios.

The production system consists of four types of machines, and two machines per

type are present. Although it is proposed that the transport system is modeled as a set of

serial transporters (AGVs), these AGVs are assumed always available and transport times

are set equal to zero. Therefore in this research, the transportation entities and transport

times are not modeled in order to simplify the system. Two types of job shop problems

are proposed. For the first problem, products have a fixed process plan constituted by

four non-preemptive operations (one for each machine type), and the third machine to be

visited is the bottleneck resource (long-lasting operation). The second problem is similar

to the first one, except that in this problem, routing flexibility is introduced into the

system. That is, products have a flexible processing order of their operations (a

bottleneck resource is still present, but not necessary the third one to be visited). More

detailed descriptions of the production system and performance measures are covered in

chapter 5.

As mentioned in $3.1, current research in distributed scheduling and control

systems mainly focuses on discussing the distributed scheduling issues, and ignored the

control issues. In this research, we will use the first job shop problem to investigate how

different control algorithms in the distributed control system will affect the control

system's performance in a stochastic manufacturing environment. A heuristic scheduling

algorithm will be used to generate the production schedules. Although the heuristic

methods may not guarantee to generate an optimal schedule, these methods guarantee a

solution in a reasonable amount of time, and by far the most commonly used techniques

in industry (Baker 1 997).

In the previous research on distributed (multi-agent) control systems, control

responsibilities are usually assigned to certain control agents (such as the part or machine

agents) that have a physical correspondence in the real manufacturing system. The

scheduling algorithm is then structured around these control agents (Duffie et al. 1986,

26
1994). Instead of using this 'top-down' approach to design the control agents for the

control system, in this research, we will first use the object-oriented analysis and design

approach to structure the scheduling algorithm so that roles (objects) that are involved in

the scheduling processes can be identified. Such an approach can allow us to identify a

broader set of possible agent candidates, and to design the logical scheduling model that

can be decoupled &om any preconceived control structure. As would be expected, some

of the objects identified may have a correspondence in the physical production system,

since scheduling is about allocating jobs to resources. Since we are trying to investigate

control problems in a distributed control system, control responsibilities will then be

added to some of the objects identified in the scheduling decomposition process. With the

scheduling and control responsibilities, these objects will then behave as the control

agents for certain production entities. It should us noted that control agents are not

limited to the 'physical' control agents (Shen et al. 2000). Other agents may also be

created to help accomplishing the scheduling and control functions of the control system.

An experimental model will be constructed around the identified control agents. Different

control responsibilities will be introduced to the control entities, and the control system

performance will be tested under different stochastic disturbance scenarios.

As mentioned in $2.4, most of the work on multi-agent heterarchical control

systems only dealt with dispatching the routing decisions, but ignored the job sequencing

issues. Since routing flexibility is introduced to the products in the second proposed job

shop problem, we will use this probIem to investigate the role of the job sequencing and

job routing control mechanisms in a distributed (multi-agent) control system.

Experiments will be conducted to test and evaluate the impact of the job sequencing and

job routing control mechanisms on the control system's performance under various

manufacturing environments.

As the benchmark h e w o r k (Cavalieri et al. 1999) is intended for different

researchers to compare their control methodologies on a common testbed, it would be

helpfbl if the control modules can be built into some platform independent software

components that can be easily distributed across the network and/or be integrated into

other researchers' (software) control models for validation or testing. In the last section

of this research, we will try to explore this opportunity by using the COM/DCOM

27
technology (Bates 1999, Sing et al. 1998) to implement the control entities in a multi-

agent control system. These component objects will then be distributed across the

network for implementing the distributed control.

3.3 Anticipated Contributions of this Research

Through the work in this research, it is expected that the following objectives can be

achieved:

1) To provide some insights regarding the decomposition approaches for various control

methodologies, and the importance of decoupling the control algorithms fiom the

control architectures.

2) Clarify the confusing concepts regarding 'distributed scheduling' and 'real-time

distributed control7. Identify the role of the 'control' algorithm in the control systems

that use the distributed scheduling approach to perform pre-production scheduling.

3) To provide some insights regarding the role and importance of the job sequencing and

dispatching routing decision control mechanisms in the multi-agent distributed

control system (in various manufacturing environments).

4) To explore the opportunity of enhancing the collaboration between researchers by

building some platform independent software that can be easily distributed to and

implemented by other researchers.

CHAPTER 4

EXPERIMENTAL MODEL DEVELOPMENT

As mentioned in the last chapter, the objectives of this research are mainly concerned

with investigating the control problems related to the distributed control systems. In the

current research in distributed scheduling and control systems (Duffie et al. 1994, Sousa

et al. 1997), production entities such as machines, workstations, and parts etc. are usually

associated with a corresponding control agent, which will control the production

activities of these entities. Scheduling algorithms are usually decomposed/structured

around these control agents. In this research, we will use the object-oriented analysis and

design approach to decompose the scheduling algorithm to identify the roles and

responsibilities that are involved in the scheduling processes. This will give us the

opportunities to explore other possible agent candidates (other than the pre-determined

'physical' f Shen et d. 2000) control agents).

"In selecting our agents, we want to begin with the broadest possible set of

candidates. While some entities may prove unnecessary, it's easier to cast the net

broadly and leave some as stubs than to build an architecture into which omitted

entities cannot easily be added later" (Parunak et al. 1998a).

As would be expected, some of the roles (objects) identified in the scheduling

algorithm may have a physical correspondence in the real manufacturing system, since

scheduling is about allocating operations to resources. The scheduling and control

responsibilities of these roles can then be modularized into some individual control

components. This, together with other agents that might be identified fkorn the scheduling

29
algorithm, allows us to then implement a multi-agent (distributed) scheduling and control

structure.

Another advantage of using the object-oriented approach to decompose the

scheduling algorithm is that the software solution can be decoupled fkom any

preconceived control structure. For instance, in a distributed control system wherein the

control responsibilities are distributed among certain control agents, we can still

implement the (scheduling) software solution in an individual control module to

implement a centralized scheduling, distributed control structure. Or as described above,

we can incorporate the software solution into the distributed control system to implement

a distributed scheduling, distributed control system.

In this chapter, we will first describe the production model and the scheduling

algorithm that will be used in our experimental model. The object-oriented analysis and

design approach will then be used to decompose the scheduling algorithm so that the

roles that are involved in the scheduling processes can be identified. Some of these roles

may be the possible agent candidates, and the corresponding control responsibilities will

then be added to these roles so that a distributed scheduling and control system can be

built. Based on this distributed control model, we will then build an experimental model

for simulating the shop floor manufacturing and control activities. This experimental

model will be used in the later chapters for testing different control methodologies.

4.1 Characteristics of the Manufacturing System

The followings are some of the characteristics and assumptions that were made about the

manufacturing system.

1) The system contains a number of workstations/stations. Each station has a queuing

buffer (queue) and a number of resources/machines.

30
2) Each station can off- a single type of operation. That is, machines of the same station

have same function.

3) Resource (stations, machines) information, process plans for the jobs and order

details are stored in resource, production and order database, respectively. The

scheduling application has to access the corresponding database to retrieve the

relevant information.

4) Set-up time for each operation and transportation times for moving jobs between

stations are ignored.

5) No preemption. Once a machine starts processing a job, it will continue until it

completes the operation (that is, no machine breakdown will occur when the machine

is in operation).

6) When disturbances (like machine breakdowns or new order arrivals) happen, the

scheduling application might be invoked to do the rescheduling.

4.2 Scheduling Algorithm

In this research, the GiMer-Thompson (French 1990) algorithm will be used as the

scheduling algorithm. This algorithm is a heuristic scheduling algorithm for generating

non-delay schedules for the general job shop problem, n/m/GIB. Non-delay schedules are

schedules '%where no machine is kept idle when it could start processing some operations"

(French 1990). For the general job shop scheduling problem, n/m/G/B, n = number of

jobs, m = number of machines, G = the general job-shop case, and B = the performance

measure. Although the heuristic methods may not guarantee to generate an optimal

schedule, these methods guarantee a solution in a reasonable amount of time, and by far

the most commonly used techniques in industry (Baker 1997). Also, there are strong

31
empirical reasons for using the non-delay scheduling approach. For example, in the

empirical studies conducted by (Conway et al. 1967), the results showed that in most

cases, the non-delay schedules far outperformed the active schedules (active schedules

are schedules in which an optimal solution is guaranteed in the set of schedules) in terms

of mean flow time- The Giffler-Thompson scheduling algorithm is described as follows

(French 1 990):

"In the algorithm we shall schedule operations one at a time. We shall say that an

operation is schedulable if all those operations which must precede it within its

job have been already been scheduled. Since there are nm operations, the

algorithm will iterate through nm stages. At stage t, let

P, - be the partial schedule of the (t-1) scheduled operations;

St - be the set of operations schedulable at stage t, i.e. all the operations that must

precede those in St are in Pt.

uk - be the earliest time that operation o k in St could be started;

Ok - be the earliest time that operation o in St could be finished, that is, 4 = 0

+ p k, where p k is the processing time of operation o k ;

. . .It is an easy matter to modify this (Gimer and Thompson) algorithm so that it

produces non-delay schedules."

Algorithm 4.1 below shows the steps for generating a non-delay schedule.

Algorithm 4.1 (French 1990):

32
Step I Let t = I, PI being null. SI will be the set of all operations with no predecessors, in

other words, those that are first in their job.

Step 2 Find cr* = min . in s (a k) and the machine M* on which a* occurs. If there is a

choice for M*, choose arbitrarily.

Step 3 Choose an operation oj in St such that

(1) it requires M*, and

(2) Cj = a*.

Step 4 Move to next stage by

(I) adding oj to P, so creating Pt+,;

(2) deleting oj &om St and creating Sriby adding to St the operation that directly

follows oj in its job (unless oj completes its job);

(3) increment t by 1;

Step 5 If there are any operations Iefi unscheduled (t <= nrn), go to Step 2. Otherwise,

stop.

4.3 Analysis and Design of the Scheduling Application with the Object-

oriented Approach

There are a number of proven approaches for analysis that are relevant to object-oriented

systems. These approaches include the classical approaches, behavior analysis, domain

analysis, use-case analysis, CRC cards etc. (Booch 1994). In this thesis, since we are

trying to identify the objects that are involved in the scheduling processes, we will use an

approach that is similar to the behavior analysis and the use-case analysis approaches, as

these approaches are used for identifying roles / objects that are involved in certain

33
business processes. The followings are the descriptions for the behavior and use-case

anaiysis approaches.

Behavior Analysis - "Rubin and Goldberg offer an approach to identiwng

classes and objects firom system functions. As they suggest, 'the approach we use

emphasizes first understanding what takes place in the system. These are the system

behaviors. We next assign these behaviors to parts of the system, and try to understand

who initiates and who participates in these behaviors.. .. Initiators and participants that

play significant roles are recognized as objects, and are assigned the behavioral

responsibilities for these roles' (Rubin et al. 1992)" (Booch 1994).

Use-case Analysis - Use-case analysis was first formalized by Jacobson

(Jacobson et a1.1992). This approach is typically used "to enumerate the scenarios that

are fbndarnental to the system's operation. These scenarios collectively describe the

system functions of the application.. .. As the team walks through each scenario, they

must identify the objects that participate in the scegario, the responsibiiities of each

object, and how those objects collaborate with other objects, in terms of the operations

each invokes upon the other" (Booch 1994).

In this research, we will first walk through each of the steps (scenarios) in the

scheduling algorithm to identify the objects that are involved in the scheduling processes.

Since the scheduling algorithm will be used to allocate operations to resources in the

simuiated manufacturing system, we will interpret the scheduling algorithms in terns of

some of the physical production entities that are present in the manufacturing system. It

should be noted that objects identified in the scheduling algorithm are not limited to the

objects that have a physical correspondence in the manufacturing system. Other objects

might also be identified and in together, all these objects will collaborate with each other

to accomplish the scheduling processes.

"In analysis, we seek to model the world by discovering the classes and objects

that form the vocabulary of the problem domain, and in design, we invent the

34
abstractions and mechanisms that provide the behavior that this model requires"

(Booch 1994).

4.3.1 Scheduling Algorithm Walkthrough

In this section, we will first walkthrough a part of a non-delay schedule generation

example to see how the scheduling algorithm actually works. In the example, the system

has 2 stations; Station I & 2. Station 1 has 2 machines, M1 and M3, and station 2 has 1

machine, M2.6 jobs have to be scheduled and their process plans are listed in Table 4.1

below. The process plans of the jobs are fixed in sequence: Operation 1 then Operation 2.

Tabie 4.2 shows part of a non-delay schedule generation example.

Table 4.1 : Process plan for the jobs (for the operation, x/y means x time units at station
Y)-

Job
J l
52
33
54
J5

The first 4 stages of the scheduling processes are shown in Table 4.2 below.

At stage e l ,

56 2/ 1 4/2

Operation 1
6/ 1
4/1
8/2
5/2
3/ 1

Step 1. The schedulable operations in St are: J1 to be processed in workstation WS 1 for

its first operation, J2 to be processed in workstation WS 1, J3 to be processed in

workstation WS2 for its first operation.. .etc. (i.e. all the 'operation 1 ' entries in

Table 4.1)

Step 2. cr*=O, and since o* occurs in both WS1 and WS2, so we just select one (WS1)

Operation 2
8/2
1 /2
6/ 1
1011
4/2

arbitrarily.

Station next fiee at: Schedulabie

Stage Station 1 Station2 mtion Scheduled Operation

t M1 M3 M2 ok inst ak 4 d Priority oj in P,
1 0* 0 0 J1, WS1 0 6 0 14 J1, WS1

J2, WSl 0 4 5
J3, WS2 0 8 14
J4,WS2 0 5 15
J5,WSl 0 3 7
J6, WSI 0 2 6

2 6 O* 0 52, WSl 0 4 5
53, WS2 0 8 14
J4, WS2 0 5 15
J5,WSl 0 3 0 7 J5, WS1
16, WSl 0 2 6
Jl, WS2 6 14 8

3 6 3' 0 J2,WSl 3 7 5

J3,WS2 5 13 14
J6,WSl 3 5 3 6 J6, WS1
J1, WS2 6 14 8
JS, WS2 5 9 4

I 8

Table 4.2: Part of a non-delay schedule generation example.

Step 3. Here we have 4 jobs, J1, J2, JS and J6 that all satisfy: 1) it requires M* (WSI),

and 2) 9 = o*. The choice is made by applying the heuristic selection or priority

rules such as, SPT (shortest processing time), EDD (earliest due date), MOPNR

(most operations remaining) and MWKR (most work remaining) etc. MWKR is

used in this example and the priority of each job at each stage is listed in Table

36
4-2 (the priority is calculated as a job's total processing time remaining). Which

priority rule to use is dependent on the measure of schedule desirability. For

example, SPT might be a good candidate for minimizing mean flow times, while

EDD would be a reasonable rule to use for minimizing tardiness. If there is still a

tie among some jobs after a priority rule is applied, a job is selected randomly. In

this case, J 1 is selected for WS 1 since it has the highest priority (I 4).

Step 4. (J 1, WS 1) is added to the scheduled operations set Pt, and deleted from St. The

next operation of J 1 is (J 1, WS2) and is added to St+, . t is incremented by 1.

At stage t=2;

Step 2. Since WS 1 has 2 machines, so after a job, J 1, is added to one of its machines,

say MI, it still has one machine, M3 being available at time 0. Therefore, the

earliest time that 52, J5 and 56 could be started is still 0. Again, a*=O and it occurs

in both WS 1 and WS2, we arbitrarily select one (WS 1).

Step 3. J2, J5 and 56 all satisfy: 1) it requires M* (WS I), and 2) oj = o*. By applying the

MWKR priority rule, J5 is selected.

Step 4. (35, WSl) is added to the scheduled operations set Pt, and deleted from St. The

next operation of J5 is (J5, WS2) and is added to St+, . t is incremented by I.

At stage t=3:

Step 2. Now both machines of WS1 are assigned to a job, and the earliest one to be fiee is

M3 at time=3. Jobs waiting to be processed in WS 1 can start their operation no

sooner than time =3. Therefore, the earliest start time for 52 and 56 has to be

changed from 0 to 3, and their corresponding earliest finish time (+k) is changed

to 7 and 5, respectively. So at this stage, o*=O and it occurs in WS2.

Step 3. Both 53 and J4 satisfy the conditions- By applying the priority rule, 54 is selected.

Step 4. (54, WS2) is added to the scheduled operations set P,, and deleted tiom St. The

next operation of 14 is (J4, WS1) and is added to St+, . t is incremented by 1.

At stage t-4- :

Step 2. Here WS2's next available time will be at time+, so 53's earliest start and finish

time have to be changed to 5 and 13, respectively. In this stage, a*=3 and it

occurs in WS 1.

Step 3. Both 52 and 56 satisfy the conditions. By applying the priority rule, J6 is selected.

Step 4. (Jd, WSI) is added to the scheduled operations set P,, and deleted fiom St. The

next operation of J6 is (56, WS2) and is added to SM. t is incremented by 1.

At stage t=5:

The scheduling process continues until stage t=12 (n*m, where n=6 jobs, m=2

machines). The Gifller and Thompson algorithm disclosed in (French 1990) was made

under the following assumptions:

1) Each job has m distinct operations, one on each machine;

2) There is only one of each type of machine;

38
3) Machines never breakdown and are available throughout the scheduling period.

But in our system, we can have multiple machines with same function in a station

(to provide some functional redundancies in case some machine breaks down during the

scheduled period). Therefore, instead of having only one type of each type of machine,

we have only one type of each type of station. So steps 2 and 3 of the algorithm stated in

the problem specification are modified as,

Step 2 Find a* = min , k in s k (G k) and the workstation WS* on which o* occurs. If

there is a choice for WS*, choose arbitrarily.

Step 3 Choose an operation oj in St such that

(I) it requires WS*, and

(2) Cj = a*.

Our next step is to investigate how we can interpret the scheduling algorithm

stated before fiom a production system's perspective. Referring to the example, we see

that at stage t=l, S1 contains (Jl, WSl), (52, WSl), (53, WS2), (54, WS2), (J5, WSl) and

(56, WS 1). In a production system, when the workstation that a job needs for processing

its next operation currently has no machining resource available, the job usually waits in

the queue of the workstation for its turn to be processed. So when viewed fiom a

production system's perspective, what SI really contains are jobs 1,2,S and 6 fiom (the

queue of) workstation 1, and jobs 3 and 4 &om (the queue of) workstation 2.

This means that what we did for step 1 was to send all the jobs to queue in the

station which corresponds for their first operation. Then we found a job with the minimal

earliest start time and select the workstation that holds the job. In the example, since all

jobs have the same earliest start time (0), we selected WS 1 arbitrarily. From WS 1, since

there was more than one job with the same minimal earliest start time, we applied the

MWKR priority rule to select J l and assigned it to one of WS 1's machines, Ml, and

added the operation record of (51, WS1) to Pt. We then moved on to stage t=2.

39
At stage t=2, we see that (J1 , WS2) was in St which means that after the job J1

was assigned to the machine (MI) of WSl at stage t=l, it was sent to the workstation

(WS2) which corresponds to its next operation. We then repeated the same procedures

that we did in stage t=l, and assigned J5 to M3 of WS 1 and added the operation record of

(J5, WS I) to P,. We then moved on to stage t=3.

At stage t=3, we can see that in addition to the fact that (J5, WS2) was already

added to St, the earliest start time of jobs 2 and 6 in workstation WS 1 were also changed.

A workstation's earliest available time is equal to minkl_, (earliest available time of

machine k), m= total number of machines the workstation has. So after a job is assigned

to a machine in a workstation, the workstation's earliest available start time might be

changed. As it was at stage = 2, after the selected WS 1 had assigned a job to its machine

(M3), its earliest available time was changed (fiom 0 to 3), so the queuing jobs (J2,J6) in

WS1 also had to change their earliest possible start time accordingly. Again, similar

procedures (as what we did in the previous stages) were carried out in stage 3 and the

following stages until a complete schedule was generated.

Refening to the above example, we can re-interpret the scheduling algorithm 4.1

fiom a production system's perspective as the Algorithm 4.2 listed below:

Algorithm 4.2:

Step 1. Send the jobs to the stations that correspond to their fim operation.

Step 2. From all the workstations, find a queuing job that has the minimal earliest start

time a*, select the workstation WS* that holds that job. If 2 or more queuing jobs

fiom different workstations have the same a*, choose one workstation arbitrarily.

Step 3. From the selected workstation WS*, find a job whose earliest start time is o*. If

there are more than one jobs that have the earliest start time as a*, use priority

rule to choose one. If there is still a tie after the priority rule is applied, a second

priority rule can be used or the job can be chosen randomly.

Step 4. Assign the job to the first available machine of the workstation WS*. Send the job

to the workstation that corresponds to its next operation. Add the scheduled

operation record to Pt. Update the earliest start time of the workstation WS*'s

remaining queuing jobs accordingly. Increase t by 1.

Step 5. If there are any operations left unscheduled, go to Step 2. Otherwise, stop.

4.3.2 Conceptual Model for the Scheduling Problem

The first step in the analysis process is to develop the conceptual model for the

scheduling problem so that the objects that are involved in the scheduling processes, and

the associations of these objects can be identified.

"The quintessential object-oriented step in analysis or investigation is the

decomposition of the problem into individual concepts or objects-the things we

are aware of A conceptual model is a representation of concepts in a problem

domain" (Larrnan 1997).

"One widely used technique for identifying objects in an object-oriented systems

analysis (Rumbaugh et al. 1991) is to extract the nouns fiom a narrative description of the

desired system behavior" (Parunak et al. 1997). By applying this approach, objects that

we identified fiom the scheduling algorithm 4.2 are:

Job Operation Machine - Partial Schedule Oueue

Scheduled ODeration Unscheduled Operation Station

Referring to Algorithm 4.2, we need to have some staff roles to help accomplish

the scheduling steps and coordinate the activities of the other objects. For instance, in the

scheduling processes, because the resource (station, machine) and job objects do not have

41
the knowledge of the global time, we need to have someone to coordinate the activities of

these objects. Therefore, a new concept, the 'System Mediator' (Maturana & Norrie

1996), is added to the conceptual model of the scheduling problem. Also, since each

machine can only perform one operation type, we will add the concept 'Operation Type'

to the conceptual model to help describe the static model of the scheduling problem. As

resulted, the conceptuaI model will also include the following objects:

Svstem Mediator aerat ion Type

The conceptual model for the scheduling problem is shown in Figure 4.1, and is

represented in the UML (Unified Modeling Language) notation. The Unified Modeling

Language is a notation for modeling systems using object-oriented concepts (Larman

1997). In Figure 4.1, it states that:

- 1 job has 1 or many unscheduled operation(s)

- 1 job has 0 or many scheduled operation(s)

- 1 job consults 1 system mediator

- An unscheduled operation is an operation

- A scheduled operation is an operation

- I scheduled operation is processed by 1 machine

- 1 scheduled operation is processed in 1 station

- 1 partial schedule records 1 or many scheduled operation(s)

- 1 or many scheduled operation(s) belongs to 1 job

- I station is responsible for 0 or many scheduled operation(s)

- 1 station has 1 or many machine(s)

- 1 station has 1 queue

- 1 queue holds 0 or many job(s)

- 1 system mediator provides station info to 1 or many job(s)

- I system mediator coordinates the (scheduling) activities o f 1 or many station(s)

44
As shown in the conceptual model, we identified some of the attributes and

associations of the objects involved in the scheduling processes. Attributes/associations

of the objects are identified mostly fkom examples in the real world. For instance, Figure

4.2 shows a job ticket that can usually be found in the real manufacturing system (Voris

1966). In the job ticket, we can see that the data related to the jobs include the

identification of the job, the release date and due-date of the job, and the operations that

the job contains etc., and data that are related to the operation include the name of the

operation, the start and finish time of the operation, and the worker/machine that

processed the operation etc. These data are shown as attributes or associations of the job

and operation objects in Figure 4.1. Attributes and associations of the other objects are

also identified with similar approach.

Figure 4.2: Job ticket to record progress (Voris 1966).

JOB TICKET
Order No.

Date in Process:
Finish Date

Amount
Operation Date In Date Finish Worker

1
2
3

Work Finished

4.3.3 Interaction Models for the Scheduling Problem

t

Before we proceed to design the interaction models for the scheduling problem, we will

first briefly introduce some of the GRASP patterns that we might apply in assigning

responsibilities to objects. GRASP stands for General Responsibility Assignment

Software Patterns. These patterns describe fundamental principles of assigning

45
responsibilities to objects (Larman 1997). The patterns that are most relevant to our

application are:

I) Expert - "Assign a responsibility to the information expert- the class that has the

information necessary to fulfill the responsibility" (Larman 1997).

2) Creator - "Assign class B the responsibility to create an instance of class A if one of

the following is true: 1) B aggregates A objects, 2) B contains A objects, 3) B records

instances of A objects, 4) B closely uses A objects, 5) B has the initializing data that

will be passed to A when it is created (Larrnan 1997).

3) Low Coupling - "Assign a responsibility so that coupling remains low. Coupling is a

measure of how strongly one class is connected to, has knowledge OF, or relies upon

other classes. A class with low (or weak) coupling is not dependent on too many other

classes" (Larman 1 997).

4) High Cohesion - "Assign a responsibility so that cohesion remains high. Cohesion is

a measure of how strongly related and focused the responsibilities of a class are. A

class with highly related responsibilities, and which does not do a tremendous amount

of work, has high cohesion" (Larman 1997).

To design the interaction models for the scheduling problem, we will go through

each of the steps listed in the scheduling algorithm 4.2 to determine how the objects

involved in the scheduling processes can collaborate to fblfill all the scheduling steps.

Responsibilities will then be assigned to the objects accordingly.

STEP 1

To send a job to the station for its next operation, we first have to know what is the job's

next operation. Refemng to Figure 4.1, a job contains a number of unscheduled

operations, and thus has the knowledge of its own process plan. Therefore, by applying

46
the 'Expert ' pattern, we assign the job the responsibility to send itself to the station that

corresponds to its next operation.

For a job to go to the station, first it has to know which station is responsible for

processing its next operation. One way to do this is to have the job broadcast to all

stations in the system to ask who can process its next operation, and have the

corresponding station responded to the job. Lf a broadcasting facility is not implemented

in the system, another way is to have the system mediator responsible for answering the

job's question. This can be accomplished by having the station objects registered with the

system mediator when the scheduling system starts. The system mediator will then have

the knowledge of what stations are contained in the system, and what h c t i o n each

station can perform.

AAer the job knows which station can process its next operation, it has to find out

the earliest possible start time for the operation. A job's next operation's earliest possible

start time is dependent on 2 factors, 1) the end time of the job's previous operation, and

2) the earliest available time of the station that is responsible for its next operation. So a

job has to ask the corresponding station what its earliest availabie time will be, then it

must check the end time of its previous operation (if it's the job's first operation, the job

might check its release time), then decide when the earliest possible start time of its next

operation will be.

When a job enters a workstation, the station might insert the job into its queue in

accordance to some ranking rules. Referring to steps 2 and 3 in Algorithm 4.2, a station

will choose a job with the minimal earliest possible start time or with the highest priority

to be processed first. So the station will rank the arriving jobs by their earliest possible

start time. And if there is a tie, the jobs will be ranked by their priority, and if there is still

a tie, the jobs will be ranked by first-come-first-serve rule. Therefore, when a job arrives

at a workstation, the station needs to know about the job's earliest possible start time and

priority to insert the job into its queue.

Figure 4.3 below shows the interaction model for sending a job to the station for

its next operation. As is shown in the figure, in Step I, the jobs will be asked to move to

the stations for their first operation. Upon receiving the NextProcessO message, the job

will,

1) Find out its next operation (op) fkom its collection of unscheduled operations.

2) Ask the system mediator which station (st) is responsible for its operation.

3) Ask the station about its earliest available time @Time).

4) Find out the priority (prior) for its operation.

5) Find out the earliest possible start time for its operation.

6) Add itself to the station.

6.1) The station inserts the job to its queue.

7) Mark the unscheduled operation (op) as scheduled.

8) Record (create) the scheduled operation.

9) Add the scheduled operation (opl) to its collection of scheduled operation.

5: sTime := earIiestStartTirne()
4: prior := computePrionty()

I

0 ~ 1 : Sched Operation %
*I I I 8 : create(aJob, sTime, op)

L I I

7: isScheduled() -)

OD : Unsched ODeration

next60cess0 I doh : Job st : Station 7 6: addJob(dob, sTime, st, prior) +
3: aTime := getEarliestFreeTime0 -b

I : System Mediator I

6.1 : insertJob(aJob,
sTime. st, op)

: Queue h

Figure 4.3: The collaboration diagram for sending a job to the station for its next

operation.

STEP 2

To find the job with the minimal earliest possible start time, the system mediator can ask

each of the jobs about their earliest start time, then choose the one that has the minimal

earliest possible start time. The system mediator can then ask the selected job which

station is responsible for its operation. Upon receiving the answer, the system mediator

can then instruct the selected station to carry out the tasks for steps 3 and 4 in Algorithm

4.2 (to be explained later).

49
The other way to find out the o* and WS* is to have the system mediator ask

each station about the earliest start time for its next job. We should note that in step 1,

when a job arrives at a station, the station ranks the job by its earliest possible start time

and priority. Therefore, the first job in the station's queue will have the minimal earliest

start time among all the jobs in the queue. So upon receiving the system mediator's

request, the station will answer the system mediator with the earliest possible start time

that belongs to its first job in queue. After collecting the answers fiom all stations, the

system mediator can then select the station that has the minimal earliest possible start

time and instruct the station to carry out the tasks for steps 3 and 4.

The second method will be used in this thesis because the production system

usually will have much smaller number of stations than jobs. As a result, it would be

faster for the system mediator to find the job with minimal earliest possible start time by

consulting all the stations than by consulting all the jobs. Moreover, the first method will

couple the system mediator to the knowledge of the jobs in the system. And by the 'Low

Coupling' pattern, the second method is chosen. Figure 4.4 and 4.5 show the

collaboration diagrams for method 1 and 2, respectively. In Figure 4.5, it shows that:

1) The system mediator needs to find out which station has the job that has the minimal

earliest possible start time.

1.1) The system mediator consults each station about the earliest possible start time for

their first job in queue (1.1.1).

2) The system mediator informs the selected workstation to start the tasks for steps 3 md

4 in Algorithm 4.2 (to be explained next).

1 : th Job := selectlob()

Figure 4.4: The collaboration diagram for method 1.

+I (I . 1 * : [for each] : aTime := gelEarlieRSt~Time() 1

Figure 4.5: The collaboration diagram for method 2.

b

+ I I , 1 .1 ' : [Toreach]: a?frne :=getEarliestStartTime() [-

STEP 3

: Job - : System Mediator .-'
2

- : System Mediator

3 : startJob0

4

;

I

r

: Station

2 : ws := findstation()

4

1.1.1 : aTirne := getEsliestStartTime()
2 : startJobO

4

r

theJob : Job

-

ws : Station

ws : Station r Queue

As described in the previously steps, when a job enters a workstation, the workstation

will insert the job in its queue in according to their earliest possible start time and

priority. Therefore, to find a job in its queue with the minimal earliest possible start time

(or highest priority), the station just picks the first job in its queue.

STEP 4

The station finds the first available machine and then assigns the selected job to that

machine. After that, the station will inform the partial schedule about the scheduled

operation. Also, the station will record the scheduled operation that it will process. The

station will then update its earliest available time and have the remaining jobs in its queue

update their earliest possible start time accordingly. Finally, the station will notifjr the

selected job to proceed to its next operation, and instruct the queue to re-rank the

remaining queuing jobs. The reason for re-ranking the remaining queuing jobs is that, as

in the example described in $4.3.1, in stage 3, we can see that in workstation 2,J3 and

J4's earliest possible start time = 0, and JS7s earliest possible start time = 3, so J5 will

queue behind 53 and J4. But afier 54 is selected and assigned to machine M2, WS2's

earliest available time changed from 0 to 5, so 53 and J5 will all update their earliest

possible start time accordingly (change the time from 0 to 5). In the example, because 53

has higher priority than J5, so J5 is still queued behind 53. But if 53's priority were lower

than J5, then after updating their earliest possible start time, J5 would have queued in

front of J3, instead of queuing behind it. Figure 4.6 below shows the collaboration

diagram for steps 3 and 4 in Algorithm 4.2.

OD : Sched Owration

dob : Job

t
5 : add(o p)

7 : addRecord(this, op) I

I : Partial Schedule I

- - c - - - .

Figure 4.6: Collaboration diagram for steps 3 and 4 in Algorithm 4.2.

Figure 4.6 shows that, upon receiving the message Startlob0 f50m the system

mediator,

I

-b
4 : recordMach(aMach)

: Oueue S tartJob()
-b

1) The station selects a job (dob) from its queue.

I

2) The station gets the operation (op) information from the job.

I

: Station 9 : updateEarliestS tartTime(st)
,.

1 : d o b := getlob() N

: Machine - - : lob

3 : aMach := findFreeMach0
I- +

9.1 -: [for each] : updateStartTime(st)

10 : updateRanking0 -------)
1

53
3) The station finds out which of the machines @Mach) that it contains is available.

4) The scheduled operation (op) records the machine that will process the operation.

5) The station records the scheduled operation (op) that it will process.

6) The station instructs the selected job (dob) to proceed to its next operation.

7) The station notifies the partial schedule about the scheduled operation. The partial

schedule will store the related information about the scheduled operation (e.g., the

operation's startlend time, the machine/station that will process the operation, etc.) in

a permanent record (e.g., a relational database, a file record, etc.). This record will

then be used to generate the productioil schedule.

8) The station updates its earliest available time (st).

9) The station asks the queue to have its queuing jobs updated their earliest possible start

time (9.1)-

10) The station asks the queue to re-rank its remaining queuing jobs after they have

updated their earliest possible start time.

STEP 5

The system mediator increments the stage t by one. Steps 2-4 are repeated until no

schedulable operations are left.

55
With the completion of the interaction diagrams for the scheduling problem, we

can then proceed to create the design class diagrams to "identify the specification for the

software classes which participate in the software solution" (Larman 1997). The class

diagram for the scheduling application is shown in Figure 4.7. The class diagram not only

shows the attributes and methods of the classes, it also shows the associations,

navigability and dependency relationships between the classes.

"Each end of an association is called a role, and in the design-oriented diagrams

the role may be decorated with a navigability arrow.. .. The usual interpretation of

an association with a navigability arrow is attribute visibility &om the source to

target class.. .. The UML includes a general dependency relationship which

indicates that one element has knowledge of another element. It is illustrated with

a dashed arrowed line. In class diagrams the dependency relationship is useful to

depict non-attribute visibility between classes: in other words, parameter, global,

or locally declared visibility" (Larrnan 1997).

For example, refemng to Figure 4.7, for the scheduled operation role, it needs to

have the knowledge of when the operation is scheduled to start, the process time of the

operation etc. In addition to that, the scheduled operation needs to know which job it

belongs to, which station it will be processed in, and by which machine. Therefore, the

scheduled operation role has the attribute visibility to the job, station and machine roles.

And for the job role, for instance, a job needs to have the attribute visibility to the system

mediator, since jobs have to ask the system mediator about the stations that can process

their operations. But the system mediator does not need to have attribute visibility to the

jobs. When a job sends a message to the system mediator, it will tell the system mediator

who it is (as parameter). The system mediator will then return the answer to that job.

Therefore, the system mediator only needs to have the parameter visibility (dependency

relationship, represented as dashed arrowed line) to the job role. The classes in the class

diagram, their attributes, methods, and associations etc. are mainly identified from the

conceptual model and interaction diagrams that we have developed in the previous

56
sections. After we have built the software solution for the scheduling problem, we will

discuss the design of the distributed scheduling and control agents in next section.

4.4 Identifying Control Agents for the Distributed Control System

As mentioned before, the objectives in this research are mainly concerned with the

control problems related to the distributed (multi-agent) control systems. To bui Id the

distributed control system, instead of determining the control agents first and then

structuring the scheduling algorithm around these agents, we use the object-oriented

methodology to explore the possible agent candidates from the scheduling algorithm. In

44.3, we used the object-oriented analysis and design approach to identify the objects that

participate in the scheduling processes (scheduling algorithm 4.2), and the associations

between these objects. We then assigned responsibilities to these objects so that they can

collaborate to fulfill all the required scheduling procedures.

Some researchers have used a similar approach to explore the possible agent

candidates while developing the agent architecture for shop floor scheduling and control.

For instance, in (Parunak et al. 1998b), it was described that:

"Previous research on agent-based factory control and scheduling (including our

own) differs widely on what is represented as an agent.. . . In selecting our agents,

we want to begin with the broadest possible of candidates.. .. As described in

(Parunak 1995), we identify candidate agents by constructing a set of declarative

sentences describing the domain. The nouns in such a sentence are candidate

agent instances, and their cases represent agent classes".

Also, in (Wooldridge & Jennings 1999), it was mentioned that:

"We expect an agent-oriented view of software to complement - not replace - the

object-oriented view. Developers will typically implement agents using object-

57
oriented techniques, and there will usually be fewer agents in the system than

objects".

In our model, some of the roles (objects) are potential agent candidates, while

others are only (software) objects for software design purposes. For instance, referring to

Figure 4-7, we can see that there are some roles such as station, machine, and job that

have a physical correspondence in the real manufacturing system. These physical entities

usually have a control agent associated with them (in a distributed control system). In

Figure 4.7, the station, machine and job roles only have the scheduling responsibilities.

However, control responsibilities (to be discussed in next chapter) can also be added to

these roles so that they can become the control agents that are responsible for the

scheduling and control behaviors of their physical correspondences in the real world.

Other objects might not have a physical correspondence in the real world, but they still

can be agent candidates because they can provide some distinct services (behaviors) or

play an active role in the scheduling process. For instance, the system mediator not only

provides station information to the jobs, it is also responsible for initiating some

scheduling steps during the scheduling processes. Therefore, the system mediator can act

as a staff agent.

For objects such as 'scheduled operation', 'unscheduled operation', 'partial

schedule', these objects in our model are only used for capturing certain data and

providing the accessing methods (Get(), Set()) to the data they stored. Therefore, they

will be served as software objects only. For instance, 'scheduled operation' stores the

information regarding an operation's process time, start time, the job it belongs to, and

the station/machine that will process the operation. After the schedule is generated, the

job control agent will contain a collection of the 'scheduled operation' objects so that for

each operation, the job agent can determine which station to visit at what time to have its

operation processed. The station control agent will also contain a collection of

'scheduled operation' objects as its task list, so that it will know that it will know when

and where to load each job to start processing the operation. Since both the job and

station agent need to have scheduled operation knowledge, making the 'scheduled

operation' an object is for software reusability purpose and can save some coding. It

58
should be noted that whether certain roles (objects) are agent candidates or not,

sometimes it is dependent on the control algorithms that are adopted. For instance, in

(Parunak et al 1997, 1998b), in their AARIA agent architecture, the operation is modeled

as the 'Unit Process' agent, and is assigned with the responsibilities so that it can initiate

activities and is responsible for marshaling the inputs and resources needed to execute an

operation.

In distributed (multi-agent) control systems, part and resource control roles are

usually used to control the production activities of their physical counterparts in the

production plant. Since most of these roles are also identified in our scheduling

algorithm, we will then impIement these roles as the control agents that are responsible

for the scheduling and control for their physical correspondence in the production system.

Therefore, in our distributed control system, we will have control agents such as

workstation agents, job agents and machine agents. Also, we will have the stafiagent, the

system mediator, to help accomplish the scheduling tasks. In the next section, we will

implement these control agents in an experimental testbed to carry out the scheduling and

control responsibilities for a simulated shop floor production system. The experimental

testbed will be used to test/evaluate the system performances under different control

strategies.

4.5 The Experimental Testbed

Figure 4.8 shows the experimental model that will be used for testing and evaluating

different control methodologies. In our experimental model, a simuIated production

system was set up in Arena (a discrete-event simulation software). The resource, order

and production databases were created in the format of MS-Access ODBC database. The

Microsoft Visual C++ block served as a control module.

In the experimental model, we have entities like workstations, machines and jobs

set up in Arena to represent the production entities in the real production system. The

workstation, machine and job entities in the production system (Arena model) are

I

i MS-Access ODBC Database

Figure 4.8: The control structure for the experimental model.

I

1 !
I Resource DB Order 06 Production DB 1

I

System Mediator

I

I

.-_-.-.-.-.-.-.-----.-
I

I

t

I

I I

!
I

I
t

I
I

1 I

t

I

!
I

I
I

I 1

I I

I I

Arena
I

I

I I

L.-.-.,.,.-.-.-.,.-.-.-*-.-.-.-.-*-----.-.-.---.-.-.-.-.-.-.---.-.-----.-.-.-.-.-.-.-.-*-.-.-.-.-.---.l

.. ---.-.-.-.-.-.-.-.-.---.-.-.---.-.-.-.-.---.-.-.-.-.-.---.-.-.-.-.-.-.---.-.--.

I

I

I

I

I

I

60
controlled by the corresponding control agents residing in the Visual Ctf- control

module. When the production system starts, a system mediator will be created in the Ctc-

module. The system mediator will then access the resource, order and production

databases to create and initialize the workstation and job control agents. (The advantages

of having the system mediator access different databases to retrieve the necessary

information are that: 1) this practice can more likely reflect the situation in a real

manufacturing system, wherein the order and production information might be created by

different departments and stored in different databases, and 2) we don't need to modify

the experimental model's software program when we make changes to the manufacturing

system's physical configuration, the orders or the production plans of the jobs.) These

agents will then be responsible for the control of their counterpart entity in the Arena

model.

From hereon, entity X in the C* module will be referred as X agent, and its

counterpart in the Arena model will be referred as X. After all the agents in the C++

module are created and initialized, the three essential elements of the shop floor control

will be implemented as follows:

I) Scheduling

To do the scheduling, the system mediator, workstation agents and job agents will

interact with each other, in the same way as the system mediator, workstation and job

objects that were defined in $4.3 interacted, to generate a production schedule for all the

jobs. Refening to the example described in $4.3.1, after the scheduling process is done,

workstations WSI and WS2 will have a scheduled task list as shown in Figure 4.9 and

each job will have a scheduled operation record (processing plan) as shown in the Table

4.3.

J l
Start Time

1 Machine I M1 I M2 I

Finish Time
Station

Table 4.3: The scheduled operation record (processing plan) for job J1.

Operation 1
0

Workstation WS 1 :

Operation 2
13

6
WSl

Workstation W S2:

21
WS2

Figure 4.9: The scheduled task lists for workstations WS1 and WS2.

2) Dispatching

To do the dispatching, each workstation agent will follow the scheduled task list and

instruct its counterpart workstation in the Arena model to perform the operations

accordingly. For example, referring to Figure 4.9, WS I agent will instruct workstation

WS1 to have machines Ml and M3 start operating jobs J1 and J5, respectively, at time 0.

So at time=& WSl will look for jobs J1 and J5 in its queue and load them to machines

M1 and M3, respectively. And for the job agents, each agent will follow their scheduled

operation record and instruct their counterpart in Arena model to go to the scheduled

workstation for its next operation. For example, referring to Table 4.3, J1 agent will have

job J1 in the Arena model to go (and wait) to workstation WSl for its first operation.

After the operation is done, J1 agent will then instruct job J1 to go to workstation WS2.

3) Monitor

When a machine starts or finishes an operation, it will inform its workstation, and the

workstation will inform its counterpart control agent about the stadend time of the

operation. The informed workstation agent will in turn pass that information to the job

agent of the job being processed. For example, referring to Figure 4.9, when machine M1

starts processing job J1 at time 0, WS 1 agent will be informed about the start time of the

operation, and WSL agent will record the data and pass that information to job J 1 agent,

who will also record the data These procedures are needed so that the workstation and

job agents will have the knowledge of the actual work progress of their counterparts in

the production system. And when disturbances happen, these progress records will be

used for rescheduling purpose. Also, this kind of data can be used to aid in securing labor

costs for the job, and for tracing the source of some quality problems (Voris 1 966). A

workstation will also monitor the state of its machines (to see if there's any breakdown or

restoration from failure). When disturbance happens, the workstation agent will then take

an appropriate action to handle the situation, based on what control scheme is

implemented in the system. When a workstation agent receives the message from its

counterpart workstation, it will pass the data to its corresponding machine agents. Each

workstation agent controls its contained machine agents. The main responsibilities of

these machine agents are to record the stadfinish time of each operation, and the status

of its counterpart machine in the production system.

CHAPTER 5

CONTROL ALGORITHMS IN DISTRIBUmD SCHEDULING AND

CONTROL SYSTEMS

Previous research on distributed scheduling and control has implemented scheduling

algorithms using various approaches. Some researchers have implemented the distributed

scheduling algorithms for real-time distributed scheduling (Duffie et aI. 1986), wherein

there are no pre-production schedules generated, and the distributed scheduling

algorithms are used for making production decisions in real-time (dispatching). Other

researchers have used the distributed scheduling algorithms to generate schedules in

advance (Sousa et al. 1997), or used the algorithms and simulations to generate look-

ahead schedules (Duffie et al. 1994).

Control systems that implement the real-time distributed scheduling approach and

also control systems that generate advance schedules have different planning horizons

(and also different degrees of control agents' commitments to the fbture plans). In control

systems that generate advance schedules, control agents are committed to a common

fbture plan that spans a certain planning period. As a result, "a schedule adds a level of

rigidity to a manufacturing system" (Baker 1997) and limits the control system's

flexibility and adaptability against disturbances. In control systems that implement real-

time distributed scheduling (dispatching), production decisions are made in real-time and

the control agents make no commitments to any hture pian. As a result, these control

systems are more flexible and adaptable to disturbances milts et al. 1991, Bongaerts et

al. 1998).

In this chapter, we will first use some experimental examples to demonstrate how

control agents' commitments to different planning horizons can affect the control

64
system's flexibility and adaptability against disturbances. Then experiments will be

conducted to investigate and test the performance of a distributed scheduling and control

system under various control strategies in a stochastic manufacturing environment.

Results of the experiments will be discussed, and a conclusion will be presented in the

last section of this chapter.

5.1 Control System Flexibility against Disturbances for Different

Planning Horizons

In this section, we will develop three different models to test the flexibility against

disturbances of the control systems that perform scheduling with different planning

horizons. Table 5.1 shows the process plans of the jobs to be produced in the

experimental models, and the disturbance will be modeled by having job J1 delayed in

arriving in the production system by 16 minutes. Figure 5.1 shows the production

schedule for the production system without any disturbance. The schedule was generated

by using the non-delay scheduling algorithm (Algorithm 4.2) described in Chapter 4 with

the Most- Working-Remaining (M WKR) priority rule. The experimental testbed

described in 94.5 will be used for the tests.

Table 5. t : Process plan for the jobs (for the operation, x/y means x time units at station
Y)-

Operation 2
1

8/2
1 /2
6/ 1
1 O/ 1
4/2
4/2

Job
J1
52
J3
54
J5
56

Operation 1
6/1
411
8/2
5/2
31 1
2/1

9

Figure 5.1 : Gantt chart for the production system without any disturbance.

MODEL f - Advanced Scheduling

In this model, the control agents will first co-operate to generate a pre-production

schedule. Then the control agents will execute the schedule in a strict order. That is,

workstation agents will process the jobs in the exact order as described in their scheduled

task list, and job agents will visit the workstations in the exact order as described in their

scheduled operation list. Figure 5.2 shows the Gantt Chart that describes the actual

production times for the jobs in this model. As shown in the figure, we can see that when

job J1 is late in arrival by 16 minutes, workstation WSI will have machine M1 wait for

the job and start the operation at time = 16. The delay of job J l 's arrival also affects its

next operation's start time in workstation WS2. As a result of job J l 's arrival, all jobs in

workstations WSl and WS2 that are scheduled behind job J1 are affected.

8 9
Figure 5.2: Gantt chart for model 1.

MODEL 2 - Scheduling One-stm Ahead

In this model, instead of scheduling all the operations of the jobs at one time, a job's

operation will be scheduled one step ahead. That is, the planning horizon for the jobs'

operations is reduced. When a machine starts the operation of a job, the job agent will

contact the workstation agent that corresponds to its next operation to reserve a resource.

For example, referring to Figure 5.1, when machine M 1 starts processing job J 1 at time =

0, the job agent will contact workstation WS2 agent to add it to its queue (Jl agent tells

WS2 agent that it will arrive at time = 6). Based on the arrival time that job J1 agent told

it, WS2 agent will insert job Il to its queue accordingly. And when the scheduled

processing time is reached and the scheduled job hasn't arrived yet, the corresponding

workstation will wait for the job.

Figure 5.3 shows the Gantt Chart that describes the actual production times for the

jobs in this model. As shown in the figure, we can see that even though job J1 is late in

arrival for 16 minutes, before time = 16, job J 1 didn't make any reservation for the

resource in workstation WS2. This keeps workstation WS2 agent fiom committing any

resource (machine M2's time slot 1 3-2 1 (refening to figure 5.1)) to job J 1. As resulted,

we can see that with shorter planning horizon, the control system's flexibility against

disturbance can be enhanced, and the impact of the disturbance on the system

performance is minimized.

Figure 5.3: Gantt chart for model 2.

MODEL 3 - Real-time Distributed Scheduling

In this model, the production decisions are made in real-time, and the control agents do

not commit to any pre-production plan /schedule. When a job arrives, the workstation

agent will rank the job by some adopted priority rules, Whenever there is a machine

available and there is a job in queue, the workstation agent will retrieve the fmt job in

queue and allocate it to be processed in the first available machine. Figure 5.4 shows the

Gantt Chart that describes the actual production times for the jobs in this model. As

shown in the figure, we can see that the disturbance caused by job J l 's late arrival is

transparent to both workstations WS 1 and WS2. In model 2, although workstation WS2

is not affected by job J l 's late arrival, workstation WS 1 is. This is because when the

production system started, job J1 agent assumed that J1 wouId be available at time = 0,

and thus contacted workstation WS 1 agent to reserve a machine for its operation.

Referring to Figure 5.3, WS 1 agent then allocated one of its machines, M3 to job J 1. This

caused it to hold machine M3 fkom processing other jobs until it had processed job J 1. As

a result, we can see that in control systems that implement the real-time distributed

scheduling approach, the control agents make no commitment to any fbture plan, and

thus can enhance the control systems' adaptability against disturbances, in comparison to

control systems that generate pre-production schedules.

Figure 5.4: Gantt chart for model 3.

68
Referring to model 1 (Figure 5.2), we can see that in control systems that

implement the distributed scheduling approach to generate the pre-production plans, the

schedule stili imposes a level of rigidity to the control system (Baker 1997). Therefore, in

order to enhance the control system's flexibility against disturbances, it is important that

the control agents have some local reactive mechanisms to respond to disturbances in

real-time. Current research in distributed scheduling and control is mainly focused on

scheduling issues, and few researchers have addressed these control issues. In the

following sections, we will develop some experimental models to test and evaluate the

performance of a distributed scheduling and control system under various control

strategies in a stochastic manufacturing environment.

5.2 The Performance of the Distributed Scheduling and Control System

under Various Control Strategies

In this section, we will first introduce the characteristics of the production systems that

will be used in our experimental models. Then various experiments will be conducted to

test the performance of the distributed scheduling and control system's performance

under various control strategies in the stochastic manufacturing environment, and the

results of these experiments will be discussed.

5.2.1 Production Model

The production system used in our experiments will be similar to the generic machining

system proposed in (Cavalieri et al. 1999) for the benchmark job shop scheduling

problem. The characteristics of the production system are summarized as follow:

69
- The production model

- The layout of the production system is shown in Figure 5.5. Each type of machine

can execute a single type of operation. 2 machines per type are present.

- Transportation times, set-up times are ignored.

- Process plan

- Products have a fixed process plan and are constituted by 4 non-preemptable

operations, one for each type of machine.

- The third machine to be visited by the products is a bottleneck resource.

- The manufacturing scenarios

- Stochastic variability on the machining times.

- Measure of performance

- The minimization of mean flow times.

1 Workstation 2 1

I Workstation 3 1
Figure 5.5: The layout of the manufacturing system.

5.2.2 Experiments and Results

In this section, we will investigate how the control agents' reactions to the uncertain

machining time disturbance will affect the overall system performance. We choose

minimizing mean flow time as the measure of system performance since in (French

1990), it has been proved that minimizing the mean flow time of jobs also minimizes

their mean completion time, mean waiting time and mean lateness. Also, this is the

performance measure that is proposed in (Cavalieri et al. 1999). The stochastic

manufacturing scenario in the experiments is modeled by having some machines always

delayed in finishing the jobs with a delay time generated by the triangular distribution

function. We will use the experimental testbed described in 84.5 to cany out the

experiments.

5.2.2.1 Control Strategies

In the experiments, the control agents (referring to Figure 4.8) will first cooperate to

generate a pre-production schedule. After the production schedule is generated, the

workstation agents will process the jobs in accordance with their scheduled task list. But

when a machine delays in finishing a job, this will affect some of the workstation agents'

production plan. For example, refemng to Figure 5.6, if machine M2 delays in finishing

job J3 at time = 13, workstation WS 1 cannot have machine M2 start processing job 12,

and workstation WS2 cannot have machine M3 start processing job 53 at time = 13 as

scheduled.

Figure 5.6: An example Gantt chart.

71
When this disturbance happens, workstations WSI and WS2 agents can react in

one of the following 3 ways:

1) WS2 agent will do nothing and wait for 53 to arrive, then load J3 to machine M3 as

scheduled. WS 1 agent will do nothing and wait for 53 to be finished, then have

machine M2 processing job J2 after J3 is done, as scheduled.

2) WS 1 or WS2 agent can contact the system mediator to request a rescheduling

immediately.

3) The workstation agents will decide whether to wait or call for rescheduling

immediately based on some criteria (to be explained later).

Before we get to option 3, we need to address the rescheduling problem first. To

do the scheduling/rescheduling, we need to know when a machine will be free and when

a job's operation will be finished, so that we can schedule a next job to a machine and

schedule the job's next operation, respectively. But in the case of uncertain machine

delay times, we do not know when the machine will finish the job. To overcome this

problem, we will let the delayed machine's corresponding control agent estimate the time

that it will finish its current job while doing rescheduling. But if a machine is prone to

delay in finishing jobs and the delay time is uncertain and varies fiom job to job, then we

need the machine's control agent to make a good guess about its delay time while doing

rescheduling. This is because under or over estimation about the delay time can cause

some extra rescheduling or machine idle times, respectively. Therefore in our

experiments, during the production processes, each machine agent will learn fiom its

delay records and calculate the mean delay time and use it for estimating the current job's

finish time while doing rescheduling.

Regarding option 3 and refenkg to Figure 5.7, lets assume that machine M1

delays in finishing job J3 at time = 13. In our experimental models, after the scheduling

process is complete, each workstation agent will compute the latest possible start time

LPST for all of its jobs. The computation steps for the LPST are as follows (referring to

72
WS 1 and jobs J2 and J3, whose first operation OP1 is done in WS 1, and second operation

OP2 is done in WS2):

Figure 5.7: An example Gantt chart.

1) WS1 agent will consult each of its jobs' control agents about the latest start time LST

for its operation. The latest start time LST of a job's current operation is equal to:

LST = start time of next operation - processing time of current operation. For

example, 33's OPl 's processing time is 8 minutes, and the start time for its next

operation 0P2 is at time = 13. So its latest start time LST for OP 1 is (13-8) at time =

5. And for 52, its OPl's processing time is 3 minutes, and the start time for its next

operation 0P2 is at time = 22, so its latest start time LST for OPl is (22-3) at time =

19. This means that WS I can postpone the processing of J2 until time = 19 and still

will not interrupt the start time of J2's next operation. (If a job's current operation is

its last operation, then its LST is equal to: due-date - processing time of current

operation. For example, for J3 in WS2, say J3's due-date is at time = 30, then its LST

for 0P2 is equal to (30- 6 = 24.)

2) WSl agent will then figure out the times that it can delay processing a job without

affecting its next job's operation. We will call this delay time as LST'. The LST' for a

job is equal to: LST' = next job's LST - current job's current processing time. For

example, the LST' for J3 in WS 1 is equal to the LST of job J2 (19) - the processing

73
time (8) of J3's operation OP 1. Therefore, the LST' for J3 is equal to (19-8)= 1 1. And

since 52 is the last job in machine MI, it doesn't have a LST' (LST' = a).

3) The latest possible start time LPST for a job is equal to: LPST = MINCST, LST').

For job J3, its LPST in WS I is equal to MIN(5, 1 1) = 5. And the LPST for 52 is equal

to MIN(19, oo) = 19.

The latest possible start time LPST of a job represents the latest time that a

workstation can delay processing a job and without causing an impact on the remaining

operations of the job and the jobs that are scheduled behind that job.

For workstation WS2, at time = 13, when job J3 is late in arrival, WS2 agent will

contact 53 agent to see when it will anive. 53 agent will in turn contact WSI agent to see

when its machine M 1 will finish 53's operation OP 1. WS 1 agent will ask its

corresponding machine agent M 1 to estimate its delay time DT and the job's finish time

FT. Machine agent MI estimates its delay time DT by calculating the mean fiom its past

delay time records, and job 53's finish time is generated by adding job 53's start time +
J3's processing time + estimated delay time @T) =job J3's estimated finish time (FT)-

After receiving the response from M 1 agent, WS 1 agent will then forward the answer

(FT) to job 53 agent. 53 agent will in turn pass that answer to WS2 agent. Upon receiving

the answer, WS2 agent will then see if the FT is less than or equal to 53's LPST. If it is,

then WS2 agent will decide to wait for 53. And if it's not, then WS2 will contact the

system mediator to call for the rescheduling immediately. If WS2 agent decides to wait

and 53's latest possible start time LPST is reached and 53 still hasn't arrived (MI agent

underestimated its delay time), WS2 agent will contact the system mediator to call for

rescheduling. The collaboration diagram of the afore-mentioned processes is shown in

Figure 5.8 below.

aSvsMed:Svstem Mediator
ml :Machine

Figure 5.8: The collaboration diagram regarding WS2 agent's decision to call for
rescheduling.

For workstation WS1, at time = 13, WS 1 agent finds out that it cannot load job 52

to machine M1 because M1 is not done with job 53 yet. WSi agent will then take the

following actions:

1) See if there's another machine available at that time. For example, if machine M2 has

no job scheduled to it after time = 1 3, then WSI agent will load job J2 to machine M2

instead.

2) If as shown in Figure 5.7, that machine M2 has a job (J7) scheduled to it after time =

13, then WS 1 agent will determine job J7's LPST. If the current time + J2's OP 1 's

processing time is less than or equal to job J7's LPST, then WS 1 agent will decide to

load job J2 to machine M 2 instead.

3) If the above 2 options are not feasible, then WSl agent will have its corresponding

machine agent M1 estimate its delay time DT and job J3's finish time FT. WSI agent

will then see if FT is less than or equal to job J2's LPST. If it is, WSl agent will

decide to wait for job J3's completion and load job J2 to machine M1 as scheduled. If

it is not, then WS 1 agent will call for rescheduling immediately. When J2's latest

75
possible start time LPST is reached and if machine M1 still hasn't finished job J3 yet

(MI agent has under estimated the its delay time), WS I agent will then call for the

rescheduling. The collaboration diagram of the afore-mentioned processes is shown

in Figure 5.9 below.

Figure 5.9: The collaboration diagram regarding WS 1 agent's decision to call for
rescheduling.

2: [not change] ft:=GetFinishTirne(j3)

Before we proceed to the next section, we will summarize the control strategies

that will be used in the experiments as follows:

ws 1 :Station +

NO - WAIT - represents the control system wherein the affected workstation agents will

call for a rescheduling immediately whenever a machine delay disturbance happens.

rnl :Machine

WAIT - represents the control system wherein the affected workstation agents will just

wait for the disturbance to pass and never call for rescheduling whenever a machine delay

disturbance happens.

+
I

3: [not change] st:=GetLPST(jZ)

4 4: [tt>st] Reschedule()

aSysMed:System Mediator

WAIT - INTEL - represents the control system wherein when a machine delay

disturbance happens, the affected workstation agents will decide whether to wait or call

for a rescheduling immediately, based on the criteria described in option 3 above (i.e.,

based on the collaborations described in Figures 5.8 and 5.9).

DIST - represents the control system wherein production decisions are made in real time.

The scheduling algorithm is implemented for the real-time distributed scheduling

purpose.

Although the above four control approaches use the same scheduling algorithm,

unlike the WAIT, NO-WAIT and WAIT-INTEL control approaches, the DIST approach

has no pre-production schedule generated. With the DIST approach, jobs are sent to the

corresponding station queue for their first operation, then the scheduling algorithm is

used to determine the processing order in real time.

5.2.2.2 Experiments

In this section, experiments will be conducted to test the performance of the afore-

mentioned control strategies in various stochastic manufacturing scenarios. The

stochastic manufacturing scenarios are modeled by providing machines in workstation

WS 1 with uncertain machining times. We will test and evaluate the performance of the

alternate control methodologies in the manufacturing models with varying levels of

uncertainty. The uncertainty level of the manufacturing model is constituted by 2 factors:

I) the disturbance frequency (i.e. the number of times that the machines in workstation

WS 1 will delay in finishing the jobs in production), and 2) the processing variability (i.e.

the variation of the delay-time). 40 jobs of 3 job types will be produced in the

manufacturing models. The process plan and the number of jobs for each job type are

shown in Table 5.2 below.

Table 5.2: Process plans and the number of jobs for the experimental models.

Operation (process time (min) I operation type)

5.2,2.2.1 Experiment 5A: Pedorrnance of Different Control Strategies in

Manufacturing Systems with Various Disturbance Frequencies

In this experiment, the machines MI and M2 in workstation WS 1 might delay in

finishing the jobs with the delay time generated by a triangular distribution function

TRtA (1,3,8). That is, the machine delay time varies from I minute to 8 minutes, with a

mean delay time of 3 minutes. To model the various disturbance-eequency scenarios, the

following test scenarios will be used:

Job ID
JO 1
302
J03

1) The machines will always finish the jobs on time. That is, there is a 0% chance that

the machines will delay in finishing the jobs.

3
1313
15/1
13/3

2) During the production of the 40 jobs, there is a 60% chance that the machines will

delay in finishing some of the jobs.

1
611
3/4
5/2

3) The machines will always (1 00%) delay in finishing the jobs.

2
812
6/2
6/1

4
5/4
413
4/4

The discrete probability function is used to generate the various disturbance

frequencies for machines M1 and M2 in the Arena model (the simulated production

system). The results of the tests are shown in Table 5.3 below. The results show the mean

flow time (minute) of each control approach in different test scenarios. For the results of

the WAIT-INTEL and NO-WAJT control methodologies, the number inside the

of Jobs
12
14
14

78
parenthesis shows the 'total number o f rescheduling' instances. Figure 5.1 0 shows the

graphical interpretation of these results.

Table 5.3: The mean flow time (minutes) of various control approaches in different
'disturbance frequency' test scenarios.

Figure 5.10: The mean flow time (minutes) of various control approaches in different
'disturbance frequency' test scenarios.

100%

197

172 (10)

176 (54)

1 72

Disturbance Probability /

Control Strategy

WAIT

WAIT - INTEL (Reschedule #)

NO-WAIT (Reschedule #)

DIST

0%

169

169

169

169

60%

185

171 (4)

172 (31)

170

79
To ensure the consistency of each test result (that is, to make sure that a result

does not represent an extreme instance caused by the randomness in the machine delay-

time or disturbance ftequency input data), each simulation is run for 30 replications. With

a 95% codidence interval, the variation of each result (half-width) is about It2% or less.

For example, Figures 5.1 1 shows the 95% confidence interval results of the

WAIT-INTEL control approach in the 60% disturbance test scenario.

Figure 5.1 1 : 95% confidence interval cycle time result for the WAIT-INTEL control
approach in the 60% disturbance test scenario.

Referring to Table 5.3 and Figure 5.10, we can see that in control systems that

generate the pre-production schedules (i.e., WAIT, WAIT-INTEL, NO-WAIT), when

there is no disturbance, all the control methodologies have the same performance. But

when there are disturbances, control systems (WAIT) that do not have the reactive

mechanisms to response to disturbances in real time have inferior perfonnance (in terms

of mean flow time) than control systems (WAIT-INTEL and NO-WAIT) that can react to

disturbances in real time. This is because when 'machining-time-delay' disturbances

80
happen, with the NO-WAIT and WAIT-INTEL control approaches, available jobs in

other workstations can be re-scheduled to be processed first instead of waiting for the

delay job to arrive. But with the WAIT control approach, when a machine delays in

finishing a job, the workstation that corresponds to the delay job's next operation might

have to wait for the job, and this might delay the processing of the other scheduled jobs,

which in turn might cause the processing of other jobs in other workstations to be

delayed. As resulted, the accumulated delay times can greatly affect the perfomance of

the control system. And the performance of the control system becomes worse as the

disturbance frequency increases.

Regarding the WAIT-INTEL and NO-WAIT control approaches, we can see that

the WAIT-INTEL control approach far outperforms the NO-WAIT approach in terms of

'rescheduling Erequencies' in all the tests (as shown in Figure 5.12). Referring to Figures

5.10 and 5.12, we can see that in the manufacturing systems with disturbances, the

rescheduling fiequency of the NO-WAIT approach is significantly higher that that of the

WAIT - INTEL approach (especially in the 100% disturbance case). This high

rescheduling fkequency also causes the NO-WAIT approach to have worse performance

than the WAIT-INTEL approach. This is because as mentioned in 55.3 . I , when doing the

rescheduling, the machines with uncertain processing time have to estimate their delay

times. While under-estimation of the delay times may cause extra rescheduling, over-

estimation of the delay times may cause extra machine idle times, which will affect the

overall system performance. Control systems with higher rescheduling frequencies are

more likely to have this kind of estimation error, since higher rescheduling frequency

means more opportunities to generate faulty schedules. Also, in control systems wherein

the machines have large processing variability, it is more difficult to estimate the machine

delay time while doing the rescheduling. As a result, (larger) estimation faults are usually

incorporated in the new schedules, and thus will affect the system performance (we will

M e r discuss this issue in the next experiment).

60

50
O 0
2 40

6 1
E m 14 3O
g 8 20

10

0
0 20 40 60 80 1 00

Disturbance Probability (%)

I +- WAIT-INTEL t NO-WAIT 1
- --

Figure 5.12: Results of the rescheduling frequencies of the WAIT-INTEL and
NO - WAIT approaches in various test scenarios.

Referring to Figure 5. LO, theoretically, the NO-WAIT and the DIST approaches

should have similar (if not the same) performance, since both approaches use the same

scheduling algorithm to allocate resources to the jobs. As well, in the NO-WAIT

approach, rescheduling is done whenever processing-delay disturbances happen.

Therefore, the results of both approaches represent the (non-delay) production schedules

of the control system with the machining delay times incorporated in them. But in

practice, with the NO-WAIT approach, rescheduling may incur some estimation faults in

the new schedules, and the DIST approach can avoid this kind of emor. This is because in

DIST control, resources do not have to follow any pre-production schedules (production

decisions are made in real-time), and thus machines do not have t.9 make any delay

estimates (for rescheduling purpose). As a result, the DIST approach always has better

performance.

82
5.2.2.2.2 Experiment 5B - Performance of Different Control Strategies

in Manufacturing Systems with Various Processing Variabilities

In each of the test scenarios in this experiment, the machines in workstation WS 1 will

have different processing variabilities, and the probability of the processing-delay

disturbance occurrence is 100%. The uncertain delay-time for the machines in each test

scenario is given as follows:

1) Zero processing variability - The machines will always finish the jobs on time (no

processing delays).

2) TRIA(0,3,5) - The machines will always delay in finishing the jobs. The delay-time

uncertainty is modeled by the hiangular distributed function, which will generate a

delay-time between 0 - 5 minutes, with a mean of 3 minutes.

3) TRIA(0,3,8) - The machines will always delay in finishing the jobs. The delay-time

uncertainty is modeled by the triangular distributed function, which will generate a

delay-time between 0 - 8 minutes, with a mean of 3 minutes.

4) TRIA(0,3,12) - The machines will always delay in finishing the jobs. The delay-time

uncertainty is modeled by the hiangular distributed function, which will generate a

delay-time between 0 - 12 minutes, with a mean of 3 minutes.

Table 5.4 shows the results of the performance (the mean flow time) of the 4

control approaches mentioned in $5.2.2.1 in each test scenario. Figure 5.13 shows the

graphical interpretation of the results in Table 5.4. Each simulation is run for 30

replications and the variation of each result is about +2% or less.

Table 5.4: The mean flow time (minutes) of various control approaches in different
'processing variability' test scenarios.

83

Experiment Number

Experiment # /

Control Strategy

WAIT

WAIT-INTEL (Reschedule #)

NO-WAIT (Reschedule #)

DIST

- - -o- - - WAIT - + - WATT-INTEL - - r - - NO-WAIT DIST

Figure 5.13 : The mean flow time (minutes) of various control approaches in different
'processing variability' test scenarios.

Refening to Table 5.4 and Figure 5.1 3, the increase of the 'processing variability'

of the machines in workstation WS1 imposes 2 kinds of impacts on the performance of

the alternative control approaches:

ZERO

169

169

169

169

Tu(O,3,8)

194

172 (8)

175 (54)

171

TRLA(0,3,5)

188

170 (4)

171 (52)

170

TRLA(0,3,12)

204

176 (1 4)

182 (56)

174

84
1) Higher 'processing variability' implies that some of the machines' processing delay-

times will be increased. As resulted, this will increase the processing time of some of

the jobs, and thus increase the cycle time of the production. This impact is reflected in

the results shown in Figure 5.13. In the figure, we can see that the mean flow time of

all the control approaches increase as a result of the increase of the processing

variability. When considering the control systems that generate pre-production

schedules, when there are disturbances, control systems that do not have the reactive

mechanisms to response to disturbances in real time (WAIT) have inferior mean flow

time performance than control systems that can react to disturbances in real time

(WAIT-INTEL and NO- WAIT).

With higher 'processing variability', it is more difficult for the machine agents to

estimate their delay-times while doing the rescheduling. As mentioned in the last

section, while under-estimating the delay-times may cause extra rescheduling, with

higher 'processing variability', there is a higher probability that the machine agents

will over-estimate their delay times. Higher 'processing variability' may also cause

larger estimation errors. As resulted, this will cause extra (larger) machine idle times,

and thus increase the cycle time of the production. This impact is reflected in the

results shown in Figure 5.13. In the figure, we can see that with increasing

'processing variability', the performance of the NO-WAIT control approach deviates

from the pedorrnance of the DIST approach with greater angles.

A paired-t zero rejection hypothesis test was performed to evaluate the differences

between the performance of the WAIT-INTEL and DIST control approaches. Even

though this test showed these differences to be statistically significant, the differences are

very small as can be seen in Figure 5.3. This is because whenever the machining delay

disturbances happen, instead of calling for rescheduling immediately, the workstation

control agents in the WAIT-INTEL approach will decide to call for rescheduling or not

based on certain rescheduling-invocation criteria- As resulted, the rescheduling fkequency

of the WAIT-INTEL approach is significantly lower than that of the NO-WAIT

approach in all test scenarios. Higher rescheduling frequency means more oppo~unities

85
for generating faulty schedules. And as mentioned above, higher 'processing variability'

might cause larger machining delay-time estimation errors, and thus cause extra (larger)

machines idle times. Therefore, with increasing 'processing variability', the performance

of the NO-WAIT approach deviates from the performances of the WAIT-INTEL and the

DIST approaches.

5.2.2.2.3 Experiment 5C: Unpredictability of Heterarchical Control

Systems

In experiments 5A and SB, the results of the control system (DIST) that implements the

distributed scheduling algorithm for real-time control always has superior mean flow

time performance over other control approaches. This is because with the DIST control

approach, no pre-production plan is generated. As a result, the DIST control approach can

be more flexible to react to disturbances in real-time, and can avoid generating faulty

schedules (machining delay-time estimation errors generated during the rescheduling

processes).

Even though the DIST control approach uses the same scheduling algorithm as

the other control approaches to allocate jobs to resources, in some cases, the adopted

dispatching rule that is used in the scheduling algorithm might be violated in the DIST

control systems. As resulted, the performance of the control system becomes

unpredictable. For instance, in the DIST control systems, since there is no pre-production

plan, the workstation agents will process the arriving jobs in the order that is based on

some adopted dispatching priority rules. But in situations wherein there is an idle

machine in the workstation, and two jobs (say job A and job B) with different priority

arrive at the workstation at the same time but in different sequence. Ifjob A has lower

priority than job B but arrives at the workstation first, the workstation agent will load job

A to the idle machine immediately. Then when job B arrives, it has to wait in the queue,

even though its priority is higher than job A's. But in control systems with pre-production

schedules, since both jobs will be available at the workstation at the same time, the job

86
with the higher priority will be scheduled to be processed first. So in such control

systems, while executing the production schedule, the workstation control agent will

always process job B (higher priority, as scheduled) first, regardless of the arriving

sequence of jobs A and B.

To model this situation, we use the production data shown in Table 5.5 below to

conduct the tests.

Table 5.5: Process plans and the number ofjobs for the experiment 5C.

Operation (process time (min) 1 operation type) 1

In this experiment, we will produce 20 jobs, 4 of each job type listed in Table 5.4.

In the table, we can see that jobs with job types J 1,J2, and J5 all need to have their first

operation processed in workstation WSl . In our scheduling algorithm (for the WAIT,

NO - WAIT, and W C J N T E L approaches), the Most-Work-Remaining (MWKR)

priority rule is used for ranking the jobs. Therefore, in the production schedule, at time =

0, since all jobs are available at that time, jobs with job type J1 will be scheduled to be

processed first in workstation WS1, since they have higher priority (for operation 1) than

jobs with other job types. But in the DIST control system, at time = 0, it is possible for

jobs with other job types to arrive at the workstation WS1 first. And in such cases,

workstation WS 1 agent will load the f'irst arriving job to the first available machine. As a

result, some jobs with lower priority will be processed first.

The stochastic manufacturing scenario in this experiment is modeled by having

machines in workstation WSI have an uncertain processing delay-time generated by the

triangular distribution function TRIA(O,2,4). In different test scenarios, we will have jobs

with different job types anive at workstation WSl in different sequences at the start of

the production (time = 0). And jobs with job types J3 and J4 will go to workstations WS4

4
5/4
3/4
4/3
4/4
413

Job ID
JI
52
53
54
J5

- ---

2
8/2
312
612
611
312

of Jobs
4
4
4
4
4

1
6/ 1
41 1
314
5/2 -
51 1

3
13/3
8/3
15/1
13/3
814

87
and WS2, respectively, at time = 0 for the processing of their first operation. The arrival

sequences (for workstation WS 1) of the jobs in different test scenarios are:

1) (J I, J2, J5) - In the first test scenario, jobs with job type J1 will arrive (at workstation

WS 1 at time = 0) first, then the jobs with job types 52 and J5 will arrive.

2) (J5, J2, J1) - In the second test scenario, jobs with job type 15 will arrive (at

workstation WS1 at time = 0) first, then the jobs with job types 52 and J1 will arrive.

3) (J2, J1, J5) - In the third test scenario, jobs with job type J2 will arrive (at workstation

WS 1 at time = 0) first, then the jobs with job types J 1 and J5 will arrive.

The results of the tests are shown in Table 5.6 below. In test scenario 2 (JS, J2,

Jl), when the production system starts, jobs with job type J5 were modeled to arrive at

workstation WS 1 first. In the DIST control system, the workstation WS 1 agent will load

the first 2 arriving J5-type jobs to its 2 available machines (the remaining J5-type jobs

will then be ranked with other late arriving jobs). As resulted, two J5-type jobs that have

lower priority than the J1 -type jobs will be processed first. Similar situations happened in

test scenario 3 (J2, J l , J5). The violation of the dispatching priority rule in test scenarios

2 and 3 had affected the overall system performance of the DIST control system. 30

replications have been run for each test, and the paired-t zero rejection hypothesis test has

showed that the differences between the DIST test result in different test cases are

statistically significant.

In the WAIT, NO-WAIT and WAIT-INTEL control approaches, since the pre-

production schedules are generated in these systems, the workstations will always process

the jobs as scheduled, regardless of the arriving sequence of the jobs. As resulted, the

performances of these control approaches do not change in all the test scenarios.

Refemng to the above experiments 5A and 5B, and SC, we can see that even

though the control systems (DIST) that make the production decisions in real time can be

more flexible against disturbances, sometimes the behaviors (or performance) of such

systems are hard to predict.

Table 5.6: The mean flow time (minutes) of various control approaches in different test
scenarios for experiment SC.

88

5.3 Conclusion

Test Scenario /

Control Strategy

WAIT

WASTASTn\3TEL (Reschedule #)

NO-WAIT (Reschedule #)

DIST

Referring to the experiments described in $5.2, we can see that while implementing the

scheduling algorithm for real-time distributed scheduling and control can enhance the

control system's flexibility against disturbances, sometimes it is hard to predict the

behavior and performance of such control systems. Therefore, sometimes it is still

necessary to develop the pre-production plans (advance schedules) to enhance the

predictability of the control systems.

Research in distributed scheduling and control systems has claimed that the

distributed scheduling approach can enhance the control systems' adaptability against

disturbances @ilts et al. 199 1, Duffie et al. 1994, Sousa et al. 1997). But (referring to the

experiments described in 55.2) unless the distributed scheduling algorithm is

implemented for real-time distributed control, control systems that implement the

distributed scheduling algorithms to generate the pre-production schedule can still be

very susceptible to the impact of the disturbances. In the distributed scheduling and

control systems that generate pre-production schedules, implementing the distributed

scheduling approach can achieve advantages such as:

(J2, J 1, JS)

NO CHANGE

NOCHANGE

NO CHANGE

83.8

(J 1, J2, J5)

86

76.7

77.8

76.4

(JS, 52, J1)

NO CHANGE

NOCNANGE

NO CHANGE

82.9

89
1) The scheduling performance can be enhanced "through parallel computing and

through the elimination of the processing bottleneck caused by global scheduler"

(Dilts et al. 199 1)

2) The control system's fault-tolerance can be improved (can avoid the single point of

failure problem of the centralized scheduling system).

3) The control system's reconfigurability and adaptability can be enhanced (Dilts et al.

1991).

It is important to note though, that the control systems should have the proper

control algorithms to react to disturbances in real-time. Otherwise, the performance of the

control systems can be greatly affected (cf.., the WAIT control approach), especially in

the stochastic manufacturing environment.

If the control agents in the distributed control systems do not have the local

reactive control mechanisms to react to disturbances in real-time when disturbances

happen, the affected control agents have to invoke the rescheduling processes so that the

control system can respond to these disturbances (e-g., the NO-WAIT control approach).

Some researchers have used the rescheduling approach to help enhance the control

system's adaptability against disturbances. For instance, in (Duffie et al. Z994), the

control agents in the control system continuously generate new 'look-ahead' schedules

via simulations. For each simulation, the current status of the production system is

modeled in the simulation model so that the control system can be "adaptable to faults"

(Duffie et al. 1994). But while doing the rescheduling, all the control agents in the system

have to be involved. Therefore, high frequency of rescheduling means that tile control

agents will always be engaged in some communication processes and this might violate

some design principles of the distributed control systems. For instance, Duffie et al.

(1994) mention that:

90
"'The fully distributed heterarchical manufacturing system scheduling and control

architecture is comprised of loosely coupled, highly autonomous entities retaining

minimal global information".

But in (Smith 1980), the 'loosely coupled' is defined as:

"Loosely coupled means that individual KS's (Knowledge Source) spend most of

their time in computation rather than communication".

Therefore, we can see that the 'loosely coupled, highly autonomous7 features of

the distributed scheduling and control systems require that the communication between

the control agents should be minimized. To achieve this goal, it is important that the

control agents should have the local reactive control mechanism (autonomy/intelligence)

to react to disturbances in real-time, and thus can minimize the rescheduling frequencies.

Refening to the experiments in 85.2, we can see that in control systems (e-g., the

WAIT - INTEL approach) wherein the control agents have the proper local reactive

control mechanisms to react to disturbances in real time, not only can the desirable

system performance can be achieved, but the control system's adaptability against

disturbances can be enhanced, and the rescheduling frequencies can be minimized

significantly, in comparison to the NO-WAIT approach. As well, when reacting to the

machining delay disturbances, unlike the rescheduling approach (wherein all the control

agents have to be involved), in the WAIT-INTEL approach, only the affected control

agents will be contacted, and the unaffected control agents will not be bothered. As

resulted, with the WAIT_INTEL control approach, the "loosely coupled, highly

autonomous" features of the distributed scheduling and control systems can be fully

realized.

CHAPTER 6

JOB SEQUENCING AND DISPATCHING ROUTING DECISIONS IN

THE MULTI-AGENT HETERARCHICAL CONTROL SYSTEMS

Current research in multi-agent heterarchical control systems has commonly used the

dispatching routing approach to allocate jobs to resources (Duffie et al. 1986, Baker

1997). Jn such control approach, resource allocations are accomplished by having the

jobs collect bids fkom the potential machines that can process their operations. "The

contents of these bid are usually simple information such as cost, earliest start time, or

earliest finish time" (Baker 1997). The contract net auction-bidding protocol (Smith

1980) is commonly used in the multi-agent heterarchical control systems for the part

agents to make the routing decisions.

"Indeed, the preponderance of agent research for manufacturing has developed

agent architectures which implement different dispatching rules. It is most

common to dispatch the routing decision in these architectures, assuming

sequencing can then be done at each resource.. .. In the case of the routing

decision, a great deal of agent research has been with having the agents make this

decision by collecting bids from potential machines to which the job can be

routed" (Baker 1 997).

Most work in multi-agent distributed scheduling and control systems only deals

with dispatching the routing decisions, and the job sequencing issues are usudly ignored.

As resulted, most of these approaches usually perform the scheduling by jobs on a First-

92
Come-First-Serve basis (Veeramani & Wang 1998), which sometimes compromises

certain global performance objectives.

In this chapter, we will investigate the impact of the job routing and job

sequencing decisions on the control system's performance and its adaptability against

disturbances such as machine failure. The experimental testbed described in 54.5 will be

used for testing and evaluating the performance of various control algorithms in a multi-

agent heterarchical shop floor scheduling and control system. The experimental results

will then be discussed and a conclusion will be presented.

6.1 Experiments and Results

Current research in multi-agent heterarchical control systems usually implement 'part

driven' real-time scheduling algorithms, wherein the part agents use the auction-bidding

resource reservation protocol to explore the routing or process sequencing flexibility in

real-time. Traditional dispatching control systems usually implement 'resource driven'

scheduling (dispatching) algorithms, wherein the resource controllers (agents) use

dispatching rules to sequence the processing of the amving jobs, and the routing

decisions are usually determined in advance.

"Most dispatching rule research has been with dispatching which job a resource

will work on next. This sequencing decision can be made based on a job's due-

date, its customer priority, similar setups, the shortest processing time

remaining.. .. Once a job is released into the factory, or once a job is finished at a

resource, the next decision is which resource to route it to next. Often, the routing

decision has been made in advance" (Baker 1997).

Although quantitative results are available for the traditional dispatching and the

bidding-based control approaches, few researchers have compared the performance of

these alternative approaches on a common platform. In @ m e et al. 1994), wherein the

93
'part driven' real-time distributed scheduling and control algorithms are implemented, it

is proposed that "hture work should compare them with traditional dispatching rules and

scheduling heuristics" (Duffie et al. 1994).

In this section, we will conduct experiments to investigate the impact of the

dynamic job routing and job sequencing decisions on the control system's performance

and adaptability against disturbances. The tested control systems will have varying

production volumes (to model the production system with looser/tighter schedules) and

disturbance fkequencies, so that the impact of the job routing and sequencing decisions in

various manufacturing environments can be evaluated. In our experimental models,

routing flexibility is introduced into the production system by providing jobs with a

flexible processing order for their operations. That is, there is no technological constraint

on the processing sequence of the operations of the jobs.

6.1.1 Experimental Models

To evaluate the impact of dynamic job routing and job sequencing decisions in various

manufacturing environments, the following control strategies will be implemented in our

experimental models:

a) AUC-BID (Auction-BIDding) - In this control approach, the job control agents will

use the contract net auction-bidding protocol to collect bids from the workstations to

explore the process sequencinglrouting flexibility. Job sequencing will not be

implemented in this control approach. That is, to decide which operation to process

next, for each of the job's remaining unprocessed operations, the job agent will

contact the system mediator to find out which workstation is responsible for that type

of operation. Then the job agent will contact the corresponding workstation agent to

see when the workstation can start the operation. Since job sequencing is not

implemented, the workstation agent will rank the incoming jobs on the First-Come-

First-Serve basis, and respond to the job agent with the answer that states the earliest

94
possible start time for that operation. After receiving responses from all the

workstations that can process its remaining unprocessed operations, the job agent will

evaluate all the responses and pick the operation whose corresponding workstation

can start the job soonest to be processed next.

b) JSEQ (Job SEQuencing) - In this control approach, the workstation control agents

use the adopted priority dispatching rule to sequence the incoming jobs, and the jobs

do not explore the routing flexibility. That is, even though there is no technological

constraint for the operations of the jobs, the job agents will not explore the routing

flexibility, and will have their operations processed in some predetermined order (the

order that is originally stated in their process plan). When a job enters a workstation,

the workstation agent will rank the incoming jobs based on some adopted priority

rules. In our experiments, the Least Work Remaining (LWKR) heuristic priority

dispatching rule will be used. This is because the performance measure of our

experiments is the minimization of the mean flow time, and the empirical

experimental results conducted by other researchers (Conway et al. 1967) have

suggested that the LWKR rule can help minimize the mean flow time.

c) AUC + JSEQ - In this control approach, while the job agents will use the auction

bidding mechanism as stated in (a) to explore the routing flexibility, the workstation

agents will sequence the incoming jobs based on the dispatching rules as stated in @).

That is, to decide which operation to process next, the job agents will collect bids

from the workstations that correspond to its remaining unprocessed operations.

Unlike in (a), when a workstation agent receives a bid request fiom a job agent,

instead of quoting the job's earliest possible start time based on the First-Come-First-

Serve rule, the workstation agent will try to insert the job into its queue and quote the

job with the earliest possible start time that is based on the adopted priority

dispatching rule as stated in (b). After receiving the response fiom all the

workstations that correspond to its remaining unprocessed operations, the job agent

will evaluate all the responses and pick the operation whose corresponding

workstation can start the job soonest to be processed next.

95
d) COMT+AUC+JSEQ (COMmitmenT + AUC + JSEQ) - One of the problems

regarding the control approach stated in (c) is the role of commitment in the auction-

bidding processes. In deciding which operation to be processed next, the job agent

will make the decision based on the returned 'earliest start time' quote of the

workstations that correspond to its remaining unprocessed operations. The retumed

quoted start time represents that the workstation is willing to commit some of its

resource capacities to process the job at certain times. But when the workstation

agents use the LWKR rule to sequence the incoming jobs, the workstation agents

might violate some of the previous commitments that it has made to some jobs.

For example, referring to Figure 6.1 below, at time = 3, if workstation WS 1

agent has responded to the job 52 agent that it can start processing the job at time = 6,

and the job 52 agent, after evaluating some other bids, decided to join the workstation

WS1. Then at time = 4, a new job J5 that has smaller remaining work processing

times than job 52, asks WS 1 when it can start processing the job. If workstation WS 1

uses the LWKR rule to try to insert job 35 into its queue, it will answer the job J5 that

the earliest possible start time that it can process the job is at time = 6. And if job J5

decides to join workstation WS1, then workstation WSI will violate the quoted start

time it sent to the job 52 previously. In this case, should the affected job 52 be notified

that its quoted start time has been changed, so that job 52 can explore other routing

opportunities to see if other workstations that correspond to its other remaining

unprocessed operations can start the job eariier? And how would this opporhmistic

behavior of the job agents affect the performance and the communication

requirements of the control system? The COMT+AUC+JSEQ control approach will

be used to investigate these issues. In this control approach, when the workstation

agents insert a new job into its queue, the affated jobs will be notified so that they

can explore other routing opportunities. For the affected job agents, if no other

workstations can start their other remaining operations sooner, then they will decide

to stay in the original workstation. Otherwise, they will change the workstation (and

the process sequence).

Figure 6.1 : An example task list for workstation WS I.

The process plan for the job types that will be used in the experimental models is

shown in Table 6.1 below.

Table 6.1 : Process plan of the various job types.

Operation (process time (rnin) / operation type)

6.1.2 Experiment 6A - Zero Disturbances

In this experiment, we will evaluate the performance of the four control strategies

described in the 96.1.1 above in control systems with zero disturbances. Each of the four

control strategies will be implemented in control systems with varying production

volumes, so that the impact of the alternative control approaches in control systems with

various degree of tightness of schedules can be evaluated. In each test, equal amounts of

each of the job types described in Table 6.1 above will be produced. The results of the

tests are shown in Table 6.2 below. Figure 6.2 shows the graphical interpretations of the

results shown in Table 6.2.

4
5/4
3/4

4/3

Job ID
J1
32
J3

2
8/2
3/2
6/2

1
6/ 1
4/ 1
3/4

3
13/3
8/3
15/1

J4
JS

6/1
3/2

512
5 / 1

13/3
8/4

4/4
4/3

Table 6.2: The mean flow time (minutes) of various control approaches in different test

97

scenarios for experiment 6A.

I Number of Jobs I
. - -x- - - A-BID --e-- JSEQ -+ COMT+AUC+SEQ - - AUC+JSEQ

50
Jobs

1 59

133.7

97.6

103.8

Figure 6.2: The mean flow time (minutes) of various control approaches in different test
scenarios for experiment 6A.

70
Jobs
21 1

180

1 3 3 . 2 1

141.4

3 5
Jobs
113.6

94.5

72.5

78.2

40
Jobs

129

107.4

81.3

82.8

20
lobs
62.5

57.8

47.5

50.4

25
Jobs
80.5

69.4

55.6

57.6

Number of Jobs /

Control Strategy

AUC-Brr>

JSEQ

COMT + AUC + JSEQ

AUC + JSEQ

30
Jobs
92.7

81.7

64

69.5

10
Jobs
33.6

36.8

3 3 ~

33.8

1 5 .
Jobs
49

46.3

42

42

6.13 Experiment 6B - One Machine Failure Disturbance

In this experiment, we will evaluate the performance of the four control strategies

described in the 96.1.1 above in control systems wherein one of the machines in

workstation WS 1 will be down for 30 minutes after it processes the fist job. With the

COMT + AUC +JSEQ approach, when the machine failure happens, the afTected jobs in

workstation WS I will be notified so that they can explore other routing opportunities

The results of the tests are shown in Table 6.3 below. Figure 6.3 shows the graphical

interpretations of the results shown in Table 6.3.

Table 6.3: The mean flow time (minutes) of various control approaches in different test
scenarios for experiment 6B.

Figure 6.3: The graphical interpretation for the results shown in Table 6.3.
6.1.4 Experiment 6C - Two Machine Failure Disturbances

Number of Jobs /

Control Strategy

AUC-BID

JSEQ

COMT + AUC + JSEQ

AUC + JSEQ .

15
Jobs
55.9

59.0

45.5

47.0

25
Jobs

86

87.0

61.2

64.2

10
Jobs
39

46.0

38.6

39.8

J

230

A
C g 180
v

s
F:

130
t

8 0

30

20
Jobs

68

72.2

52.7

53.3

50
Jobs
159.7

144.8

104

I to

- - - -

30
Jobs
102

96.6

68.7

75.8

70
Jobs
218

191

138

148

0 20 40 60 8 0

Number of Jobs

- - -x- - - AUC-BID --*-- JSEQ -COMT+AUC+JSEQ -*-AUC+JSEQ
L

35
Jobs
117

110.2

77.7

80.6

40
Jobs
131.7

120.8

87.2

89

In this experiment, we will increase the machine failure disturbances by having botb the

machines in workstation WS1 down for 30 minutes after they have done their first

operation. The results of the tests are shown in Table 6.4 below. Figure 6.4 shows tbe

graphical interpretations of the results shown in Table 6.4.

Table 6.4: The mean flow time (minutes) of various control approaches in different test
scenarios for experiment 6C.

20 40 60

Number of Jobs

Number of Jobs /

Control Strategy

AuC-BlD

JSEQ

COMT + AUC + JSEQ

AL'C -I- JSEQ

- - -x- - - AUC-BID - - e - - JSEQ COMT+AUC+JSEQ - - AUC+JSEQ I

30
Jobs
li0.1

1 14

81.3

88.7

Figure 6.4: The graphical interpretation of the results shown in Table 6.4.

10
Jobs
53.3

64.2

51.1

51.4

6.1.5 Experiment 6D - Four Machine Failure Disturbances

35
Jobs
126.8

125.2

88.4

92.1

25
Jobs
91.6

100.6

72

76.8

15
Jobs
64.4

76.1

56

61

20
Jobs
79.7

91.4

64.6

65.7

70
Jobs
223

208

117

151

40
Jobs
140

138

97

101

SO
Jobs
167.2

161.4

113.1

121.5

In this experiment, we will increase the machine Mlure disturbances by having both the

machines in workstation WS 1 down for 30 minutes after they have done their first

operation, and both machines in workstation WS2 down for 30 minutes after the

production has run for half an hour. It should be noted that since the operations of the

jobs are non-preemptable, when the scheduled downtime is reached and a machine is

operating on a job, the failure of the machine would be initiated after the job is finished.

The results of the tests are shown in Table 6.5 and Figure 6.5 below.

Table 6.5: The mean flow time (minutes) of various control approaches in different test
scenarios for experiment 6D.

I Number o f Jobs

- - -x- - - AUC-BID - - 6 - - JSEQ -COMT+AUC+JSEQ --(I. -AUC+JSEQ

Figure 6.5 : The graphical interpretation of the results shown in Table 6.5.

35
Jobs
125.2

128.2

88.1

92.7

40
Jobs
139.5

141.5

97.1

t00.2

Number of Jobs /

ControI Strategy

AUC-Brr>

JSEQ

COMT -t AUC + JSEQ

AUC -+- JSEQ

6.1.6 Results Discussion

50
Jobs
171

166.6

112.5

i 19.6

70
Jobs
226

213

146

156

10
Jobs
56.3

63.2

50

51.4

20
Jobs
82.7

92.8

66.2

71 -7

15
Jobs
65.8

77.9

56.3

61.1

25
Jobs
93.2

103.5

73.4

76.8

30
Jobs
107.7

117.2

80.7

88.5

For each of the test in the above experiments, 50 replications have been run for each

simulation to ensure the consistency of the test results. With the 95% confidence interval,

the variation of each result is about &2% or less. For example, Figure 6.6 below shows

the 95% confidence interval of the AUC-BID approach in Experiment 6B in the 70-job

test case-

Figure 6.6: 95% confidence interval result of the AUC-BID approach in Experiment dB
in the 70-job test case.

Referring to Figure 6.2, the experimental results with no disturbances show that,

control systems that allow jobs to explore routing flexibility but do not implement job

sequencing (AUC-BID) have worse performance than control systems that implemented

job sequencing, but do not explore routing flexibility (JSEQ). This is because with the

AUC-BID control approach, the workstations processed the jobs on a First-Come-First-

Serve basis. But with the JSEQ control approach, the workstations enforce the co-

operative behaviors of the jobs based on certain dispatching rules to ensure that certain

desirable global objectives can be achieved.

102
Referring to Figures 6.3-6.5, the experimental results show that when there are

machine failure disturbances, in control systems that have implemented the dispatching

routing decision-making control algorithm, the opportunistic behaviors of the job agents

can help them avoid the bottleneck workstation (workstation with down machines) while

making the routing decisions. And this can help improve the system performance, but

only in manufacturing environments with production volumes under certain limits. This

is because as the manufacturing system's production volume increases, each workstation

will be occupied by more jobs at any instant of time, and thus a job agent will have lesser

chance to find an alternative workstation that can start processing its other operation

sooner. As resulted, in control systems with high congestion, even when there are

disturbances, job sequencing can better improve the control systems performance than the

routing flexibility control mechanism.

To more clearly illustrate this point, we re-plot the experimental results in Tables

6.2-6.5 based on different production volume categories. Referring to Figures 6.7 (a) to

(h), for instance, Figure 6.7 (a) shows the performance of the 4 control strategies in

different machine failure test scenarios in control systems with production volume of 10

jobs, and Figure 6.7 @) shows the results in control systems with production volume of

15 jobs, etc.. ..

I05
Referring to Figure 6.7 (a), we can see that when the production volume is small,

the jobs can take advantage of the routing flexibility to find a shortest-time path through

the production system. Thus in such systems, AUC-BID control approach outperform the

JSEQ approach. But as the production volume increase, the control system will have less

routing flexibility, and it is more important to coordinate the activities of the jobs to

ensure that certain global performance objectives can be achieved. For instance, refemng

to Figures 6.7 (a) - (h), we can see that in control systems with 0 machines down, after

the production volume exceeds 20 jobs (Figures 6.7 (b) - (h)), the JSEQ approach

outperforms the AUC-BID approach

When there are machine failure disturbances, the opportunistic behavior of the job

agents can help solving the control system's bottleneck problem. Thus the AUC-BID

approach will outperform the JSEQ control approach. But after the production volume

exceeds a certain limit, the routing flexibility of the production system decreases, and the

importance of the job sequencing control mechanism starts to kick in. As resulted, the

JSEQ control approach will outperform the AUC-BID approach. Refening to Figures 6.7

(a) to (h), we can see that with more machine failure disturbances, the JSEQ control

approach will outperform the AUC-BID approach after the production volume exceeds

higher limits. For instance, in the 1-machine failure test scenarios, the AUC-BID

approach outperforms the JSEQ approach in situations where the production volume is

under 25 jobs (Figures 6.7 (a) - (c)). After the production volume exceeds 25 jobs, the

JSEQ approach outperfarms the AUC-BID approach (Figures 6.7 (d) - (h)).

But in the 4-machine failure disturbance test scenarios, the AUC-BID approach

outperforms the JSEQ approach in situations where the production volume is under 40

jobs (Figures 6.7 (a) - (f)). After the production volume exceeds 40 jobs, the JSEQ

approach outperforms the AUC-BID approach (Figures 6.7 (g) - (h)).

This is because with more machine failures, the opportunistic behavior of the job

agents can help ease the production system's bottleneck problems. But after the

production volume exceeds a certain limit, the importance of job sequencing start to

outweigh the importance of the routing flexibility. As resulted, the JSEQ approach

always outperforms the AUC-BID approach in high production volume systems,

106
regardless of the disturbance situations (in respect to the experimental results described

above).

Figures 6.8 to 6.1 1 show the performance of each of the control approaches,

respectively, in various test scenarios. From the figures, we can see that in control

systems wherein the jobs will explore the routing flexibility (the AUC-BID,

COMT+AUC+JSEQ, AUC+JSEQ), the perfomance of the control systems are less

sensitive to the machine failure disturbances (compared to the JSEQ control approach).

For instance, we can see that in Figure 6.8, the gaps between the performance lines of the

JSEQ control approach in the 4 difference machine-failure disturbance test scenarios are

larger than those of the other control approaches as shown in Figures 6.9,6.10 and 6.1 1,

respectively.

UV

0 20 40 60
Number of Jobs

Figure 6.8: The results of the AUC-BID control approach in various test scenarios.

Number of Jobs

- - -x. - - 0-DOWN - - + -- 1-DOWN 2-DOWN - * - 4-DOWN

:igure 6.9: Results of the JSEQ control approach in various test scenarios.

230

0

f 180
Y

E
F

130
0
E
C m

80

30
0 I 0 20 30 40 50 60 70 80

Number of Jobs

- . -x. - - 0-DOWN - - e - - 1-DOWN W+,22DOWN - + -4-DOWN
L

Figure 6. LO: The results of the COMT+AUC+JSEQ control approach in various test
scenarios.

I Number of Jobs I
- - .x- - - 0-DOWN - - e - - 1-DOWN 2-DOWN - u - 4-DOWN

Figure 6.1 1 : The results of the AUC+JSEQ control approach in various test scenarios.

Refening to Figures 6.2 - 6.5, we can see that as expected, the control systems

that incorporate both the job sequencing and routing flexibility control mechanisms

(COMT+AUC+JSEQ, AUC+JSEQ) always have superior performance over control

systems that implement only the routing flexibility (AUC-BID) or the job sequencing

(JSEQ) control mechanism. This is because in such control systems, while the job agents

can explore the routing flexibility (and thus avoid the bottleneck stations when machine

failure disturbances happen), the workstation agents will sequence the processing of the

jobs to ensure that certain global performance objectives can be achieved.

In the AUC + JSEQ control approach, while deciding which operation to process

next, the jobs agents use the contract net auction-bidding approach to make the routing

decisions based on the bids (the quoted earliest possible start time) submitted by the

workstations. But after a job contracts its operation to a workstation, when the

workstation agent used the dispatching rule to sequence the arriving jobs, it might breach

the contract that it had made with some of the previously contracted jobs. That is, some

of the jobs' 'quoted start time' might be violated. In the COMT + AUC + JSEQ control

approach, whenever a job's contract with a workstation is violated, the job will be

109
notified about the situation, so that it can explore other routing opportunities. The

following discussion is concerned with the impact of the enhanced opportunistic behavior

of the job agents on the control system's performance and communication requirements.

Referring to Figures 6.2 to 6.5, we can see that while the performance of the AUC

+ JSEQ control approach always significantly outperforms the AUC-BID and the JSEQ

control approaches (especially in the high production volume cases), the performances of

the AUC + JSEQ and the COMT + AUC + JSEQ control approaches are always very

close. To demonstrate these results, in Figures 6.12 and 6.13, we show the performance

ratio of the other control approaches versus the AUC + JSEQ control approach in

experiments 6A (zero machine failure) and 6D (Cmachine failure), respectively.

Referring to Figures 6.12 and 6.13, we can see that in most cases, the results

(mean cycle time) of the AUC-BID and JSEQ control approaches are higher than the

results of the AUC + JSEQ approach by about 30-50%. But the results of the COMT +
AUC + JSEQ control approach only outperform the results of the AUC + JSEQ control

approach by about 6% or less in most cases (The experiments 6B and 6C also have

similar performance ratio results).

In the COMT + AUC + JSEQ control approach, although providing the job agents

with the updated information regarding their status in the workstations where they are

residing (queuing), can slightly improve the control system's performance (compared to

the AUC + JSEQ control approach); this performance improvement though, comes with a

significant increase in the communications between the job and workstation control

agents (as to be explained next).

In the COMT + AUC + JSEQ control approach, whenever a job's quoted start

time in a workstation is violated, the workstation will inform the affected jobs about the

situation. The Hected jobs can then explore other routing opportunities to see if they

want to stay in the original workstation, or if there are other workstations that can process

their other operations sooner. In Table 6.6 below, we measured the total number of times

(totChangeOffkr) that the jobs have been notified about the change in their 'quoted start

time' by the workstations, and the total number of times that the notified jobs actually

changed workstations (totChangeQ) in the COMT + AUC + JSEQ approach in

experiment 6A.

Figure 6.12: Performance ratio of the other control approaches versus the AUC-f-JSEQ
control approach in experiment 6A.

01 - = 1.80 0 - t

- - - - - - - - x
-/*-L-&-*L-L-L-: - - --

, a - , =-*
-t- - - x- -)f-

x- - -x-- -x-

t.00 - a 4 3
0 0 0 = 3 a 0.80 - c u

Figure 6.1 3 : Performance ratio of the other control approaches versus the AUC+JSEQ
control approach in experiment 6D.

* * I

4-+*+-&-+-*-+ c. Y

Y Y A ----+ ---------- 4

, Q
0 w s a 1.80
E ')

S G 1.60-
z z 8 5 1.40 -
C 1 8

1.20 - " g
g:a 1.00-
- = 0.80 -
- ' f 0.60

a Q 0.60 1 I I I

0 20 40 60 80

Number of Jobs

;C----+-----,, x- - 4

0 jK-+,(-*-----e----------------*

I I I

- - -x- - - NJC-BID v-s. AUC+JSEQ - -e - JSEQ v.s. AUC+JSEQ

- - + - - COMT+AUC+JSEQ V.S. AUC+JSEQ --6-- AUC+JSEQ v.s. AUC+JSEQ

st
0 20 40 60 80

Number of Jobs

- + - ALJC-BID VS. AUC+JSEQ - - - c - - JSEQ VS. AUC+JSEQ

- - + - - NC+JSEQ V.S. AUC+JSEQ - COMT+AUC+JSEQ V.S. AUC+JSEQ

,

Table 6.6: The results of the total number of times that the job agents in the COMT +
AUC +JSEQ control system had been notified by the workstations about changes in their
'quoted start time', and the total number of times that the jobs actually changed
workstations.

Figure 6.14 shows the graphical interpretation of the results shown in Table 6.6

and Figure 6.15 shows the ratio of the totChangeQ versus the totchangeoffer in the

various test scenarios. The totchangeoffer results represent the communication

frequency between the job and workstation control agents in each test scenario. Every

time a job is notified about the change in its 'quoted start time' by a workstation, the job

will start contacting other workstations to explore other routing opportunities. Therefore,

the higher the totchangeoffer frequency, the more the communications between the

control agents in the system.

Referring to Figure 6.14, we can see that the number of the totchangeoffer

increases exponentially as the total number of jobs increases. But in Figure 6.15, the

results show that as the total number of jobs increases, the ratio of the totChangeQ versus

the totchangeoffer decreases. This confirms our earlier explanation that as the

production volume increases, there will be less routing flexibility in the control system.

As a result, in control systems wherein the production volume exceeds a certain limit, as

the totchangeoffer fkequency increases, the job agents will spend more time in doing

'unproductive' communications. That is, even though the job agents are being notified

about the changes in their 'quoted start time', after exploring other routing opportunities,

most job agents ultimately decide to stay in their original workstation (Other experiments

have similar totchangeoffer and totChangeQ results as described above).

to Changeoffer (A)

totChangeQ (B)

Ratio ofB / A

25
Jobs
352

196

0.56

20
Jobs
203

116

0.72

10
Jobs

13

I I

0.85

3 0
Jobs
592

28 I

0.47

15
Jobs

91

69

0.76

40
Jobs
1055

330

0.31

35
Jobs
843

329

0.39

5 0
Jobs
2130

58 1

0.27

70
Jobs
4817

933

0.19

Number of Jobs

Figure 6.14: Results of the totchangeoffer and the totChangQ frequencies in the
experiment 6A.

Figure 6.15: The results of the ratio of the totChangeQ versus the totchangeoffer in the
experiment 6A.

0.90
0.80 -

> & 0.70 - 15 0.60 -
to CZ) = 0.50 -
U 'P Q 0.40 -
0 lq 0.30 - = 0 3 f 0.20 -

0.10 -
C

2 0.00

A

b 1 r t I I b I

0 10 20 30 40 50 60 70 80

Number of Jobs

113
6.2 Conclusion

In 96.1, we have conducted experiments to investigate and identify the role of the job

sequencing and the routing flexibility control mechanisms in different manufacturing

environments. The experimental results show that while the routing flexibility can help

enhance a control system's flexibility and adaptability against disturbances such as

machine failure, it is important to incorporate the job sequencing control mechanism in

the control system to ensure that certain global performance objectives can be achieved

(especially in manufacturing systems with high production volume). As expected, the

control systems that implement both the job sequencing and routing flexibility control

mechanisms always have superior performance over control systems that implement only

the routing flexibility or the job sequencing control mechanism.

In control systems that implement job sequencing and job routing control

mechanisms, sometimes it is justifiable to compromise some of the commitments

between the workstation agents and the job agents in order to achieve certain global

performance objectives and minimize the communications between the control agents.

For instance, to strictly honor the commitments that they have made to the job agents, the

workstation agents will either sequence the jobs based on the First-Come-First-Serve

rule, or if they use another dispatching rule to sequence the jobs, the jobs has to be

notified when their contracts ('quoted start time) with the workstations are violated, so

that the job agents can explore other routing opportunities. The experimental results show

that in the former case, the performance of the system will be compromised, and in the

later case, the communications between the control agents will be significantly increased.

As resulted, we can see that wi+h the AUC + JSEQ and COMT+AUC+JSEQ

control approaches, the control systems can achieve certain desirable global objectives

(compared to the A U C B D and JSEQ control approaches). And by having the resource

agents responsible for job sequencing (AUC+JSEQ), the communications between the

resource and job control agents can be minimized (compared to the COMT+AUC+JSEQ

control approach). As well, the AUC+JSEQ control approach also complies with the

design principle of distributed control systems, wherein the system consists of a group of

loosely-coupled, cooperative control agents: i.e., the control agents in the AUC+JSEQ

114
approach will spend most of their time in computation rather than communication (Smith

CHAPTER 7

IMPLEMENTING CONTROL AGENTS AS COMlDCOM OBJECTS

In the previous chapters, although the experimental control systems are implemented with

the distributed multi-agent control approach, the control agents are not actually

distributed in nature (they are all resided in a single processor). But when considering a

real-world system, one must face the fact that the agents described in the previous

chapters will be distributed across multiple processors. Hence, an inter-operational

approach is required. As well, since the benchmark fiamework (Cavalieri et al. 1999) is

intended for different researchers to compare their control methodologies on a common

testbed, it would be helphl if the control modules can be built into some platform

independent software components that can be easily distributed across a network andor

be integrated into other researchers' logical control models for validation or testing.

Although it is possible to use a variety of programming languages to do the

socket-layer programming to build the distributed object model, there are some available

technologies that can help simplify the network programming and realize component-

based software architecture. DCOM (Distributed Component Object Model) and CORBA

(Common Object Request Broker Architecture) are two popular distributed object models

that have emerged as standards (Chung et al., 1997).

"DCOM is the distributed extension to COM (Component Object Model) that

builds an object remote procedure call (ORPC) layer on top of DEC RPC to

support to remote objects.. . CORBA is a distributed object fiamework proposed

by a consortium of 700+ companies called the Object Management Group

(OMG). The core of the CORBA architecture is the Object Request Broker

116
(ORB) that acts as the object bus over which objects transparently interact with

other objects located locally or remotely." (Chung et al., 1997)

The motivation for the work that follows in this chapter is to explore how

technologies such as the distributed object model could be used to create a framework to

implement the control structures described in Chapters 5 and 6. And for this research, the

COM/DCOM approach was chosen since it is fairly well used, its specifications are fairly

well defined, and its software implementation is fairly well prescribed. It should be noted

though that any of the other methods mentioned above are equally valid for this type of

application. In the following sections, a distributed multi-agent control system will be

built, and the control and production processes will be modeled by using the

COMIDOCM technology and the discrete-event simulation software, Arena.

7.1 Brief Introduction to COM/DCOM

Component Object Model (COM) is a platform-independent, distributed, object-oriented

system for creating binary objects that can interact. COM is not an object-oriented

language, but a standard. It specifies the object model and programming requirements

that enable COM objects to interact with each other. "By specifying the COM standard

on a binary level, one can attempt to arrive at a standard that is independent of the

operation system, the transmission medium, and the computer language used for

implementation. Extending this with a binary protocol standard, object inter-operation

can be made hardware platform and location independent" (Sing et al. 1998). The

essence of COM is an agreed binary interface that is based on Remote Procedure Call

(RPC) technology with some wrappers that form the concept of objects and interfaces

between the objects (Bates 1999).

As is defined in the Microsoft Developer Network CD (1998), "A critical part of

COM is how clients and servers interact. A COM server is any object that provides

senices to clients. These services are in the form of implementations of COM interfaces

117
that can be called by any client who is able to get a pointer to one of the interfaces on the

server object. A COM client is whatever code or object gets a pointer to a COM server,

and uses its services by calling the methods of its interfaces. There are two main types of

servers, in-process and out-of-process. In-process servers are implemented in a dynamic

linked library (DLL), and out-of-process servers are implemented in an EXE file. Out-of-

process servers can reside either on the local machine or on a remote machine." A COM

object can play the role of a server, a client or both. All clients must interact with a COM

server through its interfaces.

Figure 7.1 represents a COM object. The object is represented by a box and its

interfaces are represented by plugs. Each COM object can have several interfaces. An

interface is a table of h c t i o n pointers, and it represents a well-defined binary contract

between the COM object and its client.

Figure 7.1 : A COM object diagram.

Conventionally, the interface on the top represents the IUnhown interface, which

is the base interface inherited by all other COM interfaces. The Nnknown interface

provides three functions (methods), namely AddRefO, Release0 and QueryInterfaceO.

AddRefO and Release0 are reference counting mechanisms for COM objects to manage

their lifetimes. Each COM object has an internal counter that holds the number of users

referencing the component. As suggested by its name, QueryInterfaceO is used by a

client to query if a COM server supports a particular interface. If it does, a pointer to the

required interface will be returned to the client. Since all COM interfaces are based on

IUnknowr., they must also implement the AddRefO, Release0 and QueryIntedaceO

118
methods. Therefore, given any interface pointer to an COM object, a client should also be

able to obtain any other interface supported by the object by calling Queryhterfaceo on

the existing interface pointer.

Distributed COM (DCOM) extends COM so that COM clients and servers can all

run on a single machine or be distributed across a wide area network.

7.2 Building a Distributed Manufacturing Control System with

COMLDCOM

7.2.1 Design Background

In order to enhance a control system's adaptability and flexibility against disturbances

such as machine failure or uncertain processing times, researchers have proposed the

real-time distributed scheduling and control approach for shop floor manufacturing

system (Duffie et al. 1994, Saad et al. 1997, Zhang et al. 1999). The most commonly used

distributed scheduling and control approach is to use the contract-net (Smith 1980)

auction-bidding protocol to allocate manufacturing resources to jobs. In such an

approach, when a job arrives, it will request machines in the system to submit bids for its

first operation. Upon receiving the job's request, machines that can perform the operation

will evaluate their task agenda, then reply to the job with a message containing

information such as the earliest time they can stadfinish the operation, and/or the number

of jobs that have already reserved the usage of the machines. The job will then evaluate

all the responses based on some criteria and choose a machine to reward the operation to

it. The job will confirm with the selected machine about the reservation, so that the

machine can allocate a time slot in its task agenda for the job. The job will repeat the

afore-mentioned procedures to find a machine for its remaining operations.

Due to the fact that in a heterarchical control system, entities use purely localized

information and all fonns of hierarchy are eliminated, heterarchical control resuit in

problems with global optimization and predictability of system behavior. In an attempt to

119
combine the best features of hierarchical ("top down") and heterarchical ("bottom up",

"cooperative") control structures, some researchers (Van Brussel et al. 1998, Bongaerts et

al. 1998, Zhang et a!. 1999) have proposed the Holonic Manufacturing concept to

preserve the stability of hierarchy while providing the dynamic flexibility of heterarchies.

Valckenaers et al. (1997a) have defined the Holonic Manufacturing System (HMS) as

"system components of autonomous modules and their distributed control. A holonic

manufacturing architecture shall enable easy (self-)configuration, easy extension and

modification of the system, and allow more flexibility and a larger decision space for

higher control level".

The following list of definitions are developed by the KMS consortium to help

understand and guide the translation of holonic concepts into a manufacturing setting

(Van Brussel et al. 1998):

+ Holon: An autonomous and co-operative building block of a manufacturing system

for transformation, transporting, storing and/or validating information and physical

objects. The holon consists of an information processing part and often a physical

processing part. A holon can be of another holon.

Autonomy: The capability of an entity to create and control the execution of its own

plans andor strategies.

Co-operation: A process whereby a set of entities develops mutually acceptable plans

and executes these plans.

Holarchy: A system of holons that can co-operate to achieve a goal or objective. The

holarchy defines the basic rules for co-operation of the holons and thereby limits their

autonomy.

A holonic control architecture also captures the concepts of aggregation and

specification. "Aggregated holons are defined as a set of related holons that are clustered

1 20
together and form in their turn a bigger holon with its own identity. As such, an

aggregation hierarchy is formed, which is open-ended at the top and at the bottom." and

"specification separates the holons with respect to their characteristics " (Van Brussel et

al. 1998). Although there is a rich literature on distributed (multi-agent) or holonic

control systems, most research is based on the architectural discussion, and few have

disclosed how modular control entities (agents or holons) can be built, distributed (across

a network) and integrated into a production control system. In this chapter, we will use

the above-mentioned distributed control approach and holonic concepts to build a shop

floor control system, and simulate the (distributed) control and production processes by

using the COMfDCOM technology and the discrete-event simulation software, Arena.

7.2.2 Experimental Model Design and Implementation

The characteristics of the production and control model are listed as follows:

1. The production system contains a number of manufacturing resources, which include

workstations and machines.

2. Each workstation or machine can offer a single type of operation.

3. Set-up time for each operation and transportation times for moving jobs between

manufacturing resources are ignored.

4. The processing order of a job's operations is not important.

The roles and responsibilities of different holons presented in our model are

described as follows:

121
Job holon - Each job is represented by a job holon, which is responsible for initiating the

auction-based bidding process to find the resources for the job's operations, and monitor

the job's production progress.

Station holon - A workstation can contain a number of homogeneous machines.

Therefore, a station holon's responsibilities are to assign tasks to the machines it

manages, to monitor the production progress of the machines and to response to the job

hoIon's bidding request.

Machine holon - It was pointed out in (Dilts et al. 1991) that the functional limitations of

some commercially available low-level controllers can prevent the application of

intelligent subordinate controllers. Therefore in our experimental model, we define two

types of machine holons, namely machSimp (the simple machine) holon and machInte1

(the intelligent machine) holon. As was disclosed in the previous sections, in order to

carry out the resource bidding process, each resource must have the capability to respond

to a job holon's bidding request. Machhtel holon represents the machine with the

controller that has the information processing and communication capability to

participate in a bidding process, and bears similar responsibilities as a station holon.

MachSimp holon represents the machine with a controller that can only perform simple

operation recording duties. As we will see in the later, the machsirnp holons are usually

aggregated with the station llolon to form a workstation. Figure 7.2 shows the

specialization of machine holon in the UML (Unified Modeling Language) notation. The

arrow with the hollow triangular end indicates that both the machSimp and machlntel

holons 'is-a' machine holon.

Machine Holon u

I MachSimp Holon I MachIntel Holon
I

i

Figure 7.2: Specialization of machine holon.

Mediator holon - The mediator holon is similar to the Yellow Page agent defined in

(Shen et al. 1999). It is responsible for registering the manufacturing resources in the

system, and responding to the job holon's query regarding which resource in the system

can perform a particular type of opreation.

Refening to the holon definition stated above, a holon consists of an information

processing part and often a physical processing part In our experimental model, the

information processing part of a holon is represented by a COM object, and the physical

part is represented by the corresponding entity in the simulated production system in

Arena. The COM diagram for the 5 holons mentioned above are shown in Figures 7.3 -

MEDIATOR

SetAttributeO

Figure 7.3 : The mediator COM diagram.

-

Figure 7.4: The job COM diagram.

IJob Attribute AddProcessO

Figure 7.5: The machIntel COM diagram.

Figure 7.6: The machsirnp COM diagram.

IMachSimp

STATION 0

RecS tartTime0

RecEndTirneO

Figure 7.7: The station COM diagram.

As we have mentioned earlier, each holon (except the meidator holon) represents

the controller of a corresponding manufacturing entity in the Arena model. In the

following, we will present an example to demonstrate the interaction model of the holons

and the production processes. In our example, the production system will contain the

following resources and job types:

1) A workstation (Station 100) contains 2 machines (Mach 10 and Mach 20 of

MachSimp type) and can provide the drilling operation.

2) A single machine (Mach 200 of MachIntel type) that can perform the milling

operation.

3) A single machine (Mach 300 of MachIntel type) that can perform the cutting

operation.

1 26
4) There are three job types. Each job has 2 operations and the processing order of the

operations is not important. Table 7.1 lists the operations for each of the job type.

Table 7.1 : Operation list for the 3 job types.

The production plant layout is shown in Figure 7.8. At the beginning of the

simulation,

Operation 2

Milling

Cutting

Cutting

Job t Operation 1

I) A mediator COM object is created.

Type A

Type B

Type C
i

2) A station and 2 machIntel COM objects are created.

- The attributes of the station and the machIntel objects (such as resource number,

fhction type) are set via the SetAttribute method.

- As one can see for the station object, there is an AddMach method in its

IStAttribute interface, this is for creating and initializing the (MachSimp)

machines that it contains.

Drilling

Milling

Drilling

3) The instantiated station and machhtel objects register with the mediator via the

AddResources method of its Mediator interface, so that the mediator will know what

resources are available in the system, and what h c t i o n each resource can offer.

4) A job COM object is created for each of the jobs introduced into the system.

1 27
- Since a job has to contact the mediator to query about the resource that can

perform its operations a job is informed about the existence of the mediator via

the AddMediator method of its IJobAttribute interface.

E
Mach 10 Mach 20

I I
ENTER

I

Figure 7.8: The production plant layout.

After the jobs and the manufacturing resources are instantiated, each of the jobs

will start finding the resources for their operations. From hereon, we will regard the

above-mentioned COM objects as holons. The resource reservation bidding processes are

as follows:

128
1) To find a resource for its next operation, the job holon will ask the mediator holon

(via the Finmesource method of its Mediator interface) which resources can do the

selected operation type.

2) The mediator holon answers the job holon with the corresponding resource address.

The job holon then contacts the resources (station or machIntel holon) for a quote

(when can it start the operation, how many queuing jobs are there now).

3) Since the processing sequence is not important for a job, a job holon will try to do an

operation that can start on a resource earliest. Therefore, the job holon repeats steps 1

and 2 for all of its remaining operations, and then select an operation with the

resource that has the best quote (can process the job earliest, or if there's a tie, the

second criterion will be the one with the least jobs in queue).

4) The job holon contacts the selected resource to add itself to the resource's reservation

list.

5) The job moves to the selected resource's location.

Referring to Figures-7.7 and 7.5, we can see that each station and machInte1 COM

object has to support an IResControl interface which provides the 'Quote' and 'AddJob'

methods for a job COM object to request for a quote and confirm the resource

reservation, respectively. When the mediator holon answers the job holon with the

address of the resource, the job holon doesn't need to know what the exact type of the

resource is. It will contact the resource through the same method (with the same

parameters) of the same interface (IResControl). This provides the robustness for using

different types of resource controllers. As long as the controllers support the IResControl

interface, how they implement the 'Quote' and 'Addlob' methods is irrelevant.

When it is time for a machine to start processing a job in the simulated production

system, the corresponding stationlmachInte1 holon will be notified. The station/machIntel

holon will then noti@ the job holon via its UobMonitor interface about the start of the

129
operation (so that a job holon can keep track of its production progress). For a macbtel

holon, it will then record the start time of the operation (for some statistical study

purpose). For a station holon, after contacting the job holon, it will delegate the operation

recording duty to its selected, contained machine (machsimp) holon. Figure 7.9 shows

the containment diagram of a station object. Since the (machsimp) machine holon (or

controller) has the capability to record the operation time (refers to Figure 7.6), therefore,

it will be reasonable for the station holon to delegate this task to its contained machSimp

holon (each machine contained in a workstation is represented by a machsirnp holon) via

the RecStartTime method of its IMachSimp interface. The same procedures are carried

out when a machine finishes an operation in the production system. Once again, one can

see that both the station and machIntel objects have to support the IResMonitor interface,

so that when the Arena application notifies the station/machIntel holon about the start/end

operation event, it doesn't need to know what exact type of resource it is communicating

with, even though the station and machInte1 holons implement the StartTask/EndTask

methods in different ways.

In the above, we have seen that how the different holons can interact with each

other to carry out the control of the production processes. After we have developed the

COM objects, we can actually distributed them over the network, and have them interact

with each other as described above to simulate the communication and co-operation of

the actually controllers distributed in a production plant. Figure 7.10 shows the layout of

our networking model. In our model, the Arena application was run on the same

computer as the mediator, job and mach 200 holons. The mach 300 and station 100

holons were distributed to another computer that was connected to the Arena computer.

The production simulation worked in the same way as described previously. To

monitor the status of the holons, we can have each holon log all its activities in a local

database. Since the job, machlntel, and machSimp holons all keep records of the

operation stadend times, we have each of the holon record the times in a local file (local

database). This local data can provide a channel for someone (such as centralized staff

controller) to check on the status of these holons at any instant of time at any location by

viewing the data through a browser. For example, to view the status of the mach 300 and

station 100 holons fiom the Arena computer, we launch an internet browser to view what

130
resources are running on the 'other computer' (as shown in Figure 7.1 1). Then to view

the status of the station 100, we just choose the WStation item. Figure 7.12 shows the

status of the station 100 at time 0. As we can see, at time 0, job 4 first joined the station,

and the machines of the station were idle at that time (JX indicates no job is loaded on the

machine). Then job 4 was loaded to mach 10 and job 3 arrived. Then job 3 was loaded to

mach 20 and job 1 joined the station. Since no machine was available then, job 1 stayed

in the queue (In our example, a number of jobs with job types A, B and C were created).

The Machimug Resources Status:

Figure 7.1 1 : The manufacturing resources on a network computer.

I St at ion Number = 100
Funct ion Type = Dr i i 1 ing

Jobs In Queue: J4
Job In Optrat ion: YachlD: JX Mach2O: JX

Current Time = 0
Jobs In Queue:
Job In Operat ion: MachlD: J4 Mach20: JX

Current Tioe = 0
Jobs In Queue: J 3
Job In Operat ion: MachlO: J4 Mach20 : JX

Current Tioe = 0
Jobs In Queue:
Job In Operat ion: Uachl0: J4 Mach20 : 13

Current Time = 0
Jobs In Queue: 31

Mach20 : J 3 Job In Operation: Kachl0: I4

Figure 7.12: The status of station 100 at time 0.

7.3 Conclusion

In this chapter, we have discussed how to develop the different control roles (or holons)

into the COM modules (objects) that can be easily distributed over a network of

computers. As one can see in the prcvious sections, it doesn't matter who takes what role.

But for a controller (holon) to take a particular role, the controller must have the

capability to fulfill the responsibilities of that role. This provides the flexibility and

robustness that for various controllers (servers) that support the same interface, other

controllers (clients) can communicate with these controllers via the same interface,

without having to differentiate their types, and different controllers can implement the

responsibilities in different ways. Also, it's easy to modify an entity's (controller's)

responsibilities by having it support/not support a certain interfaces. Referring to the

station and machS imp objects, it demonstrates the software reusable advantage wherein,

we can create an object that uses some of the functionality of an existing object without

duplicating that fhctionality in the new object.

With the help of object-oriented analysis and design technique, we can identify

the roles and responsibilities in a manufacturing control system, and then assign the roles

to the entities that have the capabilities to fulfill the corresponding responsibilities. These

(control) entities can be easily developed into COM objects, which can then be

distributed to work with whatever applications that need them (or distributed to other

researchers that might need to use or test the objects). "Rather than write large monolithic

object-oriented applications, you can write applications as small independent components

that can slot together to make a complete application. With a little extra work, your CU

objects can become COM objects. As COM objects, they are not as tightly tied to one

running process or computer as a conventional C++ object would be" (Bates 1999).

The other advantage of developing the manufacturing (control) entities as COM

objects is that some large industrial vendors such as GE Industrial System and Sisco, Inc.

already have the automation and control products that support the COM/DCOM

technology. Therefore, by using the COM/DCOM approach, we can close the gap

between the academic field and the manufacturing industry, and can also minimize the

135
logical (software) control model's development lead times, by facilitating the process of

shifting from the design phase to the implementation phase.

CHAPTER 8

CONCLUSION AND FURTHER RESEARCH

In this chapter, we will first provide a summary of the work carried out in this research,

as well as a discussion of the results in the context of the general research objectives.

Next we will discuss the contributions of this study and finally, provide a brief discussion

of W e r research possibilities.

8.1 Summary

In Chapter 4, to design a distributed scheduling and control system, instead of using the

'top-down' approach to determine the control agents first and then structure the

scheduling and control algorithms around these agents, we used the object-oriented

analysis and design approach to structwe the scheduling algorithm first. After identifLing

the roles (objects) that are involved in the scheduling processes, we identified the

possible control agent candidates fiom these roles, and control responsibilities were then

added to some of these control agents accordingly.

The use of the object-oriented methodology to decompose the control algorithms

can help decouple the software control model from any preconceived control structure.

For instance, after we have developed the logical scheduling model, we can implement

the scheduling software solution in a single (control) processor to implement the

centralized scheduling scheme. Or as we have done in Chapter 4, we can identify some

possible control agent candidates fiom the logical scheduling model, and implement the

scheduling solution in a distributed scheduiing and control structure. Moreover, using the

137
object-oriented approach to decompose the control algorithms can allow us to explore a

broader set of possible control agent candidates. "While some entities may prove

unnecessary, it's easier to cast the net broadly and leave some as stubs than to build an

architecture into which omitted entities cannot easily be added later" (Panmak et al.

1998a).

In Chapter 5, experiments were conducted to clarifjr the comsing concepts

regarding distributed scheduling and real-time distributed (dispatching) control, and to

identie the role of the 'control' mechanism in the control systems that use the distributed

scheduling approach to perform pre-production scheduling. The experimental results

have shown that while implementing the distributed scheduling algorithm for real-time

production control can enhance the control system's flexibility against disturbances,

sometimes it is hard to predict the behavior and performance of such control systems. On

the other hand, in control systems that use the distributed scheduling algorithm to

generate (predictive) pre-production schedules, although the distribute scheduling

approach can help enhance the scheduling performance through parallel computing (Dilts

et a[. 199 l), the experimental results have shown that in such control systems, it is still

important that the control agents should have the proper local control mechanisms to

react to disturbances in real time, so that the control system's adaptability against

disturbances can be enhanced.

Control issues are usually ignored in the current research that discusses the

distributed scheduling and control approaches. But refemng to our experimental results,

we can see that different control algorithms can have various impacts on the control

system's performance and communication requirements. For instance, in control systems

wherein the control agents do not have the proper local control mechanisms to react to

disturbances in real time, when disturbances happen, either the control agents will just

wait for the disturbances to pass (the WAIT approach), or a rescheduling process will be

invoked (the NO_WAIT approach). h the former case, the system performance will be

significantly degraded. And in the latter case, the communications between the control

agents will be increased due to the high rescheduling frequencies (especially in the

stochastic manufacturing environments).

138
Alternatively, in control systems wherein the control agents have the proper local

control mechanisms to react to disturbances in real time (the WAIT-INEL approach),

not only can the desirable system performance be achieved, but the communications

between the control agents can also be minimized.

Most of the research on multi-agent heterarchical control systems only deals with

dispatching the routing decisions, and ignores the job sequencing issues. As a result, most

of these control systems performed scheduling by jobs on a First-Come-First-Serve basis.

In Chapter 6, we have conducted experiments to investigate and test the impact of the job

routing and job sequencing control mechanisms on the control system's performance.

The experimental results have shown that while dispatching the routing decisions can

help enhance the control system's flexibility and adaptability against disturbances, it is

important to incorporate the job sequencing control mechanism in the control system so

that certain global performance objectives can be achieved.

The experimental results show that, in the control system wherein the job agents

will exploit the routing flexibility, when the production volume is low, the opportunistic

behavior of the jobs agents can help improve the system performance (by helping the jobs

find a 'shortest-time path' through the production system), and enhance the system's

adaptability against disturbances (by helping the jobs avoid the bottleneck 'down'

resources). But as the production volume increases, the production system has less

routing flexibility, and the job sequencing control mechanism becomes more important

(especially in production systems with high production volume). This is because the job

sequencing control mechanism can help enforce the cooperative behavior of the job

agents and ensure that certain global performance objectives can be achieved. That is,

while in contention for the use of certain resources, based on the global performance

objectives and the dispatching priority rules adopted, jobs with lower priority 'have to' let

jobs with higher priority to use the resources first.

As expected, the control system that implements both the job routing and job

sequencing control mechanisms (the AUC + JSEQ control approach) can best improve

the control system's performance and adaptability against disturbances. Although in the

AUC + JSEQ control approach, having resource agents use a dispatching rule to sequence

the jobs can violate the commitments between the resource agents and some of the jobs.

139
Our experimental results have shown that this did not affect the system performance

much (compared to the COMT + AUC + JSEQ control approach, wherein the job agents

will be notified whenever their 'quoted start time' is changed so that they can explore

other routing opportunities). Therefore, in control system that implements the job

sequencing and job routing control mechanisms, it is sometimes justifiable to

compromise some of the commitments between the workstation agents and the job agents

in order to achieve certain global performance objectives and minimize the

communications between the control agents (compared to the COMT + AUC + JSEQ

control approach).

As some researchers have proposed that control algorithms should be compared

on a common testbed, it will be helpful if researchers can built their control modules as

some platform-independent so h a r e components that can be easily distributed across the

network and integrated into some other control systems. In Chapter 7, we have shown

that by using the COM/DCOM technology to build some control modules, we can easily

distributed them across the network to implement the simulated distributed shop floor

control system. By using the COM/DCOM technology to implement the control

algorithms, this provides an opportunity for researchers to explore the possibility of

developing some control modules with standardized inte~ace, so that these control

modules can easily be distributed across the network. This allows researchers to easily

integrate some of their peers' work into their own control model to test or validate some

of the proposed control modules.

8.2 Contributions

Through the work in this thesis, it is believed that this study can contribute to the research

in manufacturing system control in the following areas:

- To provide some insights regarding the decomposition approaches for various

control methodologies. The work in Chapters 2 and 4 has shown that the use of

the object-oriented analysis and design approach to structure control algorithms

140
can help decouple the software control model from any preconceived control

structure. Moreover, this approach can allow us to explore a broader set of

possible control agent candidates when designing a distributed control system.

- In Chapter 5, experiments were conducted to clarify the confusing concepts in

current research regarding the 'distributed scheduling' and 'real-time distributed

control'. Due to the confusion of these concepts, many researchers have ignored

the control issues while discussing the distributed scheduling and control systems.

In this study, we have identified the role and importance of the 'control' algorithm

in the control systems that using the distributed scheduling approach to perform

pre-production scheduling.

- Most work in the multi-agent heterarchical control system only deals with

dispatching the routing decisions, and ignores the job sequencing control. As a

result, most of the proposed control approaches performed scheduling by jobs on

a First-Come-First-Serve basis. In this study, we have given some insights

regarding how the job routing and job sequencing control mechanisms can affect

the contro 1 system's performance in various manufacturing environments.

- In Chapter 7, we have shown that by using the COM/DCOM technology to build

control modules, we can easily distributed them across the network to implement

the simulated distributed shop floor control system. This provides researchers an

opportunity to explore the possibilities of enhancing the collaborations between

each other by building some platform independent s o h a r e that can be easily

distributed to and evaluated by other researchers.

8.3 Further Research Directions

141
In this study, we have shown that using the object-oriented methodology to decompose

the control algorithms can help decouple the software control model fkom any

preconceived control structures. This allows researchers to implement certain control

algorithms in various control forms, and an objective comparison of the alternative

control methodologies can then be made. In Chapters 5 and 6, experiments were

conducted to evaluate the performance of various control methodologies in different

manufacturing environments. Although the experiments conducted here do not represent

an exhaustive evaluation of the alternative control forms or algorithms for a multi-agent

control system, experirnenta1 results show that the performance of a control approach can

be affected by the characteristics of a manufacturing environment. This shares similar

views with the work of some other researchers in manufacturing control. For instance, in

(Brennan 1996), it has mentioned that:

'The hypothesis concerning the best choice of control architecture is that the

'best' choice of control architecture is a fimction of the controlled system's

characteristics".

Therefore in fbture research, while proposing or evaluating alternative control

approaches, researchers not only should identi@ the characteristics of the manufacturing

environment wherein a control approach is implemented, but efforts should also be made

to identify the parameters that might sect the validity or the performance of the

alternative control approaches. This can help open the opportunity for the development

of some intelligent control systems, wherein control agents will be able to select the

appropriate control algorithms to use in real time based on their knowledge of the current

status of the manufacturing environment.

The use of the object-oriented methodology can help facilitate the development

and evaluation of alternative control approaches. For instance, as discussed in this study,

the logical software objects can be organized into different control modules to

implement/evaluate various control forms. The abstraction and encapsulation properties

of the object models allow us to modify the implementations of a control agent's control

Iogic/method easily, and the modifications will be transparent to the other control agents

142
that interact with it (as long as the communication interface is not changed). And as

discussed in Chapter 7, by using the C O W O M technology to build control modules,

we can easily distribute them across the network. With such an approach, the

collaborations between researchers can be enhanced in a way that researchers can easily

integrate each other's proposed/developed COM control modules into their own control

models to test or validate the alternative control algorithms. But if the COM/DCOM

approach is to be adopted by researchers to develop the software control modules, fiuther

research needs to be done in the area of developing some standards (or design patterns)

for designing the COM object interfaces in the context of manufacturing control systems.

Finally, in future research, when modeling different control approaches, efforts

should also be made to investigate what control resources are currently availabIe in

industry, and what are the computation limitations, reliability and cost of these resources.

As by incorporating these factors into the modeling and evaluation of the alternative

control approaches can make the research results be more realistic. As well, it can

facilitate the shifting fiom the academic practice into the industrial practice, as the

analysis of the justification of the expense and risk of installing the altemative control

systems can be incorporated into the research results.

143
REFERENCES:

1) Baker, A. D., "A Survey of Factory Control Algorithms which Can be Implemented

in a Multi-Agent Heterarchy", Journal of Manufacturing Systems, April 9, 1997.

2) Bates, Jonathan, "Creating Lightweight Components with ATL", SAMS, 1999.

3) Bauer, Bowden, Browne, Duggan and Lyons, "Shop Floor Control Systems- From

design to implementation", Chapman & Hall, 1994,

4) Bongaerts, L. Monostori, D. McFarlane, B. Kadar, "Hierarchy in distributed shop

floor control", accepted for IMS-EUROPE 1998, the First Open Workshop of the

Esprit Working group on IMS, Lausanne 15-1 7 April 1998.

5) Bonagerts, L., "Integration of Scheduling and Control in Holonic Manufacturing

Systems", (98D 1 I), http://www . mech. kuleuven.ac.be/-lbongaer/doc/abstr.html,

doctoral dessertation, 1 998.

6) Booch, Grady, "Object-Oriented Analysis and Design with Applications", 2"*

Edition, Addison-Wesley, 1 994.

7) Brennan, R. W., "Appropriate Control Architecture for Automated Manufacturing

Systems", the doctoral dissertation, Department of Mechanical Engineering of the

University of Calgary, December 1 996.

8) Chung, P. E., Huang, Y., Yajnik S., Liang, D., Shih, J., Wang, C. Y., Wang, Y. M.,

"DCOM and CORBA Side by Side, Step by Step, and Layer by Layer",

htt~://~.cs.wustl.edu/-schmidt/submitlPaer. I , 1997.

1 44
9) Cavalieri, S., Luc Bongaerts, Marco Macchi, Marco Taisch, Jo Wyns, "A Benchmark

Framework for Manufacturing Control", Proc. of the Second International Workshop

on Intelligent Manufacturing Systems, Leuven, September 22-24, 1999.

10) Conway, R. W., Maxwell, W. L., and Miller, L. W., 'Theory of Scheduling'?,

Addison- Wesley, 1 967.

11) Dilts, D. M., N. P. Boyd, H. H. Whorms, "The evolution of control architectures for

automated manufacturing systems", JournaI of Manufacturing Systems, Vol. 10, No.

1, pp- 79-93, 199 1.

12) Duffie, N. A., R.S. Piper, B. J. Humphrey and J. P. Hartwick Jr., "Hierarchical and

non-hierarchical manufacturing cell control with dynamic part-oriented scheduling",

Proceedings of NAMRC-XIV, 1-4, 1986.

13) Duffie, N. A., V. V. Prabhu, "Real-time distributed scheduling of heterarchical

manufacturing systems", Journal of Manufacturing Systems, Vol. 13, No. 2, pp. 94-

107, 1994.

14) French, S., "Sequencing and Scheduling: An introduction to the Mathematics of the

Job-Shop", Ellis Horwood, 1990.

15) Lannan, G., "Applying UML And Patterns, An Introduction To Object-Oriented

Analysis and Design", Prentice Hall, 1997.

16) Jacobson, I., Christerson, M., Jonsson, P., and Overgaard, G., 1992, "Object-oriented

Software Engineering", Workingham, England, Addison- Wesley, p. viii.

1 7) Microsoft Developer Network (MSDN) Library, April 1998.

145
1 8) Maturana, F., and Norrie, D. H., "Multi-Agent Mediator Architecture for Distributed

Manufacturing", Journal of Intelligent Manufacturing, v.7, pp. 257-270, 1996.

19) Parunak, H. V. D., "Manufacturing Experience with the Contract Net", In M. N.

Huhns, ed., Distributed Artificially Intelligence, Pitman, 285-3 10, 1987.

20) Parunak, H- V- D-, "Autonomous Agent Architectures : A Non-Technical

Introduction", htt~://www.eri m .or.e/-van/nontech.t>dZ 1 993.

2 1) Parunak, H. V. D., "Applications of distributed artificially intelligence in industry",

Industrial Technology Institute, 1 994.

22) Parunak, H. V. D., "Case Grammar: A Linguistic Tool for Engineering Agnet-Based

Systems", IT1 Technical Memorandum, t~ ttp://www.iti.orq/-van/case_qram.ps,

Industrial Technology Institute, Ann Arbor, 1 995.

23) Parunak, H. V. D., "Case Grammar: A Linguistic Principles fiom Natural Agent

Systems", Annals of Operations Research, 1998.

24) Parunak, H. V. D., John, S., and Steve, C., 'Toward the Specification and Design of

Industrial Synthesis Ecosystems", the Fourth International Workshop on Agent

Theories, Architectures, and Languages (ATAL 2 997).

25) Parunak, H. V. D., "What can agents do in industry, and why? An o v e ~ e w of

industrially-oriented R&D at CEC", CIA, 1998A.

26) Parunak, H. V. D., Baker, A., Clark, S., "The AARIA Agent Architecture: From

Manufacturing Requirements to Agent-Based System Design", Workshop on Agent-

Based Manufacturing, ICAA 1 998b.

146
27) Ramaswarny, S. E., Joshi, S. B., "Distributed Control of Automated Manufacturing

Systems", in Proceedings of 27h CIRP International Seminar on Manufacturing

Systems Proceedings, Ann Arbor, MI, May 2 1-23, 1995.

28) Rubin, k., and Goldberg, A., "Object Behavior Analysis", Communications of the

ACM, vol. 35(9), p. 48, September 1992.

29) Rumbaugh, J., Blaha, M., Premerlani, W ., Eddy, F., Lorensen, W ., "Object-oriented

Modeling and Design", Englewood Cliffs: Prentice Hall, 199 1.

30) Saad, A., G. Biswas, K. Kawamwa, E. M. Johnson, b'Effectiveness of dynamic

rescheduling in agent-based flexible manufacturing systems", SPIE Vol. 3203, pp.

88-99,1997.

3 1) Shen, W., Nome, D.H., and Kremer, R., (1999) " Developing Intelligent

Manufacturing Systems Using Collaborative Agents", Proc. of the 2nd International

Workshop on Intelligent Manufacturing Systems, Leuven, Belgium, pp. 157-166,

September 22-24, 1999.

32) Shen L., Brennan, R. W., Norrie, D. H., "Agent classification in manufacturing

systems7', the IASTED International Conference on Artificial Intelligence and Soft

Computing (ASC'2000), Banff, Canada, July 24-26,2000.

33) Simpson, J. A., R. J. Hocken, J. S. Albus, 'The automated manufacturing research

facility of the National Bureau of Standards', Journal of Manufacturing Systems, Vol.

1, No. 1, 1982, pp. 18-31.

34) Sing Li, Panos Economopoulos, 'Trofessional COM Applications with ATL", Wrox

Press Ltd., 1998.

1 41
35) Sipper, D., R. L. Bulfin, Jr., 'Production planning, control, and integration",

36) Smith, R. G., "The Contract Net Protocol: High-Level Communication and Control in

a Distributed Problem Solver", E E E Transactions on Computers, vol. c-29, No. 12,

December 1980.

37) Sousa, P., Carlos Ramos, "Proposal of a Scheduling Holon for Manufacturing",

Proceedings of the second International Conference and Exhibition on The Practical

Application of Agents and Multi-Agent Technology (PAAM'97), London, pp. 255-

268, UK, 2lSt to 23" April 1997.

38) Valckenaers, P., H. V. Brussel, L. Bongaerts, J. Wyns, "Holonic Manufacturing

Systems", Integrated Computer Aided Engineering, Vol. 4: 1 9 1-20 1, 1 997a.

39) Valckenaers, P., H. V. Brussel, L. Bongaerts, P. Peeters, "Reactive Scheduling in

Holonic Manufacturing Systems: Architecture, Dynamic Model and Co-operation

Strategy7, http://www.mech.kuleuven.ac. b e / - l b o n e a e d r l , 1 99%.

40) Van Brussel, H., Jo Wyns, Paul Valckenaers, Luc Bongaerts, Patrick Peeters,

"Reference Architecture for Holonic Manufacturing Systems: PROS A", Computers

in Industry 37, pp. 255-274, 1998.

41) Veeramani, D. and Wang, K. J., "A Flexible Auction-based Shopfloor Control

Paradigm for Highly-Distributed Manufacturing Systems", 1 998.

42) Voris, W., "Production Control Text and Cases", Richard D. Irwin Inc., third edition,

1966.

43) Wooldridge, M. J., and Jennings, N. R., "Software Engineering with Agents: Pitfalls

& Pratfalls", IEEE Internet Computing, May/June 1999, pp. 20-27.

44) Zhang, X., Norrie, D. H., "Holonic Control at the Production and Controller Level'',

Proc. of the 2" International Workshop on Intelligent Manufacturing Systems,

Leuven, Belgium, pp. 21 5-224, September 22-24, 1999.

