Automatic Synthesis of Fast,
Compact Self-Timed State Machines!

Kenneth S. Stevens

Department of Computer Science
University Of Calgary
Calgary, Alberta T2N 1N4
Canada

Abstract

An automated synthesis tool, called the Most Ezcellent Asynchronous Tool, or
MEAT is presented. This tool has been used to specify and synthesize asynchronous
finite state machines (AFSMs) for a fully self-timed 300,000 transistor communi-
cation co-processor called the Post Office. The specification is done with stylized
state diagrams with a restricted form of multiple input change constraints called
burst-mode. This is a very compact and intuitive means to specify communication,
concurrency, and synchronization necessary for control structures. Of primary im-
portance to this project was the efficiency and simplicity of the implementation.
The tool generates from the state description self-timed CMOS implementations
with outstanding performance and compactness. When burst-mode is coupled with
a timing inequality, the circuits can be verified as hazard free.

1 Introduction

Three major constraints — speed of operation, size, and design time must be considered with any
computer architecture, be it a commercial product or a laboratory prototype. As integrated circuit
technology improves, the amount of logic that can be placed on a VLSI circuit increases quadrat-
ically. Without improvement in design methodology, the design time of circuits will also increase
quadratically. Synchronous design techniques are facing critical design and performance difficul-
ties because clock signals are required to drive a quadratically increasing number of components.
This problem is evident both in clock skew problems and the increased difficulty in tuning the
performance of all the logic blocks to match the clock period.

Asynchronous circuits, although a viable approach, have generally been regarded difficult to
design due to the requirement that all hazards be eliminated for them to work properly. Removing
the hazards is viewed as an expensive process in both design time and circuit component count.
An additional problem is the difficulty in specifying and describing asynchronous circuits in the
absence of commercially available tools

'This work is supported by Hewlett Packard Company, Palo Alto, CA.

Asynchronous systems are built hierarchically, and consist of two types of cells — leaf elements,
and systems made by interconnecting leaf elements and/or other cells. The design of the elemental
leaf components in asynchronous designs may be more difficult and require more devices than a
synchronous version. However, system level design is simplified because correct operation consists
of assuring proper sequence of operation, without regard to time [17]. This ability to decompose
a complex system into a hierarchical network of interconnected functional blocks permits us to
automate the production of large systems. This automation has a great potential for fast design
turnaround.

The ability to isolate and localize communication can also result in faster operation, less area,
and simplified design. The speed of operation of asynchronous circuits has been demonstrated to be
on par with that of their synchronous counterparts [7,10]. Because the elemental components are
small, the task of removing hazards and producing correctly operating asynchronous components
is manageable.

This paper presents a synthesis tool, called the Most Ezcellent Asynchronous Tool, or MEAT,
that can greatly reduce design and implementation time while also generating compact self-timed
circuits with excellent speed of operation. MEAT allows the designer to specify logical operation of
asynchronous leaf components in a commonly used format. This specification is then automatically
compiled into an implementation, freeing the designer from the details of asynchronous circuit
stipulations. The process is fast enough that alternative design options can be freely examined.
The main advantages of MEAT may be summarizes as follows:

1. Asynchronous circuits are specified for MEAT by a variant of mealy state machine. This
specification is familiar and natural for any hardware designer. These specifications are a
powerful way to encapsulate concurrency, communication, and synchronization in an accurate,
intuitive and easy to understand form.

2. The automated synthesis reduces the design time. It also frees the designer from understand-
ing the underlying transformations required to produce hazard-free asynchronous circuits.

3. To achieve the highest performance and smallest circuit size, MEAT compiles the specification
into a set of complex CMOS gates. This eliminates the need for slow, inefficient “library”
components required by many other synthesis strategies [1,5].

This tool has been used to develop the largest known fully self-timed control-based circuit to
date called the Post Office. Performance and circuit size were critical, and particular attention was
paid to eflicient circuit synthesis. The Post Office is a fully self-timed communication co-processor
for message passing distributed memory multiprocessors. The circuit contains 300,000 transistors
and has an area of 11 x 8.3 mm, fabricated in a 1.2 micron CMOS process by MOSIS.

The performance of circuits produced by MEAT is reflected in the the Post Office implemen-
tation. The Post Office can buffer up to 25 packets for delivery and has a bandwidth of 1%
GBit/second. This performance was achieved using MEAT for asynchronous finite state machine

(AFSM) synthesis with little attention given to the floor plan and data paths which adversely

affected the overall performance?.

In general there are two types of components used in an integrated circuit — control logic and
data path logic [8]. MEAT can efficiently generate control circuitry, but was never intended to be
used for data path logic design (such as registers, RAM cells, etc.). Hence in the Post Office, all
data path circuits were designed by hand while this tool was used for the control path.

Section 2 describes the state machine specifications, rules and restrictions. Section 4 describes
the synthesis techniques used to generate our circuits. Section 5 discusses the correctness of our
synthesis and verification of these designs.

2 State Machine Specification

Asynchronous circuits are specified for MEAT as a burst-mode Mealy state machine. The input
specification is compiled into a set of CMOS complex gate. The result is an implementation which
is efficient both in terms of speed and area,

2.1 Burst-Mode Specifications

In order to achieve the required hazard free AFSM implementation, it is necessary to place con-
straints on how inputs are allowed to change. The most common is the single input change or
SIC constraint {20]. SIC circuits may require state transitions after each input variable transition.
SIC circuit response will be artificially slow in cases where the next output does not occur until
several inputs have changed, either due to too many state transitions or due to the external arbiters
required to sequence the multiple inputs. Multiple input change or MIC circuit design methods
have been developed [20,3] but either required input restrictions or delays which were unsuitable
for performance-oriented implementations. As a result a design style called burst-mode was devel-
oped and used in the Post Office implementation which permits a certain style of multiple input
change. The burst-mode implementation method does not require performance inhibiting local
clock generation or flip-flops.

Burst-mode state diagrams allow a constrained form of MIC and multiple output change (MOC)
operation. When a state change or output is triggered by a conjunction of input signal transitions
(an input burst), these signals are allowed to change in any order and at any time. Allowing MIC
operation simplifies the definition of synchronization operations and tends to more closely match
the designer’s mental model of the hardware.

Burst-mode transitions can be defined in terms of flow table specifications. A flow table [20] is
a two-dimentional array structure which captures the internal and external states of a circuit. The
rows of the table correspond to the internal state of the circuit, and the columns to the state of the
inputs. Table entries are ordered pairs containing the next state and current output information.

2With an improved floor plan, the performance could be increased by 20-40% with the same control cells and
function units.

When the next state in an entry corresponds the the current state, flow table is in a stable state,
otherwise the current state is unstable and an internal state transition will occur. A simple way of
understanding the flow table is to note that horizontal movement within a row represents changes in
the values of input signals, while vertical movement within a column represents a state transition.

Rule 1 Burst-mode transitions always begin in a stable initial state of the flow table.

Definition 1 Burst mode allows MIC and MOC operation. All inputs required to effectuate the
transition are called the input burst, and the outputs generated by the transition are called the
output burst.

Rule 2 Fach input burst must contain at least one input signal transition. Output bursts may be
empty.

Definition 2 The input burst will move the current flow table state horizontally in the same row
until all inputs in the burst have changed. This final state is called the burst-mode transition state.

Rule 3 All intermediate states reachable by an input burst between the initial state and the final
transition state must contain the same next state and output eniries as the initial state.

Rule 4 The transition state entries in the flow table will lead to the nezt stable initial state and
will change the output entries corresponding to the output burst.

Rule 5 No input change may occur until all outputs have been asserted and the next stable initial
state in the flow table has been reached. All circuit elements must also be allowed to stabilize before
the next inputs arrive. This is the burst-mode stability requirement.

Burst-mode is similar in nature to the fundamental mode of operation. However, each allowed
input burst will result in a particular path through the FSM state space, starting at the stable
entry where the burst begins. To correctly implement MIC behavior the circuit must remain stable
in the initial row until all inputs in the input burst been accepted, at which point the transition
state will be reached. Correct implementation of the state transition requires that no new inputs to
the AFSM arrive until the state transition has occurred. Further, correct implementation of MOC
behavior requires that all outputs in the output burst are generated before any subsequent inputs
arrive.

It is not necessary in a physical implementation that a state change occur in each transition
state. Output bursts and state changes can also be generated in parallel.

Definition 5 Signal transitions, Sy, are of the set Sy = S x {1,1}. Transitions are partitioned
into inputs and outputs, Sp; = Sy x{1,1} and Sro = So x{t,1}. All signal transitions are assumed
to be monotonic.

Voltage levels are subsumed by the definition of signal transitions using positive logic. Hence
at corresponds to signal a becoming asserted, at which time it will change from a low voltage to a
high voltage.

Definition 6 Steady state signals, Ss;, are of the set Ss; = Sy X {-, €}.

Signals that will not change value are represented as being asserted or unasserted. Placing a
bar over the signal name indicates the signal is unasserted, e.g. input.

2.3 Correct Graph Composition

The following rules are used to construct valid MEAT state graphs.

There are a finite number of vertices, V, in the state graph G. Each vertex represents a stable
state and is drawn as a circle. Tach state is assigned an arbitrary unique number in the set
{0...n — 1} where n is the number of states. The initial state is commonly labeled as state zero.

Rule 6 All inputs and outputs must strictly alternate between rising and falling transitions for any
valid path in the directed graph G.

The necessity to unambiguously mark transitions from the state of signals in the input set
causes transitioning inputs and outputs to change an even number of times when there are loops
in the state graph. The designer of a state machine must guarantee that no two transitions of the
same polarity (assertions or deassertions) can occur consecutively.

Definition 7 The function ¢ consists of an input burst IB and an output burst OB. Every edge
e € E is labeled with its input burst and output burst.

Definition 8 IB = STE U STDC U SSIB: where STE Q T[, STDC C T], and SSIB C S]. AZSO, Zf
s€ Sy, thenVs € Srp s € Srpc ANs & Ssip. When s € Sy then Vs € Srpc : 8 ¢ Ssip. Finally,
STE ;é €.

All transitions e € E are labeled with an input burst and output burst. Each input burst must
contain one or more essential transitions (S7g) and may contain “don’t care” transitions (Srpe)
also called long arcs. Long arcs may change value across a set of states, and are not constrained
to a single state transition. The essential signal transition(s) will enable the state transition and
output burst to fire. Steady state (Ssyp) inputs that will not change during the state transition
need only be included to make unambiguous choice between two edges exiting a node. Additional
steady state inputs may also be included for clarity. Long arc transitions are placed in square
brackets in the input burst to distinguish them from essential signal transitions.

Definition 9 OB C 1y

Definition 10 A transition e € E will be satisfied and fire only when all Spg signal transitions in
the input burst have occurred. Any Srpc stgnal transitions may occur.

Definition 11 Any signal transitions specified by the output burst OB of a transition e € E will
not occur until the transition has been satisfied as specified by the input burst IB. At this point the
output burst will fire and the state change will take place.

Rule 7 No edge e; exiting a vertezx v can be a subset of another edge e; exiling from the same
vertez. There is no limit to the number of edges e € E eziting node v € V.

Multiple arcs can exit from a node; a given node may also be the destination for any number
of transitions. These state graphs can be drawn in a reduced form where a single state shares
a number of compatible operations. When this is done transitions may return to the originating
state. Some of the input bursts may then require steady state signals to uniquely distinguish edges
exiting a given vertex as can be seen in Figure 2.

MEAT state graphs allow multiple input change (MIC) transitioning. When an input burst
contains more than one transitioning signal, these signals may change in any order and at any
time. This indicates a “synchronization” of two or more parallel functions.

Any unspecified signal transitions are considered illegal by the environment. At least one input
change is required to generate a transition as there is no transparent clock!

Rule 8 Let Sppe; represent the union of all “don’t care” or long arc Srpc signal transitions for
all edges into vertez v. If Srper # € then each edge exiting vertex v must satisfy the equation
Vs; € Srpcr i 8i € Srpc V (Si € Sreg A (38]' € Srg A Sj ¢ STDCI))-

Srpc input transitions may change at any time within a sequence of several states, with strict
synchronization not required until the final state. All long arcs must end as an essential transition
Srg in an input burst, and any set of long arc transitions may not uniquely cause a vertex to fire.

Long arcs can be avoided in state machine implementation by using external hardware such as
C-elements to prevent the signal from arriving at the state machine until the strict synchronization
point. This may require an additional output from the state machine to “enable” the input when
the state machine can accept it. State machines using long arcs may result in improved performance
and use less hardware than implementations requiring external hardware and outputs.

Rule 9 When multiple edges exit a single state, there must be at least one pair of mutually ezclusive
signals for all pair of edges exiting the state [12]. If there is no pair of mutually exclusive signals
for all pair of edges then the state machine can only operate in single input change (SIC) mode.

IR 1R2
T i N2
IR1 182~ TAL IR2
N IR2- 1 UW N2
TA? TAT
R2| ||R2R1 IRL-RY |1RI
| TR gy o 1A | TR

O— =0

Figure 2: Naking Arbiter SIC State Machine Specification.

The Naking Arbiter of Figure 2 is a SIC state machine. Since the environment permits the R1
and R2 signals to arrive concurrently these signals pass through a sequencer which converts MIC
signals into SIC signals.

Nondeterministic behavior inside a state graph is not allowed. However, the operation of a
state machine may be nondeterministic if a mutual exclusion element (ME) is used to order the
arrival of two or more inputs into the state machine. MEs are analog devices, and are the only
external device that may be required to implement control functions using this methodology. They
are easily fabricated in most VLSI technologies, requiring 12 transistors in CMOS. MEs are used
in the sequencer.

2.4 Textual State Machine Description

Presently MEAT does not contain a state graph editor so a textual specification format is used. The
more natural graphical state machine description may be trivially mapped to the textual version.
Figure 3 is the textual description for the flip flop of Figure 1.

The textual description contains two parts. The first section contains the general description
and constraints of the state machine. These are specified by keywords followed by an identifier or
list of values. The second section contains the behavioral description of the state machine. Each
arc in the state graph contains one :state keyword followed by the initial stable state number, the
input burst, the final stable state number, and the output burst. Inputs are specified in a sum-of-
products form, the output specified as a single AND term. Signals being asserted are represented
by their name. When a signal is unasserted, it is postfixed by a tilde.

3 MEAT Design Style

Key factors influencing the performance of a circuit network are (a) the number of gate delays
required to generate the output, (b) the number of series transistors between the power rails and
outputs, and (c) the load and stray capacitance on the inputs and outputs. The design of MEAT

:fsm Asynch-Flip-Flop ;FSM that interfaces sends to the PE.

:in (D Clk) ;list of input variables

rout (Q) ;list of output variables

:init-in () ;value of inputs in initial state (optional), default is all zero.
:init-out () ;value of outputs in start state (optional), default is all zero.
rinit-state 0 ;initial state (optional), default is 0.

:mex () ;sets of mutually exclusive inputs (optional), use as many as needed.
:state 0 (C1k™) 0 ()

:state 0 (D * Clk) 1 (Q)

:state 1 (C1k™) 1 ()

:state 1 (D~ * Clk) 0 (Q7)

Figure 3: Textual specification of Naking Arbiter state machine

state machines attempts to address these issues as well as avoid potential circuit failures that arise
from isochronous forks and other assumptions.

Figure 4 shows a typical state machine, and a more detailed construction of MEAT generated
state logic. The only signals accessible to the outside are the inputs, X, and the outputs, Z.

State

AFSM

E X —Trigger]l:: Driver f—> 7
’ Y . Output I

Figure 4: State Machine Generation

The trigger box has two functions. First, high capacitance inputs or inputs with a slow rise
time will be passed through an inverter or schmitt trigger. This will reduce the load on the input
line and make a crisp local signal which can avoid any gate threshold variances which could result
in hazards [21]. Secondly when an unasserted input signal is required by the state or output boxes,
the trigger box will invert that signal. Each input will have its inverted and uninverted signal
shared among all function blocks in the state machine to eliminate hazards and create a smaller
implementation. All components in a state machine are assumed to be physically close, so wire
delays of the same internal signal between different components in a state machine is insignificant.
The trigger box will constitute zero or more gate delays for any MEAT implementation.

The output and state boxes generate the feedback (state) variables, Y, and output signals, Z,
respectively. Post Office implementations usually consist of a single complex gate to realize the
function as described in Section 4.4. This can reduce both the number of gate delays and devices
in the implementation of a function block. Complex gates generally produce the unasserted signal,
so an inverter may be required to produce the positive voltage levels. The state logic will contain
two or more gate delays, and the output logic consists of one or more levels of logic.

4 Synthesis

4.1 Specifying A Flow Table

The first automated task of MEAT is to generate a burst-mode flow table from the textual speci-
fication of the state machine. Each row of this table represents a node in the state diagram. Each
column represents a unique combination of the input variables. For each possible combination of
inputs and state variables, this table will specify the asserted outputs (if any) and next-state values.
If a next-state value is the same as that of the current row, the state machine is said to be in a
stable state. If the next-state value specifies a different row, the table entry represents an unstable
state.

All states will have a stable entry point, where the input burst begins. The input burst is
satisfied when it reaches an unstable state that will transition directly to the next state specified
and fire the output burst.

All signals in the output burst are labeled as don’t cares in the unstable exit state of the flow
table. Since all state transitions are STT, the monotonicity of output voltage changes is guaranteed,
regardless of whether the unstable entry is mapped to a zero or one. When the output change is
made in the unstable entry of the flow table, performance of the AFSM is improved as the outputs
and state variables are changed concurrently. This performance is gained but the burst-mode
stability requirement must be verified. When the output change is delayed until the next stable
state is reached, the state is changed which then causes the output to change in serial, costing
some performance. MEAT places priority on producing the simplest circuit, so an assignment is
chosen which yields the simplest circuit. This can result in faster average operation as the logic
will be smaller, and more states may be compatible which results in fewer state variables and state
changes.

When multiple inputs change, the subcube spanned by the entry and exit points of a state in
the flow table must correspond to a single product term of the function. The values of the outputs
and current state are identical to the entry point for all stable states in each of these cubes. MEAT
will automatically cover all transitioning terms of each MIC cube with a single term. In some cases
these cubes can have overlapping coverage. Any entry in the flow table not reached by input bursts
is labeled as “don’t care” and can take on any value for the outputs or state values.

These don’t care entries are disallowed input sequences for the current state. As these entries
cannot occur, any value can be assigned to them in the state reduction and circuit specification
steps. The inclusion of don’t cares can significantly simplify the state reduction and lead to much
simpler circuits. As it is not evident at problem specification time which values will lead to the
simplest circuit, value assignment is deferred to a later time.

4.2 Selecting The Minimized State Machine

The next step in the design process is to attempt to reduce the number of rows in the flow table
by merging selected scts of two or more rows into one while retaining the specified behavior. The

11

procedure for selecting these row sets is not complicated, but for brevity will not be described in
this paper. It cannot be shown that minimizing states in a specification will simplify the hardware
or increase the performance of a state machine (its an NP hard problem). However, a reduced state
machine can result in fewer state variables which will likely result in a smaller, faster implementa-
tion.

After specifying the flow table, MEAT calculates the set of mazimal compatible states. The set
of maximal compatibles consists of the largest sets of state rows which can be merged, which are not
subsets of any other such set. There may be various valid combinations of the maximal compatibles
that can be chosen to produce a reduced table with the same behavior, and the combination that
leads to the simplest implementation is not always evident. Experience indicates that the simplest
solutions tend to be either (a) the solution with the fewest number of states, or (b) a solution where
only a single state variable needs to change for all state transitions in the implementation.

The final choice of minimized states must be chosen by the designer from the the set of original
state markings. There are three constraints on this choice. First, only compatible states as returned
by MEAT may be combined into a single reduced state (states must be compatible). Second, each
state in the original design must be contained in at least one of the reduced states (the covering
must be complete). Third, selecting certain sets of states to be merged may imply that other states
must also be merged (the covering must be closed). For example, merging two states states 0
and 1 may require that states 2 and 3 must also be merged. If a covering is chosen which is not
closed, MEAT will inform the user that the pairs are not valid. Note that all states in a maximal
compatible need not be combined into a single state in the final implementation.

4.3 Generation of Implementations

A set of state variables is then assigned to uniquely identify each of the new rows resulting from
the reduction step. In contrast to synchronous control logic design, state variable values may not
be randomly assigned to states, but must be carefully chosen to prevent races. The MEAT state
assignment algorithm is based on a method developed by Tracey [19]. Several valid assignments
may be produced, and each will be passed to the next stage for evaluation. This will result in
unique implementations for each state assignment.

After state codes are assigned, the next synthesis stage computes a canonical sum of prod-
ucts (SOP) boolean expression for each output and state variable. An algorithm developed by
Nowick [15] is used which produces guaranteed hazard free two level combinational logic implemen-
tations. There may be multiple unique and minimal equations for each output or state variable.
The large number of don’t care entries typically present in MEAT flow tables increase the likelihood
that more than one minimal expression will be found.

Each equation is given a heuristic “weight” that calculates the estimated performance and
difficulty of building the function in CMOS. The equations of minimal weight are usually chosen
for each output®. When multiple state assignments are produced, the total weight for each entire

3Equations of larger weight are chosen when they reduce the number of inputs and their complements. This can
simplify the final circuit.

12

implementation is calculated by a summation of the solution of minimum weight for each state
variable and output for each implementation.

4.4 CMOS Optimization Of SOP Equations

Finally there is a back-end to this tool set that will generate minimized complex gates and schemat-
ics. This interfaces with the Electric [16] design system for automatic schematic layout. The com-
plementary nature of CMOS n-type and p-type devices is exploited to generate a single, complex,
static gate through simple function preserving transformations. These transformations can increase
performance while reducing the area and device count. As an SOP equation is folded into a single
gate, the number of logic levels required to generate the output can drop from 2 to 1. If the func-
tion is complex and requires more than three or four transistors between the power rails, it will
be broken up into a tree of complex gates with 2 or more logic levels. This tree will have better
overall performance because there are fewer gates between the power rails and the intermediate
node capacitances are reduced [18].

The single complex gate generates the output in negative logic (low voltage levels for asserted
signals). A convention of positive logic levels is assumed for all signals external to the state machine,
requiring that the outputs be inverted. This is a feature for performance reasons as the gain of
the inverter can be used as a driver to increase signal strength and reduce rise and fall times while
placing minimal output load on the complex gate. When outputs need to drive an extreme load, a
buffer tree will be used.

All state machines also require a reset signal to place the storage logic into the correct initial
state. Storage in these state machines is implemented via the state variables. If a single complex
gate is used to generate the state variable, the storage loop is reset by NOR-ing the output with
the reset line. For complex gate trees, a resetable NAND gate is used. Although the performance
of the NOR gate is not optimal, the load on the feedback lines is local to the state machine and
typically small so a large gain is usually not required. When loads are large, such as where a state
variable also serves as on output, signal amplification will be accomplished in the driver block of
Figure 4.

5 Implementation Specifics

5.1 Device Constraints for Hazard Removal

The class of delay-insensitive and even speed-independent circuits has been shown to be very
limited [2,11). When there is more than one essential prime implicant in a sequential MIC circuit
created directly from flow tables it may not be possible to generate hazard-free implementations.
Flow tables can produce multiple prime implicants, and hence hazards may inherently exist in the
specification.

These function hazards will only occur using an unbounded delay model. These hazards have
been circumvented in other work by using bounded delay models coupled with large inertial delays

13

or certain timing assumptions [20,14,9]. Most of these techniques require extra logic or result in
decreased performance due to the delay elements or extra logic.

Function hazards can be eliminated in MEAT circuits as well by using a bounded delay model
based on the physical properties of the circuit realization. A simple timing inequality can be used
to verify that the circuit will operate correctly under the bounded delay model:

dTmin + dSmin + domin > dTmaa: + dOmar (1)

The minimum and maximum delay of any input (z;) through the trigger box is represented as
dT,.;, and dT,,,, respectively. The minimum delay through a state variable feedback path, or ¥;, is
represented by dSpi,. The minimum and maximum delay through the output logic is dO.n;n and
dOpmas. This timing assumption intuitively states that all logic will see the input burst (IB) and
state change (SC) as two discreet events Yz; € IB < y; € SC. In an actual circuit, the IB and SC
may actually be “pipelined” through the gates, but the SC cannot interfere with the IB operation.
Equation 1 is simplified due to the single transition time nature of MEAT implementations.

Any timing assumption requires knowledge of the implementation mechanics and the implemen-
tation media. Equation 1 can be checked and guaranteed to hold for our CMOS implementations
generated through MEAT without adding any performance inhibiting additional delays or gates.
This timing constraint may be applicable to other technologies.

The following is a summary of the properties of our state machines, mainly condensed from
Section 2. Due to the construction steps taken in Section 4.3, all state and output combinational
logic is hazard free. Combining this invariant with the assumption that the timing inequality of
Equation 1 holds, with the following state machine specification properties, it can show that MEAT
implementations are hazard free.

1. Inputs are monotonic, but can be MIC, allowing sets of input changes to be grouped in
“bursts”.

2. The completion of all input bursts are deterministic and unambiguous.

3. No outputs or state variables can change until the input burst is complete.

4. All state transitions are STT.

5. Long arcs cannot effectuate a state change.

6. The state machine operates in burst-mode, where no new inputs may arrive until the feedback

variables are stable with the exception of long arcs.

Theorem 1 If each output and state function can be shown to contain no logic hazards when
adhering to the above conditions, then by Fquation 1 the entire state machine is hazard free.

14

Reg-S

|
1 fueoy] 1o

W8
Reqg-S Reg-S

A Y

Logic with d-trio hazard D-trio hazard removed

Figure 5: Hazard removal from “Sendr-Done” state machine

Proof: All logic hazards are removed from combinational logic. Therefore the state machines
will be hazard free for input changes without state changes, or state changes without input
changes. Equation 1 guarantees that the input change and state change are non-interfering
events to the logic, appearing as sequenced input and state changes. Hence the logic will
behave as combinational logic, which is hazard free.

5.2 Verification

Speed-independent and delay-insensitive analysis of MEAT AFSMs will show that there are a
number of hazards and races that can occur. Dill’s verifier [4] has been used to evaluate our
designs, showing the hazards that are present in these circuits. This allows us to investigate
concrete examples where the timing inequality of Equation 1 must hold.

Figure 5 shows a typical function hazard that is present in designs synthesized by MEAT, called
a d-trio hazard. D-trio hazards can generate static 1 or 0 hazards. In this example, the two inputs
change from “01” to “11”. For example, in the circuit on the left in Figure 5, if the Done AND gate
sees a change in Y before it sees the change from the inverted W8 signal, a static 1 hazard will occur
on the output. Examining the physical performance of the devices and wires in implementations
such as this which contain d-trio hazards will show that the timing inequality holds and that these
hazards will not occur in practice. Dill’s verifier will also point out critical races. The cause of these
is similar in nature to the d-trio races as it is caused by the state change burst being evaluated by
a logic component before the input burst.

Transformations do exist that will remove hazards thus convert many MEAT circuits into speed
independent gate-level implementations. The second circuit in Figure 5 shows the transformation

15

which has removed the d-trio hazard. The extra inverter changes the order in which logic blocks
are forced to evaluate input changes. In this example, the performance is not effected by the change
as no extra gate delays are required to generate any output. However, the circuit is larger.

Yo-q
vo H— TReq-d[_ Rd-IG4
Y1-4
IRd-IQ . H—==*TAck
Ak v1 P Sanpd! S 10
' L0101 RAIQ
10 01 OR —>TAck
Rd-1Q — >0 = ND r TReq
TReq > 010
TAck = Y0 - Rd-1Q - TReq + Y1 - Rd-1Q - TReq Yo _‘ Y1 _]
(a) SG Segment (b) AND-OR Implementation with Hazard (¢) Cox-;lplex gate remgving hazard.

Figure 6: PE-Send-Ifc Hazard Removal with Complex Gate

Complex gates can also result in speed-independent implementations as races between different
logic elements can be eliminated. Figure 6 shows a piece of the state graph for the PE-Send-Ifc
AFSM from the Post Office. Two of the seven AND terms in the implementation of TAck generated
by MEAT are shown in (b) with an AND-OR gate implementation. This circuit as shown has a
dynamic 1 hazard. If the top AND gate is significantly slower than the bottom AND gate, then the
bottom AND gate can turn on then off before the top AND gate ever fires, producing the hazard
as the output can bounce 0-1-0-1 before stabilizing. The TAck function is designed as a single
complex gate in (c) as generated by MEAT. This complex gate removes the hazard entirely.

If the timing inequality from Equation 1 holds, then the dynamic 1 hazard in Figure 6 (b) will
not occur in practice. This can be verified in a circuit realization by examining the physical devices
and their loads. The complex gate transformations may not be necessary for the circuit to perform
in a speed-independent manner. Implementations that only use single complex gates result in a less
strict timing assumption. Here the weakened constraint of dSmi, > dT,, is sufficient to guarantee
correct circuit operation, where dT,,,, will commonly be the maximum delay of a simple inverter.

6 Summary

There is a need for good tools to be developed in the asynchronous logic community that can mask
the implementation complexity of these devices and show excellent performance. MEAT is a tool
that was developed for this purpose and was used to build a very large self-timed communication
processor. It uses a state graph interface which is familiar to both synchronous and asynchronous
design engineers, and automatically produces a transistor schematic suitable for implementation.

16

All state machines designed with this tool have worked flawlessly and the performance is outstand-
ing.

One goal in the development of this tool was to generate fast, compact, efficient circuits. Showing
the excellent performance that can be achieved with asynchronous designs is an important part
of forwarding this technology to the hardware community at large. Many of the Post Office state
machines have been offered to the design and tool community as samples of of a real design. The
community can use these state machines as test cases for tools as well as compare performance
results between different approaches. The state machine specification described in this paper is
simple to map to most other specifications. We are also interested in specifications others have
used to develop circuits. We would also like to challenge others to produce hardware displaying
better performance to our tool set!

Building a large, fully self-timed circuit has resulted in many insights. First, this tool set must
be completed. The back end only produces schematics. To significantly cut design time of high
performance self-timed implementations requires that the back end also produces layout. Initial
investigation leads us to believe that it would be fairly straight forward to produce layout from
our schematics. Secondly, there are a number of performance factors that should be included in
the tool set. As a circuit is passed down through the different stages of the tool, some information
is lost. The complexity of the algorithms and simplicity of the circuits could be enhanced by
passing some of this information down. Third, state graphs lack the formalisms required to analyze
compositions of these circuits for safety, liveness, deadlock, and other properties. A process calculus
is currently being investigated as a means of specifying and generating MEAT state graphs as well
as proving correct operation and construction. Lastly, the timing inequality is dependent on device
parameters and circuit technology. A tool which can automatically analyze circuits for worst-case
conformance to this inequality and to the stability assumption will greatly increase the confidence
of implementations where all hazards cannot be removed with complex gates and input orderings.

7 Acknowledgments

This work could not have been possible without the help of a large set of people, and many of
the results are not solely due to the author. In particular, Al Davis and Bill Coates at Hewlett
Packard Laboratories in Palo Alto were instrumental in the development of MEAT, including much
of the coding of many of its functions. Steve Nowick at Stanford University has also contributed
significantly to this project through direct contributions and insightful discussions. He ported
Dill’s verifier to our toolset and modified it to accommodate the burst-mode timing model. He also
discovered and corrected some errors in our synthesis algorithms. I would also like to thank Dick
Lampman for supporting this project at Hewlett Packard.

17

References

(1] E. Brunvand and R. F. Sproull. Translating Concurrent Communicating Programs into Delay-
Insensitive Circuits. In Randall Bryant, editor, International Conference on Computer-Aided
Design, ICCAD-89. IEEE Computer Science Press, 1989.

[2] J. A. Brzozowski and J. E. Ebergen. On the Delay-Sensitivity of Gate Networks. Technical
Report 90/5, Eindhoven University of Technology, July 1990.

[3] Henry Y. H. Chuang and Santanu Das. Synthesis of multiple-input change asynchronous
machines using controlled excitation and flip-flops. IEEE Transactions on Computers, C-
22(12):1103-1109, December 1973.

[4] David L. Dill. Theory for Automatic Hierarchical Verification of Speed-Independent Circuits.
MIT Press, 1989.

[5] Jo C. Ebergen. A Formal Approach to Designing Delay-Insensitive Circuits. Technical Report
Computing Science Note 88/10, Eindhoven University of Technology, May 1988.

[6] W. L Fletcher. An Engineering Approach to Digital Design. Prentice-Hall, Englewood Cliffs
NJ, 1980.

[7] A. B. Hayes. Self-Timed IC Design with PPL’s. In R. E. Bryant, editor, Third Caltech Con-
ference on Very Large Scale Integration, pages 257-274, Rockville, Maryland, 1983. Computer
Science Press, Inc.

[8] John P. Hayes. Computer Architecture and Organization. Computer Science. McGraw Hill,
1978.

[9] L. Lavagno, K. Keutzer, and A. Sangiovanni-Vincentelli. Synthesis of Verifiably Hazard-Free
Asynchronous Control Circuits. Technical Report UCB/ERL M90/99, Univ. of California at
Berkeley, November 1990.

[10] A.J. Martin, S.M. Burns, T.K. Lee, D. Borkovic, and P.J. Hazewindus. The Design of an
Asynchronous Microprocessor. In C.L. Seitz, editor, Decennial Caltech Conference on VLSI,
pages 251-273. MIT Press, 1989.

[11] Alain J. Martin. The Limitations to Delay-Insensitivity in Asynchronous Circuits. In W.J.
Dally, editor, Sizth MIT Conference on Advanced Research in VLSI. MIT Press, 1990.

[12] R. E. Miller. Switching Theory, volume 2. Wiley, New York, New York, 1965. Chapter 10 is
a review of Muller’s work on speed independent circuits.

[13] Cho W. Moon, Paul R. Stephan, and Robert K. Brayton. Specification, Synthesis and Verifi-
cation of Hazard-Free Asynchronous Circuits. Technical Report UCB/ERL M91/67, Univ. of
California at Berkeley, August 1991.

18

[14] S. M. Nowick and D. L. Dill. Synthesis of Asynchronous State Machines Using a Local Clock.
In 1991 IEEE International Conference on Computer Design: VLSI in Computers and Pro-
cessors. IEEE Computer Society, 1991.

[15] Steven M. Nowick and David L. Dill. Exact Two-Level Minimization of Hazard-Iree Logic
with Multiple-Input Changes. In 1992 International Conference on Computer-Aided Design
(ICCAD-92). IEEE Computer Society, 1992.

[16] Steven M. Rubin. Computer Aids for VLSI Design. VLSI Systems. Addison-Wesley, 1987.

[17] Charles L. Seitz. Introduction to VLSI Systems, chapter “System Timing”. Addison Wesley,
1979.

[18] Ivan E. Sutherland and Robert F. Sproull. Logical Effort: Designing for Speed on the Back
of an Envelope. In Carlo H. Sequin, editor, Proceedings of the 13th Conference on Advanced
Research in VLSI, pages 1-16. UC Santa Cruz, March 1991.

[19] J.H. Tracey. Internal State Assignments for Asynchronous Sequential Machines. JEEE Trans.
FElectronic Computers, EC(15):551-560, August 1966.

[20] S. H. Unger. Asynchronous Sequential Switching Circuits. Wiley-Interscience, New York, New
York, 1969.

[21] C. H. van Berkel. Beware the Isochronic Fork. Technical Report Nat. Lab Rep. UR 003/91,
Philips Research Laboratories, January 1991.

19

