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Abstract

In this research, dynamic optimization of a minimally constrained bipedal model (free to

exhibit almost any arbitrary gait) is used to find the characteristics of energy efficient gaits.

I find that using a work-based cost yields gait optimization that automatically predicts

many features of human locomotion. This includes the optimality of walking and running

at their respective speeds. The results show the determinant energetic factors are: (i) the

cost of stance-leg work to make up for energy loss during downward-to-upward redirection

of body motion at each step; and (ii) the cost to move the swing leg forward and prepare

it for support transfer. To minimize the net energetic cost, the calculations discover various

strategies. For energy-effective walking the critical control actions are identified as: (i) a

burst extension force along the support leg just before heel-strike; (ii) a burst hip torque

at the start of leg-swing to accelerate the swing leg motion; and (iii) a decelerating burst

torque at the end of swing to reduce foot velocity at landing, leading to less energy loss at

support transfer between the legs. The burst hip torques at the beginning and end of the

swing phase are also used in energy-efficient running. However, exploiting an extension force

before heel-strike is not possible in running as there is no support leg during flight. Instead,

energy-loss at heel-strike can be minimized by landing on a near-vertical leg.

Swing-leg retraction in walking is also investigated in depth. The approach focuses on

simple closed-form analytic solutions. The three principal control actions identified in my

gait optimizations are replaced by impulsive forces and torques. With this simplified model

it was shown analytically that: (i) it is energetically favorable to delay the retracting hip

torque until the end of the pre-emptive push-off; (ii) swing-leg retraction torque reduces

the push-off force; and also (iii) increases the maximum possible walking speed; and (iv)

the energetic advantage of active swing-leg retraction depends on the step length, average

walking speed, ratio of actuator efficiencies for positive and negative work, and percentage
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of active work done during heel-strike.
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1.5 Simplest walking model; an irreducibly simple bipedal model that exhibits
stable passive walking on a shallow ramp. . . . . . . . . . . . . . . . . . . . . 8

1.6 The stabilizing effect of swing-leg retraction in walking. Swing-leg re-
traction starts at a fixed time in the step cycle, e.g.∆t after mid-swing. With a
retraction strategy, the step length will be a decreasing function of the step pe-
riod (or retraction period). a) If the biped is perturbed to go faster than nom-
inal, heel-strike will occur earlier-than-nominal, and the shorter-than-nominal
retraction time will cause the swing leg take a longer-than-nominal step. This
longer step causes more collisional dissipation, which with the nominal push-
off force (energy input) results in a slowing towards the nominal gait. b)
If the biped is disturbed to walk slower than nominal, the longer retraction
time causes a reduced step length, a smaller collisional dissipation, and thus
a speeding of the biped to return toward its nominal gait. . . . . . . . . . . 13

2.1 The biped model with torso. The legs and the torso have distributed
mass, with their center of mass, Gleg and Gtrs, located b and a distances from
the hips. Feet are massless and always stay parallel to the ground. Thus the
ankle actuators can apply torque only when the feet are on the ground. Each
legs is equipped with a telescoping actuator that can change the leg length.
The lower part of the legs, between the telescoping actuators and the feet, are
massless. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
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2.2 Biped on different terrains. Panel (a) shows different forces and torques
acting on the biped. Panels (b)-(d) show different terrains with the associated
reference frames. Panel (e) shows the force components associated with legi
for i=1,2. Fleg1a and Fleg2a are the leg actuator forces along each leg, while
Fleg1p and Fleg2p are the constraint forces perpendicular to each leg. . . . . . 25

2.3 Multiple shooting method and the defects at interval borders. Each
phase of the motion is divided into a few intervals. The state variables on
interval borders are determined by optimization via an iterative process. At
each iteration, the optimization procedure uses the current value of the state
variables at interval borders, e.g. yk, and yk+1, to integrate the equations of
motion over the subsequent interval. The differences between the resulting
states at the end of each segment and the states at the beginning of the
next, e.g. ŷk+1 − yk+1, are called the defects. Constraining defects to be zero
guarantees state continuity at interval borders. . . . . . . . . . . . . . . . . . 36

3.1 Leg forces in double support phase. Leg force profiles for two steps of a
sample continuous-support gait with no axial impulsive leg force, Tds,min=10% T ,
Nds =3, and Nss=7. The dashed and solid vertical lines indicate the touch-
down (TD) and toe-off (TO) instants, respectively. . . . . . . . . . . . . . . 43

3.2 Stick diagram and gait parameters of two steps of the optimal level-
ground continuous-support gait generated for V =1.38m/s with instan-
taneous DS. Axial impulsive GRFs are not allowed. In the first step, leg1 (the
solid blue lines in 3.2a) is the stance leg. In 3.2a the asterisks indicate the CoM
position. The dashed vertical lines in 3.2b-3.2g indicate the TD instant. In
3.2e the subscripts axial and perp denote the foot velocity components along
and perpendicular to the corresponding leg. In 3.2f the stance leg’s axial force
(Fleg1a and Fleg2a) and GRFs in normal and tangential directions (FF1x and
FF1y) are all scaled with body weight mtot g. Note that foot scuffing can be
avoided by decreasing the length of the swing leg’s massless portion. . . . . . 45

3.3 Stick diagram and gait parameters of two consecutive steps of the
optimal uphill continuous-support gait generated for γ=10◦, and V =0.9m/s.
DS is instantaneous, and unbounded axial leg forces at TD are allowed. In the
first step leg1 (the solid blue lines in 3.3a) is the stance leg. The asterisks in
3.3a indicate the CoM position. The dashed vertical lines in 3.3b-3.3g indicate
the TD instant. In 3.3e the subscripts axial and perp denote the foot velocity
components along and perpendicular to the corresponding leg. In 3.3f the
stance leg’s axial force (Fleg1a and Fleg2a) and GRFs in normal and tangential
directions (FF1x and FF1y) are all scaled with body weight mtot g. Also the
arrows in 3.3f represent the GRF impulses at TD. . . . . . . . . . . . . . . . 49
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3.4 Two consecutive steps of the optimal downstair continuous-support
gait generated for Hstep =−10 cm and Lstep =50 cm. Other conditions are
similar to Fig. 3.3. In the first step leg1 (the solid blue lines in 3.4a) is the
stance leg. The asterisks in 3.4a indicate the CoM position. The dashed
vertical lines in 3.4b-3.4g indicate the TD instant. In 3.4e the subscripts axial
and perp denote the foot velocity components along and perpendicular to the
corresponding leg. In 3.4f the stance leg’s axial force (Fleg1a and Fleg2a) and
GRFs in normal and tangential directions (FF1x and FF1y) are all scaled with
body weight mtot g. Also the arrows in 3.4f represent the GRF impulses at TD. 51

3.5 Two consecutive steps of the optimal intermittent-support gait on
level ground generated for V =5 m/s. Unbounded axial leg forces at TD
are allowed. In the first step leg1 (the solid blue lines in 3.5a) is the stance
leg. The asterisks in 3.5a indicate the CoM position. The dashed black and
solid green vertical lines in 3.5b-3.5g denote the touch-down (TD) and take-off
(TK) instants, respectively. In 3.5e the subscripts axial and perp denote the
foot velocity components along and perpendicular to the corresponding leg.
In 3.5f the stance leg’s axial force (Fleg1a and Fleg2a) and GRFs in normal and
tangential directions (FF1x and FF1y) are all scaled with body weight mtot g.
Also the arrows in 3.5f represent the GRF impulses at TD. . . . . . . . . . . 53

4.1 Reduced gravity apparatus used by Farley and McMahon [87]. It
consists of “a series of springs (Sp), which applied a nearly constant upward
force to the body through a bicycle saddle (S). Magnitude of force was in-
creased by stretching springs with a winch (W). Motorized treadmill included
a strain gauge force platform (F) under the tread”. The figure and the quoted
text are reproduced from [87] with permission. . . . . . . . . . . . . . . . . . 67

4.2 Dimensional metabolic cost of transport (DMet-COT) of walking
and running in partially reduced gravity conditions (i.e. reduced ef-
fective gravity only on the CoM), measured by Farley and McMahon [87].
They calculated the DMet-COT (in the original work it is called the cost
of transport) as the net metabolic energy consumption per unit body mass
and unit distance travelled. As the figure shows, the DMet-COT in running
declines with decreases in gravity faster than in walking. . . . . . . . . . . . 68

4.3 Dimensional mechanical cost of transport (DMec-COT) of energy-
optimal gaits of the model. The optimal gaits were obtained by minimizing
the mechanical COT Cmt (see Section 2.1.2) for given speed V and gravity level
gred. DMec-COT was then calculated from Cmt gred. No curve fitting is used
in this figure (lines connect the raw data points), but for more clarity some of
data points are not marked. The gait optimization correctly predicts the cost
trends of human gaits shown in Fig. 4.2. . . . . . . . . . . . . . . . . . . . . 69
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4.4 Step length changes with gravity, as predicted by energy-optimal gaits
of the minimally constrained bipedal model presented in Chapter 2. For
both walking and running, step length increases with reduced gravity, but
the changes for running are substantially greater than for walking. The red
line (running) corresponds to the 1/gred trend, where gred is the reduced grav-
ity acceleration. The step length data in this figure correspond to the optimal
gaits in Fig. 4.3. For more clarity, the results for walking at the other speeds
used in Fig. 4.3 are not shown. . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1 Biped model without torso. Two rigid legs with lengths ℓ and distributed
mass mleg. The leg center of mass is at Gleg located at distance b from the hip.
The leg moment of inertia about the hip is Ileg/H = δ mleg ℓ b. A point mass at
the hip mH represents the upper body. There is a motor at the hip applying
torque τ between the legs, and a prismatic actuator that extends and applies
push-off force F along the stance leg. . . . . . . . . . . . . . . . . . . . . . 77

5.2 A single gait cycle. The initial swing leg is thick red, the initial stance
leg is thin black. The four phases of one walking step are as follows. a) Just
after the thick leg has lifted from the ground at toe-off, the impulsive swing
thrust S starts the swing with proper initial swing velocity; b) The passive
swing of the thick leg continues until φ=2α. During passive swing the thin
leg’s extension actuator (not shown) is locked; c) Then, nearly simultaneously
the thin black leg has an impulsive push-off P and the hip has an impulsive
swing retraction R. The thin leg’s extension actuator is unlocked only at
this phase; Finally, immediately after retraction and push-off, d) the thick leg
collides with the ground with a sticking (heel-strike) collision. . . . . . . . . 84

5.3 Four phases of a gait cycle. The phase and the leg labelings are in accor-
dance with Fig. 5.2. ‘thick’ = swing leg, ‘thin’ = stance leg. . . . . . . . . . . 85

5.4 Labels of the time instants between the phases. In phase (c) the im-
pulsive push-off and retraction can have any (specified) order or overlap. . . 86

5.5 Symmetric and asymmetric solutions of passive swing. The three
numerical solutions of the hip angle φ for V =1m/s and α=40◦. For the
sake of visibility, the stance leg angle is not plotted here. One of the solutions
(thin green) is symmetric and the other two (thick red and dashed blue) are
asymmetric but cross-symmetric with each other. . . . . . . . . . . . . . . . 89
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5.6 Contour lines of the normalized angular rates at both ends of the
symmetric passive swing for some range of step angle and average walk-
ing speed. Panel (a) represents the stance-leg angular rate, and panel (b)
represents the hip-joint angular rate. In both panels, angular velocities are
normalized relative to ωn= Vn/ℓ, where Vn is the GRF-based maximum walk-
ing speed at α=0 and is defined in (5.36). This maximum speed is also
used to normalize the vertical axis. For the numerical values used for this
figure (Table 5.1) Vn=3.18m/s, and ωn=3.53 rad/s. Above the dashed line
no walking is feasible without a pull from the ground (the gait switches to a
run on non-sticking surfaces). The shaded region represents the ‘admissible
region’, defined in Section 5.4.4. This region constitutes the parameter space
and is the focus of this study. Panel (b) shows that the hip rate is positive
(extending) for all α and V inside the admissible region. . . . . . . . . . . . 90

5.7 Velocity transitions in a periodic gait cycle. A gait cycle can be con-
sidered as a sequence of continuous and impulsive phases (blue arrows). This
phase sequence can be replaced with a sequence of discrete velocity transi-
tions (black circles) relating the velocities at the beginning of each phase to
the velocities at the end of that phase (the beginning of the next phase). The
velocity mapping of phase (a) is given by (5.23), and of phase (b) is given
by (5.12) and (5.13). Equation (5.14) corresponds to the velocity mapping of
phase (c), while (5.19) and (5.22) give the velocities at the end of phase (d).
The symmetry in this figure does not imply the symmetry of the gait, though
the passive swing is considered to be symmetric. . . . . . . . . . . . . . . . . 96

5.8 Admissible region. The shaded region corresponds to the admissible com-
binations of step angle and speed. Above this region, walking is not feasible as
the calculated centripetal GRF during passive swing becomes negative, which
requires an unrealistic sucking foot-ground contact to avoid a flight. Below
the shaded region the swing-thrust impulse is applied backwards (pushes the
swing leg backward) opposite to that seen in human-like gaits. The lower
boundary of the region is set by (5.29), and the upper boundary is calculated
using (5.31). The vertical axis is normalized relative to Vn= Vmax(0), which is
the GRF-based maximum walking speed at α=0, defined in (5.36). For the
numerical values used for this figure (see Table 5.1), Vn=3.18m/s. . . . . . . 100

6.1 Partial impulses. The partial retraction impulse R and the partial push-off
impulse P as the partial area under the force/torque curves for the arbitrary
impulsive retraction torque and push-off force profiles. The timing between
the two impulses is also arbitrary. The length of the periods over which the
impulsive push-off force and retraction torque are applied is infinitesimal, but
is exaggerated here for clarity of illustration. . . . . . . . . . . . . . . . . . . 107
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6.2 Visualization of the overlap parameter s. (a) As the impulsive push-off
force F moves relative to the impulsive retraction torque τ , the overlap pa-
rameter s changes from 0 to 1. (b) The overlap parameter s can be considered
as the area under the cross-plot of p vs. r. Different paths in (b) correspond
to different episodes in (a). Impulsive F and τ are ‘synchronous’ if they are
proportional, and thus s=0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.3 The partial overlap parameter st0 . The path i and ii determine the upper
and lower bounds of the total overlap parameter s, respectively. . . . . . . . 120

6.4 Instantaneous stance leg extension rate during an arbitrary scenario of
impulsive extensional push-off force and impulsive extending retraction torque
(R< 0). The extending retraction torque tends to decrease the leg extension
rate, and results in ℓ̇(t)< 0 for t16 t6 t2. During this period the impulsive
push-off force does negative work. . . . . . . . . . . . . . . . . . . . . . . . . 122

6.5 The partial overlap parameter st2 and the minimum net overlap
parameter s for an arbitrary scenario. The area of the shaded (solid gray)
region corresponds to st2 . Given st2 , the net overlap parameter s becomes
minimum if the push-off impulse completeness parameter p(t) does not change
during (t2, t

+
r ), i.e. from t2 until r(t) = 1. In this case s is given by the area of

the hatched region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.6 Two bipedal models with torso. Each model has two hip actuators, each
acting between the torso and the corresponding thigh. The swing retraction
torque, quantified by the impulse R, decreases φ and pushes the swing leg
toward the stance leg. (a) The straight-leg model: the push-off impulse P is
provided by a prismatic actuator along the stance leg. (b) The articulated-
leg model: the resultant push-off is provided by the knee and ankle torques,
quantified by their impulses K and A, which tend to extend the corresponding
angles (consequently extending the leg). . . . . . . . . . . . . . . . . . . . . 131

7.1 Stance-leg and hip-joint angles for walking at V =1.24m/s and α=31.61◦.
The model parameters are those listed in Table 5.1. The evident accuracy of
the approximate analytical solution in this figure holds also for almost all
other step angles and speeds in the admissible region (defined in Section 5.4.4).142
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7.2 Comparison of the approximate (analytic) and the accurate (nu-
merical) angular rates at the beginning of the passive swing for different
step angles and average walking speeds in the admissible region (see Fig. 5.8).

The approximate angular rates
˜̇
θ0 and

˜̇
φ0 are calculated from the analytic so-

lutions in (7.7) and (7.14). The non-approximate angular rates θ̇0 and φ̇0 are
calculated using the numerical solution of the original EoM, given by (5.11).
For clarity, the results for only four selected average speeds are shown. The
calculations are based on the numerical values listed in Table 5.1. Vn is the
maximum GRF-based speed limit, given by (5.36). For the respecting param-
eter set Vn=3.18m/s. The figures show that the accuracy of the approximate
solutions is very good at small step angles, but it degrades at long steps and
slow speeds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.3 Contour lines of the approximate minimum retracting impulse, R̃min,
required to enforce heel-strike. The shaded area is the approximate ad-
missible region, defined in Section 7.7.3. The approximate solution predicts
that for step angles and speeds above the contour line R̃min=0 a retracting
hip torque (R> 0) is required at the end of swing phase to ensure heel-strike.

The vertical axis is the normalized average walking speed ˆ̃V = V/Ṽn, where
Ṽn is given by (7.32). The model parameter values are those in Table 5.1. . . 148

7.4 Comparison of the approximate and non-approximate admissible
regions. The shaded area corresponds to the numerically calculated admis-
sible region, defined in Section 5.4.4. The hatched area is the approximate
admissible region defined by (7.26) and (7.30). The vertical axis is the nor-
malized average walking speed. For the non-approximate numerical solution,
the normalizing speed V̂n is given by (5.36). For the approximate solution,
the normalizing speed Ṽn is given by (7.32). For the numerical values used for
this figure (see Table 5.1), Vn=3.18m/s, and Ṽn=2.97m/s . . . . . . . . . . 153

8.1 Percentage variations of the required swing thrust impulse S and
push-off impulse P with the retracting impulse R. The graph is plotted for
the average walking speed and the step period of V =1.38m/s and T =0.54 s.
The variation of each impulse is calculated relative to its corresponding value
at R=0. The model data are those in Table 5.1. The numerical results are
calculated using the non-approximate equations in (5.26) and (5.27), whereas
the approximate analytic results are calculated using (7.15) and (7.16). Con-
sistent with the predictions of approximate analytic solutions, the exact nu-
merical results show that the push-off impulse P decreases with the retraction
impulse R, whereas the swing thrust impulse S has a small dependency in R
which has been ignored in the approximate analytic solution. . . . . . . . . . 171
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8.2 Retraction torque and its reaction on the hip. The hip applies a re-
tracting force (torque) on the swing leg and pushes it back. In reverse, a
reaction force is applied to the hip by the swing leg. This reaction force pulls
the hip forward and reduces the required push-off force for given step length
and walking speed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

8.3 Contour lines of the minimum retracting impulse, Rmin, required
to enforce heel-strike. The shaded area is the admissible region, defined
in Section 5.4.4. In the lower shaded area (light color) retracting hip torque
(R> 0) is not necessary for periodic walking, and walking is feasible even
with an extensional torque (R< 0). In the darker area, however, walking is
not feasible without a retracting hip torque prior to heel-strike. The vertical
axis is the normalized average walking speed V̂ =V/Vn, where Vn is given by
(5.36). The numerical values of model parameters are taken from Table 5.1. . 174

8.4 Contour maps of the energy optimal retraction impulse R∗, calculated
numerically using the minimization problem stated in (6.73). Each panel cor-
responds to a different set of c1 and c2, i.e. the cost of unit positive and
negative work: a) c1 6=0 and c2=0, b) c1=4 and c2=5/6 as for human
muscles, and c) c1= c2. In all three panels, the vertical axis is the average
walking speed V normalized with Vn given by (5.36). The shaded area is the
admissible region, defined in Section 5.4.4. The cyan 1© area (marked with
R∗=R∗

1) corresponds to the set of α and V combinations for which retraction
is energetically optimal (energy minimization freely chooses to exploit retrac-
tion). R∗

1 is where the derivative of the net energetic cost Estep becomes zero
(stationary point). The gray 2© region (marked with R∗=Rmin) is where the
energy minimization would prefer not to apply any retraction torque, but en-
suring heel-strike requires the application of at least Rmin (see Fig. 8.3). The
blue 3© region corresponds to the zero optimal retraction impulse, i.e. R∗=0. 177

8.5 Different retraction impulses and their energetic cost corresponding
to the cost coefficients c1= c2 and average walking speed V =1.6m/s (equiv-
alent to V̂ =0.5 in Fig. 8.4c). The optimal retraction impulse R∗ and its
energetic cost are shown with red dots. The vertical lines represent the step
angles at which R∗ switches from Rmin to R=0 and then to R∗

1. Exactly
on each switching line, the two cost curves associated with R∗ before and
after the transition are equal, and the optimal retraction impulse has two so-
lutions. Note that although R=0 results in the least energetic cost for step
angles before the first vertical line, ensuring heel-strike in this region results
in R∗ =Rmin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

8.6 The zoomed version of Fig. 8.5. . . . . . . . . . . . . . . . . . . . . . . . 180
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8.7 Optimality region of a retracting hip joint at heel-strike, correspond-
ing to the optimal retraction impulse R∗ found for Fig. 8.4. Each panel corre-
sponds to a different set of c1 and c2, i.e. the cost of unit positive and negative
work: a) c1 6=0 and c2=0 (free negative work), b) c1=4 and c2=5/6 as for
human muscles, and c) c1= c2. A retracting hip joint (i.e. ψ̇∗

hip> 0) is en-
ergetically optimal only in the hatched region, which is where R∗=R∗

1. In
all three panels, the vertical axis is the average walking speed V normalized
with Vn given by (5.36). The shaded area is the admissible region, defined in
Section 5.4.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

8.8 Optimality region of a retracting swing leg at heel-strike, correspond-
ing to the optimal retraction impulse R∗ found for Fig. 8.4. Each panel corre-
sponds to a different set of c1 and c2, i.e. the cost of unit positive and negative
work: a) c1 6=0 and c2=0 (free negative work), b) c1=4 and c2=5/6 as for
human muscles, and c) c1= c2. A retracting swing leg (i.e. ψ̇∗

leg> 0) is en-
ergetically optimal only in the hatched region, which is where R∗=R∗

1 and
for most of the area corresponding to R∗=0. In all three panels, the vertical
axis is the average walking speed V normalized with Vn given by (5.36). The
shaded area is the admissible region, defined in Section 5.4.4. . . . . . . . . . 183
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List of Symbols

Symbol Definition

a Distance between the torso center of mass and the hip joint, see Fig.2.1
and Fig. 5.1.

A1, A2 Ankle joint of leg1 and leg2 (model with torso), see Fig. 2.1.

b Distance between the leg center of mass and the hip joint, see Fig. 2.1
and Fig. 5.1.

B Torque-influence matrix in the equations of motion.

Bss, Bds, Bfl Matrix B in single support (SS), double support (DS), and flight (FL)
phases, given by (A.31), (A.62), and (A.65), respectively.

c1 Energetic cost of unit positive work = Inverse of the actuator efficiency
for doing positive work.

c2 Energetic cost of unit negative work = Inverse of the actuator effi-
ciency for doing negative work.

č1, č2 Modified c1 and c2, given by (8.11) and (8.12) = Modified costs of unit
positive and negative work for indirectly taking into account the cost
of active work at heel-strike.

c A column vector containing the Coriolis, centrifugal, and gravity terms
in the equations of motion.

css, cds, cfl Vector c in single support (SS), double support (DS), and flight (FL)
phases, given by (A.23), (A.46), and (A.64), respectively.

Cet Specific cost of transport, defined in (2.2); total energetic cost per unit
distance traveled and per unit body weight.

Cmt Mechanical cost of transport; total positive mechanical work per unit
distance traveled and per unit body weight; given by Cet when c1=1
and c2=0.

d Distance between two points.

d∆m/H Distance between the hip joint H and the point-mass ∆m.

dGleg/H Distance between the hip joint H and the center of mass of the leg.

Dstep Step length = Distance between two consecutive foot places = dA1/A2

when both feet are on the ground.
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E1, E2 Telescoping joints of leg1 and leg2 (model with torso), see Fig. 2.1.

E Energetic cost of an actuator, given by (6.1).

Estep Total energetic cost per step, given by (2.1) or in a simpler form by
(6.2).

Estep,metabolic Metabolic energetic cost per step, measured indirectly using the rate
of Oxygen consumption.

ES Energetic cost of impulsive swing thrust torque, given by (6.6).

EP Energetic cost of impulsive push-off force, given by (6.21).

ER Energetic cost of impulsive swing retraction torque, given by (6.22).

EH Energetic cost of actuator work during heel-strike, given by (8.7).

EPR EP +ER

Ě Modified energetic cost based on the modified cost coefficients č1 and
č2; given by (8.13).

Ěstep Modified Estep which includes the cost of active work at heel-strike;
given by (8.6).

ẼS , ẼP , ẼR, Ẽstep Approximate ES , EP , ER, and Estep, given by (7.51), (7.53), (7.58),
and (7.64), respectively.

ẼPR Approximate EPR, given by ẼPR = ẼP + ẼR.

Ė Rate of the energy expenditure = Power consumption.

fF1, fF2 2×1 vectors expressing the ground reaction force vectors ~FF1 and ~FF2

in the reference frame; fF1=
[
FF1x , FF1y

]
T

and fF2=
[
FF2x , FF2y

]
T

.

F Force of the stance leg’s prismatic actuator (model without torso), see
Fig. 5.1.

Fleg1a , Fleg2a Forces applied by the leg prismatic actuators along leg1 and leg2
(model with torso); See Fig. 2.2e.

Fleg1p , Fleg2p Constraint forces applied perpendicular to leg1 and leg2 = The per-
pendicular component of the total force applied on each leg (model
with torso); See Fig. 2.2e.

~FF1, ~FF2 Ground reaction force vectors applied on leg1 and leg2.
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FF1, FF2 Magnitude of ground reaction forces on leg1 and leg2 (model with

torso); FF1 = |~FF1|, and FF2 = |~FF2|.

FF1x , FF2x Tangential (along the floor) components of the ground reaction forces
on leg1 and leg2 (model with torso), see Fig. 2.2e.

FF1y , FF2y Normal (perpendicular to the floor) components of the ground reaction
forces on leg1 and leg2 (model with torso), see Fig. 2.2e.

Fmax Actuator force limit used in numerical optimizations (model with
torso); see Table 3.2.

g Gravitational acceleration = 9.81 m/s2.

gred Reduced gravitational acceleration.

g Gravitational acceleration vector expressed in the reference frame;
g=− [ sin(γ), cos(γ) ]Tg, where γ is the terrain slope.

Gleg Leg center of mass; see Fig. 2.1 and Fig. 5.1.

Gtrs Torso center of mass; see Fig. 2.1.

GRFa Centripetal (along the stance leg) ground reaction force, given by
(5.30).

htot Total body height (model with torso); see Table 3.1.

htrs Torso height; ; see Table 3.1.

H Hip joint; see Fig. 5.1.

H1, H2 Hip joints between leg1 or leg2 and the torso; see Fig. 2.1.

Hstep Step height; see Fig. 2.2c.

iF1, iF2 Vectors of the TD impulse on leg1 and leg2 expressed in the reference

frame; iFi=
∫ td+

td− fFi(t) dt=
[
IFix , IFiy

]
T

for i=1, 2.

IF1x , IF1y Tangential (along the surface) and normal (perpendicular to the sur-
face) components of the TD impulse on leg1.

IF2x , IF2y Tangential (along the surface) and normal (perpendicular to the sur-
face) components of the TD impulse on leg2.

Ileg/Gleg
Leg moment of inertia relative to the leg center of mass Gleg.

Ileg/H Leg moment of inertia relative to the hip joint H.
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Itrs/Gtrs
Torso moment of inertia relative to its center of mass Gtrs.

Itrs/H Torso moment of inertia relative to the hip joint H.

Jθ̇/P , Jθ̇/R, Jθ̇/S Step-angle dependent scalers quantifying the influence of the push-off
impulse P, retraction impulse R, and swing-thrust impulse S on the
stance-leg angular rate θ̇.

Jφ̇/P , Jφ̇/R, Jφ̇/S Step-angle dependent scalers quantifying the influence of the push-off
impulse P, retraction impulse R, and swing-thrust impulse S on the
hip-joint angular rate φ̇.

Jℓ̇/P , Jℓ̇/R Step-angle dependent scalers quantifying the influence of the push-off
impulse P, and retraction impulse R on the stance-leg extension rate
ℓ̇.

JS/R Step-angle dependent scaler quantifying the influence of retraction im-
pulse R on the swing-thrust impulse S; given by (B.33).

JP/R Step-angle dependent scaler quantifying the influence of retraction im-
pulse R on the push-off impulse P; given by (B.33).

J1θ, J2θ, J21θ Jacobian of the position vectors rA1/Gtot
, rA2/Gtot

, and rA2/A1
relative

to qθ; J1θ = ∂rA1/Gtot
/∂qθ, J2θ = ∂rA2/Gtot

/∂qθ, and J21θ = ∂rA2/A1
/∂qθ.

These Jacobians are expanded in (A.66), (A.67), and (A.70).

J1ℓ1 , J21ℓ1 Jacobian of the position vectors rA1/Gtot
, and rA2/A1

relative to ℓ1;
J1ℓ1 = ∂rA1/Gtot

/∂ℓ1, and J21ℓ1 = ∂rA2/A1
/∂ℓ1. These Jacobians are ex-

panded in (A.68), and (A.71).

J21ℓ2 Jacobian of the position vectors rA2/A1
relative to ℓ2;

J21ℓ2 = ∂rA2/A1
/∂ℓ2. It is expanded in (A.72)

k Fraction of the heel-strike energy dissipation that takes place actively
via negative actuator work, given in (8.5); 06 k6 1.

ℓ Leg length; see Fig. 2.1 and Fig. 5.1.

ℓ1, ℓ2 Lengths of leg1 and leg2 (model with torso); see Fig. 2.1.

ℓ0 Length of the landing leg at touch-down, used in numerical optimiza-
tions of the model with torso, see Table 3.2.

ℓu Length of the upper (non-massless) segment of the telescoping leg in
the biped model in Fig. 2.1, see Table 3.1.

ℓmin, ℓmax Minimum and maximum leg length used in numerical optimizations
of the model with torso, see Table 3.2.
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ℓ̇, ℓ̇1, ℓ̇2 Leg extension rate; ℓ̇= dℓ/dt, ℓ̇1= dℓ1/dt, and ℓ̇2= dℓ2/dt.

ℓ̇−1 , ℓ̇
+
1 Extension rates of leg1 just before and just after the TD event at ttd.

ℓ̇−2 , ℓ̇
+
2 Extension rates of leg2 just before and just after the TD event at ttd.

ℓ̇t−pr, ℓ̇t+pr Leg extension rates at t−pr and t
+
pr, i.e. just before and just after both

the push-off and retraction impulses.

˜̇ℓt+p Approximate ℓ̇t+p , given by (7.43).

˜̇
ℓt+r Approximate ℓ̇t+r , given by (7.47).

ℓ̈, ℓ̈1, ℓ̈2 Leg extension acceleration; ℓ̈= d2ℓ/dt2, ℓ̈1= d2ℓ1/dt
2, and

ℓ̈2= d2ℓ2/dt
2.

Lstep Tangential distance (parallel to the surface) between the two consec-
utive foot-falls; see Fig. 2.2b-2.2d.

mleg Leg mass; see Fig. 2.1 and Fig. 5.1.

mtot Total mass of the biped.

mtrs Torso mass; see Fig. 2.1 and Fig. 5.1.

mH Point-mass at the hip (model without torso); see Fig. 5.1.

M Mass-inertia matrix.

Mss,Mds Mass-inertia matrixM in single support (SS) and double support (DS)
phases.

Nss, Nds, Nfl Number of equal-length intervals (grids) in single support (SS), dou-
ble support (DS), and flight (FL) pahse. The duration of each grid
(interval) is Tss/Nss, Tds/Nds, and Tfl/Nfl. Within each interval, the
actuator forces and torques are approximated by a piecewise-linear
function for numerical optimization.

p Push-off impulse completness parameter (non-dimenssional), defined
in (6.8); specifies the portion of the push-off impulse that has been
applied so far.

pt p(t)

pt1 , pt2 , pt+pr, pt+r p(t1), p(t2), p(t
+
pr), p(t

+
r )

p∗t1 , p
∗
t2

Optimal values of pt1 and pt2 .

xxvi



pmin Lower bound on the impulse completeness parameter p that satisfies
ℓ̇ > 0.

P Push-off impulse, defined in (5.10).

P Partial push-off impulse, defined in (6.8).

P̃ Approximate P, given by (7.16).

q Biped configuration vector (model without torso); q= [ θ, φ ]T.

qθ A 3×1 vector containing the link angles θ1, θ2, and θ3 (model with
torso); qθ = [ θ1, θ2, θ3 ]

T.

qℓ A 2×1 vector containing the leg lengths ℓ1, and ℓ2 (model with torso);
qℓ= [ ℓ1, ℓ2 ]

T.

qGtot
A 2×1 vector containing the cartesian coordinates of the biped center
of mass Gtot; qGtot

= [ xGtot
, yGtot

]T.

qss A 4×1 vector expressing the biped configuration in single support (SS)
phase (biped with torso); qss = [ ℓ1, q

T

θ ]
T.

qds A 4×1 vector expressing the biped configuration in double support
(DS) phase (biped with torso); qds = [ ℓ1, q

T

θ ]
T.

qfl A 5×1 vector expressing the biped configuration in flight (FL) phase

(biped with torso); qfl =
[
qT

Gtot
, qT

θ

]T
.

q̇ Joint velocity (general case).

q̇−, q̇+ Joint velocities just before and just the impulse I; used for formulating
the work of an isolated impulse in (6.3).

q̇θ, q̇ℓ, q̇Gtot
First-derivative (with respect to time) of qθ, qℓ, and qGtot

.

q̇ss, q̇ds, q̇fl First-derivative (with respect to time) of qss, qds, and qfl.

q̈θ, q̈ℓ, q̈Gtot
Second-derivative (with respect to time) of qθ, qℓ, and qGtot

.

q̈ss, q̈ds, q̈fl Second-derivative (with respect to time) of qss, qds, and qfl.

q̇−
θ , q̇

+
θ q̇θ just before and just after the TD event at ttd.

q̇−
Gtot

, q̇+
Gtot

q̇Gtot
just before and just after the TD event at ttd.
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r Retraction-impulse completness parameter (non-dimenssional), de-
fined in (6.7); specifies the portion of the retraction impulse that has
been applied so far.

rt r(t)

rt1 , rt2 , rt+pr r(t1), r(t2), r(t
+
pr)

r∗t1 , r
∗
t2 Optimal values of rt1 , and rt2 .

r Position vector expressed in the reference frame.

rA2/A1
Position vector of the ankle joint A2 relative to the ankle joint A1.

rA1/Gtot
, rA2/Gtot

Position vectors of the ankle joints A1 and A2 relative to the biped’s
center of mass Gtot.

rGtot/A1
, rGtot/A2

Position vectors of the biped’s center of mass Gtot relative to the ankle
joints A1 and A2.

ṙGtot/A1
, ṙA2/A1

First-derivative (relative to time) of rGtot/A1
, and rA2/A1

.

r̈Gtot/A1
, r̈A2/A1

Second-derivative (relative to time) of rGtot/A1
, and rA2/A1

.

R Swing retraction impulse, defined in (5.9).

R Partial retraction impulse, defined in (6.7).

Rmin Minimum retraction impulse required to ensure heel-strike, given by
(8.2).

Rmax Maximum retraction impulse for a non-negative push-off impulse, de-
fined in (5.28).

R∗ Optimal swing retraction impulse that minimizes the total energetic
cost per step.

R∗
1 Swing retraction impulse at which ∂Estep/∂R=0.

R̃min Approximate Rmin, given by (7.21).

R̃max Approximate Rmax, given by (7.22).

R̃∗ Approximate R∗, calculated by minimizing Ẽstep; given by (7.76).

R̃∗
1 Approximate R∗

1; the retraction impulse for which ∂Ẽstep/∂R=0;
given by (7.71).
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R̃‡ For 06R6 R̃‡, W̃+
R =0, whereas for R> R̃‡ the impulsive retraction

torque does some positive work. Its approximate solution is given by
(7.56).

s Quantifies the relative timing of impulsive push-off force and the
impulsive retraction torque; a non-dimenssional parameter given by
(6.15).

s∗ Optimal overlap parameter s.

st Partial overlap parameter, defined in (6.12).

st+pr, st1 , st2 st at t
+
pr, t1, and t2.

s∗t1 , s
∗
t2

Optimal partial overlap parameters st1 and st2 .

smin Lower bound on overlap parameter s that satisfies ℓ̇ > 0.

S Swing thrust impulse, defined in (5.8).

S̃ Approximate S; given by (7.15).

t Time

ttd Time instant corresponding to the TD event.

t−s Time instant just before the impulsive swing thrust torque = just after
toe-off; it is also equivalent to t=0−, see Fig. 5.4.

t+s Time instant just after the impulsive swing thrust torque = the be-
gining of passive swing; it is also equivalent to t=0+; see Fig. 5.4.

t−pr Time instant just before both the impulsive push-off force and retrac-
tion torque = the end of passive swing ≡ min(t−r , t

−
p ); see Fig. 5.4.

t+pr Time instant just after both the impulsive push-off force and retraction
torque = just before heel-strike ≡ max(t+r , t

+
p ) ≡ t−h ; see Fig. 5.4.

t−r , t
+
r Time instants just before and just after the impulsive retraction

torque; see Fig. 5.4.

t−p , t
+
p Time instant just before and just after the impulsive push-off force;

see Fig. 5.4.

t−h Time instant just before the collisional heel-strike ≡ t+pr; see Fig. 5.4.

t+h Time instant just after the collisional heel-strike = just after toe-off;
see Fig. 5.4.

xxix



T Step period.

T− T− ≡ t−pr

Tss, Tds, Tfl Duration of single support (SS), double support (DS), and flight (FL)
phase.

Tds,min Lower bound on Tds used in numerical optimization (model with
torso).

V Average walking speed.

Vmin Minimum average walking speed for which the calculated swing thrust
impulse is non-negative; defined in (5.29).

Vmax Maximum average walking speed for which GRF along the stance leg
is non-negative during passive single stance; defined in (5.31).

Vn Normalizing speed = maxVmax(α) for all α, given by (5.36).

Vtr Transition speed above which the optimal gait switches to a new pat-
tern, i.e. from continuous-support to intermittent-support.

VF1axial, VF2axial Velocities of foot1 and foot2 along their corresponding leg.

VF1perp, VF2perp Velocities of foot1 and foot2 perpendicular to their corresponding leg.

V̂ Normalized average walking speed; V̂ =V/Vn.

V † Maximum speed for which ω2 exists and is given by (7.11).

Ṽn Approximate Vn, given by (7.32).

Ṽmin Approximate Vmin; defined in (7.26).

Ṽmax Approximate Vmax; defined in (7.30).

W, W+, W− Net, positive, and negative mechanical work performed by a given
force or torque.

WP Net mechanical work done by impulsive the push-off force, given by
(6.19).

WP(t) Partial push-off work = net work done by the impulsive push-off force
from its beginning until an arbitrary instant t in (t−p , t

+
pr), defined in

(6.18).

W+
P , W

−
P Positive and negative mechanical work performed by the impulsive

push-off force.
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WS , W
+
S , W

−
S Net, positive, and negative mechanical work performed by the impul-

sive swing thrst torque.

WR Net mechanical work performed by the impulsive swing retraction
torque, given by (6.14).

WR(t) Partial retraction work = the work performed by the impulsive retrac-
tion torque from its beginning until t, defined in (6.10), and given by
(6.11).

W+
R , W

−
R Positive and negative mechanical work performed by the impulsive

swing retraction torque.

WPR WP +WR

WH Energy dissipation at heel-strike, given by (8.4).

WH,active The portion of energy dissipation at heel-strike that takes place ac-
tively, i.e. by actuator work.

WH,passive The portion of energy dissipation at heel-strike that takes place ac-
tively, i.e. through energy loss at collision.

W̃P Approximate WP , given by (7.52).

W̃S Approximate WS , given by (7.49) or (7.50).

W̃R Approximate WR, given by (7.55).

W̃+
R , W̃

−
R Approximate W+

R and W−
R ; where W̃+

R is given by (7.57) and

W̃−
R = W̃R − W̃+

R .

Ẇ Mechanical power of an actuator.

Ẇi Mechanical power of the ith actuator.

x Tangential (along the ground surface) component of a position vector.

xGtot
Tangential (along the ground surface) coordinate of the biped center
of mass (Gtot) in the reference frame.

y Normal (perpendicular to the ground surface) component of a position
vector.

yGtot
Normal (perpendicular to the ground surface) coordinate of the biped
center of mass (Gtot) in the reference frame.

ẏfswing
Vertical component of the swing-foot velocity.
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ẏftrailing Vertical component of the trailing-foot velocity.

α Step angle; the angle of the stance leg relative to the vertical at heel-
strike; see Fig. 5.2.

αmax Maximum step angle for which walking is feasible.

γ Ground slope relative to horizontal.

δ Nondimensional coefficient representing the spread of the leg mass
relative to the leg center of mass. It is used to calculate the leg moment
of inertia about the hip, as Ileg/H = δ mleg ℓ b.

ǫ Smoothing parameter used to approximate the non-smooth positive-
value function with a smooth function, as [x]+ ≈

(
x+

√
x2 + ǫ2

)
/2.

η Nondimensional parameter given by η=ω2
2/(ω

2
1 +ω2

2). It is used to

calculate φ̃ and
˜̇
φ0.

θ Stance leg angle relative to vertical (model without torso), see Fig.5.1.

θ1, θ2, θ3 Angles of, respectively, leg1, torso, and leg2 relative to vertical (model
with torso), see Fig. 2.1.

θ̃ Approximate θ, given by (7.5).

θ̇, θ̈ Stance-leg angular rate and angular acceleration (model without
torso).

θ̇0 Stance leg angular velocity at the start of passive swing = θ̇t+s ; it is a

simpler notation for θ̇0+ .

θ̇0+ Stance leg angular rate at the start of passive swing = θ̇t+s ; for sim-

plicity it is denoted by θ̇0.

θ̇t−s , θ̇t+s Stance leg angular rates at t−s and t+s , i.e. just before and just after
the swing-thrust impulse.

θ̇t−pr , θ̇t+pr Stance leg angular rates at t−pr and t
+
pr, i.e. just before and just after

both the push-off and swing-retraction impulses.

θ̇t−p , θ̇t+p Stance leg angular rates at t−p and t+p , i.e. just before and just after

the push-off impulse.

θ̇t−r , θ̇t+r Stance-leg angular rates at t−r and t+r , i.e. just before and just after
the swing-retraction impulse.
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θ̇t−
h
, θ̇t+

h
Stance-leg angular rates at t−h and t+h , i.e. just before and just after
the collisional heel-strike.

ˆ̇θ0 Normalized θ̇0, given by ˆ̇θ0 = θ̇0/ωn.

˜̇
θ,

˜̈
θ Approximate θ̇ and θ̈.

˜̇
θ0 Approximate θ̇0; given by (7.7).

˜̇θt−s ,
˜̇θt+s Approximate θ̇t−s and θ̇t+s , given by (7.37) and (7.35).

˜̇θt+p Approximate θ̇t+p , given by (7.41).

˜̇
θt−r ,

˜̇
θt+r Approximate θ̇t−r and θ̇t+r . When the push-off impulse is applied before

the retraction impulse,
˜̇
θt−r =

˜̇
θt+p , and

˜̇
θt+r is given by (7.45).

λ A nondimensional parameter quantifying the influence of swing-leg
motion on stance-leg dynamics; given by (7.1).

µ Friction coefficient, see Table 3.2.

ρ Average angular rate of the stance leg, given by (7.8).

τ Hip torque (biped model without torso), see Fig. 5.1.

τ1 Stance leg’s ankle torque applied from the foot to the leg (biped model
with torso), see Fig. 2.2a.

τ2 Stance leg’s hip torque applied from the torso to the leg (biped model
with torso), see Fig. 2.2a.

τ3 Swing leg’s hip torque applied from the torso to the leg (biped model
with torso), see Fig. 2.2a.

τ4 Swing leg’s ankle torque applied from the foot to the leg (biped model
with torso), see Fig. 2.2a.

τmax Upper bound of the joint torque used in numerical optimizations
(model with torso); see Table 3.2.

τ Torque vector; τ = [ τ1, τ2, τ3, τ4 ]
T.

τ ss Actuation vector in single stance (single support) phase;

τ ss =
[
Fleg1a , τ1, τ2, τ3

]T
.
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τ ds Actuation vector in double stance (double support) phase;

τ ds =
[
Fleg1a , Fleg2a , τ1, τ2, τ3, τ4

]
T

.

τ fl Actuation vector in flight phase; τ fl = [ τ2, τ3 ]
T.

φ Hip-joint angle (model without torso), see Fig. 5.1.

φ̃ Approximate φ, given by (7.12).

φ̇, φ̈ Hip-joint angular rate and angular acceleration.

φ̇0 Hip-joint angular rate at the start of passive swing≡ φ̇t+s ; it is a simpler

notation for φ̇0+ .

φ̇0+ Hip-joint angular rate at the start of passive swing≡ φ̇t+s ; for simplicity

it is denoted by φ̇0.

φ̇t−s , φ̇t+s Hip-joint angular rates at t−s and t+s , i.e. just before and just after the
swing-thrust impulse.

φ̇t−pr, φ̇t+pr Hip-joint angular rate at t−pr and t
+
pr, i.e. just before and just after both

the push-off and swing-retraction impulses.

φ̇t−p , φ̇t+p Hip-joint angular rates at t−p and t+p , i.e. just before and just after the

push-off impulse.

φ̇t−r , φ̇t+r Hip-joint angular rates at t−r and t+r , i.e. just before and just after the
swing-retraction impulse.

φ̇t−
h
, φ̇t+

h
Hip-joint angular rates at t−h and t+h , i.e. just before and just after the
collisional heel-strike.

ˆ̇
φ0 Normalized φ̇0, given by

ˆ̇
φ0= φ̇0/ωn.

˜̇φ, ˜̈φ Approximate φ̇ and φ̈.

˜̇φ0 Approximate φ̇0; given by (7.14).

˜̇
φt−s ,

˜̇
φt+s Approximate φ̇t−s and φ̇t+s ; given by (7.38) and (7.36).

˜̇
φt+p Approximate φ̇t+p , given by (7.42) or (7.44).

˜̇φt−r ,
˜̇φt+r Approximate φ̇t−r and φ̇t+r , where

˜̇φt−r = ˜̇φt+p and ˜̇φt+r is given by (7.46)

or (7.48).

xxxiv



ψ̇hip Hip-joint retraction rate, given by (7.78).

ψ̇leg Swing-leg retraction rate, given by (7.79).

ψ̇∗
hip Energy-optimal hip-joint retraction rate, calculated by evaluating ψ̇hip

at R=R∗.

ψ̇∗
leg Energy-optimal swing-leg retraction rate, calculated by evaluating ψ̇leg

at R=R∗.

˜̇ψ∗
hip Approximate ψ̇∗

hip, given by (7.80).

˜̇ψ∗
leg Approximate ψ̇∗

leg, given by (7.81).

ω1 Stance leg’s approximate natural frequency, given by (7.6).

ω2 Swing leg’s approximate oscilation frequency, given by (7.10).

ωn Normalizing angular rate = max(|θ̇0|) for all α and V , given by (5.35).

ω̃n Approximate ωn; its analytic solution is given by (7.31).

Ω̃ Approximate change in the hip-joint angular rate due to the swing
thrust impulse; given by (7.17).
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List of Abbreviations

Abbreviation Definition

CoM center of mass,

COT cost of transport,

DC direct current,

DMec-COT dimensional mechanical cost of transport,

DMet-COT dimensional metabolic cost of transport,

DoF degree of freedom,

DS double support (stance) phase

EoM equations of motion

FL fligh phase

GRF ground reaction force

SLIP spring loaded inverted pendulum

SP support (stance) phase

SS single support (stance) phase

TD touch-down

TK take-off

TO toe-off

TPBV two point boundary value

NLP nonlinear programming

w.r.t. with respect to

ZMP zero moment point
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Chapter 1

INTRODUCTION

Humans and animals can achieve movement from one place to another, or locomotion, using

a variety of strategies. Legs are arguably the most appropriate and versatile mode when

moving on uneven terrain [1]. Because of the strong connection of walking and running

with our daily life, and due to potential applications such as replacing humans with func-

tional robots in hazardous environments and the restoration of motion in the disabled with

dynamically-controlled lower-limb prostheses, legged locomotion has attracted substantial

interest from different fields such as Biology, Kinesiology, Neuroscience, Computer Science,

Control Engineering, Mechanical Engineering, and Robotics.

While walking and running have been well described, the governing principles determining

effective legged locomotion are not well understood [2, 3, 4]. Despite the advancements in the

design and manufacturing of high performance sensors and actuators, to date there has been

no bipedal robot exhibiting both the dexterity and efficiency of human locomotion [3, 5, 6].

Although Honda’s ASIMO [7, 8] and Boston Dynamics’ PETMAN [9] and ATLAS [10] robots

have impressive versatility and robustness, they still fall far short of human performance.

Also, scaled for weight and speed, their energy consumption is roughly 10 times more than

that of humans [11]. Conversely, the Cornell Ranger robot [12] is energy stingy, but all it

can do is to walk on flat ground. But there are no known reasons why a robot should not

be able to nearly match human efficiency, versatility, and robustness. Available actuators,

sensors, and components seem good enough; the problem seems to be in the design of the

control system, which in turn is caused by the lack of our understanding of the principles

for effective and robust legged locomotion.

Although legged robots might be significantly different from their biological counterparts,
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both groups are subject to the same mechanics principles governing their motions. Therefore,

understanding biological legged locomotion can contribute to better designs of walking and

running robots - improving performance, robustness, and energy efficiency. Experimental

robots and computer-based models can, in turn, improve our knowledge of legged locomotion

by serving as a means to evaluate theories of how, and why, humans and animals move the

way that they do [4].

1.1 Objective of This Thesis

I intend to develop a better understanding of energy efficient legged locomotion using simu-

lation and optimization of computer models of robots and humans. My eventual goal is to

develop a simple and tractable theory of effective legged locomotion and balance control in

bipedal models comparable to humans. Such a functional theory will indicate the origin of

stability and define features of energy economy that are hallmarks of biological locomotory

capacity. It will also reliably predict how humans and animals choose special gait parameters,

such as stride length and frequency at a given forward speed and other specified conditions.

1.2 Review of the Relevant Literature

In the following, I provide a brief review of the most important work relevant to the analysis

of legged locomotion.

1.2.1 Minimalistic Models for Legged Locomotion

One approach to study legged locomotion is to model a legged organism as a machine

described by Newtonian mechanics. Although organisms are generally multi-purpose and

highly complex systems, describing them using simple models can provide insight into the

factors influencing their fundamental behavior. Simple models are more amenable to in-
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(a)

m

(b)

Figure 1.1: Simple mechanical models of the stance phase in walking and running. a)
Inverted pendulum model, b) Spring-mass model, also known as the spring-loaded inverted
pendulum (SLIP) model. In both models the body is reduced to a point mass m at the
center of mass. In the inverted pendulum model the CoM is supported by a massless rigid
leg, whereas in the SLIP model it is supported by a massless spring.

terpretation and are computationally fast, while comprehensive models have complexities

that can obscure the underlying principles responsible for their observed behavior. If more

elaborate models are required, it is advantageous to add complexities step-by-step to track

their influence on model behavior.

Among different models proposed to study legged locomotion, the two simplest ones are

the inverted pendulum model [13, 14], and the spring-mass model [15, 16, 17, 18]. The latter

is also known as the spring-loaded inverted pendulum (SLIP) model [19]. These models are

shown in Fig. 1.1. In both cases, the body is reduced to a point-mass located at the center

of mass (CoM). In the inverted pendulum model the CoM is supported by a massless rigid

stance leg, whereas in the spring-mass model it is supported by a massless spring. In the

following, these models and their modified versions are briefly explained.

1.2.2 Inverted Pendulum Model

The inverted pendulum model is shown in Fig. 1.1a. This model was first proposed to study

bipedal walking [13, 20]. This was based on the observation that walking seems to resemble a

‘compass gait’ where the CoM vaults over a rigid stance leg, and follows an almost arc-shape

trajectory between two consecutive foot falls [13, 21]. Later, this model showed good success
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in explaining some aspects of human and animal locomotion. For example, this model can

in part explain the transfer of potential and kinetic energy during walking [20, 22]. It also

correctly predicts that the speed at which animals and humans prefer to switch from walking

to running is solely a function of gravitational acceleration and leg length [23, 24]. Although

this model was first proposed to study walking, some modified versions of this model have

also been used to study running, galloping, and trotting as well [25, 26].

1.2.3 Spring-Mass Model

This model is shown in Fig. 1.1b. The point-mass m, representing the total body mass, is

supported by a massless spring. The SLIP model was originally proposed to model running

[15, 16]. This was based on the observation that in human and animal running elastic energy

can be stored and released by passive compliant structures such as tendons, ligaments, and

even muscles [27, 28]. More recently, a modified version of this model with two massless

springs has been used to generate stable walking gaits [3, 29].

One of the main features of this model is that it can correctly predict the ground reaction

force (GRF) profiles in both walking and running [3, 29, 30]. Due to this feature and also the

smooth behavior of this model at foot-ground contacts, the SLIP model has recently enjoyed

substantial attention. However, the original SLIP model is completely energy conservative,

so it cannot be used to study the energetics of locomotion, the subject of this thesis. Fur-

thermore, it has been shown that many features of running can be correctly predicted using

fully rigid models [2, 26, 31, 32]. Therefore, in the rest of the thesis I focus on rigid models.

1.2.4 Inverted Pendulum-Based Simple Model

Ballistic Walking Model:

Inspired from the observation of relatively low muscle activities during the swing phase of

human walking [33], and that the sum of kinetic plus potential energies of the body CoM
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changes relatively little during the swing phase of a walking step [34], Mochon and McMahon

[35, 36] developed the ‘ballistic walking’ model with a stiff stance leg and a segmented swing

leg. They showed that by choosing a realistic leg-mass distribution, and with proper initial

conditions provided by muscle activities prior to swing, the model can move forward with no

muscle activity during swing. Moreover, the model could produce swing times, joint angles,

and reaction forces similar to those in normal human gait (during the swing phase).

The term ‘ballistic walking’ is used to emphasize that the motion of the swing leg is driven

only by gravity and the momentum established by the initial velocities (like a projectile

moving through space). In other words, no continuous energy investment (muscle work)

or control is required during leg swing. This was an important step toward understanding

effective legged locomotion.

The ballistic walking model was only a partial model of the step cycle, since it was limited

to just the swing portion of the gait cycle. Therefore, it was limited in the insights it could

provide on effective gaits, and more elaborate models were required to study the complete

step cycle. The next important step in understanding the governing principles of legged

locomotion was taken by Tad McGeer.

McGeer’s Passive Dynamic Walking Models:

Motivated by the results of the ballistic walking model, McGeer followed a systematic ap-

proach to study a series of two-dimensional passive gait models and walking mechanisms

[37, 38, 39, 40, 41, 42]. His pioneering work proceeded with an evolution of models of increas-

ing complexity combined with the development of physical robots to validate his theoretical

models.

He first studied the ‘rimless wheel’ and the ‘synthetic wheel’ as simple models of walking

[37, 38, 39]. The rimless wheel, shown in Fig. 1.2, consists of a mass at the center and n

equally spaced struts extending outwards, like a wagon wheel without an outer rim. Once
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Figure 1.2: Rimless wheel. Gravity compensates for collision loss, and the rimless wheel
exhibits a steady downhill ‘walking’.

Figure 1.3: Synthetic wheel rolls forward just like an ordinary wheel. The radius of the
semi-circular feet is equal to the stance-leg length. The swing leg (solid thick red) swings
forward to ‘synthesize’ a continuous rim. For clarity, the swing leg (solid thick red) has been
plotted slightly shorter than the stance (dashed thin black) leg.

started, this device will settle into a steady downhill ‘walk’, with gravity balancing the

angular momentum lost on each support-strut transfer. The simplicity of the model allows

for analytic proof of stability of the motion and the calculation of the steady state speed.

The other model studied by McGeer, the synthetic wheel shown in Fig. 1.3, has two

straight legs and a large mass at the hip. It also has semi-circular feet with a radius equal to

the leg length. Like a true wheel, the stance leg of this model rolls at constant speed along a

flat surface. Meanwhile, the swing leg passively swings forward and makes the new support

to ‘synthesize’ a continuous rim. Because there is no collision loss, in the absence of friction

this model could exhibit a steady walking gait on level ground [37, 38, 39].
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Figure 1.4: Passive dynamic walking model. If the radius of the feet is smaller than the
leg length or the foot arc is not long enough to synthesize a continuous rim, collision loss
occurs at each heel-strike, and the biped cannot exhibit a passive gait on level ground. If the
biped is launched with proper initial conditions on a shallow slope, gravity can compensate
for the heel-strike collision loss, and the walking gait will converge to a stable limit cycle.

By combining the rimless wheel and the synthetic wheel, McGeer developed more-realistic

bipedal models that could passively walk down a shallow ramp [39, 40, 41]. A knee-less

version of these models is shown in Fig. 1.4. Using mathematical gait models and linearized

stability analysis, he showed that these models can have a stable limit cycle motion, provided

that a proper mass distribution and link dimensions are used. He also built several physical

models (with and without knee joints) that exhibit stable passive dynamic walking in two

dimensions, e.g. [43].

Inspired by McGeer’s significant work, Collins et. al. built a three dimensional passive

dynamic walker with knees [44]. Using the ideas of passive dynamic walking, and by adding

a powered ankle and minimalistic control, Collins et. al. also built the Cornell Biped [45], a

very efficient powered bipedal robot that could walk on level ground. Scaled for weight and

speed, Cornell Biped matched human energy use.

Passive Simplest Walking Model:

Following McGeer, Garcia et. al. [46] studied the simplest passive walking model, an ir-

reducible bipedal model exhibiting passive walking on a ramp (see Fig. 1.5). This model

consists of two rigid legs connected at the hip by a frictionless joint. All the biped mass is
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Figure 1.5: Simplest walking model; an irreducibly simple bipedal model that exhibits
stable passive walking on a shallow ramp.

concentrated at either the feet or the hip. The hip mass is much larger than those at the

feet. This allows for simplification of the stance leg dynamics, so an approximate analytic

solution can be calculated for the stance leg motion. However, the authors did not simplify

(approximate) the swing leg motion. Using numerical methods and linearized stability anal-

ysis of the type used by McGeer [39], they showed that this model can have stable limit

cycles for some range of slopes.

The ballistic walking model and the passive dynamic walking models and robots show that

the walking gait does not need high-bandwidth control, and during most of the step cycle the

biped can move passively by its own natural dynamics. In other words, the low-bandwidth

effective gait control can be achieved by properly exploiting the interaction between the

biped’s natural dynamics and its environment (gravity and the substrate); an important

observation that should be noted in understanding effective legged locomotion.

Powered Simplest Walking Model:

The simplest walking model is completely passive, and therefore can only walk on a ramp to

make up for the energy lost at heel-strike. To study the energetics of walking, Kuo [47] mod-

ified this model to walk on level ground. Powered walking was realized using either a torque

applied to the stance leg, or an impulsive force applied along the stance leg immediately be-

fore heel strike. Using analytic analyses and a work-based energetic cost, Kuo showed that
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for powered walking the pre-emptive impulsive push-off force is four times less costly than

the torque on the stance leg. The reason for this substantial energetic cost improvement is

that the pre-emptive push-off force reduces the collision loss at heel-strike.

The above result emphasizes the importance of the interaction between the biped and

its substrate for an efficient gait. In fact, collision loss at heel-strike is the direct outcome of

this interaction, so an effective control action is the one that interferes with this interaction

to reduce the loss [2]. Furthermore, the powered simplest walking model predicts that for

efficient walking, work is not needed within each step, but rather between steps where the

CoM is redirected from moving downward to moving upward (step-to-step transitions). This

prediction was later verified experimentally with human subjects [48, 49, 50].

By adding a spring at the hip to tune the step frequency and step length with no propul-

sive energy to the gait, Kuo also studied the effect of a hip torque on gait energetics [47]. At

a given average walking speed, increasing the step frequency results in a shorter step length

and less heel-strike loss (energy loss at foot-ground impact). Consequently, less push-off

work is required to compensate for the loss.

Collisional Model, Leg Sequencing in Walking, and Pseudo-Elasticity in Running:

Ruina et. al. [26] also studied the energetics of legged locomotion using a simple collisional

inverted pendulum model. With a work-based energetic cost, in which both positive and

negative work contribute to the net cost through their respective efficiencies, they analyti-

cally showed that the relative timing of push-off and heel-strike impulses can substantially

change the gait energetics. In fact, when push-off is applied before heel-strike the cost is

66% less than when push-off follows heel-strike. This, again, indicates the importance of

the interaction between the biped’s CoM motion (biped dynamics) and the substrate (the

ground) for an efficient gait.

Ruina et. al. [26] also showed that to reduce the energetic cost in running the legs should
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actively behave like purely elastic springs even in the absence of elastic elements in the legs

(‘pseudo elasticity’). This indicates that the advantage of bouncing motion in running is

more fundamental than just being produced by passive elastic elements in the body. In

other words, the bouncing motion in running is effective by itself, regardless of how it is

implemented (by either specific actuator force-position profiles, or passive springs), but the

use of passive springs makes it more effective.

Walking and Running: the Optimal Gaits at Slow and Fast Speeds:

Using computer optimization of a simple bipedal model (massless rigid legs and a point-

mass at the hip), Srinivasan and Ruina [25] found that among an infinite number of possible

gaits, the classic inverted-pendulum walk is the most energy efficient gait at slow speeds.

Furthermore, at high speeds a bouncing run is the optimal gait even without springs, verifying

the optimality of the pseudo elasticity concept [26].

So far, I reviewed the main background relevant to simple bipedal models and energy

efficient gaits. In the next section, I review the work related to one of the common, and

surprisingly influential, characteristics among many different gaits, the specific motion of the

swing leg prior to foot-ground contact.

1.3 Swing-Leg Retraction

When people walk or run their swing leg rotates forwards during most of the swing phase

in preparation for the next step. However, just before the swing foot hits the ground (heel-

strike), it decelerates rapidly and generally moves backwards slightly (e.g. [51, 52, 53, 54]).

This late-swing rotation reversal, known as swing-leg retraction, is easily seen in running. In

walking the retraction period is short and the final retracting leg angular velocity is small,

so retraction in walking is difficult to see by eye, or even on videos. However, it can be

easily seen as a sign change in the slope of the measured joint angles (velocities) and in
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muscle activity recordings (e.g. [55]). The swing leg retraction is also observed in some

animals (e.g. [52, 56, 57]). Why do many legged organisms use this swing leg retraction?

Previous studies, using theoretical models and physical robots, have shown several benefits

of swing-leg retraction.

Advantage 1: Increased Stability Regions in Running:

In the context of some particularly simple control policies (e.g. [58]), Seyfarth et. al. [59]

showed that a retracting swing-leg angular velocity can increase the range of parameters (e.g.

average speed, apex height) over which stable periodic running is possible. Here, stability is

defined as whether the model returns to a periodic gait after a small deviation (caused by a

disturbance or incorrect initial conditions) from the nominal periodic gait. In this context,

stability is evaluated in terms of the eigenvalues of the Jacobian matrix of a periodic gait’s

Poincare map [60]; a gait is stable if all eigenvalues are inside the unit circle, otherwise not.

In walking, however, retracting the swing leg decreases the range of parameters (e.g.

slope, step length) for a stable periodic gait, at least for a simple inverted pendulum model

with massless legs [61]. In this model the parameter space for stable periodic walking is

largest at zero retraction speed. However, walking with zero retraction (like a rimless wheel)

would make the walker operate very close to instability, as the resulting eigenvalues are very

close to the unit circle. Retracting the leg with a mild retraction speed will decrease the

eigenvalues for a more reliable gait.

Advantage 2: Improved Disturbance Rejection:

For given gait parameters, a retracting swing-leg angular velocity prior to heel-strike can

also improve the disturbance rejection. This improvement is characterized by either a faster

recovery after a small disturbance, or a greater disturbance magnitude that can be tolerated

without falling [62, 63]. For small disturbances the improved disturbance rejection is because

the retraction reduces the magnitude of the eigenvalues of the Poincare Map’s Jacobian
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matrix, speeding the decay of transients after disturbances. Using a mild retraction speed,

the fastest recovery from an arbitrary disturbance can be achieved when the eigenvalue with

the largest magnitude is minimum.

How does this work? In the simplest walking model the full control strategy is to program

the leg angle as a function of time [61], an open-loop motor program, starting with a trigger

(e.g. the previous heel-strike or the instance of mid-stance). If such an open-loop motor

program uses a retraction strategy, the hip angle (the inter-leg angle) will be decreasing

at the time of impact. If the gait is perturbed, the time to heel-strike will depend on the

perturbations. With a retraction strategy, the step length will be a decreasing function of

the step period (or time from trigger until heel-strike). In this case, if the robot is pushed

forward after the leg swing program is begun, then heel-strike will happen sooner than for

the nominal (the undisturbed case), as shown in Fig. 1.6a, and the shorter-than-nominal

retraction time will cause the lead leg take a longer-than-nominal step. This longer step

causes more collisional dissipation and thus causes a slowing and return toward the nominal

gait. If the robot is disturbed to walk slower than nominal, the longer retraction time causes

a reduced step length (see Fig. 1.6b), a smaller collisional dissipation, and thus a speeding of

the robot back towards its nominal gait. For spring-mass models [59] which conserve energy

at heel-strike, the explanation is different in detail, having to do with the partitioning of

energy into forwards and vertical parts, but the resulting response to perturbations, that a

forwards push leads to slowing and vice versa, is the same.

For larger disturbances, Hobbelen and Wisse [62] found, using two theoretical models

and a physical bipedal robot, that the magnitude of a random step-height disturbance that

makes a walker fall is increased by using mild feed-forward leg retraction. That is to say,

in the absence of real-time feedback control, an open-loop trajectory with some retraction

gives more robustness to disturbances (larger basin of attraction and faster decay) than

a trajectory without retraction. A similar result is verified by Karssen [63] for a simple
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Figure 1.6: The stabilizing effect of swing-leg retraction in walking. Swing-leg re-
traction starts at a fixed time in the step cycle, e.g. ∆t after mid-swing. With a retraction
strategy, the step length will be a decreasing function of the step period (or retraction
period). a) If the biped is perturbed to go faster than nominal, heel-strike will occur ear-
lier-than-nominal, and the shorter-than-nominal retraction time will cause the swing leg take
a longer-than-nominal step. This longer step causes more collisional dissipation, which with
the nominal push-off force (energy input) results in a slowing towards the nominal gait. b)
If the biped is disturbed to walk slower than nominal, the longer retraction time causes a
reduced step length, a smaller collisional dissipation, and thus a speeding of the biped to
return toward its nominal gait.
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spring-mass running model.

Advantage 3: Improved State Estimation:

In closed loop control, state estimation is key. Because the relative timing between heel-strike

and push-off highly influences the energetics of walking [26, 47], accurately predicting the

heel-strike time can improve the push-off timing and amplitude. In the presence of sensor

noise or physical disturbances, this increased determinacy can improve both gait energetics

and also the determination of the walker states at the next step, resulting in increased

controllability. Swing leg retraction might increase the accuracy of predicting when the

swing foot will hit the ground. Why? Appropriate retraction leads to a more vertical

foot velocity at heel-strike and thus a more determinate heel-strike time in the presence of

uncertainties introduced by modeling errors, floor irregularities, and etc. [12].

Advantage 4: Improved Foot Clearance:

In order to avoid foot scuffing, especially in the presence of, or absence of knowledge about,

ground obstacles, during swing the swing foot should be as high as possible. Given the

need to straighten the leg before heel-strike, and the inability of the human knee to bend

forward, swing-leg retraction allows for higher foot-swing while still ensuring heel-strike.

This facilitates adequate ground clearance.

Advantage 5: Reducing the Tangential Collision at Heel-Strike:

A tangential heel-strike collision, one where the foot has substantial velocity tangent to the

ground before heel-strike, can be harmful by causing foot slippage. Leg retraction, to the

extent that it slows down swing-leg forward motion, can minimize or eliminate this tangential

collision [63]. The scuffing of one foot can also cause an undesirable (Yaw/steer) torque about

the vertical axis [64].

Note, a faster-than-passive swing can help walking in terms of stability regions or ener-
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getics, as discussed by [47] and also later in this dissertation. However, that faster swing

does not have to be decelerated by retraction; it could be braked by a scuffing foot collision.

So, the desirability of a faster-than-passive swing, in itself, does not explain active, versus

scuffing-collision, contraction. Thus, I do not count the benefits of a fast swing as a reason,

in itself, for swing leg retraction.

Other Advantages for Swing-Leg Retraction?

There are further possible energetic benefits of swing-leg retraction. For example, retraction

can reduce the collision loss by reducing the relative foot-ground speed at heel-strike. But

this collisional saving comes at the extra effort spent to decelerate and reaccelerate the swing

leg in the rearward direction. For a special running model, in which the axial (along the leg)

GRF impulse at touch-down is avoided by the leg spring, it is shown in [65] that swing-leg

retraction can reduce the net energetic cost of the gait. In the absence of the axial impulse,

the optimal retraction rate is the one that nulls the tangential foot speed, and thus avoids any

collisions at heel-strike [65, 66]. However, this optimal retraction rate may not be valid for

gaits with non-negligible axial impulse, e.g. walking with rigid legs. The change in retraction

rate changes the cost of retraction torque and collision loss, as well as the trade-off between

them.

On the other hand, in walking, pre-emptive push-off and retraction occur at the same

phase of the gait cycle (at the end of the swing phase). In a multi-body mechanism forces

and/or torques at different joints are mechanically coupled, so their relative timing poten-

tially influences the gait energetics. For example, the energetic cost of step-to-step transitions

in walking (transition from one stance leg to the other) changes substantially when the order

of impulses on leading and trailing legs is changed from (a) heel-strike followed by push-off

to (b) push-off then heel-strike [26]. Therefore, the energetics of retraction and its poten-

tial cost improvement can be influenced by the interaction between the hip torque and the
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push-off force, as well as by their relative timing.

The above discussion raises the questions of whether the energetic advantage of active

swing-leg retraction still holds for walking, and if it does, for which step size, walking speed,

and retraction rate? What is the best (energetically optimum) relative timing of the pre-

emptive push-off force and the retraction hip torque to achieve a given swing-leg retraction

rate prior to heel-strike? Should the retraction torque be just after, just before, or syn-

chronous with the pre-emptive push-off force? Does the actuator efficiency have any effect

on the results? If it does, what are the influences?

1.4 Problems Studied in This Thesis

As discussed above, minimal analytical and numerical models have shown good success

in explaining some aspects of human and animal locomotion. Combining optimization with

computer models [25, 67] holds substantial promise for interpreting the dynamics responsible

for the locomotion strategies observed in the natural world. However, the capability of the

minimal models is restricted, and thus at this stage it is reasonable to use more realistic

(more complex) models to test a broader range of hypotheses.

In this thesis, I investigate some aspects of bipedal locomotion using two simple models

probed with numerical and analytic techniques. The models are slightly more elaborate than

the minimalistic ones previously used by other researchers. This increased complexity allows

the inclusion of key features of the dynamic interaction of components that are not included

in the simpler models, opening the possibility of discovering new insights into the system’s

dynamic opportunities.

The first model is used with numerical optimization to study the energy-optimal gaits at

different speeds and terrains. Due to the limitations inherent in minimal models, extra con-

straints are required to achieve practical gaits (for instance minimum step length constraint
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in [25]), whereas in this work the constraints are mostly limited to those imposing the laws

of physics for the motion. The results of this study will help to find the main determinant

factors in effective legged locomotion, as well as the control strategies for efficient walking

and running.

The second model, which is simpler than the first one, is used to study swing-leg retraction

in walking. The simplicity of the model allows the use of approximate analytic analyses to

achieve more insight into how different gait parameters are influenced by each other. With

this model I discover some new aspects of swing-leg retraction that can better explain the

advantages of using leg retraction in effective legged locomotion.
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1.6 Thesis Outline

In Chapter 2, I introduce the bipedal model used to investigate gait optimization in a variety

of circumstances. The governing dynamics of the model are described in detail. Also, a gait

optimization algorithm that imposes a minimum set of realistic constraints is formulated.

This serves as the mathematical background to the analyses in Chapters 3 and 4.

In Chapter 3, the gait optimization results of the minimally-constrained model is pre-

sented. The details of the resulting optimal gaits at different speeds and terrains are ex-

plained. Based on these results, the insights achieved on the determinant factors of walking

and running are explained.

In Chapter 4, bipedal walking and running under reduced gravity conditions are investi-

gated using the optimal gaits of the minimally constrained model introduced in Chapter 2.

The results of the numerical optimization are compared to the experimental observations of

human gaits. This study serves as a verification of the hypothesis that the same determinant

factors discovered in Chapter 3 influence human gait coordination.

In Chapter 5, I introduce another simple model to study swing-leg retraction in walking.

After explaining the governing dynamics and the constraints for a periodic gait, all gait

parameters are formulated as a family of solutions parameterized by the step angle, average

walking speed and the retraction impulse. This result will be used in the rest of the thesis to

find the bounds or optimal value of the retraction impulse associated with different criteria.

In Chapter 6, the energetics of the impulsive walking gait of the model are studied, and

the energy-optimal relative timing of the impulsive push-off force and retraction torque is

analytically calculated.
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In Chapter 7, approximate analytic solutions are derived for almost all gait parameters,

including the energy-optimal retraction impulse and retraction rates. These solutions provide

useful insights into the dominant behavior of different gait parameters and their dependency

to each other.

In Chapter 8, three new model-based advantages of swing-leg retraction are discovered.

These advantages are motivated by the approximate analyses in Chapter 7. Accurate numer-

ical studies are also performed to verify the accuracy of the predictions of the approximate

solutions. Furthermore, detailed analyses of the energetics of swing-leg retraction and its

dependency on the step length, speed, actuator efficiency, and active negative work at heel-

strike are presented.

Finally, I conclude the thesis in Chapter 9 by summarizing the main contributions of this

research.
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Chapter 2

A DYNAMIC OPTIMIZATION FRAMEWORK TO

STUDY LEGGED LOCOMOTION

This chapter formulates the gait optimization problem of the first bipedal model studied in

this thesis. It serves as the mathematical background to the analyses in Chapters 3 and

4, where bipedal locomotion is studied from energy efficiency point of view. Section 2.1

describes the biped model and the two types of gait considered here. In Section 2.2 the

mathematical description of the governing dynamics is presented. The gait optimization is

then formulated as an optimal control problem with a set of constraints discussed in detail

in Section 2.3. The resulting optimal control problem is highly nonlinear, so the use of

numerical techniques for optimization is inevitable. An efficient technique to numerically

solve this problem is presented in the last section. Finally, the chapter is summarized in

Section 2.4.

2.1 Biped and Gait Model

The planar articulated biped in Fig. 2.1 consists of seven rigid links: two flat feet, two

telescoping legs (with upper and lower segments), and a torso. Six actuated one degree-of-

freedom (DoF) frictionless rigid joints connect the links. The ankle joints A1 and A2, and the

hip joints H1 and H2 revolve, i.e. they are rotational joints, whereas the telescoping joints E1

and E2 serve to change the total leg length, i.e. prismatic joints. The telescoping actuators

can only carry compressive (extensional) forces, and serve to model, in a simpler kinematic

form, the human ankle’s ability to push-off.
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Figure 2.1: The biped model with torso. The legs and the torso have distributed mass,
with their center of mass, Gleg and Gtrs, located b and a distances from the hips. Feet are
massless and always stay parallel to the ground. Thus the ankle actuators can apply torque
only when the feet are on the ground. Each legs is equipped with a telescoping actuator that
can change the leg length. The lower part of the legs, between the telescoping actuators and
the feet, are massless.

In this study the feet and lower legs are treated as massless. The torso mass mtrs and the

upper-leg mass mleg are distributed about their individual CoM, Gtrs and Gleg, located at

distances a and b, respectively, from the hip. The biped’s total mass is mtot =mtrs +2mleg.

The moment of inertia of the torso, Itrs/Gtrs
, and of the upper leg, Ileg/Gleg

, are taken about

their individual CoM. While the upper legs have fixed length, the lower-leg lengths fluctu-

ate independently. At time t the total length of each leg is ℓi(t) for i=1, 2, and always

ℓmin6 ℓi(t)6 ℓmax. It is assumed that the foot length is enough to satisfy the gait require-

ments. The required minimum foot length thus follows from the resulting zero moment point

(ZMP) [68] locations, verified after the gait is generated.
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For simplicity it is assumed that the feet remain flat and parallel to the surface when

on the ground. With this assumption ankle torque can only change the angular momentum

(of the biped about the ankle joint). The ankle’s contribution in push-off and leg-length

fluctuation is incorporated in the leg’s axial actuator. This configuration results in faster

convergence of the optimal gait synthesis. Although the simulation results (see Chapter 3)

show that a point foot is sufficient for gait optimization, an eventual closed-loop control can

benefit from extended feet in order to reject disturbances.

When a leg is on the ground it is labeled as a stance leg, otherwise it is a swing leg. The

focus of this study is on gaits where the stance foot does not slide. To let the stance leg’s

length fluctuate in both directions it is assumed that the leg length at landing is ℓ0>ℓmin,

where ℓmin is the minimum leg length. Because the massless lower segment of the swing leg

can contract instantaneously, foot scuffing (stubbing) in mid-stance can be avoided without

any cost. Except for possible instantaneous foot-ground collisions, all forces and torques

remain bounded, causing velocities to vary continuously.

2.1.1 Details of the Gaits

The stance or support (SP) phase is the portion of a gait during which at least one leg is a

stance leg. Depending on the number of stance legs involved, the SP can be either single-

support (SS) or double-support (DS). In some literatures these phases are called single-stance

and double-stance. The biped is in the flight (FL) phase when both legs are swing legs. Some

gaits can have zero-duration DS and/or FL phases. For example in human walking there

is no FL, while in running DS is of zero duration. The transition from SP to FL is called

take-off (TK), and that from DS to SS is called toe-off (TO). At the end of FL and also

in transition from SS to DS, the touch-down (TD) event occurs where a swing leg lands

on the ground. This event is also known as heel-strike. The focus here is on gaits where

the landing foot neither rebounds nor slides at TD. I do not assume either a collisional or
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collision-less foot-ground contact a priori. Instead, the optimization procedure discovers the

strategy leading to the optimal gait. The optimal gait minimizes energy expenditure subject

to a set of physical and desired-motion constraints (see Section 2.3.1).

Among many possible phase sequences, two special periodic ones are of focus here:

• Continuous-support gait : a step has one DS, followed by one SS, followed by

a TD event, or

• Intermittent-support gait : a step has one SP with SS, followed by one FL,

followed by a TD event.

This study only considers the gaits where the individual legs’ roles alternate between steps.

Normal human walking and running or their impulsive approximations (pendular walk and

impulsive run [25]) are special cases of the above gaits. However, this should not imply that

for optimal gait synthesis the study here is limited to these special gaits. For a set of pre-

determined gait parameters, like forward speed or step height, the implemented optimization

routine is free to search among an infinite number of possible force and torque profiles (some

of this spectrum of gaits may appear quite unlikely, reminiscent of the Monty Python skit

“Ministry of Silly Walks” [69], but all are evaluated as potential options for optimization).

Thus, part of the significance of the current study is comparing the resulting computer-

generated optimal gaits to those normally used by humans, i.e. determining how human-like

the optimal gaits are. From the hypothesis that humans choose their gait parameters based

on minimum effort [14, 26, 70, 71], the algorithm selects the gait, among all valid periodic

gaits, that minimizes an energy expenditure index subject to physical constraints.

2.1.2 Energetic Cost of the Gait

Researchers have addressed the effort demanded of locomotion in biological systems as the

total metabolic cost per unit distance traveled [14, 26, 67, 71, 72]. Srinivasan [67] has

shown that for different simple bipedal models, and many different metabolic cost models,
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the qualitative behavior of energy-minimizing gaits is not highly sensitive to the choice of

metabolic cost model. Hence, I choose a simple mechanical-work based model [25, 26] where

a muscle’s metabolic energy expenditure rate Ė is proportional to its mechanical power Ẇ .

The proportionality constant is the energetic cost of unit work (or equivalently the inverse

of the muscle efficiency), and in general, is different for positive and negative work1 [26, 73].

If c1 and c2 are the energetic costs of unit positive and negative work, the work-based cost

model estimates the total energetic cost of the whole body as

Estep =

∫ t0+T

t0

∑

i∈{muscles}

(
c1 Ẇ

+
i (t)− c2 Ẇ

−
i (t)

)
dt. (2.1)

Here t0 is an arbitrary instant, T is the step period, and Ẇ+
i (t) and Ẇ

−
i (t) are the instan-

taneous positive and negative muscle (actuator) powers. Using the positive-part function

[x]+, where [x]+ is x for x> 0 and 0 for x< 0, the positive and negative muscle powers follow

Ẇ+
i (t) =

[
Ẇi(t)

]+
, and Ẇ−

i (t) = Ẇi(t)− Ẇ+
i (t). Energy storage and recovery provides no

contribution in the above work-based cost model, consistent with the fully rigid model used

here. For the bipedal model, the summation in (2.1) should be taken over all actuators.

Using the above equations, the total energetic cost per unit distance traveled and per

unit body weight, or specific cost of transport (COT), is given by

Cet =
Estep

mtot g Dstep

, (2.2)

where g is gravity, and Dstep is the step length: the distance travelled by the CoM during

the step period T (between two consecutive TD events). In this work, a gait is energetically

most efficient if its specific COT (Cet) is minimum for given cost coefficients c1 and c2.

Typical human locomotion results in 25% and 120% positive and negative work efficiencies,

respectively [26, 73]. Consequently, for the analysis in Chapters 2 and 3, c1=1/0.25 and

c2=1/1.2 are used to calculate Cet. An alternative performance measure in legged robots

1When an actuator accelerates [decelerates] its corresponding joint it does positive [negative] work. In
mathematical terms, if force/torque F (t) is acting on a joint whose instantaneous velocity is v(t), the actuator
does positive work when Ẇ (t)=F (t) v(t)> 0, and negative work when Ẇ (t)=F (t) v(t)< 0.
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Figure 2.2: Biped on different terrains. Panel (a) shows different forces and torques
acting on the biped. Panels (b)-(d) show different terrains with the associated reference
frames. Panel (e) shows the force components associated with legi for i=1,2. Fleg1a and
Fleg2a are the leg actuator forces along each leg, while Fleg1p and Fleg2p are the constraint
forces perpendicular to each leg.

is known as the mechanical COT (Cmt) [45] which is calculated from (2.2) with c1=1 and

c2=0 (only positive work).

2.2 Mathematical Description of the Biped

Consider three stepping surfaces: level ground, flight of stairs, and inclined (see Fig. 2.2b-

2.2d). In all three cases the reference frame has its x-axis parallel to the ground surface,

in the tangential direction. In this thesis, tangential and normal indicate directions with

respect to (w.r.t.) the ground surface (Fig. 2.2e), whereas vertical and horizontal directions

are defined along and perpendicular to gravity, respectively. If the ground surface has no

inclination, normal and vertical are equivalent, and so are tangential and horizontal. The

terms axial and perpendicular denote directions along and normal to a leg, respectively. A
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motion or vector is considered forward if it has a positive component in the desired direction

of the biped’s motion (otherwise it is backward or rearward).

The biped moves forward along the positive x-axis. For stepping down a slope (or stairs)

the inclination angle γ and step height Hstep are negative. A generalized formula can incor-

porate all three cases in Fig. 2.2b-2.2d: in level-ground locomotion Hstep = γ=0, whereas for

inclined surfaces γ 6=0 and Hstep =0. Choosing γ=0 with Hstep 6=0 represents stepping on a

flight of stairs. The step length is always given by Dstep =
√
L2
step +H2

step where Lstep is the

tangential distance between consecutive footsteps.

Fig. 2.2a illustrates the general forces and torques acting on the biped. Ground reaction

forces ~FF1 and ~FF2 affect the feet, and FFix and FFiy (i=1, 2) are the components of ~FFi along

the x and y axes. Axial leg forces Fleg1a and Fleg2a are the compressive forces applied by the

telescoping actuators on legs. Ankle torques τ1 and τ4 from the feet affect the corresponding

legs. The torso applies torques τ2 and τ3 to the legs. The orientation of the ith link (i=1, 2, 3)

is given by the absolute angles θi measured from the normal to the surface (Fig. 2.1). Because

the foot and the lower leg segment are massless, the swing foot orientation and the swing

leg length can vary instantaneously without any cost. For simplicity, assume a constant leg

length (ℓ0) and flat foot orientation for the swing leg.

2.2.1 Equations of Motion of the Unpinned Biped

In this study, a Newton-Euler formulation is used to provide insight into how forces and

torques affect the motion. First, the equations of motion (EoM) are derived for the general

case of the unpinned (unconstrained) biped model (Fig. 2.2a), and then constraints are

added to define each phase. In the general case, the coordinates of all points on the biped

follow from the coordinates of the biped’s CoM in the reference frame, qGtot
= [xGtot

, yGtot
]T,

the orientation of the links, qθ = [ θ1, θ2, θ3 ]
T, and leg extensions, qℓ= [ ℓ1, ℓ2 ]

T. For the

unpinned biped, angular momentum balance equations of the individual leg2, torso, and leg1
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about H1, H2, and A1, respectively, and the linear momentum balance equations of the whole

biped along the x and y directions provide a set of five equations:

M(qθ) q̈θ − mtot J
T

1θ(qθ,qℓ) q̈Gtot
+ c(qθ, q̇θ,qℓ, γ) = B τ + J

T

21θ(qθ,qℓ) fF2, (2.3)

mtot q̈Gtot
= fF1 + fF2 +mtot g, (2.4)

where M is the inertia matrix, the vector c contains the Coriolis, centrifugal, and grav-

ity terms, B is the torque-influence matrix, g=− [ sin(γ), cos(γ) ]Tg is the gravity accel-

eration vector expressed in the reference frame, fF1=
[
FF1x , FF1y

]T
, fF2=

[
FF2x , FF2y

]T
,

τ = [ τ1, τ2, τ3, τ4 ]
T, and J1θ and J21θ are the Jacobian matrices (defined below). All the

above matrices and vectors are expressed in Appendix A.1. Using the virtual work principle,

or simply by inspection, one can verify that in (2.3)

J21θ =
∂rA2/A1

∂qθ
, (2.5)

J1θ =
∂rA1/Gtot

∂qθ
, (2.6)

where rA2/A1
is the position vector of A2 relative to A1, and rA1/Gtot

is the position vector of

A1 relative to the biped’s CoM. These Jacobians are provided in Appendix A.5.

2.2.2 Single-Support Phase

Without loss of generality, consider leg1 and leg2 as the stance and swing legs, respectively.

In this case, fF2=0, and because the swing leg’s distal links are massless τ4 =Fleg2a =0. With

the swing leg’s prismatic joint locked, four inputs τ ss=
[
Fleg1a , τ1, τ2, τ3

]T
control the biped

in SS. This fully actuated system has four DoF, determined by qss = [ ℓ1, q
T

θ ]
T. Because A1

is fixed, q̇Gtot
and q̈Gtot

are related to the joint velocities and accelerations as below:

q̇Gtot
= ṙGtot/A1

= −J1θ q̇θ − J1ℓ1 ℓ̇1, (2.7)

q̈Gtot
= r̈Gtot/A1

= −J1θ q̈θ − J1ℓ1 ℓ̈1 + h1, (2.8)
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where J1ℓ1 = ∂rA1/Gtot
/∂ℓ1, and h1 collects the second-order and cross-product derivative

terms. The details of these quantities are provided in Appendix A.5. Substituting (2.8)

into (2.3) yields three equations in terms of four generalized coordinates. The force balance

equation on the massless foot1 and lower leg1, combined with (2.4), gives a fourth:

Fleg1a = [− sin θ1, cos θ1 ] fF1 = [− sin θ1, cos θ1 ] mtot (q̈Gtot
−g). (2.9)

The resulting four equations can be rearranged in the compact form:

Mss(qss) q̈ss + css(qss, q̇ss, γ) = Bss τ ss, (2.10)

where the details of the above matrices are provided in Appendix A.2.

2.2.3 Double-Support Phase

In this phase both legs are on the ground, implying non-zero fF1 and fF2. All six actuators are

potentially active, but the biped has only four DoF. The vector qds = [ ℓ1, q
T

θ ]
T determines

the biped configuration. Since both feet must be stationary on the ground with proper

distance between, we should have

rA2/A1
=
[
−Lstep, −Hstep

]T
, (2.11)

ṙA2/A1
=
[
J21ℓ1 , J21θ, J21ℓ2

] [
ℓ̇1, q̇θ, ℓ̇2

]T
= 0, (2.12)

r̈A2/A1
=
[
J21ℓ1 , J21θ, J21ℓ2

] [
ℓ̈1, q̈θ, ℓ̈2

]
T

+ h21 = 0, (2.13)

where J21ℓi = ∂rA2/A1
/∂ℓi for i=1, 2, and h21 collects the second-order and cross-product

derivative terms. These Jacobian and derivative matrices are expressed in Appendix A.5.

The length and extension rate of leg2, i.e. ℓ2 and ℓ̇2, are not free in this phase and can be

calculated from (2.11) and (2.12).

Equations (2.7) and (2.8) also apply in DS. By canceling ℓ̈2 between the two rows of

(2.13), and substituting (2.8) into (2.3) we get four equations in terms of six unknown
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variables: q̈ds, fF2
. Force balance equations on the massless parts of leg2 relate fF2

to the

known actuator force Fleg2a and the unknown constraint force Fleg2p (Fig. 2.2e). Finally, we

can remove Fleg2p from the equations by calculating it in terms of q̈ds, Fleg1a , and Fleg2a using

the force balance equation along the massless lower leg1 (equivalent to (2.9) with non-zero

fF2
). The four simplified equations constitute the EoM in DS, and can be rearranged in the

compact form:

Mds(qds) q̈ds + cds(qds, q̇ds, γ) = Bds τ ds, (2.14)

where τ ds =
[
Fleg1a , Fleg2a , τ1, τ2, τ3, τ4

]T
, and the other matrices and vectors are expanded

in Appendix A.3.

2.2.4 Flight Phase

In this phase both GRFs, fF1 and fF2, are zero, and gravity acts as the only external force,

simplifying (2.4) to q̈Gtot
=g. Having unconstrained massless links gives zero τ1, τ4, Fleg1a ,

and Fleg2a , and reduces the torque vector to τ fl = [ τ2, τ3 ]
T. With both leg-lengths locked,

the biped exhibits five DoF in FL with vector qfl =
[
qT

Gtot
, qT

θ

]T
fully determining the biped

configuration. In this case the general-case EoM in (2.3) simplify to

M(qθ) q̈θ + cfl(qθ, q̇θ) = Bfl τ fl, (2.15)

where the mass matrix M is the one appeared in (2.3). The matrix Bfl and the vector cfl

are expanded in Appendix A.4.

2.2.5 Touch-Down Map

The optimization procedure allows both collision-less and collisional TDs. A collisional TD

will be an instantaneous inelastic rigid impact, in which the ground exerts passive impulsive

forces on the stance leg(s) [74], and joint velocities change discontinuously. Positive impulsive

work at TD is not allowed. This imposes hard limits on post-TD extension/shortening rate
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of the stance legs: the new stance leg cannot be extending immediately after TD; also in

continuous-support gaits with extended double-support, the former stance leg cannot extend

immediately after TD if it was shortening just before TD, or if it was lengthening its extension

rate cannot increase.

In collision-less contacts the GRF remains bounded, and joint velocities are continuous.

The optimization procedure also has the option of locking the linear leg actuators for a

passive transfer of the impulsive axial leg forces to the rest of the body, or allowing them to

try to actively absorb some of the impact in an active control.

In order to find the optimum gait without considering the type of TD a priori, the algo-

rithm requires an algebraic mapping for TD that is independent of the type of foot-ground

contact. Here I derive the TD map for both gaits without using a matrix-inversion operation

(unlike previous studies including [1]), and without assuming a zero-duration DS phase in

the continuous-support gait. Assume that leg1 is going to land at time ttd, making fF1(ttd)

either impulsive or bounded (based on the relative foot-ground velocity). In intermittent-

support gaits leg2 is above the ground at TD, making fF2(ttd) = 0, but in continuous-support

gaits fF2(ttd) can be unbounded. During TD the configuration of the mechanism remains

unchanged, so the terms in the left hand side of (2.3), with the possible exception of the

first and the second terms, remain bounded. Therefore, integrating the general-case EoM in

(2.3) and (2.4) over the infinitesimal duration of TD gives

M ·
(
q̇+
θ − q̇−

θ

)
−mtot J

T

1θ ·
(
q̇+
Gtot

− q̇−
Gtot

)
= J

T

21θ iF2, (2.16)

mtot

(
q̇+
Gtot

− q̇−
Gtot

)
= iF1 + iF2 =




IF1x + IF2x

IF1y + IF2y


 , (2.17)

where M and J1θ are evaluated at ttd, and the superscripts − and + denote the time instants

immediately before, and immediately after ttd. Also, iFi=
∫ td+

td− fFi(t) dt is the TD impulse

on legi (i=1, 2) with the tangential and normal components IFix and IFiy , respectively. In

30



intermittent-support gaits iF2= 0. If in FL, q̇−
Gtot

follows from both the CoM velocity at TK

and the duration of FL. If in SS, q̇−
Gtot

follows from q̇−
θ and ℓ̇−2 , as

q̇−
Gtot

= −J2θ q̇
−
θ − J2ℓ2 ℓ̇

−
2 , (2.18)

where J2θ = ∂rA2/Gtot
/∂qθ and J2ℓ2 = ∂rA2/Gtot

/∂ℓ2 are evaluated at ttd. In both cases, the

landing foot (foot1) becomes motionless immediately after foot-ground contact, and q̇+
Gtot

can be calculated as a function of q̇+
θ and ℓ̇+1 using (2.7). To produce the TD-map for

continuous-support gaits, substitute (2.7) and (2.18) in (2.16) to get

[
mtot J

T

1θ J1ℓ1 M+mtot J
T

1θ J1θ

]


ℓ̇+1

q̇+
θ


 =

[
mtot J

T

1θ J2ℓ2 M+mtot J
T

1θ J2θ

]


ℓ̇−2

q̇−
θ


+ J

T

21θ iF2.

(2.19)

Equivalent substitutions for intermittent-support gaits result in the following TD-map:

[
mtot J

T

1θ J1ℓ1 M+mtot J
T

1θ J1θ

]


ℓ̇+1

q̇+
θ


 =

[
−mtotJ

T

1θ M

]



q̇−
Gtot

q̇−
θ


 , (2.20)

where all matrices are evaluated at ttd. Due to the non-instantaneous DS in continuous-

support gaits, A2 must remain motionless immediately after TD. Canceling ℓ̇2 between the

two rows of (2.12) results in

J
T

21ℓ2




0 1

−1 0



[
J21ℓ1 J21θ

]


ℓ̇+1

q̇+
θ


 =0. (2.21)

Summarizing, in intermittent-support gaits six unknown variables q̇+
θ , ℓ̇

+
1 , IF1x , IF1y appear

in five equations: two in (2.17) and three in (2.20). In continuous-support gaits two extra

unknown variables, IF2x and IF2y , add up to eight unknowns appearing in six equations:

two in (2.17), three in (2.19), and one in (2.21). For gaits with no axial impulsive GRF,

conservation of the linear momentum along the stance leg(s) at TD equalizes the number
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of unknowns and equations, otherwise unknown active impulse(s) of the stance leg actua-

tor(s) leaves extra D(s)oF in TD mapping for optimization. Note, the direct calculation of

the post-TD joint velocities from the pre-TD kinematic information involves inverse matrix

calculations and, even with efficient decomposition methods, is computationally expensive.

Instead, in a computationally efficient approach the optimization can find a set of joint

velocities on both sides of TD that satisfy the TD-map.

2.3 Optimal Control Problem

The goal of this study is to minimize the specific COT Cet, given by (2.2), subject to the

functional constraints. In the language of Optimization theory, this is a constrained nonlinear

optimal control problem. The objective here is to produce a quasi-global (global within the

parameter range) solution by maintaining as many free parameters as possible, via imposing

the minimum number of constraints. Specifically, only natural phenomena defining the

physical system as well as the desired (pre-determined) parameters defining the general

objective of the locomotion task (e.g. speed, step height) constitute constraints.

2.3.1 Constraints

For a physically consistent system, the EoM and the defined phase sequence (see Section

2.1.1) must be satisfied throughout the entire step2. Assume that the step starts (t=0)

when foot1 lands at r=0. The TD-map equations (previous section) serve as a set of

constraints that can be evaluated for a given set of pre- and post-TD joint velocities, and

GRF impulses. To satisfy the zero-slip condition at TD and during the entire SP phase, the

normal and tangential GRFs and possible TD impulses on each stance leg must lie in or on

2In this work the phase sequence is assumed a priori, and therefore it should be imposed by the constraints.
After writing and defending this thesis, I learned that there are some studies (e.g. [75, 76]) that have
considered the gait optimization problem without imposing the phase sequence. In fact, in those studies the
optimal phase sequence is also determined by the optimization.
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the friction cone, with the normal components directed upward. If a bound on axial leg force

at TD is required, the axial (and only axial) GRF impulse at TD has to be zero, otherwise

proper limits on post-TD leg extension rates are required to prevent impulsive positive work

by the telescoping actuators:

ℓ̇1(0
+) 6 0, (2.22)

ℓ̇2(0
+) 6





0 if ℓ̇2(0
−) 6 0

ℓ̇2(0
−) if ℓ̇2(0

−) > 0
(2.23)

The latter equation is valid in continuous-support gaits only.

For the DS phase, the position and velocity of foot2 become other constraints. With the

zero foot-acceleration equation, given by (2.13), as part of the EoM in DS, imposing (2.11)

and (2.12) at the beginning of DS (t=0) is sufficient. Since the projection of (2.12) along

leg2 has already been used to calculate ℓ̇2 for use in (2.13), one only needs to impose the

constraint of zero perpendicular velocity for foot2 at t=0.

In continuous-support gaits Fleg2a , τ4, and fF2 must be zero at TO as leg2 leaves the

ground. For intermittent-support gaits equivalent constraints must hold for Fleg1a , τ1, and

fF1 at TK. Note that this does not require both (tangential and normal) GRF components

of the transitioning leg to become zero simultaneously; while the normal must stay positive

until TO or TK, the tangential can vanish earlier.

At t=T the gait cycle ends just before foot2 lands at [Lstep, Hstep]
T. This is ensured

by imposing (2.11) and the periodicity constraints below. In order to have a physically

admissible solution, the foot must land from above the surface, requiring another constraint

for a non-upward foot velocity just before TD.

The periodicity of the gait implies that the orientations and velocities of leg1 and leg2

must be mutually symmetric-identical at the beginning and end of the step. The same is
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applied for the torso itself. These symmetry constraints can be formulated as:

θi(T ) = θj(0), θ̇i(T
−) = θ̇j(0

−), θ̇i(T
+) = θ̇j(0

+), i, j = 1, 3, i 6= j, (2.24)

θ2(T ) = θ2(0), θ̇2(T
−) = θ̇2(0

−), θ̇2(T
+) = θ̇2(0

+), (2.25)

lm(T ) = ln(0), ℓ̇m(T
−) = ℓ̇n(0

−), ℓ̇m(T
+) = ℓ̇n(0

+), m, n = 1, 2, m 6= n. (2.26)

Assuming a desired speed V has been specified, the step length and step period must

satisfy

V =
Dstep

T
. (2.27)

Ensuring all points of the biped remain above ground merely requires enforcing bounds

on θ1. Desiring an upright torso (anthropomorphic configuration), bounds are enforced on

θ2 as well (so it does not fall up-side down). θ3 and all joint velocities are free. Finally, lower

and upper bounds on actuator torques/forces and the lower leg length can be enforced to

create a realistic solution:

ℓmin 6 ℓ1, ℓ2 6 ℓmax, (2.28)

−∞ < ℓ̇1, ℓ̇2 <∞, (2.29)

0 < θ1, θ2 < π, (2.30)

−∞ < θ3, <∞, (2.31)

−∞ < θ̇1, θ̇2, θ̇3 <∞, (2.32)

T > 0, (2.33)

−τmax 6 τ1, τ2, τ3, τ4 6 τmax, (2.34)

0 6 Fleg1a , Fleg2a 6 Fmax. (2.35)

Some constraints have been imposed at either end of the phases or gait cycle, defining

a two-point-boundary-value (TPBV) problem. The remaining constraints (the differential
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equations and some algebraic constraints) are continuous-time equations that must be satis-

fied during the entire length of a phase or the whole gait cycle. In a computationally efficient

approach most of the inequality constraints are not included in the optimization, but rather

checked afterward (and each constraint that is not satisfied is then explicitly added into the

optimization for the next run).

2.3.2 Numerical Optimization

The resulting nonlinear optimal control problem is infinite-dimensional due to the continuous-

time states, actuation functions, and constraints. For the numerical approach, we can create

a finite number of nonlinear-programming (NLP) variables and constraints (transcription

technique [77]) by discretizing the DS, SS, and FL phases separately into a sequence of

Nds, Nss, and Nfl equal length intervals, with the optimization itself determining interval

durations Tds/Nds, Tss/Nss, Tfl/Nfl (see the next chapter for the number of intervals used to

generate different gaits). Each (implemented) continuous-time constraint becomes a set of

discrete-time constraints evaluated on the grid points (interval borders), or only in a subset

of them for faster convergence. The optimization control variables, i.e. joint torques and

forces, are approximated by continuous piecewise-linear functions, except at impulsive TDs

where continuity is not required by assumption.

Due to the high degree of nonlinearity of the problem, the use of the direct (single)

shooting method to solve the TPBV will likely cause the “tail wagging the dog” problem

[77]. Instead, I use the multi-shooting method with only one interval per shooting segment.

The state variables at interval borders are defined as NLP variables. In each segment, using

the current guess for the NLP variables, the EoM are integrated forward in time from the

beginning to the end of the segment. Constraining the defects, differences between the

resulting states at the end of each segment and the states at the beginning of the next, to

be zero guarantees state continuity at interval borders (see Fig. 2.3).
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Figure 2.3: Multiple shooting method and the defects at interval borders. Each
phase of the motion is divided into a few intervals. The state variables on interval borders
are determined by optimization via an iterative process. At each iteration, the optimization
procedure uses the current value of the state variables at interval borders, e.g. yk, and yk+1,
to integrate the equations of motion over the subsequent interval. The differences between
the resulting states at the end of each segment and the states at the beginning of the next,
e.g. ŷk+1 − yk+1, are called the defects. Constraining defects to be zero guarantees state
continuity at interval borders.

To prevent singularities during numerical optimization, small non-zero lower bounds on

the duration of each phase are enforced. If the actual optimal gait for a given desired gait

parameter involves the complete removal of a phase, the lower bound on the duration of that

phase becomes an active constraint in the resulting optimal solution regardless of how small

the bound. In this case, we can remove the related phase from the problem formulation in

order to achieve the true optimal gait in the admissible space.

Non-smooth functions create difficulties for numerical optimization when the optimal

solution is at, or very close to, the singular (non-smooth) point. Unfortunately, this is

the case for gait optimization with the work-based cost function in (2.2), which contains

non-smooth positive-value functions. To overcome the numerical difficulty, we can use the

approximation [x]+ ≈
(
x+

√
x2+ ǫ2

)
/2 with a small ǫ (square-root smoothing technique

[78, 79]) to remove the singularity.

The resulting finite-dimensional NLP problem is solved using numerical parameter op-

timization. For given values of the state and control variables, the state equations are
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numerically integrated forward in time over each interval separately. Then the objective

function and constraint violations are evaluated. The parameter optimization algorithm it-

eratively updates the NLP variables to minimize the cost function and satisfy constraints

within defined tolerances. The accuracy of the optimal solution is assessed with the original

continuous-time problem, and if necessary the discretization and optimization procedure is

repeated.

The optimal solution found using numerical optimization is a local optimum. To increase

the chance of converging to the global minimum for each set of pre-determined gait param-

eters, we can repeat the optimization with many initial guesses chosen randomly within the

parameter range. Another technique to escape from local optimums is to run the optimiza-

tion with initial guesses obtained from perturbing the last optimal solution with different

perturbation magnitudes.

2.4 Summary

In this chapter I presented a framework for gait optimization of a simple bipedal model.

The model includes a torso, flat feet, and telescoping legs equipped with rotational hip and

ankle joints. Two general types of gaits are considered in this framework: with and without

a flight phase. The support surface can be level ground, a slope, or a staircase. The optimal

gaits at different circumstances are achieved by minimizing a work-based energetic cost

subject to a minimal set of realistic physical constraints. In order to let the model exhibit

its natural behavior, any a priori assumptions on kinetic and kinematic parameters, such as

extended or instantaneous double-support, collisional or collision-less foot-ground contact,

step length, and step period, are avoided. Since the resulting optimal control problem is

highly nonlinear, an efficient technique was discussed to numerically solve the optimization

problem. The mathematical formulation and numerical technique presented here will be used
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in the following chapters to study bipedal locomotion from the energy efficiency perspective.
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Chapter 3

ENERGY-OPTIMAL GAITS OF THE MINIMALLY

CONSTRAINED BIPEDAL MODEL

The biped model and gait optimization algorithm described in the previous chapter can be

used to study energy-optimal bipedal locomotion. Since the formulated gait optimization

problem is minimally constrained, the optimization will use the most effective strategies

available to achieve an efficient gait on a given terrain. Studying these strategies can help

us find the determinant factors for effective gait coordination. Moreover, comparison of the

optimization-generated gaits with those of humans may lead to a better understanding of

human and animal locomotion. For example, the possible similarities between the human

gaits and those determined by optimization may imply that the human gait coordination is

governed by the same determinant factors responsible for the optimization-generated gaits.

Motivated by the above possible outcomes, I investigated the optimal gaits of the model.

The optimization results are presented in this chapter. First, the optimization and simulation

parameters are presented in Section 3.1. The optimal continuous-support gaits on different

terrains are described in Section 3.2. Then optimal intermittent-support gait is discussed

in Section 3.3. Finally, the insights achieved from the analysis and results presented in this

chapter will be discussed in Section 3.4. The chapter is summarized in Section 3.5.

3.1 Optimization and Simulation Parameters

The numerical results presented in this chapter are based on the bipedal model in Fig. 2.1.

Although the results are qualitatively similar for a very wide range of model parameter values,
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those presented here are based on the values listed in Table 3.1. These values are calculated

from the estimated anthropomorphic data [80] of a subject with total mass of mtot =75Kg

and body height of htot =170 cm. Upper leg length lu is calculated from Greater Trochanter

(hip) to Medial Malleolus (ankle). In accordance with Fig.2.1, the torso represents the head,

arms, and trunk, so its height is calculated from Greater Trochanter (hip) to the top of the

head.

The optimization and simulation constants are listed in Table 3.2. Upper bounds for

actuator force and torques, Fmax and τmax, are chosen high enough so that they do not

qualitatively affect the results. Note that the maximum leg force Fmax is not applicable for

possible impulsive leg forces at idealized impacts.

To make sure that the results are independent of the value of the friction coefficient

µ, simulations have been repeated for three different typical values µ=0.3, 0.7, and 1.0.

Because the results for all three cases are very similar, only those for µ=1.0 are shown here.

To avoid numerical difficulty, the positive-value function, used in (2.1) to calculate the

positive and negative actuator power, is approximated by [x]+ ≈
(
x+

√
x2 + ǫ2

)
/2 with two

Table 3.1: Model Parameters for the Biped in Fig. 2.1

Parameter Description Symbol Value

total body mass mtot 75 Kg

torso mass mtrs 0.68 mtot

leg mass mleg 0.16 mtot

total body height htot 170 cm

torso height htrs 0.47 htot

upper leg length (massive part) lu 0.48 htot

torso CoM proximal distance a 0.42 htrs

leg CoM proximal distance b 0.45 lu

torso moment of inertia about the torso CoM Itrs/Gtrs
0.1084 mtrs h

2
trs

leg moment of inertia about the leg CoM Ileg/Gleg
0.1063 mleg l

2
u
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Table 3.2: Simulation and Optimization Constants

Parameter Description Symbol Value

minimum leg length lmin 0.48 htot = lu

maximum leg length lmax 0.58 htot

leg length at landing l0 0.53 htot

maximum hip and ankle torque τmax 500 Nm.

maximum leg force Fmax 3 mtot g

gravity acceleration g 9.81 m/s2

friction coefficient µ 1.0

smoothing parameter ǫ 1.0

cost of unit positive work (power) c1 4

cost of unit negative work (power) c2 5/6

different values of ǫ=1, 0.1W. In fact, decreasing ǫ by 10 fold reduces the COT by only

about 10%, with small changes in the value, but the same qualitative behavior, of resulting

gait parameters. Due to the negligible differences in the results, only those results produced

by ǫ=1W are presented.

Different combinations of the number of grid points (see Section 2.3.2) are examined

to check the effect of piecewise-linear approximation of the control variables. In general,

by increasing the number of grid points the minimum achievable COT slightly decreases

(favoring impulsive actuation), but the overall behavior of the optimal solutions does not

change. The number of grid points used for each gait will be provided when presenting

different synthesized optimal gaits in Sections 3.2 and 3.3.

The constraints and the objective function are implemented in MATLAB, with ODE113

used for integrating the state equations with absolute tolerance of 10−12 and relative tolerance

of 10−9. The MATLAB interface SNOPT [81] provides the optimization routine.

The accuracy of the optimal solution is verified afterwards by numerically integrating

the state equations continuously over the entire step with a small maximum step size and
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with initial conditions specified only at the beginning of the step (in contrast to the multiple

shooting method used for optimization). At this verification stage the TD maps in (2.19)

and (2.20) are replaced by a root finding procedure that searches for TD impulses and

post-TD joint velocities that directly satisfy the conservation of angular momentum at TD.

Besides checking that all constraints are satisfied, the total mechanical energy and angular

momentum of the system are also inspected as a means of validating the entire procedure,

including modeling, simulation, and numerical integration.

For each set of pre-determined gait parameters the optimization procedure was repeated

with many initial guesses chosen randomly within the parameter range. Escaping from

local optimums was ensured by perturbing the obtained optimal solutions with different

perturbation magnitudes. In almost all cases more than 80% of trials converged to the same

solution which was then accepted as, or to be very close to, the global optimum in the

parameter range defined by (2.28)-(2.35).

In the following sections, the input gait parameter for level-ground and uphill gaits is the

forward velocity V , and for going down a stairway the inputs are both the step height Hstep

and tangential step length Lstep.

3.2 Optimal Continuous-Support Gait

Regardless of the lower bound on the DS duration, and as long as the upper bound on leg

force is greater than total body weight, all optimal continuous-support gaits at different

circumstances take the minimum allowed DS duration. Fig. 3.1 shows leg force profiles for

an optimal level-ground gait for which DS is not allowed to be less than 10% of the step

period, i.e. Tds 6 10% T (see the figure caption for other gait parameters). The resulting

DS duration is exactly 10% T . Moreover, the resulting overlap of the leading and trailing

leg forces (where both leg forces are non-zero) only takes one grid-interval of the enforced
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Figure 3.1: Leg forces in double support phase. Leg force profiles for two steps of a
sample continuous-support gait with no axial impulsive leg force, Tds,min=10% T , Nds =3,
and Nss =7. The dashed and solid vertical lines indicate the touch-down (TD) and toe-off
(TO) instants, respectively.

extended DS phase, independent of the number of grid points used. This profile is typical for

all ground slopes and step heights, as well as for all speeds for which continuous-support gait

is feasible. This implies that for the chosen objective function (see Section 2.1.2), and without

imposing extra constraints, the optimum continuous-support gait has an instantaneous DS

(i.e. Tds =0). Therefore, we can use Nds =0 for all optimal continuous-support gaits.

The non-optimality of an extended DS phase can be intuitively justified as follows: a

non-instantaneous DS would require simultaneous negative and positive work performed by

the leading and trailing legs, respectively. While these simultaneous works almost cancel

each other and have no energetic benefit for the system (the net energy level of the system

remains almost unchanged as the velocities and the CoM height do not change much during

DS), active production of both forms of work is costly for the system.

In spite of the energetic benefit of an instantaneous DS for the model, normal human

walking has extended DS phases of about 20% of the gait cycle [50], perhaps due to the extra

constraints acting on the human body or its actuators (muscles) [67].
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3.2.1 Optimal Continuous-Support Gait on Level-Ground

At slow speeds, and independent of whether the impulsive axial GRF at TD are allowed

or not, a special type of continuous-support gait, known as the ‘pendular walk’ [25], is

energetically favorable. In this gait, which more or less resembles normal human walking,

the stance-leg length is constant over most of the SP phase, providing an inverted-pendulum-

like trajectory for the CoM.

A sample optimal gait synthesized for the average forward speed V =1.38m/s with in-

stantaneous DS and no axial impulsive leg forces is shown in Fig.3.2. This gait is synthesized

with Nss =7 and Nds =0 (optimal DS is instantaneous; see the first paragraph in Section

3.2). The resulting optimal step period and step length are T =0.33 s and Dstep =0.455m.

Also, the specific and mechanical COT are Cet =0.335 and Cmt =0.069. This cost is almost

evenly distributed between the stance leg’s linear actuator (51%) and the swing hip (48.6%),

and the other joints have negligible contributions.

Optimal Leg Forces, Collisional Foot-Ground Contact, and the Pre-Emptive Push-Off:

As shown in Fig. 3.2f (and also in Fig. 3.1), each leg force exhibits two peaks that take place

at support transfer between the legs. The first peak occurs on the leading leg immediately

after the foot-ground contact. This burst force activity quickly stops the leg shortening

(Fig. 3.2d) and causes energy dissipations (negative work) in a short period of time. These

characteristics represent a collisional foot-ground contact [25]. Because the impulsive axial

leg forces are prohibited in the sample gait shown in Fig. 3.2, the resulting TD collisions are

not the idealized instantaneous ones, but rather extended over a short period of time with

large (but finite) leg forces involved. For this reason they can be called extended collisions.

By increasing the number of grid points and the upper bound on the leg force, these extended

collisions occur in a shorter period of time and thus converge to instantaneous collisions.

The second peak leg-force occurs on the trailing leg at the end of single support phase.
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Figure 3.2: Stick diagram and gait parameters of two steps of the optimal lev-
el-ground continuous-support gait generated for V =1.38m/s with instantaneous DS.
Axial impulsive GRFs are not allowed. In the first step, leg1 (the solid blue lines in 3.2a)
is the stance leg. In 3.2a the asterisks indicate the CoM position. The dashed vertical lines
in 3.2b-3.2g indicate the TD instant. In 3.2e the subscripts axial and perp denote the foot
velocity components along and perpendicular to the corresponding leg. In 3.2f the stance
leg’s axial force (Fleg1a and Fleg2a) and GRFs in normal and tangential directions (FF1x and
FF1y) are all scaled with body weight mtot g. Note that foot scuffing can be avoided by
decreasing the length of the swing leg’s massless portion.
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Approaching touch-down, and while the CoM has a downward motion, the trailing leg begins

pushing off with its linear actuator, effectively adding energy to the system. This action

redirects the linear momentum vector of the biped, reducing the momentum that is going to

be lost at the following TD collision [26]. Interestingly, this cost-reducing strategy (referred

to as preemptive push-off ) is a well-known characteristic of human walking [26, 50].

As a consequence of the above actions, the resultant vertical GRF (Fig. 3.2f) in the

optimal gait has a double-hump profile, another well-recognized characteristic of the human

walk [29, 82]. The horizontal component of the GRF also has a profile similar to that of

human walking. It consists of negative and positive halves corresponding to deceleration and

acceleration of the CoM before and after mid-stance.

In the optimization routine associated with the gait shown in Fig.3.2 the impulsive GRFs

at TD are allowed in the normal to the leg direction, but not along the leg. Notwithstanding,

the optimal gait does not include any impulsive forces in any direction. In other words, when

the axial GRFs at TD are enforced to stay bounded, impulsive perpendicular GRFs are not

energetically advantageous. This will be justified later in Section 3.4.1.

Optimal Hip Torque Profile:

Experimental observations of human walking show that the swing hip has burst activities at

both ends of the swing phase: just after toe-off, and just before heel-strike [47]. As can be

seen in Fig.3.2g, the energy optimization model automatically discovers the advantage of this

strategy as well, and activates the swing hip in a ‘bang-coast-bang’ manner: Immediately

after toe-off the swing leg is rotating rearward (negative θ̇3 at the beginning of the first

step in Fig. 3.2c) due to its angular momentum prior to toe-off. To quickly redirect the

swing leg’s rotation and to increase the step frequency above the leg’s natural frequency,

the swing hip applies a burst torque to the leg. After that, the leg swings passively in the

forward direction until shortly before TD, when the swing hip applies another burst torque

46



to stop the forward leg-swing and reverse its rotation. This late-swing rotation reversal is

called swing-leg retraction and can reduce the energy dissipation at foot-ground contact (see

Section 3.4.1). For slower forward speeds, peak swing-hip activity occurs with short offsets

from toe-off and TD.

Contribution of the Revolute Stance-Ankle:

In Fig. 3.2g the revolute stance-ankle and the stance-hip torques (τ1 and τ2 in the first step)

have very small activities which are not visible in the figure. The peak ankle and hip torques

are 0.127Nm and 0.6Nm, respectively. This yields a maximum ZMP displacement of 0.3mm

from the ankle joint, supporting the argument in Section 2.1 that for optimization purposes

the biped can be simplified to a point-foot model. See Section 3.4.2 for the comparison of

this result with human gaits.

Optimal Continuous-Support Gait at Fast Speeds

At adequately fast speeds (close to 2m/s) the peak push-off force occurs slightly earlier than

the following support transfer. By further increasing the average speed, the separation of

push-off and termination of the support transfer increases, and GRF components stay on

the boundary of the friction cone. By letting the friction coefficient tend to infinity the

vertical post-push-off GRF becomes zero with a negligible horizontal GRF, demonstrating

the optimality of having a flight phase (intermittent-support gait) at higher speeds.

3.2.2 Optimal Continuous-Support Gait to Climb Ramps or Staircases

The optimal continuous-support gait for climbing a staircase or a ramp has much in common

with the optimal gait on a level surface, but also some important differences.

A sample optimal gait for climbing a 10◦ slope at V =0.9m/s is shown in Fig. 3.3. For

this optimal gait Nss=7, Nds =0 (optimal DS is instantaneous; see the first paragraph in
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Section 3.2), and axial impulsive GRFs at TD are allowed. The resulting gait parameters

are: step period T =0.49 s, step length Dstep =0.44m, mechanical COT Cmt =0.1737, and

specific COT Cet =0.694. The COT is distributed over different actuators as: stance leg’s

linear actuator: 25%, revolute ankle: 3.5%, stance hip: 49.5%, and swing hip: 22%.

For the same progression slope the optimal stair-climbing gait and the optimal uphill

gait are similar. In both cases foot stubbing (scuffing) can be avoided by contracting or

re-orienting the massless parts of the swing leg.

Optimal Gait Strategies:

As for the level-ground case, foot-ground contacts in this case are collisional. Because for the

optimal gait in Fig.3.3 the leg forces are allowed to be unbounded at the foot-ground contact,

the TD collisions are instantaneous and include dissipative impulsive GRFs (Fig. 3.3f) that

instantaneously redirect the CoM and avoid the stance leg from shortening (Fig. 3.3d). To

reduce the energy dissipation at these collisions, a burst pre-TD push-off force (preemptive

push-off) is also applied in this case, as seen in Fig. 3.3d and Fig. 3.3f.

At equal speeds the optimal step length on uphill is shorter than on level ground, resulting

in less dissipations at TD collisions [26].

Compared to the level-ground gait, here the activity of the stance hip has substantially

increased (Fig. 3.3g). In going uphill/upstairs the stance hip applies a significant torque to

vault the CoM over the stance leg. This torque pushes the torso back, and can potentially

cause instability. To overcome this problem the torso leans forward, as seen in Fig.3.3a. The

leaning angle increases with the ground slope.

Similar to the level-ground case, the swing-hip motor and the stance-leg’s telescoping

actuator have almost equal cost contributions. As seen in Fig. 3.3g, the major burst activity

of the swing hip is limited to the beginning of the swing, since the pre-TD swing-leg retraction

is mostly done passively by gravity.
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Figure 3.3: Stick diagram and gait parameters of two consecutive steps of the
optimal uphill continuous-support gait generated for γ=10◦, and V =0.9m/s. DS is
instantaneous, and unbounded axial leg forces at TD are allowed. In the first step leg1 (the
solid blue lines in 3.3a) is the stance leg. The asterisks in 3.3a indicate the CoM position.
The dashed vertical lines in 3.3b-3.3g indicate the TD instant. In 3.3e the subscripts axial
and perp denote the foot velocity components along and perpendicular to the corresponding
leg. In 3.3f the stance leg’s axial force (Fleg1a and Fleg2a) and GRFs in normal and tangential
directions (FF1x and FF1y) are all scaled with body weight mtot g. Also the arrows in 3.3f
represent the GRF impulses at TD.
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The minimum achievable Cmt in climbing a slope of angle γ is sinγ− equivalent to the case

when there is no dissipation or negative actuator work, and all the positive actuator work is

spent to increase the potential energy. The specific COT for the optimal gait shown in Fig.3.3

(Cet =0.1737) is very close to the associated theoretical minimum (sin γ= sin 10◦=0.1736),

showing that most of the actuator work is positive.

3.2.3 Optimal Continuous-Support Gaits for Stepping Down the Ramps or Staircases

For downhill/downstair gaits a different behavior is observed (see below). A sample optimal

gait for stepping down a stairway with Hstep =−10 cm and Lstep =50 cm is shown in Fig. 3.4.

The resulting gait parameters with Nds =0 (optimal Tds is zero) and Nss =7 are: step period

T =0.537 s, specific COT Cet =0.014, and mechanical COT Cmt =0. The distribution of Cet

over different joints is: stance leg’s telescoping actuator: 59%, revolute ankle: 13%, stance

hip: 16%, and swing hip: 12%. Because the mechanical COT is calculated using only positive

actuator work, Cmt=0 implies that the actuators are doing only negative work, and all the

positive work is done by gravity. By decreasing the slope of progression the actuators will

start doing positive work.

Optimal Gait Strategies:

Similar to the previous two cases, the foot-ground contacts are collisional here. In the

sample gait provided, the axial impulsive leg forces at TD are allowed, so the collisions are

instantaneous.

Unlike the previous two optimal gaits, in this case the length of the stance leg continuously

decreases (Fig. 3.4d), and the peak of the leg force occurs around mid-stance, as seen in

Fig. 3.4f. No pre-TD push-off force is observed in this case. Consequently, the collision loss

is noticeable (it is 11 times greater than the total negative work done by all the actuators).

This strategy is observed in all downhill/downstair gaits and is justified in Section 3.4.1.
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Figure 3.4: Two consecutive steps of the optimal downstair continuous-support
gait generated for Hstep =−10 cm and Lstep =50 cm. Other conditions are similar to Fig.3.3.
In the first step leg1 (the solid blue lines in 3.4a) is the stance leg. The asterisks in 3.4a
indicate the CoM position. The dashed vertical lines in 3.4b-3.4g indicate the TD instant.
In 3.4e the subscripts axial and perp denote the foot velocity components along and perpen-
dicular to the corresponding leg. In 3.4f the stance leg’s axial force (Fleg1a and Fleg2a) and
GRFs in normal and tangential directions (FF1x and FF1y) are all scaled with body weight
mtot g. Also the arrows in 3.4f represent the GRF impulses at TD.
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In contrast to uphill gaits, in downstair gaits the stance hip applies a decelerating torque

(Fig. 3.4g) to achieve the optimal step period. In reaction to this torque, and to avoid falling

forward, the torso leans backward.

Although the swing hip exhibits a bang-coast-bang torque profile (Fig. 3.4g), its pre-TD

activity is not to retracting the swing leg, but to push the leg forward (in Fig. 3.4c the

swing-leg angular rate has increased before TD). This enforced forward motion of the leg at

the end of swing increases the foot velocity at TD (Fig. 3.4e), and therefore results in more

collision loss (see Section 3.4.1 for the justification).

The required foot length (based on ZMP) of 1.2 cm and the revolute ankle joint activity

do not seem to be an important requirement for energy efficiency, since the corresponding

gait with forced zero-ankle-torque (point-feet biped) has Cet =0.012; practically not different

from Cet =0.014 for the gait in Fig. 3.4. See Section 3.4.2 for the comparison of this result

with human gaits.

3.3 Optimal Intermittent-Support Gait

For adequately fast speeds (approximately above 3m/s) a special type of intermittent-

support gait is optimal. This gait is known as impulsive running [25] and more or less

resembles normal human running.

Fig. 3.5 shows a sample of this gait at V =5m/s. For this sample gait Nss =5, Nfl =10,

and the impulsive axial leg forces at TD are allowed. The optimal step period, step length,

and duty factor (the fraction of step period that a foot is in stance) are 0.22 s, 0.97m, and

30%, respectively. Also the mechanical and specific COT are Cmt=0.11 and Cet =0.48. The

contribution of each actuator in Cet is: stance-leg telescoping actuator: 73%, stance hip:

18%, and swing hip: 9%. The revolute ankle joint has negligible contribution.
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Figure 3.5: Two consecutive steps of the optimal intermittent-support gait on
level ground generated for V =5 m/s. Unbounded axial leg forces at TD are allowed. In
the first step leg1 (the solid blue lines in 3.5a) is the stance leg. The asterisks in 3.5a indicate
the CoM position. The dashed black and solid green vertical lines in 3.5b-3.5g denote the
touch-down (TD) and take-off (TK) instants, respectively. In 3.5e the subscripts axial and
perp denote the foot velocity components along and perpendicular to the corresponding leg.
In 3.5f the stance leg’s axial force (Fleg1a and Fleg2a) and GRFs in normal and tangential
directions (FF1x and FF1y) are all scaled with body weight mtot g. Also the arrows in 3.5f
represent the GRF impulses at TD.
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Optimal Leg Force and Center of Mass Motion:

In contrast to the continuous-support gait, where the axial leg force falls below body weight

for most of the step period, here the leg force stays at its maximum over most of the support

phase (Fig. 3.5f). The large leg forces at early support phase quickly stop leg shortening

and the downward motion of the CoM (collisional TD). For the sample gait presented, this

deceleration phase is compressed at the TD instant due to the idealized impulsive axial leg

forces at TD (arrows in Fig. 3.5f). After this deceleration, large leg forces increase the leg

length and provide the required upward velocity for the CoM at take-off.

As a result of the above actions, the CoM has a bouncing-type trajectory which reaches

its lowest point in the middle of SP, while the CoM has its minimum speed. At this point

the kinetic and potential energy are at their minimum. The highest point of the CoM

trajectory occurs in FL where the CoM speed is about maximum, and so are the kinetic

and potential energy. Therefore, the kinetic and potential energy change in-phase with each

other, a well-known characteristic of running-type gaits in biological systems.

Interestingly, the optimal bouncing motion of the CoM and in-phase changes in kinetic

and potential energy occur without having any elasticity in the biped. This shows that the

advantage of this motion is more fundamental than being dependent mainly on elastic energy

recovery, a fact that has been largely overlooked [26].

Ground Reaction Force Profiles:

As shown in Fig. 3.5f, the resulting vertical GRF has a pulse shape that approximates the

bell-shaped GRF of human running [83].

Swing Leg Motion and Hip Torque Activity:

Regardless of the average forward speed, the swing leg is rotating forward at off-side TD

(θ̇1> 0 at the vertical dashed line in Fig. 3.5c, i.e. at TD on leg2). This forward rotation
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continues after TD, and brings the swing leg in front of the body in the second half of the

stance phase (θ1 becomes positive after some t between the dashed and solid vertical lines in

Fig.3.5b, i.e. after TD and TK on leg2). Shortly before take-off the hip applies a decelerating

burst to reduce the swing leg’s angular velocity. This reduces the GRF and helps prepare the

conditions required for take-off (zero GRF). At the end of the FL, and while the landing leg

has reached a near-vertical orientation, hip torque applies a burst to slow down the rotation

of the leg and prepare it for landing (swing-leg retraction). Unlike the continuous-support

gait, there is no ground contact, so the pre-emptive push-off strategy is not available in this

gait. Instead, landing with the leg as vertical as possible reduces the horizontal-momentum

loss at TD.

At the beginning of the FL the new swing leg (which was the stance leg before take-off)

is rotating rearward with a high angular rate due to its angular momentum prior to take-off.

Immediately after take-off the new swing hip applies a burst to decelerate the leg rotation, as

seen in Fig. 3.5f. Around the mid-flight, and almost simultaneously with the landing leg, the

rotation of the rear leg is reversed (at about t=0.1 sec in Fig. 3.5c), and the leg is prepared

for the next step.

Contribution of Ankle Torque:

Similar to the continuous-support gaits, the ankle torque during the support phase is too

small (maximum 0.05Nm) to be seen in Fig. 3.5g. As a result, the ZMP has a negligible

offset (0.3mm) from the ankle. Although this might be counter intuitive, it indicates that

the main contribution of the ankle joint (the complex ankle includes both the telescoping

joint along the leg and the revolute joint between the foot and the leg) is to push off and

provide the required linear momentum for step transition. Section 3.4.2 compares the ankle

torques in human gaits and the optimization generated gaits.
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Optimal Intermittent-Support Gait at Slow Speeds

Note that at velocities close to 2m/s the optimization converges to the so-called pendular

running gait [25], with a mixture of a pendular SP and a short FL. Further decrease in speed

eliminates the FL, implying the optimality of continuous-support gait over intermittent-

support gait at slower speeds. Because the optimization has been formalized in a way that

converges to the quasi-global optimal gait at any given speed, generating gaits with non-zero

flight phase requires an extra constraint on the minimum flight time at these low speeds.

3.4 Discussion

In this section, some aspects of the optimal gaits found in the previous sections are discussed.

Also, the insights that can be achieved from them are provided.

3.4.1 General Characteristics of the Optimal Gaits

Collisional Foot-Ground Contact:

Consistent with findings of [25] with a simpler bipedal model than the one used in this

work (Fig. 2.1), the implemented optimization routine for all types of gait converged to solu-

tions that include collisional foot-ground contacts. When axial impulsive GRFs at TD were

permitted, these TD collisions were idealized instantaneous impacts. Otherwise, they were

extended collisions, which involve high (but finite) dissipating leg forces that quickly stop the

leg shortening after a new foot-ground contact (step-to-step transitions). By increasing the

number of grid points and the maximum allowed leg force in the optimization routine, these

high leg forces converge to instantaneous impulses. These results are valid for a large range

of models when a work-based energetic cost is used as the optimization objective function

(e.g. [25, 67]).
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Strategies to Reduce Collision Loss in Level-Ground:

Although it may appear, from an energy-efficiency point of view, that dissipative collisions

are not desirable, eliminating them requires extra actions and effort and thus may increase

the net energetic cost. For example, in continuous-support gaits collision energy loss could

be avoided completely by, say, moving the CoM in a horizontal path and taking steps with

zero foot-velocity at TD. Unfortunately, such motion requires more work from the legs,

simultaneously shortening an extending, than is saved in reducing energy loss at collisions

[2, 25].

In fact, the optimal solution uses different strategies to reduce the collision loss, but only

to the extent that results in a net energy saving. Some of these strategies are gait specific. In

continuous-support gaits a burst push-off force is applied along the stance leg just before TD

to reduce the CoM momentum along the leading leg. This reduces the energy that should

be dissipated to quickly stop the leg shortening and redirect the CoM motion. In running,

however, there is no support leg during flight to apply the pre-TD push-off. Instead, landing

with the leg as vertical as possible reduces the momentum loss at TD (CoM momentum is

directed mainly in the horizontal direction rather than the vertical).

Another strategy in reducing collision loss is swing-leg retraction: the late-swing rotation

reversal of the swing leg prior to TD. Interestingly, swing-leg retraction has been also ob-

served in human and animal locomotion [47, 51, 52, 54, 56]. This rearward limb rotation,

while the hip is moving forward, reduces the TD impact by reducing the relative foot-ground

velocity (Fig. 3.2e, Fig. 3.3e, Fig. 3.5e). In level-ground gaits, swing-leg retraction is achieved

actively by applying a hip torque to the leg to stop its forward swing and force it to rotate

backward. Therefore, depending on the balance between the energy it saves via collision re-

duction and the cost it takes to brake/accelerate the leg, swing-leg retraction can potentially

reduce the net energetic cost of the gait. It is shown in Chapter 8 that the energetic benefit

of active leg retraction depends on different factors, including the step length and speed.
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Optimal Cost Reduction Strategies for Gaits on Ramps or Stairways:

When climbing stairs or a ramp, the potential energy of the biped increases at each step.

Therefore, the net work done at each step must be positive (unlike the periodic gaits on a

level ground for which the net work done in each step must be zero to keep the mechanical

energy of the biped at the same level after each step). In an efficient gait, the positive net

work is achieved in part by decreasing the negative work and dissipations. As a result, for

climbing stairs or a ramp, the intensity of TD impact decreases with slope by increasing the

preemptive burst push-off force and/or taking shorter steps. Also, to further decrease the

negative work, the swing-leg retraction is mostly done passively by gravity, eliminating the

active negative work required to stop the forward leg-swing.

In downhill/downstair gaits not only the stance-leg preemptive push-off and swing-leg

retraction are not observed, but also opposite actions are taken. In fact, as can be seen in

Fig. 3.4, the stance-leg length is reduced prior to TD (opposite to pre-TD leg extension)

and an extending (opposite to retracting) torque is applied at the swing hip that increases

the foot velocity at TD. Consequently, the TD impact and its associated loss is maximum.

This is because in downhill gaits the system gains net kinetic energy during each step, and

increasing collision loss is an cost-effective way to dissipate this extra energy.

Effect of Bounded Axial Leg Forces on Swing-Leg Retraction:

Another factor that determines the optimal scenario of TD collision and swing-leg retraction

at foot-ground contacts is whether axial GRF impulses are allowed at TD or not. When

these axial forces are allowed, the perpendicular impulsive GRFs at TD may also exist in the

optimal gait. However, when TD impulses are allowed only in the perpendicular direction,

the TD becomes completely non-impulsive for all optimal gaits found (e.g. see the optimal

gait in Fig.3.2). In other words, when the axial impulsive forces are avoided, the best strategy

is to avoid the perpendicular ones as well.
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The above result can be explained as follows: In the absence of axial impulsive forces at

TD, the unilateral foot-ground contact (the foot cannot penetrate to the surface) restricts the

permissible perpendicular impulses to the non-downward direction. Due to the orientation

of the landing leg at TD (the landing foot is usually ahead of the hip) the non-downward

perpendicular impulses are possible only if the perpendicular foot velocity at TD is either zero

(avoiding instantaneous impact), or directed downward. The latter demands more positive

work from the swing hip and also dissipates more energy at impact; thus is not energetically

favorable.

Because of the forward motion of the hip, the zero perpendicular foot velocity at TD is

possible almost only by applying a retracting hip torque at the end of swing phase. This

torque brakes the forward leg-swing and accelerates its backward rotation to cancel the effect

of the perpendicular hip velocity. Thus, when axial impulses are prohibited a retracting hip

torque is required to have a physically meaningful model, otherwise a suctional contact

(pulling force from the ground) is required to stop the foot at landing. A side implication

of this result is that the models with an axial spring in the leg (avoiding the axial impulsive

forces at TD) will spontaneously have leg retraction and are not appropriate to examine

whether leg-retraction has any net energetic advantages; a fact that is neglected in [65].

3.4.2 Comparison of Optimization Generated Gaits and Normal Human Gaits

Many of the identified characteristics of the optimization generated gaits are similar to those

of human gaits, including the burst preemptive push-off in walking, landing on a near-vertical

leg in running, bang-coast-bang hip torque profile of the swing hip, swing-leg retraction,

collisional foot-ground contacts, torso leaning on ramps, GRF profiles, etc. However, there

are some differences as well.

In all the optimal gaits identified, the contribution of the stance ankle torque is negligible,

implying that for optimization purposes the extended feet can be reduced to point feet.
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However, in humans feet are extended and ankle torque is not negligible. This difference

comes from the difference between the ankle joins of humans and the model. In humans the

ankles are purely revolute joints and the push-off is provided mainly by ankle joint extension

and foot rotation. In contrast, the model has compound ankle joints consisting of a linear

joint along the leg and a revolute joint between the leg and the foot. As explained in Section

2.1, this is meant to simplify the model dynamics and increase the optimization convergence

rate. With this compound ankle, the push-off is provided by the telescoping joint ,and the

ankle torques can only change the angular momentum of the biped. The resulting negligible

ankle torques in the optimal gaits imply that the main contribution of the ankle is to push

off and provide the required linear momentum for step transition.

Typical human walking has a specific COT of Cet ≈ 0.2, estimated by the volume of

Oxygen consumed (VO2), and a mechanical COT of Cmt≈ 0.05 [45]. The associated preferred

step period and step length, when walking at the preferred speed V =1.3m/s, are T ≈ 0.55 s

and Dstep ≈ 0.72m [84]. For the current bipedal model with the sample optimal gait shown

in Fig. 3.2 the specific and mechanical COT (0.335 and 0.069, respectively) are close to

those of humans walking at the same speed, but with shorter step length and step period.

By letting the optimization use impulsive axial leg forces at TD, the optimal Cet and Cmt

become closer to human costs (0.22 and 0.055, respectively), but the step period and step

length become even smaller. These results may show that the dominant factor in metabolic

energy expenditure of human walking is the mechanical work done by muscles. The shorter

step period and step length can be explained by the fact that the optimization does not

face any cost or limiting upper bound in using high torques, as the goal here is to study

the optimal gaits under minimal constraints. Adding actuation cost in the energetic cost

equation in (2.1), such as the force-over-time cost suggested in [85], resolves the problem of

fast steps.

For treadmill running at the same speed as for the sample optimal gait in Fig.3.5 humans
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have Cet ≈ 0.43 (extracted from non-athlete running data in [73]) with a duty factor of 33%.

Relative step length with respect to the leg length is Dstep/ℓ=1.67 (extracted from [86]).

Scaled for the human subject of Table 3.1, this corresponds toDstep ≈ 1.5m. Comparing these

values with those corresponding to the optimal gait of Fig.3.5 (Cet =0.48 and Dstep =0.97m)

shows that humans are slightly more efficient runners than the purely rigid model in Fig.2.1.

This is not surprising given that elastic energy recovery does occur in human running.

Now that I have reviewed the main characteristics of the identified optimal gaits and

their comparison with human gaits, I discuss some insights that can be obtained from the

above results.

3.4.3 Walking and Running; Different Solutions of the Same Problem

Despite the apparent differences between the optimal continuous-support gait (walking) and

the optimal intermittent-support gait (running), they have fundamental functional similar-

ities. In both of these gaits there is a portion that is relatively cost-free. For walking the

low-cost portion occurs during the single-support phase when the mass of the body sponta-

neously vaults over the stance leg. In running the low-cost portion of the step cycle occurs

when both feet are in the air and the body mass moves ballistically. For both walking

and running, these low-cost (quasi-passive and smooth) portions of the step cycle are in-

terspersed between the (less smooth) high-cost portions during which the CoM motion is

redirected from downward to upward (entire support phase in running and support transfer

between legs in walking). This high-cost down-to-up transition is actively mediated by the

action of stance leg(s), which involves ‘costs’ associated with energy loss to impact and actu-

ator work expended to decelerate and accelerate the CoM. In both walking and running the

main activity of the swing hip occurs around this down-to-up transition. This involves ‘costs’

associated with work spent to start the leg swing just after foot-clearance and then prepare

it for a proper landing (reduced relative foot-ground speed) just before the foot-contact.

61



One important point that should be noted here is that both these optimal gaits (walking

and running) are generated using the same bipedal model1, and both are subject to the

same physics principles for the interaction of body with its physical environment (gravity

and the substrate). In both cases the decision on the optimal gait coordination is made

based on minimizing the same energetic cost function. Therefore, both of these gaits should

be influenced by the same determinant factors for effective gait coordination. The difference

between walking and running comes only from the different strategies available to minimize

the energetic cost at different forward speeds. In other words, they are different optimal

solutions of the same problem for different circumstances. Thus, to identify the determinant

factors for effective locomotion we should focus our attention on the functional similarities

between the gaits and not the apparent descriptive differences. The similarities reflect the

common governing principles, whereas the differences only reflect the different strategies

available.

3.4.4 Determinant Factors in Effective Legged Locomotion

There are two energetic-cost factors that interplay to determine the most cost-effective move-

ment pattern:

1. The cost of stance-leg work to redirect the CoM motion from downward to

upward at each step. This cost is influenced by

• the energy dissipations at (extended) foot-ground collision2, in-

cluding (i) the energy lost passively at foot-ground impact, and

(ii) the dissipative stance-leg work to decelerate the downward

motion of the CoM,

1unlike many studies that use different models for walking and running, e.g. inverted pendulum model
for walking and spring-mass model for running

2In practice collisions are not instantaneous but extended over a short period of time. In this context, the
collision loss (dissipation) includes all passive and active energy dissipations that occur at early foot-ground
contact, when the CoM has a decelerating motion.
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• the generative work of the (trailing) stance-leg to make-up for

the energy dissipations and accelerate the CoM to move upward.

Note, if the above dissipations did not occur, there was no need for the genera-

tive stance-leg work, and this cost would not exist. The dissipations come into

play because of the action (pull) of gravity and that the mechanism can move

only by making intermittent foot-ground contacts. The collisional dissipations2

could be eliminated by, say, moving the CoM in a horizontal path and taking

steps with zero foot-ground speed at touch-down. In this case, however, both

legs should do substantial positive and negative work to simultaneously extend

and contract as the body moves smoothly across the substrate. Unfortunately,

such motion requires more work from the legs than is saved in eliminating en-

ergy loss at collisions. The optimization finds that the best strategy is to

appropriately use the stance leg to adjust the CoM redirection to first help

reduce collisional dissipations and then replace the loss that remains − appro-

priately timed thrust (e.g. pre-emptive push-off) that reduces energy loss and

replaces any that remains.

2. The cost of swinging the limbs, including the cost of accelerating the leg at

the beginning of swing to regulate the step length and step frequency, and the

cost of decelerating and retracting the leg before touch-down to reduce the

collision loss and prepare the leg for support transfer.

The above factors that largely determine the best coordination strategy for legged locomo-

tion are inter-related: the initial dissipation associated with the step-to-step CoM transition

from downward to upward (a loss determined by collision events) is modified and compen-

sated for by the costs involved with support and swing leg work. Numerous other lesser

costs also impact locomotion strategy (those related to stability, for instance), but under

steady-state conditions the major determinants of an effective movement strategy will arise
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from managing and repaying loss incurred from the interaction of the mechanism’s mass

with its supporting substrate.

3.4.5 Applications to Understanding Human Locomotion

As mentioned previously, many characteristics of the energy-optimal gaits generated by the

minimally constrained bipedal model match those of human locomotion. Note that the

resulting similarities here are obtained spontaneously based on the natural energy-optimal

response of the model. In other words, unlike many other gait optimization approaches, no

human data were used to train (‘teach’) the model to have a human-like behavior. This

suggests that human gait coordination is mainly influenced by energy minimization through

the interaction of the same determinant factors responsible for the model’s optimal gaits. If

this hypothesis is correct then the optimization model should be able to correctly predict

the natural response of human gait coordination to unusual circumstances. Verification of

this hypothesis is the subject of the next chapter.

3.5 Summary

This chapter uses the framework developed in Chapter 2 to investigate the characteristics

of energy efficient gaits at different average forward speeds and ground slopes. Two types

of gait have been considered; continuous-support gait with alternating single and double

support phases, and intermittent-support gaits with alternating single support and flight

phases.

For relatively slow speeds the continuous-support (no flight phase) gait is more efficient.

The optimal gait in this case is the pendular walk with zero-duration DS phase and collisional

TDs. In this gait the stance leg length is held constant during most of the single support

phase, while the swing leg moves passively during most of its motion. The CoM moves on
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an arc-shape trajectory dictated by the stance leg, and reaches its highest point when it is

directly over the supporting leg. In optimal level-ground continuous-support gaits almost

all complex ankle3 activity is during push-off at final portions of the support phase, prior

to the following touch-down. Due to the collisional heel-strike and the preemptive push-off,

vertical GRF has a double-hump shape.

By increasing the forward speed the intermittent-support (support and flight phase) gait

becomes more efficient. The optimal gait at higher speeds is the impulsive run with collisional

TDs, near vertical landing leg, and pulse-shaped vertical GRFs. The CoM is at its lowest

point in the step cycle when it is directly over the support leg. The main contribution of the

complex ankle joint is to redirect the body motion from downward to upward and provide

the required velocity for take-off.

Swing-leg retraction and some residual TD impact, determined by the balance between

the potential energy saving at heel-strike impact and the energetic cost of swing-leg decel-

eration/acceleration, are identified as important characteristics of all energy efficient gaits

for many ground slopes. The contribution of the stance-ankle torque in manipulating the

angular momentum of the biped is negligible (or unimportant for non-level-ground gaits).

For uphill gaits the step length is shorter than for level-ground gaits, and the torso leans

forward to compensate for the stance-hip torque.

3The complex ankle includes both the revolute joint between the foot and the leg and the telescoping
joint along the leg
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Chapter 4

WALKING AND RUNNING IN REDUCED

GRAVITY

Many characteristics of the energy-optimal gaits calculated in the previous chapter match

those of human gaits; supporting the hypothesis that human gait coordination is mainly

governed by energy minimization. Thus, gait optimization might correctly predict the nat-

ural response of human gait coordination to unusual circumstances, such as altered gravity.

In this chapter, I verify this property by comparing the energetics of human gait in reduced

gravity with those predicted by energy-optimal gaits of the minimally constrained bipedal

model under similar conditions.

This chapter is organized as follows. In Section 4.1, Farley and McMahon’s experiment

[87] for studying simulated reduced gravity influences on human gait energetics is reviewed.

The model predictions for the dependency of gait energetics and kinematics on gravity are

presented in Section 4.2. The insights achieved by comparing the model predictions and the

experimental observations are discussed in Section 4.3. Finally, the chapter is summarized

in Section 4.4.

4.1 Reduced Gravity Effects on Human Gait Energetics

Two decades ago, Farley and McMahon [87] conducted an experiment to measure the ener-

getics of walking and running under approximate reduced gravity conditions. They used a

simple apparatus, shown in Fig. 4.1, to ‘simulate’ reduced gravity conditions on human sub-

jects walking and running on a motorized treadmill. Using a series of pre-stretched springs,
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Figure 4.1: Reduced gravity apparatus used by Farley and McMahon [87]. It
consists of “a series of springs (Sp), which applied a nearly constant upward force to the
body through a bicycle saddle (S). Magnitude of force was increased by stretching springs
with a winch (W). Motorized treadmill included a strain gauge force platform (F) under the
tread”. The figure and the quoted text are reproduced from [87] with permission.

they could apply an almost constant upward force to the subject’s body to reduce his/her

effective weight. This apparatus allowed a realistic simulation of reduced gravity in terms

of the motions of the CoM but not in terms of the motions of the swinging limbs1. By mea-

suring the subject’s rate of Oxygen consumption during the experiment, they estimated the

energetic cost of walking and running, quantified by the net metabolic energy expenditure

per unit body mass and unit distance travelled (i.e. Estep,metabolic/mtotDstep). Although, in

their paper [87] this quantity is called the cost of transport, in order to maintain consistency

with the rest of the thesis and to distinguish this quantity from the COT in (2.2), I refer to

it as the dimensional metabolic cost of transport (DMet-COT). It is dimensional since it is

not divided by the gravitational acceleration, and has the dimension [m/s2]

With the above procedure, Farley and McMahon demonstrated that the DMet-COT in

1Although the partial reduced gravity condition provided with this technique is not realistic and does
not equally affect all body segments, other studies [86, 88, 89] show that it is a good approximation for true
reduced gravity in which all body segments experience the same reduced gravity level.
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Figure 4.2: Dimensional metabolic cost of transport (DMet-COT) of walking and
running in partially reduced gravity conditions (i.e. reduced effective gravity only on
the CoM), measured by Farley and McMahon [87]. They calculated the DMet-COT (in the
original work it is called the cost of transport) as the net metabolic energy consumption per
unit body mass and unit distance travelled. As the figure shows, the DMet-COT in running
declines with decreases in gravity faster than in walking.

running decreases with reduced gravity more dramatically than in walking, as shown in

Fig. 4.2. In normal gravity, walking is more cost-effective than running. However, due to

the greater influence of gravity reduction on energetic cost for running than for walking,

the scenario is reversed at low gravity levels (e.g. on the Moon), and running becomes

energetically more favorable.

Farley and McMahon [87] hypothesized that the difference in dependency of walking and

running energetics to gravity is due to the different “energy-saving mechanisms associated

with each of these gaits”: elastic energy storage and recovery in running versus kinetic and

potential energy exchange in walking. Based on this hypothesis, spring-like elements in the

human body (such as tendons, ligaments, etc.) that can store and release elastic energy have

a determinant role in the mechanics of running. They concluded that “the links between the

mechanics of locomotion and energetic cost is fundamentally different for running and for

walking” [87].
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4.2 Predictions of the Minimally Constrained Bipedal Model

With the bipedal model in Fig. 2.1, and using the gait optimization framework presented in

Chapter 2, I found the optimal walking and running gaits that minimized the mechanical

COT Cmt (see Section 2.1.2) at different gravity levels and speeds. Other than the gravity

level and the average forward speed, all other gait parameters including the step length, step

frequency, joint angles, and joint torques/forces were determined by the optimization.

4.2.1 Predictions of Gait Energetics

The resulting dimensional mechanical COT (DMec-COT= Cmt gred, where gred is the re-

duced gravity level) for walking and running at different speeds and gravity levels is shown

in Fig. 4.3. As can be seen, the model predictions are consistent with the experimental ob-
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Figure 4.3: Dimensional mechanical cost of transport (DMec-COT) of energy-op-
timal gaits of the model. The optimal gaits were obtained by minimizing the mechanical
COT Cmt (see Section 2.1.2) for given speed V and gravity level gred. DMec-COT was then
calculated from Cmt gred. No curve fitting is used in this figure (lines connect the raw data
points), but for more clarity some of data points are not marked. The gait optimization
correctly predicts the cost trends of human gaits shown in Fig. 4.2.
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servations by Farley and McMahon [87]: the energetics of both gaits decrease with gravity,

but the effect in running is much more pronounced than in walking, leading to intersection

of walking and running cost curves. Consequently, the more energetically demanding gait at

greater gravity levels (i.e. running) becomes the less costly at lower gravity levels.

The cost values determined in Fig. 4.3 change slightly if specific COT Cet (see Section

2.1.2) is used instead of mechanical COT Cmt for the optimization objective function. This

is also the case if a different number of discretization grids (i.e. Nss, Nds, and Nfl; see Section

2.3.2) is employed in the optimization. However, independent of the resulting cost values,

the cost trends remain the same. I also repeated the optimizations for ‘partially’ reduced

gravity conditions, i.e. instead of changing the gravitational acceleration in the EoM for all

body segments, a constant upward force at the hip was added to the model, equivalent to

Farley and McMahon’s experiment). Even in this case the results remained qualitatively the

same, with slight changes in cost levels and slopes.

Interestingly, the agreement between the experimental observations and model predic-

tions is obtained even though no elastic components are used in the model. The use of

springs in the model for running gaits could decrease the cost of running, improving the

estimation of cross-over gravity levels (cross-overs in walking and running costs in Fig. 4.3

will occur at slightly higher gravity levels, closer to those observed in Fig. 4.2), but they will

not influence the form of the result or the fact that the two gaits respond differently to a

reduction in gravity level.

4.2.2 Gait Kinematics

To explore the model response in order to understand why the optimization dictates these

effects due to altered gravity, I also calculated the step length of the optimal gaits associated

with Fig. 4.3. The results for walking at V =1m/s and for running at V =3m/s are shown

in Fig. 4.4. For walking at the other speeds used in Fig. 4.3 the optimal step length is not
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Figure 4.4: Step length changes with gravity, as predicted by energy-optimal gaits of the
minimally constrained bipedal model presented in Chapter 2. For both walking and running,
step length increases with reduced gravity, but the changes for running are substantially
greater than for walking. The red line (running) corresponds to the 1/gred trend, where gred
is the reduced gravity acceleration. The step length data in this figure correspond to the
optimal gaits in Fig. 4.3. For more clarity, the results for walking at the other speeds used
in Fig. 4.3 are not shown.

considerably different from the one shown in Fig. 4.4, and thus to improve clarity of the

figure they are not shown in this figure. As can be seen, the step length for both energy-

optimal walking and running increases with reduced gravity, but the changes for running are

substantially greater than for walking.

Unfortunately, Farley and McMahon did not report the step length data for their exper-

iments [87]. I have used a novel reduced gravity apparatus and collected some preliminary

data from a few human subjects that verify the model predictions for gait kinematics [32].

Because more data have to be collected in order to characterize these relationships with

adequate statistical confidence, the preliminary results are not reported here, and the full

verification of the optimization model’s ability to predict the spontaneous response of human

subjects to altered gravity will be left to my future studies.
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4.3 Discussion

The analyses in this chapter were performed to examine whether gait optimization can

correctly predict the variations in human gait coordination in unusual circumstances. The

predictive capacity of the optimization model was demonstrated through the agreement

between the energetics (and kinematics, based on the preliminary data) of the optimization-

generated movements and the observed subject gaits for simulated reduced gravity. Now,

what can we learn from this agreement?

4.3.1 Energy Storage and Recovery Is Helpful, But Not Determinant

As mentioned previously, Farley and McMahon hypothesized that the different dependency

of walking and running energetics to gravity is due to the different “energy-saving mecha-

nisms associated with each of these gaits”. This hypothesis has originated from a prevailing

perspective in studying legged locomotion [2]. According to this perspective, the coordina-

tion in walking and running occurs to maximize energy storage and recovery within the stride

cycle, e.g. [20, 22, 27, 28, 90, 91]. In other words, the best gait coordination is the one that

in one part of the gait cycle stores kinetic energy in some form of potential energy (potential

gravitational energy in walking through an inverted pendulum-like motion, and potential

elastic energy in running through compliant elements in the body) and then recovers it in

another part of the gait cycle.

This perspective, and thus Farley and McMahon’s hypothesis for reduced gravity effects,

does not match the gait optimization results in this thesis. In the previous chapter, both

walking and running emerged from the gait optimization of a rigid model, with no direct or

indirect reference to elasticity. In this chapter, the dependency of the energetics of both gaits

to gravity was correctly predicted by the same model, without any effort to maximize energy

storage and recovery. These results lead us to question the ‘energy storage and recovery’
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perspective in explaining the human and animal gait coordination.

Note that disagreement with the recovery perspective does not imply questioning the

occurrence or advantage of energy storage and recovery in locomotion. The exchanges be-

tween kinetic and various potential energy forms unequivocally occur in human and animal

gaits via different energy-saving mechanisms. It is also undeniable that these passive en-

ergy exchanges reduce the energetic cost of locomotion by storing and reusing the energy

at different phases of the gait. However, it seems that these exchanges are more descriptive

characteristics of the expression of each gait, rather than the determinant factors of the

appropriate gait coordination in each circumstance.

4.3.2 An Alternate Perspective

If not maximizing energy storage and recovery, what is a better perspective to explain the

observed human gait coordination?

It seems that energy minimization has a substantial influence in both walking and running

coordination (e.g. [14, 26, 72, 73, 92, 93], and also the results in Chapter 3). As discussed

in the previous chapter, for gait optimization with a minimally constrained bipedal model

energy minimization is determined by the balance between the cost of swing-leg work and the

cost and loss associated with redirecting the CoM motion from downward to upward at each

foot-ground contact (passive energy loss at heel-strike collision, and the cost of dissipative

and generative stance-leg work). The agreement between the experimental observations and

model predictions in both usual (normal gravity cases in the previous chapter) and unusual

circumstances (reduced gravity in this chapter) suggests that the same determinant factors

(leg work costs and collision loss) are responsible for human gait coordination as well. Based

on this perspective, both walking and running are mainly influenced by similar determinant

factors and mechanisms, not the different ones as proposed by the recovery perspective.

Now, If this is the case, how can we explain the different influence of gravity on energetics
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and kinematics of walking and running? The answer is in the different characteristics of these

gaits, where each gait is viewed as a movement strategy appropriate for the conditions under

which it operates.

In energy-optimal gaits the energetic cost associated with redirecting the CoM motion

from downward to upward is mainly influenced by energy dissipation at collisional foot-

ground contact [26]. This in turn, depends on the collision angle (the relative leg-surface

angle) and the velocity of the CoM prior to collision [26]. For running, collisional dissipation

at foot-ground contact is minimized by landing on a near-vertical leg (see the previous

chapter), regardless of the gravity level. Thus, for running at a given speed, collision loss

does not change with gravity, resulting in an almost constant energetic cost per step. On

the other hand, as gravity decreases, the duration of the quasi-passive flight phase, and

consequently the step length, increases in reverse proportion to g (see Fig. 4.4). This results

in a linear reduction in the dimensional COT with gravity, as can be seen in Fig. 4.2 and

Fig. 4.3.

For walking, however, the collision angle completely depends on the step length. With

a given pre-collision CoM speed, increasing the step length directly increases the collision

loss and thus the energetic cost of the gait [26, 47]. However, at lower gravity levels the pre-

collision CoM speed can be slightly decreased while maintaining the same average forward

speed2. This allows for a small increase in the step length without increasing the collision

loss. Therefore, with a constant energetic cost per step, the step length slightly increases

leading to a small reduction in the dimensional COT, as shown in Fig. 4.2 and Fig. 4.3.

The above discussion suggests that, unlike what was hypothesized by Farley and McMa-

hon [87], the links between the mechanics of locomotion and energetic cost are basically

similar for running and for walking. The analyses in this chapter and Chapter 3 show that

2In inverted pendular walking, the CoM speed decreases as the CoM rises to the top and then increases
as it falls forward. Decreasing gravity decreases the fluctuations in CoM speed, so to maintain a given
average forward speed, the CoM speed at the beginning and end of the inverted pendulum motion should
be decreased.
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a relatively simple model is able to predict substantial human-like behavior, even in quite

unnatural circumstances. This suggests that much of the locomotory behavior displayed by

humans originates with optimization of fundamental dynamics.

4.4 Summary

Motivated by the results in the previous chapter, in which many characteristics of the

optimization-generated gaits matched those of human gaits, I used gait optimization to

predict human gait adjustments in reduced gravity. These predictions were evaluated using

the experimental data for energetics of walking and running in ‘partially’ reduced gravity

conditions (where the effective gravity is reduced only on the CoM, and not on all body

segments). Interestingly, the model predictions matched the experimental observations: the

cost of running decreased with a reduction in effective gravity, while the cost of walking

was, surprisingly, much less sensitive to the gravity level. The agreement between the model

predictions and experimental observations supports the hypothesis that gait coordination in

humans (and animals) is mainly influenced by energy minimization. It also solidifies the hy-

pothesis suggested in Section 3.4.5; that the same cost factors identified in gait optimization

(i.e. the cost of stance-leg work associated with redirecting the CoM motion from downward

to upward, and the cost to move the swing leg forward and prepare it for support transfer)

are determinant in human gait coordination as well.
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Chapter 5

A SIMPLE BIPEDAL MODEL TO STUDY

SWING-LEG RETRACTION

One of the characteristics found for many optimization-generated gaits in Chapter 3 is swing-

leg retraction, the rearward rotation of the swing leg prior to foot-ground contact. This is

also a well-known characteristic of human walking and running, e.g. [51], and is also observed

in different gaits of many terrestrial legged animals (e.g. [52, 56, 57]). In Chapter 1 some of

the advantages of swing-leg retraction were presented. In the rest of this thesis, some model-

based advantages of swing-leg retraction will be discussed in detail. These advantages either

have been discovered for the first time in this thesis, or were known before but not as

thoroughly analyzed and for as many cases as discussed here. The technical background and

modeling for this study is presented in this chapter and the following two. The advantages

will be discussed in Chapter 8.

To study the advantages of swing-leg retraction, the bipedal model and numerical tech-

niques introduced in Chapter 2 can still be used, but in this case we will be limited to

our interpretation of numerical results. To gain more insight into the influence of different

parameters, a simpler model that enables us to find closed-form approximate analytic solu-

tions is more preferable. Later, these approximate solutions can be verified using numerical

methods. For this purpose, I introduce a new simple model in Section 5.1. The energy

optimal walking gait and the governing dynamics of this model are described in Section 5.2

and Section 5.3. Section 5.4 describes the requirements to achieve a periodic gait. These

requirements lead to the definition of an ‘admissible region’ that constitutes the parameter

space for step angle and speed. Finally, the chapter is summarized in Section 5.5.
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5.1 Bipedal Model

The planar bipedal model used for studying swing-leg retraction is shown in Fig. 5.1. The

head, arms, and trunk are represented by a point mass mH at the hip. Each rigid leg has

length ℓ and distributed mass mleg, with the CoM Gleg located at distance b from the hip.

Because each human leg is about 16% of total body mass [80], it is assumed here that mleg

is relatively small compared to the total mass mtot =2mleg+mH.

The leg moment of inertia about the hip joint is Ileg/H. To simplify later calculations I

write Ileg/H= δ mleg ℓ b, where dimensionless δ represents the spread of the leg mass relative

to Gleg. It is shown in Section 5.1.1 that always b/ℓ6 δ6 1.

The simple model presented here is modified from the powered simplest walking model

used by Kuo [47] in that (i) the present model has an arbitrary distribution of mass on the

leg, (ii) it has no hip spring, and (iii) in this model the mass of the leg, although generally

assumed small for some purposes, needs non-negligible energetic cost to be accelerated.

point-mass mH at the
actuated hip joint H

prismatic
actuator

θ

−φ

τ

F

ℓ− b

b

Gleg: CoM of the distributed
leg mass mleg

Figure 5.1: Biped model without torso. Two rigid legs with lengths ℓ and distributed
mass mleg. The leg center of mass is at Gleg located at distance b from the hip. The leg
moment of inertia about the hip is Ileg/H = δ mleg ℓ b. A point mass at the hip mH represents
the upper body. There is a motor at the hip applying torque τ between the legs, and a
prismatic actuator that extends and applies push-off force F along the stance leg.
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Table 5.1: Model Parameter Values of The Biped in Fig. 5.1

Parameter Symbol Value Unit

total body mass mtot 75 [Kg]

leg mass mleg 0.16 mtot [Kg]

leg length ℓ 90.1 [cm]

leg CoM proximal distance b 0.41 ℓ [cm]

leg mass spread constant δ 0.62 -

The new model in Fig.5.1 is different from the one in Fig.2.1 in that (i) the extended torso

is replaced with a point mass at the hip, thus Itrs/Gtrs
= Itrs/H=0; (ii) due to the removal of

the extended torso, there is only one hip joint and one possible hip actuator between the

legs; (iii) the new model has no extended feet and thus no revolute actuator between the

feet and the legs; (iv) there is no massless part in the legs.

Unless otherwise noted, the numerical calculations in the rest of the thesis are based on

the values listed in Table 5.1 from [80], as an approximation of a human with 75Kg total

mass and 170 cm body height. These values are equivalent to those listed in Table 3.1, but

are adjusted according to the specifications of the new model. For example, mtrs is now mH

but with no moment of inertia, and ℓ=htot −htrs =0.53 htot.

The model is powered by a hip motor and a prismatic leg-extension actuator, active on the

stance leg. The leg-extending prismatic actuator on the stance leg represents all mechanisms

that extend the distance from the body to the toes on the ground (e.g., ankle extension, hip

tilting, and knee straightening). Unlike models that use flat feet on the ground, this model

has no ankle actuator for a torque on the leg from the foot (or ground), though its inclusion

in the model besides the leg prismatic actuator would have no noticeable effect in our analysis

in any case (see Section 3.2.1).

This study is focused only on periodic gaits; that is, two consecutive steps are identical
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with the leg roles exchanged. By assumption, friction is adequate to avoid foot slipping at all

instants during the gait. As is standard in compass biped models [39, 46, 47], any possible

foot scuffing during mid-swing is ignored.

5.1.1 Some Mathematical Properties of the Model

Limits of the Parameter δ:

If Ileg/Gleg
represents the leg moment of inertia about Gleg, it is always valid that

Ileg/H = δ mleg ℓ b = Ileg/Gleg
+mleg b

2
> mleg b

2. (5.1)

In a stick model the maximum leg moment of inertia about the hip is achieved when all

leg mass is concentrated at two ends of the leg. In this case, respecting the leg CoM at a

distance b from the hip requires the point mass m1 =mleg b/ℓ at the toe, and the rest of the

leg mass at the top of the leg, next to the hip. Thus

Ileg/H = δ mleg ℓ b 6 m1 ℓ
2 = mleg b ℓ. (5.2)

The above two equations imply that in all circumstances b/ℓ6 δ6 1. Although the upper

bound of δ is calculated using a stick model, in practical cases δ is even smaller. For example,

for Cornell Ranger [12] δ=0.72, and for a typical human δ=0.62 (using the anthropomorphic

model parameters in Table 5.1).

Invariance to Hip Mass:

In Fig. 5.1 the hip mass mH represents the humans’ upper body which is separate from the

legs. Interestingly, in this model any portion of mH can be placed on the legs without any

change in forces, motion, or energetics. Assume that mass 2∆m is subtracted from mH and

∆m is added to the top of each leg, next to the hip joint H. The distance of each displaced

mass ∆m from the hip is d∆m/H =0, but now they move with the legs. The new biped
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parameters after this mass displacement are:

m′
H = mH − 2∆m, (5.3)

m′
leg = mleg +∆m, (5.4)

b′ = dG′

leg
/H =

dGleg/Hmleg + d∆m/H∆m

m′
leg

= b
mleg

m′
leg

, (5.5)

I ′leg/H = Ileg/H +∆md2∆m/H = Ileg/H, (5.6)

δ′ =
I ′leg/H
m′

leg b
′ ℓ

=
Ileg/H
mleg b ℓ

= δ, (5.7)

where dA/B denotes the distance of point A from point B. Despite the change in leg mass and

leg CoM, the biped CoM does not change, as the distance of each displaced mass ∆m from

the hip is still zero (similar to when it was on the hip), and the spatial mass distribution has

not changed. Because the biped CoM and the leg moment of inertia about the hip, Ileg/H,

remain unchanged, the rotation of the swing leg about the hip joint and the motion/rotation

of the whole biped about the stance foot will not change. Thus, the new biped is mechanically

identical to the one before the mass displacement. Furthermore, as we will see later in this

chapter, mleg does not appear alone in the equations, and is always multiplied by b. Because

m′
leg b

′ =mleg b the change in mleg and b does not change the system behavior.

5.2 Energy-Optimal Gaits

If we allow arbitrary actuator force and torque profiles (arbitrary functions of time), this

model has an infinite number of periodic walking gaits. Of these, this study focuses on

energy optimal gaits because they may have explanatory value for describing human and

animal gaits, and also may be useful for efficient robot design. Energy-optimization of the

model is a problem in Calculus of Variations or Dynamic Programming of the type discussed

in Chapter 2, or e.g. in [25, 67]. This optimization can be simplified, perhaps with no loss of
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accuracy (as discussed below), by guessing an appropriate low-dimensional parameterization

of the force and torque profiles that uses impulses.

5.2.1 Observations of Energy Optimal Gaits

I motivate the reduction of the actuator profiles to impulses by the results presented in

Chapter 3, as well as by some observations of human gait and other optimal gait studies.

• When walking, humans start extending their trailing leg’s ankle (plantar flex-

ion) and knee joints at the end of single stance [47]. The peak muscle activity

of this push-off starts just before heel-strike. Consistently, mechanical-work

optimization calculations using models with different levels of complexity in-

dicate that the stance leg length should be constant during most of the stance

phase and extended (i.e. push-off) just before the swing leg hits the ground

(e.g. see Chapter 3 of this thesis and [25, 26, 47, 67]).

• Experimental data from human walking show that during swing phase the

leg motion is almost ballistic (i.e. driven only by gravity) [36] except for the

beginning and end of the swing phase where hip muscles have burst activities

[33, 47, 94]. Assuming that the leg swing should be faster than a passive swing,

again consistently, models show that the work-minimizing torque profile for the

hip consists of peak torques at the beginning and end of the swing, and no

activity in between (the ‘bang-coast-bang’ profile discussed in Chapter 3).

• In general, work minimization tends to lead to concentrating actuator activity

into impulses at the start and end of the various phases of the motion of various

body parts (see Chapter 3, and [25]).

• The role of the ankle actuators in push-off, when the ankle extension effectively

extends the legs, is well-modeled by the leg-extension prismatic actuator (see
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Chapter 3). This substitution of prismatic leg extension for ankle joint exten-

sion (instead of a revolute joint with foot-roll) seems to have little effect on

work-based walking energetics (see Chapter 3).

Based on the above observations and optimization results, it is expected that the mechanical-

work optimized gaits in the new model typically have (i) a burst extensional push-off force

applied just prior to heel-strike by the stance leg’s prismatic actuator, and (ii) burst torques

applied at the hip at the beginning of the swing and again at the end of the swing. The

first burst torque (referred to as swing thrust) is to increase the swing speed, above a purely

passive swing, to achieve a shorter step period at a given walking speed. The second hip

burst (referred to as swing-leg retraction, or simply retraction) brakes and/or reverses the

leg swing rotation prior to heel-strike.

5.2.2 Simplification to Impulsive Forces and Torques

The burst push-off force and the burst swing thrust and swing retraction torques are applied

over a short period of time. So, the biped configuration changes a little, or not at all, during

their application, while the velocity changes are more noticeable. For example, while the

measured hip angle in human walking shows a clear sign change in leg angular velocity

during swing-leg retraction [51], the associated change in leg orientation is not large enough,

or its duration is too short, to be easily seen on motion-pictures and videos of human or

animal walking, e.g. [52, 54]. This characteristic that velocity changes occur in an almost

fixed joint configuration is approximately similar to that of exact impulsive (infinitesimal

duration with infinite magnitude) forces/torques that cause discontinuous velocity jumps

in an exactly fixed biped configuration. Hence, to simplify the analysis, the burst push-off

force and the burst swing thrust and swing retraction torques are approximated as exactly

impulsive actuations. It is expected that a full dynamic programming solution would yield

this impulsive result. Although impulsive actuation is an extreme idealization, the insights
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from analysis of simplified impulsive models can be an important step in improving our

understanding of legged locomotion, as those discussed in [2, 26, 48].

5.2.3 Parameterization by Impulses

As motivated by the optimization and observational results above, the actuation can be

reduced to one impulsive force and two impulsive torques: (i) the impulsive swing thrust

torque just after toe-off to start the swing, (ii) the impulsive swing retraction torque at the

end of of swing phase (just before heel-strike) to stop or reverse the swing, and (iii) the

impulsive push-off force at the end of stance phase (just before heel-strike). These infinite-

magnitude forces and torques are quantified by their net impulse, i.e. the time integral of the

force/torque. If (t−s , t
+
s ) denotes the infinitesimal period during which the impulsive swing

thrust torque is applied, and (t−pr, t
+
pr) denotes the infinitesimal period at the end of swing

where the impulsive push-off force and the impulsive retraction torque are applied, then the

swing thrust impulse S, the swing retraction impulse R, and the push-off impulse P are

defined as

S =

∫ t+s

t−s

τ(t) dt, (5.8)

R =

∫ t+pr

t−pr

−τ(t) dt, (5.9)

P =

∫ t+pr

t−pr

F (t) dt, (5.10)

where τ(t) is the hip torque, and F (t) is the stance leg’s actuator force. Note that the

positive directions of S and R are opposite.

5.2.4 Impulsive Heel-Strike and Instantaneous Support Transfer

Motivated by the gait optimization results in Chapter 3 and consistent with the assumption

of impulsive actuations, heel-strike is modeled as an instantaneous and dissipative passive
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S

Impulsive Swing Thrust
Just After Toe-Off

(a)

θ

−φ

Continuous Passive Swing
(Single Stance)

(b)

φ=2α

R

P

Impulsive Push-Off and
Impulsive Swing Retraction

(c)

φ=2α

Impulsive Heel-Strike
and Toe-Off

(d)

Figure 5.2: A single gait cycle. The initial swing leg is thick red, the initial stance leg
is thin black. The four phases of one walking step are as follows. a) Just after the thick
leg has lifted from the ground at toe-off, the impulsive swing thrust S starts the swing with
proper initial swing velocity; b) The passive swing of the thick leg continues until φ=2α.
During passive swing the thin leg’s extension actuator (not shown) is locked; c) Then, nearly
simultaneously the thin black leg has an impulsive push-off P and the hip has an impulsive
swing retraction R. The thin leg’s extension actuator is unlocked only at this phase; Finally,
immediately after retraction and push-off, d) the thick leg collides with the ground with a
sticking (heel-strike) collision.

collision in which the landing (forward) leg neither rebounds (i.e. inelastic collision) nor slips.

At heel-strike the trailing leg is pulled off the ground (toe-off) by the advancing hip, leading

to an instantaneous double-support phase. This instantaneous double-support, obviously an

extreme idealization of human walking (human walking has a brief, but non-instantaneous,

double-support) also minimizes work in some simple models (see Chapter 3, and [67]).

5.2.5 Gait Cycle

Based on the assumptions and simplifications made, a complete gait cycle can be shown

as in Fig. 5.2. Just after the previous stance leg has lifted from the ground at toe-off,

the impulsive swing thrust S starts the swing with proper initial swing velocity. Then

the legs move passively until φ=2α. During this passive phase the stance leg’s extension

actuator (not shown in the figure) is locked, and the hip moves along an arc-shape trajectory

determined by the fix-length stance leg. Then, nearly simultaneously the stance leg has an

84



. . . thick leg toes-off at heel-strike and becomes the swing leg︸ ︷︷ ︸
previous step

−→

phase a

impulsive︷ ︸︸ ︷
thick leg

swing thrust

−→ phase b

psmooth l︷ ︸︸ ︷
thick swings passively,

thin extension∣∣ actuator locked

−→ phase c

impulsive︷ ︸︸ ︷
thin leg push-off,
thick leg retracts

−→ phase d

impulsive︷ ︸︸ ︷
thick leg
heel-strike,

thin leg toes-off
︸ ︷︷ ︸

a single step = one cycle

−→

thick leg becomes the stance leg and starts single stance . . .︸ ︷︷ ︸
next step

.

Figure 5.3: Four phases of a gait cycle. The phase and the leg labelings are in accordance
with Fig. 5.2. ‘thick’ = swing leg, ‘thin’ = stance leg.

impulsive push-off P and the hip has an impulsive swing retraction R. The stance leg’s

extension actuator is unlocked only during the impulsive push-off and retraction. Finally,

immediately after retraction and push-off, the leading leg collides with the ground with a

sticking (heel-strike) collision, and simultaneously the trailing leg is lifted from the ground.

The whole gait cycle consists of a sequence of smooth (continuous) and impulsive phases,

some passive and some actuated. During the smooth passive swing, all velocities and posi-

tions are continuous functions of time, whereas at impulsive phases positions are continuous,

but velocities are discontinuous. The biped state (positions and velocities) at the end of one

phase is determined by the state at the start of that phase, the impulsive action at that

phase, if any, and the dynamics through the phase. For example, the state at the end of

passive swing is determined by the state at the beginning of the swing phase (just after the

swing thrust) and the dynamics of swing. Thus, the whole step can be analyzed in terms of

a sequence of state mappings of the phases shown in Fig. 5.2. In reference to this figure, the

two legs are called ‘thin’ and ‘thick’, and the four phases of one step are labeled as phase

(a)-(d), as shown in Fig. 5.3.

Note that phase (c) has two impulses, the push-off impulse P and the retraction impulse
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t−s ≡ 0− t+s ≡ 0+ t−pr=min(t−r , t
−
p )

≡ T−

t+pr=max(t+r , t
+
p )

≡ t−h

t+h ≡ t−s

t−p t+p

t−r t+r

Impulsive
Swing Thrust

Smooth
Passive Swing

︷ ︸︸ ︷
Impulsive Push-off

Impulsive
Heel-Strike

and
Impulsive Retraction

Infinitesimal
Phase (a)

Extended
Phase (b)

Infinitesimal
Phase (c)

Infinitesimal
Phase (d)

Figure 5.4: Labels of the time instants between the phases. In phase (c) the impulsive
push-off and retraction can have any (specified) order or overlap.

R, both of which happen at the same biped configuration (Fig. 5.2c). Although this phase

has infinitesimal duration, one can treat P and R as isolated in time (with one before the

other) or as having some (specified) overlap in time. As will be discussed later, the relative

timing of these impulses has no influence on biped states at heel-strike and thereafter, but

is relevant for gait energetics.

5.3 Details of The Dynamics

To simplify the presentation, the time instants between consecutive phases are labeled indi-

vidually. A quick reference of these labels is provided in Fig. 5.4. Following the definition

of swing thrust impulse S in (5.8), the time instant just before S is called t−s , and the time

instant just after S (the beginning of single stance) is called t+s . Similarly, t−r and t+r de-

note the time instants just before and just after the impulsive R, and t−p and t+p denote the

time instants just before and just after the impulsive P. Also, t−h is the time instant just

before instantaneous heel-strike (after both P and R), and t+h is the time instant just after it

(= after toe-off). In (5.9) and (5.10) the impulsive push-off and retraction are defined in the

infinitesimal interval (t−pr, t
+
pr). Thus, t

−
pr =min(t−r , t

−
p ) is the time instant just before both P

and R (the end of the passive swing), and t+pr =max(t+r , t
+
p )≡ t−h is the end of single stance.

In reference to Fig. 5.2, a step cycle starts just after the previous heel-strike, at t−s , where

θ=−φ/2=α, and ends just after the next toe-off, at t+h . Therefore, we can assign: t−s ≡ 0−,

t+s ≡ 0+, and t−pr ≡T−, where T is the step period. The gait is periodic, so t+h ≡ t−s .
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In the next section the modeling and state mapping of the various phases are described,

continuous phase (b) first, then impulsive transitions (c), (d), and (a).

5.3.1 Continuous Dynamics

Passive Continuous Single Stance - Phase (b):

In the smooth single stance phase, starting just after the swing thrust impulse (at t+s ) and

ending just before the retraction and push-off impulses (at t−pr), the leg-extension actuator

is locked and the hip joint is free. In this phase the model is a passive semi-inverted double

pendulum (see Fig. 5.2b) forced by gravity and supported by the ground. The equations of

motion can be found using angular momentum balance of the entire mechanism about the

support foot and of the swing leg about the hip joint. After simplification, we can arrange

these equations in the following standard form:

M(q) q̈ + c(q, q̇) = 0, (5.11)

where M is the inertia matrix, and the time-dependent configuration vector q= [ θ, φ ]T

consists of the stance-leg and hip-joint angles. The velocity dependent column vector c

contains Coriolis, centrifugal, and gravity terms. These quantities are expanded in Appendix

B.1.1. Equation (5.11) is used when t is in the interval (t+s , t
−
pr) = (0+, T−) with the boundary

conditions: θ(0)=−φ(0)/2=φ(T )/2=−θ(T ) =α (Fig. 5.2a & 5.2c).

For given step angle α and average walking speed V , the step period is calculated as

T =2 ℓ sinα/V . With information on α and T , the solution of (5.11) subject to the above

boundary conditions (a two-point boundary value problem) fully determines the stance-leg

and hip-joint angles θ(t) and φ(t) during passive swing, and thus the corresponding angular

velocities θ̇(t) and φ̇(t). Therefore, the angular velocities at the beginning of the passive

swing (θ̇0+ and φ̇0+) and the resulting velocities at the end of the passive swing (θ̇t−pr and

φ̇t−pr) are implicitly defined by the step angle α and average forward speed V . This mapping
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will be determined below. Because θ̇0+ and φ̇0+ frequently appear in this study, for the sake

of simplicity they are denoted by θ̇0 and φ̇0 hereafter.

No Centripetal Flight:

The solution of (5.11) is valid only if the stance foot remains on the ground throughout the

passive swing, i.e. for 0+ 6 t6T−. If the calculated motion requires a tensional (pulling

by the substrate) GRF along the stance leg, the conditions for maintaing stance are lost.

Such loss is due to the centripetal acceleration of the hip going in a circle around the foot.

This limits the maximum average walking speed [95, 96]. Detailed analyses are provided in

Sections 5.4.4 and 7.7.2.

Symmetric Passive Single Stance Is More Favorable:

For any given step length and average walking speed, the numerical solutions of (5.11)

include at least one exact symmetric solution in which the angles have odd symmetry and

the angular velocities have even symmetry about mid-stance. These symmetry properties

also hold for the approximate analytic solution of this phase (see Section 7.3). Asymmetric

solutions of passive single stance, if they exist, naturally have a larger maximum swing angle

(or equivalently maximum hip-joint angle) in one direction, as can be seen in Fig. 5.5. In

almost all cases, this implies a larger swing-leg angular rate at the start and end of the

passive swing compared to the symmetric solutions. For example, in Fig. 5.5 the initial and

final slopes of the asymmetric solutions are larger than those of the symmetric one. The

larger initial angular rate is possible through pumping more energy to the swing leg by the

swing thrust impulse. Also, the larger final angular rate causes more energy dissipation

through heel-strike collision or braking at retraction. Hence, gaits with symmetric passive

swing are less energetically costly.

Furthermore, similar to the swing leg, the stance leg has larger initial and final angular

rates in asymmetric solutions. This is possible with a larger centripetal force and results in
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Figure 5.5: Symmetric and asymmetric solutions of passive swing. The three nu-
merical solutions of the hip angle φ for V =1m/s and α=40◦. For the sake of visibility, the
stance leg angle is not plotted here. One of the solutions (thin green) is symmetric and the
other two (thick red and dashed blue) are asymmetric but cross-symmetric with each other.

a smaller GRF along the stance leg (see Section 5.4.4). Thus, gaits with asymmetric swing

have a smaller maximum walking speed (see Sections 5.4.4 and 7.7.2).

Due to the above reasons, this study is limited to gaits with a symmetric passive single

stance. Because of this symmetry, as far as the initial and final velocities matter, the passive

single stance can be replaced with an identity mapping that maps the angular rates θ̇0 and

φ̇0 at t=0+ to the same values at t= t−pr; that is to say θ̇t−pr = θ̇0, and φ̇t−pr = φ̇0.

Summarizing the dynamics of passive single stance: given the step angle α and average

walking speed V , the initial and final velocities in passive swing are uniquely determined by

the low-cost symmetric solution of (5.11). That is to say

θ̇0 = θ̇t−pr = f1(α, V ), (5.12)

φ̇0 = φ̇t−pr = f2(α, V ). (5.13)

These functions are numerically calculated and shown in Fig. 5.6 for some range of α and

V . The shaded region in this figure is called the ‘admissible region’ and is defined later in

Section 5.4.4. As this figure shows, |θ̇0| increases with both α and V . At any given α or V ,

the maximum |θ̇0| is achieved when the GRF along the stance leg becomes zero. Increasing
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Figure 5.6: Contour lines of the normalized angular rates at both ends of the
symmetric passive swing for some range of step angle and average walking speed. Panel
(a) represents the stance-leg angular rate, and panel (b) represents the hip-joint angular
rate. In both panels, angular velocities are normalized relative to ωn= Vn/ℓ, where Vn is
the GRF-based maximum walking speed at α=0 and is defined in (5.36). This maximum
speed is also used to normalize the vertical axis. For the numerical values used for this
figure (Table 5.1) Vn=3.18m/s, and ωn=3.53 rad/s. Above the dashed line no walking is
feasible without a pull from the ground (the gait switches to a run on non-sticking surfaces).
The shaded region represents the ‘admissible region’, defined in Section 5.4.4. This region
constitutes the parameter space and is the focus of this study. Panel (b) shows that the hip
rate is positive (extending) for all α and V inside the admissible region.

|θ̇0| beyond that limit causes the biped to take-off (switch to run). The hip-joint angular

rate φ̇0 is also an increasing function of V . But, its dependency to step angle changes at

different speeds. Note that for the entire admissible region, φ̇0> 0. This has relevance in

calculating retraction work and optimal swing retraction impulse in Section 6.5. In Chapter

7 approximate analytic solutions are provided for (5.12) and (5.13).

5.3.2 Impulsive Transitions

Now, the three impulsive phases —push-off and retraction, heel-strike, and swing thrust —are

considered. Throughout these impulsive phases the biped configuration remains unchanged,

but velocities undergo discontinuous jumps in each phase. Algebraic velocity maps relate
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the velocities at the end of each phase to the velocities at the beginning of that phase.

Impulsive Push-off and Swing Retraction − Phase (c):

At the end of passive single stance (at t−pr) and just before the swing foot hits the ground,

the push-off impulse P and the retraction impulse R are applied (Fig. 5.2c). Due to the

impulsive push-off, the stance leg extension rate is positive after push-off, i.e. ℓ̇ > 0. During

these impulses the stance foot is free to move along the leg, but not orthogonal to the leg,

respecting no-slip ground contact of the prismatic-actuator model. To keep the prismatic

assumption that the perpendicular (orthogonal to the leg) foot velocity after push-off is zero,

an induced perpendicular constraint impulse is applied to the foot at the this phase.

Although the force magnitudes are infinite, causing a step change in the velocity of

the hip, the biped does not take-off from the ground if the leading foot (the swing foot)

immediately makes ground contact. This is possible if the retraction impulse is large enough

to force the swing foot to move downward at t−h ≡ t+pr, allowing the next heel-strike. Later in

this chapter, this condition is used to quantify the lower bound on the retraction impulse.

The velocities at t−pr were determined by the smooth dynamics during passive swing. To

find the velocities immediately after P and R (at t−h ≡ t+pr) we can use linear and angular

momentum balance equations over the infinitesimal interval (t−pr, t
+
pr): (i) angular momentum

of the whole mechanism about the stance foot is conserved, (ii) angular momentum of the

swing leg about the hip joint jumps by R, and (iii) linear momentum of the whole biped

along the stance leg increases by P. The corresponding expressions of these three relations

map the late-passive-swing velocities θ̇t−pr and φ̇t−pr to the pre-heel-strike velocities θ̇t+pr, φ̇t+pr,

and ℓ̇t+pr: 


θ̇t+pr

φ̇t+pr

ℓ̇t+pr



=




θ̇t−pr

φ̇t−pr

0



+




Jθ̇/P

Jφ̇/P

Jℓ̇/P



P +




Jθ̇/R

Jφ̇/R

Jℓ̇/R



R. (5.14)
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The configuration-dependent impulse-influence coefficients J·/· relate jumps in joint velocities

to the force/torque impulses and are calculated in Appendix B.1.2. Note, the above mapping

is independent of the relative timing of P and R.

Due to the mechanical coupling, the stance leg extension rate ℓ̇ in (5.14) is indirectly

influenced by the retraction impulse R, besides its direct influence from the push-off impulse

P. Likewise, the hip angular velocity φ̇ has a direct influence fromR and an indirect influence

from P. The indirect influence of these impulses is relevant for the gait energetics.

In Appendix B.1.2 the impulse-influence coefficients in the above velocity mapping are

related to the mass-inertia matrix. Using symmetry and positive definiteness of this matrix,

it is also shown there that, independent of the step angle α and the average walking speed

V , the impulse-influence coefficients always satisfy:

Jℓ̇/P > 0, (5.15)

Jφ̇/R < 0, (5.16)

Jφ̇/P = −Jℓ̇/R < 0, (5.17)

Jℓ̇/R Jφ̇/P − Jℓ̇/P Jφ̇/R > 0. (5.18)

These properties are key in finding the optimal relative timing of the impulsive push-off force

and retraction torque, as well as the optimal retraction impulse R, studied in Chapter 6.

Note that to derive (5.14) no assumption was made on the order or percentage overlap

(relative timing) of the impulsive push-off force and retraction torque. However, there is a

subtle point to consider in this equation. Since Jℓ̇/R > 0, a retracting hip torque (R> 0) always

results in ℓ̇> 0, whereas an extending1 hip torque (R6 0) tends to decrease ℓ̇. Thus, there

1In this thesis the ‘extension’ of the hip joint means increasing the inter-leg angle which, in-part, is
achieved by moving the swing leg forward, opposite to ‘retraction’. This is opposite to what is commonly
used in Anatomy, where the extension (opposite to flexion) of the hip moves the leg backward (towards the
posterior side of the body). The difference in the resulting leg motion comes from the difference in the hip
joints. In the model presented here the hip joint is between the legs, whereas in humans the hip joint is
between the leg and the trunk, so extending the human’s hip joint (increases the angle between the leg and
the trunk) moves the leg backward.

92



are cases in which ℓ̇ is negative for some period during the infinitesimal push-off-retraction

interval (t−pr, t
+
pr). For example, if an extending R starts before P (when the leg-extension

joint is unlocked) it will push the foot into the ground. For simplicity, that is, to avoid

considering many different cases and possibly different velocity maps, the foot is allowed to

penetrate to the ground, or the leg length to shorten, if it is forced to do so. Because it

turns out that a contracting stance leg (i.e. ℓ̇ < 0) is either not energetically advantageous

or can be avoided without influencing the optimal gait energetics (see Section 6.4.3) that

case is neglected here. That is, for energy optimal gaits we can assume ℓ̇> 0 at all times,

including during the impulsive phases. This post-hoc justifies the use of a general velocity

map for impulsive push-off and retraction in (5.14), independent of the relative timing of P

and R, or without concern for ground penetration in some unusual cases.

Impulsive Heel-Strike − Phase (d):

Provided that some condition holds (see ‘Instantaneous support transfer’ below), the leading

foot hits the ground immediately after completion of push-off and retraction (at t−h ≡ t+pr). By

assumption, heel-strike occurs as an instantaneous and totally plastic collision with enough

friction that the new stance foot comes to a complete stop. This implies an impulsive GRF

on the biped, and a discontinuous jump in the velocities of all parts of the system. The

angular momentum of the trailing leg about the hip, and of the whole mechanism about

the new stance foot are conserved through the heel-strike collision. These conservation laws

determine the relation between the velocities at t+pr and the post-heel-strike velocities (θ̇t+
h

and φ̇t+
h
). Combining these relations with (5.14), θ̇t+

h
and φ̇t+

h
can be expressed in terms of

P, R, and the velocities at the end of passive swing. That is


θ̇t+

h

φ̇t+
h


 = Ah



θ̇t−pr

φ̇t−pr


+ hP P + hR R. (5.19)

The components of the transition matrix Ah and the impulse-influence vectors hP and hR

are given in Appendix B.1.3.
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Instantaneous Support Transfer:

Support transfer includes the heel-strike and toe-off events. If the swing foot has a downward

motion immediately after the impulsive push-off and retraction (at t+pr), the leading foot hits

the ground and heel-strike occurs. Otherwise, there is a flight phase before the leading leg

becomes the new stance leg, and thus no walking solution is achieved. Therefore, heel-strike

is ensured only if the vertical swing foot velocity at t+pr is negative:

ẏfswing
(t+pr) < 0. (5.20)

It is shown in Section 7.5.1 and Section 8.2 that the above condition translates to a lower

bound on the retraction impulse.

If the velocity of the trailing foot immediately after heel-strike is directed upward, i.e.

ẏftrailing(t
+
h ) > 0, (5.21)

the trailing leg loses its contact with the ground (toe-off) and becomes the new swing leg.

Otherwise the solution is not accepted here. The approximate analytic solution in Section 7.6

and the accurate numerical analysis show that the above toe-off condition is not a limiting

constraint for a large range of biped parameters, including the model parameters in Table

5.1. More precisely, in most bipedal models, the range of step lengths and speeds for which

periodic walking is feasible is not influenced by the toe-off condition in (5.21).

The above two inequalities express the conditions for the instantaneous support transfer.

After toe-off (at t−s ≡ t+h ) a new step cycle starts. The exchange of leg roles after the support

transfer imposes that 

θ̇t−s

φ̇t−s


 =




0 1

1 0






θ̇t+

h

φ̇t+
h


 . (5.22)

Impulsive Swing-Leg Thrust − Phase (a):

Immediately after toe-off, the impulsive swing thrust torque S is applied at the hip to

accelerate the motion of the new swing leg. The new velocities after swing thrust (at t+s ≡ 0+)
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can be calculated using the conservation of angular momentum of the whole biped about the

new stance foot, and of the trailing leg about the hip. The associated expressions provide

the velocity transition mapping, which can be rearranged as


θ̇t+s

φ̇t+s


 =



θ̇t−s

φ̇t−s


+



Jθ̇/S

Jφ̇/S


S. (5.23)

The configuration-dependent impulse-influence coefficients Jθ̇/S and Jφ̇/S are presented in Ap-

pendix B.1.4.

5.4 Periodic Walking

As mentioned previously, the focus of this work is on periodic gaits, in which two consecutive

steps are identical with the role of each leg exchanged. In this section the conditions required

to achieve a periodic walking on a level surface are discussed.

5.4.1 Periodic Gait as a Cyclic Sequence of Discrete Velocity Transitions

In Section 5.2.5 the gait cycle was described as a sequence of four continuous and impulsive

phases (a)-(d). In the previous section each of these phases was modeled with a velocity

transition equation that relates the velocities at the beginning of the phase to the velocities

at the end of that phase (the beginning of next phase). Starting at the beginning of passive

single stance, with θ̇0 and φ̇0, we can sequentially calculate those velocity transitions in order

to find the velocities at the beginning of next passive single stance, i.e. θ̇t+s and φ̇t+s . For a

periodic gait these should match, giving

θ̇t+s = θ̇0, (5.24)

φ̇t+s = φ̇0. (5.25)

Summarizing (5.12)-(5.25), the energy-optimal periodic walk of the impulsive bipedal model

can be illustrated as a cyclic sequence of discrete velocity transitions, shown in Fig. 5.7.
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Figure 5.7: Velocity transitions in a periodic gait cycle. A gait cycle can be considered
as a sequence of continuous and impulsive phases (blue arrows). This phase sequence can be
replaced with a sequence of discrete velocity transitions (black circles) relating the velocities
at the beginning of each phase to the velocities at the end of that phase (the beginning of
the next phase). The velocity mapping of phase (a) is given by (5.23), and of phase (b) is
given by (5.12) and (5.13). Equation (5.14) corresponds to the velocity mapping of phase
(c), while (5.19) and (5.22) give the velocities at the end of phase (d). The symmetry in this
figure does not imply the symmetry of the gait, though the passive swing is considered to
be symmetric.

5.4.2 Periodicity Restricts the Actuator Impulses

Using the discontinuous velocity transitions above, we can find the required impulses for a

periodic gait subject to given step length and average walking speed. Substituting (5.19)-

(5.23) into (5.24) and (5.25), and the use of (5.12) and (5.13) give two equations that the

three impulses, i.e. S, R, and P, must obey. We can solve these to express P and S in terms

of R. This results in

S = h1(α, V ) + JS/R(α)R, (5.26)

P = h2(α, V ) + JP/R(α)R. (5.27)

The impulse-influence coefficients JS/R and JP/R and the functions h1 and h2 are given in

Appendix B.2. Using (5.26) and (5.27), all the velocities at different time instants can also
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be expressed solely in terms of α, V , and R. Therefore, for given α and V , the thrust impulse

S, the push-off impulse P, and all the velocities become a one-parameter family of solutions,

parameterized by the retraction impulse R. As for (5.14), this family of solutions does not

depend on the relative timing of P and R.

5.4.3 Maximum Retraction Impulse

In Sections 7.4 and 8.1 we will see that JP/R in (5.27) is negative, and the push-off impulse

P decreases with the retraction impulse R. On the other hand, the push-off impulse cannot

be negative, by definition. Therefore, given the step angle α and average walking speed V ,

we can use (5.27) to find the maximum retraction impulse, Rmax, for which P > 0:

R 6 Rmax(α, V ) such that P(α, V,Rmax) = 0. (5.28)

In Sections 7.11 and 8.3.1 we will see that the above upper bound on R is not an active

constraint for energetic cost minimization purposes, and (5.28) is spontaneously satisfied for

energy optimal gaits.

5.4.4 Admissible Combinations of Step Length and Speed

I intend to study the effects of active swing-leg retraction for all possible walking gaits, at

least to the extent that can be covered by the simplified impulsive model. In this section,

the range of step lengths and average walking speeds for which the model exhibits a near-

human-like walking gait is calculated.

Minimum Allowed Average Walking Speed:

Examining (5.26) with different retraction impulse R, step angle α, and average forward

speed V shows that the required swing-thrust impulse S for slow speeds or very long steps

is negative, i.e. it pushes the swing-leg rearward. However, in normal walking, humans do
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not push their swing-leg backward at the beginning of swing. The resulting non-human-like

swing thrust impulse for the impulsive model is an artifact of the passive swing assumption.

Due to this assumption, for gaits with slow average forward speed or very long steps the swing

leg has to initially move backwards in order to match the step length and step frequency

requirements. However, when walking slowly or taking long steps, humans continuously

control their leg motion using accelerating and decelerating hip torques throughout the swing

phase. So, the near-passive-swing assumption is not valid in this regime. For this reason,

I would rather to limit my study to step lengths and speeds for which the passive swing

assumption is almost valid, and the model exhibits near-human-like gaits. In mathematical

terms, I limit the parameter space to the set of α, V , and R for which S > 0, where S is

given by (5.26).

The above constraint on parameter space imposes a lower bound on V , the minimum

allowed walking speed Vmin, for each pair of α and R. On the other hand, as we will see in

Sections 7.4 and 8.1 , the dependency of S on R is negligible. So, to simplify the analyses,

I use Vmin at R=0 for all possible R. That is to say, V is admissible if

V > Vmin(α) such that S(α, Vmin,R)
∣∣∣
R=0

= 0. (5.29)

This minimum allowed average speed is a function of step angle α. For biped parameter

values given in Table 5.1, the above lower bound excludes (α, V ) pairs that fall below the

shaded regions in Fig. 5.8. In this figure, the vertical axis is the normalized average walking

speed V̂ =V/Vn, where Vn is defined in (5.32) below.

GRF-Based Maximum Average Walking Speed:

In Section 5.3.1, the equations of motion in passive swing were derived based on the assump-

tion that the stance foot remains on the ground during the entire nominal single stance, i.e.

during the interval (0+, T−). This is met only if the calculated GRF along the stance leg

(=GRFa) is not negative for the entire interval. That is, during the entire passive single
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stance we should have

GRFa = mtot g cos θ −mtot ℓ θ̇
2 +mleg b

(
θ̇2 + cosφ (θ̇+ φ̇)2 + sinφ (φ̈+ θ̈ )

)
> 0. (5.30)

At any given step angle α, increasing the average forward speed increases the centripetal

force, which in turn decreases GRFa. The maximum average walking speed Vmax(α) is,

therefore, the one that results in GRFa=0 for a few instants in passive single stance and

GRFa> 0 for the rest of this phase. Hence, given the step angle α, the condition of feasible

walking is expressed as:

V 6 Vmax(α) such that min
0+ 6 t6T−

GRFa(t, Vmax) = 0. (5.31)

In this thesis, the step-angle-dependent maximum walking speed Vmax(α), obtained from

(5.31), is called the ‘GRF-based speed limit’. For biped parameter values given in Table 5.1,

constraining V 6Vmax(α) excludes (α, V ) pairs that are above the shaded region in Fig. 5.8.

The vertical axis in this figure is the normalized average walking speed V̂ =V/Vn, where

Vn = max
α

Vmax(α). (5.32)

From Fig. 5.8 it is clear that

max
α

Vmax(α) =Vmax(0). (5.33)

In fact, at α=0 the gravity-pull along the stance leg, i.e. mtot g cosα, and the reaction of the

swing-leg centripetal force on the stance leg, i.e. mleg b ( θ̇
2
0 + φ̇2

0 ) cos 2α, are maximum. The

resultant downward force allows for the maximum stance-leg angular rate, or equivalently

the maximum achievable walking speed.

To calculate this maximum speed, i.e. Vn= Vmax(0), we can evaluate (5.30) and (5.31) at

α=0. For α=0: θ=φ=0, θ̇= θ̇0, and φ̇= φ̇0. On the other hand, when α approaches zero,

the passive swing becomes instantaneous, and θ̇ and φ̇ approach their average value
¯̇
θ and

¯̇φ. Because always ¯̇φ=−2 ¯̇θ, we get θ̇0 = θ̇=−φ̇/2 for α=0. These simplify (5.30) to

GRFa

∣∣∣
α=0

= mtot ℓ
(
ω2
1 + (2 λ− 1) θ̇20

)
> 0, (5.34)
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Figure 5.8: Admissible region. The shaded region corresponds to the admissible combi-
nations of step angle and speed. Above this region, walking is not feasible as the calculated
centripetal GRF during passive swing becomes negative, which requires an unrealistic suck-
ing foot-ground contact to avoid a flight. Below the shaded region the swing-thrust impulse
is applied backwards (pushes the swing leg backward) opposite to that seen in human-like
gaits. The lower boundary of the region is set by (5.29), and the upper boundary is cal-
culated using (5.31). The vertical axis is normalized relative to Vn=Vmax(0), which is the
GRF-based maximum walking speed at α=0, defined in (5.36). For the numerical values
used for this figure (see Table 5.1), Vn=3.18m/s.

where ω1=
√
g/ℓ and λ=mleg b/(mtot ℓ). It is shown in Section 7.1 that λ6 0.5. Thus,

(5.34) results in

|θ̇0| 6
ω1√

1− 2 λ
= ωn, (5.35)

and

Vn = Vmax(0) = ℓ max |θ̇0| = ℓ ωn =
ℓ ω1√
1− 2 λ

. (5.36)

Most literatures, if not all, calculate the maximum walking speed using a simple inverted

pendulum model without considering the effect of a non-massless swing leg, e.g. [14, 95].

With this common approach the maximum walking speed is calculated as ℓ ω1, which can

be obtained from (5.36) with λ=0 (mleg =0). My calculation here provides a more realistic

prediction and shows that by increasing λ the maximum walking speed increases.

Note that the average walking speed V can increase up to the GRF-based speed limit

Vmax(α) if no other constraints limit the motion. It is shown in Section 7.5.1 (analytically)
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and Section 8.2 (numerically) that if the retraction impulse R is not large enough to ensure

heel-strike, maximum average walking speed should be less than the GRF-based Vmax(α).

Admissible Region:

The step-angle-dependent minimum and maximum walking speeds in (5.29) and (5.31) define

the set of α and V combinations for which periodic powered walking with passive single stance

and non-rearward swing-thrust impulse can be formulated with the impulsive model. This

set is frequently used in the rest of this thesis and will be referred to as the ‘admissible

region’. It corresponds to the shaded area in Fig. 5.8.

5.5 Summary

In this chapter a simple bipedal model was introduced to study swing-leg retraction in

walking. The model is the modified version of the powered simplest walking model in [47].

It consists of a point-mass hip and two rigid legs with arbitrarily distributed mass. The model

is powered by a motor (revolute actuator) at the hip and a telescoping (prismatic) actuator

along the stance leg. The energy-optimal walking gait of this model was predicted based

on the results of Chapter 3, previous optimal gait studies, and human gait observations.

This optimal gait consists of three infinitesimal-duration impulsive phases and one extended

smooth phase. Immediately after toe-off an impulsive torque, swing-thrust, is applied at

the hip to accelerate the swing leg motion. Then the extended passive swing phase starts,

where the hip motor is off and the stance leg extension actuator is locked. In this phase

the hip moves on an arc-shape path dictated by the fixed-length stance leg. At the end of

passive swing, an impulsive extensional force, push-off, is applied along the stance leg, and

an impulsive hip torque, swing-leg retraction, is applied at the hip. The late-swing impulsive

force and torque can be applied with any relative timing (any order or overlap). Finally,

the collisional heel-strike occurs, followed by an instantaneous double-support. This phase
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sequence was modeled as a series of discrete velocity mappings, relating the velocities at the

beginning of each phase to those at the start of the previous phase. Using these mappings

and given the step angle and average walking speed, it was shown that all gait parameters

of a periodic gait can be expressed as a one-parameter family of solutions parameterized by

the swing-leg retraction impulse. This set of solutions will be used in the following chapters

to find the energy-optimal retraction impulse.
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Chapter 6

ENERGETICS OF IMPULSIVE WALKING GAITS

In the previous chapter a bipedal model with impulsive actuation was introduced to study

the consequences of swing-leg retraction in walking. In this chapter the energetics of the

model are formulated, and the conditions to achieve an energy-optimal gait are calculated.

The ultimate goal of this chapter is to find the optimal retraction impulse R∗ that

minimizes the net energetic cost for given gait parameters (such as step angle α, and average

walking speed V ). In order to achieve this goal, the following steps are taken: First, in

Section 6.1, the work-based energetic cost equation introduced in Chapter 2 is reformulated,

and the total energetic cost of walking is expressed in terms of the cost of each impulsive

actuation. In Section 6.2, the work of the impulsive swing-thrust torque and its energetic cost

is found. The work performed by the impulsive push-off force and the impulsive retraction

torque depends on their relative timing. These work quantities are calculated in Section 6.3

through introducing the so-called overlap parameter that quantifies the relative timing of

impulsive push-off force and retraction torque. The optimal relative timing of these impulsive

actuations that minimizes the net energetic cost of walking for given gait parameters is found

in Section 6.4. Finally, in Section 6.5, the problem of calculating the energy-minimizing

retraction impulse is formulated as a simple single-variable optimization problem using the

results of Sections 6.1-6.4. The chapter is summarized in Section 6.6.

6.1 Work-Based Energetic Cost of Step

In the context of energetics, the most natural option for the cost of an action is the energy

supplied to the actuator(s) during that action. The input energy to an actuator depends
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on the mechanical work done, and the actuator efficiency. In general, the efficiencies of an

actuator for doing positive and negative work can be different1. For example, human muscles

have about 25% and 120% efficiency for positive and negative2 work, respectively [26, 73].

If the positive quantities 1/c1 and 1/c2 are the efficiencies of positive and negative2 work,

respectively, or equivalently c1 and c2 are the cost of unit positive and unit negative work,

then the net energetic cost of doing W+ positive work and W− negative work (W−< 0) is:

E = c1W
+ − c2W

−. (6.1)

The above definition is consistent with the cost model defined in (2.1). Using (6.1), we can

define the energetic cost per step for swing thrust, push-off, and swing retraction, respectively

denoted by ES , EP , and ER. The total energetic cost of walking per step is then given by

Estep = EP + ES + ER. (6.2)

In the above equation it is assumed that dissipative collisional heel-strike is totally passive.

This does not mean that heel-strike does not cost for the system. The energy loss at collisional

heel-strike indirectly increases the net energetic cost, as the same amount of positive work

has to be done during the rest of the gait to compensate for it. Later in this thesis, I modify

the assumption of passive heel-strike and consider a more general scenario in which some

negative actuator work is also done during heel-strike. In that case, heel-strike will have

both direct and indirect costs.

In order to calculate ES , ER, and EP , the positive and negative work done by each

impulse should be calculated. The work of an impulsive force/torque depends on whether

it is overlapping in time with other impulsive active forces and torques [26], or not. An

1In most actuators negative mechanical work at the output acts as an energy source that partially or
entirely compensates for the losses. So, less input energy is required for doing negative work compared to
doing the same amount of positive work. Consequently, the efficiency of negative work is normally greater
than that of positive work.

2Here, efficiency is defined as the ratio of the absolute-value of output work to the input energy. In
this case, the efficiency of negative work is a positive number. Sometimes, the work itself (without using
the absolute-value function) is used to calculate the efficiency, so the efficiency of negative work becomes a
negative number. Based on the second definition, human muscles have -120% negative work efficiency.
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impulsive force/torque is isolated, if during its application all other impulsive active forces

and torques are zero. Therefore, in the model under study, the impulsive swing thrust torque

is always isolated, whereas the impulsive push-off force and the impulsive swing retraction

torque can be arbitrarily overlapping.

6.2 Energetic Cost of Isolated Impulsive Swing Thrust Torque

Consider an isolated impulsive force/torque with impulse I applied to a joint, where the joint

velocity jumps from q̇− to q̇+ by that impulse. As stated in [97], the net work performed by

this impulsive force/torque is calculated as

W =
1

2
I
(
q̇+ + q̇−

)
, (6.3)

and the corresponding positive work is given by

W+ =






[W ]+ if q̇+q̇− > 0

1

2
I (q̇+)

2

q̇+ − q̇−
if q̇+q̇− < 0

, (6.4)

where the positive-value function [·]+ is defined as [x]+ =x if x> 0, otherwise [x]+ =0. With

the above equations, the negative work is calculated from

W− =W −W+. (6.5)

Given the step angle α, average walking speed V , and retraction impulse R, equations

(6.3)-(6.5) can be used to calculate the positive and negative work W+
S and W−

S performed

by the impulsive swing thrust torque, where I =S is given by (5.26), q̇+= φ̇t+s = φ̇0 is given by

(5.12) and (5.13), and q̇−= φ̇t−s = φ̇0− Jφ̇/S S is given by (5.23) and (5.25). Finally, according

to the general energetic cost equation in (6.1), the energetic cost of impulsive swing thrust

is calculated as

ES = c1W
+
S − c2W

−
S . (6.6)
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6.3 Energetic Cost of Impulsive Push-off Force and Retraction Torque

If the impulsive push-off force and the impulsive swing retraction torque are isolated, i.e.

one comes completely after the other, equations (6.3)-(6.5) can be used to calculate their

work. However, in general, they can be arbitrarily overlapped. In a multibody system,

when overlapping impulsive forces/torques are applied at different joints, the velocity jump

at each joint is influenced not only by the impulsive force/torque at that joint, but also by

other overlapping forces/torques in other joints. In this case, a special technique should be

used to exclude the mechanical energy involved in the interaction between the overlapping

forces/torques. This technique was originally developed by Ruina et. al. [26] to study the

simultaneous impulsive forces on particles, where each force does only positive or negative

work. Here, I modify and extend that technique to multibody systems, and to episodes

where an impulsive force/torque does both positive and negative work.

Using the definition of retraction impulse in (5.9) and of push-off impulse in (5.10), I

define the partial retraction impulse R(t) and the partial push-off impulse P(t) as below

R(t) = −
∫ t

t−pr

τ(t′) dt′ = r(t)R, (6.7)

P(t) =

∫ t

t−pr

F (t′) dt′ = p(t)P, (6.8)

where the integral’s upper limit t satisfies t−pr6 t6 t+pr. The time-dependent non-decreasing

parameters p and r express the degree of impulse completeness (or equivalently the fraction

of the impulse applied), and satisfy 06 p6 1 and 06 r6 1. For example, at t= t−p , when

the impulsive push-off force is going to start, we have p(t−p ) = 0 and P(t−p ) = 0, and at t= t+p ,

when the impulsive push-off force has completed, we have p(t+p ) = 1 and P(t+p ) =P.

Fig. 6.1 visualizes the partial push-off and retraction impulses as the partial area under

the force/torque curves in an arbitrary scenario. In this figure the infinitesimal retraction

and push-off intervals (t−r , t
+
r ) and (t−p , t

+
p ) are exaggerated for clarity of illustration.
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R(t′) = r(t′)R

P(t′) = p(t′)P

F (t)

t′
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−τ(t)

Figure 6.1: Partial impulses. The partial retraction impulse R and the partial push-off
impulse P as the partial area under the force/torque curves for the arbitrary impulsive
retraction torque and push-off force profiles. The timing between the two impulses is also
arbitrary. The length of the periods over which the impulsive push-off force and retraction
torque are applied is infinitesimal, but is exaggerated here for clarity of illustration.

6.3.1 Net Swing-Leg Retraction Work

Using the push-off and retraction velocity mapping in (5.14), and the partial impulses in

(6.7) and (6.8), the instantaneous hip-joint angular rate for t−pr 6 t6 t+pr is defined as

φ̇(t) = φ̇t−pr + Jφ̇/R R(t) + Jφ̇/P P(t)

= φ̇0 + Jφ̇/R r(t)R+ Jφ̇/P p(t)P. (6.9)

In the second line, the substitution of φ̇t−pr with φ̇0 follows (5.13). Now, consider an arbitrary

instant t in the interval (t−pr, t
+
pr). The partial retraction work is defined as the work done by

the impulsive retraction torque τ from its beginning until t, and is given by

WR(t) =

∫ t

t−pr

φ̇(t′) τ(t′) dt′, (6.10)

where φ̇(t) is given by (6.9). The definition of the partial retraction impulse in (6.7) implies

dR=−τ(t′) dt′. Using this equality, and assigning P(t) = ptP and R(t) = rtR based on (6.7)
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and (6.8), we can simplify WR(t) as

WR(t) = −
∫ rtR

0

(
φ̇0 + Jφ̇/R R+ Jφ̇/P P

)
dR

= −
∫ rt

0

(
φ̇0 + Jφ̇/R rR+ Jφ̇/P pP

)
R dr

= −φ̇0 rtR− 1

2
Jφ̇/R r

2
t R2 − st Jφ̇/P RP, (6.11)

where

st =

∫ rt

0

p dr. (6.12)

The partial overlap parameter st quantifies the overlap between the impulsive push-off force

and the impulsive retraction torque during the interval (t−pr, t). This concept is clarified below,

when explaining (6.15) and Fig. 6.2. Because 06 p6 pt for 06 r6 rt, st always satisfies

0 6 st 6 pt rt. (6.13)

For t= t+pr the impulsive retraction torque is complete (rt+pr =1), and WR(t
+
pr) gives the net

work WR done by the impulsive retraction torque, as

WR = −φ̇0 R− 1

2
Jφ̇/R R2 − s Jφ̇/P RP, (6.14)

where

s = st+pr =

∫ 1

0

p dr. (6.15)

The overlap parameter s satisfies 06 s6 1, and quantifies the percentage overlap between

the impulsive push-off force and retraction torque. In Fig. 6.2b the overlap parameter s

is visualized as the area under the cross-plots of p versus r for different relative timings

of the impulsive push-off force F (t) and retraction torque τ(t) shown in Fig. 6.2a. When

s=0, the impulsive retraction torque occurs completely before the impulsive push-off force

(episode iv), whereas s=1 corresponds to the case where the impulsive retraction torque

starts completely after the impulsive push-off force (episode ii). In both of these cases the

push-off and retraction impulses are isolated. Two impulses are ‘synchronous’ if they are

proportional (episode i), resulting in p= r and s=0.5.
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Figure 6.2: Visualization of the overlap parameter s. (a) As the impulsive push-off
force F moves relative to the impulsive retraction torque τ , the overlap parameter s changes
from 0 to 1. (b) The overlap parameter s can be considered as the area under the cross-plot
of p vs. r. Different paths in (b) correspond to different episodes in (a). Impulsive F and τ
are ‘synchronous’ if they are proportional, and thus s=0.5.

In the formula of the net retraction work WR in (6.14), Jφ̇/R, Jφ̇/P , φ̇0, and P are known

when the step angle α, average speed V , and retraction impulse R are given (see Sections

5.3.1, 5.3.2, and 5.4.2). Thus, WR is fully resolved by knowing α, V , R, and s.

Equivalent Isolated Impulses for Net Retraction Work:

Equation (6.14) can also be rearranged as

WR = −1

2
R
(
φ̇†

t−r
+ φ̇†

t+r

)
, (6.16)

where φ̇†

t−r
= φ̇0+ Jφ̇/P sP, and φ̇†

t+r
= φ̇†

t−r
+ Jφ̇/R R. Comparing (6.16) with (6.3), we can in-

terpret WR as the work of an isolated retraction impulse R that starts completely after an

equivalent isolated push-off impulse P†= sP. The role of P† is to change the hip angular

velocity from φ̇0 to an equivalent pre-retraction velocity φ̇†

t−r
, which is then changed by R to

the equivalent post-retraction velocity φ̇†

t+r
.
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6.3.2 Positive and Negative Swing-Retraction Work

Assuming that the impulsive hip torque τ(t) has no sign change during (t−pr, t
+
pr), a retracting

torque (R> 0) does positive work when the hip joint is retracting, i.e. φ̇(t)< 0, otherwise it

does negative work. Conversely, an extending hip torque (R6 0) does positive work when

the hip joint is extending, i.e. φ̇ > 0, otherwise it does negative work.

If the instantaneous hip rate φ̇(t) has no zero-crossings during the impulsive retraction

torque, the impulse R does only positive or negative work, given by W+
R = [WR]

+, and

W−
R =WR −W+

R , where WR is calculated from (6.14).

If φ̇(t) has zero-crossings during the application ofR, then the impulsive retraction torque

does both positive and negative work. In this case, the span of the retraction torque can

be divided into consecutive sub-intervals connected to each other at the zero-crossings of

φ̇(t). During each of these sub-intervals the retraction torque does only positive or negative

work. By sequentially evaluating WR(t), given by (6.11), at the end of all sub-intervals and

calculating the differences, we can find the work done during each sub-interval, and ultimately

calculate the total positive or negative work done by the impulsive retraction torque. For

example, consider a case where an impulsive retraction torque starts with doing negative

work, and φ̇(t) has two zero-crossings at t1 and t2, where t1 6 t2. The positive retraction

torque in this case is given by W+
R =WR(t2)−WR(t1), and the negative retraction torque

by W−
R =WR −W+

R =WR +WR(t1)−WR(t2).

As mentioned for (5.16) and (5.17), the impulse-influence coefficients Jφ̇/R and Jφ̇/P are

both negative. Thus, for R> 0 the instantaneous hip rate φ̇(t), given by (6.9), decreases

throughout push-off and retraction, and cannot have more than one zero-crossing, if any. As-

sume that this possible zero-crossing is at t0. Then, the retraction torque does only negative

work before t0, and only positive work after it. Thus, W−
R =WR(t0), and W

+
R =WR −W−

R .
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6.3.3 Net Push-Off Work

Equivalent to the instantaneous hip rate given by (6.9), the instantaneous leg extension rate

during the infinitesimal interval (t−pr, t
+
pr) is defined as

ℓ̇(t) = Jℓ̇/P P(t) + Jℓ̇/R R(t)

= Jℓ̇/P p(t)P + Jℓ̇/R r(t)R. (6.17)

The partial push-off work WP(t) is defined as the net work done by the impulsive push-

off force F from its beginning until an arbitrary instant t in (t−p , t
+
pr). Following the same

procedure that led to the calculation of WR(t) in (6.11), we can calculate WP(t) as

WP(t) =

∫ t

t−pr

ℓ̇(t′)F (t′) dt′

=
1

2
Jℓ̇/P p

2
t P2 + ( pt rt− st) Jℓ̇/R RP, (6.18)

where st follows (6.12). For t= t+pr the push-off impulse is complete (rt+pr = pt+pr =1), and

WP(t
+
pr) gives the net work WP done by the push-off impulse as

WP =
1

2
Jℓ̇/P P2 + (1− s) Jℓ̇/R RP, (6.19)

where the overlap parameter s is given by (6.15). Note that Jℓ̇/P , Jℓ̇/R, and P are known if

the step angle α, average speed V , and retraction impulse R are given (see Sections 5.3.2

and 5.4.2), so the net push-off work WP is fully resolved by knowing α, V , R, and s.

Equivalent Isolated Impulses for Net Push-Off Work:

Equivalent to (6.16), WP can be rearranged as

WP =
1

2
P
(
ℓ̇†
t−p

+ ℓ̇†
t+p

)
, (6.20)

where ℓ̇†
t−p
=(1− s) Jℓ̇/R R, and ℓ̇†

t+p
= ℓ̇†

t−p
+ Jℓ̇/P P. In other words, WP can be viewed as the

work of the isolated push-off impulse P when it follows the equivalent isolated retraction
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impulse R†= (1 − s)R. The role of R† is to change the leg extension rate from ℓ̇t−pr =0 to

an equivalent pre-push-off extension rate ℓ̇†
t−p
, which is then changed by P to the equivalent

post-push-off extension rate ℓ̇†
t+p
.

6.3.4 Positive and Negative Push-Off Work

Because the extensional push-off force F (t) is always positive, it does positive work when

the leg is extending, i.e. ℓ̇(t)> 0, and does negative work when the leg is contracting, i.e.

ℓ̇(t)< 0. For ℓ̇(t) given in (6.17) the impulse-influence coefficients Jℓ̇/R and Jℓ̇/P are always

positive, as mentioned in Section 5.3.2. Thus, independent of the relative timing of P and

R, ℓ̇(t)> 0 for any R> 0. In other words, when R is retracting, W+
P =WP and W−

P =0.

As given by (5.17), Jℓ̇/R> 0, so an extending retraction torque (R< 0) tends to decrease

the leg extension rate ℓ̇(t). Thus, depending on the relative timing of the impulsive push-off

force and extensional retraction torque, ℓ̇(t) can become negative for some period of time,

causing the push-off force to do negative work during that period. The same procedure

explained in Section 6.3.2 (for calculating positive and negative retraction work) can be used

to calculate the positive and negative work done by the impulsive push-off force when the

leg extension rate ℓ̇(t) has zero-crossings during push-off.

6.3.5 Energetic Cost of Impulsive Push-Off and Swing-Leg Retraction

Given the positive and negative work performed by the impulsive push-off force and retrac-

tion torque, the individual energetic costs of these impulsive actions are given by

EP = c1W
+
P − c2W

−
P , (6.21)

ER = c1W
+
R − c2W

−
R . (6.22)

Unlike the net push-off work WP and the net retraction work WR, the energetic cost EP

and ER can not be calculated, in a general case, by knowing only the step angle α, average
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speed V , retraction impulse R, and overlap parameter s. In fact, we also need to make

assumptions on zero-crossings of ℓ̇(t) and φ̇(t) in order to calculate W+
P , W−

P , W+
R , and W−

R .

Although, in general, an infinite number of cases is possible for the zero-crossings of ℓ̇(t)

and φ̇(t), I am only interested in those that result in a minimum energetic cost Estep. In the

next section, I show that the minimum Estep always can be achieved with ℓ̇(t)> 0 (no zero-

crossing of ℓ̇, implying all-positive push-off work). With this result, and using the optimal

relative timing of push-off and retraction that will be found in the next section, the possible

zero-crossings of φ̇(t) are limited to a single case, so we will be able to calculate EP and ER

of an optimal gait using only α, V , and R.

6.4 Optimal Relative Timing of Impulsive Push-off and Retraction

The impulsive push-off P and the impulsive retraction R are applied during the late-swing

infinitesimal interval (t−pr, t
+
pr), called the push-off-retraction interval. The relative timing of

these two impulsive force and torque, quantified by the overlap parameter s defined in (6.15),

can influence the gait energetics. The optimal relative timing of P and R, quantified by s∗,

is the one that minimizes the energetic cost Estep, given by (6.2), for given gait parameters.

Among the different terms in Estep, the cost of impulsive swing thrust does not depend

on the overlap parameter s. Thus, s∗ can also be determined by minimizing the net energetic

cost of push-off and retraction, given by

EPR = EP + ER

= c1
(
W+

P +W+
R

)
− c2

(
W−

P +W−
R

)
. (6.23)

The second line in the above equation is obtained by substituting for EP and ER from (6.21)

and (6.22).

As mentioned in the previous section, calculating EPR in a general case requires assump-
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tions on the zero-crossings of the instantaneous joint velocities ℓ̇(t) and φ̇(t). Thus, I first

assume that the stance leg is always non-contracting, i.e. ℓ̇(t)> 0, and find the optimal over-

lap parameter s∗ that minimizes EPR subject to this assumption. Then I show that this is

not a limiting assumption and does not affect the minimum achievable energetic cost EPR.

Now, as the first step of this procedure, let us determine how the constraint ℓ̇(t)> 0 limits

the possible range of s.

6.4.1 Range of Overlap Parameter for a Non-Contracting Stance Leg

According to the formula of the instantaneous leg extension rate ℓ̇(t), given by (6.17), the

condition of a non-contracting stance leg can be expressed as

ℓ̇(t) > 0 ⇐⇒ p(t) > −
Jℓ̇/R R
Jℓ̇/P P r(t). (6.24)

On the other hand, the impulse completeness parameter p(t) always satisfies 06 p6 1 (see

Section 6.3). The latter can be combined with the above equivalence relation to find the

following bounds on p(t) that ensure ℓ̇(t)> 0:

pmin 6 p(t) 6 1, (6.25)

where

pmin = max

(
0,−

Jℓ̇/R R
Jℓ̇/P P r

)
. (6.26)

Evaluating the overlap parameter s, defined in (6.15), with the above bounds on p, gives

smin(R) 6 s 6 1, (6.27)

where

smin(R) = max

(
0,−

Jℓ̇/R R
2 Jℓ̇/P P

)
. (6.28)

Therefore, respecting ℓ̇(t)> 0 limits the overlap parameter s within the range given by (6.27).

According to Fig. 6.2, s=1 corresponds to the case where the isolated impulsive push-off

force is followed by the isolated impulsive retraction torque (push-off then retraction).
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For R> 0, equation (6.28) results in smin=0 which, according to Fig. 6.2, corresponds to

applying the impulsive push-off force completely before the impulsive retraction torque.

For R< 0, smin= − Jℓ̇/R R/(2 Jℓ̇/P P), which is achieved if p= pmin=−Jℓ̇/R R r/(Jℓ̇/P P)

for all 06 r6 1. This is equivalent to the case that satisfies the following three conditions:

(i) both the impulsive push-off force and the impulsive extending retraction torque (R< 0)

start simultaneously and immediately after the passive swing at t−pr, (ii) the partial impulses

of push-off force and retraction torque increase proportionally until the retraction impulse

is complete (i.e. r=1), and (iii) based on (6.24), the impulsive push-off force is applied at

a minimum level during the impulsive retraction torque just to ensure ℓ̇(t) = 0. With this

relative timing, some portion of the push-off impulse, i.e. P(t+r ) =−Jℓ̇/R R/Jℓ̇/P , is already

applied by the time the impulsive retraction torque is complete. Typically, the retraction

impulse R is much smaller than the push-off impulse P (the retraction impulse is scaled

with the leg mass and inertia, whereas the push-off force is scaled with the total body mass).

Thus, typically pt+r =P(t+r )/P≪ 1, implying that for s= smin only a negligible fraction of the

push-off impulse, i.e. P(t+r ), is applied during the advancing extensional retraction torque,

and the rest, i.e. P −P(t+r ), is applied after it.

The range of overlap parameter s found in this section is used in the next section to find

the optimal relative timing of push-off and retraction subject to the constraint ℓ̇(t)> 0.

6.4.2 Optimal Overlap Parameter for Gaits With a Non-Contracting Stance Leg

For gaits with a non-contracting stance-leg, i.e. ℓ̇(t)> 0, the push-off impulse does only

positive work, and the energetic cost EPR in (6.23) can be simplified as

EPR = c1 (WP +W+
R )− c2W

−
R . (6.29)

In this equation the net push-off work WP is given by (6.19), and the positive and negative

retraction work W+
R and W−

R satisfy W+
R +W−

R =WR, where the net retraction work WR is
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given by (6.14).

Now, given the step angle α, push-off impulse P, and retraction impulse R 3, and with

the constraint ℓ̇(t)> 0, the optimal relative timing of impulsive P and R is given by the

overlap parameter s∗ that minimizes EPR given in (6.29), when s∗ is bounded within (6.27).

At the optimum the following three different cases are possible for the retraction work:

1) The impulsive retraction torque does only negative work (braking the leg

swing): In this case W+
R =0, and W−

R =WR. Thus, equation (6.29) gives

∂EPR

∂s
= c1

∂WP

∂s
− c2

∂WR

∂s
= −c1 Jℓ̇/R RP + c2 Jφ̇/P RP. (6.30)

Using Jℓ̇/R =−Jφ̇/P from (5.17), we can simplify the above equation as

∂EPR

∂s
= −(c1 + c2) Jℓ̇/R P R. (6.31)

According to (5.17), Jℓ̇/R is always positive. Therefore, with R> 0 (retracting hip torque),

∂EPR/∂s< 0, implying that the energetic cost monotonically decreases with s. Thus, energy

expenditure is minimized when s is maximized within the range of (6.27), i.e. s∗=1. With

R< 0, however, ∂EPR/∂s> 0, implying that the cost monotonically increases with s. So,

energy expenditure is minimized when s is at the lower bound of (6.27), i.e. s∗= smin(R).

Interestingly, for this case, where ℓ̇(t)> 0 and the impulsive R does only negative work,

both the push-off cost, i.e. EP = c1WP , and the retraction cost, i.e. ER =−c2WR, simulta-

neously decrease when s approaches s∗ (∂EP/∂s and ∂ER/∂s are the first and the second

terms in (6.30), respectively). This suggests that for given retraction impulse R and push-

off impulse P, and as long as ℓ̇(t)> 0, the energy minimizing policy is to avoid performing

negative retraction work as much as possible (leading to a reduction in push-off work as

well).

3For periodic gaits the push-off impulse is fully resolved when the step angle α, average speed V , and
retraction impulse R are known [see (5.27)]. Thus in those cases α, V , and R can be the given parameters.
However, the analysis in this section is not limited to only periodic gaits, so the given parameters are α, V
and P .
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2) The impulsive retraction torque does only positive work (accelerating the

swing leg): In this case W−
R =0, and W+

R =WR. Thus, equation (6.29) gives

∂EPR

∂s
= c1

(
∂WP

∂s
+
∂WR

∂s

)
= −c1

(
Jℓ̇/R + Jφ̇/P

)
RP. (6.32)

Now, based on (5.17), Jℓ̇/R =−Jφ̇/P , so

∂EPR

∂s
= 0. (6.33)

In other words, for gaits with ℓ̇(t)> 0 as far as the impulsive retraction torque does only

positive work the optimal overlap parameter s∗ does not have a unique solution, and energy

minimization has no preference on the relative timing of impulsive push-off and retraction.

Now, let us find the range of s∗ for which the condition of all-positive retraction work is met.

ForR> 0 the impulsive retraction torque does only positive work when the instantaneous

hip rate φ̇(t) is negative (the hip joint is retracting), or equivalently when the impulse

completeness parameters defining φ̇(t) in (6.9) satisfy

max
(
0, p†(r)

)
6 p 6 1 for 06 r6 1, (6.34)

where

p†(r) = −
φ̇0 + rR Jφ̇/R

Jφ̇/P P . (6.35)

Using the definition of s in (6.15), the above bound on p translates to the following bounds

of s∗:

max
(
0, s†(R)

)
6 s∗ 6 1, (6.36)

where

s†(R) = −
φ̇0 + Jφ̇/R R/2

Jφ̇/P P . (6.37)

For all s∗ in (6.36) a given R> 0 does only positive work. Within this range, s∗=1 is

applicable for all R> 0, and also matches the optimal solution in the previous case (case 1

above). So, I choose s∗=1 as the optimal solution here.
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Equivalently, if R< 0 (extending hip torque) the retraction impulse does only positive

work when φ̇(t)> 0. This condition is met when

pmin(r) 6 p 6 min
(
1, p†(r)

)
for 06 r6 1, (6.38)

where pmin(r) is given by (6.26). The above bound on p gives the following range of s∗ for

the cases where a given R< 0 does only positive work at the optimum.

smin(R)6 s∗6 min
(
1, s†(R)

)
(6.39)

Here, smin(R) and s†(R) are given by (6.28) and (6.37), respectively. To be consistent with

case 1 above, where R does only negative work, I choose s∗= smin(R) as the optimal solution

in this case.

When a given retraction impulse R does only positive work, the retraction work WR

continuously increases as s approaches the selected s∗ (s∗=1 for R> 0 and s∗= smin for

R< 0). However, with ℓ̇(t)> 0 this increase in WR is entirely compensated by an equal

decrease in the push-off work performed by the given impulse P, so the net positive work

WP +WR remains constant (i.e. becomes independent of s). Consequently, any increase in

the retraction cost ER = c1WR, as s approaches s
∗, is cancelled by an equal decrease in the

push-off cost EP = c1WP , so the net cost EPR remains constant.

3) The impulsive retraction torque does both positive and negative work: Accord-

ing to the above two cases, the optimal policy in this case is to do less negative and more

positive retraction work, as much as possible. Note that with ℓ̇(t)> 0, any decrease [increase]

in negative [positive] retraction work reduces the all-positive push-off work. Thus, with this

policy the cost of negative retraction work and the cost of push-off work decrease but the cost

of positive retraction work increases. However, any increase in the cost of positive retraction

work is cancelled by a partial reduction of push-off cost, so the net cost decreases. Thus,

similar to the other two cases, the optimal overlap parameter in this is s∗=1 for R> 0 and

s∗= smin for R< 0.
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The above result can be also verified by directly minimizing the net energetic cost EPR.

To save the space, this procedure is described below only for R> 0.

Equation (6.9) expresses the instantaneous hip rate φ̇(t) in terms of the partial push-off

and retraction impulses. Because R> 0, and Jφ̇/P and Jφ̇/R are both negative (see Section

5.3.2) , φ̇(t) continuously decreases during the push-off-retraction interval, and can have

only one zero-crossing in this interval. Assume that the only zero-crossing of the hip angular

rate φ̇(t) occurs at t= t0. Then, there exist rt0 = r(t0) and pt0 = p(t0) where 06 rt0 6 1 and

06 pt0 6 1, and

φ̇(t0) = φ̇0 + rt0 Jφ̇/R R+ pt0 Jφ̇/P P = 0. (6.40)

The impulsive retraction torque does negative work before t0, and positive work after it.

The negative retraction work W−
R can be calculated by the partial work WR(t0), given by

evaluating (6.11) at t= t0. This gives

W−
R=−φ̇0 rt0 R− 1

2
Jφ̇/R r

2
t0
R2 − st0 Jφ̇/P RP, (6.41)

where the partial overlap parameter st0 is given by (6.12). The positive retraction work then

becomes W+
R =WR −W−

R .

Fig. 6.3 visualizes the partial overlap parameter st0 in the r-p plane for an arbitrary

scenario. From this figure, and also from the definition of the partial overlap parameter in

(6.12), it is clear that

0 6 st0 6 pt0 rt0 . (6.42)

The partial overlap parameter st0 limits the total overlap parameter s by constraining it

between the following lower and upper bounds, corresponding respectively to paths i and ii

in Fig. 6.3.

st0 + (1− rt0) pt0 6 s 6 st0 + 1− rt0 (6.43)

With the positive and negative retraction work given above, and by knowing Jℓ̇/R =−Jφ̇/P
(see Section 5.3.2), it is a simple practice to verify that the energetic cost EPR, given by
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Figure 6.3: The partial overlap parameter st0 . The path i and ii determine the upper
and lower bounds of the total overlap parameter s, respectively.

(6.29), is not a direct function of s. In other words, ∂EPR/∂s=0. Now, according to (5.17),

Jφ̇/P < 0, so we get

∂EPR

∂st0
= (c1 + c2)Jφ̇/P RP 6 0. (6.44)

The above equation implies that EPR decreases with increasing st0 , and becomes minimum

when st0 is maximized within its bounds. Thus, according to (6.42), the optimum st0 is

s∗t0 = pt0 rt0 . (6.45)

On the other hand,

∂EPR

∂ rt0
= − (c1 + c2) pt0 Jφ̇/P RP > 0, (6.46)

implying that at the optimum, rt0 should be minimum while respecting the constraints.

With the zero-crossing constraint in (6.40), and because Jφ̇/P and Jφ̇/R are both negative (see

Section 5.3.2), the minimum rt0 is achieved when pt0 =1. Finally, substituting the latter and

(6.45) into (6.43) results in s∗=1. (End of Proof)

Summarizing the cases 1-3 above, I showed that independent of the step length, walk-

ing speed, or the actuator work efficiencies, when the stance leg is constrained to be non-

contracting, i.e. ℓ̇(t)> 0, the optimal overlap parameter is s∗=1 for R> 0 (retracting hip

torque) and s∗=−Jℓ̇/R R/(2 Jℓ̇/P P) for R< 0 (extending hip torque).
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In the next section, I show that the minimum energetic cost can be achieved with ℓ̇(t)> 0,

so the above optimality result still holds even if the constraint ℓ̇(t)> 0 is lifted.

6.4.3 Optimal Overlap Parameter With Leg Contraction Allowed

As mentioned in Section 6.3.4, for all gaits in which the retraction torque is retracting,

i.e. R> 0, the stance leg is always non-contracting. Thus, for all R> 0 the optimality

result obtained in the previous section holds even if the constraint ℓ̇(t)> 0 is not imposed.

However, with an extending retraction torque (R< 0), and depending on the relative timing

of the impulsive push-off force and retraction torque, the leg extension rate ℓ̇(t) can become

negative for some period during the push-off-retraction interval (see Section 6.3.4), causing

the push-off force to do negative work during that period. Because minimizing the energetic

cost limits the overlap parameter and thus the relative timing of push-off and retraction, it

can potentially limit ℓ̇(t) as well. So, let us find how ℓ̇(t) should change inside the push-off-

retraction interval of a minimum-energy gait with given P and R< 0.

For the impulsive model under study, the leg extension rate is always zero at the start

of the push-off-retraction interval, i.e. ℓ̇t−pr =0. Also, given the push-off impulse P and the

retraction impulse R, the leg extension rate at the end of the push-off-retraction interval, i.e.

ℓ̇t+pr, is known and is given by (5.14). In energy-optimal gaits ℓ̇t+pr > 0, as the stance leg should

be extending immediately prior to heel-strike to reduce the collision loss [26, 47]. Thus, all

possible candidate profiles for ℓ̇(t) in the push-off-retraction interval should connect ℓ̇t−pr =0

to a given ℓ̇t+pr > 0.

Among an infinite number of possible profiles for ℓ̇(t), starting at ℓ̇t−pr =0 and ending at

ℓ̇t+pr > 0, consider the arbitrary profile shown in Fig. 6.4, in which an impulsive extending

retraction torque has caused ℓ̇(t) to be negative (contracting) for t16 t6 t2. By varying t1,

t2, or the magnitude of ℓ̇(t) we can get different functions for the leg extension rate. Now,

to find the best ℓ̇(t), let us minimize the energetic cost of the gait for this arbitrary profile.
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ℓ̇(t)

t
t−pr t+prt1 t2

0

Figure 6.4: Instantaneous stance leg extension rate during an arbitrary scenario of
impulsive extensional push-off force and impulsive extending retraction torque (R< 0). The
extending retraction torque tends to decrease the leg extension rate, and results in ℓ̇(t)< 0
for t16 t6 t2. During this period the impulsive push-off force does negative work.

Note that because the cost of swing thrust impulse is not influenced by ℓ̇(t) during the push-

off-retraction interval (ℓ̇t−pr and ℓ̇t+pr are fixed for given P and R) minimizing Estep, given by

(6.2), and EPR, given by (6.23), has the same consequences on ℓ̇(t).

In order to calculate EPR, we need to calculate the positive and negative work performed

by the push-off and retraction impulses. For the case shown in Fig.6.4 the impulsive push-off

force performes negative work for t16 t6 t2, and positive work during the rest of the interval

(t−pr, t
+
pr). Using the technique described in Section 6.3.4, these positive and negative work

quantities are given by

W−
P = WP(t2)−WP(t1), (6.47)

W+
P =WP −W−

P , (6.48)

where WP is the net push-off work, given by (6.19), and WP(t1) and WP(t2) are the partial

work quantities performed by the impulsive push-off force from t−pr until t1 and t2. These

partial work quantities can be calculated from (6.18) as below.

WP(t1) =
1

2
Jℓ̇/P p

2
t1
P2 + (pt1 rt1 − st1)Jℓ̇/R RP (6.49)

WP(t2) =
1

2
Jℓ̇/P p

2
t2
P2 + (pt2 rt2 − st2)Jℓ̇/R RP (6.50)
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In the above, st1 and st2 are the partial overlap parameters corresponding to t= t1 and t= t2

[see (6.12)], and pt1 , rt1 , pt2 , and rt2 are the impulse completeness parameters (see Section

6.3) at t1 and t2 and satisfy ℓ̇(t1) = ℓ̇(t2) = 0, where ℓ̇(t) is given by (6.17).

The impulsive retraction torque does net workWR, negative workW
−
R , and positive work

W+
R =WR−W−

R . The net work WR is given by (6.14), and is a function of the net overlap

parameter s, but not st1 and st2 . In general, W−
R and W+

R depend on WR and possible zero-

crossings of the instantaneous hip rate (see Section 6.3.2). Thus, they are also independent

of st1 and st2 , but have dependency in s.

Using the above positive and negative work quantities, and given the step angle α, push-

off impulse P, and retraction impulse R, the net energetic cost EPR can be calculated from

(6.23) as a function of a few free parameters (the partial and net overlap parameters st1 , st2 ,

and s, as well as the impulse completeness parameters pt1 , pt2 , rt1 , and rt2). Now given α,

P, and R< 0, I investigate the minimum EPR for the following three possible cases:

1) The extending retraction torque does only positive work (accelerating the

forward leg rotation): In this case W−
R =0, and W+

R =WR. Thus,

EPR = c1
(
W+

P +W+
R

)
− c2

(
W−

P +W−
R

)

= c1 (WP +WR)− (c1 + c2)W
−
P . (6.51)

According to the work-energy principle, the net push-off and retraction workWPR =WP +WR

is equal to the change in kinetic energy of the biped from t−pr to t
+
pr. Because the velocities

(≡ kinetic energy) at these two instants are independent of the relative timing of impulsive

push-off and retraction (see Section 5.3.2), WPR does not depend on s, st1 , and st2 . This

can be also verified by inspecting WPR, calculated from (6.14) and (6.19), and recognizing

that Jφ̇/P =−Jℓ̇/R [see (5.17)].

With a constant WPR, the energetic cost EPR in (6.51) is minimized only if W−
P =0 or

equivalently when ℓ̇(t)> 0 for the entire push-off and retraction interval. Therefore, when

123



the retraction torque does only positive work, the constraint ℓ̇(t) 6< 0 imposed in Section 6.4.2

is not active at the optimum, implying that the optimal overlap parameter s∗ found for the

case 2 of the previous section does not change if the constraint ℓ̇(t)> 0 is not imposed.

2) The extending retraction torque does only negative work (decelerating the

rearward leg rotation): In this case W+
R =0, and W−

R =WR. Thus,

EPR = (c1 + c2)W
+
P − c2 (WP +WR) . (6.52)

Because WP +WR is constant for any given α, P, and R (see the previous case), EPR is

minimized only when W+
P is minimized. Unlike W−

P in the previous case, W+
P can not be

reduced to zero for any given retraction impulse R, as doing so requires a very large R< 0

to make ℓ̇(t)< 0 for the entire push-off and retraction interval. Moreover, this very large

R< 0 can not be energetically optimal as it results in a large retraction cost.

In order to find the minimum possible W+
P for any given R< 0, we can examine its

variations with respect to its free parameters. Using the work equations in (6.47)-(6.50),

and recognizing that Jℓ̇/R> 0 [see (5.17)], we can get

∂W+
P

∂s
=
∂W+

P

∂st1
= −Jℓ̇/R P R > 0. (6.53)

The above relations imply thatW+
P monotonically decreases with decreasing st1 and s. Thus,

W+
P is minimized only if both st1 and s are minimized subject to their corresponding lower

bounds. These bounds are calculated in the following.

Using the instantaneous leg extension rate formula in (6.17), and that ℓ̇(t)> 0 for t16 t6 t2,

we get

p(t) > −
Jℓ̇/R R
Jℓ̇/P P r(t) for 06 r(t)6 rt1 . (6.54)

For t= t1, ℓ̇(t1) = 0, and the above relation holds with the equality sign:

pt1 = −
Jℓ̇/R R
Jℓ̇/P P rt1 . (6.55)
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Figure 6.5: The partial overlap parameter st2 and the minimum net overlap pa-
rameter s for an arbitrary scenario. The area of the shaded (solid gray) region corresponds
to st2 . Given st2 , the net overlap parameter s becomes minimum if the push-off impulse
completeness parameter p(t) does not change during (t2, t

+
r ), i.e. from t2 until r(t) = 1. In

this case s is given by the area of the hatched region.

Now, using the above two equations and the definition of the partial overlap parameter st

in (6.12), we can get

st1 =

∫ rt1

0

p dr > −
Jℓ̇/R R
2 Jℓ̇/P P r2t1 =

pt1 rt1
2

. (6.56)

Therefore, the lower bound of the partial overlap parameter st1 is pt1rt1/2.

Fig.6.5 can be used to find the lower bound of the net overlap parameter s as a function of

the partial overlap parameter st2 . In this figure the partial overlap parameter st2 is visualized

in the r-p plane for an arbitrary scenario. Given st2 , the net overlap parameter s is minimized

if the impulse completeness parameter p(t) does not change during the interval (t2, t
+
r ), i.e.

from t2 until when r(t) = 1. In this case, s is given by the area of the hatched region. Thus,

the lower bound of s is calculated as

s > st2 + pt2 (1− rt2) . (6.57)

As mentioned above, W+
P (and equivalently EPR) is minimized when s and st1 become

minimum. These minimums are determined by (6.56) and (6.57). Thus, at the optimum

st1 = pt1rt1/2, (6.58)

st2 = s− pt2 (1− rt2) . (6.59)
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Substituting these optimal values in the work equations (6.47)-(6.50) and simplifying the

results using the zero-crossing condition in (6.55) gives the optimal push-off work values as

W−
P =

1

2
Jℓ̇/P p

2
t2
P2 + (pt2 − s) Jℓ̇/R RP, (6.60)

W+
P =

1

2
Jℓ̇/P

(
1− p2t2

)
P2 + (1− pt2) Jℓ̇/R RP. (6.61)

Note that the above optimal work values do not depend on pt1 and rt1 . In fact, it can be

simply verified that with optimal st1 given in (6.58) the push-off work performed in t−pr6 t6 t1

is zero, i.e. WP(t1) = 0, regardless of the value of rt1 and pt1 . Therefore, without any change

in the minimum energetic cost, we can assume that at the optimum

p∗t1 = r∗t1 = s∗t1 = 0, (6.62)

or equivalently t∗1= t−pr.

Now, according to (6.61), the minimum W+
P (corresponding to the minimum EPR) is

obtained where ∂W+
P /∂pt2 =0, resulting in

p∗t2 = −
Jℓ̇/R R
Jℓ̇/P P . (6.63)

Substituting this optimal value in the zero-crossing condition ℓ̇(t2) = Jℓ̇/P pt2 P+Jℓ̇/R rt2 R=0

gives

r∗t2 = 1. (6.64)

Finally, the latter simplifies (6.59) to

s∗ = st2 . (6.65)

Because st2 is a free parameter, the above equation implies that the optimal overlap param-

eter s∗ does not have a unique solution when a given extending retraction torque (R< 0)

does only negative work. In fact, as it is shown below, s∗ can take any value within the

range

06 s∗6−
Jℓ̇/R R
2 Jℓ̇/P P . (6.66)
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If s exceeds the above upper bound, we get ℓ̇(t)> 0 for the entire push-off-retraction inter-

val (see Section 6.4.1), and the above work and energetic cost calculations are not valid.

Notwithstanding, according to the case 1 in the previous section, decreasing energetic cost

in this case requires to reduce s to the above upper bound. On the other hand, for all s

within the range given by (6.66), ℓ̇(t)6 0 for some period in the push-off-retraction interval,

and the above work and energetic cost calculations are valid. In this case, independent of

the value of s, and as long as (6.62)-(6.66) hold, the positive push-off work W+
P , given by

(6.61), and consequently the energetic cost EPR, given by (6.52), are at their minimum.

Thus, (6.66) represents the range of all valid optimal s∗ when a given extending retraction

torque (R< 0) does only negative work.

Note that unlike the minimum W+
P , given by (6.61), the resulting negative push-off work

W−
P , given by (6.60), does depend on s and increases with it (−Jℓ̇/R RP > 0 becauseR< 0 and

Jℓ̇/R> 0). However, this increase is cancelled by an equal decrease in all-negative retraction

work (∂WR/∂s=−∂W−
P /∂s), so the net negative work is independent of the value of s.

Among all possible s∗ given by (6.66), s∗=−Jℓ̇/R R/(2 Jℓ̇/P P) results in a special case.

With this specific s∗ and while (6.62)-(6.64) hold, ℓ̇(t) = 0 for t−pr6 t6 t2, or equivalently

ℓ̇(t)> 0 for the entire push-off-retraction interval. In other words, a non-contracting stance

leg is a possible optimal policy in this case. Imposing the constraint ℓ̇(t)> 0 only limits s∗

to one solution (among a range of possible solutions), but does not influence the minimum

achievable net energetic cost.

3) The extending retraction torque does both positive and negative work: In this

case we can divide the push-off and retraction interval, i.e. (t−pr, t
+
pr), into subintervals within

each the retraction torque does only positive or negative work. According to the previous

two cases, ℓ̇(t)> 0 is energetically optimal for all of these subintervals. Therefore, ℓ̇(t)> 0

is also a possible optimal policy when a given extending R does both positive and negative

work. This implies that we can use the constraint ℓ̇(t)> 0 without influencing the minimum
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achievable energetic cost for given P, R and α.

Summarizing the cases 1-3 above, I used the leg extension profile shown in Fig. 6.4 to

show that a non-contracting stance leg, i.e. ℓ̇(t)> 0, can always result in the minimum

energetic cost. Repeating the analyses for any arbitrary profile of ℓ̇(t), with any number of

zero-crossings, will give the same result. Thus, the constraint ℓ̇(t)> 0 that was imposed in

Section 6.4.2 to calculate the optimal s∗ does not influence the minimum achievable energetic

cost, and the resulting s∗ represents the unconstrained optimal solutions as well.

6.4.4 Optimal Relative Timing of Impulsive Push-off and Retraction

Summarizing Sections 6.4.1-6.4.3, I showed that independent of the step length, walking

speed, or the actuator work efficiencies, the minimum energetic cost in all cases can be

achieved with

s∗ =





1 if R > 0,

smin(R) = −
Jℓ̇/R R
2 Jℓ̇/P P if R < 0.

(6.67)

As discussed in Section 6.4.1, s∗=1 corresponds to the push-off-then-retraction scenario.

In other words, when the impulsive retraction torque is retracting, i.e. R> 0, the optimal

relative timing is to apply the impulsive retraction torque completely after the impulsive

push-off force (no overlap). For R< 0, where the retraction torque is extending, s∗= smin(R)

corresponds to the case when the impulsive retraction torque and the impulsive push-off force

start simultaneously, but with a minimal push-off activity just to avoid ℓ̇(t)< 0 during the

extending retraction torque. In this case the main portion of the push-off impulse is applied

completely after the impulsive retraction torque.
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6.4.5 Intuitive Justification of the Optimal Relative Timing

The optimal relative timing of the impulsive push-off P and impulsive retraction R can be

intuitively justified as follows. The velocities just after both P and R, given by (5.14), are

independent of the relative timing of these two impulses. Therefore, the net change in kinetic

energy of the system made by the impulsive push-off and retraction, and consequently the

total work done by them (i.e. WPR =WP +WR), is also independent of this relative timing.

On the other hand, the push-off force accelerates the hip along the stance leg, inducing an

(inertial) torque on the swing leg. This induced torque tends to brake the forward swing

of the leg and/or accelerate its rotation in the rearward direction. This push-off-mediated

brake/retraction is in concert with the action of a retracting hip torque (R> 0), but is

opposite to that of an extending hip torque (R< 0). As the hip torque is delayed relative

to the push-off force, more push-off-mediated braking/retraction takes place before the hip

torque. Therefore, the later [sooner] a given retracting [extending] hip torque starts (relative

to the push-off force, and within the push-off-retraction interval), the less negative work

(braking) and the more positive work (rearward acceleration) it does. Now, because the net

work WPR is constant, the increase in positive retraction work W+
R is accompanied by an

equal decrease in all-positive push-off work WP . Thus, the total positive work WP +W+
R

is not influenced by the changes in W+
R . However, the decrease in negative retraction work

(decrease in |W−
R |) should be accompanied by an equal decrease in push-off work to keep

WPR constant. Thus, both the total negative work and the total positive work decrease by

this change, which result in a reduced net energetic cost. This cost reduction is maximized

when the negative retraction work is minimized for a given R, or equivalently when an

impulsive retracting hip torque is applied completely after the impulsive push-off force, and

an extending hip torque starts immediately after the passive swing phase. In the latter,

avoiding leg contraction, i.e. ℓ̇ 6< 0, results in a minimal push-off activity during the extending

hip torque.
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The above reasoning is valid for both periodic and aperiodic gaits, as well as for any

biped model in which the push-off force acts in concert with the retracting hip torque in

braking/retracting the leg swing, including human-like models with torso and articulated

legs. In the next section this generality is shown with a more direct mathematical method.

6.4.6 Generality of the Optimal Relative Timing Result

The resulting optimal relative timing is achieved mainly based on the characteristic that:

Jφ̇/P =−Jℓ̇/R< 0. As shown in Appendix B.1.2, the equality relation here is guaranteed by

the symmetry of the mass-inertia matrix, and the inequality comes from the fact that the

push-off force tends to retract the swing leg. Because the symmetry of the mass-inertia

matrix is a general property, the optimal relative timing found in this section holds for any

walking model in which the push-off force acts in concert with the retracting hip torque in

braking/retracting the leg swing; a result that was also intuitively justified in the previous

section.

For example, consider the more realistic models in Fig.6.6. In these models the retraction

impulse R is applied by the swing hip actuator (both models have two hip actuators, each

acting between the torso and the corresponding leg) and pushes the swing leg toward the

stance leg (decreasing the swing hip angle φ). In the model with straight legs the push-off

impulse P is directly applied by the prismatic actuator along the stance leg, whereas in

the model with articulated legs the resultant push-off impulse P is provided indirectly by

the knee impulse K and the ankle impulse A that extend the corresponding joint angles.

Following the procedure used in Appendix B.1.2, the impulse-influence coefficients of the

push-off-retraction velocity maps in these models can be related to their mass-inertia matrix.

Thus, the symmetry of the mass-inertia matrix guarantees Jφ̇/P =−Jℓ̇/R for the straight-leg

biped, and Jφ̇/K =−Jψ̇/R and Jφ̇/A =−Jθ̇/R for the articulated-leg biped. On the other hand,

in both models the (directly/indirectly generated) push-off impulse P accelerates the hip
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Figure 6.6: Two bipedal models with torso. Each model has two hip actuators, each
acting between the torso and the corresponding thigh. The swing retraction torque, quanti-
fied by the impulse R, decreases φ and pushes the swing leg toward the stance leg. (a) The
straight-leg model: the push-off impulse P is provided by a prismatic actuator along the
stance leg. (b) The articulated-leg model: the resultant push-off is provided by the knee and
ankle torques, quantified by their impulses K and A, which tend to extend the corresponding
angles (consequently extending the leg).

forward, which in a normal configuration tends to decrease the swing hip angle φ. This

implies Jφ̇/P < 0 for the straight-leg model, and Jφ̇/K< 0 and Jφ̇/A< 0 for the articulated-leg

model. Therefore, the optimality conditions resulting to (6.67) are also satisfied for both of

these models, so the same optimal relative timing of push-off and retraction holds for both.

6.4.7 Application for Practical Non-Impulsive Systems

Although the analysis in this section is based on impulsive functions, arguably the re-

sults are still applicable to many practical cases in which the (optimal) gait includes burst

forces/torques. Although realistic forces/torques have bounded magnitudes and are applied

over an extended period of time, the duration of the burst forces/torque is relatively short,

so the biped configuration does not change much during their application. Therefore, these
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burst forces/torques effectively change the velocities while the biped configuration is approx-

imately constant, similar to the effect of theoretically impulsive actions.

The analysis in the previous section shows that for given push-off force impulse and late-

swing extending hip torque impulse, energetic cost is minimized when the overlap parameter

is minimized while respecting ℓ̇(t)> 0. Similar to the theoretical impulsive cases, this optimal

relative timing can be achieved with practical burst forces/torques when the extending hip

torque is applied at the end of passive swing and practically before the pre-emptive push-off.

When the late-swing hip torque is retracting, however, there is a small difference between

the theoretical and practical cases. With a retracting hip torque the minimum cost is ob-

tained when the overlap parameter s is maximized. In the case of impulsive forces/torques

this can be achieved when the retracting torque is completely isolated and applied between

the push-off and heel-strike (s∗=1). However, for practical non-impulsive cases, this iso-

lation of the actions will degrade the gait efficiency by inserting a non-infinitesimal gap

between the push-off and heel-strike (for efficient walking push-off should be applied just

before heel-strike [47]). Hence, maximizing the overall energy efficiency in practical cases

can be achieved by postponing the retracting hip torque until the final portion of the pre-

emptive push-off before heel-strike. Verification of this strategy in human walking and in

practical robots can be a possible extension to the current work.

6.5 Energy Optimal Swing Retraction Impulse

Given the step angle α, average walking speed V , and unit-work costs c1 and c2, the optimal

retraction impulse R∗ is the one that minimizes the net energetic cost Estep, given by (6.2).

Among the different terms contributing in Estep, the swing thrust cost ES is given by

(6.6) as a function of α, V , and R. In general, the push-off cost EP is given by (6.21).

However, as shown in Section 6.4.3, we can limit our study to ℓ̇(t)> 0 without influencing
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the minimum possible Estep. In this case, the push-off impulse does only positive work and

EP = c1WP , (6.68)

where the net push-off work WP is given by (6.19). Using the optimal overlap parameter s∗,

given by (6.67), WP and thus EP can be calculated for any given α, V , and R.

Another contributing term in Estep is the retraction cost ER, given by (6.22). However,

so far we have not been able to calculate ER without any assumptions on the zero-crossings

of the instantaneous hip rate φ̇(t). Fortunately, this problem is resolved by using the energy

optimal relative timing of P and R found in the previous section.

As discussed in the previous section, for R> 0 the energetic cost is minimized when P

and R are isolated, and R comes completely after P. Using this relative timing and the

instantaneous hip rate φ̇(t) given in (6.9), the hip rates immediately before and after the

impulsive R become

φ̇t−r = φ̇(t)
∣∣∣∣p=1

r=0

= φ̇0 + Jφ̇/P P, (6.69)

φ̇t+r = φ̇(t)
∣∣∣∣p=1

r=1

= φ̇t−r + Jφ̇/R R = φ̇0 + Jφ̇/P P + Jφ̇/R R. (6.70)

Because the impulses are isolated in this case, the formula of the work done by an isolated

impulsive force/torque, given by (6.3) and (6.4), can be used to calculate the positive and

negative retraction work, where I =R, and q̇− = φ̇t−r and q̇+= φ̇t+r are given by (6.69) and

(6.70).

ForR< 0 the optimal relative timing of push-off and retraction does not represent isolated

impulses (0<s∗= smin(R)< 1). However, in this case, the impulsive extending retraction

torque does only positive work for all α and V within the admissible region (defined in section

5.4.4). To verify this characteristic, recall from Section 6.4.1 that for s= s∗= smin(R) the

impulsive push-off force is applied minimally during the extending retraction torque. This
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minimal level is given by p(t) = pmin =−Jℓ̇/R R r(t)/(Jℓ̇/P P). With this p(t), the instantaneous

hip rate during the impulsive retraction torque (t−r 6 t6 t+r ) can be calculated from (6.9) as

φ̇(t) = φ̇0 + Jφ̇/R r(t)R+ Jφ̇/P p(t)P

= φ̇0 + Jφ̇/R r(t)R− Jφ̇/P
Jℓ̇/R
Jℓ̇/P

r(t)R

= φ̇0 +
Jφ̇/R Jℓ̇/P − Jφ̇/P Jℓ̇/R

Jℓ̇/P
r(t)R. (6.71)

As shown in Fig. 5.6b, inside the admissible region and even for some area below it φ̇0> 0.

On the other hand, according to the sign properties of the impulse-influence coefficients,

indicated in (5.15) and (5.18), the last fraction in (6.71) is always negative. Also, for an

extensional retraction torque, R is negative. Thus, throughout the impulsive extensional

hip torque, i.e. for 06 r(t)6 1, the instantaneous hip rate φ̇(t) remains positive inside the

admissible region, and R does only positive work (extending the hip joint). In other words,

with R< 0 and s= s∗, and for any given step angle α and average speed V in the admissible

region, W−
R =0 and W+

R is calculated from the net work WR, given by (6.14), as below:

W+
R = WR

∣∣∣
s=s∗

= −φ̇0R− 1

2
Jφ̇/R R2 − s∗ Jφ̇/P RP

= −φ̇0R− 1

2
Jφ̇/R R2 +

Jℓ̇/R R
2 Jℓ̇/P P Jφ̇/P P R

= −φ̇0R−
Jφ̇/R Jℓ̇/P − Jφ̇/P Jℓ̇/R

2 Jℓ̇/P
R2. (6.72)

Thus, given α, V , and R, we can calculate the positive and negative retraction work

subject to s= s∗. Finally, the retraction cost ER(s
∗) can be calculated from (6.22) as a

function of α, V , and R.

Now, given a pair of step angle α and average walking speed V in the admissible region,

as well as the unit-work costs c1 and c2, we can calculate the net energetic cost Estep subject

to s= s∗, solely in terms of the retraction impulse R. Thus, the optimal impulse R∗ that
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minimizes Estep for given admissible α and V can be found by solving

R∗ = min
R

Estep(α, V,R, s∗), (6.73)

subject to the

• heel-strike constraint in (5.20),

• toe-off constraint in (5.21),

• required push-off and swing-thrust impulse constraints in (5.26) and (5.27),

and

• maximum retraction impulse constraint in (5.28).

This optimization can be accurately solved using simple numerical methods. However, to

gain more insight, an approximate analytic solution is preferable. Calculating this analytic

solution is the subject of the next chapter.

6.6 Summary

In this chapter the energetics of the simple bipedal model with impulsive actuation was

studied. A work-based cost model was used to calculate the net energetic cost of the gait.

For many actuators, including human muscles, this cost model is a good simple choice, as it

directly uses the energy supplied to the actuator for doing mechanical work. By including

the actuator work efficiencies in the cost formulation, this cost model indirectly takes into

account the cost of generating force/torque as well as the cost of internal losses, including

energy conversion losses. The net energetic cost per step was formulated as the total sum

of the cost of individual impulsive force and torques in one step. The work (and the cost)

of the isolated impulsive swing-thrust torque can be simply calculated using the change

in kinetic energy of the biped before and after the swing-thrust. This method, however,

does not apply in general for the impulsive push-off force and swing retraction torque, as

they can have overlap. This problem was overcome by introducing some novel concepts,
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such as a partial overlap parameter and partial work done by each impulse. Consequently,

I showed that for given push-off and retraction impulses, reducing the negative retraction

work or increasing its positive work reduces the push-off work and can also reduce the net

energetic cost. If the impulsive retraction torque is retracting (R> 0), the minimum cost

is achieved if it is applied completely after the impulsive push-off force. However, if the

impulsive retraction torque is extending (R< 0) the minimum cost is achieved when the

impulsive push-off force is applied almost completely after the extending hip torque. Using

this relative timing, the net energetic cost can be expressed in terms of only the step angle

α, average walking speed V , and swing retraction impulse R. So, a simple single-variable

parameter optimization can be used to find the energy-optimal retraction impulse for any

given step angle α and average walking speed V .
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Chapter 7

APPROXIMATE ANALYTIC ANALYSIS OF THE

IMPULSIVE WALKING MODEL

Although all the equations in Chapters 5 and 6 can be solved numerically, in order to gain

more insight, I have found simple closed-form analytic solutions based on some approxima-

tions. Although approximate, these simple analytic solutions are very useful in predicting

the influence of different parameters on the kinematics or energetics of a gait. In fact, most

of the non-approximate analyses presented in Chapters 5, 6, and 8 were motivated by the

observations from the approximate analytic solutions in this chapter. These solutions can

also serve as a very good initial guess for accurate numerical optimizations. Moreover, they

can be used to verify whether the results found by numerical optimization are indeed global

optimums, and not just local minima/maxima.

The content of this chapter can be divided into four groups: Group 1) In Section 7.1

the main approximation used to simplify the governing equations is explained. With this

approximation, the nonlinear and coupled equations of motion in passive single stance are

simplified in Section 7.2, and then solved in Section 7.3. These solutions are key for the rest

of the analyses in this chapter, since through them all gait variables can be related to the

step angle and average walking speed. Group 2) Using the results of the sections in Group

1, the approximate constraints required to achieve a periodic walking gait are found in next

four sections: First, the approximate swing-thrust and push-off impulses required for a peri-

odic walk are calculated in Section 7.4. The range of possible retraction impulses for feasible

periodic walking is approximated in Section 7.5, and the conditions for instantaneous sup-

port transfer are approximated in Section 7.6. In Section 7.7 the approximate minimum and
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maximum walking speeds, and the approximate maximum step angle are derived. Group

3) The goal of the next two sections is to calculate the required parameters to approximate

the energetic cost of the gait. Section 7.8 provides the approximate solutions for the veloc-

ities before and after the impulsive events. These solutions will be used in Section 7.9 to

approximate the work and cost of each impulse. Group 4) Finally, using the results of the

previous sections, the optimal retraction impulse that minimizes the energetic cost per step

is derived. First, in Section 7.10 it is shown that the extensional retraction torque is not

energetically optimal in the entire admissible region. Then, the optimal retraction impulse

and retraction rates are calculated in Sections 7.11 and 7.12. At the end, the chapter is

summarized in Section 7.13.

All the approximate analytic solutions presented in this chapter, except for the approx-

imate stance leg dynamics in Section 7.2 are the contributions of this work. In fact, based

on the best of my knowledge, this is the first time that approximate analytic solutions are

provided for almost all gait parameters of a bipedal model with non-massless legs.

7.1 Small-Leg Mass Approximation

In this study, I partially adopt the approximation β=mleg/mtot ≪ 1 from Garcia et. al. [46]

to simplify the governing equations. This approximation is based on the fact that in many

practical bipedal systems, including humans, the leg mass constitutes a small fraction of the

total mass. For example, in humans only 16% of the total body mass is distributed in each

leg. In [46] the above approximation was used for a model in which legs mass is concentrated

at the feet. Although we can use the same approximation for the biped model in Fig. 5.1,

the differences between the models motivate some modifications in the approximation. In

particular, in Fig. 5.1 the leg mass can be arbitrarily distributed and the leg CoM is at an

arbitrary distance b from the hip. Since b can vary among different models, any proposed
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modifications in ‘β≪ 1’ should somehow take this variability into account.

For the biped shown in Fig. 5.1, a candidate parameter equivalent to β =mleg/mtot is

λ =
mleg b

mtot ℓ
. (7.1)

Because mtot > 2mleg and ℓ> b, the range of λ is

0 6 λ 6 0.5. (7.2)

λ=0 corresponds to the case where the legs are massless (mleg =0), or the leg mass is

concentrated at the top of the legs (b=0). The maximum value of λ occurs when all the

biped mass is equally concentrated at both feet (mtot =2mleg, and b= ℓ). For humans and

many robots λ is typically very small. For example, for the Cornell Ranger λ=0.07 [12],

and for the human subject data in Table 5.1, λ≈ 0.06.

The parameter λ determines the degree to which the motion of the biped’s CoM (or

equivalently the motion of the stance leg) is influenced by the swing leg. For example, as

mentioned above, for λ=0 the legs either are massless or have their mass concentrated next

to the hip. In either case, the motion of the biped’s CoM is completely decoupled from that

of the swing leg. Since λ is typically small in many practical systems, including humans, it

is reasonable to use λ≈ 0 to simplify the governing dynamics. This is equivalent to ignoring

the small effects of the swing leg motion on CoM (stance leg) dynamics.

The advantage of using λ≈ 0 instead of mleg/mtot ≈ 0 is that λ is typically smaller than

mleg/mtot, so neglecting it provides more accurate approximations. For example, for the

model parameters in Table 5.1, λ=0.06, whereas mleg/mtot =0.16.

7.2 Approximate Dynamics in Passive Single Stance

The governing dynamics in passive single stance is described by the EoM in (5.11) with

details provided by (B.1) and (B.2). These equations are coupled and nonlinear, and cannot
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be solved analytically in the general case. In order to find closed-form solutions for the

stance leg and hip joint angles, i.e. θ(t) and φ(t), these equations are simplified in a few

steps, explained below.

The parameter λ appears in the first row of (B.1) and (B.2), and, as explained in Section

7.1, quantifies the small coupling effects of the swing leg motion on stance leg dynamics.

Using λ≈ 0, we can ignore these small coupling effects and focus on only the dominant

behavior of the stance leg dynamics. In mathematical terms, because λ≪ 1, the terms in

the EoM that include λ are much smaller than the others, and can be neglected. Note that in

(B.1) the non-dimensional parameter δ is multiplied by λ. However, because δ is not a large

number (typically smaller than 1, as shown in Section 5.1.1), it does not cause problems for

the approximation above.

In the next step, I partially linearize the governing equations using first-order small angle

approximations, e.g., sin θ= θ, and cos θ=1.

With the above small-leg mass and small angle approximations the simplified EoM can

be expressed as

˜̈θ − g

ℓ
θ̃ = 0, (7.3)

˜̈φ+
g/ℓ − ˜̇

θ2

δ
φ̃ = − g

ℓ
θ̃, (7.4)

where the first equation is also used to simplify the second one. In this chapter, the accent

‘˜’ is used over the approximate variables to distinguish them from non-approximate ones.

Equation (7.3) represents the approximate stance leg dynamics and describes the (lin-

earized) motion of an isolated inverted pendulum. Equation (7.4) represents the approximate

swing leg dynamics and describes the (linearized) motion of a non-inverted pendulum with

a moving support. The centripetal acceleration of the hip along the vertical reduces the

effective gravity on this pendulum (the coefficient of φ̃), and the horizontal acceleration of

the hip (the right hand side of (7.4)) acts as a forcing function for swing dynamics.
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7.3 Approximate Analytic Solution of Passive Single Stance

7.3.1 Stance Leg Motion

As expected, the stance leg approximate dynamics are decoupled from the swing leg motion.

Equation (7.3) is an ordinary differential equation subject to the boundary conditions defined

at both ends of the passive swing: θ̃(0)=−θ̃(T ) =α (see Section 5.3.1). The solution of this

equation for 06 t6T is:

θ̃(t) = − α

sinh(ω1T/2)
sinh(ω1(t− T/2)), (7.5)

where

ω1 =
√
g/ℓ (7.6)

is the stance leg’s approximate characteristic frequency. As for the exact solutions, θ̃(t) only

depends on α and T , which are uniquely calculated from the step length and average forward

speed (α= sin−1(0.5Dstep/ℓ) and T =Dstep/V ). Interestingly, the approximate stance leg

angle θ̃(t) has odd symmetry about mid-stance. This implies the even symmetry of the

stance leg angular rate ˜̇θ(t) during passive single stance.

Verifying the accuracy of the approximate solution in (7.5), Fig. 7.1 compares the ap-

proximate analytic and the non-approximate numerical solutions of the stance leg angle, i.e.

˜̇
θ(t) and θ(t), for V =1.24m/s and α=31.61◦. The model parameters are those in Table

5.1. The evident accuracy of the approximate analytic solution in this figure holds for al-

most all other step angles and speeds in the admissible region (defined in Section 5.4.4), but

degrades outside this region (which is not the focus of this work). Fig. 7.1 also shows that

the odd symmetry of the stance leg leg angle in passive single stance is also valid for the

non-approximate numerical solution.

Given the step angle α and average walking speed V (or the step period T ), we can

differentiate (7.5) to calculate
˜̇
θ(t) and get the following approximate solution for the stance
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Figure 7.1: Stance-leg and hip-joint angles for walking at V =1.24m/s and α=31.61◦.
The model parameters are those listed in Table 5.1. The evident accuracy of the approximate
analytical solution in this figure holds also for almost all other step angles and speeds in the
admissible region (defined in Section 5.4.4).

leg angular rate at the beginning and end of the symmetric passive swing:

˜̇
θ0 =

˜̇
θt−pr = − ω1 α

tanh(ω1T/2)
= − ω1 α

tanh(ℓ ω1 sinα/V )
. (7.7)

This equation is the approximate closed-form version of (5.12).

In Fig.7.2a, the approximate angular rate ˜̇θ0 is compared to the original non-approximate

θ̇0 for different step angles and average walking speeds in the admissible region (see Section

5.4.4). The non-approximate θ̇0 is calculated from the numerical solution of the original

EoM, given in (5.11). As it is seen, the accuracy of the approximate solution is very good

at small step angles and fast speeds, but it degrades at slower speeds and long steps. In this

figure Vn is the maximum GRF-based speed limit, given by (5.36).

7.3.2 Swing Leg Motion

Although (7.4) is linear in φ̃, it has a time-varying coefficient (
˜̇
θ is a function of time),

which makes it difficult to solve. To overcome this difficulty I use another approximation:

As seen in Fig 7.1, the variations of θ̇(t) during single stance is small, so θ(t) can also be
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approximated as a line: θ(t)≈ ρ t+α, where

ρ = −2α

T
= − αV

ℓ sinα
(7.8)

is the average angular rate of the stance leg. Now, by approximating
˜̇
θ with ρ (neglecting

the small variations of ˜̇θ) the swing leg dynamics are simplified as

˜̈φ+ ω2
2 φ̃ = ω2

1 θ̃, (7.9)

where

ω2 =

√
ω2
1 − ρ2

δ
. (7.10)

Equivalent to ω1, the quantity ω2 is the approximate effective characteristic frequency of the

swing leg. Equation (7.10) is defined for ω2
1 > ρ2, or equivalently when

V 6 V †(α) = ℓ ω1
sinα

α
. (7.11)

We will see in Section 7.7.2 that the above condition is met for all feasible walking gaits (for

all V less than the GRF-based maximum walking speed). Now, because θ̃ is already known

from (7.5), we can solve (7.9) subject to the boundary conditions φ̃(0)=−φ̃(T ) =−2α (see

Section 5.3.1). This results in

φ̃(t) = (η − 1) θ̃(t) +
(1 + η)α

sin (ω2 T/2)
sin (ω2(t− T/2)) , (7.12)

where

η =
ω2
2

ω2
1 + ω2

2

. (7.13)

Similar to the stance leg angle, φ̃(t) has odd symmetry about mid-stance. Therefore, the hip

rate
˜̇
φ(t) has even symmetry in passive single stance. These symmetry properties were also

observed for the numerical low-energy solution in Fig. 5.5.

Fig. 7.1 verifies the accuracy of the above approximate solution for V =1.24m/s and

α=31.61◦, where φ̃(t) is compared against the corresponding symmetric numerical solution
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Figure 7.2: Comparison of the approximate (analytic) and the accurate (numer-
ical) angular rates at the beginning of the passive swing for different step angles and
average walking speeds in the admissible region (see Fig. 5.8). The approximate angular

rates
˜̇
θ0 and

˜̇
φ0 are calculated from the analytic solutions in (7.7) and (7.14). The non-ap-

proximate angular rates θ̇0 and φ̇0 are calculated using the numerical solution of the original
EoM, given by (5.11). For clarity, the results for only four selected average speeds are shown.
The calculations are based on the numerical values listed in Table 5.1. Vn is the maximum
GRF-based speed limit, given by (5.36). For the respecting parameter set Vn=3.18m/s.
The figures show that the accuracy of the approximate solutions is very good at small step
angles, but it degrades at long steps and slow speeds.
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of the original (non-approximate) EoM in (5.11). The accuracy of the approximate analytic

solution observed in this figure holds for almost all other step angles and walking speeds

in the admissible region, with some degradations at very long steps (where the small angle

approximation used to derive (7.4) does not hold much).

Using φ̃(t) given by (7.12) and symmetry of the solution, the approximate hip rate at the

beginning and end of the passive swing is calculated as

˜̇φ0 =
˜̇φt−pr = (η − 1) ˜̇θ0 + (1 + η)

ω2 α

tan(ω2 T/2)
, (7.14)

where ˜̇θ0 is given by (7.7). This equation is the approximate closed-form version of (5.13).

Fig. 7.2b compares the approximate angular rate
˜̇
φ0 with the non-approximate φ̇0 at

different step angles and average walking speeds in the admissible region (defined in Section

5.4.4). φ̇0 is calculated using the numerical solution of the original EoM, given by (5.11).

Other conditions are explained in the figure caption. As this figure shows, the accuracy of

the approximate solution is very good at small step angles and fast speeds, but it degrades

at slower speeds and long steps. This is not surprising, as the small-angle approximation

used to linearize the dynamics does not hold much for large step angles.

The approximate analytic solutions of
˜̇
θ0 and

˜̇
φ0, given by (7.7) and (7.14), are key for

the analyses in the rest of this chapter. In fact, all other gait parameters are related to the

step angle α and average walking speed V via these solutions. In the next four sections, the

approximate constraints required to achieve a periodic walking gait are calculated.

7.4 Approximate Swing-Thrust and Push-Off Impulses

The non-approximate swing-thrust and push-off impulses required for a periodic gait are

given by (5.26) and (5.27). Simplifying those equations by neglecting small terms that
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involve λ gives the corresponding approximate impulses:

S̃ = δ mleg ℓ b Ω̃, (7.15)

P̃ = −
(
mtot ℓ

˜̇
θ0 +

R
ℓ

)
tanα, (7.16)

where

Ω̃(α, V ) =
˜̇
φ0 +

2 sin2α

δ
˜̇
θ0 (7.17)

is the approximate change in the hip rate due to the swing-thrust impulse [see equation

(7.38)]. In the above equations ˜̇θ0 and
˜̇φ0 are given by (7.7) and (7.14). The accuracy of the

above approximate solutions will be verified in Chapter 8.

For given biped parameters, the approximate swing-thrust impulse in (7.15) is solely a

function of step angle α and average forward speed V (
˜̇
θ0 and

˜̇
φ0 are fully determined by

α and V ). Although S̃ is not a function of retraction impulse R, there would be a small

dependency between them if λ was not neglected.

Using (7.16) we can find

∂P̃
∂R = −tanα

ℓ
< 0. (7.18)

In other words, the approximate push-off impulse decreases with the retraction impulse.

This observation motivates further investigations with non-approximate equations and leads

to the discovery of one of the novel advantages of active swing-leg retraction, which will be

presented in Chapter 8.

The push-off impulse calculated using the powered simplest walking model [47] (effectively

massless legs) is P =−mtot ℓ θ̇0 tanα. Although P̃ in (7.16) gives the same value if the legs

are massless (R=0 for massless legs), it provides a more accurate prediction for realistic

models with non-negligible leg mass.
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7.5 Approximate Minimum and Maximum Retraction Impulse

In this section the approximate range of possible retraction impulses for feasible periodic

walking is calculated. The lower and upper bounds calculated here will be used in Section

7.11 in the search for the optimal retraction impulse.

7.5.1 Ensuring Heel-Strike and the Minimum Required Retraction Impulse

As discussed in Section 5.3.2, ensuring heel-strike immediately after the impulsive push-off

and retraction, i.e. at t+pr, requires that the swing foot moves downward at t+pr. This condition

was expressed by (5.20) as a negative swing foot velocity prior to heel-strike:

ẏfswing
(t+pr) = ℓ̇t+pr cosα + ℓ sinα

(
2 θ̇t+pr + φ̇t+pr

)
6 0. (7.19)

In a periodic walk with given step angle α and average speed V , we can use the push-off-

retraction velocity map in (5.14), the push-off impulse in (5.27), and λ≈ 0 to simplify and

approximate the above equation as

ẏfswing
(t+pr) ≈

(
− R
δ mleg b ℓ

+ Ω̃ + ˜̇θ0

)
ℓ sinα 6 0. (7.20)

Thus, the approximate condition for ensuring heel-strike in a periodic gait is

R > δ mleg ℓ b
(
Ω̃ + ˜̇θ0

)
= R̃min(α, V ), (7.21)

where
˜̇
θ0 and Ω̃ are given by (7.7) and (7.17). At R= R̃min the leading leg touches the

ground with (approximately) zero vertical velocity, but since its horizontal velocity is still

non-zero the foot-ground contact is collisional and includes energy loss.

Equation (7.21) gives the approximate minimum retraction impulse required for periodic

walking. Fig. 7.3 shows the contour lines of R̃min for step angles and speeds in the ‘ap-

proximate admissible region’ (defined in Section 7.7.3). If the maximum available retraction

impulse is not large enough to satisfy (7.21) for some range of α and V , periodic walking
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Figure 7.3: Contour lines of the approximate minimum retracting impulse, R̃min,
required to enforce heel-strike. The shaded area is the approximate admissible region,
defined in Section 7.7.3. The approximate solution predicts that for step angles and speeds
above the contour line R̃min =0 a retracting hip torque (R> 0) is required at the end of
swing phase to ensure heel-strike. The vertical axis is the normalized average walking speed
ˆ̃V = V/Ṽn, where Ṽn is given by (7.32). The model parameter values are those in Table 5.1.

may not be achieved in some portion of the admissible region. In particular, the approx-

imate solution predicts that for step angles and speeds above the contour line R̃min =0 in

Fig. 7.3, a retracting hip torque (R> 0) is necessary at the end of swing phase to ensure

heel-strike. In other words, periodic walking is likely not feasible in that region without a

retracting hip torque, at least to the extent that is predicted by the approximate solution.

This observation leads to discovering one of the important advantages of swing-leg retraction

which is discussed in the next chapter.

7.5.2 Approximate Maximum Allowed Retraction Impulse

Since the push-off impulse cannot be negative, we can use the constraint P̃ > 0 with P̃ given

by (7.16), to find the approximate maximum retraction impulse at any given step angle α
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and average walking speed V . This results in

R 6 R̃max(α, V ) = −mtot ℓ
2 ˜̇θ0, (7.22)

where ˜̇θ0 is given by (7.7). This equation is the approximate closed-form version of (5.28).

In Section 7.11 we will see that the above upper bound on R is not an active constraint

for energetic cost minimization purposes, and (7.22) is spontaneously satisfied for energy

optimal gaits.

7.6 Approximate Condition for Instantaneous Support Transfer

The impulsive walking gait includes an instantaneous support transfer (instantaneous double-

support) in which the previous support leg (the trailing leg) loses its contact with the ground

immediately after the collisional heel-strike, and the support is transferred to the leading

leg. As discussed in Section 5.3.2 and stated in (5.21), this is met only if the vertical velocity

of the trailing foot immediately after heel-strike is positive:

ẏftrailing(t
+
h ) = −ℓ sinα

(
2 θ̇t+

h
+ φ̇t+

h

)
> 0. (7.23)

In order to find the approximate requirements that satisfy this condition, we can use the

heel-strike velocity mapping in (5.19), the push-off impulse relation in (5.27), and λ≈ 0 to

approximate ẏftrailing(t
+
h ) as below:

ẏftrailing(t
+
h ) ≈ − 2 ℓ sinα

(
δ − sin2α

)

δ
˜̇
θ0. (7.24)

In the above equation,
˜̇
θ0 is always negative [see (7.7)]. Thus, the condition of instantaneous

double-support can be approximately expressed as the following upper bound on the step

angle:

α 6 sin−1
√
δ . (7.25)

For model parameter data in Table 5.1, this upper bound becomes 0.91rad (52◦) which is

greater than the maximum possible step angle (0.72rad=41.39◦) in the admissible region
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(see Section 7.7.4). Thus for this data set the toe-off condition in (7.23) is not a limiting

constraint, and instantaneous double-support is spontaneously obtained for all α and V in the

admissible region. In other words, in the process of calculating the optimal retraction impulse

in (6.73) or in Section 7.11, the toe-off constraint can be dropped from the optimization

problem. If for some models δ is too small (leg mass is concentrated close to the leg CoM

that is close to the hip) the constraint in (7.25) may reduce the size of admissible region.

7.7 Approximate Admissible Region

In Section 5.4.4, the admissible region was defined as the area in the α-V plane that is

enclosed between the step-angle dependent minimum and maximum average walking speeds,

given by (5.29) and (5.31). In the following, approximate solutions for those boundaries are

provided. These solutions will be used to define the ‘approximate admissible region’, the

focus of the analyses in this chapter.

7.7.1 Approximate Minimum Allowed Average Walking Speed

In (5.29) the minimum allowed walking speed was defined based on the condition of non-

negative swing-thrust impulse S. Rewriting (5.29) by substituting Vmin(α) and S with their

approximate versions Ṽmin(α) and S̃, where S̃ is given by (7.15), the approximate minimum

allowed average walking speed Ṽmin(α) can be calculated from

V > Ṽmin(α) : Ω̃(α, Ṽmin) = 0, (7.26)

where Ω̃(α, V ) is given by (7.17). Therefore, in the approximate admissible region Ω̃> 0.
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7.7.2 Approximate GRF-Based Maximum Average Walking Speed

In (5.31) the upper bound of the average walking speed is defined based on the condition of

non-negative centripetal GRF, given by (5.30). Rewriting (5.30) in terms of λ gives:

GRFa = mtot ℓ
(
ω2
1 cos θ − θ̇2

)
+mtot ℓ λ

(
θ̇2 + cosφ (θ̇+ φ̇)2 + sinφ (φ̈+ θ̈ )

)
, (7.27)

where ω1 is given by (7.6). For λ≈ 0 the condition GRFa> 0 is approximated as

˜̇θ2(t) 6 ω2
1 cos θ̃(t) for all t in 0<t<T. (7.28)

Although this inequality should be held during the entire passive single stance, it is only

necessary to check it at either end of this period. This is because of the symmetry of the

stance leg motion, and that for all t in passive single stance the following are valid:

1. θ̇(t)26 θ̇20, since the stance leg moves slower as it approaches vertical, and

speeds up as it falls.

2. |θ(t)|6α, and thus cosα6 cos θ(t).

Based on the above, equation (7.28) can be reduced to

˜̇
θ20 6 ω2

1 cosα. (7.29)

The above inequality can be combined with the closed-form solution of ˜̇θ0 in (7.7) to find

V 6 Ṽmax(α) =
sinα

tanh−1(α/
√
cosα )

ℓ ω1. (7.30)

The step-angle dependent Ṽmax(α) is the approximate GRF-based walking speed limit.

Defining ω̃n and Ṽn respectively as the maximum | ˜̇θ0(α, V )| and maximum Ṽmax(α) for

all feasible walking gaits, we can can use (7.29) and (7.30) to find:

ω̃n = max
α, V

| ˜̇θ0| = ω1, (7.31)

Ṽn = max
α

Ṽmax(α) = Ṽmax(0) = ℓ ω1 = ℓ ω̃n. (7.32)
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Recognizing that the above results are achieved using λ≈ 0, ω̃n and Ṽn are consistent with

their non-approximate versions, i.e. ωn=max |θ̇0|=ω1/
√
1− 2 λ and Vn=maxVmax(α) = ℓ ωn,

found in (5.35) and (5.36).

Finally, it can be easily verified that for all α> 0: α6 tanh−1(α/
√
cosα). Thus, the

approximate GRF-based walking speed limit Ṽmax(α), given in (7.30), always satisfies:

Ṽmax(α) 6 V †(α), (7.33)

where V †(α) is given by (7.11) and is the maximum speed for which the approximate swing

leg frequency ω2, given by (7.10), is defined. In other words, for all α and V for which

periodic walking is feasible, ω2 exists, and all the above approximate solutions that include

φ̃(t) or
˜̇
φ0 are valid.

7.7.3 Approximate Admissible Region

Equivalent to the original admissible region, defined in Section 5.4.4, the approximate ad-

missible region is defined as the set of step angles α and average walking speeds V that

satisfy

Ṽmin(α) 6 V 6 Ṽmax(α), (7.34)

where Ṽmin(α) and Ṽmax(α) are given by (7.26) and (7.30).

Fig. 7.4 compares the approximate and the non-approximate admissible regions, calcu-

lated for the model parameters in Table 5.1. According to this figure, the approximate

admissible region (hatched region) covers the majority of the non-approximate (solid gray)

admissible region, and thus has a good accuracy. The upper boundary of the admissible

region is the GRF-based walking speed limit, given by (5.31). According to Fig. 7.4 this

speed limit is well approximated by the corresponding analytic solution given by (7.30).
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Figure 7.4: Comparison of the approximate and non-approximate admissible re-
gions. The shaded area corresponds to the numerically calculated admissible region, defined
in Section 5.4.4. The hatched area is the approximate admissible region defined by (7.26)
and (7.30). The vertical axis is the normalized average walking speed. For the non-approxi-
mate numerical solution, the normalizing speed V̂n is given by (5.36). For the approximate
solution, the normalizing speed Ṽn is given by (7.32). For the numerical values used for this
figure (see Table 5.1), Vn=3.18m/s, and Ṽn=2.97m/s

7.7.4 Approximate Maximum Walking Step Angle

The approximate maximum walking speed in (7.30) can also be used to estimate the max-

imum possible step angle in periodic walking. That equation is valid only for α6
√
cosα.

Solving the latter for the equality case gives the approximate maximum possible step angle

as α̃max
∼=0.82rad (47.2◦). This value is very close to the accurate maximum step angle of a

biped with massless legs, which is αmax
∣∣
mleg=0

= cos−1(2/3)∼=0.84rad (48.2◦) [95]. At both

these step angles the corresponding average walking speed V is zero. Note that this can be

accepted only if the defined lower bound of walking speed, given by (5.29) or (7.26), is not

considered. In fact, the above (unconstrained) maximum step angles α̃max and αmax
∣∣
mleg=0

are bigger than the one achievable in the admissible region, which is αmax =0.72rad (41.39◦)

(see Fig. 7.4).

Now, I intend to approximate the energetic cost of the gait to calculate the approximate
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energy-optimal retraction impulse. For this purpose, the approximate work of each impulse

should be calculated. This, in turn, requires to calculate the approximate velocities at phase

transitions. This velocity and work calculation is the subject of the next two sections.

7.8 Approximate Velocities Before and After the Impulsive Actions

In this section the approximate analytic solutions for the velocities before and after the

impulsive swing thrust torque, push-off force, and swing retraction torque are calculated.

7.8.1 Approximate Angular Rates Before and After the Impulsive Swing-Thrust Torque

According to the periodicity conditions in (5.24) and (5.25), the angular velocities after the

impulsive swing thrust, i.e. at t+s , is equal to those at the beginning of the passive swing.

This equality also holds for the approximate velocities. Thus

˜̇
θt+s =

˜̇
θ0, (7.35)

˜̇φt+s = ˜̇φ0, (7.36)

where ˜̇θ0 and
˜̇φ0 are given by (7.7) and (7.14). The velocity mapping of the impulsive swing-

thrust is given by (5.23). Approximating this equation with λ≈ 0, and replacing S, θ̇t+s , and

φ̇t+s with their approximations, i.e. S̃, ˜̇
θt+s , and

˜̇
φt+s given by (7.15), (7.35), and (7.36), we

can find the approximate angular rates before the impulsive swing thrust as

˜̇
θt−s =

˜̇
θ0 −

1− cos 2α/δ

mtot ℓ2
S̃ ∣∣∣

λ≈ 0

=
˜̇
θ0, (7.37)

˜̇φt−s = ˜̇φ0 −
S̃

δ mleg b ℓ
= ˜̇φ0 − Ω̃, (7.38)

Using the definition of Ω̃ in (7.17), equation (7.38) can also be written as

˜̇
φt−s = − 2 sin2α

δ
˜̇
θ0. (7.39)
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Examining the expression of
˜̇
θ0 in (7.7) shows that in all cases

˜̇
θ0< 0, leading to

˜̇
φt−s > 0.

On the other hand, in the approximate admissible region Ω̃> 0 (see Section 7.7.1). These

last two inequalities, together with (7.38) result in
˜̇
φ0> 0. Thus, in the entire approximate

admissible region
˜̇
φt+s > 0 and also

˜̇
φt−s > 0. This result will help us calculate the positive

swing-thrust work in Section 7.9.1.

7.8.2 Approximate Velocities Before and After the Impulsive Push-Off Force

As discussed in the previous chapter, in energy optimal gaits the impulsive push-off force

always starts immediately after the passive swing, at t−pr. In this case, the approximate

velocities before the impulsive push-off force, i.e. at t−p , are equal to those at the end of

passive swing, which are given by (7.7), (7.14), and

˜̇ℓt−p = ℓ̇t−pr =0. (7.40)

The velocities after the impulsive push-off force depends on the relative timing of the

push-off and retraction impulses. As discussed in Section 6.4, for a retracting R, i.e. R> 0,

energetic cost is minimized when the impulsive push-off force completely precedes the impul-

sive retraction torque. With this optimal relative timing, the velocities immediately after P

(at t+p ) can be calculated by substituting R=0 in the push-off-retraction velocity mapping,

given by (5.14). Now, using λ≈ 0, we can find

˜̇
θt+p =

˜̇
θ0, (7.41)

˜̇
φt+p =

˜̇
φ0 −

sin 2α

δmtot ℓ
P̃ , (7.42)

˜̇ℓt+p =
P̃
mtot

, (7.43)

where the approximate push-off impulse P̃ is given by (7.16), and the angular velocities ˜̇θ0

and ˜̇φ0 are given by (7.7) and (7.14). To simplify the calculations of the retraction work in

Section 7.9.3, it is better to express
˜̇
φt+p in terms of the retraction impulse R. Substituting
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for P̃ from (7.16), and using the formula of Ω̃ in (7.17), equation (7.42) is further simplified

as

˜̇
φt+p = Ω̃ +

2 sin2α

δmtot ℓ2
R. (7.44)

Note that with the optimal relative timing of impulsive push-off force and retracting hip

torque (i.e. push-off then retraction) the impulsive retraction torque has not started at t+p .

However, from (7.44) it appears that R can change velocities even before the retraction

torque begins! This is because in a periodic gait the required push-off impulse P changes

with R, as shown in (5.27). So, even when R is applied completely after t+p , it can indirectly

influence φ̇t+p via the impulse P.

The post-push-off leg extension rate calculated using the powered simplest walking model

[47] (effectively massless legs) is ℓ̇t+p =P/mtot. Equation (7.43) gives the same result if the

legs are massless (for massless legs P̃ is equal to the push-off impulse P of the powered

simplest walking model; see Section 7.4 for more details). However, with P̃ given by (7.16),

equation (7.43) provides a more accurate prediction for realistic models with non-negligible

distributed leg mass.

Following the procedure used to derive (7.41)-(7.43), we can also find the approximate

post-push-off velocities for an extensional impulsive retraction torque, i.e.R< 0. However, as

it will be shown in Section 7.10, the extensional retraction torque is not energetically optimal

in the admissible region, and thus no effort is made here to calculate those velocities.

7.8.3 Approximate Velocities Before and After the Impulsive Retraction Torque

Similar to the previous section, only a retracting hip torque, i.e. R> 0, is considered here,

and the analysis of an extensional retraction torque, i.e. R< 0, is left for Section (7.10).

For energy optimal gaits, in which impulsive R> 0 is applied completely after impulsive

P, the velocities immediately before R, i.e. at t−r , are equal to those in (7.41)-(7.44).

156



Using the same relative timing of P and R as above, the velocities immediately after the

impulsive retracting hip torque, i.e. at t+r ≡ t+pr, are given by the push-off-retraction velocity

mapping in (5.14). Approximating this equation using λ≈ 0 results in

˜̇
θt+r =

˜̇
θt+pr =

˜̇
θ0 +

1− cos 2α/δ

mtot ℓ2
R, (7.45)

˜̇
φt+r =

˜̇
φt+pr =

˜̇
φ0 −

sin 2α

δ mtot ℓ
P̃ − R

δ mleg ℓ b
, (7.46)

˜̇ℓt+r = ˜̇ℓt+pr =
P̃
mtot

+
sin 2α

δ mtot ℓ
R, (7.47)

where the approximate push-off impulse P̃ is given by (7.16), and the angular velocities
˜̇
θ0

and ˜̇φ0 are given by (7.7) and (7.14). To simplify the work calculations in Section 7.9.3, it

is better to express φ̇t+r in terms of the retraction impulse R. After substituting for P̃ from

(7.16), we can further simplify (7.46) using λ≈ 0 and the formula of Ω̃ in (7.17). This results

in

˜̇
φt+r =

˜̇
φt+pr = Ω̃− R

δ mleg b ℓ
. (7.48)

7.9 Approximate Work and Energetic Costs

As shown in the previous chapter, for R> 0 energetic cost is minimized when the impulsive

retraction torque is isolated from the impulsive push-off force and is applied after it is

completed. With this relative timing, all three impulsive actuations, i.e. the impulsive swing

thrust and swing retraction torques and the impulsive push-off force, are isolated, and the

work equations in (6.3) and (6.4) can be used for all the three impulses. For R< 0, however,

energy optimal gaits include overlapping impulses. But, as will be shown in Section 7.10,

R< 0 is never energetically optimal inside the admissible region. Hence, in this section, the

approximate work and energetic cost calculations are only provided for gaits with R> 0,

and subject to the optimal push-off-then-retraction sequence.
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7.9.1 Approximate Work and Energetic Cost of Impulsive Swing Thrust Torque

Using (6.3) with I = S̃ from (7.15), q̇+ = ˜̇φt+s from (7.36), and q̇−= ˜̇φt−s from (7.39), the

approximate net swing-thrust work is calculated as

W̃S =
1

2
S̃
(
˜̇
φt−s +

˜̇
φt+s

)

=
1

2
δ mleg b ℓ Ω̃

(
˜̇φ0 −

2 sin2α

δ
˜̇θ0

)
, (7.49)

where
˜̇
θ0,

˜̇
φ0, and Ω̃ are given by (7.7), (7.14), and (7.17). Using the formula of Ω̃ in (7.17),

the above equation can be further simplified as

W̃S =
1

2
δ mleg b ℓ

(
˜̇
φ2
0 −

4 sin4α

δ2
˜̇
θ20

)
. (7.50)

To approximate the energetic cost, we also need to find the positive and negative work.

As discussed in Sections 7.7.1 and 7.8.1, in the approximate admissible region (i) S̃ > 0,

and (ii) the approximate hip rate before and after the impulsive swing-thrust torque (and

therefore throughout it) is positive. Therefore, the impulsive S̃ does only positive work in

the approximate admissible region. This implies W̃+
S = W̃S , and W̃

−
S =0.

Now, using the cost equation in (6.6), the approximate cost associated with S̃ is

ẼS = c1 W̃S . (7.51)

Because W̃S does not depend on the retraction impulse R, ẼS is also independent of R. This

result will be used in Sections 7.10 and 7.11 to simplify the derivation of the approximate

optimal retraction impulse.

7.9.2 Approximate Work and Energetic Cost of Impulsive Push-Off Force

Since the optimal gaits with R> 0 include isolated impulses, we can use (6.3), with I = P̃

from (7.16), q̇−= ˜̇ℓt−p from (7.40), and q̇+= ˜̇ℓt+p from (7.43), to calculate the approximate net
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push-off work as

W̃P =
P̃2

2mtot

=

(
mtot ℓ

˜̇
θ0 +R/ℓ

)2

2mtot

tan2α. (7.52)

It was shown in the previous chapter that in energy optimal gaits the impulsive push-off

force does only positive work. Thus, the approximate energetic cost of push-off is calculated

according to (6.68) as

ẼP = c1 W̃P . (7.53)

7.9.3 Approximate Work and Energetic Cost of Impulsive Swing Retraction Torque

With the optimal push-off-then-retraction sequence (isolated impulses), the work formula in

(6.3) can be used with I =−R (the positive directions ofR and φ̇ are opposite), q̇−=
˜̇
φt−r =

˜̇
φt+p

from (7.44), and q̇+=
˜̇
φt+r from (7.48), to calculate the approximate net retraction work as

W̃R = −1

2
R
(
˜̇
φt−r +

˜̇
φt+r

)
(7.54)

= −R Ω̃ +
R2

2 δ mleg b ℓ
. (7.55)

Note that another round of approximation with λ≈ 0 was used to simplify (7.54) to (7.55).

In the approximate admissible region Ω̃> 0, so the pre-retraction hip rate
˜̇
φt−r ( =

˜̇
φt+p ),

given by (7.44), is positive for all R> 0. This implies that for any step angle α and average

walking speed V in the approximate admissible region the impulsive retraction torque always

starts with doing negative work. For 06R< R̃‡, where

R̃‡ = δ mleg ℓ b Ω̃, (7.56)

the post-retraction hip rate ˜̇φt+r , given by (7.48), is also positive, and the impulsive retraction

torque does only negative work. For R> R̃‡, however, the impulsive retraction torque does
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some positive work at the end, which can be calculated using (6.4) with the same substitutions

used for (7.54). Therefore, both approximate positive and negative retraction works are fully

resolved in the entire approximate admissible region. That is to say, given the step angle α

and average walking speed V in the approximate admissible region

W̃+
R =






0 if 06R 6 R̃‡,

W̃R +
δ mleg b ℓ

2
Ω̃2 if R> R̃‡,

(7.57)

and W̃−
R = W̃R − W̃+

R , where W̃R is given by (7.55). Interestingly, except for the case where

W̃+
R =0, W̃R and W̃+

R have the same dependency in R, and the approximate negative re-

traction work does not depend on R.

Finally, the approximate energetic cost of retraction can be calculated using (6.22) as

ẼR = c1 W̃
+
R − c2 W̃

−
R . (7.58)

Now, by adding the approximate energetic cost of individual impulsive force and torques,

given by (7.51), (7.53), and (7.58), we can calculate the approximate net energetic cost of the

gait. By minimizing this approximate net cost, subject to the approximate constraints found

in Sections 7.4 -7.7, we can calculate the approximate optimal retraction impulse. This is

the subject of the following sections.

7.10 Extensional Retraction Torque Is Not Energetically Efficient in the

Admissible Region

In order to investigate the energetic consequences of the extensional retraction torque, we

can examine ∂Estep/∂R for R< 0, where Estep is the net energetic cost per step, given by

(6.2). Among different terms in Estep, the energetic cost of swing-thrust impulse, i.e. ES , has

a negligible dependency on R. This can be verified by noticing that the approximate work
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and energetic cost of impulsive swing thrust, i.e. W̃S and ẼS given by (7.50) and (7.51), are

independent of R. Thus, the variations of Estep with respect to R can be approximated as

∂Estep

∂R ≈ ∂EPR

∂R , (7.59)

where EPR is the net cost of push-off and retraction, given by (6.29).

In energy-optimal gaits, with any given step angle α and average walking speed V in

the admissible region, both the impulsive push-off force and the impulsive extensional re-

traction torque (R< 0) do only positive work (see Sections 6.4.3 and 6.5). In this case,

EPR = c1 (WR +WP), where the net retraction work WR and the net push-off work WP are

given by (6.14) and (6.19). Now, using Jφ̇/P =−Jℓ̇/R from (5.17), we can write

∂EPR

∂R = c1
∂ (WR +WP)

∂R

= c1
∂

∂R

(
−φ̇0R− 1

2
Jφ̇/R R2 +

1

2
Jℓ̇/P P2 + Jℓ̇/R RP

)

= c1

(
−φ̇0 − Jφ̇/R R+ Jℓ̇/P P ∂P

∂R + Jℓ̇/R P + Jℓ̇/R R ∂P
∂R

)

= c1

(
−φ̇0 − Jφ̇/R R− Jφ̇/P P +

(
Jℓ̇/P P + Jℓ̇/R R

) ∂P
∂R

)
. (7.60)

Using the push-off-retraction velocity mapping, given by (5.14), and the velocity mapping

of passive swing, given by (5.13), the above equation can be simplified as

∂EPR

∂R = c1

(
−φ̇t+pr + ℓ̇t+pr

∂P
∂R

)

≈ c1

(
− ˜̇φt+pr + ℓ̇t+pr

∂P̃
∂R

)
(7.61)

=
∂ẼPR

∂R . (7.62)

Now consider the following three facts:

• In optimal gaits with R< 0 the impulsive push-off force continues until the

end of the push-off-retraction interval (see Section 6.4), i.e. until t+pr. This

implies that the stance leg is extending at t+pr, and ℓ̇t+pr > 0.
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• For all gait parameters ∂P̃/∂R< 0, as shown in (7.18).

• In the approximate admissible region, any extensional R, i.e. R< 0, results in

˜̇
φt+pr > 0. To verify this, use the formula of

˜̇
φt+pr in (7.48) and recall that Ω̃ is

non-negative in the entire approximate admissible region (see Section 7.7.1).

Therefore, for any given step angle α and average walking speed V in the approximate

admissible region, and for any given R< 0, all the terms in (7.61) are negative, and

∂Ẽstep

∂R =
∂ẼPR

∂R < 0. (7.63)

This equation implies that in the approximate admissible region the net energetic cost Ẽstep

monotonically decreases as R increases in R< 0 (i.e. R → 0−). In other words, the approx-

imate optimal retraction impulse R̃∗ that minimizes Ẽstep in the approximate admissible

region follows R∗> 0.

7.11 Approximate Energy Optimal Swing-Retraction Impulse

The approximate total energetic cost per step is given by

Ẽstep = ẼS + ẼP + ẼR, (7.64)

where the individual approximate energetic costs ẼS , ẼP , and ẼR are given by (7.51), (7.53),

and (7.58). Given the step angle α and average walking speed V in the approximate admis-

sible region, the approximate optimal retraction impulse R̃∗ is determined by minimizing

Ẽstep(α, V ) subject to R̃min 6 R̃∗ 6 R̃max, where the lower bound R̃min is imposed by (7.21)

to ensure heel-strike, and the upper bound R̃max is imposed by (7.22) to ensure a positive

push-off impulse. Because in the admissible region R̃∗ > 0 (see the previous section) the

range of approximate optimal retraction impulse is reduced to

max(0, R̃min) 6 R̃∗
6 R̃max. (7.65)
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Among the cost terms in Ẽstep, the swing-thrust cost ẼS does not depend on R (see Sec-

tion 7.9.1). Thus, the optimal retraction impulse R̃∗ that minimizes Ẽstep also minimizes

ẼPR = ẼP + ẼR.

Using the approximate push-off cost ẼP in (7.53), the approximate push-off work in

(7.52), and the formula of R̃max in (7.22), we get

∂ẼP

∂R = c1
˜̇
θ0

(
1 +

R
mtot ℓ2

˜̇θ0

)
tanα (7.66)

= c1
˜̇
θ0

(
1−R/R̃max

)
tanα, (7.67)

where ˜̇θ0 is given by (7.7). Because ˜̇θ0 is always negative, respecting R6 R̃max results in

∂ẼP

∂R 6 0. (7.68)

In the above equation, the equality occurs only when R= R̃max. Thus, the push-off cost ẼP

monotonically decreases with R in R< R̃max.

Using the approximate retraction work and cost, given by (7.55)-(7.58), we get

∂ẼR

∂R =






c2 Ω̃
(
1−R/R̃‡

)
if 06R6 R̃‡

−c1 Ω̃
(
1−R/R̃‡

)
if R> R̃‡

(7.69)

where Ω̃ and R̃‡ are given by (7.17) and (7.56). In the approximate admissible region Ω̃> 0,

so for the both cases in the above equation

∂ẼR

∂R > 0. (7.70)

Now, with (7.66)-(7.70), consider the following three facts.

• ẼPR is a smooth (differentiable) function of R. Therefore, its minimum in

the region R̃> max(R̃min, 0) is either at the boundary of this region, i.e. at

R= max(R̃min, 0), or at the stationary points (∂ẼPR/∂R=0) that are local

minima (∂2ẼPR/∂R2> 0).
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• ẼPR has only one local minimum (∂ẼPR/∂R=0 has only one solution for

which ∂2ẼPR/∂R2> 0) in R> R̃‡, which, after using λ≈ 0, is calculated as

R̃∗
1 = δ mleg ℓ b

(
Ω̃− ˜̇θ0 tan

2α
)
. (7.71)

Recognizing that ˜̇θ0< 0 [see (7.7)] and that Ω̃> 0 in the approximate admis-

sible region, it is easy to verify that R̃∗
1> R̃‡> max(R̃min, 0), where R̃min and

R̃‡ are given by (7.21) and (7.56). Moreover, using λ≈ 0, one can easily show

that R̃max> R̃∗
1, where R̃max is given by (7.22). Thus R̃∗

1 satisfies the bounds

in (7.65).

• If ẼPR has a stationary point in 0<R6 R̃‡, it can be only a local maxi-

mum. This can be explained as follows: ∂ẼPR/∂R= ∂ẼP/∂R+ ∂ẼR/∂R is

a piecewise-linear function of R, so it can become zero (stationary point) at

most in one point in the region 0<R6 R̃‡. On the other hand, at the end

of this region, i.e. at R= R̃‡, we have ∂ẼPR/∂R< 0 (since ∂ẼP/∂R< 0 and

∂ẼR/∂R=0), implying that ẼPR decreases after the stationary point, if that

point exists. This feature is only consistent with a local maximum.

Therefore, the minimum of ẼPR subject to (7.65) is at either R̃∗
1, or max(R̃min, 0). By

comparing the value of ẼPR at these two candidate points, we can find the minimum point.

Based on the sign of R̃min the following two cases are possible:

1. R̃min< 0, resulting in max(R̃min, 0)=0. In this case, if

ẼPR(R̃∗
1) > ẼPR

∣∣∣
R=0+

, (7.72)

or equivalently if (after simplifying (7.72) using λ≈ 0)

c2
c1

>

(
˜̇
θ0

Ω̃
tan2α− 2

)
˜̇
θ0

Ω̃
tan2α, (7.73)

the optimal retraction impulse is R̃∗=0, otherwise R̃∗ = R̃∗
1.
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2. R̃min> 0, giving: max(R̃min, 0)= R̃min. In this case, if

ẼPR(R̃min) < ẼPR(R̃∗
1), (7.74)

or equivalently if (after simplifying (7.74) using λ≈ 0)

c2
c1

> −1 + cos−4α, (7.75)

the optimal retraction impulse is R̃∗= R̃min, otherwise R̃∗= R̃∗
1.

In summary, for any given step angle α and average walking speed V in the approximate

admissible region, defined by (7.34), the approximate energy minimizing retraction impulse

is

R̃∗ =






0 if R̃min6 0, and (7.73) holds,

R̃min if R̃min> 0, and (7.75) holds,

R̃∗
1 Otherwise.

(7.76)

where
˜̇
θ0, Ω̃, R̃min and R̃∗

1 are given by (7.7), (7.17), (7.21), and (7.71).

Interestingly, the above result predicts that the swing-leg retraction torque is not always

energetically efficient. In fact, depending on the positive and negative work efficiencies, there

might be a range of α and V for which R̃∗ is either zero or R̃min. In the latter case, energy

minimization still favors not applying a retraction torque, but to ensure heel-strike at least

R= R̃min has to be applied (see Section 7.5.1).

Depending on the ratio of the positive and negative work efficiencies of the actuators

involved (i.e. c2/c1), the approximate optimal retraction impulse R̃∗ can divide the approx-

imate admissible region into three areas corresponding to R̃∗ =0, R̃∗= R̃min, and R̃= R̃∗
1.

However, within each of these areas the optimal retraction impulse is independent of the work

efficiencies. In the next chapter, we will see that these areas also depend on the contribution

of actuator work to heel-strike energy loss.
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An important point that should be noted here is that for

c2
c1

> −
˜̇
θ0

Ω̃
tan2α (7.77)

∂Ẽstep/∂R
∣∣∣
R=0+

> 0, implying that the net cost increases as R grows from zero. This result,

as well as the observation that Ẽstep monotonically decreases asR< 0 approaches zero (shown

in the previous section), indicates that the energetic cost Ẽstep can potentially have a local

minimum at R=0. In other words, when (7.77) holds, Ẽstep has two local minima: one at

R=R∗
1, and the other at R=0 (provided that the constraint associated with R̃min is not

considered, otherwise the second local minimum is at max(R̃min, 0)). Moreover, if these local

minima result in equal energetic costs, then R̃∗ has two distinct solutions. This occurs when

either (7.73) or (7.75) is satisfied with equality.

The above problem is caused by the non-smooth positive-value function used to calculate

the energetic cost (for calculating the positive and negative work). Thus, the same problem

can also exist in the non-approximate solution. In fact, this is the case and will be discussed

in detail in the next chapter.

The existence of two local minima causes discontinuous jumps in R∗ when varying the

step length or speed. This jump occurs as the global minimum switches from one local

minimum to the other. This can have consequences in numerical optimization, so extra

care should be practiced to ensure that the solution is not trapped by the non-optimal local

minimum. Also note that while the local minimum at R∗
1 is smooth (the objective function

is differentiable), the one at R=0 has different left and right derivatives, and thus is not

smooth. This can cause difficulty for numerical optimizations, but can be overcome using

smoothing techniques, such as the square-root smoothing technique used in Chapter 2.
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7.12 Approximate Energy-Optimal Swing Retraction Rates

Different researchers have used different definitions for the ‘swing retraction rate’. In [61, 62]

it is defined as the angular speed of the hip joint (angular rate of the swing leg relative to the

stance leg) prior to heel-strike, whereas in [59, 63, 65] it is defined as the absolute angular

speed of the swing leg prior to heel-strike (relative to the inertial reference). To avoid

confusion, I refer to these respective speeds as the hip-joint retraction rate, denoted by ψ̇hip,

and the swing-leg retraction rate, denoted by ψ̇leg. These retraction rates are given by

ψ̇hip = −φ̇t+pr (7.78)

ψ̇leg = −
(
φ̇t+pr + θ̇t+pr

)
. (7.79)

Note that the positive direction of the retraction rates is opposite to that of the hip rate and

the swing leg angular rate, to comply with the term ‘retraction’.

Given the above definitions, we can use the approximate optimal retraction impulse

R̃∗, found in the previous section, to calculate the energy-optimal swing retraction rates.

Evaluating the approximate hip rate ˜̇φt+pr, given by (7.48), at R= R̃∗, and simplifying the

result with λ≈ 0, gives the following approximations for the optimal hip-joint retraction rate:

˜̇
ψ∗
hip =






−Ω̃ if R̃∗ = 0,

˜̇
θ0 if R̃∗ = R̃min,

− ˜̇
θ0 tan

2α if R̃∗ = R̃∗
1.

(7.80)

Similarly, the optimal swing-leg retraction rate takes the following three approximate values:

˜̇ψ∗
leg =





−
(
Ω̃ +

˜̇
θ0

)
if R̃∗ = 0,

0 if R̃∗ = R̃min,

− ˜̇
θ0/cos

2α if R̃∗ = R̃∗
1.

(7.81)

In the above equations,
˜̇
θ0 and Ω̃ are given by (7.7) and (7.17).
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Interestingly, the above approximations predict that swing-leg retraction is not always

energetically advantageous. In fact, for the pairs of (α, V ) for which R̃∗ = R̃min, or equiv-

alently when (7.75) holds, energy optimal gaits exhibit neither a retracting hip joint nor

a retracting swing leg (corresponding approximate retraction rates are not positive). Fur-

thermore, a retracting hip-joint is also not observed in energy optimal gaits with R̃∗ =0.

These results suggest that the positive and negative work efficiencies of the actuator plays

an important role in energy-optimality of retraction.

7.13 Summary

In this chapter, approximate analytic solutions were found for many gait variables. The

main approximation used in this process was λ=mleg b/(mtot ℓ)≈ 0. Almost all the analytic

solutions found in this chapter are parts of the contributions of this work. The importance

of these simple closed-form analytic solutions is that they provide very useful insights into

how different aspects of a gait are influenced by each other and by different gait parameters.

For example, the approximate analytic solutions predict that

• The swing-thrust impulse has a negligible dependency on the retraction im-

pulse.

• The push-off impulse decreases with the retraction impulse.

• Without a large enough retraction impulse, walking is not feasible for some

range of walking speeds and step lengths.

• Swing retraction is not always energetically efficient, and its optimality de-

pends highly on the ratio of positive and negative work efficiencies of the

actuator.

These predictions are only based on the approximate analyses and should be confirmed using

the accurate numerical calculations. This will be studied in the next chapter.
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Chapter 8

ADVANTAGES OF SWING-LEG RETRACTION

One of the characteristics that are common among different gaits of many legged organisms

is swing-leg retraction, the rearward rotation of the swing leg prior to heel-strike. Chapter

1 discusses some of the advantages of swing retraction that have been discovered by other

researchers. These include

1. improving stability of the gait,

2. improving disturbance rejection,

3. enabling a better state estimation,

4. facilitating foot clearance prior to heel-strike, and

5. reducing the risk of slippage at heel-strike.

There might be other advantages to this motion that have not yet been discovered, or that

are currently not well understood. For example, the numerical results in Chapter 3 showed

that swing-leg retraction can reduce the net energetic cost by reducing the relative foot-

ground speed at touch-down; at least for the model parameters used in the corresponding

gait optimization. However, that is not necessarily the entire picture. In the previous

chapter, the approximate analytic solutions showed that there might be some cases in which

retraction is not energetically favorable. Other possible advantages were also suggested by

the approximate analyses in the previous chapter, and motivate more detailed investigations

using non-approximate equations. These investigations are the subject of this chapter.

In this chapter three more benefits of swing-leg retraction are added to the list of 5

advantages above. Among those, the two advantages explained in Sections 8.1 and 8.2 were

not known before, at least to the best of my knowledge. The last advantage, presented in
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Section 8.3, was known before, but the complete picture of it and its determinant factors are

parts of the contributions of this work.

This chapter is organized as follows. First, in Section 8.1 the dependency of the push-off

impulse on the swing-retraction impulse is studied. Section 8.2 describes the influence of

retraction on walking speed limit and step length. Finally, the energy optimality of swing

retraction is examined in details in Section 8.3. At the end, the chapter is summarized in

Section 8.4.

8.1 Less Push-Off Force Is Required With Swing-Leg Retraction

It was shown in the previous chapter that the approximate swing thrust impulse S̃ is in-

dependent of the retraction impulse R, whereas the approximate push-off impulse P̃ does

depend on R and decreases with it. Motivated by this observation, I numerically examined

the influence of R on the non-approximate swing-thrust and push-off impulses, i.e. S and P

given by (5.26) and (5.27). Fig. 8.1 shows the percentage change of these impulses with R

for a walking gait with V =1.38m/s and T =0.54 s (typical humans’ preferred walking speed

and step period). As this figure shows, both S and P decrease with R, but the reduction of

S is so small that it can be neglected (S decreases less than 1% as R increases from 0 to 10

Nms). In contrast, the changes in P are more substantial and should not be neglected. The

slope of the variations of P with respect to R is approximated by the analytic solution in

(7.18) as ∂P/∂R≈− tanα/ℓ, where α is the step angle and ℓ is the leg length.

The different dependencies of swing-thrust and push-off impulses to the retraction impulse

can be explained as follows. The negligible influence of the retraction impulse on the required

thrust impulse is because the swing thrust is isolated from retraction by heel-strike. After

heel-strike, the motion of the new stance leg (the previous swing leg) is constrained by the

hip motion, and the effect of retraction torque on leg velocity does not transfer much to the
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Figure 8.1: Percentage variations of the required swing thrust impulse S and
push-off impulse P with the retracting impulse R. The graph is plotted for the average
walking speed and the step period of V =1.38m/s and T =0.54 s. The variation of each
impulse is calculated relative to its corresponding value at R=0. The model data are those
in Table 5.1. The numerical results are calculated using the non-approximate equations
in (5.26) and (5.27), whereas the approximate analytic results are calculated using (7.15)
and (7.16). Consistent with the predictions of approximate analytic solutions, the exact
numerical results show that the push-off impulse P decreases with the retraction impulse R,
whereas the swing thrust impulse S has a small dependency in R which has been ignored in
the approximate analytic solution.

next step. However, this is not the case for push-off and retraction, which occur at the same

phase of the gait cycle. More importantly, the mechanical coupling in the system links the

push-off and retraction impulses to each other. The retraction torque (force) applied by the

hip actuator on the swing leg induces a reaction force on the hip. This reaction force pulls

the hip up and tends to extend the stance leg, so less push-off impulse is required for a given

pre-heel-strike leg extension rate ℓ̇.

Arguably, the push-off reduction effect of the retraction torque is not limited only to

the simple model used in this study. As shown in Fig. 8.2, the same action-reaction and

mechanical coupling should be valid for realistic bipedal systems as well. Therefore, in these

systems active swing-leg retraction can have the same influence on push-off force.
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Figure 8.2: Retraction torque and its reaction on the hip. The hip applies a retracting
force (torque) on the swing leg and pushes it back. In reverse, a reaction force is applied to
the hip by the swing leg. This reaction force pulls the hip forward and reduces the required
push-off force for given step length and walking speed.

Thus, the 6th advantage of swing retraction is:

the swing retraction torque reduces the required push-off force for a periodic walk.

The advantage of a reduced push-off force can be twofold:

• First, less cost is involved with generating a reduced force/torque. For exam-

ple, in DC motors the armature loss (the energy loss in armature resistance) is

proportional to torque-squared. So, a smaller torque implies less energy loss,

and thus less input power per unit output torque.

• The second benefit of a reduced push-off force is that it does less mechanical

work (see the push-off work equations in Section 6.3.3). Therefore, with a

work-based energetic cost, the reduced push-off work can potentially decrease

the net energetic cost, if the increase in retraction cost does not exceed the

decrease in push-off cost. This potential advantage will be closely examined

in Section 8.3.
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8.2 Swing-Leg Retraction Enables Faster Walking Speeds and Shorter Steps

In order to walk with a desired step length and speed, the swing foot should move down-

ward at the end of the step to make a new foot-ground contact (heel-strike) and become

the new stance leg. For the impulsive gait shown in Fig. 5.2, this condition is expressed

as ẏfswing
(t+pr)< 0 (see Section 5.3.2), where ẏfswing

is the vertical swing foot velocity. In the

previous chapter, using the approximate equations, this condition imposed an approximate

lower bound on the retraction impulse, given by (7.21). This led to the prediction that

periodic walking is not feasible in some areas in the admissible region if the available maxi-

mum retraction impulse is not large enough to ensure heel-strike. This observation motivates

examining the problem with non-approximate numerical solutions.

Equivalent to the approximate R̃min defined in Section 7.5.1, Rmin(α, V ) is the exact

minimum retraction impulse required to ensure heel-strike in a periodic walk with step angle

α and average speed V . According to the foot velocity condition stated above, Rmin satisfies

R > Rmin(α, V ) ⇐⇒ ẏfswing
(t+pr, α, V,R) 6 0, (8.1)

and is given by

Rmin(α, V ) = R∣∣∣
ẏfswing

(t+pr,α,V,R)=0

, (8.2)

where ẏfswing
is calculated from (7.19), after substituting for ℓ̇t+pr, θ̇t+pr , φ̇t+pr, and P from (5.14),

and (5.27).

Fig.8.3 shows the contour lines of the resulting Rmin in the admissible region. This figure

is the non-approximate (numerically calculated) version of Fig.7.3. The numerical values for

model parameters are those in Table 5.1. The minimum required retraction impulse, Rmin, is

negative in the lighter shaded area (slow walking speeds or long steps), and is positive in the

darker region (fast walking speeds and short steps). This implies that at slow speeds or long

steps a retracting hip torque (R> 0) is not necessary for periodic walking, and heel-strike
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Figure 8.3: Contour lines of the minimum retracting impulse, Rmin, required to
enforce heel-strike. The shaded area is the admissible region, defined in Section 5.4.4. In
the lower shaded area (light color) retracting hip torque (R> 0) is not necessary for periodic
walking, and walking is feasible even with an extensional torque (R< 0). In the darker area,
however, walking is not feasible without a retracting hip torque prior to heel-strike. The
vertical axis is the normalized average walking speed V̂ =V/Vn, where Vn is given by (5.36).
The numerical values of model parameters are taken from Table 5.1.

occurs even with an extensional (opposite to retracting) hip torque. For fast speeds or short

steps, however, walking is not feasible without a retracting hip torque.

Now, let us have a look at what occurs in a physical bipedal system. The velocity of the

swing foot is determined by the velocity of the hip and the angular rate of the swing leg.

For an efficient periodic walk, the hip (CoM) velocity is near-horizontal at the end of the

pre-emptive push-off and prior to heel-strike. Therefore, to move the swing foot downward to

enforce heel-strike the swing leg should be rotating rearward at the end of the step. At slow

walking speeds the swing leg velocity is small, and the braking torque induced on the swing

leg by push-off1 might be enough to stop the forward leg-swing or even reverse (retract)

it, especially when taking long steps. However, for fast walks a large-enough retracting hip

torque is required to reverse the leg rotation and ensure heel-strike. The same result is

valid for walking with too-short steps, since the push-off induced torque on the swing leg is

1The push-off force accelerates the hip along the stance leg, inducing an (inertial) torque on the swing
leg. This induced torque tends to push the swing leg back, toward the stance leg.
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too small (shorter steps need less push-off impulse [26, 47]; also the push-off force becomes

almost parallel to the swing leg leading to a small moment arm and induced torque on the

swing leg).

Based on the above results and discussion, the 7th advantage of active swing-leg retraction

is discovered as

swing retracting torque significantly expands the viability region of periodic walking

toward faster walking speeds and shorter steps.

8.3 Does Swing-Leg Retraction Reduce the Net Energetic Cost of Walking?

The approximate analyses in Sections 7.11 and 7.12 predict that the optimality of retraction

is highly influenced by the ratio of negative and positive work efficiencies. If the efficiency

of negative work (i.e. 1/c2) is smaller enough than that of positive work (i.e. 1/c1), then

approximate-cost minimization favors not to use any impulsive retraction torque (i.e. R̃∗ =0)

unless it is required to ensure heel-strike (R̃∗> R̃min). This is an interesting observation and

motivates a more accurate analysis using non-approximate equations.

8.3.1 Energy-Optimal Retraction Impulse

The non-approximate optimal retraction impulseR∗ can be calculated numerically by solving

the minimization problem stated in (6.73). Fig. 8.4 shows the contour maps of the resulting

R∗ in the admissible region and for different values of work efficiencies (= unit positive and

negative work costs c1 and c2). Consistent with the predictions of approximate analysis, R∗

can divide the admissible region into three areas. These areas correspond to

• R∗=R∗
1 (the cyan 1 region); R∗

1 is the impulse at which ∂Estep/∂R=0 and

∂2Estep/∂R2> 0 (i.e. a local minimum stationary point). In this region energy

minimization freely chooses to exploit a retracting hip torque;
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• R∗=Rmin (the gray 2 region); Rmin is the minimum retraction impulse re-

quired to ensure heel-strike, given by (8.2). In this region, energy minimiza-

tion favors not to apply any retraction torque (R=0). However, ensuring

heel-strike requires the application of at least Rmin;

• R∗=0 (the blue 3 region). In this region energy-optimal gaits do not include

any retraction torque.

Therefore, only in the cyan 1 area a non-zero retraction impulse is energetically advanta-

geous (retraction is optimal by itself and is not enforced by constraints). The gray 2 area

would have merged with the blue 3 area if the constraint of ensuring heel-strike had been

removed.

Fig. 8.4a corresponds to the case where negative work (braking and deceleration) is free,

i.e. c2=0, and all the energetic cost comes from the positive work. In this case, the swing

retraction torque is energetically optimal in the entire admissible region. In Fig. 8.4b the

work efficiencies are equal to those of human muscles [26, 73]. Due to the increase in the

cost of negative work (reduced efficiency), it is more energetically advantageous not to apply

any retraction torque at short steps (gray 2 and blue 3 regions) if not enforced. As the

cost of negative work further increases to c2= c1 (Fig. 8.4c), the non-optimality of retraction

torque is extended to a larger area, and energetic benefit of retraction is limited mainly to

very long steps. Note that in all three cases (Fig. 8.4a-8.4c) the retraction torque is still

applied in the majority of the admissible region (the gray 2 and cyan 1 regions). However,

the application of retraction torque in the gray 2 area is not due to being energetically

advantageous, but just to enforce heel-strike.

BecauseRmin is defined based on the heel-strike condition in (8.1), its value is independent

of the energetic cost coefficients c1 and c2. Moreover, Fig. 8.4 shows that the value of R∗
1

does not depend on these coefficients (the contour lines in the cyan 1 region do not change

among the three panels). Thus, as predicted by the approximate analysis in Section 7.11, the
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Figure 8.4: Contour maps of the energy optimal retraction impulse R∗, calculated
numerically using the minimization problem stated in (6.73). Each panel corresponds to a
different set of c1 and c2, i.e. the cost of unit positive and negative work: a) c1 6=0 and c2=0,
b) c1=4 and c2=5/6 as for human muscles, and c) c1= c2. In all three panels, the vertical
axis is the average walking speed V normalized with Vn given by (5.36). The shaded area
is the admissible region, defined in Section 5.4.4. The cyan 1© area (marked with R∗ =R∗

1)
corresponds to the set of α and V combinations for which retraction is energetically optimal
(energy minimization freely chooses to exploit retraction). R∗

1 is where the derivative of
the net energetic cost Estep becomes zero (stationary point). The gray 2© region (marked
with R∗=Rmin) is where the energy minimization would prefer not to apply any retraction
torque, but ensuring heel-strike requires the application of at least Rmin (see Fig. 8.3). The
blue 3© region corresponds to the zero optimal retraction impulse, i.e. R∗ =0.
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cost coefficients c1 and c2 only determine the switching conditions among R∗ =0, R∗=Rmin,

and R∗=R∗
1 (the borders between the cyan 1 , gray 2 , and blue 3 regions in Fig. 8.4),

and not the value of R∗ in each region. These switching conditions are approximated by the

inequalities (7.73) and (7.75) in the previous chapter.

The calculated optimal retraction impulseR∗ has discontinuities when varying step length

or speed (at the borders between the cyan 1 and either the gray 2 or the blue 3 regions).

This fact is better shown in Fig. 8.5a. In this figure the optimal retraction impulse R∗

associated with c1= c2 and V =1.6m/s (equivalent to V̂ =0.5 in Fig. 8.4c) is plotted at

different step angles. For more clarity, the corresponding Rmin, R∗
1, and R=0 are also shown

in this figure (R∗
1 is the retraction impulse at which ∂Estep/∂R=0 and ∂2Estep/∂R2> 0, and

is the optimal retraction impulse in the cyan 1 region in Fig. 8.4). As can be seen, R∗ has a

discontinuous jump when it changes from R∗ =0 to R∗ =R∗
1 (at the second vertical line). As

mentioned in the previous chapter, these discontinuities are due to the non-smooth positive

value function used to calculate positive and negative work in the energetic cost Estep, given

in (2.1). At the step angles and speeds in which these discontinuities occur, Estep becomes

minimum at two different retraction impulses, and thusR∗ has two different solutions; similar

to what was observed with the approximate solution. For example, at the border between

the blue 3 and the gray 2 regions in Fig. 8.4c:

minEstep = Estep(R∗
1) = Estep

∣∣∣
R=0

, (8.3)

implying that R∗=0 and R∗=R∗
1 at that point. This can be clearly seen in Fig. 8.5, or in

its zoomed version, Fig. 8.6. In Fig. 8.5b the energetic cost Estep is calculated separately for

different retraction impulses shown in Fig.8.5a (introduced at the start of this paragraph). As

it is seen, the minimum cost before the second vertical line is given by Estep
∣∣
R=0

(the dotted

blue curve), but switches to Estep(R∗
1) (the dashed green curve) after it. Exactly on this

switching line the two energetic cost curves are equal. As the result, the optimal retraction

impulse, shown in Fig. 8.5a, has two different solutions at the switching point (marked with
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Figure 8.5: Different retraction impulses and their energetic cost corresponding to
the cost coefficients c1= c2 and average walking speed V =1.6m/s (equivalent to V̂ =0.5 in
Fig.8.4c). The optimal retraction impulse R∗ and its energetic cost are shown with red dots.
The vertical lines represent the step angles at which R∗ switches from Rmin to R=0 and
then to R∗

1. Exactly on each switching line, the two cost curves associated with R∗ before
and after the transition are equal, and the optimal retraction impulse has two solutions.
Note that although R=0 results in the least energetic cost for step angles before the first
vertical line, ensuring heel-strike in this region results in R∗ =Rmin.
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Figure 8.6: The zoomed version of Fig. 8.5.

180



the red dots on the second vertical line in Fig. 8.5a and Fig. 8.6a). The equality of the cost

curves at switching lines implies that the energetic cost surface is always continuous (though

non-smooth) for all α and V , including at the discontinuous transitions of R∗.

8.3.2 Energy-Optimal Retraction Rates

Using the optimal retraction impulse R∗ calculated above, we can calculate the optimal

hip-joint and swing-leg retraction rates, i.e. ψ̇∗
hip and ψ̇∗

leg, defined in (7.78) and (7.79). The

result is consistent with the predictions of the approximate analytic solution in Section 7.12;

That is, in energy optimal gaits

• the hip joint is retracting (ψ̇∗
hip> 0) only when R∗=R∗

1 (see Fig. 8.7).

• the swing leg is retracting (ψ̇∗
leg> 0) almost only when R∗ 6=Rmin (see Fig.8.8).

Thus, similar to the retraction impulse R∗, and depending on the ratio of work efficiencies

c2/c1, an actively controlled retracting swing leg or hip joint may not always be energetically

advantageous.

Interestingly, some recent experiments with human subjects show that swing retraction

does not exist in all gaits (personal communication with Dr. Maziar Sharbafi in Nov. 2013

discussing a recent study performed in Lauflabor - Locomotion Lab in TU Darmstadt in

Germany). This is completely consistent with my predictions with a simple impulsive model.

8.3.3 Effect of Doing Active Negative Work During Heel-strike

All the energetic analyses performed so far are based on minimizing the total energetic cost

Estep defined in (6.2). In that equation, no direct cost2 is considered for heel-strike. This is

2In a periodic gait on a level ground each action/event has a direct cost (possibly of zero value) and an
indirect cost. The direct cost is the energetic cost associated with actuator work during that action/event.
The indirect cost is the energetic cost associated with other actions that compensate for the energy change
made by the first action/event. This is because in a level-ground periodic gait the net energy change of
the mechanism in each step should be zero to maintain the same speed. Therefore, any negative work done
during the step should be cancelled by an equal positive work, and vice versa.
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Figure 8.7: Optimality region of a retracting hip joint at heel-strike, corresponding
to the optimal retraction impulse R∗ found for Fig.8.4. Each panel corresponds to a different
set of c1 and c2, i.e. the cost of unit positive and negative work: a) c1 6=0 and c2=0 (free
negative work), b) c1=4 and c2=5/6 as for human muscles, and c) c1= c2. A retracting
hip joint (i.e. ψ̇∗

hip> 0) is energetically optimal only in the hatched region, which is where
R∗=R∗

1. In all three panels, the vertical axis is the average walking speed V normalized
with Vn given by (5.36). The shaded area is the admissible region, defined in Section 5.4.4.
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Figure 8.8: Optimality region of a retracting swing leg at heel-strike, corresponding
to the optimal retraction impulse R∗ found for Fig.8.4. Each panel corresponds to a different
set of c1 and c2, i.e. the cost of unit positive and negative work: a) c1 6=0 and c2=0 (free
negative work), b) c1=4 and c2=5/6 as for human muscles, and c) c1= c2. A retracting
swing leg (i.e. ψ̇∗

leg> 0) is energetically optimal only in the hatched region, which is where
R∗=R∗

1 and for most of the area corresponding to R∗=0. In all three panels, the vertical
axis is the average walking speed V normalized with Vn given by (5.36). The shaded area is
the admissible region, defined in Section 5.4.4.
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based on the assumption that all the energy dissipation at heel-strike3 takes place passively

in the form of loss. However, in reality some portion of that energy dissipation may occur

as negative actuator work. For example, during step-to-step transitions in human walking,

some negative work is done by muscles (actuators), besides the passive energy loss associated

with tissue and surface deformations [48]. In order to address this possibility, I assume that

k fraction (06 k6 1) of the energy dissipation at heel-strike takes place actively by negative

actuator work. That is to say, if WH denotes the net energy dissipation at heel-strike, then

WH = WH,active +WH,passive, (8.4)

where

WH,active = kWH. (8.5)

In this case the total energetic cost per step, defined in (6.2), should be modified as below

to include the direct cost of heel-strike:

Ěstep = ES + EP + ER + EH. (8.6)

To distinguish the original Estep with Ěstep, the latter is called the modified energetic cost

per step. In the above equation, EH is the energetic cost of active negative work done during

heel-strike. Because heel-strike is all dissipative, WH,active is all negative work and thus

EH = −c2WH,active = −c2 kWH. (8.7)

Similar to the work done by other impulsive actions in the gait, WH can be calculated using

the work formula in (6.3). However, there is a simpler way for this, which provides a very

useful insight. In a periodic gait on a level ground, all the losses and performed work must

sum to zero, otherwise the system will gain or lose energy in every step. Thus, we should

have WS +WP +WR +WH =0. From this equation, the net energy change at heel-strike is

3Due to the dissipative collisional heel-strike, the kinetic energy of the biped decreases through the heel-
strike impact.
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given by:

WH = − (WS +WP +WR) . (8.8)

Using the above equations, we can find a simpler form for the modified total energetic cost

per step, defined in (8.6). For this purpose, first substitute for ES , ER, EP , and EH from

(6.6), (6.22), (6.68), (8.7), and (8.8), to get

Ěstep = c1W
+
S − c2W

−
S

+ c1W
+
P

+ c1W
+
R − c2W

−
R

+ c2 k (WS +WP +WR) .

(8.9)

Because for each action the net work is W =W++W−, the above equation is simplified as

Ěstep = č1W
+
S + č2W

−
S

+ č1W
+
P

+ č1W
+
R + č2W

−
R ,

(8.10)

where

č1 = c1 + k c2, (8.11)

č2 = (1− k) c2. (8.12)

The coefficients č1 and č2 are the modified costs of doing unit positive and negative work,

respectively. Finally, by defining a modified energetic cost equation as

Ě = č1W
+ − č2W

−, (8.13)

the modified total energetic cost per step can be written as

Ěstep = ĚS + ĚP + ĚR. (8.14)

The modified energetic cost Ě, defined in (8.13), has the same form as the original energetic

cost E, defined in (6.1). Similarly, the modified total energetic cost Ěstep, given by (8.14) has
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the same form as the original total energetic cost Estep, given by (6.2). The only difference

between the modified and the original versions is that c1 and c2 are replaced with their

modified versions č1 and č2. Therefore, all the energetic analyses done so far (approximate

and accurate energy-optimal retraction impulse and rates) are also valid with the inclusion

of active negative work at heel-strike, if we just replace c1 and c2 with č1 and č2.

At one extreme, heel-strike is fully passive (k=0), resulting in č1= c1 and č2= c2. In this

case, the optimality of swing retraction at any given step angle α and average walking speed

V is determined, as before, by the ratio č2/č1= c2/c1 (Fig. 8.4−Fig. 8.8 do not change). At

the other extreme, heel-strike is fully active (k=1, resulting in č2=0, and č1= c1+ c2 6=0.

In this case, the optimality condition for retraction is similar to that of free negative work

shown in Fig. 8.4a. In other words, when heel-strike is fully active swing retraction is always

energetically optimal, independent of the values of c1 and c2. Therefore, by increasing the

contribution of active negative work in heel-strike dissipations, swing retraction becomes

energetically advantageous in a wider range of step lengths and walking speeds (the cyan

1 area in Fig. 8.4 grows within the admissible region). This is because increasing k in-

creases the direct cost of heel-strike, so the balance between the energy savings of retraction

(reduced push-off work and heel-strike dissipation) and the extra effort spent by retraction

(decelerating and reaccelerating the leg) is influenced by more energy saving.

8.3.4 Swing Retraction Can Reduce the Net Energetic Cost of Walking

Now, I return to the question asked in the title of Section 8.3: Does swing-leg retraction

reduce the net energetic cost of walking? The answer to this question can be given as the

8th advantage of active swing-leg retraction:

depending on the average walking speed, step length, the ratio of positive and neg-

ative work efficiencies, and the contribution of actuator work in heel-strike energy

dissipation, swing retraction can reduce the net energetic cost of walking.
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The ratio of positive and negative work efficiencies, i.e. c2/c1, and the contribution of actuator

work in heel-strike energy dissipation, i.e. the quantity k in (8.5), independently influence

the optimality of swing retraction: as c2/c1 increases, the range of step lengths and speeds

for which swing retraction is energetically advantageous decreases, whereas increasing k

increases this range.

Note that in this study I have only considered the level-ground walking. When walking

on a slope or a staircase, gravity can passively provide a significant portion of the posi-

tive/negative work, so the results might be slightly different from what was found here. For

example, the optimization results in Chapter 3 suggest that for downhill walking an exten-

sional retraction torque (R< 0) is energetically optimal in the admissible region (to increase

the heel-strike impact loss as a cost-effective way for dissipating the extra kinetic energy

obtained during the step). This is not the case for level-ground walking, as can be seen in

Fig. 8.4 (R∗ 6< 0).

8.4 Summary

Motivated by the predictions of approximate analytic solutions in the previous chapter, I dis-

covered new aspects of swing-leg retraction. I showed that without a retracting hip torque,

heel-strike can be missed at fast speeds or short steps, and therefore periodic walking will

not be possible. In other words, active swing-leg retraction enables walking at fast speeds

or short steps. I also showed that, at any given step length and speed, a retraction torque

can reduce the push-off impulse required for the periodic walk. This reduction facilitates the

production of push-off force and also decreases the energetic cost associated with push-off

work. Although this energy saving comes at an extra effort spent by the hip actuator to

retract the leg, swing-leg retraction can still result in a net energetic saving. My analyses

showed that depending on the step length, walking speed, relative timing of push-off and
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retraction, actuator efficiencies for positive and negative work, and the contribution of actu-

ator work in heel-strike energy dissipation, the energy saving of a reduced push-off force and

hell-strike collision can exceed the extra effort spent for retraction, leading to a net energy

saving.

The above mentioned advantages of active swing-leg retraction were either not known

before (reducing the push-off impulse, and increasing maximum walking speed), or a very

small picture of the entire scenario had been discovered (possible net energetic saving).

The findings of this work, together with the previously discovered advantages reviewed at

the beginning of this chapter, constitute the 8 advantages of swing-leg retraction that can

potentially explain why swing retraction is a common characteristic of biological legged

locomotion. These advantages can be summarized as below:

swing retraction

1. helps biped stability,

2. improves disturbance rejection,

3. improves state estimation,

4. facilitates foot-ground clearance,

5. reduces risk of slippage at heel strike,

6. enables faster walking and shorter steps,

7. makes push-off easier,

8. can reduce the net energetic cost.
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Chapter 9

CONCLUSIONS

In this thesis I probed two simple bipedal models with analytic and numerical techniques

in order to achieve a better understanding of the governing principles of effective legged

locomotion.

The first model, shown in Fig. 2.1, consists of a torso, flat feet, and actuated telescoping

legs, and is equipped with actuated hip and ankle joints. I used this model with numerical

optimization to find the characteristics of energy optimal gaits, and to investigate the effective

strategies for reducing the cost of locomotion in different circumstances.

In the second model, shown in Fig. 5.1, the torso is reduced to a point-mass at the hip.

This reduction in the model is meant to facilitate calculating approximate analytic solutions

for different gait parameters to study the consequences of swing-leg retraction in walking.

The analytic solutions helped to obtain new insights into the influence of different factors in

system behavior.

Energy optimality is the main criterion for most of the analyses in this thesis. I have used

a work-based energetic cost model, given by (2.1) or in a simpler form by (6.1), in which

positive and negative mechanical work done by an actuator have individual contributions

via the actuator efficiency associated with each.

9.1 Insights From Energy-Optimal Gaits of a Minimally Constrained Model

In Chapters 2-4, dynamic optimization was used to investigate the energy-optimal gaits of the

first model. The corresponding optimal control problem was formulated in Chapter 2. A gait

was considered optimal if its COT, given by (2.2), was minimum for given gait parameters
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(e.g. desired forward speed). In previous studies with minimalistic models, extra constraints

were required to achieve practical gaits (for instance minimum step length constraint in [25]).

The current work differs from the previous analyses by limiting the imposed constraints to

almost only those required for a physically consistent system; allowing the optimization to

freely define the appropriate gait. The minor increase in the current model complexity over

previous minimalistic ones permitted the removal of unrealistic and artificial constraints.

Although simple, the model provides numerous insights into human locomotion dynamics.

In particular, my minimally constrained model automatically determined that:

• Pendular walk and impulsive run are the most efficient gaits (from an energetic

point of view) in, respectively, low and high forward speeds.

• Bouncing motion of the CoM is economical at higher speeds even without

having elasticity in the structure.

• For work-based energetic costs, the optimal gaits are always collisional (if

allowed), but the impact impulse and its dissipation varies with different pa-

rameters including the slope of terrain.

• The optimal gaits for different terrains and speeds are determined by a slope-

dependent balance between heel-strike impact loss and the costs associated

with its avoidance. For level-ground gaits this balance occurs when collision

loss is reduced, but not avoided completely, whereas by increasing or decreasing

the slope (moving on a staircase or a ramp) the balance moves respectively

toward complete collision avoidance or inclusion of substantial collision loss.

• For level-ground or uphill gaits, swing-leg retraction serves as part of the

optimal strategy to increase the efficiency of locomotion by reducing the impact

loss (later in Chapter 8 it was shown that this energy saving results in a reduced

push-off impulse and push-off work). For level-ground gaits, leg retraction is

achieved actively by applying hip torque to the swing leg, while in uphill
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gaits swing leg retraction is accomplished largely through the passive action

of gravity. In down-hill gaits retraction is replaced with extension (moving

the swing leg forward) to increase the energy-loss at heel-strike. This is a

cost-effective way of dissipating the extra kinetic energy obtained during the

step.

• Stance-leg push-off just before heel-strike is another important strategy to

reduce the collision loss in gaits that always have a support leg on the ground.

• In gaits with an aerial phase landing on a near vertical leg reduces the mo-

mentum loss in the horizontal direction, and consequently the collision loss.

• Burst activities of swing hip torque limited to both ends of the swing period,

rather than smoothly generated throughout the swing, minimizes swing work

because it allows a greater contribution from passive sources.

• An extended double support phase in walking is not energetically efficient

unless extra constraints are imposed.

• Pre-emptive push-off (to change the linear momentum of the CoM) is the main

contribution of the ankle rather than applying torque to change the angular

momentum. Therefore, if push-off is provided by another means (such as a

telescoping actuator along the axis of the stance leg), then the (revolute) ankle

actuator will have negligible activity in all gaits.

• For uphill or downhill gaits, the stance-hip torque (the torque between the

torso and the support leg) can be large and, potentially, destabilize the torso.

In order to passively stabilize the torso in this case, the upper body should be

properly leaned to take advantage of gravity to compensate for the destabiliz-

ing hip torque.

Some of these observations have been recognized and reported previously based on opti-

mization of minimal models [25, 26]. These previous observations were verified here with a
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slightly more realistic model.

One of the main outcomes of this study is that despite the apparent differences between

walking and running, they share the same determinant factors for effective gait coordina-

tion. The difference between walking and running comes only from the different strategies

available to minimize the energetic cost at different speeds. Based on the results of the gait

optimizations, two energetic cost factors were identified that interplay to determine the most

efficient movement pattern. One is the cost of stance-leg work associated with deflecting the

CoM motion from downward to upward at each step [48, 49]. This cost is influenced by

(i) passive and active energy dissipations in the decelerating (downward) part of redirecting

the CoM motion, and (ii) the generative work of the (trailing) stance-leg to make-up for the

energy dissipations and accelerate the CoM to move upward. The second main energetic

factor involved in the optimization of gait is the cost of swinging the legs, including the

cost of accelerating the leg at the beginning of swing to regulate the step length and step

frequency, and the cost of decelerating and retracting the leg before touch-down to reduce

the collision loss and prepare the leg for support transfer.

These factors are strongly inter-related:

• The dissipations associated with the step-to-step CoM transition from down-

ward to upward (a part of the 1st factor) is reduced by a proper timing of stance

leg push-off (the generative part of the 1st factor) and heel-strike [26, 47].

• Accelerating the swing leg (the 2nd factor) at the beginning of the swing phase

increases the step frequency beyond the natural frequency of the leg and results

in a shorter step length and less collision loss (the 1st factor) [47].

• The stance-leg push-off work (the 1st factor) and the swing-hip’s declarative

work (negative swing-retraction work; the 2nd factor) are reduced by a proper

timing of push-off force and retraction torque (see Section 6.4).

• Active swing-leg retraction (the 2nd factor) reduces the stance-leg push-off
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impulse (the 1st factor) required for a given periodic gait (see Section 8.1).

• Swing-leg retraction (the 2nd factor) can reduce the relative foot-ground veloc-

ity at touch-down and result in a less heel-strike collision loss (the 1st factor).

Therefore, the effective movement strategy is the one that takes advantage of the interac-

tion among these determinant factors to achieve the minimum energetic cost for different

functional circumstances.

Many of the energetic and kinematic characteristics of the optimization model match

those of human walking and running in different circumstances (Chapters 3 and 4). In

particular, the model correctly predicts the changes in human gait energetics in simulated

reduced gravity conditions, measured by Farley and McMahon [87]: the energetic costs of

walking and running decrease with a reduction in effective gravity, but the changes in the

cost of running are substantially larger than those in walking. The consistency between

the model predictions and human gait observations even in these unusual circumstances

(simulated reduced gravity) strongly supports the hypothesis that energy minimization is

the dominant governing principle in human gait coordination [14, 26, 72, 73, 92, 93]. It

also indicates that energy minimization in human gait is mainly influenced by the balance

between the same determinant factors (the costs of support and swing leg) responsible for

the model’s optimal gaits.

9.2 Swing-Leg Retraction

Using the second bipedal model introduced in this thesis, I investigated new aspects of

swing-leg retraction in bipedal walking. One of the strengths of this study is that almost all

analyses have been done analytically, and the use of numerical methods have mostly been

limited to verifying the predictions of the approximate analytic solutions.

After simplifying the energy-optimal walking of this model into a sequence of impulsive
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and smooth phases in Chapter 5, and calculating the positive and negative work of over-

lapping impulsive forces and torques in Chapter 6, I showed that, for any given push-off

and retraction impulses, the energy-optimal relative timing of the impulsive push-off force

and retraction torque depends on whether the hip torque is retracting (pushing the swing

leg rearward) or extending (pushing the swing leg forward): If it is retracting, the optimal

timing is to apply the impulsive push-off force completely before the impulsive hip torque,

otherwise it is best to apply the impulsive push-off force almost completely after the im-

pulsive hip torque. In the latter, the adverb ‘almost’ refers to the negligible portion of the

push-off impulse that should be applied during the extending hip torque to avoid shortening

the stance leg. These relative timings improve the gait efficiency by reducing the positive and

negative work done by the push-off force and retraction torque, respectively. Interestingly,

the above results are valid for a large range of bipedal systems (including humans) in which

the push-off force causes the swing leg to move rearward (this rearward motion is caused by

the inertial forces induced on the swing leg due the coupling in the system).

Using a series of approximations, I obtained closed-form approximate analytic solutions

for most of the gait parameters, such as the leg angles and velocities throughout the step, the

maximum average walking speed at any possible step length, the energy-optimal retraction

impulse and retraction rates, and the push-off, swing thrust, and minimum and maximum

retraction impulses required for periodic walking. These approximate analytic solutions led

to the following discoveries that were also verified using numerical solutions:

• Active swing-leg retraction can increase the high-speed limit of walking. Al-

though the reduced ground reaction force, caused by the inverted pendulum-

like motion of the CoM, can be a limiting factor in maximum walking speed,

transitioning from one step to other is also important. Without active retrac-

tion, heel-strike can be missed at fast speeds or short steps, and the biped will

switch from walking to running (even at speeds less than those predicted by a
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single inverted pendulum, e.g. [95]).

• For a given walking speed and step length, active leg retraction can reduce

the push-off impulse, and thus the actuator/muscle forces needed for push-off.

When the hip actuator applies a retracting torque to the swing leg, a reaction

force is applied on the hip and accelerates it forward. This reduces the push-off

impulse that is required to achieve a desired hip acceleration before heel-strike.

In contrast to push-off, the swing thrust impulse (the early-swing hip torque

that accelerates the swing leg motion) is almost independent of the retraction

impulse, and is mainly determined by the step length and average speed.

• Active swing-leg retraction can result in a net energetic saving, but not in

all cases. My analyses showed that the energetic utility of swing retraction

depends on the

1. step length,

2. speed,

3. actuator efficiencies for positive and negative work, and

4. contribution of active work in heel-strike energy dissipation.

As the ratio of negative work efficiency to positive work efficiency increases

(the ratio c2/c1 decreases, where c1 and c2 are the costs of unit positive and

negative work, respectively), or the contribution of actuator (negative) work in

the dissipations of CoM motion redirection increases, swing retraction becomes

energetically beneficial for a larger range of step lengths and speeds. Note:

although a retracting hip torque might be energetically inefficient in some gaits

(increases the net energetic cost), it still might be required to ensure heel-strike.

In other words, the application of a retraction torque in an energy-optimal gait

may not be due to its energetic advantage, but to make the gait feasible.
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9.3 Future Works

9.3.1 Gait Optimization with More Realistic Models:

Although the models used in this thesis are more complex than the minimalistic models

studied by other researchers (e.g. [25, 26, 47, 67]), they still involve many simplifications.

For example, in the first bipedal model (Fig. 2.1) the feet and the lower leg segments are

massless, joints are frictionless, the forces and torques can increase unboundedly at foot-

ground contacts, actuator forces/torques are fully independent of the corresponding joint

velocities, energy supplied to each actuator only depends on its mechanical work, etc. The

second bipedal model (Fig. 5.1) involves more simplifications, since it is a simplified version

of the first model.

In reality, none of the above simplifying assumptions is valid. A possible extension of the

current work is to modify these assumptions and consider a more realistic model of either a

robot or humans. For example, the ideal actuator model can be replaced with the model of

a physical actuator, such as a muscle or motor. This will realistically limit the peak force,

speed, and joint power, and will impose force-velocity constraints that are missing in the

current study (in most actuators the maximum torque decreases with speed). Furthermore,

with a more realistic actuator model a more accurate estimation of the energetic cost can be

obtained, since the energy supplied to the actuators can be directly calculated.

9.3.2 Experimental Verification of Model Predictions:

The analysis in this thesis led to a few predictions that need to be examined with human

subjects. For example, an apparatus of the type in Fig.4.1 can be used to evaluate the model

predictions of changes in human gait kinematics under simulated reduced gravity (Chapter

4). In fact, this experimental study is a part of my research plan for the near future.

Other possible experimental studies that can be inspired by this work include the explo-
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ration of the range of step length and speed for which swing-leg retraction is not observed

in human walking (Chapter 8), and investigating the relative timing of push-off force and

retraction torque in human walking (Chapter 6). These experimental studies can be used as

another validation of the hypothesis that energy minimization is the main governing principle

of human gait coordination.

9.3.3 Energy-Efficient Closed-Loop Control:

The actuator forces and torques calculated for different optimal gaits in this thesis are open-

loop policies and most likely do not result in any stable gait. In practice, feedback control

is necessary to achieve a desired steady gait with almost any mechanism. Now, the question

is how to achieve energy efficiency while guaranteeing stability/robustness?

A traditional approach to this problem is to use a given optimization-generated gait as

a reference trajectory and use high bandwidth feedback controllers to stabilize the system

around that trajectory. Although this technique is simple, it usually does not lead to an

energy-efficient gait. Why? Because efficiency in almost all optimal gaits mainly relies on

exploiting the natural dynamics of the system. Normally, the optimal policy is to let different

parts of the system move passively or with minimal force during some portion of the gait

cycle, and to apply the main control actions (actuator forces and torques) only at some

critical intervals (Chapter 3). However, high-gain controllers do not take advantage of the

natural dynamics of the system and continuously apply control actions (no passive intervals)

to drive any deviation from the reference trajectory to zero.

Another approach that seems more promising is to use a given feedback control scheme,

e.g. state feedback, with gains to be determined by the optimization. The set of the optimal

gains is the one that maximizes a proper performance measure that encodes both efficiency

and stability/robustness. For example, the optimization can search for the gains that result

in a minimum cost of transport with N (sufficiently large) successful steps. Obviously,
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the resulting efficiency (e.g. cost of transport) in this method depends on the implemented

controller scheme. The open-loop gaits generated using trajectory optimization can be used

as the baselines to evaluate the performance of a given controller in achieving efficient gaits.
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Appendix A

Equations of Motion of the Biped With Torso

A.1 Equations of Motion of the Unpinned Biped

The equations of motion of the unpinned biped are given by (2.3) and (2.4). The details of

the matrices and vectors in those equations are as below.

A.1.1 Inertia Matrix

M =




M1 M2 cos(θ1 − θ2) M3 cos(θ1 − θ3)

M2 cos(θ2 − θ1) M4 M2 cos(θ2 − θ3)

M3 cos(θ3 − θ1) M2 cos(θ3 − θ2) M1



, (A.1)

where

M1 = Ileg/Gleg
+mleg b

2 (1−mleg/mtot), (A.2)

M2 = mlegmtrs a b/mtot, (A.3)

M3 = −m2
leg b

2/mtot, (A.4)

M4 = Itrs/Gtrs
+ 2mtrsmleg a

2/mtot. (A.5)

A.1.2 Coriolis, Centrifugal, and Gravity Vector

c = c1 + c2, (A.6)

where

c1 =




(mleg b−mtot ℓ1(t) ) g sin(θ1 + γ)

−mtrs a g sin(θ2 + γ)

mleg b g sin(θ3 + γ)



, (A.7)
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and

c2 =




0 C1 sin(θ1 − θ2) C2 sin(θ1 − θ3)

C1 sin(θ2 − θ1) 0 C1 sin(θ2 − θ3)

C2 sin(θ3 − θ1) C1 sin(θ3 − θ2) 0







θ̇21

θ̇22

θ̇23



, (A.8)

with

C1 = a bmlegmtrs/mtot, (A.9)

C2 = −m2
leg b

2/mtot. (A.10)

A.1.3 Jacobian Matrices

J1θ =




(
ℓ1 −

bmleg

mtot

)
cos θ1

amtrs cos θ2
mtot

−bmleg cos θ3
mtot

(
ℓ1 −

bmleg

mtot

)
sin θ1

amtrs sin θ2
mtot

−bmleg sin θ3
mtot




, (A.11)

J21θ =




−ℓ1 cos θ1 0 ℓ2 cos θ3

−ℓ1 sin θ1 0 ℓ2 sin θ3


 (A.12)

A.1.4 Torque-Influence Matrix

B =




1 1 0 0

0 −1 −1 0

0 0 1 1




(A.13)

A.2 Equations of Motion in Single Support Phase

The equations of motion in single support phase are given by (2.10). The details of the

matrices and vectors in that equation are as below.
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A.2.1 Mass-Inertia Matrix

Mss=




Mss11 0 Mss13 Mss14

0 Mss22 Mss23 Mss24

Mss13 Mss23 Mss33 0

Mss14 Mss24 0 Mss44




(A.14)

where

Mss11 = mtot, (A.15)

Mss13 = mtrs a sin(θ1 − θ2), (A.16)

Mss14 = −mleg b sin(θ1 − θ3), (A.17)

Mss22 = Ileg/Gleg
+mtot ℓ

2
1 +mleg b (b− 2 ℓ1), (A.18)

Mss23 = mtrs a ℓ1 cos(θ1 − θ2), (A.19)

Mss24 = −mleg b ℓ1 cos(θ1 − θ3), (A.20)

Mss33 = Itrs/Gtrs
+mtrs a

2, (A.21)

Mss44 = Ileg/Gleg
+mleg b

2. (A.22)

A.2.2 Coriolis, Centrifugal, and Gravity Vector

css = c1ss + c2ss , (A.23)

where

c1ss =




mtot g cos(θ1 + γ)

(mleg b−mtot ℓ1(t) ) g sin(θ1 + γ)

−mtrs a g sin(θ2 + γ)

mleg b g sin(θ3 + γ)




, (A.24)
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and

c2ss =




0 Css12 Css13 Css14

−Css12 0 Css23 Css24

−Css13 −Css23 0 0

−Css14 −Css24 0 0







2 ℓ̇1 θ̇1

θ̇21

θ̇22

θ̇23




, (A.25)

with

Css1 = mleg b−mtot ℓ1, (A.26)

Css2 = −mtrs a cos(θ1 − θ2), (A.27)

Css3 = mleg b cos(θ1 − θ3), (A.28)

Css4 = mtrs ℓ1 a sin(θ1 − θ2), (A.29)

Css5 = −mleg ℓ1 b sin(θ1 − θ3). (A.30)

A.2.3 Torque-Influence Matrix

Bss =




1 0 0 0

0 1 1 0

0 0 −1 −1

0 0 0 1




(A.31)

A.3 Equations of Motion in Double-Support Phase

The equations of motion in double-support phase are given by (2.14). The details of the

matrices and vectors in that equation are as below.
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A.3.1 Mass-Inertia Matrix

Mds =




Mds11 Mds12 0 Mds14

Mds21 Mds22 Mds23 0

Mds31 Mds32 Mds33 0

Mds41 Mds42 Mds43 Mds44




, (A.32)

where

Mds11 = −sin(θ1 − θ3)

sin θ3
, (A.33)

Mds12 = −ℓ1 cos(θ1 − θ3)

sin θ3
, (A.34)

Mds14 =
ℓ2

sin θ3
, (A.35)

Mds21 = − mtot ℓ1
tan(θ1 − θ3)

, (A.36)

Mds22 = Ileg/Gleg
+mleg b (b− 2 ℓ1) +mtot ℓ

2
1, (A.37)

Mds23 =
mtrs a ℓ1 sin(θ2 − θ3)

sin(θ1 − θ3)
, (A.38)

Mds31 = mtrs a sin(θ1 − θ2), (A.39)

Mds32 = mtrs a ℓ1 cos(θ1 − θ2), (A.40)

Mds33 = Itrs/Gtrs
+mtrs a

2, (A.41)

Mds41 =
mtot ℓ2 −mleg b sin

2(θ1 − θ3)

sin(θ1 − θ3)
, (A.42)

Mds42 = −mleg ℓ1 b cos(θ1 − θ3), (A.43)

Mds43 =
mtrs ℓ2 a sin(θ1 − θ2)

sin(θ1 − θ3)
, (A.44)

Mds44 = Ileg/Gleg
+mleg b (b− ℓ2). (A.45)
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A.3.2 Coriolis, Centrifugal, and Gravity Vector

cds = c1ds + c2ds, (A.46)

where

c1ds =




0

− cos(θ1 + γ)

tan(θ1 − θ3)
mtot ℓ1 g + (mleg b−mtot ℓ1) g sin(θ1 + γ)

−mtrs a g sin(θ2 + γ)

mtot ℓ2 g cos(θ1 + γ)

sin(θ1 − θ3)
+mleg b g sin(θ3 + γ)




, (A.47)

and

c2ds =




Cds11 Cds12 Cds13 0 0

Cds21 0 Cds23 Cds24 Cds25

Cds31 0 Cds33 0 0

Cds41 0 Cds43 Cds44 Cds45







2 ℓ̇1 θ̇1

2 ℓ̇2 θ̇3

θ̇21

θ̇22

θ̇23




, (A.48)

with

Cds11 = −cos(θ1 − θ3)

sin θ3
, (A.49)

Cds12 =
1

sin θ3
, (A.50)

Cds13 =
ℓ1 sin(θ1 − θ3)

sin θ3
, (A.51)

Cds21 = mtot ℓ1 −mleg b, (A.52)

Cds23 =
ℓ1 (mtot ℓ1 −mleg b)

tan(θ1 − θ3)
, (A.53)

Cds24 =
mtrs ℓ1 a cos(θ2 − θ3)

sin(θ1 − θ3)
, (A.54)

Cds25 = − mleg ℓ1 b

sin(θ1 − θ3)
, (A.55)
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Cds31 = mtrs a cos(θ1 − θ2), (A.56)

Cds33 = −mtrs ℓ1 a sin(θ1 − θ2), (A.57)

Cds41 = −mleg b cos(θ1 − θ3), (A.58)

Cds43 =
mleg ℓ1 b sin

2(θ1 − θ3)− ℓ2 (mtot ℓ1 −mleg b)

sin(θ1 − θ3)
, (A.59)

Cds44 = −mtrs ℓ2 a cos(θ1 − θ2)

sin(θ1 − θ3)
, (A.60)

Cds45 =
mleg ℓ2 b cos(θ1 − θ3)

sin(θ1 − θ3)
. (A.61)

A.3.3 Torque-Influence Matrix

Bds =




0 0 0 0 0 0

− ℓ1
tan(θ1 − θ3)

− ℓ1
sin(θ1 − θ3)

1 1 0 0

0 0 0 −1 −1 0

ℓ2
sin(θ1 − θ3)

ℓ2
tan(θ1 − θ3)

0 0 1 1




(A.62)

A.4 Equations of Motion in Flight Phase

A.4.1 Coriolis and Centrifugal Vector

The equations of motion in flight phase are given by (2.15). In that equation

cfl = −mtot J
T

1θ g + c, (A.63)

where c and J1θ are given by (A.6) and (A.11). Based on (A.6), c = c1 + c2, where c1 and

c2 are given by (A.7) and (A.8). By inspection, it can be verified that −mtot J
T

1θ g+ c1= 0.

Therefore,

cfl = c2. (A.64)
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A.4.2 Torque-Influence Matrix

Bfl =




1 0

−1 −1

0 1




(A.65)

A.5 Jacobian Matrices

J1θ =
∂rA1/Gtot

∂qθ
=




(
ℓ1 −

bmleg

mtot

)
cos θ1

amtrs cos θ2
mtot

−bmleg cos θ3
mtot

(
ℓ1 −

bmleg

mtot

)
sin θ1

amtrs sin θ2
mtot

−bmleg sin θ3
mtot




, (A.66)

J2θ =
∂rA2/Gtot

∂qθ
=




−bmleg cos θ1
mtot

amtrs cos θ2
mtot

(
ℓ2 −

bmleg

mtot

)
cos θ3

−bmleg sin θ1
mtot

amtrs sin θ2
mtot

(
ℓ2 −

bmleg

mtot

)
sin θ3




(A.67)

J1ℓ1 =
∂rA1/Gtot

∂ℓ1
=




sin θ1

− cos θ1


 (A.68)

J2ℓ2 =
∂rA2/Gtot

∂ℓ2
=




sin θ3

− cos θ3


 (A.69)

J21θ =
∂rA2/A1

∂qθ
= J2θ − J1θ =




−ℓ1 cos θ1 0 ℓ2 cos θ3

−ℓ1 sin θ1 0 ℓ2 sin θ3


 (A.70)

J21ℓ1 =
∂rA2/A1

∂ℓ1
= −J1ℓ1 (A.71)
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J21ℓ2 =
∂rA2/A1

∂ℓ2
= J2ℓ2 (A.72)

h1=




(
ℓ1 − b

mleg

mtot

)
sinθ1 θ̇

2
1 +

mtrs

mtot
a sinθ2 θ̇

2
2 −

mleg

mtot
b sinθ3 θ̇

2
3 − 2 cosθ1 ℓ̇1 θ̇1

(
b
mleg

mtot

− ℓ1

)
cosθ1 θ̇

2
1 −

mtrs

mtot

a cosθ2 θ̇
2
2 +

mleg

mtot

b cosθ3 θ̇
2
3 − 2 sinθ1 ℓ̇1 θ̇1


 (A.73)

h2 =




−mleg

mtot

b sinθ1 θ̇
2
1 +

mtrs

mtot

a sinθ2 θ̇
2
2 +

(
ℓ2 − b

mleg

mtot

)
sinθ3 θ̇

2
3 − 2 cosθ3 ℓ̇2 θ̇3

mleg

mtot
b cosθ1 θ̇

2
1 −

mtrs

mtot
a cosθ2 θ̇

2
2 −

(
ℓ2 − b

mleg

mtot

)
cosθ3 θ̇

2
3 − 2 sinθ3 ℓ̇2 θ̇3




(A.74)

h21 = h2 − h1 (A.75)
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Appendix B

Simple Bipedal Model Without Torso

B.1 Details of the Dynamics

B.1.1 Equations of Motion in Passive Single Stance

To derive the EoM in passive single stance we can use the angular momentum balance (AMB)

equation of the entire mechanism about the support foot, and of the swing leg about the

hip joint. After normalizing these equations by mtot ℓ
2 and δ mleg b ℓ, respectively, we can

express them in the standard form of (5.11) with the following matrix and vectors.

M=




1+2 (δ − 1− cosφ)λ (δ − cosφ)λ

1− (1/δ) cosφ 1


 (B.1)

c =



λ φ̇ (2θ̇ + φ̇) sinφ

− sinφ θ̇2/δ


+ (g/ℓ)




( sin(φ+ θ) + sinθ ) λ− sinθ

sin(φ+ θ)/δ


 (B.2)

Here, λ=mleg b/(mtot ℓ), and g is the gravitational acceleration.

B.1.2 Velocity Mapping of Impulsive Push-off and Retraction

As mentioned in section 5.3.2 the velocity mapping of the impulsive push-off and retraction

can be derived using the momentum conservation/jump equations. However, to show the

properties of the mapping matrix, it is preferred to derive the mapping equation using the

EoM. Because the mapping is unique, both methods give the same result.

The EoM in (5.11) is not applicable during push-off and retraction, because in that

equation τ =F = ℓ̈= ℓ̇=0. The extended EoM for the more general case in which the
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stance-leg length ℓ is not necessarily constant and the hip and stance-leg actuators can

apply force/torque can be obtained from (i) linear momentum balance equation of the whole

mechanism along the stance leg, (ii) angular momentum balance (AMB) equation of the

swing leg about the hip joint, and (iii) AMB equation of the whole mechanism about the

stance foot. After rearrangement, these three equations can be written in the following

standard form:

Me(qe) q̈e + ce(qe, q̇e) =




F

τ

0



, (B.3)

where qe(t) = [ ℓ(t), φ(t), θ(t) ]T, and Me and ce are the extended versions of M and c in

(5.11). The extended mass-inertia matrix Me is symmetric and positive definite.

Since the velocities are always bounded, and qe(t) remains unchanged during the in-

finitesimal period of impulsive push-off and retraction, between t−pr and t
+
pr, integrating both

sides of (B.3) over the infinitesimal interval (t−pr, t
+
pr) results in

Me,t−pr
·
(
q̇e,t+pr

− q̇e,t−pr

)
=




P

−R

0



, (B.4)

where q̇e,t−pr
= q̇e(t

−
pr), q̇e,t+pr

= q̇e(t
+
pr), and

Me,t−pr
= Me(qe,t−pr

) =




M11 M12 M13

M12 M22 M23

M13 M23 M33



, (B.5)

with

M11 = mtot, (B.6)

M12 =M13 = mleg b sin 2α, (B.7)

M22 = mleg b ℓ δ, (B.8)
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M23 = mleg ℓ b (δ − cos 2α) , (B.9)

M33 = mtot ℓ
2 +mleg ℓ b

(
2δ − 4 cos2α

)
. (B.10)

Rearranging (B.4) gives the velocity mapping of the impulsive push-off and retraction as

q̇e,t+pr
= q̇e,t−pr

+M−1

e,t−pr




P

−R

0



. (B.11)

Now, given

M−1

e,t−pr
=




J11 J12 J13

J21 J22 J23

J31 J32 J33



, (B.12)

and considering t+pr≡ t−h , we can simplify (B.11) as




ℓ̇t−
h

φ̇t−
h

θ̇t−
h



=




0

φ̇t−pr

θ̇t−pr



+




J11 −J12

J21 −J22

J31 −J32







P

R


 (B.13)

The above velocity mapping should be identical to (5.14), so




J11 −J12

J21 −J22

J31 −J32



=




Jℓ̇/P Jℓ̇/R

Jφ̇/P Jφ̇/R

Jθ̇/P Jθ̇/R



. (B.14)

The matrix M−1

e,t−pr
inherits the symmetry and positive definiteness properties from the mass-

inertia matrix Me. In a positive definite matrix all diagonal elements are positive. Also,

based on the Sylvester’s criterion [98], all leading principal minors of a positive definite matrix

are positive. The kth leading principal minor of a matrix is the determinant of its upper-left
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k by k sub-matrix. Therefore, for all walking gaits J11> 0, J22> 0, and J11 J22− J21 J12> 0,

or equivalently

Jφ̇/R < 0, (B.15)

Jℓ̇/P > 0, (B.16)

Jℓ̇/R Jφ̇/P − Jℓ̇/P Jφ̇/R > 0. (B.17)

Moreover, the symmetry of M−1

e,t−pr
implies J12 = J21, or equivalently,

Jφ̇/P = −Jℓ̇/R. (B.18)

The push-off impulse P pushes the hip forward, inducing a clockwise (negative) torque on

the swing leg which tends to decrease φ̇. This, together with (B.18) implies

Jφ̇/P = −Jℓ̇/R < 0. (B.19)

Similar to the above equation, the inequalities (B.15) and (B.16) can also be derived intu-

itively by noticing that the push-off impulse increases ℓ̇ and a retracting hip torque (R> 0)

tends to decreases φ̇.

B.1.3 Heel-Strike Velocity Map

Velocities just before and just after the collisional heel-strike are related to each other by con-

servation of angular momentum of the swing leg about the hip and of the whole mechanism

about the leading foot. These equations can be written in the following form:

H+



θ̇t+

h

φ̇t+
h


 = H−




θ̇t−
h

φ̇t−
h

ℓ̇t−
h



, (B.20)

where

H− =
[
h−
1 h−

2 h−
3

]
, (B.21)

221



H+ =
[
h+
1 h+

2

]
, (B.22)

and

h−
1 =




mleg b ℓ (δ − 1)

2mleg ℓ b (δ−2 cos2α) +mtot ℓ
2 cos 2α


 , (B.23)

h−
2 =




0

mleg b ℓ (δ − 1)


 , (B.24)

h−
3 =




0

(mleg b−mtot ℓ) sin 2α


 , (B.25)

h+
1 =




mleg b ℓ (δ − cos 2α)

mtot ℓ
2+2mleg b ℓ (δ− 2 cos2α)


 , (B.26)

h+
2 =




−mleg b ℓ cos 2α

mtot ℓ
2 +mleg b ℓ (δ − 2− cos 2α)


 . (B.27)

The post-heel-strike angular velocities can be directly related to the velocities at the end of

passive swing using the velocity map in (5.19), where

Ah =(H+)−1H−




1 0

0 1

0 0



, (B.28)

hP = (H+)−1H−M−1

e,t−pr




1

0

0



, (B.29)
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hR = −(H+)−1H−M−1

e,t−pr




0

1

0



, (B.30)

and Me,t−pr
is given by (B.5)-(B.10).

B.1.4 Swing Thrust Velocity Map

The mapping matrix in (5.23) associated with the impulsive swing thrust is

t =



Jθ̇/S

Jφ̇/S


 = M−1




0

1

δ mleg b ℓ


 =




cos 2α− δ

mtot ℓ2 (λ (− cos2(2α) + δ2 − 2 δ) + δ)

1 + (2δ − 4 cos2α) λ

mleg ℓ b (λ (− cos2(2α) + δ2 − 2 δ) + δ)


 , (B.31)

where the mass-inertia matrix M is given by (B.1) evaluated at φ=−2α.

B.2 Required Swing-Thrust and Push-Off Impulse for Periodic Walking

Combining equations (5.12), (5.13), (5.19), (5.22)-(2.24) and solving for S and P gives (5.26)

and (5.27) where


h1

h2


 =

[
Et hP

]−1

(E−Ah)



f1(α, V )

f2(α, V )


 , (B.32)



JS/R

JP/R


 = −

[
Et hP

]−1

hR, (B.33)

where Ah, hP and hR are given by (B.28)-(B.30), scalar functions f1 and f2 relate θ̇0 and

φ̇0 to α and V and are given by (5.12) and (5.13), vector t is given by (B.31), and

E =




0 1

1 0


 . (B.34)
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