

Sound Ecology and Acoustic Health, Part 2
An Android Application for Recording Noise Nuisances

Published in Circuit Cellar, Kick Media Corporation, U. S. A,
Issue 301, pp 16 – 33, 2015 -- http://circuitcellar.com/

Adrien Gaspard and Mike Smith

Contact: Mike Smith:

Department of Electrical and Computer Engineering,
University of Calgary,
ICT536, 2500 University Drive, N.W.
Calgary, Alberta, Canada T2N 1N4

Email: Mike.Smith @ ucalgary.ca

Phone: +1-403-220-6142

Sound Ecology Article 2 - Gaspard and Smith

1

Sound Ecology and Acoustic Health, Part 2
An Android Application for Recording Noise Nuisances

In our last month’s article, CC Issue #, we light-
heartily discussed a supposed back yard BBQ
discussion between neighbours about urban noise
nuisances. Unfortunately noise nuisances are real in
some of our local Calgary Communities, and we are
looking for some simple, inexpensive approaches to
help people investigate and reduce the problem.

We demonstrated the first steps of our solution - the
development of an Android project with basic code
to generate a main screen with a button that
generated a welcome screen when pressed. We
called this a WAT_AN_APP, meaning we were able
to develop it Without Any Teenager Assistance
being Necessary. In this article we want to extend
our basic WAT_AN_APP project to recording and
playing-back audio .3GPP files as shown in Fig. 1A.
This will allow us to record any physical noises
present that are less easily heard by others in your
house or need more study as they are less noticeable
during the day as they are hidden under traffic
noise.

In this article, we want to take a more adult
approach – use a JEAC process that uses Just
Enough Additional Code to make the new recording
activity work.

QUICK RECAP

Listing 1A provides the key elements of the main
activity java file. Applying the JEAC philosophy, we
added enough code to pop up a screen with a
welcome message and a button. Pressing the button
activated the audio record and play-back
“AudioRecordPlayback” activity (Line 20). This
activity used the layout described in the
activity_audio_record_playback.xml file to activate a
TextView object to print a message “DUMMY NEW
ACTIVITY SCREEN” (Listing 1B). Please note that
the main activity’s layout file, activity_main.xml, is
identical to the code described in Article 1 Listing 2.

Being efficient

Extending our
basic Android
WAT_AN_APP

built

 Without Any
Teenager

Assistance
Necessary

with

“Just Enough

Additional Code”

to Record and
Playback and

Neighbourhood
Acoustic

Nuisances

Fig 1) Our Android WAT_AN_APP for A) Audio .3GPP Record/Playback B) Data
Record/Ghost Analysis

UNKNOWN
ACOUSTIC SOURCE

.3GPP
RECORD

.3
G
P
P

P
LA

YB
A
C
K

.3GPP
FILE

MAIN
ACTIVITY

D
A
TA

R
EC

O
R
D

SOUND
BUFFER

ANALYSIS
GHOST

DETECTED

1. package com.wat_an_app; // MainActivity.java
2. ... // SAME AS Article 1, Listing 1, Lines 2 to 5

 // Cause display of MainActivity screen layout
10. public class MainActivity extends Activity{
11. ... // SAME AS Article 1, Listing 1, Lines 11 to 15

 // Display AudioRecordPlayback screen layout
20. public void AudioRecordPlayback(View v){
21. ... // SAME AS Article 1, Listing 1, Lines 21 to 24

Listing 1A) Article 1 key code from MainActivity.java in the

WAT_AN_APP\src\ folder

 <!--Used by AudioRecordPlayback -->
400. <RelativeLayout
401. xmlns:android=http://schemas.android.com/apk/res/android
402. ... <!-- SAME AS Article 1, Listing 5, Lines 402 to 405 -->

410. <TextView
411. android:id="@+id/audio_record_playback_text"
412. ...<-- SAME AS Article 1 Listing 5, Lines 410 to 417-->

499. </RelativeLayout>

Listing 1B) Article 1 AudioRecordPlayback activity layout from
activity_audio_record.playback.xml file in the

WAT_AN_APP\res\layout folder

2

In this article we are going to extent this dummy
activity so that we can record and playback audio
.3GPP files, the first step towards doing some real
signal processing on audio signals.

JEAC BUTTONS FOR .3GPP CONTROL

The new activity_audio_record_playback.xml
layout, Listing 2, shows how we can use a lot of
our knowledge gained from the previous article to
generate an audio menu screen, Fig. 2. A few new
customizing commands help to layout the four
buttons controlling recording and playback. The
alignParentStart command, Line 434, makes the
leading edge of the START RECORDING button
match that of the STOP RECORDING button. The
attributes alignParentLeft and alignParentRight
place these buttons one next to another. We have
used a new layout_below command, Line 462, to
put one button below another button. If you want to
have more information concerning layout attributes
visit developer.android.com/reference/android.

Since it just takes a few lines, we decided to add a
microphone picture to the top of the screen. The
new widget, ImageView, is used to load and display
images from the “WAT_AN_APP\res\drawable-
xxx” folders that store images with different
resolutions. The “Quick Help Guide” section at the
end of the article shows how to add an
“ic_action_mic.png” microphone picture in the
“WAT_AN_APP\res\drawable-mdpi” folder.

As for the text and buttons, the ImageView widget
has to be given an id, “microphone”, Line 421. We
set the placement and source of the picture to
display using Lines 422 and 423.

Fig 2) Our planned.3GPP file control screen

START RECORDING STOP RECORDING

START PLAYBACK .3GPP

STOP PLAYBACK. 3GPP

A .3GPP ACTIVITY IS UNDERWAY

<!—Used by AudioRecordPlayback -->
400. <RelativeLayout
401. xmlns:android=http://schemas.android.com/apk/res/android
402. <!--SAME AS Article 1 Listing 4, Lines 402 to 405-->

410. <-- Delete Article 1 Listing 5 Lines 410 – 417 -->

 <!-- Small microphone image -->
420. <ImageView
421. android:id="@+id/microphone"
422. android:layout_marginTop="150dp"
423. android:src="@drawable/ic_action_mic"
424. tools:ignore="ContentDescription"
425. android:layout_width="wrap_content"
426. android:layout_height="wrap_content"
427. android:layout_centerHorizontal="true"
428. />

 <!-- Start recording button -->

430. <Button
431. android:id="@+id/button_start_rec"
432. android:onClick="start_recording"
433. android:text="@string/start_recording"
434. android:layout_alignParentStart="true"
435. android:layout_alignParentLeft="true"
436. android:layout_width="wrap_content"
437. android:layout_height="wrap_content"
438. android:layout_centerHorizontal="true"
439. android:layout_centerVertical="true"
440. />

 <!-- Stop recording button -->
450. <Button
451. android:id="@+id/button_stop_rec"
452. android:onClick="stop_recording"
453. android:text="@string/stop_recording"
454. android:layout_alignParentRight="true"
455. android:layout_alignParentEnd ="true"
456. <!-- COPY Lines 436 to 439 -->
457. />

 <!-- Start playback button -->
460. <Button
461. android:id="@+id/button_start_playback"
462. android:layout_below="@+id/button_stop_rec"
463. android:onClick="start_playback"
464. android:text="@string/start_playback"
465. <!-- COPY Lines 436 to 439 -->
466. />

 <!-- Stop playback button -->

470. <Button
471. android:id="@+id/button_stop_playback"
472. android:layout_below="@+id/button_start_playback"
473. android:onClick="stop_playback"
474. android:text="@string/stop_playback"
475. <!-- COPY Lines 436 to 439 -->
476. />

499. </RelativeLayout>

Listing 2) This updated activity_audio_record_playback.xml
layout file (WAT_AN_APP\res\layout folder) generates the five

.wav control buttons shown in Fig. 2

3

ADDING THE JEAC AUDIO ACTIVITY

Android offers a simple MediaRecorder class
which offers a “blackbox” designed to capture,
save and playback all types of media including
pictures, videos and audio. We have followed
two online examples to build an audio
recorder/player:
developer.android.com/guide/topics/media/
audio-capture.html and
tutorialspoint.com/android/android_audio_cap
ture.htm.

Listings 3A and 3B show the
AudioRecordPlayback activity. We start by
defining our MediaRecorder myRecorder, the
MediaPlayer myPlayer, the file name
outputFileName for our recording and the four
buttons, Lines 316 to 319. We then code the
onCreate() method to initialize our activity.
Line 322 sets the user interface (UI) from the
layout resource, Listing 2, using
setContentView(). Finally we detail the four
buttons we need to interact with the application
and set the start_recording button as active,
Line 327.

Pressing the start_recording button will
activate the start_recording public method,
Listing 3B Line 340. This is a busy method
which sets up the recording file path as well as
the name of the recording myrecording.3gpp in
Line 341. The MediaRecorder is initialized,
Lines 342 to 346, and starts a recording, Lines
349. The method finishes with a flourish by
disabling and ghosting the start_recording
button, activating the stop_recording button,
and issues a toast, Android message, on the
screen to show the user that a recording has
started, Lines 352 to 354.

Listing 3B also shows the similar format of the
other audio control methods: stop_recording,
Lines 360 to 366, start_playback, Lines 370 to
377 and stop_playback Lines, 380 to 386.
They each manipulate the MediaPlayer, enable
the next method in the audio control stream
before turning themselves off.

The fact that these all methods turn themselves
reminded Mike of an early electronic toy he
used to have in a much more simple time.
When the switch on the top of the toy was
turned on, the toy’s box lid opened and a hand
came out and pushed the switch to turn the toy
off.

Once the recording has been stopped, Listing
3B Line 361 it is important to issue a release
MediaRecorder command, Line 362. This
frees-up the audio hardware and other system
resources which are all shared across the
different applications running on the phone.

// Replace existing code from Article 1 Listing 4 Lines 300 to 302
300. package com.wat_an_app;
301. import android.widget.Toast;
302. import android.os.Bundle;
303. import android.os.Environment;
304. import android.widget.Button;
305. import android.view.View;
306. import android.support.v7.app.ActionBarActivity;
307. import android.media.MediaPlayer;
308. import android.media.MediaRecorder;
309. import java.io.IOException;
310. import com.wat_an_app.R;

315. public class AudioRecordPlayback

 extends ActionBarActivity {
316. private MediaRecorder myRecorder;
317. public MediaPlayer myPlayer = null;
318. private String outputFileName = null;
319. private Button button_start_recording,

 button_stop_recording, button_start_playback,
 button_stop_playback;

320. @Override

 protected void onCreate(Bundle savedInstanceState) {
321. super.onCreate(savedInstanceState);
322. setContentView(R.layout.activity_audio_record_playback);
323. button_start_recording

 = (Button)findViewById (R.id.button_start_rec);
324. button_stop_recording

 = (Button)findViewById (R.id.button_stop_rec);
325. button_start_playback

 = (Button)findViewById (R.id.button_start_playback);
326. button_stop_playback

 = (Button)findViewById(R.id.button_stop_playback);

327. button_start_recording.setEnabled(true);
328. button_stop_recording.setEnabled(false);
329. button_start_playback.setEnabled(false);
330. button_stop_playback.setEnabled(false);
331. }

// public void start_recording(View view)
 //Listing 3B Lines 340 to 355

// public void stop_recording(View view)
 //Listing 3B Lines 360 to 366

// public void start_playback(View view) throws
 IllegalArgumentException, SecurityException,
 IllegalStateException, IOException
 //Listing 3B Lines 370 to 377

// public void stop_playback(View view)
 //Listing 3B Lines 380 to 386

399. } // End class AudioRecordPlayBack

Listing 3A) The prologue of the AudioRecordPlayback.java file
(WAT_AN_APP\src\ folder) sets up the User Interface. The

OnCreate() method enables the Start Recording button (Line
327). The other methods in this class detailed in Listing 3B.

4

200. <?xml version="1.0" encoding="utf-8"?>
201. <resources>
205. <!-- SAME AS Article 1 Listing 3, Lines 205 to

 214 -->

220. <!-- String required for the second part of the
 record and playback a sound -->

221. <string name="start_recording">
 Start recording</string>

222. <string name="stop_recording">
 Stop recording</string>

223. <string name="start_playback">
 Start playback .3GPP</string>

224. <string name="stop_playback">
 Stop playback .3GPP</string>

249. </resources>

Listing 4) To avoid compiler warning messages, new
preset string values must be set in strings.xml

(WAT_AN_APP\res\values folder)

We can start playing this recorded file by calling the
start_playback method which re-initializes the
MediaPlayer in a play-back mode, Line 371. We
identify the recorded file, stored in outputFileName,

then prepare the player to begin playing data.
Pressing the stop playback button again releases the
MediaPlayer resources back to the system and
displays a “Stop Playing Back” message on the
screen.

Just before you hit the compile button for the last
time, remember we have been using a lot of strings.
As in Article 1, avoid the compiler warning messages
by adding preset strings to the strings.xml file in the
“WAT_AN_APP\res\values” folder (Listing 4).

FORGIVENESS AND PERMISSIONS

In the everyday world there is a saying

“Sometimes you get further ahead by asking for
forgiveness rather than asking for permission.”

In our JEAC world there is an equivalent saying

“Sometimes your project finishes faster if you set
permissions to allow a few things rather than writing
more code to allow everything.”

For example, do you want to hunt ghosts or write the
code needed to ensure your app can handle you
switching from portrait to landscape modes?
Currently an event will be trigged that will restart the
audio activity if you rotate the screen while recording
or playing. That risks the MediaRecorder or
MediaPlayer not being properly released and re-
initialized and causing the activity to crash at that
point. Solve this by disabling the auto-rotate
permissions in your phone’s settings menu.

Other potential issues can also be prevented, rather
than requiring coding, by setting permissions in the
AndroidManifest.xml file in the “WAT_AN_APP”
project’s root directory. For example, Line 3011 in
Listing 5 stops the app from going to sleep while we
are recording because switching the sleeping screen

340. public void start_recording(View view) {
341. outputFileName =

 Environment.getExternalStorageDirectory().
 getAbsolutePath()+ "/myrecording.3gpp";

342. myRecorder = new MediaRecorder();
343. myRecorder.setAudioSource(MediaRecorder.

 AudioSource.MIC);
344. myRecorder.setOutputFormat(MediaRecorder.
 OutputFormat.THREE_GPP);
345. myRecorder.setAudioEncoder(MediaRecorder.

 OutputFormat.AMR_NB);
346. myRecorder.setOutputFile(outputFileName);
347. try {
348. myRecorder.prepare();
349. myRecorder.start();
350. }catch (IllegalStateException e) {e.printStackTrace();}
351. catch (IOException e) {e.printStackTrace();}
352. button_start_recording.setEnabled(false);
353. button_stop_recording.setEnabled(true);
354. Toast.makeText(getApplicationContext(),

 "Start Recording", Toast.LENGTH_SHORT).show();
355. }

360. public void stop_recording(View view){
361. myRecorder.stop();
362. myRecorder.release();
363. myRecorder = null;
364. button_stop_recording.setEnabled(false);
365. button_start_playback.setEnabled(true);
366. }

370. public void start_playback(View view)

 throws
 IllegalArgumentException, SecurityException,

 IllegalStateException, IOException{
371. myPlayer = new MediaPlayer();
372. myPlayer.setDataSource(outputFileName);
373. myPlayer.prepare();
374. myPlayer.start();
375. button_start_playback.setEnabled(false);
376. button_stop_playback.setEnabled(true);
377. }

380. public void stop_playback(View view){
381. button_stop_playback.setEnabled(false);
382. myPlayer.release();
383. myPlayer = null;
384. Toast.makeText(getApplicationContext(),

 "Stop Playing Back", Toast.LENGTH_SHORT)
 .show();

385. button_start_recording.setEnabled(true);
386. }

399. }

Listing 3B) Details of the Recording and Playback methods from
the AudioRecordPlayback.java file (WAT_AN_APP\src\ folder)

5

off can cause the current audio record / playback
operation to stop.

Currently the app is like a well-trained dog sitting at
your feet with ears actively waiting for your
command to GO AND PLAY! So give our application
the right to listen (record audio) and to remember
what we have told it (read and write on external
storage), Lines 3008 to 3010. Please note that the
minimum SDK version the application can run on has
been set to “14”, Line 3006, compare to “9” in the
first article. Make sure that it has been set to “14” in

your AndroidManifest.xml file as well, avoiding
compatibility issue with the code we have
implemented. On one of our phones, a Nexus 5 from
Google, there is not physical slot for adding an
external micro SD memory card. The recorded audio
file is then automatically saved into the phone internal
storage memory (Fig.3).

CAN A (LOG)CAT SEE GHOSTS?

In a much more far away time and civilization, cats
were regarded as gods, supposedly for their unique
perception of the spirit world.

When developing this app, we started to appreciate
that the LogCat tool has a unique perception of your
Android system. LogCat can be used to view and
filter logs from applications and portions of the
Android system. A crash, error or warning details for
an application are outputted in the LogCat window.

A system crash message is easily interpreted, but that
is not so for the some warning and error messages.
As they say on the TV – “For that there is
stackoverflow.com” with proposed solutions from the
wide Android programming community. Reducing
coding time with a JEAC approach means that the
code is not “commercial release grade”. So when
debugging you should expect to have to click through
(ignore) some LogCat error messages. For example,
if your phone runs on the Lollipop OS then LogCat
complains that we “should have subtitle controller
already set” every time the MediaPlayer starts
playing the recorded sound.

If you have fast enough reflexes it is possible to make
LogCat issue an error message of the form “Get
Occurred on inactive InputConnection”. From
Stackoverflow I have learnt that InputConnection is
the communication channel interface from an input
method back to the application. You can get other
error messages over this channel if some part of the
app like a Toast is taking too long to respond.

Stackoverflow.com offers many solutions for this sort
of problem. However, I would rather click through
and take the JEAC amendment – “Enough coding
already – lets go ghost hunting.”
OUR APP IS READY FOR SOME 4H TIME

With this article we are now capable of recording a
community noise outside in the neighbourhood and
playing the sound in a quieter environment where we
can examine it in more detail.

3000. <?xml version="1.0" encoding="utf-8"?>
3001. <manifest xmlns:android=
 "http://schemas.android.com/apk/res/android"
3002. package="com.wat_an_app"
3003. android:versionCode="1"
3004. android:versionName="1.0" >

 <!--Check lines 3005 and 3007 and update if necessary-->
3005. <uses-sdk
3006. android:minSdkVersion="14"
3007. android:targetSdkVersion="21" />

 <!--Manually add lines 3008 to 3011-->
3008. <uses-permission android:name=

 "android.permission.RECORD_AUDIO" />
3009. <uses-permission android:name=

 "android.permission.WRITE_EXTERNAL_STORAGE" />
3010. <uses-permission android:name=

 "android.permission.READ_EXTERNAL_STORAGE" />
3011. <uses-permission android:name=

 "android.permission.WAKE_LOCK" />

 < !--Automatically added -->

3012. <application
3013. android:allowBackup="true"
3014. android:icon="@drawable/ic_launcher"
3015. android:label="@string/app_name"
3016. android:theme="@style/AppTheme" >

3017. <activity
3018. android:name=".MainActivity"
3019. android:label="@string/app_name" >

3020. <intent-filter>
3021. <action android:name="android.intent.action.MAIN" />
3022. <category
3023. android:name="android.intent.category.LAUNCHER" />
3024. </intent-filter>

3025. </activity>

3026. <activity
3027. android:name=".AudioRecordPlayback"
3028. android:label="@string/title_activity_audio_record_playback" >
3029. </activity>

3030. </application>

3031. </manifest>

Listing 5) AndroidManifest.xml from the WAT_AN_APP project’s root
directory

Fig 3) Recorded file physically present in the phone

internal storage memory

6

We are also ready to put in some 4H time -- Happy
Hunting Haunting Hours. Watch out for our next
article where we give up our qualitative ghost hunting
approach and go in for real boasting rights. With a
quantitative ghost hunting app, we will be able to
prove that there are more ghosts around in our
neighbourhood than anywhere else in the world!

BIOGRAPHY

Adrien Gaspard received his Master of Engineering
from CPE Lyon, France in February 2015. He tackled
his final practicum as an exchange student in
Electrical and Computer Engineering at the
University of Calgary. He undertook self-directed
term projects directed towards the possible use of
noise cancelling to solve the community noise
problem in Calgary community of Ranchlands. His

long term career goal is in embedded systems and
wireless telecommunications. He can be contacted at
gasp.adrien@gmail.com

Mike Smith has been contributing to Circuit Cellar
magazine since the ‘80s. He is a professor in
computer engineering at the University of Calgary,
Canada. His main interests are in developing new
biomedical engineering algorithms and moving them
onto multi-core and multiple-processor embedded
systems in a systematic and reliable fashion. Mike has
recently become a convert to the application of Agile
Methodologies in the embedded environment. He is
Analog Devices University Ambassador (2001 –
2015). He can be contacted at
mike.smith@ucalgary.ca

QUICK HELP GUIDE

If you want some additional coding help, call Android Busters

This is who we looked up and called – online -- when we needed a tutorial about how to create an audio
recorder/playback or for help to bust the hard, and sometimes simple, Android problems that we found “haunting” us.

Tutorial at Android Developer (Audio Capture): developer.android.com/guide/topics/media/audio-capture.html
Tutorial at Tutorials Point (Audio Record/Playback): http://tutorialspoint.com/android/android_audio_capture.htm
Android Community help at http://stackoverflow.com/questions/tagged/android

Android offers several materials, including an icon pack, to facilitate our app design and implementation. Please go to
https://developer.android.com/design/downloads/index.html and download the “Action Bar Icon Pack”.

In the “…\Android_Design_Icons_20131106\Android Design - Icons 20131120\Action Bar
Icons\holo_dark\08_camera_mic” folder, you will find four drawable folders available, with the parameters hdpi,
mdpi, xhdpi or xxhdpi. These parameters correspond to the density of the picture, which defines its quality. I
recommend using mdpi as it corresponds to the medium density. Grab the ic_action_mic.png file from this folder and
copy it in the “WAT_AN_APP\res\drawable-mdpi\” folder from Eclipse. This allows defining the source
“src=”@drawable/ic_action_mic” in the ImageView tag.

Table 1) Quick help guide

