
Calcium ions are critical mediators of cell signalling by 
virtue of their electrogenic functions (that is, calcium- 
induced changes in membrane potential)1 and through 
their roles as intracellular messengers (that is, 
through activation of calcium-dependent enzymes)2. 
Increases in intracellular calcium that are mediated either 
by their release from internal calcium stores, or via entry 
of calcium ions across the plasma membrane, have been 
linked to a wide spectrum of physiological processes, 
including neurotransmitter/hormone release3, activa-
tion of gene transcription4,5, and muscle contraction6. 
Consequently, processes that result in compromised  
calcium signalling can lead to a range of pathophysiolog-
ical conditions, such as hypertension, cardiac hypertro-
phy and a vast array of neurological problems7. One of 
the key mediators of calcium entry from the extracellular 
space are voltage-gated calcium channels — a family of 
membrane proteins that open in response to membrane 
depolarization to permit the influx of calcium along its 
electrochemical gradient. The mammalian nervous sys-
tem expresses nine different types of calcium channels 
that have specific functions and subcellular distribu-
tions8, with additional functional diversity arising from 
alternative splicing events9 and specific association with 
different types of ancillary subunits and regulatory pro-
teins10. Calcium channel dysregulation has been linked 
to a number of disorders, including pain, Parkinson  
disease and epilepsy7. Furthermore, mutations in calcium 
channel genes in human patients have been associated 
with pathologies such as seizure disorders, migraine 
and ataxia11,12. Consequently, calcium channels are con-
sidered important targets for therapeutic intervention. 

A number of drugs that block voltage-gated calcium 
channels are in clinical use (TABLE 1), with many other 
calcium channel blockers being in preclinical or early 
clinical development. This Review article highlights the 
role of these channels in neuronal function and assesses 
their growing potential as drug targets for nervous 
system disorders.

Subtypes and structure of calcium channels
Before the advent of molecular cloning techniques, cal-
cium channels in the heart and brain were classified based 
on their voltage-dependent activation into either high 
voltage-activated (HVA) or low voltage-activated (LVA; 
also known as T‑type) channels13, with the latter requiring 
smaller membrane depolarizations to open. HVA chan-
nels are subdivided further based on their pharmaco
logical and biophysical characteristics into L-, P-, Q- and 
R-types14. We now know that these different subtypes of 
HVA and LVA channels correspond to a total of ten dif-
ferent Cavα1 subunits that are encoded in the mammalian 
genome. Three of these Cavα1 subunits (Cav3.1, Cav3.2 
and Cav3.3) comprise the family of T‑type calcium chan-
nels, and their expression in the plasma membrane is suffi-
cient to form functional channel proteins15. There are two 
major families of HVA Cavα1 subunits: the Cav1 family 
encodes four different types of L‑type channels (Cav1.1 to 
Cav1.4), whereas the Cav2 family encompasses P/Q‑type 
(Cav2.1), N‑type (Cav2.2) and R‑type (Cav2.3)7 chan-
nels, with P- and Q‑type channels being distinguished 
by alternative splicing and channel subunit composi-
tion16,17. Each of these α1 subunits is a large (~200 kDa) 
protein composed of four homologous transmembrane 
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domains, each containing six transmembrane helices plus 
a pore loop (p‑loop) motif (FIG. 1) that forms the permea
tion pathway of the channel and ensures selectivity for  
calcium ions over monovalent ions7. Each of the mem-
brane domains also contains a voltage sensor motif that 
allows the channel to open in response to membrane 
depolarization18. The amino- and carboxy‑terminal 
regions and the linkers between the four membrane 
domains face the cytoplasm and serve as important targets  
for second messenger regulation of channel function7. The 
majority of known drug interaction sites with voltage- 
gated calcium channels lie either within the permeation 
pathway, or in channel regions that closely surround the 
pore of the channel, such as the fifth and sixth transmem-
brane helices19–21 (FIG. 1). All of the HVA Cavα1 isoforms 
require co‑assembly with ancillary calcium channel  
subunits to obtain properly functioning channels22.

Cavβ subunits are cytoplasmic proteins that asso-
ciate with the domain I–II linker region of the Cavα1 
subunit23. The Cavα2δ subunits undergo proteolytic 
cleavage into Cavα2 and Cavδ fragments that are then 
re‑linked via disulphide bonds, with the Cavα2 portion 

being entirely exposed to the extracellular milieu and 
the Cavδ portion acting as a membrane anchor24. Cavβ 
and Cavα2δ subunits are each encoded by four different 
genes7. Their main functions are to regulate the biophysi-
cal characteristics of the channels and, more importantly, 
the export of the channel complex from the endoplasmic 
reticulum and the stability of the channel in the plasma 
membrane25,26. Some HVA calcium channels also contain 
a Cavγ subunit (most notably the skeletal muscle L‑type 
channels), a transmembrane protein encoded by as many 
as eight different genes and with poorly understood 
function27. Each of the major calcium channel subunits 
is known to undergo alternative splicing28. Between the  
various splice isoforms and possible combinations of 
Cavα1, Cavβ and Cavα2δ subunits, a vast number of dif-
ferent calcium channels with a wide spectrum of func-
tional and pharmacological properties (and potentially 
specific physiological functions) can be generated. This is 
a particularly important consideration during the devel-
opment of calcium channel therapeutics, and it often relies 
on the heterologous expression of a specific combination 
of calcium channel subunits in a host cell line.

Table 1 | Selected calcium channel blockers for the treatment of neurological or psychiatric conditions

Compound 
(company)*

Targets Main indications Possible indications Status‡ Refs

Isradipine  
(Dynacirc; Reliant)

L‑type channels Hypertension Parkinson disease  
and dependency

Approved, Phase III 
trial for Parkinson 
disease

170,207

Nimodipine  
(Nimotop; Bayer)

L‑type channels and 
T‑type channels

Hypertension Febrile seizures Approved 154

Cilnidipine  
(Atelec/Cilacar;  
Fuji/Ajinomoto)

L‑type channels and 
N‑type channels

Hypertension Pain and tremor Approved 70,143

Gabapentin 
(Neurontin; Pfizer)

Cavα2δ subunits Pain and epilepsy Anxiety Approved 148

Pregabalin  
(Lyrica; Pfizer)

Cavα2δ subunits Pain and epilepsy Anxiety Approved 82,148,221

Lamotrigine (Lamictal; 
GlaxoSmithKline)

R‑type channels (NS) Epilepsy and bipolar 
disorder

Pain Approved 149,150

Topiramate  
(Topamax; Mylan)

R‑type channels (NS) Epilepsy Weight loss, addiction 
and PTSD

Approved 152,153

Zonisamide  
(Zonegran; Eisai)

T‑type channels (NS) Epilepsy Pain and Parkinson 
disease

Approved 145

Ethosuximide 
(Zarontin; Pfizer)

T‑type channels Epilepsy Pain Approved 101,140

Ziconotide  
(Prialt; Elan)

N‑type channels Pain NA Approved 86–91

Valproate (Depakene/
Convulex; Abbott)

T‑type channels (NS) Epilepsy and bipolar 
mania

Parkinson disease Approved 143,145

Z944 (Epirus) T‑type channels Pain Epilepsy Phase II trial for pain 112,147

CNV2197944 
(Convergence)

N‑type channels Pain Anxiety and 
dependency

Phase II trial for pain See the 
Convergence 

Pharmaceuticals 
press release

Z160 (Epirus) N‑type channels Pain Anxiety and 
dependency

Failed Phase II trial 
for pain

93

NA, not applicable; NS, not specified; PTSD, post-traumatic stress disorder. *The names of distributing pharmaceutical companies are shown in parentheses, 
although several of the compounds are now available as generic drugs. ‡Note that Z944 and CV2197944 are in clinical trials and not yet approved.
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Key nervous system functions of calcium channels
So why do vertebrates need so many types of calcium 
channels? Part of the answer may lie in the notion that 
different calcium channel subtypes fulfil specific physio
logical roles, and different variants of the same calcium 
channel subtype may serve as a fine-tuning mechanism 
not only because of their particular biophysical charac-
teristics but also because of their differential regulation. 
The nervous system expresses nine of the ten major 
calcium channel isoforms, with the skeletal-muscle-
specific Cav1.1 channels being the only isoforms that 
are absent29. Different calcium channel isoforms often 
support multiple physiological roles, and those that are 
particularly pertinent are discussed here. Cav1.2 chan-
nels are expressed in most types of neurons. They are 
often localized on cell bodies and at dendritic regions30, 
and are thought to be important for the activation of 
calcium-dependent enzymes31, the activation of calcium- 
activated potassium channels32 and the initiation of 
calcium-dependent gene transcription events4. Cav1.3 
channels show a similar subcellular distribution to that 
observed with Cav1.2 (REF. 30). As well as contributing 
to postsynaptic activity, these channels are expressed 
at ribbon synapses of cochlear hair cells where they 
have a critical role in auditory transmission33. Indeed, 
mice lacking Cav1.3 channels are deaf, as are human 
patients with null mutations in the Cav1.3‑encoding 
gene CACNA1D34,35. Cav1.4 channels are predominantly 
expressed in rod photoreceptors where they control 
glutamate release from ribbon synapses. Consequently, 
Cav1.4‑null mice are blind36 and loss of Cav1.4  
expression in humans gives rise to night blindness37.

Cav2.1 and Cav2.2 channels are expressed at pre
synaptic nerve terminals where they are closely associated 
with the neurotransmitter release machinery3,38. Some 
synapses are designed to accommodate specific comple-
ments of each of these two channel subtypes39, whereas 

others such as primary afferent nerve terminals in the 
spinal dorsal horn almost exclusively express Cav2.2 
channels. However, these two channel subtypes are not 
created equally. Whereas Cav2.2‑null mice are viable 
and display hyposensitivity to pain40, Cav2.1‑null mice 
experience seizures and cerebellar ataxia41. This suggests 
that Cav2.1 channels may have a key role besides neuro-
transmitter release; indeed, Cav2.1 channels have been 
associated with gene transcription of synaptic proteins 
such as syntaxin 1A42. In humans, gain-of-function muta-
tions in Cav2.1 channels can give rise to familial hemi-
plegic migraine43, whereas loss-of-function mutations 
or polyglutamine expansions in the Cav2.1 C‑terminal 
lead to conditions such as episodic ataxia type II44 and  
spinocerebellar ataxia 6 (REF. 45), respectively. Conversely, 
mutations in Cav2.2 have been associated with myo-
clonus dystonia-like syndrome, which, interestingly, is 
accompanied by cardiac arrhythmias, perhaps owing to 
the role of N‑type channels in the sympathetic nervous 
system46. Cav2.3 channels are thought to contribute to 
neurotransmitter release at a subset of central nervous 
system (CNS) synapses47,48, as well as helping to regulate 
neuronal excitability. Consequently, Cav2.3‑null mice are 
resistant to certain types of pharmacologically induced 
seizures49.

The three members of the Cav3 channel family have 
important roles in regulating neuronal firing, which is 
closely linked to their specific gating characteristics1,50. 
Their low threshold of voltage activation, coupled with 
their tonic inactivation at typical resting membrane 
potential, underlies the rebound bursting phenomenon 
seen in many types of neurons51. In this context, it is 
important to note that different types of Cav3 channels 
differentially regulate neuronal firing behaviour51, and 
this diversity is further increased by the existence of dif-
ferent Cav3 splice variants52. Finally, there is recent evi-
dence that Cav3 channels can partake in low-threshold 
exocytosis, perhaps owing to their interactions with  
synaptic proteins such as syntaxin 1A53.

Discussed above are just some of the most important 
physiological roles of these various calcium channel sub-
types, and this is by no means a comprehensive account 
of all calcium channel functions in the nervous system. 
A recent review7 on this topic provides a more in-depth 
discussion. This high-level summary does, however, pro-
vide appropriate context and background for the ensuing  
sections in this article, such as the potential of these 
channels as established and prospective drug targets.

Identifying new calcium channel therapeutics
Fifty years ago, research on the effects of verapamil and 
prenylamine on excitation–contraction coupling led 
to the discovery of several classes of calcium blockers 
(originally termed calcium antagonists)54. Much of the 
initial work on these agents focused on L‑type calcium 
channels and revealed that these channels have multiple  
drug interaction sites for compound classes such as  
dihydropyridines, phenylalkylamines and benzothiazepines55. 
As these drug interaction sites are non-competitively 
coupled, this enabled the use of high-throughput radio
ligand displacement assays to identify new compounds 

Figure 1 | Locations of drug interaction sites on voltage-gated calcium channels. 
The transmembrane topology of the pore-forming Cavα1 subunit with its four major 
transmembrane domains (I–IV) is shown, each of which contains six membrane-spanning 
helices (termed S1–S6), as well as a re‑entrant pore loop. Blockers of N‑type, T‑type  
and L‑type channels are labelled, in red, blue, and green, respectively. Sites of drug 
interactions are shown. Note that the transmembrane domain IIIS6 and IVS6 regions  
are hotspots for drug interactions. BZT, benzothiazepine; DHP, dihydropyridine; 
PAA, phenylalkylamine.
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that interacted with these channels56. These early studies 
involved native channel complexes from muscle or brain 
tissue57. The cloning of various calcium channel isoforms 
allowed the generation of stable cell lines that expressed 
one specific calcium channel subtype and that could 
be loaded with a calcium indicator dye58,59. Membrane 
depolarization induced by potassium chloride (KCl) 
leads to channel opening, and the effects of compounds 
on the associated rise in calcium fluorescence can be 
used to determine their ability to block the channels58,59. 
Automation of this assay allows the high-throughput 
screening of large compound libraries in a short time 
frame. Moreover, unlike the early radioligand studies, 
this approach is applicable to all major calcium channel 
isoforms and does not require the availability of tritiated 
drug compounds60.

There is a drawback, however, in the use of a single 
KCl depolarization, as this approach cannot easily iden-
tify compounds with strong use-dependence61, which is a 
desirable quality in compounds such as anti-arrhythmics 
and anticonvulsants. As many use-dependent com-
pounds interact preferentially with inactivated channels, 
one way to use fluorescence assays to identify such types 
of blockers is to regulate the membrane potential of the 
cells by bathing them in slightly elevated KCl levels before 
applying a larger KCl depolarization that opens the chan-
nels62,63. The development of high-throughput automated 
patch clamp systems has greatly facilitated the identifi-
cation of drug compounds with specific kinetic proper-
ties61,64; however, this additional information comes at the 
expense of throughput.

Techniques such as photoaffinity labelling65, coupled  
with site-directed mutagenesis, have been used success-
fully to identify major drug interaction sites on L‑type 
calcium channels at the single amino acid level (FIG. 1). 
In some cases, knowledge of drug interactions with 
other classes of ion channels (such as sodium chan-
nels) has been used to identify drug interaction sites on  
voltage-gated calcium channels, such as T‑type chan-
nels. For example, key amino acid residues that com-
prise the local anaesthetic interaction site in sodium 
channels are conserved in T‑type calcium channels, and 
mutagenesis of these residues reduces the interaction of 
these channels with local anaesthetic-like compounds19. 
Curiously, the S6 regions in domains III and IV of the 
Cavα1 subunit appear to be hotspots for drug interaction 
sites in both L‑type and T‑type channels (FIG. 1), perhaps  
because these channel structures are linked to the  
inactivation-gating machinery and line the inner vesti-
bule of the channel pore66. When coupled with homology 
modelling67, such knowledge of the molecular makeup of 
drug interaction sites could potentially provide important 
insights into drug structure requirements for calcium 
channel inhibition and thus enable a rational approach 
towards drug design68.

One of the challenges in designing and developing 
small organic calcium channel blockers is the relatively 
high sequence conservation among different members 
of the calcium channel family and sequence similarities  
to other members of the voltage-gated ion channel 
superfamily8. This makes it very difficult to identify 

compounds with high affinity and high selectivity for 
one particular calcium channel target. Indeed, several 
dihydropyridines (a class of compounds commonly 
thought of as being selective for L‑type channels) have 
been shown to block other calcium channel subtypes 
such as T‑type and N‑type channels, in some cases even 
preferentially over L-type channels69–71.

Despite decades of drug discovery efforts, only a 
few bona fide calcium channel therapeutics other than 
dihydropyridines have entered the clinic. This under-
scores the immense challenge in finding compounds 
that: have high affinity; have high target selectivity 
(especially over HERG channels); effectively cross the 
blood–brain barrier; have the appropriate physico-
chemical properties; are not rapidly metabolized; and 
are non-toxic. The ensuing sections provide an overview 
of the therapeutic potential of calcium channel blockers  
in various nervous system disorders and a summary 
of existing drugs targeting calcium channels (TABLE 1), 
as well as compounds that are currently in the drug 
discovery pipeline.

Calcium channel inhibitors as pain therapeutics
Pain stimuli are detected by peripheral nociceptors that 
innervate the skin and organ tissues. Action potentials 
then propagate along the primary afferent fibre to syn-
aptic nerve terminals in the spinal dorsal horn, where 
excitatory synaptic transmission then activates neu-
rons that project to higher brain centres where pain is 
perceived72 (FIG. 2). Voltage-gated calcium channels are 
known to factor prominently in this afferent pathway 
in two principal ways73. Cav3.2 T‑type calcium channels 
are important regulators of afferent fibre excitability, 
whereas Cav2.2 and, to a lesser extent, Cav3.2 channels 
both contribute to neurotransmission at dorsal horn 
synapses74 (FIG. 2). Both calcium channel subtypes are 
upregulated under chronic pain conditions75–77; con-
versely, inhibiting Cav2.2 and/or Cav3.2 channel activity 
in rodents has been shown to mediate analgesia74.

For therapeutic purposes, Cav2.2 channels can be 
targeted in multiple ways. First, Cav2.2 channels are 
under the powerful control of several G protein-coupled  
receptors, including GABAB (γ-aminobutyric acid, 
type B) receptors and various members of the opioid recep-
tor family78. Indeed, the clinically used μ-opioid receptor  
agonist morphine inhibits Cav2.2 channel activity and 
thus neurotransmitter release from primary afferent 
neurons79. However, although it is a potent analgesic, 
morphine has numerous side effects such as respiratory 
depression and constipation80. Therefore, receptor-
independent means of inhibiting Cav2.2 channels are 
desirable. The gabapentinoids gabapentin (Neurontin; 
Pfizer) and pregabalin (Lyrica; Pfizer) inhibit synaptic 
transmission mediated by the Cav2.2 channel through 
a very different mechanism that involves interactions 
with the Cavα2δ subunit. These subunits are upregu-
lated in chronic pain states81, leading to increased Cav2.2 
cell surface expression. Treatment with gabapentinoids 
interferes with Cavα2δ function, leading to a reduced 
Cav2.2 calcium channel density in the presynaptic 
plasma membrane82–84. Despite their overall moderate 
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efficacy, these compounds are important therapeutic 
choices for treating neuropathic pain and have become 
blockbuster drugs85.

A direct inhibitor of Cav2.2 calcium channel activity  
is also currently used in the clinic. Ziconotide (Prialt; 
Elan) is a synthetic version of ω‑conotoxin MVIIA, 
a 26‑amino-acid peptide isolated from the venom of the 
Conus magus fish-hunting snail. Ziconotide is a highly 
selective pore blocker of Cav2.2 calcium channels, and 
when delivered intrathecally (this peptide does not 
cross the blood–brain barrier) it mediates analgesia86–88. 
Besides the requirement for delivery via an implanted 
minipump and its limited indication for drug-resistant 
cancer pain, it also suffers from a narrow therapeutic 
window and thus has a variety of potential side effects 
that include memory loss and unruly behaviour87,89–91.  
As a physical blocker of the Cav2.2 channel pore, zicono-
tide does not exhibit use-dependent blocking proper-
ties92 and therefore does not preferentially target Cav2.2 
channels in hyperactive neurons. Several small organic 
Cav2.2 channel inhibitors, however, have been shown 
to mediate strong use-dependent inhibition of Cav2.2 
channels in the nanomolar range. This includes Z160 
(also known as NMED‑160 or NP‑118809; Epirus), a 
compound that mediates potent analgesia in several 
animal models of pain93. Unfortunately (and very much 
surprisingly) this compound failed two different Phase II 
clinical trials for lack of efficacy, for reasons that are 
unclear. Other state-dependent Cav2.2 channel block-
ers that are currently in preclinical development include 
compounds such as TROX‑1 (Merck)94 and CNV2197944 
(Convergence Pharmaceuticals, now held by its sister 
company Calchan Ltd), which has successfully com-
pleted Phase I clinical trials and is now in Phase II 
trials for postherpetic neuralgia and painful diabetic  
neuropathy (see the Convergence Pharmaceuticals press 

release for further information). Several other classes of 
small organic Cav2.2 channel blockers with efficacy in 
animal models of pain have been reported in the litera-
ture (see REFS 95–99), some of which also target T‑type 
calcium channels100.

This latter point is pertinent, as T‑type calcium chan-
nels are also emerging as suitable targets for analgesics. 
Following early studies showing that intrathecal delivery 
of the T‑type channel inhibitor ethosuximide (Zarontin; 
Pfizer) mediates analgesia101, it was shown that intra
thecal delivery of small interfering RNA (siRNA) against 
Cav3.2 channels, but not other T‑type calcium channel 
isoforms, protected against inflammatory and neuro-
pathic pain102. This led to the discovery of a number of 
different scaffolds for high affinity T‑type calcium chan-
nel inhibitors with efficacy in a variety of pain models 
after either subdural or systemic (intraperitoneal) 
delivery103–108. Notably, this included a novel class of 
dihydropyridine blockers that preferentially inhibited 
Cav3.2 channels over L‑type channels, as well as several 
compounds that were derived from cannabinoid recep-
tor ligands. This is in accordance with the observation 
that endocannabinoids such as anandamide have been 
found to potently block T‑type channels109,110. A mixed 
blocker of Cav3 and Nav1.7 sodium channels, Z123212, 
has been described as a potent analgesic in rodents111. 
This compound interacts preferentially with the slow 
inactivated state of these channels, thereby giving rise 
to strong use-dependent inhibition. Although most of 
these compounds are still in preclinical development, 
Z944 (Epirus Pharmaceuticals)112, a potent and state-
dependent T‑type calcium channel inhibitor, completed 
Phase I clinical trials for pain and is being advanced  
to Phase II trials. It remains to be determined whether 
the analgesic actions of T‑type channel inhibitors occur 
via inhibition of synaptic activity in the dorsal horn, or 

Figure 2 | Role of voltage-gated calcium channels in the primary afferent pain pathway. Harmful stimuli (such as 
pressure, heat and cold) are detected by nerve endings embedded in the skin or organs, leading to the generation of 
action potentials that travel along the afferent fibre to synaptic terminals in the spinal dorsal horn, where neurotransmitter 
release activates postsynaptic neurons that project to the brain. Cav3.2 calcium channels regulate afferent fibre 
excitability and contribute to calcium influx in synaptic nerve terminals. Cav2.2 channels are located presynaptically 
where their opening allows calcium entry and leads to neurotransmitter release. CNS, central nervous system.
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The process by which proteins 
are transported to specific loci 
in cells.

by alterations of afferent fibre excitability74. Interestingly, 
a small randomized trial evaluating the Cav3.2 channel 
blocker ABT-639 (AbbVie) as a therapeutic for diabetic 
pain revealed a lack of efficacy compared to placebo113.  
This does not, however, invalidate the potential of T-type 
calcium channel inhibitors as analgesics.

Finally, there is emerging evidence that Cav2.3 
(R‑type) calcium channels may be involved in pain 
signalling. Intrathecal delivery of the Cav2.3 inhibitor  
SNX‑482 (a peptide derived from the venom of a 
Tarantula species) inhibits formalin-induced pain and 
neuropathic pain in rodents114,115. This is consistent with 
the expression of these channels in dorsal root ganglion 
(DRG) neurons and in the spinal dorsal horn116, as well 
as with data showing that Cav2.3‑null mice display pain 
hyposensitivity117. However, it should be noted that this 
compound also inhibits L‑type calcium channels, albeit 
at higher concentrations than those needed for Cav2.3 
channel block118. Polymorphisms in the gene encoding 
Cav2.3 have been linked to changes in fentanyl sen-
sitivity in patients undergoing surgery119, altogether 
suggesting that Cav2.3 calcium channels could be 
explored as potential targets for pain. There is currently 
no selective small organic inhibitor of Cav2.3 channels, 
although it should be noted that the N‑type channel 
blocker TROX‑1 also mediates inhibition of Cav2.3 
channels with about 50% lower affinity compared with 
Cav2.2 channels (REF. 94). This compound could thus 
perhaps form the starting point for the development of 
a preferential Cav2.3 inhibitor.

Calcium channels as targets for seizure disorders
Seizures occur as a result of a combination of hyper
excitability and abnormal synchrony of neurons. Focal 
seizures typically involve one hemisphere and can 
arise from injury to a specific brain structure or from 
a tumour120. Conversely, idiopathic seizures are not 
accompanied by radiological abnormalities, typically 
involve both hemispheres and can be triggered by more 
diffuse insults to the brain, such as high fever (that is, 
febrile seizures), hypoxia, or even oxygen toxicity121. 
They may also arise from genetic abnormalities in a 
variety of ion channels and receptors, such as voltage- 
gated sodium channels and GABA receptors122–124. 
Absence seizures are one of the hallmarks of idiopathic 
generalized epilepsy (IGE) and are characterized by brief 
periods of unresponsiveness and abnormal spike and 
wave discharges in EEG recordings that reflect hyper-
synchronous activity of thalamocortical structures125. 
It is thought that the initiation of absence seizures is 
critically dependent on the activation of T‑type cal-
cium channels in thalamocortical neurons and reticular  
thalamic nucleus neurons (nRT neurons)126, which express 
Cav3.1 and Cav3.2/Cav3.3 calcium channels, respectively 
(FIG. 3a). The firing of these neurons can be drastically 
altered by even small changes in T‑type channel activity127.  
Furthermore, in several genetic mouse models of absence 
epilepsy (such as Cav2.1‑knockout mice, ‘lethargic mice’ 
that lack functional Cavβ4, and ‘stargazer mice’, which 
carry a loss-of-function mutation in the Cavγ2 subunit), 
there is an increase in T‑type calcium channel activity 

in nRT neurons128. Along these lines, in the GAERS 
rat model of absence epilepsy, there is an increase in  
thalamic T‑type channel activity (which is accompanied 
by increased Cav3.2 mRNA levels) owing to a gain-of-
function mutation in Cav3.2 (REF. 129). Interestingly, 
this gain-of-function mutation is only able to manifest 
functional changes in a specific Cav3.2 splice isoform 
that contains exon 25 (which is the predominant splice 
isoform expressed in the thalamus)129.

The role of Cav3.2 channels in seizure genesis is 
underscored by genetic analysis of human patients 
with various forms of idiopathic generalized seizures124. 
Mutations in the gene that encodes Cav3.2 (CACNA1H) 
have been associated with childhood absence epilepsy, 
juvenile absence epilepsy and juvenile myoclonic epi-
lepsy, among several other types of epilepsy130. In excess 
of thirty different CACNA1H mutations have been identi-
fied, and many of them have been introduced into recom-
binant Cav3.2 channels for electrophysiological analysis. 
A subset of these mutations was shown to mediate  
a gain of function in channel gating, with some of  
the mutations promoting plasma membrane trafficking  
of the channels131–133 (FIG. 3b). These gain-of-function 
effects may not only affect the electrical excitability of 
neurons but also alter gene transcription events134. Given 
the findings with the GAERS model, it is important to 
consider the specific splice variant background that is 
used for such functional studies, such that they accurately 
reflect their physiological effects. Cav3.1‑overexpressing 
mice show enhanced thalamocortical network activity 
and present with pure absence seizures135.

Altogether, these findings indicate that enhanced 
activity or expression of T‑type calcium channels in the 
thalamus increases seizure susceptibility. It thus stands 
to reason that decreasing the activity or expression of 
these channels should protect against seizures. Indeed, 
mice lacking Cav3.1 calcium channels are resistant 
to baclofen-induced seizures136. Furthermore, when 
crossed with Cav3.1‑knockout mice, the seizure abnor-
malities in several mouse models of absence epilepsy are 
normalized128. Overall, these findings support the idea 
that targeting Cav3.1 and Cav3.2 channels could be a 
strategy for mitigating absence seizures.

The role of Cav3.3 channels in the generation of 
burst firing in nRT neurons is somewhat controversial.  
On the one hand, Cav3.3 channel activity can give rise 
to bursting behaviour that fits with that observed in 
nRT neurons137, and this appears to be a critical factor  
in the generation of sleep spindles138. On the other 
hand, mice that either globally lack Cav3.3 channels, or 
mice that are selectively deficient for Cav3.3 channels 
in nRT neurons, appear to show greater susceptibility  
to pharmacologically induced spike and wave dis-
charges and increased inhibitory synaptic inputs onto 
thalamocortical neurons139. It is currently not clear 
whether knockout of Cav3.3 could lead to compensa-
tory increases in the expression of other ion channels or 
receptors that lead to such an increase in the excitability  
of nRT neurons. Furthermore, owing to the lack of 
selective Cav3.3 channel blockers, it is not clear whether 
acute inhibition of these channels mediates effects that 
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Valproate
An anti-epileptic drug with 
multiple molecular targets.

Lamotrigine
An anti-epileptic drug with 
multiple molecular targets.

are equivalent to those observed upon deletion of the 
gene encoding Cav3.3. Nonetheless, when developing 
T‑type calcium channel blockers for therapeutic inter-
vention, this ambiguous role of Cav3.3 channels should 
be considered.

Ethosuximide is a T‑type calcium channel blocker 
that has been used clinically to treat absence seizures140. 
This compound is a low-affinity (in the submillimolar 
range) blocker of all three Cav3 channel isoforms, with 
a preference for inactivated channels, and it gives rise to 
use-dependent inhibition141. The anti-epileptic sodium 
valproate (Depakene/Convulex; Abbott) has also been 
described as a T‑type channel inhibitor142. However, this 
compound is also known to inhibit other targets such as 
sodium channels143 and histone deacetylases144. Along 
these lines, the multitarget antiepileptic drug zonisamide 
(Zonegran; Eisai) has also been reported to inhibit 
T‑type channels in the micromolar range, but curiously 
without any apparent state dependence145. Interestingly, 
there is evidence that this compound also improves 
pain responses in rodents, further supporting the role 
of T‑type channels in pain signalling (as discussed in the 
section above)146. More recent drug discovery efforts by 
Zalicus (now Epirus Biopharmaceuticals) have identified 

small organic molecules (including the aforementioned 
compound Z944 and a compound termed Z941) that 
potently inhibit Cav3.2 T‑type calcium channels and 
block seizure activity in the GAERS model147. Z944 was 
also shown to inhibit burst firing in nRT neurons, which 
is consistent with the critical role of these channels in  
thalamic neuron excitability. As Z944 is already in clinical  
testing for pain, this may provide the opportunity for 
testing this compound in patients with absence seizures.

HVA calcium channels may also be targeted for 
the treatment of seizures. Gabapentin is used as an 
anticonvulsant to treat focal and partial seizures148. 
However, given that this compound has the propensity 
to affect multiple types of HVA channels through its 
interaction with Cavα2δ subunits, it is not clear how 
this compound mediates its clinical effects at the cell
ular level. The anti-epileptic lamotrigine (Lamictal; 
GlaxoSmithKline) is also widely used for the treatment 
of focal and absence seizures, but its mode of action 
remains incompletely understood149,150. This compound 
blocks transiently expressed R‑type Cav2.3 channels in 
the low micromolar range, with a small effect on Cav3.1 
channels151. A recent study revealed that the anti-seizure 
effects of lamotrigine observed in mice are dependent 

Figure 3 | Role of T‑type calcium channels in the thalamocortical circuitry. a | Thalamocortical neurons (TCNs)  
have excitatory projections to both cortical pyramidal neurons (CPNs) and reticular thalamic nucleus (nRT) neurons. 
Descending excitatory projections innervate nRT neurons and TCNs, whereas nRT neurons have inhibitory inputs onto 
thalamocortical cells. The excitability of this network is strongly dependent on T‑type calcium channels, with Cav3.1 
channels being expressed in TCNs, and Cav3.2 and Cav3.3 channels being expressed in nRT neurons. b | Mutations in 
Cav3.2 that are found in patients with congenital forms of absence epilepsy increase Cav3.2 channel function. The C456S 
mutation increases cell surface expression of the channels, whereas the V831M mutation increases channel availability  
by mediating a depolarizing shift in the steady-state inactivation curve. Both cases result in increased T‑type current 
amplitudes, leading to increased excitability of nRT neurons and thus absence seizures.
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on the presence of Cav2.3 channels152. Specifically,  
lamotrigine protected from kainate-induced seizures in 
wild-type mice but not in Cav2.3‑null mice, where this 
compound in fact mediated a paradoxical increase in 
seizure activity that remains to be explained152. Similar 
observations were made with topiramate (Topamax; 
Mylan)152, an anticonvulsant that targets multiple types 
of channels and receptors, including R‑type channels 
that are blocked in a state-dependent manner, with an 
IC50 (half-maximal inhibitory concentration) of around 
50 mM153. Although it is not clear to what extent the 
clinical actions of these compounds are mediated 
by Cav2.3 channel inhibition, the notion that Cav2.3 
channels share overlapping biophysical properties 
with members of the Cav3 channel family fits with 
such a possibility. Finally, a recent study reported that 
Cav1.2 channels in pyramidal cells activate at relatively 
hyperpolarized potentials when the temperature is 
increased to 40 °C, thereby allowing these channels to 
drive intrinsic firing properties154. The authors hypo
thesized that this effect could contribute to the devel-
opment of febrile seizures. In support of this hypothesis, 
nimodipine (Nimotop; Bayer) blocked the development 
of temperature-induced seizures in rat pups154, sug-
gesting that dihydropyridines could be explored as a 
treatment option. However, nimodipine is known to 
weakly inhibit T‑type calcium channels155, and hence 
it remains to be determined whether this compound 
inhibited febrile seizures by blocking L‑type channels, 
T‑type channels, or perhaps both.

Overall, voltage-gated calcium channels provide 
potential targets for both idiopathic and focal seizures, 
with T‑type calcium channels perhaps being the most 
promising candidates among the calcium channel family. 
However, given that there are already about two dozen 
medications on the market that can be used to control 
seizures156, there has been a relative lack of new drug 
discovery efforts in the pharmaceutical sector.

Calcium channel blockers in Parkinson disease
Parkinson disease is one of the most common neuro
degenerative disorders with a characteristic loss of dopa-
minergic neurons in the substantia nigra pars compacta; 
along with the loss of dopaminergic neurons in the  
striatum, which leads to a progressive impairment in 
motor skills, the occurrence of tremor157 and other 
comorbidities such as the development of psychosis158. 
Motor symptoms such as tremor are treated with a 
range of drugs, including anticholinergic agents, beta 
blockers and dopamine receptor agonists159, but current 
options for preventing the loss of dopaminergic neurons 
remain insufficient. It is well known that neurons from 
patients with Parkinson disease exhibit inclusion bodies 
formed by α-synuclein160, although it remains unclear 
whether these inclusion bodies are causal to neuronal 
degeneration. Several genes have been implicated in the 
development of familial Parkinson disease, including 
Parkin, α‑synuclein, leucine-rich repeat serine/threo
nine protein kinase 2 (LRRK2) and PTEN-induced 
putative kinase 1 (PINK1)161, and many of these genes 
affect mitochondrial or lysosomal function162. Despite 

many advances, the cellular and molecular basis of this 
selective neuronal loss remains to be fully understood, 
and this in turn has hampered the discovery of a cure 
for this disorder.

One possible mechanism that has been implicated in 
neuronal loss during Parkinson disease involves L‑type 
Cav1.3 calcium channels. These channels can modu-
late pacemaking of substantia nigra neurons owing to 
their hyperpolarized range of voltage-dependent acti-
vation163, although they do not appear to be critical for 
the pacemaking process per se164. Indeed, earlier work 
showing that dihydropyridines could alter the pace-
making properties of substantia nigra neurons165 may 
have been related to their off-target effects on other 
ion channels164. Nonetheless, the repetitive opening of 
Cav1.3 channels (and possibly also Cav1.2 channels)  
during pacemaking may contribute to excessive cal-
cium entry that in turn causes cytotoxicity though 
mitochondrial stress166 (FIG. 4). It is also interesting to 
note that in human brains from patients with early- 
stage Parkinson disease, expression of Cav1.3 channels 
is increased, supporting a possible causal role of these 
channels in disease pathology167.

A recent study identified an additional role of Cav1.3 
channels in Parkinson disease168. Calcium influx via 
Cav1.3 channels was shown to trigger a neuronal cal-
cium sensor 1 (NCS1; also known as FLUP)-dependent 
enhancement of the activity of dopamine D2 auto
receptors (which are known to contribute to patho-
genesis by virtue of their ability to regulate pacemaker 
activity) and loss of receptor desensitization168,169 (FIG. 4). 
This, in turn, would then be expected to contribute to 
a pathologically relevant dysregulation of dopamine 
neuron function. Hence, Cav1.3 channel activity may 
contribute to Parkinson disease pathology by multiple 
mechanisms, and therefore Cav1.3 channel-selective 
inhibitors could be a potential therapeutic strategy. 
Indeed, a Phase II clinical trial evaluating the safety of 
isradipine (Dynacirc; Reliant) as a potential Parkinson 
drug has been completed with promising results170. 
This clinical study evaluated the safety, tolerability and 
efficacy of isradipine in patients with early symptoms 
of Parkinson disease that did not yet require treatment 
with dopamine receptor agonists. Results showed that 
the drug was tolerated in a dose-dependent manner, 
with an optimal dose determined at 10 mg daily. Side 
effects at higher doses included the development of 
oedema and dizziness. A large Phase III trial is currently 
underway at Northwestern University, Illinois, USA. It is 
also important to note that there is evidence that patients 
on dihydropyridine antihypertensives show a reduced 
risk of developing Parkinson disease when compared to 
either patients who are not on such regimens or patients 
who are treated with types of antihypertensives that do 
not cross the blood–brain barrier171.

A new class of compounds (pyrimidine‑2,4,6‑
triones) was recently identified as a possible scaffold 
for Cav1.3‑selective inhibitors. One of the derivatives 
(1-(3‑chlorophenethyl)-3‑cyclopentylpyrimidine‑2,4,6-
(1H,3H,5H)-trione) was shown to selectively inhibit 
Cav1.3 channels over Cav1.2 (REF. 172). A subsequent 
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study reported lower blocking affinities and weaker 
channel subtype selectivity of this compound compared 
to those reported earlier173. However, the blocking effects 
were also shown to vary with the Cavβ subunit that was 
co-expressed and with the particular Cav1.3 channel 
splice isoform that was used173. Finally, yet another study 
reported that this compound in fact increased Cav1.3 
channel activity by affecting channel gating in a complex 
manner, with inhibition only being observed when bar-
ium was used as a charge carrier174. Although the reason 
for these discordant observations remains unclear, one 
possibility may be the use of different Cav1.3 channel 
splice isoforms in these pharmacological tests on tran-
siently expressed channels. Irrespective of these discrep-
ancies in the literature, the general premise of targeting 
Cav1.3 channels for preventing the dopaminergic neuron 
loss observed in Parkinson disease remains valid.

Finally, it should be noted that T‑type calcium chan-
nels have recently been implicated as a potential target 
for treating motor abnormalities in Parkinson disease. 
In a rat model, T‑type calcium channel inhibitors such 
as mibefradil (now withdrawn from the market) and 
NNC‑55‑0396 blocked burst firing activity in slices of 
the subthalamic nucleus, a brain structure that is known 
to exhibit increased bursting activity during Parkinson 
disease175. Furthermore, locomotor deficits in a rat 
model of Parkinson disease were reduced by these com-
pounds175. Hence, it will be interesting to determine 
whether new T‑type channel blockers such as Z944 may 
show efficacy in patients with Parkinson disease.

Role of calcium channels in drug dependency
Drug dependency can be considered a chronic disease 
in which affected individuals experience the compelling 
need to consume substances of abuse, and this is a major 
contributor to mortality176,177. These substances include 
both legal drugs such as alcohol and nicotine, as well 
as prohibited substances such as cocaine. Dependency 
involves long-term changes to the brain architecture178 
that predispose individuals to relapse even after very 
long periods of abstinence, and these may differ from 
brain circuits that are involved in the immediate reward 
associated with psychostimulants179,180. The cellular and 
molecular mechanisms underlying dependency are 
highly complex and multifaceted. The key brain struc-
ture that is involved in the development of dependency is 
the mesolimbic system181, in particular the dopaminergic 
projections from the ventral tegmental area to the nucleus 
accumbens and its outputs182 (FIG. 5). Even though different 
types of addictive substances may act at different recep-
tors (for example, morphine activates μ-opioid receptors 
and nicotine activates nicotinic acetylcholine receptors), 
they all lead to an overall increase in dopamine levels in 
the mesolimbic system183 and altered cAMP response 
element binding protein (CREB)-dependent gene 
expression in the ventral tegmental area and nucleus 
accumbens184. For over two decades, L‑type channels 
have been known to have a role in this process185, as com-
pounds such as nimodipine (Nimotop; Bayer) and dilti-
azem (Cardizem; Biovail) block behavioural sensitization  
to cocaine186,187 and attenuate alcohol intake188.

Figure 4 | Role of L‑type calcium channels in the degeneration of dopaminergic neurons during Parkinson disease.  
Substantia nigra (SN) pars compacta neurons innervate dopamine D1 receptor-expressing neurons (D1Ns) and dopamine 
D2 receptor-expressing neurons (D2Ns) in the striatum, which in turn project to output nuclei. The pacemaker activity  
of SN neurons is modulated by Cav1.3 and possibly Cav1.2 calcium channels. The repetitive activation of Cav1.3  
(and perhaps Cav1.2) channels leads to calcium influx and downstream calcium-dependent calcium release from the 
endoplasmic reticulum (ER). This leads to calcium elevation in the mitochondria and the generation of reactive oxygen 
species (ROS). This culminates in cell damage and the loss of dopaminergic neurons, and results in decreased 
dopaminergic input into the striatum. In addition, Cav1.3 channel activity has been linked to an increase in D2 receptor 
(D2R) expression via activation of neuronal calcium sensor 1 (NCS1), and this upregulation is thought to alter pacemaker 
activity. InsP

3
R, inositol‑1,4,5‑trisphosphate.
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The Cav1.3 calcium channel subtype appears to 
contribute to the amphetamine-induced upregulation 
of dopamine receptor mRNA in the ventral tegmental  
area189 and is essential for behavioural sensitization 
in response to cocaine and amphetamines190. After 
pre-exposure to cocaine, Cav1.2 channels are upregu-
lated in the nucleus accumbens, which in turn causes 
long-term changes in gene expression and a phospho-
rylation-dependent insertion of AMPA (α-amino‑3‑ 
hydroxy‑5‑methyl‑4‑isoxazole propionic acid) receptors 
into the plasma membrane, which gives rise to long-
term plasticity190,191 (FIG. 5). This process depends on the 
activation of Cav1.3 channels in the ventral tegmental 
area192, presumably via the release of dopamine and acti-
vation of D1 receptors. This plasticity is maintained after 
cocaine withdrawal. Conversely, in the dorsal striatum, 
long-term cocaine exposure causes a decrease in AMPA 
receptor phosphorylation or insertion that depends 
on the activation of D2 receptors and Cav1.3 chan-
nels, but not on those that are expressed in the ventral 
tegmental area191. Furthermore, during chronic meth
amphetamine treatment, there is an increase in Cav1.2 

mRNA expression in ventral tegmental area neurons, 
which may also contribute to long-term changes in 
gene expression189,193. A subsequent study revealed that 
Cav1.2 and Cav1.3 channels mediate distinct neuronal 
firing patterns in ventral tegmental area neurons, with 
Cav1.3 channels driving both single spike and burst 
firing, whereas Cav1.2 channels are mainly important 
for bursting behaviour194 (FIG. 5). This, in turn, suggests 
that these two channel types differentially contribute to 
dopaminergic modulation of the nucleus accumbens.

Altogether, a picture emerges in which Cav1.3 channels 
are crucial mediators of plastic changes in the mesolimbic 
system in response to psychostimulants, which then lead to 
a longer form of plasticity in the nucleus accumbens that is 
dependent on the Cav1.2 channel. The latter may perhaps 
contribute to the long-term structural changes that pre-
dispose individuals to relapse after abstinence. This there-
fore suggests that L‑type calcium channel blockers could 
prove beneficial in the treatment of addiction. Indeed, 
there is evidence from human studies that this may be 
the case195,196. For example, L‑type calcium channel inhib-
itors such as nifedipine (Procardia/Adalat; Pfizer/Bayer)  

Figure 5 | Role of L‑type calcium channels in drug addiction. Simplified neuronal circuitry involved in addiction is 
shown. Dopaminergic neurons in the ventral tegmental area (VTA) project to both the nucleus accumbens (NAc) and the 
prefrontal cortex (PFC). The NAc is a major output nucleus for reward-seeking behaviour and has both direct and indirect 
(not shown) projections back to the VTA. Chronic exposure to psychostimulants activates Cav1.3 channels and increases 
dopamine release from the VTA, which in turn stimulates glutamatergic inputs. Glutamate activates AMPA (α-amino‑3‑ 
hydroxy‑5‑methyl‑4‑isoxazole propionic acid) and NMDA (N-methyl-d-aspartate) receptors (GluR) on VTA neurons, and 
together with Cav1.3 channel activity it leads to changes in gene expression that include the upregulation of Cav1.2 
calcium channels. Cav1.2 and Cav1.3 channels differentially regulate the firing behaviour of VTA neurons, which in turn 
drives dopamine release in the NAc. There, activation of dopamine D1 receptors (D1Rs) activates protein kinase A (PKA), 
which, together with an upregulation of Cav1.2 channels, mediates long-term changes in gene expression and AMPA 
receptor insertion into the plasma membrane. CamKII, calcium/calmodulin-dependent protein kinase II; CREB, cAMP 
response element binding protein; ERK, extracellular signal-regulated kinase; GluR, glutamate receptor.
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and verapamil (Calan; Pfizer) have been shown to reduce 
withdrawal symptoms from a number of addictive sub-
stances, including opiates and ethanol195,196. It remains 
to be determined whether these effects in humans are 
dependent on the activity of Cav1.3, Cav1.2, or both types 
of channels. Such knowledge could potentially guide future 
therapeutic strategies in this setting.

In addition to L‑type calcium channels, blockers of 
other types of calcium channels may also be a useful 
strategy. A mixed N‑type/T‑type calcium channel blocker 
(NMED‑126; also known as NP078585) was shown to 
reduce alcohol intoxication in mice, as well as alcohol 
self-administration and reinstatement197. The effects of 
this compound were absent in Cav2.2‑knockout mice, 
indicating that it acted predominantly via N‑type rather 
than T‑type channel inhibition. Whether these effects 
occur at the network level in the mesolimbic system is 
not known; nonetheless, these data point to a potential 
strategy of using mixed N‑type/L‑type channel inhibitors 
to target drug and alcohol dependency. One such blocker 
that is used currently in the clinic is cilnidipine (Atelec/
Cilacar; Fuji/Ajinomoto), an antihypertensive from the 
dihydropyridine class70. Importantly, this compound sup-
presses ethanol-induced locomotor sensitization in rats198.

Calcium channels and psychiatric disorders
Several calcium channel genes have been associated 
with the development of psychiatric symptoms. Single-
nucleotide polymorphisms in intron sequences in the 
gene encoding Cav1.2 (in particular, a risk locus termed 
rs1006737) and in the Cavβ2 subunit have been asso-
ciated with an increased risk of bipolar disorder and  
schizophrenia199,200. Importantly, healthy individuals carrying  
the CACNA1C rs1006737 risk variant show compromised 
function of the anterior cingulate cortex, prefrontal cortex  
and hippocampus in functional magnetic resonance 
imaging (MRI) studies201–203. A subsequent study identi-
fied Cav1.3 as another possible risk gene for bipolar dis-
order, with a lower degree of association for Cav2.2 and 
Cav3.1 (REF. 204). It was concluded that these channels 
and other types of ionic channels share a common role 
in regulating neuronal excitability; however, this may be 
an overly simplistic view as these channels have highly 
specialized roles that can differ across brain regions7. 
How polymorphisms in intronic sequences of Cav1.2 
may contribute to an increased risk of schizophrenia 
is not yet understood. It is possible that they could lead 
to altered expression of Cav1.2 channels205, and this 
would be consistent with a recent report showing higher 
Cav1.2 activity in induced neurons from carriers of the 
polymorphism206. Nonetheless, the association of bipolar  
disorders with two different types of L‑type calcium 
channels suggests that L‑type calcium channel blockers 
are a possible treatment avenue. Indeed, a preliminary 
clinical study on the use of isradipine for the treatment 
of bipolar disorder yielded promising results207, but this 
needs to be followed up with larger cohort studies.

Gain-of-function mutations in Cav1.2 that interfere 
with the normal voltage-dependent inactivation mech-
anisms in these channels have been associated with 
Timothy syndrome, a severe condition that includes 

fatal cardiac arrhythmias, developmental abnormalities  
and autism208,209. This change in channel function not only 
affects the electrophysiological properties of excitable  
cells but, as evident from studies on neuronal progen-
itor cells from patients with Timothy syndrome, also 
leads to massive alterations in gene transcription210 and 
enhanced dendritic retraction211. An autistic pheno
type is also observed in human patients with gain-of- 
function mutations in Cav1.3 channels212. Furthermore, 
rare mutations in the Cavβ2 subunit in families with 
autism spectrum disorder lead to slowed L‑type calcium 
channel inactivation kinetics213. This raises the possibility  
that L‑type calcium channel inhibitors or, more specif-
ically, L‑type channel inactivation enhancers, could be 
used as treatments for certain types of autism. However, 
so far there have been no clinical trials to test this hypo
thesis. It is also noteworthy that single-nucleotide poly
morphisms in all three Cav3 channel isoforms have 
been associated with autism214. In the case of Cav3.2, 
such mutations have been shown to cause a loss of func-
tion215. To what extent Cav3 channels can be exploited as  
potential targets for autism remains to be determined.

Anxiety disorders are another group of highly preva-
lent psychiatric conditions that may involve voltage-gated 
calcium channels. Anxiety can be defined as an appre-
hensive reaction to a non-threatening stimulus, and it 
is thus not surprising that the neural circuitry that is 
involved in anxiety is intimately tied to that of fear216,217, 
which encompasses the amygdala, the nucleus accumbens 
and the hippocampus218. Optogenetics-based studies  
have revealed that inputs from the amygdala to the 
hippocampus are essential for the development of  
anxiety-related behaviours219. A recent study reported an 
increase in the expression of the Cavα2δ1 subunit in the 
amygdala in a rat model of chemically induced anxiety220. 
Notably, pregabalin reversed the anxiety phenotype, 
which fits with ample clinical data showing that both  
gabapentin and pregabalin are effective in treating anxiety  
disorders in humans221. The upregulation of Cavαδ sub-
units appears to be accompanied by an increase in the 
expression of Cav1.2 and Cav1.3 calcium channels222. 
Along these lines, there is an increase in the expression 
of Cav1.2 calcium channels in fear-conditioned rats222. 
In these experiments, nimodipine was shown to block 
startle responses222. Although these findings raise the 
possibility of testing L‑type calcium channel inhibitors 
as potential anxiolytics, deletion of Cav1.2 channels in 
the forebrain appears to give rise to an anxiety phenotype  
in mice223, as does haploinsufficiency of Cav1.2 channels in  
female mice224. Moreover, higher doses of nifedipine 
and verapamil have been shown to exert anxiogenic 
effects in mice225. Conversely, there are weak indications 
that Cav1.3 deficiency may have anxiolytic effects226. 
Therefore, it is currently unclear whether L‑type channels 
may serve as targets for anxiety disorders and how they 
modulate the underlying neuronal circuitry.

It is important to note that N‑type channels may also 
have a role in the development of anxiety disorders, as 
mice lacking Cav2.2 display reduced levels of anxiety227.  
It is conceivable that the aforementioned anxiolytic effects 
of gabapentin could be due to a Cavα2δ‑dependent effect 
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on Cav2.2 channels228. Finally, mice lacking the Cavβ3 
subunit show reduced anxiety along with increased 
aggression229, and it is possible that this is due to reduced 
expression of Cav2.2 channels arising from the absence 
of this important auxiliary subunit.

Overall, there is evidence supporting the utility  
of voltage-gated calcium channel blockers in a variety of 
psychiatric disorders. What remains to be understood 
in greater depth is how individual calcium channel iso-
forms contribute to the development of such conditions 
at the neuronal network level.

Challenges and opportunities
The importance of voltage-gated calcium channels as 
drug targets for nervous system disorders has been clearly 
established. As there are already clinically approved 
inhibitors of N-, L- and T‑type calcium channels,  
this may allow the rapid testing of these existing drugs 
in a wide range of neurological conditions, as exem-
plified by the use of the antihypertensive isradipine  
as a potential intervention for Parkinson disease170. 
Furthermore, as calcium channels have important roles 
in many other physiological processes, such as the reg-
ulation of sleep patterns138,230 and food intake231, the 
palette of possible therapeutic applications of calcium 
channel inhibitors may well increase to include con-
ditions such as insomnia and eating disorders, among 
others. Nonetheless, there remains a pressing need for 
new calcium channel blockers, especially for conditions 
such as neuropathic and inflammatory pain, which are 
often refractory to treatment. In particular, to mini-
mize side effects, it is important to develop new types 
of calcium channel inhibitors that specifically target the  
calcium channels that are involved in pathophysiological 
processes, while sparing those that contribute to nor-
mal physiological function. This requires an in-depth 
understanding of how calcium channels partake in  
the function of specific brain circuits that are implicated 
in pathophysiology and how these channels may be  
dysregulated in pathological states.

First, it is important to know the precise molecular 
architecture of the channels expressed in these neurons, 
which, as noted earlier in this article, may guide drug 
discovery strategies. For example, it has been shown that 
Cav2.2 calcium channels in pain-sensing neurons con-
tain exon 37a rather than exon 37b, which is more widely 
expressed in the nervous system232 and that the exon37a 
variant is critical for pain signalling233. If one were to 
develop an inhibitor that selectively targets exon37a‑ 
containing channels, then the potential of CNS side 
effects may be reduced. Along these lines, it is possible 
that calcium channels undergo age-dependent alternative 
splicing events (this has been demonstrated at least for 
P/Q‑type channels)234, and this could potentially be rele-
vant for the pathogenic role of Cav1.3 calcium channels 
in Parkinson disease. In the context of ageing, matters 
are further complicated by the fact that Cav1.2 channels 
undergo an age-dependent form of proteolysis in the 
plasma membrane that results in the generation of func-
tional channels with altered biophysical characteristics235. 
Besides modification of the pore-forming channel subunit 

per se, knowledge of the association of the calcium channel  
Cavα1 subunits with specific ancillary subunits and the 
interactions of calcium channels with other regulatory 
elements, may be important considerations for drug 
development. For example, Cav1.3 channels in cochlear 
hair cells associate with calcium-binding proteins such 
as CaBP2 and CaBP4, which changes the biophysical 
and perhaps the pharmacological characteristics of these 
channels236,237. When designing Cav1.3 channel inhibi-
tors for the treatment of conditions such as Parkinson 
disease or addiction, it may thus prove advantageous to 
select compounds with lower affinity for channels that 
are complexed with CaBP2, in order to avoid the possi-
bility of drug-induced hearing deficiencies. This could be 
accomplished by screening compounds against cell lines 
that stably co-express CaBP2 and Cav1.3 channels.

Second, it is important to understand the intrinsic  
firing properties of the neuronal circuits that are involved 
in pathological states. For example, hyperexcitability 
disorders such as epilepsy may call for calcium channel 
blockers that are strongly use-dependent. This strategy 
has been successfully exploited with anti-arrhythmic and 
anticonvulsant drugs and, as noted above, it is possible 
to identify these types of compounds with new drug 
screening technologies238. Indeed, several of the newer 
T‑type calcium channel blockers such as Z944 exhibit this  
feature, as does the N‑type channel inhibitor TROX‑1.  
In other cases, it may prove advantageous to develop 
tonic blockers of a particular calcium channel subtype.

Third, it may be possible to target aberrant upregulation  
of calcium channels, as seen in pain-sensing neurons after 
injury. Indeed, such an approach has been demonstrated  
for the interactions between Cav2.2 channels and collapsin  
response mediator protein 2 (CRMP2; also known as 
DRP2), which promotes stability of the channel com-
plex in the plasma membrane239. Uncoupling of CRMP2 
from the channel via disruptor peptides reduces calcium 
currents and mediates analgesia239. Along these lines, 
interactions between Cav3.2 calcium channels and the 
deubiquitinase ubiquitin-specific processing protease 5 
(USP5) have been shown to promote enhanced channel 
expression in the plasma membrane in a range of chronic 
pain conditions240. Disruptor peptides that interfered 
with the association of the two proteins prevented this 
aberrant upregulation, thereby mediating analgesia. 
Importantly, small organic mimetics of these peptides 
that were identified in an enzyme-linked immunosorbent 
assay (ELISA) screen prevented the USP5–Cav3.2 inter-
action in vitro and blocked the development of pain 
hypersensitivity in several different animal models241. 
This is an example in which targeting a protein–protein 
interaction can be exploited towards therapeutic indica-
tions. Because such protein–protein interactions often 
occur in intracellular regions in which there is greater 
sequence divergence among various calcium channel iso-
forms, this approach has the potential to achieve greater 
target selectivity. Furthermore, by targeting an association 
that occurs in a pathophysiological state and not under 
normal physiological conditions, the potential of inter-
fering with normal physiology (and thus the possibility  
of side effects) is minimized.
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Finally, knowledge of how mutations in calcium 
channel genes alter channel function can be exploited 
towards the development of therapeutics. This is exem-
plified by a recent study in which a gain-of-function 
mutation in Cav2.1 causing familial hemiplegic migraine 
was introduced into Drosophila melanogaster and shown 
to alter synaptic physiology at the neuromuscular junc-
tion242. A compound (ter-butyl dihydroquinone) that is 
able to offset the enhancement of channel function to 
normalize the synaptic defects associated with the muta-
tion was then applied, thus restoring normal synaptic 
physiology. Although such a targeted approach has not 
been described for treating calcium channelopathies in 
humans, it has been successfully applied to patients with 
erythromelalgia who have gain-of-function mutations 

in Nav1.7 sodium channels243. It may thus be possible 
to adopt similar strategies for gain-of-function calcium 
channelopathies such as absence epilepsy, migraine or 
Timothy syndrome.

Altogether, there remains tremendous untapped 
potential towards the design of new calcium channel 
blockers for the precise (and perhaps personalized)  
targeting of a wide range of neurophysiological and  
psychiatric conditions. The above considerations under-
score the need for fundamental insights into the roles 
of calcium channels in nervous system function at the 
cellular, molecular and network level. With many of 
the large pharmaceutical companies reducing in-house  
discovery efforts, this important task may need to fall on 
the academic community.

Channelopathies
A group of conditions in which 
mutations in specific ion 
channels give rise to disease.
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