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ABSTRACT 

The, purpose of this work was to generalize pulse shape modeling to include the 

effect of light bending due to general relativity. A simple analytical formula was 

found to accurately describe the light bending effect, and was incorporated into 

the emission model for calculation of the pulse shapes from rotating accreting 

neutron stars. Least square fittings were performed to a subset of pulsars 

studied by Leahy, 1991[2], The fittings with light bending showed significant 

improvement over the fittings without light bending, and the resulting derived 

emission region geometry gave narrower rings, as expected on theoretical 

grounds. The model was also applied to the luminosity dependent pulse profile 

of EX02030+375. The relation between the luminosity and the properties of the 

emissions rings were studied. The lack of success of the model on EX02030+375 

was probably caused by the model being too simple geometrically. Future 

improvements to the model were discussed. 
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CHAPTER 1 

INTRODUCTION 

1 .1 Introduction to X-ray Pulsars 

Under current theories, X-ray pulsars are assumed to be rotating magnetic 

neutron stars. Their cores are composed primarily of neutrons, as are expected 

to occur when the mean density is in the range 1013 - 1015 g/cm3. 

The concept of neutron star was introduced into the scientific world about sixty 

years ago by Baade and Zwicky as one of the possible end-points of stellar 

evolution. They pointed out that the enormous energy release of supernova 

explosions could transit ordinary stars to compact stars, which are at very high 

density, small radius, and much more gravitationally bound than ordinary stars, 

and as a result neutron stars could be formed. Despite extensive theoretical 

works on neutron star structure and some suggestions as possible X-ray sources 

since then, the neutron star was observationaly discovered only in 1968 as the 

radio pulsar. Just previous to that Shklovsky opened a new door, suggesting 

that X-ray sources could be binaries consisting of neutron stars accreting matter 

from companion stars. This idea was confirmed by the discovery of binary X-ray 

pulsars Cen X-3 and Her X-1; they are neutron stars spinning with periods of 

4.87s and 1.24s and orbiting around companion stars with periods of 2.ld and 

1.7d, respectively. 

In the last decade since the discovery of binary X-ray pulsars, much progress has 

been made in understanding the nature of bright X-ray sources which are 

powered by the accretion of matter by neutron stars. About thirty of them have 

been found to pulsate, while the orbital periods have been measured for about 

twenty sources. Neither pulsation nor orbital motion has yet been observed for 

many bright X-ray sources, but they are considered to be mostly binaries 
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containing neutron stars. About thirty of them are transient sources which show 

long-term variabilities, and about thirty sources occasionally emit X-ray bursts, 

enhanced X-ray emission lasting for seconds to minutes. There are other classes 

of X-ray binaries which consist of white dwarfs or black holes, and some of them 

may be confused with those containing neutron stars. 

Binary X-ray sources derive their energy from gravitational potential energy 

released when matter is accreted onto a compact object. According to the 

standard accretion picture, matter from a companion star falls onto the magnetic 

poles of a rotating neutron star, converting its gravitational energy into radiation 

on the surface of the star. Pulsations are observed due to the emission region on 

the surface of the neutron star, where the accreting matter releases its energy, 

rotating in and out of the field of view. The energy released when a proton is 

lowered onto the surface of a neutron star, of mass 1.4 solar mass and radius 10 

km, is 166 Mev. Thus relatively modest rates of mass transfer onto a compact 

object can generate large X-ray luminosities. A companion star is generally 

necessary to provide the matter. 

Matter can be transferred to neutron star from its binary companion in at least 

two ways: by a stellar wind or by Roche or tidal lobe overflow. In the case of 

accretion from a wind, some of the plasma lost by the companion star is drawn 

toward the neutron star by the latter's gravity, cools, and is captured. The wind 

capture radius is generally smaller than the separation between the two stars, 

but larger than the radius of the neutron star's magnetosphere. Plasma captured 

from a wind has some angular momentum with respect to the neutron star, but 

may not have enough to form a Keplerian accretion disk. In the case of Roche or 

tidal lobe overflow, relatively cold plasma flows slowly over the gravitational 

saddle point between the two stars and is immediately captured by the neutron 

star. Plasma captured in this way has a larger angular momentum with respect 
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to the neutron star and will form an accretion disk. The accretion disk in its 

standard form (e.g. Pringle & Rees 1972)[11 is a geometrically thin, optically thick 

structure which has its dynamics dominated primarily by the Keplerian motion 

of gas around the central object. In such a disk, the gravitational attraction of the 

neutron star is canceled by centrifugal force, and the plasma spirals slowly 

inward as its angular momentum is transported outward by shear stresses. In 

most X-ray binaries, mass is transferred by both of these two processes. 

The binary X-ray pulsars exhibit a wide variety of pulse shapes, from simple 

nearly sinusoidal profiles to complex multi-peaked profiles. For some pulsars 

the pulse shapes are strongly dependent on energy, for others the shapes are 

nearly independent of energy. There are many factors which govern the 

observed pulse shape: the geometry of the emission region; the viewing angle to 

the observer; and the magnetic field strength are three. 

A large number of theoretical investigations have been performed in order to 

model the spectra and the pulse profiles as well as the gas dynamical structure 

of the accretion flow itself. The asymmetry of the pulses, however, has been 

largely neglected in the models so far, although it is an obvious phenomenon 

apparent in almost all observed pulsars. Only recently, Leahy (1991) [2] has made 

an attempt to fit the observed pulse profiles to the results obtained from a 

simple emission model. 

1 .2 Thesis Subject and Outline 

The subject of this thesis is to fit the observed pulse profiles to a simple emission 

model, and analyze the properties of the fittings. 

Chapter 2 describes the radiation pattern for emission, and the geometry of the 
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model. Chapter 3 gives a simple analytical formula for the gravitational light 

bending effect, and makes it possible to be incorporated into the model fitting. 

Chapter 4 shows the fittings of the light bending model and compares them with 

the fits of the no light bending model. Chapter 5 applies the model to a transient 

X-ray pulsar EXO 2030+375, trying to explain the luminosity dependence of the 

pulse profile. Conclusions of this thesis and future work are discussed in 

Chapter 6. Some details of the fitting program are described in the Appendix. 
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CHAPTER 2 

THE EMISSION MODEL 

2.1 Emission Region And Radiation Pattern 

The basic model used to intercept pulsating X-ray sources has remained 

essentially unchanged since its inception (Pringle & Rees, 1972[hl; Davison & 

Ostriker, 1973; Lamb et al., 1973[1). In the usual picture, matter is assumed to 

be lost from the companion star either via a stellar wind or via slow leakage 

through the inner lagrangian point. (see Fig 2-1) 

Roche Lobe 

(a) 

Shock front 

Magnetosphere 

(b) 

Fig 2-1 Schematic diagram of the mass change possibilities: (a) due 

to a wind from the companion star, or (b) due to Roche lobe over-

flow, through the inner Lagrangian point. 
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Ghosh & Lamb (1979) 1 described the accretion process for a highly magnetized 

neutron star. As the matter gets closer to the neutron star, magnetic forces 

become important. They assumed that the magnetic field of the neutron star 

rapidly threads the accreting plasma and that it enforces corotation inside the 

surface where the flow velocity becomes sub-Alfvénic in the stellar magnetic 

field. They called this surface the "Alfvén Surface" and argued that it represents 

the effective extent of the neutron star magnetosphere. The matter should be 

ionized and highly conducting before reaching the Alfvén surface. At the Alfvén 

radius, where the magnetic pressure balances the ram pressure of the freely 

infalling matter, the accreting matter is stopped and then it threads the magnetic 

lines. After threading, the matter follows the field lines to the neutron star 

surface. It arrives on a region the shape of a ring around each of the magnetic 

poles for the case of dipole field geometry. (see Fig 2-2). 

I 
Alfvén Surface 

/ 
Accretion Disk 

/ 

Fig 2-2 Interaction of an accretion disk with the magnetosphere. 

The matter is channeled down the field lines to the polar cap 

regions, where it produces X-rays. 



7 

9 
B 4 

B 

(a) (b) 

Fig 2-3 Possible longitudinal geometry of the emission region: (a) 

Pillbox shape, arising from radiation or collisionless shock decelera-

tion, gives a fan beam pattern, radiation being emitted sideways. (b) 

Plane parallel atmosphere, which does not stick out above the sur-

face and arises if Coulomb and nuclear particle encounters produce 

the deceleration. This produce a pencil beam, radiation escaping 

upwards. 

(Fig 24— Fig 2-3 are adopted from Mészáros, P,/ 1984) [61 

How this occurs exactly is one of the key factors determining the vertical 

structure of the emission region and thus the radiation pattern. Whether the 

plasma effects will induce a collisionless shock above the surface or not is the 

main uncertainty. In the shock case, the standoff distance is a fraction of the 

stellar radius, so the emitting postshock region is a cylinder sticking out above 

the surface, and there is a large, if not predominant, component of emission 

from the sides, in a fan beam pattern (The flux: 1(9) = I sin"(0)). In the absence of 

a shock, for L ≤ 1037 ergs/s, the deceleration occurs via multiple coulomb 

encounters or nuclear collisions with the atmospheric particles, occurring in the 

denser part of the atmosphere. The atmosphere is a plane parallel section of the 



8 

polar cap, which does not significantly stick out, emitting upwards in a pencil 

beam (The flux: 1(0) = I cos(0)). (see Fig 2-3). Mészáros & Nagel (1985) [71 

performed the calculations on both cases, indicated that the slab model (pencil 

beam) are in better general agreement with the observations than column 

models (the fan beam). So, the pencil beam pattern will be considered in this 

thesis. 

2.2 Geometry of the Model 

light-bending 

1" 

/ 

Fig 2-4 The geometry of the emission rings showing the definitions 

of various angles. 
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The geometry of the emission is shown in Fig 2-4.This model assumes two 

emission rings offset by an angle 80 on the surface of the neutron star, each 

centered about an axis of the neutron star. Each ring is taken to have uniform 

emission from 8" = oc (or O2) to 0" = 01 (or 2) with 8" the angle from each axis. 

One axis is offset by an angle 00 from the first (taken to lie along the z' axis) and 

the azimuthal location of the second axis is specified by . The first axis is also 

called the north magnetic axis. 

The accretion rate is taken to be constant in time. The flux, 1(0') cos8' is taken to 

be one of the two analytic functions which are simple approximations (Leahy 

1990)[8] to the theoretical calculations of Mészáros & Nagel (1985) [] for emission 

by a slab of magnetized plasma: 

1(0') cos8' = Acos20' 

1(0') cosO' = Acos40' 

(2-1) 

(2-2) 

Here 0' is called the emission angle. It is the angle of the emission light with 

respect to the local normal of the neutron star surface. The light will reach the 

observer at angle 0' due to light bending (see Fig 2-4). 

The angular distribution of the flux from the surface the neutron star f is 

given by the integration of 1(0') cos(0') over the emission region: 

f(81, ) = Jdc"I(0') cos 0' (2-3) 

Where d"= sin0"d0"d4". Here 0" and " are the spherical polar coordinates of 

frame x'y'z' (with z' along the magnetic axis). 
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To do this integration, we need to know the dependence of 1(0') cosO' on 0" and 

. This dependence can be found through the dependence of cos00' on 0" and 

4'(equation 2-4), and the light-bending relation between 8' and 0' (equation 2-5). 

Where: 

cosO'0 = cos01cos0"+ sin01sin0"cos (4"-) (2-4) 

bJr0X [xl- - b2( 1 (2-5) 

p. = cosO' 

b ro (1_p.2)hI2 
AO 

A0 = (i_!Y'2 
'\ re,) 

Rc2 
r0 = 2GM (Neutron star radius in Schwarzchild units) 

Equation (2-5) is a formula for general relativistic light bending (Riffert & 

Mészáros, 1988). A more detailed discussion on this topic is presented in 

Chapter 3. 

2.3 The Integration 

The integration in equation (2-3) can be separated into two parts: 

(1) (2) 
f(°1' ) = f (011 4) +f (0k, 

f(l)(01141) and f(2)(0111) denote the intensity distributions of the first ring, and the 
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second ring respectively. f(2)(01,1) can be found from f(1)(01,1): 

f(2) (0 ) = f(l) (°) 

with 02 the viewing angle with respect to the second (south magnetic pole) axis. 

f(2) depends on through the dependence of 02 on 01 and i: 

cos02 = - cos01cos00+ sin01sin00cos 1 (2-6) 

So, we only need to integrate for the first ring: f(')(8141), then f(2) can be found 

through it. 

The integration is complicated by the fact that the neutron star surface eclipses 

parts of the ring, and how much of the ring is visible to the observer depends on 

the orientation of the ring with respect to the line-of-sight. Five cases must be 

considered: 

Case I: 01 < - P 1 the entire ring is visible. 

2i f3 

5 1 1(0') cos 0'sin9"d0"d" 0 c1 

Case II: 7C n - < 01 < - al the inner boundary of the ring is entire visible. 

(1) Zi4 0i 
f (ei, l) = $ J\ 1(0') cos0'sin9"d8"d" 

0 ci1 

(arccos [—cot01cot9"] + I (0') cos 0' sin0"d9"d" +25 

(- 

(2-7) 

(2-8) 
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Case III: TC - o < 01 < + c both the inner and outer boundary are partly 

eclipsed: 

"I + 4) 2f' $ (arccos [—cot91 c0t9 1(0') cos0'sin0"d0"d4" 
c1 4 

(2-9) 

Case IV: + al <01 < + f the inner boundary entirely eclipsed but the 

outer only partly eclipsed: 

fl) (or, Pi (arc cos [—cot01cot0"] + 
2$ 4) =  (e_ 1(0') cosO' sin0"d0"d" (2-10) 

Case V: 01 > + f3 the entire ring is invisible: 

f(l) (01, 0 

The derivation of the expressions for the five cases is from Leahy (1991) [21 paper. 

From these equations, we can see two kinds of integrations must be done: 

f3 
F1(01, cc 1) = f'&' 2if 1(0') cos0'sin0"d" 

o. O 
(2-11) 

(arccos [—cot01 cotO"] + 4) 
F2 (01, a, 3) = 2$ doh'$ 1(0') cos0'sin0"d" (2-12) 

ci. 

Then, the five cases can be written as: 



13 

Case I: 

Case II: 

Case III: 

Case IV-

p) (0 1, ) = F1 (1' a 1, ) 

f(l) (° TC ir ) = F1(01, a, - 01) + F2(01, - o, pl) 

f(l) (01, l) = F2 (01, a1, ) 

f(l) (01, ) = F2(01 01— 

CaseV: f(l) (01,1) = 0 

(2-13) 

(2-14) 

(2-15) 

(2-16) 

2.4 Model Fits to the Observed X-ray Pulse Profiles 

Observed pulse profiles for 20 binary X-ray pulsars were taken from the 

literature. Usually the pulse profile for the highest energy range available was 

chosen, to avoid as much as possible any effects of local photoelectric absorption 

in the X-ray binary system. 

The integration of equation(2-3) gives the intensity as function of 01, 02, a1, 

a2, P1, 2: 

1 =f (01, 02, 4i' a1, 2' ii' 132) 

In order to get the intensity as function of the pulse phase cI, ( = 2irt/p +j p is 

the period of neutron star rotating), we need the following auxiliary equations 

which relate 01, 02, and to : 

cos01 = COSOm COSOr+ S1IIOm S1IIO,.COS 

= arccos, 
S1flOm S1f101 

Cos 0r COSOlCOSOm 

cos02 = - cos01cos00 + sin01sin00cos 1 
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with O the angle between rotation axis and magnetic axis; 0, the angle between 

rotation axis and line-of-sight. 4ro is the initial azimuthal coordinate of axis Z in 

x'y'z' system. Fig 2-5 illustrates these definitions and the relation between the 

observer's direction and z' axis of the neutron star. 

Fig 2-5 The relation between the observer direction and the neu-

tron star z' axis showing definitions of associated angles. (Adopted 

from Leahy 1991) [23. 

Then we can have: 

= f e0, 8 m' °r' cl?,.0 , a, a2,P1,1 2' Ø' (i)) (2-20) 

In equation(2-20), the underlined variables are the free parameters needed to be 
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fitted out for the model. So, there are 10 free parameters altogether for the most 

general model, including normalization. 

The method of least-squares is used in the fitting program. The fitting was done 

in 8 stages in order to achieve a stable convergence. This is because of the large 

number of parameters and the model has non-linear dependence on most of the 

parameters. Specific simpler models were defined by restricting certain 

parameters. For example, setting the offset angle 00 to zero gave an axially 

symmetric emitting neutron star; setting a to zero resulted in a filled polar cap 

rather than a emission ring. Table2-1 shows the definition of model types and 

their parameter numbers. 

Table 24 Models and their parameter numbers 

Label Model parameter No. 

a Two identical polar caps 

b Two identical polar rings 

c Two different size polar caps 

d Two identical polar caps with offset 

e Two identical polar rings with offset 

f Two different polar rings 

g Two different polar caps with offset 

h Two different polar rings with offset 

5 

6 

6 

7 

8 

8 

8 

10 

2.5 The Fitting Program 

IMSL routine DUNLSF (Double precision) is used to do the nonlinear least 
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squares fitting. DUNLSF uses a modified Levenberg-Marquardt method to solve 

nonlinear least squares problems. 

When the light bending is not considered in the model, (0' =00' in Fig 2-4), 

equation (2-5) will not be included in the integration (2-3). In this case, the 

integration will give analytical solutions of f (si, i) for both the cos20 and cos40 

models, which are stated in the paper of Leahy (1991)[2]. However, when the 

effect of light bending is considered, and equation (2-5) is included in the 

integration, no analytical solutions can be obtained for f (ei, i) Numerical 

integrations have to be used in the fitting program, which will make the 

program complicated and slow, and much more difficult to achieve stable 

convergence. 

The light bending equation (2-5) is also a complicated integration from which no 

analytical form can be obtained. Straightening out this equation by finding a 

simple analytical fitting for it can greatly simplify the integration for f (01, i) 

thus greatly speed up the fitting program. Please see the Appendix for more 

details of the program. Chapter 3 will deal with the light bending problem. 
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CHAPTER 3 

GRAVITATIONAL LIGHT BENDING 

3 .1 Introduction 

Deflection of light in a gravitational field is presently one of the three 

experimentally measurable consequences of general relativity. The other two 

are: (1) the red shift; (2) the perihelion precession of Mercury. Modifications to 

the gravitational field strength due to general relativity become important when 

considering the properties of compact objects like neutron stars. Indeed, it is 

largely for this reason that compact objects are of such great theoretical interest. 

If the original mass of the progenitor star is greater than about eight to ten solar 

masses, the direct collapse of the stellar core can possibly produce a neutron 

star. The collapse of the core in the supernova can be halted only when the 

degeneracy pressure of the particles in the core has grown to the point where it 

can balance gravity. In neutron stars, it is the neutrons that are degenerate and 

provide the necessary opposition to the gravity forces (Landau 1932[101; Baade & 

Zwicky 1934 a111, b121; Oppenheimer and Volkoff, 1939['1). Based on this 

theory, the mass and radius of neutron star can be estimated from the models of 

the equation of state. 

For the current models (Shapiro and Teukoisky 1983)[141, the radius of neutron 

star, r0, are approximately in the range: 2 ≤ r0 ≤ 4, where r0 is in the unit of 

Schwarzchild radius RS(RS = 2GM/c2). In this case, gravitational light bending 

is expected to occur near the neutron star surface. Riffert & Mészáros (1988) 1'1 

give an expression for general relativity light bending in the form of a 

complicated integration (equation 2-5). In this chapter, we will find a linear 
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fitting for this equation, which will greatly simplify the model. 

3.2 The Light Bending Equation 

In special relativity, the motion of a particle that is not acted on by any forces is 

represented by a straight line in Minkowski space-time. In general relativity, 

using Riemannian space time, the motion is represented by a line that is no 

longer straight (in the Euclidean sense) but is the line giving the shortest 

distance. Such a line is said to be curved. In the theory of general relativity, 

gravitational effects may be explained by the curvature of space-time. 

P 

Fig 3-1 Geometry of the light bending, showing coordinates of 

emission point Q (re, 0", ") and the observer point P (r, 01, 4i) 

(r - oo). (Compare with Fig 2-4). 

Fig 3-1 shows the geometry of the light bending near the surface of a neutron 

star. The thick black line indicates the path of the light. We usually take the 
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observer P at infinity (r - 00). 

To obtain the orbit of photons (and any other particles having rest mass equal to 

zero) in the gravitational field, we may use the Geodesics equation (the 

differential equation of the curve having an extreme length: 81 = 8fLds = 0) 

along with the condition ds = 0, namely, the null geodesics. (See Misner, 

Thorne, and Wheeler 1973)[151. From the orbit equations, the relation between 0' 

and 00' can be found: 

O' (r, r0, ) = b$rr0X IX 2— b2 ( 1 X2_b2(1 _!)]_h12 

Where: 

= cos8' 

ro 
19 (1 - i.2) 1/2: relativistic impact parameter 

AO 

A0 = (i_!Y'2 
'\ r0) 

Rc2 
r0 = 2GM (Neutron star radius in Schwarzchild units) 

(2-5) 

The integration of equation (2-5) has no analytical solution. In order to make the 

incorporation of this equation into the modelling program practically possible, 

we need to fit out a simple form for equation (2-5). 

3.3 The Linear Fittings to the Light Bending Equation 

Very simple linear relations between cos00' and cosO' can be fitted out from the 
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numerical calculations of equation (2-5). For r0 ≥ 2, these straight line fittings are 

perfect, and the bigger the r0, the better the fitting. (See Fig 3-2 for two 

examples). However, when r0 < 2, the plots of cos80' vs. cosO' are obviously 

curved, linear fittings are not very suitable in these cases (see Fig 3-4). 

Fig 3-2 shows the fittings for two typical values of neutron star radius: a) 

r0=2.4184, the estimated radius for most neutron stars, whose R40 km, M=1.4 

solar mass; b) r0 4.4OO8, the estimated radius for Her X-1, whose R=13 km, 

M1.O solar mass (see Mészáros 1992[16 1). 

If we use a and b to denote the slope and intercept of the fitted straight line 

respectively, we can see that a and the absolute value of b become smaller when 

r0 increases (see Table 3-1). r0 implies the density of the star, the bigger r0 

corresponds to smaller density; a and I b I are indications of the gravitational 
effects, smaller a and I b I mean less gravitational effects in comparison. When r0 
increases, the decrease of the star density will result in smaller modification to 

general relativity, thus a and I b I will decrease. So strong correlations exist 
between a - r0 and b - r0. For r0 in the reasonable range for neutron star: 

2 ≤ r0 ≤ 5, these correlations can also be perfectly fitted out using very simple 

formulae (see Fig 3-3). When r0> 5, a and b will deviate from the fitted curve of 

Fig 3-3 (a) and Fig 3-3 (b). Thus, these fittings should be performed separately in 

different ranges, i.e., the neutron star range, the white dwarf range and the 

normal star range, etc. In this thesis, only the neutron star is of concern, thus the 

fittings for r0 in the range [2,5] will be used. 

Table 3-1 lists the slope (a) and intercept (b) of the fitted straight lines for 
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different r0: 

Table 3-1 Fitted slope (a) and intercept (b) for different r0 

r0 a b r0 a b r0 a b 

2.0 1.922 -0.942 3.0 1.490 -0.493 4.0 1.330 -0.330 

2.2 1.789 -0.800 3.2 1.446 -0.448 4.4008 1.291 -0.292 

2.3 1.734 -0.743 3.3 1.427 -0.429 4.6 1.275 -0.276 

2.4184 1.678 -0.684 3.4 1.410 -0.411 5.0 1.248 -0.248 

2.5 1.642 -0.648 3.5 1.394 -0.395 50.0 1.020 -0.020 

2.6 1.604 -0.609 3.6 1.379 -0.380 100 1.010 -0.100 

2.8 1.542 -0.545 3.8 1.352 -0.354 

Thus, the light bending equation (2-5) can be replaced by the following simple 

equations: 

cos Oot = a - cos 0' + b 

Where: 

2.653 0381 
a-  + +1.068 

r2 r0 

2.944 0.232 
b=- r r0 0.087 

(2≤r0≤5) 

(3-1) 

(3-2) 

(3-3) 
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(a) 

(b) 

Fig 3-2 Linear fittings of the light bending formula (equation 2-5) 

for two typical values of neutron star radius: a) r0=2.4184, for most 

neutron stars; b) r0=4.4008, for Her X-1. The data points are numeri-

cal calculations from equation (2-5). 
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(a) 

(b) 

Fig 3-3 a) Fitted relation between slope and r0 (2 ≤ ro ≤ 5). 

b) Fitted relation between intercept and r0 (2 ≤ r0:5 5). 
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Fig 3-4 When r0 < 2, the plot of cos00' vs. cosO is obviously curved, 

the data points deviate from a straight line. Linear fitting is not suit-

able for the full range of cosO', but still perfect in a smaller range: 

[O.4, 1] for r0=1.6; [0.3, 11 for r0=1.8. (The data points are numerical 

calculations from equation 2-5). 
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CHAPTER 4 

Fitting of the Pulsar Profile: 

The Effects of Relativistic Light-Bending 

4.1 Introduction 

In the emission model, the size of the emission area is determined by the 

interaction of the distant accretion flow with the stellar magnetosphere. An 

order-of magnitude estimate can be obtained by calculating the last closed 

magnetic line within the Alfvén radius where the ram pressure of the accretion 

flow is balanced by the magnetic pressure. This usually leads to a rather small 

emission region; in particular, for the case of a thin accretion disk in a dipole 

magnetic field, (Riffert. et al. 1993) [17], 

sinl3 = O.189 1161 th8161m 9161R 59161B 20161 12 (4-1) 

where B12 is the magnetic field around the neutron star in units of 1012 G, in is 

the accretion rate in Eddington units, m is the mass in solar units, R is the stellar 

radius in units of the Schwarzschild radius, and o denotes the disk viscosity 

parameter. For magnetic fields B12 1, a radius R = 2, and other parameters of 

order unity, a polar cap angle 0 of 5°— 10° is obtained. 

In this chapter, the light bending effect will be included in the fitting program. 

The results are compared to the model without light bending. The light bending 

model gives a more symmetric and smaller emission region, making it more 

consistent with the theoretical estimate discussed above. 
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4.2 The Observations of X-ray Pulsars 

Since the discovery of the first X-ray pulsar in the Crab Nebula, X-ray astronomy 

satellites, such as Uhuru, Ariel V, SAS 3, HEAO 1, Einstein, Tenma, EXOSAT, 

and Ginga, have been used to find new X-ray pulsars, and more than two dozen 

X-ray pulsars have been confirmed so far. 

X-ray pulsars can be classified into three categories (e.g., Blair & Candy 1985[181): 

(A) Binaries with early type companions (Cen X-3, Vela X-1, GX 301-2 etc.). 

The Pulsars in this class can be divided into two subclasses (Corbet 

1986[191, Stella et al. 1986[20]): 

(A-i) The short pulse-period systems (SMC X-1, Cen X-3, LMC X-4 

etc.) with very large X-ray luminosity. 

(A-ii) The long pulse-period systems (Vela X-1, GX 301-2, 4U1538-52, 

4U 1907+09, etc.) with moderate X-ray luminosity. 

(B) Binaries with Be-star companions (4U0115+63, A 0535+26, GX 304-1, X 

Per etc.) 

(C) Low-mass binaries (Her X-1, GX 1+4,4U1626-67 etc.). 

X-ray pulsars in class (A-i) and (C) are mostly powered by mass accretion via 

Roche-lobe overflow (so-called "disk-fed" pulsars), whereas those in class (A-ii) 

and (B) are considered to be powered by mass accretion via stellar wind 

captures (so-called "wind-fed" pulsars). The observed pulse profiles can be 

classified into several patterns (Nagase, 1989[21]): 
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(a) Single sinusoidal-like shapes with little dependence on energy (X Per, GX 

304-1, etc.). 

(b) Sinusoidal-like double peaks with little energy dependence (GX 301-2, 4U 

1538-52, SMC X-1 etc., the amplitudes of the two peaks are usually 

different). 

(c) An asymmetric single peak with some features (Cen X-3, GX 1+4 etc.). 

(d) A single sinusoidal-like peak at high and low energies and close adjacent 

double peaks in the intermediate energy range (Her X-1, 4U 1626-67 etc., 

the phase of the maximum amplitude at low energies reversed by 1800 

with respect to that at higher energies for some sources). 

(e) Double sinusoidal-like peaks at high energies and complex five peaks at 

low energies (Vela X-1, A 0535+26 etc.). 

Table 4-1 lists some observed properties with the references of the 7 pulsars 

which will be studied in this thesis, in the order of increasing pulse period: 

Table 4-1 X-ray Pulsars 

Source 
Pulse 

period (s) 
Energy 

range (key) 
X-rayluminosity 

(x1036 erg s1) 

Ref 

4U0115+63 3.61 0.9 - 13.3 10 [22] 

Cen X-3 4.84 12.5-25 79 [23] 

4U1626-67 7.68 14-30 13 [23] 

4U1258-62 272 7-25 0.6 [23] 
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Table 4-1 X-ray Pulsars 

Source 
Pulse 

period (s) 
Energy 

range (key) 

X-ray 
luminosity 

(x1036 erg s1) 

Ref 

4U0900-40 283 25-60 2.5 [23] 

4U1118-61 405 1.5 - 15 5 [22] 

GPS1722-36 413 9- 19  not known [21] 

4.3 The Model Fits to the Pulsar Profiles 

Differences in X-ray pulse profiles are considered to be due to the differences in 

the geometrical configuration with respect to the rotational axis Z of the neutron 

star, the axis of the magnetic dipole moment Z', and the observer's line of sight 

(see Fig 2-4 on page 8 and Fig 2-5 on page 14). The Model described in Chapter 2 

can be used to figure out the geometry structures of neutron stars. 

Table 4-2 lists the fitted parameters from both the no light-bending model and 

the light-bending model. Both the two analytical functions for the intensity 

distribution were used for the model: 1(0') cos 0' = Acos20'; and 

1(0?) cos 0' = Acos40'. Generally, the cos 20, model will give better fittings, 

especially when the light-bending effect is included. The fittings listed in the 

table are all cos 20, model, except 4U1626-67, for which the cos40' model gives a 

much better fitting. For each object in the table, the first row lists the parameters 

for the no light-bending model, while the second row lists the parameters for the 

light-bending model. The goodness of fit was not performed for the fittings, 

because the statistical errors were not available for the majority of the published 

pulse profiles. However, restricted to a given pulsar, the resulting least sum-of-

squares (SSQ) gives a relative measure of goodness of fit for comparing the 
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different models (e.g., the cos20' model and the c0s40' model; the no light-

bending model and the light-bending model, etc.). 

Table 4-2 Pulse profile model parameters 

Pulsar a 

Rotational & 
magnetic 

axis angles b: 

Om , Or 

Em ission ring angles b 

a1, f3, a2, P2 
Offset 

angle b: Oo 

4U0115+63 c 

1.515, 0.530 0.599, 0.622, 0.561, 0.583 0.595 

1.632, 0.499 0,602, 0.618, 0.562, 0.581 0.007 

Cen X-3 C 

1.461, 0.368 0.287, 0.433, 0.558, 0.602 0.759 

1.541, 0.415 0.238, 0.444, 0.555, 0.616 0.020 

- 4U1626 67d '± I  

0.246, 0.246 0.0000, 0.068, 0.200, 0.300 0.100 

0.320, 0.321 0.129E-4, 0.034, 0.200, 0.300 0.100 

ATT1'O t) C '±U 

1.252, 0.168 0.465, 0.487, 0.405, 0.428 0.507 

1.212, 0.118 0.472, 0.482, 0.400, 0.430 0.218 

TI A(C 4U 0900-40 

1.427, 0.617 0.468, 0.501, 0.357, 0.482 0.172 

1.407, 0.655 0.411, 0.464, 0.634, 0.292 -0.167 

,ITT111O ri C 

0.602, 0.602 0.0000, 0.035, 0.040, 0.052 0.100 

0.838, 0.823 0.051, 0.060, 0.056, 0.058 -0.415 

GPS 1722-36c 

0.851, 0.902 0.488, 0.690, 0.565, 0.770 0.437 

0.520, 1.269 0.108, 0.740, 0.672, 0.684 0.674 

a. The first row for each object lists parameters for no light-bending 
model, the second row lists parameters for light-bending model. 

b. The unit for angles is radians. 

c. The intensity distribution used in the models is cos20'. 

d. The intensity distribution used in the models is cos40'. 
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Table 4-3 shows the comparison of the two models: no light-bending model and 

light-bending model, where the solid angle of the neutron star is given by: 

= jsinodOd4t (4-2) 

and the emitting area is: A = Q R2, with R the radius of the neutron star. 

4.4 The Fitted Profiles for X-ray Pulsars 

Fig 4-1 - Fig 4-7 show the pulsar profiles. We can see that the light-bending 

model can give more sharp fittings to the peaks and dips of the profiles. Fig A-3 

on page 66 is the overview of the equations. From this figure we can see that, if 

the light-bending effect is ignored, 0' is the same as 0ü', the radiation pattern is: 

1(0') cosO' = Bcos20' = Bcos20'0 (4-3) 

The integration over this cos 200, pattern will give relatively flat profiles. The 

radiation pattern including the effect of light-bending is: 

1(0') cosO' = Bcos20' = B (ccos0'0 + d) 2 = ecos20'0 +fcos0'0 + g (4-4) 

Where c, d, e,f, g are constants. 

Here, the cos90' and the constant term in the radiation pattern can give sharper 

features in the profile. That's why the profile of the light-bending model is more 

flexible and can better fit the observation. 
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Table 4-3 Comparison of the two models 

Pulsar a SSQ b 
Solid angle of the 
emission region: Comments e 

4U0115+63 C 

1.499 0.1556 SSQ: 11.2%; Size: 1.. 22.4%; 

O: 198.8%. 1.331 0.1208 

Cen X-3 C 

0.342 0.7299 SSQ: 1.- 52.0%; Size: L 11.7%; 

Oc: I- 97.4%. 0.164 0.6444 

4U1626- 67 d 
0.668 0.1699 SSQ: 4.. 0.6 %; Size: 4.. 6.5%; 

8: the same. 0.664 0.1589 

4U125862 C 

0.029 0.1207 SSQ: 1.- 20.7%; Size: 4.. 13.8%; 

O: L 57.0%. 0.023 0.1041 

4U090040 C 

0.339 0.4149 SSQ: I, 76.4%; Size: 1.. 5.4%; 

O: 12.9%. 0.080 0.3927 

4U1118-61 C 

0.213 0.0073 SSQ: .1. 76.8%; Size: 4'50.7%; 

8: 1' 315%. 0.049 0.0036 

GPS 172236C 

4.249 1.5009 SSQ: '1.- 9.2%; Size: 1' 11.0%; 

O: 1' 54.2%. 4.210 1.6655 

a. The first row for each object lists parameters for no light-bending model, the 
second row lists parameters for light-bending model. 

b. SSQ: Sum of squared deviations 

c. The intensity distribution used in the models is cos 20'. 

d. The intensity distribution used in the models is cos40'. 

e. This column compares the light-bending model with the no light-bending 
model. 

Size: the area of the emission region, which equals M 2, with R the neutron 
star radius. 

1.-: decreased. 1: increased, on the value of no light-bending model. 



32 

4.5 Conclusion 

From Table 4-2 and 4-3 we can see that after the effect of the light bending is 

included, for all the 7 pulsars, SSQ (sum of squared deviations) decreased. The 

relative decreases range from 0.6% (4U1626-67) to 76.8% (4U1118-61); 5 of the 7 

pulsars get smaller 0, only 2 00s increased, the decreases of 00 range from 0% 

(4U1627-67) to 98.8% (4U0115+63); for 6 pulsars, the area of the emission region 

decreased, from 5.4% (4U0900-40) to 50.7% (4U1118-61), with only GPS1722-36 

as an exception, whose size increased 11.0%. 

Generally speaking, with so many parameters, the model fit is not unique. 

Usually, quite different parameters can be obtained while SSQ is not 

significantly different. In this case however, though goodness of fit can not be 

performed, we take SSQ as a relative measurement of goodness of fit, and the 

model fit with smaller SSQ is the better fit. Then we may conclude that the 

model including the effects of light-bending gives better fittings to the 

observations, and geometric pictures more consistent with theoretical estimates. 
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'01154-83 

H 
H 

0.0 0.0 2.4 3.2 4.0 4.8 5.6 6.4 

Phase (radians) 

(a) 

(b) 

Fig 4-1 Pulsar Profiles for 4U0115+63. (a) Profile for no light-bend-

ing model, SSQ=1.499. (b) Profile for light-bending model, 

SSQ=1.331. 
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(a) 

(b) 

Fig 4-2 Pulse profiles for Cen X-3. (a) Profile for no light-bending 

model, SSQ=O.342. (b) Profile for light-bending model, SSQ=O.164. 



35 

(a) 

(b) 

Fig 4-3 Pulse profiles for 4U1626-67. (a) Profile for no light-bending 

model, SSQ=O.668. (b) Profile for light-bending model, SSQ=O.664. 
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'4U1256-62 

H 

C 
C 

0.0 0.6 1.6 2.4 3.2 4.0 

Phase (radians) 
4.8 5.6 6.4 

(a) 

(b) 

Fig 4-4 Pulse profiles for 4U1258-62. (a) Profile for no light-bending 

model, SSQ=O.029. (b) Profile for light-bending model, SSQ=O.023. 
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(a) 

(b) 

Fig 4-5 Pulse profiles for 4U0900-40. (a) Profile for no light-bending 

model, SSQ=0.339. (b) Profile for light-bending model, SSQ=O.080. 
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(a) 
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  I I I  

0.0 0.8 1.6 2.4 3.2 4.0 

Phase (radians) 
4.8 5.6 6.4 

(b) 

Fig 4-6 Pulse profiles for 4U1118-61. (a) Profile for no light-bending 

model, SSQO.213. (b) Profile for light-bending model, SSQ=O.049 
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(a) 

gps1722 

C 

0.0 0.8 1.6 2.4 3.2 4.0 

Phase (radians) 
4.6 5.6 6.4 

(b) 

Fig 4-7 Pulse profiles for GPS1722-36. (a) Profile for no light-bend-

ing model, SSQ=4.249. (b) Profile for light-bending model, 

SSQ=4.210. 



40 

CHAPTER 5 

EXO 2030+375: 

The Luminosity Dependence of Pulse Profile 

5.1 Introduction 

Parmar et al (1989a) [241 discovered a new, transient X-ray pulsar, EXO 2030+375 

in May 1985 with the EXOSAT observatory. They followed its evolution through 

two outbursts. The first outburst occurred between 1985 May and August, and 

the second occurred in 1985 October. During the first outburst, the 1-20 keV 

intensity declined by a factor - 100 and then within 12 days by another factor of 

- 30 to an intensity close to the limits of detectability. During the second 

outburst, a series of six flares that recurred quasi-periodically every 3.96 hrs 

were observed. During each flare the X-ray intensity increased by a factor of - 6 

over 5-10 minutes and then decayed in an exponential mariner over 1.2-2.2 hrs. 

During five of the flare decays the intensity varied quasi-periodically on a time 

scale of — 1000 s. 

The pulse period of 42 s and the orbital period in the range 44.3-48.6 d were 

found from the EXOSAT observations (Parmar et al, 1989a) [241. The optical 

companion of EXO 2030+375 was identified as an early-type Be star with 

m=19.7. From monitoring of the first outburst in the declining phase between 

May 1985 and August 1985, Parmar et al (1989a) 124' found a marked dependence 

of the rate of change of pulse period (P) on the X-ray luminosity. Remarkable 

luminosity-dependent pulse-profile changes were also detected during the 

course of the decline of the outburst (Parmar et al, 1989b) [25]. 

A lot of work has been done on the luminosity dependence of pulse properties 

by comparative studies of different systems (Rappaport & Joss 1979[291; Mason 
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1977[301; White et al 1983[231). However, before the discovery of the transient X-

ray pulsar EXO 2030+375, no study has been carried out over a large luminosity 

range for an individual pulsar. The previous investigations of luminosity 

dependence phenomena had been performed on the known —30 accreting X-ray 

pulsars. The comparative studies showed that, the lower luminosity systems (≤ 

1037 ergs s1) have simple sinusoidal-like pulses, whereas the profiles of the 

higher luminosity systems are more complex, with, in several cases, 1800 

reversals in the phase of the strongest pulse going from one energy band to 

another (White et al, 1983[23]; Wang & Welter, 1981[22J). These comparative 

studies require a reasonable homogeneous sample, which may not be the case, 

given the wide range of system geometries and magnetic field strength expected 

from X-ray pulsars. One way to avoid this problem is to observe the dependence 

of the pulse profile on luminosity for a single system. The only X-ray pulsars to 

show large variations in luminosity are transient systems. The observation of 

pulses from transient systems gives information about an individual pulsar over 

a large range of luminosity, and provides an alternative way to study the 

dependence of the pulse period, profile, and spectrum on luminosity. 

The appearance of an X-ray transient is caused by a large change in the mass 

accretion rate onto a compact object and in many cases involves a dynamic 

range in luminosity of more than - 1000. Luminosity-related changes in the 

properties of an X-ray source can give insights into the dependence on accretion 

rate of the emission process. 

This chapter will study the luminosity dependence of pulse profiles, and try to 

use the geometric model of Chapter 2 to explain this phenomenon. 
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5.2 The Observed Pulse Profiles 

The observations of a strong luminosity dependence in the pulse profile of EXO 

2030+375 are unprecedented for any X-ray pulsar and allow for the first time the 

possibility of investigating how pulse formation varies with luminosity. 

Fig 5-1 and Fig 5-2 show the ten observations of EXO 2030+375 pulse profile 

during the first outburst (May 18 1985 - August 13 1985). At the maximum 

observed 1-20 keV luminosity of 1.0 x 1038 ergs s (assuming a distance of 5 kpc; 

Parmar et al. 1989a 241), the pulse profile shows a smooth asymmetric light curve 

with two local minima on the trailing edge. The second of the minima is a 

distinctive notch that becomes both sharper and deeper as the luminosity 

declines. This notch has been arbitrarily used to define = 0. The other 

minimum also becomes more distinct at lower luminosities such that the pulse 

maximum at - 1.2ir becomes much more symmetric. The notch at = 0 is 

clearly present in all but the 1985 July 25 and August 13 profiles. For these two 

observations, the phase was determined by aligning the single pulses seen at cI - 

0,6it with the narrow pulse seen on 1985 July 10 (Parmar et al, 1989b) [251. Given 

the similarity in overall shape of the pulses and the evidence for a small feature 

resembling a notch at - 0 in the 1985 July 25 profile, this seems a reasonable 

procedure. As the luminosity decreased from the maximum, an interpulse 

located at - 0.6ir appeared and became stronger. By 1985 July 10, when the 1 - 

20 keV luminosity had fallen to 1.2 x 1036 ergs s1, the inter pulse and the pulse 

at - 1.2ir were of approximately equal strength. This trend continued until 

August 13 1985, when the pulse at - 1.2ir almost entirely disappeared, and the 

profile became dominated by what had previously been a interpulse. The 

modulation amplitude of the profile of - 80% (peak-to-peak) was approximately 

the same during all observations. 
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Fig 5-1 The observed light curves of the first 5 days. 1.5 cycles are 

shown. The light curves have been aligned in phase so that the 

sharp notch visible of the main broad peak is centered on .1 = 0.0. 
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Fig 5-2 The observed light curves of the last 5 days. 
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5.3 Model Assumptions and Pulse Profile Fittings 

The geometric model described in Chapter 2 will be used to fit the pulse profiles 

of EXO 2030+375. The strong luminosity dependence of the pulse profile can test 

the model by examining the best fit parameters of the different luminosities. 

Observations of both of the two outbursts show the same profile dependence on 

luminosity. As the luminosity of EXO 2030+375 declined, the relative strength of 

an interpulse, compared to the main pulse, steadily increased, until at the lowest 

luminosities, their roles were reversed with the interpulse becoming the 

strongest pulse. In the first outburst, this dependence is on a time scale of weeks, 

while in the second outburst it is on a time scale of hours. Based on this 

phenomena, Parmar et al [251 ruled out the geometric effects resulting from a 

precessing neutron star. 

We expect that the dependence of the pulse profile on luminosity is caused by 

the changes in the structure of the accretion disk and its interaction with the 

magnetosphere of the neutron star. The inflowing plasma will thread different 

magnetic field lines and fall onto different regions of the neutron star surface 

(see Fig 2-2 on page 6). The higher luminosity, which is associated with higher 

accretion rate, thus higher dynamic pressure, will cause the plasma to fall in on 

closer field lines and flow onto a larger region on the neutron star surface. If this 

assumption is valid, the luminosity dependent pulse profile can be fitted by 

varying the size and position of the emission ring while the other parameters are 

fixed. Refer to Fig 2-4 on page 8 and Fig 2-5 on page 14 for the definitions of the 

angles. The offset angle °0' rotational angle Or, and magnetic angle 0m will be 

fixed in the fitting program. The emission ring angles a1, a2, fi' P2 will then be 

left free to investigate the dependence of emission region size on the luminosity. 
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In order to figure out the approximate values which the parameters should be 

set to, we must first leave all the 10 parameters free and do the fitting for each of 

the individual dates independently. If the model described in Chapter 2 is 

suitable for EXO 2030+375, and the assumption in the previous paragraph is 

proper, we can get good fittings with similar e0, Or, and em values for all the 10 
observations. Then e0, or, and em can be set to the average values of the 10 days, 
the fittings can still be good, and the analysis on the variations of the emission 

ring angles with the luminosity can be performed. 

The observed pulse profiles of EXO 2030+375 have more complicated features 

than the profiles studied in Chapter 4. The EXO 2030+375 profiles have some 

deep notches and sharp peaks which can not be dealt with by the relatively 

smooth profiles of the geometric model. These sharp features may result from 

some other influences such as absorption. So we would like to ignore them in 

the fittings. 

Table 5-1 lists the fitted parameters for the 10 days, using the no light bending 

model.The pencil beam radiation pattern 1(e) cos 0' = Acos2O' is used for all the 

fittings. The fittings ignored the deep notch around = 0.0 (the first five and last 

five data points) for each of the observations (see Fig 5-3 - Fig 5-7). In the table, 

the first row for each date is the fitting with all the 10 parameters free; the 

second row is the fitting with eo, Or, and em fixed to the average values of the 10 

days. 

From the Table we can see that, when all the 10 parameters are left free, the 

model gives quite different values of °m' er, eo for each date. The average values 
of OM/ or/ Ooare: 
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Table 5-1 Model parameters for EXO 2030+375 

Datea 0rn' or, 00b O1, I3i' 2' t2 b SSQ 

May 18 
1.655, 0.245, 0.872 0.468, 0.844, 0.626, 0.923 0.121 

1.559,0.392,-0.247 0.821, 1.040, 0.770, 0.856 0.538 

May 23 
1.288, 0.451,-0.553 0.652, 0.826, 0.674, 0.812 0.116 

1.559,0.392,-0.247 0.756, 0.994, 0.732, 0.863 0.503 

May 29 
0.978,0.288,-1.415 0.805, 0.891, 0.136, 0.927 0.190 

1.559,0.392,-0.247 0.728, 1.132, 0.727, 0.933 0.434 

June 5 
0.899, 0.245,-1.51 0.771, 0.829, 0.147, 0.915 0.241 

1.559, 0.392,-0.247 0.757, 0.867, 0.673, 0.751 0.539 

June 14 
1.908,0.231,-0.791 1.216, 1.284, 0.211, 0.415 0.256 

1.559,0.392,-0.247 0.633, 1.032, 0.918, 1.065 0.740 

June 21 
2.020, 0.209, 0.764 0.000, 0.993, 0.711, 0.774 0.436 

1.559,0.392,-0.247 0.340, 0.589, 1.076, 1.224 0.624 

June 27 
1.343, 0.344,-0.790 0.642, 0.714, 0.591, 0.785 0.536 

1.559,0.392,-0.247 0.626, 0.733, 0.331, 1.373 2.791 

July 10 
1.845, 0.401, 1.109 0.608, 0.710, 0.702, 0.845 0.953 

1.559,0.392,-0.247 0.616, 0.726, 0.922, 1.088 3.934 

July 25 
2.135, 0.691, 0.638 0.331, 0.598, 0.668, 0.785 0.567 

1.559,0.392,-0.247 0.934, 1.016, 0.666, 0.827 1.500 

Aug. 13 
2.070, 0.611, 0.147 0.636, 0.751, 0.679, 0.808 1.049 

1.559, 0.392,-0.247 0.693, 0.791, 0.680, 0.816 1.857 

a. The first row for each date lists the fittings with all the 10 parameters free. 
The second row lists the fittings with 0m' Or, 00 fixed to the average value 

of the 10 observations. 

The radiation pattern used in the model is pencil beam cos20'. 

b. The unit for angles is radians 
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= 1.559 ± 0.41 (5-1) 

Or = 0.392 ± 0.17 (5-2) 

= - 0.247 ± 0.90 (5-3) 

(5-4) 

The errors are calculated from standard deviations: 

2 

(5-5) 

where . is the mean of sample. 

Because the model did not give close values for 0m' 0r' 00, the fittings became 

much poorer after these values were fixed. This is very obvious by observing the 

significant increase of SSQ in the second row of each date in comparison to the 

first row. Fig 5-3 - Fig 5-7 show the profile fittings after Om, Or, 0 are fixed. We 

can see that the theoretical profiles did not fit the observations very well, 

especially at lower luminosities, when the observations have sharp multi-peaks. 

The light bending model can produce more flexible profiles to fit the sharp 

features. It gave better fittings to the first four days. However, the sharp profiles 

from June 14 to July 25 seemed beyond its capability. It was not able to give 

fittings to these days. The better fittings for the four observations had even 

bigger standard deviations for 0m' Or, °0: 

0,,, = 1.827±0.52 

0,. = 0.760±0.28 

00 = —0.646±0.52 

So we would like to ignore the light bending effect in the model. 
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Fig 5-3 Pulse profile for May 18 and May 23 after °m' Or, °o are 

fixed. The first five and last five data points are ignored in the fit-

ting. 



50 

Fig 5-4 Pulse profile for May 29 and June 5 after Om, Or, o are fixed. 

The first five and last five data points are ignored in the fitting. 
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Fig 5-5 Pulse profile for June 14 and June 21 after Om, Or, e0 are 
fixed. The first five and last five data points are ignored in the fit-

ting. 
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Fig 5-6 Pulse profile for June 27 and July 10 after en, Or, 00 are fixed. 

The first five and last five data points are ignored in the fitting. 
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Fig 5-7 Pulse profile for July 25 and Aug. 13 after m, Or, °0 are 

fixed. The first five and last five data points are ignored in the fit-

ting. 



54 

Fig 5-8 Emission ring angles vs. dates for both rings. Luminosity is 

decreasing with time. No regularity is shown on the positions and 

widths of the rings. 
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Given the bad fittings of emission ring angles a1, I3i, a2, 02, the study of the 

correlation between the luminosity and emission rings can not give satisfactory 

results. Fig 5-8 plots the emission ring angles on different dates. The y-

coordinates of the points show the positions of the rings from the magnetic 

poles; the change in the distance between the two lines implies the change in the 

ring width with dates. Because the luminosity is decreasing with time, according 

to the model assumptions we made before, the rings are expected either to go 

closer to the poles or become narrower, to make a smaller emission region for 

lower luminosity. Nevertheless, Fig 5-8 does not show the regularity we 

expected on the positions and widths of the rings. 

However, the analysis of the relation between luminosity and the solid angle of 

the emission region (sum of the two rings) seems more optimistic. Table 5-2 lists 

the values of luminosity and emission region size for each observation, and Fig 5-

9 is a plot of them. The straight line in the graph, though not a good fit to the 

points, shows a trend of luminosity increasing with emission region size, as the 

model assumptions indicate. 

Table 5-2 Luminosities and emission region sizes of EXO 2030+375 

Date 
Luminosity 
(ergs/s) 

Solid angle 
of emission 
region: 92 

Date 
Luminosity 

(ergs/s) 

Solid angle 
of emission 
region: 

May 18 1.0 x 1038 1.494 June 21 4.2 x 10371.547 

May 23 9.9 X 1037 1.736 June 27 2.8 X 1037 5.127 

May 29 8.9 x 1037 2.973 July 10 1.2 x 1037 1.307 

June 5 7.4 x 10170.825 July 25 3.9 x 1036 1.116 

June 14 5.6 x 10 7 2.612 Aug 13 1.2 x 1036 0.999 
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Fig 5-9 Luminosity vs. LI The equation for the straight line is: 

L = 0.401 X10 38 0 - O.366x1038. Although the four circled points 

scatter quite far away from the line, the other six points do follow 

the trend of the line, displaying an approximate proportional rela-

tion between luminosity and emission region size, which is consis-

tent with the model assumptions. 
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5.4 Fan Beam Radiation Pattern 

For many viewing directions, a fan beam can produce sharp features in pulse 

profile, as the fan beam rotates behind the horizon of the neutron star (Wang 

and Welter, 1981) [3h1 Considering the sharp features in the EX02030+375 

profiles, a fan beam pattern may be more suitable for this pulsar. 

When the plasma encounters the neutron star surface, a radiative shock may 

occur, producing a "'pillbox" emission region (see Fig 2-3 on page 7). Radiation is 

emitted sideways, giving a fan beam pattern. By Wang and Frank (1981)[321, as 

the luminosity decreases, the height of the radiative shock will decrease. At 

some luminosity, possibly around i0' ergs/s, the emission region may switch 

from a cylindrical ""pillbox," to a thin slab, thus the radiation switches from fan 

beam to pencil beam. 1037ergs/s is in the range of luminosity observed from 

EXO 2030+375. The almost 1800 switch in phase of the main pulse might be 

associated with a switch from fan beam to pencil beam direction. 

Assuming the accretion column is a thin-walled hollow funnel, the configuration 

of the fan beam model is quite complicated. (Fig 5-10). Though qualitative 

calculations of the fan beam model had been performed by several authors (e.g. 

Mészáros 1984[61, Parmar et al, 1989[241), detailed fits to establish the viewing 

geometry have not, in general, been made, except for the paper of Riffert et al 

(1993)' 1. In that paper, they used the same parameters defined in Fig 2-4 on 

page 8 and Fig 2-5 on page 14 to describe the geometry of the fan beam model, 

and applied intensity distribution: I = A sin3 0 on the model. The emission from 

a radiation column, of course, can not be simulated by a polar cap or ring with 

just a different beam pattern. This is a crude approximation for columns that are 

small both in height and width. 



(a) 
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(b) 

B 

- 

(c) (d) 

Fig 5-10 Possible transverse geometries of the emission region at 

polar cap: (a) Filled funnel. (b) Hollow sectional funnel. (c) Pan-

caked. (d) Spaghettis. (Adopted from Mészáros, P., 1984)[61. 

However, this approximation doesn't work well for EXO 2030+375. With the 

radiation pattern I = A sin3 0, the program gives out quite bad fittings. 

Equations 5-6 - 5-8 below give the mean and standard deviations of °m' Or, 00. 

we can see that the standard deviations of 0m' Or/ 0 are very big. Thus it is 

meaningless to fix them to analyze the luminosity dependence of emission rings. 

= 0.970 ± 0.89 

Or = 0.234 ± 0.29 

(5-6) 

(5-7) 
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80 = —0.615±1.02 (5-8) 

These results show that the pencil beam model is better than the simple 

geometry fan beam model, even though neither described the pulse shape of 

EX02030+375 adequately. 

5.5 Conclusion 

The fittings of the geometric model to the observations of EXO 2030+375 are not 

good enough to test the assumption of the luminosity dependence of the 

properties of the emission rings. EXO 2030+375 is still a mystery. A better 

geometry figure may improve the fittings and make it possible to investigate the 

luminosity dependence. From past experience, sometimes simple changes in the 

model geometry make large differences in the pulse profiles and quality of the 

fittings. However, no attempt has yet been done to find a good approximation to 

the fan beam geometry and work out the mathematics. 
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CHAPTER 6 

CONCLUSION 

6.1 Summary 

In this thesis, a geometric model for pencil beam radiation was used to fit the 

observed pulse profiles. The model assumed two offset emission rings on the 

neutron star surface. The radiation is emitted uniformly over the entire ring 

area. The local emission pattern of the intensity is Icos 9' oc cosO', with n being 

either 2 or 4, where 8' is the angle between the emission light and the local 

normal of the neutron star surface. The effect of general relativity was 

incorporated into the model through a simple analytical formula of the light 

bending effect given in Chapter 3. 

The light bending model was successful for the 7 pulsars studied in Chapter 4. 

Comparing with the no light bending model, the light bending model produced 

sharper features in the profile to give the observation a better fitting. Also the 

derived parameters gave smaller emission regions as theoretically expected. 

However, the pencil beam emission model could not give a satisfactory answer 

to the luminosity dependence of pulse profiles of EX02030+375. The model did 

not give good fitting to each individual observation, so the physical meaning of 

the fitted parameters are doubtful. The assumption that higher luminosity is 

corresponding to a larger emission region on the neutron star surface was only 

poorly demonstrated by the derived emission ring parameters. A simple 

approximation was made that the fan beam model has the same geometry 

picture as the pencil beam model, with emission pattern I cc sin3 0'. This 

approximation turned out to be too crude to improve the fittings. More detail 

work needs to be done to construct a better fan beam model. 
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6.2 Future Work 

A simple approximation for the emission region of the fan beam model may 

start with two very thin columns sticking out from two magnetic poles (see Fig 6-

1). These two columns can be offset and have different heights. 

KI 
E 

Fig 6-1 A simple geometry approximation for fan beam model: 

Two offset thin columns, with different height: h1, h2. 

The column parameters h1 and h2 will replace the emission ring parameters x, 

i, a2, P2, but all the other geometry parameters are the same as those defined in 

Fig 2-4 on page 8 and Fig 2-5 on page 14. Then we can have the following 

equation to replace equation (2-20) on page 14: 

f = f °m' r, h1, h2, (6-1) 

A suggestion for future work would be working out the mathematics of this 
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model, and applying it to EX02030+375. A proper radiation pattern must be 

chosen for radiation from the emission column. The light bending effect can also 

be incorporated into the model. If it can give better fittings to the sharp profiles 

of EX02030+375, physically meaningful parameters will be derived. Then the 

relation between the luminosity and the emission column parameters can be 

studied. 
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Appendix 

The Analytical and Numerical Integrations in the Fitting Program 

I. Structure of the fitting program 

The soul of the fitting program is the IMSL routine DUNLSF (Double precision). 

DUNLSF uses a modified Levenberg-Marquardt method to solve nonlinear least 

squares problems. The problem is stated as follows: 

m,in !F(x)TF(x) = f1(x) 2 

i=1 

M 
(A-i) 

where in ≥ n, F: 9 fl 9m andfj (x) is the i-th component function of F(x). In this 

case, m is the number of observation data points, which is different for 

individual pulsars, ranging from 10-60; n is the number of free parameters, 

which is 10 for the most general model (see Table 2-1 on 2-i on page 15). F(x) is 

defined as the difference between the observation and the theoretical calculation 

of f(81, ) (equation 2-3). Equation 2-20 on page 14 showsf as a function of the 

10 free parameters and the observation phase. The observational data is the flux 

vs. phase. So the flux calculated from equation 2-20 can be directly compared 

with the observation. With a set of initial guesses for the free parameters (a 

vector of length n), DUNLSF will try to find out the approximate solution of the 

free parameter vector which can minimize equation A-i. By this way, the theory 

gets its closest fit to the observation. 

Fig A-i shows how the program works: 
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(X 

Output 

Vector of length n 
containing the initial 
guess 

IMSL routine to solve 
nonlinear least square 
problem 

Data file Ea 2-3 
(m points) 

<x) = fobservaaoftheoreaca; 

Case I Case II Case Ill Case IV 

I 
(Ea 2-13 - Eq 2-16) 

(Eq 2-11, 2-12) 

Vector of length n containing 
the approximate solution. 
(Fitted parameters) 

Fig A-1  Structure of the fitting program 
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2. Overview of the equations 

Fig A-2 is an overview of the equations for the geometric model described in 

Chapter 2. This chart shows the process to evaluate the theoretical flux. 

a. Equation <4> is the light bending equation 3-1. This equation gives the 

relation between cosO' and cos001, thus the relation between 0' and 0'. 

b. Equation <3> (eq. 2-4) gives the dependence of 0' on the spherical polar 

coordinates (0", 4"). 

c. Combining equation <4> with equation <3> we can obtain the relation 

between 0' and (0", "). 

d. With this relation substituted into radiation pattern equation <2> (the 

combination of equation 2-1 and equation 2-2), the integration for angular 

distribution equation <1> (eq. 2-3) can be done. 

In the fitting program, the evaluation of the theoretical flux will be performed 

hundreds of times, and takes most of the CPU time. Speeding up of this process 

is the key to speed up the whole program. 
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The angular distribution of the flux: 

f(01, 1) = 51(0') cosO'sinO"dO"d4" 

(o<o<) 

(0<0<O' ) 0. °max 

I it 
0 >— 

max 2 

Radiation Patterns: 

1(0') cos 0' = Acos20'+Bcos40' 

cos0'0 = cos01 cosO" + sin81sin0"cos (" — 

Light bending: 0' 0' (cosO' cos00') 

Cos 00f= a cos 0'+b 

/  a - + + 1.068 2.653 0.381 ) 

\. — 42 TO 

( 44 0.232 b = - 0.087) 

(2≤i 0≤5) 

<1> 

<2> 

<3> 

<4> 

Fig A-2 Equation overview for the Geometric Model. 
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3 . The analytical formulae for the no light bending model 

For the no light bending model, the analytical calculation of f(81, ) (equation 

2-3) had been carried out by Mr. G. R. Young with the aid of MACSYMA 

(MACSYMA is a registered trademark of the Symbolics Inc.). Equation A-2 and 

A-3 show the results of the two integrations of equation 2-11 and 2-12 (see Leahy 

1991) [2]: 

F1 (Ox, a, ) = 5f de"J2it 1(8') cos8'sinO"d" 

= 7c[l  (cos3 - cos3a) + COS a —COS ] siu281 + 

(cos93— cos3(X) cos201 

(A-2) 

513 (arccos [-coto1cote't] +4 k) 
F2(81, a, f3) = 2 d8" 1(8') cos8'sin8"d" (A-3) c 54, 

= _cOtOi{(2_3Si11281) [_ (cot281+l) 

2 1) (cot81 + Xarcsin[j cot281 

- Ic0t0iIc0t20i + 1) sinzOh']} 

- sin2earctan[°t01 + 1) sin2 8 1 h' 

c0t81 

+ s1n3011sin38"I(l + cot281 cotzel)312 
sin2 0" 

- In cos201cos30u1 + itsin201(cos3 8u' - COS 01, 
13 
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Where the radiation pattern is: 

1(0') Cos 0' = cos20' = cos200' 

= [cos01cos0" + sin01sin0"cos (" - )j 2 

for the no light bending case. 

(A-4) 

For the case of cos40' radiation pattern, the integration results of F1 and F2 are 

much lengthier expressions, which are still analytic in form. 

These formulae were tested with the results of the numerical integrations of 

IMSL routines and proved to be correct. 

The analytical formulae, though lengthy and complicated, are fast in the fitting 

programs. The typical CPU time is seconds. 

4. The numerical integration for the light bending model 

For general relativity light bending, a simple linear equation (3-1) was found to 

replace the complicated integration equation (2-5) (please see Chapter 3). With 

this linear equation (3-1), the incorporation of light bending effect into the fitting 

program becomes practical, and several ways to speed up the program were 

found. 

After the light bending effect is included in the emission model, 1(0') Cos 0' in 

the integrands of F1 and F2 becomes: 
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1(0') cosO' = cos20' 

= [!( cos90'_.b)] 2 

= [! (Cos 91 Cos 9?' + sin01sin0"cos ("-4) —b)] 2 

Where a, b are determined by equation 3-2,3-3 on page 21. 

(A-5) 

In this case, no analytical form for f(01, ) can be found. Numerical 

integrations have to be used in the programming. 

First, an IMSL routine DTWODQ was employed to do the two-dimensional 

integration. In this way, programming is convenient. One can try different 

radiation patterns 1(0') cos 0' by just changing one line in the code. However, 

these two-dimensional numerical integrations turned out to be very slow, with 

typical CPU time as long as hours. This is remarkably inefficient, especially 

when a lot of trials of initial value sets have to be used to get the best possible 

results. 

Then, the analytical result of F1 (01,a, 0) was used in the program: 

F, (01, 
TC 
a2 —(cos a— cos l3) . {2b2+1— cos 01 

+ (cos a+ cos f3) . [-2b. cos 01+ (cos201-3) cos a] 

+ (cos201-3) . cos2f3} 

(A-6) 

However, F2 (01, a, f3) is more important than F1 (01, a, 1) in the program. We 

can see this from Fig A-i, F2 exists in all of the cases except Case I, which is a 

relatively rare case (the entire ring is visible). Especially when two rings are 
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considered, this case never really exists for both of the two rings. Because it is 

impossible for two rings to be entirely visible to the observer simultaneously, F1 

is always bound with F2, and never appears in the computing alone. So the 

analytical results of F1 did not speed up the program significantly. 

Finally, an analytical calculation for the integral over 4" was performed for F2, 

thus F2 can be expressed as a one dimensional integration: 

(arccos [—cot01cot0'] +) 
F2(01, a, ) = 2$ doh'J 1(8') cos 8'sinO"d4" (A-7) 

= 2$ sinO"dO"[C(A - + B2C + BsinC(2A + BcosC - 2D)] 

Where: 

A = 1 -cos81cos0 a A 

1 . . 

B = -srn01srn8 
a 

C = arccos [—cot81cot8"] 

IMSL routine DQDAWQ is then employed to do the one dimensional numerical 

integration. This one dimensional integration is much faster than the two 

dimensional one. It speeds up the program by tens of times, depending on the 

input initial value sets for the fitting. The typical CPU time of the code with the 

analytical result for F1 and one dimensional integration for F2 is minutes.This 

dramatic decrease in CPU time make it much more convenient to try different 

initial value sets for the parameters to get the best possible fittings. 
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