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ABSTRACT 

The optimum design of reinforced concrete continuous beams is 

considered. A method is developed for design in accordance with the 

currently accepted deterministic approach and a new probabilistic 

approach is proposed. In both cases, the variables are the cross-

section dimensions and the areas of longitudinal and transverse 

reinforcement at all sections in each beam span. The constraints are 

the requirements of serviceability and the' ultimate limit state. 

Mathematical programming techniques have not traditionally 

been favoured for reinforced concrete design due to the associated high 

computational costs. This problem is largely overcome by the 

development of a method of optimiiation by decomposition. The beam is 

decomposed into a number of two-span substructures, each subjected to 

all loading conditions. The large number of variables associated with 

each sub-substructure degenerates conveniently into a very small number. 

This facilitats the use of robust direct search programming methods. 

The sub-problem designs are combined in an iterative sequence to give 

the optimum design of the beam. Examples illustrate the use of the 

program and the sensitivity of beam cost to certain parameters. An 

efficient method of determining a near-optimal solution is described. 

A new probabilistic approach to design is developed for design 

office use. The method is based on the assumption that loading is 

uniformly distributed in each span and is of random intensity. The 

method is shown to be more rational than the existing approach and to 

yield less conservative results. 
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NOTATION 

a = depth of assumed rectangular stress block 

a. = constant defined by Eqn. 5.2 

A = constant defined by Eqn. 4.15 

A, bn = area of bottom steel 

A1 = influence area 

A = area of tension steel 

A' = area of compression steel 

= area of one slab 

At = tributary area 

A = equivalent area of compression reinforcement available through 

extension of bottom steel from side n 

= breadth of rectangle of concrete surrounding the tension steel 

= breadth of rectangle of concrete surrounding the compression 

steel 

b. = constant defined by Eqn. 5.2 

b V = minimum effective web width for shear 

b = band width 
w 

B = tributary area 

c = depth to neutral axis 

c. = constant defined by Eqn. 5.2 

c.. 1 = constant defined by Eqn. 5.2 

C. = unit costs 
1 

cov(.) = covariance 

d  

d  

= effective depth to bottom steel 

= effective depth to top steel ( from bottom of member) 
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a 
V 

= effective depth for shear 

d1 = effective depth to (top or bottom) tension steel 

d2 = effective depth to (top or bottom) compression steel 

dIIR = portion of total required moment capacity to be provided by 

D? 
— 1 

steel n 

= difference between starting and finishing point in 3 
th 

optimization of stage i 

e = constant defined by Eqn. 4.2 

f = constant defined by Eqn. 4.3 

f = value of objective function at x 
c —c 

V = characteristic strength of concrete 

f. = stage objective function 

f = value of objective function at x 
m —n 

f = value of objective function at x 
n —n 

f = stress in tension steel 
S 

V = stress in compression steel 

f = yield strength of steel 

F = correction factor for probabilistic shear design 

F(x) objective function evaluated at x 

th 
F  objective function at q iteration 

911 92 = functions 

gi 

G 

G 
S 

S 

= inequality constraint 

= function defined by the "maximum" operation 

= "smooth" maximum function (Appendix C) 

= smooth maximum function with continuous second derivatives 

h = total section depth 
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h. = equality constraint 

(H) = Hessian matrix of second derivatives 

H n th = moment at n support of span, hogging positive 

H pn n = moment capacity at point P on side n of support 

H xo = maximum moment (hogging positive) in absence of compression 

reinforcement 

= influence surface coefficient for shear 

1 ' I = influence line coefficients for moment 

= influence surface coefficient for moment 

j = number of loading which is critical for y1 

k = number of loading which is critical for 

k. = constant defined by Eqn. 5.10 

= span length 

= full development length of reinforcement 

YIA = development length required for moment, MA 

'dn = full development length of steel at end n 

Q. = constant defined by Eqn. 5.11 

m1 = integral of (normalized) influence surface for moment 

in31 = integral of (normalized) influence surface for shear 

i(X ) = mean value of moment at X 
0 0 

(MA ).3k = moment at intersection of bending moment diagrams associated 

with loadings j and k 

= moment due to applied loads at Point B 

Mc = moment due to applied loads at Point C 

Mdet = moment found using deterministic procedure 

MD = moment due to applied loads at Point D 
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MDB = design moment at Point B 

MDC = design moment at Point C 

MDD = design moment at Point D 

MEB = moment as implied by elastic analysis at Point B 

MEC = moment as implied by elastic analysis at Point C 

MED = moment as implied by elastic analysis at Point D 

Mf = factored moment of resistance 

M = factored moment of resistance at commencement of T-section 

behaviour 

th 
= vector modulus for i stage optimization 

= optimum value of vector modulus, M. 
2. 1 

Mb = moment found using probabilistic procedure 

M = moment ( sag positive) illustrated in Fig. 4.2 

= moment of resistance at Point B 

MRC = moment of resistance at Point C 

M RD = moment of resistance at Point D 

n = subscript to denote end of span. n = 1 denotes the left end 

of the span (right of support) and n = 2 denotes the right 

end of the span 

= number of inequality constraints 

nih = number of equality constraints 

n = number of variables at Stage i in a multi-stage problem 

nL = number of loading conditions 

= number of spans 

= power to which term is raised 

q = uniform loading intensity 

n 

pp p 
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qDni = mean value of 
qDni 

= span dependent portion of uniform dead loading intensity 

q Do = span independent portion of uniform dead loading 'intensity 

q Do = mean value of q Do 

q Di = uniform dead loading intensity in i th span 

= uniform live loading intensity in i th span 

qLn = span dependent portion of uniform live loading intensity 

= span dependent portion of uniform live loading intensity in 

th 
i span 

qLR = reduced uniform live loading intensity 

qLo = span independent portion of uniform live loading intensity 

r = distance between PQfltSr (x.,y.) and (x,,y.) 

rqM = correlation coefficient between q and M 

Si = extent of boundary region 

5Lnl = factored deviation of qLnl 

S = moment of resistance for sag 

S(X ) = shear force at X 
0 0 

S(X ) = mean shear force at X 

Si = moment of resistance for sag in I th span 

s  = factored deviation of moment 

t = constant defined by Eqn. 4.8 

t1 = total depth of section of concrete surrounding tension steel 

t = total depth of section of concrete surrounding compression 

steel 

V  = factored shear force 

w = constant defined by Eqn. 4.10 
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w(x,y) = load intensity at a point (x,y) 

x = distance along span measured from left-hand support 

X = vector of variables for optimization 

= centroid of simplex 

x = point determined by contraction operation 

= point in simplex with highest value of objective function 

X . = vector of variables in 4-'k stage of a multi-stage problem 

x? = initial value of x. 
- 1  

= transpose of x. 

= optimum value of x. 

x in . = coordinate of first point of intersection of applied bending 

moment and moment capacity diagrams 

X. = vertex of simplex for sequential simplex method 

x = kth component of x. 
jk —J 

Xt = point in simplex with least value of objective function 

x = point determined by expansion operation 

X = coordinate measured on side n from support inwards towards 

the centre of the span 

= point determined by reflection operation 

x qn = coordinate of point at which bottom steel is cut-off 

x sn = coordinate of point at which bottom steel is no longer 

required for resistance of sag moment 

= coordinate of point of tangency of applied bending moment and 

moment capacity diagrams 

X,X = ratio of distance from left-hand span support to span length 

X. = random variable 
1 



xx 

X. = mean value of X. 
1 1 

. th j th 
= variable moment at 1 support for loading 

a' 1a = dimensions illustrated in Fig. 4.3b 

yi = interconnection variables -1,i 

Yn = length in n th end of span in which top reinforcement is 

required to resist flexure 

ypn = extents illustrated in Fig. 4.6b 

'xn = the extent in span n in which moment (hogging positive) 

exceeds H 
xo 

Y = random variable 

extent of reinforcement to be provided at Support B 

Y = mean value of Y 

= total length in nth span in which ieinforcement is required 

z = amount by which the extent of bottom steel must exceed that 

theoretically required 

z  = minimum amount by which .top steel on side n must exceed that 

required for flexure 

z = minimum amount by which top steel on side opposite to side n 

must exceed that required for flexure 

= scalar used for the minimization of a function along a 

specified direction 

= number of standard deviations (a measure of safety) 

=. dead load factor 

= live load factor 
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SA = the additional area of top steel required to resist moment in 
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= change in M. resulting from j optimization of stage 1 
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immediate deflection due to additional live load 
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C = area independent component of loading intensity 

= mean value of C 
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K' 

P 
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CHAPTER 1 

INTRODUCTION 

1.1 GENERAL 

Methods of structural optimization have received a great deal 

of attention in recent years. Closed form solutions have been developed 

in some areas (Brown, 1975; O'Brien and O'Keeffe, 1985) but are, in 

general, only applicable to simple structures or substructures. For 

larger problems in structural optimization, it is necessary to apply 

methods of mathematical programming (NP). Some highly efficient NP 

algorithms are, widely available. However, when applied to large 

structural problems, considerable practical difficulties have been 

encountered (Kirsch, 1975). Structural design problems, being based on 

the specifications of codes of practice, often involve discontinuities 

in the objective function and its derivatives (Surtees and Tordoff, 

1977; Douty, 1976). This precludes the use of the more efficient 

gradient based algorithms (Kirsch, 1981). Direct search methods are 

less sensitive to discontinuities but are relatively inefficient when 

large numbers of variabled are involved. 

The complex behaviour of reinforced concrete (RC) under stress 

has resulted in extensive design and detailing specifications in the 

code of practice (Canadian Standards'Association, 1984). Thus, the 

optimum RC design problem is a complex one, even for relatively small 

structures. Much research effort has been devoted to the optimization 

of reinforced concrete elements (Brown, 1975; Chou, 1977; Friel, 1974, 

Naamen, 1982). However, there is, in general, considerable interaction 
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between the elements which make up a large structure. The result is 

that the optimum designs of elements, considered in isolation, are often 

quite different from the optimum designs of the same elements when part 

of a larger structure. This is especially true for optimum continuous 

beam design. The behaviour of a two-span continuous beam is 

fundamentally different than that of two simply supported beams acting 

independently on the same spans. In this dissertation, a method for the 

optimum design of continuous beams is developed. Despite the popularity 

of this form of construction, no other method appears to have been 

published for accurate optimum design. The problem involves the 

selection of the section dimensions and the areas of longitudinal and 

transverse reinforcement for all sections in each beam span. Topology 

is assumed to have been prespecified. The design is required to satisfy 

the constraints of serviceability and the ultimate limit state. Elastic 

analysis with (optimum amounts of) "plastic moment redistribution" is 

used to determine the bending moment and shear force envelopes. 

Two approaches to optimum continuous beam design have been 

developed. The first is a method of design in accordance with the 

requirements of the current code of practice (Canadian Standards 

Association, 1984). The second approach is to suggest an alternative 

method of design to that specified in the code which provides a more 

rational basis for design and which facilitates optimization. 
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1.2 OPTIMUM DESIGN FOR MULTIPLE LOADS 

It is currently required in the Canadian code of practice 

(Canadian Standards Association, 1984) that continuous beams be designed 

to support all possible combinations of specified maximum and minimum 

loads. A major portion of this study has involved the development of a 

method of optimum design in accordance with this and the other 

requirements of the code. 

The study involved the development of an algorithm by which 

optimum designs could be efficiently determined. Thus, the primary 

result of this research on optimum design is an efficient computer 

design program. Much of the content of this dissertation involves the 

development of the strategies which have been incorporated into the 

program. It was felt that the program should be versatile and easy to 

use. For example, the user must be permitted to keep certain section 

dimensions fixed while allowing others to take their optimum values. Of 

those that are allowed to vary, it must be possible to constrain some 

groups of dimensions to vary as one. Further, the input data which 

transmits these user requirements must not be overly complex. 

In addition to the section dimensions, the variables for 

optimization include the amounts of plastic moment redistribution to be 

made after the elastic analysis. The detailed treatment of these 

parameters distinguishes this development from other studies on the 

optimum design of reinforced concrete structures that the author has 

studied. For the (elastic) bending moment envelope illustrated in Fig. 

l.lb, an optinium design may involve reductions or increases in any or 

all of MB1, MB2, MB3 , MCl, Mc2 and Mc3. Increasing Mi may decrease the 
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Fig. 1.1. - Example Illustrating Parameters for Optimization 
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Fig. 1.2. - Example with Probabilistic Loading 
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amount of bottom steel required in Span 2 but may increase the amount of 

top steel required at C. Increasing MB1 may also decrease the amount of 

bottom steel required in Span 2 but this is countered by the fact that 

it may increase the length of top steel required at B. 

Studies have indicated that many of the difficulties 

associated with the optimization of large structural systems are 

overcome by methods of decomposition (Kirsch, 1975). Decomposition 

involves the resolution of the primary problem into a number of 

subproblems, each involving a lesser number of variables. Continuous 

beam design for multiple loadings is a large optimization problem 

involving large numbers of variables. Due to the " ill conditioned" 

nature of the problem, it can not be readily solved using the efficient 

gradient based optimization algorithms. As direct search algorithms are 

only efficient for problems involving small numbers of variables, a 

method of decomposition has been applied to resolve the overall problem 

into a number of small subproblems. Each of the subproblems is 

sufficiently small to be solved quite 6fficiently using direct search 

methods. 

Due to the high degree of interaction between the elements of 

a continuous beam, none of the existing method's of decomposition is 

suitable for this problem. Hence, it was necesary to develop a method 

which will be called sequential decomposition (SD). This method was 

developed for the specific problem in hand. However, it can be applied 

to any problem with a similar serial structure. The SD procedure 

involves the consideration of the overall problem as being composed of a 

number of subproblems. The subproblems are solved in a sequence which 
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converges to the global optimum. Due to the integral nature of a 

continuous beam, the subproblems are not simply supported single-span 

beams but are smaller continuous beams of two spans or more. 

A series of test runs demonstrates the relative efficiency of 

the optimization procedure. A further series of examples indicates the 

sensitivity of cost to some of the various input parameters and leads to 

some interesting conclusions for optimum beam design. 
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1.3 PROBABILISTIC APPROACH TO DESIGN 

A simple probabilistic model is developed for the applied 

loading on buildings. It is proposed that this model be used for design 

in lieu of the traditional considerations of multiple deterministic 

loading conditions. While the model was developed primarily for live 

loading, it is shown to be equally applicable to dead loads. A primary 

aim in the development of the new procedure was that it be simple, both 

conceptually and in its use. For design, it is assumed that the loading 

in each span is uniformly distributed and that the intensity consists of 

two parts ( see example, Fig. 1.2, p. 4). The first part, q, is 

constant for all spans in the beam while the second part is peculiar to 

that particular span. Each of the components of the live loading 

intensities (q, q1, q2, q3 in Fig. 1.2) are considered to be 

statistically independent random variables, that is, the value of each 

is uninfluenced by the value of the others. The probabilistic design 

procedure consists of analyzing the beam to determine the stresses as 

linear combinations of the random variables. A simple fprmula is then 

applied for the determination of the means and standard deviations of 

these stresses from which extreme values can readily be determined. 

The probabilistic procedure is a more rational basis for 

design than the traditional method of considering a number of 

deterministic load combinations. A comparison is made between the 

stresses which result from actual loading and those implied by the new 

procedure. It is shown to provide excellent agreement. Further, the 

new procedure is shown to provide considerably better consistency in 

levels of safety than is provided by the traditional deterministic 
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approach. Design examples illustrate the use of the new procedure and 

the inconsistencies implicit in the traditional method. 
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CHAPTER 2  

REVIEW OF PREVIOUS WORK 

2,1 OPTIMUM STRUCTURAL DESIGN 

2.1.1 General 

Methods of optimization have received a great deal of 

attention over the past three decades and an impressive array of 

techniques has been developed. Several excellent books on the subject 

are available. Koo ( 1977), Luenberger ( 1973) and in particular, Gill, 

Murray and Wright ( 1981) provide the reader with an insight into 

optimization in general terms. More specialized books include those of 

Rao ( 1978) and Zahradnik ( 1971) on engineering optimization and Spunt 

(1971), Gallagher and Zienkiewicz ( 19/3), Majid ( 1974) and Kirsch ( 1981) 

on structural optimization. 

Despite an abundance of research and the fact that 

optimization has been shown to result in substantial -savings (Johnson, 

1984), there has been some hesitancy in the industry in the adoption of 

optimization techniques for structural design (Goble and Moses, 1975; 

Frind and Wright, 1975; Spillers and Kountouris, 1980). With the 

increasing use of computers in design offices, one would expect a great 

deal of soft.iare to be available for optimum design. However, as 

indicated by Firxnin, Gilmor and Collins ( 1977) this may not be the case. 

At their time of writing, there were in fact very few design programs 

(much less optimum design programs) readily available nationwide in 

Canada. This was in contrast to a large number of analysis programs. 

They attribute the shortage of design programs, among other things, to 
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the facts that design is code-specific and that much of design is a 

subjective process. 

Two approaches to structural optimization have been developed, 

namely, optimality criteria (OC) methods and mathematical programming 

(MP) methods. The former are based on a defined criterion for 

optimality, the premise being that the optimum is found once that 

criterion is satisfied (Kirsch, 1981). Popular optimality criteria are 

simultaneous failure (all modes of failure should occur simultaneously 

(Schmit, 1981)) and fully stressed design (all members should be fully 

stressed for some loading condition). Gellatly and Berke ( 1971) and 

Gorzynski and Thornton ( 1975) are among those who have applied these 

methods to trusses but they can also be used for continuous ( Stelzer, 

1981) and cable (Cinquini and Contro, '1981) structures. It is well 

known that OC may not result in designs of minimum weight or cost 

(Kirsch, 1981; Gellatly and Berke, 1973). Nevertheless, the methods 

allow the engineer to take advantage of the special nature of structural 

optimization problems Mot and Berke, 1981) which results in 

substantial savings in computational effort. 

The other, more direct, approach to structural optimization is 

mathematical programming. These are the general optimization methods 

which seek to find the true optimum solution. Despite considerable 

improvements in the past thirty years, however, the direct application of 

general MP subroutines to large structural problems can require 

prohibitively large amounts of computer time ( see Section 5.3). 

There are a number of different kinds of MP, each suitable for 

different kinds of problems. Linear programming is among the most 

popular due to its relatively low computer time requirements. However, 



11 

almost all forms of MP have been applied to structural optimization, 

dynamic programming to trusses and planar structures (Raj and Durrant, 

1976; Twisdale and Khachaturian, 1975), geometric programming to the 

design of beams and slabs (Khalil, 1977), exterior penalty function 

methods to the design of bridges (Sargious and Badawy, 1976) and 

geometric programming to the design of factory structures (Bradley, 

Brown and Feeney, 1974). 

While most approaches to structural optimization are based 

either on methods of OC or MP, there are some exceptions. Arora, Haug 

and Rim ( 1975) have applied an optimal control algorithm to the design 

of plane frames. Also, Wright and Feng ( 1971) and Arora and Haug ( 1978) 

have developed "hybrid methods", seeking to use the best features of 

both OC and MP simultaneously. The former have sequentially applied the 

stress ratio iteration method, the basic iteration method and the 

gradient projection method to the minimum weight design of plane frames. 

The latter have examined the features of both OC and MP and have 

recommended a combination of these for a hybrid method which they apply 

to the design of a truss. In both cases, it is assumed that the 

gradients of the objective function are available. 

A persistent difficulty with methods of optimization has been 

the selection of an appropriate objective function, namely, the function 

to be minimized or maximized. McAdam ( 1983) emphasises the need to 

minimize the formwork and construction time costs. Brondum-Nielson 

(1985) is among those who consider reinforcement only as the objective 

function. However, most work has concentrated on the minimization of 

either structural weight or structural cost as reflected in unit prices 
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of materials " in place". For structures such as trusses with specified 

topology, the material cost may be the only significant cost that is 

variable and, accordingly, minimum weight designs can give realistic 

results. There are also some structural applications where the 

minimization of weight and cost are almost synonymous. Examples include 

aircraft structures and structures located in remote areas (Fairweather, 

1985). However, abundant evidence has been provided to indicate that, 

in general, minimum weight designs are not necessarily of minimum cost 

(Naamen, 1976; Kirsch, 1981). Nevertheless, a considerable amount of 

effort has been expended on the development of methods of minimum weight 

design even for prestressed structures (Rozvany, 1964; Birkeland, 1974) 

and composite structures (McNeely, Sneep and Smith, 1985). The problem 

with cost as an objective is that the cost coefficients are not readily 

quantifiable (Schmit, 1969; Russell and Choudhary, 1980). Construction. 

costs alone depend on market situations and on the preferences of 

individual contractors. Fortunately, optimum solutions are, in general, 

not highly sensitive to these coefficients (Templeman, 1983). Thus, if 

exact values are not known, the use of typical values is reasonable. In 

accordance with this, the more recent work on optimum reinforced 

concrete design has tended to use cost rather than weight as the 

objective function. 

Substantial progress has been made in optimum structural 

design over the past fifteen years. In 1969, Schmit stated that current 

trends were characterized by: 

(a) "efforts to generate large scale capabilities involving drastic 

idealization and consideration of a limited class of failure modes"; 



13 

(b) "efforts to generate optimization capabilities for relatively small 

special problems considering complex failure mode analyses 

involving less idealization". 

While these comments still hold some relevance today, considerable 

improvements have occurred since then. Optimum truss design techniques 

can treat problems with multiple loadings (Lev, 1978; Cassis and 

Sepulveda, 1985) and variable geometry (Imai and Schmit, 1981; Lipson 

and Gwin, 1977). Methods of optimal frame design are available although 

few algorithms for configurational optimization with comprehensive 

design constraints yet exist (Topping, 1983). Recent developments in 

structural design include the use of artificial intelligence (Rooney and 

Smith, 1982 and 1983). The optimum design of structures with control 

has also received some attention (Kirsch and Moses, 1977) and would 

•appear to have future potential. 

Templeman ( 1983) summarizes the current status of optimum 

structural design: 

(a) "The ability and methodology to write good practical computer 

software for optimum design has existed for more than ten years." 

(b) "At present, very little software exists to implement practical 

optimum design, and the rapid growth in design office computers 

must suffer from a lack of appropriate software." 

He concludes that researchers must step back from the research frontiers 

of structural optimization and become involved in providing practical 

design software. 
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2.1.2 Application of Optimization to Reinforced Concrete Structures  

Element Optimization: As stated by Schmit, a great deal of the 

research effort in structural optimization has been focussed on small 

specialized problems ( 1969). This comment is given validity today by 

the profusion of publications on reinforced concrete element design. The 

relative simplicity of element design is especially attractive. It has 

meant that, for some elements, when simplifying assumptions or 

approximations are made, closed-form solutions can be obtained 

(Kaliszky, 1965; Timleck, 1972; Friel, 1974; Brown, 1975; Loov and 

Bhatia, 1978; Chou, 1977; Loov and Khalil, 1980; Somayaji, 1982; Loov, 

1984). These solutions are in the form of sequences of equations and 

checks. Khalil ( 1977) gives a detailed explanation of how a constrained 

problem can be solved in this manner. Another approach, adopted by 

Khalil ( 1977) and Salinas ( 1980) is the solution of large numbers of 

examples by a mathematical programming method and, the use of these to 

derive rules and/or equations to direct the design to the optimum. 

Recent developments involve more accurate and/or more 

sophisticated analysis of element behaviour than can be accommodated in a 

closed-form solution. Accordingly, the problems are simply expressed in 

a form suitable for solution using methods of MP. Of the methods of 4P, 

linear programming (LP) appears to be most popular. This is due to the 

widespread availability of reliable LP computer packages rather than to 

the linearity of element optimization problems. Morris ( 1978) has 

applied LP to prestressed flexural members and Naaxnen ( 1982) to 

prestressed tension members. Other methods of MP have also been used 

for element optimization. Salinas ( 1974) has applied geometric 
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programming to the optimum design of flexural members while Cohn and 

MacRae ( 1984) have applied a general method of non-linear programming to 

the design of partially prestressed flexural members. 

As can be seen, an abundance of methods is available for the 

optimum design of reinforced concrete elements. Unfortunately, for 

cast-in-place structures, there remains the important problem of 

integrating the element designs into the total structure (Russell and 

Choudhary, 1980). There are, in fact, not many simply supported flexural 

members in these structures. Accordingly, this author and others 

(Templeman, 1983) feel that an excess of sophistication in an element 

optimization method tends to limit its use. 

Optimization of Large Concrete Structures: Structural Optimization 

procedures for large structures have tended in the past to fit into the 

first of the categories given by Schmit ( 1969), namely, they involved 

"drastic idealization". The consequence of this, in Schmit's words, is 

that "the engineer runs the risk of treating an inadequate 

representation of the right problem". Nevertheless, approximate 

procedures for large concrete structures are useful tools for 

preliminary design. As early as 1966, Hill proposed a method for the 

optimization of high-rise reinforced concrete buildings. More recently, 

Beaufait and Gerlein ( 1979) and Gerlein and Beaufait ( 1980) have 

proposed sophisticated methods for the preliminary design of large 

reinforced concrete frames. Andam and Knapton ( 1980) have also reported 

results obtained from a suite of programs for the optimum design of a 

family of precast concrete frames. 

Two researchers have developed comprehensive methods for the 
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design of reinforced concrete continuous beams. The first of these is 

Cauvin ( 1979) who has written a program for the nonlinear optimum design 

of (continuous beams and) frames. The advantage of the method is that 

it performs a non-linear analysis thereby removing the necessity for 

considerations of optimum plastic moment redistribution. The 

disadvantage is that sections are treated as independent. Hence, 

solutions involve non-prismatic beams, each section ( in general) having 

a different geometry. Further, deflection considerations can not be 

included in the optimization process. 

The second procedure for optimum continuous beam design was 

proposed by Kirsch ( 1983). This author has applied a "multilevel" 

strategy to the optimization problem. Beams are assumed to be prismatic 

and the dimensions to vary independently from one span to the next. An 

elastic analysis is carried out for multiple loading conditions. 

Subsequently, an optimization strategy is applied to determine the amount 

of plastic moment redistribution. However, only the maximum 

("envelope") moments are treated in the redistribution calculations. 

The implication for the example illustrated in Fig. 1.1. (p. 4) is that 

the design moments, M DB , MDC and MDD, are satisfactory provided that, 

(a) they are sufficiently close to MB2, Mi and MD1, respectively, to 

satisfy the requirements of ductility and, 

(b) they satisfy the equilibrium requirement: 

MDD - (MDB + MDC) /2 ?: 

where % iax is the maximum factored loading intensity in Span 2. 

In this example, in fact, 

(2.1) 
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MDl - (MB1 + Mci)/2 = maxL2/8 (2.2) 

As MBl < MB2, it would be possible using this design procedure, to 

reduce MD1 without considering the additional length of top 

reinforcement at B that this implies. Accordingly, this procedure, 

while having the advantage of simplicity, is based on a non-conservative 

assumption. The problem is compounded by the fact that MDl would almost 

certainly be reduced in such an example as no increase in cost results 

from this while adecrease in the area of bottom steel iii Span 2 does, 

2.1.3 Multi-Level Optimum Design Procedures  

Decomposition is the process of breaking down large 

optimization problems into smaller subprQblems and combining the 

subproblem solutions is some way to determine the solution to the 

original problem. The method has received considerable attention 

because the computational effort required to solve an optimization 

problem tends to increase exponentially with the number of variables 

considered. In 1970, Lasdon suggested that decomposition was mandatory 

for truly large problems because of time and/or storage limitations (at 

that time). Optimal design of complete structures is, in general, a 

problem involving large numbers of variables. Further, it is well known 

that stresses in elastic structures are insensitive to changes in the 

dimensions of components at remote locations (Cauvin, 1979; Kirsch, 

1983). 

As early as 1969, Schmit stated that the study of formalized 

schemes for the decomposition of structural problems warranted 

attention. At this time, Lasdon ( 1968) had already published what 
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Kirsch ( 1975) refers to as the "goal coordination method", a generalized 

method of decomposition for mathematical programming problems. The 

method is applicable to problems in which the objective and constraints 

are additively separable. It involves the determination of the saddle 

point of the Lagrangian function (Hakkala and Hirvonen, 1978) and 

depends critically on its existence. Unfortunately, the existence of 

this point cannot be guaranteed for non-convex problems (Lasdon, 1968) 

and elastic structural design problems are commonly non-convex 

(Reinschmidt and Norabhoompipat, 1975). Kaweko and Ha ( 1983) appear to 

have overcome this problem of saddle point existence. They have solved 

the dual problem using repeated solution of a dual augmented with highly 

convex terms. They apply this procedure to the optimum design of 

perfectly plastic structures under multiple loadings. 

In 1979, Kirsch and Moses applied the "model coordination" 

method of decomposition to elastic structures. The method is limited by 

the fact that the number of variables common to more than one 

subproblem (coordinating variables) must be small for efficient 

solution. They use the example of two 12-bar trusses connected by one 

bar. Nevertheless, there are many situations in which this method can 

be quite effective. As mentioned in the previous subsection, Kirsch 

(1983) has applied a multi-level approach to optimum continuous beam 

design. Despite the non-conservative assumption referred to above, the 

procedure is a demonstration of the effective use of a decomposition 

approach for optimum structural design. 
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2.2 LIVE LOADING ON BUILDINGS 

2.2.1 Historical Review  

As early as 1947 it was " common practice" (Dunham) to reduce 

the live load intensity by an amount which depended in some way on the 

area supported. At this time, Dunham used the results of two live load 

surveys to investigate empirically the nature of the relationship 

between load intensity and tributary area. He suggested a linear 

approximation for the relationship which was adopted for use in the 

United States (Peir and Cornell, 1973). Home ( 1951) seems to have been 

the first researcher to model floor loading theoretically. He 

considered the load intensity at a given time and location to be 

independent of the intensity at the same time and at a different 

location. On this basis, he established a relationship between loading 

intensity and area for a given time. The current Canadian code 

(National Research Council of Canada, 1980) is based on his work (Peir 

and Cornell, 1973). It is suggested in this code that the live load is 

a function of tributary area to the power of 0.5. Peir and Cornell 

(1973) have stated that this functional form is better than the linear 

relationship specified in the U.S. code. 

In the 1960's, the probabilistic approach to structural design 

enjoyed increasing popularity. In 1960, Brown reported the considerable 

use of a statistical approach to design in the aircraft industry and 

suggested its use for the design of buildings. In 1969, Cornell applied 

the second moment probabilistic approach to a structural design problem. 

Since then this method has been used for the assessment of levels of 

uncertainty pertaining to live loading. 
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A shortage of statistical information on live loading levels has 

long been a problem (Woolson, 1923). This has been rectified in part by 

the publication in the 1960's and 1970's of a number of major load 

surveys (Bryson and Gross, 1968; Karman, 1969; Mitchell and Woodgate, 

1971; Culver, 1976). However, further information is still required 

(Culver, 1976; Harris, Corotis and Bova, 1981). 

A number of researchers have developed methods by which the 

overall safety levels implied by code specifications can be assessed. 

Allen reported a comprehensive study in 1975 assuming all variables to 

be log-normally distributed. He recognized that the instantaneous live 

load intensity has a lower mean and higher variance than the 

maximum-in-lifetime intensity but did not consider temporal variations 

in detail. Also in that year, MacGregor published a state-of-the-art 

review of the limit state design of reinforced concrete structures. In 

1978, Turkstra and Daly assessed a number of two-moment criteria for 

structural safety analysis. More recently, Galambos, Ellingwood, 

MacGregor and Cornell ( 1982) and Ellingwood, MacGregor, Galaxnbos and 

Cornell ( 1982) have published the results of an extensive study on 

probability based load criteria. The purpose of this study was to 

establish load factors and combinations for use with all building 

materials and to provide a methodology for the selection of resistance 

criteria. 

2.2.2 Probabilistic Live Loading Models  

Live load models are theoretical hypotheses used to predict 

the statistical properties of live loads and their effects ( stress, 

deflection, etc.). Peir and Cornell ( 1973) expound the virtues of such 
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models: 

(1) "they can guide the efficient collection, analysis and 

interpretation of observed data"; 

(2) "they extend the utility of experiments ( load surveys) by making it 

possible to make predictions about loads and load effects on 

building types not observed in the data set"; 

(3) "they can help bring order, insight and economy of thought into 

understanding the nature and critical influencing factors of 

structural engineering". 

Peir and Cornell developed a model for 'the behaviour of sustained load, 

namely, that portion of live loading which remains invariant with time 

for long periods ( e.g. office furniture and personnel). They calibrate 

this theory with results obtained from the survey of Mitchell and 

Woodgate ( 1971). Loading intensity is assumed to consist of a point-

invariant and a point varying portion. This latter portion is assumed 

to be spatially correlated, i.e. if load is higher than average at a 

particular location, then it is considered likely that the load at 

nearby locations is also high. The authors derive expressions for the 

behaviour of the maximum-in-lifetime sustained load effects and compare 

their results to the specifications of the North American codes of 

practice. 

McGuire and Cornell ( 1974) use a live load model to compare 

the effects of gravity live loads with the building design loads 

specified in Canadian and American codes. They look at a number of 

common design cases (moments, shears, axial forces). They assume that 

the point-varying portion of sustained load is uncorrelated and 
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incorporate considerations of extraordinary loads, namely, that portion 

of live loading that occurs effectively instantaneously in time ( e.g. 

large grouping of people). They derive formulae for the mean and 

variance of the maximum-in-lifetime total load by fitting an extreme 

value distribution to results obtained from their model. A significant 

conclusion of this work is that for load reduction with area, the 

tributary area is a less consistent parameter than the " influence area". 

The influence area is that area over which the influence surface is 

significantly non-zero. 

Ellingwood and Culver ( 1977) outline another total ( sustained 

plus extraordinary) live load model. They point out that no data are 

available for certain parameters associated with extraordinary loading. 

Accordingly, they assume values for these and assume a relationship with 

area. The authors determine that the total design load at smaller areas 

is quite sensitive to the values assumed and suggest that additional 

research is necessary for their determination. 

Chalk and Corotis ( 1980) developed a theory for the 

combination of the effects of sustained and extraordinary loads. They 

state that while their theory is not as general as others, it has the 

advantage of simplicity for the given application and they have shown 

that it agrees well with simulated results. 

Harris, Corotis and Bova ( 1981) extend the previously 

developed models with a more comprehensive representation of 

extraordinary loads. They consider these loads to have three possible 

causes: remodeling, unusual gatherings of people and less usual larger 

gatherings of people. Parameter values were derived from engineering 
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judgement. 

Corotis and Tsay ( 1983) developed a procedure for the 

computation of load duration statistics as a function of load level. 

These quantities may be required for the' calculation of long-term 

deflections and settlement of structures. Again, the need for 

additional data is emphasized for the authors found load duration 

statistics to be more sensitive to the underlying load process 

parameters than lifetime maximum load. 

2.2.3 General  

It can be seen that attention to the area of building live 

loads has been increasing steadily in recent years. It is true that, 

before these developments, a great deal was known about the behaviour of 

structures under specified loads but very little was known about what 

loads should be specified. This unsatisfactory situation has been 

remedied in part by recent developments. However, it appears that all 

of the research to date has focussed on attempts to assess the levels of 

safety implicit in current design procedures. It is the opinion of this 

author that more attention must be paid to the- design procedures 

themselves. Current design procedures, no matter how comprehensive, 

suffer from the fact that the behaviour of structures under live load is 

not a deterministic process. The simple probabilistic design procedure 

developed in this dissertation is fundamentally different, in the 

author's opinion, from all of the research reported here. The 

difference is that the new method is not intended to be used to assess 

the level of safety implicit in the current policy of considering 

multiple loading combinations. It is instead put forward as an 

alternative to that procedure. 
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CHAPTER 3 

SOME OPTIMIZATION THEORY 

3.1 INTRODUCTION 

In engineering design, there are often several satisfactory 

solutions to a given problem. For example, there are usually many 

different reinforced concrete beam designs that are adequate for any 

given situation. Optimization is the process of selecting the "best" 

adequate design. The function used to measure how "good" a design is, 

is an objective function and the criteria used to test its "adequacy" 

are constraints. The latter may be in the form of either equations or 

inequalities. Accordingly, an optimization problem may be formulated 

mathematically as follows: 

Minimize the objective function 

F(x) 

subject to the constraints, 

0 

and, 

h 1 . ( x) = 0 
- 

where, 

i = 1,2,..., n  

i = 1,2,..., 

x= (x1), x2, ..., x) 

Both minimization and maximization problems can be expressed in this 

form because the maximization of an objective, F(x), is equivalent to 

the minimization of the function, -F(x). 

Traditionally most .attention has been given to problems in 

which the constraints are precisely defined. Several approaches have 
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been developed, each suitable for certain kinds of problem. A number of 

these approaches are referred to in subsequent chapters as their 

suitability for the problems of continuous beam design is reported. In 

this chapter, the more important methods are reviewed. It was also 

found necessary to consider those optimization problems in which some 

constraints are not "crisply" defined. These methods of " fuzzy 

programming" are reviewed in Section 3.5. 

3.2 ZEROTH ORDER METHODS OF UNCONSTRAINED OPTIMIZATION 

Zeroth order methods are those which do not require the 

calculation of objective function derivatives. They are suitable for 

problems in which discontinuities of gradient exist. Two of the most 

useful zeroth order methods are the Sequential Simplex Method and the 

Method of Conjugate Directions. 

3.2.1 Sequential Simplex Method  

The Sequential Simplex Method was first proposed by Spendley, 

Hext and Himsworth ( 1962) and was subsequently developed by Nelder and 

Mead ( 1965). It is important in that it does not require the objective 

function to be differentiable. This requirement is implicit in the 

exact line searches of the conjugate directions method (Haftka and 

Kamat, 1984). For an n-variable minimization problem, the Sequential 

Simplex method is based on a comparison of the objective function values 

at the (n+1) vertices of a simplex. At each stage in the optimization 

procedure, the vertex with the highest value is replaced with a new 

point. New points are sought by a process of reflection in. the centroid 

of the vertices. If the reflection is favourable, an "expansion" is 
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considered. If unfavourable, a method of contraction is employed. 

The method is particularly suitable for problems in which the 

variables can have only discrete values. For such problems, the 

discrete nature of the variables can be ignored except in the 

calculation of the objective function. This is calculated using the 

discrete values nearest to the components of the design point. The 

resulting objective function is discontinuous but, as is now shown', this 

does not prevent solution using the Sequential Simplex method. 

A program has been written in Fortran IV for the solution of 

discrete optimization problems using the procedure described. The 

flowchart is given in Appendix B. The program was applied to the 

solution of the following problem: 

Minimize F(x1, x2) = 100[(x1 - 3) 2 + x] 

where x1 and x2 are multiples of 0.01. 

A portion of the search is illustrated in Fig. 3.1. In this figure, the 

three vertices of each simplex are labelled with the simplex number and 

are joined by lines to form a triangle. An expansion is used between 

Simplexes 3 and 4 and a contraction is required between Simplexes 6 and 

7. For the seven simplexes illustrated, the solution can be seen to be 

converging in the general direction of the minimum. Restarts are 

necessary to prevent the simplexes from becoming too small prematurely. 

In general, the method appears to be effective for discrete problems but 

requires a considerable number of function evaluations. 

3.2.2 Method of Conjugate Directions  

The Method of Conjugate Directions has been developed by 

Powell ( 1964). It is applicable to optimization problems with a 
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continuous objective and with or without continuous gradients. The 

method is quadratically convergent, that is, the minimum of a quadratic 

function of n variables is found in n function evaluations. Searches 

are initially made along each of n conjugate directions. Then, a search 

is made along the "pattern direction", that is, along the line passing 

through the first and last points ( see Fig. 3.2). It can be shown 

(Kirsch, 1981) that the pattern direction is conjugate. Thus, a new set 

of conjugate directions is formed when the first is replaced with the 

pattern direction. This whole series of (n+1) line searches is repeated 

until convergence is achieved. As for the Sequential Simplex method, 

restarts are necessary; in this case, to prevent the conjugate 

directions from approaching dependence. 

A computer program has been written in Fortran IV for 

optimization by the method of conjugate directions. A quadratic 

approximation based on three sample points is used for the line 

searches. Search is continued along the line in steps of increasing 

size until three equally spaced points are found such that the objective 

function at the centre point has the least value. When the conjugate 

directions approach dependence, the complete process is restarted with a 

reduced initial step length for the line searches. The flowcharts for 

the program are given in Appendix A (Figs. A.7 and A.8). The program 

has proven to be quite efficient in the solution of a number of test 

problems with continuous objective functions and small numbers of 

variables. 
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3.3' SECOND ORDER METHODS OF UNCONSTRAINED OPTIMIZATION 

Second order methods of optimization are those which require 

the second derivatives of the objective function or approximations to 

them. For "well-behaved" functions, these methods are extremely 

powerful. They are based on a Taylor series expansion of the objective 

function: 

) F(x) = F + VFt (x - x ) + (x - x ) t [H I (x - x 
- q q— —q - —q q 

where F is the objective function value, VF  is the gradient vector and 

[Hq] is the Hessian matrix at the qth iteration. Differentiating and 

setting the first derivatives to zero gives the Newton-Raphson equation: 

x = x - [H ] 1VF 
—q+l —q q q 

It has been found that a line search along the direction, ([Hq] 1VFq)i 

gives better results. Thus, 

x = x - a*[H ] 1VF 
—q+l —q q q 

where ct is the scalar which minimizes the objective function along this 

direction. There are two difficulties associated with this Newton 

method of optimization: 

(1) For problems with large numbers of variables, the calculation of 

the components of the Hessian matrix can require excessive 

computational labour. 

(2) The inversion of the Hessian matrix is impractical for large 

problems. 

The quasi-Newton methods have been successful in overcoming 

both of the problems mentioned above. They are based on the use of an 

estimate of the inverse Hessian matrix derived from information of 

objective function values and gradients. They are extremely powerful 
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methods, particularly for large problems with well-behaved objective 

functions. However, as is reported in Chapter 5, some quasi-Newton 

methods are sensitive to gradient discontinuities, regions with zero 

gradients and to sudden (although continuous) changes in gradient. 

3.4 DECOMPOSITION IN NON-LINEAR PROGRAMMING 

Many large optimization problems are impractical to solve 

without decomposition into a number of smaller subproblems. The 

computational labour required to solve an optimization problem tends to 

increase rapidly with the number of variables. Thus, while the solution 

to one large problem may be impractical, the repeated solution of a 

number of smaller independent problems may not be. Of course, an 

integrated optimization problem is not, in general, composed of 

independent subproblems. However, certain subproblems can sometimes be 

found that can be combined in a sequence which leads to the solution of 

the overall problem. There are currently two basic approaches to 

decomposition which may be referred to as the "model" and the "goal" 

coordination methods (Mesarovic, Macko and Takahara, 1969). Both 

methods are described briefly in this section. 

3.4.1 Model Coordination Method  

For many optimization problems, there are certain variables 

which, if fixed, result in degeneration of the problem into a number of 

independent subproblems. Such variables are known as coordinating 

variables. The model coordination method consists of a two-level ( or, 

in general, multi-level) approach. At the first level, all coordinating 

variables are fixed and the independent subproblems are solved. At the 
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second level of a two-level problem, the optimum values of all of the 

coordinating variables are sought. For each given combination of these 

variables, the "objective function evaluation" consists of solving all 

first level subproblems and calculating the corresponding value of the 

total objective. Thus, the second-level problem solution requires 

several solutions of each of the first level subproblems. 

The following example (after Kirsch, 1981) illustrates the use 

of the method. For the two bar truss of Fig. 3.3, the values of the 

dimension, y, and the cross-sectional areas of the bars, x1 and x2, are 

sought for minimum volume of steel. The constraints are that stress 

should not exceed 100 MPa and that y should be less than 3000 mm. Thus, 

the problem can be formulated as: 

Minimize F = x1 [16 x 10 6 + y 2 2 [ 10 2 I + x + y 

subject to 200[16 x i06 + - x 1 y < 0 

and 

800[106 + y 2 1 - x2y 5 0 

y - 3000 6 0. 

4000 mm 000 mm 

2 

100 kN 

11 

y 

 / 

Fig. 3.3. - Decomposition Example 



32 

For this problem, the single coordinating variable is y and the first 

level subproblems are: 

Minimize f1 = x 2 1 [ 16 x 10 6 + y I 
0 

subject to 200[16 x 106 + - ,xy 0 

and, 

Minimize f2 = x2[10 6 + y 2 l 

subject to 800[106+ - x 2y o 0 

where y is a fixed value for y. The second level problem consists of 

finding a value for y less than 3000 mm •that minimizes F. The solution 

is, 

(x1, x2, y) = (447, 894, 2000) 

in units of mm 2 and mm. 

It can be seen that the model coordination method is simple to 

apply. However, as the second level function evaluation requires such a 

considerable amount of computational labour, it is not suitable for 

problems involving large number of coordinating variables. 

3.4.2 Goal Coordination Method  

The goal coordination method of decomposition is based on the 

principle of duality. It is particularly well suited to serial 

problems, as illustrated in Fig. 3.4a. Such a problem can be formulated 

as: 

m 

Minimize E f.(x., i-1 Xi i+1 
i=l 
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12 

Sbsystem 1 

23 

Subsystem 2 Subsystem m 

(a) Serial Problem 

2 1 

i-1 i -i-1 i 

Variables x. 
-1 

Objective f. 
1 

Inequalities g 

Equalities h. 

2 1 

zi i+1 -i i+1 

Subsystem i 

(b) Subsystem i with Arbitrary Interconnection Variables 

Fig. 3.4. - Decomposition of Serial Problems by Goal Coordination 
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subject. to Ii (xi , yj1 y. •+ > 0 , i = 1,2,..., m 

and h. j-1 ., y. i+l i = 1,2,..., m 

where f. is the objective, x. are the variables and gi and h. are the 

inequality and equality constraints iespectively for the ith subsystem. 

The vector yi i+l represents the " interconnection variables" common to 

Stages ± and ( i+l). Naturally, these variables have the same value 

regardless of which stage is being considered. However, an alternative 

formulation considers two values for each variable and uses a constraint 

to ensure their equality ( see Fig. 3.4b). This formulation is: 

M 1 2 m-1 t 1 2 
Minimize { E f.(x., ,i_1 i' • i i+li+1 - i i+1 

i=l 1- 

subject to g.(x., i.j...l i' j+]) o 

and 
x.:_i i+1 = 2. 

i1,2,...,m 

An equivalent dual form of this problem (Luertherger, 1973) is: 

m 
Maximize { E H. ( X,) } 

i=1 

where H. ( A.) = Minimum {f (x. y1 1 1 Yi 2 i+1 + t j-1 i-1 . 
1 - 1 i—i 

t 2 

•—i —i i+l 

subject toai(x. y 1 •2 l if y. i+l) 0 

and h. ( x. 1 2 
1 i-li . .+) = - 3.  

for i=l,2,...,m 

0 



35 

As each of these minimizations is independent, they can be solved with 

relatively little computational effort. 

Applying the goal coordination procedure to the problem of 

Fig. 3.3, the alternative formulation is: 

Minimize x1 [16 x 10 6 + (y 2 12) 2 ] + x2 [106 + (y 1 12 12 2 I + X(y 2 - y 12  

subject to 200[16 x 10 6 + (y 212 ) 12) 2 J - x1 (y2 12) 0 

800[106+ 1 2 1 
(y12) I - x2 (y12 

- 3000 9 0 
12 

(y 2) - 3000 9 0 

and 
1 2 

- y12 = 0 

The dual form of this is: 

Maximize {H 1 (X) + H2 (A)} 

where H1 (X) = Minimum {x1 [16 x 1o6 + (y 2)2] - Xy 2} 

subject to 200[16 x 10  2 2 2 0 + (y12) I - x1(y 12 =  

and 
2 

- 3000 0 
12 

and where H  = Minimum {x[ 106 + (y 1 ) 2 I + A y 1 
2 2 12 12 

subject to 800{106 + (y1 )2i - x2 (y 2) 0 

and y - 3000 0 



36 

The saddle point is at, A = -600, the optimal values for the other 

variables being as before. 

The goal coordination formulation is mathematically elegant 

but there are some disadvantages to the method (Kirsch, 1981): 

(1) The saddle point does not always exist. Thus, the method is not 

effective for all problems. 

(2) The total number of variables involved in the solution process is 

greater than the original number. 

(3) The most serious disadvantage to the method, for structural 

applications, is that intermediate solutions do not represent 

feasible designs. A method in which "approximately optimal" 

designs can be found at little cost would be more useful in many 

situations. 
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3.5 FUZZY PROGRAMMING 

3.5.1 Introduction and Review of Previous Work  

The conventional optimization problem involves the 

minimization of a single given objective function subject to certain 

constraints. In most real design situations however, constraints can 

not be precisely defined (Dlesk and Liebman, 1983) and are said to be 

"fuzzy". Zimmermann ( 1976) gives an example of how imprecision due to 

fuzziness is different from imprecision due to randomness: "While 

'Tomorrow it will rain with a probability of 0.7 and the sun will shine 

with a probability of 0.3' is imprecise because of randomness, the 

statement ' I like all good looking girls' is imprecise because of the 

fuzzy meaning of ' good looking girls". Research in this field has been 

in one of two areas. The first is the quantification of verbal 

expressions such as the one above. Elms ( 1982) is among those who have 

published work in this area. The other is the quantification of 

imprecision resulting from imprecise objectives. Only this latter area 

is considered further here. 

Zimmermann ( 1978) has stated that there are indications that 

human decision makers generally neither combine their individual 

objective functions linearly nor apply the minimum operator to combine 

them. A mathematical fuzzy set theory has been developed as an aid to 

the understanding of fuzzy objectives and their combination (Zadeh, 

1965). (An example of two such fuzzy sets are x 3 and x ≥ 4.) Kam 

and Brown ( 1983) have used fuzzy set theory for the problem of combining 

statistical information with, a measure of imprecision based on 

engineering experience. Soyster ( 1973) and Zimmermann ( 1976) have 
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incorporated fuzzy concepts into linear programming. Chuang and Munro 

have applied fuzzy linear programming to a water quality management 

problem ( 1983). Carmichael ( 1980) has applied a non-linear fuzzy 

programming procedure to the optimum design of a truss. 

For the continuous beam design problem, the design must be 

such that deflections at working loads are within acceptable limits. 

While codes of practice do specify exact limits for given situations, it 

is clearly not desirable to have all deflections at the limiting values. 

This is particularly so if a design with considerably lower deflections 

is only slightly more expensive. Accordingly, an "acceptable" limit for 

a deflection should be represented by a band of values of varying levels 

of acceptability rather than by one single value. Different 

formulations are applicable depending on whether the problem is linear 

or non-linear. Both cases are reviewed in the subsections following. 

3.5.2 Fuzzy Linear Programming  

A linear programming problem can be represented by: 

minimize z = F(x) 

subject to g(x) 0 (m inequalities) 

and h(x) = 0 (n equations) 

where g and h are vectors whose components are linear functions of x. 

If a constraint is soft, the point at which it is just satisfied is 

replaced by a boundary region. At each point within this region, an 

equivalent cost is assigned as a measure of the degree of satisfaction 

of the constraint ( see Figs. 3.5a and 3.5b). Using the Bellman-Zadeh 

(Bellman and Zadeh, 1970) criterion, the cost used as a measure of the 

degree of satisfaction of the constraints is the maximum of the 
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(b) 
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Fig. 3.5. - Equivalent Cost Functions for Soft Constraints 

(a) Inequality Constraint, (b) Equality Constraint 

Equivalent 

Cost 

3.5 4.0 

Max. of Equivalent Costs 

Constraint: x = 3.5 

Constraint: x 3.75 

x 

Fig. 3.6. - Maximum of Equivalent Costs Functin 
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equivalent costs for all constraints. This cost function is illustrated 

for a given example in Fig. 3.6. The objective is included among the 

equivalent costs when using this criterion. A point often selected for 

design (Munro, 1984) is the minimum over x of the maximum of the 

equivalent costs (point A in Fig. 3.6). 

The concept of considering only the maximum of the equivalent 

costs is unreasonable for many cases. However, to add all the 

equivalent costs results in a linear function and an optimum at an 

extreme point of the common boundary region. More reasonable results 

can be obtained when non-linear equivalent costs are used. 

3.5.3 Fuzzy Non-Linear Programming  

The same principles are applied to non-linear problems with 

soft constraints as to linear problems. The difference for non-linear 

problems is that non-linear equivalent cost functions can be readily 

incorporated. The problem is one of multiple objectives, one additional 

objective corresponding to each soft constraint. A considerable amount 

of research has been done on multicriterion optimization and a number of 

methods exist for the conversion of such problems into ones involving a 

single objective only. Of these, the weighting objectives method has 

received most attention (Osyczka, 1984). This method simply consists of 

the weighted addition of all equivalent costs and the minimization of 

the resulting function. An equivalent cost function that is convex and 

quite versatile is 

F. = C. 
:i. 1 

h. (x) - s. 
1 -  1 

S. 
1 

pi 
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where h.(x) = 0 is an equality constraint, 2s is the extent of the 

boundary region and C. and p. are constants. A similar function can be 

used for inequality constraints, the only difference being that the 

function is given a value of zero at feasible points outside the 

boundary region. 

3.6 CONCLUSIONS 

A number of topics relating to optimization are reviewed. The 

zeroth order methods for unconstrained problems are useful in that they 

are insensitive to gradient discontinuities. Two of the better known 

methods are described. For large problems of a less sensitive nature, 

the second order methods are extremely powerful. The basic principle is 

described together with the difficulties and the methods used to 

overcome them. 

Decomposition in one form or another is a very useful method 

for solving large optimization problems. The conventional methods are 

described and the advantages and disadvantages of each are. outlined. 

Finally, the subject of fuzzy programming is reviewed. This 

is the subject of representing mathematically, problems which involve 

"soft" constraints. It is pointed out that many design problems can not 

be represented accurately by fuzzy linear programs. No such problem 

exists however with fuzzy non-linear programming. An equivalent cost 

function is proposed that is versatile and convex. 
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CHAPTER 4 

DESIGN OF REINFORCEMENT 

4.1 INTRODUCTION 

A major part of the reinforced concrete beam design process 

occurs after the bending moment and shear force envelopes have been 

specified. The areas of longitudinal tension and compression 

reinforcement must be determined together with the bar lengths. The 

areas and spacings of transverse reinforcement must also be found. 

Subroutines have been written for the determination of all 

these quantities. The calculations are in accordance with the Canadian 

code of practice, CPN3-A23.3-M84 (Canadi.an Standards Association, 1984). 

The analysis is more rigo±ous than that which would normally be done by 

hand. Consequently, designs found by these calculations can be safer 

and/or less expensive. 

4.2 TENSION REINFORCEMENT 

A subroutine has been written for the determination of the 

area of tension reinforcement required at a section to resipt a 

specified moment. The concrete geometry and the area of compression 

reinforcement are assumed to be known. The subroutine is applicable to 

beams of T-, rectangular and inverted T-section. 

The section' geometries are illustrated in Figs. 4.la, b and c. 

The assumed stress distribution, for all cases, is given in Fig. 4.ld. 

The shape depends only on the relative values of the breadths, b1 and 

b2. In all three cases, the tension reinforcement, of area, A, is at a 

depth, d1, from the extreme fibre in compression: Similarly, the 
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compression reinforcement, of area, A', is at a depth, d2, from the 

extreme fibre in tension. The portion of concrete of breadth, b1 and 

thickness, t1 surrounds the tension reinforcement while that of breadth, 

b2 and thickness, t2, surrounds the compression reinforcement. The area 

of tension steel, A, is sought that just provides an ultimate moment of 

resistance of Mf. 

When the depth of the assumed rectangular stress block, a, is 

less than t2, rectangular behaviour results and the equilibrium equation 

is, 

0.85 4 f' a b = f (A - A') 
cc 2 s  s s 

In this equation, f' is the characteristic strength of concrete, f is 

the yield strength of steel and and are the capacity reduction 

factors for steel and concrete respectively. The constants, e and f, 

are defined by: 

and 

(4.1) 

e = f , (4.2) 
sy 

2 2 
S y  

1.7 4 f' 
c c 

Hence, for rectangular behaviour, 

(A - A') 
a _ 2f  5 5  

- e b 2 d 1 

The ultimate moment of resistance can then be shown to be: 

(4.3) 

(4.4) 

M = ed (A - A') - (f/b)(A - A') 2 +eA'(d1 +d2 -t-t2) ( 4.5) 
f 1 s s 2 s s s 
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The minimum area of steel required to provide this moment of resistance 

is: 

b2 d1 - 2 
A = A' + {e te 4f(M - eA'(d + d - t - t ))/(b 
S S 2f f si 2 1 2 21 

(4.6) 

Rectangular behaviour is assumed to cease when a = t2. The moment at 

this point is: 

where 

e 2 t b2d12 (2 - t) 

=   + A'e+d-t-t 4f s (d 1 2 1 2) 

t = t2/d. 

For Mf > M, force equilibrium gives: 

(A - A') 
a 2f  s s  + t(w_1)  
d1 e b1d1 w 

where 

w = b1/b2 

Moment equilibrium gives: 

e2t2b2d(w - 1) 

M = eA'(dl +2 d - t1 - t2) + 
£ s  4wf 

(A - A')ed (A - A') 2f 
S S 1 S S  
+ [t+w - wt] 

w b1 

frpm which the required area of steel is; 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 
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b2d1 

A = A' +  2f { e(t + w - wt) - [ee2w((l - t) 2 (w - 1) + 1) 
S S 

4fw(M - eA'(d + d - t - t)) 
f si 2l 2 

2 
b2d1 

The requirements of minimum area of reinforcement are included in this 

subroutine. 

For the usual case in which the beam is cast integrally with 

the slab, the tension reinforcement in areas of positive (sagging) 

moment can be found by considering the section to have a T-shape 

(b1 < b2). The tension reinforcement in areas of negative (hogging) 

moment can be found by considering the section to have an inverted 

T-shape (b1 > b2). Thus, this single subroutine can be used for all 

sections of such a beam. 

4.3 THEORETICAL CUT-OFF POINTS 

A function subprogram has been written for the determination 

of the cut-off points in a span subjected to uniformly distributed 

loading. The extents of the regions in which moment ( sag positive) is 

less than zero are calculated. If, at one support, the moment is 

positive, then this extent is zero. If the moment is negative at all 

points in the span, then, the cut-off points are both set equal to the 

point of maximum moment. Thus, negative moment reinforcement is 

provided throughout the span. 

For a span of length, k, subjected to a uniformly distributed 

load, q per unit length, the moment at a distance x from the left hand 

(4.12) 
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support is: 

M(x) = (qL2/2 ) [ x/ - (x/) 2} - H1 - (H2 - H 1 ) x/ (4.13) 

In this equation, H1 and H2 are the hogging moments at the left and 

right hand supports respectively. The points at which this moment 

equals zero, if such points exist, are defined by: 

where 

x = {A ± [A2 - 2qZ2H1]}/(q9) (4.14) 

A = q 2/2 + H1 - H2 (4.15) 

If H1 and H2 are both positive and 

A2 k 2q 2Hit 

then two regions in the span exist where moment is negative. These 

regions are of length y1 and y2 where 

and 

= { A + [A2 - 2q 2 H1] )/(q2) } 

Y2 = - (A + [A2 - 2q22H1])/(q2.,2)} 

Ingeneral, the extents of the regions where moment is less than zero, 

are given by: 

y = y{n, q'2, 9., H1, H2} , n = 1,2, 

where, 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

(3-2n) A - (A2 - 2q2..2H 

y{n, q 2 , £, H1, H2} = Mn-i + [ 1j} (4.20) 
qR.2 
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for H1 0, H2 0 and A2 >= 2q2 2H1. Similarly, the extents of the 

regions in the span where the moment is less than a specified moment, 

M0 , are: 

y{n, qL2 , , H + Mo t H + M } 
1 o 2 o 

n = 1,2 

for H1 + 0 0, H2 + M > 0 and A2 2q2 2 (H1 + M). 

If (H + M) is negative for some n, the region, y, in which 

M(x) is less than M, is of zero extent ( see Fig. 4.2a) : Accordingly, 

y{n, qL2 , R, H1 + M o , H 2 + M o } = 0, 

for (H + M) < 0. Finally, if A2 < 2qL2 (H1 + M), no point exists 

where M(x) = M (Fig. 4.2b). Clearly, when this is the case, the 

moment, M(x), is less than M throughout the span. A point may still be 

required in the span at which to splice the negative moment 

reinforcement. An appropriate such point is the point of minimum 

(absolute) moment. When this point is used, the theoretical extents of 

reinforcement are given by: 

y{n, q2, 2, 2, H + M, H + M } = 2,{n-1 + (3_2n)A} , n=1,2 ( 4.21) 
2 o 

This function subprogram is used to determine the extents. of 

the top reinforcement. When only one cut-off point is specified it is 

used to determine the points where no top reinforcement is needed. When 

two cut-off points are specified, it is also used to determine the 

points where a specified area of reinforcement is no longer required 

(theoretically). In all cases, the theoretical extents of top 

reinforcement are calculated for all loading conditions and the most 

critical values are taken. 
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4.4 FULL EXTENT OF TOP REINFORCEMENT 

The full extent of top reinforcement is the theoretical 

extent, described above, plus the anchorage and development lengths 

required for flexural resistance. Additional top reinforcement for 

shear resistance is considered separately in Section 4.7. 

A general segment of a bending moment envelope is presented in 

Fig. 4.3 (previous page). The area of reinforcement, A, resists moment 

at Support B. The theoretical cut-off points are y1 and y. Also 

associated with Support B are the theoretical cut-off points at the 

opposite support, ' and y2. When there is only one cut-off point at B 

or when the first of two cut-off points is being considered, y2 is zero. 

The amounts by which the extents of reinforcement must exceed those 

required for flexure, z1, z2, z1 and z2, are illustrated in the figure 

(see, for example, Clause 12.12.3; Canadian Standards Association, 1984). 

When the cut-off points are such that (y1 + z1 + + z1) is 

less than or equal to the span length, k, the calculation of full extent 

is relatively simple. The extent of reinforcement to be provided at 

support B, Y1, is the greater of (y2 + z2+ 9'd or (y1 + z1), where kd 

is the development length for A. This can be written: 

= max(y1 + z1, y2 + z2 + Zd) (4.22) 

When (y1 + z1 + + z1) exceeds the span length, (Fig. 4.3b), Y is the 

greater of (y2 + z + 2) or y + L, where ZA is an appropriate 

development length for the moment, MA, illustrated in Fig. 4.3b. If 

there are n  loading conditions, MA is given by: 

n , n , 

M = max {max (M). } 
A j=1 k=l Ajk 

(4.23) 
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where (MA ).3k is the moment at the intersection of the bending moment 

diagrams for the j th and the k th loading conditions. It is anticipated 

that a splice will be specified only when MA is relatively small. Thus, 

it is assumed that the differences between the full and theoretical 

extents at the point of intersection are z1 and z1. Accordingly, 

(MA). k' is defined by the equation, 

2a5 + 2a2 a3 -  a1a4 - 4(M ) (a - 1)/q = 
A 3 3 k 

where, 

and 

{[a - 4a2 + 8(M)./qJ[a - 4a3a5 + 

- H 
1 kC  kB) 1] + 2z1 a = 

-2  - HkB) 2L2 HkB 
a2  = + 1 2 1] + 

q. 

a 

2(H. - H 
a4 --  a3{L[  jC jB  

- 2z1} 

H 2L2H 
- 

a = a{z - z .B) + iB} 5 3 1 [ 2 
q.L2 

(4.24) 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

(4.29) 

In these equations, HiB and H ic are the hogging moments at supports B 

and C respectively and qi is the uniformly distributed loading, for the 

.th 
i loading condition, i = 1, n. The computational labour involved in 
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making n evaluations of the term (MA).k, is considered by the author to 

be inappropriate in view of the approximate nature of reinforced 

concrete design. Accordingly, it is assumed that 

MA = (MA )' 

where j and k are the loadings that define y1 and y1 respectively. If 

j = k and z1 = z1, then, 

and 

a1 = a4, 

a2 = a5, 

a3 = 1. 

Hence, Eqn. 4.24 implies, 

2 
q a 

M = a A 2 T 

(4.30) 

(4.31) 

(4.32) 

(4.33) 

in the general case, Eqn. 4.24 implies a quadratic equation in (MAY : 

(2M/q)2(a3 - 1)2 + (2M/q){2(a3 - 1)(a5 - a 2 a 3 ) 

+ (a4 - a 1 ) (a1a3 - a4 )} + {(a5 - a 2 a 3 ) 2 

+ (a2a4 - a1a5 ) (a4 - a1a3)} = 0 (4.34) 

For q = q, a3 has a value of unity and Eqn. 4.34 gives, 

- qk  ((a5 - a2)2 + (a2a4 - a1a5) ( a4 - a1) } 

MA  (a 24 - a1) 

When q^ and qj ̂  are not equal, 

(4.35) 

/ 
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- 1) (a5 - a2a3) + (a4 - a1 ) ( a1a3 - a4) + V'a6] 

MA -   (4.36) 
4(a3 - 1) 2 

where, 

a6 = (a1a3 - a4 ) [ 4(a3 - 1) 2 (a2a4 - a 1 a 5 ) + (a1 - a4)2 (a1a3 - a 4 ) 

+ 4(a3 - 1) (a1 - a4 ) ( a2a3 - a5 )1 (4.37) 

It can be shown by substitution into Eqn. 4.24 that the lesser root of 

the quadratic is the correct one. Having found MA, we can readily 

calculate It is the extent of the span over which the bending 

momeht exceeds MA. As such, it can be found using the subprogram 

described in Section 4.2. In this calculation also, it is assumed that 

th 
the j loading is appropriate. The development length for MA is, 

- d MA 

d MR(A) 

where M R  (A ) is the moment of resistance associated with A 
s S 

If A is the area of steel at an interior support, then the 

total extent of A is the sum of the extents in the spans adjacent to 

it. If, on the other hand, A S is the area of steel at an external 

(4.38) 

support which is attached to an external concrete member, an additional 

extent of reinforcement is required to anchor the steel in that member. 

This extent is taken as (z1 + Ld). Thus, at all supports, the full 

extent of top reinforcement for flexural resistance can be calculated. 
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4.5 FULL EXTENT OF BOTTOM REINFORCEMENT 

The full extent of bottom reinforcement required for flexural 

resistance is determined. In each span of the continuous beam, the 

bottom reinforcement is required to extend at least 150 mm beyond the 

ends of that span. The only exception is at a simple support when the 

reinforcement is required to extend only as far as the end. These 

requirements are specified in Clause 12.11.1 for one-fourth of the 

reinforcement. It is assumed here that all of the bottom reinforcement 

is cut-off at the same point. This simplifies construction and provides 

useful longitudinal reinforcement for shear resistance. 

The bending moment distributions for given loading conditions 

are illustrated in Fig. 4.4. Local co-ordinate axes are located at the 

two ends. In both cases, the direction is inward from the support 

towards the centre of the span. The subscript n refers to the end of 

the span being considered; n = 1 refers to the left hand end and n = 2 

refers to the right. The required moment of resistance of the bottom 

reinforcement, S, is assumed to be developed linearly over a length, 

starting at the point x x sn . For the case illustrated in Fig. 4.4a, 

the extent of reinforcement is minimum when the required moment capacity 

function is tangQnt to the applied moment function M(x). The point of 

tangency is given by: 

xtn = {0.5 + (3 - 2n)(H1 - H2)/(q 2) - (4.39) 

where q is the loading intensity, 2. is the span length and H  is the 

hogging moment at the nth end. For this case, the point of tangency of 

the two moment functions, x tn , is their point of intersection, x in.  . For 

the case illustrated in Fig. 4.4b, there is no point of tangency between 
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the two functions in the region of positive M(x). The extent of 

reinforcement is minimum, in this case, at the first point of 

intersection, x., of the required capacity function with the moment 

function. It can be seen that, in the latter case, x in equals the 

theoretical extent of top reinforcement, y. In general, 

x. = max[x , y] 
in tn n 

(4.40) 

The point at which the required moment capacity is zero is, in general, 

given by, 

. M(x. 
d in 

x i =x 
sn n S 

(4.41) 

The dimension x sn sn is calculated for all loadings. If x is the minimum 

value calculated, then the bottom steel extends to the point, 

= min{-150, x - z } 
n sn 0 

(4.42) 

where z0 is the amount by which the extent of bottom reinforcement must 

extend beyond that theoretically required and where x sn and z are 

measured in millimetres. 

In this section, the full extent of bottom reinforcement 

required for flexural resistance is calculated. In most cases, the 

reinforcement extends 150 mm into the support. However, when the 

situation occurs that additional reinforcement is necessary, the 

calculation of the tangent point location ensures that no more than the 

minimum required for safety is provided. 
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4.6 COMPRESSION REINFORCEMENT 

4.6.1 Introduction  

Compression reinforcement is sometimes required to ensure a 

ductile section while resisting a 1are moment. While it is recognised 

that it is also sometimes used to reduce deflections, it is not 

specified here unless required for ductility. In the usual case of a 

T-section, the area of concrete in the upper part of the section is 

large. Accordingly, there is almost always sufficient ductility for 

positive moment and no compression reinforcement is required. On the 

other hand, it is quite reasonable to expect that ductility for negative 

moment will occasionally be inadequate unless compression reinforcement 

is provided. When this occurs, compression reinforcement is provided in 

the form of an extension to the existing bottom steel. 

To ensure ductility, the Canadian coJie, CAN3-A23.3-M84, 

specifies an upper limit on the ratio ( c/d) where c and d are the depths 

from the extreme compression fibre to the neutral axis and the centroid 

of tension steel, respectively. The program has been written however, 

so the user may specify, a more stringent limit if desired. The moment 

corresponding to maximum ( c/d) with only tension reinforcement present, 

is H xo xo . When the moment, H is less than H , no compression 

reinforcement is provided. When H exceeds H xo , the area of 

reinforcement is first calculated that will provide resistance to H in 
xo 

the absence of compression reinforcement. Then, the additional area 

required to provide resistance to (H - H) in the presence of the 

compression reinforcement is found and added to the first. 

Initially, the possibility of extending the bottom steel from 
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only one of the spans meeting at the support is considered. If this 

provides insufficient ductility, the steel from both spans may be 

extended. 

4.6.2 Extension of Reinforcement From One Span  

In many cases, the extension of the reinforcement from one 

span is sufficient to provide the ductility necessary for the provision 

of adequate reinforcement at a support. Each span is considered in turn 

and the extension requiring the least overall volume of steel is 

selected. 

The portion of the bottom steel from any one span that can be 

used in compression is limited by the amount of compressive stress that 

can be developed in the bars near the support. From a consideration of 

the force equilibrium at a section, the ratio ( c/d) can be shown to be a / 

linear function of (A f - A'f'), where A and A' are the areas of steel 
S  ss S S 

and f'and f' are the stresses, in tension and compression respectively. 

Thus, forspecified (c/d), the term (Af - A'f') is constant; an 

increase' in A is limited by the magnitude of f' that can be developed. 

The bending moment diagram for the j th loading condition is 

illustrated in Fig. 4.5a. As in Section 4.5, local co-ordinate 

directions are measured inwards from the support towards the centres of 

the spans. The sag moment in the right-hand span, Slf has a development 

length Z dl In this span, the bottom steel is no longer required for 

resistance of sagging moment at the point, 

x = x 
1 sl 

An expression for x, n = 1,2, is derived in Section 4.5 (Eqn. 4.41). 

At the point, x = 0, the maximum compressive stress that can be 
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min{f y y si ,dl f x /L } for  0 
si 

where f is the yield strength of the steel. When x 1 is negative, no 

compressive stress can be developed at this point. This compressive 

stress in the bottom steel is equivalent to compression reinforcement, 

whose full yield strength can be developed, of area: 

Ai 

min{A.Dl, Ablxsl/dl} 

0 for  0 
si 

for  0 
sl 

In general, the equivalent area of compression reinforcement available 

through extension of the bottom steel from side xi, is 

dn sn 
min{A,bn , .t A. n x sn /2. } , for x 0 

A' = 
tn 

for  0 
sn 

(4.43) 

(4.44) 

(4.45) 

The amount by which the area of tension reinforcement At, can 

be increased to resist a moment greater than H xo , is equal to the 

equivalent area of compression reinforcement, At'. From Eqns. 4.5 and 

4.11, the new maximum moment capacity at the support is, 

H xo +eAt'  n(d.b+dt_h) (4.46) 

where d  and d  are the effective depths to the bottom and top 

reinforcements respectively and h is the total beam depth. The new 

capacity in the region of the support is now bounded by the line 

segments BC and CD in Fig. 4.5b. The extents in each span, y xl and y x2' 

for which the hogging moment near the support exceeds H xo , are 

calculated using the subprogram described in Section 4.3. Due to the 

concavity of the bending moment diagram, there are only three critical 
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Due to the concavity of the bending moment diagram, there are only three 

critical points near the support, 

xl = 

xl=yx1 

X1 = x2 

When the support moment, H, satisfies, 

and 

HH xo t+ eA' n (dD +d_ hl , 

y x 
xn sn 

(4.47) 

(4.48) 

(4.49) 

then the moment near the support can be resisted by an extension of 

and an increase of A . The bottom reinforcement, A, , must then extend 
t 

to the pbint, 

x = min{_y 3 1 -(H - H)2a/[e (d + at - h)] } - zon  (4.50) 

where z on is the amount by which the bottom reinforcement on Side n must 

exceed that theoretically required. The amount by which At must be 

increased is, 

(H - H 
SA =  xo  

t e(db+d_h) 

These calculations are repeated for all loading conditions for which 

(4.51) 

H H xo , tn n and the maximum values of SA and x are selected. If the 

extensions associated with both sides are feasible, the extra volume of 

steel is calculated in each case and the extension corresponding to 

least volume is taken. 
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4.6.3 Extension of Reinforcement From Both Spans  

In cases of very large negative moment at a support, an 

extension of the bottom steel from one span alone may not provide 

sufficient ductility. When this is the case, extensions to both of the 

bottom steels meeting at the support are considered. 

The maximum area of bottom steel available for compression 

reinforcement at a support is, 

A' + A' 
tl t2' 

where A Lis given by Eqn. 4.45, for n = 1,2. The corresponding maximum 

moment capacity at the support is 

H 
xo 

When extension of the reinforcement from both spans is considered, 

several different designs can be shown to provide sufficient resistance. 

The following approach to this complex problem is adopted here: 

(1) The equivalent areas of compression reinforcement, A; n = 1,2, 

are calculated. These areas can be assumed to be available at the 

support. 

(2) The capacity at the support is determined. If the capacity is 

found to be insufficient, the section is deemed infeasible and the 

compression reinforcement calculations are terminated. 

(3) The following portions of the total capacity at the support are 

assigned to the bottom reinforcement from the spans: 

dH Rn = 

(H - H ) A' 
xo tn 

(A 1 + A 2) 

n = 1,2 (4.52) 
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This moment can be developed at or (more probably) before the 

support. The reinforcement from Side n, n = 1,2 is extended to, 

x = n qn qn -Rn x , where x is such that a moment of dH can be developed 

at the support. Thus, 

.Q 
dn 

x = 150+ 
dH Rn  

qn AD (b + d  - h) 
(4.53) 

where all linear measurements are expressed in millimetres. The 

dotted and chained lines in Fig. 4.6a represent conservative bounds 

on the capacity in the region of the support. The combined 

capacity is represented in Fig. 4.6b. 

(4) 1f, max(xsni x  3_a) < xn then Ab is extended to the point, 

x = y + z 
n xn o3-n 

(5) A further check is required at the points P1 and P2 in Fig. 4.6b, 

where the moment capacity diagram is concave. The point P (n = 

1,2) is defined by, min(x sn ' q3-n sn x ). If, x > q3-n x , then the 

moment capacity is defined by the steel from Side n. If, on the 

other hand, x sn q3-n < x , the steel from Side 3-n defines the 

moment capacity at In general, the moment capacity at P is: 

- 

H Pn = H xo ix sn + eAb(db+d_h) min {l, £ 
x q3-n  

dm 

where, 

and, 

m = n for x > x 
sn q3-n 

m=3-n for x 
sn q3-n 

Using the subprogram described in Section 4.3, the extents, 

(4.54) 

(4.55) 

(4.56) 
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n = 1,2, over which hogging moment exceeds HP' are calculated. If, 

y > min(x , x ), 
Pn sn q3-n 

(as illustrated in Fig. 4.6b), then the extent of bottom 

reinforcement from Side ( 3-n) is increased by, 

yPn - min(x sn , q3-n x ). 

The amount by which the area of- top steel must be increased is 

given by Eqn. 4.51. The maximum values for this increase and for 

the increases in the extents of bottom steel, are taken, for all 

loading conditions. 
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4.7 DESIGN OF SHEAR REINFORCEMENT 

4.7.1 Introduction  

New provisions for the resistance of shear stresses have been 

included in the new Canadian code of practice, CAN3-A23.3-M84. These 

provisions are based on the truss analogy in which diagonal cracks are 

assumed to form in the concrete. The designer, subject to certain 

constraints, may select the slopes of these cracks. An approximate 

procedure is described here for the determination of appropriate crack 

angles, spacing of transverse reinforcement and areas and extents of 

longitudinal reinforcement. 

4.7.2 Ductility and Concrete Crushing  

Crack angles at all sections must be large enough to prevent 

diagonal crushing of the concrete and yet small enough to ensure that 

failure, should it occur, is ductile. If no angle can be found to 

satisfy these two constraints, then section geometry is deemed 

inadequate. The longitudinal strain at the member mid-depth, is assumed 

in accordance with Clause 11.4.2.5, to be, 

= 0.002. 

Then, it follows from Clause 11.4.3 that, for ductile failure, the crack 

angles, 0, must satisfy: 

tan 0 5 1 

tan 0 5 1.07 

f = 400 MPa 
y 

f = 300MPa 
y 

(4.57) 

Also, it follows from Clause 11.4.2 that, to prevent concrete crushing, 

the crack angles must exceed the values defined by: 

f'bd 
1.14 tan o + 1.82 cot o + 0.68 cot 30 - c c v v 

V  ( x) 
(4.58) 
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where, 

b is the minimum effective web width for shear, 
v 

d  is the effective shear depth, 

f' is the compressive strength of the concrete, 

Vf (x) is the shear force at a distance x from the left support, 

is the resistance factor for concrete. 
c 

This relationship is plotted in Fig. 4.7 for Vf(X)/(f' by dv) versus 

tan 0. The best fit linear approximation of this function for, tan 15° 

tan e 9 1.07, (also plotted), is: 

V (x) 
f  - 0.359 tan 0 - 0.0738 (4.59) 

V b d 
c  v 

Thus, an accurate estimate for the concrete crushing constrairit'on 0 is 

given by: 

2.79 Vf (x) 

tan e   
, fl b d c c v v 

+ 0.206 (4.60) 

The simple constraints given by Ineqs. 4.57 and 4.60 are used to ensure 

that the crack angles assumed are adequate in terms of concrete stresses 

and the requirements of ductility. 

4.7.3 Required Transverse Reinforcement  

Comprehensive Design Procedure: The crack angle selected at a section 

implies the required amounts of both longitudinal and transverse 

reinforcement. Increasing the crack angle reduces the amount of 

longitudinal reinforcement required while increasing the quantity of 

transverse. Thus, if the area and extent of longitudinal reinforcement 

is fixed, the limitation implies a minimum feasible crack angle. At 
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each section, the angle must exceed this minimum and the minimum 

required to prevent crushing of the concrete. The larger of these 

minima at each section is assigned to 0 and the corresponding stirrup 

spacing calculated. This process is repeated at appropriately spaced 

sections to determine the volume of transverse reinforcement required in 

the region of each support. The volume of longitudinal reinforcement is 

already known. Thus, assuming costs per unit volume for longitudinal 

and transverse reinforcement, we can calculate the total cost. If this 

process is repeated for three different values of a cut-off point, and a 

quadratic equation is fitted to the results, an estimate can be made of 

the cut-off point corresponding to least cost. This process is repeated 

for each cut-off point for the steel at a support. It is felt that the 

interaction between these variables will not significantly affect the 

results. Accordingly, for top reinforcement with two cut-off points per 

span, an estimate of the shear reinforcement of least cost can be found 

by twelve calculations of total ( shear reinforcement) cost in the region 

of the support. 

Simplified Design Procedure: It is usually economical to minimize the 

amount of transverse reinforcement (Canadian Portland Cement 

Association, 1985; Dilger, 1981; see also Section 5.4). The shear 

reinforcement calculations, on the basis of this assumption, are very 

simple. The minimum 0(x) allowed by Ineq. 4.60 is selected. This 

implies the required amounts of longitudinal and transverse 

reinforcement at all sections. 

Only the latter ( simplified) design procedure for the 

calculation of shear reinforcement has been programmed. 
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4.8 CONCLUSIONS 

In this chapter consideration is given to the design procedure 

after the specification of the concrete geometry and the stress 

envelopes. Algorithms are described for the calculation of the areas, 

lengths and locations of the longitudinal and transverse steels. 

Rigorous calculations are employed in a reasonable interpretation of the 

latest Canadian code of practice. 

For T-, rectangular and inverted T-, sections, equations are 

developed for the calculation of the minimum required area of tension 

steel. For top reinforcement, an algorithm is described for the 

calculation of the theoretical cut-off points. For the locations of the 

actual cut-off points, anchorage and development requirements must also 

be considered. When the moment at a cut-off point is non-zero, the 

minimum required development length is calculated. It has been assumed 

throughout this work that bottom longitudinal steel should extend at 

least 150 mm into all internal supports. There may be some cases when 

it is required to extend this reinforcement further to provide 

sufficient development length for a particular loading condition. The 

minimum required amount is calculated that provides adequate resistance 

for all loading conditions and extends at least 150 mm into the support. 

When the maximum allowable area of tension reinforcement is 

insufficient to provide adequate resistance at a support, the 

possibility of providing compression reinforcement is considered. The 

provision of compression reinforcement allows an increase in the area of 

tension reinforcement without compromising the requirements of 

ductility. The compression reinforcement is provided in the form of an 
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extension to one or both of the bottom steels meeting at the support. A 

comprehensive series of checks ensures that adequate resistance is 

provided at all points in the region. 

Changes to the provisions for shear have been made in the new 

code of practice. A linear approximation for the fourth order concrete 

crushing constraint has been determined. For the calculation of the 

crack angles which minimize the total cost, comprehensive and simplified 

procedures are described. The simplified procedures have been 

incorporated into a computer program. 

Subroutines have been written based on all the algorithms 

described in this chapter. Due to the detail and rigour of the 

calculations, the subroutines result in designs that are safer and/or 

less expensive than those normally calculated by hand. 
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CHAPTER 5 

A DECOMPOSITION APPROACH TO OPTIMUM DESIGN 

FOR MULTIPLE LOADINGS 

5.1 INTRODUCTION 

The problem of optimum design of reinforced concrete 

continuous beams subject to multiple loading conditions is considered. 

The cross-section dimensions and the areas of longitudinal and 

transverse reinforcement are sought for all sections in each beam span. 

The design is required to satisfy the constraints of serviceability and 

the ultimate limit state. Elastic analysis with "plastic moment 

redistribution" is used to determine the bending moment and shear force 

envelopes. 

This optimization problem would be computationally 

prohibitively expensive to solve by straight application of conventional 

mathematical programming techniques. Fortunately, the problem is serial 

in nature. While no efficient conventional method is available which 

can exploit this serial nature, it was possible to develop a method of 

"sequential decomposition" (SD), for the optimization of serial problems. 

The method is more general than similar approaches (eg., Kirsch, Reiss 

and Shamir, 1972) of which the author has knowledge and is applicable to 

a broad range of problems. The SD procedure involves the consideration 

of the overall problem as being composed of a number of subproblems. 

The subproblems are solved in a sequence which leads to convergence to 

the global optimum. A quadratic fitting technique is used to speed this 

convergence. Examples are given as illustrations of the procedure and 
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as indicators of the relative efficiencies of various SD approaches. 

SD is shown to be particularly effective for the continuous 

beam design problem. A straightforward application of the procedure to 

a typical example results in considerable savings in computer time. 

However, it is shown that substantial additional savings arise from the 

fact that the subproblems degenerate to ones involving only two to three 

variables. This small number is independent of the number of loading 

conditions considered. The simplicity of the subproblems makes possible 

the use of robust direct search optimization routines. 

Computer programs have been developed for the application of 

the methods of SD to the continuous beam design problem. Programs with 

and without the degenerate form of the subproblem solution, programs 

allowing alternative SD approaches and programs using optimization 

routines with and without gradient calculations, are described. 

5.2 OPTIMIZATION BY SEQUENTIAL DECOMPOSITION 

5.2.1 Multi-Stage Problems  

Multi-stage problems are those that can be divided into stages 

such that the variables at any stage are affected only by those in 

immediately adjacent stages. This includes serial multi-stage systems 

and systems with recycle. The multi-stage problem considered here is 

one with m stages. The variables associated with the i th stage are 

x. = (x. , x , ..., x i ). 
-1 11 i2 n. 

1 

The objective function is a sum of terms involving components from ( a) 

the vector x., (b) vectors, x. i-i and x - 1 . or ( c) vectors x -1 . and x. for 
- 1 —  

all i. Similarly, constraints involve components of x. and x. only, where 
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Ii - ii 6 1. ma multi-stage system with recycle, the first and last 

stages are considered to be adjacent. 

th 
The i stage objective is the sum of all of the terms of the 

objective function which involve components of x.. Accordingly, for the 

objective function; 

F = 50x11 - + (x 1 + x12 )x21 + 5Ox21x 2 + 22 31 
12 11 

2 3 
+ 50(x31 + x 32 + x33) + [x 1 - x31x11] 

the stage vectors are, 

= (x11, ' l2 

= (x21, x22) 

= (x3 , ,c32, x33) 

and the stage objectives are, 

= 5Ox - 2 + (x11 + + [x 3312 21 1 - x31x1 11 12 11 11] 

= (x 1 + x12 )x21 + 5Ox21x 2 + x22x31 

=x x + 50(x31 + + x33) + [x 1 - 31 11 3 22 31 

It can be noted that the evaluation of all the stage objectives 

requires, in general, less computational labour than two full objective 

function evaluations. 

Some multi-stage problems can, be solved by dynamic 

programming. However, this method is unsuitable when the numbers of 

variables at a stage, n., is large and is not applicable to problems 

with recycle. 
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5.2.2 Second Order Methods  

Methods of optimization based on the calculation of second 

derivatives are extremely powerful for a broad range of problems. 

However, they become inefficient for problems involving a large number 

of variables for the following two reasons (Kirsch, 1981): 

(1) The number of components in the Hessian matrix of second 

derivatives increases with the square of the number of problem 

variables. For large problems, the computational effort required 

for their calculation can become excessive. 

(2) Inversion of the Hessian becomes computationally more expensive as 

the size of the matrix increases. 

Multi-stage problems are far less sensitive than others to both of these 

computational difficulties. 

In the first instance, far fewer components of the Hessian 

matrix need to be calculated if a problem is recognized as being of a 

multi-stage type. This follows from the fact that there are no terms of 

the objective function which involve components of x. and x. for Ii - ji 

> 1. Thus, all of the derivatives involving these components are known 

to be zero. Additional advantage is gained from the fact that stage 

objectives can be used for numerical evaluation of the components of the 

Hessian. As an example, consider a 10-stage problem with three 

components per stage. The Hessian matrix calculations involve 171 

second derivative evaluations. If numerical approximations are being 

used, stage objectives can be evaluated instead of the full function 

objective at one fifth the computational labour or less. Thus, the 

calculations involve the equivalent of less than 35 full objective 
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function second derivative calculations. If the multi-stage nature of 

the problem is ignored, 900 full objective function second derivative 

calculations are required. Clearly, the Hessian matrix is far more 

accessible to multi-stage problems. 

The second major difficulty in the use of second order methods 

for large problems is in the inversion of the Hessian matrix. In fact, 

for large matrices, the Hessian is not inverted directly. Instead, the 

set of simultaneous equations for which the Hessian matrix components 

are coefficients, is solved, The computer time for this process can be 

shown to be a linear function of the square of the half band width of 

the matrix (Ghali and Neville, 1979). For the example outlined above, 

the half band width of the Hessian is only six and thus, the computer 

time is proportional to 36. In general, the half band width of the 

Hessian can equal the number of problem variables. Accordingly, for a 

general 30-variable problem, the computer time can be proportional to as 

much as 900. Clearly, Hessian matrix inversion is a relatively small 

task for multi-stage problems without recycle. 

The quasi-Newton method (Section 3.3) also overcomes some of 

the problems associated with the conventional second order approach. 

However, if exact determination of the inverse Hessian matrix is 

possible at similar computational cost to an approximation, then the 

exact approach would surely produce substantial savings overall. In 

addition to expressing the problem in multi-stage form, provision should 

be made in the algorithm to calculate only the non-iero components of 

the Hessian matrix and to use only the stage objectives if numerical 

approximations are being made. Clearly, the banded nature of the matrix 
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should also be fully exploited in its inversion. For many multi-stage 

problems with continuous gradients, such an algorithm may well be the 

most efficient. 

5.2.3 Sequential Decomposition  

The method of sequential decomposition ( SD) has been developed 

for the solution of multi-stage optimization problems either with or 

without recycle. It is applicable to all deterministic optimization 

problems, no continuity of the objective function or its gradients being 

necessary. The method involves partial searches of design space in a 

sequence which is repeated until convergence is aëhieved. Convergence 

to the optimum can not be guaranteed when the objective function is 

"ill-conditioned". However, excellent results have been obtained with 

all of the problems considered. In its simplest form, the procedure for 

a ( 4k+l)-stage system (k1), is as follows: 

Elementary Method: 

(1) The vector x2k+1 is fixed. The portion of the objective function 

which involves components of vectors x to 2i2k is minimized in a 

search of the sub-space defined by these vectors. Similarly, a 

minimum is sought in the sub-space defined by vectors .2k+2 to 

4k+ l Because 2k+l is fixed, these two searches are independent 

of one another. 

(2) The vectors k+1 and X3k+l are fixed and minima are sought in the 

subspaces defined by vectors x to k' k+2 to 3k and 3k+2 to 34k+l 

(3) Steps ( 1) and ( 2) are repeated until convergence is reached. 

In a problem well suited for SD in which variables at a stage are not 

greatly influenced by variables in remote stages, convergence is rapid. 
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An example of the application of the procedure to the continuous beam 

design problem is reported in Section 5.3.2. 

An alternative SD method involves the reduction of the 

subproblems to the minimization of stage objectives. The simplest way 

to achieve this for a ( 4k+l) stage system is as follows: 

Even-Odd Alternation: 

(1) Fix all of x.; i = 2,4, ..., 4k-2, 4k and minimize each of 

f(x); i = 1,3, ..., 4k-i, 4k+l. 

(2) Fix all of i = 1,3, ..., 4k-i, 4k+l and minimize each of 

i = 2,4, ..., 4k-2, 4k. 

(3) Repeat steps ( 1) and ( 2) to convergence. 

This procedure has been applied successfully to.the continuous beam 

design problem (Section 5.3.2). A slightly more complex version of it 

involves simultaneous 6olution of Steps ( 1) and ( 2) above. The 

procedure is as follows: 

Simple Progression: 

(1) For i = 1,4k-i, fix x and 2i+2 and minimize f. 1 (x. 1). Finally, 

fix 2E4k and minimize 4k+1-4k+1 

(2) Repeat step ( 1) until convergence is reached. 

This procedure is illustrated by example in Sectjon 5.2.5. 

5.2.4 Quadratic Projection: 

In the methods of SD outlined above, convergence can be slow 

for some problems. The search tends to follow a "zig-zag" pattern as 

illustrated in Fig. 5.la. Convergence might be improved by a search in 

global vector space in a direction such as AB in that figure. However, 

for continuous beam design, degeneration of the stage optimization 
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A' 

B' 

B 

C 3rd cycle 

cycle 

1st cycle of suboptimizations 

 >. 

(a) Global Search Without Quadratic Projection 

E 

-f 
.11 1 

/ D. 

A and A' 

(b) Successive Searches of Subspace x1 

Fig. 5.1. - Search Patterns with Sequential Decomposition 
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subproblem makes a purely subspace-based method very efficient. 

Accordingly, this development is based on the results of subspace 

searches only. It is, applicable only to systems without recycle. 

An example with three successive stage optimizations is 

illustrated in Fig. 5.lb. In this figure, the vector IDi is the change 

in the stage vector, x., resulting from the j th optimization of this 

stage. If the difference vectors for three successive Stage i 

optimizations, D?, D? and D? '2 are parallel for all i and the '( full) 

objective function is quadratic, then the exact solution to the 

subproblems can be calculated. The equations derived on the basis of 

these assumptions are used regardless of whether or not the assumptions 

are true. 

For an rn-stage system, the vector modulus, 

0 
X . - x. 
-1 -1 

(5.1) 

is used as a measure of the change in x. from an initial point, ?. 

This initial design point is the design point at the start of a sequence 

of optimizations leading to quadratic projection; it is not necessarily 

the design' point at the initiation of the SD procedure. Similarly, the 

11th optimization of Stage i" refers to the j th optimization of this 

stage in the sequence. When the difference vectors are parallel, M. is 

the distance in design space from x0. If the objective function is 
Zzi 

quadratic, then all stage objectives, f., must also be quadratic. 

Furthermore, f. are quadratic functions of distance moved in any fixed 

direction in design subspace. Thus, 

f. 1 1 1 = a. + (b. i + c i-1 M i + c i+1 1 M )M. + c. -1,i ,i+l 1 
(5.2) 
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where a 1 1 1 :, b., c. and i c are constants for i=1,2,..., m and both c 
,i+1 01 

and cm,m+1 are zero. Initially, 

M. = 0 ; i = 1,2, ..., m (5.3) 

Hence, the initial values of the stage objectives are given by, 

f? = a. ; i = 1,2, ..., m (5.4) 

When the method of "simple progression" described in the preceding 

section is used, the i th stage objective after its first optimization 

is, 

= a + (b + c + c.(6) 2 
i i-1,i 

, 

t 
where 0J is the j change in M. resulting from the optimization of 

Stage i. Hence, the change in the i th stage objective resulting from 

its first optimization is 

(5.5) 

= (b. + c. ) + c.() ; i = 1,2, ..., m ( 5.6) 
1 1 i-1,i i1 1 1 1 

There is no term in in the above equation for the method of simple 

progression involves no change in i+l until after the optimization of 

Stage i. In optimizations subsequent to the first, 

= Eb. + k=1 • c +i 

j-1 
+ c.5?[2 E (&) + 5] 

3. k=1 
> 1 (5.7) 

After three cycles of optimizations, sufficient information is available 

to evaluate the constants and to determine the location of the minimum 

of the quadratic function. The ( 3m) equations are: 
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A 

1 0 

1ô+26 
1 i i+1 

13•21+22 1 2 
i i. '5+i + ô 1 

, 

11 
- c. 

1 1 i-1,i i-i 

A 2/62 - C. . (5 -i + 6 ) 
1 1 i-1,i i i1 

c (S + 6 + 
i 1 1 -1,i i1 i-i i-1 

If ( 5?) is zero for some j, then the term (L/t5!) is indeterminate. 

However, this only occurs when optimization of Stage i results in no 

change in M. in which case quadratic projection is inappropriate. 

Inversion of Eqns. 5.8 gives: 

b. 
1 

c. 
1 

c. 
1, i+1 

where, 

and, 

- c - + (2 - 2 - ( 1 - i-1,i 1 i i+1 i j-1,i i-i 

+ ( 2 (o 2 - i+1 _ 3l (i1 - c 
i i+l ii+1 i i-i 

2 - + c + 2 2 1 2 fl/k 
. . . i -i,i i-i i+1 - 1 - c 1-1,1 5 -i i 

[ 1 ( 3 - 2 - 3) + 2 + k.  + c •(ô 1 - 

+(Z-+ c. . )]/k. 
1 1 1 i1,i i1 1 

k = o2 : + - + i i+l  

(5.9) 

(5.10) 

ki = L/S ; j = 1,3 (5.11) 

Applying these equations at each stage starting with the first, all the 

constants, b., c., cjj+l; i = 1,2,..., m, are found. The partial 

derivative of f with respect to M. is, from Eqn. 5.2: 

(5.8) 

/ 
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f. 
1 

= b. + C. M* + C M* + 2c .M 
i i-i , i+1 i+1 1 1 

i 

Setting all partial derivatives to zero gives, 

cM + 2c.M+c. . M =- b i . -1,i i-i 1 1 1,1+1 1+1 1 

(5.12) 

i = 1,2,..., in ( 5.13) 

Solving these m equations simultaneously gives the optimum moduli for 

the in stage vectors. The quadratic projection is along the direction 

defined by the most recent move in the stage vector, x., namely, from X. 

3 
to x.. Thus, 

x = x + (x - x) (M - cS i = 1,2,..., m (5.14) 

It is anticipated that three successive stage optimizations will often 

involve progressively smaller moves in roughly the same direction and 

that projection will move the design point slightly further in that 

direction. If a component value is alternately increasing and 

decreasing in successive cycles, then Eqn. 5.14 is not applied. If, as 

anticipated, successive component changes are in the same direction, 

then further projection in that direction only is allowed. Quadratic 

projection is illustrated in the example following and its effectiveness. 

is demonstrated for continuous beam design in Section 5.3. 

5.2.5 Example  

A method of SD is applied to a 4-stage unconstrained problem 

with two variables in the first stage and one in each of the others. 

The objective function is: 

F = (x11 + x12) 2 + (x11 - x12) 2 + 2(x 11  + x12 - x21) 2/ 

+ (x21 x31) 2 + x 2 41 (5.15) 
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The stage objectives can be taken as: 

f  = 

f3 = 

= 

(x11 + x12) 2 + (x11 - x12) 2 + 2(x 11  + x 12 - x21) 2 

2(x 11  + 12  2 - x21) + (x21 - x31) 2 

2 
X41 

X3) 2 

Solving the first derivative equations ( independently) gives the stage 

optima: 

= {[ 2(x11 + x12) 

= {o} 

+ x31 1/3} 

Thus, for this simple example, the SD procedure involves a search for 

the simultaneous solution of Eqns. 5.17. Starting at an initial point 

of, 

three cycles 

t t t t 
i' 2' = (( 10, 10), 10, 10, 10) 

of optimizations give: 

- r 

X1 3.333 110 I 
Lloj 3.333 

10 + 7.778 

10 7.778 

10 0 
- - 

+ 

2.593 

2.593 

6.049 

6.049 

0 

The corresponding changes in the stage objectives are: 

+ 

2.016 

2.016 

4.705 

4.705 

0 

(5.16) 

(5.17) 

(5.l8) 
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Hence, 

and 

1 2 3 
2 2 2 

A2 
4 L 

-S - 

{] = 

[] = 

-533 -6.58 

= -14.8 -8.96 

-4.94 -2.99 

-100 0 

-S 

-6.667 -. 741 -. 576 

-2.222 -1.728 -1.344 

-2.222 -1.728 -1.344 

-10 0 0 

80 

6.67 

2.22 

10 

8.89 

5.19 

1.73 

6.91 

4.03 

1.34 

-3.98 

-5.42 

-1.81 

0 

Applying Eqns. 5.9 at Stages 1, 2 and 3 gives, respectively 

b. 
1 

c12 

160 

12 

-8 

b2 

c23 

-40 

3 

-2 

b3 

c3 

c34 

0 

1 

0 

(5.19) 

(5.20) 

(5.21) 

(5.22) 

As 6 = 0, quadratic projection is not applied at this stage. Eqns. 5.13 

are, for this example, 

24 -8 0' 

-8 6' -2 

0 -2 2 

M2 

M3 

-160 

40 

0 

(5.23) 
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Solving Eqns. 5.23 simultaneously gives: 

(Mi, M, Ms,) = (- 10, -10, - 10) 

These are the optimal changes of the moduli from the starting point, 

((10, 10), 10, 10, 10). Finally, Eqn. 5.14 gives: 

2.593 

2.593 
*5 - 

6.049 

6.049 

+ 

-S.. 

-0.576 x (-2.593)/(-.576) 

-0.576 
S.. 

-1.344 x (-6.049)/(-l.344) 

-1.344 x (-6.049)/(-.1.344) 

t t t t 
1' 2' 31 x)* = (( 0, 0), 0, 0, 0) 

S. 

In this example, the directions of change in successive Stage 1 

optimizations are equal for, in each case, 

X 1 = x12 

(5.24) 

(5.25) 

(5.26) 

(5.27) 

The objective function is also quadratic. Accordingly, the solution 

found by this first quadratic projection is the exact solution. It will 

be found to simultaneously satisfy all of Eqns. 5.17. 
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5.3 CONTINUOUS BEAM DESIGN FOR MULTIPLE LOADINGS 

5.3.1 Problem Formulation  

Most reinforced concrete design codes require consideration of 

a number of different loading conditions. For a continuous beam, the 

most adverse effects of all loading conditions must be provided for, at 

each section. The resulting optimum design problem is large and 

complex. The designer generally has the power to decide on the 

following parameters: the concrete geometry in each beam span, the 

areas of top and bottom reinforcement and their cut-off points and the 

area and spacing of transverse reinforcement. Accordingly, these 

constitute the true variables of the optimization problem. 

The constraints are the requirements of serviceability and the 

ultimate limit state. The ultimate strength requirements are that all 

sections be adequate to resist the moments and forces resulting from 

each of the loading conditions. The optimization problem is complicated 

at this point by the fact that, within certain limits, the designer is 

free to select the moments and forces that result from a given loading 

condition. Most reinforced concrete design codes provide for some 

"plastic moment redistribution" after an elastic analysis. This is in 

recognition of a degree of ductility that exists in the members and 

their ability to redistribute stresses before failure. Thus, the 

moments and forces to be resisted can have any values subject to the 

limitations: 

(1) The conditions of equilibrium must be satisfied. 

(2) The deviation of the moments selected from the moments found by 

elastic analysis must be less than the maximum deviation allowed. 
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This maximum allowable deviation is found from considerations of 

section ductility. 

Suitable values for these moments are not readily apparent. A moment 

just equal to the moment of resistance at a support may imply, by 

equilibrium, a violation of a cut-off point constraint in an adjacent 

span ( see Fig. 5.2). On the other hand, a lesser value may imply a 

sagging moment, in the other span, in excess of that moment of 

resistance. 

The problem of selecting a feasible combination of the moments 

to be resisted is overcome, if these moments are considered to be the 

variables. In an alternative formulation, the support moments for all 

the loading conditions are considered as independent variables along 

with the section dimensions. Then, the steel areas and cut-off points 

are dependent variables; they are the minimum amounts required to resist 

the most adverse stresses at all sections. High support moments tend to 

imply large volumes of top reinforcement while small values can imply 

large volumes of bottom reinforcement. As the number of independently 

variable section dimensions is usually small, these variables can be 

treated as second level in a model co-ordination decomposition approach 

(Section 3.4.1). This still leaves a very large number of first level 

variables, more than (n.l)nL for a beam with n spans and n, loading 

conditions. However, the problem is in multi-stage problem form, each 

support corresponding to a stage. Accordingly, the first level problem 

is suitable for solution by methods of SD. 
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Fig. 5.3. - Twelve-Span Beam Example 
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5.3.2 Application of Sequential Decomposition  

Methods of SD have been applied to the optimum design of the 

continuous beam illustrated in Fig. 5.3a. The beam consists of twelve 

6 m spans. Such a long beam is not intended to reflect a realistic 

situation but rather to facilitate exact division into 2-, 3-, 4- and 

6-span substructures. The section geometry is as illustrated in Fig. 

5.3b for all sections. The beam is cast integrally with a slab with the 

clear distance from beams on either side being 3 m. Accordingly, the 

top breadth is not specified but is calculated in the program in 

accordance with theprovisions of CAN3-A23.3-M84. Similarly, the 

amounts of deviation of the moments from those found by elastic analysis 

are calculated in accordance with the code equation. The shear 

provisions of Clause 11.3 are applied to this example rendering shear 

design independent of design for flexure. For the purpose of 

calculation of anchorage lengths, all bar diameters are specified as 

20 mm. It is also specified that the areas of top reinforcement at each 

support and of bottom reinforcement in each span vary independently. 

Only one cut-off point is used for top reinforcement in each case. 

The six loading conditions for the twelve-span beam are 

represented in Fig. 5.3c. In this figure, the heavy lines refer to the 

maximum uniformly distributed loading of 1.25 qD + 1.5 qL . The light 

lines refer to the minimum factored loading of 0.85 qD . When all 

moments at all supports due to the six loading conditions are 

considered, the first level problem involves 66 variables. When it is 

considered that each function evaluation involves complete specification 

of the minimum requirements for steel at all points ( as described in 
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Chapter 4), it can be seen that this optimization problem could be 

computationally prohibitively expensive. 

A number of alternative solution schemes were tried for this 

example to test the feasibility of methods of SD. A quasi-Newton 

optimization algorithm, ZXMIN, from the IMSL library ( IMSL, 1982) was 

first used. Initially, this algorithm was applied directly to the 

problem. When an accuracy to only two significant digits was specified 

in ZXMIN, no solution was found in 10,000 seconds of central processing 

unit (CPU), time on a Control Data Corporation, Cyber 175 computer. 

When accuracy to one significant digit was specified, a solution was 

found in 9,013 seconds of CPU time after 11,493 full beam designs. An 

elementary method of SD was found to be more efficient. The procedure 

was as follows: 

(1) Fix all moments at Support 7 (Fig. 5.3a). Solve the subproblems 

comprising Supports 2 to 6 and Supports 8 to 12 using ZXMIN with 

accuracy to two significant digits. 

(2) Fix all moments at Supports 4 and 10 and solve the subproblem. 

comprising Supports 5 to, 9. 

(3) Repeat Steps ( 1) and ( 2) until convergence of all moments to within 

1% is achieved. 

With this decomposition scheme, a solution was found in 8,747 seconds of 

CPU time. Details of both solutions are given in Table 5.1 together 

with a diagrammatic representation of the decomposition scheme for the 

latter. The results from four other solution schemes are also reported 

in the table. In all cases, the two families of subproblems illustrated 

were solved alternately. ZXMIN was employed for all these subproblem 
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solutions and neither "Simple Progression" nor "Quadratic Projection" as 

described in Section 5.2 were used. There is a marked reduction of 

total CPU time with subproblem size. The scheme composed mostly of 

5-span substructures required only 6,525 seconds. Both this and the 

scheme composed of 4-span substructures converged in three cycles. 

Naturally, the latter required by far the lesser time at 3,956. The 

average number of function evaluations per subproblem for the scheme 

with 3-span substructures is less than half that for the 4-span 

substructure scheme. This results in a reduction to 3,430 seconds 

despite the fact that two extra cycles of optimization were required. 

The scheme requiring least CPU time was that composed of 2-span 

substructures for which the total was only 1,475 seconds. This scheme 

constitutes "Even-Odd Alternation" as described in Section 5.2. The 

saving in CPU by use of two-span subproblems is so pronounced that 

schemes involving subproblems of this size only, have been given further 

consideration. 

Applying the methods of Simple Progression and Quadratic 

projection as outlined in Section 5.2, the CPU time is still further 

?educed to 1,211 seconds. Details of this execution are given in Table 

5.2. The computation time saved is due to a reduction in the number of 

cycles. The additional time required for the quadratic projection 

calculations is not significant. The deviations of the moments at 

Supports 2 and 3 from their optimum values are given in Table 5.3 before 

and after quadratic projection. It can be seen that the projection is 

quite effective in reducing the deviations for many cases. 
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Table 5.3. - Results of Quadratic Projection 

Support 2 Support 3 

Loading 1. 2 3 4 5 6 1 2 3 4 5 6 

Simple Progression 0.29 -0.01 0.15 0.01 0.02 -0.21 -0.16 0.35 -0.17 0.07 -0.02 0.23 

Quadratic Projection -0.05 -0.01 0.15 0.01 0.01 -0.21 0.02 0.10 -0.17 0.07 -0.01 0.10 
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5.3.3 Two-Span Substructure Optimization  

The quasi-Newton optimization algorithm, ZXMIN, was used for 

the two-span substructure optimizations in all of the executions 

described above. This algorithm is quite efficient for many problems 

but was found to be sensitive to discontinuities in the cost function 

gradients. The program, as first written, contained many such 

discontinuities. For example, cost is proportional to area of bottom 

steel which equals the maximum of that required for flexural resistance 

or the minimum allowable value as specified in the code. A gradient 

discontinuity exists at the point where the area required for flexural 

resistance equals the minimum area ( see Fig. 5.4a). The use of a 

"smoothing function" for all such situations solved this problem with an 

insignificant loss of accuracy ( see Appendix C). ZXMIN is also 

sensitive to regions of zero gradient in design space. This problem was 

overcome by incorporating a very small equivalent cost for support 

moments not equal to those found by elastic analysis. The most serious 

problem with ZXMIN, however, is that it is sensitive to regions of rapid 

(although continuous) change in the gradients of the objective function. 

Such regions sometimes occur in the application of a penalty function 

(see Fig. 5.4b). For example, ZXMIN was found to fail for problems with 

two independently variable areas of top steel at a support where the 

first area was required, by exterior penalty function, to exceed one 

half of the second (Clause 12.12.3, CAN3-A23.3-M84). When no such 

situation is encountered, as in the executions reported above, the 

algorithm works well. However, it is clearly not suitable for general 

use on the continuous beam design problem as formulated here. 
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For problems involving discontinuities of gradient, the method 

of conjugate directions has been recommended (Powell, 1964). Unfortun-

ately, this method tends to be relatively inefficient for problems 

involving large numbers of variables. As stated in Chapter 3, an 

algorithm, CDMIN, has been written for optimization by the method of 

conjugate directions. While the difficulties encountered with. library 

subroutines could perhaps have been overcome by the use of an 

alternative library subroutine or by reformulation of the problem, it 

was found more convenient to use CDMIN in lieu of ZXMIN. The use of the 

former greatly expedited the error detection process because of its 

relative simplicity and its insensitivity to "ill-conditioning" of the 

objective. When CDMIN was used in lieu of ZXMIN with the Simple 

Progression method of SD, the total CPU time was increased from 1211 to 

2053 seconds ( see Table 5.2). However, it is difficult to compare the 

two results. In both cases, cycles of subproblem solution were 

continued until the support moments, after two consecutive cycles, were 

not changed by more than 1%. However, with ZXMIN, suboptimization was 

continued until the variables, after consecutive iterations, agreed to 

two significant digits. On the other hand, with CDMIN, iteration was 

continued until convergence to within 0.1%. Despite the more stringent 

convergence criterion for CDMIN, the results of the suboptimizations 

were found to be less accurate than those found using ZXMIN. This is a 

consequence of the nature of the two iterative procedures. It was 

because of this inaccuracy that solution using CDMIN required twice as 

many cycles of optimization as that using ZXMIN (Table 5.2). The 

degrees of accuracy in the final results were similar using both 
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algorithms but, in general, the moments found using ZXMIN were closer to 

the exact values. 

Accordingly, solution using CDMIN appears to be slightly less 

accurate and considerably more computtiona1ly expensive than solution 

using ZXMIN. Fortunately however, it is possible to reduce considerably 

the number of variables in the subproblems. Consider the substructure 

illustrated in Fig. 5.5 (page 97) for a problem involving n loading 

th 
conditions. The nL variables for this subproblem are the a. support 

moments, X.. ; j = 1,2.. .... n, all other support moments being 

• th 
fixed. The design moment for sag in the a. span is Si ( see Fig. 5.5). 

This is the maximum for all loadings of the maximum moment in the i th 

span. Thus, for the j th loading condition, X.. must be sufficiently 

large that the moment in both spans of the substructure is everywhere 

less than or equal to the design moment for sag. An interesting 

situation exists if, in both spans, the moment is less than the design 

moment for sag. If this is the case, then decreasing X.. may imply a 

decrease in the area of top steel required at Support i and/or a 

decrease in the lengths of top steel at any or all of Supports i-i, i 

and i+1. It has been assumed throughout this thesis that all bottom 

steel extends into the supports by at least 150 mm ( see Clause 12.11.1). 

Accordingly, it is reasonable to assume that decreasing X•. in this 

situation will not lead to an increase in the length of bottom steel 

required. The validity of the assumption can be tested in the final 

design. Thus, for as long as the sagging moment in both spans is less 

than the respective design moments, a reduction in X•. can not imply an 
13 

increase in the required volume of steel. Hence, no loss of accuracy 
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results from assigning to X ij .. the maximum of the following values: 

(1) that moment which would imply a maximum sagging moment in Span i-i 

of S. 1; 

(2) that moment which would imply a maximum sagging moment in Span i of 

S.; 

(3) the minimum allowable moment at Support i as dictated by the moment 

found by elastic analysis and the allowed deviation from that 

moment. 

Thus, regardless of the number of loading conditions, n, the two-span 

substructure variables, X..; j = 1,2, . .., n , can be regarded as being 

dependent on the two variables Si and 5,. Similarly, for a one-span 

substructure (required for a beam with ends encastre), the variable 

moments can. be regarded as being dependent on the design moment for sag 

in, the span. 

This reduction in problem size greatly improves the efficiency 

of the program using CDMIN. The twelve-span example of Fig. 5.3, when 

designed using this strategy for subproblem solution, required only 81 

seconds of CPU time (Table 5.2). Again, it is difficult to compare this 

time with the others in the table. Double precision calculations of the 

objective were recommended for accurate results using ZXMIN. This 

precision was retained for the six-variable example using CDMIN but was 

suspended for the two-variable problem. There is a corresponding 

• halving in the CPU time per function evaluation. Also incorporated into 

the two-variable program is a three-tier accuracy for subproblem 

solution. For this 12-span example in which a convergence criterion of 

1% has been specified, the convergence criterion for the subproblems is 
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10% in the first cycle, 1% in the second and 0.1% in subsequent cycles. 

The termination criterion is not tested until after the fourth cycle. 

These changes in the programming, combined with the reduction in the 

number of variables, have resulted in 'a program that is more than an 

order of magnitude more efficient than before. The new program required 

an average of only 25 function evaluations per subproblem solution. 

In summary, it has been found that the algorithm ZXMIN is not 

suitable for general use on the continuous beam design problem as 

formulated here. However, degeneration of the two-span subproblem 

enables the more robust algorithm CDMIN to be used with even less 

computational labour than ZXMIN. 

5.3.4 Program Description  

The end result of the theory and tests outlined above is the 

computer program BOD (Beam Optimum Design). BOD is a comprehensive 

program containing fifty-four subprograms and three to four thousand 

fortran statements. It has been written in Fortran IV rather than a 

more advanced fortran language because many standard library subroutines 

are still widely available only in this language. This latest edition 

of the beam design program makes use of one standard subroutine, namely, 

LEQT1F, which is from the IMSL library ( IMSL, 1982) and is used to solve 

a set of simultaneous equations. The program was written on the Control 

Data Corporation, Cyber 175 computer. 

BOD involves analysis and design at several levels. At one of 

the most basic levels is the subroutine CONANA. This involves the 

specification of the required amounts of steel for one- or two-span 

substructures and the calculation of the associated costs. At a higher 
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level, the subroutine SUBOPT directs a search for the optimum amounts of 

moment redistribution in the substructures. The subroutine ST involves 

the complete steel design process, combining the substructure designs by 

means of the sequential decomposition method. At the highest level, the 

main program in BOD is used for the determination of the optimum values 

of the geometric variables. For given values of these variables, full 

analyses are carried out in FAN. In FAN, ST is called for the steel 

design, DEFL is called for the calculation of deflections and the total 

cost of the continuous beam is calculated. 

A detailed description of BOD is given in Appendix A with 

flowcharts for all the major subprograms. 
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5.4 SENSITIVITY ANALYSIS FOR CONTINUOUS BEAMS 

Sensitivity of beam cost to a number of input parameters is 

assessed for certain examples. These results provide a valuable 

indication of what areas of research may be fruitful in terms of cost 

savings to the construction industry as well as indicating how 

near-optimal designs, can be found with relatively little computational 

effort. 

5.4.1 Objective Function  

Unit costs have been determined on the basis of information 

received from a major Canadian construction firm (Note 1) and informal 

conversations with others involved in the industry. 

Concrete: The material cost of concrete is a function of the 

characteristic strength, f': 

Material Cost of Concrete: $ 81.75/rn3 (f' = 20 MPa) (5.28) 

$ 82.00/rn3 (f' = 30 MPa) (5.29) 

$102.5 0/m3 (V = 40 MPa) (5.30) 

The very, small difference in cost between 20 MPa and 30 MPa concrete may 

be due to a low demand for the former. In view of the small difference, 

it seems reasonable to assume that it would always be more cost-

effective to use the latter. Linear interpolation gives a cost of 

$92.25/m3 for V = 35 MPa. The additional costs for additives ($ 3.50/rn3 

for "Winter Heat" and $ 1.50/rn3 for Air Entrainment) are not considered 

here. The labour associated with the pouring of concrete is 0.553 

manhours per cubic metre and the current crew rate ( for a unionized 

workforce) is $18.46 per manhour. Hence, 

Labour Cost of Concrete = $10.21/rn3 (5.31) 
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While these figures are exactly as used by the major contractor, it is 

observed that their accuracy, in general terms, is far less than might 

be inferred from the number of significant digits given. 

Forms : The total material cost of forms is, 

Material Cost of Forms = $7.50/rn2 

The labour cost is calculated at 1.367 manhours per square metre at a 

present crew rate of $ 19.88 per manhour. Thus, 

Labour Cost of Forms = $27.18/rn2 

In the case of a beam cast integrally with a slab, form-work must be 

provided for both the beam and the slab. Hence, increasing the web 

width has no effect on the total area required. Accordingly, the 

variable cost of forms is the cost required for the beam sides only. 

St9l: Based on prices given by the major construction firm, the 

current supply cost of steel is $0.44/kg, and the installation cost is 

$0.42/kg. The corresponding volume costs (using a density of 7850 

kg/rn3) are: 

(5.32) 

(5.33) 

Steel Supply Cost = $3454/rn3 (5.34) 

Steel Installation Cost = $3297/rn3 (5.35) 

The major construction firm consulted did not differentiate between the 

unit prices of longitudinal and transverse steel. A steel supplier 

stated that their charges for cut and bent bars were $0.540/kg and 

$0.507/kg for transverse and longitudinal respectively. A steel placing 

firm estimated that a given volume of No. 10 bars would require four 

times as long to install as No. 30 bars and that No. 10 transverse 

reinforcement would require about three times as much installation time 

as No. 10 longitudinal reinforcement. Of course, not all longitudinal 
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reinforcement can be in the form of large bars but the chances of 

reducing the number of bars is higher than for transverse reinforcement. 

Accordingly, it is proposed to specify a unit price for the installation 

of transverse equal to 7.5 times that for the installation of 

longitudinal. (Values for this ratio of 5 and 10 are later used to test 

its effect on cost.) If it is then assumed that the volume of 

longitudinal reinforcement in a typical beam is ten times the volume of 

transverse and the weighted average is required to equal $ 3297, the unit 

costs for the installation of reinforcement become: 

Installation Cost of Longitudinal Steel = $2,100/rn3 (5.36) 

Installation Cost of Transverse Steel = $15,500/rn3 (5.37) 

Clearly, these figures are based on a number of subjective decisions and 

are far from accurate. Accordingly, subsequent users of the program BOD 

should view the logic used in their calculation critically before 

adopting it for general use. 

Depth PenczZ.ty: From a purely structural viewpoint, narrow deep beams 

tend to be most efficient. This is a result of the associated large 

lever arm. However, excessively deep beams require space and the result-

ing increase in the height of the building can significantly affect the 

overall cost. This increased height can result in greater wind loads 

with the result that other structural elements will need to be strength-

ened. Increased height also creates a need for additional cladding. 

Only the latter of these two factors is considered here. A cladding 

. i i cost of $ 16/rn 2 is assumed and the simple layout i llustrated n Fig. 5.6 

(after Higgins and Hollington, 1973) is adopted. It is recognized that 

this layout may certainly not be typical. However, such is the 
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diversity of layouts among buildings that it is difficult to find one 

that is "average". If the layout is as illustrated in Fig. 5.6, there 

are only two beams to be designed, namely, the edge beam and the main 

beams. If the depth of both of these is increased by 6d, then the cost 

of additional cladding required is $ 1728 cSd, where Sd is in metres or 

$1.7 cSd where Sd is in millimetres. If this cost is shared between the 

:two types of beams, 

Cost Penalty = $0.86 ôd per beam (5.38) 

One might argue that increasing the depth of the edge beams would not 

necessarily require the building height to be increased but for the 

purposes of this study, it is assumed that it would. Clearly, this cost 

term is only a first estimate of what the term might be in a given 

situation. For specific buildings, the engineer will know the building 

layout and may be in a better position to estimate the value. In view 

of the approximate nature of the estimate made here, the sensitivity of 

beam cost to this value . is tested at a later stage. 

Equivalent Cost of Deflection: In the program BOD, the limitation on 

deflection is treated as a fuzzy constraint (see Section 3.5). The 

equivalent cost of deflections close to the maximum allowable value is, 

P 

Equiv. Cost = k 
max 

( 1 - P) 

(5.39) 

this term being applied only when S is in excess of (P 6max In this 

equation, ô max is the maximum allowable deflection as specified in the 

code (Canadian Standards Association, 1984). Equivalent costs are 

applied for immediate deflection due to live load, cS., and for the sum 

of the long-time deflection due to all sustained loads and the immediate 
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deflection due to the additional live load, For the examples 

considered here, the cost is taken to be zero for deflections of less 

than half the maximum allowable and to increase as a cubic function 

thereafter. Hence, 

p = 0.5 (5.40) 

p= 3 

The constant, k, in Eqn. 5.39 represents the equivalent cost when the 

deflection equals the maximum allowable value. If deflections at 

working loads are excessive, some form of levelling operation may be 

required. The cost of such a process (for the major construction firm 

conu1ted) is $17.15 per square metre. The equivalent cost when 

deflection equals its maximum value, k, reflects the probability of such 

an operation being required. It also reflects the reduced value of a 

building when deflections in a number of beams are high but do not 

require repair. For the purposes of this work, a value of k equal to 50% 

of the cost of levelling the tributary area has been selected. This 

reflects the ai1thor*s opinion that if the predicted deflection equals 

the maximum value, then there is about a 50% chance that the actual 

deflection will exceed the maximum and that the levelling operation will 

be required. It is assumed that if the beam deflection is acceptable, 

then the slab deflection will be such that no levelling will be 

necessary. Thus, 

k = $8.60 At 

where At is the tributary area in square metres. As before, the 

subjectivity of this logic is emphasized. 

(5.41) 

(5.42) 
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Objective Function: It is assumed that beams are cast integrally with 

slabs of specified depth. Accordingly, the variable beam dimensions are 

the breadth of the web and the depth below slab level (b1 and t1 in Fig. 

4.la). These will be referred to here as bb and t  respectively. The 

variable cost of concrete (material plus labour) is proportional to the 

product of these and the beam length, i.e. (bbtb9i. The variable cost 

of forms is proportional to the surface area, namely, (2tb2). The 

depth penalty is applied to tb and the equivalent cost of deflections is 

additive to the other costs. Hence, the objective function to be 

minimized is, for f' = 30 MPa: 
C 

0bj. = (82 + 10.21) 10 9(bbt - v  - V) + (7.5 + 27.18) 10_6 (2t) 

+ (3,454 + 15,500)109Vt + (3,454 + 2,l00)l09v + O•86tb 

+ 8.6{(36Od./ - 0.5)/0.5} + 8.6{24O&/ - 0.5)/0.5} 

where all linear dimensions are in millimetres, V and V are the 

volumes of transverse and longitudinal steel respectively (mm 3) and 

maximum deflections of ,/36O and k/240 are being used for 5. and 

respectively. Similar equations can be derived for other strengths of 

concrete. It is of interest to note that the depth penalty associated 

with the increased cladding requirements is of the same order of 

magnitude as the depth cost due to the formwork requirements. 

(5.43) 

5.4.2 Design Examples and Results  

All of the following examples have been designed in accordance 

with the requirements of the Canadian Code of Practice (Canadian 

Standards Association, 1984). For ease of construction it has been 
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specified that the section geometries be the same in all spans. A beam 

slab system has been specified with a distance between spans of 5 m. 

The flange width of the resulting T-beam is selected in accordance with 

the Code requirements. The depth of slab has been specified as 100 mm 

except where otherwise stated. The breadth of the web and the depth-

below-slab of the beam are allowed to vary but minimum values of 200 mm 

and 260 mm respectively have been specified. These minima are required 

to ensure that sufficient anchorage is available for stirrups and 

sufficient breadth for the spacing of the reinforcement. This 

combination of breadth and depth was found to be adequa€e ( for the 

examples considered) to prevent spalling due to high shear stresses. 

The dead 1oaing was taken to be the weight of the slab plus 

self weight plus 1 kN/m2 throughout the tributary area to account for 

other dead loading. The live loading intensity was that specified for 

office occupancy, i.e., 

2.4(0.3 + (9.8/At1 ) kN/m 

where At is the tributary area. For loading applied over two spans, the 

tributary area was taken to be the sum of the tributary areas for each 

span and the intensity was reduced accordingly. This may not be in 

keeping with normal office practice. However, the reduction formula is 

intended to reflect the.lesser probability of large areas having a high 

average load than small ones. Therefore, it is felt that it is 

appropriate to apply it for the complete area on which the loading is 

being applied. The maximum loading was obtained by applying factors of 

1.25 and 1.5 to dead and live load respectively and the minimum by 

applying a factor of 0.85 to'the dead load. It is recognized that, 
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again, it may not be normal office practice to apply a factor of 0.85 to 

the dead load. However it is felt that this reasonably reflects the 

possibility of adjacent spans having lower-than-expected and 

higher-than-expected dead loading. 

The specified yield strength of steel was 400 MPa for both 

longitudinal and transverse reinforcement and the characteristic 

strength of concrete was 30 MPa except where otherwise stated. For all 

of these examples, No. 30 bars were used for the calculation of the 

development lengths of all longitudinal reinforcement and a cover of 40 

mm was specified. The three span beam of Fig. 5.7a was considered 

subject to the loading conditions illustrated in Fig. 5.7b. Except 

where otherwise stated, the span lengths are equal at 10 m. 

Series 1 - Variable Span Lengths : For the beam illustrated in Fig. 5.7 

the program BOD was used to determine the optimum designs for values of 

x, equal to 8 m, 10 m and 12 m. In this initial series it was found for 

the three examples, 

(a) that the objective was an average of 3.4% from the minimum after 

optimization of the section geometry only, and 

(b) that fixing the geometry at the values found in ( a) above and 

determining the optimum amounts of plastic moment redistribution 

brought the objective to within 1.1% of the optimum. 

In contrast, only about 10% of the total computational effort is 

required for the implementation of these two steps. In view of this, 

the program BOD was adapted to allow the user to terminate the 

optimization process at this stage. This approximation has also been 

used in all of the remaining examples. All components of the cost 
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function for these examples and an example with, x = 14, are given in 

the first four columns of Table 5.4. 

In addition to the cost components, the optimum depth (below 

slab), breadth and maximum allowed plastic moment redistribution 

(measure of ductility) are reported in the table. While the exact 

optimal dimensions are reported, it is recognised that these would 

normally be "rounded off" by the designer. The various components of 

the objective are illustrated in Fig. 5.8. As x increases, the outer 

span lengths decrease. It can be seen that, as this occurs, deflections 

become less of a problem initially and depth decreases. This is 

reflected by a substantial drop in the depth penalty and the cost of 

forms. Corresponding to the reductions in depth are increases in 

breadth. However, the total volume of concrete decreases. The volume 

of longitudinal steel increases and ductility decreases. As x gets 

larger, the outer span lengths become small relative to that of the 

centre span. The 6quivalent cost of deflections in the outer spans 

becomes zero while that in the centre span increases. This results in a 

sharp rise in the required section depth with a corresponding fall in 

breadth. The volume of concrete increases once more while that of 

longitudinal steel decreases. 

In general, the cost components which are most sensitive to 

the centre-span length are those associated with depth. While increases 

in depth are associated with decreases in other costs, the net result is 

an increase in the total objective. 

Series 2 - Variable Concrete Strength: The beam of Fig. 5.7, with a 

centre-span length of 10 m is designed with a characteristic concrete 



Table 5.4. - Optimum Beam Design Solutions 

Series 1 - 

Variable Span Lengths (m) 

Series 2 Series 3 - Variable 

Slab Depth (mm) 

Series 4 

Variable 

Steel Cost 

Ratio 

Series 5 

Variable 

Depth 

Penalty 

x = 8 x = 10 x = 12 x = 14 V = 35 80 90 110 120 5 10 low high 

Total Objective ($) 3491 3197 3039 3681 3167 3227 3202 3194 3195 3198 3188 2284 6648 

Cost of Forms ($) 969 858 764 1011 843 885 863 856 854 860 856 991 580 

Cost of Concrete ($) 594 573 553 615 572 572 568 569 565 563 571 398 1437 

Cost of Long. Steel ($) 493 509 603 554 514 477 498 518 527 535 481 462 731 

Cost of Transv. Steel ($) 162 139 127 174 131 138 137 140 142 114 157 150 207 

Equiv. Cost of Deflns. ($) 72 56 46 73 63 57 66 51 48 62 60 37 100 

Depth Penalty ($) 1201 1064 948 1254 1045 1097 1070 1061 1059 1066 1062 1228 719 

Optimum Depth (mm) 466 412 367 486 405 425 415 411 411 413 412 476 279 

Optimum Breadth (mm) 468 510 555 465 468 493 503 508 505 500 510 309 1882 

Maximum Plastic 

Distribution Allowed (%) .18.3 15.7 9.7 14.5 15.6 16.2 15.8 15.8 15.7 15.5 15.7 9.5 20 
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strength of, f' = 35 MPa. Surprisingly enough, this results in a slight 

cost saving although the difference is less than 1%. It is important to 

mention at this point that some iterative calculations in the program 

were terminated when accuracy to within 0.5% was obtained. The volume 

of concrete, as expected, decreases when the unit cost rises with the 

end result that the total concrete cost is unchanged. Depth decreases 

by only 7 mm but there is a significant 78 nun decrease in breadth. As 

might be expected, the volume of longitudinal steel increases while the 

required volume of transverse steel decreases. There is a slight 

increase in the equivalent cost of deflections due to increased 

deflections resulting, presumably, from the reduced depth and breadth. 

Series 3 - Variable Slab Depth: While it is recognized that the reasons 

for the selection of the slab depth are generally external to the beam 

design, it is of interest to see the influence of this parameter on 

cost. In this series the beam of Fig. 5.7 is used with the length of 

the centre span fixed at 10 m. The various cost components are given in 

Table 5.4 and are plotted in Fig. 5.9. Perhaps the most surprising 

result is that the objective function decreases initially with 

increasing slab depth. It then levels off and is approximately constant 

for slabs with depths of 100 mm. - 120 nun. Thus, the additional loading 

due to the increased weight of slab is initially more than offset by its 

contribution to the strength and stiffness of the beam. The reader is 

reminded that the cost of concrete considered in the objective, only 

includes the concrete below the level of the bottom of the slab. Thus, 

increasing the slab depth provides the beam with additional "free" 

concrete. The presence of the extra depth of concrete has almost 
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exactly offset the changes in the concrete geometry which the increased 

loading implies. Thus, the beam breadth and depth-below-slab are almost 

constant. The volume of longitudinal steel does increase steadily as 

slab depth is increased but the section ductility remains approximately 

constant. 

Series 4 - Variable Transverse to Longitudinal Steel Cost Ratio: It has 

been stated (Eqn. 5.35) that the installation cost of steel for the 

major construction firm consulted is $3297/rn3. Assuming a transverse to 

longitudinal steel cost ratio of 7.5 and a volume ratio of 0.1, and 

requiring the weighted mean to equal $3297/rn3 implies an installation 

cost of transverse steel of $15,500/rn3 and of longitudinal $ 2,100/rn3. 

In order to assess the effects of the assumed cost ratio on the optimum 

solution, the ratio is changed to 5 and 10 and the corresponding unit 

costs used in the program. For a ratio of 5, 

Installation Cost of Longitudinal Steel = $2,400/rn3 

Installation Cost of Transverse Steel = $ 12,100/rn3 

Similarly, for a cost ratio of 10, the installation costs are $1,800/rn3 

and $ 18,100/rn3 for longitudinal and transverse respectively. The 

results of using these ratios are given in Table 5.4. It can be seen 

that the total objective function varies by 0.3% which is less than the 

level of accuracy specified for these examples ( 0.5%). As expected, the 

total cost of transverse steel gets larger as the unit cost increases. 

There is a corresponding decrease in the total cost of longitudinal 

steel. However, there was no significant change in the volumes of 

transverse and longitudinal steel. - 
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Series 5 - Variable Depth Penalty: As for the case of the transverse to 

longitudinal steel cost ratio, the choice of a depth penalty is somewhat 

subjective. Accordingly, it is varied here by a factor of 5. This has 

an enormous effect on the optimum design, the optimum depth varying 

between 279 mm and 476 mm. When the depth penalty is at its highest, 

the optimum depth-below-slab is small but still above the minimum 

allowable value. In order to provide sufficient stiffness and shear 

resistance, breadth is increased to the remarkable 1882 mm and higher 

deflections are tolerated. Additional steel, both longitudinal and 

transverse is provided. 

The very high sensitivity of the optimum solution to the depth 

penalty selected, suggests a need for a detailed consideration of this 

term. The designer must consider the layout of the building to be 

designed, the cost of cladding and the other costs associated with the 

building height. It has been assumed here that depth-related costs are 

shared between the number of different beams in the building. Of 

course, the actual storey height is more likely to be a function of the 

maximum of the beam depths. This can be accurately considered by 

simultaneous design of all beams in a storey. 
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5.5 CONCLUSIONS 

In this chapter, multi-stage problems are described and 

illustrated. It is shown that the second order methods of optimization 

can be used for these problems without the difficulties which sometimes 

render those methods inefficient. However, sequential decomposition 

(SD) is a more versatile efficient method for the solution of 

multi-stage problems. Three forms of this optimization philosophy are 

described and a process of quadratic projection is developed to improve 

the convergence properties of the procedure. 

The model co-ordination method is applied to the optimum beam 

design problem. The first level subproblem then involves finding the 

support moments for fixed section dimensions. It is to this subproblem 

that methods of SD are applied. By far the most efficient of the SD 

methods tried, involved the repeated optimization of a series of 

two-span substructures. A further considerable advantage of this 

substructure size results from a degeneration in the substructure 

optimization problem. Both sequential decomposition and this 

degeneration contribute to an enormous reduction in the time required 

for the solution of the optimum beam design problem. 

A program for optimum beam design, BOD, has been written based 

on the principles outlined in this chapter. This has been used to test 

the sensitivity of the optimum design to the various parameters which 

affect the solution. A significant finding of this series of tests is 

that an excellent near-optimal solution can be found by a two step 

approach. First, the optimum section dimensions are found while 

allowing no optimization of the amounts of plastic moment redistribution. 
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Then, with these dimensions fixed, the optimum amount of redistribution 

is determined. Cost was found to be significantly affected by the ratio 

of the span lengths in a three-span beam. The slab depth had little 

effect on the beam cost and low slab depths can be seen to actually 

result in a slightly more expensive beam despite the reduction in dead 

loading. The concrete strength, f, and the transverse:longitudinal 

steel cost ratio did not significantly affect beam cost while the depth 

penalty selected had a substantial effect. 
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CHAPTER 6  

A PROBABILISTIC APPROACH TO THE LOADING OF BEAMS 

6.1 INTRODUCTION 

A major complicating factor in the design of continuous beams 

is the large number of loading conditions that must be considered. A 

number of researchers have suggested simplifications (Peir and Cornell, 

1973; Beeby, 1981) but these, by neglecting some possible loading 

combinations, could result in non-conservative designs. Several 

probabilistic loading models have been developed (Peir and Cornell, 

1973; McGuire and Cornell, 1974; Ellingwood and Culver, 1977; Chalk and 

Corotis, 1980) but these are all, in the author's opinion, too complex 

for everyday design office use. In this chapter, a probabilistic 

loading model is presented which is more rational than the traditional 

deterministic approach but is sufficiently simple for design. 

In design by the traditional method, the extreme loading 

situations are all treated as if equally likely to occur. This is 

clearly not the case, however, as extremely large 1oding intensity in 

alternate spans (and these spans only) is clearly less probable than the 

same loading intensity in one span only. Yet, it would be non-

conservative to ignore the fact that, of two adjacent spans, one may 

have high loading intensity while the other may have a low value. All 

such loading situations are treated in a rational manner when the 

loading intensity in each span is considered to be a random variable. 

This is the basis of the probabilistic model presented in this 'chapter. 

The model is justified by a comparison with the effects of actual 



123 

loading. Determination of design bending moment and shear force 

diagrams by the new method is described and illustrated. 

6.2 TEMPORAL DISTRIBUTION OF LOADING 

An impressive array of analytical techniques are currently 

available for the determination of the effect of a given loading. In 

this context, a load "effect" is a "mode of structural response" 

produced by a load such as a force, moment or deflection (Peir and 

Cornell, 1973). It is the load effects rather than the loads themselves 

that are of interest to the engineer. Live loading consists of a 

complex combination of loads of various intensities and distributed over 

various areas. Thus, to determine the load effects due to actual live 

loads is a complex process, too tedious for general design office use. 

A far simpler method of design involves the concept of an equivalent 

uniformly distributed load (EUDL). The EUDL is that uniformly 

distributed load, which would produce the same load effects as the 

actual loading, if applied over the same area. Hence, for a given load 

effect, the relationship between actual loading and the EUDL is 

determined from a consideration of the influence surface. 

Live loading intensity is a statistical parameter which varies 

spatially and temporally. The variation of load with time is considered 

by many (Peir and Cornell, 1973; McGuire and Cornell, 1974; Chalk and 

Corotis, 1980; Corotis and Tsay, 1983) to be of the form illustrated 

in Fig. 6.lc. The load is made up of two components. The first is the 

"sustained load" (Fig. 6.la) which stays approximately constant for long 

periods of time, changes perhaps corresponding to changes of occupancy 

in the area. This includes normal office loading such as furniture and 
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(a) Sustained Load Variation with Time 

Load 

(b) Extraordinary Load Variation with Time 

Load 
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Time (years) 

Time (years) 

(c) Total Load Variation with Time 

Fig. 6.1. - Variation of Load with Time 

Time (years) 
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personnel. The second component is the loading " event" (Fig. 6.lb) 

which occurs occasionally during the lifetime of a structure. This is 

assumed to be additive tothe sustained loading. It corresponds to 

incidences of extraordinary loading such as the presence of large 

numbers of people or large quantities of furniture (during decorating, 

for example). 

What is of interest to the engineer is the maximum total load 

effect that occurs in the design lifetime of the structure. The EUDL 

for this maximum-in--lifetime load effect is a random variable, varying 

from one building to the next. A safe design is achieved by determining 

and designing for the value in this distribution that has a sufficiently 

low probability of occurrence. 
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6.3 ELASTIC DESIGN PROCEDURE FOR MOMENT 

A new method is proposed for the design of structures 

subjected to live loading. It is presented here without justification 

or proof, the accuracy of the method being demonstrated in Section 6.4. 

Currently, a structure is analysed under the influence of a number 

of extreme loading situations. For this, minimum and maximum loading 

intensities are specified for live loading by the application of load 

factors. These correspond to the extreme values of the maximum-in-

lifetime EUDL. In the new procedure, the EUDL is considered to be a 

random variable with a span-independent, and a span-dependent portion. 

Thus, the EUDL for th live loading in the i span is, 

qLi = Lo + qLni 

where qLo is span-independent, that is, it is constant for all spans and 

qLni is the span-dependent component. Thus, the component, is 

exclusive to the i th span and is statistically independent of j;"i. 

The means and standard deviations of both components are specified. 

Design Procedure: The analysis of the structure is carried out for 

arbitrary loading intensities in each span. For the matrix methods of 

analysis, this involves full inversion of the flexibility/stiffness 

matrix; the more efficient algorithms for the solution of sets of 

simultaneous equations may not be used. This numerical disadvantage is 

countered by the fact that with the new method, only one series of 

calculations is required for the complete spectrum of loadings being 

considered.. Analysis for arbitrary loading intensities gives the load 

effects (moment and shear force) at all points as a linear function of 
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the independentstatistica1 parameters. It can readily be shown (Ang 

and Tang, 1975) that if, 

n 
Y= I 

11 
i=l 

(6.1) 

where a. are constants and X. are statistically independent random 

variables, then the mean and standard deviation of Y are, respectively: 

n 
I a. X. 

i=1 11 

n 
22 

cry = ( I 1 a. cXi 
i=1 

In these equations, X. 3. 1 is the mean value of X. and a xi is its standard 

deviation. Eqns. 6.2 and 6.3 are used to determine the mean and 

standard deviation of the load effects at each point. For design, the 

sum of the mean and a certain multiple of the standard deviation is 

evaluated for each load effect. 

(6.2) 

(6.3) 
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6.4 ASSESSMENT OF DESIGN METHODS FOR MOMENT 

6.4.1 General  

Loading is not distributed uniformly in space. Hence, there 

is no single EUDL that gives exact results for all load effects. 

However, for convenience of design, a single intensity of EUDL for all 

load effects is clearly desirable. It is shown in this section that a 

considerable discrepancy arises when one fixed EUDL is used for the 

moment at all points in a beam span. In contrast, when the new 

probabilistic approach to design is used, excellent results are 

achieved. 

6.4.2 Statistical Distribution of Moment  

The statistical properties of the moment at a point in a beam 

are determined by a consideration of the area of floor ( roof) 

illustrated in Fig. 6.2a. This section includes all areas in which the 

influence surfaces for moment in the beam, BC, are ( significantly) 

non-zero. Such areas have been termed " influence areas" (McGuire and 

Cornell, 1974). It is assumed that the moments in the beam BC, found 

using this portion of a " square grid" structure, will provide a 

reasonably accurate estimate of the moments in a typical interior beam 

of a building. The equations for the influence line for moment at a 

distance, (9X) from support B (Fig. 6.2b) are as follows: 

(1) for a unit load a distance X, to the right of A, 

Ix = x1 - x) ( 9x - 7)/15 

(2) for a unit load a distance X9, to the right of B, 

(6.4) 

Ix = (-6X3 + 14X2 + 7X)/15 + pX/5(4x3 - 6X2 - 3X) (X < X) ( 6.5) 
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Areas for the Moments at all points in BC. 

A B C 
/  

47 

k I 

(b) Section Through Beam BC 

Fig. 6.2. - Influence Areas for Moment in a Beam 
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0 
Ix = £(-6X + 14X2 - 8X)/15 + Lx /5(4x3 - 6X2 - 3X + 5) (x > x 0 ) (6.6) 

(3) for a unit load a distance Xk to the right of C, 

IX = ZX(l - X) 2 (2 - 9x 0 )/15, 

The equation for the deflection of a beam subjected to a unit 

displacement at one end is: 

I = £y(3 - 2Y) 

A convenient approximation (Ayer and Cornell, 1968; Peir and Cornell, 

(6.7) 

(6.8) 

1973) for the influence surface function is the product of the influence 

line function I, and the function I: 

IxY =IxY (6.9) 

The error involved in this approximation has been found to be small 

(Ayer and Cornell, 1968). 

The load intensity at a point during the maximum-in-lifetime 

total loading consists of a sustained and an extraordinary component. 

It is widely assumed (Peir and Cornell, 1973; McGuire and Cornell, 1974; 

Ellingwood and Culver, 1977; Chalk and Corotis, 1980) that the sustained 

portion consists of a point-independent and a point-dependent portion, 

while the extraordinary portion consists of a random number of randomly 

sized load cells occurring randomly in space. For the purposes of 

comparing load with load effect, the extraordinary load, like the 

sustained, has been treated as if composed of a point-dependent and a 

point-independent portion. In the development, the maximum-in-lifetime 

total load is assumed to consist of two such components: 
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w(x, y) = e 0 + c1 (x, y) (6.10) 

where c is constant for all x and y and 6 1 (x, y) is a random variable 

with a mean of zero which varies from one point to the next. This 

latter random variable, E1 (x, y), may be spatially correlated or 

uncorrelated. The two cases are considered in turn: 

Spatially Uncorrelated E1 (, y): The intensity c1 (x, y), is considered 

to a totally uncorrelated "white noise" process, that is, the 

correlation between the intensities at two points is zero if the points 

are separated by any significant distance. The moment due to the 

loading at a point (x, y) is, 

fA w(x, Y)Ixy(x, ) dA M(X 0) =  (6.11) 

where A1 is the area of the six slabs illustrated in Fig. 6.2a. Hence, 

M(X) = fA I [eo + c1 (x, XY y)dA (6.12) 

M(X 0 ) = 0 fA I IXY (x, y)dA + fA I C 1 (X, y)I XY (x y)dA (6.13) 

It follows that the mean moment is: 

M(X ) = 0 0 I S m A 1 (6.14) 

where m1 is the integral over the six slabs of the (normalized) slab 

surface and A51 is the area of one slab. The variance of the moment is: 

= mA + A A ty(X) 2 2 2 2 .16 Y)dA 
co I Si Cl Si 

where a 2 and a 2 are variances, A is the ( small) area over which the 
CO €1 

(6.15) 
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loading intensity is constant and integration is over all six slabs 

(normalized). 

Spatially Correlated c,7 (x, y): Pèir and Cornell ( 1973) have suggested 

the following covariance function "because it apparently produces good 

results and because it proves convenient to use": 

2 -r2/d 
cov[c 1 (xi , y.), 1 (xi , y.)] = a 1e (6.16) 

where d is constant and r is the distance between (x., y.) and (x., yi. 

The mean moment is unchanged (Eqn. 6.14). However, the variance 

becomes, from Eqn. 6.13: 

a(X) 2 2 2 fA . 1A { cov[c1(x.,y.),c1(x.,y.)] amA +9I Si i 

y j ) }dA j dA 

a (X) 2 = a m A + a 2 2 2 2 J fA Co1(e/d) i,j 
M o oIS1 F-1 ii. 

y )}dA.dA. 
j J 1 

(6.17) 

(6.18) 

6.4.3 Assessment of Traditional Method of Design  

A reasonable design moment for the actual loading is given by 

the sum of the mean moment due to that loading and a specified multiple 

of the standard deviation. Hence, 

'Required Design Moment = M(X) + (6.19) 

where is a specified constant reflecting the desired level of safety. 

Under the current practice of considering a factored equivalent 

uniformly distributed live loading, the design moment is: 
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Currently Provided Design Moment = YL qL1 Sl Jn I XY (X, Y)dA (6.20) 

where the number of slabs, n, over which the integration is carried out, 

depends on the loading condition being considered. The factored 

loading, YL qL , represents an extreme value for the uniform loading 

intensity. The corresponding mean moment is not the mean required 

moment as integration is only over those spans which adversely influence 

the load effect being considered. Neither is the corresponding variance 

equal to the variance of the actual required moment. The difference 

between the design moment provided and that which is actually required, 

depends on the moment being considered. Thus, the current design 

procedure results in different levels of safety being provided at 

different locations in the beam. The variance of moment implicit in the 

current design procedure is: 

Thus, 

Currently Implied Variance = 2 2 L aqL A 2 1 (J ' Y)dA) 2 
xy 

Required Moment Variance -   

Provided Moment Variance - 2 

a 6A 
+ El K 

22 
1LaqLAS 1 

2 2 
a m 
Co I 

YLaqL( I XY (X. Y)dA) 2 

where, when C1 (x, y) is spatially uncorrelated, 

f6 I(x, XY  

K - (J Ixy(X, Y)dA)2 

(6.21) 

(6.22) 

(6.23) 
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and when c1 (x, y) is spatially correlated, 

K = Asi(OA) (L Ixy(X , Y)dA) 2 

fn 

fA fA a 2 -r2/d 
(e ) ijIxy(XjY)I (x.,y.)dA.dA. 

i j ci 1 XY j j 1 j  

The first term in Eqn. 6.22 is, for all X, proportional to, 

2 

(J Ixy(X , Y)dA) 2 
n 

which equals, 

2 

6 Ixy(X, Y)dA 

fn I XY (X Y)dA 

where n depends on the loading condition being considered. For 

(6.24) 

considerations of support moment, n = 4, for it is usual practice to 

consider loadings in the spans adjacent to the support only. While the 

integral in the numerator is over six slabs, the ratio for support 

moment will be close to unity for the contribution from the two remote 

slabs will be small. For moments at other points, the deviation of this 

term from unity may be slightly larger. 

The second term of the equation involves the function, K, 

which has been widely treated in the literature as the sole contributor 

to the inconsistencies resulting from the use of equivalent uniformly 

distributed loads. The values of K reported by McGuire and Cornell 

(1974) and Ellingwood and Culver ( 1977) appear to have been derived on 

the basis of integration over a single slab for both the numerator and 

the denominator. Here, all 6 slabs are used for the numerator and, for 
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the denominator, the loading situations normally considered for design 

are used. This is to simulate the actual contribution to moment 

variance in the former case and to simulate the contribution to variance 

currently implied by the Codes in the latter. 

For consistent levels of safety, the ratio of required to 

provided moment variance should be constant throughout a span. That 

this is not the case can be seen in Fig. 6.3. Plotted here are the 

numerators and denominators of K.' The three denominators correspond to 

the three loading cases appropriate to the left-hand half of the span, 

AB. These correspond to the cases when the first, the first and second 

or the first and third span(s) has (have) maximum factored loading while 

all others have minimum loading. Two denominators are plotted depending 

on whether or not it is assumed that e (x1 y) is spatially correlated. 

It can be seen that this assumption has little effect on the moment 

variance. In contrast, the relationship between this variance and the 

location, X, being considered, differs substantially from the 

corresponding relationship implicit in the traditional design procedure. 

6.4.4 Assessment of Probabilistic Method of Design  

Whether the actual live load is a "white noise" process or is 

spatially correlated in accordance with the relationship assumed above, 

it is clear that the levels of safety implicit in current practice are 

inconsistent. It will be seen that the proposed model provides an 

excellent fit with the general shape of the actual design bending moment 

distribution. This is within the bounds of error which result from the 

assumption on correlation. The bending moment resulting from live 

loading intensities of q 1, and q 3 ( force/area) in Spans 1, 2 and 3 
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Fig. 6.3. - Variance of Moment Versus Location in Span 
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respectively is: 

M(X ) = 2 o 1 .{Li q (9X 0 - 7) + qL2 (-90Xo + 90X0 - 10) + qL3 (o 2 - 9X ) } 

(6.25) 

The uniform live loading intensity in each span is assumed to have two 

component parts: 

qLi = qLO + qLni (6.26) 

where q Lo is constant for all spans and qLni are statistically independent, 

identically distributed random variables, one for each span. Hence, 

M(X ).= A £/180{15q (-6x2 + 6X - 1) + q 1 (9X - 7) 
o S Lo o o 

+ 10q (-9X2 + 9X - 1) + 3 ( - 9X) 
Ln2 0 0 

a2 (x) = AL2/l802{225a (-6x2 + 6X - 1) 2 

(6.27) 

+ a[(9X - 7)2 + loo(-9X2 + 9X - 1)2 + (2 - 9X) 2 ]} (6.28) 

where a and a are the standard deviations of q and all q 
Lo Ln Lo Lni 

respectively. When analysis is by the new procedure, 

Required Moment Variance  
Provided Moment Variance 

2 m A + 2 2 6Aa21 A81 I(X Y)dA 
Co I Sl 

A2 £2 
Sl  1225a2 (-6x2 + 6x - 1)2 + a2 [(9x - 7)2 + 100(-9x2 + 9x - 1)2 + (2 - 9X ) 2]} 

Lo o o Ln o o o 0 
180 (6.29) 

where, 

= £2 (-6X2 + 6X - 1) 2/144 
I 0 0 

(6.30) 
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It is proposed to select a Lo such that 

o m A 1 = A 122/l8O2 [225a (-6X2 + 6X - 1) 2] 

which implies, 

(6.31) 

CF Lo =a Co (6.32) 

and to select cy Ln such that 

222 
cAL 
Ln Si  [(9X - 7) 2 + 100 (-9X 2 + 9X _ 1)2+ ( 2-9x)2) 
1802 o o o 

= óAa2 A 16 I(X Y)dA 
Ci Sl 

This would cause the required moment variance to equal that provided. 

However, in order for Eqn. 6.33 to be satisfied everywhere, it is 

necessary that K' be constant for all X0, where, 

K' = I(X, Y)dXdY 

2 2 2 2 2 
L[(9X - 7) + 100(-9x + 9X - 1) + (2 - 9X)] 

The denominator of K1 multiplied by an appropriate constant is plotted 

(6.33) 

(6.34) 

in Fig. 6.3. The reason for the good fit is that all the assumptions of 

the model are similar to those used in the calculation of the effects of 

the actual loading. The only difference is in the size of the segments 

of area assumed to have independent loading intensities. Thus, the 

difference is that between ÔA J I XY (X Y)dA, (segment of area 

infinitesimal) and [II XP , Y)dA]  2(segment = slab area). The error, 

such as it is, is of the form of an exaggeration at the critical points 

of the curve. 
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6.5 VARIATION OF LOADING PARAMETERS WITH AREA 

6.5.1 General  

A number of comprehensive loading surveys (Mitchell and 

Woodgate, 1971; Culver, 1976) have provided useful data for the 

determination of the distribution of sustained live loading in buildings 

and its variation with area. However, there appear to be no reliable 

data available at the present time for extraordinary loading. A number 

of studies have been carried out on the effects of extraordinary loading 

and the combination of this, with sustained load effects (McGuire and 

Cornell, 1974; Ellingwood and Culver, 1977; Chalk and Corotis, 1980; 

Harris, Corotis and Bova, 1981). However, each of these has been done 

on the basis of assumed statistical properties derived from "engineering 

judgement". Unfortunately, extraordinary loads do appear to make a 

significant contribution to expected maximum-in-lifetime total load 

effects (Ellingwood and Culver, 1977). In view of this problem, the 

selection of the form of the functions by which mean and standard 

deviation vary with area, is a subjective process. The functions 

adopted here (after McGuire and Cornell, 1974) are but some of a number 

that may be appropriate. However, it is felt that the use of these 

functions together with the more rational probabilistic model will 

provide more reliable results than those found using the existing Code 

equations and procedures. 

6.5.2 Code Specifications  

The National Building Code of Canada (National Research 

Council of Canada, 1980) currently specifies that the live loading cases 

to be considered are a uniformly distributed load whose intensity is a 
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function of area and a fixed concentrated load applied on an area of 750 

mm square. For buildings used for purposes other than storage, 

manufacturing, retail, garage or assembly, the reduced uniform load 

intensity is specified as: 

qLR = [O.3 + (9.8/B)1 ; B > 20 m2 (6.35) 

qLR  = ; B 6 20 m2 (6.36) 

where B is the tributary area in square metres and qL is the 

characteristic live loading intensity. 

If the intensity were assumed to vary with area regardless of 

the magnitude of that area, then the total load on a portion of the beam 

of area A, would be: 

Load = qA(O.3 + (9.8/A)] 

For office occupancy, the characteristic load intensity is 2.4 kN/m2. 

(6.37) 

Thus, for an area, A = ( 0.75)2, the force given by Eqn. 6.37 is 6.0 kN. 

This value is not too far removed from the specified concentrated force 

for offices of 9.0 kw. This would suggest that perhaps Eqn. 6.35 should 

be applied for all areas and no concentrated force considered. 

Another possible change to the code specifications concerns 

the use of tributary areas. It has been suggested by McGuire and 

Cornell ( 1974) and others that tributary area is a much less consistent 

parameter.. than influence area for the calculation of equivalent 

uniformly distributed loads. ( Influence area is that area over which 

the influence surface is significantly non-zero.) The reason for this 

can be seen by comparing the two load effects of axial force in a column 
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and bending in a beam. For the former, the tributary area is one fourth 

of the influence area while for the latter, the tributary area is one 

half of the influence area. Thus, the portion of the influence surface 

for bending that is neglected when tributary area is used, is 

considerably less than the portion neglected for axial load. Clearly, 

if one loading intensity is to be used for all load effects, this 

intensity must be applied over the influence area rather than tributary 

area. Accordingly, reduction formulae for intensity with area must also 

be in terms of influence rather than tributary area. 

For the purposes of comparing the implications of the 

statistical parameters selected with the current specifications, the 

reduction formula, as currently specified, is used. For all loading 

conditions, the tributary area for one span only is substituted into the 

reduction formula. This is in keeping with what the author feels is 

standard practice in most design offices. The reduction factor is taken 

to be applicable only for areas in excess of 20 m2 and the concentrated 

force of 9 kN (office occupancy) is considered separately. 

6.5.3 Comparison of Probabilistic and Deterministic Results  

A number of proposals have been suggested for the variation of 

the expected value and the standard deviation of loading intensity with 

area (McGuire and Cornell, 1974; Ellingwood and Culver, 1977; Chalk and 

Corotis, 1980). As mentioned previously, there is insufficient extra-

ordinary load data available at this time for an accurate determination 

of these relationships. However, it is reasonable to assume some 

variation with area. Accordingly, while recognizing that they are based 

partly on engineering judgement, the following relationships, proposed 
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by McGuire and Cornell ( 1974) for office loading, will be adopted: 

qLn = 0.712 + ll.7/(A1) kN/m2 

CF 2 = 0.0259 + 3.194/A1 (kN/m2)2 
Ln 

(Their conversion to metric units is erroneous and has been corrected 

here.) As this expression for variance includes variance from all 

sources, a Lo is taken to be zero: 

=0 
Lo 

For a simply supported beam, the mid-span design moment, as 

found using the probabilistic method, is: 

Mb = Ln + aa  Ln"8 

(6.38) 

(6.39) 

(6.40) 

(6.41) 

where 3.0 has been suggested as an appropriate value for for all types 

of loading (Galambos, Ellingwood, MacGregor and Cornell, 1982). The 

corresponding design moment as found by the traditional deterministic 

design procedure and in accordance with the Canadian code is: 

M =1.5  det /8 

where qLR is the reduced intensity. Hence, the ratio of the moment, 

implied by the traditional procedure to that implied by the 

probabilistic approach is: 

Md t - 1.5 qLR 

Mb qLn + 3Ln 

(6.42) 

(6.43) 

where qLn and 0 Ln are given by Eqns. 6.38 and 6.39, respectively and qLR 

is given by Eqns. 6.35 and 6.36 using a characteristic loading 
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intensity, q = 2.4 kN/m2. The ratio, (Mdet/M prob ) is plotted in Fig. 

6.4 as a function of influence area. It can be seen that for the simply 

supported beam, the procedures imply similar results for typical 

influence areas. For all areas greater than 40 m2, the discrepancy 

between M prob det and M is less than 3%. Below this value, where the 

reduction formula (Eqn. 6.35) is no longer applicable, the discrepancy 

rises sharply. Also plotted in Fig. 6.4 is the ratio M det /prob M , when 

the reduction formula is applied for influence areas less than 40 m2 

(tributary areas less than 20 m2). It can be seen that this gives much 

better results. While it is recognized that the relationships of Eqns. 

6.38 and 6.39 may not be applicable for small areas, it is this authors 

opinion that in the absence of more reliable data, the conservative 

option should be exercised. Accordingly, when a deterministic design 

procedure is to be used, Eqn. 6.35, or its equivalent in terms of 

influence area, should be applied for all areas rather than merely for 

tributary areas in excess of 20 m2. 

Regardless of the reduction formula used, it is difficult to 

calibrate the results of the traditional deterministic design method 

with the probabilistic results for all beam geometries. To illustrate 

this point, support and mid-span moments in the spans of two further 

beams are considered. The first of these is the interior span BC, of 

the symmetrical beam in Fig. 6.2. The design moment at the supports B 

and C implied by the probabilistic procedure is: 

M •= A 2/180{-15q - 3 [2 25 2 + 153c2 
prob Si Ln Lo Ln 

where A81 is the area of one slab. The support moment implied by the 

traditional design procedure is: 

(6.44) 
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Mdet = A51 /l80{-25.5(2.4)(O.3 + [ 9•8/As])} 

Taking a slab area equal to 40 Ta2, q Ln and Ln are calculated using 

Eqns. 6.38 and 6.39 with A1 = 80 m2. The resulting ratio is, 

Md et 
M = 1.22 
prob 

(6.45) 

(6.46) 

Hence, whereas the difference in the implications of the two procedures 

was less than 3% for a simply supported beam (at A1 = 80 m2), the 

traditional procedure is conservative by 22% for the support moment in 

an interior beam. The deterministic procedure is even more conservative 

for the mid-span moment in the interior beam, the ratio of M to M 
det prob 

at A1 = 80 m2, being 

Md t 
M 1.42 
prob 

The reason for this is that the mid-span moment is proportional to, 

-q1 + 6q2 - q3 

(6.47) 

where q1, q2 and q3 are the respective loading intensities in the three 

spans. Hence, the actual mean moment is proportional to In the 

deterministic procedure, the beneficial influence of the expected 

loadings in the first and third spans is neglected so that the 

unfactored moment is proportional to The significant difference 

between 3 and 5 (as opposed to 15 and 17 for the support moment) 

accentuates the inaccuracies associated with the deterministic approach. 

The second beam considered is illustrated in Fig. 6.5. The 

influence areas are 50 m2 and 100 m2 for Spans 1 and 2 respectively. 

The implied values for the ratio (Md t/M b) are: 
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A 
Span 1 

B 
Span 2 

C 

9', 

Support: 

Mid-Point: 

2 

Fig. 6.5. - Unsymmetrical Example 

M det /prob M = 1.06 

N /M = 1.09 
det prob 

(6.48) 

(6.49) 

The deterministic approach gives good results for both moments. Due to 

the large difference in the span lengths in this example, both of the 

moments considered are affected primarily by the loading in Span 2. 

Hence, as for the simply supported beam in which only one loading is 

involved, the agrement is relatively good. 
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6.6 PROBABILISTIC ELASTIC DESIGN PROCEDURE FOR SHEAR 

A similar treatment to that used for moment is applied to 

analysis for shear. However, as will be seen, certain modifications are 

necessary to ensure consistent levels of safety. As in the case for 

moment design, the maximum-in-lifetime total loading intensity is 

assumed to be as given by Eqn. 6.10. Hence, the actual shear at a point 

in the beam AB of Fig. 6.2, is: 

S(x 0) = fA I W(x, y)I5XY (x, y)dA 

where SXY y) it the influence surface for shear. This is found by 

differentiating the corresponding function for moment Iy(x, y) with 

respect to X0 . Assuming that C1 (x, y) is uncorrelated, the mean and 

variance for shear in AB are; respectively: 

S(X) = A51 

y2(X)cc m A 2 2 21 + cSAi Asi J  Ixy(X , Y)dA 
S 0 CO SI S 

where, 

m51 = Y)dA 

The shear force resulting from loadings of q1, q2 and q3 in 

Spans 1 to 3 in Fig. 6.2, respectively, is: 

S(X ) = A { Si f1112 I SXY (X, Y)dA + q2 f3,4 Isxy(X, 

+ q3 f5,6  I5(X, Y)} 

(6.50) 

(6.51) 

(6.52) 

(6.53) 

(6.54) 
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where fi ,j implies integration over Slabs i and j as illustrated in 

the figure. If the same probabilistic design procedure is adopted as 

for moment, then the mean and variance which will be provided for are: 

Provided Shear Mean = A51 

Provided Shear Variance = A 2 Sl{cr 2 LO In 2 S1 + 2 Ln Ji ,2 Isxy (X, Y)dA)2 

(6.55) 

+ (134 I5xy(X, Y)dA)2 + (15,6 Isy(X, Y)dA) 2)} ( 6.56) 

A comparison of Eqns. 6.51 and 6.55 shows that the mean provided equals 

that required ( it is assumed that q 0 = c). Similarly, comparing Eqns. 

6.52 and 6.56, it can be seen that the first terms are equal and the 

second terms would be equal if, 

Ala [(J2 Isxy (X, Y)dA) 2 + J3,4I SXY (x Y)dA) 2 + (156 Isy (X, Y)dA) 2] 

= ÔA Cr 2 A81 16 Isxy (X, Y)dA ci 

Unfortunately, the variation of the left-hand side of Eqn. 6.57 with X 

is significantly different from the variation of the right-hand side 

with this variable. The difference is in the integration over Slabs 3 

(6.57) 

and 4. The function, f3 ,4 I5xy(X, Y)dA, is linear in X while the term 

1 2 
is a fourth order polynomial. The term, {134 Iy(X , Y)dA} 

3,4 Is 

is plotted in Fig. 6.6 together with the term, I5xy(X, Y)dA, and a 
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multiple thereof. As the latter term is zero at X = 0.5, it can never 

provide a conservative estimate of the former. However, as the 

discrepancy is due to the distribution of loading assumed in Span BC 

only, it is not difficult to rectify the problem. This is achieved in 

the probabilistic design procedure by adding a correction function to 

the term which involves the influence surface for the span being 

considered. This function is, 

F = Ixy (Xi Y)dA - {J34 SXY Y)dA} 

which can be shown to be: 

(6.58) 

F = 0.246 - X/7{3 + X - 8X2 + 4X3} (6.59) 

The application of this correction function to the standard deviation 

does not unduly complicate the design procedure and will give results in 

close agreement with the "actual" shear as determined using the 

assumptions outlined in this chapter. 

Q 
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6.7 EXAMPLES OF PROBABILISTIC ELASTIC DESIGN 

6.7.1 Example 1 - Live Load Only  

For the beam illustrated in Fig. 6.7a, find the design bending 

moment diagram and shear force diagram due to office live loading. The 

span lengths are 8 m, and the clear distance between spans is 6 m. 

The influence area for each of these spans is: 

96 m2 

From Eqn. 6.39, 

2 2 
Ll = Ln2 = 0.0592 (kN/m) . 

The mean live loadings are, from Eqn. 6.38, 

qLnl = Ln2 = 1.91 kN/m2. 

These load intensities are applicable over their entire influence areas. 

However, the effect of applying a force per unit area, q, over the 

entire influence area, A1, is the same as that of applying a force per 

unit length of (q A1/22) over the complete span length. This follows 

from the fact that, 

J I, dY = 

(where I is as given in Eqn. 6.8). 

As this structure is symmetrical, only Span 1 will be 

considered. The moment in this span at a distance ( 2,X) to the right of 

Ais: 

M(X) = {qLn1 ( 7 - 8X o) - q 2 }A1 2,X/32 

where qLn 1 and qLn2 are the live load intensities in Spans 1 and 2 

(6.60) 

respectively. Hence, the mean and standard deviation of moment in Span 
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1 are, respectively, 

and 

M(X 0) = qLnl (6-8X0 ) AI  X0 /32 

= { niN7 - 8X) 2 + lj} A1 £ X/32 

(6.61) 

(6.62) 

The design bending moment of mean plus 3 standard deviations is plotted 

in Fig. 6.8. Also plotted in this figure are the bending moment 

diagrams which would have been found using the traditional method of 

analysis. The agreement between the two methods is good at the support. 

However, at mid-span, the moment found by the traditional method is 33% 

in excess of that found using the probabilistic procedure. The reason 

for this is that this moment is proportional to, 

3q1 - q2 

from which it can be seen that Span 2 has a significant (beneficial) 

effect. This effect is ignored in the traditional procedure which leads 

to over-conservative design. The contribution of the live loading to 

the length of top steel is also conservatively modelled in the 

traditional procedure. The difference in the cut-off points in Fig. 6.8 

is substantial. However, the significance of this for the actual 

lengths of top steel clearly depends on the influence of dead load. An 

example which includes consideration of dead load is given in the next 

subsection. 

The shear force in Span 1 is, by differentiation of Eqn. 6.60, 

S(x o ) = {qLa (7 - 16X O) 0 

Hence, the mean and standard deviation are, respectively: 

(6.63) 
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S(X 0 ) = qLn1 (6 - 16X 0 )A1 /32 

= - 16X) 2 + cs 2} A1/32 

(6.64) 

(6.65) 

As stated in Section 6.6, it is necessary to apply a correction function 

to the term involving the span being considered. In " standard" form, 

a5(X) = - 16X) 2/256 + Ln2/256} A1/2 

Hence, the corrected standard deviation is: 

= { niN7 - 16X ) 2/256 + F + 1/256]} A1/2 

(6.66) 

(6.67) 

where F is given by Eqn. 6.59. The design shear force S(X) ± 3 

is plotted in Fig. 6.9. The envelope derived from the traditional 

multiple-loadings approach is also illustrated in this figure. There is 

good agreement at the supports. However, there is an interesting 

discrepancy at the points of minimum (absolute) shear. At X = 0.43, 

the traditional method implies only 57% of the shear force implied by 

the probabilistic. This discrepancy results from the same phenomenon 

that required the probabilistic method to be adapted for shear, namely, 

that a uniformly distributed loading implies a linear shear distribution 

and, usually, a point of zero shear. Live loading is not, in fact, 

uniform. Several load distributions are possible and there is, in 

general, no interior point in a span at which the shear is zero for all 

these distributions. Thus, even when a number of loading conditions are 

considered with different uniform loadings in each span, the minimum 

implied design shear is not a reasonable reflection of the probable 

shear at that point. 
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6.7.2 Example 2 - Dead Plus Live Load  

Determine the design bending moments and shear forces for the 

beam illustrated in Fig. 6.7b. The span lengths are 5 m and 10 m for 

Spans 1 and 2 respectively and the clear distance between spans is 6 m. 

The dead load intensities for the two spans are: 

and 

= 3.3• kN/m 

= 3.6 kN/m2 

(6.68) 

(6.69) 

The structure will be subjected to the live loading intensity 

appropriate to offices. 

It would be inconvenient to use the traditional design 

procedure for dead loading while using the probabilistic approach for 

live loading. Accordingly, it is proposed to apply the probabilistic 

procedure to the effects of dead as well as live loading intensity. The 

dead loading intensities for the two spans will be assumed to consist of 

span-dependent and span-independent portions (for example, variation in 

member size may be span-dependent while variation in material density 

may be span-independent). The means are taken to be: 

qDnl = 3.3 

= 3.6 

The standard deviations will be selected so that the mean plus three 

(6.70) 

(6.71) 

(6.72) 

standard deviations equals 1.25 times the characteristic load. This is 
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more conservative than the implications of the traditional method for 

the case of "uplifting" = 0.85). 

2 
+ Dnl Do 1.25 q Dnl 

>CF o + nl = 0.076 

Similarly, 

2 2 
Do + Dn2 = 0.09 

Taking, 

2 = 0.02, 
Do 

implies, 

'Dn1 = 0.056 

2 = 0.07 
Dn2 

(6.73) 

(6.74) 

(6.75) 

(6.76) 

(6.77) 

(6.78) 

The statistical parameters for live loading are given by Eqns. 6.38 and 

6.39: 

qLnl = 2.22 kN/m2 

= 1.78 kN/m2 

n1 = 0.0791 (kN/m2)2 

Ln2 = 0.0525 (kN/m2)2 

The forces per unit length are, for both spans, six times the load 

intensities (in force/area). For intensities of q and q2 in Spans 1 

(6.79) 

(6.80) 

(6.81) 

(6.82) 
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and 2 respectively, the moment at a distance (Xe) from the left-hand 

support is, for each span, 

Span 1: M(X) = 25X/24(6q1) ( 11 - 12X) - 8(6q2)} (6.83) 

Span 2: M(X ) = (1 - X 0 1 2 )o 25/24{-(6q ) + 8(6q )(6X - 1)} (6.84) 

In this example, the loading intensities are made up of three components 

each: 

= qDO + q Dnl + fl1 

q2 = Do + + 

Substituting from Eqns. 6.85 and 6.86 in Eqns. 6.83 and 6.84 gives: 

Span 1: M(X ) = 25X /4{3q (1 - 4X O) + + q ) (11 - 12X O ) 
o Do o Lnl 0 

- 8Dn2 + fl )} 

Span 2: M(X 0 0 ) = 25(X - 1)/4{3qDo ( 3 - 16X o ) + qDn1 + 
qLnl 

+8(qDn2 + qLn 2)(l- 6X)} 

Hence, the means and standard deviations are as follows: 

(6.85) 

(6.86) 

(6.87) 

(6.88) 

Span 1: M(X) = 25X/4{5..52(11 - 12X) - 8(5.38)} (6.89) 

(X ) = 25X /4{9(.02) (1 - 4X ) 2 + (. 135) ( 11 - l2X ) 2 
Mo o 0 0 

+ 64(.l23)} 

Span 2: (X) = 25(X - l)/45.52 + 8(5.38) (1- 6X)} 

(6.90) 

(6.91) 

M o (x ) = 25 (1 - X o 0 )/49(.02) (3 - l6X )2 + (. 135) 
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+ 64(.123) (1 - 6X) 2} (6.92) 

The design bending moment function {1i(x) ± 3 a(X)} is illustrated in 

Fig. 6.10. Also illustrated are the bending moment diagrams as found 

using the traditional deterministic design procedure. For these, the 

minimum span loading was taken to be 0.85 times the dead loading. At' 

all locations in the beam, the bending moment envelope, as found using 

the traditional procedure, is conservative relative to the probabilistic 

moment "envelope". The greatest discrepancies are for maximum ( sag) 

moments. In Span 1, the maximum deterministic moment is conservative by 

more than 150% being 33 kNm in excess of the maximum probabilistic 

moment. 

The equations for shear force are found by differentiation of Eqns. 

6.83 and 6.84. The means and standard deviations, before application of 

the correction factor, can be shown to be as follows: 

Span 1: (X ) = o l.25{( Dn1 + Ln o )(ll - 24X ) - S( 2 + (6.93) 
1  

Cr (X = 1.25{9ci (1 - 8X)2 + in1 + CF 2  n1 ( 11 - 24X) 2 

+ 64(c2 2 
Dn2 + Ln2 

(6.94) 

Span 2: S(X ) = o 0.625{qDn1 + qLnl + 8(qDn2 + - 12X)} (6.95) 

(X ) = 0.625{9a2 ( 19 - 32X )2 2 2 
S 0 Do + Dnl + Ln1 

+ 64(c2 + 2 - l2X 
Dn2 Ln2 0 

Upon application of the factor F (as given in Eqn. 6.59), the standard 

(6.96) 
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deviations become: 

Span 1: a5 (X) = 1.25{9a (1 - 8X) 2 + (a 1 + Cr 2  nl [( 11 - 24X) 2 + 576F] 

+ 64(a2 + aL2 )} 
Dn2 

(6.97) 

Span 2: a (X ) = O.625{9a2 ( 19 - 32X ) 2 + 2 + 2 + 64a2 (7 - 12X ) 2 
5 o Do o Dn1 Ln1 Dn2 o 

+ Cr 2 2164(7 - 12X ) 2 + 2304F}} 
0 

(6.98) 

The correction factor is applied to the live loading term only for it is 

anticipated that dead loading will be approximately uniformly 

distributed across a span while live loading will not be. This is 

clearly a subjective assumption and designers may wish to specify 

portions of the dead loading variance to which the correction factor 

should be applied. 

The design shear force diagram is illustrated in Fig. 6.11 

together with the shear force diagrams as found using the traditional 

procedure. There is reasonable agreement in the results for the long 

span. However, a significant discrepancy exists at Support A. 
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6.8 PLASTIC MOMENT REDISTRIBUTION 

6.8.1 Introduction  

It is fortunate that the development of the probabilistic 

model for elastic design, described in the previous sections, was 

possible. The method is based on sound probabilistic principles and the 

resulting design calculations are conveniently simple. Unfortunately, 

no such model could be developed for elastic-plastic design of 

reinforced concrete beams. The process of plastic moment redistribution, 

while being a simple matter when a deterministic procedure is followed, 

is a highly complex one when probabilistic principles are applied. The 

complexity stems from the interaction that takes place between moments 

at different points after initial yield and before plastic collapse. 

The result of this interaction is that the design moment at a point can 

no longer be considered in isolation of the design moment at other 

points in the beam. In this section, the statistical nature of the 

plastic moment redistribution problem is described. In addition, a 

possible approach for design is introduced that is, of necessity, only 

loosely based on the theory of probability. However, this is only 

included as an aid to future researchers. It is hoped that it will 

provide them with ideas that might be pursued further in the future and 

an indication of some of the problems that arise. Finally, a 

conservative approximate solution is proposed for the problem of plastic 

moment redistribution. It is suggested that this be used for design and 

it is pointed out that probabilistic elastic design combined with this 

simple approach to redistribution still results in cost savings over the 

conventional approach. 
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6.8.2 General  

In order to consider in detail the statistical nature of 

plastic moment redistribution, it is first necessary to distinguish 

between section moments of resistance'. M, MRC, M RD and "applied 

moments", MB , Mc, MD, i.e., moments due to applied loads. While moments 

of resistance are parameters whose values are selected by the designer, 

the applied moments, being functions of the loads, are random variables. 

If the member moments of resistance are sufficiently large that no 

plastic hinge rotation occurs, the applied moments are simple linear 

functions of the loads. Hence, given the statistical properties of 

these loads, the extreme values of the applied moments can readily be 

determined. For elastic-plastic behaviour however, the applied moments 

are dependent on the moments of resistance as well as the loads. Even 

if these moments of resistance are known, the statistical distribution 

of applied moment at a point becomes complex. For example, in the beam 

of Fig. 1.1, the applied mid-point moment in Span 2 is, 

MD = q22/8 - (MB + Mc)/2 (6.99) 

where, q2, is the uniform loading intensity in Span 2. While, q2, is a 

simple random variable, the applied moments, MB and McI are functions of 

random variables and fixed constants: 

MB = min(MEB, M RB ) 

Mc = min(MEc, MRc ) 

where MEB and MEc are the value of MB and Mc as found by elastic 

analysis only. Thus, MEB and NEc are linear functions of random 

variables and their statistical properties can readily be determined 
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(see probability density function, Fig. 6.12a). On the other hand, MB 

and M C have probability density functions of the complex form 

illustrated in Fig. 6.12b. 

It is useful to refer to the deterministic equivalent of the 

probabilistic moment redistribution problem. For the example of Fig. 

1.1, the optimal distribution process may involve the increasing of MB1 

(to reduce sag moment in Span 2) and the reduction of MB2 (to reduce the 

hog moment at B). The probabilistic bending moment "envelope" includes 

representation of the extreme conditions which the various deterministic 

loading cases are intended to model. Hence, this envelope may be viewed 

as a spectrum of bending moment diagrams which includes diagiaxns similar 

to those illustrated in Fig. l.lb. The probabilistic design moment at B 

will range from a point around M corresponding to a system of loading 

something like Loading 1, to a point around MB2 corresponding to a 

condition similar to Loading 2. 

The probabilistic equivalent to the reduction of M32 based on 

plastic considerations is the reduction of the support moments for the 

spectrum of loadings which result in large moments at B. However, the 

probabilistic procedure provides the designer with the statistical 

properties of moment at B only. The information necessary for redistri-

bution, namely, the combinations of loading which result in the large 

moment, is not available. These combinations will include cases of high 

loading intensity in both spans and high loading intensity in Span 1 

only, each weighted by the probability of its occurrence. Similarly, 

the minimum extreme of moment at B will correspond to loadings such as 

Loading 1, again weighted by the probability of their occurrence. 
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The requirements of the (Static) theorem of plastic collapse 

for Span 2 are: 

M RD - (MRB + MRc)/2 ? (6.102) 

where M RB , MRC and M RD are the moments of resistance at these points and 

q2 is an appropriate uniform loading intensity in Span 2. In accordance 

with the code specifications, any combination of M, MRC and M RD may be 

selected provided that meg. 6.102 and the requirements of ductility and 

concrete cracking are satisfied. Thus, if the support moments of 

resistance, M RB and MRC, have been selected, the minimum required value 

for M RD can be found from Ineq. 6.102. However, an "appropriate" value 

for q2 would first have to be determined and, as will be seen this is no 

simple matter. 

6.8.3 Possible Future Approach to Design  

The case of plastic collapse of one span of a continuous beam 

is considered. In order for collapse to occur, the applied moments must 

equal the moments of resistance at both supports and at the point of 

maximum sag moment. Thus, the probability of failure is the probability 

of the applied moments at these three points simultaneously equalling 

the moments of resistance. The problem is complicated by the fact that 

the applied moments at one of the points may be a function of the 

moments of resistance at one or both of the others, depending on the 

load combination which leads to collapse. 

A comprehensive non-linear analysis procedure might be as 

follows. First, a probabilistic elastic analysis is carried out and the 

section where elastic yield is most likely to first occur is identified. 
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Then, further analysis is carried out on the assumption that the applied 

moment at the point of yield equals the moment of resistance. Two 

factors must be kept in mind at this stage. First, for elastic yield to 

occur at any point, is an unlikely event because in order for this to 

happen, the moment implied by elastic analysis must be greater than or 

equal to 80% of its extreme value' (assuming 20% maximum redistribution). 

Thus, qualitatively, part of the desired safety factor has been attained 

and it will not be necessary, in the subsequent stages of the analysis, 

to strive for a safety level of = 3, (where 0 is the number of 

standard deviations from the mean). The second factor to be considered 

at this stage is that the original statistical parameters (mean and 

standard deviation) for loading intensity, are no longer valid. This 

follows from the fact that the second stage of analysis is based on the 

premise that elastic failure has occurred. In order for this to happen, 

the moment, as implied by elastic analysis, had to be large. If moment 

is positively correlated with loading intensity then, the fact that 

moment is known to be large, increases the expected value (mean) of the 

loading. In fact, the expected value of each loading intensity is the 

conditional mean given that a linear function of loading intensities 

exceeds a given parameter. Similarly, the variance is the conditional 

variance given this situation. Referring to the example of Fig. 1.1, if 

it is assumed that the moment implied by elastic analysis at B, MEB, 

equals the moment of resistance., M, then the expected value of, q1, 

is: 

E{q1 I M EB (q1, q 2 ) = M RB } = I q1 f(q1 I M) dq1 

where, f(q1 I M RB ), is the probability density function of q1, given 

that MEB equals M. This can be found by dividing the joint 

(6.103) 



170 

probability density function of q1 and MEB by the probability density 

function of MEB. The mean of q1, given that, M(q1, q2) M, can be 
RB 

found by integrating the expression of Eqn. 6.103 with respect to MEB in 

the interval between M RB and infinity. 

If the conditional mean and standard deviation could be 

determined given that plastic hinge rotation was occurring at one point, 

another linear analysis could be carried out to determine where the next 

plastic hinge was most likely to occur and the process repeated until 

sufficient hinges were identified for plastic collapse. This procedure 

neglects the possibility of hinges occurring in any other order. At any 

rate, it is clearly too complex for design office use. 

A heuristic procedure is now introduced which is considerably 

more suitable for design office use. As before, a probabilistic elastic 

analysis is carried out to determine where the first plastic hinge is 

most likely to occur. Given that this hinge has occurred, the 

conditional means and standard deviations are estimated on the basis of 

the correlation between the loading intensities and the elastic moment 

at the point of failure. This correlation between loading, q and 

moment, M is reflected in the correlation coefficient, rqM which can 

readily be calculated given the moment-loading relationship. Clearly, 

if correlation between moment and loading intensity is large and 

positive, the expected value of the intensity given that the moment is 

high, will be larger than before. On the other hand, if the correlation 

is low, the expected value will be largely unchanged. This logic is 

reflected in Eq. 6.104: 

r a (M 
E{qIM=M}=q+  qM q  

a 
ME 

(6.104) 
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where q and a q are the (original) mean and standard deviation for q and 

ME and aME are the mean and standard deviation for ME. It can be seen 

that deviation of the conditional mean loading intensity from its 

original mean value depends on the deviation of the elastic moment from 

its mean and on the relative standard deviations of q and M. This 

equation is, in fact,' the exact relationship for the case when q and M 

are joint-Normally distributed. The corresponding expression for 

standard deviation is, 

cT{qIM=M}= (2 l- r 
qqn 

(6.105) 

This reflects the fact that, if ,q if highly correlated with ME, and ME 

is constrained to equal a fixed value, then the standard deviation of q 

is small. 

In the plastic collapse problem, of course, the elastic moment 

at the point of initial yield is required to exceed rather than to equal, 

the moment of resistance. Rather than derive expressions for means and 

standard deviations conditional on moment exceeding given values and to 

derive expressions to allow for the portion of the "safety factor" that 

has already been attained, it is proposed here to cater for both 

complexities at, once,. Even when the elastic moment at a point, ME, has 

reached or exceeds the moment of resistance, there remains a certain 

statistical variability in this moment, i.e. it has a non-zero 

conditional standard deviation. If load intensity, q, is highly 

correlated with ME, then the conditional standard deviation of q will 

approach a level consistent with that of ME. While the conditional 

variance of ME is not known, the level of ME corresponding to an 
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acceptable level of safety is known, namely, ME + 3M It is proposed 

to select a "factored deviation" of q, s , corresponding to, a q l that 

would imply the desired level of safety at the yield point. This is 

achieved by specifying a factored deviation in ME, 5M' equal to the 

acceptable deviation of this moment from MR, Hence, 

SM = (ME +3 crME)._ MR (6.106) 

Then, the corresponding acceptable deviation in q will depend on s  and 

the correlation between ME and q: 

= 3c Cl + r2 [ Cs /3) 2 - l]} 
q q qM M 

It can be seen that, if q and M are totally uncorrelated, then the 

conditional deviation in q is unchanged at 3clq. On the other hand, if 

there is full correlation, the allowable deviation, S q l becomes 

If MR equals the extreme value for elastic moment, sm = 0, and 

(6.107) 

accordingly, s  = 0. Thus, the expected value of q given that ME = MR 

is adequate for design. If, on the other hand, MR is, say, one standard 

deviation from ME, then, 5MME and the acceptable deviation of q is 

two standard deviations ( i.e., s = 2a ). 
q q 

Example : Example 1 of Section 6.7 is used to illustrate the new 

procedure. For this beam, the support moment is, 

= Lnl + q) A £/32 

with mean and standard deviation given by, 

MB = Ln1 + qLn2 A1 2../32 

=v'2c A £/32 
MB Lnl I 

(6.108) 
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The covariance of qLn, and MB is, by definition, the expected value of 

their product less the product of their expected values. Hence, 

cov(1 MB) = E{( q1 + qLnl qLn2) A1 £/32} - MB fl1 

from which it can readily be shown that, 

cov(q1 MB) = A 2,/32 

The correlation co-efficient of qLnl and MB is the ratio of their 

covariance to the product of their standard deviations. Thus, 

r(fl1 MB) = 1/12 

The extreme value of elastic moment at the support, is, 

MB + 3a MB = 4.85 A1 2.132 

If the selected moment of resistance is, 4A1 2./32, Eqn. 6.107 gives: 

5Ln1 = 3aL l(O. 92) 

(6.112) 

Thus, the deviation of qLni to be used for plastic distribution is 

slightly less than that used for elastic design. This accounts for the 

fact that the elastic moment is restricted to a deviation of 0.85 as 

opposed to a previous deviation of, 3o = 1.032. This is a reduction 

of 18%. As the moment is only partly dependent on q1, the allowed 

deviation in this parameter is reduced by the lower value of 8%. The 

conditional expected value of q1 given that support moment equals, 4A1 

2,13 2, is, from.Eqn. 6.104, 

(1//2) Lnl (0.18) 

ECq 1 I + = + (/2 cr Lnl - qLnl  + 0.09 

Thus, the conditional expected loading intensity exceeds the original 
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expected value by one half of the difference between the selected moment 

of resistance and the expected moment at the support. Knowing the 

conditional mean and factored deviation, the design loading intensity in 

Span 1 appropriate to the selected support moment of resistance is, 

I qLnl + = 4} + S Lnl 

= qLn1 + 0.09 + 3a Lnl ( 0.92) 

= 2.67 

The corresponding maximum sag moment is, 10.6 2.. This suggests ( see Fig. 

6.8) that with this amount of reduction in the elastic support moment 

(17.5%), little or no increase in the area of bottom steel is required. 

This development is presented as one possible approach to 

probabilistic plastic moment distribution. However, it has not been 

pursued further for it is felt that the resulting design procedure, 

despite the many assumptions, tends to be somewhat complex. It is 

included here as a possible starting point for future researchers. It 

should be noted that additional equations are required for interior 

spans of continuous beams in which three plastic hinges must occur 

before collapse. 

6.8.4 Proposed Design Procedure  

Clearly, there are many cases in which differentdeterministic 

loading conditions will be critical for support moment and for maximum 

moment in the interior of a span ( see, for example, Span 1 in Fig. 

6.10). In such cases, it is possible that some plastic moment reduction 

of the probabilistic design moment at the support could be safely 

carried out without increasing the design moment for sag in the span. 
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However, there are also some examples ( such as Span 2 in Fig. 

6.10) in which very little reduction can be made in the design moment at 

the support without simultaneously increasing the design moment for sag. 

As the probabilistic procedure tends to attach less importance to 

the extreme loading situations used in the traditional approach, it is 

likely that, in general, there is less scope for redistribution than in 

the traditional deterministic approach. It is recommended here that any 

reduction in an elastic probabilistic design momenta must be accompanied 

by a linear shift in the complete design envelope. Thus, any reduction 

in a support design moment must be accompanied by a corresponding 

increase in design moments for sag and vice versa. Clearly, this 

approach is conservative. It is emphasized that additional savings may 

be available in a more comprehensive treatment of this problem. 

However, the design procedure using the rule described above is 

conveniently simple and has been found to result in savings over the 

traditional method for examples considered. 

The problem of optimum plastic moment redistribution now 

degenerates to one of selecting the design moment at each support. High 

values will imply savings in bottom steel but increases in area and 

length of top steel. On the other hand, values below the elastic will 

result in steel area savings on top but increases in the bottom. 

Clearly, a trade-off will exist. As only one variable exists for each 

beam support, the optimization problem becomes conveniently simple. In 

view of the serial nature of the problem and the fact that steel area is 

a discrete variable (with a very small number of possible values for any 

given elastic solution), the optimization problem is particularly well 

suited for dynamic programming. 
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6.9 CONCLUSIONS 

A probabilistic approach to the design of beams is developed 

which is simple enough for design office use but provides more 

consistent results than the multiple loadings approach. Use of the 

method requires knowledge of only the most basic of statistical 

principles and is hardly more complex than the traditional deterministic 

procedure. The results of the method are compared to the effects of 

"actual" live loading as indicated by the more complex statistical 

models available. Comparison shows the statistical model to give 

excellent agreement while the results of the traditional approach are 

relatively inconsistent. A special correction procedure is applicable 

for shear design to ensure consistent accuracy. This is required as no 

system of uniformly loaded spans can accurately reflect the shear 

distribution due to non-uniform loadings. 

Statistical parameters for the live loading model are adopted 

from the literature. These indicate that the current load/area 

reduction formula specified in the National Building Code ( 1980) gives 

inconsistent results and that the allowance for using no such 

relationship for tributary areas of less than 20 m2, is especially so. 

The reduction formula appears to be particularly inadequate for the case 

of multi-span beams where the deviations from the results of the 

probabilistic model are relatively large. 

Examples demonstrate the use of the probabilistic procedure to 

derive bending moment and shear force envelopes. An example also 

indicates how the probabilistic approach can be readily extended to 

include dead loading. While only a limited number of examples were 
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considered, the traditional multiple loadings approach appears to be 

• conservative everywhere but particularly so for maximum sag moment. 

The probabilistic equivalent to plastic moment distribution is 

explored'and a convenient approximation proposed. The optimum 

probabilistic design process with plastic moment distribution is 

described and it is pointed out that the probabilistic method is 

particularly well suited for optimum design. 
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS 

7.1 SUMMARY AND CONCLUSIONS 

7.1.1 Design of Reinforcement  

The optimum design of reinforced concrete continuous beams has 

been considered. A major portion of the optimum design problem consists 

of the design of reinforcement which is the subject of Chapter 4. The 

design of reinforcement involves those calculations which are required 

after specification of the concrete geometry and the stress envelopes. 

Detailed descriptions are given of algorithms for the calculation of the 

areas, lengths and locations of longitudinal reinforcement. The 

calculations required for the provision of compression reinforcement 

when required, are also outlined. Similarly, an algorithm is described 

for the calculation of the areas and spacings of transverse 

reinforcement for shear. 

All of the algorithms described here have been included as 

subroutines in an optimum design program. The design details are 

considered in much greater depth in these subroutines than is usually 

afforded them when the design is being done "by hand". It is felt that 

considerable savings will ensue from this. 

7.1.2 Optimum Deterministic Design  

The determination of the design bending moment and shear force 

diagrams is the subject of Chapters 5 and 6. Two approaches are 

described, deterministic (Chapter 5) and probabilistic '(Chapter 6). 

The deterministic approach is the traditional method of design for 
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multiple loadings as currently specified in the Canadian code of 

practice. Accurate optimum design in accordance with these 

specifications was not previously feasible due to the excessively large 

amount of computer time required. To. overcome this problem, a method of 

optimization called sequential decomposition (SD) has been developed. A 

number of variations on the basic SD approach were tested by example and 

the most efficient form for the beam design problem determined. 

Application of this form of SD to a typical example resulted in an 83% 

reduction in computer time. Clearly, the method has considerable 

potential for large optimization problems of a serial nature. 

A further considerable reduction in the computer time 

required to determine the optimum solution resulted from the 

degeneration of the optimization subproblems. It has been shown that at 

-the optimum solution, most of the subproblem variables are in fact' 

dependent on two parameters. This reduction in the number of 

independent variables greatly facilitates the optimization process. The 

application of SD combined with this subproblem degeneration reduced the 

time required to solve a typical problem to less than 1% of what was 

formerly required. This remarkable improvement in the efficiency of the 

optimization procedure is a striking example of how dramatic the 

improvements can be when knowledge of structural behaviour is combined 

with knowledge of optimization for the solution of structural 

optimization problems. 

Using unit costs obtained from a major Canadian construction 

firm, a small series of beam design examples were run to test the 

sensitivity of the optimum beam design to a number of problem 
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parameters. This study has indicated that accurate near-optimal 

solutions can readily be found by the following two-step procedure: 

(1) Find the optimum dimensions while allowing no optimization of the 

quantities of plastic moment redistribution. 

(2) With the section dimensions fixed at these values, find the optimum 

quantities of redistribution. 

Also evident from the results is that the optimum designs are 

particularly sensitive to the applied depth penalty, that is, the cost 

term used to reflect the additional overall building costs which result 

from deep beams. 

7.1.3 Probabilistic Analysis and Design  

A probabilistic design procedure is developed for use in place 

of the conventional deterministic approach. For elastic analysis, the 

method is based on simple probabilistic concepts and is conveniently 

easy to use. For elastic-plastic analysis, the statistical properties 

of the system are highly complex but a conservative assumption provides 

a ready solution to this. Using statistical parameters suggested by 

McGuire and Cornell ( 1974), the results of design by the new procedure 

were compared to conventional design results. The conventional approach 

was found, in general, to be conservative. Even when the simplifying 

assumption for plastic redistribution were adopted, the results of the 

new method were less conservative than the conventional procedure. 

Hence, the probabilistic approach using these statistical parameters, 

can result in cost savings while providing more consistent levels of 

safety. 

The assumption regarding probabilistic plastic moment 
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redistribution is particularly convenient for optimum design. The 

problem is suitable for solution by dynamic programming, a procedure 

which is particularly well suited to discrete problems such as this one. 
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7.2 RECOMMENDATIONS FOR FUTURE RESEARCHERS 

7.2.1 Optimum Deterministic Design  

Despite the great quantity of research on structural 

optimization, there remains much to be done. What follows are some 

suggestions of what the author feels should and should not be done. 

1. The relatively small savings which often result from optimization 

and the relatively large round-offs which result from 

discretization of the final result has led the author to believe 

that efficient discrete programming methods are particularly 

desirable. However, very few efficient general procedures appear 

to be available. In addition, it is felt that it would be 

worthwhile to develop such methods specifically for structural 

problems. More general methods may be unnecessarily rigorous and 

are prohibitively inefficient for large problems. 

2. There is considerable scope for the incorporation of forms of 

artificial intelligence into optimum design programs. This subject 

would appear from the literature to still be in its infancy (Rooney 

and Smith, 1982; 1983). As relative unit.costs tend to change 

slowly with time, a program could develop a " feel" for what section 

dimensions are likely to be close to the optimum. A short discrete 

search could then verify the solution. 

3. The success of the method of sequential decomposition would suggest 

that it could be useful if applied to other structural problems as 

well. Two avenues of research are possible here. First, work 

could be done on the improvement of the method, both in terms of 

efficiency and "robustness". Second, new applications could be 

sought where the method could be applied to advantage. 
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7.2.2 Probabilistic Approach to Design  

The development of a probabilistic design procedure that is 

simple enough for design office use is a tremendous breakthrough. It is 

anticipated that other similar approaches to structural problems will 

quickly follow. Some developments which would be useful are as follows: 

1. Most statistical theory is mathematically complex and, as such, is 

unsuitable for design. Thus, most design is based on simplistic 

deterministic approaches. Yet, even the most rudimentary 

probabilistic analysis is likely to be more rational than a complex 

deterministic one. It is essential that tools be developed for 

simple approximate probabilistic analysis. It is felt by the 

author that the concepts of mean, variance and covariance are more 

useful for this than failure probabilities. A great deal of work 

needs to be done on the development of approximate relationships 

and on the testing of such relationships for accuracy. 

2. There is clearly a great problem in the lack of statistical data on 

live loading. In particular, there appears to be very little 

information available on extraordinary loading events. 

3. For optimum beam design, a detailed study should be made on the 

problem of plastic moment redistribution. It is necessary to 

determine how conservative is the suggestion made herein. If 

considerable savings can be made, a method of design should be 

developed and provided as an option in the codes of practice. 

4. The problem of optimum probabilistic design should be programmed. 

In view of the suitability of the problem for solution by dynamic 

programming, the algorithm would be relatively efficient and could 

properly treat the variables as discrete. 
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Appendix A - Description of Program BOD 

BOD (Beam Optimization Design) is a program for the minimum 

cost design of continuous beams. The logic used in the program is 

described here starting with the subroutines at the most basic levels of 

logic and working up to the main program. At one of the most basic 

levels of calculation is the subroutine CONANA (CONstrained ANAlysis). 

In this subroutine (see flowchart, Fig. A.l), the areas, locations and 

extents of steel for a one- or two-span substructure is calculated. The 

section geometries have been specified a priori. The special 

degeneration of subproblems described in Subsection 5.3.3 is employed 

for the calculation of the support moments in terms of the design 

moments for sag. The subroutine, JCRIT, is called for the determination 

of the most critical loadings for the steel areas and cut-off points 

(see flowchart, Fig. A.2). The subroutine AREAS (Fig. A.3) is called 

for the calculation of the areas of steel at the critical sections. 

These calculations are as outlined in Section 4.2. As described in 

Sections 4.3 - 4.5, the locations of all cut-off points are calculated 

in subroutine EXTENT (Figs. .A.4 and A.5). In subroutine COMP (Fig. 

A.6), the extents of the bottom steels meeting at the supports are 

increased to provide compression reinforcement if this is required for 

ductility. These calculations are outlined in Section 5.6. Finally, 

subroutine SCOST is called for the determination of the total steel cost 

and the cost penalties for constraint violations. It is in this 

subroutine also that the quantities of transverse reinforcement are 

calculated. 
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I 
Use the maximum interior support moment as found by 
elastic analysis as an estimate of the design moment. 

Y 

Calculate the area of top steel and consequently, the 

allowable amount of plastic moment redistribution. 

Evaluate the design moment at the interior support. 

If this is the first such evaluation, repeat these 

calculations. 

Evaluate the support moments in accordance with Sub-
section 5.3.3. 

Call JCRIT 

Call AREAS 

Call EXTENT 

Call COMP 

Call SCOST 

Evaluate the objective function, i.e., substructure 

steel cost plus penalty function. 

RETURN 

Fig. A.l - Flowchart for the Subroutine CONANA 
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I, 

Determine the most critical value for all loadings: 

For both ends of both spans: 

Calculate theoretical cut-off point. F 

- 

Evaluate the crack angle for shear 
design at the cut-off and hence 
the extra equivalent moment. 

If it has not already been done, 
rerun through these to determine 
the change in the cut-off due to 

shear. 

V 

Calculate the theoretical cut-off 
in the opposite span. 

RETURN 

Fig. A.2. - Flowchart for the Subroutine JCRIT 
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Calculate the areas of bottom steel required in 
both spans. 

For all (three) supports 

If bottom steel is to be run through, assign 
to it the maximum of the two values. 

1 

For 
(depending 

substructure) 

one or both moments at the interior support 
on whether it is a 1- or 2-span 

Calculate the area of top steel 

If the steel is to be run through, assign to 

it the maximum of the two values. 

RETURN 

Fig. A.3. - Flowchart for the Subroutine AREAS 
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For one or both spans: 

Calculate the number of bars of bottom steel 

Calculate the development length- for bottom steel 

Calculate the minimum anchorage length for bottom 
steel 

For both span ends: 

For all loadings: 

Calculate the point to which the bottom 

steel must extend to ensure safety. 

V 

Calculate the design crack angles for shear. 

Repeat those calculations including the extra 
equivalent moment for shear, if this has not 
been done. 

- 

V 

Determine the most critical point for all 

loadings to which the bottom steel must extend. 

The final anchorage length is calculated using 
different formulae for interior supports and 
exterior simple supports. 

For one or both steels: 

Call TOP for the calculation of the full 
extent of top steel. 

RETURN 

Fig. A.4. - Flowchart for the Subroutine EXTENT 
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THEN 

If y1 + zi + + exceeds 

the span length 

ELSE 
RETURN 

Evaluate a1 to a5 as given in Section 4.4 

THEN If a3 equals unity ELSE 

Evaluate MA using Eqn. 

4.33 or 4.35 as 

appropriate 

Evaluate a6 

a LSE THEN If 6 >O E 

Evaluate M 
using Eqn.A4.36 

No point of 

intersection exists. 

Set M to the 

maximum of the 

minima for moment 

in a span. 

Recalculate the cut-off point and evaluate the development 

length for MA. 

RETURN 

Fig. A.5. - Flowchart for TOP, a Subprogram of EXTENT 
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ELSE 
If no compression reinforcement 

is required 
THEN  RETURN 

For all loadings: 

Calculate y and y 
xl x2 

If the support moment is less than the maximum 

allowed in the absence of 

then compression reinf. else 

Extra extent and area 

is zero 
Calculate the additional extent 

and area associated with each 

span (call DART) 

Determine the most critical values for all loadings. 

Evaluate the additional volume of steel associated with the 

extension of steel from each span. 

Determine the least additional volume. 

If the least volume if finite 

then else 

Determine the total extent 

of bottom reinforcement and 

the total area of top 

reinforcement. 

Steel from both spans must be 

extended. The calculations are 

in accordance with Subsection 
4.6.3. 

RETURN 

Fig. A.6. - Flowchart for the Subroutine COMP 
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The subroutine CONANA involves basic analysis of a one- or 

two-span substructure. Calling on CONANA for each objective function 

calculation, the subroutine, CDM, ( see flowcharts, Figs. A.7 and A.8), 

directs a conjugate direction unconstrained search for the least cost 

values of the substructure design moments for sag. A description of 

this method of optimization is given in Subsection 3.2.2. The 

subroutine, OPT, calls CDM but also includes the calculation of the 

parameters necessary for quadratic projection (Subsection 5.2.4). The 

subroutine SUBOPT (Fig. A.9) directs the total substructure 

optimization. Initial values are given to the variables to be 

optimized. Subroutine OPT is called and is recalled with higher penalty 

constants if the optimization results in an infeasible design. 

At a higher level is the subroutine ST (Fig. A.1O) which 

directs the complete (optimal) determination of steel areas, locations 

and extents throughout the beam for given section geometries. 

Optimization is by sequential decomposition with quadratic projection. 

Each cycle of substructure optimizations is carried out by a series of 

calls of SUBOPT. Subroutine QP (Fig. A.11) is called for the execution 

of quadratic projection. Three tiers of accuracy are used for the 

solution of the subproblems, the termination criterion not being tested 

until after the third. 

When none of the section dimensions are variable, ST is called 

from the main program (see flowchart, Fig. A.12). If however, some 

geometric variables do exist, the model coordination method is used to 

decompose the problem into optimization at two levels. At the first 

level, FAN (Fig. A.13) directs the complete steel design process for 



201 

Input problem dimension, n, starting point, x, initial 

step lengths, d and allowable errors, eral 

Evaluate f1 = 

0 

Initialize s1 = 
-, 0 

and 
- 

= d 
2 

=x 

For m = 1, ..., n 

Use LIN to find a* to minimize f(x + a s ), set 
—m 

= - + s m and f1 = + a 
— 

F' 

Use LIN to find c* to minimize f(x + a s n+l ), set - — 

x + a* !n+l and f1 = f(x + a* !n+l) 

YES 

NO 

Terminate ? 

NO 

For in=l,2,..., n 

Restart? 

RETURN 

YES 

Fig. A.7. - Flowchart for Subroutines CDM and GCDM 
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7 

Input problem dimension, n, starting point, x, and direction, s 

Y 

dct = 1 

dc = 2dc 

=0 

Evaluate f( • + do s) 

f( + dcs) - f1 ? 

>0 

<0 

= f( • + dcs) 

) = fl, f, = f ( x+da •) 

x = x + da s, dct = -dct 

V 

dc = 2dc 

f2 = f( • + 2da s) OK  

V 

Evaluate f(x+ 2dc ) 

+ 2dct s) - f2 •' >_ff3 = f(x+2dct s) 

*2 - 3f1 - f 3 ] dc 
= 

2f2f2 - f1 - f3] 

4, 
Evaluate f() 

RETURN 

Fig. A.8. - Flowchart for Subroutine LIN, 
a Subprogram of CDM and GCDM 
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For one- and two-span substructures, determine the 

numbers of the first and last supports and spans 

and the number of the support with variable moments. 

The variables for optimization are set to their 

initial values. 

If only analysis is required, call CONANA 

If optimization if required, call OPT 

If steel design is feasible or if geometry is 

infeasible 

RETURN 

THEN 

ELSE 
Y 

Increase penalty constant 

4 

V 

Set the second level penalties to values 

proportional to the first level of penalties. 

RETURN 

Fig. A.9. - Flowchart for the Subroutine SUBOPT 
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Set the accuracy and step length for CDM 

Cycle of Substructure Optimizations  

(1) If the first support is fixed, minimize the steel area 

in the first 1-span substructure. 

(2) Minimize the steel cost in the sequence of 2-span sub-
structures which starts at the first support. 

(3) If the last support is fixed, minimize the steel area 
in this 1-span substructure. 

rd th th 
If this is the 3 , 6 , •.., 3n , cycle 

THEN 

V 

Call QP 

ELSE 

If only analysis 

is required 

THEN 

Y  

RETURN 

V 

ELSE 

Evaluate the maximum moment change 
in this cycle of optimization. 

If the maximum moment 

change is OK 

ELSE 

Reduce the accuracy 

and step length for 
CDM 

Fig. A.10. - Flowchart for the Subroutine ST 

THEN 
V 

RETURN 
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If the change in one of the moduli is 
very small 

THEN 

ELSE 

RETURN 

and c in accordance with Eqns. 5.9-5.11. Evaluate b.1 , c. 1 i,i+l 

Evaluate the parameters given in Eqns. 5.13 as the components of 
a matrix equation. 

Call LEQT1F to solve the matrix equation. 

For all variable moments: 

If a moment is alternately increasing 

and decreasing in successive 

cycles 
ELSE THEN 

If a projection would be 

negative 

ELSE THEN 

CONTINUE Apply Eqn. 5.14 

Reset the independent 

subproblem variables in 

accordance with the 

projected support moments. 

CONTINUE 

RETURN 

Fig. A.11. - Flowchart for the Subroutine QP 
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Start 

Input data 

NO 

V 

Call ST for 

minimization 

of steel cost only 

NO 

 / No. geometric 
variables 

\ > 0?  

YES 

lANA = 1* 

To determine the optimum values 

of the geometric variables, call 
GCDM (optimization subroutine). 

Use FAN for each objective 

function evaluation. 

Output results 

END 

KOptimum design) NO 
feasible? 

YES 

( lANA = 1*? 

NO 

 / Moments changed 
significantly? 

YES 

Increase penalty 

constant 

YES 

Set lANA = 

Call ELAN for an 

elastic analysis. 

* lANA is a flag variable. For lANA = 1, no-optimization of plastic 

redistribution is done. For lANA = 0, the optimum amount is found. 

Fig. A.12. - Flowchart for Main Program BOD 
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Call steel optimization subroutine ST 

Call DEFL for the calculation of the service load 

deflections and the equivalent cost for excessive 
values. 

Calculate the penalty function for negative 

geometric variables. 

Evaluate the total objective. 

RETURN 

Fig. A.13. - Flowchart for the Subroutine FAN 

The maximum negative and positive moments are 
determined. 

The effective moment of inertia is calculated 

using Branson's formula. 

The centre point deflections are determined. 

The penalties for deflections in excess of the 

maxima are calculated ( fuzzy constraints). 

RETURN 

Fig. A.14. - Flowchart for the Subroutine DEFL 
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fixed values of the geometric variables. Included in FAN is the calling 

of ST and the calling of DEFL (Fig. A.14) for the calculation of 

deflections and the associated equivalent costs. Also included is the 

calculation of the total cost of steel and concrete and the penalties 

for constraint violations. At the second level of optimization in the 

model coordination process, GCDM (Figs. A.7 and A.8) directs an 

unconstrained search, by the conjugate directions method, for the 

optimum values of the geometric variables. This subroutine is called 

from the main program when the number of geometric variables is 

non-zero. If constraint violations exist after optimization, the 

penalty function constant is increased and GCDM is called again. This 

process is repeated until a feasible optimal solution is found for the 

geometric variables. The feasible optimal solution is first found using 

an elastic analysis with no plastic moment redistribution. When a 

solution is found using this simplifying approximation, GCDM is called 

again and this time the amount of plastic moment redistribution that 

minimized steel cost is carried out. When an optimum feasible design is 

found again, the values of the geometric variables are compared to their 

values before optimization. If there is significant change, an elastic 

analysis is carried out (ELAN, Fig. A.15) and the optimization process 

is repeated. This time, the approximation for the amount of plastic 

moment redistribution is not applied. It has been found that two 

elastic analyses are usually sufficient for the determination of the 

solution with a third to verify that the solution has been reached. 
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The gross moment of inertia is calculated. 

The components of the matrices [f] and {D} are 
evaluated. Fixed or pinned supports are allowed 
at each end. 

Subroutine LEQT1F is called to solve the matrix 

equation [f]{F} = -{ D} and find the elastic 
support moments. 

RETURN 

Fig. A.15. - Subroutine for Elastic Analysis ELAN 
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Appendix B - Sequential Simplex Method 

The Sequential Simplex Method, for an n-variable problem, 

consists of establishing a "simplex" of (n + 1) points, x., j = 1,2,..., 

(n + 1), each with components, Xik, k = 1,2,..., n. The objective 

function, f, is evaluated at each point and the points with highest and 

lowest values, and x, are determined. The centroid of the simplex, 

is found and the process of reflection is carried out to determine a 

new point, x,with objective, f. Depending on the relative value of, 

f n , ̀ the process of expansion is done to find, -x in , and, f m , or 

contraction to determine, x c c f . The complete flowchart for the 
—  

program is given in Fig. B.1. 
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Initialize x., j = 1,..., (n + 1) 

Evaluate fix.} for all j 
— J 

Find 4h and x ,. Evaluate 2sb , x and f 
n 

Evaluate x and f 
—m m 

YES 

NO 

V 

m n 

—n 

YES 

x =x  
—h - 

< f(x 
n - 

NO 

=x 
—n 

NO 
V 

> f(x.) for 
n — J 
all j ;d h? 

> f( n 41 

YES 

NO 

NO 

Terminate? 

NO 

YES 

Evaluate x and f 
C 

—c 

YES   

ENDI 

YES 

= '[x + 2Ekl /2 

Fig. B.l. - Flowchart for Optimization Program, SSM 
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Appendix C - Smoothing Function for Gradient Discontinuities 

The IMSL subroutine, ZXMIN, ( IMSL, 1982) was found to be 

sensitive to discontinuities of the gradients of the objective function. 

Such discontinuities occur when the objective is, in some way, dependent 

on the maximum of two functions. For example, 

G = max(g1, 92) 

has discontinuous first derivatives at, g1 = g2. The problem can be 

solved by replacing the "maximum" operation with a " smooth maximum" 

subprogram. A small band is defined on either side of the curve ( in 

general, hyperspace) defined by, g1 = g2. Then, a smooth maximum 

function is given by: 

g1 g2 +b 

(g1 2 - g2) + 2b (g1 + g2) + b w 2 

05 =  - 4b 
W. 

G5 =g2 , g1 g2 -b 
w 

g 2 - b < g1 <g2 +b 
w w 

This function satisfies the requirements of continuous first derivatives 

with respect to g1 and g2 at all points. On the curve, g1 = g2, the 

function, G5, exceeds G by b/4. Thus a value of b equal to four times 

an acceptable level of accuracy, is appropriate. 

A function with continuous first and second derivatives is 

given by: 

g1 g2 +b 
w 
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(g1 - g2) ( 4g1g2 + 6b2) (g2 g2)2 + 8b3 (g1 + g2) + 3b 1 -g2) 

= 16b3 
w 

92 - b w <1 g g 2 + b w 

G=g2 , g1 g2 -b 
w 

However, the latter function involves double curvature and is therefore 

not suitable for programs in which convexity is a requirement. 


