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Abstract 

In this thesis, I used a special algorithm to separate the Dow Jones Industrial Average 

into bull and bear markets. Once the bull and bear markets are gathered, I examined 

whether they are positively duration dependent using discrete and continuous time tests 

as well as dynamic hazard functions. We find that bull and bear markets tend exhibit 

positive duration dependence suggesting mean reversion in stock prices. I also studied 

the impact of business cycles on the duration of bull and bear markets. In particular, I 

found that economic expansions tend to encourage bull markets but discourage bear 

markets. On the other hand, economic recessions tend to encourage bear markets but 

discourage bull markets. 
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Chapter 1 

Introduction 

The behavior of stock prices is a popular research area among economic and finance 

researchers. A common question that is asked by the research community is the 

validation of the random walk model of stock prices. If the random walk model holds, 

then predictability of stock prices is impossible. On the other hand, if the random 

walk model is incorrect, then stock prices may exhibit phenomena such as mean 

reversion. Although there has been some contributions that test for mean reversion 

in financial data, many researchers still find it difficult to reject the random walk 

model using traditional time series methodologies. As such, a purpose of this thesis 

is to check for mean reversion in stock prices using non-traditional techniques by 

examining the duration aspects of hull and bear markets in the Dow .Jones Industrial 

Average. In particular, we test for the presence of positive duration dependence (an 

analog of mean reversion) in the bull and bear markets by using a continuous time 

test and several discrete time tests. Then, we use a dynamic duration model to 

model the hazard functions of bull and bear markets from which we can qualitatively 

uncover the presence of positive duration dependence. 

Another common question among the research community is whether economic 

iruioatioiis have an impact on the behavior of stock prices. In fact, many studies 

have shown that there is strong evidence for switching behavior in stock prices around 

business cycle turning points. Specifically, stock returns tend to switch from negative 

to positive around the troughs of business cycles; the opposite switching behavior is 

1 
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observed around the peaks of business cycles. Although switching is traditionally a 

time series concept, an analog can be developed in terms of duration models. As 

such, we seek to identify switching behavior in stock prices around business cycle 

turning points by examining the effects of changes in the economy on the hazards of 

bull and bear markets. 

This thesis is organized as follows. Chapter 2 describes a method for selecting bull 

and bear markets from a time series of stock prices. Chapter 3 develops continuous 

time and discrete time duration dependence tests and presents the test results for 

1)1111 and bear markets. Chapter 4 describes methods for modeling hazard functions 

in discrete time and presents qualitative results concerning the hazard functions for 

bull and bear markets estimated by Bayesian means. Finally, chapter 5 concludes 

the thesis. 



Chapter 2 

A Simple Framework For Selecting Bull and Bear 

Markets 

2.1 Selection Algorithm 

The idea. of bear (1)1111) markets correspond to an extended period of generally de-

creasing (increasing) stock prices (Chauvet and Petter, 2000). In other words, bear 

(bull) markets correspond to aii extended period at which stock returns are negative 

(positive). i\Iore commonly, the finance community defines a bear (bull) market 

as a minimum of 20% decrease (increase) in stock prices over a-n extended period 

of time. In relation to macroeconomics, bear and html] markets are analogous to 

busts and booms in business cycles - see King and Plosser (1994), Watson (1994) 

and Harding and Pagan (2002) Given this analogy, bear markets are simply defined 

as the movement of stock prices from a local peak to a. local trough. Similarly, bull 

markets are referred to as the movement of stock prices from a local trough to a local 

peak. Using these (lelinitions, we discuss an algorithm that systematically selects 

the local peaks and troughs of a time series of stock prices. 

As mentioned in the above, bear and bull markets are analogous to busts and 

booms in business cycles. In fact, Bry and Boscha.n (BB) (1971) have devised an 

algoritlun for dissecting a monthly GDP time series' into appropriate business cycles 

1fl; 5110111(1 he noted that the data is smoothed before it is applied to the BB algorithm to avoid 
J)rObleflIS i'esul ti ug from outliers. 

3 
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of different time lengths. in a nutshell, the BB algorithm seeks out local peaks and 

troughs according to some user defined rules. Specifically, the algorithm splits the 

series into frames such that each frame contains a full business cycle. After that, 

the algorithni seeks out the highest (peaks) and lowest (troughs) points within each 

frame. As simple as the 13B algorithm sounds, the algorithm is actually, quite 

difficult to ilfll)lemeflt in practice. 

The first difficulty arises from selecting full cycles by slicing the time series into 

frames. For the purpose of this thesis, the basic definition of a full cycle is given by a 

sequence of trough-peak-trough2. However, this definition is difficult to implement 

in real data. First, it is not uncommon in time series data that a general trend is 

composed of several smaller cycles as depicted in Panel a of Figure 2.1. The problem 

here is to decide whether the extreme point sequence a-b-c should be treated as an 

individual cycle or as part of an uptrend defined by a-cl. To overcome this issue, a 

minimum length for a cycle must be defined. In the business cycle context, the 13B 

algorithm sets the minimum cycle length to 15 months. Thus, in reference to Panel 

a, a1-b-e should be regarded as a cycle if it has a duration of at least 15 months. 

Otherwise, the sequence should be incorporated into the uptrend defined by a-d. 

Another problem associated with framing is the issue of skipped cycles. This issue 

arises when a large trend crosses over several frames of 15 months as depicted by 

Panel b in Figure 2.1. A simple solution to this is to enlarge the frame until a full 

cycle is fitted. Thus, frame size in the BB algorithm has a lower bound of 15 months 

but no upper bound. 

full eycle may also be defined by a peak-trough-peak sequence. However, the programming 
of the algoritlun will require minor modification if this definition is used. 
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In the meantime, the BB algorithm simultaneously determines the local peaks 

and troughs of the series. In the simplest sense, peaks and troughs are defined to be 

the highest and lowest points. In addition, an extreme point cannot be classified as a 

peak unless it is sandwiched between two troughs. Likewise, an extreme point cannot 

be a, trough unless it is sandwiched between two peaks. Again these definitions are 

difficult to implement in practice. For example, there are many instances where the 

time series hits the same high value after a period of fluctuations as depicted by Panel 

c of Figure 2.13. Such double turns are a, problemt because whether we select the first 

or second peak as the local peak has great impact in timing and duration measures. 

The prescription to this problem depends on how the series behaves between the two 

peaks. If the movement of the series is mainly descending between the two peaks, 

then the first peak should be selected as the local peak. On the other hand, if the 

movement of the series is mainly ascending between the two peaks, then the second 

peak should be chosen as the local peak. In addition to double turns, step patterns 

of the time series also present a problem for the identification of peaks and troughs. 

As an example, consider Panel d of Figure 2.1 where the series maintains a. peak and 

a. trough level for several time periods. Notice that the duration of the down trend 

is dependent on whether R1 or R2 is chosen as the local peak and whether V1 or V2 

is chosen as the local trough. As a. rule of thumb the BB algorithm suggests to use 

the last of the equal values as the turning point such that R2 and V2 are selected as 

the local peak and trough respectively. It follows that the time gap between turning 

points is also crucial to the selection procedure. If the time length is too short 

'uThe high points in panel C are often referred to as the resistance in technical analysis (Murphy. 
1.999). Similarly, a support is formed if the series continually returns to a same low value. 
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then the selection algorithm will lead to spurious results clue to the erratic nature of 

economic time series. In the 1313 algorithm, the minimum time gap between turning 

points is six months. 

While the BB algorithm is designed for dissecting macroeconomic data, the same 

principle can also be used for financial time series as suggested by Pagan and Sos-

sounov (PS) (2003). However, given the nature of financial time series, some mod-

ifications to the BB algorithm are required; we refer to the modified BB algorithm 

as the PS algorithm. First, since much attention has been given to the behavior 

of A In I1, the PS algorithm examines the natural log of the series rather than the 

series itself. The second difference between the BB algorithm and the PS algorithm 

is that the PS algorithm does not require the time series to be smoothed. The 

reason for this is because data smoothing removes extreme movements (i.e. outliers) 

that are actually of interest when studying the behavior stock prices. Third, the 

framing specification of the PS algorithm is slightly different than that of the 1313 

algorithm. In particular, Pagan and Sossounov (2003) suggest to use a hill cycle 

of at least 16 mouths. In addition, the minimum time gap between two turning 

points is set to four months according to the Dow Theory (Hamilton, 19:19). Of 

course, the difference between the peak price and the trough price must be at least 

20% to satisfy the definition of bear and bull markets. As a note, although the PS 

algorithm is applied on monthly data in the work by Pagan and Sossounov (2003), it 

can also he used in data with different frequencies. Since the algorithm is designed 

to capture broad market movements (Gonzales c/, al, 2005), we do not advise on 

using data, with frequency higher than weekly data. 
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2.2 Bear and Bull Market Characteristics 

Once the turning points of the tin-ic series are defined by the PS algorithm, several 

characteristics of bear and bull markets may be calculated. To compute these 

characteristics, it is necessary to devise a. counting mechanism, to separate bear and 

1)1111 phases in the data. Pagan and Sossunouv (2003) suggest to use a binary variable 

that is equal to unity when the series is in the 1)1.111 phase and zero otherwise at time 

t. With this binary variable, the average duration of bull markets is calculated. In 

particular, the total time spent in the bull state is given by E t=l St and the number 

of peaks is given by NTP = (1 - 5 ±) S. As such, the average duration of 

bull in arkets is simply 

St (2.1) 

Similarly, time average amplitude (i.e. the magnitude of price change) of 1)1111 markets 

is given l)y 

iVTP Sz1nP (2.2) 

A more interesting characteristic maybe the ci.muilative movement of stock prices 

over the entire bull market. To calculate this, let Zt be the cumulative sum of A in P 

during a bull market such that Zt resets to zero whenever the market switches to 

the hear state. Specifically, Z is given by 

zt +StA In Pt (2.3) 

with Z0 0. As such the average cumulative movement over the bull markets is 

simply 

TC  
NTP (2.4) 
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where TO is the total cumulative movement given by 

TC=Z (2.5) 

In accordance with Pagan and Harding (2002), it is useful to think of a bull market 

selected by the PS algorithm as a. triangle as depicted by Figure 2.2. With point 

A being the trough and point C the peak, the linear path AB is the cumulative 

movement of the bull market given by equation (2.3). Iii reality, AB is just an 

approximation such that it may deviate from the actual path. To measure how well 

the triangle approximates the acti,ial path, Pagan and Harding (2002) calculate an 

excess index given by 

EY   (2.6) 

where (t1 is the total cumulative movement of the actual path. If approximates 

the actuma.l path well, then the index is close to one. Otherwise, E.Yj. is close to zero. 

The average excess index is simply the average of all the. EX1's. A similar logic is 

used for calculating the average excess index for bear markets. 

Many bull markets increase more than the 20% benchmark. To account for these 

'strong' 1)1111 markets, consider another binary variable I [a] where a is a boolean that 

ClelifleS the 'strong market. In particular, a is (i - S) SZ > 0.20 for strong bull 

markets such that I [a] is unity when a is true and zero otherwise. Consequently, 

the fraction of strong hull markets is just 

NTP 

Finally, siniila.r statistics are calculated for bear markets by setting St to unity 

during a. hear phase and zero otherwise. The fraction of 'strong' i)ear markets is 

I Ri - St+i) 81Z1 > 0.20] (2.7) 
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calculated using the boolean (1 - S1+1) S17, < —0.20 such that 

B = 
T-. 1 

NTP I [(1 - S+1) S,7,1 <-0.201 
t-=1 

(2.8) 

2.3 Empirical Results: Bull and Bear Markets in the Dow 

Jones Industrial Average 

We use a weekly series of the logarithm of the Dow Jones Industrial Average from 

January 1928 to May 2005 for analysis. Using the PS algorithm, we dissect the 

series into its bull and bear components. In particular, we capture absolute changes 

in the logarithm of stock price of 20% or higher. In addition, the minimum length 

of any phase must he at least four weeks in length rather than four months. To 

parallel analysis from previous work such as Cochran and DeFina (1995a), Cochran 

and DeFina (1995b) and Ohn, Taylor and Pagan (2004), we also separate the series 

into pro WWII and post WWII si ibsamples. 

Tables 2.1 records the simple summary statistics of bear and bull markets for 

the three samples. Under the full sample, we identify 59 bear markets and 59 

bull markets. Under the post W\VH sample, we identify 43 bear markets and 43 

bull markets. The pre WWII sample, however, has weak sample size with only 10 

bear markets and 9 bull markets. Generally speaking, the mean durations of bear 

and hull markets are larger than their corresponding standard deviations suggesting 

the possibility of positive duration dependence under the discrete time duration 

dependence test tests. On the other hand, the Pre WWII 1)1 111 markets are suspected 

of exhibiting negative duration dependence under the discrete time tests because the 

average duration is less than the standard deviation. Finally, it is observed that 
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1)1111 markets are, on average, longer than bear markets. 

A more detail examination of the bull and hear markets will require the cx-

amination of the other characteristics described in section 2.2. Table 2.2 and 2.3 

record such characteristics for the selected hull and bear markets respectively. First, 

we observe that not only are bull markets longer than bea.r markets but they are 

also stronger as suggested by the mean amplitude and mean cumulated movements. 

Second, we observe that both bull markets and bear markets deviate quite far away 

from the triangle approximation as suggested by the mean excess movements. Fi-

nally, there is a, much larger fraction of the bull markets that exceed the 20% price 

movement benchmark than bear markets. 

2.4 Conclusion 

We describe a. systematic method for separating a weekly time series of the Dow 

Jones Industrial Average into bull and bear market components. On average, we 

find that bull markets are stronger and lengthier than hear markets. In addition, we 

also find that actual asset price movements deviate quite a bit from the triangular 

approximated that is used in the selection algorithm. Finally, there is a larger 

fraction of bull markets with price movements that exceed the 20% benchmark than 

hear markets. 



Figure 2.1 

Problems associated with turning point selection. 
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Figure 2.2 

An illustration of the triangle approximation for a bull market. 

/ 
/ 

/ 
/ 

B 

( 
Duration 

Note: The actual path of stock price movement is indicated by the arch whereas the 

estimated path is indicated by the solid line. 
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Table 2.1 

Summary Statistics of Bull and Bear Market Durations 

Bull Markets Full Sample Pre WWII Sample Post WWII Sample 

Mean Duration 28.98 23.67 31.07 

Standard Deviation 22.08 2.5.53 22.65 

Max Duration 104 89 104 

lVin Duration 4 6 4 

Sample. Size 59 9 43 

Bear Markets Full Sample Pre WWII Sample Post WWII Sample 

Mean Duration 15.71 17.90 15.14 

Standard Deviation 11.32 12.65 11.50 

Max Duration .104 41 52 

Min Duration 4 4 4 

Sample Size 59 10 43 

Note: Duration is measured in weeks. Sample size indicates the number 

of bull markets in upper panel and the number of bear markets in the 

lower panel 
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Table 2.2 

Characteristics of Bull Markets 

Full Sample Pre WWII Sample Post WWII Sample 

Ni-lean Duration 28.98 23.67 31.07 

Mean Amplitude 0.26 0.37 0.24 

Mean Cumulated Movement 5.71 6.48 5.96 

Mean Excess Movement 0.012 0.012 0.015 

0.58 0.89 0.53 

Table 2.3 

Characteristics of Bear Markets 

Full Sample Pre WWII Sample Post WWII Sample 

Mean Duration 15.71 17.90 15.14 

Mean Amplitude -0.19 -0.39 -0.15 

Mean Cumulated Movement -1.84 -4.23 -1.35 

Mean Excess Movement 0.012 0.016 0.008 

0.25 0.60 0.16 



Chapter 3 

Some Statistical Tests for Duration Dependence 

3.1 Motivation 

Duration analysis has received much attention in the study of economics. Formally, 

duration analysis involves the study of the time that an economic agent takes to 

leave a specific state'; such a state is commonly referred to as a spell. For example, 

duration analysis has been applied to labor economics to study the durations unem-

ployment in (lifferent individuals and labor disputes - see Nickel (1979), Lancaster 

(1979), Kennan (1985) and Kiefer (1988). Other economic applications of duration 

analysis include consumer choice and marketing (Vilcassim and Jam, 1991), indus-

trial organization (Pakes and Schankerman, 1984) and political economy (King et 

al., 1990). More recently, duration analysis has found its way into macroeconomics 

and finance - see Engle and Russell (1998), Partington and Stevenson (2001) and 

Zuehlke (2003). 

An important concept in duration analysis is the idea of duration dependence. 

A spell is said to be duration dependent if its hazard probability depends on the 

duration of the spell itself. Duration dependence can be further subdivided into 

positive and negative duration dependence. Positive duration dependence implies 

that the hazard probability of a spell increases with the duration of that spell. In 

other words, mature 51)0115 are more likely to end than mature spells under the 

tmin the context of this thesis, the 'agent' is the stock market with hear and hull markets being 
the states. 

14 
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influence of positive duration dependence. Similarly, negative duration dependence 

implies thai; the hazard probability tends to fall with the duration of the spell such 

that younger spells are more likely to end than older spells. 

The notion of duration dependence is of importance in finance. For example, 

McQueen and Thorley (1994) argue that speculative bubbles are evident in the stock 

market if a run of abnormally high (or low) returns is negatively duration dependent. 

More importantly, duration dependence has strong implications on the behavior of 

stock returns. Early work by Sainuelson (1965) and Leroy (1973) suggest that stock 

prices follow a random walk such they are unpredictable. However, this view has 

been challenged by Lo and MacKinlay (1988), Fa.ma and French (1988), Poterba 

and Summers (1988). Shiller (1989) and 13ou1ohk and Richardson (1994) as they 

identify mean reverting behavior in stock prices. This in turn suggests stock prices 

do not necessarily follow the random walk model as prices regularly return to their 

mean alter a period of positive or negative deviations. In the context of duration 

dependence, mean reversion simply implies positive duration dependence in a run 

of positive or negative returns (Cochran and Defina, 19.95a). The reason for this is 

simple. In the absence of cyclical behavior, there will he no evidence for duration 

dependence because trends tend to be consistent. On the other hand, a cyclical 

component along with the presence of positive duration dependence implies that 

stock prices will eventually return to their long run trend level, hence mean reverting. 

The purpose of 1;liis chapter is to identify the presence of mean reversion in stock 

prices using some statistical tests for duration dependence. In conjunction with 

the simulation results from chapter 2, i;he presence of positive duration dependence 

in hull and bear markets duration will support the rejection of the random walk 
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model. In the next two sections, we present some statistical tests for testing for 

duration dependence. The first section concerns a continuous time test that is used 

by Cochran and Delina (1995a) and Cochran and Defina (1995b). The latter section 

concerns a set of discrete time duration dependence tests that are used in Olin et (21. 

(2004). 

3.2 A Continuous Time Duration Dependence Test 

A popular assumption in duration analysis is to treat duration time as a continuous 

random variable. Here, we outline a parametric test for duration dependence in the 

continuous time framework using the ideas presented in Niefer (1988) and David-

son and Mackinnon (2004). Let a; be a positive continuous random variable that 

accounts for the duration of a spell (bear or bull markets). Further let PDF (a;) 

and CDlV (4 be the probability distribution and cumulative distribution of a; re-

spectively. The probability distribution PDF (a;) is associated with the survivor 

function is, (a;), which justifies the probability that a spell is still present at time a;. 

Mathematically, the survivor function is given by 

S (a;) = 1 - .PDF (a;) (3.1) 

Together with S (a;), the cumulative distribution CDF' (4 defines the continuous 

time hazard function h (x) where. 

/ CDF(x) 
- 8(x) 

(3.2) 

The con tdlnLous time hazard function has a specific conditional probabilistic meaning. 

In particular, it represents the probability that a spell will end given that it has 
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already lasted up to tin'ie a:. Duration independence is evident when h' (a;) 0 

whereas duration dependence is evident when h' (a;) 0. In particular, we have 

positive duration dependence when Ii' (a;) > 0 and negative duration dependence 

when h' (a;) < 0. 

The distributional assumption on a; is crucial to the behavior of the hazard func-

tion Ii (a:). Suppose that X is exponentially distributed such that 

CDF (a:) = 1 - (3.3) 

where 0 > 0. Using equation (3.2) the hazard function must he 

ii (x) = 0 (3.4) 

Taking the first derivative, of the above, it is clear that the spell is duration indepen-

dent because Ii' (a;) = 0 regardless of the value of a;. The exponential distribution is 

of crucial importance because it serves as a mill hypothesis of no duration dependence 

for the parametric test. 

A simple and versatile alternative to the exponential distribution is the Weibull 

distribution. The Weibull distribution takes form of 

CDF (a;) = 1 - (3.5) 

such that the hazard function must be 

Ii (x) = a0a,r l (3.6) 

where o > 0. Taking the first derivative of the above yields 

Ii' (a;) -'- (a - 1) a0'x 2 (3.7) 



18 

When a — 1, equation (3.6) collapses to equation (3.4) such that duration inde-

pendence is evident as the weihull model is identical to the exponential distribution 

under this condition. On the other hand, negative duration dependence is evident 

when a < 1 because equation (3.7) becomes negative for all a;. Similarly, positive 

duration dependence is evident when a > 1 because equation (3.7) becomes positive 

for all a;. 

At this point, it is clear that the null hypothesis for the continuous time test 

is H0 : a 1 where as the alternative hypotheses are H1 : a > 1 for positive 

duration dependence and FT1 : a < I for negative duration dependence. The 

estimation of the parameter a involves the method of maximum likelihood. Specifi-

cally, the loghikelihood function for the Weibull distribution is given by EL (a;, a, 0) = 

In /i (a;, (1, 0) + In S (a;, a, 0). Using equation (3.2), the Ioglikehihoocl can 

be further exl)tesse(1 as 

T, T, (a;, a, 0) = nhn a + n1n0 + (a - ) 
.fl 

i=1 

In x + 

i=1 

(3.8) 

such that estimates For a and 0 can be obtained ly maximizing the above in the usual 

way'. Moreover, •/ ( - (x) is asymptotically normally distributed with mean zero 

and variance equal to the second derivative of equation (3.8). As such hypothesis 

testing and confidence interval construction can be performed in the usual way: 

r = — (t) /se () and a ? ± re () where r is the test statistic and r is the 

critical Value. 

'The usual way implies finding values of a and 0 that maximizes the observation of the data. 
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3.3 Discrete Time Duration Dependence Tests 

3.3.1 Some Preliminaries 

The assumption that a; is a positive continuous random variable may not he realistic 

for our purpose. As a matter of fact, duration data collected from a time series 

should be considered as discrete data because each time period in a time series is 

measured in fixed intervals (i.e. day, week, month, etc.). Given this, we now define 

a; as a positive discrete random variable such that x E {O, 1,2, ...}. 

To construct the discrete time duration dependence tests, we need to define a 

base case (i.e. a mill hypothesis) that always bring about duration independence. 

A commonly 1150(1 probability distribution for modeling discrete duration data is the 

geometric distribution. The geometric distribution takes the form of 

P(x) =p(1—p)' 

with moment generating function 

(3.9) 

(3.10) 

The first. derivative of C (a;) evaluated at a; = 0 gives the first moment of the geometric 

distribution such that the population mean is given by 

Similarly, the second moment is given by 

C"(x - 0) = 2 

I— p 

P 

(1_P 2 J +   
\p Cp P ) 

(3.11) 

(3.12) 
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such that the corresponding population variance is 

2 
cTa 

Using the work by Olin el. (ii. (2004), the hazard function can be written as 

P(x=X) 

P(x ≤X) 

(3.13) 

(3.14) 

If a; is geometrically distributed, then equation (3.11), equation (3.13) and equation 

(3.14) implies that h(.?,) = p such that the spell of interest is duration indepen-

dent. As such, the null hypothesis for the discrete time duration dependence tests 

is that a; is geometrically distributed. On the other hand, deviation from the ge-

oinetric distribution constitutes the alternative hypothesis of duration dependence. 

In particular, if the average of a; is greater than its standard deviation, then positive 

duration dependence should be suspected. On the other hand, if the average of 

a; is less than its standard deviation, then negative duration dependence should be 

s ispected (Lancaster, 1090). 

With the null and alternative hypotheses deflnecl, we can go about constructing 

tests for duration dependence in the discrete time'framework. We begin our discus-

sion by discussing four weak form tests. These tests are termed 'weak' because they 

only compare the rust two moments of the data that of the geometric distribution. 

Next, we move on to a strong form test that compares the estimated of the density 

of the data with the geometric distribution. 



21 

3.3.2 Some Weak Form Tests 

The Zero Plirn r1cSt 

The zero plini tests is a discrete time duration dependence test developed by Mu-

clambi and Taylor (1991). First, assume that x is geometrically distributed with 

mean and valiance defined by equation (3.11) and equation (3.13) respectively. For 

small values of p, it is evident that /i, o such that the population is not expected 

too over- or underdispersed. As such, for a sufficiently large sample of x we can 

write 

plim 16,! - i] = o (3.15) 

if x is actually geometrically distributed. In other words, we are suggesting that a 

sufficiently large sample of x will converge (at least in the first two moments) to the 

geometric distribution if a: truly follows the geometric distribution. On the other 

hand, if .); is not geometrically distributed, then equation (3.15) will not hold. With 

this in mind, we write the test statistic as 

'I x 

= /' ( ..- - I (3.16) 

where n is the number of observations, is the sample mean and s the sample 

standard deviation. Using the central liniit theorem, the distribution of z1 must 

converge to the standard normal as n gets infinitely large. With finite samples, 

however, Mimdambi and Taylor (1991) found that the distribution of z1 is very skewed 

so that it; is necessary to bootstrap 1;he critical values. 

Although the zero plirn test; is Classified as a weak form test, it is not weak in 

terms or statistical power. Rather, the test is expected to be powerful because 
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the population mean and standard deviation will generally he different when dura-

tion independence is violated (Lancaster ,1990). For example, we expect negative 

(positive) duration dependence if zl is significantly negative (positive). Similarly, 

duration incIepen(lence is identified if z1 is statistically insignificant;. However, as 

noted by Mudambi and Taylor (1991), the zero plitu test is extremely sensitive to 

hazard functions with erratic behavior as well as those that are monotonically in-

creasing or decreasing. As such, the sign of z1 must be interpreted with caution. 

The Method of Moments Test 

An analog to the. zero plim test is the method of moment test (Mudambi and Taylor, 

1991). According to the method of moments methodology, the kth moment of the 

population is equivalent to the 47"'moment of the sample. As such, large deviations 

between the hypothesized population moments and sample moments suggest that 

the sample violates the hypothesized assumptions on the popi.ilation. 

Using the sample mean, it is easy to see that a maximum likelihood estimator 

for p is given by 

(3.17) 

Similarly, a maximum likelihood estimator for p can also be derived from, the sample 

variance such that 

—1 + /i + 4s 

2s (3.18) 

Since r and sx 2 are considered consistent estimators for the population mean and 

variance, equation (3.17) and equation (3.18) will both converge in probability to p 

under the in ill hypothesis of duration independence. To construct the method of 

moments lest we rearrange equation (3.17) so that (1 - 3') /3Q is an unbiased and 
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consistent estimator for . Under the tutu hypothesis of the geometric (liStribUti011, 

(1 - ) / is a consistent estimator for the population mean i,. for a sufficiently 

large sample of:).,. Then, conditional on s, the test statistic can be written as 

,In—. [—x — ( 77-
Z2 = (3.19) 

which, according to the central limit theorem, is approximately normal under the 

will hypothesis. However, z2 is highly skewed under finite samples so the critical 

values should be bootstrapped. The method of moment test is expected to be 

powerful because (leviation from the null hypothesis will overthrow the consistency 

of j). Finally, it should be noted that z1 and z2 will converge numerically to each 

other for s that are much larger than one. As such, it is expected that the two test 

statistics should have, similar behavior. 

The Generalized Method of Moments Test 

The generalized method of moments (GMM) test is another analog to the zero plim 

and method of moments tests (Mudambi and Taylor, 1995). This test is assumed 

to be superior to the zero plim 1,11(1 method of moments tests because it operates 

unconditionally on the sample variance. 

To derive the GMM test, we employ the 0MM method proposed by Tauchen 

(1985). First, we compute ' via maximum likelihood and use it to calculate the 

score function - '1/ (x,fl. In accordance with Mudambi and Taylor (1992), the 

loglikelihood function for the geonietric distribution is 

Lt = n,III (p) + In (i — p) 'x (3.20) 
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while the score function is 

1 Xi.  
Th-. — 

p  a; 
(3.21) 

Next we select an auxiliary criterion function c (a;, p) such that a, large absolute value 

of (1/n) c (x.;, j3 will lead to speculation on whether the underlying loglikelihood 

model is correct. In particular, the auxiliary criterion function takes the form of 

[x - I — P 2 - 
P I p9 

(3.22) 

At this point, the general idea behind the GMM test is clear. Under the geometric 

distribution, equation (3.22) has an expected value of zero so that we are implicitly 

checking whether the sample variance is the same as the population variance implied 

by the geometric distribution. To check this, we regress 

Fi = b + b1 + disturbance (3.23) 

and confirm whether the intercept term is signifl.cant. The estimate for h0 is just 

so that the 0MM test statistic is 

(v _)2] _2_ 

n 

(3.24) 

Again, the central limit theorem suggests that z3 converges in distribution to the 

standard normal but the critical values should be bootstrapped when dealing with 

finite samples. 
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The SB Test 

An alternative to the duration dependence tests in the above is the SB regression 

test proposed by Ohn el; al (2004). The test is termed SB because it is constructed 

using binary variables that describe the state. Lets begin l)y analyzing bull markts 

by considering the binary variable St that accounts for the state of the stock market 

at time 1. Tn particular, 5t assumes unity when during a bull market and zero during 

a bear market:'. Under the assumption of a constant hazard function, S, must follow 

a Maakov process such that it can be written as an AR(l) as suggested by Hamilton 

(1989). Specifically, the AR(1) process is given by 

St - e0 + cS'i + disturbance (3.25) 

where c0 P110 = 1 - Pop and c1 Pill + polo - .i. Under duration dependence, 

the market state at t will depend on the market state at t - 1 as well as the duration 

of that state. To investigate this, we modify the above to 

Co + c1S1_1 + C2S1d11 + d,stui-hance (3.26) 

where dj, is the number of consecutive periods spent in a. particular state°. As such 

duration dependence implies that c2 is significantly different from zero. rfllat is, 

testing the null hypothesis FT0 : c2 0 is equivalent to testing duration independence. 

However, the SB test must be constructed with caution. III particular, the test 

cannot be constructed using a. sample consisting of bear and bull markets because 

3Duration dependence in bear markets may be explored by setting S1 to one when the state is 
a bear nmrket. aimcl ,'.ero otherwise. 

'The notation Pull, denotes the conditional probability of the stock market switching from state 
a to state b. 

5Durland and McCurdy (1991) suggest that the relationship between S1 and d, is nonlinear. 
However, our linear model is still suitable becnsue we are just testing whether or not there is a 
relationship between the two variables. 
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doing so will introduce conditional hetroskeclasticity in the disturbance terms. To 

overcome this, bear and bull markets must be treated separately. Consider, for 

example, the sequence •S { 1, 1, 1, 0, 0, 11, 1, 1,0,0, 1, 1, 0} such that periods 1-3, 6-8 

and 11-12 are bull markets. A sample for S. and consisting of bear and 

bull markets is 

S't ,S'__ d.. 1 

1 0 

1 1 2 

0 1 3 

0 0 0 

1 0 0 

1 1 1 

1 1 2 

0 1 3 

0 0 0 

It follows thai; V (dis ihanceI5i = 0) = p110 (1 - and V (dii1trbaiwIS,.. 
P111 (1_ vi:i) 

=1) = 
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whereas a sample for bull markets only is given by 

St S_ d1...1 

1 1 1 

0 1 2 

Under the l)ull-markets-only sample, we see that S_1 is a column of ones such that 

equation (3.26) can be rewritten as 

St = CO + (3.27) 

Here the test Statistic is just the standard t test statistic for c2 so that positive dura-

tion dependence in bull markets is evident when c2 is significantly positive whereas 

negative duration dependence in hull markets is implied if c2 is significantly negative. 

As a reminder, the relationship between St and d1 may be nonlinear as suggested 

by Durland and McCurdy (1994) so that the power of the SB test should be ques-

tioned. Finally, it should be noted that the SB test is asymptotically equivalent to 

the GMM test. An elegant proof for this claim is found in Ohn et al (2004). 
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3.3.3 A Strong Form Test 

As discussed previously, a strong form test compares the estimated density of the 

data with the density hypothesized distribution rather than comparing only the 

first two moments. A good candidate is the chi-square goodness of fit test (chi-

square test for short) that is used by Diebold and Rudebusch (1991) to test for 

(Titration dependence in business cycles. The general idea behind the chi-square test 

is to divide the sample into K bins and compare the observed frequencies with the 

expected frequencies generated by the hypothesized distribution for each bin. If the 

hypothesized distribution is true, then the observed and expected frequencies will be 

very close to each other. Of course, the hypothesized distribution for our purpose 

is the geometric distribution. Formally, the test statistic is given by 

Ej 

where 0j and Ej are the observed and expected frequencies of the bin. 

Bin selection is important in order to obtain satisfactory results from the chi-

square test. Hod (1954) suggests bins should be selected such that the expected 

frequency should be at least five for each bins. To be on the safe side, we follow 

the suggestion by Olin t al (2004) and set expected frequency to at least six. Ej is 

organized such that E1 corresponds to the bin with the lowest values for the range of 

realizations of x whereas Efd corresponds to the bin with the highest values for the 

range of realizations of x Further, the last bin must be defined with care. The bins 

corresponding to E1, E2,..., are constructed with expected frequencies that are 

closest to six from the right. Since, extreme durations are scarce, it is often the case 

that BK is less than live. In such an event, we combine bins K and K - 1 together 

x2= 
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to conatniel; the last bin for the chi square test. 

3.4 Empirical Results: Evidence for Duration Dependence 

in Bull and Bear Markets 

Using the selected bear and 1)1111 markets from chapter 2, we test whether they 

exhibit duration dependence by applying continuous time and discrete time tests. 

Since Llieie is some uncertainty surrounding the exact timing of the turning points, 

we adjust the duration data, as suggested by MeCulloch (1975) and Diebold and 

Rudebusch (1090). Namely, we remove different positive values of TO, which is at 

most the historical minimum, from the duration data obtained from the selection 

algorithm. 

We begin the analysis with the continuous time parametric Weibull test on bull 

and bear markets. Under this test, we check for positive duration dependence, 

negative duration dependence and chiration independence by checking whether the 

test statistic is greater than one, less than one or equal to one respectively. Table 

3.1 summarizes the test; results for the three samples of bear markets. It is clear 

that there is some evidence concerning positive duration dependence in bear markets 

for the full and post WWII saniples as some of the test statistics are statistically 

greater than unity. However, the evidence is only present for r0 less than two and 

then disappears thereafter. The bear markets in the pro WWII sample, however, 

does not seeni to exhibit duration dependence for all values of r0. This finding 

is quite different, from Cochran and DeFina (1995a) who uncovered some evidence 

for positive duration (lopendenec in the pre WWII sample. Table 3.2 presents the 
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continuous time parametric Weibull test for bull markets. Here, we find strong 

evidence concerning positive duration dependence in bull markets for the full sample 

as well as the post WWII sample; the test statistics are greater than one for all values 

of To. On the other hand, the bull markets for the pre WWII sample does not show 

any evidence concerning duration dependence. Again our finding is different from 

Cochrane and DeFina (1995a) who failed to identify positive duration dependence in 

bull markets except in the pre WWII sample. An explanation for the discrepancies 

is that our data set is different from Cochran and DeFina's (1995a) study. In 

particular, Cochran and Defina's Pre WWII sample is larger than our pre WWII 

sample. Furtheirnore, a different selection algorithm7 is used in Cochran and DeFina 

(1995a), which is another possible source for discrepancy. It should also be noted 

that our test results for bear and bull markets in the pre WWII sample should be 

questioned. Specifically, the small sample size in the pre WWII sample decreases 

the power of the continuous time parametric Weibull test. 

Next, we venture into the discrete time realm to test for duration dependence 

in bear and bull markets. Given the summary statistics in table 1 and table 2, 

we specifically test for negative duration dependence in bull markets for the pre 

WWII sample and positive duration dependence for the other bull market samples. 

First, consider the weak form tests. Table 3.3 summarizes the zero plimn test results 

for bear markets. Under the full sample, we find evidence for positive duration 

dependence for 7O . {i, 2}. However, the statistics show no evidence for positive 

duration dependence for the pro WWII and Post WWII subsamples. Table 3.4 

7Cochran and DeFina (1995b) used the method proposed by Cohen el al. (1987) to select bear 
and bull markets. It is bard to say whether the PS algorithm is superior to the Cohen et al. (1987) 
method; an indepth comparison between the two methods are required for a conclusive answer. 



31 

summarizes the zero plini test results for bull markets. This test shows positive 

duration dependence for the full sample and post WWII sample when T0 {1, 2}. 

The bull markets in pre WWII sample, however, does not appear to be duration 

dependent as suggested by the zero plim test. 

The method of moment test results for bear markets are recorded in table 3.5. 

Like the zero plim test results for bear markets, we fail to uncover evidence for 

duration (lepelldeilce in the pre WWII and post WWII siibsamples. However, we 

do observe some, presence of positive duration dependence in the full sample for 

TO = 11, 21, The method of moment test results for bull markets are recorded in 

table 3.6 from which we see some evidence of duration dependence. In particular, 

the method of moment test identified positive duration dependence in the full sample 

when r0 1. The test has also detected evidence of positive duration dependence 

in the post, WWII sample for TO = {1, 2}. Further, the bull markets in the pre 

WWII sample scorns to exhibit negative duration dependence for r0 = {5, 6}. 

The generalized method of moments test results for bear and bull markets are 

recorded in table 3.7 and table 3.8 respectively. Like the results from the zero 

plim test and method of moment for bear markets, we fail to uncover evidence for 

duration dependence in the pre WWII and post WWII subsamples. However, there 

is evidence for positive duration dependence in the full sample when r0 is equal to 

one. There is also evidence for positive duration dependence in the post WWIT 

sample when r0 is one as well as in the full sample for ro = {l , 2}. The pre WWII 

sample, on the other hand, seems to exhibit negative duration dependence when r0 

is six. 

Table 3.9 summarizes the SB test results for bear markets. There is no evidence 
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for positive duration dependence in bear markets except in the full sample bear 

markets when y0 1. Table 3.10 summarizes the SB test results for bull markets. 

In the full sample and post WWII sample, we uncover evidence for positive duration 

dependence in bull markets for 'r0 == {1, 2}. The pro WIATII sample, however, does 

not appear to show any duration dependence under the SD test. 

To complete the analysis using discrete time duration dependence tests, we now 

move on to the strong form Chi square goodness of fit Lest. Regrettably, the pie 

WWII sample is too small to construct meaningful bins for the testing procedure. As 

such, we discard the pie WWII sample for the Chi square goodness of fit test. Table 

3.11 surnu'iamizcs the Chi square goodness of fit test results for the full sample bear 

market data. By inspection, we see considerable clustering of observed frequencies 

for TO {J , 2, 3}, which in turn suggests deviation from the geometric distril)lltion. 

Consider the case where TO is equal to one. We see very low observed frequencies (i.e. 

U and 2) in bins [0. 1] and [2, 31 whereas high observed frequencies (i.e. 15, 12 and Ii) 

are evident in bins [4, 6], [7,9] and [19, 25]. In comparison, these observed frequencies 

are quite different from their corresponding expected frequencies. Since the expected 

frequencies are generated from the geometric distribution, the deviations makes it 

clear that the full sample bear markets are duration dependent when TO is equal 

to one. A similar behavior is also observed in cases where r0 - 2 and T0 = 3. 

In fact, the Chi square test statistics convey that the null hypothesis of duration 

independence, is rejected such that positive duration dependence is evidence for T0 

{i, 2, 3}. On the contrary, for the case where T0 is four, the observed frequencies 

seems to be. Very close the expected frequencies suggesting that positive duration 

dependence is not very likely. In fact, as the Chi square test statistic suggests, there 
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is no sl;atistieal evidence for positive duration dependence ill hill sample bear markets 

when r0 is four. Using a similar argument, we observe, from Table 3.12, positive 

duration dependence in full sample bull markets when ro is set at 1 and 2 but not 

when r0 is set at 3 and 4. Table 3.13 and Table 3.14 concern the post WWII bear 

and 1)1111 markets respectively. There is evidence for positive duration dependence 

in the post WWII bear markets for all values of To under consideration. Oil the 

other han(l, we have evidence for positive duration dependence for post WI.iV1I hull 

markets only when T0 is equal three. 

In comparison to previous work, our results are somewhat different from the 

findings of Olin, Taylor and Pagan (2004), who, generally speaking, found strong 

evidence for positive duration dependence in bull and bear markets. However, 

the evidence duration dependence for pro WWII 1)1111 markets is still weak in their 

results. A logical explanation for the discrepancies is that; different, (lata are used 

in the analysis. Namely, the Olin, Taylor and Pagan (2004) study used a monthly 

S&P500 data set whereas the weekly Dow Jones Industrial Average is used in this 

study. As a note of caution, the danger of the small pre WWII sample remains 

problematic in the discrete tests since the small sample may decrease statistical 

power of our tests. 

3.5 Conclusion 

In summary, we find some evidence of positive duration dependence in bear and 

bull markets for the hill sample as well as the post W\VII sample using continuous 

and discrete time tests. However, there is 110 evidence for (luratioul dependence in 
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the pre WWII hear markets whereas there is some evidence for negative duration 

dependence in the pie WWII hull markets. As a remark, the results for the pre 

WWII samples should he questioned clue to their relatively sample size. In addition 

the results are sensitive to r0, which is related to the uncertainty of turning point 

identification. Further research is required to find out why that is the case. 
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Table 3:1 

Continuous Time Weibull Parametric Test for Bear Markets 

Minimum phase Full sample Pre WWII sample Post WWII sample 

.1 1.41814** 1.49323 1.36164** 

2 i.30373** 1.38065 1.24966* 

3 1.17355 1.24442 1.12285 

4 1.08924 1.42294 1.01033 

Note: p-valuc < 0.10; 2,-value < 0.05; ***2)_Valv., < 0.01 

Table 3.2 

Continuous Time Weibull Parametric Test for Bull Markets 

Minimum phase Full sample Pre WWII sample Post WWII sample 

1 1.37627101**1.13875 1.41279** 

2 1.31262** 1.08697 1.34618** 

3 1.24009K* 1.03099 1.26838** 

4 1.20828' 0.96813 1.25765* 

5 - 0.89061 

6 0.95500 

Note: *2)_?,(il?Ie < 0.10; ** p-value < 0.05; < 0.01 
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Table 3.3 

Discrete Time Zero Probability Limit Test for Bear Markets 

Miiiiiniin phase Full sample Pre WWII sample Post WWII sample 

I 

2 

3 

4 

2. 3570*** 1.0614 1.5061 

i.6268** 0.8115 0.9358 

0.9480 05616 0.3655 

0.2692 0.3116 -0.2048 

Note: "1)-valve < 0.10; p-value < 0.05; " p-value < 0.01 

Table 3.4 

Discrete Time Zero Probability Limit Test for 13ii11 Markets 

Minimiini phase Full sample Pre WWII simple Post WWII sample 

1 

2 

3 

4 

5 

2.0545** -0.3364 2.1485** 

1.7066* -0.4539 1.8591* 

1.3587 -0.5714 1.5695 

1.1080 -0.6889 1.2800 

- -0.8065 

6 _0.9240* 

Note: *1)_.valve < 0.10; 'k* p-value < 0.05; ***P_)all1e < 0.01 
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Table 3.5 

Discrete Time Method of Moment Test for Bear Markets 

I\'fininuun phase Full sample Pre WI,\TTI sample Post WWII sample 

2.6367** 1.1839 1.7850 

2 1.9588* 0.9340 1.2147 

3 0.2799 0.6841 0.6444 

4 0.6011 0.4341 0.0742 

Note: *7)_value < 0.10; ** p-valve < ü.üô, *** p-value < 0.01 

Table 3.6 

Discrete Time Method of Moment Test for Bull Markets 

NMI ninuiIII phase Full sample Pre WWII sample Post WWII sample 

2 

3 

4 

5 

6 

2.2265** -0.2782 2.2917* 

1.8786 -0.3957 2.0022* 

1.5307 -0.5132 1.7.127 

1.1827 -0.6308 1.4231 

- _0.7483* 

0.8658* 

Note: p-value < 0.10; * p-value < 0.05; ***p_,a,l?,,e < 0.01 
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Table 3.7 

Discrete Time Generalized Method of Moment Test for Bear Markets 

Minimum phase Full sample Pre WWII sample Post WWII sample 

1 

2 

3 

5.2130** -3.9682 -3.3563 

-3.7562 -3.1216 -2.2387 

-2.3938 -2.3250 -1.2001 

-1.1395 -1.5786 -0.240.5 

Note: *pval.u,e < 0.10; p-value. < 0.05; pvaluc < 0.01 

Table 3.8 

Discrete Time Generalized Method of Moment Lost for Bull Markets 

Minimum phase Th.ill sample Pre WWII sample Post WWII sample 

:i 3.9987* 0.2490 _4.2059* 

2 3.3243* 0.5121 -3.6251 

3 -2.6741 0.7637 -3.0602 

.1 -2.0479 1.0036 -2.5147 

5 1.2320 

6 1.4487k 

Note: *pval.u,e < 0.10; ** p-value. < 0.05; 'p-value < 0.01 
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Table 3.9 

Discrete Time SB Test; for Bear Markets 

Miiimum phase Full sample Pre WWII sample Post; WWII sample 

2 

3 

4 

0.0O166 0.00196 0.00127 

0.0012.5 0.0017 0.00080 

0.00070 0.00135 0.00019 

0.00033 0.00178 0.00038 

Note: p-va1lLe < 0.10; p-value < 0.05; **pva17!e < 0.01 

Table 3.10 

Discrete Time SB Test for Bull Markets 

Minimum phase Full sample Pre WWII sample Post WWII sample 

1 0.00042'** 0.00014 0.00050** 

2 0.00037* 0.00023 0.00045* 

3 0.00031 0.00034 -0.00040 

4 0.00027 0.00045 -0.00040 

5 0.00059 

6 - 0.00049 

Note: *p_value < 0.10; p-value < 0.05; *** p-value < 0.01 
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Table 3.11 

Goodness of Fit Test for Full Sample Bear Markets. 

ro=2 

Interval B 0 Interval B 0 

[0,1] 7.27124 0 [0,1] 7.74815 0 

[2,3] 6.37512 2 [2,3] 6.73062 8 

[4,6] 8.12028 15 [4,6] 8.47553 12 

[7,91 6.66639 12 [7,9] 6.86204 10 

[10,1,'3] 7.06996 5 [10,13] 7.16176 5 

[14,181 6.58432 7 [14,18] 6.53378 7 

[19,25] 6.23953 11 [19,2:5] 6.02575 11 

> 25 10.67313 7 > 25 9.46235 6 

v2 (6) 25.89817 (0.00023) x2 (6) = 16.94706 (0.00948) 

r0=4 

Interval E 0 Interval B 0 

[0, 1] 8.29188 2 [0, 1] 8.91755 8 

[2,3] 7.12654 8 [2,3] 7.56971 9 

[4,5] 6.12497 :10 [4,5] 6.42559 7 

[6,8] 7.61195 10 [6,8] 7.86417 7 

[9, 11] 6.06504 4 (9,111 6.15040 4 

[12,15] 6.21431 5 [12,15] 6. 16808 6 

> is 16.28423 20 [16,21] 6.176.57 10 

- >21 9.72786 8 

x2 (5) - 9.87037 (0.07899) x2 (6) = 3.94110 (0.68465) 
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Table 3.12 

Goodness of Fit; Test for Full Sample Bull Markets 

Interval E 0 Interval E 0 

[0,3] 7.73088 1 [0,2] 6.10191 1 

[4,7] 6.71789 5 [3,6] 7.16569 5 

[8,12] 7.17336 6 [7,10] 6.19501 5 

[13,171 6.01835 12 [11,151 6.57733 13 

[18,24] 6.83355 11 [16,21] 6.46506 9 

[25,321 6.00627 5 [22,29] 6.69196 7 

[33,441 6.36776 9 [30,391 6.04071 7 

[45,64] 6.13099 5 [40,55] 6.07407 6 

> 64 6.02083 5 > 55 7.68813 6 

v2 (7) 16.6:1533 (0.02005) .2 (7) = 12.95453 (0.07322) 

= 3 TO = 4 

Interval E 0 Interval E 0 

[0,2] 6.31957 3 [0,2] 6.55323 4 

[3,6] 7.38591 5 [3, 6] 7.61972 6 

[7,101 (3.35039 4 [7,101 6.51269 5 

[11,15] 6.70098 12 [:11,15] 6.82684 10 

[16,21] 6.53730 9 [16,21] 6.60635 10 

[22, 29] 6.70274 7 [22,29] 6.70452 5 

[30,401 6.45973 7 [30,40] 6.37280 8 

[41,56] 6.18717 6 >40 11.80367 11 

> 58 6.35606 6 

. (7) 8.58646 (0.28373) k'2 (6) 5.81223 (0.44455) 
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Table 3.13 

Goodness of Fit Test for Post War Bear Markets 

2 

Interval E 0 Interval E 0 

[0,21 

[3.5] 

[6,9] 

[10,141 

[15,221 

> 22 

7.97032 0 

6.49297 9 

6.82499 15 

6.28381 2 

6.49716 9 

8.93075 8 

.2 (4) 22.7119 1 (0.00015) 

[0,2] 8.49333 1 

[3,.5] 6.81573 13 

[6,9] 7.04108 10 

[10,14] 6.33980 4 

[15,221 (3.35212 9 

> 22 7.9.5784 6 

= 22.7119:], (0.00313) 

'To = 3 TO = 4 

Interval E 0 Interval E 0 

[0,11 6.29607 1 

[2,11] 7.75859 13 

[5,7] 6.11855 10 

[8,11] (3.19523 2 

[12,17] 6.28811 5 

> 17 10.34338 12 

.2 (4) 13.82617 (0.00786) 

[0,11 8.06341 7 

[2,3] 6.55135 7 

[4,6] 7.59734 10 

[7,101 7.06535 2 

[11, 16] 6.36267 5 

16 7.35986 12 

.2 (4) = 7.77959 (0.10000) 
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Table 3.14 

Goodness of Fit Test for Post War Bull Markets 

Interval E 0 Interval E 0 

[0,11 6.48857 3 [0,4] 6.69003 3 

[5, 10] 6.50728 3 [5,10] 6.66884 4 

[11, 171 6.14111 10 [Ii, 17] 6.24871 10 

[18, 26] 6.08621 8 [18, 26] 6.13887 7 

[27,39] 6.15830 8 [27,39] 6.13808 9 

<39 11.61844 11 <39 11.11531 10 

(4) = 7.37627 (0.11729) x2 (4) = 6.92248 (0.14004) 

Tü4 

Interval E 0 Interval E 0 

[0,'i} 6.90436 4 [0,4] 7.13284 4 

[5, 10] 6.83807 3 [5, 10] 7.01547 5 

[11,17] 6.35844 11. [11,17] 6.47008 10 

[18,26] 6.18844 6 [18,26] 6.23420 6 

[27,39] (3.10940 9 [27,39] 6.07120 8 

>39 10.60120 10 >39 10.07608 10 

2 (4) = 8.17172 (0.08549) ,.2 (4) 4.50299 (0.34219) 



Chapter 4 

Modelling the Hazard Function in the Discrete 

Time Framework 

4.1 The Basic Discrete Time Hazard Model 

As a complement to the duration dependence tests, it is useful to model the hazard 

functions of bear and bull markets to get a visual confirmation on how the hazard 

probabilities behave over time. Furthermore, modeling the hazard functions will also 

enable its to determine how hazard probabilities are affected by exogenous variables. 

Research on duration modeling is performed using a continuous time framework 

where time is assumed to 1)0 observed continuously - see Lawless (1982), halbfleisch 

and Prentice (1980) and Lancaster (1990) for detailed outlines on such modeling 

techniques. However, as noted previously, the continuous time assumption is not 

valid for our application where time is measured is discrete intervals such as clays, 

weeks, nionths, et:c. In this chapter, we will discuss conventional discrete time 

techniques as outlined by Allison (1982) and Singer and Willet (2003). 

Consider 1 1,2,3, ... time periods and i = 1.2, ..., n. observed bull niarkets 

beginning at 1 1. Further, let 11 be the time period when the i11' bull market 

terminates. In addition, let x1 be a vector of k covariates that influence the duration 

of the i!" l)ltll market. Now the hazard probability of the i bull market is the 

conditional probability that it will not be observed at I + I given that it has already 

44 
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lasted t periods. A set of these hazard probabilities as a function of time is defined 

as the hazard function. Formally, it is written as 

hit = P (Ti == tITi ≥ to q) (4.1) 

such that the hazard function is a mapping of rea.l values into the probability space. 

The behavior of this map is of crucial importance. For example, if the hazard 

function increases with time, then the risk of a. bull market terminating rises with 

respect to time suggesting positive duration dependence. If, on the other hand, the 

hazard function is flat with respect to time then there is evidence for zero duration 

dependence. Lastly, there is evidence for negative duration dependence if the hazard 

function is a decreasing function of time, which in turn suggests that longer bull 

markets are at lower risks of termination. 

At first glance, one may be tempted to use a linear probability model to model 

the hazard function. Unfortunately, hit is not bounded in the linear probability 

model. Using the linear probability model will lead to logically impossible results 

such as h.. 1 > 1 and hit < 0. However, this is not to say that a linear setup 

should be abandoned. Rather, we need to transform hit such that a linear model of 

the traiisfornued h1 will lead to plausible results. One such transform is the logit 

transform - see Cox (1972), Brown (1975) and Thompson (1977)1. Mathematically, 

the logit transform is written as 

logit/i tit = In (   
\. 1 -  hit) 

(4.2) 

'Cox (1972) used the logit link in the continuous time context. Brown (1975) and Thompson 
(1977) used the logit link for discrete time modeling. Nevertheless, the discrete time model 
converges to its continuous conlerpart for sufficiently small time intervals (Thompson. 1977). 
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where is the odds ratio. To model logith as a. function of time and covariates, 

we investigate the logit model 

logith = 'yo,t + "fXi (4.3) 

from which we can obtain the hazard function using the logit link 

(1ogith 1) = h.11 -_ 1 (4.4) 
1 + CXJ) (—'yo,t - 

The advantage of using the logit link is that it results in plausible hazard probabilities 

even when logith it is not bounded. For extremely negative logithit values, equation 

(4.4) still leads to positive probabilities because lirn1ogj.._ hit = 0. On the other 

hand, extremely large values of 109ithit will lead to hazard probabilities that are very 

close to one because limi git.+ 1. 

The model specified by equation (4.3) can be broken down into two components. 

First, yo,j is a sequence of parameters that defines the baseline logit hazard function. 

In fact, each Yet represents the logit hazard at each time period t. For example, 

is the logit hazard at period 1, 70,2 is that logit hazard at period 2 and so forth. Note 

that 70,t can take on any real values such that the functional form of the baseline 

logitt hazard function is not explicitly defined under this specification. The purpose 

of this Setup is to add flexibility to the model by allowing the data to "speak for 

itself" such that the trite shape of the hazard function can be revealed. 

To better illustrate this, we adopt the expanded form of the model that is de-

scribed in Singer and Willet (2003) where the subscript i is dropped for simplicity. 

Let D1 he the tinie indicator dummy variable that takes on unity in. the time period 

it represents and zero elsewhere. Further, let t range from one to J such that we 
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can write the OXI)ande(l hazard as 

logith1 = ['y01Di + 702D2 + ... + 70jDj] + (4.5) 

where the terms in [] define the baseline group. We ignore the effects of the co-

variates a: (i.e. a: = 0) such that each mt acts as multiple intercepts for each time 

period. For example, only .D1 is unity in period 1 such that logith1 = 'y0 , only D2 

is unity in period 2 such that 1ogith2 = 'Y02' and so forth. Clearly, the sequence 

f70,11 70,2' ---, ^IO,Jl , when taken together, represents the values of flexible baseline 

logit function at each period. It is also possible to extract the direction of duration 

dependence from the sequence of 'm's. In particular, there is evidence for definite 

negative duration dependence when > 'm, > > -yo,/. On the other hand, pos-

itive duration dependence is evident when 'Th,i < 'm, < < yo, is observed. More 

importanily the logit hazard need not be well behaved. For example, the hazard 

function may he U-shaped if > 'm, > > 'm,1-. < 'Th, < 70,m.i1 < < 

Finally, there is zero duration dependence if 'Yo,i = 70,2 = = 'yo,j. To be coni-

plete, the hazard function in terms of probabilities may be obtained by calculating 

1/ (1 + CXI) (— 'me)) for each period. 

The second component of equation (4.3), defines the impact of the covariates 

on the logit hazard function. Let there he one dummy covariate, x1, such that we 

can write 

logith IN, I '1 + 'y0,2D2 + ... + 'y01Dj} + 'YiXi (46) 

Using this specification, the covariate effect is the same across all time periods such 

that; the covamiate's effect-, is proportional. In particular, the logit hazard, when 

i i5 'Yo, + po'jwl ' 'm, + 'y1 in period 2, 70,3 + 'Yi in period 3 and so 
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forth. Now, the sign of " is of crucial importance. Specifically, the logit hazard 

is lowered when 'y1 is negative suggesting that the probabilities of termination of a. 

bull market are lowered as a. result of the presence of a;1 for every point in time. 

Conversely, the hazard probabilities are raised for every point in time when 'y1 is 

positive. However, the effect of x1 need not be restricted to the proportionality 

asslunptiol) ht may vary over time. To accommodate this we can rewrite equation 

(4.3) as 

logith 'Th.t + 

so that the simplified expanded model becomes 

(4.7) 

1ogith1 = [ ),[.Dl + 'y02D2 + ... + + ['yi,1xiDi + 'y1,2x1D2 + ... + 'yi,ja;iDj] 

(4.8) 

Under the new specification in equation (4.8), each of theyi.t represents the impact 

of a;1 in each period t. As such the logit hazard, with the presence of xi, is  

in period 1, 'Y02 + 'Yi,2 in period 2, 'Yo3 + 71,3 in period 3 and so forth. Like the 

'o,'s the sequence of 71,, Is may take on any real values. In particular, the effect of 

the covariate decreases over time when we observe -y l,,  'y1,2 > ... > 'y,. Likewise, 

the eovariat&s effect may be increasing over time when 'y < 'y < ... < If 

'y then the proportionality assumption on x1 is valid. Basically, 

the flexible assumption allows us to capture the erratic behavior of the 'Y's that 

would never be captured if the proportionality assumption is used right off the back. 

The estimation of equation (4.4) utilizes the maximum likelihood method where 

we seek a set of model parameters that maximizes the model's likelihood of observing 

the data. Assuming that the standard maximum likelihood asswnptions hold (see 
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Arja.s and Haara [987), the corresponding likelihood function for the problem is 

given by 
71 

where 

LfJP(T1=t)P(Ti > ti) lYi 

t- I 

(4.9) 

P(T1 ._/;) =hit ff(1—h) (4.10) 

P (Ti> t) = 11 (1 -  

and yi is a binary variable that is unity if the jt/L bull market terminates at t 

and zero otherwise. We call the variable yj the failure indicator. For example, 

a vector of duration data f 2 3 2 ] in terms of a vector of failure indicators is 

1 0 0 1 0 1]. - 

The ma thoinatics b hiucl equation (4.9) is quite messy. However, we can make 

the mathematics more. tractable by using the loglikelihoocl function. The corre-

sponding loglikel ihooci function is 

n tZ. 

In (1 - h) (4.12) 
i=1 j=l 

which is obtained by substituting equations (4.10) and (4.11) into the natural log 

of equation (4.9). Since the hazard probability may be expressed as a function of 

parameters as in equation (4.4), we can obtain estimates for the model parameters 

by maximizing equation (4.12) with respect to 'Yot and 'y . This operation can 
be perfoiniecl ly the niuiierica.l procedures preprogrammed in standard statistical 

software that are capable of logit regressions. 

However, it is worth mentioning that the basic discrete time duration model is 

not flawless. For data sets with large number of intervals, the num m ber of para-
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eters in the model for modeling the time effects alone becomes very large. This 

becomes problematic because it may lead to maximum likelihood estimates  that (10 

not converge. Also, data can often be sparse at large t's because extreme events 

are usually rare such that maximum likelihood estimates may not exist for those 

time periods. Several authors such as Mantel & Hankey (1978), Efron (1988) and 

Yamaguchi (1993) have suggested the use of piecewise polynomials to overcome, these 

hurdles. However, we do not advise on their approach because it may overlook the 

abrupt changes in the true underlying hazard function. Rather, a. more sophisti-

cated nonparametric approach is required. We will discuss such an approach in the 

next section. 

4.2 The Dynamic Discrete Time Hazard Model 

We concluded the previous section by stating some obvious problems of the basic 

discrete time duration model and that a new approach is required for modeling 

discrete time duration data. Here, we introduce a dynamic discrete time duration 

model (dynamic model for short) that applies state space techniques to duration 

data - see Fahrmeir (1994) and Fahrmeir and Wagenpfeil (1996). This approach 

is preferred for two reasons. First, unlike the Mantel and Hankey (1978), Efron 

(1988) and Yaanaguchi (1993) type models, the dynamic model is nonparametric in 

the sense that there is no predefined functional form for the hazard function. This 

flexibility allows its to capture important abrupt changes in the hazard function. 

Second, the clyna.niic model allows estimation and smoothing of the hazard function 

'The problem becomes worse if we are to model the time effects as well as the time varying 
effects of covariates, 
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and covailate eltCcts simultaneously, which can be clone through semi-Bayesian or 

fully Bayesian methods. This characteristic allows us to overcome the maximum 

estimation problem as a. result of over parameterization in the basic model. 

To setup the dynamic model, let r1t, with i and I ≥ 1, he risk indicators defined 

by 

1 if the i1 run is at risk of termination at t 

0 otherwise 

such that the vector r1 = (Vi, i ≥ 1) is the risk vector and the risk set Rt contains 

all runs that are at risk of termination at t. Furthermore, let xt and Vt be vectors 

of all xil and Vii that belong to the risk set respectively. Formally, we can write 

a;t = (:r, i E R1) and Vt = (Vii, i E Re). The histories of covariates, failure and risk 

indicators up to time period t are simply given by x = (x1, ...,x1), y = (vie ..., v) 

and t (v1, ...,rt). 

The. dynamic nature of the model comes from the fact that the conditional prob-

ability of failure is based on historical information. Namely, we seek to model 

P x,*, r, y, , Q) where Q is the covariance matrix of the transition equa-

tion. In relation to state space nomenclature, we define equation (4.'i) as the mea-

surement equation of the system3. To make the notation more compact, we can 

rewrite the measurement equation as 

F (zit-11) (4.13) 

where F is the logit link function, z, is the design matrix and -It is the state vector 

that contains the baseline parameter 'Yot, as well as the time varying effects of co-

:'The measurement equation relates observation to the underlying state of the system - see 
Chatfield (2004) for further details regarding state space terminologies. 
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variates 'Ytt• Now, to model the stochastic variation of the baseline group and time 

varying effects of the covariate, we need to make assumptions on how the parameters 

evolve through time. The simplest assumption is that the dynamics of the state 

vector follows a (list order random walk process such that the transition equation 

may he written as 

PcE11 + & (4.14) 

where I is an identity matrix and is white noise that is normally distributed with 

mean U and variance Q. 

To illustrate this setup, consider the case where there is only one covariate z11. 

Thus, the design matrix is simply z = [ 1 x1it I and the state vector is just 

= [ o,t 71.1 ]. The first order random walk transition model for this case in 

its expanded form can simply be expressed as 

71,1 

10 

01 

'Yost-i 

'Yi,t-i 

+ (4.15) 

with )t and , assumed to be white noise. It is also assumed that N (0, 

and IV (0, o). In case we want to impose the proportionality assumption, 

we can pin (town the time varying effect of XL by forcing (72 1 to zero. However, the 

proportionality assumption will not be considered in this thesis. 

Before describing an estimation Procedure, it is necessary to specify some as-

sumptions concerning conditional independence so that we can specif the model 

in terms of joint densities. First, given xit and 'y,, the current individual failure 

indicators jjt (10 not depend on 'y and Q such that 

P (;di.1 " 'yb, ,y,1, Q) P  
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This suggests that the conditional information of 'y on Yt is already reflected in 

alone. Second, given y_1, 4, 4 and Q, the failure individual indicators Yit that 

belong to the risk set Ri are conditionally independent such that 

P (ytIy_i ,x,?, 'It , Q) = IT P (yitIyi,xt,4)It) 
iERt 

or 

ht = H 
iERj 

This assumption is just a weaker form of Assumption 2 found in Arjas and Haara 

(1987), which is unconditional in nature and is likely to hold if a common cause 

of failure is included in the covariate process Thirdly, we assume that the model 

parameters follow a Markov process such that 

(7tI'y1_1,y_1,x,4,Q) = P (7tb'-1) 

Forth, conditional on y 1, x* and 4_1, the covariates Xt and risk indicators rt 

do not depend on 'y and Q. This assumption is identical to Assumption 1 in 

Arjas and Haara (1987) and is likely to hold for external covariates as well as time 

independent covariates. Finally, it is assumed that the white noise sequence is 

independent of the initial states of 'yr, ..., yj, x1 and r1. Together, the assumptions 

imply that 

* P (ytjyt_i* ,xt,r * ,'y *,Q) = H P(yx,'y1) (4.16) 
iERt 

In order to estimate the model parameters, namely 'ye, let the g0, Qo and Q he 

known and fixed for the moment. A full Bayesian estimation for -/j would require 

the computation of the posterior density P ('yJy, x, v), which is not observed. For 

low dimensional problems, traditional Monte Carlo techniques will suffice. However, 
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for high dimensional problems, the Monte Carlo method becomes infeasible and the 

Markov Chain Monte Carlo (MCMC) scheme is required. The MCMC will he 

examined in further detail in the next chapter. 

Prior to the development of the MCMC, Fahrmeir (1992), Fahrmeir and Wa-

genpfeil (1996) and Timmermann and Lunde (2004) use a semi-Bayesian approach 

to estimate the model by focusing on the posterior mode of the parameters rather 

than the posterior density'. In order to apply this, one must repeatedly apply Bayes' 

theorem to the posterior density to get 

J J 

P('yJy,x,r) 0(111 [f P(y1t x,'y) >< fJP(yIctt....i)P('y0) 
t1 iERt t=i 

(4.17) 

Given this proportionality, maximizing the posterior density is analogous to maxi-

mizing the right hand side of equation (4.17). 

Taking the natural log of the right hand side of equation (4.17) and applying 

the measurement and transition equations results in the penalized log-likelihood 

function, we can obtain 

.1 

PL(7) = l() — - 9o)'Q' ( 90 

Where 

t1 icR 
(- — 7t--i) 'Q -1 (7t 'Yt—i) 

lit (7t) Yit In F (zt7t) + (1 - yit) In (1 - F (zt7t)) 

(4.18) 

('.1.19) 

is the individual log-likelihood contribution. The maximum likelihood solution for 

equation (4.17) is simply the conditions at which the posterior density is maximized. 

'W'ith c = a* = (, c ..... c',)'. the posterior mode estimate is just a = (a 1j, a 1, .... 

which is identical to arg inax {p (ay *,, x7. r) )} or the maximum likelihood for the posterior density. 
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However, one can move away from the Bayesian context by focusing directly on 

the penalized log-likelihood function. The first term of equation (4.18) accounts for 

the goodness of fit between the state vector and the data. In general, the higher its 

value, the better the fit. But, as always, goodness of fit may come with a penalty. 

For example, there may be a set of candidate state vectors, say {5}, that fits the 

data very well but the deviation between successive state vectors are too large. In 

such an event, the resulting estimates of state vectors may he too jagged and erratic 

such that useful statistical inference cannot he obtained. In order to prevent this, 

the last two terms of equation (4.18) penalize large deviations such that {} will 

lead to a low penalized log-likelihood value. In other words, the goal of the penalized 

log-likelihood is to find an optimal balance between goodness of fit and smoothness 

such that the value of equation (4.18) is niaximizeci. 

A numerical solution for equation (4.18) requires sophisticated algorithms. For 

instance, Fahrmeir (1992), Fahrmeir and Wagenpfeil (1996) and Timmermann and 

Lunde (2004) use an iteratively weighted Kalman filter and smoother. This method 

is based on the recursive fisher scoring scheme (Fahrmeir and Kaufmann, 1991). 

Althought, in practice, the hyperparameters g, Qo and Q need not be known. In 

fact, the unknbwn hyperparameters may he estimated via a EM-type scheme by 

setting initial conditions on g, Qo and Q (Fahrmeir and Goss, 1992). However, 

they are treated as being deterministic in this semi-Bayesian framework. Allowing 

the hyperparameters to be stochastic will bring the problem from a semi-Bayesian 

setting to a fully Bayesian setting where the MOMO is required. Finally, the prior 

specification in equation (4.18) need not be a first order random walk as it is possible 

to impose any AR(p) process (Fahrmeir and Lang, 2001) while random walk models 
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with a local trend may also be used. 

4.3 Markov Chain Monte Carlo 

Estimation of the dynamic model via posterior mode is merely a semi-Bayesian 

approach. For a method to qualify as a fully Bayesian approach, it must he able to 

estimate at least the first and second moments of the posterior density such that the 

hyperparameters are considered to be stochastic random variables. As mentioned 

in the previous chapter, fully Bayesian inference requires the use of the MCMC 

scheme. The purpose of this chapter is to provide a brief discussion concerning the 

MCMC and its application to the dynamic model as outlined by Fahrmeir and Knorr-

Held (1997), Fahrmeir and Tutz (2001) and Tsay (2002). For in depth discussions 

on MCMC and related topics, we advise the reader to consult Casella and George 

(1992), Chib and Greenberg (1995) and Gilks, Richardson and Spiegelhalter (1996). 

Bayesian inference utilizes Bayes' rule to obtain a solution for the moments of the 

posterior distribution of interest. To illustrate this, let 0 he an arbitrary vector of 

parameters that belongs to the space 0. According to Bayes' theorem, given data. 

D, the posterior distribution P (OlD) assumes the proportionality 

P('OID) - - P(DJO)P(0) oc 
JP(DJO)P(0)clo P(DJO)f(0) (4.20) 

with P (D!O) being the likelihood of observing D given 0. Given this, the first 

moment of the posterior distribution is 

E(OJD) - - JOP(DJO)P(0)cl0 
JP(DJO)P(0)do (4.21) 
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such that its solution requires numerical integration5. As stated previously, if 0 is of 

high dimensions (i.e. above 20), the integrals become complex such that conventional 

methods such as the Monte Carlo is infeasible. 

An alternative to the Monte Carlo is the MCMC. The general idea of the MCMC 

is to simulate a Markov chain on e that eventually converges to P (OJD) upon a 

sufficient number of repetitions. The nature of P (OJD) is extremely complicated in 

high dimensions but we can make computation more tractable by examining its full 

conditional counterparts by subdividing 0 into components. 

For illustrative purposes, let 0 he a three component vector such that 0 = 

[ 01 02 03 ]. The full conditionals for this case are 

P1 (01102,03,D) , P2(02J01,03,D) , P (03101,02,D) (4.22) 

Using the Gibbs sampler (Geman and Geman, 1984), we make updates on each of 

the full conditionals by repeatedly sampling the sub vectors from their corresponding 

full conditionals. First, we choose some initial values (0 0), 00), 00)) and draw the 

first set of subvectors (o) , 01), 01)). Next, using ( 1)0), 0 , 01)) we draw another 

set of suhvectois (or), 02), o2)). By repeating this process k times, a sequence 

0(1) 0(1) 
oI)) , (0(2) 0(2) O 2)\ or)) 1'2 

is obtained. By setting k to a sufficiently large number, the Markov chain theory 

predicts that (or, o) will eventually converge in distribution to (01, 02, 03). 

Of course, the example can be expanded to an n-dimensional 0 such that we sample 

'The second moment is built on the first moment via a mon-tent generating function. Thus. 
a numerical solution for the second moment of the posterior distribution also requires numerical 
integration. The same is true for higher moments of the posterior distribution. 
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1om (or . ..., it )  It should he noted that the Gibbs sampler is implemented 

only when the full conditionals are a well defined. In reality, it is often the case that 

there are no closed form solutions for the full conditionals such that other algorithms 

are needed. 

A popular alternative to the Gibbs Sampler is the Metropolis-Hasting (MH) 

algorithm. The difference between the MH algorithm and the Gibbs Sampler is that 

not all proposed update (or, 0, ..., o) from the MH algorithms are accepted. 
Instead, the update is accepted if the acceptance probability of it lies in a particular 

range, say 30% to 100%C. 

To demonstrate this formally, consider the full conditional of the component 

vector Oj. On the kth updating step, a proposal 01 is proposed by the transition 

kernel' P (0 0; 0203). Now, the acceptance probability, 51, is just 

J, =min 1 . P(0j0203)P(O —01;0203) (423) 
'P(0110203)P(01 . O1; 0203) 

If J1 lies in range (i.e. the second argument is between 30% to 100%), then the 

proposed update will be accepted. Otherwise, another proposal must be generated 

until 51 is within the proper acceptance probability range. Finally, it is easy to see 

that the Gibbs Sampler is just a special case of the MH algorithm. In fact, the 

Gibbs Sampler specifies 

f (0 - 0; 0203) = f (0j0, 03) 

such that equation (4.23) collapses to unity suggesting that all proposals are ac-

('This range is dependent on the programming of the software. The BayesX software has an 
average acceptance probability between 30% and 70%. 

'The transition kernel is actually defined by the transition model. 
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cepted. 

In the context of the dynamic duration model with first order random walk 

transition, the parameter vector 0 consists of 'y and Q. Since the hyperpararneters 

are now considered to be stochastic, the posterior distribution in equation (4.17) 

must be rewritten as 

J .1 

cc 11 11 P(ytJxt, -y1) x 11  (71l7...1,Q)P(Q) 
t=1iER 

where 

is equivalent to P (DIO) and 

1111 P(y1Jx,'y) 
t1 !F 

ft P (. ,Q)P(Q) 

(4.24) 

(4.25) 

(4.26) 
t=1 

is the prior distribution for the unknown parameters. With the posterior distribu-

tion redefined, the full conditional for the time varying parameters 'y results in the 

proportionalit 

P("tI'y8,Q,y,,x,c,) cc xP('yI'y 5,,Q) (4.27) 

where RER, P (YitXit, ') is defined by the measurement equation and P Q) 

defined by the transition equation. In accordance with the first order random walk 

transition model, P ('yJ'y, Q) is identical to N (It, >2k) where 

AT Ott, >) = 

N(y +1 ,Q) (t=1) 

N 2 2 + t+i,  

N ('y Q) (I; = J) 

(4.28) 
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In light of Knorr-Held (1996), -11 is updated by drawing on the conditional dis-

tribution P ('tIa, Q) via the MH algorithm. The acceptance probability in this 

case is just 

= min {i P (ytIc)  

P(ytlat) (4.29) 

where P (ytl'yt) is given by FJER, P (ydxit, 'It). Again, the ö must he greater than 

30% for the proposed yt to be accepted as an update. 

Now, recalling that Q is not defined in the measurement equation, it is necessary 

to make some assumptions on Q. The 11111 conditional for Q is simply 

P(QI,y * \ ,j,Xj,* Cj*) P(QI) (4.30) 

such that the updating of Q is relatively simple if Q is distributed according to 

an inverse gamma prior IC (a, b). Specifically, when Q is distributed according to 

IC(a,h), we have 

Q cc exp I 
- zl• ) 

(4.31) 

However, there is still no consensus concerning the hyperparameterization for the 

above but; many researchers find that small values for a and b work well. Since the 

results from the MCMC may be sensitive to the selection of the hyperparameters, it 

is necessary to try out various combinations of them to see whether the results are 

significantly diflèrent across the different sets of hyperparameters. 

Finally, it is important to ensure good mixing properties and convergence in the 

simulation of the Markov chain. The convergence component is ensured by the 

BayesX software because the program will not stop resampling until convergence 

is evident. Normaily, however, this property is checked by examining the time 

series plots of the parameters. Mixing properties can he examined by checking 
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the autocorrelation functions of the parameters. Specifically, low values of the 

autocorrelation function indicate good mixing properties. It must be noted that 

each of the parameters must be checked. For a case where we are only studying 

the time effect, it is necessary to check all J autocorrelation functions (one for each 

time parameter). Once these two characteristics are ensured, the simulation results 

for 'y and Q is equivalent to the marginal distributions P ('yjz, y, c) and P (Q x, y, c). 

These marginal distribution are used to estimate the posterior distribution from 

which the hazard function and covariate effects are calculated. 

4.4 Empirical Results: Hazard Functions of Bull and Bear 

Markets 

4.4.1 Modeling the Time Effect 

To complement the findings from the duration dependence tests, we seek to model the 

underlying hazard functions of the bear and hull markets using the dynamic model 

with first order random walk transition. In particular, if there is positive (negative) 

duration dependence, then we will observe generally upward (downward) sloping 

hazard functions. Otherwise, if the processes of interest are duration independent, 

then 'the hazard functions will appear relatively fiat. Specifically, we are investigating 

the hazard specification 

hit = F' (Yo) (4.32) 

where P (.) is the logit link function and -yo, are the time parameters. 

Using the BayesX software, we estimate and plot the hazard functions with their 

±1 standard error bands on the logit scale for bear and bull markets for all the 
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samples using the MCMC technique. Since the results may be dependent on the 

choice of Imyperparameters, we select three sets of hyperpara.meters - a = 0.001 

h = 0.001, a = 1 b = 0.005 and a = 0.0001 b = 0.0001. Then, we apply them to each 

data set in order to see whether the results differ across hyperparameters. To check 

for mixing properties, we also plot the autocorrelation functions for the results. 

However, it must be noted that checking all autocorrelation functions for each 

data. set can be a daunting task! For example, if the number of estimated parameters 

for one data set is 40, then it will be necessary to examine all 40 autocorrelation 

functions. To avoid confusion, the mean autocorrelation function and the maximum8 

autocorrelation function are examined instead. Finally, the figures are arranged in 

sets for three unless stated otherwise. For example, Figures 4.1 through 4.3 plot the 

results for the pre WWII hull market data, set while Figures 4.4 through 4.6 plot; the 

results for the post WWII bull market data, set. In particular, the first of the three 

figures clepiets results for a = 0.001 b = 0.001, the second depicts results for a = 1 

b = 0.005 and the third depicts results for a = 0.0001 b = 0.0001. 

Figures 4.1 through 4.3 plot the results for pre WWII bull markets. From panel 

a of the figures, it is quite clear that the general shape of the hazard functions are not 

sensitive to the choice of hyperpararneters. On the other hand, the mixing properties 

are quite sensitive to the choice of hyperpa.ra.meters as indicated by Panel b of the 

figures. For example, Figure 4.3 has mean and maximum autocorrelation functions 

that are higher in value than Figures 4.1 and 4.2 suggesting inferior mixing properties. 

'The mean autocorrelation function is the average of all the autocorrelation functions. The 
purpose for this is to get an idea of what the average mixing property is like. The maximum 
autocorrelation function is the one that has time largest values. The purpose for it is to get an idea 
of what the worst mixing property looks like. 
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Alternatively, Figure 4.2 is inferior to Figure 4.1 such that the hyperparameter set 

a = 1 b = 0.005 has superior mixing properties. 

Figures 4.4 through 4.6 plot the results for post WWII bull markets. Again, the 

general shape of the hazard functions are not too different across the different sets 

of hyperparameters but the mixing properties behave otherwise. For this sample, 

it is clear that Figure 4.4 is superior over Figures 4.5 and 4.6. In particular, the 

maximum aittocorrelation function in Figure 4.5 is very unsatisfactory as the function 

seem quite persistent. In sum, the optimal hyperparameter set for post WWII bull 

markets is a = 0.001 h = 0.001. 

Figures 4.7 through 4.9 plot the results for full sample bull markets. Once again, 

the general shape of the hazard fi.mctions themselves are insensitive to the choice of 

hyperparaineters while mixing properties remain sensitive. In particular, Figures 

4.7 and 4.9 are inferior to Figure 4.8 as their maximum ai.itocorrelation functions are 

slow in their decay. As such the optimal hyperparameter set for this case is a = 1 

h = 0.005. 

Figures 4.10 through 4.12 plot the results for pre WWII bear markets. The 

general shape of the hazard functions are more or less the same across the different 

sets of hyperpararneters. As for mixing properties, it can he seen that Figure 4.11 

is superior to Figures 4.10 and 4.12. In particular, Figure 4.12 displays the worst 

mixing since the mean as well as the maximum autocorrelation functions are very 

slow in their decay. In sum, the hyperparameter set a I b = 0.005 has superior 

mixing properties. 

Figures 4.13 through 4.15 portrait the results for post WWII bear markets. 

Again, the general shape of the hazard functions across the different hyperparam-
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eter sets while the mixing properties seem different. Judging by the maximum 

autocorrelation functions alone, it is difficult to draw conclusions on the optimal 

hyperparameter set since all maximum autocorrelation functions are slow in their 

decay. As such, the decision rests on the niean autocorrelation functions. Specifi-

cally, as indicated by the figures, the optimal hyperpararneter set is a = 1 h = 0.005 

because it; produces the mean aiitocorrelation function with the lowest values. 

Figures 4.16 trough 4.18 plot the results for full sample hear markets. Once 

again, the general shape of the hazard functions and the maximum autocorrelation 

functions are quite similar across the different hyperparameter sets. Thus, the 

decision rests on the mean autocorrelation functions. From Panel b of the figures, 

it is evident that the optimal hyperparameter set is a = 1 b = 0.005 because it 

produces the mean autocorrelation function with the lowest values. 

To complement the duration dependence test results and to make the results more 

interpretable, we compare the bull and bear hazard functions across the different 

samples on the probability scale. Figure 4.19 plots the mean bull market hazard 

functions for the pre WWII, Post WWII and full samples on the probability scale 

using optimal hyperpararneters. Notice that positive duration dependence for the 

post WWII sample is evident as its hazard function is almost always increasing. In 

particular, the chance for bull market termination starts at about 36% in week 1 

and eventually rises to about 58% by week 104. This finding is somewhat consistent 

with the duration dependence test. 

Although not obvious, the full sample bull hazard function also exhibit positive 

duration dependence. In particular, the function starts at a hazard probability of 

47% in week 11 and then rises to a probability to about 50% in week 20. After that, 



65 

the hazard probability slowly decreases to 47% by week 53 and then rises to an all 

time high probability of about 52% by week 104. In general, the full sample hull 

hazard function is an increasing function, which is consistent with some of the test 

results. The pre WWII bull hazard function, on the other hand, does not seem like 

an increasing function. Starting at a hazard probability of about 50% at week 1, 

the function rises to about 55% at week 25 and then falls to a hazard probability of 

about 45% by week 70 or so. Beyond week 70, the hazard function returns to the 

probability of about 50% at the terminal. Since the function fails to reach a. high (or 

a. low) at its terminal, we argue that it fails to exhibit positive duration dependence 

as suggested by weak evidence from the statistical tests. 

Figure '1.20 l)10t5 the hear market hazard functions for the pre WWII, post WWII 

and full samples on the probability scale. The post WWII and full sample hear 

hazard functions behave erratically with time. However, both of them manage 

to attain all time highs at the functions' terminus. As such, we argue that both 

functions exhibit positive duration dependence, which is consistent with some of the 

statistical tests. On the other hand, the pre WWH bear hazard function consistently 

increases with time. For example, starting at a hazard probability of about 44% 

in week 1, the hazard probability rises steadily to about 55% by week 41. Thus, 

the pro WV'/II bear hazard function suggests positive duration dependence, which is 

different from the statistical tests. We argue that the discrepancy is a result of poor 

sample size of pro WWII bear markets. 
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4.4.2 The Impact of the Business Cycle on Bull and Bear Markets Haz-

ards 

There is very little theoretical guidance to the choice of covariate variables for model-

ing bear and bull markets hazard functions. However, it is commonly believed that 

stock price movements are sensitive to the underlying economic environment. For 

instance, Chen el al. (1986) find a positive relationship between industrial produc-

tion aaid stock market returns. Furthermore, some empirical studies have identified 

switching behavior in the conditional means and higher moments of stock returns 

as a result of changes in the underlying economic state - see Schwert (1989), Thrner 

cC al. (1989) and Schaller and Van Norden (1997). Further, McQueen and Ro-

Icy (1993) have identified asymmetric responses of stock returns to macroeconomic 

innovations. In particular, Perex-Quiros and Tirnmerinann (1998) and DeStefano 

(2004) have found asymmetric switching about business cycle turning points. In 

particular, stock returns tend to be positive in the first half of an economic boom 

and then diminishes to zero (or near zero) in the second half of the boom. On the 

other hand, stock returns become negative in the first half of an economic recession 

and then slowly move back to the zero (or near zero) range in the second half of the 

recession. 

In this section, we wish to revisit such switching properties around business cycle 

turning points by using di.iration analysis. In particular, if there is switching behavior 

in stock prices about business cycle turning points, then the logit hazard of bull 

and bear markets must also be responsive to changes in the underlying economic 

condition. 
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To account for the iuidorlying economic state, we use the business cycle dates 

that are published by the National Bureau of Economic Research (NBER). It should 

be noted that the definition of business cycles in the NBER is different than that of 

conventional economics textbooks. In particular, the NBER definition of a recession 

is defined as a significant decrease in economic activity (i.e. real GDP, employment, 

real income, industrial production and wholesale-retail sales) over a period of more 

than a few months. An opposite definition holds for a economic boom according to 

the NBER. Unfortunately, the latest NBER business cycle date is November 2001. 

As such, we can only use a sample starting from January 1928 to November 2001 

rather than the full sample. 

Using the. business cycle dates, we generate two chimmy variables expansion, and 

contraction as covariates. The variable expansion assumes the value of unity when 

the economy is in an economic boom and zero otherwise. Similarly, the variable con-

traction is equal to one when the economy is enduring a recession and zero otherwise. 

Since the economy can change its state during the course of a hear or hull market, 

the variables expansion and con traction are actually time varying covariates. 

What we are interested in is how the hazard probabilities of bear and 1)1111 market 

respond to changes to the underlying economic environment. In particular, the 

question of interest is how the hazard functions of bear and bull markets change as 

a result of the economy changing from an expansion to a recession and vice versa. 

The dynamic duration models of interest are 

hit = F ('y + 'y1 expansion) (4.33) 
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and 

hit = F ('yot + yjtcont'i'nction,) (4.34) 

The baseline hazard functions for each of the models are defined by the sequence 

{ '} that corresponds to each of the models. 

These baseline functions must he interpreted with care. Consider, for example, 

the model defined by equation (4.33). Further, suppose the event of interest is 

bull markets. When expansion is equal to zero, the baseline hazard function for 

the l,i.ill market is given by the sequence {'} defined by equation (4.33). Since 

the economy can either be in a boom or a recession (and nothing else), this baseline 

hazard function is actually the hazard function fora-bull market where the underlying 

economic state is a recession. When the economy switches from a recession to 

an expansion, however, the hazard function begins to deviate from the baseline 

according to the sequence of {y}. That is, the sequence {y1J captures the dynamic 

effects of changing from an economic recession to an expansion on the baseline hull 

market hazard function. Similarly, the baseline hazard function for equation (4.34) 

is actually the hazard function for a hull market during an economic boom. When 

the economy changes from a boom to a recession, the variable contraction, assumes 

the value of unity. Given this change, the sequence {'yu} captures the impact of 

the economy changing from a contraction state to a boom state on the baseline 1)1111 

market hazard function. In sum, the baseline functions defined by each model have 

different meanings. 

It should be noted that results from our models are not directly comparable 

to previous studies that used time series techniques although some analogies (10 

exist. Perex-Quiros and Timmermann (1998) and DeStefano (2004), as a whole, 
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find switching behavior in stock returns around business cycle turning points. In 

particular, they find that stock returns tend change from positive to negative around 

the transition point at which the economy changes from boom to recession. On 

the other hand, stock returns tend to change from negative to positive around the 

transition point at which the economy changes from recession to boom. Our models, 

however, is not capable of directly predicting this. What our models are capable of 

predicting is how a change in the state of the economy impact the baseline hazard 

of a run of negative or positive returns (i.e. bear or hull markets). 

Analogous to the time series studies, the switching behaviors are similar to 

changes in the hazard function of the bull and bear as a result of changes in the 

economic environment. For example, if stock returns tend to switch from ncgar 

tive to positive around business cycle troughs, then it must he true that bull (hear) 

markets become less (more) likely to terminate when the economy changes from con-

traction to expansion. Similarly, if stock returns tend to switch from positive to 

negative around business cycle troughs, then it must be true that hull (hear) mar-

kets become more (less) likely to terminate when the economy changes from boom 

to recession. 

As in the previous section, we wish to conduct some sensitivity analysis con-

cerning the choice of hyperparameters as a well as checks for proper mixing. The 

difference here is that it is necessary to examine the main time effect (i.e. the hazard 

function alone) as well as the covariate effect. Again, the figures are grouped in sets 

of threes such that the first of the three depicts results for a = 0.001 b = 0.001, the 

second depicts results for a = 1 b = 0.005 and the third depicts results for a = 0.0001 

h = 0.0001. Also, each figure is divided into four panels: Panel a depicts the hazard 
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function. Panel h depicts the mean and rnaximi.iin autocorrelation functions for the 

time parameters, Panel C depicts the time varying effects of the covariate and Panel 

d depicts the mean and maxinunn autocorrelation functions for the covariate effects. 

Figures 4.21 through 4.23 plot the results according to equation (4.33) for hull 

markets using the three hyperparameter sets. Judging from the positive sloping 

baseline hazard functions, it seems that bull markets under economic contractions 

exhibit positive duration dependence. In other words, older bull markets are more 

likely to terminate than younger ones. In addition, it is also true that the general 

shapes of the baseline hazard functions are insensitive to the choice of hyperparam-

eters; the same can be said concerning the time varying effect of expansion. On the 

other hand, the mixing properties are somewhat sensitive to the thoice of a and h. 

Next, consider the autocorrelation functions for the time parameters depicted in the 

figures. The mean autocorrelation functions look very similar but the maximum 

autocorrelation function in Figure 4.22 is superior in comparison to the other two 

figures. Further, the mean and maximum autocorrelation functions for the covari-

ate effects in Figure 4.22 are also superior. Thus, we conclude that the optimal 

hyperparameter set for this case is a = 1 h = 0.005. With this in mind, we turn 

to Panel c of Figure 4.22 and examine the time varying effects of ezansion more 

closely. Judging by the mean effects of expansion, it is clear that the change from 

an economic contraction to economic expansion has negative effects on the base-

line hazard. In other words, such a change in the economic environment tends to 

promote hull markets by decreasing their termination probabilities. However, the 

magnitude of the effects are not the same throughout the entire time horizon. In 

particular, the effect has a stronger negative impact on younger bull markets than 
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on older ones. This time varying impact is even more obvious if the confidence 

intervals are taken into account. Specifically, the effects are negative up to week 33 

and then become insignificant thereafter. Simply put, the statistically significant 

results are consistent with the switching behavior suggested by previous time series 

studies. 

Figures 4.24 through 4.26 plot the results according to equation (4.34) for bull 

markets using the three hyperparameter sets. The positively sloped baseline hazard 

functions from Panel a of the figures suggest positive duration dependence in bull 

markets under economic expansions. Once again, the shapes of the functions are 

insensitive to the choice of a and h. On the other hand, the same cannot he said 

for the effects of contraction,. In particular, the plot for the effects of contraction 

in Figure 4.25 appears flatter than ones in Figures 4.24 and 4.26. As for mixing 

properties, the autocorrelation functions for the time effects are very well behaved 

for all three sets of hyperparameters. However, the amitocorrelation functions are 

superior in Figure 4.26 suggesting that the optimal choice for a and h are 1 and 

0.005 respectively. With this in mind, we study Panel b of Figure 4.25 more care-

fully. The effects of contraction are significantly positive throughout the entire time 

horizon suggesting that the change from economic expansion to contraction tends to 

discourage bull markets. More importantly, the effects seem to be constant through-

out the entire time horizon. This in turn implies that the effects from such change in 

the economy have the same impact on young 1)1.111 markets as the older hull markets. 

Again, these statistically significant; finding is consistent with tile switching behavior 

suggested by previous time series studies. 

Figures 4.27 through 4.29 plot the results according to equation (4.33) for hear 
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markets using the three hyperparameter sets. As with bull markets during economic 

recession, bear markets during economic recession seem to exhibit positive duration 

dependence as indicated by the positively sloped baseline hazard functions. As well, 

the general shapes of the baseline hazard functions are not very different across the 

three hyperparameter sets. This observation is also evident for the time varying 

effects of expansion. The mixing properties for each hyperparameter sets are given 

by the autocorrelation functions. It is quite clear that the mean and maximum 

autocorrelation functions for the time effect in Figure 4.27 are unsatisfactory. 

On the other hand, the autocorrelation functions for the time effect in Figure 

4.29 are inferior to that in Figure 4.28. As such, the optimal hyperparameter choice 

for this case is ci = 1 b = 0.005. With this in mind, we study Panel c of Figure 

4.28 more closely. By inspection, the mean effects of expansion are positive and 

time varying throughout the entire time horizon. This suggests that, on average, 

the change from economic contraction to expansion tend to discourage bear markets. 

However, once the confidence inter'als are accounted for, the time varying effects of 

the change in economic activity is statistically insignificant throughout the entire 

time horizon. In other words, we fail to identify significant switching behavior. 

Figures 4.30 through 4.32 plot the results according to equation (4.34) for bear 

markets using the three hyperparameter sets. From the figures, it is clear that 

the shapes of the time varying effects of eoniracf,ion are almost identical across the 

three hyperparameter sets. However, the shapes of the baseline hazard functions 

are sensitive to the choice of hyperparameters. While the generally upward sloping 

baseline hazard functions in Figures 4.30 and 4.32 appear similar, the baseline hazard 

function in Figure 4.31 look quite different. In particular, the baseline hazard 
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function in Figure 4.31 is much more erratic than the other two. However, since the 

erratic function still manages to reach a high at its terminal, we argue that it exhibit 

positive duration dependence. In other words, all three baseline hazard functions 

suggest that older bear markets are more likely to terminate than younger ones. 

To check the mixing properties of the results, it is necessary to examine the 

autocorrelation functions. The mean and maxiniuin autocorrelation functions for 

the main time effect are very similar across Figures 4.30 to 4.32. On the other hnd, 

the mean and maximum autocorrelation functions concerning contraction, look quite 

different. In particular the maximum autocorrelation functions for conf,racl,jon, in 

Figures 4.30 and 4.32 are unsatisfactory while the one in Figure 4.31 is very well 

behaved. Furthermore, although the mean autocorrelation functions for contraction, 

all look satisfactory, it is quite clear that the one in Figure 4.31 is superior as it 

has the lowest values. Thus, the optimal hyperparameter set for this case is a = 1 

h = 0.005. With this in mind, we study Panel c of Figure 4.31 with a little bit more 

care. 

Starting from week 1, the mean effects of contraction are negative up week 32. 

In other words, within this time horizon, the effect of the economy changing from 

expansion to contraction tends to promote bear markets. Beyond week 32, however, 

we discover an unexpected finding: the mean effects become positive such that such 

change in the economy actually discourages bear markets. A possible explanation 

for this unexpected finding has to do with synchronicity. In particular, it is very 

possible that the timing of the turning points selected by the selection algorithm is 

not exact. Thus, the timing of hear markets and the NBER business cycle dates may 

be out-of-sync leading to the unexpected results. Likewise, the unexpected results 
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maybe a result of improper business cycle selection by the NBER. Finally, once the 

confidence intervals are taken into account, we find that the effects of contraction are 

statistically insignificant. In sum, we fail to identify significant switching behavior 

4.5 Conclusion 

We provide a, dynamic framework for estimating discrete time hazard functions for 

bull and bear market. We find that most of the hazard functions generated by 

the dynamic model using the MCMC approach seem to exhibit positive duration 

dependence with the exception for the pre WWII hazard function. Nevertheless, 

the results are generally consistent with the findings from the statistical test from 

the previous chapters. Finally, the shape of the hazard functions within the same 

sample are not sensitive to the choice of hyperparameters. However, the mixing 

properties are quite sensitive to the choice of a and b. 

Next, we seek to identify switching behavior of stock returns around business 

cycle turning points using dynamic duration models. In particular, we find that 

changes in the economic environment have, statistically significant impact on the 

hazard functions of hull market hazards. For example, the change from economic 

expansion to contraction tends to increase the hazard of hull markets. On the other 

hand, the change from economic contraction to expansion tends to decrease the haz-

ard of bull markets. These observations are consistent with the switching behavior 

identified by previous studies using conventional time series techniques. However, we 

find that changes in the economic environment have statistically insignificant impact 

on the hazard functions of bull markets. Once statistical significance is discarded, 
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we find that the mean effect of the variable eapansion, is positive on the hazard of 

bear markets. Likewise, the mean effect of the variable conf,raction is generally 

negative on the hazard of bear markets. Thus, we fail to identify switching behavior 

of stock prices around business cycle turning points using bear market data. Finally, 

we observe that mixing properties of the results are sensitive to the selection of a 

and b. 



Figure 4.1 

Pre WWII Bull Market Hazard Function with aO.00i and bO.00J. 
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Note: Panel b contains two autocorrelation functions for the time parameters. The upper one is the 

mean autocorrelation function while the lower one is the max autocorrelation function. 
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Figure 4.2 

Pre WWII Bull Market Hazard Function with a=J and b=O.005. 
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Note: Panel b contains two autocorrelation functions for the time parameters. The upper one is the 

mean autocorrelation function while the lower one is the max autocorrelation function. 
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Figure 4.3 

Pro WWII Bull Market Hazard Function with a=O.000I and bO.00OI. 
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Note: Panel b contains two autocorrelation functions for the time parameters. The upper one is the 

mean autocorrelation function while the lower one is the max autocorrelation function. 
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Figure 4.4 

Post WWII Bull Market Hazard Function with a=O.001 and b=O.001. 
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Figure 4.5 80 

Post WWII Bull Market Hazard Function with a'1 and b=O.005. 
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Figure 4.6 

Pre WWII Bull Market Hazard Function with a=O.0001 and b=O.00Oi. 

0.72 - 

JJ-• _..-....,/ 

/ 
red 

' I 

p-

(---__ 

78.3 104 

(pneI a: fiazard Function) 

Ill io 
hig 

(pane' h: A tocoration l.uucth)ns) 

Note: Panel b contains two autocorrelation functions for the time parameters. The upper one is the 

mean autocorrclaljon function while the lower one is the max autocorrelafion function. 
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Figure 4.7 

Full Sample Bull Market Hazard Function with ci=-O.001 and b=O.001. 
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Note: Panel b contains two autocorrelation functions for the time parameters. The upper one is the 

mean autocorrelation function while the lower one is the max autocorrclation function. 
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Figure 4.8 

Full Sample Bull Market Hazard Function with a=1 and bO.005. 
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Note: Panel b contains two aulocorrelation functions for the time parameters. The upper one is the 

mean autocorrelation function while the lower one is the max autoeorrclation function. 
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Figure 4.9 

Full Sample Bull Market Hazard Function with a=O.0001 and b=O.0001. 
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Figure 4.10 

Pre WWII Bear Market Hazard Function with a0. 001 and b 0. 001. 
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Note: Panel b contains two autocorrelation functions for the time parameters. The upper one is the 

mean autocorrelation Ilinction while the lower one is the max autocorrelation function. 
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Figure 4.11 

Pre WWII Bear Market Hazard Function with a=l and b=O.005. 
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Note: Panel b contains two autocorrelation functions for the time parameters. The upper one is the 

mean autocorrelalion function while the lower one is the max autocorrelation function. 
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Figure 4.12 

Pre WWII Bear Market Hazard Function with a=O.000] and b-O.00O1. 
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Figure 4.13 

Post WWII Bear Market Hazard Function with a=O.001 and bO.001. 
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Note: Panel b contains two autocorrelafion functions for the time parameters. The upper one is the 
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Figure 4.14 

Post WWII Bear Market Hazard Function with aI and b=O.005. 
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Note: Panel b contains two autocorrclation functions for the time parameters. The upper one is the 
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Figure 4.15 

Post WWII Bear Market Hazard Function with aO.00O1 and b=O.0001. 
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Figure 4.16 

Full Sample Bear Market Hazard Function with a=O.00I and b=O.001. 
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Figure 4.17 

Full Sample Bear Market Hazard Function with a=1 and b =0.005. 
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Note: Panel b contains two autocorrclatjon functions for the time parameters. The upper one is the 

mean autoeorre!ation function while the lower one is the max autocorrclation function. 
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Figure 4.18 

Full Sample Bear Market Hazard Function with a=0.0O0J and b 0.000]. 
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Figure 4.19 

A Comparison of Bull Market Hazard Functions Across the Full, Post W\ATI and Pre WIT Samples. 

—fl.0 (a—i. b—(LOb5) 

- post V1VTii (ab=O.00i) 

Pts WWII (a'). bO.DO5) 



Figure 4.20 

A Comparison of Bear Market Hazard Fmitions Across the Full, Post WWI and Pre WIT Samples. 
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Figure 4.21 

The Impact of Economic Expansion on Bull Market Duration for a=0.001 and b=0.001. 
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Figure 4.22 

The Impact of Economic Expansion on Bull Market Duration for a=J and b=0.005. 
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Figure 4.23 

The Impact of Economic Expansion on Bull Market Duration for a=0.0001 and b=0.0001. 
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Note: Panels b and d each contain two graphs; the upper and lower graphs are the mean and maximum autocorrelation functions 

respectively for the corresponding parameters. Also, t denotes time and is measured in weeks. 



Figure 4.24 

The Impact of Economic Contraction on Bull Market Duration for a=0. 001 and b0. 001. 
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Note: Panels b and d each contain two graphs; the upper and lower graphs are the mean and maximum autocorrelation functions 

respectively for the corresponding parameters. Also, t denotes time and is measured in weeks. 



Figure 4.25 

The Impact of Economic Contraction on Bull Market Duration for a=] and b=0.005. 
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Figure 4.26 

The Impact of Economic Contraction 011 Bull Market Duration for a=0.0001 and b=0.0001. 
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Note: Panels b and d each contain two graphs; the upper and lower graphs are the mean and maximum autocorrelation functions 
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Figure 4.27 

The Impact of Economic Expansion on Bear Market Duration for a=0.001 and b=0.001. 
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Figure 4.28 

The Impact of Economic Expansion on Bear Market Duration for a= I and b=0.005. 
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Figure 4.29 

The Impact of Economic Expansion 011 Bear Market Duration for a= 0.0001 and b= 0.0001. 

'4 

KO 

40 

: V 

a. bn4i"Sne lur4 Iti) 

. ............................. 

4 00 

:4 .'0 4 

vco b; cohicnh i:e )3ç. 

: 
'P'." \. \• 

/ 
n 

IaN V* .0) 

OAIMO v., cit 

04-0 

OX. 

P00. 

44 

IcC 

0t O ',iooh;c,o <stc'ecj 

Note: Panels b and d each contain two graphs; the upper and lower graphs are the mean and maximum autocorrelation functions 

respectively for the corresponding parameters. Also, / denotes time and is measured in weeks. 



Figure 4.30 

The Impact of Economic Contraction 011 Bear Market Duration for a=O.001 and b=O.001. 
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Figure 4.31 

The Impact of Economic Contraction on Bear Market Duration for a= 1 and b= 0.005. 
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Note: Panels b and d each contain two graphs; the upper and lower graphs are the mean and maximum autocorrelation functions 

respectively for the corresponding parameters. Also, tdenotes time and is measured in weeks. 



Figure 4.32 

The Impact of Economic Contraction on Bear Market Duration for a=0.0001 and b=0.0001. 
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Chapter 5 

Conclusion 

The objective of this thesis is to investigate the behavior of stock prices by examining 

the duration aspects of bull and bear markets. Chapter 2 uses a selection algorithm 

that dissects a time series of the Dow Jones Industrial Average into bull and bear 

components. The siunmary statistics of the bull and bear markets suggest that bull 

markets are generally longer and stronger than bear markets. 

In Chapter 3, we investigate whether stock prices exhibit mean reverting behavior 

by checking for the presence of positive duration dependence in bull and hear markets 

using continuous time and discrete time tests. From the continuous time realm, we 

use the Weibull test. From the discrete time realm, we use the zero plim test, 

method of moments test, generalized method of moments test, SB test and the Chi-

Square goodness of fit test. In general, we find some evidence of positive duration 

dependence in bear and bull markets for the full sample as well as the post WWII 

sample. However, we fail to find any evidence for positive duration dependence for 

the pre W\VTI sample; we attribute this to the small sample size of pre WWII bull 

and hear markets. 

In order to further check for positive duration dependence in hull and bear mar-

kets, Chapter 4 turns to the dynamic duration model to model the markets' hazard 

functions. In general, we found that the hazard functions of bull and bear mar-

kets are upward sloping functions suggesting positive duration dependence. Given 

that the estimation technique for the hazard functions involves the MCMC. it was 
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necessary to check for proper mixing and the results' sensitivity to the choice of 

hyperparanieters. We found that, in most cases, the shapes of the estimated hazard 

functions were not sensitive to the choice of hyperparameters whereas the mixing 

properties differ quite significantly across different sets of hyperparameters. In sum-

mary, together with the results from chapter 3, we identify evidence for positive 

duration dependence in bull and bear markets. This in turn suggests that stock 

prices do not blow the random walk but are mean reverting. 

The other objective of this thesis was to examine the switching behavior of stock 

prices around business cycle turning points. Using the NBER business cycle dates we 

generated dummy variables that define economic expansions and contractions. Using 

these variables, we then used dynamic duration models and the MCMC technique 

to investigate whether the baseline hazard functions of bull and bear markets are 

responsive to changes in the underlying economic state. 

We found that hull markets are sensitive to changes in the economy, even af-

ter accounting for statistical significance. In particular, a change from economic 

expansion to contraction tend to increase the hazard of bull markets, which would 

make stock returns more likely to be negative. On the other hand, a change from 

economic contraction to expansion tends decrease the hazard of hull markets, which 

would make stock returns more likely to be positive. These findings are conceptually 

similar to previous well documented studies using traditional time series techniques. 

As for hear markets, we find quite the opposite. Ignoring statistical significance, 

we find that a change from economic expansion to contraction generally decreases the 

hazard of bear markets. Similarly, we find that a change from economic expansion to 

contraction tend to increase the hazard of bear markets. However, once statistical 
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significance is accounted for, we find that the effect of changes in the economy is 

insignificant on the hazard of bear markets. 
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