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Abstract

In this thesis, I used a special algorithm to separate the Dow Jones Industrial Average
into bull and bear markets. Once the bull and bear markets are gathered, I examined
whether they are positively duration dependent using discrete and continuous time :cests
as well as dynamic hazard functions. We find that bull and bear markets tend exhibit
positive duration dependence suggesting mean reversion in stock prices. I also studied
the impact of business cycles on the duration of bull and bear markets. In particular, I
found that economic expansions tend to encourage bull markets but discourage bear
markets. On the other hand, economic recessions tend to encourage bear markets but

discourage bull markets.
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Chapter 1
Introduction

‘The behavior of stock prices is a popular research area among economic and finance
researchers. A common question that is asked by the research community is the
validation of the random walk model of stock prices. If the random walk model holds,
then predictability of stock prices is impossible. On the other hand, if the random
walk model is incorrect, then stock prices niay exhibit phenomena such as mean
reversion. Although there has been some contributions that test for mean reversion
in financial data, many researchers still find it dificult to reject the random walk
model using traditional time series methodologies. As such, a purpose of this thesis
is to check for mean reversion in stock prices using non-traditional techniques by
examining the duration aspects of bull and bear markets in the Dow Jones Industrial
Average. In particular, we test for the presence of positive duration dependence (an
analog of mean reversion) in the bull and bear markets by using a continuous time
test and several discrete time tests. Then, we use a dynamic duration model to
model the hazard functions of bull and bear markets from which we can qualitatively
uncover the presence of positive duration dependence.

Another common question among the research community is whether economic
innovations have an impact on the behavior of stock prices. In fact, many studies
have shown that there is strong evidence for switching behavior in stock prices around
business cycle turning points. Specifically, stock returns tend to switch from negative

to positive around the troughs of business cycles; the opposite switching behavior is



observed around the peaks of business cycles. Although switching is traditionally a
time series concept, an analog can be developed in terms of duration models. As
such, we seek to identify switching behavior in stock prices around business cycle
turning points by examining the effects of changes in the economy on the hazards of
bull and hear markets.

This thesis is organized as follows. Chapter 2 describes a method for selecting hull
and bear markets from a time series of stock prices. Chapter 3 develops continuous
time and discrete time duration dependence tests and presents the test results for
bull and bear markets. Chapter 4 describes methods for modeling hazard functions
in discrete time and presents qualitative results concerning the hazard functions for
bull and bear markets estimated by Bayesian means. Finally, chapter 5 concludes

the thesis.



Chapter 2

A Simple Framework For Selecting Bull and Bear
Markets

2.1 Selection Algorithm

The idea of bear (bull) markets correspond to an extended period of generally de-
creasing (increasing) stock prices (Chauvet and Petter, 2000). In other words, bear
(bull) markets correspond to an extended period at which stock returns are negative
(positive). More commonly, the finance community defines a bear (bull) market
as a minimum of 20% decrease (increase) in stock prices over an extended period
of time. In relation to macroeconomics, bear and bull markets ave analogous to
busts and booms in business cycles - see King and Plosser (1994), Watson (1994)
and Harding and Pagan (2002). Given this analogy, bear markets are simply defined
as the movement of stock prices from a local peak to a local trough. Similarly, bull
markets are veferred to as the movement of stock prices from a local trough to a local
peak. Using these definitions, we discuss an algorithm that systematically selects
the local peaks and tronghs of a time series of stock prices.

As mentioned in the above, bear and bull markets are analogous to busts and
booms in business cycles. TIn fact, Bry and Boschan (BB) (1971) have devised an

algorithm for dissecting a monthly GDP time series! into appropriate business cycles

'Tt should he noted that the data is smoothed hefore it is applied to the BB algorithm to avoid
problems resulting from outliers.
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of different time lengths. In a nutshell, the BB algorithm seeks out local peaks and
troughs according to some user defined rules. Specifically, the algorithm splits the
series into [rames such that each frame contains a full business cycle. After that,
the algorithni sceks out the highest (peaks) and lowest (troughs) points within each
frame.  As simple as the BB algorithm sounds, the algorithm is actually quite
difficult to implement in practice.

The first difficulty arises from selecting full cycles by slicing the time series into
frames. For the purpose of this thesis, the basic definition of a full cycle is given by a
sequence of trough-peak-trough?.  However, this definition is difficult to implement
in real data. First, it is not uncommon in time series data that a general trend is
composed of several smaller cycles as depicted in Panel a of Figure 2.1. The problem
here is to decide whether the exireme point sequence a-b-¢ should be treated as an
individual cycle or as part of an uptrend defined by a-d. To overcome this issue, a
minimum length for a cycle must be defined. In the business cycle context, the BB
algorithm sets the minimum cycle length to 15 months. Thus, in reference to Panel
a, a-b-¢ should be regarded as a cycle if it has a duration of at least 15 months.
Otherwise, the sequence should be incorporated into the uptrend defined by a-d.
Another problem associated with framing is the issue of skipped cycles. This issue
arises when a large trend crosses over several frames of 15 months as depicted by
Panel b in Figure 2.1. A simple solution to this is to enlarge the frame until a full
cycle is fittecd. Thus, frame size in the BB algorithin has a lower bound of 15 months

but no upper bound.

2A full eyele may also be defined by a peak-trough-peak sequence. However, the programming
of the algorithm will require minor modification if this definition is used.
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In the meantime, the BB algorithm simultaneously determines the local peaks
and troughs of the series. In the simplest sense, peaks and troughs are defined to be
the highest and lowest points. In addition, an extreme point cannot be classified as a
peak unless it is sandwiched between two troughs. Likewise, an extreme point cannot
be a trough unless it is sandwiched between two peaks. Again, these definitions are
difficult to implement in practice. For example, there are many instances where the
time series hils the same high value after a period of fluctuations as depicted by‘ Panel
¢ of Figure 2.1%. Such double turns are a problem because whether we select the first
or second peak as the local peak has great impact in timing and duration measures.
The prescription to this problem depends on how the series behaves between the two
peaks. If the movement of the series is mainly descending between the two peaks,
then the first peak should be selected as the local peak. On the other hand, if the
movement of the series is mainly ascending between the two peaks, then the second
peak should be chosen as the local peak. In addition to double turns, step patterns
of the time series also present a problem for the identification of peaks and troughs.
As an example, consider Panel d of Figure 2.1 where the series maintains a peak and
a trough level for several time periods. Notice that the duration of the down trend
is dependent on whether Ry or Ry is chosen as the local peak and whether V, or Vy
is chosen as the local trough. As a rule of thumb the BB algorithm suggests to use
the last of the equal values as the turning point such that Ry and Vs are selected as
the local peak and trough respectively. I follows that the time gap between turning

points is also crucial to the selection procedure. If the time length is too short

The high points in panel C are often referred to as the resistance in technical analysis (Murphy,
1999). Similarly. a support is formed if the series continually returns to a same low value.



then the selection algorithm will lead to spurious results due to the erratic nature of
economic tine series. In the BB algorithm, the minimum time gap between turning
points is six months.

While the BB algorithm is designed for dissecting macroeconomic data. the same
principle can also be used for financial time series as suggested by Pagan and Sos-
sounov (I’S) (2003). However, given the nature of financial time series, some mod-
ifications to the BB algorithm are required; we refer to the modified BB algorithm
as the PS algorithm. First, since nmich attention has been given to the behavior
of Aln B, the PS algorithm examines the natural log of the series rather than the
series itsell. The second difference hetween the BB algorithm and the PS algorithm
is that the PS algorithm does not require the time series to he smoothed. The
reason [or this is because data smoothing removes extreme movements (i.e. outliers)
that are actually of interest when studying the behavior stock prices. Third, the
framing specification of the PS algorithm is slightly different than that of the BB
algorithm. In particular, Pagan and Sossounov (2003) suggest to use a full cycle
of at least 16 months. In addition, the minimum tinme gap between two turning
points is set to [our months according to the Dow ‘Theory (Hamilton, 1919). Of
course, the difference between the peak price and the trough price must be at least
20% to satisfy the definition of bear and bull markets. As a note, although the PS
algorithm is applied on monthly data in the work by Pagan and Sossounov (2003), it
can also he used in data with different frequencies. Since the algorithm is designed
to capture hroad market movements (Gonzales ¢i al, 2005), we do not advise 611

using data with frequency higher than weekly data.



2.2 Bear and Bull Market Characteristics

Once the turning points of the time series are defined by the PS algorithm, several
characteristics of bear and bull markets may be calculated. To compute these
characteristics, it is necessary to devise a counting mechanism to separate bear and
bull phases in the data. Pagan and Sossunouv ( 2003) suggest to use a binary variable
S that is equal to unity when the series is in the bull phase and zero otherwise at time
t. With this binary variable, the average duration of bull markets is calculated. In
particular, the total time spent in the bull state is given by 2;1;1 St and the number
of peaks is given by NTP = ZZ:II (1 = S441) St As such, the average duration of

bull markets is simply

NTP Z St (21)

Similarly, the average amplitude (i.e. the magnitude of price change) of hull markets

is given by

-~

A=

NT 2 Z SiAln Py (2:2)

A more interesting characteristic maybe the cumulative movement of stock prices
over the entire bull market. To caleulate this, let Z; be the cumulative sum of A In P,
during a bull market such that Z, resets to zero whenever the market switches to

the bear state. Specifically, Z; is given by
b= SL~Z¢~1 -+ SbA In [Df (23)

with Zy = 0. As such the average cumulative movement over the bull markets is
simply
C==——= (2.4)



where TC is the total cumulative movement given by
T
TC=> 7 (2.5)
=1

In accordance with Pagan and Harding (2002), it is useful to think of a bull market
selected by the PS algorithm as a triangle as depicted by Figure 2.2.  With point
A being the trough and point C the peak, the linear path A is the cumulative
movement of the bull market given by equation (2.3). In reality, AD is just an
approximation such that it may deviate from the actual path. To measure how well
the triangle approximates the actual path, Pagan and Harding (2002) calculate an

excess index given by
G]W - GI' + 0544,

(2.6)

where C'p; is the total cumulative movement of the actual path. If AR approximates
the actual path well, then the index is close to one. Otherwise, EX; is close to zero.
The average excess index is siniply the average of all the EX;'s. A similar logic is
used for caleulating the average excess index for bear markets.

Many bull markets increase more than the 20% benchmark. To account for these
‘strong” hull markets, consider another binary variable I [a] where « is a boolean that
defines the ‘strong’ market. In particular, o is (1 — Ste1) SiZy > 0.20 for strong bull
markets such that I [a] is unity when a is true and zero otherwise. Consequently,

the fraction of strong bull markets is just

T-1
, 1
P — =S T[(1 = i) SiZ, > 0.20] (2.7)
NTP i

Finally, similar statistics are calculated for bear markets by setting S; to unity

during a hear phase and zero otherwise. The fraction of ‘strong’ bear markets is



calculated using the boolean (1 — S41) S,Z, < —0.20 such that

T~1
1 , 2.8
e a ; I'{(1 = S41) SiZ, < —0.20] (2:8)

2.3 Empirical Results: Bull and Bear Markets in the Dow

Jones Industrial Average

We use a weekly series of the logarithm of the Dow Jones Industrial Average from
January 1928 to May 2005 for analysis. Using the PS algorithm. we dissect the
series into its bull and bear components. In particular, we capture absohite changes
in the logarithm of stock price of 20% or higher. In addition. the minimum length
of any phase must be at least four weeks in length rather than four months. To
parallel analysis from previous work such as Cochran and DeFina (1995a), Cochran
and Delina (1995b) and Ohn, Taylor and Pagan (2004), we also separate the series
into pre WWIT and post WWTI subsamples.

Tables 2.1 records the simple summary statistics of bear and bull markets for
the three samples.  Under the full sample, we identify 59 bear markets and 59
bull markets. Under the post WWII sample, we identify 43 hear markets and 43
bull markets. The pre WWII sample, however, has weak sample size with only 10
bear markets and 9 bull markets. Generally speaking, the mean durations of bear
and bull markets are larger than their corresponding standard deviations suggesting
the possibility of positive duration dependence under the discrete time duration
dependence test tests. On the other hand, the Pre WWII bull markets are suspected
of exhibiting negative duration dependence under the discrete time tests because the

average duralion is less than the standard deviation. TFinally, it is observed that



10

bull markets are, on average, longer than bear markets.

A more detail examination of the bull and bear markets will require the ex-
amination of the other characteristics described in section 2.2. Table 2.2 and 2.3
record such characteristics for the selected bull and bear markets respectively. First,
we observe that not only are bull markets longer than bear markets but they are
also stronger as suggested by the mean amplitude and mean cumulated movements.
Second, we observe that 1')'0th bull markets and bear markets deviate quite far away
from the triangle approximation as suggested by ﬂle mean excess movements. Fi-
nally, there is a much larger fraction of the bull markets that exceed the 20% price

movement benchmark than bear markets.

2.4 Conclusion

We describe a systematic method for separating a weekly time series of the Dow
Jones Industrial Average into bull and bear market components. On average, we
find that bull markets are stronger and lengthier than bear markets. In addition, we
also find that actual asset price movements deviate quite a bit from the triangular
approximated that is used in the selection algorithm. Finally, there is a larger
fraction of bull markets with price movements that exceed the 20% benchmark than

bear markets.



Figure 2.1
Problems associated with turning point selection.
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Table 2.1

Summary Statistics of Bull and Bear Market Durations

Bull Markets Full Sample Pre WWII Sample Post WWII Sample

Mean Duration 28.98 23.67 31.07
Standard Deviation 22.08 25.53 22.65
Max Duration 104 89 104
Min Duration 4 6 4
Sample Size 59 9 43
Bear Markets Full Sample Pre WWII Sample Post WWII Sample
Mean Duration 15.71 17.90 15.14
Standard Deviation 11.32 12.65 11.50
Max Duration 104 41 ' 52
Min Duration 4 4 4
Sample Size 59 10 43

Note: Duration is measured in weeks. Sample size indicates the number
of bull markets in upper panel and the number of bear markets in the

lower pancl
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Table 2.2

Characteristics of Bull Markets

Full Sample Pre WWII Sample Post WWII Sample

Mean Duration

Mean Amplitude

Mean Cumulated Novement
Mean Excess Movement

B+

28.98 23.67 31.07
0.26 0.37 0.24
5.71 6.48 5.96
0.012 0.012 0.015
0.58 0.89 0.53

Table 2.3

Characteristics of Bear Markets

Full Sample Pre WWII Sample Post WWII Sample

Mean Duration

Mean Amplitude

Mean Cumulated Movement
Mean Excess Movement

B-

15.71 17.90 15.14
-0.19 -0.39 -0.15
-1.84 -4.23 -1.35
0.012 0.016 0.008
0.25 0.60 0.16




Chapter 3

Some Statistical Tests for Duration Dependence

3.1 Motivation

Duration analysis has received much attention in the study of economics. Formally,
duration analysis involves the study of the time that an economic agent takes to
leave a specific state!; such a state is commonly referred to as a spell. For example,
duration analysis has been applied to labor economics to study the durations unem-
ployment in different individuals and labor disputes - see Nickel (1979), Lancaster
(1979), Kennan (1985) and Kiefer (1988). Other economic applications of duration
analysis include consumer choice and marketing (Vileassim and Jain, 1991), indus-
trial organization (Pakes and Schankerman, 1984) and political economy (King et
al., 1990). More recently, duration analysis has found its way into macroeconomics
and finance - see Engle and Russell (1998), Partington and Stevenson (2001) and
Zuehlke (2003).

An important concept in duration analysis is the idea of duration dependence.
A spell is said to be duration dependent if its hazard probability depends on the
cduration of the spell itself. Duration dependence can be further subdivided into
positive and negative duration dependence. Positive duration dependence implies
that the hazard probability of a spell increases with the duration of that spell. In

other words, mature spells are more likely to end than mature spells under the

'In the context of this thesis. the ‘agent’ is the stock market with bear and bull markets heing
the states.

14,



influence of positive duration dependence. Similarly, negative duration dependence
implies that the hazard probability tends to fall with the duration of the spell such
that younger spells are more likely to end than older spells.

The notion of duration dependence is of importance in finance. For example,
McQueen and Thorley (1994) argue that speculative bubbles are evident in the stock
market il a.run ol abnormally high (or low) returns is negatively duration dependent.
More importantly, duration dependence has strong implications on the hehavior of
stock returns. Early work by Samuelson (1965) and Leroy (1973) suggest that stock
prices follow a random walk such they are unpredictable. However, this view has
been challenged by Lo and MacKinlay (1988), Fama and French (1988), Poterba.
and Summers (1988), Shiller (1989) and Boudohk and Richardson (1994) as they
identifly mean reverting behavior in stock prices. This in turn suggests stock prices
do not necessarily follow the random walk model as prices regularly return to their
mean alter a period of positive or negative deviations. In the context of duration
dependence, mean reversion simply implies positive duration dependence in a run
of positive or negative returns (Cochran and Defina, 1995a). The reason for this is
simple. In the absence of cyclical behavior, there will he no evidence for duration
dependence becanse trends tend to be consistent.  On the other hand, a cyclical
component along with the presence of positive duration dependence implies that
stock prices will eventually return to their long run trend level, hence mean reverting.

The purpose of this chapter is to identify the presence of mean reversion in stock
prices using some statistical tests for duration dependence. In conjunction with
the simulation results from chapter 2, the presence of positive duration dependence

in bull and bear markets duration will support the rejection of the random walk
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model.  Tn the next two sections, we present some statistical tests for testing for
duration dependence. The first section concerns a continuous time test that is used
by Cochran and Defina (1995a) and Cochran and Defina (1995b). The latter section
concerns a scl of discrete time duration dependence tests that are used in Ohn el al.

(2004).

3.2 A Continuous Time Duration Dependence Test

A popular assumption in duration analysis is to treat duration time as a continuous
random variable. Here, we outline a parametric test for duration dependence in the
conbinuons time framework using the ideas presented in Kiefer (1988) and David-
son and Mackinnon (2004). Let 2 be a positive continous random variable that
accounts for the duration of a spell (bear or bull markets). Further let PDF (=)
and CDF (x) be the probability distribution and cumulative distribution of z re-
spectively. The probability distribution PDF (x) is associated with the survivor
function S (), which justifies the probability that a spell is still present at time z.

Mathematically, the survivor function is given by
S(z)=1—-PDF (2) _ (3.1)

Together with S (2), the cumulative distribution CDF (z) defines the continuous

time hazard {unction h (2) where

h(z) = —C—lg)—{’qg—q) (3.2)

The continuous time hazard function has a specific conditional probahilistic meaning.

In particular, it represents the probability that a spell will end given that it has
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already lasted up to time 2. Duration independence is evident when I/ () =0
whereas duration dependence is evident when A/ (z) # 0. In particular, we have
positive duration dependence when A/ (z) > 0 and negative duration dependence
when A/ (2) < 0.

The distributional assumption on 2: is crucial to the behavior of the hazard func-

tion A (x). Suppose that 2 is exponentially distyibuted such that
CDF(z)=1—¢% (3.3)
where 0 > 0. Using equation (3.2) the hazard function must be
h(z)=20 (3.4)

Taking the first derivative of the above, it is clear that the spell is duration indepen-
dent because A’ (x) = 0 regardless of the value of . The exponential distribution is
of crucial importance because it serves as a null hypothesis of no duration dependence
for the parametric test.

A simple and versatile alternative to the exponential distribution is the Weibull

distribution. The Weibull distribution takes form of
CDF (%) =1— ¢~ 02" (3.5)
such that the hazard function must be
h(z) = af*z>1 (3.6)
where e > 0. Taking the first derivative of the ahove yields

B (z) = (@ — 1) af*2°2 (3.7)
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When « — 1, equation (3.6) collapses to equation (3.4) such that duration inde-
pendence is evident as the weibull model is identical to the exponential distribution
under this condition. On the other hand, negative duration dependence is evident
when @ < 1 because equation (3.7) becomes negative for all z. Similarly, positive
duration dependence is evident when o > 1 because equation (3.7) becomes positive
for all 2.
At this point, it is clear that the null hypothesis for the continuous time tost
I8 Hyp : @ = 1 where as the alternative hypotheses are H; : a > 1 for positive
duration dependence and H; : a < 1 for negative duration dependence. The
estimation of the parameter o involves the method of maximum likelihood. Specifi-
cally, the loglikelihood function for the Weibull distribution is given by LL (2, , 0) =
Dim A (2,0,0) + 377 In S (2, 0,0). Using equation (3.2), the loglikelihood can
be further expressed as
n n
LL(z,0,0) =nlna+nlnd + (a — 1) Z Inz; + 6% Zazf‘ (3.8)
i=1 i=1
such that estimates for cv and @ can be obtained by maximizing the above in the usual
way?. Moreover, /7 (& — «) is asymptotically normally distributed with mean zero
and variance cqual to the second derivative of equation (3.8). As such hypothesis
testing and confidence interval construction can he performed in the usual way:
7= (A —«a)/se(®) and @ = @ %+ 7.se (@) where 7 is the test statistic and T, is the

critical value.

?The usual way implies finding values of o and 0 that maximizes the observation of the data.
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3.3 Discrete Time Duration Dependence Tests

3.3.1 Some Preliminaries

The assumption that x is a positive continuous random variable may not he realistic
for our purpose. As a matter of fact, duration data collected from a time series
should be considered as discrete data because each time period in a time series is
measured in fixed intervals (i.e. day, week, month, etc.). Given this, we now define
2 as a positive discrete random variable such that 2 € {0, 1,2, ...}.

To construct the discrete time duration dependence tests, we need to define a
base case (i.e. a null hypothesis) that always bring about duration independence.
A commonly used probability distribution for modeling discrete duration data is the

geometric distribution. The geometric distribution takes the form of

P(z)=p(l-p)° (3.9)
with moment generating function

The first derivative of (7 (2) evaluated at z = 0 gives the first moment of the geometric

distribution such that the population mean is given by

1—p _
Ly, = ——— 3.11)
I 7 (

Similarly, the second moment is given by

2 7
G (x = 0) =2 (5;—79) + (1;_1;) (3.12)
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such that the corresponding population variance is

1-p a1
ol = 2 (3.13)
Using the work by Ohn el al. (2004), the hazard function can be written as
Plz=X
hz) = £2=X) (3.14)

_P(xSX)

If 2 is geometrically distributed, then equation (3.11), equation (3.13) and equation
(3.14) implics that h(z) = p such that the spell of interest is duration indepen-
dent. As such, the null hypothesis for the discrete time duration dependence tests
is that x is geometrically distributed. On the other hand, deviation from the ge-
ometric distribution constitutes the alternative hypothesis of duration dependence.
In particular, if the average of 2 is greater than its standard deviation, then positive
duration dependence should be suspected. On the other hand, if the average of
x is less than its standard deviation, then negative duration dependence should be
suspected (Lancaster, 1990).

With the null and alternative hypotheses defined, we can go about constructing
tests [or duration dependence in the discrete time framework. We begin our discus-
sion by discussing four weak form tests. These tests are termed ‘weak’ because they
only compare the first two moments of the data that of the geometric distribution.
Next, we move on to a strong form test that compares the estimated of the density

of the data with the geometric distribution.
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3.3.2 Some Weak Form Tests

The Zcro Plim Test

The zero plim tests is a discrete time duration dependence test developed by Mu-
dambi and Taylor (1991). TFirst, assume that 2 is geometrically distributed with
mean and variance defined by equation (3.11) and equation (3.13) respectively. Tor
small values of p, it is evident that p2 = 02 such that the population is not expected
too over- or underdispersed.  As such, for a sufficiently large sample of z we can
write

plim [L — 1] = () (3.15)

Sz

if 2 is actually geometrically distributed. In other words, we are suggesting that a
sufficiently large sample of 2 will converge (at least in the first two moments) to the
geometric distribution if 2 truly follows the geometric distribution. On the other
hand, il . is not geometrically distributed, then equation (3.15) will not hold. With

this in mind, we write the test statistic as

8]

z) =+/n (»’- — 1) (3.16)

Sa

where n is the number of observations, ¥ is the sample mean and s, the sample
standard doviation.  Using the central limit theorem, the distribution of z; must
converge to the standard normal as n gets infinitely large. With finite samples,
however, Mudambi and Taylor (1991) found that the distribution of 2 is very skewed
so that it is necessary to bootstrap the critical values.

Although the zero plim test is classified as a weak form test, it is not weak in

terms of statistical power.  Rather, the test is expected to be powerful because
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the population mean and standard deviation will generally be different when dura-
tion independence is violated (Lancaster ,1990).  Tor example, we expect negative
(positive) duration dependence if z, is significantly negative (positive). Similarly,
duration independence is identified if z; is statistically insignificant. Howaever, as
noted by Mudambi and Taylor (1991), the zero plim test is extremely sensitive to
hazard functions with erratic hehavior as well as those that are monotonically in-

creasing or decreasing.  As such, the sign of z; must be interpreted with caution.

The Method of Moments Test
An analog to the zero plim test is the method of moment test (Mudambi and Taylor,
1991). According to the method of moments methodology, the &% moment of the
population is equivalent to the k™ moment of the sample. As such, large deviations
between the hypothesized population moments and sample moments suggest that
the sample violates the hypothesized assumptions on the population.

Using the sample mean, it is casy to see that a maximum likelihood estimator

for p is given by
~ 1
T l+wm

(3.17)

Similarly, a maximun likelihood estimator for p can also be derived from the sample

variance such that

=14 /1+4s2
LRV s (3.18)

b= 252

Since & and s2 are considered consistent estimators for the population mean and
variance, equation (3.17) and equation (3.18) will both converge in probability to p
under the null hypothesis of duration independence. To construct the method of

moments {est, we remrrange equation (3.17) so that (1 — ) /P?* is an unbiased and
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consistent estimator for 7. Under the null hypothesis of the geometric distribution,
(1 —p)/p% is a consistent estimator for the population mean fi, for a sufficiently
large sample of 2. Then, conditional on Sy, the test statistic can be written as

) "

vy =
Sy

which, according to the central limit theorem, is approximately normal under the
null hypothesis.  However, z is highly skewed under finite samples so the critical
values should be bootstrapped. The method of moment test is expected to be
powerful because deviation from the mull hypothesis will overthrow the consistency
of p.  Finally, it should be noted that z, and z will converge numerically to each
other for s, that are much larger than one. As such, it is expected that the two test

statistics should have similar behavior.

The Generalized Method of Moments Test

The generalized method of moments (GMM) test is another analog to the zero plim
and method of moments tests (Mudambi and Taylor, 1995). This test is assumed
to be superior to the zero plim and method of moments tests because it operates
unconditionally on the sample variance.

To derive the GMM test, we employ the GMM method proposed by Tauchen
(1985).  First, we compute p via maximum likelihood and use it to calculate the
score function 7; = n(2;,0). In accordance with Mudambi and Taylor (1992), the
loglikelihood function for the geometric distribution is

LL=nln(p)+In(1l-p) Z.’Iz‘i (3.20)

is=1



while the score function is

1 i 1
ﬁi";?\——z—;‘—‘(f—-’ﬂf) (1-{-;) (3.21)

Next we select an auxiliary criterion function c (z, p) such that a large absolute value
of (1/n) 3" e (24,P) will lead to speculation on whether the underlying loglikelihood

model is correct. In particular, the auxiliary criterion function takes the form of
2
1— 1—
c(x,p) = [:1; - ~~£} - s—;—‘g (3.22)

At this point, the general idea behind the GMM test is clear. Under the geometric
distribution, equation (3.22) has an expected value of zero so that we are implicitly
checking whether the sample variance is the same as the population variance implied

by the geometric distribution. To check this, we regress
@i = by + bi7); + disturbance (3.23)

and confirm whether the intercept term is significant. The estimate for bo is just

30=%i (%:>P) —[< )Z(m 7) J—#—y

2

ezl

so that the GMM test statistic is

1 n
2% = [(;) (¥ —W)ZJ -7 -7 (3.24)
! FECN]

Again, the central limit theorem suggests that z; converges in distribution to the
standard normal but the critical values should be bootstrapped when dealing with

finite samples.



The SB Test

An alternative to the duration dependence tests in the above is the SB regression
test proposed by Ohn et al (2004). The test is termed SB because it is constructed
using binary variables that describe the state. Lets begin by analyzing bull markets
by considering the binary variable S, that accounts for the state of the stock market
at time £. In particular, S; assumes unity when during a bull market and zero during
a bear market®. Under the assumption of a constant hazard function, S, must follow
a Markov process such that it can be written as an AR(1) as suggested by Hamilton

(1989). Specifically, the AR(L) process is given by
Sy = ¢g + 1841 + disturbance (3.25)

where ¢y = pyyg = 1 — Poyi and ¢ = Py + pojo — 1%, Under duration dependence,
the market state at 1 will depend on the market state at £ — 1 as well as the duration

of that state. To investigate this, we modify the above to
Sy = ¢+ 1511 + 2Siqdy_y + disturbance (3.26)

where d; is the number of consecutive periods spent in a particular state®. As such
duration dependence implies that ¢, is significantly different from zero. That is,
testing the null hypothesis Hy : ¢y == 0 is equivalent to testing duration independence.

However, the SB test must be constructed with caution. In particular, the test

cannot be constructed using a sample consisting of bear and bull markets hecause

8Durasion dependence in bear markets may he explored by setting St to one when the state is
a bear market aud zero otherwise.

1The notation Papy denotes the conditional probability of the stock market switching from state
a to state b. :

SDurland and MceCurdy (1994) suggest that the relationship hetween S and d,_; is nonlinear.
However, owr lincar mode! is still suitable becasue we are just testing whether or not there is a
relationship hetween the wo variables.
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doing so will introduce conditional hetroskedasticity in the disturbance termsS. To
overcome this, bear and bull markets must be treated separately. Consider, for
example, the sequence S, = {1,1,1,0,0,1,1,1,0,0, 1,1, 0} such that periods 1-3, 6-8
and 11-12 are bull markets. A sample for S;, S,_; and d;_, consisting of bear and

bull markets is

Sy Si1 dp
1 - 0
1 1 1.
1 1 2
0 1 3
0 0 0
1 0 0
1 1 1
1 1 2
0 1 3
0 0 0
1 0 0
1 1 1
0 1 2

81t follows that V (disturbance|S.., = 0) = P (1 - Pll()) and V (disturbance|Sy.; = 1) =
pp (1= i) -



whereas a sample for bull markets only is given by

Sy Spy dypy
1 1 1
1 1 2
0 1 3
1 1 1
1 1 2
0 1 3
1 1 1
0 1 2

Under the bull-markets-only sample, we see that St~1 is a column of ones such that

equation (3.26) can be rewritten as
St = g + C2(]t~] (327)

Here the test statistic is just the standard £ test statistic for s so that positive dura-
tion dependence in bull markets is evident when ey is significantly positive whereas
negative duration dependence in bull markets is implied if ¢, is significantly negative.
As a reminder, the relationship between S, and d,_ 1 may be nonlinear as suggested
by Durland and McCurdy (1994) so that the power of the SB test should bhe ques-
tioned. Tinally, it should be noted that the SB test is asymptotically ecuivalent to

the GMM test. An clegant proof for this claim is found in Ohn ef al (2004).
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3.3.3 A Strong Form Test

As discussed previously, a strong form test compares the estimated density of the
data with the density hypothesized distribution rather than comparing only the
first two moments. A good candidate is the chi-square goodness of fit test (chi-
square test for short) that is used by Diebold and Rudebusch (1991) to test for
duration dependence in business cycles. The general idea hehind the chi-square test
is to divide the sample into & bins and compare the observed frequencies with the
expected [requencies generated by the hypothesized distribution for each bin. If the
hypothesized distribution is true, then the observed and expected frequencies will be
very close to each other.  OF course, the hypothesized distribution for our purpose

is the geometric distribution. Formally, the test statistic is given by

2 i(of—g,-)?

X o P A

E;

i1
where O; and E; are the observed and expected frequencies of the i** bin.

Bin selection is important in order to obtain satisfactory results from the chi-
square test. Hoel (1954) suggests hins should be selected such that the expected
[requency should he at least five for each bins. To be on the safe side, we follow
the suggestion hy Ohn et al (2004) and set expected frequency to at least six. E; is
organized such that Ey corresponds to the bin with the lowest values for the range of
realizations of 2 whereas Ey corresponds to the bin with the highest values for the
range of realizations of . Further, the last bin must be defined with care. The bins
corresponding to Fy, Fs, ..., Eg.; are constructed with expected frequencies that are
closest to six from the right. Since, extreme durations are scarce, it is often the case

that Ejy is less than five. In such an event, we combine bins K and K — 1 together
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to construct the last bin for the chi square test.

3.4 Empirical Results: Evidence for Duration Dependence

in Bull and Bear Markets

Using the selected bear and bull markets from chapter 2, we test whether they
exhibit duration dependence by applying continuous time and discrete time tests.
Since there is some uncertainty surrounding the exact timing of the turning points,
we adjust the duration data as suggested by McCulloch (1975) and Dicbold and
Rudebusch (1990). Namely, we remove different positive values of To, which is at
most the historvical minimum, from the duration data obtained from the selection
algorithm.

We begin the analysis with the contimious time parametric Weibull test on bull
and bear markets.  Under this test, we check for positive duration dependence,
negative duration dependence and duration independence by checking whether the
test stalistic is greater than one, less than one or equal to one respectively. Table
3.1 summarizes the test results for the three samples of bear markets. It is clear
that there is some evidence concerning positive duration dependence in bear markets
for the full and post WWII samples as some of the test statistics are statistically
greater than unity. However, the evidence is only present for To less than two and
then disappears thereafter. The bear markets in the pre WWII sample, however,
does nol seem to exhibit duration dependence for all values of To- This finding
is qquite dlilferent from Cochran and DeFina (1995a) who uncovered some evidence

for positive duration dependence in the pre WWII sample. Table 3.2 presents the
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continuous time parametric Weibull test for bull markets. Here, we find strong
evidence concerning positive duration dependence in bull markets for the full sample
as well as the post WWII sample; the test statistics are greater than one for all values
of 79. On the other hand, the bull markets for the pre WWII sample does not show
any evidence concerning duration dependence. Again our finding is different from
Cochrane and DeFina (1995a) who failed to identify positive duration dependence in
bull markets except in the pre WWII sample. An explanation for the discrepancies
is that our data set is different from Cochran and Delfina’s (1995a) study. In
particular, Cochran and Defina’s pre WWI1I sample is larger than our pre WWII
sample. Furthermore, a different selection algorithm? is used in Cochran and DeFina.
(1995a), which is another possible source for discrepancy. It should also be noted
that our test results for bear and bull markets in the pre WWII sample should be
questioned. Specifically, the small sample size in the pre WWII sample decreases
the power of the continuous time parametric Weibull test.

Next, we venture into the discrete time realm to test for duration dependence
in bear and bull markets. Given the summary statistics in table 1 and table 2,
we specifically test for negative duration dependence in bull markets for the pre
WWII sample and positive duration dependence for the other bull market samples.
First, consider the weak form tests. Table 3.3 summarizes the zero plim test results

for bear markets. Under the full sample, we find evidence for positive duration

cdration dependence for the pre WWII and post WWII subsamples. Table 3.4

“Cachran and DeFina (1995b) used the method proposed by Cohen et al. (1987) to select bear
and bull markets. It is hard 1o say whether the PS algorithm js superior to the Cohen et al. (1987)
method; an indepth comparison between the two methods are required for a conclusive answer.
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summarizes the zero plim test results for bull mavkets. This test shows positive
duration dependence for the full sample and post WWII sample when 7y = {1,2}.
The bull markets in pre WWII sample, however, does not appear to be duration
dependent as suggested by the zero plim test.

‘The method of moment test results for bear markets are recorded in table 3.5.
Like the zero plim test results for bear markets, we fail to uncover evidence for
duration dependence in the pre WWII and post WWII subsamples. However, we
do observe some presence of positive duration dependence in the full sample for
7o = {1,2}. The method of moment test results for bull markets are recorded in
table 3.6 from which we see some evidence of duration dependence. In particular,
the method of moment test identified positive duration dependence in the full sample
when 7y = 1. The test has also detected evidence of positive duration dependence
in the post WWIT sample for 79 = {1,2}. Turther, the bull markets in the pre
WWII sample seems to exhibit negative duration dependence for 7 = {5.6}.

The generalized method of moments test results for bear and bull markets are
recorded in table 3.7 and table 3.8 respectively. Like the results from the zero
plim test and method of moment for bear markets, we fail to uncover evidence for
cduration dependence in the pre WWITI and post WWII subsamples. However, there
is evidence for positive duration dependence in the full sample when To is equal to
one. There is also evidence for positive duration dependence in the post WWI1
sample when 74 is one as well as in the full sample for 7¢ == {1,2}. The pre WWII
sample, on the other hand, seems to exhibit negative duration dependence when 7,
is six.

Table 3.9 summarizes the ST test results for bear markets. There is no evidence
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for positive duration dependence in bear markets except in the full sample bear
markets when 75 = 1. Table 3.10 summarizes the SB test results for hull markets.
In the full sample and post WWII sample, we uncover evidence for positive duration
dependence in bull markets for 7¢ == {1, 2}. The pre WWIT sample, however, does
not appear to show any duration dependence under the SB test.

To complete the analysis using discrete time duration dependence tests, we now
move on to the strong form Chi square goodness of fit {est. Regrettably, the pre
WWIT sample is too small to construct meaningful bins for the testing procedure. As
such, we discard the pre WWII sample for the Chi square goodness of fit test. Table
3.11 summarizes the Chi square goodness of it test results for the full sample bear
market data. By inspection, we see considerable clustering of observed frequencies
for 7o = {1,2,3}, which in turn suggests deviation from the geometric distribution.
Consider the case where 7 is equal to one. We see very low observed frequencies (i.c.
0 and 2) in bins [0, 1] and [2, 3] whereas high observed frequencies (ie. 15,12 and 11)
are evident in bins [4, 6], [7, 9] and [19, 25]. In comparison, these observed frequencies
are quite different from their corresponding expected frequencies. Since the expected
frequencies are generated from the geometric distribution, the deviations makes it
clear that the [ull sample bear markets are duration dependent when 74 is equal
to one. A similar behavior is also observed in cases where To = 2 and 79 = 3.
In fact, the Chi square test statistics convey that the null hypothesis of duration
independence is rejected such that positive duration dependence is evidence for 7 =
{1,2,3}. On the contrary, for the case where 7 is four, the observed frequencics
scems to be very close the expected frequencies suggesting that positive duration

dependence is not very likely. In fact, as the Chi square test statistic suggests, there
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is no statistical evidence for positive duration dependence in full sample bear markets
when 7 is four. Using a similar argument, we observe. from Table 3.12, positive
duration dependence in full sample bull markets when 74 is set at 1 and 2 but not
when 74 is set at 3 and 4. Table 3.13 and Table 3.14 concern the post WWII bear
and bull markets respectively. There is evidence for positive duration dependence
in the post WWII bear markets for all values of 7o under consideration. On the
other hand. we have evidence for positive duration dependence for post WWII bull
markets only when 74 is equal three.

In comparison to previous work, our results are somewhat different from the
findings of Ohn, Taylor and Pagan (2004), who, generally speaking, found strong
evidence for positive duration dependence in bull and hear markets. However,
the evidence duration dependence for pre WWII bull markets is still weak in their
results. A logical explanation for the discrepancies is that different data are used
in the analysis. Namely, the Ohn, Taylor and Pagan (2004) study used a monthly
S&P500 data set whereas the weekly Dow Jones Industrial Average is used in this
study. As a note of caution, the danger of the small pre WWII sample remains
problematic in the discrete tests since the small sample may decrease statistical

power of our tests.

3.5 Conclusion

In summary, we find some evidence of positive duration dependence in bear and
bull markets for the full sample as well as the post WWII sample using continuous

and discrete time tests.  However, there is no evidence for duration dependence in
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the pre WWIT hear markets whereas there is some evidence for negative duration
dependence in the pre WWII bull markets. As a remark, the results for the pre
WWIT samples should be questioned due to their relatively sample size. In addition
the results ave sensitive to 74, which is related to the uncertainty of turning point

identification. Turther research is required to find out why that is the case.



Table 3.1

Continnous Time Weibull Parametric Test for Bear Markets

Minimum phase Full sample Pre WWII sample Post WWIT sample

1 141814 1.49323 1.36164**
2 1.30373** 1.38065 1.24966*
3 1.17355 1.24442 1.12285
4 1.08924 1.42294 1.01033

Note: *p-value < 0.10; ** p-value < 0.05; " p-value < 0.01
Table 3.2

Continuous Time Weibull Parametric Test for Bull Markets

Minimum phase Tull sample Pre WWII sample Post WWII sample

1 1.37627*+* 1.13875 1.41279*
2 1.31262** 1.08697 1.34618**
3 1.24009** 1.03099 1.26838**
4 1.20828* 0.96813 1.25765*
) - 0.89061 -
6 - 0.95500 -

Note: *p-nalue < 0.10; ** p-value < 0.05; **p-value < 0.01



Table 3.3

Discrete Time Zero Probability Limit Test for Bear Markets

Minimum phase  Full sample Pre WWII sample

Post,

WWII sample

1

o

3
4

Note: *p-value < 0.10; ** p-value < 0.05; ***p

2.3570™**

1.6268*
0.9480
0.2692

1.0614
0.8115
0.5616
0.3116

Table 3.4

1.5061
0.9358
0.3655
-0.2048

-value < 0.01

Discrete Time Zero Probability Limit Test for Bull Markets

Minimum phase  Full sample Pre WWII sample Post WWII sample

1
2

6

2.0545* -0.3364 2.1485™
1.7066* -0.4539 1.8591*
1.3587 -0.5714 1.5695
1.1080 -0.6889 1.2800
- -0.8065 -
- -0.9240* -
i\rT‘éAtezi V*zr)-'u'a,rlvvl;z < 5.1 0,** p-value < 0.05; ** p-value < 0.01
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Table 3.5

Discrete Time Method of Moment Test for Bear Markets

Minimum phase Full sample Pre WWII sample  Post WWII sample

1 2.6367** 1.1839 1.7850
2 1.9588* 0.9340 1.2147
3 0.2799 0.6841 0.6444
4 0.6011 0.4341 0.0742

Note: *p-value < 0.10; ** p-value < 0.05; p-value < 0.01
Table 3.6

Discrete Time Method of Moment Test for Bull Markets

Minimum phase Tull sample Pre WWII sample Post WWII sample

1 2.2265™ -0.2782 2.2917*
2 1.8786 -0.3957 2.0022*
3 1.5307 -0.5132 1.7127
4 1.1827 -0.6308 1.4231
5 - -0.7483* -
6 - -0.8658* -

Note: *p-value < 0.10; ** p-value < 0.05; **p-value < 0.01
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Table 3.7

Discrete Time Generalized Method of Moment Test for Bear Markets

Minimum phase Tull sample Pre WWII sample Post WWII sample

1 -5.2130™* -3.9682 -3.3563
2 -3.7562 -3.1216 -2.2387
3 -2.3938 -2.3250 -1.2001
4 -1.1395 -1.5786 -0.2405

Note: *p-value < 0.10; ** p-value < 0.05; **p-value < 0.01
Table 3.8

Discrete Time Generalized Method of Moment, test for Bull Markets

Minimum phase Full sample Pre WWII sample Post WWII sample

1 -3.9987* 0.2490 -4.2059"
2 -3.3243" 0.5121 -3.6251
3 22,6741 0.7637 -3.0602
4 22,0479 1.0036 22,5147
5 i 1.2320 -
6 ; 14487 ]

Note: *p-value < 0.10; ** p-value < 0.05; **p-value < 0.01



Table 3.9

Discrete Time SB Test for Bear Markets

Minimum phase Tull saniple Pre WWII sample Post WWII sample

1 0.00166** 0.00196 0.00127
2 0.00125 0.0017 0.00080
3 0.00070 0.00135 0.00019
4 0.00033 0.00178 0.00038

Note: "p-value < 0.10; ** p-value < 0.05; **p-value < 0.01
Table 3.10

Discrete Time SB Test for Bull Markets

Minimum phase Full sample Pre WWII sample Post WWII sample

1 0.00042* 0.00014 0.00050**
2 0.00037* 0.00023 -0.00045*
3 0.00031 0.00034 -0.00040
4 0.00027 0.00045 -0.00040
5 - 0.00059 -
6 - 0.00049 -

Note: *p-value < 0.10; ** p-value < 0.05; **p-value < 0.01
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Table 3.11

Goodness of Fit Test for Full Sample Bear Markets.

Tg =1 To=2
Interval E 0 Interval E 0
[0, 1] 7.27124 0 [0,1] 7.74815 0
2, 3] 6.37512 2 [2,3] 6.73062 8
[4.6] 8.12028 15 [4,6] 8.47553 12
[7,9] 6.66639 12 [7,9] 6.86204 10
[10, 13] 7.06996 5 [10,13] 7.16176 5
[14, 18] 6.58432 7 14, 18] 6.53378 7
(19, 25] 6.23953 11 [19, 25] 6.02575 11
> 25 10.67313 7 > 25 9.46235 6

X2 (6) = 25.89817 (0.00023) x2(6) = 16.94706  (0.00948)

To =3 To=4
Interval E 0 Interval E 0
[0, 1] 8.20188 2 [0,1] 8.91755 8
2, 3] 7.12654 8 23] 7.56971 9
[4, 5] 6.12497 10 [4, 5] 6.42559 7
[6, 8] 7.61195 10 [6.8] 7.86417 7
[9,11] 6.06504 4 [9,11] 6.15040 4
[12,15] 6.21431 5 12, 15] 6.16808 6
> 15 16.28423 20 [16, 21] 6.17657 10
- - > 21 0.72786 8

X2 (5) = 9.87037  (0.07899) X?(6) = 3.94110  (0.68465)




Table 3.12

Goodness of Tit Test for Full Sample Bull Markets

To=1 To =2
Interval E O Interval E 0
[0, 3] 7.73088 1 [0,2] 6.10191 1
[4,7) 6.71789 5 (3.6 7.16569 5
[8,12] 7.17336 6 [7,10] 6.19501 5
(13,17] 6.01835 12 [11,15] 6.57733 13
[18, 24] 6.83355 11 [16,21] 6.46506 9
[25.32] 6.00627 5 [22, 29] 6.69196 7
[33, 44] 6.36776 9 [30, 39] 6.04071 7
[45, 64) 6.13099 5 [40, 55] 6.07407 6
> 64 6.02083 5 > 55 7.68813 6
X2 (7) = 16.61533  (0.02005) 2 (7) = 12.95453  (0.07322)
To=3 To=4
Interval E 0 Interval E 0
[0,2] 6.31957 3 [0,2] 6.55323 4
3, 6] 7.38591 5 [3,6] 7.61972 6
[7,10] 6.35039 4 [7,10] 6.51269 5
[11,15] 6.70098 12 [11, 15] 6.82684 10
[16, 21] 6.53730 9 (16, 21] 6.60635 10
[22, 29] 6.70274 7 [22, 29] 6.70452 5
(30, 40] 6.45973 7 [30, 40] 6.37280 8
[41, 58] 6.18717 6 > 40 11.80367 11
> 58 6.35606 6 - -

X2 (7) = 8.58646  (0.28373) X2 (6) = 5.81223  (0.14455)




Table 3.13

Good‘noss of Fit Test for Post War Bear Markets

To =] To =2

Interval E 0 Interval E 0
[0,2] 7.97032 0 [0,2] 8.49333 1
[3.5] 6.49297 9 [3, 5] 6.81573 13
[6.9] 6.82499 15 [6.9] 7.04108 10

[10, 14] 6.28381 2 (10, 14] 6.33980 4

[15,22] 6.49716 9 [15.22] 6.35212 9
> 22 8.93075 8 > 22 7.95784 6

X2 (4) = 22.71191  (0.00015) X2 (4) = 22.71191  (0.00313)

To=3 To = 4

Interval E 0 Interval E )
[0,1] 6.29607 1 [0,1] 8.06341 7
[2, 4] 7.75859 13 [2,3] 6.55135 7
[5,7] G.11855 10 [4,6] 7.59734 10
[8,11] 6.19523 2 [7, 10] 7.06535 2

[12,17] 6.28811 5 11, 16] 6.36267 5
> 17 10.34338 12 > 16 7.35986 12

X2 (1) = 13.82817  (0.00786) X2 (4) = 777959 (0.10000)




Table 3.14

Goodness of Fit Test for Post War Bull Markets

To = To =2
Interval E 0 Interval E O
[0, 4] 6.48857 3 [0,4] 6.69003
(5,10] 6.50728 3 (5, 10] 6.66884 4
[11,17] 6.14111 10 [11,17] 6.24871 10
[18, 26] 6.08621 8 [18, 26] 6.13887 7
(27, 39] 6.15830 8 [27, 39] 6.13808 9
<39 11.61844 11 <39 11.11531 10
X2 (4) = 7.37627  (0.11729) X2 (4) = 6.92248  (0.14004)
ho =3 To =4
Interval E O Interval E O
[0, 4] 6.90436 4 [0, 4] 7.13284 4
[5,10] 6.83807 3 (5, 10] 7.01547 5
[11,17] 6.35844 11 [11,17] 6.47008 10
[18, 26] 6.18844 6 [18, 26] 6.23420 6
[27,39] 6.10940 9 [27, 39] 6.07120 8
> 39 10.60120 10 > 39 10.07608 10

X2 (4) = 8.17172  (0.08549) X% (4) == 4.50299  (0.34219)




Chapter 4

Modelling the Hazard Function in the Discrete

Time Framework

4.1 The Basic Discrete Time Hazard Model

As a complement to the duration dependence tests, it is useful to model the hazard
functions of bear and bull markets to get a visual confirmation on how the hazard
probabilitics hehave over time. Furthermore, modeling the hazard functions will also
enable us to determine how hazard probabilities are affected by exogenous variables.
Research on dwration modeling is performed using a continuous time [ramework
where time is assumed to be observed continuously - see Lawless (1982), Kalhfleisch
and Prentice (1980) and Lancaster (1990) for detailed outlines on such modeling
techniques. However, as noted previously, the continuous time assumption is not
valid for our application where time is measured is discrete intervals such as days,
weeks, months, etc. In this chapter, we will discuss conventional discrete time
techniques as outlined by Allison (1982) and Singer and Willet (2003).

Consider { = 1,2,3,... time periods and i = 1,2,...,n observed bull markets
beginning at ¢ — 1. Further, let #; be the time period when the 4* bull market
terminates. Tn addition, let 2; be a vector of k covariates that influence the duration
of the i Lull market. Now the hazard probability of the i bull market is the

conditional probability that it will not be observed at [+ 1 given that it has already



lasted £ periods. A set of these hazard probabilities as a function of time is defined

as the hazard function. Formally, it is written as
hit = P (T; = t|T; > ¢, 2;) (4.1)

such that the hazard function is a mapping of real values into the probability space.
The bLehavior of this map is of crucial importance.  For example, if the hazard
function increases with time, then the risk of a bull market terminating rises with
respect to lime suggesting positive duration dependence. T, on the other hand, the
hazard function is flat with respect to time then there is evidence for zero duration
dependence. Lastly, there is evidence for negative duration dependence if the hazard
function is a decreasing function of time, which in furn suggests that longer bull
markets are at lower risks of termination.

At first glance, one may be tempted to use a linear probability model to model
the hazard function. Unflortunately, s is not bounded in the linear probability
model. Using the linear probability model will lead to logically impossible results
such as hy > 1 and hy < 0. However, this is not to say that a linear setup
should be abandoned. Rather, we need to transform hi such that a linear model of
the transformed hy will lead to plausible results. One such transform is the logit
transform - see Cox (1972), Brown (1975) and Thompson ( 1977)1. Mathematically,

the logit transform is written as

hi
logith; = In <—)—t——) (1.2)

— hi

1Cox (1972) used the logit link in the continuous time context. Brown (1975) and Thompson
(1977) used the logit link for discrete time modeling.  Nevertheless, the discrete time model
converges to its continuous conterpart for sufficiently small time intervals {(Thompsou. 1977).
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where Iﬁﬁ is the odds ratio. To model logith;; as a [unction of time and covariates,
H

we investigate the logit model
logithi, = v, + 712 (4.3)

from which we can obtain the hazard function using the logit link

1
1+ exp (-—'7(” — "7’1.‘1}7()

(logithi) = hy = (4.4)

‘The advantage of using the logit link is that it results in plausible hazard probabilities
even when logith; is not bounded. For extremely negative logithy values, equation
(4.4) still leads to positive probabilities because limyogie-smoo Pz = 0. On the other
hand, extremely large values of logith;, will lead to hazard probabilities that are very
close to one hecause limyggigino Piz = 1.

The model specified by equation (4.3) can be broken down into two components,
First, v, is a sequence of parameters that defines the haseline logit hazard function.
In fact, each 7, , represents the logit hazard at each time period ¢. For example, Yo.1
is the logit hazard at period 1, Yo,2 1s that logit hazard at period 2 and so forth. Note
that 7y, can take on any real values such that the functional form of the baseline
logit hazard function is not explicitly defined under this specification. The purpose
of this setup is (o add flexibility to the model by allowing the data to "speak for
itself” such that the true shape of the hazard function can be revealed.

'To better illustrate this, we adopt the expanded form of the model that is de-
scribed in Singer and Willet (2003) where the subscript i is dropped for simplicity.
Let D, be the time indicator dummy variable that takes on unity in.the time period

it represents and zero elsewhere. Further, let £ range from one to J such that we



can write the expanded hazard as
logithy = [y, D1 + Yo2D2 + -+ 70, D0 + Vi (4.5)

where the terms in [] define the baseline group. We ignore the effects of the co-
variates 2 (i.e. 2 = 0) such that each Yo, acts as mmltiple intercepts for each time
period. Tor example, only D) is unity in period 1 such that logithy = 7,4, only D,
Is unity in period 2 such that logith, = Yo,2» and so forth. Clearly, the sequence
{701 Y02 Yo7} » When taken together, represents the values of flexible haseline
logit function at each period. Tt is also possible to extract the direction of duration
dependence from the sequence of ,’s. In particular, there is evidence for definite
negative duration dependence when v4, > 75, > ... > Yo,4- On the other hand, pos-
itive duration dependence is evident when Yo, < Yoz < - <Y,y is observed. More
importantly the logit hazard need not be well behaved. TFor example, the hazard
function may be U-shaped il Yo > Vo2 = > Yom-1 < Vogn < Yot < o < Vo
Finally, there is zero duration dependence if Yo, = Yo2 = - = Yo. Lo be com-
plete, the hazard function in terms of probabilities may be obtained by calculating
1/ (14 exp (""/().,L)) for each period.

"The second component of equation (4.3), 7}, defines the impact of the covariates
on the logit hazard function. Let there be one dummy covariate, z;, such that we
can write

logithe == [0, Dy + Y052 + o + %0, 2] + 1121 (1.6)
Using this specification, the covariate effect is the same across all time periods such
that the covariate’s effect is proportional. In particular, the logit hazard. when

= L s g, + 7, in period 1, 74, +4; in period 2, Yo, + 771 in period 3 and so
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forth. Now, the sign of 7, is of crucial importance. Specifically, the logit hazard
is lowered when 7, is negative suggesting that the probabilities of termination of a
bull market are lowered as a result of the presence of x; for every point in time.
Conversely, the hazard probabilities are raised for every point in time when v, is
positive.  However, the effect of 2, need not be restricted to the proportionality
assumption but may vary over time. To accommodate this we can rewrite equation
(4.3) as |

logithay = 7,4 + 7y (4.7)

so that the simplified expanded model hecomes

logith, = [1o,1 D1 + Y020z + .. + 7, sDu] + [y1020D1 + v 971 Dy + .+ Y1,0%1D,]
(4.8)

Under the new specification in equation (4.8), each of the 71.c vepresents the impact
of 2y in each period 4. As such the logit hazard, with the presence of z1, is yq; +71
in period 1, Yy, + 7,5 in period 2, Yo,3 + V1,3 in period 3 and so forth. Like the
Yo,t'S» the sequence of 7, ,’s may take on any real values. In particular, the effect of
the covariate decreases over time when we observe Y11 > Y12 > - > 1. Likewise,
the covariate’s effect may he increasing over time when Y1 < Yo <o <7y I
Y11 = T12 = - = 7y,s then the proportionality assumption on =, is valid. Basically,
the flexible assumption allows us to capture the erratic hehavior of the Y1e's that
would never be captured if the proportionality assumption is used right off the hack.
The estimation of equation (4.4) utilizes the maximum likelihood method where

we seek a set of model parameters that maximizes the model’s likelihood of observing

the data. Assuming that the standard maximum likelihood assumptions hold (see
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Arjas and Haara, 1987), the corresponding likelihood [unction for the problem is

given hy
L= P(Ti =t P(T, > ;)" (+.9)
where
t=1
P(Ti=t)=hy [ (1 = hyy) (4.10)
Fa=l
4
P(T; > 1) Hu — hit) (4.11)

and 7; is a binary variable that is lmlty if the i bull market terminates at ¢
and zero otherwise.  We call the variable y; the failure indicator. TFor example,

a vector of duration data. [ 2 3 9 } in terms of a vector of failure indicators is

0100101]-

The mathematics hehind equation (4.9) is quite messy. However, we can make
the mathematics more tractable by using the loglikelihood function. The corre-

sponding loglikelihood function is

LL = ZJ,]D( __ht>+ZZln(1—h,t (4.12)

i==] j==1

which is obtained by substituting equations (4.10) and (4.11) into the natural log
of equation (4.9). Since the hazard probability may be expressed as a function of
parameters as in equation (4.4), we can obtain estimates for the model parameters
by maximizing equation (4.12) with respect to p, and 7|, . This operation can
be performed by the numerical procedures preprogrammed in standard statistical
software that are capable of logit: regressions.

However, it is worth mentioning that the basic discrete time duration model is

not flawless.  For data sets with large number of intervals, the number of param-
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eters in the model for modeling the time effects alone becomes very large. This
becomes problematic because it may lead to maximum likelihood estimates? that do
not converge.  Also, data can often be sparse at large #'s because extreme events
are usually rare such that maximum likelihood estimates may not exist for those
Jtime periods. Several authors such as Mantel & Hankey (1978), Efron (1988) and
Yamaguchi (1993) have suggested the use of piecewise polynomials to overcome these
hurdles. However, we do not advise on their approach because it may overlook the
abrupt changes in the true underlying hazard function. Rather, a more sophisti-
cated nonparametric approach is required. We will discuss such an approach in the

next section.

4.2  The Dynamic Discrete Time Hazard Model

We concluded the previous section by stating some obvious problems of the basic
discrete time duration model and that a new approach is required for modeling
discrete time duration data. Here, we introdice a dynamic discrete time duration
model (dynamic model for short) that applies state space techniques to duration
data - see Fahrmeir (1994) and Fahrmeir and Wagenpfeil (1996). This approach
is preferred for two reasons. Tirst, unlike the Mantel and Hankey (1978), Efron
(1988) and Yamaguchi (1993) type models, the dynamic model is nonparametric in
the sense that there is no predefined functional form for the hazard function. This
flexibility allows us to capture important abrupt changes in the hazard function.

Second, the dynamic model allows estimation and smoothing of the hazard function

®The problem hecomes worse if we are to model the time effects as well as the time varying
effects of covariates,



and covariate effects simultaneously, which can be done through semi-Bayesian or
fully Bayesian methods. This characteristic allows us to overcome the maximum
estimation problem as a result of over parameterization in the basic model.

To setup the dynamic model, let 7y, with i and ¢ 2> 1, be risk indicators defined

by

1 if the i run is at risk of termination at 1

Vip =
0 otherwise

such that the vector r, = (ry,i > 1) is the risk vector and the risk set R, contains
all runs that are at risk of termination at ¢. Furthermore, let 2, and 3, be vectors
of all z; and y; that belong to the risk set respectively. Formally, we can write
2y = (i i € R)) and y; = (yg, i € R:). The histories of covariates, failure and risk
indicators up to time period # are simply given by 2y = (T, e, T, YE = (Y1s o Y1)
and 17 = (ry, ..., 7).

The dynamic nature of the model comes from the fact that the conditional prob-
ability of failure is based on historical information. Namely, we seek to model
P (yalyp.., =507, Yo.00 V1 Q) where @ is the covariance matrix of the transition equa-
tion. In relation to state space nomenclature, we define equation (4.4) as the mea-
surement equation of the system3. To make the notation more compact, we can

rewrite the measurement equation as
/
hie = F (zyv,) (4.13)

where I is the logit link function, 2, is the design matrix and v, is the state vector

that contains the baseline parameter Yo.e» &8 well as the time varying effects of co-

%The measurement equation relates observation to the underlying state of the system - see
Chatfield (2004) for further details regarding state space terminologies.
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variabes 7y, .. Now, to model the stochastic variation of the baseline group and time
varying effects of the covariate, we need to make assumptions on how the parameters
evolve through time. The simplest assumption is that the dynamics of the state
vector [ollows a first order random walk process such that the transition equation
may be writlen as

gy = Doy + €, (4.14)

where @ is an identity matrix and ¢, is white noise that is normally distributed with
mean ( and variance Q.
To illustrate this setup, consider the case where there is only one covariate ;.

Thus, the design matrix is simply 2/, = [ 1 2w ] and the state vector is just

v, = [ Yor s J The first order random walk transition model for this case in

its expanded form can simply he expressed as

| .,
Yo 10 Yo.4-1 + So,t (4.15)
Tt 01 Vit-1 €1

with £y, and £, , assumed to be white noise. Tt is also assumed that oy ~ N (0,03)
and &;, ~ N (0,0%). TIn case we want to impose the proportionality assumption,
we can pin down the time varying effect of 2, by forcing o? to zero. However, the
proportionality assumption will not be considered in this thesis.

Before describing an estimation procedure, it is necessary to specify some as-
sumptions concerning conditional independence so that we can specify the model
in terms of joint densities. TFirst, given z; and 7Y, the current individual failure

indicators y;; do not depend on ¥}, and Q such that

P (yalyin 27 10 Yoo V0 @) = P (vl 1250771 Q) = P (yaly )
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This suggests that the conditional information of 7; on y; is already reflected in v,
alone. Second, given y} ;, 2}, »f and Q, the failure individual indicators Yir that
belong to the risk set R; are conditionally independent such that

P (ytly:—lvxt*ﬂ,:)/)/:’ Q) = H P (?/itly:—-l"’l"?ﬂ':;n/b)
i€Ry

or

hy = H P

1ER;
This assumption is just a weaker form of Assumption 2 found in Arjas and Haara

(1987), which is unconditional in nature and is likely to.hold if a common cause
of failure is included in the covariate process Thirdly, we assume that the model

parameters follow a Markov process such that

P (’Ytlf)’:—h y:—l) '7"2" 7':’ Q) =P (7tl7t—1)

Forth, conditional on ¢} ,, 2} ;and 7}, the covariates z; and risk indicators ¢
do not depend on 7f_; and Q. This assumption is identical to Assumption 1 in
Arjas and Haara (1987) and is likely to hold for external covariates as well as time
independent covariates. Finally, it is assumed that the white noise sequence &, is
independent of the initial states of 7y, ...,7,, z; and 7. Together, the assumptions

imply that
P (?Jtlyf—h-”?ﬂ‘f,’ﬁ,Q) = H P (yiel i, 7,) (4.16)

icR,
In order to estimate the model parameters, namely v,, let the go, Qo and Q be

known and fixed for the moment. A full Bayesian estimation for 7, would require
the computation of the posterior density P (v|y?*, 2,17%), which is not observed. For

low dimensional problems, traditional Monte Carlo techniques will suffice. However,
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for high dimensional problems, the Monte Carlo method becomes infeasible and the
Markov Chain Monte Carlo (MCMC) scheme is required. The MCMC will be
examined in further detail in the next chapter.

Prior to the development of the MCMC, Fahrmeir (1992), Fahrmeir and Wa-
genpfeil (1996) and Timmermann and Lunde (2004) use a semi-Bayesian approach
to estimate the model by focusing on the posterior mode of the parameters rather
than the posterior density?. In order to apply this, one must repeatedly apply Bayes’
theorem to the posterior density to get

J J
P (yly 2 vy o TT T P waedwae,ve) x T] P (iless—s) P () (4.17)
t=1icR, t=1
Given this proportionality, maximizing the posterior density is analogous to maxi-
mizing the right hand side of equation (4.17).

Taking the natural log of the right hand side of equation (4.17) and applying

the measurement and transition equations results in the penalized log-likelihood

function, we can obtain

J
PL(y) = ZZ lie (V) —= (')’0 — 90)’ Q5" (70 — %) %Z it O 1 Q™ ('Yt _’Yt—l)
e = (4.18)
where
lie (7e) = Y In I (77,) + (1 = i) In (1= F (247,) (4.19)

is the individual log-likelihood contribution. The maximum likelihood solution for

equation (4.17) is simply the conditions at which the posterior density is maximized.

/
A\r; s =t = (A o Ay I .3 H
With a = oy = (o, o, ..., a;)’, the posterior mode estimate is just a = (am, ”'1| 7 ....a,, ,) .

which is identical to arg max, {p (ayF,2%.25)} or the maximum likelihood for the posterior density.
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However, one can move away from the Bayesian context by focusing directly on
the penalized log-likelihood function. The first term of equation (4.18 ) accounts for
the goodness of fit between the state vector and the data. In general, the higher its
value, the better the fit. But, as always, goodness of fit may come with a penalty.
For example, there may be a set of candidate state vectors, say {%,}, that fits the
data very well but the deviation between successive state vectors are too large. In
such an event, the resulting estimates of state vectors may be too jagged and erratic
such that useful statistical inference cannot be obtained. In order to prevent this,
the last two terms of equation (4.18) penalize large deviations such that {7} will
lead to a low penalized log-likelihood value. In other words, the goal of the penalized
log-likelihood is to find an optimal balance between goodness of fit and smoothness
such that the value of equation (4.18) is maximized.

A numerical solution for equation (4.18) requires sophisticated algorithms. Tor
instance, Fahrmeir (1992), Fahrmeir and Wagenpfeil (1996) and Timmermann and
Lunde (2004) use an iteratively weighted Kalman filter and smoother. This method
is hased on the recursi% fisher scoring scheme (Fahrmeir and Kaufmann, 1991).
Althought, in practice, the hyperparameters 90, Qo and @ need not be known. In
fact, the unknown hyperparameters may be estimated via a EM-type scheme by
setting initial conditions on gy, Qy and Q (Fahrmeir and Goss, 1992). However,
they are treated as being deterministic in this semi-Bayesian framework. Allowing
the hyperparameters to be stochastic will bring the problem from a semi-Bayesian
setting to a fully Bayesian setting where the MCMC is required. Finally, the prior
specification in equation (4.18) need not be a first order random walk as it is possible

to impose any AR(p) process (Fahrmeir and Lang, 2001) while random walk models



with a local trend may also be used.

4.3 Markov Chain Monte Carlo

Estimation of the dynamic model via posterior mode is merely a semi-Bayesian
approach. For a method to qualify as a fully Bayesian approach, it must be able to
estimate at least the first and second moments of the posterior density such that the
hyperparameters are considered to be stochastic random variables. As mentioned
in the previous chapter, fully Bayesian inference requires the ﬁse of the MCMC
scheme. The purpose of this chapter is to provide a brief discussion concerning the
MCMC and its application to the dynamic model as outlined by Fahrmeir and Knorr-
Held (1997), Fahrmeir and Tutz (2001) and Tsay (2002). For in depth discussions
on MCMC and related topics, we advise the reader to consult Casella and George
(1992), Chib and Greenberg (1995) and Gilks, Richardson and Spiegelhalter (1996).

Bayesian inference utilizes Bayes’ rule to obtain a solution for the moments of the
posterior distribution of interest. To illustrate this, let  be an arbitrary vector of
parameters that belongs t.'o the space ©. According to Bayes’ theorem, given data

D, the posterior distribution P (9|D) assumes the proportionality

P (D|0) P ()
TP (DI§) P (0)do

P(4|D) = o P (D|9) f (0) (4.20)

with P (D|0) being the likelihood of observing D given 0. Given this, the first

moment of the posterior distribution is

_ [0P(DI6)P(8)do | |
EOD) = "5 om0 B o) o (4.21)
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such that its solution requires numerical integration®. As stated previously, if € is of
high dimensions (i.e. above 20), the integrals become complex such that conventional
methods such as the Monte Carlo is infeasible.

An alternative to the Monte Carlo is the MCMC. The general idea of the MCMC
is to simulate a Markov chain on © that eventually converges to P (8|D) upon a.
sufficient number of repetitions. The nature of P (0| D) is extremely complicated in
high dimensions but we can make computation more tractable by examining its full
conditional counterparts by subdividing @ into components.

For illustrative purposes, let 6 be a three component vector such that § =

[ 6, 0, 04 } The full conditionals for this case are
Pl (OII()Q’ ()3’ D) B P2 (02l017 03, D) 3 133 (()3I017 02) D) (422)

Using the Gibbs sampler (Geman and Geman, 1984), we make updates on each of
the full conditionals by repeatedly sampling the sub vectors from their corresponding
full conditionals. First, we choose some initial values (050), 9&0), 9:(,,0) ) and draw the
first set of subvectors (99), Ogl), 0;(31)). Next, using (95”,0&1), 0%1) ) we draw another

set of subvectors (0&2), 0&2), 0&2)). By repeating this process & times, a sequence
(00,080,080 , (62,02, 02) ... (o, 67,0

is obtained. By setting & to a sufficiently large number, the Markov chain theory
predicts that (0(1/°) ,()gk), ;(;k)) will eventually converge in distribution to (61, 04,03).

Of course, the example can be expanded to an n-dimensional 9 such that we sample

5The second moment is built on the first moment via a moment generating function. Thus,
a numerical solution for the second moment of the posterior distribution also requires niimerical
integration. The same is true for higher moments of the posterior distribution.



58

from <()§k), 0£’°), ceny 05{")). It should be noted that the Gibbs sampler is implemented
only when the full conditionals are a well defined. In reality, it is often the case that
there are no closed form solutions for the full conditionals such that other algorithms
are needed.

A popular alternative to the Gibbs Sampler is the Metropolis-Hasting (MH)
algorithm. The difference between the MH algorithm and the Gibbs Sampler is that
not all proposed update (()ik),@gk), ...,0,(1"')) from the MH algorithms are accepted.
Instead, the update is accepted if the acceptance probability of it lies in a particular
range, say 30% to 100%°.

To demonstrate this formally, consider the full conditional of the component
vector 0,.  On the E** updating step, a proposal 8] is proposed by the transition

kernel” P (0] — 0,;04,05). Now, the acceptance probability, d;, is just

(4.23)

/ ; '
8y = min {1 P (6,10205) P (6} — 91,9293)}

" P (01]6203) P (6, — 61; 0203)
If §; lies in range (i.e. the second argument is between 30% to 100%), then the
proposed update will be accepted. Otherwise, another proposal must be generated
until ¢; is within the proper acceptance probability range. Finally, it is easy to see
that the Gibbs Sampler is just a special case of the MH algorithm. 1In fact, the

Gibbs Sampler specifies
F (00 — 01;0:05) = f (07105, 05)

such that equation (4.23) collapses to unity suggesting that all proposals are ac-

%This range is dependent on the programming of the software. The BayesX software Las an
average acceptance probability between 30% and 70%.
"The transition kernel is actually defined by the transition model.



cepted.

In the context of the dynamic duration model with first order random walk
transition, the parameter vector § consists of v and Q. Since the hyperparameters
are now considered to be stochastic, the posterior distribution in ecuation (4.17)

must be rewritten as

J

J
P (lysoyr) o [T T P idoies 1) x [T P (s @ P@) (424)

b==1 1€R; t=1

where
J

ITIT P walwie ) (4.25)

t=1 i€ Ry

is equivalent to P (D|0) and

J
H P (velvs-1» Q) P (Q) (4.26)
te=1

is the prior distribution for the unknown parameters. With the posterior distribu-
tion redefined, the full conditional for the time varying parameters 7 results in the
proportionality
P (Vlspr Q05255 €5) & [ P adwie, 1) X P (Yel Yoz Q) (4.27)
i€R,
where [[;c o P (yils,7,) is defined by the measurement equation and P (fytlfys#, Q)
defined hy the transition equation. In accordance with the first order random walk

transition model, P (7,|y4z Q) is identical to NV (1, 2¢) where
N (141,Q) (t=1)

A'r (/Lta 2t) = JV (‘é")’t,_l + %’)’H_l, %‘Q) (f/ = 2, ceey J - 1) (4-28)
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In light of Knorr-Held (1996), v, is updated by drawing on the conditional dig-
tribution P (cyo e, Q) via the MH algorithm. The acceptance probability in this
case is just

P (ye] o)

0o =minq 1, ———£ 4.29
min { P(?Jtl%)} (4.29)

where P (y|v,) is given by [T;cp, P (Wit|ie,v,). Again, the 0, must be greater than
30% for the proposed -, to be accepted as an update.
Now, recalling that @ is not defined in the measurement equation, it is necessary

to make some assumptions on Q. The full conditional for Q is simply

P Q1,95 25, ¢5) ~ P (Qly) (4.30)

such that the updating of @ is relatively simple if Q is distributed according to
an inverse gamma prior /G (a,b). Specifically, when Q is distributed according to
IG (a,b), we have “

Qo Q" lexp (—%) (4.31)
However, there is still no consensus concerning the hyperparameterization for the
above hut many researchers find that small values for a and b work well. Since the
results from the MCMC may be sensitive to the selection of the hyperparameters, it
is necessary to try out various combinations of them to see whether the results are
significantly different across the different sets of hyperparameters.

Finally, it is important to ensure good mixing properties and convergence in the
simulation of the Markov chain. The convergence component is ensured by the
BayesX software because the program will not stop resampling until convergence
is evident. Normally, however, this property is checked by examining the time

series plots of the parameters. Mixing properties can be examined by checking
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the autocorrelation functions of the parameters. Specifically, low values of the
autocorrelation function indicate good mixing properties. It must be noted that
each of the parameters must be checked. For a case where we are only studying
the time effect, it is necessary to check all J autocorrelation functions (one for each
time parameter). Once these two characteristics are ensured, the sinntlation results
for v and Q is equivalent to the marginal distributions P (v]z, v, c¢) and P (Q|x, y,¢).
These marginal distribution are used to estimate the posterior distribution from

which the hazard function and covariate effects are calculated.

4.4 Empirical Results: Hazard Functions of Bull and Bear

Markets

4.4.1 DModeling the Time Effect

To complement the findings from the duration dependence tests, we seek to model the
underlying hazard functions of the bear and bull markets using the dynamic model
with first order random walk transition. In particular, if there is positive (negative)
duration dependence, then we will observe generally upward (downward) sloping
hazard functions. Otherwise, if the processes of interest are duration independent,
then the hazard functions will appear relatively flat. Specifically, we are investigating
the hazard specification

hig = I (7o,) (4.32)

where I7 (-) is the logit link function and Yo: are the time parameters.
Using the BayesX software, we estimate and plot the hazard functions with their

*1 standard error bands on the logit scale for bear and bull markets for all the
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samples using the MCMC technique. Since the results may be dependent on the
choice of hyperparameters, we select three sets of hyperparameters - a = 0.001
b=10.001, a =1 b= 0.005 and ¢ = 0.0001 b = 0.0001. Then, we apply them to each
data set in order to see whether the results differ across hyperparameters. To check
for mixing properties, we also plot the autocorrelation functions for the results.

However, it must be noted that checking all autocorrelation functions for each
data set: can be a daunting task! For example, if the number of estimated parameters
for one data set is 40, then it will be necessary to examine all 40 autocorrelation
functions. To avoid confusion, the mean autocorrelation function and the maximum®
antocorrelation function are examined instead. Finally, the figures are arranged in
sets for three unless stated otherwise. For example, Figures 4.1 through 4.3 plot the
results for the pre WWII bull market data set while Figures 4.4 through 4.6 plot the
results for the post WWII bull market data set. In particular, the first of the three
figures depicts results for a = 0.001 b = 0.001, the second depicts results for @ = 1
b=0.005 and the third depicts results for o = 0.0001 b = 0.0001.

Figures 4.1 through 4.3 plot the results for pre WWII bull markets. From panel
a of the figures, it is quite clear that the general shape of the hazard functions are not
sensitive to the choice of hyperparameters. On the other hand, the mixing properties
are quite sensitive to the choice of hyperparameters as indicated by Panel b of the
figures. For example, Figure 4.3 has mean and maximum autocorrelation functions

that are higher in value than Figures 4.1 and 4.2 suggesting inferior mixing properties.

8The mean autocorrelation function is the average of all the autocorrelation functions. The
purpose for this is to get an idea of what the average mixing property is like. The maximum
autocorrelation function is the one that has the largest values. The purpose for it is to get an idea
of what the worst mixing property looks like.
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Alternatively, Figure 4.2 is inferior to Figure 4.1 such that the hyperparameter set
@ =10 ==0.005 has superior mixing properties.

Figures 4.4 through 4.6 plot the results for post WWII bull markets. Again, the
general shape of the hazard functions are not too different across the different sets
of hyperparameters but the mixing properties behave otherwise. For this sample,
it is clear that Figure 4.4 is superior over Figures 4.5 and 4.6. In particular, the
maximum autocorrelation function in Figure 4.5 is very unsatisfactory as the function
seem quite persistent. In sum, the optimal hyperparameter set for post WWII hull
markets is a = 0.001 b = 0.001.

Figures 4.7 through 4.9 plot the results for full sample bull markets. Once again,
the general shape of the hazard functions themselves are insensitive to the choice of
hyperparameters while mixing properties remain sensitive. In particular, Figures
4.7 and 4.9 are inferior to Figure 4.8 as their maximum autocorrelation functions are
slow in their decay. As such the optimal hyperparameter set for this case is @ = 1
b= 0.005.

Figures 4.10 through 4.12 plot the results for pre WWII bear markets. The
general shape of the hazard functions are more or less the same across the different
sets of hyperparameters. As for mixing properties, it can be seen that Figure 4.11
is superior to Figures 4.10 and 4.12. In particular, Figure 4.12 displays the worst
mixing since the mean as well as the maximum autocorrelation functions are very
slow in their decay. In sum, the hyperparameter set @ = 1 b = 0.005 has superior
mixing properties.

Figures 4.13 through 4.15 portrait the results for post WWII bear markets.

Again, the general shape of the hazard functions across the different hyperparam-
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eter sets while the mixing properties seem different. Judging by the maximum
autocorrelation functions alone, it is difficult to draw conclusions on the optimal
hyperparameter set since all maximum autocorrelation functions are slow in their
decay. As such, the decision rests on the mean autocorrelation functions. Specifi-
cally, as indicated by the figures, the optimal hyperparameter set is ¢ = 1 b = 0.005
because it produces the mean autocorrelation function with the lowest values.

Figures 4.16 trough 4.18 plot the results for full sample bear markets. Once
again, the general shape of the hazard functions and the maximum autocorrelation
functions are quite similar across the different hyperparameter sets. Thus, the
decision rests on the mean autocorrelation functions. From Panel b of the figures,
it is evident that the optimal hyperparameter set is @ = 1 b = 0.005 because it
produces the mean autocorrelation function with the lowest values.

To complement the duration dependence test results and to make the results more
interpretable, we compare the bull and bear hazard functions across the different
samples on the probability scale. Figure 4.19 plots the mean bull market hazard
functions for the pre WWII, post WWII and full samples on the probability scale
using optimal hyperparameters. Notice that positive duration dependence for the
post WWII sample is evident as its hazard function is almost always increasing. In
particular, the chance for bull market termination starts at about 36% in week 1
and eventually rises to about 58% by week 104. This finding is somewhat consistent
with the duration dependence test.

Although not obvious, the full sample bull hazard function also exhibit positive
duration dependence. In particular, the function starts at a hazard probability of

47% in week 1 and then rises to a probability to about 50% in week 20. After that,
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the hazard probability slowly decreases to 47% by week 53 and then rises to an all
time high probability of about 52% by week 104. In general, the full sample bull
hazard [unction is an increasing function, which is consistent with some of the test
results. The pre WWII bull hazard function, on the other hand, does not seem like
an increasing function. Starting at a hazard probability of about 50% at week 1,
the function vises to about 55% at week 25 and then falls to a hazard probability of
about 45% by week 70 or so. Beyond week 70, the hazard function returns to the
probability of about 50% at the terminal. Since the function fails to reach a high (or
a low) at its terminal, we argue that it fails to exhibit positive duration dependence
as suggested by weak evidence from the statistical tests.

Figure 4.20 plots the bear market hazard functions for the pre WWII, post WWII
and full samples on the probability scale. The post WWII and full sample bear
hazard functions behave erratically with time. However, both of them manage
to attain all time highs at the functions’ terminus. As such, we argue that both
functions exhibit positive duration dependence, which is consistent with some of the
statistical tests. On the other hand, the pre WWII bear hazard function consistently
increases with time. For example, starting at a hazard probability of about 44%
in week 1, the hazard probability rises steadily to about 55% by week 41. Thus,
the pre WWIT bear hazard function suggests positive duration dependence, which is
different from the statistical tests. We argue that the discrepancy is a result of poor

sample size of pre WWII bear markets.
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4.4.2 The Impact of the Business Cycle on Bull and Bear Markets Haz-
ards

‘There is very little theoretical guidance to the choice of covariate variables for model-
ing bear and bull markets hazard functions. However, it is commonly believed that
stock price movements are sensitive to the underlying economic environment. For
instance, Chen el al. (1986) find a positive relationship between industrial produc-
tion and stock market returns. Furthermore, some empirical studies have identified
switching behavior in the conditional means and higher moments of stock returns
as a result of changes in the underlying economic state - see Schwert (1989), Turner
et al. (1989) and Schaller and Van Norden (1997). Further, McQueen and Ro-
ley (1993) have identifiedt asymmetric responses of stock returns to macroeconomic
innovations. n particular, Perex-Quiros and Timmermann (1998) and DeStefano
(2004) have found asymumetric switching about business cycle turning points. In
particular, stock returns tend to he positive in the first half of an economic hoom
and then diminishes to zero (or near zero) in the second half of the boom. On the
other hand, stock returns become negative in the first half of an economic recession
and then slowly move back to the zero (or near zero) range in the second half of the
recession.

In this section, we wish to revisit such switching properties around business cycle
turning points by using duration analysis. In particular, if there is switching behavior
in stock prices about business cycle turning points, then the logit hazard of bull
and bear markets must also be responsive to changes in the underlying economic

condition.
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To account for the underlying economic state, we use the business cycle dates
that are published by the National Bureau of Economic Research (NBER). It should
be noted that the definition of business cycles in the NBER is different than that of
conventional economics textbooks. In particular, the NBER definition of & recession
is defined as a significant decrease in economic activity (i.e. real GDP, employment,
real income, industrial production and wholesale-retail sales) over a period of more
than a few months. An opposite definition holds for a economic boom according to
the NBER. Unfortunately, the latest NBER business cycle date is November 2001.
As such, we can only use a sample starting from January 1928 to November 2001
rather than the full sample.

Using the business cycle dates, we generate two dummy variables ezpansion and
contraclion as covariates. The variable ezpansion assumes the value of unity when
the economy is in an economic boom and zero otherwise. Similarly, the variable con-
traction is equal to one when the economy is enduring a recession and zero otherwise.
Since the economy can change its state during the course of a bear or bull market,
the variables ezpansion and contraction are actually time varying covariates.

What we are interested in is how the hazard probabilities of bear and bull market
respond to changes to the underlying economic environment. In particular, the
question of interest is how the hazard functions of bear and bull markets change as
a result of the economy changing from an expansjon to a recession and vice versa.

The dynamic duration models of interest are

hie = F (7o, + 7y €2pansion) (4.33)
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and

hie = F (Yot + Y1.contraction) (4.34)
The baseline hazard functions for each of the models are defined by the sequence
{Yo:} that corresponds to each of the models.

These baseline functions must be interpreted with care. Consider, for example,
the model defined by equation (4.33). Further, suppose the event of interest is
bull markets. When expansion is equal to zero, the baseline hazard function for
the bull market is given by the sequence {Ya:} defined by equation (4.33). Since
the economy can either be in a boom or a recession (and nothing else), this baseline
hazard function is actnally the hazard function for a bull market where the underlying
economic state is a recession. When the economy switches from a recession to
an expansion, however, the hazard function begins to deviate from the baseline
according to the sequence of {,,}. That is, the sequence {7,,} captures the dynamic
effects of changing from an economic recession to an expansion on the baseline bull
market hazard function. Similarly, the baseline hazard function for equation (4.34)
is actually the hazard function for a bull market during an economic hoom. When
the economy changes from a boom to a recession, the variable contraction assumes
the value of unity. Given this change, the sequence {7} captures the impact of
the economy changing from a contraction state to a boom state on the baseline bull
market hazard function. In sum, the baseline Functions defined by each model have
different meanings.

It should be noted that results from our models are not directly comparable
to previous studies that used time series technicues although some analogies do

exist.  Perex-Quiros and Timmermann (1998) and DeStefano (2004), as a whole,



69

find switching behavior in stock returns around business cycle turning points. In
particular, they find that stock returns tend change from positive to negative around
the transition point at which the economy changes from hoom to recession. On
the other hand, stock returns tend to change from negative to positive around the
transition point at which the economy changes from recession to boom. Our models,
-however, is not capable of directly predicting this. What our models are capable of
predicting is how a change in the state of the economy impact the baseline hazard
of a run of negative or positive returns (i.e. bear or bull markets).

Analogous to the time series studies, the switching behaviors are similar to
changes in the hazard function of the bull and bear as a result of changes in the
economic environment. Tor example, if stock returns tend to switch from nega-
tive to positive around business cycle troughs, then it must be true that bull (bear)
markets become less (more) likely to terminate when the economy changes from con-
traction to expansion. Similarly, if stock returns tend to switch from positive to
negative around business cycle troughs, then it must be true that bull (bear) mar-
kets become more (less) likely to terminate when the economy changes from boom
to recession.

As in the previous section, we wish to conduct some sensitivity analysis con-
cerning the choice of hyperparameters as a well as checks for proper mixing. The
difference here is that it is necessary to examine the main time effect (i.e. the hazard
function alone) as well as the covariate effect. Again, the figures are grouped in sets
of threes such that the first of the three depicts results for @ = 0.001 b = 0.001, the
second depicts results for @ = 1 b = 0.005 and the third depicts results for a = 0.0001

b =10.0001. Also, each figure is divided into four panels: Panel a depicts the hazard
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function, Panel b depicts the mean and maximum autocorrelation functions for the
time parameters, Panel ¢ depicts the time varying effects of the covariate and Panel
d depicts the mean and maximum autocorrelation functions for the covariate effects.
Figures 4.21 through 4.23 plot the results according to equation (4.33) for bull
markets using the three hyperparameter sets. Judging from the positive slopi‘ng
baseline hazard functions, it seems that bull markets under economic contractions
exhibit positive duration dependence. In other words, older bull markets are more
likely to terminale than younger ones. In addition, it is also true that the general
shapes of the baseline hazard functions are insensitive to the choice of hyperparam-
eters; the same can be said concerning the time varying effect of ezpansion. On the
other hand, the mixing properties are somewhat sensitive to the choice of a and b.
Next, consider the autocorrelation functions for the time parameters depicted in the
figures. The mean autocorrelation functions look very similar but the maximum
autocorrelation function in Figure 4.22 is superior in comparison to the other two
figures. Further, the mean and maximum autocorrelation functions for the covari-
ate effects in ['igure 4.22 are also superior. Thus, we conclude that the optimal
hyperparameter set for this case is ¢ = 1 b = 0.005. With this in mind, we turn
to Panel ¢ of Figure 4.22 and examine the time varying effects of eapansion more
closely. Judging by the mean effects of ezpansion, it is clear that the change from
an economic contraction to economic expansion has negative effects on the hase-
line hazard. Tn other words, such a change in the economic environment tends to
promote bull markets by decreasing their termination probabilities. However, the
magnitude of the effects are not the same throughout the entire time horizon. In

particular, the effect has a stronger negative impact on younger bull markets than
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on older ones. This time varying impact is even more obvious if the confidence
intervals are taken into account. Specifically, the effects are negative up to week 33
and then become insignificant thereafter. Simply put, the statistically significant
results are consistent with the switching behavior suggested by previous time series
studies.

Figures 4.24 through 4.26 plot the results according to equation (4.84) for bull
markets using the three hyperparameter sets. The positively sloped baseline hazard
functions [rom Panel a of the figures suggest positive duration dependence in bull
markets under economic expansions. Once again, the shapes of the functions are
insensitive to the choice of o and b. On the other hand, the same cannot he said
for the effects of contraction. In particular, the plot for the effects of contraction
in Figure 4.25 appears flatter than ones in Figures 4.24 and 4.26. As for mixing
properties, the autocorrelation functions for the time effects are very well behaved
for all three sets of hyperparameters. However, the autocorrelation functions ave
superior in Figure 4.26 suggesting that the optimal choice for @ and b are 1 and
0.005 respectively. With this in mind, we study Panel b of Figure 4.25 more care-
fully. The effects of contraction are significantly positive throughout the entire time
horizon suggesting that the change from economic expansion to contraction tends to
discourage hull markets. More importantly, the effects seem to be constant through-
out the entire time horizon. This in turn implies that the effects from such change in
the economy have the same impact on young bull markets as the older bull markets.
Again, these statistically significant finding is consistent with the switching behavior
suggested by previous time series studies.

Figures 4.27 through 4.29 plot the results according to equation (4.33) for bear
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markets using the three hyperparameter sets. As with bull markets during economic
recession, bear markets during economic recession seem to exhibit positive duration
dependence as indicated by the positively sloped baseline hazard functions. As well,
the general shapes of the baseline hazard functions are not very different across the
three hyperparameter sets. This observation is also evident for the time varying
effects of expansion. The mixing properties for each hyperparameter sets are given
by the autocorrelation functions. Tt is quite clear that the mean and maximum
autocorrelation functions for the time effect in Figure 4.27 are unsatisfactory.

On the other hand, the autocorrelation functions for the time effect in Figure
4.29 are inferior to that in Figure 4.28. As such, the optimal hyperparameter choice
for this case is « = 1 b = 0.005. With this in mind, we study Panel ¢ of Figure
4.28 more closely. By inspection, the mean effects of expansion are positive and
time varying throughout the entire time horizon. This suggests that, on average,
the change from economic contraction to expansion tend to discourage bear markets.
However, once the confidence intervals are accounted for, the time varying effects of
the change in economic activity is statistically insignificant throughout the entire
time horizon. In other words, we fail to identify significant switching behavior.

Figures 4.30 through 4.32 plot the results according to equation (4.34) for bear
markets using the three hyperparameter sets. From the figures, it is clear that
the shapes of the time varying effects of conlraction are almost identical across the
three hyperparameter sets. However, the shapes of the baseline hazard functions
are sensitive to the choice of hyperparameters. While the generally upward sloping
baseline hazard functions in Figures 4.30 and 4.32 appear similar, the baseline hazard

function in Figure 4.31 look quile different. In particular, the baseline hazard
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function in Figure 4.31 is much more erratic than the other two. However, since the
erratic function still manages to reach a high at its terminal, we argne that it exhibit
positive duration dependence. In other words, all three baseline hazard functions
suggest that older bear markets are more likely to terminate than younger ones.

To check the mixing properties of the results, it is necessary to examine the
autocorrelation functions. The mean and maximum autocorrelation functions for
the main time effect are very similar across Pigures 4.30 to 4.32. On the other hand,
the mean and maximum autocorrelation functions concerning contraction look quite
different. Tn particular the maximum autocorrelation functions for contraclion in
Figures 4.30 and 4.32 are unsatisfactory while the one in Pigure 4.31 is very well
behaved. TFurthermore, although the mean autocorrelation functions for contraction,
all look satisfactory, it is quite clear that the one in Iigure 4.31 is superior as it
has the lowest values. Thus, the optimal hyperparameter set for this case is a = 1
b=0.005. With this in mind, we study Panel c of Figure 4.31 with a little bit more
care.

Starting from week 1, the mean effects of contraction are negative up week 32.
In other words, within this time horizon, the effect of the economy changing from
expansion to contraction tends to promote bear markets. Beyond week 32, however,
we discover an unexpected finding: the mean effects become positive such that such
change in the economy actually discourages bear markets. A possible explanation
for this unexpected finding has to do with synchronicity. In particular, it is very
possible that the timing of the turning points selected by the selection algorithm is
not exact. Thus, the timing of bear markets and the NBER business cycle dates may

be out-of-sync leading to the unexpected results. Likewise, the unexpected results
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maybe a result of improper business cycle selection by the NBER. Finally, once the
confidence intervals are taken into account, we finc that the effects of contraction are

statistically insignificant. In sum, we fail to identify significant switching hehavior

4.5 Conclusion

We provide a dynamic framework for estimating discrete time hazard functions for
bull and bear market. We find that most of the hazard functions generated by
the dynamic model using the MCMC approach seem to exhibit positive duration
dependence with the exception for the pre WWII hazard function. Nevertheless,
the results are generally consistent with the findings from the statistical test from
the previous chapters. Finally, the shape of the hazard [unctions within the same
sample are not sensitive to the choice of hyperparameters. However, the mixing
properties are quite sensitive to the choice of o and b.

Next, we seek to identify switching behavior of stock returns around business
cycle turning points using dynamic duration models. In particular, we find that
changes in the economic environment have statistically significant impact on the
hazard functions of bull market hazards. For example, the change from economic
expansion to confraction tends to increase the hazard of bull markets. On the other
hand, the change from economic contraction to expansion tends to decrease the haz-
ard of bull markets. These observations are consistent with the switching behavior
identified by previous studies using conventional time series techniques. However, we
find that changes in the economic environment have statistically insignificant impact

on the hazard functions of bull markets. Once statistical significance is discarded,
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we find that the mean effect of the variable ezpansion is positive on the hazard of
bear markets. Likewise, the mean effect of the variable contraction is generally
negative on the hazard of bear markets. Thus, we fail to identify switching behavior
of stock prices around business cycle turning points using bear market data. Finally,
we observe that mixing properties of the results are sensitive to the selection of a

and b.



Figure 4.1

Pre WWII Bull Market Hazard Function with a=0.00] and b=0.001.
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Figure 4.2 ‘
Pre WWII Bull Market Hazard Function with o=/ and 5=0.005.
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Figure 4.3
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Pre WWII Bull Market Hazard Function with a=0.000/ and b=0.000].
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Figure 4.4

Post WWII Bull Market Hazard Function with a=0.001 and 6=0.001.
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Figure 4.5
Post WWII Bull Market Hazard Function with a=/ and 5=0.003.
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Figure 4.6 81
Pre WWII Bull Market Hazard Function with a=0.0001 and 5=0.000] .
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Note: Pancl b contains two autocorrelation functions for the time parameters.

Figure 4.7
Full Sample Bull Market Hazard Function with a=0.00/ and =0, 001.
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Figure 4.8
Full Sample Bull Market Hazard Function with a=1 and 5=0.003.
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Figure 4.9 84
Full Sample Bull Market Hazard Function with a=0.000] and 5=0.0001.
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Figure 4.10
Pre WWII Bear Market Hazard Function with a=0.00] and 6=0.00].
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Pre WWII Bear Market Hazard Function with o=/ and 5=0.005.
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Figurc 4.12
Pre WWII Bear Market Hazard Function with a=0.0001 and 5=0.0001.
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Figure 4.13
Post WWII Bear Market Hazard Function with @=0.007 and b =0. 001.
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Figure 4.14 89
Post WWII Bear Market Hazard Function with g=/ and 6=0.005.
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Figure 4.15

Post WWII Bear Market Hazard Function with a=0.000/ and b =0. 0001.
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Figure 4.16 91
Full Samplc Bear Market Hazard Function with a=0.007 and b-0.001.
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Figure 4.17 92
Full Sample Bear Market Hazard Function with a=/ and =0.005.
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Figure 4.18

93

Full Sample Bear Market Hazard Function with a=0.0001 and 4 - 0.000].
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Figure 4.19

A Comparison of Bull Market Hazard Functions Across the Full, Post WWI and Pre WII Samples.

0d

e
&
=

0.4

—— fill (a=1. b=0.005)
post WWII (a=b=0.061)
------- pre WWIH (z=1, b=0,005)

g 2 48 86 30 100

t(weeks) -

¥6



A Comparison of Bear Market Hazard Functions Across the Full, Post WWI and Pre WII Samples.
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Figure 4.21
The Impact of Economic Expansion on Bull Market Duration for a=0.001 and 5=0.001.
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Figure 4.22
The Impact of Economic Expansion on Bull Market Duration for a=] and 5=0.005.
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Figure 4.23
The Impact of Economic Expansion on Bull Market Duration for a=0.0001 and b=0.0001].
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Figure 4.24
The Impact of Economic Contraction on Bull Market Duration for a=0.00] and =0.00].
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The Impact of Economic Contraction on Bull Market Duration for a=/ and 5=0.005.
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Figure 4.26
The Impact of Economic Contraction on Bull Market Duration for a=0.0001 and 5=0.0001.
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Figure 4.27
The Impact of Economic Expansion on Bear Market Duration for a=0. 001 and 6=0.001.
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Figure 4.28
The Impact of Economic Expansion on Bear Market Duration for a=1 and 5=0.005.
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Figure 4.29
The Impact of Economic Expansion on Bear Market Duration for a=0.000] and 5=0.0001.
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Figure 4.30
The Impact of Economic Contraction on Bear Market Duration for a=0.001 and 5=0.001.
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Figure 4.31

The Impact of Economic Contraction on Bear Market Duration for a=/ and 5=0.005.
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Figure 4.32
The Impact of Economic Contraction on Bear Market Duration for a=0.000] and 5=0.0001.
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Chapter 5

Conclusion

‘The objective of this thesis is to investigate the behavior of stock prices by examining
the duration aspects of bull and bear markets. Chapter 2 uses a selection algorithm
that dissects a time series of the Dow Jones Industrial Average into bull and bear
components. The summary statistics of the bull and bear markets suggest that bull
markets are generally longer and stronger than bear markets.

In Chapter 3, we investigate whether stock prices exhibit mean reverting behavior
by checking for the presence of positive duration dependence in bull and bear markets
using continuous time and discrete time tests. From the continuous time realm, we
use the Weibull test. TFrom the discrete time realm, we use the zero plim test,
method of moments test, generalized method of moments test, SB test and the Chi-
Square goodness of fit test. In general, we find some evidence of positive duration
dependence in bear and bull markets for the full sample as well as the post WWII
sample. However, we [ail to find any evidence for positive duration dependence for
the pre WWII sample; we attribute this to the small sample size of pre WWII bull
and bear markets.

In order to [urther check for positive duration dependence in bull and bear mai-
kets, Chapter 4 turns to the dynamic duration model to model the markets’ hazard
functions. In general, we found that the hazard functions of bull and bear mar-
kets are upward sloping functions suggesting positive duration dependence. Given

that the estimation technique for the hazard functions involves the MCMC, it was
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necessary to check for proper mixing and the results’ sensitivity to the choice of
hyperparameters. We found that, in most cases, the shapes of the estimated hazard
functions were not sensitive to the choice of hyperparameters whereas the mixing
properties differ quite significantly across different sets of hyperparameters. In sum-
mary, Logether with the results from chapter 3, we identify evidence for positive
duration dependence in bull and bear markets. This in turn suggests that stock
prices do not follow the random walk but are mean reverting.

"The other objective of this thesis was to examine the switching behavior of stock
prices around business cycle turning points. Using the NBER. business cycle dates we
generated dummy variables that define economic expansions and contractions. Using
these variables, we then used dynamic duration models and the MCMC technique
to investigate whether the baseline hazard functions of bull and bear markets are
responsive to changes in the underlying economic state.

We found that bull markets are sensitive to changes in the economy, even af-
ter accounting for statistical significance. In particular, a change from economic
expansion to contraction tend to increase the hazard of bull markets, which would
make stock returns more likely to be negative. On the other hand, a change from
economic contraction to expansion tends decrease the hazard of bull markets, which
would make stock returns more likely to be positive. These findings are conceptually
similar to previous well documented studies using traditional time series techniques.

As for hear markets, we find quite the opposite. lgnoring statistical significance,
we find that a change from economic expansion to contraction generally decreases the
hazard of bear markets. Similarly, we find that a change from economic expansion to

contraction tend to increase the hazard of bear markets. However, once statistical
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significance is accounted for, we find that the effect of changes in the economy is

insignificant on the hazard of bear markets.
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