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Abstract 

This research proposes to modify the C++ programming language to make it eas-

ier to define reliable, type-safe, user-defined, cooperative garbage collectors using 

smart-pointer classes. The major changes: 

• allow smart pointers to act as "this" pointers in member functions, 

• require the compiler to emit warnings when dangerous uses of smart pointers 

are detected, 

• restrict the use of some compiler temporaries, and 

• modify the rules governing the conversion of one smart-pointer class to an-

other. 

Most of the proposed changes have been implemented in a C++ compiler. The 

modified compiler was used to implement a list-processing benchmark that uses a 

simple garbage collector and smart-pointer classes. The benchmark shows that the 

run-time cost of using smart pointers is non-trivial and suggestions are made that 

should improve this performance substantially. An algorithm is also described that 

coordinates the activities of many collectors in an application, in order to reclaim 

cycles of objects that span garbage-collected heaps. The main conclusion of this 

research is that it is practical to modify the C++ language to support reliable, type-

safe user-defined, cooperative garbage collectors that use smart pointer classes. 
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Chapter 1 

Introduction 

Programming languages such as Pascal, C, and PL/1 manage the memory in their 

dynamically-allocated heap manually, so programmers using these languages are 

responsible for identifying to the memory manager those regions of memory that 

are no longer in use. The memory manager then reclaims and reuses these re-

gions. Other languages such as Lisp, Smalltalk and ML, use automatic memory 

management to identify reusable region's of memory, thus relieving programmers of 

this responsibility. The term garbage collection denotes the class of algorithms for 

automatic memory management. 

Garbage collection simplifies applications development.by eliminating program-

mer errors arising from premature or belated memory reclamation. If a programmer 

reclaims and reuses a block of memory too soon, code that later needs the infor-

mation in that block malfunctions. If a programmer reclaims a block- of memory 

too late, the application may malfunction when it runs out of memory because not 

enough memory could be reused. Both problems are difficult to diagnose because 

their effects are not usually observed until long after the problem code executes. 

These errors are commonplace in large, complex applications like compilers, 

computer-aided design systems and artificial-intelligence systems. All these systems 

use complex data structures in which each component object may be referred to 

by many other objects. It is difficult to determine when the memory occupied by 

an object can be reclaimed safely, because it is difficult to determine whether the 

application can or will ever again refer to the object in question. Garbage collection 

eliminates the problem of keeping track of in-use objects by reclaiming an object 
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exactly when there is reason to believe that the object will never again be used by 

the application. 

The C++ programming language [Stro85] [Stro89] [ElSt9O] was designed as an 

extension of the C programming language [KeRi88] and was intended to simplify 

the construction of large, complex applications. Initially however, C++ supported 

only manual memory management. Subsequently, a number of garbage-collection 

schemes were proposed for the language. The research reported in this thesis builds 

on this work and proposes changes to the C++ language that further improve 

support for garbage collection. 

The remainder of this thesis assumes that the reader has a programmer's knowl-

edge of the C++ language. Readers without this background are directed to the 

summary of the language in the Appendix. A more detailed introduction to C++ 

can be found in [Stro85]. This thesis does not however, assume that the reader is 

familiar with techniques for implementing C++ compilers. These techniques are 

introduced in the thesis as they are encountered. 

1.1 Fundamentals of Garbage Collection 

All modern garbage collection algorithms represent a collected heap - a region of 

memory managed by a garbage collector - as a directed graph such as the one in 

Figure 1.1. Objects in the graph occupy memory and pointers link objects in the 

graph to each other. The discussion in this thesis uses the following terminology 

when referring to objects in a collected heap. 

• A root pointer is a pointer located outside of the collected heap that refers 

to an object in the heap. In C++, pointers that are automatic' variables, 

static variables or variables allocated in a manually-managed heap are all 

root pointers. In Figure 1.1, the pointers ri, r2 and r3 are root pointers. 
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• An Internal pointer is a pointer located in an object in the collected heap 

that refers to an object in the heap. The pointers ii through i6 are internal 

pointers. 

• An object is said to be reachable from some pointer if there is a path through 

the directed graph from the pointer to the object. An object a is said to be 

reachable from some other object b, if a is reachable from an internal pointer 

of b. For example, the object 02 is reachable from the root pointer ri via ii 

in 01, and 03 is reachable from 02 via i3. An object is unreachable from a 

pointer if there is no path through the graph from the pointer to the object. 

• A subgraph is the subset of a directed graph that is reachable from some 

pointer. A cycle is a set of objects 01,..., O, where each object Oi contains 

a pointer that points to the next object ° j+1, and the last object contains 

a pointer that points to the first object. In the figure, 04 and 05 form 

a cycle containing two objects. A cyclic subgraph is a cycle of objects and 

the subgraph of all objects reachable from the objects in the cycle. In the 

example, 04, 05, and 06 form a cyclic subgraph. Some garbage collectors 

must take special measures to reclaim cycles and cyclic subgraphs. 

The fundamental principle of all garbage collectors is this: in a collected heap, 

objects that are reachable from root pointers rare in use, and the memory occupied 

by objects that are not so reachable may be reclaimed and reused. In Figure 1.1, the 

unshaded objects are in use, because they are reachable from root pointers. The 

shaded objects are not in use because they are not reachable from root pointers. 

The shaded objects may be reclaimed by a garbage collector. 

Modern garbage-collection techniques fall into two categories: cooperative and 

conservative collectors. Cooperative garbage collectors rely on the cooperation of 

an outside agent such as the programmer or the compiler. This agent cooperates 

with the collector either by identifying to the collector the locations of pointers, 
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or by manipulating pointers specially as the application executes. Conservative 

collectors rely on no such cooperation. These collectors are discussed in more 

detail in Sections 2.1 and 2.2. 

1.2 c++ Garbage Collectors That Use Smart Pointers 

Cooperative garbage collectors rely on the cooperation of an outside agent when 

pointers are created and destroyed, and sometimes when one pointer is assigned to 

another. In principle, it could be possible for programmers to use operator over-

loading mechanisms in C++ to call cooperation functions automatically whenever 

a pointer is created, destroyed, or assigned to. In practice, this is impossible be-

cause the C++ overloading mechanism cannot change the behavior of primitive 

data types such as pointers. This is arguably 'a good thing," since modifying the 

behavior of primitive types would make C±+ programs extremely difficult to under-

stand. C++ overloading mechanisms can be applied only to programmer-defined 

data types like classes and structures. 

Fortunately, it is possible to design a C++ class that acts very much like a 

pointer and that can use overloading mechanisms to cooperate with a garbage 

collector. A class can he made to act like a pointer by overloading the C++ 

indirection operators ->, *. and C]. An object of such a class can be used just as if it 

were a pointer because all of the operations that are defined for pointers are defined 

for the class. Furthermore, because classes are programmer-defined data types, it 

is possible to define garbage-collector cooperation functions that are automatically 

called when an object is created, destroyed, or assigned to. These functions are 

called constructors, destructors, and overloaded assignment operators, respectively. 

C++ classes with overloaded indirection operators can be used as if they were 

pointers and can be extended in ways that are impossible for pointers. These classes 

are therefore called smart-pointer classes and instances of these classes are called 

smart-pointer objects, or simply smart pointers [Stro87a]. The remainder of this 
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thesis uses the phrase C++ pointers as a shorthand for the phrase "primitive pointer 

types," in order to distinguish primitive pointer types from smart-pointer classes. 

A garbage collector based on smart pointers is called a user-defined, cooperative 

garbage collector because all aspects of the collector - from the garbage-collection 

algorithm to the cooperation mechanism - can be written by individual C++ 

programmers. 

Since C++ already provides mechanisms that allow programmers to create mul-

tiple manually-managed heaps, it may seem straightforward to use these mecha-

nisms to allow programmers to create additional heaps that are managed by user-

defined, cooperative collectors. However, programmers using these heaps must take 

care to use only smart pointers to refer to collected objects because only smart' 

pointers cooperate with the appropriate collectors. For example, in Figure 1.2, P is 

a C++ pointer that refers to a collected object in some garbage-collected heap, and 

SF1 and SF2 are smart pointers referring to collected objects in the same heap. If 
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the garbage collector for the heap is called in this situation, it will identify 01, 02, 

and 03 as being in use, because they are reachable from the root pointers SF1 and 

SF2. However, since F is a C++ pointer, no cooperation functions have identified 

it to the collector as a root pointer. The collector therefore does not recognize the 

subgraph reachable from P as being in use. This causes the collector, incorrectly, 

to reclaim the memory occupied by 04 and 05. In the existing C++ language 

it is very difficult for even a determined programmer to prevent this malfunction 

by preventing the creation of C++ pointers that refer to objects in cooperatively-

collected heaps. This research proposes changes to the C++ language that solve 

this problem. 

1.3 Contributions of This Research 

For some time, users of the C++ programming language have asked the language's 

designers to improve support for garbage collection. The ANSI' X3J16 commit-

tee is charged with standardizing the C++ programming language and has re-

cently invited proposals for the addition of garbage collection to the standard lan-

guage [gc90]. Ideally, these proposals will augment the draft ANSI C++ standard 

to support both conservative and cooperative collectors, since, as will become clear 

in Chapter 2, the two kinds of collectors have complementary strengths and weak-

nesses. Conservative collectors are comparatively simple to implement and work 

well in mixed-language environments. Cooperative collectors tend to be more com-

plex and have some difficulty with mixed-language environments, but reclaim more 

memory than do comparable conservative collectors and can be used in applications 

that move objects from one location to another in memory. 

Currently, the C++ language supports conservative collectors fairly well, and 

work is in progress that will suggest small changes to the language to further en-

hance this support [gc90]. However, the existing language offers little support for 

'American National Standards Institute 
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cooperative collectors. This research improves support for certain user-defined, 

cooperative garbage collectors by proposing changes to the C++ programming lan-

guage. The research advances the understanding of these collectors in a number of 

ways: 

1. it surveys problems with existing support for user-defined, cooperative garbage 

collectors, 

2. it proposes changes to the language that would allow programmers to imple-

ment reliable, convenient and type-safe cooperative collectors, 

3. it demonstrates that these changes can be implemented in conventional C++ 

compilers by implementing the majority of the changes in a C++ to C trans-

lator that is the foundation of a large number of commercial C++ compilers, 

4. it demonstrates that the resulting, language makes the construction of user-

defined, cooperative garbage collectors more convenient and more reliable 

than does the existing language, 

5. it points out run-time performance problems that may affect simple user-

defined, cooperative collectors, and suggests strategies for eliminating these 

problems, and 

6. it proposes a solution to a specific problem that may affect C++ applications if 

user-defined garbage collectors become commonplace - namely the problem 

of reclaiming cycles of objects that span garbage-collected heaps. 

1.4 Synopsis of the Thesis 

The remainder of this thesis describes garbage-collection techniques in general and 

describes existing garbage collectors for the C++ language. It then surveys prob-

lems in the C++ language that affect user-defined, cooperative collectors whose pri-

mary cooperation mechanism is smart-pointer classes. These problems are solved 
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by proposing changes to the C++ language - changes that make it easier to define 

reliable, type-safe, user-defined, cooperative garbage collectors using smart pointer 

classes. The major changes: 

• allow smart pointers to act as "this" pointers in member functions, 

• require the compiler to emit warnings when: dangerous uses of smart pointers 

are detected, 

• restrict the use of some compiler temporaries, and 

• modify the rules governing the conversion of one, smart-pointer class to an-

other. 

Most of the proposed changes have been implemented in a C++ compiler. The 

modified compiler was used to implement a list-processing benchmark that uses 

a simple garbage collector and smart-pointer classes. The benchmark shows that 

the run-time cost of using smart pointers is non-trivial and suggestions are made 

that should improve this performance substantially. This thesis then shows that if 

user-defined, cooperative garbage collectors based on smart pointers become com-

monplace, then cycles of objects that include objects in more than one garbage 

collected heap become possible. These cycles cannot be reclaimed by conventional 

garbage-collection techniques and an algorithm is described that coordinates the 

activities of many collectors in order to reclaim these cycles. The main conclusion 

of this research is that it is practical to modify the C++ language to support reli-

able, type-safe, user-defined, cooperative garbage collectors that use smart-pointer 

classes. 



Chapter 2 

Related Research 

This chapter reviews garbage-collection research and compares four concepts in 

garbage-collector and language design: 

• cooperative versus conservative collectors, 

• compacting versus noncom pacting collectors, 

• one kind of pointer versus two kinds of pointers in cooperati'ely-collected, 

Algol-like languages, and 

• programmer-defined versus implementation-defined garbage collectors. 

These concepts can be combined more or less orthogonally in a single collector, 

as is illustrated in Figure 2.1. In the figure, the shaded regions indicate those 

combinations of concepts that "make sense." The advantages and disadvantages 

of each concept are discussed and are summarized in Section 2.5 at the end of this 

chapter. It is found that most of these concepts are appropriate to C++, excepting 

only cooperative collectors based a single kind of pointer. 

2.1 Cooperative Garbage Collectors 

Cooperative algorithms are the oldest and best understood of garbage-collection al-

gorithms. These algorithms were used in early garbage-collected languages such as 

Lisp [Mcar6O], Algol 68 [BrLe7O] and Simula [Arnb72] and are still used today. Co-

operative algorithms rely on the assistance of an outside agent, usually the compiler, 

to identify or specially treat the root pointers of the directed graph representing a 

collected heap. Cooperative algorithms can loosely be classified as either mark-and-

sweep algorithms, two-space-copying algorithms, or reference-counting algorithms. 

10 
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Figure 2:1: Garbage-Collector and Programming-Language Design Concepts 

Each of these kinds of algorithms is discussed in turn and the section concludes 

with a discussion of the strengths and weaknesses of cooperative algorithms. A 

comprehensive survey of cooperative algorithms developed before 1980 is available 

in Cohen's survey paper [Cohe81]. The discussion in this section summarizes the 

work in this large field. 

2.1.1 Mark-and-Sweep Algorithm 

The mark-and-sweep algorithm [Mcar60] [Knut73] reserves one bit called the mark 

bit in each object in the garbage-collected heap. When the garbage collector is 

activated, it visits each root pointer. The mark bit in the target of the pointer is 

set, and if the mark hit was originally clear, the algorithm recursively visits each 

internal pointer in the marked object. At the end of this process, the mark bit has 

been -set in all objects reachable from root pointers. The algorithm then sweeps 



12 

the collected heap, visiting each object 'in the heap. Objects whose mark bits are 

clear are deemed garbage and are reclaimed. Adjacent garbage objects are usually 

collapsed into a single large object and these objects are added to a list of reusable 

objects. Sweeping also clears the mark bits in all objects in preparation for the 

next collection. 

Many variations of this basic mechanism have been described in the literature. 

The algorithm described above is recursive 'in the marking phase and so requires 

a potentially large stack for this phase. Several methods have been proposed to 

eliminate the need for a stack [Cohe81]. 

The algorithm also suffers because a heap managed by a mark-and-sweep col-

lector may be fragmented. A heap is said to be fragmented when it contains more 

than one free block. The disadvantage of a fragmented heap is that even though 

the heap may contain enough free memory to satisfy a memory-allocation request, 

the request may fail because no contiguous region of free memory is large enough 

to satisfy the request. A number of post-compacting algorithms address the frag-

mentation problem by appending a compacting phase to the basic mark-and-sweep 

algorithm [Cohe8l]. This phase is activated after or instead of the sweeping phase. 

The purpose of the compacting phase is to move all reachable objects in the col-

lected heap into a contiguous region of memory within the heap, leaving a single 

contiguous region for future allocation requests. 

Compacting algorithms must carry out pointer-adjustment. When objects in 

the heap are moved, all pointers that refer to the moved objects must be adjusted 

to refer to the new location of the objects. This requirement affects the kind of 

cooperation required by a garbage collector. Noncompacting collectors only need 

to be able to identify at least one pointer to each in-use object in the collected 

heap. Applications using noncompacting collectors can take advantage of this by 

not registering short-lived copies of pointers to the collected heap. However, a 

compacting collector must be able to identify all pointers that refer to in-use objects 
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in the collected heap in order to adjust these pointers when their target object is 

moved. 

2.1.2 Two-Space-Copying Algorithms 

The two-space copying algorithm is a compacting garbage-collection algorithm. It 

is based on an elegant algorithm by Cheney for moving a LISP-like list structure to 

a contiguous region of memory {Chen7O]. The algorithm can be trivially extended 

to move a subgraph of objects reachable from some pointer p into a contiguous 

region of memory. This version of the algorithm is described below. 

The two-space-copying algorithm divides the collected heap into two contiguous 

regions as illustrated in Figure 2.2 {Arnb72}. One of these regions is called new-
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space and is initially empty. Memory allocation takes place in the other region, 

called old-space. When activated, the garbage colletor uses Cheney's algorithm 

to move all in-use objects in old space into a contiguous region in new-space. It 

does this by visiting all of the root pointers and copying into new-space the objects 

to which the root pointers refer. The newly-copied objects in new-space are then' 

scanned, and the internal pointers in these objects are similarly visited. 

When a collector using Cheney's algorithm ' isits a pointer p, the collector marks 

as "in use" the old-space object o that is p's target. If o was not already marked, the 

collector copies o to the next free location in new-space, thus creating a new-space 

copy n of o. The collector then stores a forwarding pointer in o. The forwarding 

pointer refers to n, the new-space copy of o and thus links the old-space object 

o with its new-space copy n. To complete processing of p, the collector replaces 

the value of p with a copy of the forwarding pointer in o, the object to which p 

refers. Since the forwarding pointer always refers to the new-space copy of o, this 

pointer adjustment of p ensures that after p is visited, it refers to an object in 

new-space. Alter visiting all root pointers in this way, the collector has copied all 

of their targets to new-space and has adjusted all the root pointers to refer to the 

new-space copies of their original targets. 

After visiting all root pointers, Cheney's algorithm scans all objects in new-

space, visiting each 'internal pointer in these objects just as root pointers were 

visited above. When the scan of an object is complete, the pointers in that object 

refer to copies of objects in new-space. When the scan of objects in new-space is 

complete, the entire subgraph reachable from the root pointers has been copied into 

new-space, and each internal pointer in these objects has been adjusted to refer to 

the new-space copy of its original target. At this point the collector reverses the 

new/old-space designation and the application resumes execution, allocating new 

objects in the "new" old-space. The "old" old-space is not used until the next 

collection, when it will be used as new-space. 
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The two-space-copying algorithm is used extensively in implementations of gar-

bage collectors for machines with virtual memory because it visits only in-use ob-

jects. In contrast, the mark-and-sweep algorithm visits all objects during its sweep-

ing phase and so incurs a significant real-time cost as the pages containing garbage 

objects are fetched from secondary storage. The chief drawback of the two-space-

copying algorithm - that it permanently reserves one half of memory from use by 

the application - is also reduced in virtual memory since it usually costs very little 

to double the amount of virtual memory available to an application. 

2.1.3 Reference-Counting Algorithms 

Reference-counting algorithms [Coll6O] monitor the number of pointers that refer 

to a given object. This is usually accomplished by reserving space in each object to 

hold this reference-count number. Every time a pointer is made to refer to a object, 

that object's count is incremented. Every time a pointer is modified so that it no 

longer refers to a object, that object's count is decremented. When the reference 

count field in a object becomes zero, that object is unreachable from any pointer 

and can be immediately reclaimed. 

Reference counting differs from two-space-copying and mark-and-sweep algo-

rithms in the kind of cooperation required from an outside agent. Reference-

counting algorithms need to manipulate reference counts every time any pointer 

is changed while the application is executing, while two-space-copying algorithms 

and mark-and-sweep algorithms need to identify root pointers and internal pointers 

at the time of a garbage collection. This means that optimizations developed for 

one kind of cooperation mechanism are not easily applied to the other. 

Reference-counting mechanisms have some difficulty dealing with overflows of 

reference-count fields and with cyclic subgraphs. When a reference-count field over-

flows, it is no longer possible to say precisely how many references to the affected 

object exist. Therefore, such objects can never be reclaimed. When this problem 
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occurs in an implementation, it can be corrected in one of two ways: 

1. the reference-count field can be made large enough to count all of the pointers 

in the virtual address space of the application, thus eliminating the possibility 

of overflow, or 

2. the reference-counting collector can be augmented with a mark-and-sweep 

collector that is run periodically to reclaim objects whose count has over-

flowed. 

Option (2) is used less frequently than ( 1) because collectors using option (2) re-

quire both the reference-counting style of cooperation and the mark-and-sweep/two-

space-copying style of cooperation simultaneously. Cyclic subgraphs are problem-

atic because even if these subgraphs are unreachable, each object in the cycle i 

reachable from its predecessor in the cycle. Each object therefore has a non-zero 

reference count and so is not reclaimed. 

Cyclic subgraphs can be reclaimed by periodically activating a cyclic-reclamation 

algorithm [Chri84] [Kenn91]. The algorithm works because reference-count fields 

count both references by internal pointers and references by root pointers. If refer-

ences from internal pointers are subtracted from a reference count field, the resulting 

field counts the number of references from root pointers. These fields can be used 

to identify objects that are the targets of root pointers. The cyclic-reclamation 

algorithm requires a mark bit in collected objects and sweeps the collected heap 

three times: 

1. The first sweep eliminates the contribution of internal pointers to reference-

count values, thus identifying those objects that are the targets of root point-

ers. It does this by visiting each object in the heap and clearing the mark bit 

in the object. The first sweep then visits each internal pointer in the object, 

decrementing the reference-count field in the target of the pointer. At the end 
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of the sweep, the only objects with non-zero reference counts are the objects 

pointed to by root pointers. 

2. The second sweep marks the objects reachable from the targets of root point-

ers and restores the reference-count fields in these objects. It does this by 

sweeping the heap and searching for unmarked objects whose reference count 

field is non-zero. These objects are marked and the subgraph reachable from 

these objects is traversed and marked. Each internal pointer in each object 

in the subgraph is also visited, and the reference count of its target is in-

cremented. At the end of this sweep, all reachable objects are marked, all 

unreachable objects are still unmarked and the reference-count fields in all 

reachable objects have been restored. 

3. The third sweep coalesces adjacent unmarked objects, and adds these objects 

to a "free" list for re-use. 

The main disadvantage of this procedure is that it incurs the cost of three sweeps 

of the collected heap. This cost is offset slightly by the fact that the algorithm 

need be invoked only infrequently, when a large fraction of memory is occupied by 

unreachable cyclic subgraphs. The main advantage of the procedure is that it does 

not require root pointers to be identified to the collector'. 

Reference-counting collectors differ significantly from mark-and-sweep and two-

space-copying collectors. Reference-counting collectors reclaim memory incremen-

tally, as the application executes, and suspend the application only infrequently, 

when large amounts of unused cyclic subgraphs must be reclaimed. Simple mark-

and-sweep and two-space-copying collectors suspend the application regularly, to 

carry out large-scale memory reclamation. Even though they differ, this thesis 

refers to all of these activities as garbage collection - garbage collection is any act 

'Since root pointers are not identified, a compacting collection is difficult. However, a technique 
similar to the mostly-copying collector in Section 2.2.2 should be applicable to reference-counting 
collectors. Nothing in the literature shows that this has yet been attempted. 
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of reclaiming memory in a heap. 

2.1.4 The Costs of Cooperation 

There are run-time and memory-usage costs associated with simple cooperation 

mechanisms. This section discusses these costs and describes optimizations that 

reduce or eliminate them. 

2.1.4.1 Memory Costs 

The simplest way for cooperative collectors to identify internal pointers in collected 

objects is through a data type "tag" field in each object. This tag specifies the data 

type of the object containing it, and since the location of internal pointers in an 

object is a function of the type of the object, the type information can be used to 

deduce the location of internal pointers. The main disadvantage of these tags is that 

they occupy space in the collected heap. The problem is particularly pronounced 

when most of the collected objects are very small. For example, if the average object 

is one word long and the tag field is also one word long, tags will occupy 50% of the 

space in the heap. This section discusses three optimizations intended to reduce the 

space occupied by these tags: the "big bag of pages" optimization, the strong-typing 

optimization, and the identification of data types via virtual functions. 

Data type tags can sometimes be eliminated by separating the heap into pages, 

where each page stores objects of the same type [Stee77]. This is known as the "big 

bag of pages" or BIBOP optimization. Each page must be 2' words in size, where n 

is a positive integer, and must be aligned such that the low order n bits of the page 

address are zero. The type of object in a page can be stored at the beginning of the 

page, or can be stored in a separate page/type table. The collector identifies the 

type of an object o and the location of internal pointers in o by determining what 

type of object is stored on the page containing o. To find the beginning of the page 

containing o, the collector simply clears the low order n bits of the address of o. 

This eliminates the need for data type tags, but increases memory fragmentation in 
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the heap. The B1130P optimization is useful only when the resulting fragmentation 

wastes less heap space than would type tags in each object. 

Type tags can also be eliminated in strongly-typed languages. If the location and 

type of root pointers can be identified in a strongly-typed language, the type infor-

mation can be used to identify internal pointers [Brit75] [Appe89] [Gold9l] [BrLe7O]. 

This is because in strongly-typed languages, the type of a pointer completely deter-

mines the type of the subgraph reachable from the pointer as well as the location 

of internal pointers in the objects in the subgraph. A. garbage collector can use 

the type information for root pointers to traverse the subgraph reachable from the 

roots. Unfortunately, C++ is not a strongly-typed language. C++ supports un-

typed void * pointers, supports explicit casts, and allows pointers to base classes 

to refer to derived objects. This means that C++ pointers do not always point to 

the type of object indicated by their declared type. Thus, C++ cannot use strong 

typing to identify internal pointers in collected objects. 

Finally, it is possible to use a virtual function to identify the type of a collected 

object at the time of a garbage collection. To do this, a "collected object" base class 

is defined whose only member is a virtual function that returns value identifying 

the class. Every collected class using the heap is then modified to be derived from 

the "collected object" base class. Each of these classes redefines the virtual function 

to return a value identifying the derived class. This method is similar to using data 

type tags to identify objects in that a data type can be obtained from the object on 

demand, but the data-type value is generated at run-time rather than being stored 

as a data value inside of the object. 

In most implementations, these additional virtual functions occupy code space, 

but occupy no additional memory in the collected heap. Most implementations add 

one word of memory to the representation ofa class when the first virtual function 

is defined for it - the word stores a pointer that refers to a table of pointers to 

the actual virtual functions. Additional virtual functions increase the size of this 
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table, but do not increase the size of the object representation. Furthermore, the 

increase in table size is generally negligible since a single table is usually shared 

by a large number of objects. When most collected classes already have virtual 

functions defined for them, these classes already incur the one-word cost of these 

functions. The addition of a type-discrimination virtual function to these classes 

does not increase their size at all. 

2.1.4.2 Run-Time Costs 

Reference counting collectors incur the run-time cost of modifying an object's refer-

ence-count .field every time any pointer to the object is created, destroyed or mod-

ified to refer to a different object. In most applications, this occurs very frequently 

and the associated run-time cost is significant. One method has been proposed 

that reduces the cost of maintaining reference-count fields, but the method requires 

specialized processing hardware [WiseF77]. It is unlikely that this technique will 

ever be applied to C++ because C++ was designed for general-purpose processors, 

and not for processors that provide the language with special assistance [Stro87b]. 

Non-reference-counting collectors require that the locations of pointers be iden-

tified to them at the time of a garbage collection. Since methods of identifying 

internal pointers were discussed in Section 2.1.4.1, this section discusses only tech-

niques for identifying root pointers. One simple mechanism for identifying the 

location of root pointers was described in Section 1.2 - cooperation functions can 

be associated with root pointers in such a way that they are automatically called 

when root pointers are created or destroyed. These functions maintain a root-

pointer registry for the garbage collector, and the collector consults this registry at 

the time of a collection. This mechanism is expensive though, since root pointers 

are created and destroyed very frequently. 

The most frequently created and destroyed root pointers are automatic pointer 

variables. Because they are created and destroyed so frequently, a number of op-

timizations have been proposed to avoid registering automatic roots. Branquart 
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Figure 2.3: Appel 's Automatic Root-Pointer Identification Mechanism 

and Lewi's Algol 68 proposal maintains a table that associates activation records' 

with information describing the location of root pointers in these records [BrLe7O]. 

When an activation record contains many root pointers, describing, the record in 

the table costs much less than registering each individual root pointer. At the time 

of a collection, the collector can consult the table to locate root pointers in the 

activation stack. Britton's Pascal compiler simplifies this mechanism by reserving 

a location in each activation record to hold a pointer to information describing the 

location of root pointers in the record [Brit75]. Both of these mechanisms incur a 

small run-time cost in maintaining these descriptions of activation records. 

The run-time cost of maintaining activation-record descriptions is eliminated 

in more recent proposals, each of which uses the return address of a procedure 

2An activation record is a block of memory allocated on a stack and used to hold the values of 
automatic variables and compiler temporaries. Activation records are also known as stack frames 
or procedure frames. 
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to identify root pointers [Appe89] [Gold91] [HMDW91]. The first two proposals, 

Appel's and Goldberg's, both assume that a garbage collector can be activated 

only by a function call. This model of garbage-collector activation is discussed 

further in Section 4.3.1. As Figure 2.3 illustrates, Appel uses the return address in 

the activation record for a function f to identify the "call" instruction that calls 

f. This instruction is examined to find the starting address of the machine code 

for f. The compiler associates with each function a description of the activation 

record for the function. For example, the compiler could place a pointer to the 

description immediately before the machine code for the function, as in Figure 2.3. 

With the starting address of f in hand then, Appel's method can find a description 

of f's activation record and can use the description to identify root pointers in 

the record. Since the return address must be stored in every activation record 

regardless, Appel's method involves no run-time overhead to identify automatic 

root pointers in activation records. 

Goldberg observes that Appel's technique requires that functions have a fixed 

activation-record format and that this constraint rules out some common memory 

and run-time optimizations. Many compilers prefer to have a fixed-size compo-

nent of function activation records, and to append and remove temporary values 

on the end of the fixed size component as the function executes. If these tempo-

rary values are root pointer, Appel's method cannot identify them. As Figure 2.4 

illustrates, Goldberg accounts for these pointers by storing information about acti-

vation records in a function f immediately after every "call" instruction in f. The 

information describes the current state of f's activation record. This allows many 

activation records to be associated with a function. The garbage collector identifies 

root pointers in an activation record for f by examining the return address of the 

following record. The following record is the activation record for some function 

g that f called. The return address for g refers to the word w following the call 

instruction in f that calls g. The word w is a pointer that refers to information 
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Figure 2.4: Goldberg's Automatic Root-Pointer Identification Mechanism 

that identifies the locations of root pointers in the current activation record for 

f. Goldberg's method allows functions to have activation records whose format 

changes as the function executes. 

Goldberg's technique requires compilers to use a modified function-return mech-

anism. Since the pointer to the activation-record description is not an instruction, 

g must return to the instruction after the pointer. Goldberg observes that this 

adjustment of the return address can be carried out at zero additional real-time 

cost for some common microprocessors such as the SPARC [Sun87] processor. 

A third optimization has been proposed that also uses the return address of 

a procedure to identify root pointers [IIMDW91]. In the proposed optimization, 

the compiler creates descriptions of activation records, one for every point in a 

procedure where a garbage collector may be activated, and stores the descriptions 

in a table. At the time of a garbage collection, the collector identifies the root 
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pointers in the activation record for a function f by searching the table of record 

descriptions using the return address stored in the following activation record as a 

key. This allows functions to have activation records whose format changes as the 

function executes without requiring a modified function return mechanism. During 

a garbage collection, the collector incurs the run-time cost of searching the table of 

activation-record descriptions once per activation record, but this cost is expected 

to be minimal. 

2.1.5 Strengths and Weaknesses of Cooperative Collectors 

The fact that most cooperative collectors can support the movement of objects is 

a significant advantage. Moving objects during a collection is the heart of memory 

compaction, and compaction yields faster memory allocation and the elimination 

of fragmentation problems. The movement of objects is also a central theme in 

some applications3. In contrast, the conservative collectors described in the next 

section have difficulty compacting memory and cannot deal at all with applications 

requiring object movement. Another advantage of cooperative collectors is that 

they are well understood. Much of the research into garbage collection in the last 30 

years has been devoted to optimizing the storage and run-time costs of cooperative 

algorithms [Colie8l] [WiseF77] [StaI80] [Chas87] [LiHu86] [Unga84] [Bake78a]. 

A disadvantage of cooperative algorithms in a C++ context is compatibility. 

Currently, C++ subsystems can be linked directly with subsystems written in C, 

and often with subsystems written in other Algol-like languages such as Pascal and 

Fortran. Since none of these other languages use cooperative garbage collectors, and 

since many use pdinter values either explicitly or implicitly, there is no guarantee 

that these foreign languages will cooperate correctly with a C++ garbage collector 

for any of the pointers that C++ passes them. Another disadvantage of cooperative 

algorithms in C++ and in other languages is that, as shown in Section 2.1.4.2, 

3For example, the movement of objects is essential in applications that manage persistent or 
distributed object caches, such as those described in [KBCG88] [ACCM83] and [KaKr83]. 
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simple implementations may be unacceptably expensive in terms of run-time and 

memory costs. Sophisticated implementations that use the optimizations described 

in Section 2.1.4 should not suffer this limitation. 

2.2 Conservative Collectors 

Conservative collectors address the disadvantages of cooperative collectors, but in-

troduce problems of their own. Ideally, a conservative collector is one that does 

not rely on the cooperation of an outside agent to identify or specially treat root 

pointers [Capl88] [BoWe88] [Detl9O] [Rovn84] [Bar89a] [Bar89b] {Bar9O}. In prac-

tice, conservative collectors tend to require limited forms of cooperation to improve 

their run-time and storage-reclamation performance. This section discusses Boehm 

and Weiser's non-compacting collector [BoWe88], Bartlett's mostly-copying collec-

tor [Bar89a], some cooperation mechanisms useful to most conservative collectors, 

and the common strengths and weaknesses of all conservative collectors. 

2.2.1 Completely Conservative Collection 

Completely-conservative collectors interpret the collected heap as a directed graph, 

but have no information supplied to them about the location of root pointers or 

internal pointers. These collectors therefore regard every pointer-sized region of 

memory outside of the heap as a potential root pointer, and every pointer-sized 

region inside a collected object as a potential internal pointer. 

Boehm and Weiser's collector [BoWe88] is based on a mark-and-sweep collector 

and works as follows. The marking phase examines the regions of memory outside 

of the collected heap that hold static and automatic variables. Every pointer-

sized and pointer-aligned subregion in these regions of memory is a candidate root 

pointer, and each candidate is visited. If a candidate contains a bit pattern that 

- when interpreted as a pointer - refers to an object in the collected heap, the 

candidate is treated as if it were a pointer and the target object is marked. If 
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the object was previously unmarked, it is examined for internal pointers. Every 

pointer-sized and pointer-aligned region of memory within the object is considered 

a candidate internal pointer, and every such candidate is similarly visited. At the 

end of the marking phase, every collected object that could possibly be in use is 

marked as in use. The sweeping phase simply sweeps the collected heap, coalescing 

and reclaiming unused objects. 

The chief advantage of a completely-conservative collector is that it can be 

added as an afterthought to almost any application, no matter what language it 

uses. There are three main disadvantages to conservative collectors. 

1. Conservative collectors may incorrectly interpret some regions of memory as 

pointers. This can result in potentially large subgraphs of a collected heap 

remaining in use when the subgraph is actually unreachable and should be 

reclaimed. 

2. Completely-conservativecollectors cannot compact the collected heap because 

they cannot reliably carry out pointer adjustment. Only true pointers to 

collected objects may safely be adjusted, and conservative collectors cannot 

distinguish true pointers from other data whose representation matches that 

of a pointer. 

3. Highly-optimized compilers may generate code that temporarily destroys the 

only pointer to a collected object. If a garbage collection takes place while 

no pointer refers to the object, the object may be reclaimed incorrectly4. 

Completely-cooperative collectors can currently be used with most C++ applica-

tions that are either compiled unoptimized, or compiled with an optimizing compiler 

that does not cause pointers to collected objects to disappear even temporarily. 

4Note that compilers that cooperate with cooperative collectors generally forbid optimizations 
in which pointers to collected objects disappear, however temporarily. 
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2.2.2 Mostly-Coping Collection 

Bartlett's collector' [Bar89a] is a conservative collector that uses cooperation to 

achieve a degree of memory compaction. Bartlett distinguishes ambiguous from 

unambiguous pointers. An unambiguous pointer is a pointer that has been identi-

fied to the garbage collector as a pointer by some sort of cooperation mechanism. 

An ambiguous pointer is any pointer-sized and pointer-aligned region of memory 

that might contain a pointer because it has not been identified as definitely not con-

taining a pointer. Bartlett also divides the collected heap into pages, and identifies 

every page as a member of either the old-space or new-space, as in the two-space-

copying algorithm. 

Bartlett's algorithm proceeds in two phases, the first of which promotes from 

old-space to new-space those pages referred to by ambiguous pointers. The first 

phase visits each root, pointer. If the root pointer is ambiguous and points to an 

object in the collected heap, the object is marked and the page containing the 

object is promoted. A page is promoted by changing its designation from old-space 

to new-space. This conceptually "copies" the object to new-space, without actually 

moving the object. If the root pointer is unambiguous, the object it points to is 

simply marked. If the target object was unmarked, all ambiguous and unambiguous 

pointers in the object are' recursively visited. At the end of this pass all in-use 

objects are marked and all pages containing objects to which ambiguous pointers 

refer are promoted to new-space pages. 

The second phase is similar to a two-space copying collector in that it copies 

objects to which only unambiguous pointers refer, and pointer-adjusts unambiguous 

pointers. The second phase visits only unambiguous root and internal pointers. If 

the target object of an unambiguous pointer is still in an old-space page, it means 

that only unambiguous pointers refer to the object. This means that the second 

phase can safely use the techniques of the two-space-copying algorithm to copy 

'Bartlett actually described several variations of a conservative collector. This section describes 
the second version of the collector. 
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the object to new-space and to adjust all of the unambiguous pointers that refer 

to it. At the end of the second phase, all in-use objects have either ben copied 

or promoted to new-space, all unambiguous pointers that refer to copied objects 

have been adjusted, and all ambiguous pointers have been left unmodified. The 

ambiguous pointers can safely be left unmodified because the objects to which they 

refer have been promoted, but not copied to another location. 

Bartlett called this algorithm mostly-copying because it is a two-space-copying 

algorithm for objects pointed to exclusively by unambiguous pointers. When most 

pointers in an application are unambiguous, Bartlett's algorithm reaps most of 

the benefits of a two-space-copying collector, but still avoids updating ambiguous 

pointers. Applications risk malfunction if an ambiguous pointer is adjusted. If the 

adjusted ambiguous pointer is not a pointer at all, but is some other data type 

such as an integer or character string fragment that has the same bit pattern as 

a pointer, a pointer-adjustment operation would incorrectly modify it. All con-

servative collectors except Bartletts are non-compacting precisely because of this 

danger in adjusting ambiguous pointers. 

2.2.3 Cooperating with a Conservative Collector 

Many conservative collectors rely on some cooperation from an outside agent'-

usually the programmer. This is because many applications contain large numbers 

of ambiguous pointers that are not pointers at all, but that appear to refer to 

objects in the collected heap [Detl9O] [Went9O]. These "false" pointers result in large 

numbers of garbage objects being inaccurately identified as still in use, preventing 

the collector from reclaiming all of the memory that is actually unused. 

This problem can be largely corrected by identifying internal pointers in col-

lected objects to the collector through an appropriate cooperation technique. Such 

cooperation is relatively painless, since it incurs little or no run-time or memory 

costs (see Section 2.1.4). Since, in most applications, the collected heap is much 
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larger than the regions of memory in which root pointers are found, a coopera-

tion mechanism that identifies internal pointers eliminates most of the ambiguous 

pointers in an application. Identifying internal pointers therefore solves most of the 

problem of misinterpreting ambiguous pointers, resulting in many fewer garbage 

objects being inaccurately identified as still in use. 

2.2.4 Strengths and Weaknesses of Conservative Collectors 

The greatest strength of a conservative collector is that it is simple and can be added 

after the fact to most existing applications, even applications using more than 

one language. Esoteric programming techniques that modify the representation 

of pointers can confuse a conservative collector, but few. applications use these 

techniques. 

The biggest disadvantages of conservative collectors are that they may not re-

claim all garbage, and that they cannot be used with applications that move ob-

jects. As described earlier, conservative collectors may misinterpret random data as 

a pointer to an object, erroneously flagging the subtree reachable from that object 

as in use. In some circumstances, these subtrees can be unacceptably large. The 

movement of some objects is supported in Bartlett's mostly-copying collector. This 

collector moves enough objects to achieve a degree of memory compaction. How-

ever, conservative collectors are not suitable for applications that, for their own 

reasons, must be able to move all collected object, because conservative collectors 

cannot reliably adjust all pointers in an application to refer to the new locations of 

moved objects. 

2.3 Number of Kinds of Pointers 

This section examines Algol-like languages that support garbage collection. Some 

of these languages distinguish between pointers that refer to the collected heap and 

pointers that refer to other locations in memory. When the distinction is made, it is 
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built into the type system of the language - pointers that refer to the collected heap 

have their data type qualified in some way. Languages that make this distinction 

are described in this thesis as haring two kinds of pointers. Languages that make 

no such distinction are said to have only one kind of pointer. Although both 

kinds of languages can use either conservative or cooperative collectors, differences 

between the two kinds of languages become apparent in the context of cooperative 

collectors. This section describes both kinds of languages,, compares their strengths 

and weaknesses, and concludes that a cooperatively-collected C++ should support 

two kinds of pointers. 

2.3.1 One Kind of Pointer 

Two early programming languages, Algol 68 [Wijn69] and Simula 67 [DMN7O], 

supported garbage collection and provided programmers with a pointer data type. 

Algol allowed data structures to be allocated either on the activation stack or in 

the collected heap, and did not distinguish between pointers to these two regions 

of memory; Simula allowed data structures to be allocated only in the collected 

heap. More recently, garbage collecting Pascal and Ada compilers have been pro-

posed and implemented that do not distinguish pointers pointing to the activation 

stack from those pointing to a collected heap [Brit75] [Moon85] [0per89]. These 

implementations all use cooperative collectors and none appear to have suffered 

significantly from not typing pointers according to the storage class to which the 

pointers,,, refer. 

However, a C++ compiler with, one kind of pointer and a cooperative collector 

would be difficult to use with foreign language functions. A cooperative, garbage 

collected C++ with a single pointer type could not safely pass pointers as arguments 

to functions written in these other languages. This is because these pointers may 

refer to objects in the collected heap. Most implementations of languages such as C 

and Pascal use manual memory managers, and take no steps to identify pointers to 
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a garbage collector. If the C++ garbage collector is activated while an unidentified 

pointer exists, the collector may malfunction. Such a C++ implementation would 

require programmers to avoid passing pointers that refer to the collected heap as 

arguments to foreign-language functions. Manually identifying pointers that refer 

to the collected heap is an error-prone and time-consuming process for programmers 

developing large applications or maintaining even small ones. 

A language'with two kinds of pointers, one for references to collected objects 

and one for other references would eliminate this problem. Forbidding the use of 

foreign-language functions would also solve the problem. However, this would be. 

unacceptable to a majority of C++ users, since a major attraction of the language 

is its ability to compile and correctly execute existing code written in the C pro-

gramming language [KeRi88], and to make use of libraries written in C and in other 

languages such as Pascal and assembler. 

Note that the problem of passing pointers to foreign-language functions only 

arises when using a cooperative collector. Conservative collectors examine all po-

tential pointers, even those manipulated by foreign-language functions. 

2.3.2 Two Kinds of Pointer 

The Modula-3 language [CDGJ88] distinguishes between traced and untraced point-

ers. Traced pointers can refer to objects in the garbage-collected heap, but untraced 

pointers cannot refer to such objects. Implicit conversions of traced to untraced 

pointers are not llowed by the language. This allows Modula-3 implementations to 

use a cooperative garbage collector and allows programmers to pass some pointer 

arguments to foreign-language functions, even when those functions have no knowl-

edge of Modula-3's cooperation mechanism. Foreign functions are simply declared 

as taking untraced pointer arguments. Any attempt to pass a traced pointer to 

such a function will generate a compile-time error. If a traced pointer must be 

passed to a foreign-language function, the programmer can explicitly convert the 
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pointer to an untraced pointer. Modula-3 allows these explicit conversions and the 

safety of code using such conversions is the programmer's responsibility. 

Similar pointer-distinguishing mechanisms have been discussed for the C and 

C++ programming languages [Gint9O] [Juul9O]. These proposals increase the com-

plexity of the programming task because they introduce another type qualifier that 

programmers must understand and use. The proposals, however, decrease the com-

plexity of the programming task much more than they increase it. The proposed 

languages make it easy for programmers and compilers to determine whether or not 

a pointer might refer to the collected heap and so whether particular calls to for-

eign language functions are dangerous. A garbage collected C++ should therefore 

support two kinds of pointers. The user-defined, cooperative collectors proposed in 

this thesis do support two kinds of pointers: smart pointers that may refer to the 

collected heap, and C++ pointers that should not refer to this heap. 

2.4 Implementation and User-Defined Garbage Collectors 

Implementation-defined garbage collectors are collectors that are supplied with 

a compiler or interpreter implementation of a programming language, and user-

defined collectors are collectors that can be added to a language implementation 

by individual programmers. This section shows that each kind of collector is well 

suited to different kinds of applications. At this time, no implementation-defined 

collectors have been implemented for C++. User-defined, conservative collectors 

have been implemented for C++ and are discussed in Section 2.2. User-defined, 

cooperative collectors that use smart pointers have also been implemented for C++ 

and were introduced in Section 1.2. These and other user-defined, cooperative col-

lectors are discussed in more detail in this section. 
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2.4.1 Implementation-Defined Garbage Collectors 

Most implementation-defined collectors are cooperative collectors. Implementation-

defined collectors often use a complex cooperation mechanism to identify pointers 

to collected objects, and are often integrated to a large extent with the optimizing 

phase of a compiler. These mechanisms tend to produce fast, general purpose 

garbage collectors. The chief disadvantage of implementation-defined collectors is 

that their complexity makes them difficult to modify to meet any special needs of 

a class or an application. 

2.4.2 User-Defined Garbage Collectors 

Implementations that support user-defined collectors either provide a replaceable 

garbage collector or provide no garbage collectors at all. For example, most of the 

published conservative collectors are designed to be added to a language implemen-

tation using a manual memory manager, either by replacing or by augmenting the 

manual manager. 

User-defined collectors have advantages and disadvantages when compared with 

implementation-defined collectors. The most significant advantage is that user-

defined collectors can be optimized and customized to meet the needs of specific 

classes and applications [Stro85]. Sometimes even separate subsystems within the 

same application may each have their own specialized garbage collector. The main 

disadvantage of user-defined collectors is that since it is difficult to integrate them 

as tightly with compiler optimizers and with compiler-specific cooperation mecha-

nisms, comparatively poor performance is sometimes unavoidable. 

User-defined collectors are therefore appropriate when either application-specific 

functionality is required of a collector, or when application-specific data structure 

or dynamic behavior can be exploited. Implementation-defined collectors are ap-

propriate when application-specific functionality is not required and when the static 

and dynamic behavior of an application is less predictable. 
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2.4.3 User-Defined Collectors Using Smart Pointers 

A number of user-defined, cooperative collectors using smart pointers have been 

described in the literature for C++. Stroustrup [Stro87b] describes a reference-

counting collector and credits the idea to Johnathon Shopiro. The reference-

counting collector uses smart pointer classes with constructors, destructors, and 

overloaded assignment operators. The functions in this collector maintain refer-

ence counts in collected objects every time smart pointers are created, destroyed, 

and set, respectively. Wang [Wang89] implements a mark-and-sweep collector using 

smart pointers with an experimental implementation of compiler templates. The 

template implementation makes Wang's system somewhat more convenient than 

the Stroustrup/Shopiro collector, but templates could also be added to the their 

implementation. Wang's collector uses smart-pointer constructors and destructors 

to register and deregister, respectively, the locations of smart-pointer objects with 

a garbage collector. Edelson [Edel9O] [EdPo91] implements a two-space-copying 

collector using smart pointers. Like Wang's implementation, Edelson uses smart-

pointer constructors and destructors to cooperate with his collector. 

None of these smart-pointer-based collectors- is especially reliable. Edelson's 

collector requires that smart pointers be the only pointers referring to in-use objects 

in the collected heap at the time of a collection. Wang and Stroustrup/Shopiro's 

collectors require that at least one smart pointer refer to each in-use object in 

the heap at the time of a collection. If is easy for progrmmers to violate these 

constraints inadvertently and so cause these collectors to malfunction [Gint91]. 

This research proposes to correct the deficiencies in C++ that make it possible to 

violate these constraints inadvertently. 

2.4.4 The OATH Collector 

The Object-Oriented Abstract Type Hierarchy (OATH) collector [Kenn91] is also a 

user-defined, cooperative collector, but it does not use smart pointers to cooperate 
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with the collector. Not using smart pointers is significant because it is smart pointer 

indirection operators that make it easy to violate constraints on pointers to collected 

objects. Since the OATH collector does not use smart pointers and overloaded 

indirection operators, it may seem that the OATH collector should be more reliable 

than collectors based on smart pointers, but this perception is incorrect. This 

section describes the OATH collector and argues that the collector is less reliable 

than are collectors based on smart pointers. 

OATH was not designed primarily for garbage collection - it was designed 

to separate class specifications from their implementations. OATH does this with 

what it calls accessor classes and the implementation classes that correspond to each 

accessor class. Each accessor class contains a private C++ pointer data member 

and a number of public function members. The C++ pointer refers to an instance 

of one of the implementation classes corresponding to the accessor class. Each 

implementation class must contain a function member that corresponds to each 

function member in the accessor class. Each acáessor function member simply 

calls the corresponding implementation class function through the accessor's C++ 

pointer. The intent of the OATH hierarchy is to allow many implementations of a 

subsystem to exist and to share a single accessor-class specification. 

OATH accessors do not leak C++ pointers in the way that smart pointer indi-

rection operators leak pointers. This is helpful to users of OATH classes because 

it is C++ pointer leaks that cause cooperative collectors to malfunction. How-

ever, programmers developing OATH implementation classes must be aware that 

the C++ pointer in accessor objects refers to the collected heap because OATH 

class developers regularly manipulate accessor pointers. OATH class developers 

must be careful to ensure that copies of these pointers are properly registered with 

the garbage collector managing the OATH heap. 

The OATH mechanism, therefore, cannot be considered a candidate mechanism 

for a general-purpose cooperative garbage collector. A general-purpose collector 
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minimizes the number of programmers who must deal with C++ pointers that 

may cause collector malfunctions. The OATH collector requires that most appli-

cations developers dealwith these difficult C++ pointers, since a large part of the 

development of most applications involve the definition of new classes and, with 

OATH, the developers of all these classes must be concerned with the dangerous 

accessor pointers. The smart-pointer-based proposal in Chapter 4 is a more general-

purpose collector than is the OATH collector because the proposal only requires 

developers of smart-pointer class templates to deal with C++ pointers to collected 

objects. 

2.5 Conclusions 

A number of conclusions can be drawn from the material in this chapter. 

1. Compacting and non-compacting collectors each excel in different applica-

tions. Compacting collectors eliminate the memory-fragmentation problem 

and increase locality in virtual-memory systems, but cannot be used with 

conservative collectors. Non-compacting collectors suffer from memory frag-

mentation, but have less stringent cooperation requirements than do com-

pacting collectors, and can be used with conservative collectors. Since each 

kind of collector excels in different circumstances, it would be useful for C++ 

to support both compacting and non-compacting collectors. 

2. Conservative and cooperative collectors each excel in different circumstances. 

Conservative collectors work well with foreign-language functions and incur 

none of the run-time cooperation costs that simple cooperative implemen-

tations incur. Cooperative collectors often reclaim more memory than do 

conservative collectors, can compact memory and can deal with applications 

that require the movement of objects. Since each kind of collector excels in 

different circumstances, it would be useful for C++ to support both conser-
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vative and cooperative collectors. 

3. Cooperatively-collected implementations using only one kind of pointer are 

error prone when used with foreign-language functions. Implementations us-

ing two kinds of pointers do not suffer this problem. Since C++ was designed 

to work well with C language functions, using two kinds of pointers is more 

appropriate than using just one kind of pointer. 

4. User-defined and implementation-defined collectors each excel in different cir-

cumstances. User-defined garbage collectors can be customized to accommo-

date the special needs of specific applications and subsystems, and can take 

advantage of a knowledge of the structure and behavior of individual applica-

tions and subsystems. This can lead to both simpler and faster applications 

than are possible with an implementation-defined collector. Implementation-

defined collectors can be coupled very tightly to sophisticated cooperation 

mechanisms and the optimizing phases of compilers. This can lead to faster 

applications than are possible with a user-defined collector. Since each kind 

of collector excels in different circumstances, it would be useful for C++ to 

support both implementation-defined and user-defined collectors. 



Chapter 3 

Problems With Cooperative Collectors Using 

Smart Pointers 

This chapter discusses problems with support in the C++ language for user-defined, 

cooperative garbage collectors using smart pointers. It describes smart pointers in 

more detail than did Chapter 1 and presents a comprehensive list of problems 

with smart pointers. All of these problems make it very difficult for programmers 

to write type-safe, reliable, cooperative garbage collectors for C++ using smart 

pointers. Briefly, the C++ problems with support for smart pointers are that: 

1. smart pointer classes, leak C++ pointers to collected objects, 

2. compiler temporaries may contain leaked pointers at the time of a garbage 

collection, 

3. smart pointer conversion operators cannot simultaneously, be type-safe, reli-

able, and conveniently- programmed, and 

4. cooperative garbage collectors that use smart pointers would be easier to 

implement if C++ supported run-time type inquiry and allowed greater flex-

ibility in overloading the new memory-allocation operator. 

Many of these problems were first discussed in other literature or in Usenet news-

groups. 

3.1 Smart Pointers in the Existing Language 

Figure 3.1 is an example of how a simple smart-pointer class might be written in 

the existing C++ language. The class sp<T> is a template and can be used to define 
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II functions that maintain the collector's root-pointer registry 
.extern register..sp (void *); 

extern deregister...sp (void *); 

template<class T> class sp<T> { 
T *ptr; 

public: 

T *operator -> 0 {return ptr;} 
T &operator * 0 {return *ptr;} 
sp<T> 0 { 

ptr = 0; 
register.sp (&ptr); 

sp<T> (sp<T> p) { 
ptr = p.ptr; 

register_sp (&ptr); 

} 
sp<T> () {deregister...sp (&ptr);} 

II 

I-
/I 

C++ POINTER TO COLLECTED OBJECT 

overloaded indirection operator 

overloaded indirection operator 

default constructor 

II copy constructor 

II destructor 

Figure 3.1: A Template Smart Pointer Class 

a smart pointer to a value of any type. This class in. the figure illustrates cooperation 

mechanisms suitable for either a mark-and-sweep collector or a two-space-copying 

collector'. The constructors and destructor for the smart-pointer class cooperate 

with the collector by calling register...sp 0 and deregister..sp 0 to update a 

registry of the locations of smart pointers. When a garbage collection occurs, the 

collector uses the registry to trace and, if necessary, adjust all of the ptr fields in 

all smart-pointer objects. 

In principle, if programmers use only these smart pointers to refer to the garbage-

collected heap, then the only C++ pointers referring to collected objects at the 

time of a garbage collection would be those found in the ptr data member of smart 

pointer objects. Since all of these pointers are registered with the garbage collector 

by constructors and destructors, the garbage collector will be able to identify them 

all and so function correctly. 

'Small modifications to the template class would also accommodate a reference-counting collec-
tor. To do this, the constructors and destructors must be modified to maintain a reference-count 
field in T and the assignment operator must be overloaded to maintain this field as well. 
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3.2 Collected Object Pointers 

In practice, it is very difficult to ensure that all C++ pointers referring to collected 

objects at the time of a garbage collection reside inside registered smart-pointer 

objects. This is because of the values returned by the -> and * indirection opera-

tors. As is apparent in Figure 3.1, the -> operator returns a C++ pointer to the 

target class T and the * operator returns a reference to this class. Almost all C++ 

implementations represent a reference using C++ pointers, meaning that both in-

direction operators return C++ pointers to their callers. When the target class is 

consistently allocated in a collected hap, these C++ pointers all refer to collected 

objects. Therefore, overloaded indirection operators are dangerous because they 

"leak" C++ pointers to collected objects out of the protective encapsulation of 

registered smart-. pointer objects. If these "leaked" pointers still exist at the time of 

a garbage collection, they may cause the collector to malfunction. These "leaks" are 

the biggest problem with existing support in the C++ language for smart pointers. 

This research calls the C++ pointers that leak out of smart pointer objects 

collected object pointers because they are C++ pointers that point to objects man-

aged by a garbage collector. Collected object pointers are problematic because they 

refer to collected objects, yet are not guaranteed to be registered with any garbage 

collector. In principle, it is possible for application programmers to take steps to 

register collected object pointers explicitly, but in practice, this is difficult to do 

• consistently, because overloaded indirection operators are used implicitly in most 

smart-pointer expressions. As a consequence, it is very easy for programmers to 

forget to register one or more pointers. Even worse, pointer registration errors are 

difficult to diagnose, since the effect of an error may not become apparent until well 

after the next garbage collection, and may be apparent only in a piece of code that 

is far removed from the omission of the pointer-registration operation. 
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3.3 Pointer Expressions that Leak C++ Pointers 

Two kinds of regularly used C++ pointer expressions leak collected object pointers 

into C++ applications in all implementations of C++ compilers and interpreters. 

The first kind of expression uses the & "address of" operator [Usenet]. A simple 

expression such as: 

a = &(b —> 'c) 

is perfectly safe when b is a C++ pointer. However, when b is a smart pointer, the 

expression assigns to a a collected object pointer that refers to the interior of the 

collected object to which b refers. The value in a may subsequently be propagated 

throughout the application through otherwise safe C++ pointer operations. The & 

operator appears explicitly in the example, and is used implicitly in the initializaiion 

of reference values. 

The second kind of "leaky" expression is a call of a non-static member function 

in a collected object, because such calls must initialize the invisible this' argu-

ment that the function requires [Wang89] [EdPo91]. The this argument is a C++ 

pointer, and when the object for which the function is called is a collected object, 

this is initialized with a collected object pointer. If the called function activates 

the garbage collector, the unregistered this pointer may cause the collector to mal-

function. If the function assigns the this pointer to other C++ pointer variables, 

the collected object pointer may be propagated throughout the application. 

It could be argued that this pointers can be avoided by requiring that collected 

objects use only static member functions, since static member functions do not 

have an implicit this argument. Then any pointers to collected objects that are 

passed to these functions would be passed explicitly and could be passed as properly 

registered smart-pointer objects. However, this approach is not feasible because 

2j this thesis all C++ code and variables except the this variable appear in typewriter font. 

The this variable appears in boldface because the similarity of this and "this" was found to be 
too confusing. 
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constructors, destructors, memberwise-assignment operators and virtual functions 

are defined by the language to be non-static function members and a strategy of 

using only static function members would forbid collected objects from using these 

special functions. Therefore, using static member functions exclusively is less than 

ideal because these special functions can be very useful. 

3.4 Compiler Temporaries and Leaked Pointers 

C++ compiler temporaries may also contain collected object pointers and if such a 

temporary is live3 at the time of. a garbage collection of the heap to which the pointer 

refers, the temporarypointer can cause the collector to malfunction. Not all C++ 

compilers create these temporaries because C++, like C before it, does not define 

the order of evaluation of most expressions. Most smart-pointer expressions have 

a "safe" order of evaluation that avoids live temporaries containing leaked pointers 

during the evaluation of subexpressions that can activate a garbage collector, but 

compilers are not required to use the safe ordering. For example, an expression 

such as 

a -> b = 0; 

where• a is a smart pointer to some class A and f returns an integer, could be 

evaluated as 

A *tmpl = a.operator -> 0; II create collected object pointer temp 
mt tmp2 = f 0; II function may call collector! 
tmpl -> b = tmp2; II carry out the assignment 

That is to say, the -> operator is evaluated first, and the resulting collected object 

pointer is stored in the compiler temporary tmpl. The call to f is then evaluated. If 

f activates a garbage collector, the collected object pointer temporary could cause 

the collector to malfunction. This same expression could have been evaluated thus: 

3A live variable is one that has a value that may be used subsequently [ASU77]. A variable 
that is not live is dead. 
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{ 
mt tmpl = f 0; II evaluate function first 
A *tmp2 = a.operator -> 0; II create collected object pointer temp 
tmp2 -> b = tmpl; II carry out the assignment 

} 

This way f is evaluated first, possibly activating a garbage collector, and the result-

ing integer value is stored in tmpl. The -> operator is evaluated next, resulting in 

a collected object pointer temporary. Since the only use made of the temporary is 

in the subsequent assignment expression, the unregistered temporary cannot cause 

the collector to malfunction. This approach is safe in any implementation that 

requires the garbage collector to be activated by a function call'. 

The example expression a -> b = f () can confuse only a compacting collec-

tor, since compacting collectors require the identification of every pointer referring 

to the collected heap at the time of a collection. Non-compacting collectors re-

quire that at least one pointer to each in-use object be identified and a serves that 

purpose in the example. A more complex example such as g () -> b = f 0 can 

cause a non-compacting collector to malfunction when g () returns a smart-pointer 

object. 

3.5 Smart Pointer Conversions 

Smart-pointer conversion operators are difficult to implement in the existing C++ 

language because they cannot simultaneously satisfy two useful design goals for 

smart pointers. 

• Ideally, smart pointers should be usable in all of the same circumstances and 

using exactly the same syntax as are C++ pointers. 

• Smart pointer classes should not be difficult to implement and to maintain. 

4See Section 4.3.1 for a discussion of how garbage collectors can be activated. 
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This section shows that smart pointer conversions that are simple to implement are 

not as type safe as C++ pointer conversions, and cannot deal correctly with a kind 

of pointer adjustment inherent in the implementation of most C++ pointers. 

3.5.1 Type-Safety of Implicit Conversions 

C++ defines two implicit conversions for C++ pointers and a good smart-pointer 

implementation should provide comparable implicit conversion operators. Specifi-

cally, C++ implicitly converts a pointer to a collected class D: 

• into a typeless void * pointer, and 

• into a pointer to any accessible base class of D. 

A smart pointer class has no difficulty providing an implicit conversion to a type-

less pointer, but has difficulty with the second conversion. For example, consider 

a deeply nested class hierarchy C1, ... C,, where each Ci is a public base class of 

C+,, for 1 ≤ j <n. C++ implicitly converts any C++ pointer to a class Ci into a 

pointer to any of the classes C, for all j <i. If a set of smart-pointer classes were 

defined to point to the Ci classes, the smart-pointer class designer could define a 

conversion operator corresponding to each of the implicit C++ conversions. C++ 

would then apply these operators implicitly whenever a corresponding C++ pointer 

conversion would have been applied. However, this approach requires that the de-

signer define (n2 - n)/2 smart-pointer conversion operators. This is an undesirably 

large number of conversion operators when ii is large, and it is not uncommon for 

C++ applications to define such deeply nested class hierarchies. 

To correct this problem, a single conversion operator could be defined that con-

verts any type of smart pointer associated with a particular garbage collector into 

any other smart pointer associated with the same collector. However, such a con-

version operator is not typesafe since it would implicitly convert smart pointers in 

circumstances where the conversions have no meaning. Whenever C++ implicitly 
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converts a C++ pointer of type T1 into a pointer of type 1'2, all of the operations on 

are also defined on Ti. All implicit C++ pointer conversions are therefore type 

safe. For example, any pointer can be converted to a void * pointer because void 

* pointers support only the assignment and some comparison operators. These 

operators are defined for all pointer values and have the same effect on all pointer 

values. It is therefore safe to convert any pointer value into a void * value. Sim-

ilarly, a pointer to a derived class can be converted to a pointer to a public base 

class, since the derived class contains all of the data and function members of the 

base class. A single smart-pointer conversion operator that converts a smart pointer 

to any class T1 into a smart pointer to any other class T2 is not type safe when T2 

does not define exactly the same operations as T1 defines. In summary, a single 

conversion operator is not type safe, but (n2 - n)/2 conversion operators are not 

simple to implement or to maintain. 

An alternate solution might be to define an "any to any" smart-pointer conver-

sion operator that carries out a run-time type check and raises a type exception 

when unsafe conversions are attempted. This is less than ideal for C++, because 

the type-safety of C++ pointer expressions is determined at compile-time. Ideally, 

a smart-pointer implementation would behave as much as possible as do compara-

ble C++ pointers and would allow improper implicit conversions to be detected at 

compile-time. 

3.5.2 Modifying Pointer Values During Conversions 

Some C++ pointer conversions involving multiple inheritance change the value of 

the pointer being converted [E1St9O]. The nature of this pointer adjustment is 

implementation dependent and the adjustment is therefore carried out automati-

cally by C++ implementations. Smart-pointer conversion operators can be made 

to carry out this pointer adjustment if a separate conversion operator is defined for 

every allowed implicit conversion. When this is done, the conversion operator can 
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simply use the C++ pointer conversion mechanism to carry out the pointer ad-

justment required by the smart-pointer conversion. But again, this would require a 

large number of conversion operators for a deeply-nested class hierarchy. If a single, 

convenient conversion operator is defined that converts any smart pointer into any 

other, it would have to treat all pointers the same way. It would incorrectly carry 

out the same pointer adjustment on all smart pointers. 

In summary, a set of smart-pointer conversion operators that adjust pointers 

correctly requires a large amount of code, and a compact conversion operator does 

not adjist pointer values correctly. 

36 Other Problems 

There are a number of miscellaneous problems that impede the implementation of 

user-defined, cooperative garbage collectors. These problems can be circumvented 

by determined programmers, but are problems that the language ought to address. 

3.6.1 Type Inquiry 

Garbage collectors need to identify both root 'pointers and internal pointers of the 

object graph. Most existing C++ collectors that are capable of reclaiming cyclic 

subgraphs rely on the cooperation of users to identify internal pointers [Edel9O] 

[Bar89b] [Wang89] [Kenn9l]. This is less than ideal for general-purpose storage 

managers. Programmer-supplied information takes programmer's time to construct 

and suffers from potential coding and consistency errors that are difficult to diag-

nose, since their only symptom is a malfunction in the garbage collector. 

A number of type-inquiry systems have been proposed for C++ to provide run-

time access to type information that could be used to identify internal pointers 

in collected objects [Gorl87] [Stro88] [InLi9O] [ScEr88] [LMU91]. Primitive type-

inquiry systems sufficient for garbage collection can also be implemented by in-

dividual programmers [Gint91]. The proposal in Chapter 4 does not address the 
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problem of type inquiry because it can be circumvented by C++ programmers and 

because it is a significant research topic in its own right. 

3.6.2 Overloading the Memory Allocation Operator ±iew 

Cooperative garbage collectors can be designed with existing support for operator 

new, but a number of improvements would simplify the task. For example, a typ-

ical garbage collector defines a base class B for all objects in the collected heap. 

All classes Ci that are managed by the collector have B as a public base class. 

B typically overloads the memory-allocation operator new to allocate memory in 

the collected heap. Every allocation of a Ci object then, automatically uses the 

overloaded new in B and so allocates the object in the collected heap. 

The existing C++ language however, does not use the overloaded new operator 

when allocating arrays of objects. Arrays of objects are allocated using the default 

new operator that allocates space in a manually-managed heap. It seems reasonable 

to expect that if all scalar objects of a class are allocated in the collected heap, 

programmers will also want arrays of objects to be allocated in this same heap. 

Programmers can circumvent the restriction on the allocation of arrays in two 

ways: by overloading the default new operator and by using the placement syntax 

option when overloading new. Arrays of objects can be allocated in a collected heap 

by overloading the default new operator to allocate memory in the collected heap as 

well, but this is less than ideal. An application may contain many collected heaps 

and many garbage collectors, each customized to meet the needs of a specific set 

of classes, but there is only a single default operator new and it can be overloaded 

to allocate memory in only one of these collected heaps. The problem can also 

be circumvented by defining many default new operators, each with a different 

placement syntax. Arrays of objects can then be allocated using the'appropriate 

placement syntax option. This is clumsy. Ideally, C++ would allow arrays of 

objects to be allocated by the same overloaded new that allocates scalars. 
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An added convenience to garbage-collector designers would be the ability to 

declare overloaded new operators to return smart pointers. Currently, overloaded 

new operators are required to return C++ void * pointers. 

Garbage-collector designers would also benefit from additional type information 

in an overloaded new if C++ were extended with a general-purpose type-inquiry 

system. Currently, C++ provides only the sizeof type-inquiry primitive. This 

primitive returns the number of bytes of memory that an instance of a type oc-

cupies. It is this value that is passed as the first argument to any overloaded new 

operator. If a general-purpose. run-time type-inquiry system were available, addi-

tional type information should be passed to overloaded new operators. Garbage-

collector designers would find this useful because the type information could be 

used to identify internal pointers in the object being allocated. 

3.7 Summary 

Existing support in the C++ language for garbage collectors that use smart pointers 

has three serious problems: 

1. It is easy to propagate leaked collected object pointers through applications 

inadvertently, through the use of the & operator and through this pointers. 

Leaked pointers can cause garbage collectors to malfunction when they refer 

to objects in some collected heap at the time the heap is collected. Since the 

only symptom of a pointer leak is a malfunction in some remote part of the 

application, it is difficult to correct these inadvertently introduced errors. 

2. The order of evaluation of expressions is undefined and can lead to collected 

object pointer temporaries surviving long enough to confuse a collector. Even 

if programmers are careful not to introduce smart-pointer leaks, these com-

piler temporaries can cause collector malfunctions that are difficult to diag-, 

nose because again, the symptoms of the malfunction may be apparent only 
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in a part of the application far removed from the offending expression. 

3. Implementing smart-pointer conversion operators that mimic the behavior 

of 'implicit C++ pointer conversions can consume a great deal of code and 

programming effort. The problematic aspects of smart-pointer conversions 

are type-safety and pointer-adjustment. 

Support for type inquiry and overloading operator new were also shown to be 

inadequate, but these problems can be circumvented by determined programmers. 



Chapter 4 

Changes Proposed for C++ 

This chapter proposes changes to the C++ language that correct the deficien-

cies in smart-pointer support identified in Chapter 3, for sequential and coroutine 

execution models. The modified language allows programmers to define reliable, 

general-purpose cooperative garbage collectors using smart pointers. The changes: 

• introduce new syntax to allow smart pointers to act as this pointers in non-

static member functions, 

• require compilers to emit warnings when leaks of collected object pointers are 

detected, 

• prohibit live compiler temporaries from containing collected object pointers 

at the time of a function call, 

• allow the automatic application of user-defined smart-pointer conversion op-

erators exactly where comparable C++ pointer conversions would be allowed, 

and modify the smart-pointer copy-constructor's calling sequence to support 

pointer adjustment during conversions. 

The language changes are intended to be as simple and as localized as possible. 

This is important because of the large body of existing C++ implementations and 

applications. C++ users and vendors are more likely to accept small changes to 

the language than large ones, because small changes are less likely to require costly 

changes to their C++ software inventory. 

50 
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4.1 Smart this Pointers 

This research proposes to change the language to allow applications programmers 

to declare this variables explicitly as smart-pointer objects. This change would 

eliminate this pointers as sources of leaks of collected object pointers. The existing 

syntax for a class declaration is as follows [E1St9O]: 

class-specifier: class-head { member-list opt } 

The proposed syntax is as follows: 

class-specifier: class-head { this-dcl0t member-list, pt  

this-dcl: { class-key, class-name this; } 

For example, a class C with a smart this pointer could be declared as: 

class C { 
Csp<C> this;} 

.}; 

The specific choice of syntax makes little difference to the proposal. The syntax 

shown here is suggested because it is easy to implement. Framing the smart this 

declaration in curly braces means that the declaration can easily be recognized by a 

parser generator such as YACC [ASU77]. The smart this declaration appears once 

in the class and applies to all non-static member functions declared in the class. A 

class containing such a declaration is said to be a smart class and instances of a 

smart class are smart objects. 

Figure 4.1 illustrates smart this pointers. Currently, non-static member func-

tions of C++ objects access the objects through a C++ this pointer. The proposed 

change allows a non-static member to access a smart object through a this pointer 

that is itself a smart pointer object. The smart this pointer is simply a C++ object 

with an overloaded —> operator. This means that non-static members of the smart 

this pointer access the smart this pointer through their own C++ this pointer. 

As part of this change, an extension to the semantics of an overloaded operator 

new is proposed. Currently, the operator is defined to return a C++ pointer to 
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Figure 4.1: Smart versus C++ this Pointers 

the newly allocated memory. The extension allows new operators to be overloaded 

to return smart pointers. A new that returns a smart pointer eliminates new as a 

source of collected object pointer leaks. 

This change also requires that all smart objects o be allocated by an overloaded 

new that returns a smart pointer p, and that p and the smart this pointer of o both 

be instances of the same smart-pointer template. This ensures that smart objects 

are always allocated in the correct collected heap. 

Finally, the use of the default copy constructor in smart objects is forbidden, 

because the default copy constructor takes a single C++ reference argument. Since 

C++ references are almost always implemented as pointers, this argument will be 

initialized with a collected object pointer that refers to the object being copied. 

Therefore, the reference argument represents a leak of collected object pointers 

into the C++ application so must not be used. 

Support for smart this pointers has been suggested by other authors. Wang 

[Wang89} suggests the idea as a solution to problems he encountered with his 

collector, but does not pursue it further. Also, software development environ-

ments that are based on handles use a mechanism similar to smart this point-

ers [Appl89] [Rose9O]. Handles allow manual memory managers to support memory 

compaction. A handle is a small data structure containing a pointer to the object 
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in question. The application avoids manipulating true pointers to objects in the 

heap by manipulating pointers to handles instead. When the manually managed 

heap is compacted, only the pointers in handles are adjusted. C++ compilers for 

handle-based environments sometimes support this pointers that are pointers to 

handles instead of pointers to objects. 

4.2 Warning Messages 

This research proposes that C++ compilers and interpreters use implicit typing 

to warri programmers of dangerous leaks of collected object pointers. The im-

plicit typing uses an implicit collected data-type attribute, similar to the explicit 

collected attribute that is under investigation by other researchers [Juul9O]. The 

explicit attributewould be a C++ keyword that indicates that a class is to be al-

located exclusively in a collected heap, identifies pointers as referring to a collected 

heap, and allows implementation-defined cooperative collectors to be supplied for 

C++ implementations. The explicit keyword is unnecessary in garbage collectors 

using smart pointers because smart this pointers identify classes as being allo-

cated in a collected heap and the smart-pointer classes are easily identified by their 

overloaded indirection operators. The implicit-typing proposal uses a collected 

storage class, but does not require the use of a collected keyword. 

The implicit-typing proposal diagnoses leaks of collected object pointers. In 

particular, it 

• defines the implicit collected type attribute, 

• requires that C++ implementations issue warnings to programmers when-

ever the implicit conversion of a collected type to a non-collected type is 

detected, 

• requires that warnings be issued whenever an instance of a collected type 

is passed to a function that uses ellipsis, 



54 

• requires that warnings be issued whenever two collected object pointers ap-

pear as operands of a pointer operator in an expression, and 

• requires that warnings be omitted when instances of collected types are 

converted to non-collected types in order to pass them as arguments to 

smart-pointer member functions. 

The leaked-pointer warning messages can be used by programmers to ensure that 

collected object pointer leaks do not propagate leaked pointers throughout C++ 

applications. This section discusses the implicit-typing proposal and discusses the 

implications of the new pointer-leakage warning messages for existing C++ appli-

cations that use smart pointers. 

4.2.1 The collected Attribute 

To implement implicit typing, this research changes the C++ language to include 

an implicit collected type attribute similar to the C++ and ANSI C con.st or 

volatile attributes. Since the collected attribute is implicit, collected is not a 

keyword in the language. Instead, the attribute is applied implicitly to overloaded 

indirection operators. For example, the overloaded indirection operators can be 

declared this way: 

template<class T> atruct sp<T> { 
/* collected */ T *operator  
1* collected *1 T &operator * 0; 
1* collected */ T &operator 0 (jut); 

.}; 

The collected keyword appears in the example in comments to indicate that it 

is not present in -the code, but is implied. The —> operator returns a pointer to 

a collected T, where T is some data type. Similarly, the * and [] operators 

return references to a collected T. This attribute is propagated in C++ pointer 

expressions in exactly the same way the volatile keyword is propagated. For 

example, if a were a smart pointer sp<A> to some class A, the type of the expression 
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&(*a) + 3 would be a pointer to a collected A object. This is because *a is a 

collected A object, 8c(*a) is a pointer to a collected A object, and adding 3 to 

such a pointer yields a similar pointer. 

This proposal requires that C++ implementations issue warning messages when 

any of the following implicit conversions are detected: 

• the conversion of a pointer to a collected type into a pointer to a non-

collected type, or 

• the conversion of a pointer to a function returning a pointer to a collected 

type into a pointer to a function returning a non-collected type. 

Consider the following example, where a is a C++ pointer to an integer, b is a 

smart pointer and c is an mt data member. 

jut *a; 
sp<X> b; 
struct X { jut c; } 

a = &(b -> c); 

The subexpression b -> c has type(collecied int) and the subexpression &(b -> 

c) has type (collected mt *). So the assignment assigns a ( collected mt *) 

to an (mt *). To carry out the assignment, the (collected mt *) is implicitly 

converted to an (mt *). This conversion should cause the C++ compiler or inter-

preter to issue a warning message to the programmer. This expression is dangerous 

because it assigns a collected object pointer to an unregistered C++ pointer vari-

able. The warning cannot be suppressed by defining a to be a ( collected mt *), 

because programmers cannot use the collected attribute explicitly. The warning 

can be suppressed through the use of an explicit conversion, since warning messages 

are issued only for implicit conversions. 

a = (mt *) &(b -> c); II no warning is emitted! 

Warnings are omitted for explicit conversions because C++ and C have a policy of 

allowing explicit conversions of almost any type into almost any other type. The 
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consequences of explicit conversions are the responsibility of C++ programmers. 

In a more complex example, the expression 

class A * sp<A>::*ptrtomember) 0 = &(sp<A>::operator—>); 

takes the address of a smart pointer —> operator and also generates a warning. This 

is because a "pointer to a function returning a pointer to a collected c1as" has been 

converted implicitly to a "pointer to a function returning a pointer to a class." 

4.2.2 Arguments of Functions using Ellipsis 

The implicit-typing proposal requires C++ compilers to emit warnings when func-

tions such as printf, whose'function prototype uses ellipsis, are passed cbllected 

values as arguments. Functions using ellipsis circumvent normal C+.-i- type-checking 

mechanisms. They define the types of their first N arguments, where N may be 

zero, and they may be called with any finite number of additional arguments of ar-

bitrary type. It would appear therefore, that collected arguments can be passed 

to these functions without being converted to a non-collected type, because these 

functions take any type of argument. This appearance is misleading, because when 

these arguments are used in the called function, they will be manipulated through 

variables declared by the programmer and no such variables are of a collected 

type. Therefore, passing collected arguments to functions using ellipsis involves 

an implicit conversion and so requires the emission of a warning message. 

4.2.3 Operators with Two collected Pointer Operands 

Several C++ operators take two C++ pointers as operands: —, <, >, , ! , >, and 

<. When both operands are collected object pointers, the value of the operand 

whose evaluation is first completed must be stored in a compiler temporary. If a 

garbage collection occurs while completing the evaluation of the second operand, 

this live temporary may make the result of the operation meaningless. When op-

erators taking two collected object pointers must be used, it is best t6 overload 
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• the operators in smart-pointer classes and to use the overloaded operators rather 

than their C++ pointer versions. For this reason, the implicit typing proposal re-

quires C++ compilers and interpreter to emit warnings when an operator with two 

collected pointer operands is encountered. 

4.2.4 Smart Pointer Member Functions 

Unfortunately, any use of a non-static function member of a smart-pointer member 

of a smart object involves at least one implicit conversion of a collected object 

pointer to a non-collected pointer: the conversion required for the initialization 

of the this pointer in the non-static member function. This results in the emission 

of large numbers of warning messages during the compilation of most applications 

using smart pointers. For example, consider an expression that carries out a smart-

pointer assignment operation on a smart-pointer data member of a smart class 

T: 

class T { 
{sp<T> this;} 

sp<T> p; /1 smart pointer data member 

sp<T> q = new T; II initialize smart pointer q 
ci -> p = q; 

When q —> p = q is evaluated, it calls the non-static overloaded assignment opera-

tor for p. Since the expression initializes the assignment operator's non-collected 

this pointer with a C++ pointer to the collected 'T object, the initialization in-

volves an implicit conversion of a collected object pointer to a non-collected 

object pointer. 

The implicit-typing proposal eliminates these warnings by simply requiring that 

no warnings be emitted when a collected object pointer is passed as an argument 

to any smart-pointer member function. The warnings are suppressed in order to 

prevent programmers from being flooded with meaningless error messages which 

they would otherwise have to ignore. The proposal assumes that smart-pointer 
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class designers are aware that C++ pointer arguments to smart-pointer member 

functions may be collected and that these designers will take special precautions 

when implementing smart-pointer member functions. Guidelines for programmers 

implementing smart-pointer member functions are discussed in Section 4.5. 

4.2.5 Compatibility with Existing Smart Pointer Implementations 

When the language is modified as described in this chapter and an existing appli-

cation using smart pointers is recompiled without modification, large numbers of 

warnings about implicit conversions should be expected. Many of these warnings 

will disappear when all garbage-collected classes are modified to specify a smart this 

pointer. All of the remaining warnings indicate expressions in which collected 

types are implicitly converted to non-collected types. With non-compacting col-

lectors, only some of these expressions can actually confuse a garbage collector. 

With compacting collectors, it is likely that most or all of these expressions can 

confuse the collector. 

The safest way to eliminate these warnings is to use smart pointers rather than 

C++ pointers in the expressions generating the warnings, and a less safe way to 

eliminate the warnings is to convert the collected types to non-collected types 

explicitly. Explicit conversion may be desirable when calling functions written in' a 

language other than C++, or in highlr-optimized code. Programmers using explicit 

conversions are responsible for ensuring either: 

• that no garbage collections take place while pointers to collected types exist, 

or 

• that the offending pointers are registered manually with the garbage collec-

tors. 

Aside from these warning messages, the proposals in this chapter do not affect the 

behavior of existing applications using smart pointers. 
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4.3 Restrictions on Compiler Temporaries 

Temporary C++ pointers to collected objects must be created in the course of 

evaluating many expressions, but no such temporary should be live when a garbage 

collector is activated. This research proposes to change the language to prohibit 

compilers from creating temporary pointers to collected objects that are live 

during the evaluation of any function call'. 

Smart pointer member functions are allowed to take live compiler temporaries as 

arguments, because as was seen in Section 4.2, there are times when it is necessary 

to pass collected arguments to these member functions. Section 4.5 suggests 

guidelines for the design of smart-pointer classes that allow these collected object 

pointers to be manipulated safely. 

This sections shows that restricting temporaries, during function calls is sufficient 

to protect garbage collectors from malfunction in sequential and coroutine execu-

tion contexts. This section also demonstrates that compilers can easily eliminate 

these temporaries. This is demonstrated by describing a mechanism for translating 

C++ expressions into a primitive syntax that uses compiler temporaries explic-

itly. Simple arguments are presented that show that the translation avoids live 

collected temporaries at the time of function calls. 

4.3.1 Sequential and Coroutine Execution Environments 

Prohibiting live collected temporaries during function call operations is all that 

is needed to protect garbage collectors from collected temporaries in sequential 

and non-preemptively time-shared execution environments, because in these execu-

tion environments, the only way that a garbage collector can be activated during 

the evaluation of an expression is through the evaluation of a function call in the 

'An alternate approach is to identify to the appropriate garbage collector those temporaries 
that contain collected object pointers, by identifying the format of activation records as described 
in Section 2.1.4.2. However, identifying activation records requires considerable effort on the part 
of the compiler implementor and for this reason is not required of C++ compilers. 
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expression. 

A sequential execution environment has one thread of control in each address 

space. In C++, user-defined garbage collectors are C++ functions. In a sequential 

execution model, the only way to activate a function f during the evaluation of an 

expression is either to call f directly, or to call some other function g that results 

in f being called indirectly. Thus only the evaluation of a function call operation 

can activate a garbage collector. 

A coroutine model or non-preemptive multitasking model may have more than 

one thread of control in an address space, but only one thread is active at a time and 

control is passed between the threads explicitly. In this model, an explicit function 

call can cause a garbage collector to be activated, but the evaluation of an explicit 

task-switch operation can also cause the collector to be activated. This is because 

the task-switch operator may transfer control to some other task that activates 

the collector. However, the task-switch operation is frequently implemented as a 

function, and when it is not, it can be encapsulated in a function. This means 

that any coroutine execution model can also arrange to have the garbage collector 

activated only through the evaluation of a function-call operation. 

Thus, if the compiler eliminates live pointer temporaries that refer to collected 

objects at the time of a function call, no such temporaries can exist when a garbage 

collector is activated. This means that these temporaries can never confuse a 

garbage collector. 

In contrast, in preemptive time-sharing models, parallel-processing models, or 

processing models supporting exception handlers, some other task or exception 

handler may assume control during the evaluation of an expression, and that task 

may activate the garbage collector. This can happen even while evaluating an 

expression that contains no function calls. A discussion of garbage collection in 

these environments is outside the scope of this work'. 

21f programmers are careful to avoid activating a garbage collector in exception handlers, 
then exception handlers can be added to sequential or coroutine execution environments while 
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4.3.2 A Translator That Avoids collected Temporaries 

A simple translator can, convert C++ expressions into a syntax that represents 

compiler temporaries explicitly and the translator avoids creating collected tem-

poraries that are live across function calls, except for the temporaries that are 

arguments to smart-pointer members. 

The translator works in three phases. Phase 1 expands all implicit C++ op-

erations into an explicit notation. Among other things, this phase converts con-

structors, destructors, overloaded operators and bitwise-assignment operators into 

explicit calls to the C++ functions that implement these operations. It also con-

verts reference variables into C++ pointers and replaces reference-variable opera-

tions with comparable C++ pointer operations. For example, phase 1 translates 

an expression containing a += operator overloaded for complex numbers: 

void operator + (struct complex , struct complex ); 
struct complex a, b; 

a += b; 

into an explicit call to the overloaded operator. 

operator += (&a, tb); 

Phase 2 translates the expression into a low-level syntax that represents compiler 

temporaries explicitly. To define the phase 2 translator, an auxiliary definition of 

the "nesting depth" d(e) of an expression e is needed, which measures the depth 

to which operators are nested in e. If the phase 2 translator is called 0 and the 

expression to translate has depth d(e) = 0, then 9(e) = e. If the expression has the 

form e = o(ei, ..., e,) where o is a C++ operator and the ei are operands that may 

themselves be C++ expressions, the translation 0(e) is: 

(t1 = &0jO(e), ..., tn = &optO(eq), tn+i = &opto(* optti, ..., *0 t,), *0tt+i) 

still guaranteeing that no collected object pointer temporaries exist at the time of a garbage 
collection. - 

'More formally, d(x) = 0 for all names, constants and temporaries x, and d(o(ei, ..., en)) = 
1 + max(d(ei), ..., d(e)). 
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In other words, each of the operands is translated recursively and is evaluated in 

isolation. The result of each operand is assigned to a compiler temporary, and 

the operation o is evaluated with the temporaries as arguments. The translation 

includes optional & and * operators in order to accommodate operands that are 

used as ivalues. Each recursive translation O(e) is defined to use a set of compiler 

temporaries that does not contain any of {t1, ..., t+1}. The order of evaluation 

of the operands ei is such that, C++ order-of-evaluation rules permitting 4, the 

operands that result in collected object pointers are evaluated last. Applying 0 

to the complex-number example, the example is translated into: 

(ti = (tp = 

tq = 
tq), 

t2 (tx = 

ty = 

ty), 

t3 operator + (ti, t2), 
t3) 

Phase 3 of the translation simply collapses the result of phase 2 into an un-nested 

comma expression. 

(tp = a, tq = (*tp), ti = tq, tx = b, ty = (*tx), t2 = ty, 

t3 = operator + (ti, t2), t3) 

This translation function has two important properties. 

1. Each compiler temporary in the translated expression is assigned a value 

exactly once and is used exactly once. Each temporary therefore becomes 

live only after the end of the assignment expression inwhich it first appears, 

and is dead after the expression in which it last appears. 

2. In the expansion of an expression t = O(o(ei, ..., e,)) = (..., t = t+i), when 

the last term (tx = t+1) is evaluated, th'e only live temporary is t, 1. Not 

even tx is live, since it becomes live only after the evaluation of the assignment 

that is the last term in the expression. 

'Currently, C++ defines the order of evaluation of the 11, &&, ?:, and comma operators and 
the operands to other operators may be evaluated in any order. 
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The remainder of this section shows that the simple translator translates most 

C++ expressions safely. A translation is safe if it contains no live compiler tempo-

raries that are pointers to collected objects that might cause a garbage collector 

to malfunction at the time of a function call. Expressions that the translator cannot 

translate safely fall into three categories. 

1. Expressions that cause the compiler to generate smart pointer warning mes-

sages cannot be translated safely by 0 or by any translation function. This is 

why warning messages are issued for these expressions. 

2. Expressions that pass collected pointers to smart-pointer member functions 

cannot be translated safely. For this reason great care must be taken in the 

design of smart-pointer classes in order to avoid causing a malfunction because 

of unregistered collected pointer arguments. Guidelines for the design of 

smart-pointer member functions are presented in Section 4.5. 

3. Expressions that pass more than one collected pointer argument to a smart-

pointer member function are especially unsafe. Even a carefully designed 

smart-pointer class cannot deal with these expressions. Consider a function 

f with at least two collected pointer arguments a and b. One of these 

arguments, say a, must be evaluated first, resulting in a collected temporary 

that is not registered with a garbage collector. If the evaluation of b activates 

the garbage collector, the unregistered temporary may cause the collector 

to malfunction. The malfunction occurs even before f is called. No matter 

how carefully f is implemented, it cannot prevent a malfunction that occurs 

before f is called. Functions that take more than one collected C++ pointer 

argument are therefore especially unsafe and should be avoided. 

All other kinds of expressions of arbitrary depth are translated safely. This is seen 

through induction by showing: 

1.. that all expressions of depth d(e) = 0 are safe, and 
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2. that if all expressions of depth d(e) ≤ N are safe, then all expressions of depth 

d(e) = N + 1 are safe. 

Assume then, that some C++ expression e = o(ei, ..., e,) is of depth d(e) 

N + 1 and that the translations of all of the operands ei are safe, because they are 

of depth d(e1) ≤ N. If none of the operands ei evaluate to a collected pointer, 

then none of the temporaries 0 holding the results of the operands are collected 

pointers. Since the translations of each of the operands is safe, and 0 introduces no 

new collected temporaries, the entire translation must be safe. The translation of 

e is of further interest only if at least one of the operands evaluates to a collected 

pointer. The expression e = o(e1, ..., e) must be one of three kinds of expressions: 

1. e = o(e1), where ois a unary operator, 

2. e = o(ei, ..., e,), where o is a non-unary operator that defines the order of 

evaluation of its operands, or 

3. e = o(ei, ...) e,), where o is a non-unary . operator that does not define the 

order of evaluation of its operands. 

Each of these cases is examined in turn. 

4.3.2.1 Case 1: o is a Unary Operator 

It was shown above, that if the value of the operand of a unary operator is not a 

collected pointer, the expression is safe. The expression can be unsafe only if the 

value of the operand is a collected pointer. The temporary storing this pointer 

becomes live as soon as the operand is evaluated. The only way this temporary can 

confuse a garbage collector is if the operator o is a unary function-call operator. This 

is impossible though, since a unary-call operator does not take a collected pointer 

operand. Unary-call operators take functions or function pointers as operands, 

and these values are not pointers to collected objects. All unary operators are 

therefore translated safely. 
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4.3.2.2 Case 2: o Defines Order of Evaluation 

If e = o(ei, ..., e,), where o is a non-unary operator'that defines the order of eval-

uation of its operands, then o is one of the 11, &, ?:, or comma operators, since 

these are the only non-unary operators that define the order of evaluation of their 

operands. 

The two operators I I and && are clearly safe, since they treat their arguments, 

even when they are pointers, as integer truth values. The values of the operands are 

examined as to whether they are zero or non-zero and are then discarded. When 

operands of these operators are pointers to collected objects, these pointers can-

not cause a garbage collector to malfunction. This is because, while live, the pointer 

values are never again used as pointers and it is only such use that causes garbage 

collected applications to malfunction. Therefore, when each operand ei is evalu-

ated, the only live temporaries in the translation are temporaries that cannot cause 

a garbage collector to malfunction. Each operand therefore evaluates safely. The 

final evaluation of the operator o proceeds safely too, since the I I and && operators 

are not the function-call operator and so cannot activate a garbage collector. 

Similarly, the ?: operator evaluates its first operand and examines it as to 

whether it is zero or non-zero. The value of the operand is then discarded and 

exactly one of the remaining operands is evaluated. A chain of reasoning similar to 

that of the I I and &Sc operators shows that ?: expressions are safe too. 

The "comma" operator evaluates its operands in turn' and discards all resulting 

values except for the last value. At the time any operand is evaluated therefore, 

all compiler temporaries representing the values of already-evaluated operators are 

dead. This means that no live temporary exists that points to a collected object. 

Since each of the operands is of depth d(e) ≤ N, each of the operands and the 

entire expression is translated safely. 
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4.3.2.3 Case 3: o Does Not Define Order of Evaluation 

Let e = o(ej, ..., en), where o is a non-unary operator that does not define the order 

in which its operands are evaluated. If o is a function-call operator, then the call is to 

either a smart-pointer member function or to some other function. Calls to smart-

pointer member functions are known to be unsafe and are not considered further. 

Calls to other functions generate warning messages when arguments are collected 

pointers and are therefore also known to be unsafe and are not considered further. 

Therefore, the remaining discussion in this section applies only to operators other 

than the function-call operator, since all function calls with collected pointer 

operands are known to be unsafe. 

Binary operators such as' + and - may have one collected pointer operand and 

expressions with only one such operand are safe because 0 is defined to evaluate 

the collected operand last. When the first operand is evaluated, there are no 

live temporaries and it is evaluated safely. When the second' operand is evaluated, 

the only live temporary is the result of the evaluation of the first operand and 

the temporary is not collected. The evaluation of the second operand is therefore 

safe. The final evaluation of the operator o takes place in the context Of a single live 

collected temporary, but the operator is not a function call operator and therefore 

evaluates safely. Binary expressions containing a single collected pointer operand 

are therefore safe. 

All of the operators discussed in Section 4.2.3 can use two collected pointer 

operands, but warnings are emitted for all of these expressions, so they are not 

considered further. 

The only other operators that might take two collected pointer operands are 

the assignment operators. A closer look reveals that in fact, an assignment opera-

tor cannot take two collected object pointer operands. An assignment operator 

takes an lvalue operand, specifying where to put the value, and a value operand, 

specifying the value to store. The operator cannot take two collected pointer 
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operands because the ivalue operand must specify either a temporary location, or 

a non-temporary location. If the ivalue specifies a temporary location, the ivalue 

is not a collected pointer, since compiler temporaries are located either in pro-

cessor registers or on the activation stack. Neither of these is located in a collected 

heap, and neither can be the target of a smart-pointer object. Compiler-temporary 

ivalues are therefore non-collected. 

If the ivalue indicates a non-temporary location, then the value operand cannot 

be collected. It cannot be collected because a non-temporary ivalue must refer 

to a location that holds a primitive C++ data type. Assignments to non-primitive 

objects are translated into function calls of either an overloaded assignment op-

erator or a bitwise-copy function and function calls were dealt with earlier in this 

section. A primitive assignment operator has a primitive data type as an ivalue. No 

primitive data type can store a pointer to a collected object, because program-

mers cannot declare such data types. Any attempt to store a collected pointer 

in such a data type generates a warning message. Therefore, if the lvalue operand 

refers to a non-temporary location and the expression does not generate a warning, 

the value operand must not be a collected pointer. 

Therefore, the only assignment operations that do not generate warning mes-, 

sages contain at most one collected operand and so are safe. There are no other 

non-unary operators that do not define their order of execution Therefore, the 

simple translator safely translates all expressions except those identified earlier as 

known unsafe expressions. 

4.3.3 Discussion 

This proposal requires compilers to avoid live collected temporaries at the time of 

a function call. Avoiding these temporaries protects, garbage collectors from these 

unregistered temporaries in sequential and coroutine execution environments. It 

is possible to prevent these temporaries, because an example translator is shown 
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to avoid them. This translator is not optimal. For example, it carries out no 

common subexpression elimination. Developing optimizing compilers that avoid 

live temporaries during function calls is left to future research efforts. 

4.4 Smart Pointer Conversions 

Smart pointers to smart classes must be implicitly converted.to smart pointers to 

other classes in two circumstances. 

1. Implicit smart-pointer conversions must take place exactly when C++ point-

ers to corresponding types would be implicitly converted. 

2. A smart class C may contain a non-static data member that is itself a smart 

class D with non-static function members. When such a function member is 

called, the smart pointer that refers to the C object must be. converted to a 

smart pointer that refers to D. For example: 

striict D {{sp<D> this;} void f ();}; II smart class with function member 
struct C {{sp<C> this;} mt x; D d;}; II smart class with smart data member 

sp<C> p; 

P -> d.f 0; 
II 'p' is smart pointer to class C 

II 'p' is converted to sp<D> 

In both these circumstances, a kind of pointer-adjustthent - a modification of the 

value of the pointer being converted - may have to take place. Spcifically, in case 

(1) above, the pointer-adjustment takes place whenever a comparable C++ pointer 

conversion would involve pointer-adjustment. In case (2), pointer-adjustment al-

most always takes place. In the example, the object d is located in the interior 

of C objects. When the pointer p is converted to the this argument of D: : f, p is 

adjusted to refer to the interior of C, rather than to the beginning. This section 

describes changes to the C++ language that allow implicit conversions of smart 

pointers to take place. The new mechanism is convenient, type-safe, and provides 

for the required pointer adjustment. 
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class sp_void { 
void *ptr; 

.3.; 

II the void" smart pointer class 

II the C++ pointer implementing the class 

ii the smart pointer class 
template<class T> struct sp<T> public sp_void { 

sp<T> ( sp_void &p) { II conversion operator (copy constructor) 
ptr = p.ptr; 

.3.; 

Figure 4.2: A Convenient Smart-Pointer Conversion Operator 

4.4.1 A Convenient and Type-Safe Conversion Mechanism 

Figure 4.2 illustrates a convenient smart-pointer conversion operator. The op-

erator is defined only once, is very small, and converts any instance of the smart-

pointer template sp<T> into any other instance. This is accomplished by defining 

a "void" smart-pointer base class sp_void and having the template class inherit 

from this base class. The template class then defines a conversion operator that 

converts any instance of the "void" base class into an instance of the template class. 

Since any instance of the template class is also an instance of the base class, the 

operator in effect converts any instance of the template class into another instance 

of the template class. This is convenient, because all "legitimate" smart-pointer 

conversions are defined by this single template conversion operator. However, the 

operator carries out no pointer adjustment and ig not type safe because it defines 

many illegitimate conversions as well as legitimate ones. 

To make the conversion operator type-safe, the language must prohibit the im-

plicit application of smart-pointer conversion operators when C++ would not im-

plicitly convert the corresponding C++ pointers. More specifically: 

• the C++ pointer type returned by the overloaded —> operator of a smart-

pointer class is the C++ pointer type that corresponds to a smart-pointer 

class, and 
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• the language must prohibit the implicit conversion of an instance of any smart-

pointer template into another instance of the template when no implicit con-

version of the corresponding C++ pointer types would be allowed. 

Since all implicit C++ pointer conversions are type-safe, restricting implicit smart-

pointer conversions to circumstances where the implicit conversion of the corre-

sponding C++ pointers is legal ensures the type-safety of implicit smart-pointer 

conversions. 

4.4.2 Pointer-Adjustment During Smart-Pointer Conversions 

The convenient conversion operator in Figure 4.2 carries out no pointer adjust-

ment, because no pointer adjustment is carried out on (void *) pointers, and such 

a pointer is used to implement the smart pointer. To correct this the C++ lan-

guage must recognize and treat specially a second argument to the default copy 

constructor for smart-pointer classes. The first argument to such constructors - 

p in the example - is a reference to the smait pointer being copied. The new 

second argument is required to be a size_t typed variable specifying the amount 

the smart pointer is to be adjusted. A simple smart-pointer implementation could 

then look like this. 

template<class T> struct sp<T> : public sp_void { 
sp<T> (sp_void &p, size_t offset = 0) { II conversion operator 

ptr = (( char *) (p.ptr)) + offset; II do pointer-adjustment 

Programmers must carry out pointer adjustment explicitly in the copy con-

structor that is the conversion operator. The offset value is supplied implicitly 

by the compiler and is a pointer-adjustment value. When the value is used in the 

pointer-adjustment expression in the example, it adjusts the C++ pointer imple-

menting the smart pointer in the same way that a corresponding C++ pointer 

would have been adjusted in a corresponding C++ pointer expression. However, in 

the current C++ standard the pointer-adjustment expression in the example has 
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no defined meaning. In almost all C++ implementations however, the expression 

has the effect of adjusting p.ptr by the desired amount. This research proposes 

to require C++ implementations to carry out pointer adjustment correctly by, as 

in the example, explicitly converting the pointer being adjusted into a ( char *) 

pointer and adding a pointer-adjustment offset to the ( char *) pointer. 

4.5 Guidelines for Programmers 

The safest course of action for programmers using smart classes and smart pointers 

is to use the warnings generated by the compiler to identify and eliminate com-

pletely the use of C++ pointers to smart classes. However, following this course 

of action may be impossible, especially for programmers using foreign-language 

functions, those developing smart-pointer classes, and those using operators that 

act on more than one collected object pointer. This section suggests programming 

guidelines that allow these programmers to avoid confusing a garbage collector. 

1. Use smart pointers to store C++ pointers to collected objects when calling 

functions that may activate the collector. 

This technique protects collected pointers as long as they are in the smart-pointer 

object. The technique is useful primarily when some operator, such as the subtrac-

tion or function call operator, takes more than one collected pointer argument. 

When calling these functions, a garbage collection triggered during the evaluation 

of the second argument may malfunction because of the live unregistered C++ 

pointer to a collected object that holds the result of evaluating the first argument. 

Storing the result of the first argument in a smart-pointer object solves the prob-

lem because the smart pointer is registered with the èollector. For example, assume 

that for some reason, f and g return C++ pointers that the 'programmer knows to 

be pointers to collected objects, and foreign is a foreign language function that 

requires two C++ pointers as operands. 
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class A *f (), *g 0; II return pointer to collected object 
extern "C" void foreign (void *, void *); 

foreign (f 0, g 0); II ERROR 

sp<A> f_result = convert_to_sp_A (f ()); 
sp<A> g_result = convert_to_sp_A (g 0); 
foreign ((*f_result), &(*g_result)); .11 works 

The foreign (f 0, g 0) statement is dangerous, because one off 0 or g 0 

must be evaluated first, resulting in an unregistered C++ pointer that refers to a 

collected object. When the second function is called, it may activate the garbage 

collector and the stored result of the first function -may confuse the collector. The 

second call of foreign works, because as soon as either f 0 or g () is evaluated, 

its value is saved in a smart-pointer object. Smart-pointer objects are registered 

with the appropriate garbage collector. In the subsequent call to foreign, only the 

* operator of the smart-pointer class is called. If the programmer has taken care 

to ensure that the overloaded * operator cannot iictivate a gaibage collection, the 

call. to foreign is safe. 

2. Do not define member functions of smart-pointer classes that take more than 

one C++ pointer argument, including the this argument. 

Smart-pointer members that take more than one C++ pointer argument must 

be avoided because any function that takes more than one collected pointer argu-

ment is unsafe. Not all values passed to C++ pointer arguments of smart pointer 

member functions will be collected pointers, but since the compiler does not emit 

warnings for dangerous calls of smart-pointer member functions, when more than 

one collected object pointer is passed to a smart-pointer member, the program-

mer is not warned of the error. For this reason, smart-pointer members should have 

at most one C++ pointer argument, including the implicit this argument. 

Smart-pointer copy constructors are the sole exception to this rule. Copy con-

structors take two C++ pointer arguments: the C++ reference argument indicating 

the smart pointer from which to copy, and the implicit this argument indicating 
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the smart pointer to which to copy. Copy constructors are invoked only when an 

object is initialized for the first time, but the copy constructor syntax is forbidden in 

new operators returning smart pointers. Since the forbidden case is the only one in 

which a copy constructor is invoked with two collected C++ pointer arguments, 

it is safe to define copy constructors with two C++ pointer arguments. 

3. When all else fails, manually register pointers and references to collected objects. 

If a pointer or a reference to a collected object must survive an activation of 

a garbage collector, and if it is not possible to encapsulate the value in a smart 

pointer while the collector is active, the value must be registered with its garbage 

collector manually. The mechanism for doing this, if one exists, is specific to the 

implementation of each garbage collector. This problem occurs most frequently 

in the implementation of smart-pointer operators. All non-static operators take a 

this pointer as an argument and the this pointer frequently refers to a collected ob-

ject in smart-pointer operator implementations. Fortunately, smart-pointer classes 

make frequent use of pointer-registration mechanisms, making it easy to register 

this pointers or copies of these pointers manually when these operators activate a 

garbage collector. 

4.6 Summary 

This chapter proposes changes to the C++ language that correct the deficiencies 

in C++ language support for smart pointers that were identified in Chapter 3. 

The proposal assumes either a sequential or a non-preemptive coroutine execution 

model and shows that the proposed changes are safe in these models. The proposed 

changes have little effect on existing smart-pointer implementations. Guidelines 

are described for smart-pointer class designers and other programmers who must 

circumvent the proposed safeguards in the language. 



Chapter 5 

Implementation Issues 

This, chapter describes the implementation of most of the proposed changes in an 

existing C++ compiler, describes the implementation of a garbage-collected list-

processing benchmark that uses the new compiler, and discusses issues that arise 

in these two implementations. The implementations show: 

1. that the new language features can be added to existing C++ compilers in a 

straightforward and practical manner, 

2. that the resulting compiler can be used to implement a simple and reliable 

garbage collector, and 

3. that in simple cooperative collectors, the run-time cost of constructors and 

destructors is considerable. 

Sophisticated garbage-collection implementations should not suffer the run-time 

penalty observed in the simple collector. An exploration of sophisticated techniques 

in the context of garbage collectors using smart pointers is discussed as a topic for 

future research in Chapter 6. 

Two issues arise in the implementation of the simple garbage collector: it is not 

clear how to reclaim cycles of objects that span collected heaps, and it is not clear 

how destructors and garbage collectors should interact. The problem of cycles of 

objects that span heaps is new to C++, since C++ is the first language to allow 

an application to use many garbage collectors simultaneously. A solution to this 

problem is presented in the form of a central controller for garbage collectors. The 

problem of destructors is common to all garbage collected object-oriented languages 

that define destructors and is addressed in the literature. 

74 
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5.1 Modifying a C++ Compiler 

Most of the changes proposed in Chapter 4 were implemented inversion 2.0 of the 

AT&T cfront C++ to C translator'. Since the cfront translator is the basis of a 

large number of commercial C++ compilers, the conclusions reached in this chapter 

apply to a large body of existing compilers. 

Time constraints made it impossible to implement all of the changes proposed 

in Chapter 4, but enough of the changes were implemented to demonstrate that 

it should be possible to implement all of the proposed changes in a conventional 

C++ compiler without undertaking a major redesign of the compiler. The following 

features were implemented. 

1. Smart this pointers were implemented for all virtual and non-virtual non-

static member functions, excepting only constructors, destructors, and default 

assignment operators. 

2. Warnings about the implicit conversion of collected types to non-collected 

types were implemented. 

3. The restrictions on the order of evaluation of expressions were implemented. 

1. Most of the functionality of the proposed smart-pointer conversion and pointer-

adjustment facility was implemented. 

The implementation changed less than 1% of the compiler and added about 4% 

of new code to the compiler 2. These changes are clearly small, ' and required no 

major design changes. The following features proposed in Chapter 4 were not' 

implemented. Adding support for these facilities is expected to be time consuming, 

but straightforward. ' 

'Since version 2.0 of the efroni translator' does not support templates, the translator was 
augmented by the Texas Instruments COOL preprocessor, which supports many features of C++ 
templates [FoO90]. 

2The original cfront C++ to C translator contained about 25,000 lines of C++ code, not 
counting comments or empty lines. 
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1. The remainder of the pointer-conversion and pointer-adjustment facility was 

not implemented. Two pointer-conversion and adjustment facilities similar 

to the proposed one were implemented, and the experience gained from these 

led to the proposal in Chapter 4. The final proposal was not implemented 

because it seemed that little would be learned from a third implementation. 

2. Pointers to non-static members were only partially implemented because com-

pletely supporting these pointers would have involved unimplemented pointer-

conversion and adjustment functionality. 

3. The automatic generation of constructors, destructors; and assignment oper-

ators was not implemented. Comparable functions can be written "by hand" 

by C++ programmers, and this is the approach that is taken in the imple-

mentation described in Section 5.2. C++ generates these functions because it 

is difficult for programmers to keep the functions consistent with class defini-

tions during the evolution of applications. Manually-generated constructors; 

destructors and assignment operators are easr to implement, although sup-

port for virtual functions in constructors is not portable because it requires 

some knowledge of the C++ implementation. The compiler, as implemented, 

compiles the manually-generated functions in Section 5.2 correctly. 

4. Overloaded new operators that return smart pointers were not implemented. 

Smart objects were also not restricted to being allocated by such an over-

loaded new operator. This support was not undertaken because the central 

component of this support is the mechanism by which the new operator inter-

acts with the automatically-generated portions of smart-class constructors3. 

Since the automatic generation of smart-class constructors was not imple-

3The interaction between new and constructors is nontrivial because version 2.0 of cfront 
still supports the "assignment to this" anachronism. This was once the only mechanism for 
creating user-defined memory managers, but is now obsolete. When this anachronism is finally 
eliminated from cfront, the interaction between operator new and smart-class constructors will 
become trivial. 
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mented, support for smart new operators that return smart pointers would 

serve little purpose. The implementation described in Section 5.2 emulates 

manually the action of such a new operator. 

In summary, the only features not implemented were: the automatically-gen-

erated functions, the remainder of the smart-pointer conversion facility, and other 

features dependent on these two facilities. The implementation of most of the pro-

posal in Chapter 4 was straightforward, and the implementation of the remainder 

of the proposal is expected to be time consuming, but unsurprising. The coopera-

tive collector described in Section 5.2 works around the limitations in the modified 

C++ compiler. The collector code avoids pointers to members and manually defines 

constructors, destructors, assignment operators and new operators. The manually-

defined new operator calls the manually-defined constructors when an object is 

created. 

5.2 The Implementation and Evaluation of a Compacting, 

User-Defined, Cooperative Collector 

This section describes the implementation and performance of a simple two-space 

compacting garbage collector. It describes the collector and its associated smart-

pointer class and shows that the class is small and easily understood. The collector 

is used in one of four implementations of a standard list-processing benchmark 

and the collected benchmark is found to run 5 times more slowly than the slowest 

benchmark that uses manual memory management. 

5.2.1 The Smart Pointer Class 

Ideally, the smart-pointer class template associated with the collector would look 

like the class illustrated in Figure 5.1. Since smart class constructors were not im-

plemented, the smart-pointer class template actually looks like the class illustrated 
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class sp...void { II the ' void' smart pointer class 
void *it; II ptr to smart object 
class gcreg *registration; II collector registration record 

public: sp_void () { 
it = 0; 

registration = gcreg::register_root (this); 

sp..void (sp_void const &rhs, size_t offset 0) { 
it = rhs.it ? (void *) (((char *) (rhs.it)) + offset) : 0; 

registration = gcreg::register_root (this); 

5p_void () {registration -> deregister_root 0;)• 
void operator = (sp_void rhs) {it = rhs.it;} 

friend class gc; II gc::collect can access ' it' 

II Smart pointer class 
template<class T> class sp<T> : public sp_void { 
public: sp<T> () {;} 

sp<T> ( class T *p) : (p) {;} 
sp<T> ( sp_void const &rhs, size_t offset = 0) : (rhs, offset) {;} 

sp<T>  
void operator = (sp<T> rhs) {it = rhs.it;} 

class T* operator -> () {return (T *) it;} 
T &operator * 0 {return *((T *) it);} 

II Garbage collector class 
struct gc { 

static sp_void gcalloc (size_t);// allocate memory in collected heap 

static void collect C); II collect garbage 

// Smart object base class 
class co { 

{class sp<co> this;)- II the smart ' this' declaration 
mt mark; II the 'mark' bit 
Dtype tinfo; II Type inquiry info on type of object 
sp<co> operator new (Dtype t) { II memory allocator 

sp_void obj (gcalloc (t -> size)); 

obj -> tinfo = t; I! remember data type of object 
return obj; 

Figure 5.1: A Smart Pointer Class Template for a Compacting Collector 
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#include <generic. h> 

class sp_void { II 'void' smart pointer class 
void *it; II ptr to object 
gcreg *registration; II GC registration record for ptr 

public: sp_void 0 {it = 0; registration = gcreg::new_root (this);) 
sp_void (void *p) {it = p; registration = gcreg::new_root (this);)-

sp_void ( sp_void const &rhs, void *p = 0) { 
it = p ? p rhs.it; 

registration = gcreg::new_root (this); 

3. 
5p_void 0 {registration -> done 0;) 

void operator = (sp_void rhs) {it = rhs.it;} 

friend class gc; II gc::collect can access ' it' 

3.; 

temp].ate<class T> class sp<T> : public sp_void { II Smart pointer class 
public: static unique-it target-type; II type tag for target 

sp<T> 0 {;} 
sp<T> ( class T *p) : (p) {;} 
sp<T> (op-void coust fths, void *p = 0) (rhs, p) {;} 
sp<T> 0 {;} 

void operator = (sp<T> rho) -Cit = rhs.it;} 

class T* operator -> 0 -(return (T *) it;) 
T &operator * 0 treturn *((T *) it);) 
static class sp<T> name2(new_,T) 0; 
1; 

template<class T> sp<T> namé2(sp<T>::new_,T) 0 { // 'manually âverloaded' new 
sp<T> obj ((T *) (gc::gcalloc (sizeof (T)))); 

retval.set_type (target_type << 1); II leave room for 'mark' bit 
retval -> constructor 0; // manually call constructor 
return obj; 

3.; 

class co { II Smart Object Base Class 
{struct sp<co> this;) 

mt tinfo; II 'mark' and simple type inquiry info 
mt type 0 II return type of object 

{return (this ? tinfo >> I : -1);) 
void constructor 0 {;} II manually-defined constructor 
virtual void destructor 0 {;} II manually-defined destructor 
3.; 

inline void sp_void::set_type (mt type) {((struct co *) it) -> type = type;) 
inline void * :: operator new (size-t, gc_jctc *p) {return p;} 

Figure 5.2: Actual Implementation of Smart Pointer Class 
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in Figure 5.2. In both figures, the smart-pointer class is very small and consists of 

a base class called sp...void that contains the C++ pointer to the collected heap. 

The base class also contains jointer-registration information and constructors that 

maintain this information. The registration information is a pointer to a registra-

tion object, and the registration object contains a pointer that refers back to the 

registered smart pointer. The garbage collector maintains arrays of registration 

objects and maintains a free list of unused registration objects. When the collector 

is called, it visits every registration object. The smart pointer to which a non-free 

registration object refers is treated as a root pointer only if the smart pointer is 

located outside of the collected heap. 

The smart-pointer template class inherits its representation from the sp_void 

base class and overloads operators so that they are of the correct type. The template 

class also defines a function to allocate collected objects. It uses the overloaded new 

operator in the smart-object base class to allocate memory and sets the smart base 

class type field to identify the type of class being allocated. The implementations in 

both figures assume a type-inquiry system similar to that of [Gint91]. The garbage 

collector uses the type field in the class co to locate internal pointers in smart 

objects descended from the class. 

5.2.2 Smart References 

Applications that overload operators in smart classes may need to define a smart-

reference class as well. A smart-reference class is one that behaves as much as 

possible as a C++ reference type. For example, a smart class A may overload 

assignment as follows: 

void operator = (sr<A>); 

Smart-pointer objects could not be used in the overloaded operator definition 

because assignment is already defined for smart pointers. This is because smart-

pointer classes are designed to act as much as possible as C++ pointer types, and 
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class sr_void { II the smart reference base class 
protected: 

sp_void sit; II smart ptr to smart object 
sr-void (sr-void const &rhs, size_t offset = 0) 

sit (rhs, offset); 

void *get_it 0 {return sit.it;} II give descendants access to sit.it 

II smart reference template 
template<class T> class sr<T> : public sr-void { 

void operator = (sr<T> &) {;} II no assignment for smart references 
public: sr<T> ( class T const &rhs) : ((class co &) rhs) {;} 

sr<T> ( sr-void const &rhs, size_t offset = 0) (rhs, offset) {;} 

sr<T> 0 {;} 
T* operator -> 0 {return (T *) (get_it 0);)-
T &operator * 0 {return *((T *) (get-it 0));)-

friend sp_void; 

).; 

Figure 5.3: A Smart Reference Class 

assignment is already defined for. C++ pointer types. Smart-pointer assignment, 

like C++ pointer assignment assigns one pointer to another. 

A smart-reference class in Figure 5.3 works in conjunction with the smart-

pointer class in Figure 5.1. The smart-reference class does not completely emulate 

C++ references, because C++ does not allow the "dot" operator to be overloaded. 

Instead, the smart-reference class overloads -> and smart-reference objects must 

be used syntactically as if they were pointers. This research does not propose to 

modify the language to allow the "dot" operator to be overloaded. Such a proposal 

is already being debated vigorously [Usenet]. 

The example in Figure 5.3 also defines a conversion from a C++ reference to 

a smart reference. This conversion is undesirable for two reasons: it may mask 

errors in code that manipulates the dangerous C++ pointers to smart classes, and 

the conversion has no access to whatever information was in the smart pointer 

or reference from which the C++ reference originated. The conversion can be 

eliminated by modifying the smart-pointer examples in Figures 5.1 and 5.2 to return 
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smart references as the result of the * operator. 

5.2.3 The Symbolic Differentiation Benchmarks 

This section describes the performance of a standard symbolic differentiation 

benchmark program, originally written in LISP [Gabr85]. The benchmark calcu-

lates the symbolic derivative of (3x2 + ax2 + bx + 5), 5000 times. The benchmark 

somewhat unfair for C++ since the benchmark was designed to use LISP data 

structures. LISP structures can be emulated in C++, but C++ optimizers have 

not been tuned for these structures to the same extent as are LISP optimizers. How-

ever, the benchmark was chosen because it allows a comparison of the performance 

of C++ memory managers with the performance of a highly-optimized cooperative 

LISP garbage collector. The symbolic-differentiation portion of the benchmark is 

illustrated in Figure 5.4. Four versions of this benchmark were implemented. 

• The original LISP benchmark was modified slightly to use the Chez Scheme 

[Dybv87] dialect, version 3.2. This implementation is an example of a highly 

optimized, garbage collected native-machine-code compiler. 

• The original LISP benchmark was translated into C++ using a simple list-

processing package, the smart-pointer class illustrated in Figure 5.2, and a 

two-space-copying garbage collector. This implementation is an example of a 

simple, user-defined, cooperative garbage collector for C++ as described in. 

this thesis. 

• The C++ benchmark was then modified to employ a user-defined, manual 

memory manager. This implementation is an example of a highly-optimized 

manual memory manager. The following discussion refers to this implemen-

tation as a custom manual memory manager, or simply the custom manager. 

The custom manager uses knowledge of the benchmark's memory-usage char-

acteristics to avoid the use of a garbage collector. There are points in the 
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sp<atom> 

sp<atom> 

sp<atom> 

sp<atom> 

sp<atom> 

sp<atom> 

sp<atom> 

sp<atom> 

slash = mkatom  
times = mkatom  

plus = mkatom  

minus = mkatom ("-"); 

x = mkatom ("x"); 

one = mkatom (" 1"); 

zero = mkátom ("0"); 

error = mkatom (" error"); 

/* 

division 

multiplication 

addition *1 
subtraction */ 

*1 

/* worker function for differentiating multiplication 

sp<co> deniv_aux (sp<co> a) { 
return (list ( slash, deny (a), a)); 

/* the 

sp<co> 

if 

if 

if 

if 

if 

differentiation function */ 

deny (sp<co> a) { 
(a -> type 0 == sp<atom>::target_type) { 
if (a == x) return one; 

else return zero; 

} 
(a-> type () ! sp<cell>::target_type) 
return (error); 
(sp<cell>(a) -> car 0 == plus) 
return (cons (plus, mapcar (deny, sp<cell>(a) -> 

(sp<cell>(a) -> car 0 == minus) 
return (cons (minus, mapcar (deny, sp<cell>(a) -> cdr 

(sp<cell>(a) -> car 0 == times) 
return (list (times, 

a, 

cons (plus, 

mapcar 

cdr 0))); 

(deriv_aux, 

sp<cell>(a) -> cdr ())))); 
if (sp<cell>(a) -> car 0 == slash) 

return (list (minus, 

list (slash, 

deny (sp<cell>(a) -> cdar C)), 
sp<cell>(a) -> cddar 0), 

list (slash, 

sp<cell>(a) -> cdar C), 
list (times, 

sp<cell>(a) -> cddar 0, 
sp<cell>(a) -> cddar 0, 
deny (sp<cell>(a) -> cddar  

return (error); 

} 

Figure 5.4: A Symbolic Differentiation Benchmark Translated from LISP 



84 

benchmark where it is safe to discard all memory that was allocated after 

the application's initialization period. The memory manager allocates a large 

block of memory to use as the manually managed heap and allocates memory 

sequentially in this block. When the application's initialization is complete, 

the allocated portion of the block is marked. The marked portion of the heap 

is called the permanently-allocated region. When a point in the application 

is reached where it is safe to reuse all of the heap except the permanently 

allocated region, the allocation point in the heap is reset to the top of the 

region. In this way, the custom memory manager makes use of a knowledge 

of the memory-usage characteristics of the application to reduce the cost of 

allocating memory and to eliminate almost entirely the cost of reclaiming 

memory in the heap. 

• Finally, the custom manager was modified to use the manual memory manager , 

that comes bundled with the AT&T cfront product. This is an example of 

a "typical" C++ application that does not optimize memory management at 

all. 

To use the default memory manager, the co class in Figure 5.2 was modified 

to contain a pointer field that links all collected objects into a single chain. 

All of the objects allocated during the benchmark's initialization period are 

removed from this chain, thus becoming permanently allocated. When it is 

safe to discard all of the remaining memory in the heap, the memory can be 

discarded by visiting each object in the allocated chain and deallocating the 

object using the default delete operator. 

The smart-pointer benchmark was also compiled without smart this declara-

tions, using the unmodified AT&T C++ compiler. As expected, the resulting 

application malfunctioned because of the existence of unregistered pointers to col-

lected objects at the time of a collection. For this reason, no performance figures 

are available for this version of the benchmark. 
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total 
time (t) 

useful 
work (u) 

allocating 
memory (a) 

delete/ 
gc (d) 

smart 
ptr 

ops (sp) 
Scheme (Sc) 1.9 s 1.5 s unknown 0.39 s 
smart 
pointer (SF) 24 s 1.1 - 1.6 s 0-  0.5 s 1.9 s .21s 
manual (M) 8.1 s 1.1 - 1.6 s 2.7 -  3.2 s 3.8 s 
custom (C) 1.6 s 1.1 - 1.6 s 0 - 0.5 s 0 s 

Table 5.1: Benchmark Results 

useful 
work (u) 

allocating 
memory (a) 

delete/ 
gc (d) 

smart 
ptr 

ops. (sp) 
Scheme (Sc) 80% 20% 
smart 
pointer (SF) 5-  7% 0-  2% 8% 88% 
manual (M) 14 -  20% 33 - 40% 47% 
custom (C) 70 - 100% 0-  30% 0% 

Table 5.2: Normalized Results 

This section discusses the run-time performance of these implementations and 

concludes that the cost of smart-pointer constructors and destructors can be sub-

stantial. 

5.2.4 Performance Comparison 

Tables 5.1 and 5.2 contain the results of the benchmark runs. All of the runs 

were carried out on SPARC Station 1 [Sun87] workstations equipped with suffi-

cient memory to eliminate page swapping while executing the benchmarks. The 

execution times measured in the benchmark runs were the total run time and the 

time spent in reclaiming storage (ie: manual storage reclamation or garbage collec-

tion). These numbers appear in boldface in Table 5.1. The remaining numbers in 

the table are the results of the following calculations based on the measurements: 

• The cost of allocating memory in the smart pointer and custom cases (Ca 

and SP,,) was calculated by estimating the number of instructions executed 
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Smart Pointer 
Operation 

Count 
(Millions) 

constructor 5.7 
destructor 5.3 
indirection 4.3 
assignment 0.9 
comparison 0.3 

Table 5.3: Smart Pointer Operators Called 

by the memory allocator and observing that about 1/4 million list cells are 

allocated by the differentiation benchmark. 

• The amount of non-memory management "useful" work done by the C++ 

benchmarks was estimated to be the same for all three implementations and 

was calculated as C - Ca. 

• The time spent in smart-pointer operators and the time spent in memory 

allocation by the standard memory manager could then be estimated as all 

of the time remaining in the respective benchmark runs. 

• The time spent in memory allocation by the Scheme implementation was not 

estimated. 

The figures in the table show that the Scheme implementation is roughly as fast 

as the custom memory manager, and that both of these implementations are much 

faster than the other versions of the benchmark. This means that in principle, a 

highly-optimized cooperative garbage collector can be roughly as fast as a highly-

optimized manual memory manager. The figures also show that both of these 

collectors are much faster than the standard memory manager and that the simple 

smart-pointer implementation is slowest of all. The poor performance of the smart-

pointer implementation can be attributed entirely to the cost of smart-pointer op-

erations. 
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Table 5.3 shows a breakdown of how frequently smart-pointer operators are 

called in the smart-pointer benchmark. The most complex operators are the con-

structors and destructors, and with one exception, these are by far the most fre-

quently called operators. The exception is the indirection operator that is called 

almost as frequently as the constructors and destructors, but the indirection op-

erator is very simple (see Figures 5.1 and 5.2). Most of the cost of smart-pointer 

operators must therefore be attributed to smart-pointer constructors and destruc-

tors. 

Constructors and destructors are called frequently in this application because 

most of the application consists of small functions that take smart-pointer argu-

ments. When any of these functions are called, the function arguments must be 

copy-constructed. This behavior is also observed in many large "real life" applica-

tions. It is reasonable to expect therefore, that the cost of constructors and destruc-

tors will have a significant impact on many or most applications using cooperative 

garbage collectors. Reducing the run-time cost of smart-pointer constructors and 

destructors is a topic for further research and is discussed in Chapter 6. 

5.3 Many Collectors in One Application 

If cooperative collectors using smart pointers become commonplace, it is reasonable 

to expect that at least some cooperatively collected applications will contain more 

than one garbage collector, since different collectors can be customized for different 

classes within applications. When more than one collected heap exists, objects 

in each heap may refer to objects in other heaps through smart pointers. The 

pointers responsible for these inter-heap references are seen as internal pointers 

by the garbage collector for the heap containing the pointer, but are seen as root 

pointers by the garbage collector for the heap containing the target of the reference. 

The dual nature of pointers involved in inter-heap references is problematic 

when a cycle of objects involves objects in more than one heap. Every object in 
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Heap A Heap B 

01 02 

Figure 5.5: A Cycle Spanning Collected Heaps 

such a cycle is reachable from an internal pointer man object in a heap other than 

the heap containing the object. Every object in such a cycle is therefore reachable 

from what the garbage collector for the object's heap regards as a root pointer. For 

this reason, no garbage collector in any of the heaps containing 9bjects in the cycle 

will ever reclaim any object in the cycle. 

In Figure 5.5, for example, the objects 01 and 02 eachcontáin pointers to each 

other, but no other pointer refers to either object. The cycle these two objects 

represent is therefore unreachable and should be reclaimed by some garbage collec-

tor. The collector for heap A however, sees q as a root pointer, protecting 01 from 

collection, and the collector for heap B sees p as a root pointer for 02. Neither 

object is reclaimed while a root pointer refers to it. 

The problem of reclaiming cycles of objects that span collected heaps can be 

addressed by C++ garbage collector designers. These cycles can be reclaimed 

by creating a central controller for the garbage collectors of heaps that may be 

involved in unreachable cycles of objects. Individual collectors are activated by the 

application as is required to reclaim storage in the individual heaps and periodically, 

the application also activates the central controller to reclaim unreachable cycled 

of objects. The central collection algorithm operates by identifying for each heap 

those root pointers that are internal pointers in some other heap. The central 

collector then coordinates a global mark-and-sweep garbage collection. The global 

collection marks only those objects reachable from true root pointers: pointers that 
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are not identified as internal pointers in any heap. Objects not reachable from true 

root pointers are reclaimed. 

A central collection has five phases. Each phase calls a function in every garbage 

collector registered with the central collector. Every individual collector must make 

all five of these functions accessible to the central collector upon registration. The 

functions are described later in this section. At the end of the first phase, all of the 

collectors are initialized, at the end of the second phase, all internal pointers are 

identified, at the end of the third phase, all in-use nodes are marked, at the end of 

the fourth phase, all garbage, including cycles that span heaps, has been reclaimed 

and at the end of the fifth phase, the garbage collection is complete. 

Smart pointers which cooperate with collectors that are registered with the 

central collector must have two public member functions: 

internal identifies the smart pointer as an internal pointer. In mark-and-sweep 

'and 'two-space-copying collectors, internal can simply set a flag in the smart-

pointer's registration record. In reference counting collectors, internal decre-

ments the reference-count field of the target object. 

mark marks the target of the smart pointer as being in-use and, if the target was 

unmarked, recursively calls the mark member function in all internal smart 

pointers in the marked object. In reference-counting collectors, mark also 

increments the reference-count field of the target object. 

Each individual collector makes five functions accessible to the central controller 

upon registration with the controller: 

start initializes the individual collector at the beginning of a central collection. 

internal identifies all internal smart pointers in the individual collector's heap by 

calling the internal member function in each of these pointers. 
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mark marks all in-use nodes. Mark-and-sweep and two-space-copying collectors 

accomplish this by calling the mark member function in all registered smart-

pointer roots that are true root pointers. Reference-counting collectors mark 

all in-use nodes by searching the heap for unmarked objects with non-zero 

reference counts and calling the mark member function in every internal smart 

pointer in these objects. 

sweep reclaims unused memory. In mark-and-sweep and reference-counting collec-

tors, this function sweeps the heap, reclaiming unmarked nodes and calling 

destructors on smart pointers in these nodes. In two-space collectors, sweep 

calls destructors on all unforwarded objects in old-space. 

finish shuts down the collector at the end of a central collection. 

The coordinating algorithm has been implemented and tested on a number, 

of complex, cyclic structures, and demonstrates that a central garbage collection 

algorithm exists. However, the algorithm is less than ideal because it relies on 

a stack when marking nodes and this stack may grow very large when marking 

long chains of nodes. The algorithm uses the stack even when marking nodes in 

a two-space copying collector. Two-space collectors do not need such a stack and 

the central algorithm could be modified to take more advantage of these collectors. 

Optimizing the algorithm is left to future research efforts. 

5.4 Calling Destructors 

A problem that must be addressed in any garbage collected language with destruc-

tors is the problem of when and how to call destructors. Requiring a garbage 

collector to call destructors for objects reclaimed in the collected heap is dangerous 

because of the possibility of side effects. Destructors for these objects are called as 

the object is being reclaimed, and such reclamation takes place because the object 

is unreachable from outside the heap. Yet a destructor may itself create references 
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to the object being destroyed, making the object reachable from outside the heap. 

Such objects must not be reclaimed lest the resulting dangling reference confuse 

subsequent invocations of the collector. The garbage collectors described in this 

thesis all rely on programmers to avoid writing destructors that store references to 

garbage objects in non-garbage objects. A more comprehensive discussion of this 

problem is found in [Atki89]. 

5.5 Summary 

This chapter shows that the changes to C++ that are proposed in Chapter 4 can be 

implemented in conventional C++ compilers. The modified compiler can be used 

to construct simple and reliable user-defined garbage collectors. Simple collectors 

incur a significant run-time cost penalty due to the cost of registering automatic 

and temporary smart-pointer objects. Cycles of objects that span collected heaps 

cannot be reclaimed by conventional garbage collectors, and an algorithm is pro-

posed to address this problem. Destructors for collected objects are problematic in 

any language that supports them, including C++. 



Chapter 6 

Conclusions and Further Research 

This research shows that it is practical to modify the C++ language to support reli-

able, type-safe, user-defined, cooperative garbage collectors that use smart-pointer 

classes. 

• Chapter 3 surveys problems in the existing language with support for co-

operative collectors that use smart-pointer classes. The chapter shows that 

collected-object-pointer leaks and collected-object-pointer temporaries make 

it difficult to implement reliable, cooperative collectors. It also shows that 

existing rules for smart-pointer conversion operators make it difficult to im-

plement conversions that are both convenient and type-safe. 

• Chapter 4 proposes that the C++ language be modified to correct these 

problems. 

- Classes with smart this pointers are proposed, in order to eliminate this 

pointers as sources of smart-pointer leaks. 

- Requiring C++ implementations to emit warnings is proposed, whenever 

smart-pointer leaks are detected. 

- Restricting the order of evaluation of expressions involving pointers to 

collected objects is proposed, as an easy-to-implement means of elim-

inating collected object pointer temporaries at the time of garbage 

collections. 

- Modifications to the copy-constructor syntax for smart pointers are pro-

posed, to allow compilers to pass explicit pointer-adjustment information 

to these operators. 

1 92 
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- Restrictions on the automatic application of smart-pointer conversion 

operators are proposed, to avoid the inappropriate application of these 

operators. 

These changes are shown to be sufficient to correct the problems described in 

Chapter 3. 

• Chapter 5 makes several contributions. 

- It shows that it is practical to implement the proposed changes in many 

existing C++ compilers. 

- It shows that a simple, reliable user-defined garbage collector can be 

implemented using the new features. However, the simple collector has 

a run-time cost five times that of the default manual memory manager, 

and more than ten times that of a highly-optimized custom memory 

manager. 

- The chapter shows that cycles of objects that span collected heaps cannot 

be collected by conventional garbage collectors. It proposes an algorithm 

that coordinates a number of collectors in order to reclaim these cycles. 

- The chapter discusses problems with destructors that plague many gar-

bage collected languages. 

6.1 Run-Time Performance Optimization 

This research leaves open a number of issues for future research efforts. The most 

pressing question is that of run-time performance. No garbage collection mechanism 

will enjoy widespread acceptance in the C++ user community unless its run-time 

performance is comparable to the performance of manual memory managers. Two 

avenues of research should substantially improve the performance of cooperative 

collectors that use smart pointers: type-inquiry systems that describe the format 
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of activation records and implementation-defined cooperative collectors that use 

smart pointers. 

6.1.1 Optimization Through Type-Inquiry 

Chapter 5 shows that by far the largest run-time cost associated with the simple 

garbage-collector implementation is the cost of executing smart-pointer construc-

tors and destructors. Simple smart-pointer constructors carry out only two func-

tions: they initialize the C++ pointer used to implement the smart pointer, and 

they register the smart pointer with the garbage collector. Initializing the C++ 

pointer is carried out even in most applications that do not use smart pointers. 

Inline constructors can make the run-time cost °of initializing smart pointers com-

parable to the cost of initializing C++ pointers. The run-time cost of registering 

smart pointers in constructors and deregistering them in destructors is nontrivial 

and it is this cost that makes the smart-pointer benchmark slower than the custom 

memory manager benchmark. 

The run-time cost of maintaining the root-pointer registry can be reduced or 

eliminated entirely by employing the optimizations described in Section 2.1.4.2. 

These optimizations allow the compiler to maintain information about the location 

of root pointers on the activation stack. In C+.+, these root pointers are automatic 

and temporary smart pointers. The problem with this information is that C++ 

defines no standard way to obtain or interpret it. The information is, however, 

comparable to type-inquiry information, since type-inquiry information describes 

C++ types and user-defined data structures, and an activation record is a data 

structure defined partly by the user and partly by the compiler. Information about 

the location of smart pointers in activation records could, therefore, be accessed 

through a general purpose type-inquiry system. The application of type-inquiry 

systems to garbage collection is a strong argument for the eventual inclusion of 

type-inquiry systems in a C++ language standard. 
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6.1.2 Implementation-Defined Collectors 

C++ vendors should be able to further reduce the run-time cost of cooperative 

garbage collectors by supplying implementation-defined collectors that use smart 

pointers. These collectors could appear to use a smart-pointer template similar 

to the templates described in this research, but these templates could in fact be 

recognized by the C++ compiler as being implementation-defined templates. Im-

plementation recognition of a smart-pointer template allows the compiler to use so-

phisticated implementation-specific cooperation technique' s for the recognized class, 

and to build a knowledge of the class into its optimizing phase. The performance 

of such an implementation should be comparable to that of other highly optimized 

implementation-defined garbage collectors, such as the collector in the Scheme im-

plementation of the symbolic-differentiation benchmark. C++ vendors can there-

fore provide a highly-optimized, general-purpose implementation-defined collector 

when no special functionality is required of a garbage collector, and still allow 

users to write their own collectors when a special knowledge of the collected classes 

is required. Furthermore, having the compiler recognize a specific smart-pointer 

template eliminates the need for the new collected keyword that has been dis-

cussed as a means of providing implementation-defined cooperative collectors for 

C++ [Juul9O]. 

6.1.3 C++ to C Translation 

The type-inquiry and template-recognition proposals are difficult to implement in 

a C++ to C translator such as cfront, since the output of the translator is C code 

rather than machine code. The C compiler compiles the resulting C code and 

controls the format of activation records. The C compiler also carries out machine-

specific optimizations that might benefit from a knowledge of garbage collection. 

Further research is needed to establish communications mechanisms between cfront 

and the underlying C compiler, both to communicate activation-record format in-
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formation from the C compiler to cfront and to communicate garbage-collection 

information from cfront to the optimization phase of the underlying. C compiler. 

6.2 Other Execution Models 

This research applies to sequential and coroutine execution models, and there is 

reason to believe that it can be extended to real-time and parallel models as 

well. Real-time and parallel applications are a substantial subset of €++ applica-

tions, especially if human-interactive applications are considered real-time applica-

tions. Detlefs has implemented a real-time conservative collector [Detl9O] using a 

mostly-copying collector and a technique for real-time collection on stock architec-

ture [AEL88]. A similar approach seems feasible for cooperative C++ collectors, 

given the existence of a type-inquiry system that can identify automatic and static 

smart pointers and collected object pointers. 

6.3 Multiple Collectors 

Further research is also needed into the problem of multiple garbage collectors in 

a single application. The algorithm presented in Chapter 5 for collecting cycles of 

objects that span collected heaps is not ideal and should be improved. Until recently 

there was little opportunity to experiment with multiple cooperative collectors. 

Experience in using these collectors in applications may reveal additional problems. 
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Appendix 

A Summary of C++ for C Programmers 

The C++ programming language is an extension of the ANSI C programming 

language. ANSI C is itself an enhancement of the original "Classic C" language 

described in [KeRi78]. This appendix assumes a knowledge of ANSI C and intro-

duces the C++ language as an extension of ANSI C. This appendix also mentions 

some of the differences between Classic C and ANSI C. The introduction to C++ 

in this appendix is not comprehensive. It introduces only enough of the language to 

allow readers to understand this research. A comprehensive introduction to C++ 

is found in [Stro85] and in [ElSt9O] and a similar introduction to ANSI C is found 

in [KeRi88]. 

A.1 C++ and  

Almost all C programs that comply with the ANSI standard for the C language are 

also legal C++ programs. For example, a C++ program that prints "Hello world" 

could look like this: 

II A program that prints "Hello world" 
extern "C" void printf (char *, ...); 

main (mt argc, char **argv) 
{ 

print ("Hello world\n"); 

This program differs from "Classic C" code in a number of ways: 

• It declares the types of function arguments using the ANSI C declaration 

convention. For example, Classic C would declare main like this: 

main (argc, argv) 

mt argc; 
char **argv; 
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The "..." in the printf declaration is called ellipsis and indicates that printf 

takes a variable number of arguments of unspecified type following an initial 

char * argument. 

• C++ comments are prefixed with II and end at the end of the line. C++ 

also admits the C "/* ... */" comment convention. 

• The extern keyword is qualified by the expression " C". This indicates that 

printf is a function written in C and compiled by a C compiler. In most 

implementations, C++ code is emitted differently from C code. This qual-

ification is necessary to ensure that the output of the C++ compiler will 

link correctly with the output of the C compiler used to compile the printf 

function. 

A.2 Classes and Structures 

The biggest difference between C++ and C is the support in C++ for object-

oriented programming. This support is illustrated in Figure A.P. The figure con-

tains code that implements an integer stack as a linked list and defines the functions 

push, pop, depth and too-big on the implementation. The class keyword is used 

to define the stack data type. This keyword is similar to the C struct keyword. 

A C++ class is a C structure that contains functions as well as data and that 

provides name-scope control. In the figure, the int..stack class can be thought of 

as a C structure that defines: 

• the structure entry, 

• the data member first which is a pointer to an entry structure and the data 

member total-entries that counts the number of entries on all it-stacks 

in the application, 

'The figure uses the new and delete keywords. These keywords are discussed in Section A.4. 
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II A stack of integers implemented as a linked list 
class it-stack { 

struct entry { 
entry *next; 

mt value.; 
3.; 

entry *first; 

static mt total-entries; 

public: 

void push 

entry 

first 

first 

first 

I-
/I 
II 

I-
/I 

(mt value) { II 
*rest = first; II 
= new entry; II 
-> next = rest; II 
-> value = value;  

an entry in the stack 

next integer in the stack 
the value.of this entry 

the first entry in the list 

number of entries on all stacks 

push integer on to stack ( inline function) 

the rest of the stack 

dynamically allocate a new stack entry 

link it into the stack 

remember itteger value 

total_entries++; 

3. 
inline mt pop 0; // -pop integer off 

mt depth 0.; II return the size 
static mt too_big C) { II static function 

return total-entries > 1000; 

3. 
3.; 

of stack (inline 

of stack (normal 
to see if stacks 

II implementation of the pop function member ( inline) 
inline mt int_stack::pop () { 

entry *top = first; II the top entry on the stack 
mt top-value top -> value; II integer value of the top entry 
first = first -> next; II unlink the top entry 
delete (top); II deallocate the memory the top entry occupied 
total-entries--; 

function) 

function) 

are too big 

return top-value; 

3. 

II implementation of the depth function member (normal function) 
mt int_stack::depth 0 { 

mt count = 0 
for (entry rest = first; rest; rest = rest -> next) count++; 

return count; 

3. 

// code fragment to create a stack with the integers 1 through 10 on it 
it-stack demostack; 

for (mt count = 1; count <= 10; count++) 

demostack.push (count); 

Figure A.1: C++ Code for a Stack Class 
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. the four function members push, pop, depth, and too-big. 

Of these, only the function members can be accessed by code outside of the class, 

code such as the fragment following the class definition. This is because only these 

three members follow the public label in the class. Members of a class are private 

by default, meaning they are accessible only to function members of the class. The 

C struct and union keywords have also been extended by C++ to support function 

members and name-scope control. For compatibility with C code though, members 

of structures and unions are public, not private, by default. Structures and unions 

can be made to have private members through the use of a private label. 

C++ classes, structures and unions are automatically available as type key-

words. In effect, a. C++ declaration of something like: 

struct A { ... 

is equivalent to an ANSI C declaration like: 

struct A { ... 
typedef struct A A; 

Name-scope control is useful because it limits coupling between subsystems in an 

application [YoCo78]. If no other subsystem has access to the private members 

used to implement a class, that implementation can be changed, optimized and 

enhanced without fear of introducing incompatibility. If the external interface (the 

public data members and the calling sequences of public function members) of a 

class remains unchanged, the class may be modified at will. For example, it would 

be easy to change the implementation of the it-stack class to run faster by using 

an integer array to represent the stack. Subsystems using the new it-stack class 

would need to be recompiled to pick up the new definitions of the push and pop 

functions, but their code need not be changed. 

In exceptional circumstances, private members can be accessed by non-member 

functions or by function, members of another class. Functions that require access to 

private members of another class must be identified in that class as friend functions. 
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For instance, if some other class foo or function bar needed access to private data 

or function members of the it-stack class, the following code would be required 

inside of the it-stack class: 

friend class foo; 

friend void bar 0; II the type of bar is "void bar 0" 

Many C++ applications consist almost entirely of classes whose member func-

tions are very small and this is desirable because it minimizes coupling. Whenever 

a C++ function is called however, the call consumes a small amount of time called 

the function-calling overhead. When most of an application's time is spent exe-

cuting small functions, the run-time cost of the function-calling overhead can be a 

relatively large fraction of the run-time cost of the application. C++ deals with 

this through inline functions. Function members like push and too-big, defined 

inside of class definitions, are inline by default and functions like pop are declared 

inline explicitly. 

An inline function is an optimization hint to the compiler. It means that the 

compiler should attempt to eliminate function-calling overheads for the function by 

placing a copy of the function into the code wherever the function would otherwise 

be called. Inline functions therefore trade space in the object file for run-time speed. 

When function members such as pop and depth are defined outside a class,, they 

are normal functions unless declared inline. These functions must be qualified with 

the :: syntax. This syntax identifies the function as a member of a class, rather 

than a "stand alone" function like printf. 

A class defines a data type and each instance of a class is called an object. For 

example, demostack is an object - an instance of the it-stack class. An object 

qualifier must be provided for every use of function or data members of a class. For 

instance, when the push function uses the value of the next member of the entry 

structure/class, it uses the syntax first -> next, where first is a pointer to an 

entry object. Similarly, when the example code calls the push function member, 

it uses the syntax demo stack.push, where demostack is a it-stack object. The 
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object qualifier is the object for which the function member was called and is used 

to resolve references within called function member. 

Within function members of a class like it-stack, all references to data mem-

bers of that class refer to members of the object for which the function member 

was called. For example, if some function contains code like: 

it-stack a, *b; 

a.push ( 10); 

.b -> push (20); 
.1/ push 10 on the stack "a" 
II push 20 on the stack that "b" points to 

it will result in two stacks of depth one. Each time push is called, its references 

to the first variable refer to fields in two different it-stack objects. The object 

for which a function member is called is passed to each function member as a 

hidden argument. The name of the hidden argume4t is this2, and it is a pointer 

to the object for which the function was called. References to data members are 

implicitly qualified by this inside of function members. For example, in all the 

function members of the it-stack class, all occurrences of first are treated by 

the language as if they had been written this -> first. This is important both 

because it is sometimes necessary to use this explicitly in function members, and 

because the implicit this argument is identified in Chapter 3 as a source of error 

for user-defined, cooperative garbage collectors. 

All of the discussion of data and function members has been of non-static mem-

bers. Static members such as total-entries and too-big are identified by the 

static keyword. Non-static data members are duplicated in every object, however 

only one copy of static data members exists with all objects of a class sharing that 

one copy. For example, since all classes share the total-entries variable, they can 

use it to count all of the entry structures allocated in all stacks in the application. 

Static function members differ from non-static function members only in that 

the3 do not take an implicit this argument. This means that no object qualifier 

21n this thesis all C++ code and variables except the this variable appear in typewriter font. 
The this variable appears in boldface because the similarity of this and "this" was found to be 
too confusing. 
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need be provided to a call of a static function member, because there is no implicit 

this argument to initialize. For example, the too-big member could be called like 

this: 

mt need-to-shorten-stacks = int_stack::too_big 0; 

Static data members are a simple mechanism for sharing information among objects 

of a class. Static function members allow functions to be written that understand 

the structure of a class and that can be called even when no objects of the class 

are available. 

A.3 Overloading Functions and Operators 

Using the same name for different operations on different types is called overload-

ing [Stro85]. Overloading is useful as a convenience - it simplifies coding and 

usually makes the resulting code easier to read. For example, a print function 

may be defined for each .of a number of data types: 

void print (struct a  
void print (struct b  
void print (struct c  

struct b *p; 

print (p); II Uses second "print" definition 

When print is called, the type of its argument is used to determine which definition 

of the function to call. This code could have been written using three different 

names, such as printa, print-b, and print-c, but this would have been a nuisance 

to write, and the resulting code would have been cluttered with redundant suffixes. 

Operator overloading works in much the same fashion. C++ defines the action 

of most operators only on primitive data types. For instance, the assignment op-

erator += is defined on pointers, characters, integers, and floating-point numbers. 

Its action not defined on user-defined objects. C++ allows users to overload op-

erators like += to act on user-defined objects. For example, Figure A.2 defines a 
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class complex { 
public: 

float real-part; 

float imaginary-part; 

friend void operator + (complex &, complex &); 

void operator += (complex &a, complex &b) { 
a.real_part += b.real_part; 

a. imaginary_part += b. imaginary_part; 

} 

void test-complex () { 
class complex x, y; 

x.real_part = y.real_part = 3; 

x.imaginary_part = y.imaginary_part = 4; 

X += y; // calls complex "+" operator 
} 

Figure A.2: Operator Overloading with a Complex Number Class 

complex-number class and defines the operation of the += operator on instances of 

the class. The overloaded operator += is a function that adds one complex number 

to another. 

Notice that the arguments to the overloaded operator in Figure A.2 use the 

syntax "Sc." This syntax indicates that the argument is a reference. A reference is 

another name for an object. A reference is implemented, as a pointer to an object. 

When a value is passed to a function taking a reference argument, it is the address of 

the value that is passed to the function. When a reference is used in an expression, 

it is as if the object that is the target of the reference were used instead. 

References exist in C++ to facilitate certain kinds of operator overloading and 

as a convenient mechanism for passing function arguments "by reference."' For 

example, if one were to define a += operator that added an integer to a complex 

object without references, it might look like one of these functions: 

void operator+ ( complex, int); 

void operator += (complex *, int); II illegal 

31n C++, as in C, the default argument passing convention is "call by value." 
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The first of these options passes the complex object by value into the overloaded 

operator. This is not what is desired, because the operator will add the integer to the 

copy of the complex argument passed by value. The result of the addition is never 

reflected in the original argument. The second option - passing the argument by 

reference using a pointer explicitly - is a problem for two reasons. First, it means 

that programmers must call the operator on the address of an object (eg: &z += 3). 

This is a nuisance for programmers to remember, and its meaning is not especially 

clear to maintenance programmers glancing at the expression. The second problem 

is that the += operator already has a meaning when an integer n is added to a 

pointer to a complex object. Such an expression evaluates to "the address of the 

array element n elements past the one to which the pointer refers." The second 

option is therefore illegal because it tries to define a meaning for an operator in 

a circumstance that is already meaningful. Only the declaration in Figure A.2 

has the desired effect, is convenient to use, and is allowed by the language. In 

short, references were introduced into C++ to support call by reference without the 

syntactic and semantic confusion introduced by overloading operations on pointers. 

A.4 Assignment, Constructors and Destructors 

Assignment operators, constructors and destructors are all member functions that 

are invoked "recursively" on all of the data-members of a class. ' This section dis-

cusses the assignment operator briefly, and discusses constructors and destructors 

at some length. 

A.4.1 Assignment Operators 

C++ allows entire objects to be assigned. It also allows assignment operators to 

- be overloaded to take on whatever meaning is appropriate for a class. When an 

assignment operator is overloaded, the overloaded fuinction is the sole meaning for 

the operator. Even though A class C may not have overloaded its assignment oper-
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ator, it may contain data members that are themselves classes that have overloaded 

assignment operators. When this is the case, the C++ language defines the seman-

tics of assignment for C as memberwise assignment of the members of C. That is, 

an assignment of a C object to another C object invokes the overloaded assignment 

operators of all data members with such operators. The remaining data members 

are simply copied from the one object to the other. When no data member of C 

has an overloaded assignment operator, the entire object is copied. This action is 

sometimes referred to as a bitwise copy of an object. 

A.4.2 Constructors and Destructors 

Constructors and destructors are called automatically when an object is created and 

destroyed, respectively. Constructors typically carry out initialization activities 

and destructors typically carry out clean-up activities. Invoking these functions 

automatically is convenient, since it guarantees that programmers cannot forget to 

carry out these activities. 

Objects in C++ may be created and destroyed in a number of ways and con-

structors and destructors are called automatically in all of these circumstances: 

• Objects that are local variables are created when control enters the block 

containing them and are destroyed when control leaves that block. 

• Static objects are created before control first enters the main function, and 

are destroyed after main returns. 

• Temporary objects are created by the compiler when certain kinds of ex-

pressions are evaluated. These objects are destroyed when the compiler can 

guarantee that they will never again be used. 

• Objects are created by the new operator and are destroyed by the delete 

operator. These operators are the programmer's interface to the C++ manual 

memory manager: new allocates memory and delete identifies a region of 
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memory as being reclaimable. C++ uses these operators rather than the 

comparable C language malloc and free functions because the C functions 

do not identify the type of object being allocated. The new and delete 

operators have type information associated with them and the compiler uses 

this information to determine which constructor or destructor should be called 

automatically. 

C++ defines two kinds of constructors. Programmers may define an unlimited 

number of other kinds of constructors. All constructors are member functions 

of the class they construct, and have the same name as the class. For example, 

the it-stack class defined earlier could have been defined with a constructor to 

initialize its first member variable: 

class it-stack { 

public: 

it-stack 0 { // inline constructor 
first 0; II initialize "first" with null pointer 

The default constructor is defined by C++ as a constructor that takes no ar-

guments. The default constructor is called for local and static variables. If a data 

member of a class X is itself a class Y with a default constructor, Y's default con-

structor is called whenever X's is, just before X's constructor is called. C++ also 

defines the copy constructor - a constructor that takes a reference to the class 

as an argument. The copy constructor is called whenever a copy of an object is 

made, such as when some temporary objects are created and when a function ar-

gument is created. If an application does not supply an explicit copy constructor, 

the language defines one implicitly. 

C++ allows programmers to define their own constructors that take arbitrary 

argument lists. When -a constructor in a class C takes only a single argument of 

some type X, it is a conversion operator, converting objects of type X into objects of 

type C. These operators are called automatically whenever the indicted conversion 
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is detected in a program. Constructors that take more than one argument can also 

be considered conversion operators, but these constructors must be called explicitly. 

The new operator may use any of these constructors, depending on the syntax 

used. For example, to allocate an object of class X, one could use any of the 

following syntaxes: 

X *x = new X; 

X y; X *x = new X(y); 
X *x = new 

II uses default constructor 
II uses default copy constructor 
'II uses user-defined constructor/conversion 

In general, the expression new X (v) means "alloate an instance of type X and 

iritialize it with the value v." When X is a class, the initialization takes place 

using the appropriately-typed constructor. 

Arbitrary argument lists may also be passed to an overloaded operator new using 

the placement syntax option: 

class X{ 
void * operator new (size_t size, void *space) {return space;} 

char space Ei000J; 

X*x = new (space) X; II uses placement syntax 

An overloaded operator new takes an initial argument of type size.t that specifies 

the number of bytes to allocate. The remaining argument values can be of any type 

and are supplied using the syntax in the example. This syntax is called placement 

syntax because the suggested use for this syntax is .to supply an address to the new 

operator specifying where the memory is to be allocated. This use is illustrated in 

the example above. The net effect of the overloaded new operator in the example is 

to call a constructor on an X - sized region of memory at the beginning of space. 

C++ defines only one kind of destructor. It's name is the name of the class 

with a "" prefix. For example, the destructor for the cmp1ex class is named 

complex 0. If a data member of a class X is itself a class Y with a destructor, 

Y's destructor is called whenever X's is, just after X's destructor is called. 
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B's data members 

D's data members 

struct B { 
mt p; 

struct D public B { 
mt q; 

struct D x; 

x.p = 3; 

x.q = 4; 

This is all part of a 'D' object 

II base class definition 

II derived class definition 

II x is an instance of '' 0'' 
is a data member of x 

II so is '' q'' 

Figure A.3: An Example of Single Inheritance 

A.5 Inheritance 

When defining classes, C++ Programmers can define new classes from primitive 

data types, or they can extend existing classes through inheritance. In Figure A.3, 

the class D extends B with a new data member. B is called a base class of D and D is 

called a derived class, or is said to be derived from B. The base class B is also called 

a parent class of D. If there were any, base classes of B would be ancestors of D. 

All of the data and function members of B are'automatically members of D. De-

rived classes are said to inherit these members from their base classes. Figure A.3 

is an example of single inheritance, because D has exactly one base class. In Fig-

ure A.4, class C is said to exhibit multiple inheritance because it has more than one 

base class. 

Base classes can be modified by public, private and virtual keywords. When 

a base class is public, it is a "visible" component of the derived class. Code outside 

of the derived class can use public data and function members of the derived class' 

and of public base classes. When a base class is private, it is ail "invisible" 

component of the derived class. Code outside of the derived class can use only 

public members of the derived class. All members of the base class are treated as 
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A's data members 

B's data members 

C's data members 

Pointer to C 

Pointer to B 

II C is a derived class whose public base classes are A and B 
class C public B, public A { 

II C's class members go here 

A *a; 

B *b; 

C *; 

a = C; 

b = c; 
II representation(a) = representation ( c) 

II representation(b) 1= representation ( c) 

Figure A.4: Pointer Assignment and Multiple Inheritance 

"private." Virtual base classes are discussed later in this section. 

A derived class contains all of the information its base classes contain, and 

supports all of the operations defined for its base classes by function members. 

Because of this, C++ allows a derived class to be used in any circumstance in 

which its public base classes may be used. In particular, 

• instances of derived classes may be passed as arguments to functions requiring 

instances of their base classes, 

• references to base classes may be initialized with instances of derived classes, 

and 

• pointers to derived classes may be assigned to pointers to their base classes. 

However, this assignment of pointers is not completely straightforward. Consider a 

class C, defined using multiple inheritance as shown in Figure A.4. A typical C++ 

compiler would represent objects of type C in memory as shown in the figure. A 

pointer to a C object would point to the beginning of the object. If this pointer 

were converted to a pointer of type A, the pointer would continue to refer to the 
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representation of A 

additional members of B 

representation of A 

additional members of C 

additional members of D 

class A { ... 
class B public A { . .. 
class C : public A { ... 
class D : public B, public C { ... 

representation 
of B 

representation 
of C 

representation 
of D 

Figure A.5: An Example of Virtual Base Classes 

beginning of the object, since A appears at the beginning. B however, is at a non-

zero offset from the beginning of the object. When a pointer to C is converted to a 

pointer to B, the value of the pointer must be adjusted to refer to the beginning of 

B within C. 

When a base class is specified using the virtual keyword, it is treated specially 

in derived classes using multiple inheritance. In the example in Figure A.5, class 

A appears twice as a base class of D: once as a base class of B and once as a base 

class of C. Often only a single instance of A is desired in this circumstance. A 

is currently defined as only a public base of B and C. If it were identified as a 

public virtual base of both these classes, it would appear only once in D. Virtual 

base classes reduce the size of representations of many derived classes using multiple 

inheritance, but do so at a price. The mechanism suggested for implementing 

virtual base classes [EISt9O] increases the size of classes B and C somewhat, even 

though they do not use multiple inheritance. Virtual bases are also slightly more 

expensive to access, and are difficult to implement in conjunction with pointers to 

members [Meye91]. Pointers to members are described in Section A.6. 

C++ provides one more important mechanism for dealing with inheritance and 

that is virtual functions. A virtual function is a non-static member function whose 
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name is prefixed with the virtual keyword. Virtual functions allow derived classes 

to modify the behavior of base classes. This is best illustrated by seeing what 

happens without virtual functions. In the example below, the print function is 

used for debugging, to print a human-readable representation of an object. 

extern "C" void printf (char  

struct A { 
void print 0 {printf ("A looks like this ... \n");} 

struct B : public A { 
void print () {printf ("B looks like this ... \n");} 

B b; II 'b'' is CCB object 

A *a = &b; II a'' has type ' A *'' but points to a ' B" object 

a -> print 0; I/prints "A looks like this ... 

print is overloaded for every class in the application, so that any object can be told 

to print itself for a programmer during testing. In the example though, a pointer 

to A actually refers to an instance of B. This is legal, since the instance of B behaves 

in every way like an instance of A. In particular, calling print through the pointer 

prints a representation of the part of b that is A. This is generally not what the 

programmer wanted. The target of a is not an instance of A, it is an instance of B 

that can act as if it were an instance of A. Ideally, the print function in B should be 

called, to inform the programnier of the true nature of the abject to which a refers. 

The way to accomplish this is to prefix the print functions in the example with 

the keyword virtual. When 'this is done, the expression a -> print 0 activates 

B's print function. 

A.6 Pointers to Members 

C++ defines pointers to members as pointer types that may refer to data and 

function members of a class. Pointers to static data and function members are 

defined to work just like "normal" C++ pointers to objects and to primitive data 
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types. Pointers to non-static members are not "normal" pointers though, and these 

pointers are discussed in this section. 

A pointer to a non-static class member can be thought of as an "offset" into a 

class or object. For example, the offset of the third element in an array is "3." The 

offset is not a pointer to an element of the array, it is a value that can be used to 

locate an element of the array, given the location of the beginning of the array. A 

pointer to a non-static member can be thought of as an offset because it is not a 

pointer of itself, but it can be used to identify a member of a class or object, given 

the location of an object. For example: 

struct A { 
mt a, b; 

void f 0, g 0; 

struct A *p, q; 
void (A::*.funptr)0; 

mt A::* intptr; 

funptr 

p ->* funptr 0; 

intptr 

mt i = q .* intptr; 

II 
I-
/f 

/1 
I-
/I 

some structure A 

some non-static data members 

some non-static function members 

a pointer to A and an instance of A 
a pointer to a member function of A 

a pointer to a data member of A 

// funptr is offset'' ot f'' 
//- equivalent to Ilp -> f 

intptr is offset" of b" 

/1 equivalent to 1'i = q.b'' 

The x ->* y syntax indicates that y is a pointer to a member of the object to 

which x points. The expression refers to the member of that object whose offset is 

y. Similarly, x . * y indicates that x is an object and the expression refers to the 

member of that object whose offset is y. When y indicates a function member, x is 

used to initialize the invisible this argument to the function. 

A.7 Templates 

A template is a class or a function whose type is incompletely specified. A template 

defines a set of related classes or functions. This set is the set of "completions" of the 

incomplete specification. For example, Section A.2 defined a class that represents 
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a "stack of integers," but concept of a stack is generally useful. The example below 

uses a template to define a "stack of values of any type." 

template<class T> class stack<T> { 
class stack_element<T> { 
public: 

stack_element<T> *next; 

T value; 

3.; 
stack_element<T> *first; 

public: 

void push (T value); 

T pop 0; 
mt depth 0; 
3.; 

II first element in stack 

When a template is used, it is qualified by the missing type information. For 

example, a stack of integers and a stack of pointers to A can be declared as follows: 

stack<int> intstack; 

stack<class A *> stack; 

stack of integers 

II stack of pointers to A 

This mechanism is especially useful for defining container classes such as lists, 

sets, and stacks. Templates are not implemented in most C++ compilers, but 

they are described in the ANSI C++ committee's set of base documents [ElSt9O] 

[Stro89]. Templates are therefore expected to be part of the ANSI C++ standard 

when it emerges. 


