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ABSTRACT 

Ray tracing can be extended into complex space by 

allowing parameters such as traveltime, velocity, and the 

ray parameter to contain an imaginary component, in order to 

include the effects of internal friction ( absorption) on 

wave propagation. An existing computational program has 

been modified to enable comparisons between its ( synthetic) 

output and data which were recorded in a physical modelling 

tank. A numerical differentiation formula, using Lagrangian 

polynomials, was derived so that uneven element spacing 

could be used to convert particle displacement amplitudes 

in the original program output to hydrostatic pressure 

amplitudes measured by the tank receivers. Transmission 

and reflection coefficients were extended to include liquid-

solid interfaces, so that a water and plexiglass model could 

be used to study the case of an elastic ( non-attenuating) 

medium overlying an anelastic ( attenuating) medium. 

Comparison between the tank data 

suggests that the use of complex 

of amplitude with offset did not 

and the synthetic data 

rays is valid. The changes 

change noticeably when the 

effects of absorption were ignored. Comparisons between 

particle displacement amplitudes and pressure amplitudes 



show that displacement amplitudes are insufficient to 

reproduce the conditions that occur within the physical 

modelling tank. 
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I. INTRODUCTION 

In geophysics, as in all sciences, extensive use is 

made of models and modelling techniques. These can take 

many forms: conceptual models used in the explanation of 

physical processes; mathematical or computer-based models 

that reproduce measurable quantities; physical models which 

mimic objects found in nature; and combinations of the 

above. When physics is used to delineate subsurface 

geology, models serve in the understanding of both the 

medium ( the geology) and the effects of the medium on wave 

propagation. Models are necessary because it is not 

possible to sample both the medium and the wavefield 

completely enough to accurately measure the position of 

every particle as a wave travels through a medium. For 

example, upon the extraction of a section of the Earth, its 

properties.(velocity, density etc..) will have been modified 

to such an extent that although the particle geometry is 

known exactly, its response to an impinging wavefield has 

been irreversibly changed . Therefore, in any scientific 

inquiry, the use of models, which can only approximate, must 

be carefully balanced with exacting investigations that 

fundamentally change what is studied. 

This thesis involves a comparison between two types of 

models used to understand seismic experiments: ( 1) physical, 

and ( 2) mathematical. In the first case no approximations 
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are made in the wavefield and the medium geometry is 

measured directly, but the medium itself can only 

approximate the complexity that exists within the earth. In 

the second case, approximations are made in both the medium 

and the wavefield, but a greater understanding of the means 

by which a wavefield propagates is required. By comparing 

the two methods it is possible to test the completeness of 

this understanding, and the limits of the approximations 

involved. 

The mathematical modelling involves ray tracing in 

complex space for which background theory is given in 

chapter 2. In chapter 3, a study of previous work in 

anelastic modelling, notably investigations of an 

elastic/anelastic boundary , is followed by a statement of 

the thesis objectives. Physical modelling is done in a 

seismic modelling tank so the fourth chapter discusses 

previous work in this area, as well as the technical details 

of the tank. The bulk of the thesis describes the 

conversion of a complex ray-tracing program which outputs 

particle displacement amplitudes, into one which produces 

pressure amplitudes. The relationship between displacement 

and pressure is derived in chapter 5, and the methods by 

which this relationship is implemented are discussed in 

chapter 6. Chapter 7 is dedicated to. the testing of the 

program algorithm. In chapter 8 there is a discussion of 

the actual tank data, the water and plexiglass model which 
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was used to create an elastic/anelastic boundary, and the 

way in which the model and survey parameters were reproduced 

in the ray-tracing program. Chapter 9 compares the results 

of *the two methods for an elastic/anelastic boundary, as 

well as the differences between anelastic and elastic 

models. Chapter 10 concludes with a summary and some 

discussion of future work. 
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2. MATHEMATICAL MODELLING 

2.1 Elastic Wave Theory 

The propagation of waves through a medium is described 

by Newton's second law of motion: Fo-'t.ce. = Rate. o4 Change, o6 

4omvwn. This can be expressed mathematically by 

a.4j,j + 4 = th E2. 1-1] 

where oj (- d = 1,2,3) are the components of the stress 

tensor; " d" indicates partial differentiation with respect 

to ,cj, the j th Cartesian coordinate; 4t is the 4 th 

Cartesian component of the body force; e the density; .u. the 

. th Cartesian component of the displacement field; and the 

double dot indicates the second partial derivative with 

respect to time. The Einstein summation convention is used, 

i.e. repeated indices indicate a summation from one to 

three. When modelling seismic experiments it is often 

assumed that the earth responds elastically to an impinging 

wavefield, i.e. there is no loss of energy due to 

absorption ( see below). The stress-strain relationship for 

an elastic medium is given by 

L6..je + [2.1-21 
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where L and t are the Lame parameters; ôij = 1 if .Lj and 

zero otherwise; and the components of the strain tensor etj 

are given by 

etj = 12 (u_, + [2.1-31 

Substituting [ 2.1-3] and [ 2.1-2] into [ 2.1-1], and assuming 

that both L and p are constants and that the body force 44 

0, we obtain ( after some algebraib manipulation) 

(1.. + 2)V(V • u.) + M V x (V x a) = eu [2.1-4] 

where boldface indicates a vector quantity, a can be written 

in terms of Helmholtz potentials 

= VØ + V x'#', [2.1-5] 

and substituted into the equation of motion [ 2.1-1] to yield 

the wave equations 

71 0 = a2 

[2.1-6] 

V 4r = 3-2 4f. 

a and 0 are the P and S wave velocities given by 
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L + 2!t 

e 
[2.1-71 

'3 E li  

e 

and 0 and 1' are the potentials of the solenoidal (V = 0) 

and irrotational (V x u. = 0) fields. The standard solution 

of [ 2.1-6] is given by 

0 = Ae(ft.X - (2.1-81 

A, the amplitude, can be dependent on w; /a is the wavenumber 

and is such that k.2 = k. = w2/a2 . The theory of elastic 

wave propagation has been developed much further ( e.g. Aid 

and Richards 1980) but is only developed to this point for 

comparison with anelastic theory, following a discussion of 

absorption. 

2.2 Absorption 

By assuming that a medium behaves elastically it is 

implied that both the medium and the wavefield are not 

changed permanently by an encounter. However, in real-earth 

cases some of the wave energy is lost permanently due to 

internal friction, and a small amount of the induced 
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particle displacement within the medium is not recovered. 

This process is known as absorption, and a medium which 

behaves in this manner is said to be anelastic. 

One of the parameters most commonly used to measure 

anelastic attenuation is the quality factor Q, and its 

inverse Q.1 ( Toksöz and Johnston 1981). Q is a 

dimensionless ratio of stored energy to dissipated energy 

(ibid.) and if a volume of material is cycled in stress at a 

frequency w, then Q(w) can be expressed mathematically as: 

1 AE 

Q(w) - 2tE 
[2.2-1] 

where E is the peak strain energy stored in the volume and 

-E is the energy dissipated in each cycle because of 

imperfections in the elasticity of the material. If no 

energy is lost then Q- I= 0 and Q = w. If AE is non- zero 

then Q has a finite value and the medium is d2-opcvt.Lve - 

i.e. a high Q value implies low attenuation. 

Because energy losses due to geometrical spreading as 

well as reflection and transmission at boundaries are 

several orders of magnitude greater than those due to 

internal friction, the effects of absorption are often 

neglected in discussions of seismic experiments. This is 

unfortunate because parameters such as velocity, time and 
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depth are related to geometry, whereas Q is a material 

property of the medium itself. 

2,3 Anelastic Wave Theory 

Many attempts have been made to include the effects of 

absorption in mathematical models of wave propagation ( see 

3.1). Derivation of the anelastic wave equations was done 

by Bland ( 1960), and is presented here to contrast with the 

elastic case. For viscoelastic media, the time-dependent 

stress- strain relationship is given by 

= S.j L(t) * deIk.(t) + 2()*de j (.t) E2.3-1] 

with the convolution defined by 

ft d9(t) 

* dg() = J 4(.-)   
cLr 

-w 

[2.3-2] 

In a manner similar to that for the elastic case ( 2.1) the 

substitution of [ 2.3-11 into the equation of motion [ 21-1] 

yields ( after some work) ( Krebes and Hron 1980a) 

{L(t) + p(t)] * d(V(V u)) + p(t) * d(V2u.) = ott. [2.3-31 

Taking the Fourier transform gives 



(r + M) V(V ti) + ( 2 &) = w2a 
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[2.3-4] 

where the tilde indicates the Fourier transform, and M and r 

are given by 

M = M(w) = Q [ 
Jo 

CO 

[2.3-5] 

JW 
r = r(w) = tw L(.t) e--•,wt d-t. 

0 

As before, a can be written in terms of Helmholtz 

potentials [ 2.1-5], and substituted into [ 2.3-4] to yield 

V2 + lap 2 0 0 

V2 T+ k42 0 

[2.3-6] 

where lap = /a and k.s = are the complex wavenumbers, 

and the P and S wave velocities are given by a2 = (r + 

and L32 MIe. Considering P waves, a solution similar to 

that for the elastic case is given by 

0 Oo e'- 4 . [2.3-7] 

ía now contains both real and imaginary components such that 

Ia. = P -- A [2.3-8] 
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where P is the propagation vector, and A is the attenuation 

vector. The implications of this formulation are explored 

in chapter 3. 
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3. PREVIOUS WORK 

3.1 Historical Perspective of Anelastiç Modelling 

As noted earlier, much of the mathematical background 

for anelastic modelling was done by Bland (1960). Buchen 

(1971) examined the propagation of P andSt/ waves in linear 

viscoelastic media. He explored energy considerations as 

well as displacement and particle motion. This work was 

expanded by Borcherdt ( 1973) to provide a "... mathematical 

framework for describing plane waves in elastic and linear 

anelastic media... ." He examined the propagation and 

attenuation vectors as well as energy considerations. Some 

errors occurred in the calculation of energy flux, because 

of non-uniqueness in his method, and these were reviewed by 

Krebes ( 1983a). 

The reflection and refraction of SH waves was described 

by Borcherdt ( 1977), and later extended to P and,SV waves 

(Borcherdt 19'82). Borcherdt gave an exact solution for the 

case of a general plane wave ( homogeneous or inhomogeneous) 

incident upon an interface between two viscoelastic media. 

These exact solutions were an improvement on the low-loss 

approximations of Buchen ( 1971); however, they had the 

disadvantage of being so fully general as to limit the depth 

to which they could be studied analytically ( Krebes 1983b). 

For this reason two special cases were studied by Krebes 
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(1983b), who found that if the quality factors (Q) of two 

layers are equal, then the equations describing the 

reflection and transmission of a homogeneous wave reduce to 

forms identical to the elastic case. 

Silva ( 1976) extended the Haskell-Thompson matrix 

method to include the effects of attenuation, without using 

any low-loss assumptions. He used this method to create 

synthetic seismograms for models representing soils, the 

crust, and the core-mantle boundary. Synthetic seismograms 

have also been generated for teleseismic SF1 waves ( Krebes 

and Hron 1980a) and for SH body waves ( Krebes and Hron 

1980b) travelling in a layered anelastic medium. Their work 

was later revised to include a more general formula for 

geometrical spreading ( Krebes and Hearn 1985). Bourbiè and 

Gonzalez-Serrano ( 1983) created synthetic seismograms for 

liquid-solid and solid-solid anelastic interfaces. Their 

work, however, was limited to the use of potentials, and 

they neglected to describe the expressions used to model 

anelastic head-waves. 

A different approach to computing synthetic seismograms 

was taken by Hearn and Krebes ( 1988). They made use of ray 

tracing in complex space, a method first used in EM theory 

(see Budden et al. 1971, Bertoni et al. 1971, Bennett 1974, 

Connor and Felsen 1974), and later expanded to seismology 

(Felsen 1984). Hearn and Krebes also used Fermat's 

principle to determine the initial angle between the 
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propagation and attenuation vectors. This removed the 

arbitrariness that had confronted previous authors ( see 

below), and is the starting point for this work. 

3.2 The Attenuation Angle 

As was shown in ( 2.3), for a wave propagating through 

an anelastic medium the wavevector /a is composed of a 

propagation vector P and an attenuation vector A, such that 

Ia = P - .A, with r defined as the angle between P and A 

(fig, 3-1). The plane wave is called homogeneous or 

inhomogeneous depending on whether P is zero or non-zero, 

respectively. In many calculations of synthetic seismograms 

for attenuating media ( e.g. Krebes and Hron 1980a, Bourbiè 

and Gonzalez-Serrano 1983) the initial value of r is not 

known and must be arbitrarily chosen. This implies that, 

unlike the elastic case, raypaths in an attenuating medium 

are not unique ( I-learn and Krebes 1988). Hearn and Krebes 

(1988) discussed a method, based on Fermat's principle, for 

determining the initial value of the attenuation angle - 

thus uniquely describing the raypath. Their method, using 

the path o4 .tee-peo* deoaer (see Arfken 1985 for a 

description of the method), produced some unexpected results 

for the case of a ray incident upon an elastic/anelastic 

boundary, 
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Figure 3-1: Anelastic Ray Diagram: Showing the propagation 
vector P, attenuation vector A, r the angle 
between them, and B the angle of incidence for. 
incident, reflected ( subscript r) and 
transmitted ( primed) rays. 
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When modelling an elastic medium using anelastic wave 

theory, i.e. when applying the results of theanelastic wave 

equations [ 2.3-61 to an elastic medium, the wavevector l. is 

not attenuated ( except in the case of evanescent waves). 

Mathematically this means that its magnitude does not 

contain an imaginary term. Since 

= k. = P2 - A2 2PA [3.2-li 

this requires PA = 0, i.e. 

P- A = PA cos I' = 0, [3.2-21 

Intuitively, this would suggest that 

A = 0, [3.2-33 

i.e. the magnitude of the attenuation vector is identically. 

zero. However, equation [ 3.2-21 also holds if cos I' = 0 and 

A • i, i.e. 

F = ± 90. [3.2-4] 

This implies that the attenuation vector may be non- zero 

even in the elastic case. The second possibility was found 
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analytically by Hearn and Krebes ( 1988) and confirmed 

computationally by Slawinski ( 1988), 

3.3 Computation of Synthetic Seismograms Using Complex Rays 

Complex ray tracing differs from standard ray tracing in 

that all the parameters used, such as time, velocity, 

reflection and transmission coefficients, and even the 

geometrical coordinates of a point on a ray path, are 

complex - i.e. contain both real and imaginary components 

(Hearn and Krebes 1988). Hearn and Krebes ( 1988) used 

complex ray tracing, in conjunction with the above results, 

to create a computer program that generated synthetic 

seismograms from horizontal- layer models. The program is 

based on an inverse Fourier transform ( Krebes and Hron 

1980a) 

1 fW Y(w) 
a = - ReJ 

it Jo L(w) 
e_-'- 0 ('') S(w) e [tC(W)lj dw[3.3-1] 

where S/(w) and 0(w) are the magnitude and phase of the 

product of reflection and transmission coefficients; L(w) is 

the geometrical spreading; S(w) is the spectrum of the 

source pulse; and a is the particle displacement at a given 

receiver. T is the complex phase function such that t = TR 

+ Jz, where TR is the arrival time of the ray and tz 

corresponds to the attenuation of the ray. i is the complex 

unit vector in the direction of displacement.This method has 



17 

the advantage that each frequency component can be treated 

separately and placed in an array, which is then 

transformed to the time domain by means of an inverse Fast 

Fourier Transform ( FFT) to produce the trace. 

To calculate each frequency component the complex ray 

parameter p must first be determined. This is given by 

Hearn and Krebes ( 1988) as: 

[3. 3-2] 

p= 

sin j lax. PX Ax sin 0 A 
= - -L =  -L - sin ( 9 - 

'Id W W W VIH W 

where j is the complex incidence angle in the j th layer 

(fig. 3-2), and VIH is the phase velocity of generally 

inhomogeneous waves. For a horizontally layered medium, p 

can be determined by numerically solving 

[3.3-3] 

M Pvj hj m m 

X = I   = Ihd tan d = Ix1 
dI (1 - p.ifl d1 

(Hearn and Krebes 1988) where hj is the thickness associated 

with the j -th ray segment ( fig. 3-2); X is the source-

receiver offset; and v, the complex velocity. Velocity 

dispersion is introduced by using ( Aki and Richards 1980, 

p. 177) 
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SOURCE 
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Figure 3-2: Diagram of Ray Tracing Through Multiple 
Horizontal Layers: 3-layer medium results in 6 
ray segments, is the take-?off angle. 
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VH(W) =• trn(wi)(1 + - - ), 
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[3.3-4] 

where wR is the reference frequency at which Q is 

calculated. Once p has been determined, the traveltime can 

then be computed by taking the real part of t, which is 

given by ( Hearn and Krebes 1988): 

M 

Re(v) = Re Z 
d= I 

hj 

Vj C.04 Id 

[3.3-51 

in hj 
Re I   

dI Vj( 1 -  p2 vfl½ 

Equation [ 3.3-3] is the result of the evaluation of the 

wavefield integral [ 3.3-1] by the method of steepest 

descent, for the case of a horizontally-layered anelastic 

medium. Note that [ 3.3-3] indicates that a number of 

complex terms must add up to give the real number X. 

Equation [ 3.3-3] is basically a system of two equations in 

the two unknowns Oi and ri . Solving the system means that 

0, and r,, the initial values of the propagation and 

attenuation angles, can be uniquely determined. 

Consequently, the displacement measured by a receiver, 

for a given survey geometry over, a horizontally- layered 

anelastic medium, can be calculated based on input values of 
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layer thickness, P and S wave velocities, P and S values of 

Q, and rock densities. 

3.4 Thesis Objectives 

The object of this thesis is to modify the above 

mentioned program to enable complex ray tracings to be 

compared with laboratory data. To investigate the specific 

case of an elastic/anelastic boundary, data are shot in a 

physical modelling tank with a model composed of horizontal 

layers of water and plexiglass. The remaining chapters 

discuss physical modelling, the modification of the program' 

used by Hearn and Krebes ( 1988) to output pressure 

amplitudes instead of displacement amplitudes, and compare 

the complex ray-tracing 

comments are made about 

attenuation angle r for 

results with real data. 

the initial choice of the 

an elastic medium. 

Some 
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4. PHYSICAL MODELLING 

4.1 Introduction 

Physical modelling can be used as an alternative to ray 

• tracing in the examination of various aspects of seismic 

wave propagation. Reduced scale versions of geologic models 

can be made from various materials, over which seismic data 

can be "shot" using sources and receivers made from 

piezoelectric transducers ( McDonald et al,, 1983). The 

resulting seismograms are useful because no approximations 

are made in the wavefield, and complex geometries are as 

accurately tested as simple ones. The method is also ideal 

for testing computer models based on ray theory because, 

unlike field data, the " true" medium parameters can be 

measured directly. This chapter reviews previous work in 

physical modelling, and then explores the parameters of the 

physical modelling tank and modelling materials. 

4.2 Historical Perspective of Physical Modelling 

An extensive review of physical modelling up to 1983 is 

given by McDonald et al. ( 1983, p. 4), with an abridged 

version given here. Some of the earliest work was done by 

Terada and Tsuboi ( 1927), using agar ( a type of gelatine) 

and an electronic chirp signal to model the effects of 
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faults and channels on propagation paths, as well as to 

examine the dispersion of Rayleigh waves. During the 1950s 

models made from blocks of BioPlasticTM ( Evans et al 1954), 

disks of metals, plastics and fibre ( Oliver et al. 1954), 

plexiglass layers ( Press et al. 1954), as well as cement and 

marble slabs ( Levin and Hibbard 1955) were tested using 

piezoelectric sources and receivers. Various types of 

oscilloscope were used to record the output traces, with 

varying degrees of success. Clay and McNeil ( 1955) compared 

physical model results to elastic theory, and found they 

matched within reasonable limits. Silverman ( 1969) proposed 

a method of modelling involving a water tank and plxiglass 

models, which was the inspiration for work at the University 

of Houston ( McDonald et al. 1983). A similar system was 

constructed at The University of Calgary ( Cheadle et al. 

1985, Cheadle 1988), from which the experimental data for 

this investigation were obtained. - 

4.3 Parameters of the Physical Modelling Tank 

The modelling system at The University of Calgary 

consists of a water-filled tank, measuring 2 m deep by 3 m 

wide by 4 m long, into which models of plexiglass and other 

materials are placed ( Cheadle 1988). The source and 

receiver are mounted on a system of beams and carriages 

which are driven by Sigma 4-V ( volt) D.C. stepping motors. 
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International Transducer Corp. ( ITC) 1089c spherical, 

omnidirectional hydrophones are used as both source and 

receivers. the source pulse is created with an cnitiai 28-V 

square wave which causes the transducer to ring below its 

(300 kHz) resonant frequency. This is followed by a second 

and third sq.uare wave with variable delay time, amplitude, 

polarity and pulse width which are used to damp the tail 

oscillation ( Cheadle 1988). The data are recorded through 

the receiving transducer and a preamplifier into an 8-bit 

Nicolet 2090 storage oscilloscope, at a sampling rate of 50 

ns/sample. Data are then bussed through an IBM-XT to a 

Perkin-Elmer processing system, where ( in this case) they 

are transferred to magnetic tape for later use on a 

Honeywell Multics main-frame computer. Completely automated 

experiments are possible since the entire system, including 

the source and receiver locations, is controlled by the 

IBM-XT. 

4.4 Materials and Assumptions 

In order to model the case of an elastic/anelastic 

boundary a simple flat layer of plexiglass is placed within 

the tank. The source and receiver are located in the water 

layer, which is assumed to act like a perfectly elastic ( Q 

co) medium. The plexiglass layer acts as an anelastic medium 

with a Q value of 50 for P waves, and a Q value of 47 for S 
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waves ( Wuenschel 1965, Jordan 1966). A complete list of 

model parameters are given in table 1. 

It is assumed that the transducers act as point sources 

and receivers. This may not be entirely valid as the ITC 

1089c is composed of a piezoelectric element enclosed within 

Medium a (m/s) 13 (m/s) e (g/cm3) h ( cm) Qp Qs 

water 1475 - 1.00 5.8 CD CD 

plex. 2750 1375 1.19 4.2 50 47 

Table 1: Model Parameters: as measured in the physical 
modelling tank. When anelastic effects were 
neglected, Qp and Qs were set to w for the plexi-
glass layer. 

a 1.2 cm spherical casing, which produces a central-

frequency wavelength in water of 0.63 cm ( Cheadle 1988). 

The effect of the large receiver size is unknown but is 

assumed to be minimal. However, care must be taken as 

certain situations may occur in which the point-receiver 

assumption is invalid. 

In most physical modelling studies, scaling assumptions 

are made in order to reproduce the dimension of field 

surveys in a laboratory setting ( e.g. Hall 1956). However, 

no such assumptions are made here as all parameters such as 

velocity, distance and sample time are maintained between 

the computer program and the tank data. 
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5, RELATIONSHIP BETWEEN PRESSURE AND DISPLACEMENT 

In order to compare synthetic data with tank data it 

is necessary to convert the ray-tracing program to output 

pressure amplitudes instead of displacement amplitudes. To 

do so it is assumed that the piezoelectric transducer which 

acts as a receiver measures hydrostatic pressure ( see 4.4). 

Consequently, a fundamental relationship between hydrostatic 

pressure and displacement had to be established. 

The equation of motion can be written 

1,2,3 (5-1] 
Xd 

where e is the density, t.0 are the components of 

displacement, a.j are the components of stress, and x1 are 

the cartesian coordinates. A fluid cannot support shear 

stress and normal stresses are equal in magnitude to 

hydrostatic pressure ( Q). Mathematically: 

atj = 0 d 

atj = 

Substituting ( 5-2] into ( 5-li we get 

(5-2] 



where again -. 1,2,3 or 
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[5-3] 

= - Q). [5-4] 

The wave equation is given by ( Sheriff and Geldart 1982, 

p. 38): 

(L + 2)7(V - a) - u V x ( V x a) 

In the case of water, t = 0, and [ 5-5] becomes 

2 a 

LVCV - a)=,   
2 . 

[5-51 

[5-6] 

Comparison of [ 5-61 with [ 5-4] yields 

(V- a), [5-7] 

for special case of a fluid. Using [ 5-7] we can now 

calculate the hydrostatic pressure numerically from the 
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displacement amplitudes output by the complex ray-tracing 

program ( chapter 3.) 
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6. PROGRAM MODIFICATIONS 

6.1 Simplifying Assumptions 

Before applying equation [ 5-7], 

Q = -L (V 

its possible to make some simplifying assumptions. The data 

values cannot be related directly to ' true' amplitudes, 

because the amplitude of the tank source pulse is only 

measurable after significant amplification of the received 

signal. For this reason the program output must be scaled 

for comparison to tank data and the Lame parameter L (a 

constant) can be omitted so that [ 5-7] becomes 

— 1 
— +— +— I, 

3z 

where u.x is the x. component of displacement, etc.. 

The middle term on the right hand side of [ 6.1-1] can 

be eliminated by symmetry arguments. The derivative of a 

function is defined by 

f(x + cLx) - f(x - cLx) 
f, (X) =  . [6.1-21 

d  0 2cLz 
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A line of receivers and a source point will always lie in 

one particular plane. In order to compare two-dimensional 

ray tracing with three-dimensional physical modelling, 

these locations must be kept within the same vertical plane, 

which is defined as y = 0. Throughout the ray- tracing 

program it is assumed that energy propagates by means of 

plane waves. This means that in the vicinity of the 

receiver the wavefront is approximately straight, and the 

displacement vectors are all parallel to the direction of 

propagation. The result is that there is no y component of 

displacement, and the wavefront is symmetric about the plane 

y = 0 ( fig. 6-1). This means that ay(+ cLy) = 0 = uy(-cLy), 

and therefore the derivative w.r.t. Y, of displacement, goes 

to zero. Equation ( 6.1-1:1 becomes 

Q [6.1-3] 

and the pressure can be calculated by taking spatial 

derivatives of displacement. 

6.2 Numerical Differentiation and the Newton-Raphson Method 

In order to solve equation [ 6.1-3] analytically, it 

would be necessary to express u., given by equation [ 3.3-1], 

as a function of x. and z. However, the dependence of a on z 
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Figure 6-1: Symmetry of the Wavefront With y = 0: Under a 
plane-wave assumption y(-dy) = 0 = 
i.e there is no y component of displacement and 
thereforeu.y/y 0. 
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can not be determined from the equations which define the 

components of [ 3.3-1] ( given below), as these equations are 

only valid for receivers located along- the line z = 0. 

Furthermore, a is only indirectly dependent on x, via the 

ray parameter p - i.e. )C can be expressed as a function of 

p, using the equation for the source-receiver offset ( X) 

over a horizontally- layered medium 

m p1h 

X = z  p [6.2-1] 
p2 vfl' 

but it is not possible to express p ( and therefor a) as a 

function of c. For these reasons, [ 6.1-31 cannot be solved 

analytically, and [ 3.3-1] must be differentiated numerically 

in order to calculate the pressure. 

Most numerical approaches to differentiation involve 

equations similar to [ 6.1-2], where the value of the 

derivative of a function at a certain point x can be 

calculated from values of the function at points in the 

vicinity of x. In this case the pressure that would be 

measured at a certain receiver location can be calculated 

from the values of displacement, that would be measured at 

nearby stations ( fig. 6-2). This involves tracing several 

rays in order to calculate the pressure value of a single 

ray. However, because of the way in which they are 

calculated it is possible to make use of already existing 
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Figure 6-2: Determining the Pressure at a Receiver Location 
From Values of Particle Displacement at Nearby 
Stations: The partial derivative of ux w.r.t. 
z is found from the values of ux at stations D, 
A, and B using, equation [ 6.3-10].. The partial 
derivative of u ,, w.r.t z is found from the 
values of uz at stations E, A, and 0, and these 
two spatial derivatives are related to pressure 
by [ 6.1-3]. The values of Uz at stations C and 
E are calculated by subtracting or adding ray 
segments ( see text) from rays which emerge at B 
and D respectively. 
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rays, and thereby reduce the additional computation time 

required. 

In order to trace each ray, the ray parametr p must be 

determined for a given source-receiver offset ( X), by 

solving [ 6.2-11 numerically ( Hearn and Krebes 1988). This 

is accomplished using the Newton-Raphson method, which 

works as follows ( Grove 1966, p. 9). If we want to solve an 

equation of the form F(x) = 0, we make a first guess x4, and 

then ' draw' a tangent to the curve at the point ( x4,,F(xo)) 

(fig. 6-3). The x intercept of this line should be closer 

to the correct value of x, so it is used as the next 

approximation and the process is repeated until the - 

solution is sufficiently accurate. Analytically, this is 

expressed by 

F(x) 
X,t+7 = Xt 

F' ( Xn.) 
[6.2-2] 

so that each successive iteration is determined by the 

previous values of the function and its derivative, The 

Newton-Raphson method also works for complex functions F(x) 

= 0, such as [ 6,2-1]. As a result of this process there are 

a number of extras rays which emerge at various distances 

from the desired receiver location ( fig. 6-4). Portions can 

be added to or subtracted from these rays to generate 

stations at different z-locations ( fig. 6-2), and the values 



34 

Figure 6-3: Newton-Raphson Method: zo is the first guess 
for a solution to F(x) = 0, xi is the first 
iteration and is found by following the 
derivative of F(x) from ( xo,yo) to x = 0. 



RECEIVER 

Figure 6-4: Possible Convergence of Rays to a Receiver 
Location: Each ray emerges closer to the 
receiver than the previous one, but the 
distance between the emergence locations may 
not be equal. 
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of displacement at these stations can then be used to 
,) 

calculate the pressure. 

6.3 Lagrangian Differentiation 

The spacing of the receiver locations due to the extra 

rays is somewhat irregular because the convergence rate of 

[6.2-2] may or may not be the same from receiver to 

receiver, and because the ctz value ( fig. 6-2) depends on 

both the dx value and the ray parameter ( see below). Most 

numerical differentiation formulas require that the distance 

between the points at which the value 

known, be constant. In order to make 

a more general three-point formula is 

of a function is 

use of the extra rays, 

derived, using 

Lagrangian differentiation to take account of the unequal 

spacing. The method is similar to that used by Kelly ( 1967, 

p. 48), except that dx is not fixed. 

A function f(x) can be represented by 

where t& (x) 

f(xi) where 

function is 

n 
f(x) = E Z&(X)f& i.(x)f + ( x), 

k:O 
[6,3-1] 

is the Lagrange interpolation polynomial, f,  SE 

Y-& are the x locations at which the value of the 

known, and E(x) is the error term given by 
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f(?t+ 1) () 
E(x) = 7r(x)  . [6.3-2] 

(n + 1)! 

f(#l) is the ( n+1) st derivative of f(x), E is such that 

x-o 5 € 5 XI., it(x) is given by 

ir(x) = (x - - - x2) ... (x - Xn.), { 6.3-3] 

and £k(x) is given by 

[6.3-4] 

- - x,) ... (x - - xk+1) ... (x. - x,) 
= 

- Zt)e..(X, - - 

If E63-1] is differentiated once, and the limit is set to 

three points ( n=2), then 

£4(x) f0 + £?( x) fi + £.( x) f2, [6.3-51 

with the error given by 

= 

7E , ( X) f' ' 
[63-6] 

6 
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and xo x'1 If [ 6.3-4] is limited to three points, 

then for the specific example of k. = 0 

(x - XI) (X - )C2) 

=  . [6.3-7J 
(Xo - z2) 

Taking the derivative gives 

(x - xt) + ( x - x2) 

=  , [6.3-8] 
(XO -  X;) ( xo - X.2) 

or defining dx x4 x, then x - xj = cLx - cL,cj and 

-d.x, - cb2 
= 

(dx0 - dxi ) (ctxo - cLx2) 

[6.3-9] 

If this process is repeated for Ia. = 1 and 2, and substituted 

into [ 6.3-5], the result is "that 

-Ii 

—f2 

cLxi + cLx2 

(cLxo - dxi ) (dx', - cLX2) 

cLz, + d)C2 

(dx, - d.xo) ( cLzi - cLx2) 

dx, + cLx, 

(dx2 - dxi )( cLxz - cLxo) 

[6., 3-10] 
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If t(z) is limited to three terms, i.e. 

= (x - Xo)(x - x2), [6.3-11] 

then its derivative is 

[6.3-12] 

= cLxr dz2 + dx.o cLx2 + dxo dzi. 

Substituting [ 6.3-12] into [ 6.3-6] gives the error term 

[cLx, cL2 

E =  , [6.3-13] 
6 

+ dx, cLx2 + ctzo dx.] f' ' 

where f(E)''' is the third derivative and Xo ≤ E 5 ?C2. It 

is now ,possible to evaluate each partial derivative in{6.1-

3] separately with [ 6.3-10}. 

I..can be seen from [ 6.3-13] that the error can be 

mini 

the receiver location, and on opposite sides, so that the 

terms within [ ... } tend to cancel. [ 6.3-101 can be tested 

by examining the special case where x = xi, cLx.o = -h, cLz2 

+h and therefore dx., = 0, i.e. there is equal spacing ( h) 
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between the points and xt falls on the point where the 

derivative is to be taken. The equation becomes 

f'(x) = - fo 
h 

(-h)(-2h) 
ft 

0 

(+h)(-h) 

fo f2 f2 - fo 

+ = 

2h 2h 2h 

If h = cLz, then 

f2 

-h 

(+2h)(+h) 

[6. 3-14] 

f(x. + dz) - f(x - cLx) 
f'(x.) = [6.3-15] 

2c 

If the limit as cLz => 0 is taken then the error term [ 6.3-

13] drops to zero and [ 6.3-151 is identical to [ 6.1-2). 

This confirms the validity of [ 6.3-10) for this special 

case, and implies that the pressure at a certain receiver 

location can be calculated after the values of displacement 

are known at nearby stations. 
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6.4 Calculation of Stations 

Calculating the c component of the displacement at the 

three stations with varying x locations is a straight-

forward matter of multiplying the regular program output by 

the sine of the angle of incidence ( fig. 6-5). The stations 

at varying z locations are created by extending or reducing 

rays ( below) until they lie directly above or below the 

desired receiver location ( fig. 6-2). The advantage of this 

method is that the ray parameter p is already known and 

can then be directly calculated ( below). The reverse 

process is extremely difficult because the ray path is not 

symmetric, and p can no longer be determined by [ 6.2-1]. 

Mathematically, the extension or reduction of the rays is 

accomplished by changing the values of the travel- time and 

geometrical spreading to match the change in ray path 

length. 

6.4a: Delta z 

dz 

The first step is' to calculate the distance ( dz) 

between the station and the actual receiver location ( fig. 

6-2). Examination of figure ( 6-2) shows that, for a ray 

which emerges at B, the point which lies directly below the 

receiver A is C, and cLz is given by 
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Figure 6-5: Components of displacement, and the angle (fl 
at which the ray is incident upon the receiver. 



d.z 
cLx 

tan s 

43 

[6.4-1] 

where giB is the incidence angle of the ray, and for a 

horizontally layered medium is given by 

tan B = 

Sifl B PV1 

cos B  

p is the ray parameter and vi is the complex velocity of the 

first layer. Combining [ 6.4-1] and [ 6.4-2] yields 

ctx (1 - (pvi) 2) 
ctz =  . [6.4-3] 

pv1 

Note that since p is a complex quantity, dz is a complex 

quantity. 

6,4b: Traveltime and Attenuation 

The phase function t is given by 

M 
=z (. J / Vd) 
d1 

[6.4-4] 
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(Hearn and Krebes 1988), where j is the complex are 

length. The traveltime of the ray is 1e(t) and the Im(v) is 

related to attenuation. The traveltime and attenuation from 

B to C ( fig. 6-2) must be corrected by removing the effects 

of arc length BC on t, after the calculation of dz. If tn 

is defined as the phase function calculated atpoint B, then 

the corrected phase function at point C is given by 

(dx2 + cLz2) 
[6.4-51 

VI 

For station E ( fig. 6-2) a similar process is invoked, 

except that the component in the square brackets is added 

instead of subtracted. 

6.4c: Geometrical Spreading 

The formula for geometrical spreading in the elastic 

case is given by 

I 
12 

Le. 
cos Go 

I/0 

m Vdh 
I 
d1 cos e1 

M vj hi 
I 

d=1 cs 3 e 
it [6.4-6] 
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(Krebes and Hearn 1985) where Oj is the angle that the j th 

ray segment makes with vertical; VI is the velocity 

associated with a the j th ray segment; and hI is the 

thickness associated with the j th ray segment ( fig. 3-2). 

1-learn and Krebes ( 1988) suggest that equation [ 6.4-61 can be 

extended into complex space by allowing all the parameters 

to become complex, and that it thus remains valid for 

anelastic media. Since the summations are taken over the 

number of ray segments, not the number of layers ( fig. 3-2), 

correcting to the stations above and below the receiver 

becomes a simple matter of adjusting the thickness of the 

layer in which the last ray travels. 

65 Reflection and Transmission Coefficients 

The reflection and transmission coefficients used in 

the program were derived from the Zaepp'z)tz equwt2on4 [6.5-

1,41, which express the boundary conditions for a ray 

impinging upon an interface between two solids ( fig. 6-6a). 

The following quantities are continuous across the boundary: 

1. The x component of displacement ( ax), 

[6.5-11 

(Ri + PR) sin 0: + (Si + SR) cos 01 = PT sin 02 + ST 005 02; 
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2. The z component of displacement ( az), 

[6,5-2] 

(Pi - PR) COS 0 - (Si - SR) sin 01 = Pr cos 02 - Sr sin 02; 

3. Shear stress (Qxz), 

2e11312p(Pz - PR) COS 0, + erL3r( 1 - 213i 2p2 )(Sz - SR) 

[6.5-3] 
2e2I322pPr cos 02 + e2132 (l - 232 2p2 ) Sr; 

.4. Normal stress ( Czz), 

- 213, 2p2 )(Px + PR) - 2pr.3, 2p(Sz + SR) 

02a2(1 - 2132 2p2 ) Pr - 2p21322PSr COS 02. 

COS 01 = 

[6.5-4] 

In these equations P and S are the P and S wave amplitudes; 

the subscripts I, R, and T refer to the incident, 

reflected, and transmitted waves; 0 and 0 refer to the 

angles that the P and S rays make with against vertical; and 

subscripts I and 2 indicate incident or transmitted angle. 

The reflection and transmission coefficients derived from 

these equations are given by Aki. and Richards ( 1980, p. 

150). However,'if one of the media does not support S 

waves, as with the case of the water layer in the tank 

model, then [ 6.5-1] is invalid and the reflection and 
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a. 
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LIQUID 

SOLID 

Figure 6-6: Reflected and Transmitted Rays for a P Wave 
Incident Upon a: a) Solid-solid interface; 
b) Liquid-solid, P incident from liquid layer; 
c) Solid-liquid, P incident from solid layer. 
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transmission coefficients must be derived from somewhat 

different boundary conditions. 

Assuming a P wave incident from an overlying water 

layer onto a liquid-solid interface ( fig. 6-6b), then 13, = 

0 and Si = SR = 0. If Pr 1 then Pr is the transmission 

coefficient etc..., and the boundary conditions [ 6.5-2 to 4] 

become: 

uz: 005 01 (PR) + cos 02 (PT) - 32p (Sr) = cos 01 [ 6.5-5] 

xz: 2132p cos e2 (Pr) + (1 - 2)32 2p2 ) ( Si) = 0 [6.5 -6] 

o'zz: -; at ( PR) + 2a2 (1 - 2132 2p2 ) ( Pr) - 

[6.5-7] 
2e2 02 2p cos 02 (Si) = plat , 

Solving [ 6.5-5 to 7] leads to the following reflection and 

transmission coefficients for a P wave incident on a liquid-

solid interface: 

[6.5-8] 

- Pte. = (M)'C -pia, COS 02 + t02a2 cos 01 (l- 2132 2p2 )2 

+ 4 p2c323P2 cos 01 cos 02 COS 021 

Ptne. -  P.t4a.. = (M)'{ 2elal cos 0, (1 - 2132 2p2 )} [6.5-9] 

- S. = (M)'{-4ta!,32p cos 81 COS 02], [ 6.5-101 
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where 

M COS 02 + 2cZ2 cos 0, (1 - 2/32 2p2 )2 

+ 42I32 3 p2 cos 01 COS 02 COS 02. 
[6.5-11] 

For the case of a P wave incident on a solid- liquid 

interface ( fig. 6-6c), i.e. if medium 1 is the solid and 

medium 2 the liquid, then Pi E 1, Si E Q 12 = 0 and Sr = 0. 

The boundary conditions [ 6.5-2 to 4] become: 

uz: cos 0i ( PR) + COS 02 (Pr) - 01P (SR) =COs 01 [ 6.5-12] 

[6.5-13] 

c: 23ip cos Of ( PR) + (1 - 213, 2p2 ) ( SR) = 213;p COS 01 

ozz: -ela:( 1 -2I3,p2 ) ( PR) + Q22 (PT) + 

2,i13, 2p cos of (SR) = pi at( 1 - 213, 2 p2 ). 

[6.5-14] 

Solving [ 6.5-12 to 14] yields the reflection and 

transmission coefficients for a P wave incident upon a 

solid-liquid interface: 

[6.5-15] 

- 1= (N)'[ f2Z2 cos Of - etat cos 02(1213!2P2)2 

+ 4 pi/3v 3p2 cos 02 cos 01 cos 01] 
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Pc. - Ptt  = (N)'{2Q1a1 cos oi(1 - 213i2p2)] [6.5-1611 

Pc. - Ste. = (N)1[4e1a1131p COS 82 COS Of [6.5-171 

X ( 1 - 2f3i 2p2 )] 

where 

N 2tJ2 cos 01 + ptai cos 02 (1 - 2,3i 2p2 )2 

+ 4sf3i3p2 COS 82 COS 01 COS 01. 
[6.5-18] 

The addition of [ 6,5-8 to 111 and [ 6.5-15 to 1811 to the ray-

tracing program, with all the parameters except the density 

complex, now enables models including water layers to be 

examined. 

6.6 Conclusion 

Starting with some simplifying assumptions, a method 

has been proposed which converts displacement amplitudes to 

pressure amplitudes. A formula has been derived which 

allows unequal station spacing, and which reduces to a 

standard two point differentiation formula if the spacing 

remains constant. Stations are created by using rays which 

emerge near the receiver, with some addition or subtraction 

of ray segments to create stations above and below the 
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receiver. This method is tested numerically in the next 

chapter. 
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7. PROGRAM TESTING 

7.1 Convergence of Pressure Wavelet: Zero Offset 

Before comparisons can be made between the program 

output 

of the 

source 

and the tank data 

finite difference 

wavelet. One way 

two steps must be taken: 1. testing 

method, and 2. matching of the 

to test the method is to examine 

the effect on the output of changing the values of cLx and 

dz. The simplest case to test is that of a zero-offset 

receiver, because at zero offset the receiver is symmetric 

(in x.) with respect to the reflected wave fronts. The 

argument ( 6.1), used to show that 

eu-y 

- = 0, 

can now be used to show that 

[7.1-1] 

because of the symmetry in x. Consequently, the pressure is 

a function of only 
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Figure ( 7-i) shows the effect on the wavelet of changing dz. 

Each trace represents a zero-offset ray overlying a single 

reflector at 2 km depth, where the P-wave velocity in the 

first medium is 2 km/s. cLz varies by an order of magnitude 

between traces, starting at 10 km, then 1 km, 0.1 km and so 

on down to 10-8 km. At ciz = 10 km the result is just noise, 

as can be seen on trace 1. On the next two traces, cz = 1, 

0.1, two wavelets are visible and they converge when cLz = 

10-2. There are subtle changes in the wavelet between cLz 

10-2 and ctz = 10 ( traces 4 and 5), but between dz = 10 3 

and dz = 10 -6 ( traces 5 through 8) the wavelet remains 

constant. Some noise appears when cLz = 10 ( trace 9) and 

the wavelet broadens and artifacts appear when cLz = 108 

(trace 10). The effects on the last two traces are probably 

due to rounding errors that occur as the difference between 

u(+dz) and a(-cLz) approaches accuracy limitations within the 

computer. 

7.2 Nonzero Offset 

The effect of varying both cLx and cLz can be tested by 

repeating the process for an offset of 2.5 km. For a single 

layer p can be found directly instead of numerical solution 
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Zero Offset: Computer plot where each trace is 
at the same offset but the cLz value ( see fig. 
6-2) is changed from 10 km to 108 km. Note 
the wavelet remains stable between traces 5 
through 8. 
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of [ 3.3-3]. dx can then be fixed and ctz calculated using 

[6.4-3]. In figure' (7-2) each trace is fixed at an offset 

of 2.5 km, and dx varies by an order of magnitude between 

traces. As before, dx = 10 km ( trace 1) contains only 

noise. Between dx = 1 and dx = 10-2 km ( traces 2 through 4) 

the wavelet is converging, and between cLz = 10 and dx 

10-6 ( traces 5 through 8) the wavelet is stable. Noise and 

artifacts appear for dx 5 10 ( traces 9 and 10). 

7.3 Constant dx and clz 

One further test was run, In this case the normal 

output of the program was compared to the output of a 

program which had been modified to keep dx = dz = C ( a 

constant value) at all stations. This is easily implemented 

for a single reflector but would require many extra 

calculations for multiple layers. The regular program 

output is given in figure ( 7-3) and the constant dx, clz 

output is given in figure ( 7-4). There is no visible 

difference between the two plots, as their subtraction given 

in figure ( 7-5) demonstrates. For this reason, it was 

concluded that any accuracy gained by keeping dx and d..z 

constant was negated by the substantial increase in 

computation time required to do so. 
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Figure 7-3: Regular Program Output: Variable ctx and dz. 
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Figure 7-5: The Difference Between Variable dx, cLz output 
(fig. 7-3) and Constant cb,d.z Output 
(fig. 7-4): The scaling used is the same as in 
the previous two figures. The lack of any 
difference between the two outputs indicates 
that constant station spacing is not required. 
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7.4 Error Minimization 

From this it was concluded that •a sufficiently accurate 

solution would be achieved if the values of cLx and dz were 

restricted to the 10 to 1O km range. As was noted in 

section ( 6.3) the error can be further minimized by 

selecting rays such that dxi, and dx2 have opposite signs 

i.e. the station locations are on opposite sides of the 

receiver location. It turns out that the Newton-Raphson 

method tends to converge by the second iteration, so a third 

ray had to be added. This was done by ' shooting' a ray 

using a p value found by adding the difference between the 

first two p values to the value of p at the receiver 

location. The end result was that ctxo - cLz2, and dx 0 

effectively minimizing the error. 
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8. TANK DATA AND WAVELET MATCHING 

8.1 Introduction 

In this chapter the connection between the data shot in 

the modelling tank and the synthetic data is examined. 

After the program had been modified to output pressure 

values, the model geometry and the source wavelet had to be 

reproduced. For this reason the tank data are examined 

first, as are some problems caused by the survey geometry. 

The process by which the source wavelet was introduced to 

the complex ray- tracing program is then explored. 

82 Tank Data 

The method by which the data were acquired is discussed 

in chapter 4. The.model used in this case was a flat 

section of plexiglass, 4.2 cm thick, which was placed within 

the modelling tank, on a table made from PVC plastic ( fig. 

8-1). The bottom of the spherical transducer was located 

5.8 cm above the plexiglass-water interface, and separated 

initially by 0.5 cm. The survey was then run automatically 

with 120 shots taken at 0.1 cm spacings. At each location, 

4096 samples were taken at intervals of 50 ris, to give a 

total trace length of 204.8 1ts. At each receiver location 

this process was repeated 10 times with the results added 
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Figure 8-1: Schematic of Tank Geometry ( modified from 
Cheadle 1988). 
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(stacked) together to reduce random noise - a standard 

procedure. A plot of the data is given in figure ( 8-2), 

with a close up in figure ( 8-3). Three distinct events 

appear: 1. The direct arrival between the source and 

receiver, 2. An event due to the water/plexiglass contact, 

and 3. An event due to the PVC/water contact below the 

table. The velocities and densities of PVC and plexiglass 

are such that thee exists no impedance contrast between 

them ( Cheadle 1988), and therefore 

plexiglass/PVC contact. 

Some time delay occurs in the 

no event occurs at the 

transducers ( Cheadle 

1988), either in the electrical response, or as the wave 

travels through the outer shell to the piezoelectric 

element. This means that although the shot geometry can be 

measured in the tank the initial distance between the source 

and receiver, and the depth to the first layer, must be 

calculated exactly from the data. The slope of the first 

breaks yields a P wave velocity of 1475 m/s for water, well 

within the range found by Cheadle ( 1988). The intercept of 

the first breaks with the t = 0 axis indicates that the 

first source-receiver offset was 1.21 cm, somewhat larger 

than the 0.5 cm offset measured originally. This implies 

that a physical gap equivalent to 0.355 cm of water exists 

at each transducer, which appears reasonable given their 

dimensions. If this distance is added to the depth 
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Figure 8-3: Sample of the Tank Data in Multics Format. 
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measurements then events on the synthetic traces match 

those on the tank data. Further details are provided below. 

8.3 Wavelet Matching 

The program computes ray amplitudes in the frequency 

domain, and in its original form, the amplitude spectrum of 

the zero-phase source wavelet was defined by a four-

frequency trapezoid. This was modified so that a file 

containing the amplitude of each frequency component could 

be input instead. The direct arrival on the first trace of 

the tank data was sampled, and then Fourier transformed by 

means of a FFT algorithm ( Press et al. 1986) into its 

frequency components 

were used to provide 

Three separate peaks 

(fig. 8-4), These frequency components 

the input file for the source wavelet. 

are visible in the spectrum of the 

input wavelet and these are probably related to the three 

square waves used to generate the source pulse. The 

program was 

experiment, 

(synthetic) 

then run using the parameters of the tank 

and a comparison was made between the resulting 

first reflection and the first reflection 

extracted from the tank data ( fig, 8-5). Subtracting the 

tank wavelet from the synthetic resulted in some residual 

wavelet, which indicated some problem with the synthetic 

source wavelet. The actual source wavelet is somewhat 
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Figure 8-4: Extracted First Arrival and Spectrum ( fig. 8-2, 
trace 1): The amplitude of each frequency 
was used to approximate the seismic tank 
source wavelet. 
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Figure 8-5: Comparison of the First Reflections from the 
Synthetic Data and the Tank Data: The synthetic 
trace is multiplied by a constant scale 
factor determined so that the peak amplitude 
equals that of the tank data. The residual is 
plotted at the same scale as the original 
wavelets. 
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'ringy' and so a perfect match to the synthetic data is 

unlikely. However, the source wavelet in the tank is not 

zero phase so the addition of a phase shift to the synthetic 

wavelet was investigated. 

A series of synthetic traces were created using the 

same offset but rotating the source wavelet over a total of 

9O. As can be seen in figure ( 8-6) this resulted in the 

first reflection being rotated from a minimum-phase to a 

zero-phase wavelet. Then the first event from the tank data 

(see fig. 8-5) was subtracted from each of the phase-rotated 

wavelets to give figure ( 8-7). The amount of residual 

appears to be minimized between traces 5 and 7, so the 

process was repeated to examine more closely the wavelets in 

this range ( figures 8-8 and 8-9). Trace 6 on the 

subtraction plot ( 8-9) appears to be the minimum difference 

between the ' real' and synthetic data, although if trace 6 

on figure ( 8-8) is compared with the data on figure ( 8-5), 

a front lobe is present which is absent from the tank 

wavelet. However, the match at this phase shift proved 

sufficiently close for the purposes of this investigation. 
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Figure 8-8: Refined Phase Rotation Plot of the Synthetic 
First Reflection: Similar to figure ( 8-6) but 
with a finer increment between phase rotations. 
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9. RESULTS AND DISCUSSION 

9.1 Introduction 

Once the survey parameters and source wavelet had been 

matched, direct comparisons were possible between the ray-

tracing plots and those from the modelling tank. In this 

chapter comparisons are first made to ray tracing over 

anelastic models, and then to elastic models. Some comments 

about the critical angle are made and then the tank data are 

compared to plots of particle displacement. A discussion of 

the effects of the large receiver size concludes this 

chapter. 

9.2 Anelastic Modelling 

A comparison was made using the first 40 traces of the 

tank data, after removal of the direct arrivals ( fig. 9-1). 

Complex ray tracing was done using the model parameters and 

the results are shown in figure ( 9-2). In order to detect 

any differences the tank data ( fig. 9-1) were subtracted 

from the synthetic data ( fig, 9-2), and the resulting 

difference plotted as figure ( 9-3). Since the first trace 

in figure ( 9-3) was used to determine the match of the 

source wavelet it shows a minimal amount of residual 

amplitude. There is a definite increase in residual 
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amplitude over- the next 5 or so traces but this levels off 

and remains fairly constant for the rest of the section. 

The residual wavelet appears to widen with increased offset 

which suggests that whatever its cause, the residual 

experiences attenuation of the higher frequencies with 

offset. 

The difference between the tank data and the synthetic 

traces could be due to the following factors: 

1. Imperfect matching of the source wavelet: To test this 

possibility the above subtraction process was repeated using 

the same source wavelet frequencies, but without the phase 

rotation ( section 8.3). As can be seen in figure ( 9-4) if 

the source wavelet is not matched correctly the differences 

between the synthetic and tank data can increase with offset 

- although in this case the high-frequency content does not 

decrease with offset; 

2. Incorrect matching of the model parameters: Since 

the first trace is not at zero offset, the time to the first 

reflection is affected by both the source-receiver offset 

and the distance between the transducers and the 

plexiglass. This problem is reduced by calculating the 

'true' offset from the first breaks, and then calculating 

the depth to the first layer from the first reflection 

times. However, there is still some room for error, and in 

fact moveout curves show some discrepancy between the two 

data types ( more below); 
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Figure 9-4: The Difference Between the Synthetic Data 
Without Phase Rotation of Source Wavelet and 
the Tank Data: Incorrect matching of the 
source wavelet results in a significantly 
larger amount of residual than when a phase 
rotated source wavelet is used. 
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S. Transducer effects: The response of the transducers 

may vary systematically according to the incident angle of 

an incoming wave, or they may contain ' hot' or ' cold' spots 

of varying amplitude response. As the exact mechanisms by 

which a transducer measures waves whose wavelengths are 

about a third of its own diameter are unknown, systematic 

changes in the response seem plausible; 

4. Physical effects not accounted for by theory. Ray 

tracing is only an approximation of the full wavefield and 

is known to break down under certain conditions ( e.g. at the 

critical angle, Cervenjr and Ravindra 1971, p. 174). One of 

the goals of this work is to test the validity of complex 

ray tracing, and it would be presumptuous to assume that the 

cause of any discrepancies must lie elsewhere. However, 

effects from 3 would be difficult to separate from those due 

to 1 or 2, and it seems probable that some combination 

therein is the cause. 

The data match proved sufficient for some 

investigations into changes of reflection amplitude due to 

changes in source-receiver offset. The amplitude of each 

reflection event, taken at its peak value, was calculated 

for both the synthetic traces and those of the tank data. 

To enable comparisons between the two data types, the 

synthetic amplitudes were multiplied by a 

factor, determined to best fit tafik data 

The amplitudes were then plotted, as were 

constant scaling 

amplitude curves. 

the times ( by 
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sample number) at which these amplitudes occurred ( fig. 9-

5). As can be seen in the upper part of figure ( 9-5) some 

discrepancies occur in the inoveout of the two data sets, 

which lends some credibility to the argument that the 

experiment geometry has not been reproduced exactly. The 

amplitude curve of the synthetic trace fits within the 

variations of the tank data, with the exception of the first 

few traces. There appears to be a regular oscillation 

superimposed upon the tank data amplitudes. This effect is 

more pronounced on later plots and is discussed further 

below. 

9.3 Comparison To Elastic Modelling 

Elastic modelling was accomplished by repeating the ray 

tracing, using a Q value of infinity for the plexiglass 

sheet. Plots similar to figure ( 9-5) were created for the 

elastic case ( fig. 9-6). The location of the critical 

angle is marked by a sharp amplitude rise on both sets of 

synthetic data. This effect is absent from the tank data, 

which can be explained by the fact that ray tracing breaks 

down at the critical angle ( Cerven,r and Ravindrá 1971, p. 

174), and the program does not include head waves. The 

amplitude plots are created by simply picking the largest 

positive amplitude on each trace. Beyond the critical angle 

we would expect to see a phase change and a decrease in 
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amplitude similar to those which occur on the synthetic 

data. This suggests, that although no obvious change 

appears on the tank data, it is the head wave amplitude 

which is picked beyond the critical distance. The event on 

the tank data appears continuous, even though the head wave 

and reflection separate at the critical angle. This 

suggests that the reflection is masked by the head wave at 

this point. 

Before the zone around the critical angle, the 

amplitude curves from the anelastic and elastic modelling 

match those of the tank data equally well ( figures 9-5,6). 

At the critical angle both synthetic curves depart from the 

tank curve, although the anelastic curve is a somewhat 

better approximation. Beyond the critical angle comparisons 

are somewhat meaningless as ray theory does not take into 

account the existence of head waves. 

The difference between the elastic and anelastic 

modelswas investigated by Fourier transforming the 

reflected wavelet on the last trace of each synthetic data 

set to obtain its amplitude spectrum ( fig. 9-7,8). The 

spectrum from the anelastic model ( fig. 9-7) and that of 

the elastic model ( fig. 9-8) proved to be almost identical. 

For this model the only attenuation would occur at the 

reflecting interface ( as the water was assumed to behave 

elastically), so the lack of spectrum change is not 

implausible. A greater difference would occur if the 
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wavefield were to propagate through an anelastic medium, 

but it is the elastic/anelastic boundary that is 

investigated here. 

9.4 Receiver Effects 

The above comparisons were made by assuming that the 

piezoelectric transducer acts as a point receiver, and 

measures hydrostatic pressure. The second assumption was 

tested by modifying the original program to include the 

tank wavelet, and the reflection and transmission 

coefficients for the water layer. The result was a 

synthetic record that would have been produced had the 

receiver measured displacement instead of pressure ( fig. 9-

9). By subtracting the tank data from figure ( 9-9) ( fig. 

9-10), and comparing the amplitudes of these traces with 

those of the tank data ( fig. 9-11) it becomes clear that it 

is not displacement which has been measured. This is an 

interesting observation when it is compared to the work of 

Dampney et al. ( 1972). They used a modelling system that 

consisted of piezoelectric transducers coupled dfrectly to 

the surface of a plastic model. They suggested that 

• , .the model experiences a displacement source which is 
detected by the acceleration ( force) sensed by the 
receiver. By 4ecpocJty tn the mocLe2 th,1,6 4urc-.tJ.orw2 
tetAon-ohA.p c.a.n be c.ega.-'uLed a a 3oce -oou-'.ce be2ng 
cLete.cted by a. ce-Lve-'&. on-- We .to cU.-op-a.c.emen-t. 
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large amount of residual suggests that 
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Figure 9-11: Particle Displacement Amplitude Curves 
Including Anelastic Effects: Synthetic data 
amplitudes are from figure ( 9-10), and are 
multiplied by a constant scaling factor such 
that the amplitudes from both data sets are 
equal at trace 10. 
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Dampney et al. ( 1972) used Lamb's problem to create 

synthetic seismograms, so the nature of the source was more 

relevant than when ray tracing is used. The coupling of the 

receivers to the medium is also different, however the basic 

processes involved are the same. For this reason it is 

important to keep the results of figure ( 9-11) in mind when 

discussing the basic assumptions inherent in physical 

modelling. 

The fact that the source and receiver are too large to 

act as single points was taken into account by Dampney et 

al. ( 1972), who suggest that an average reading is taken 

over the contact area. This was not done in the present 

study. Although the amplitude curves for the complex ray 

tracing ( which assumes a point-receiver) appear to match 

those from the tank data, some effects which may be due to 

the large receiver size are present. Before the critical 

angle is attained there is some wander in the amplitude 

curves of the tank data. This wander takes the form of a 

sine wave with a period of about 1.0 cm, which is slightly 

less than the radius of the transducers. This effect 

disappears after the critical angle, which may be due to 

the fact that the wave fronts change from curved for the 

reflection, to straight for the head wave. The physical 

reason for this is not clear but it is plausible that this 

may indeed be where certain assumptions break down. More 

work could be done on this problem, but the error involved 
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is small compared to the amplitude of the waves, and should 

not be a factor in most model experiments. 
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10. CONCLUSIONS AND FUTURE WORK 

The validity of ray tracing in complex space was tested 

by comparing synthetic data traces generated with traces 

from a physical modelling experiment. This was accomplished 

using a ray-tracing program in which the output displacement 

amplitudes were converted to produce pressure amplitudes, 

similar to those measured by the physical modelling system. 

This conversion involved the derivation and implementation 

of a numerical differentiation algorithm which used variable 

station spacing and Lagrangian polynomials. With this 

program, the specific case of an elastic medium overlying an 

anelastic medium was used to investigate the initial value 

of the attenuation angle. The results of the above 

comparisons lead to the following conclusions: 

1. Variable spacing Lagrangian differentiation is valid in 

complex space. The method converged even when station 

spacing varied over several orders of magnitude, despite the 

fact that stations with varying depth were artificially 

located in complex space. 

2. Complex ray tracing is a valid method of reproducing 

reflection events generated by physical modelling 

experiments. Curves of change of amplitude with offset from 
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the ray- tracing program match similar curves from the tank 

data. 

3. The change in amplitude with offset and the spectrum 

shapes are identical before the critical angle, whether or 

not anelastic effects are included in the ray-tracing model. 

There may be some instances when anelastic theory must be 

used, although in this experiment this is not the case. 

4. The assumption that piezoelectric transducers, with 

diameters larger than the wavelengths they measure, act as 

point receivers sensitive to hydrostatic pressure appears to 

be valid. 

5. Physical modelling using the seismic tank is 

sufficiently precise to enable competing mathematical 

theories to be compared. - Amplitude curves were closely 

reproduced, although this experiment did not conclusively 

prove or disprove earlier work on the attenuation angle. 

This leads to some suggestions for future work. The 

program could be expanded to include S waves, and then used 

to look for cases in which significant differences occur 

between elastic and anelastic modelling. Once these have 

been found, physical models that reproduce these conditions 

could be used to further test the validity of anelastic 
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theory. The program could also be expanded to include the 

amplitude of the direct arrivals so that comparisons of the 

absolute amplitudes of events would be possible. The 

addition of head waves would also be an asset, but this 

would require further theoretical development before 

implementation would be possible. 

The combination of physical modelling with anelastic 

theory opens up many avenues of inquiry. One of the leading 

problemsin exploration geophysics is the correlation of 

rock property laboratory measurements with those obtained 

from borehole measurements, and seismic surveys. The 

differences found are often attributed to dispersion of 

velocities due to attenuation. Materials in the tank can be 

tested directly and the results compared to seismic 

measurements, so that direct testing of theory becomes 

possible. As geophysics becomes an increasingly subtle 

science, these previously ignored effects in wave 

propagation may become deciding factors in the 

interpretation of seismic data for the delineation of 

subsurface geology. 
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