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Abstract 


The complexity of transportation systems often dictates the use of detailed simulation-based 

dynamic traffic assignment (DTA) models to replicate the complex traffic flow dynamics. 

Recent advancements in computer technology have led to the development of high-fidelity 

simulation models; however, in order to be used as reliable tools, the simulation input parameters 

should be properly calibrated in order to replicate prevailing traffic conditions. Thus, this thesis 

has focused on the off-line simultaneous calibration of demand and supply parameters of the 

DTA model in a microscopic context that can capture the interactions between all parameters. 

The demand parameters include dynamic OD flows, while the route choice and driver behavior 

model parameters are considered as supply parameters. The calibration process has been 

formulated as a multi-objective optimization problem that incorporates the traffic data from 

multiple sources, ranging from traditional loop detector data to traffic data from recent emerging 

technologies, and allocates relative weights to different terms of the objective function.  

A genetic algorithm (GA) is selected as a suitable solution algorithm for the resulting nonlinear 

stochastic optimization problem. The application of the proposed methodology was implemented 

in a synthetic case study as well as a complex network in the business district core of downtown 

Toronto, Ontario, Canada. For this network, the emerging traffic surveillance data from in-

vehicle navigation system technology provide an enrich source of disaggregate speed data. 

The empirical results from various experiments support the hypothesis that the incorporation of 

the in-vehicle navigation system speed data can significantly improve the calibration accuracy 

and minimize the dependency of the calibration process on the historical OD flows. The quality 

of the solution and convergence speed of a GA is further enhanced by dividing the GA 
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population into multiple demes and running the GA on a high-performance computer (HPC) 

cluster with multiple processors (i.e. parallel distributed GA, PDGA).In addition, this research 

takes a further step towards analyzing the temporal variations of the driving behavior of 

travelers, especially during different time intervals of peak periods. 

Keywords: Off-line simultaneous calibration, dynamic traffic assignment (DTA), high-

performance computer (HPC), in-vehicle navigation system technology, driving-behavior 

parameters. 
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Chapter 1: INTRODUCTION 


1.1 Background 

Traffic congestion is one of the major sources of energy consumption and pollution in urban 

areas, which are characterized by a high concentration of activities that generate high demand 

for travel, as derived from the complex spatial and temporal interaction of land uses and 

activity nodes. Due to fiscal, land and environmental constraints, the building of more roads 

is often not a viable solution. 

Intelligent transportation systems (ITS) offer instrumental strategies in achieving sustainable 

transportation solutions without additional right-of-way costs. ITS rely on control, 

management and information dissemination to reduce network congestion. Traffic control 

and management systems optimize the efficiency of traffic networks by responding to the 

dynamic and random nature of traffic almost instantaneously. ITS solutions have been shown 

to be capable of reducing traffic congestion and, thus, energy consumption and pollution 

emission.  

ITS technologies make use of recent developments in field sensing and computation to better 

manage the available roadway infrastructure and obtain traffic information over a wide 

spatial area at a relatively low cost. Traffic sensing devices, such as inductive loop detectors, 

Bluetooth technology, video cameras, in-vehicle navigation systems and mobile phone 

probes with GPS, have made the task of traffic control and management much more 

tractable.  

In order to utilize these advanced traffic control and management systems, traffic control 

centers (TMCs) collect traffic data, which are fed into a traffic simulation model to be 

calibrated to provide estimation and prediction of traffic conditions. Traffic simulation 

models rely on dynamic traffic assignment (DTA), as a decision support system, to develop 

adaptive control and incident management schemes and to provide guidance, routing policies 

and traffic information that are capable of achieving system-wide objectives.  

DTA is the process of estimating the spatial and temporal progression of traffic flow in a 

transportation network to reflect the traffic behavior. DTA takes into consideration the 
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dynamic nature of travel demand and the likely changes in the transportation network to 

estimate the performance of the network. This latter information is used as a decision tool to 

develop appropriate advanced traffic management systems (ATMS) and advanced traveler 

information systems (ATIS) to alleviate congestion. Users may respond to guidance through 

trip rescheduling, mode change and/or rerouting. ATMS strategies, such as adaptive ramp 

metering strategies, also require DTA to determine the optimal on-ramp diversion rates for 

travelers between a given origin and destination. DTA is also needed for the control of traffic 

signals and optimization of adaptive control systems. In general, DTA systems are viewed as 

the solution to the problem of accurate traffic estimation and prediction. 

1.2 Dynamic Traffic Simulation Models 

The complexity of transportation systems often dictates the use of detailed simulation-based 

DTA models. DTA simulation modeling, as extensively reviewed in the literature, is an 

increasingly popular and effective tool for analyzing transportation problems that are not 

amenable to study by mathematical programming, optimal control, and variational inequality 

formulations [ 1]. Simulation-based DTA models use a traffic simulator to replicate the 

complex traffic flow dynamics, such as traffic flow propagation and vehicular movements.  

Generally, traffic simulation models can be classified into three categories based on the level 

of details regarding driver behavior and traffic streams: macroscopic, mesoscopic and 

microscopic. Macroscopic models characterize the traffic stream as a whole and consider 

traffic interactions as fluid dynamics. Driver behavior elements, such as route choice and 

departure times, are not considered in these approaches. Popular macroscopic commercial 

software packages are VISUM [ 2], EMME/2 [ 3], and METANET [ 4].  

At the other end of spectrum are microscopic models, which characterize the behavior of 

individual vehicles within the traffic stream, or specific pairs of vehicles within the traffic 

stream. These models consider driver behavior, such as lane changing, car following and 

merging maneuvers. Among the microscopic software packages, CORSIM [ 5], PARAMICS 

[ 6], AIMSUN [ 7], MITSIMLab [ 8,  9], VISSIM [ 10,  11] and TransModeler [ 12] are the most 

recently developed, with NETSIM, TRAF-NETSIM, INTRAS and FRESIM as early 

developed micro-simulation packages [ 13].  
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Mesoscopic models combine driver behavior characteristics from microscopic models with 

traffic relationships as the interactions between speed, density and flow from macroscopic 

modes. The most recently developed software packages for mesoscopic modeling are 

DynaMIT [ 14,  15], DYNASMART [ 16,  17], Dynameq [ 18,  19], and DynusT [ 20,  21]. 

1.3 Need for DTA Model Calibration 

Recent advancements in computer technology have led to the development of high-fidelity 

simulation models; however, in order to be used as reliable tools, the simulation models 

should be properly calibrated to replicate prevailing traffic conditions. 

The aim of DTA calibration is the minimization of the discrepancy between the observed and 

simulated traffic conditions, in order to closely replicate drivers’ behaviors. The output of a 

calibration process is the updated estimates of simulator parameters that are used as inputs 

for a traffic estimation framework. Although DTA models provide an abstraction of actual 

demand and supply parameters, their output is highly dependent on the accuracy of the 

estimated input parameters, which are divided into two types: demand parameters and supply 

parameters.  

Travel behavior modeling and origin-destination (OD) demand estimation are considered in 

the determination of the demand parameters. Supply parameters simulate traffic dynamics, 

queue formation, dissipation and spillback and are calibrated in either a microscopic or 

mesoscopic context. The interaction between the supply and the demand is modeled through 

the traffic assignment process that simulates the propagation of traffic (demand) on the 

physical network (supply) taking into consideration driver behavior parameters.  

To constantly maintain the internal representation of the traffic network consistent with that 

of the actual network, DTA calibration has to be a periodic adjustment process that is based 

on frequently updated traffic data. DTA model calibration is thus performed using 

surveillance data of the prevailing conditions, such as sensor data, global positioning systems 

(GPS) tracking devices, and video surveillance. 
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1.4 Motivation and Problem Statement 

There is extensive literature related to calibration of DTA models, on both the estimation of 

OD flows as well as the calibration of supply parameters. However, most of the studies in 

this area treated each model’s parameters separately and focused on utilization of particular 

type of sensor data, most commonly link-flow counts. These studies were followed by 

research efforts to jointly calibrate the DTA model parameters in an iterative sequential 

fashion and jointly approach. The former calibration framework failed to capture the 

interactions between the demand and supply parameters and was found to be computationally 

inefficient. In contrast, the latter approach was highly dependent on historical OD flows, 

which may lead to misleading solutions. In other words, this technique is mostly applicable 

when the starting point is close to the optimal one. The readers are referred to Chapter 2 for a 

detailed overview of the literature related to the previous studies on the calibration of demand 

and supply parameters of the DTA models. 

In the DTA calibration process, several types of information extracted from various sources 

need to be incorporated to have a reliable estimation framework. In recent years, emerging 

wireless communication technologies and the widespread use of mobile devices and in-

vehicle navigation systems provide the opportunity to automatically obtain traffic 

information over a wide spatial area at significantly lower cost than using dedicated sensors. 

These emerging technologies provide a great opportunity to overcome the dependency of the 

OD estimation on historical OD flows as the starting points. A large set of these technologies 

can be categorized as in-vehicle navigation systems and automatic vehicle identification 

(AVI), the data from which form the base database of this study and enrich the accuracy of 

the calibration process. 

The calibration of the DTA model parameters can be formulated as a multi-objective 

optimization problem, which has the flexibility to accommodate any type of traffic 

measurements into the calibration framework, ranging from traditional loop detector data to 

data from in-vehicle navigation systems. The objective function can be represented by a 

goodness-of-fit function that measures the closeness between the observed (or historical) and 

simulated traffic data. The objective function is subject to a number of constraints, including 

the allowable lower and upper bounds of the demand and supply parameters. Moreover, the 
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fitted (or simulated) traffic measurements are a function of the calibrated parameters and 

network geometry.  

This thesis focuses on the calibration of DTA models using the traditional loop detector 

count and turning movement data, the speed data from AVI sensors, and data from in-vehicle 

navigation systems. The general calibration model was formulated as a simultaneous 

estimation of all the demand and supply variables, including OD flows, route choice model 

parameters and driver behavior parameters. A genetic algorithm (GA) was selected as the 

solution tool to jointly estimate OD flows and identify the supply model parameters. The 

Paramics microscopic DTA system was used to demonstrate the feasibility of the proposed 

calibration methodology. The application of the proposed methodology was implemented in 

a synthetic case study as well as a complex real-world network in the business district core of 

downtown Toronto, Ontario, Canada. The implantation of the calibration framework and the 

results obtained from the case studies are briefly described in the next section.   

1.5 Implementation Framework and Contributions 

This thesis is aimed at the development of a GA-based multi-criteria optimization framework 

for the simultaneous calibration of demand and supply parameters in DTA. During the last 

decade, there has been growing interest in the application of GAs for data fusion in the large-

scale optimization problems. This is mainly due to the fact that GAs are inherently parallel in 

nature and are able to deal with difficult optimization problems having complex nonlinear 

and/or non-differentiable objective functions with complicated constraints and non

homogeneous and noisy information.  

An important property of GAs is that they can be spatially distributed among multi-deme 

populations, as opposed to a single deme chromosome pool to improve the efficiency of the 

algorithm. In addition, GA can be run in parallel processors to speed up the convergence. 

Therefore, three types of GAs were evaluated in terms of comparative performance: a simple 

GA (SGA), a distributed GA (DGA) among multiple processors in a high-performance 

computer (HPC), and a parallel distributed GA (PDGA), which refers to a GA’s population 

structure running in multiple processors. The three algorithms were compared for Paramics’ 
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calibration driver behavior parameters and estimation of dynamic OD flows using a synthetic 

and a large-scale complex network.  

For the synthetic network, a number of calibration experiments were performed to 

demonstrate the feasibility of the proposed simultaneous calibration process, identify the 

effect of augmenting the GA operator with parallelization and distrusted computing schemes, 

and evaluate the effect of adding AVI data into the calibration process. Based on the results 

obtained from the synthetic network, the proposed methodology was implemented in a 

complex large-scale network using the traffic data from various sources. Special 

considerations were given to the enriched speed data from in-vehicle navigation systems to 

improve the calibration accuracy and minimize the discrepancy between the observed traffic 

data and their simulated counterparts. Several simulation experiments were performed to 

achieve the objectives of this chapter. 

In summary, this research makes concrete contributions to the state of the art, specifically: 

	 Development of the simultaneous calibration of complex DTA demand and supply 

parameters in a microscopic model that considers the complex and nonlinear 

interactions between demand and supply parameters and minimizes the dependency 

of the calibration approach on the historical OD flows. 

	 Development of a generic framework capable of incorporating several types of traffic 

information derived from different sensors/sources and with different levels of 

accuracy. The incorporation of the traffic data from multiple sources into the global 

optimization problem results in a more complete representation of the state-of-the

traffic network, takes advantage of all surveillance data, and thereby reducing the 

possibility of suboptimal solutions. 

	 Creation of reliable off-line dynamic OD flows and Paramics model parameters that 

can be used as a priori estimates for on-line calibration process. In other words, the 

outputs of the off-line calibration process can be used for real-time OD estimation 

along key corridors, incident management and reduction of unexpected congestions 

and, ultimately, provision of real-time traffic data to travelers. 
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	 Incorporation of the weighting factors given to different components of the objective 

function into the calibration process based on the reliability of different sources, in 

contrast to the traditional sensitivity analysis (i.e. trial and error) methodology. 

	 Application of distributed computing with a HPC to expedite the GA calibration 

process for large-scale complex transportation problems during various time intervals. 

	 Improvement in the calibration accuracy and convergence speed of the GA by 

parallelizing the population to multiple slaves (parallel GA, PGA) and distribution 

within an HPC (i.e. PDGA). While the application of PGA and DGA were studied in 

the literature, the simultaneous incorporation of the two extensions of the GA (i.e. 

PDGA) and their joint impact on the quality of the solution and convergence speed 

have not yet been studied in a large-scale network. 

	 Significant improvement in the calibration accuracy with the inclusion of the enriched 

speed data from in-vehicle navigation system technology and minimize the 

dependency of the calibration accuracy on historical OD flows. 

	 Sensitivity analysis of the driver behavior and route choice model parameters during 

peak periods. This research takes a further step towards analyzing the temporal 

variations of the driving behavior of travelers, especially during different time 

intervals of peak periods. 

	 Incorporation of the enriched raw speed data without aggregation for smaller links 

into the calibration process reduce the dependency of the calibration process on 

historical OD flows in a medium-sized network and improve the calibration accuracy 

without having a major impact on the computational time for the subject network. 

Moreover, the incorporation of the raw speed data into the calibration process can 

further diminish the dependency of the calibration process on the historical OD flows. 
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1.6 Thesis Outline 

The remainder of this document is organized as follows. Chapter 2 presents a detailed review 

of the DTA model calibration approaches and identifies the strengths and limitations of 

recent work in this area. In Chapter 3, the proposed GA-based simultaneous demand and 

supply calibration framework is formulated. In addition, an extension of the calibration 

methodology applicable for the real-world network is described.  

Chapter 4 presents an overview of the fundamental operational mechanisms of GA and 

elaborates on the advanced GA-based methods for large-scale optimization problems, based 

on distribution and parallelization schemes. The calibration results from the synthetic case 

study are presented in Chapter 5, while Chapter 6 applies the framework to calibrate a large-

scale traffic network and illustrates the scalability of the methodology in various 

experimental studies. Finally, conclusions, contributions and directions for further research 

are outlined in Chapter 7. 
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Chapter 2: LITERATURE REVIEW 


The literature related to the calibration of DTA models can be categorized based on: 1) 

calibration of the demand models (or estimation of time-dependent demand), and 2) 

calibration of the supply models. Travel behavior modeling and origin destination (OD) 

estimation problems are considered in the determination of demand models. Supply models 

simulate traffic dynamics, queue formation, dissipation and spillback. The calibration of 

supply models consists of the estimation of capacities and link performance function for 

mesoscopic and macroscopic models and the estimation of the parameters of car following, 

lane changing and driver aggressiveness and of awareness parameters for the microscopic 

context. 

Most of the early research literature on DTA model calibration has treated the various 

parameters to be calibrated independently. While such a calibration approach is viewed as 

only a part of the overall problem of DTA model calibration, the experience from such 

analysis has provided valuable directions for the joint estimation of all relevant DTA model 

parameters. Earlier calibration efforts were based on an iterative approach, followed by more 

recent work on simultaneous calibration framework.  

The first section of the literature review starts with separate short reviews of the demand 

estimation approaches and the calibration of the supply parameters. This is followed by the 

past efforts in DTA model calibration, incorporating both demand and supply parameter 

estimation. The final section provides a summary of literature discussion in this chapter. 

2.1 The DTA-Based Demand Calibration Studies 

In general, the DTA-based OD estimation problem is expressed through a fixed-point model 

[22]. In the literature, the specific case of bi-level programming optimization methods is 

considered. In this traditional OD structure, the upper level problem estimates the OD matrix, 

assuming known OD path flows; whereas, the lower level solves an assignment problem 

assuming that the OD demand matrix, which is obtained from the previous step in the upper 

level module, is fixed. This bi-level OD structure may result in inconsistency between the 

link flow proportions and the OD estimation in congested conditions.  
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This problem of inconsistency between the assignment matrix and the OD estimation 

problem is addressed by: 1) using the numerical gradient-based methods [23, 24], 2) 

formulating the OD estimation as a variational inequality [25, 26] or 3) using meta-heuristic 

approaches, such as evolutionary algorithms (EA) [27, 28], simulated annealing (SA) [29] 

and simultaneous perturbation stochastic approximation (SPSA) [30, 31].  

Most of these research efforts were focused on the offline estimation of the demand; 

however, Zhou and Mahmassani [32] developed the OD demand consistency checking 

system to update the model online. The authors proposed predictive and reactive approaches 

to minimize the deviations between real-world measurements and simulated states by 

adopting a Kalman Filtering (KF) framework for the development of a prediction-correction 

methodology in real-time DTA. 

The determination of the best configuration of sensor locations (i.e., the Network Sensor 

Location Problem, NSLP), so that most of the unobserved path flows are captured, would 

improve the accuracy of the OD estimation problem. Hu et al. [33] attempted to 

independently solve this problem without assumptions of prior knowledge on model 

parameters and/or OD demands. A “basic link” method was proposed to determine the 

locations of vehicle sensors, by using the link path incidence matrix to express the network 

structure and then identifying its “basis” in the context of matrix algebra. The application of 

the proposed approach was demonstrated in some synthetic and real networks. 

In order to address one of the practical aspects of deploying DTA for planning applications, 

Zhou et al. [34] proposed a two-stage subarea demand estimation procedure to provide time-

dependent OD trip information for subarea analysis. In the first stage, path flow patterns in 

the complete network are generated to calculate the OD demand in the subarea network using 

DYNASMART-P software. In the second stage, the OD demand information is combined 

with available real-world traffic observations to update the subarea OD demand matrix.  

In a recent work, Verbas et al. [35] addressed another practical aspect of DTA application in 

large-scale OD calibration. The authors proposed a modified bi-level approach for the OD 

estimation problem, in order to reduce the number of parameters, as described in [23] and 

[24], overcome the obstacles for large-scale networks and estimate multiple vehicle classes, 
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along with an approach to reduce the time and memory requirement of the lower-level 

problem. The ordinary least squares upper level problem is solved using the reduced gradient 

/ quasi-Newton methods offered in MINOS software and the interior point / conjugate 

gradient methods in the KNITRO solver package, which are widely used for solving large 

constrained nonlinear problems. 

2.2 The DTA-Based Supply Calibration Studies 

The supply calibration component in DTA models has been mostly focused on calibrating 

only speed-density models, examples of which include the traffic flow models in 

DYNASMART, DynaMIT and DYNAMEQ software packages. A new mesoscopic 

modeling concept, the vehicle-based anisotropic mesoscopic simulation (AMS) model, has 

been proposed [36, 37]. This concept is related to different types of merges/diverges, but 

departs from the typical link-based queue-server model. With AMS, each vehicle maintains 

its own prevailing speed. This feature is different from certain previous models using the 

speed-density model, in which all moving vehicles on the same link travel at the same speed. 

In the calibration process, vehicle trajectory data from the Next Generation Simulation 

(NGSIM) research program was incorporated [37]. Two modified Greenshield’s models, 

which are used by the supply simulator model of DynaMIT and DYNASMART, were used. 

The results satisfactorily validated the AMS model.  

Tavana and Mahmassani [38] used the transfer function methods (bivariate time series 

models) to estimate dynamic speed-density relations from typical detector data. The resulting 

model is descriptive rather than behavioral in estimating speed and, consequently, predicting 

its value for future time intervals. Huynh et al. [39] extended this work to incorporate the 

transfer function model into a DTA simulation-based framework. The estimation of speeds 

using the transfer function model is implemented as an adaptive process, where the model 

parameters are updated online, based on the prevailing traffic conditions. A nonlinear least 

squares optimization procedure is also incorporated into the DTA system to enable the 

estimation of the transfer function model parameters online. The scope of this study, 

however, was limited to updating speeds on a single link using synthetic data; therefore, the 

model was not validated with real data. 
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Qin and Mahmassani [40] addressed these shortcomings by evaluating the same model with 

actual sensor data from several links of the Irvine California network. From the numerical 

results, the performance and robustness of the transfer function model was, in general, found 

to be superior to the static modified Greenshield’s model. 

2.3 Joint Demand and Supply Calibration Efforts 

The literature for demand-supply calibration for a simulation-based DTA system is rather 

limited, which can be attributed mainly to the fact that DTA is relatively a new field of 

research and most studies have focused on developing the theoretical foundations for 

modeling. In addition, limited traffic data has made it difficult to employ the calibration of 

the DTA model in a system-level approach. Thus, the primary studies in this context treat 

calibration of different parameters independently. However, the independent calibration 

approach is not efficient and optimal, as it ignores the presence of interaction among the 

various demand and supply parameters.  

The joint calibration of DTA models can be categorized into two groups of research efforts. 

The first group focused on an iterative demand-supply calibration approach, which was 

followed by a few recent studies that have investigated the joint calibration of demand and 

supply. In what follows, the iterative calibration of the demand and supply parameters are 

first reviewed, followed by the simultaneous calibration efforts.  

2.3.1 Iterative Demand and Supply Calibration 

Figure 2.1 presents a general flowchart for the iterative demand and supply DTA calibration 

model. As the figure indicates, estimation of the route choice and driver behavior parameters 

is conducted with available disaggregate data (e.g., vehicle trajectory, surveys), independent 

of the overall simulation framework. In the second step, aggregate data (e.g., average travel 

speeds, flow information) are used to fine-tune the parameters and calibrate the general 

parameters in the simulator. The OD flows and route choice model parameters are calibrated 

first, followed by calibration of the driver behavior parameters. These two steps are iterated 

until a convergence criterion is met.  
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Figure 2.1 Flowchart of iterative demand and supply calibration 
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Doan et al. [41] conducted one of the earliest studies related to DTA model calibration for a 

system-level approach. The authors attempted to develop a conceptual framework for a 

traffic monitoring system that maintains a representation of the traffic state of a network 

consistent with that of an actual network. To minimize the discrepancy between the actual 

state and the predicted one, the authors adopted a combination of online and offline 

adjustment approaches. In real-time DTA, the time frame is divided into several roll periods 

(i.e., estimation intervals), for which the DTA process is carried out. Every roll period that 

involves DTA runs is called a rolling horizon real-time DTA (RT-DTA) process. The authors 

categorized the error sources from the rolling horizon method as associated with the demand 

estimation, path estimation, traffic propagation, internal traffic model structure, and online 

data observation. For that purpose, the authors proposed a monitoring system that 

incorporates both online and offline adjustment modules.  

Real-time traffic surveillance, a real-time traffic simulator and a proposed reactive traffic 

propagation adjustment, formulated as a PID (proportional, integral, derivative) feedback 

controller, are incorporated into the online module. This module constantly computes the 

deviations between the actual observed network’s traffic measures, such as speed, and the 

internal simulated measures of the simulator and corrects the errors in the simulator caused 

by poorly captured traffic propagation. The error sources include OD demand estimation 

errors, path estimation errors, traffic propagation errors, internal traffic model structure 

errors, and traffic surveillance and estimation errors. The error sources are adjusted by a 

heuristic approach using PID feedback control [41].  

The reactive traffic propagation adjustment module and the PID tuning were tested on a test 

network through case simulations using DYNASMART software. The authors concluded 

that the simulator with the built-in reactive traffic propagation adjustment module performed 

significantly better than without that module. This study of Doan et al. [41] has made an 

important contribution in identifying the need for calibrating both demand and supply 

parameters in an online model refinement process. However, the authors did not incorporate 

OD flows and supply parameter estimation together in an online calibration framework. 
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In a similar study, Peeta and Bulusu [42] developed a rolling horizon framework for ensuring 

operational consistency of online DTA. The authors defined consistency in terms of the 

difference between the predicted and actual time-dependent path flows. Accordingly, the 

authors formulated the problem as a constrained least-squares model (CONS), which is 

expressed as a fixed-point problem, and is solved as a bi-level framework. Simulation 

experiments based on a small synthetic network were conducted to analyze the effectiveness 

of the proposed solution algorithm that the authors called generalized singular value 

decomposition (GSVD). The experiments emphasized the reliability and stability of 

addressing the online consistency problem, in terms of link and path travel times [42]. 

Although the proposed solution algorithm showed promising results in using the synthetic 

data, the feasibility of the approach in a real network using real-time traffic data was not 

investigated. 

He et al. [43] developed an integrated online and offline calibration procedure for an 

analytical dynamic traffic model by minimizing the discrepancy between the model’s output 

and real-world traffic conditions. In this approach, the authors again attempted to identify 

error sources in a DTA model. The authors only considered three components in their study: 

1) dynamic link travel time functions, 2) route choice, and 3) flow propagation models. It is 

to be noted that OD estimation is absent from the calibration process. Further, the authors 

suggested that the calibration of the route choice model should take place offline, due to the 

large amount of the data and the resulting computational limitations. The calibration process 

proposed by the authors is an iterative approach that sequentially considers the three 

components until convergence. The authors noted that the calibration process continued until 

the model parameters represented the true states “reasonably well”. However, the 

convergence criteria were not clearly defined by the authors. 

In a subsequent paper, He and Ran [44] attempted to enhance and expand the approach 

developed in [43]. The authors developed a process to calibrate and validate the dynamic 

route choice and flow propagation components in a DTA system [44]. The authors used the 

maximum likelihood technique to calibrate the DTA model and relate the known factors 

(time-dependent OD, network real-time link traffic counts), and unknown parameters 

(dynamic route choice probability). The proposed approach was tested on small and larger 
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networks. The authors pointed out that it is possible to calibrate a DTA model with 

measurement errors and insufficient traffic data (i.e., when real-time traffic counts are 

available on only a few links in the network). However, the maximum likelihood estimation 

for the route choice model requires disaggregate data, which is a major limitation to the 

practical application of the proposed approach. Similar to their previous study [43], a priori 

knowledge of dynamic OD matrices is still an important requirement in their more recent 

research. Furthermore, this research simplified the demand estimation by enforcing temporal 

independence of OD flows between all OD pairs. 

The above-reviewed research works have made important advancements to the challenging 

online DTA problem. However, none of these studies attempted to simultaneously calibrate 

the OD estimation, route choice and supply models.  

Hawas presented a framework for the calibration of a dynamic traffic simulation model that 

can be systematically used to identify and quantify major sources of simulation errors [45]. 

These calibration errors were identified by allocating a rank (integer index) to each of the 

model processes based on a heuristic ranking approach that was based on the order of the 

process execution within the model. In other words, the processes with the least rank and, 

hence, fewer internal interactions, were calibrated first. The calibration methodology was 

used to calibrate a small test network simulated in microscopic traffic simulation system for 

integrated modeling and analysis (MITSSIMA) [46]. The presented approach was 

successfully tested on a sample network with given dynamic OD flows and two calibrated 

parameters (speed-density functions).  

The author conducted an intensive sensitivity analysis by individually perturbing each 

variable to study its impact on the model’s output. However, the computational overhead 

would potentially increase further if model outputs from multiple replications must be 

averaged to account for simulator stochasticity. Moreover, the magnitude of the perturbation 

may be hypothesized to vary across the parameters, given the nonlinear nature of the 

objective function. A uniform perturbation for all variables is, therefore, not optimal. The 

author also suggested that the approach should be further tested on a more realistic real 

network with large sets of parameters. 
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Other research efforts related to DTA system calibration have focused on independent 

calibration of demand and supply parameters based on manual adjustments and prior 

observations. Chen et al. [47] presented preliminary DYNASMART-P simulation results 

from a case study in Zwolle, Netherlands. The model estimation method relies on manual 

adjustments of individual model parameters, based on prior knowledge of the network and its 

traffic scheme. Thus, the model estimation framework is conducted in an ad hoc fashion.  

A similar calibration approach was also proposed by Chu et al. [48] using a systematic, 

multistage procedure for the calibration and validation of PARAMICS simulation models in 

southern California. The authors combined heuristics and static approaches to assist in the 

calibration of driving behavior models, route choice model, OD estimation and fine-tuning of 

various model parameters.  

Mahut et al. [49] presented an application and iterative demand and supply calibration of a 

DTASQ simulation-based DTA model to a part of the City of Calgary’s (Alberta, Canada) 

network. To establish dynamic user equilibrium travel times on the network, DTASQ 

iteratively combines network loading model parameters (e.g., gap acceptance and lane-

changing model parameters) with a route choice parameter based on volume-delay functions. 

Hourly OD matrices were simulated for the City of Calgary using EMME/2 software. In 

order to provide a suitable trip table for the DTA model, main intersection turning movement 

counts were compared to the output of EMME/2. The posted speed limit and the link 

capacity were used to determine the volume-delay functions, although in uncongested real-

world conditions, drivers travel at a speed higher than the posted speed limit. The authors 

concluded that traffic parameters, such as gap acceptance, can have a significant impact on 

the route choice in an iterative equilibration approach to DTA. However, these parameters 

were manually adjusted for this case study, in order to minimize the objective function. The 

calibration approach was successful for the Calgary network. However, the transferability of 

the approach may be questionable since many parameters were adjusted manually. 

Mahmassani et al. [50] prepared a technical report on the calibration of DYNASMART-X for 

a southern California network. The authors again focused on independent calibration of 

different parameters of a DTA system. Greenshield’s model was modified and adopted for 
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calibrating the speed-density function. The general least squares (GLS) approach, as 

proposed by Cascetta at al., was used for estimation of the time-dependent OD matrices. The 

calibration approach for the departure choice, route choice and capacity estimation was not 

considered in the study [22].  

Balakrishna et al. [51] presented an iterative offline mesoscopic calibration approach to 

calibrate various inputs of a DTA model in the DynaMIT model developed by Ben-Akiva et 

al. [52]. Demand simulation of DynaMIT consists of the following two components: 1) OD 

estimation and prediction, and 2) driver behavioral models that estimate and predict route 

choice [53]. As for the supply simulation, segment speed-density relationships and capacities 

are considered. The GLS method is used for sequential OD estimation, while queuing 

phenomena and spillbacks are modeled separately using a modified Greenshield’s model and 

the Highway Capacity Manual (HCM) for segment capacity estimation.  

The detailed supply calibration approach was presented earlier in [54]. The calibration 

problem is solved using an iterative bi-level approach consisting of an estimation of OD 

flows while fixing model parameters in the higher level, followed by the estimation of the 

model parameters in the lower level assuming fixed OD flows from the upper level. While it 

is possible in theory to iterate between the demand and supply calibration steps until 

convergence, such an approach is likely to be computationally inefficient. In addition, the 

sequential solution methodology only made use of sensor counts for calibration purposes. 

This limitation is attributed to the use of linear measurement equations that map OD flows to 

counts. For estimation of the route choice parameters and habitual travel times, the Box 

complex algorithm [55] exhibited slow convergence. Hence, its use in large networks is not 

practical. 

In his M.Sc. thesis, Gupta [56] attempted to overcome the dependency of the calibration 

framework on historical OD flows by developing a methodology to test if it is possible to 

estimate the same OD matrix in the absence of any a priori OD flows. The author used the 

DynaMIT model and adopted a sequential approach. A case study involving a practically 

sized network from Los Angeles with multiple days of data was used to validate the 

framework. This research has made significant contributions through the application of 
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observability, which allows the modeler to test if unique OD flows can be estimated from the 

given sensor configuration. However, further testing and improvements should be carried for 

different networks with different sensor locations. 

While Gupta and Balakrishna et al. focused on the calibration of mesoscopic models, 

Mahanti [57] studied the calibration of a microscopic DTA model, incorporating both 

demand and supply parameters. The author integrated the bi-level iterative calibration 

methodology [51] in the MITSIMLab micro-simulation tool with lane-changing and car-

following supply parameters. The proposed iterative approach revealed promising 

microscopic calibration results in a synthetic case study and also for a real-sized network. 

The authors suggested further research in this direction, while incorporating scheduled events 

and incident scenarios in the calibration framework.  

In a similar paper, Toledo et al. [58] formulated an iterative bi-level framework for the 

calibration of microscopic traffic simulation models using aggregate data in MITSIMLab. 

The problem is formulated assuming a stationary steady-state condition. The assumption is 

that the observation days are drawn during a period in which steady-state traffic conditions 

prevail, i.e., while OD flows and experienced travel times may vary for various observation 

days, these differences are due to random effects and do not represent a change in the 

underlying distributions of these variables. Furthermore, the authors assumed that driving 

behavior and route choice parameters are stable over the period of observation.  

In a subsequent paper, the same bi-level calibration framework was applied for a test network 

in Stockholm, Sweden, under congested traffic conditions using sensor data [59]. Later, 

Darda [60] used the same calibration framework for a different network in Irvine, California. 

Although the demonstrated approach was successful in replicating real-time traffic 

conditions, it is computationally burdensome.  

Using a similar methodology, Jha et al. [61] highlighted the challenges related to large-scale 

traffic simulation, such as data collection, computational requirements, conversion of 

planning OD to simulation OD, and impact of small errors on significant additional efforts in 

calibration. Each component within the calibration module relies on some convergence 
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criterion, which was not clarified. The impacts of various levels of aggregation, such as time 

intervals for habitual travel time and the OD flows, should be considered. 

Kim [62] developed an iterative bi-level framework to calibrate both a microscopic traffic 

simulation model and an OD estimation problem. At the upper level, the best model 

parameters are identified using a genetic algorithm (GA) optimization tool and disaggregate 

data (travel time from automatic vehicle identification data); whereas, at the lower level, OD 

matrices were calibrated using the extended Kalman filter (EKF) algorithm. VISSIM 

software was used to evaluate the proposed methodology for two test networks: one 

consisting of an urban arterial, and the other a freeway. The results of the experiments 

demonstrated the advantages of incorporating disaggregate data to improve the accuracy of 

joint demand and supply calibration. However, both test networks were simple with only four 

automatic vehicle identification (AVI) stations. The proposed bi-level calibration approach 

can be further tested in longer freeways and larger networks. Table 2.1 summarizes the 

results of several calibration exercises involving separate and iterative demand and supply 

parameters estimation.  
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Table 2.1 Summary of iterative calibration research literature results 
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Peeta and 
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Offline 
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X 
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Gupta [56] 
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Chu et al. 
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Mahut et al. 
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2.3.2 Simultaneous Calibration of the Demand and Supply Parameters 

Contrary to sequential calibration approaches, only a few recent studies have focused on 

simultaneous calibration methodology that is capable of jointly estimating both demand and 

supply parameters. Figure 2.2 presents a general flowchart for simultaneous demand and 

supply DTA calibration in offline and online contexts. As the figure indicates, in this 

approach, the calibration of the DTA model is mainly formulated as an optimization problem 

that attempts to jointly estimate the OD matrices and the driver behavioral parameters.  

The problem is formulated either as an offline and/or online calibration framework in the 

context of either a mesoscopic or a microscopic calibration. In the context of online 

calibration, the output of simultaneous offline calibration is used as the input for the online 

calibration framework. Data used for this purpose is derived from both historical and real-

time information extracted from various sources and sensors.  

Offline calibration of DTA models as an optimization problem was first proposed in [63] and 

[64]. The optimization can jointly estimate the demand and supply parameters using archived 

flow data [63, 64]. Offline calibration results in the creation of a simulated “historical” 

database. The authors adopted an error minimization framework for the simultaneous 

calibration of 1) a DTA model’s demand (i.e., OD flows and driver route choice behavior), 

and 2) supply components (i.e., speed-density relationship and segment capacity estimation) 

in a mesoscopic simulator, DynaMIT. The stochastic optimization framework was solved 

using various solution methods, namely: the Box complex [55], stable noisy optimization by 

branch and fit (SNOBFIT) [65], and simultaneous perturbation stochastic approximation 

(SPSA) [66] algorithms. These different solution algorithms were tested on a simple network 

with synthetic data, and on a medium-scale simulated network model for Los Angeles, 

California. Among the various solution methodologies, SPSA was found to be the best 

performing practical method. The results also indicated that the simultaneous calibration 

approach outperforms the traditional sequential method.  

Balakrishna’s work [63, 64] pioneered the calibration framework that incorporates the 

simultaneous demand and supply parameters estimation. Although the impact of an incident 
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was demonstrated in a synthetic case study, the capacity reduction factor was not considered 

in the real test network. A realistic estimate of the reduction in capacity is essential for 

maintaining the accuracy of the system’s calibration and predictions capabilities. Finally, 

traffic counts and speed were the only available traffic data used in the offline calibration 

process. However, the authors noted that point-to-point data observations recorded through 

AVI or Global Positioning System (GPS) technologies may further improve the efficiency of 

the estimated parameters, especially for demand estimation. 
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Figure 2.2 Flowchart of simultaneous demand and supply calibration 

Balakrishna’s study [63, 64] focused on drivers’ pre-trip route choice behavior, while 

capturing their departure time preferences implicitly through the dynamic OD flows. Other 

extensions as related to commuter’s response to en-route information (e.g., variable message 
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sign, in-vehicle navigation systems, radio, etc.) can also be incorporated in the calibration 

framework, as proposed by [67] and [68]. Pel et al. [67] introduced a hybrid route choice 

model, where all travelers have pre-trip route information, but also consider real-time traffic 

conditions in seeking new routes. This model, however, requires intensive path enumeration; 

therefore, its application to large-scale network may be problematic. Rather than treating all 

travelers identically, Zhen and Zhang [68] assumed that some travelers are likely to follow 

their predetermined routes, while others update their routes en-route in response to real-time 

information.  

As an extension of previous work, Balakrishna et al. [69] used a similar framework for 

offline simultaneous demand and supply parameter calibration and applied it in a 

MITSIMLab traffic simulation model. SPSA was chosen as a solution algorithm for solving 

the stochastic nonlinear optimization problem. Comparing different measures of 

effectiveness revealed that simultaneous calibration again outperforms the iterative approach. 

However, the case study examined in this research was a highly instrumented network with 

relatively high level of sensor coverage, which is uncommon in real-world situations. Thus, 

the presence of lower observations and sensor coverage may affect the efficiency of the 

proposed methodology. 

Using the same input parameters used by Balakrishna for offline DTA calibration, Antoniou 

[70] developed an online calibration framework for a mesoscopic model. Online DTA 

applications require accurate real-time estimation and predictions of traffic conditions, such 

as the impact of weather, road surface conditions, and incidents. Results from offline 

calibration are used as a priori information for the online calibration process. These 

parameters are adjusted in real time, based on updated measurements, to reflect the realistic 

deviation of traffic conditions from their average values.  

Antoniou and Antoniou et al. [70, 71] attempted to formulate this mesoscopic calibration 

problem as a state-space modeling concept. The authors examined the application of EKF, 

limiting Kalman filter (LimKF) and unscented Kalman filter (UKF) to solve the optimization 

problem. Empirical results on 35 kilometers of a simulated freeway network with eight on-

ramps, seven off-ramps and 20 OD flows suggested that joint online calibration of demand 
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and supply parameters can increase the estimation and prediction accuracy of a DTA system 

compared to its sequential calibration counterpart. Further, this approach was shown to 

outperform the DTA framework where only OD flows are calibrated online [70, 71, 72]. 

However, the proposed on-line calibration approach was only demonstrated on a freeway 

network. Thus, the findings cannot be generalized, as further tests should be conducted to 

examine the transferability of the approach to more general and larger sized networks. 

Further, the authors suggested that the variation of traffic due to unexpected events or 

incidents may also change driving behaviors, which can result in additional parameters to be 

calibrated as part of the online calibration framework. 

Other studies have focused on simultaneous offline calibration of demand and supply 

parameters using point-to-point AVI disaggregated traffic data in DynaMIT [30, 73]. 

Following the methodologies proposed in [66] and [70], the calibration problem was 

formulated as a stochastic optimization and a state-space framework. SPSA and GAs were 

chosen as the candidate solution algorithms. Further, particle filters (PF) were considered as 

the solution method for the state-space framework. The authors compared the calibration 

results using travel time measurements obtained from emerging traffic-sensing technologies 

with traditional loop detector data. The calibration results from a synthetic case study 

revealed that SPSA and GA were more effective than PF for solving the multi-objective 

optimization problem.  

The methodology was also applied to a real traffic network to demonstrate its scalability. The 

calibration results suggested that incorporating AVI data in the optimization problem 

improved the calibration accuracy. In addition, in accordance with the previous studies, the 

simultaneous demand and supply calibration problem was found to be superior to the 

iterative approach. It is to be noted that all previous studies were restricted from 

incorporating disaggregate AVI data into the OD estimation problem. Thus, Vaze’s work 

[30, 73] is considered to be among the first research efforts that take into account AVI data 

and travel time information in the multi-objective formulation. This research can be further 

extended by incorporating additional information from probe vehicle or floating car data. 

Moreover, the sensitivity of the algorithm to other key parameters can be examined: such 
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factors may include detectors locations, market penetration and the number of AVI sensors 

and their location. 

In a recent study, different solution algorithms for the online DTA calibration problem in the 

DynaMIT system were compared [74, 75]. The authors formulated the problem as a state-

space (i.e., EKF algorithm) and direct optimization formulation, using the Hooke-Jeeves 

pattern search (PS) algorithm, conjugate gradient (CG) and gradient descent (GD) 

algorithms. The authors incorporated various real-time network data from various sources, 

namely loop detectors, video cameras and toll counters from an intercity highway in 

Portugal. In fact, the application of the Hooke-Jeeves algorithm [76] was examined earlier by 

the same authors to the online calibration problem [77]. The results from these studies 

revealed that real-time data fusion outperformed the offline calibration of DTA without 

online adjustment. However, the above-examined algorithms were found to be 

computationally burdensome and became intractable when dealing with a large-scale 

network. 

To overcome these issues, the authors proposed parallel GD (para-GD) and parallel EKF 

(para-EKF) algorithms. Parallel implementation accelerates the objective function evaluation 

to reduce the computation time at different stages of the algorithm. The application of 

parallelization for EKF and GD algorithms revealed promising results, in terms of 

computational time and calibration accuracy, compared to serial EKF and GD. As two 

extensions of this research, the authors proposed parallel computation within the DTA jointly 

with parallel implementation of the calibration algorithms, along with hybrid parallelization. 

The solution algorithms should be further validated in a larger scale network. 

Appiah and Rilett [78] presented a framework for joint OD estimation and calibration of 

microscopic models using vehicle trajectories from aggregate intersection turning movement 

counts. The authors developed a methodology for OD estimation problem independent of the 

presence of a prior historical matrix. As opposed to [62], OD flows were treated as unknown 

in order to be jointly calibrated with the driver behavior parameters (i.e., car following and 

lane changing). The problem was formulated as an optimization framework, and GA was 

adopted as the solution algorithm using a VISSIM microscopic model. The developed 
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methodology was examined on a small urban network. Although GA has advantages in 

dealing with non-convexity, locality and complex transportation optimization problems, the 

final results indicated that the algorithm has a high computational cost, even for a small 

arterial network. The GAs took approximately 2 months and 18,000 iterations to converge. 

Some parallelization and hybrid parallelization can be adopted for more complex networks. 

The final results revealed a strong correlation between the observed and simulated counts. 

Despite the high computational time, the calibration results and methodology can be 

considered appropriate, since around 40% of links have GEH values of less than 5, as 

recommended.  However, the methodology that used vehicle trajectories was limited to local 

and arterial network with high number of intersections turn count data. Table 2.2 summarizes 

these studies, categorizing them by formulation, methodology, network type, micro-

simulation used, and performance measures. 
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Table 2.2 Summary of simultaneous calibration research literature results 

C
at

eg
or

y Offline/ 
Online 

Framework 
Study 

Type of 
Optimization 

(solution 
algorithm) 

Model Network Type 
Measure of 

Performance 

M
es

os
co

pi
c 

Offline 

Balakrishna 
[ 63], 

Balakrishna 
et al. [ 64] 

Stochastic 
optimization 

(Box 
complex, 

SNOBFIT, 
SPSA) 

DynaMIT Freeway/arterial 
Traffic 

count/speed 

Offline 
Vaze [ 73], 
Vaze et al. 

[ 30] 

Stochastic 
optimization 
(SPSA, GA) 

and state-
space 

formulation 
(PF) 

DynaMIT Freeway/arterial AVI/count 

Online 

Antoniou 
[ 70], 

Antoniou et 
al. [71] 

State-space 
formulation 

(EKF, 
LimKF, 
UKF) 

DynaMIT Freeway 
Traffic 

count/speed 

Online 
Huang et al. 

[ 77] 

Heuristic 
pattern search 

algorithm 
(Hooke-
Jeeves) 

DynaMIT Freeway 

Traffic count 
/ toll 

collection / 
camera 

counters 

Online 
Huang [74], 
Huang et al. 

[ 75] 

Direct 
optimization 

(GD, CG, 
para-GD) and 

state-space 
formulation 
(EKF, para-

EKF) 

DynaMIT 
Freeway (same 
as Huang et al. 

[ 77] 

Traffic count 
/ toll 

collection / 
camera 

counters / 
AVI data  

M
ic

ro
sc

op
ic

Offline 

Appiah and 
Rilett [78] 

Stochastic 
optimization 

(GA) 
VISSIM Arterial Traffic count 

Balakrishna 
et al. [ 69] 

Stochastic 
optimization 

(SPSA) 
MITSIMLab 

Freeway/arterial 
(same as Vaze, 

[ 73]) 
Traffic count 
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2.4 Summary 

The estimation of the demand parameters from observation data and the calibration of supply 

parameters of DTA models have been intensively reviewed in the past [79]; however, these 

research works were mostly conducted separately, as a fixed-point model to adjust the time-

dependent OD matrices [23, 24, 25, 26, 33, 34, 35] or calibrating speed-density models (e.g., 

traffic flow models in DYNASMART, DynaMIT and Dynameq software packages) 

[38, 39, 40]. The approach of independent calibration of demand and supply parameters is 

not efficient or optimal, as it does not consider that the supply parameters may affect the 

estimated demand and vice versa. These early studies were followed by research efforts that 

attempted to jointly calibrate the demand and supply parameters in an iterative sequential 

fashion. Iterative calibration is solved using an iterative bi-level approach, consisting of an 

estimation of OD flows, while fixing model parameters (e.g., driver behavior and route 

choice mode parameters) in the higher level and followed by the estimation of the model 

parameters in the lower level, assuming fixed OD flows from the upper level. It was argued 

that these models treated demand and supply parameters independently, without 

consideration of the possible interaction between these parameters 

[48, 49, 50, 51, 56, 57, 58, 59, 60, 61, 62]. Ignoring the complex and nonlinear interactions 

between demand and supply parameters may lead to suboptimal solutions. Moreover, such an 

approach is likely to be computationally inefficient. Compared to sequential calibration 

approaches, a few research efforts have focused on the simultaneous calibration of demand 

and supply parameters [63, 64, 69, 70, 71, 74, 75, 77]. In this type of approach, the 

calibration of the DTA model is mainly formulated as an optimization problem that attempts 

to jointly estimate the OD matrices and the driver behavioral parameters. The problem is 

formulated either as an offline and/or online calibration framework in a 

mesoscopic/microscopic context. However, the adopted calibration framework is highly 

dependent on the use of local search heuristics. Confining the search in the vicinity of the 

starting point creates a high dependency on the quality of historical OD information [33]. 

Thus, these techniques are mostly applicable when the starting point is close to the optimal 

one. In addition, the simultaneous calibration frameworks proposed in the literature ignores 

the reliability of the different components of the objective function (e.g. historical OD flows, 

count data from loop detectors) and requires extensive manual adjustments to identify the 
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optimal weights. Finally, most previous efforts focused on the loop detector data available at 

the aggregate level, with traffic data collection mostly relying on surveys and vehicle counts 

that are costly and time-consuming. They have, therefore, been applied infrequently on a 

small or a medium-sized network. Given the limited range of data acquired from loop 

detector counts, the calibration process was highly dependent on the historical informations. 

In summary, the review of the literature indicates several shortcomings in the state-of-the-art 

of DTA model calibration. Particularly, there is need to develop a robust calibration 

methodology that can simultaneously estimate both demand and supply model parameters in 

a simulation-based DTA system. Chapter 3 presents a rigorous treatment of the DTA 

calibration problem, and proposes a robust and systematic estimator for its solution. 
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Chapter 3: CALIBRATION METHODOLOGY 


This chapter is focused on the simultaneous calibration framework of the demand and supply 

parameters of the DTA model. An overview of the methodology is presented first, focusing 

on the input and output parameters of the DTA model. This is followed by the proposed 

formulation of the DTA calibration problem. The third section discusses the simulation 

environment and the selected parameters for the calibration process. The forth section 

provides a brief introduction of the solution algorithm, followed by the proposed calibration 

framework. The final section concludes the chapter with the summary of the overall 

calibration methodology. 

3.1 Overview of the Methodology 

The set of critical DTA model parameters that must be calibrated for a specific network can 

be separated into demand and supply side variables. Demand variables are the time-

dependent OD flows for the period of interest, while the number and nature of supply 

variables may vary depending on the level of detail employed while capturing traffic 

dynamics and queuing phenomena. Microscopic models generally possess a much wider set 

of models and parameters that operate under different traffic regimes and explain a complex 

set of individual driver decisions and maneuvers. These include car-following (acceleration, 

deceleration and desired speed), lane-changing (gap acceptance, merging, yielding and look-

ahead), as well as route choice model parameters. These demand and supply models are 

mutually dependent on each other. In a general DTA model, various approaches model the 

interaction between the demand and supply models. The interaction between the supply and 

the demand is modelled through the traffic assignment process that simulates the propagation 

of traffic (demand) on the physical network (supply) taking into consideration the drivers’ 

behavior parameters. Historically, the estimation of dynamic OD flows and calibration of 

driving behavior parameters were treated independently or in an iterative sequential 

approach. However, the independent calibration approach is not efficient and optimal, as it 

ignores the presence of interaction among the various demand and supply parameters (e.g. 

the effect of route choice model parameters on the dynamic OD flows). In addition, ignoring 

the complex and nonlinear interactions between demand and supply parameters may lead to 
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suboptimal solutions. Therefore, it is essential to capture the non-linear interactions between 

demand and supply parameters by formulating the calibration process as a multi-objective 

framework to simultaneously estimate demand and supply parameters. Figure 3.1 presents 

the general structure of the DTA models, considering the interactions between the two 

components of the model. 

As stated earlier, the objective of the DTA model calibration is to obtain those model 

parameter values that will minimize the discrepancy between the observed measurements and 

their simulated counterpart, when these parameters are used as inputs to the models. The 

inputs and outputs of the off–line calibration module are outlined in Figure 3.1 and discussed 

in the following paragraphs. 

Figure 3.1 Overview of the DTA model  
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3.1.1 Input Parameters 

The DTA calibration component exploits all information that is available within a traffic 

system, namely historical information describing the transportation system, and surveillance 

data capturing the prevailing traffic conditions. 

Historical information is one of the major components of the DTA models. On the supply 

side, the historical information can be referred to the geometry of the network, and the traffic 

control settings. It should be noted that historical data should be periodically updated to 

capture the dynamics of the network, whenever a new set of information is available. 

The available surveillance data from different sources can present the prevailing traffic 

conditions. As indicated in the literature, the quality and quantity of the available data can 

directly affect the calibration accuracy, as the system is trying to minimize the discrepancy 

between these observed data and their simulated counterparts. Recent advances in wireless 

technologies and use of in-vehicle navigation systems provide the opportunity to improve the 

quality and quantity of the observed data over a wide spatial area. In addition to the 

traditional traffic data from loop detectors, this research incorporated the data from in-vehicle 

navigation system technology into the calibration framework to enhance the calibration 

process. Chapter 6 of this thesis will provide a more in-depth description of the available 

surveillance data for the large-scale complex network. 

3.1.2 Output Parameters 

As stated earlier, the outputs of the DTA calibration problem are the parameter values that 

minimize the discrepancy between the observed and simulated traffic conditions, when used 

as input for the traffic estimation framework. On the demand side, the dynamic OD flows 

that capture the variability of the demand to be loaded onto the network is the output of 

calibration process. On the other hand, the microscopic driver behavior (car-following and 

lane-changing) and route choice model parameters of the simulation environment (i.e. 

Paramics) are among the supply outputs of the calibration.  
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3.2 Optimization Formulation 

3.2.1 General Formulation 

As stated earlier, the general calibration problem involves the estimation of OD flows as well 

as various model parameters using historical OD flows, loop detector counts and turning 

movements, as well as speed data. The calibration of the DTA model is formulated as a 

multi-objective optimization problem with the objective of minimizing the discrepancy 

between the observed and fitted measurement values, as follows: 

൯ ௦݊ݑݎ, ܶ௦൫ܶ݊ݎݑଷ݂ଷ൯  ߙ  ௦ܥݐ݊ݑ ,௦ ൫ݐ݊ݑܥଶ݂ଶ ,ܦሻ௦௧ߙ ܱܱܦሺଵ݂ଵൌ  ݊݅ܯ ܼ ߙ

ሻ௦ܵ݀݁݁ ,௦ሺܵ݀݁݁ସ݂ସߙ  (1) 


Subject to the following constraints: 

൯,						ܰ,௧, … , ܲଵ, ܲ
௦௧
௧ܦ, … , ܱ௦௧

ଵܱܦ൫݉݅ൟ ൌ ܵ௦ 
௧ܵ݀݁݁,௦ 

௧݊ݑݎ, ܶ
௦
௧൛ݐ݊ݑܥ

ೞை
௧ܾ൏ ௦௧ݑ

௧ܦ൏ ܱ
ೞை

௧݈ܾ


௧ܾ൏ ௧൏ݑ ܲ

௧݈ܾ 

,	
 

Where: 

: A priori (historical) OD flows and estimated values, respectively; ௦௧ܦ, ܱܱܦ 

: Observed link counts and estimated values, respectively; ௦ܥݐ݊ݑ ,௦ݐ݊ݑܥ 

: Observed intersection turning counts and simulated values, ௦݊ݑݎ, ܶ௦ܶ݊ݎݑ 

respectively; 

: Observed travel speed and simulated values, respectively; ௦ܵ݀݁݁ ,௦ܵ݀݁݁ 

݂

 ;: Weighting factorsߙ

: Goodness-of-fit functions (measure of effectiveness); 

;t: Vector of driver behavior and route choice model parameters at time ௧ܲ 
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: Lower bound of parameter i during time interval t;
௧݈ܾ


௧ܾݑ

: Network geometry. ܰ 

: Upper bound of parameter i during time interval t; and 

In Equation (1), historical OD flows, observed link counts, speed and turning counts on 

selected intersections are also considered to improve the estimation accuracy. The 

optimization formulation tries to minimize the discrepancy between the estimated OD flows, 

ODest, and a priori OD flows, ODh, while trying to incorporate additional information, such 

as observed traffic counts, Countobs, turning counts, TurnObs, and link speeds, SpeedObs. The 

weighting factors, αi, are determined based on the reliability of observed data (counts, speeds, 

turns) and historical OD flows. The simulation model, sim( ), is a function of the OD flows, 

the network, N, and the vector of driver behavior parameters, P. The terms lb and ub 

represent the lower and upper bounds, respectively, on the OD flows and model parameters. 

The fi functions quantify the discrepancy between the observed and simulated measurements. 

The goodness-of-fit functions are often described by a sum of squared deviations for sensor 

measurements, OD flows and model parameters respectively. A good measure of 

effectiveness, fi( ), plays a critical role in obtaining good results. In this research, two 

normalized measures of goodness of fit are used to quantify the relationship between the 

observed and simulated measurements: the normalized root mean square error (NRMSE), 

and the Geoffrey E. Havers statistic (GEH). These measures are calculated as follows: 

∑ேට
ൌ ܴܰܧܵܯ

మಿ ሺ
ೞି

ሻసభ
ಿ (2)  
∑సభ 

 

∑
ே

ଵൌ ܪܧܩ

Where 

ே
ୀଵ ට

ଶሺ
ೞି

ሻమ 


ೞା

 (3) 
  

 Number of observations;  ܰ: 

, andn: Observed value at time 
ܺ 

.n: Simulated value at time 
௦ܺ 
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3.2.2 Extension of the General Formulation for the Large-Scale Network  

As stated earlier, the weighting factors, αi, in Equation (1) can be determined based on the 

reliability of observed data (counts, speeds, and turns) and historical OD flows. Considering 

the simplicity of this thesis’ first case study with synthetic data, the optimal combination of αi 

can be estimated by evaluating the objective function with different combinations of 

weighting factors given to surveillance data (i.e. sensitivity analysis).  

In the case of the large-scale network, the reliability of observed data and historical OD flows 

cannot be easily evaluated. In addition, the sensitivity analysis of the weighting factors 

cannot produce the optimal solution as the fundamental of the sensitivity analysis is 

characterized by repeated and varied attempts, which can be computationally intensive. 

Therefore, the weighting factors were defined as the function of the observed and simulated 

observed traffic data. 

According to the literature, very few studies in the area of multivariate optimization 

formulations considered different weighting factors for each of the components, and among 

those studies, the optimal weighting factors estimation was based on the traditional 

sensitivity analysis [30, 69, 73]. Therefore, to the author’s best knowledge, the reliability of 

different components was not yet attempted as a part of the optimization formulation.  

For this purpose, the variance of the Theil’s U inequality coefficient was used to quantify the 

reliability of different measurement [69, 1]. This measurement can be quantified as follows: 

మሻೌೡ
ିఙೌೡ

ೞሺఙൌ௦ܷ భ (4)  ಿ ሺ
ಿ
∑సభ 

ି
ೞሻమ 

Where: 

,j inequality coefficient for measurement U: Variance of the Theil’s ௦
ܷ

 Number of observations, ܰ: 

 ௩ : Standard deviation of the average observed measurement, andߪ

 ,௩௦ : Standard deviation of the average simulated measurementߪ

Generally, this measurement indicates how well the simulation model is able to replicate the 

variability in the observed data and OD flows. This Theil’s U inequality coefficient that 
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incorporated the variance of the observed and simulated data was proven to be a consistent 

measurement for allocating weights to different measurements in the objective function (i.e. 

count, speed, turn, OD flows). According to the definition, the variance of the Theil’s U 

inequality coefficient should be kept as close to zero (the value is between zero and one). 

Therefore, the highest weight should be given to the component with the minimum variance 

of the Theil’s U inequality coefficient. 

In summary, the weighting factors can be mathematically expressed as follows: 

ଵ ߙ ଶ ߙ ଷ ߙ ସ ൌߙ 1  (5)  

Where: 

ଵൗభ
ೞ

ଵ ൌ (6)ߙ  
∑రೕసభሺ

ଵ
൘ೕ
ೞሻ 

ଵൗమ
ೞ

ଶ ൌ (7)ߙ  
∑రೕసభሺ

ଵ
൘ೕ
ೞሻ 

ଵൗయ
ೞ

ଷߙ ൌ 
∑ 

(8)  ర
ೕసభሺ
ଵ
൘ೕ
ೞሻ 

ଵൗర
ೞ

ସ ൌ (9)ߙ  
∑రೕసభሺ

ଵ
൘ೕ
ೞሻ 

As is apparent from the above equations, the weighting factors can be expressed as the 

. Therefore, the weighting factors were incorporated into the calibration ௦
ܷ functions of 

process and their optimal values were obtained as a part of the calibration process. In 

summary, the modified multivariate optimization formulation can be expressed as follows: 

38
 



 

 

	

        

 

 

 

 

  

  

 

 

 

3.3 

൯ ௦݊ݑݎ, ܶ௦൫ܶ݊ݎݑଷ݂ଷ൯  ߙ  ௦ܥݐ݊ݑ ,௦ ൫ݐ݊ݑܥଶ݂ଶ ,ܦሻ௦௧ߙ ܱܱܦሺଵ݂ଵൌ  ݊݅ܯ ܼ ߙ

ሻ௦ܵ݀݁݁ ,௦ሺܵ݀݁݁ସ݂ସߙ  (10) 


Subject to the following new constrain: 

ସ ൗ	 ௦
ܷ

1

ሾ
௦
ܷ

ൗ1ሺୀଵ 
ସ

ሿ ൌ 1
∑
 ሻୀଵ 

To reduce the computation time in the real-world complex network, the NRMSE was chosen 

as the goodness-of-fit. It should also be noted that the above objective function can 

incorporate any type of traffic data into the calibration process without any limitations. The 

following section provides a brief introduction of the simulation environment and the 

associated parameter for calibration, P. 

Simulation Environment 

The methodology described in this research is based on the Paramics micro-simulation 

package developed by Quadstone in Scotland. Paramics has a set of driver behavior and route 

choice parameters that need to be adjusted for the specific study network and the intended 

applications, in order to accurately replicate the field data. In this research, the vector of 

driver behavior parameters, P, includes mean headway, mean reaction time, perturbation, 

feedback, and network familiarity. The first two supply parameters influence network-wide 

vehicle-driving behavior, and the other three are route choice model parameters. These five 

sensitive parameters are defined as follows: 

	 The mean headway is the average time between the leading edges of successive 

vehicles (default value: 1 second); 

	 Mean driver reaction time is the value is associated with the lag in time between a 

change in speed of the preceding vehicle and the following vehicle’s reaction to the 

change (default value: 1 second); 

	 The perturbation factor is used to randomize the route-cost perception to affect a 

stochastic route choice (default value: 5%); 
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	 Feedback is a loop mechanism used to update travel time costs for equipped drivers 

throughout a simulation period to influence route choice (default value: 300 second); 

and, 

	 Familiarity is a factor that affects the route choice and describes the composition of 

drivers with respect to their different levels of knowledge of the network (default 

value: 85%). 

In this thesis, the search space for driver behavior parameters is, therefore, five dimensional. 

The searching range of each parameter is decided either by rules of thumb or from the 

Highway Capacity Manual [ 80]: mean headway = 0.5 to 1.5 s, mean reaction time = 0.4 to 

1.6 s, feedback = 1 to 5 min, perturbation = 1 to 100%, familiarity = 1 to 100%. 

3.4 Overview of the Solution Algorithm 

The non-linear interactions between demand and supply parameters present a major 

challenge in solving the optimization problem described above. Similar to the most real life 

problems, the DTA models are stochastic in nature and cannot easily be represented as an 

analytical closed-form function of the decision variables. This non-analytical nature of the 

problem precludes the possibility of differentiation or exact computation of local gradients of 

objective functions or constraint expressions. Therefore, most of the optimization literatures 

are not directly suited for the solution of the DTA model calibration problem, and the 

modeller must turn to simulation optimization methods.  

According to the literature, the candidate solution algorithms for the stochastic non-linear 

problems can be classified into path search, pattern search and random search techniques. 

Table 3.1 provides a summary of the solution techniques and the candidate algorithms 

belonging to each of these types. Readers are referred to Balakrishna (2006) and Vaze (2007) 

for the detailed description of the candidate solution algorithms for the DTA models [63,73].  

As is apparent from Table 3.1, a wide variety of simulation optimization algorithms exist in 

the literature. However, a few of them have been tested on even medium-sized networks. In 

addition, it was found that path search algorithms became computationally burdensome when 

dealing with large-scale networks [ 74,  75]. Recent related studies using GA have shown 
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advantages in dealing with non-convex and complex transportation optimization problems 

[81, 82]. 

This research proposes GA as the basic solution algorithm for the estimation of OD flows 

and calibration of driver behavior parameters. This GA-based approach is further enhanced 

by distribution and parallelization schemes to accelerate the convergence of the objective 

function and reduce computational time. In addition, the GA-based model has a wide variety 

of selection mechanism, real-coded evolutionary operators, as well as parallel and distributed 

structure. The detailed descriptions of the GA operators as well as distribution and 

parallelization schemes are provided in Chapter 4. 
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Table 3.1 Summary of the classification of optimization algorithms [ 28, 63, 70, 73, 74, 78, 79, 81] 

Type of 
optimization 
algorithms 

Description 
Sample solution 

algorithms 
Discussion 

Path search 
algorithms 

 Use an initial point (or a 
population of several points) 
in the search step to begin 
with; 

 The algorithm keeps moving 
the current point in a certain 
direction with the purpose of 
improving the objective 

 Response surface 
methodology (RSM) 

 Stable Noisy 
Optimization by 
Branch and Fit 
(SNOBFIT) 

 Finite Difference 
Stochastic 
Approximation 

 RMSA is not directly 
applicable for 
constrained 
optimization problem 

 SPSA was successful in 
solving for large scale 

function value; 

 The gradient of the function is 
used directly or indirectly to 
determine the direction of 
movement. 

(FDSA) 

 Simultaneous 
Perturbation 
Stochastic 
Approximation 
(SPSA) 

DTA problems; 
outperforms FDSA and 
SNOBFIT. 

Pattern 
search 

algorithms 

 Referred to the direct search 
methods as they do not require 
any gradient calculations; 

 Some patterns are used to 
obtain an improved solution in 
each iteration 

 Hooke and Jeeves 
method 

 Downhill simplex 
method 

 Poor convergence to the 
global optimal and 
difficulties in handling 
stochasticity in the DTA 
models. 

 Random 
search 
methods 

 Direct method as it does not 
require derivatives to search a 
continuous domain; 

 Probabilistic mechanisms to 
randomly select updated 
parameter vectors to improve 
towards an optimal 

 Simulated Annealing 
(SA) 

 Genetic Algorithm 
(GA) 

 Parallel GA 

 SA has a poor 
convergence speed even 
for small scale problems 
especially in case of 
noisy function 
measurements and 
continuous variables. 

 GA has the ability to 
reach the global optimal 
efficiently and has been 
successfully applied to 
the model calibration in 
the context of 
transportation. 

 Parallel GAs were used 
to accelerate the 
convergence of the 
objective function and 
reduce computational 
time. 
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3.5 Calibration Framework 

Upon selection of GA as the solution approach, the simultaneous calibration framework of 

the demand and supply parameters is created. Figure 3.2 presents the conceptual flowchart of 

the simultaneous OD estimation and calibration procedure of Paramics’ driver behavior 

parameters utilizing a GA. 

Figure 3.2 Flowchart of OD estimation and calibration of driver behavior parameters 
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The framework starts from a population of initial solutions, each with a vector of candidate 

ODs, for several interval estimation steps and the route and driver behavior parameters to be 

calibrated. To move away from the need for gradient estimation and to better capture the 

complex relationship between the vector of unknown parameters to be calibrated and the 

observed data, the framework directly uses the output of a network-loading model in 

Paramics. Thus, each candidate solution vector of demand and supply parameters and its 

corresponding assigned outputs are simultaneously evaluated. In other words, the resulting 

assigned flows, turning counts and simulated speeds for each candidate demand and supply 

parameters solution are selected for computation of the fitness function. It should be noted 

that, due to the stochastic nature of Paramics, in all runs conducted in this thesis, a pre-

specified number of runs (e.g. 5) were performed, and the average values of outputs are used. 

The GA then undergoes a series of selection, crossover and mutation processes to generate a 

new population of new solutions that are again sent to Paramics and for evaluation. The cycle 

continues until the stopping criteria are met. The final output of the algorithm is the estimated 

OD flows and calibrated driver and route behavior parameters for Paramics.  

As noted earlier in this chapter, the calibration of DTA model was formulated as a multi-

objective optimization problem (Equation 1), with relative weights given to different terms of 

the objective function. One of the advantages of such a formulation is that any type of traffic 

data can be incorporated into the calibration process without any limitations. In this research, 

the traffic data for the real-world network was available from three different sources: loop 

detector counts, turning movement counts at signalized intersections, and speed data from in-

vehicle navigation system technology. Recently, many jurisdictions and municipalities across 

Canada became interested in deployment of the Bluetooth receivers along key corridors to 

obtain the historical and real-time traffic data. The Bluetooth technology along with other 

emerging sources (e.g. tracking mobile-phones with GPS) provided the opportunity to obtain 

traffic information over a wide spatial area at relatively low cost. Therefore, the proposed 

optimization framework can incorporate the traffic data from these new sources (upon 

availability) and significantly improve the calibration accuracy by minimizing the 

discrepancy between the observed traffic data and their simulated counterparts.  
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While adding the new sources of data into the optimization framework can significantly 

improve the quality of the solution, the search space for finding the global optimal solutions 

increases. In other words, as the problem tends to grow, the conventional search algorithms 

that require gradient information of the incidence matrix1 become computationally intensive. 

Historically, GA has been successfully applied to both large-scale calibration and general 

optimization problems by searching the problem domain thoroughly, based on population-

search methods rather than on a single solution, and employing heuristics to evolve towards a 

better solution. 

In addition, the quality of the solution and convergence speed of GA can be further enhanced 

by running GA in multiple processors (i.e. distributed GA, DGA), parallelization of the GA 

population into multiple demes (i.e. parallel GA, PGA), and a combination of the PGA 

utilized with a DGA (i.e. PDGA). These flexibility of the GA structure made it more 

desirable comparing to other solution algorithms, especially for a large-scale network. 

Therefore, GA was selected as the solution algorithm and a generic framework was 

developed that can incorporate several types of traffic information derived from different 

sensors/sources and with different levels of accuracy. It is noted that the general calibration 

process can be applied to any microscopic DTA simulation environments (e.g. VISSIM). 

As stated in Chapter 2, one of the challenges associated with the multi-objective optimization 

problem was to allocate the proper weights for different components of the objective 

function. Historically, the optimal values were estimated based on the sensitivity analysis of 

a limited number of weighting factor combinations. In some other studies, equal weighs (i.e. 

1) were allocated for different components of the objective function. The proposed 

calibration framework incorporated the weighting factors into the calibration process as a 

function of observed measurements (i.e. OD flows, count, and speed). In other words, a 

mathematical formulation was defined to quantify the “reliability” of the observed 

measurements, based on the average and variance of both observed and simulated 

1 The matrix that shows the relationship between the traffic counts of each link segments and OD flows 
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measurements. The proposed framework is flexible to incorporate any other measure of 

reliability into the calibration process. 

Finally, it should be noted that the outputs of the calibration process are off-line dynamic OD 

flows and simulation model parameters that can accurately replicate the historical traffic 

conditions. In other words, the calibration process can generate a strong state of the 

knowledge of the subject network. In the next step, the off-line calibrated parameters can be 

used as a priori estimates for on-line calibration process. In other words, the outputs of the 

off-line calibration process can be used for real-time OD estimation along key corridors, 

incident managements and reduce unexpected congestions, and ultimately provide real-time 

traffic data to travelers. It is expected that the convergence speed of the on-line calibration 

process would be significantly less than the off-line process (i.e. in terms of CPU time) as the 

on-line calibration process would try to update the most recent and reliable off-line OD flows 

and other model parameters. 

3.6 Summary 

The simultaneous calibration of the DTA model parameters was formulated as an 

optimization problem. This formulation is flexible to incorporate any type of traffic data and 

historical information into the calibration process without any limitations. Since the DTA 

models are stochastic and non-linear in nature, the optimization problem can be expressed by 

the simulation methods. According to the literature, a genetic algorithm (GA) is capable of 

dealing with the non-convex and complex transportation optimization problems with large 

sets of parameters. Following the selection of GA as the solution algorithm, the simultaneous 

calibration framework of the demand and supply parameters of the DTA model was 

developed. Chapter 4 provides a more in-depth review of the basic GA, the parameter 

configurations, as well as parallelization and distribution of GA for dealing with the large 

scale complex networks. 
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Chapter 4: THE GENETIC BASED SOLUTION 

APPROACH 

The previous chapter described the overall optimization framework for formulation of the 

calibration problem. This focuses on the specific GA methods implemented in this thesis. 

Section 4.1 presents a brief overview of GA explaining the fundamental operational 

mechanisms of GA. Section 4.2 and Section 4.3 elaborate on the advanced GA-based 

methods for large-scale optimization problems, based on distribution and parallelization 

schemes. Finally, Section 4.4 summarizes this chapter. 

4.1 Overview of Genetic Algorithm 

Genetic algorithms (GAs) are classified as evolutionary search method, based on the theory 

of natural selection. The GA was developed by John Holland in the early 1970s at the 

University of Michigan [83]. During the past four decades, with the growing demand on 

combinatorial optimization problems, GAs can successfully be applied to large-scale 

optimization problems [62, 73, 84]. By simulating natural evolutionary processes, a GA can 

effectively search the problem domain thoroughly, based on population-search methods 

rather than on a single solution, and employ heuristics to evolve towards a better solution. 

The capability of restarting the iterative search from a variety of starting points prevents 

entrapment in local optima, thereby allowing GAs to prevail over conventional search 

methods, with no need for gradient information.  

Recently, there has been growing interest in using GAs for data fusion, as many applications 

in information fusion can be stated as complex optimization problems [85]. This is mainly 

due to the fact that GAs are inherently parallel in nature and are able to deal with difficult 

optimization problems having complex nonlinear and/or non-differentiable objective 

functions with complicated constraints and with non-homogeneous, and noisy information. In 

addition, as stated earlier, the GA-based global search technique has the ability to calibrate 

the supply parameters for traffic micro-simulation models for intelligent transportation 

system (ITS) applications, such as Paramics [84]. In the microscopic context, the appropriate 

magnitude set of driver behavior and route choice model parameters can highly affect the 
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final network performance, as measured by the relevant fitness function. Therefore, the 

application of GA-based approaches, as a natural evolutionary technique, can efficiently find 

the optimal solution for parametric optimization problems. 

Generally, the evolution starts from a population of randomly selected individuals in 

generations. After evaluating an initial population (called chromosome), a series of genetic 

operations, namely selection, recombination, and mutation, work on the population to create 

a sequence of populations with increasingly enhances solutions. The selection procedure 

creates a new population for the next generation, ensuring that only good chromosomes are 

retained. Recombination produces new generations by exchanging genes among the 

chromosomes. In addition, Mutation is a genetic operator used to maintain genetic diversity 

from one generation of a population of genetic algorithm chromosomes to the next. This step 

will provide a mechanism for the algorithm to escape a local optimal [86]. After a new set of 

chromosomes is created by applying the GA operators, the new population is then used in the 

next iteration of the algorithm. Commonly, the algorithm terminates when either a maximum 

number of generations has been produced, or a satisfactory fitness level has been reached for 

the population. 

As stated earlier, the basic form of GA involves three types of operators: selection, crossover, 

and mutation. In addition, the chromosomes in a GA population can take the form of bit 

strings i.e. sequences of 0 and 1, or real values. Table 4.1 provides a summary of the GA 

control parameters identified in the literature. It is noted that the selection of the GA 

operators and the chromosome representation method is based on the extensive review of 

literature summarized in Kattan (2005) and Mohamed (2007) [81, 87]. In the following, the 

selected configurations of the genetic operators are briefly discussed. 
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Table 4.1 Summary of GA control parameters [81,  87] 

Control parameter Types Description 

Chromosome 
Representation 

Binary Coded Genetic 
Algorithms (BCGAs) 

The problem is encoded by representing the 
elements of search space (phenotype) into the 
binary alphabet (genotype). 

Real Coded Genetic 
Algorithms (RCGAs) 

Each point in the genotype is represented as a 
vector of real numbers; the solution chromosome 
length is similar to the optimization problem 
dimension 

Roulette Wheel 
Selection 

The selection uses a simulated roulette wheel with 
slots that are sized according to the fitness of each 
individual. The roulette is rotated once for each 
individual to be selected. 

Selection Method 

Linear Ranking 
Selection 

Chromosomes are ranked in descending order of 
fitness, with the ranks of n and 1 given to the best 
and worst chromosomes, respectively. 

Tournament Selection 
A sample of q individuals is taken randomly from 
the population and the fittest chromosome passed 
to the intermediate population p’. 

Truncation Selection 
Individuals whose fitness is above a certain value 
(the truncation point) are selected as parents for 
the next generation. 

Arithmetic Crossover 
The two offspring are generated from a uniformly 
distributed number of the parent’s chromosomes. 

Recombination/Crossover 
Operators 

α - Blend Crossover 
The two offspring are formed by generating two 
uniform numbers from a blended interval. 

Linear Crossover 
This crossover produces three offspring. Then, 
selection mechanism is applied to choose two 
offspring for the next generation. 

Random Mutation 
Creates a new gene value from its boundary 
interval. This method is equivalent to a random 
initialization 

Non-Uniform 
Mutation 

Utilizes a step-size control mechanism by 
presenting a dynamic mutation operator that 
changes its behavior over the course of evolution. 

Mutation Operators 
Fixed Gaussian 

Mutation 

The randomly selected chromosome element is 
mapped to another real number by a random 
Gaussian number with a mean zero and fixed user 
defined standard deviation parameter. 

Self-Adaptive 
Gaussian Mutation 

As opposed to Fixed-Gaussian method, the 
mutation operator adjusts the gene value in the 
course of evolution and adapts the Gaussian 
variance. 
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4.1.1 Chromosome Representation 

According to the literature, there are many representations of GAs, although the most 

common representations that cover any formulation of most optimization problems are 

binary and real list encodings. The real encoding has a number of advantages over the binary-

encoded GAs, namely [81, 87]: 

	 Real encoding of GA makes it possible to optimize the problems with large 

dimension domains. The binary coded GA (BCGA) performs poorly because of the 

enormous number of units needing to be changed to evolve from generation to 

generation. 

	 BCGAs have problems with continuous search spaces when a reasonable precision is 

required in the application. 

	 BCGAs are facing the Hamming cliff is problem, as it is caused when the binary 

coding for adjacent values differs completely (e.g. the neighbouring values of OD 

flows and driver behavior parameters).  

In addition, the estimation of OD flows and calibration of driver behavior parameters can be 

in the order of 1000 decision variables, formulated as a non-convex objective function that 

requires a traffic simulator to solve the problem. Therefore, achieving an efficient and 

accurate solution for a large-scale and complex application is of primary importance. As a 

result, the real coded genetic algorithm (RCGA) was chosen over the BCGA, which would 

be problematic with continuously high dimensional problems. 
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4.1.2 Selection 

In genetic algorithms, the selection mechanism chooses the best candidate solutions with 

higher fitness values, to pass their genetic information from one generation to the 

intermediate population for the genetic operators to exchange their traits aiming for better 

solutions. For the purpose of this study, the proportional selection mechanisms were 

potentially selected to ensure that individuals with fitness values higher than the average 

population fitness would contribute more to intermediate population for reproduction to the 

next generation. Roulette-wheel [83] and linear ranking [88] mechanisms are among the most 

common selection algorithms of this kind. In the former, chromosomes are mapped onto a 

roulette-wheel, where each chromosome occupies an area that represents the probability of 

selecting the chromosome. The selection mechanism copies chromosomes to the intermediate 

population by spinning the wheel repeatedly until the population is filled [89]. However this 

method may dominate the selection, where: 

	 one or a few chromosomes with super fitness functions (compared to other 

individuals) propagate from one generation to another; or  

	 the fitness values of the population chromosomes are close, which leads to equal 

probability of selection. 

In either cases, the GA sticks in a local optimal rather than searching for the global optimal 

solution. 

Unlike the roulette-wheel method, the ranked-based selection mechanism calculates the 

chromosome selection probability based on its ranking, not the fitness value. In this method, 

and 1 given to ݊ chromosomes are ranked in descending order of fitness, with the ranks of 

the best and worst chromosomes, respectively. Roulette-wheel selection is then performed 

with the probability of selecting the individuals based on the associated ranking values. As a 

result, the linear rank selection avoids getting stuck in the local optimal solution. Therefore, 

this method was chosen over the roulette-wheel selection mechanism. 
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4.1.3 Crossover 

After the selection step, the crossover operator acts on the pairs of parent chromosomes in the 

intermediate population by combining their traits to form two new offspring, based on pre

.ܲdefined crossover probability rate, 

As indicated in Table 4.1, the arithmetic crossover operator produces gene values residing in 

the two parents’ gene intervals. The linear crossover ensures that the resulting offspring 

genes are out of the exploitation area. Therefore, while population diversity is always 

achieved, the quality and convergence time may be lower. On the other hand, the ߙ-blend 

crossover produces offspring values not necessarily limited to the parents’ intervals. The 

effect is to increase the population diversity and decrease the possibility of premature 

convergence toward local optima.  

, … , ଶܥ
ଶ, ܥ

ଶ
ଵܥൌ ሺଶܥandሻ	ଵ, … , ଵܥ

ଶ, ܥ
ଵ
ଵܥൌ ሺଵܥConsider two parents chromosomes: 

ଶሻ	 

Where: 


ܥ

݈

: jth gene in chromosome ݅; and 

 : Length of each chromosome.  

In the ߙ-blend crossover, two offspring are formed by generating two uniform numbers from 

the following interval: 

௫ ሻ1ܥܥ െ ሺ,௫െߙ ሻ1ܥܥ െ ሺ[ ሿߙ  (11) 

Where 

ൌ mܥ i
 ሻଶ, ܥ
ଵ
ܥnሺ  

ሻଶ, ܥ
ଵ
ܥൌ maxሺ  ௫ܥ 

According to the literature, the ߙ  0.5 was recommended to increase the search area from 

the two parents’ boundaries. 
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4.1.4 Mutation 

Mutation is a genetic operator used to maintain genetic diversity by arbitrarily altering one or 

more genes of a selected chromosome so as to increase the structural variability of the 

population. The purpose of mutation is to allow the algorithm to avoid sticking in the local 

optima. Each allele in every chromosome in the population undergoes a random change 

based on the GA parameter defined by a mutation probability ሺ ܲሻ. Practitioners and 

researches considered mutation as the secondary operator in order not to lose the fitness 

potential are in the search space. Therefore the probability of mutation is usually small. For 

the purpose of this research, the mutation probability of 5% is selected. 

There are a large number of mutation operators presented in the literature, summarized in 

Table 4.1. Among different mutation operators, self-adaptive Gaussian method is used to 

control the mutation step-size by adapting the mutation control parameters and the genes 

values concurrently. The method evolves the chromosomes traits and ߪ as follows [90, 91]: 

(12)ሻሿ0,1ሺܰ  ߬.  ሻ0,1ሺ. ܰᇱ߬ሾ expൌ ᇱߪ
ߪ

ሺ0,1ሻܰ .ᇱൌ ᇱܥ
ܥ  ߪ  (13) 

 is a random Gaussian number with a mean of zero and standard deviation of 1. ሻ0,1ሺܰ Where 

.݊ are the learning rates, calculated as a function of chromosome length, ᇱ߬and߬Also 

߬ ൌ  
ඥଶ

ଵ

√
 and ߬ᇱ ൌ 

ଵ 
(14)

√ଶ

4.2 Advanced GA Methods for the Large-scale Optimization Problems 

As stated earlier, GAs are capable of finding good solutions to practical engineering and 

science applications in a reasonable amount of time. However, in cases of large-scale 

evaluations, GAs may require hundreds of expensive fitness evaluations; and, depending on 

the cost (time) of individuals’ fitness evaluations, GAs may take days or even months to find 

an acceptable solution. Therefore the following established techniques are identified to 

enhance the basic solution algorithm (i.e. GA):  
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	 Parallelization: An important property of GA is the distribution of the populations to 

multiple slaves (i.e. demes). In the parallel GA (PGA) structure, the GA’s population 

can be spatially distributed among multiple demes2 in order to improve the nature of 

population. The detailed descriptions of the available operators are presented in 

Section 4.2.1. 

	 Distributed computing: Another significant property of GAs is their capability of 

distribution across multiple processors to speed up the fitness function evaluations 

and convergence for offline applications. The number of processors in an ideal grid-

computing cluster can be in the hundreds, i.e. extensible computing power can be 

availed as the size of the problem grows, thereby reducing the computation time 

almost linearly with the number of available processors. In this thesis, this extension 

of GA is referred to the distributed GA (DGA). In order to avoid confusions, the term 

distributed is used to referring to computation, while the term parallel will only refer 

to the GA’s multi-deme population structure. 

	 Hybridization: In addition to distribution and parallelization, it was argued that a 

parallel GA (e.g., multi-deme) utilized with a distributed GA better mimics the nature 

of the population than a simple GA with a single population used in a serial GA [28]. 

Therefore, the application of parallel distributed GA (PDGA) is considered as the 

enhanced solution approach for a large-scale optimization problem. 

The above advanced extensions of the GA methods are implemented into a web-based Java 

Enterprise Edition (JavaEE) platform called generic parallel genetic algorithms framework 

for optimizing intelligent transportation systems (GENOTRANS), which is integrated with 

another Java-based middleware platform called GridGain.  

The following section presents the PGAs and the multi-deme control parameters, following 

by the description of the GENOTRANS, as the encoded GA and PGA library, and its 

2
 Also referred to sub-populations or islands 
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integrations with the GridGain to facilitate the distributed computing of the optimization 

problem.  

4.2.1 Parallelization Structure of GA 

As stated earlier, PGAs are shown to yield higher quality solutions, and possess more 

effective search and convergence properties. Depending on the parallel architecture adopted, 

PGAs often enhance the quality of the solution, require a smaller number of evaluations of 

the objective function, and have better chance of obtaining global optimum [81, 92]. In 

general, three types of PGAs exist: panmictic PGAs, diffusion-style PGAs and island model 

PGAs [91]. In a panmictic PGA, reproduction can be conducted between any two 

chromosomes in the population; whereas in the diffusion-style PGA, the chromosomes are 

spatially distributed (e.g. two-dimensional grid) and only neighbouring chromosomes can be 

recombined. In the island model PGA, semi-independent subpopulations, demes, evolve 

independently with periodic exchange of some chromosomes through a migration process 

[93]. The island model PGA exhibits even more correspondence to the evolution theory of 

species where thousands of subpopulations (or demes) exist and co-evolve in parallel in the 

same continuous geography. 

The island model PGA requires a number of parameters as inputs, namely: the topology that 

defines the connectivity of demes as simple graph, the size and the number of subpopulations 

(i.e. demes), the migration policy that determines the selection and replacement schemes, the 

migration rate that controls the number of individuals to migrate, and the migration 

frequency (epoch interval) [81]. The importance of these parameters on the quality of the 

search and on the efficiency of the algorithms has long since been acknowledged 

[81, 91, 92, 93, 94]. In the following paragraphs, the different types of the above multi-deme 

control parameters are briefly reviewed.  

Topology: The topology that defines the connectivity of the demes is simply a graph. 

Figure 4.1 shows some of the topologies identified in the literature [92, 93, 94]. 
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(a) Ladder (b) +1+2 topology (c) +2+3 topology 

1 

45 

6 

7 2 

3 

(d) Ring topology (e) Fully connected topology 

Figure 4.1 Examples of islands topologies 

According to the literature, the fully connected topology performs efficiently by producing a 

better quality solution and less execution time (converging faster) [92, 93, 94]. Therefore, the 

fully connected demes topology was the only topology implemented in the present thesis. 

Migration Policy: The effect of migration is argued as one of the difficulties faced in the 

design of PGAs. There are some suggested migration policies, namely: (1) good migrants 
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replace bad individuals, (2) good migrants replace random individuals, (3) random migrants 

replace bad individuals, and (4) random migrants replace random individuals. According to 

the literature, some migration policies, i.e. choosing the migrants or replacements according 

to their corresponding fitness function, may cause the algorithm to converge at a significantly 

faster rate [81, 92, 93, 94]. Therefore, migrating the best individuals and replacing the least 

fit is the policy that most accelerates convergence which is chosen for the purpose of this 

study. 

Other Control Parameters: There are a number of control parameters in the multi-deme 

structure of GAs, namely the size and the number of demes, the migration rate, and the 

migration frequency that are not very well presented in the literature. The questions of how 

big the deme size and how many demes are required resulted in mixed conclusions. 

However, it is commonly agreed that the smaller demes require more neighbours to succeed 

[81, 91, 92, 93, 94]. Therefore the size and the number of demes would be dependant of the 

case-study. The same rules apply for migration rate and frequency. Based on some 

experimental analysis, Cantu-Paz (1998) showed that the solution quality increases with 

higher migration rates [95], while some other studies found that the higher the migration rate, 

the less quality of the solution in the present problem [93, 94]. For the two case studies of 

this thesis, these control parameters were selected based on the results of the pilot 

experiments. Readers are referred to Kattan (2005) and Mohamed (2007) for the 

experimental designs and the impact of augmenting the GA operators with parallelization 

[81, 87]. 

4.2.2 GENOTRANS and GridGain: The PDGA Platform 

As stated earlier, the simple and parallel GA methods, as well as their advanced features, 

were implemented into a platform called GENOTRANS, initially developed and updated at 

the University of Toronto ITS Center [93, 94]. GENOTRANS is a generic ‘Java’ Parallel 

Genetic Algorithm tool, in which the objective function is evaluated and constraints are 

satisfied through a simulation model (e.g. Paramics). The updated version of the 

GENOTRANS contains a full library of actual operators that can model the wide variety of 

GA options and operators. In addition, the aforementioned simple GA and PGA search 

techniques can be launched in GENOTRANS. Figure 4.2 and Figure 4.3 present the 
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snapshots of the simple and parallel GA operators implemented in the GENOTRANS library, 

respectively. 

Figure 4.2 GENOTRANS configuration generator (Simple GA) 
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Figure 4.3 GENOTRANS configuration generator (Parallel GA) 

The GENOTRANS is built on top of the generic grid-computing platform called GridGain. 

GridGain is an open-source Java-based platform for the distributed computations 

[9596, 97, 98]. The GridGain software consists of a master/slave model mediated by a job 

dispatcher process. A GridGain master process assigns a job to the nodes, which queues it for 

processing by a GridGain slave process. More specifically, computational grids or defines the 

method of splitting original compute task into multiple sub-tasks, executing these sub-tasks 

in a distributed manner on any managed infrastructure and aggregating results back to one 

final result.  

GENOTRANS extends the GridGain master and slave processes by adding generic GA 

capability. A GENOTRANS slave process is essentially an objective function evaluator, 

while a GENOTRANS master process manages a given deme (for the simple GAs) or set of 
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demes (for PGAs). Figure 4.4 illustrates the schematic interaction flow between 

GENOTRANS and GridGain platforms. 

Figure 4.4 Interaction flow between GENOTRANS and GridGain (Inspired from [ 97]) 

As is apparent from Figure 4.4, in addition to the parallelized nature of GAs encoded in 

GENOTRANS, the integration of the two platforms will utilize the distributed evaluation of 

the objective function across multiple processors in a grid-computing cluster. This 

distribution would be efficient when dealing with computationally demanding problems. 

Therefore, a multi-deme distributed GA (i.e. PDGA) is designed to simultaneously calibrate 

the demand and supply parameters of the DTA model in a large-scale complex network. 

Figure 4.5 presents the general PDGA structure implemented on the GENOTRANS and 

GridGain. 
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Figure 4.5 Flowchart of the PDGA implemented on the GENOTRANS and GridGain platforms 

Upon selection of extended solution algorithms, the next section briefly describes the 

available computer cluster to efficiently conduct the calibration process for a large-complex 

transportation network. 

4.3 Integration of High-Performance Computing Cluster with GA 

This thesis utilizes a high-performance computer (HPC) cluster in the Department of Civil 

Engineering at the University of Toronto. The cluster has 64 processing nodes, 44 with 4 GB 
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of memory and 20 with 8 GB of memory, all with two processors, XEON 5150 2.66GHz 

dual core Woodcrest for a total of 4 processing cores per node (i.e. 265 processors), 36GB 

15k rpm SAS hard disk, dual gig Ethernet, one public port and one dedicated cluster port. In 

addition to a master node, 20 nodes/slaves (i.e. 80 processors) were available to 

simultaneously distribute the computation across the available processors: the chromosomes 

are farmed out to multiple processors for evaluation in parallel (Figure 4.6). The cluster is 

managed through the Compute Cluster Job Manager user interface provided by Microsoft® 

Windows® Compute Cluster Server (2008). The cluster manager provides an integrated 

application platform for running, managing, maintaining, monitoring, and developing parallel 

computing applications [91]. It should be noted that during the course of this research, a 

number of CPUs in the HPC became unavailable (non-responsive), therefore the simulation 

models were run in other available CPUs with Paramics license.  

Figure 4.6 High-performance computing facility at University of Toronto [91] 

GridGain Version 3.6 is used to run the GA based on the GENOTRANS platform. 

Master/slave architecture is used to control the slave servers, as presented in Figure 4.7. A 

master node is responsible for sending requests to execute one GA evaluation (e.g., traffic 

simulation run) for every request. The requests are dispatched to any available node in round‐

robin fashion, regardless of which machine the application server is running on. Through the 
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GridGain Administrative Console, a weighting factor is assigned to each node to specify the 

load that can be assigned to this node, e.g., a weighting factor of 1 indicates that this node 

can be fully utilized during the execution process. 

It should be noted that, in large-scale optimization problems that require considerable reading 

and writing of associated network and parameter files, conventional disk drive systems are 

not efficient at handling such massive information transfer across HPC nodes. Therefore, a 

redundant array of independent disks (RAID), which is a new and efficient technique of 

improving data availability and transferability using arrays of disks and various data-striping 

methodologies, is utilized. 

Figure 4.7 Master/slave cluster setup in GridGain 
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4.4 Summary 

This chapter started with an overview of the GA and the various control parameters 

associated with the algorithm. In the next section, the selection mechanisms of the genetic 

operators were discussed. While it was argued that the simple GA (SGA) can effectively 

search the problem domain thoroughly, the convergence speed and the quality of the 

solutions of the SGA made it less desirable for ITS applications in large-scale networks. 

Therefore in this research, the performance of the SGA was enhanced by running the GA in 

multiple processors (i.e. evaluating the objective function in parallel CPUs) as well as 

distributing the GA’s population among multiple demes. The former property of GA 

enhances the convergence speed while the latter one improves the quality of solution. These 

two extensions of SGA were referred to a distributed GA (DGA) and parallel GA (PGA), 

respectively. The aggregation of the two properties of GA resulted in parallel distributed GA 

(PDGA), which tries to simultaneously improve the convergence speed and quality of the 

final solutions. Upon selection of the relevant control parameters, the PDGA was 

implemented on the GENOTRANS/GridGain platform. Finally, for distributed computation 

of simulation models in Paramics, a high-performance computer (HPC) cluster and a number 

of other available CPUs at the University of Toronto ITS Lab were selected. 
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Chapter 5: Case Study I: Synthetic Network 


So far, we have described the general simultaneous DTA calibration problem using multi-

source traffic data. The problem has been formulated as a stochastic optimization problem. 

The previous chapter focused on describing the developed framework. Advanced genetic 

algorithms (GAs), namely distributed GA (DGA), parallel GA (PGA), and parallel 

distributed GA (PDGA), were selected as the solution methodologies for solving the 

optimization problem. 

This chapter demonstrates the application and the performance of these algorithms for 

estimating the OD flows and calibrating the relevant driver behavior parameters in a 

simulation environment, using the applicable traffic data and the AVI sensor data. A small 

network with synthetic traffic data has been considered for this purpose. The assumed “true” 

observed sensors data is generated by means of a AimSun mesoscopic traffic simulator [7]. 

AimSun is assumed to perform as a proxy for real world. Noise is added to the true sensor 

count values to represent reality more closely. The Paramics microscopic DTA model has 

been calibrated using the sensor values generated by AimSun. 

In summary, the objectives of this chapter are to: 

	 Demonstrate the feasibility of the proposed simultaneous calibration process in a 

small network with synthetic data; 

	 To evaluate the relative effectiveness of simultaneous demand-supply calibration 

compared with the iterative bi-level calibration approach; 

	 Identify the effect of augmenting the GA operator with parallelization and distrusted 

computing schemes; 

	 Evaluate the effect of adding “synthesized” AVI data into the calibration process and 

compare the calibration results with the base case where only link counts are 

available for calibration; and, 
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	 Analyze the sensitivity of the calibration results to the weighting scheme of the 

objective function. 

The remaining of this chapter is organized as follows: the next section describes the detailed 

design of synthetic network, following by the implementation of the GA. The calibration 

results are presented in the third section of this chapter, following by the sensitivity analysis 

of the weighting factors. Finally, Section 5.5 summarizes the outcomes of this chapter. 

5.1 Experimental Design 

This experiment was conducted on a small synthetic network using the Paramics micro-

simulation package. This section explains the details of the experiment design, namely the 

description of the test network, calibration parameters, measurement of the loop detector 

sensors and AVI data, and measures of goodness-of-fit. 

5.1.1 Description of the Test Network 

The proposed methodology is implemented on a small synthetic network, consisting of 9 OD 

pairs (i.e. 3×3 OD matrix), 10 nodes and 10 links. Out of 10 nodes, 4 nodes are intersections 

and remaining 6 denote the origins and destinations of drivers in this network. In addition, 

four out of the nine OD pairs involved a route choice. The simulation period took place 

between from 7:30 a.m. to 9:00 a.m., with a warm-up period of 7:30 a.m. to 8:00 a.m. The 

remaining one-hour simulation was divided into four departure intervals of fifteen minutes. 

Figure 5.1 presents the topology of the small network. 

Figure 5.1 Synthetic network topology 
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5.1.2 Input Parameters for Calibration 

As stated earlier, the initial population consisted of randomly perturbed ODs from historical 

OD flows (if available) and perturbed driver behavior parameters from Paramics’ default 

values. This case study involved synthetic data, as true historical OD flows are not available 

for a synthesized network. Therefore, the initial OD flows for the first population (i.e., 

perturbed OD flows) were randomized from a set of user-defined synthetic time-dependent 

OD flows, which were considered as replacements for the true historical OD flows in the 

in Equation 1).ܱܦ objective function (i.e., 

It should be noted that the synthetic a priori OD flows were randomly perturbed in a pre-

specified range (-50% up to 50%) to obtain dynamic perturbed OD flows as the first starting 

values for calibration. This user-defined wide perturbation range ensures that the starting OD 

values do not replicate the synthetic time-dependent OD flows in the minimization problem. 

Paramics’ default driver behavior parameters were randomly perturbed within the acceptable 

searching range (presented in Section 3.3) and used as the input to the Paramics simulator. 

In summary, the total number of parameters for calibration on the demand side includes 9 

OD pairs for 4 time intervals (i.e. 36). On the supply side, there are 5 parameters for 

calibration, namely mean headway and mean driver reaction time as the 2 driver behavior 

parameters in Paramics, and perturbation factor, feedback and familiarity as the 3 route 

choice model parameters. It should be noted that in this simple network, these supply 

parameters are set fixed for all the segments, during the one hour simulation. Therefore, the 

total number of parameter for calibration equals 36+5=41. 

5.1.3 Synthesized Observed Traffic Data 

The small network has 3 loop detectors that can provide 3 sets of aggregated counts for the 

each 15-minutes time interval (on links 2, 7, and 10). Therefore, 12 sensor measurements are 

available for the calibration process. In addition, there were 3 AVI sensors that can provide 2 

sets of point-to-point travel time information between the center of links 10-2 and 10-7 

(Figure 5.1) per time interval (i.e. 8 measurements in total). The travel time was then 

converted to speed values for model calibration. It should be noted that Paramics version 6 

was able to provide the point-to-point travel times of the random vehicles that cross an AVI 
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sensor equipped segment in the network. The microscopic simulator assigns a unique ID to 

the vehicles that pass by as well as the time stamp associated with the detection instances. 

Therefore, travel time and average speed of individual vehicles on the road section between 

two consecutive AVI sensors can be obtained. 

Similar to the OD flows, the true (observed) values for the traffic counts, turning movements, 

and AVI speed data are not available for a synthesized network and thus need to be created. 

Since the calibration is implemented in the Paramics micro-simulation environment, the 

traffic data should be generated in a different simulation environment than Paramics; 

otherwise, the observed traffic data would be highly dependent on the perturbed OD flows in 

Paramics. Therefore, the synthetic network was simulated with Aimsun software. Aimsun is 

a mesoscopic model that combines driver behavior characteristics from microscopic models 

with macroscopic traffic flow to represent the relation among speed, density, and flow. 

Therefore, the models and parameters would be fundamentally different from Paramics. 

Figure 5.2 presents the visual interaction between Paramics and Aimsun. 

AimSun 
input:

synthetic
OD flows 

AimSun 
simulator 

AimSun 
output:

synthetic
traffic data 

Paramics 
inputs: 
average
AimSun 

simulation 
results 

Figure 5.2 Interaction between Paramics and Aimsun 

Using the same network and simulation run-time structure as Paramics, the perturbed OD 

flows were incorporated as the input in the Aimsun model, and the outputs of the simulation 

were the observed (synthetic) traffic data. As a result, the created output traffic data from 

Aimsun (e.g., observed counts, and AVI speed data) were utilized as the true observed data 

for the Paramics calibration purposes. It is noted that, due to the stochastic nature of Aimsun 

outputs (similar to Paramics), 5 runs of the Aimsun simulator were performed, and the traffic 

values were averaged for the calibration of Paramics. In addition, the traffic data from the 
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loop detectors should be fine-tuned, in order to capture the impact of noisy measurement. 

Therefore, the data obtained from loop detectors in Aimsun were adjusted by a user-defined 

symmetrical randomizer, ranging from -25% to +25%. These perturbed true traffic count data 

were used for calibration. The exact output values of Aimsun’s AVI and turning movement 

traffic data were used for calibration. The number of parameters that needed to be calibrated 

included six OD pairs for four time intervals and five driver behavior parameters. Therefore, 

the total number of demand and supply parameters to be calibrated was 41.  

As stated earlier, the total number of observed data is equal to 20, while the total number of 

unknown parameters is 41. Therefore, the calibration problem is underspecified with the 

degree of freedom of 41-20=21.  

5.2 GA Implementation Details 

5.2.1 Simple GA Control Parameters 

The various control parameters in a GA are critical to the solution quality. The population 

size control parameter is one of the most important parameters that significantly affect the 

performance of GAs. If the population is too small and sparsely spread, the lack of genetic 

diversity may lead to quick convergence on local optima before better optima can be visited. 

However, excessively large populations cause the GA to act like a random search algorithm, 

and the search may flounder. Moreover, the number of generations has a tremendous effect 

on the computational performance and convergence rate of a GA.  

After some initial trials for the synthetic network, the population size and the number of 

generations were selected as 80 and 30, respectively. As a summary, Table 5.1 presents the 

configuration of the simple GA control parameters for the synthetic network. Readers are 

referred to Section 4.1 for the detailed description of these parameters. 

As for the stopping criteria, a combination of two criteria was selected. The algorithm 

terminates whenever one of the following criterion is first met: 

 Reaching the pre-specified number of generations (e.g., 30), and 
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	 No improvement in the value of fitness functions by more than 1% over a specified 

number of generations (e.g., last 5 generations). 

If a termination criterion is satisfied, the GA is then terminated and outputs the best solutions 

from the last iteration. The final output of the GA is the estimated OD flows and calibrated 

driver behavior parameters for Paramics. 

Table 5.1 Configuration of control parameters 

Control Parameter Selected Value 

Selection method Ranked-based selection mechanism 

Cross-over α-blend crossover (α=0.2) 

Crossover rate ܲ= 90% 

Mutation method Self-adaptive Gaussian 

Mutation rate ܲ= 5% 

Population size 80 

Number of generations 30 

Number of simulation runs for each 
chromosome evaluation in Paramics 

5 

5.2.2 Parallel GA Control Parameters  

As stated earlier is Section 4.2.1, there are a number of control parameters in the multi-deme 

structure of GAs that play an important role in the quality of the final solutions. Based on the 

literature and pilot experiments, the multi-deme structure is selected for the synthetic 

network [81, 87]. Table 5.2 summarizes the PGA design elements. 
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Table 5.2 Parallel GA design elements 

Control Parameter Selected Value 

Island topology Fully connected topology 

Migration policy 
Good migrants replace bad 

individuals 

Migration rate 10% 

Migration frequency (epoch interval) 5 

Number of demes 4 

Deme size 20 

5.3 Calibration Results 

With the synthetic data, the methodology presented earlier was applied for the simultaneous 

calibration of dynamic OD flows and driver behavior parameters. For comparison purposes, 

separate experiments were performed, in terms of the following comparisons of criteria: 

	 Study data: loop detector counts compared to multi-source traffic data (i.e. loop 

detector counts, and AVI speed data) based on the simultaneous calibration 

methodology. 

 Calibration methodology: simultaneous calibration compared to bi-level iterative 

calibration of demand and supply parameters. 

 Optimization engines: non-distributed computing (i.e. SGA) compared to a 

distributed computing technique (i.e. DGA). 

 Effect of parallelization: comparing SGA and DGA to the parallel distributed GA 

(PDGA). 

5.3.1 Calibration Results based on Different Traffic Data 

Table 5.3 and Table 5.4 present the calibration result statistics based on GEH and NRMSE 

measures of effectiveness for counts and speed values, using the HPC, respectively. For 

visual comparison, the MRMSE and GEH values for calibration are summarized in 

Figure 5.3 and Figure 5.4. In addition, the NRMSE and GEH values of count and speed 
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values for each 15-minute interval of the analysis period (8:00 a.m. to 9:00 a.m.) are 

presented in Figure 5.5, and Figure 5.6. The difference between the observed and simulated 

counts (obtained by loading the seed synthetic OD flows to Paramics without any calibration 

iteration) are reported as the before calibration case in this table. The base calibration case 

refers to the calibration process using loop detector count. Furthermore, the base calibration 

case + AVI data corresponds to the results obtained from the multi-source traffic data. It 

should be noted that the following weighting factors were considered for the synthetic 

network (Equation 1): 

	 Base case: αcount=0.6 for counts and αOD=0.4 for OD flows 

	 Base case + AVI speed data: αcount=0.3 for counts, and αOD=0.2 for OD flows, and 

αcount=0.5 for speed values 

Readers are referred to Section 5.4 for the detailed sensitivity analysis that led to the 

estimation of the above weighting factors. In addition, for comparison purposes between 

different scenarios, the same weighting factors were considered for evaluation of the SGA 

versus PGA. 

Table 5.3 Calibration result statistics based on counts 

Measures of 

Effectiveness 

Before 

Calibration 

Base 

Calibration 

Case 

Base Calibration 

Case+AVI Data 

% Change (Base 

Case vs. Before 

Calibration) 

% Change (Base 

Case vs. Base 

Case+AVI) 

GEH 12.87 4.55 3.44 64.7% 24.3% 

NRMSE 33.4% 13.3% 10.6% 60.1% 20.5% 

Table 5.4 Calibration result statistics based on speed values 

Measures of 

Effectiveness 

Before 

Calibration 

Base 

Calibration 

Case 

Base Calibration 

Case+AVI Data 

% Change (Base 

Case vs. Before 

Calibration) 

% Change (Base 

Case vs. Base 

Case+AVI) 

GEH 9.86 3.79 2.51 61.5% 33.9% 

NRMSE 36.4% 13.8% 6.9% 62.0% 49.8% 
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Counts Speed 

Before calibration 33.4% 36.4% 

base case 13.3% 13.8% 
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Figure 5.3 Comparison of different scenarios based on NRMSE values 
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Figure 5.4 Comparison of different scenarios based on GEH values 
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Figure 5.5 Comparison between measures of effectiveness of different cases based on counts 

(15-minutes intervals) 

74
 



 

 

 

  

 

  

 

  

0.0 

2.0 

4.0 

6.0 

8.0 

10.0 

12.0 

8:00-8:15 am 8:15-8:30 am 8:30-8:45 am 8:45-9:00 am 

G
E

H
 

Time Interval 

GEH (Speeds) 

Before calibration base case base+AVI 

a) GEH 

0.0% 

10.0% 

20.0% 

30.0% 

40.0% 

50.0% 

60.0% 

8:00-8:15 am 8:15-8:30 am 8:30-8:45 am 8:45-9:00 am 

N
R

M
S

E
 

Time Interval 

NRMSE (Speeds) 

Before calibration base case base+AVI 

b) NRMSE 

Figure 5.6 Comparison between measures of effectiveness of different cases based on speed 

values (15-minutes intervals) 

75
 



 

 

 

 

 

 

  

 

 

 

 

 

  

 

  

As is apparent from Table 5.3, the reported percentage changes between the before 

calibration case and the base calibration case reveals that the simultaneous calibration 

process using GA performed as expected and had the capability of minimizing the 

discrepancy between the observed and simulated traffic conditions (i.e., OD flows and loop 

detector counts). According to Figure 5.5, the percentage change in terms of GEH ranged 

between 55.8% and 73.8% for various time periods, with an average improvement of 64.7%. 

The average GEH for the base case was 4.55, which was less that the threshold of 5.0 

recommended by the U.S. Federal Highway Administration (FHWA) guideline [99]. The 

improvement percentage in the objective function using the other measure of effectiveness 

(i.e., NRMSE) was consistent with the GEH percentage changes, ranging from 52.5 to 

65.1%, with an average of 60.1%. 

Following the same trend as the count measures of effectiveness, the results of the speed 

values from different cases are found to be consistent with the count measures of 

effectiveness. According to the Table 5.4 and Figure 5.6, the following conclusions can be 

made: 

	 The percentage change of speed GEH ranged between 55.0% and 66.0% for various 

time periods, with an average improvement of 61.5%. 

	 The improvement percentage in the objective function using the speed NRMSE is 

consistent with the speed GEH percentage changes, ranging from 49.8% to 71.0%, 

with an average of 62.0%. 

In addition to conducting a before/after calibration study using traditional count data, this 

research also incorporated AVI traffic data into the calibration process. The percent change 

between the calibration results obtained from the base calibration case and the combination 

of AVI and count data revealed that the AVI data significantly improved the calibration 

accuracy by 24.3% and 20.5% in terms of count GEH and RMSN values, respectively 

(Table 5.3 and Figure 5.5). This improvement percentage in terms of speed GEH and RMSN 

values are found to be 33.9% and 49.8%, respectively. 
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Figure 5.7a, Figure 5.7b, and Figure 5.7c present the plots of the observed counts and 

simulated entities for the before calibration, base calibration, and multi-source (Base 

case+AVI) scenarios, respectively. In these plots, a 45-degree line indicates the positions of 

the observed and simulated loop detector counts. A visual comparison between Figure 5.7a 

and Figure 5.7b reveals that the calibration process significantly minimized the discrepancy 

between the observed and simulated traffic counts. In addition, the incorporation of AVI data 

and sensor counts improved the calibration accuracy compared to the base calibration case 

(as shown in Table 5.3). As expected, the AVI data improved the calibration accuracy, in 

terms of travel time or speed data. Furthermore, as demonstrated in Figure 5.7c, that the AVI 

data also improved the calibration accuracy in terms of sensor count error. A possible reason 

is that the number of sensors in the network was low; therefore, the AVI data generally 

improved the calibration performance in terms of counts and speed data. Speed information 

provides a better indication of the quality of traffic flow. Speed information, in contrast to 

flow measurements, can clearly distinguish between congested or uncongested conditions. 

Thus, the incorporation of AVI readings improved the solution quality by decreasing the 

number of local point solutions. 

77
 



 

 

 

  

 

  

 

  

 

0 

300 

600 

900 

1200 

1500 

1800 

0 300 600 900 1200 1500 1800 

S
im

u
la

te
d

 c
ou

n
ts

 

Observed counts 

a) before calibration 

b) base case 

0 

300 

600 

900 

1200 

1500 

1800 

0 300 600 900 1200 1500 1800 

S
im

u
la

te
d

 c
ou

n
ts

 

Observed counts 

c) multi-source data: base case + AVI data 

Figure 5.7 Comparison between simulated and observed counts 
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5.3.2 Comparing Calibration Approaches 

As stated earlier, several studies have been conducted to jointly calibrate the input parameters 

of the DTA models in a sequential fashion. This section compares the performance of the 

proposed simultaneous and the traditional sequential bi-level calibration methodologies. The 

previous section suggests that the incorporation of the AVI data can improve the calibration 

accuracy by minimizing the objective function. Therefore, the performance of both 

approaches was compared based on the same observation data (count and AVI data) in the 

synthetic network. The iterative bi-level approach consists of 2 optimization steps: the upper 

level estimates the OD flows while fixing driver behavior parameters; that was followed by 

the estimation of the driver behavior parameters in the lower level assuming fixed OD flows 

from the upper level. GA is used as the solution algorithm in both levels to estimate the OD 

flows and calibrate the driver behavior parameters. Readers are referred to the literature for 

the detailed bi-level calibration methodology [60, 61, 62, 63]. Figure 5.8 and Figure 5.9 

present results of the NRMSE and GEH values of count data and speed values for both the 

simultaneous and bi-level calibration approaches during the 1-hour simulation period, 

respectively. 
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Figure 5.8 Visual comparison between simultaneous and sequential approaches based on 


NRMSE 
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Figure 5.9 Visual comparison between simultaneous and sequential approaches based on GEH 

Figure 5.8 and Figure 5.9 indicate that the simultaneous calibration methodology 

outperforms the sequential bi-level approach by 32.0% and 19.0%, as expressed in NRMSE 

and GEH for count data, and 34.6% and 22.7% in NRMSE and GEH for speed data, 

respectively. In other words, the simultaneous calibration of demand and supply parameters 

had considerably better accuracy as compared to the sequential approach. The results of this 

experiment are in line with the earlier findings since the complex and nonlinear interactions 

between demand and supply parameters could not tackled.  

80
 



 

 

  

 

 

 

 

 

  

 

 

 

 

 

 

5.3.3	 Comparing the Optimization Engines: Simple GA (SGA) vs. Distributed GA 

(DGA) 

As stated earlier, this research utilized an HPC to run the GA in parallel computer processing 

engines (i.e. DGA). To obtain the final calibrated OD flows and driver behavior parameters 

using the count and AVI traffic data, the synthetic network was simulated a total of 12,000 

times, which was the product of the number of generations (30), the number of chromosomes 

in each generation (80), and the number of DTA iterations in Paramics (5). These 

configuration control parameters are presented in Table 5.1. Based on the average 30 seconds 

run time for each hour simulation in a very simple network, this took 100 hours to complete. 

As a result, it is clear that running the GA in one CPU engine is not practical, even for a 

synthetic network. Therefore, there have been numerous efforts to make GAs faster and one 

of the promising techniques is to the use of distributed implementations of GAs. The effect of 

distributing the GA population to multiple slaves on the performance of the GA is typically 

examined, in terms of the following criteria [28, 82]: 

	 Elapsed time, which focuses on the master processor, the number of available 

processors, and the communication time to create the files necessary for each 

processor; 

	 Speed-up, which is the ratio of the execution time of the single processor GA to the 

elapsed time of the distributed GA; and, 

	 Efficiency, which is defined as the speed-up divided by the number of processors and 

represents the utilization of processors. 

The analysis of the elapsed time focuses on the master processor and the number of available 

processors. In a typical GA generation, the master sends a fraction (or all) of the population 

. This communication time is ܶ to each of the slave processors, using communication time 

exhausted in creating the files/directories necessary for each processor in the available slave 

list. Although the master consumes sometime in the selection, crossover and mutation 

processes, this time is typically ignored compared to the communication and execution times. 

Due to the unprecedented sheer size of the input/output files in this application, the master 
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remains idle and waits for the results from the available processors. Next, each slave 

(processor) evaluates a fraction of the population in time 
்ೣ

 is the execution time ௫ܶ , where



 is the number of available processors. ܲ is the population size, and ݊ of one individual, 


Therefore the elapsed time for one generation is given by Equation (15). 

ೣ்ܶൌ ܲாܶ 
 (15) 


An important concern when implementing large‐scale problems is that the frequent 

communications between master and slaves may offset the gain in computation time. 

Therefore, the speedup ሺܵሻ of the master‐slave distributed GA is another measure of the 

effectiveness of a DGA. The speedup is the ratio of the execution time of the SGA to the 

, theܶ to௫ܶ elapsed time of the DGA as shown in Equation (16). The greater the ratio of 

more linear will be the speedup. 

்ܵ ൌ  
்ା


ು
ೣ  (16) 

Although using more slaves reduces the computation time significantly, the communication 

time increases. Therefore, a third measure of the effectiveness of the DGA compared to an 

divided by the number ܵ ). The efficiency is defined as the speedupܧSGA is the efficiency (

 (see Equation 17). The efficiency represents the utilization of processors. ܲ of processors 

 would be equal to the number of processors used ܵ would be constantly one and ܧ Ideally, 

(i.e. linear speedup). However, in reality, the cost of communications prevents this ideal case 

from happening; therefore, the efficiency is chosen as a measure of the deviation from the 

ideal case. 

ܧ ൌ  


ௌ
 (17) 

By examining the evolution of the fitness function with each GA generation, it was 

concluded that the DGA outperformed SGA, in terms of the convergence speed (i.e. CPU 

time). However, it should be noted that, as the number of processors increases, the elapsed 

time decreases, speed-up increases, and efficiency decreases. For the synthetic case study 

network, the GA was tested in the HPC and available Paramics licensed processors in the 
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University of Toronto ITS Lab. It is noted that out of 80 processors in the HPC, 22 

processing engines were made available for the purpose of this research. The calibration 

process took approximately 9 hours to complete, compared to the 100 hours running the 

process on a single CPU machine. In other words, the DGA was approximately 10 times 

faster than the SGA. Considering the limited number of available processors, the total 

efficiency of the cluster was approximately 49%. Upon the full availability of the cluster 

processors (i.e. 80), it is expected that the efficiency of the Cluster significantly increases to 

90% [91]3. Therefore, in an ideal situation where all the processing nodes can be assigned to 

the problem, the DGA can be more than 70 times faster than SGA.  

It should be noted that running GA in multiple processors only reduces the computation time, 

while the quality of the solution would be the same as the SGA (i.e. running GA in one 

processor). An improvement in the quality of solution was observed by parallelization 

structure of GA detailed in the next section. The final simulated dynamic OD flows, counts, 

speed data, and driver behavior parameters were obtained after running 27 generations. 

Table 5.5 presents the calibrated driver behavior parameters, based on the incorporation of 

count and speed data into the calibration process.  

Table 5.5 Calibrated driver behavior parameters 

Parameter Types Description Optimal Value 

Vehicle-driving behavior 
Mean headway 1.15 sec 

Mean reaction time 0.89 sec 

Route choice model 
Feedback 210 sec 

parameters 
Familiarity 82% 

Perturbation 11.2% 

3 Abd, H. M. A. E. H. (2010). Optimization of Multimodal Evacuation of Large-scale Transportation Networks, 
Doctoral dissertation, University of Toronto 
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5.3.4	 Comparing the Simple GA (SGA) and Distributed GA (DGA) to the Parallel 

Distributed GA (PDGA) 

Parallel computing distributes the computation across multiple processors simultaneously, in 

which chromosomes are farmed out to multiple processors for evaluation. As stated in 

Section 5.3.3, the DGA improved the convergence speed of the solution algorithm comparing 

to SGA. On the other hand, the parallel GA (i.e. multi-deme) better mimics the nature of the 

population than an SGA with a single population and improves the quality of the solution. 

Therefore in this section, the performance of the SGA and DGA is compared with the 

PDGA, in terms of the convergence speed and calibration results obtained from the multi-

source traffic data. It should be noted that the weighting factors, αi, were estimated from the 

sensitivity analysis described in Section 5.4. 

Following the methodology set forth in Section 4.2 and the parallel GA control parameters in 

Table 5.2, the final simulated OD flows, counts, AVI data, and driver behavior parameters 

were obtained. Table 5.6 presents the calibration result statistics for counts and speed values. 

In addition, the calibration result statistics for DGA were adopted from Table 5.3 and 

Table 5.4 and incorporated in Table 5.6 for the direct comparison between DGA and PDGA.  

For the visual comparison, the count and speed NRMSE and GEH values for each 15-minute 

interval of the analysis period (8:00 a.m. to 9:00 a.m.) are presented in Figure 5.10 and 

Figure 5.11, respectively. 

Table 5.6 Comparison between DGA and PDGA calibration result statistics based on counts 

and speed values 

Category 
Measures of 

effectiveness 
DGA PDGA 

Improvement 

percentage 

Count 

GEH 3.44 2.52 25.8% 

NRMSE 10.6% 7.5% 27.8% 

Speed 

GEH 2.51 1.73 30.2% 

NRMSE 6.9% 4.9% 28.1% 
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Figure 5.10 Comparison between measures of effectiveness of DGA and PDGA based on counts 
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Figure 5.11 Comparison between measures of effectiveness of DGA and PDGA based on speed 

values 

As is apparent from Table 5.6, the reported percentage change between the calibration results 

based on the DGA and PDGA reveals that the parallel GA leads to further reduction in 

fitness function results, as compared to the single GA running in the HPC. According to 

Figure 5.10, the improvement in terms of GEH values varies depending on the simulation 
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periods ranging from 18.1% and 39.2%, as compared to the single population GA with an 

average improvement of 25.8%. In addition, the improvement percentage in the objective 

function using the count NRMSE is consistent with the GEH percentage changes, ranging 

from 19.1 to 34.0%, with an average of 27.8%.  

Following the same trend as the count performance measures, Table 5.6 and Figure 5.11 

shows that parallelization of GA result in an overall reduction of speed performance 

measures as compared to the simple GA runs in the HPC. The percentage change of speed 

GEH ranged between 25.7% and 36% for various time periods, with an average improvement 

of 30.2%. In addition, the improvement percentage in the objective function using the speed 

NRMSE is consistent with the speed GEH percentage changes, ranging from 18.6% to 

38.0%, with an average of 28.1%. It should be noted that the above reduction in the fitness 

functions from DGA to PDGA were found to be statistically significant based on the 95% 

confidence interval. Figure 5.12 presents the plots of the observed counts and simulated 

entities for the PDGA and DGA calibration scenarios, using multi-source traffic data. A 

visual comparison of the two figures reveals that the calibration process based on 

parallelization of the GA structure significantly minimized the discrepancy between the 

observed and simulated traffic counts, comparing to the simple GA running in the distributed 

processors. In addition, Figure 5.13 presents the evolution of the fitness function with each 

GA generations. 
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Figure 5.13 Effect of parallelization and distributed computing on GA convergence and quality 

of solutions (PDGA vs. DGA/SGA) 
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In summary, the results of the experiments demonstrated the advantages of the PDGA 

techniques over the simple GA distributed among parallel processors (i.e. DGA) with regards 

to achieving a higher quality solution for off-line applications. 

By examining the evolution of the fitness function with each GA generations in Figure 5.13, 

the following observations can be made: 

	 Termination point and quality of solution: As is apparent from Figure 5.13, PDGA 

outperforms the DGA in terms of fitness function value and convergence speed (i.e. 

number of generations required to reach a certain fitness function value). First, the 

PDGA results in a better fitness function value at the termination point of the GA (i.e. 

generation 24), with the fitness function of 6.5% vs. 8.9% in terms of NRMSE values 

(i.e. 26.9% reduction). This means that for the same number of generations, it is 

found that the PDGA provides higher quality solutions. Secondly, the PDGA results 

in faster convergence when compared to the DGA. This is clearly shown in 

Figure 5.13 by looking up how many generations of the PDGA will result in the same 

fitness value as the corresponding DGA: it is found that the PDGA can produce the 

same quality as the DGA (fitness of 8.9%) in 10 of the number of generations 

comparing to 27 for the DGA (see dotted line), i.e. the PDGA required approximately 

1/3 number of generations to find the optimal fitness function values, comparing to 

DGA. 

	 Convergence speed: As stated earlier in Section  5.3.3, the DGA outperforms the SGA 

in terms of convergence speed (i.e. CPU time). However, the multi-deme structure of 

GA populations did not have any significant on the convergence speed of the 

algorithm in terms of total CPU time (i.e. 9 and 11 hours for DGA and PDGA, 

respectively). While PDGA requires more communication time between the core and 

slave processors for creating the necessary files/directories, fewer number of 

generation was required for convergence of this algorithm. 

Table 5.7 provides the results of the above experiments with regards to the various traffic 

data, solution algorithms, convergence speed, and the quality of the final calibrated 

parameters. 
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Table 5.7 Summary of the experiments 

Experiment 
No. 

Purpose Traffic data 
Computing 
structure 

GA 
structure 

Outcome 

1 

Compare the 
calibration results 
based on different 

traffic data 

Comparing Traffic 
counts from loop 

detectors vs. multi-
source traffic data 

(count and speed values 
from AVI data) 

Distributed 
computing in 

HPC 

Simple GA 
(SGA) 

AVI data improves the quality of solution 

2 

Comparing 
simultaneous vs. bi

level calibration 
approach 

Count and AVI data 
Distributed 

computing in 
HPC 

Simple GA 
(SGA) 

Simultaneous calibration methodology 
outperforms the sequential bi-level 
approach 

3 
Compare the 

optimization engines 
Count and AVI data 

1 processor 
vs. 

Distributed 
computing in 

HPC 

Simple GA 
(SGA) 

The distributed GA is approximately 10 
times faster than the simple GA running in 
one processor (i.e. CPU time). 

4 

Comparing the 
distributed GA (DGA) 

to the parallel 
distributed GA 

(PDGA) 

Count and AVI data 
Distributed 

computing in 
HPC 

Simple GA 
(SGA) vs. 

parallel GA 
(PGA) 

 PDGA can produce the same quality as 
the DGA in 1/3 of the number of 
generations. 

 PDGA outperforms the DGA in terms of 
quality of solution and convergence 
speed (i.e. required number of 
generations).In terms of CPU time, there 
is no significant difference between the 
PDGA and DGA. 
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5.4 Sensitivity analysis 

In the previous section of this thesis, the calibration results of different scenarios of the 

synthetic network, based on different scenarios of the available traffic data (i.e. count, speed, 

OD flows), were presented. The purpose of this section is to describe the methodology for 

estimating the weighting values in the aforementioned objective functions. 

A sensitivity analysis was performed to test the sensitivity of the calibration accuracy in 

terms of NRMSE to the weight given to sensor counts, speed data, and OD flows’ deviations 

in the stochastic objective function (Equation 1). According to the Section 5.3.1, the base 

calibration case was defined as the calibration process using loop detector count, while the 

base calibration case + AVI data represented the results obtained from the multi-source 

traffic data. The calibration results in Section 5.3 were based on the optimal weights given to 

different components of the objective function. In general, the sensitivity analysis was carried 

out on two cases: 

	 Case I) Estimate the relative weight given to speed, count, and OD flows (i.e. base 

case+AVI) 

	 Case II) Estimate the relative weight given to count, and OD flows (i.e. base case)  

As stated earlier, for comparison purposes between different scenarios, the final optimal 

weighting schemes were used for both simple GA and parallel GA structures. 

5.4.1 Case I 

In order to evaluate the effect of weighting factors on the final results, different combination 

of weight values were considered, ranging from 0% to 100% for all parameters. Given the 

synthetic structure of the network and traffic data, the following weighting schemes were 

considered for the analysis. It should be noted that for the large-scale network, the optimal 

values of the weighting functions are estimated as a part of the calibration framework. 

Readers are referred to Section 3.2.2 for the detailed methodology. 

Table 5.8 summarizes the NRMSE value for sensor counts, AVI data, and OD flows, 

respectively. 

91
 



 

 

 

 

 
 

 

 

       

       

       

       

       

       

       

       

       

       

       

 

 

Table 5.8 Sensitivity analysis based on NRMSE (Case I) 

Scenario 

number 

Relative weight NRMSE values 

Fitness 

Function 

Value (Z) 

OD 

flows 

ሺࢻሻ 

counts 

ሺࢻሻ 

speed 

values 

ሺࢻሻ 

OD flows Counts Speed 

1 0.1 0.45 0.45 10.2% 9.7% 5.7% 8.0% 

2 0.1 0.4 0.6 10.8% 10.2% 4.4% 7.8% 

3 0.1 0.6 0.4 10.6% 8.4% 6.1% 8.5% 

4 0.2 0.3 0.5 9.5% 7.1% 4.9% 6.5% 

5 0.2 0.4 0.4 9.8% 8.9% 6.2% 8.0% 

6 0.33 0.33 0.33 10.2% 7.9% 7.4% 8.4% 

7 0.3 0.3 0.4 9.8% 7.6% 6.4% 7.8% 

8 0.4 0.2 0.4 9.0% 7.7% 6.8% 7.9% 

9 0.4 0.3 0.3 8.5% 8.2% 7.6% 8.1% 

10 0.5 0.2 0.3 7.9% 9.0% 8.3% 8.2% 

11 0.5 0.3 0.2 7.9% 9.4% 9.7% 8.7% 

Based on the results of the sensitivity analysis, the following observations were made: 

	 First scenario: initial trial with the weighting factor combination of 0.1, 0.45, and 0.45 

for OD flows, counts, and speed values, respectively. 

	 In the 2nd and 3rd scenarios, the weight for the OD was set to be the same as the first 

scenario (i.e. 0.1). It was observed that as the weight of speed data increases, the 

speed/travel time calibration accuracy increases (i.e. lower speed NRMSE). However, 

that was achieved at the cost of slightly decreased accuracy for the count data. 

Therefore there is a trade-off between the weights given to all parameters. In general, 
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the calibration framework was found to be more reliant on the speed/travel time data 

which resulted in the increase of the objective function in the 3rd scenario comparing 

to the 2nd scenario (i.e. worsen results). From the traffic management viewpoint, this 

result is as expected since the speed/travel time data are the direct measures of the 

link performances and highly affect the routing decision, compared to the traffic 

counts from inductive loop detectors. 

	 As the larger weight is given to the OD flows and speed values in the 4th scenario 

comparing to the 3rd scenario, the NRMSE of all three components have decreased 

comparing to the previous scenario. However, the slight change in the weighting 

schemes of count and speed data in the 5th scenario with the same weight for the OD 

flows (i.e. 0.2) resulted in an increase of the total NRMSE (i.e. 8.0% in 5th scenario 

vs. 6.5% in 4th scenario). This finding is in line with the previous observation as the 

calibration framework is more reliant on the speed/travel time data. 

	 An equal weighting scheme in the 6th scenario gives the second least desirable results 

so far (i.e. 8.4%), while increasing the weight of the speed values in the 7th scenario 

slightly reduces the total NRMSE (i.e. from 8.4% to 7.8%). 

	 An important general observation can be made from the remaining scenarios. With a 

larger weight given to the OD matrix, the NRMSE of the estimated demand gets 

closer to those of the prior demand. This means that a large weight on prior error term 

would strap the solution closer to the prior demand and possibly prevents discovering 

the true matrix. In addition, the NRMSE of the count and speed values significantly 

increased, resulted in an increase of the total NRMSE (up to 8.7% in the last 

scenario). 

In summary, the best fitness results correspond to the 4th scenario with the weighting scheme 

of 0.2, 0.3, and 0.5 for the OD matrix, traffic counts, and speed values, respectively. This 

weighting scheme indicates that the apriori demand gives a good starting search space by 

building the initial GA population; however it does not have to be necessary accurate in the 

objective function. In addition, it was found that more weight can be given to the speed/travel 

time data from AVI sensors as the direct measures of the link performance, which can affect 
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the routing decision, comparing to the traffic counts from inductive loop detectors. These 

findings from the synthetic case study are further analyzed in the next chapter with a more 

advanced weighting scheme. 

5.4.2 Case II 

Following the same procedure of Case I, and given that the calibration involves only two 

components (i.e. count and OD flows), the following weighting schemes can be considered 

for the analysis: 

Table 5.9 Sensitivity analysis based on NRMSE (Case II) 

Scenario 
number 

Relative weight NRMSE values Fitness 

Function 

Value 

(Z) 

OD 

flows 

ሺࢻሻ 

counts 

ሺࢻሻ 

OD 

flows 

ሺࢻሻ 

counts 

ሺࢻሻ 

1 0.1 0.9 28.9% 9.5% 11.4% 

2 0.2 0.8 18.9% 9.3% 11.2% 

3 0.3 0.7 14.2% 9.8% 11.1% 

4 0.4 0.6 12.3% 10.2% 11.0% 

5 0.5 0.5 11.2% 12.9% 12.1% 

6 0.6 0.4 10.4% 14.6% 12.1% 

7 0.7 0.3 9.8% 15.6% 11.5% 

8 0.8 0.2 9.6% 22.3% 12.1% 

9 0.9 0.1 8.9% 32.2% 11.2% 

In summary, the best fitness results correspond to the 4th scenario with the weighting scheme 

of 0.4, and 0.6 for the OD matrix, and traffic counts, respectively.  
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5.5 Summary 

In this chapter, a small network with synthetic data was used to demonstrate the feasibility of 

the proposed simultaneous calibration process, identify the effect of augmenting the GA 

operator with parallelization and distrusted computing schemes, and evaluates the effect of 

adding the AVI data into the calibration process. Several simulation experiments were 

performed to achieve the objectives of this chapter. In summary, the following observations 

were made: 

	 AVI speed data can improve the quality of solution, 

	 Simultaneous calibration methodology outperforms the sequential bi-level approach, 

	 The distributed GA (DGA) is approximately is 10 times faster than the Simple GA 

running in one processor (i.e. SGA), 

	 PDGA can produce the same quality as the DGA in 1/3 of the number of generations, 

	 PDGA outperforms the DGA in terms of quality of solution and convergence speed 

(i.e. required number of generations), and  

	 PDGA improved the quality of solution without having any significant impact on the 

computational time for a small synthetic network. 

Based on the results obtained from the synthetic network, the proposed methodology is 

implemented in a complex large-scale network. The implementation details are described in 

the next chapter. 
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Chapter 6: Case Study II: Water Front Network
 

The previous chapter demonstrated the application of the simultaneous calibration approach 

for calibrating the demand as well as supply parameters of a DTA system and its advantages 

over the traditional sequential approach. It also established the importance of incorporating 

the AVI data into the calibration process for improved solution quality. Finally, it was found 

that the parallelization and distribution of GA can significantly enhance the calibration 

accuracy and convergence speed of the algorithm. 

So far, the performance of the proposed DTA calibration framework was tested on the 

synthetic network with 41 numbers of unknown parameters (i.e. 9 OD flows in 4 departure 

intervals and 5 driver behavior and route choice model parameters). In larger networks, the 

numbers of unknown parameters increases with the larger number of OD pairs and departure 

intervals, additionally the path choice becomes more complicated. Thus, the aim of this 

experiment is to test the performance of the proposed approach for a more general real-size 

network where drivers have several route choice alternatives to reach their destination. 

Therefore, the number of parameters to be calibrated is much higher than the previous small 

network. The Water Front area in the downtown Toronto has been used for calibration 

purposes. The traffic data were incorporated from different sources to enrich the accuracy of 

the calibration process. 

In summary, the objectives of this chapter are to: 

	 Demonstrate the application of the simultaneous calibration process for a realistic 

large-scale network; 

	 Evaluate the effect of adding the enriched in-vehicle navigation system data from 

private data provider into the calibration process; 

	 Evaluate the dependency of the calibration results to the historical OD flows; and 

	 Application of parallelization of GA control parameters with an HPC to expedite the 

GA calibration speed and accuracy for the large-scale transportation problems. 
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The remaining of this chapter is organized as follows: the next section describes the Water 

Front network, following by the input parameters for calibration. The observed traffic data, 

including historical OD flows, observed traffic sensor data, observed turning movement 

counts, and speed data are presented in the remaining sections of this chapter. Section 7 

describes the implementation details of the case study, following by the GA control 

parameters. Calibration results are presented in the ninth section of this chapter. After the 

calibration process, the validation results for the Water Front network are presented in 

section 10. Finally, the last section summarizes this chapter. 

6.1 Experimental Design 

As a case study, the developed methodology is implemented on a very busy part of Toronto, 

the financial district in the downtown area. The network covers two major highways, namely 

Don Valley Parkway and Gardiner Expressway, arterials, minor roads, signalized 

intersection, and uncontrolled intersections. The network is bounded by Queens Quay 

corridor (south), Front Street (north), Don Valley Parkway (east), and Bathurst Street (west).  

The network was originally coded in Paramics Version 5 in a project conducted for the 

Toronto Waterfront Revitalization Corporation [100]. Within that project, efforts were 

invested into building the correct geometry, defining the roadway attributes (speeds, and land 

configurations) and coding signal timing. For signalized intersections, actuation algorithms 

were developed to best represent the SCOOT traffic signal control system in the Waterfront 

area. The reader is referred to [100] for a detailed information on the Waterfront network 

coding effort. Figure 6.1 shows the coded Water Front network in Paramics, which contains 

53 OD pairs, 1,483 segments, 121 junctions, 563 nodes, and 293 km of roadway. Each major 

roadway crossing the study area boundary is considered to be a gateway zone to the study 

area. A total of 26 gateways were included in the simulation model. The remaining 27 traffic 

zones were considered as internal study area zone. The gateways to the study area are 

presented in Table 6.1 and are shown in Figure 6.1. 
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Table 6.1 Gateways to the Study Area 

Gateway 
zone ID 

Roadway Location 

1 Lakeshore Blvd. West East of Parklawn Rd. 

2 S. Kingsway Ramp Just south of The Queensway 

3 Gardiner Expressway East of Parklawn Rd. 

6 Bathurst St. North of Front St. 

7 Portland St. North of Front St. 

8 Wellington St. West West of Spadina Ave. 

9 Spadina Ave. North of Wellington St. West 

10 Peter St. North of Wellington St. West 

11 John St. North of Wellington St. West 

12 Simcoe St. North of Wellington St. West 

13 University Ave. North of Wellington St. West 

14 York St. North of Wellington St. West 

15 Bay St. North of Wellington St. West 

16 Yong St. North of Wellington St. West 

17 Church St. North of Wellington St. West 

18 Lower Jarvis St. North of Front St. 

19 Sherbourne St. North of Front St. 

20 Parliament St. North of Front St. 

21 Eastern Ave. North of Front St. 

22 Sumach St. North of Front St. 

23 Don Valley Parkway (DVP) North of Front St. 

24 Lakeshore Blvd. East East of DVP 

25 Don Roadway South of Lakeshore Blvd. East 

26 Cherry St.  South of Gardiner Exp. 

27 Harbour St. West of Yong St. 

28 Eireann Quay (Downtown Airport Rd.) South of Queens Quay West 
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Figure 6.1 Paramics network topology 

The simulation period took place between 6:30 to 9:30 for the AM peak period, and 15:30 to 

18:30, for the PM peak period, with a warm-up period of 6:00 to 6:30, for a typical week 

(excluding weekends) in the Fall season of 2012 (15th-19th of October, 2012, aggregated for 

each 15 minutes interval during the peak periods). It should be noted that the duration and 

occurrence of the peak periods for Greater Toronto Area (GTA) were obtained from the 2006 

Transportation Tomorrow Survey (TTS) and bi-annual Travel Time Studies conducted by the 

Ministry of Transportation Ontario (MTO) [101]. The six-hour peak simulation (i.e. 3 hours 

AM peak and 3 hours PM peak) was divided into 24 departure intervals of 15 minutes each.  

6.2 Input Parameters for Calibration 

As stated earlier, the initial population consisted of randomly perturbed ODs from historical 

OD flows and perturbed driver behavior parameters from Paramics’ default values. On the 

demand side, the Water Front network consists of 2809 OD pairs (53×53) for 24 time 

intervals (i.e. 6 hours of 15-minutes interval during the AM and PM peak periods). On the 

supply side, there are 5 parameters for calibration, namely mean headway and mean driver 

reaction time as the 2 driver behavior parameters in Paramics, and perturbation factor, 

feedback and familiarity as the 3 route choice model parameters. These supply parameters 

were separated for the 24 time intervals to investigate the temporal variations of the Paramics 

model parameters in different time intervals. Therefore, the total number of demand and 
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supply parameters to be calibrated equals ሺ2,809 ൈ 24ሻ  ሺ24 ൈ 5ሻ ൌ 67,536. It should be 

noted that this number is the theoretical number of unknown parameters. Since many of the 

OD pairs are not feasible (i.e. zero counts), the real number of unknown parameters will 

significantly decrease. This is further explained in Section 6.7.   

6.3 Historical OD Flows 

The historical  OD matrix  was extracted  from  the Toronto Tomorrow  Travel Survey  in 

2006 via traffic assignment using EMME/2, and used as input for the microscopic traffic 

simulation model. The TTS is the largest and most comprehensive travel survey in Canada 

and is conducted once every five years. The TTS covers 5% of all households in the Greater 

Toronto Area (GTA) and surrounding areas [91]. The data used in this application are the 

TTS records collected for the year 2006. The 2011 survey data were still undergoing final 

refinements at the time of conducting this research and hence were not used.  

The demand estimation model includes the entire Greater Toronto and Hamilton Area 

(GTHA) which is divided into six regions; namely, Toronto, Durham, York, Peel, Halton and 

Hamilton (Figure 6.2). The demand was calibrated at the GTHA’s level to reflect traffic 

counts at cordons across the City, and was further calibrated for the Toronto Waterfront Area 

using OD matrix updating. Comparing to 2001 OD flows, the estimated 2006 static OD 

demand for the Water Front Network exhibits no increase in all trips entering exiting or 

travelling through the study area. Internal trips and outbound trips are estimated to have 

increased by 13% and 19%, respectively. Inbound trips are estimated to have decreased by 

5.9%, which largely reflects a decrease in inbound trips from the west side as observed in the 

count data. In addition, through trips decreased by 0.6%. The steps for this stage and the data 

sources used to develop the model are described in detail in [102]. 
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Figure 6.2 The Greater Toronto and Hamilton Area [101] 

The 2006 static OD auto matrices were developed for the AM peak and PM peak. To obtain 

the dynamic OD matrices, the static passenger planning matrices were distributed across the 

24 time intervals within the study period. The fraction of the flows assigned to a particular 

hourly interval was proportional to the AM and PM peak hour factor (i.e. trips in the peak 

hour / trips in the 3-hour peak period). The appropriate AM and PM peak hour factor were 

found to be 41.2% and 37.6%, respectively [102]. According to the 2006 TTS, the AM and 

PM peak hours (i.e. trips in the peak hour compared to trips in the 3-hour peak period), were 

found to occur from 7:30-8:29 AM and 4:30-5:29 PM, respectively [102]. In the next step, 

the normally-distributed hourly OD matrices were further broken down into the 15-minutes 

intervals based on the normal distribution and the same AM and PM peak hour factors (i.e. 

41.2% and 37.6%). 

Finally, the approximated a priori OD flows for each interval were randomly perturbed in a 

pre-specified range (-50% up to 50%) to obtain dynamic perturbed OD flows as the first 

starting values for calibration. This user-defined wide perturbation range ensures that the 

starting OD values do not replicate the time-dependent OD flows in the minimization 

problem. 
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6.4 Observed Traffic Sensor Data 

The loop detector traffic counts for the highway segments of the network were obtained from 

the ONE-ITS platform associated with the study time periods. The network contains 1483 

links, and out of which, 67 links4 along the Gardiner Expressway and Don Valley Parkway 

(DVP) were equipped with loop detectors. For the purpose of this research, the loop detector 

measurements were aggregated into 15 minutes intervals [103]. Hence they provide 67 sets 

of link flow counts for each interval. Over all the time intervals, they provide 67 ൈ 24 ൌ 

1,608 sensor measurements. Figure 6.3 presents the spatial distribution of the available loop 

detector measurements in the Water Front network.  

Figure 6.3 Loop detector counts along the sections of the study area 

As is apparent from Figure 6.3, the loop detector data were only available for calibration of 

the network along the highway corridors. 

6.5 Observed Turning Movement Counts 

Given the lack of the observed loop detector counts, this research incorporated the traffic 

data from turning counts at selected intersection. For the purpose of this research, the turning 

counts at 60 key signalized intersections were obtained from the City of Toronto database for 

4 At the time of obtaining the data 
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the typical weekdays in the Fall season of 2012. It should be noted that the provided traffic 

data were only disaggregated to the hourly mean counts for AM and PM peak hours. Given 

the available aggregated peak hour (i.e. 7:00-8:00 and 4:30-5:30) turning movement for 356 

links from these intersections, the total observed count measurements from this data source 

would be 356×2=712. 

6.6 Speed Data 

As stated earlier, this research incorporated traffic data from different sources to enrich the 

accuracy of the calibration process. Given the appropriate sensor configuration throughout 

the network, it is argued that the calibration accuracy and estimation of OD flows can be 

significantly improved [32, 56]. Therefore, the purpose of incorporating the enriched 

speed/travel time data into the calibration process is to improve the calibration accuracy and 

minimize the dependency of OD estimation to the historical OD flows as starting point.  

For the purposes of this research, a number of technologies from different data providers 

were available which are able to provide speed/travel time information, including: 

 GPS-equipped probe vehicle technology; 

 Mobile phone probes with GPS technologies; 

 In-vehicle navigation system based technologies; and 

 Bluetooth technology. 

Among the above-noted technologies, the GPS-equipped probe vehicle technology was 

considered as the primary source of data for many experimental and research studies. 

However, the high cost of field data collection and limited study time periods made it less 

desirable to obtain the travel time information on a large-scale network. On the other hand, 

very few large-scale independent assessment and comparative analyses were conducted to 

evaluate other emerging technologies with the traditional GPS-equipped probe technology. 

Therefore, as a part of this thesis, a research project funded by Ministry of Transportation 

Ontario (MTO) was conducted to evaluate the recent emerging technologies with the 
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traditional GPS-equipped probe technology and select a more efficient data collection 

methodology for future travel time studies within the Greater Toronto Area (GTA). One of 

the challenges with these technologies is that they have different levels of accuracy and the 

different market penetration of the underlying technologies or devices. Therefore, it was 

essential to compare the various technologies and data sources in terms of travel time 

accuracy, reliability, and sample size requirements. The following sub-section briefly 

describes the nature of these data sources and the evaluation methodology for selecting the 

candidate technology. 

6.6.1 Databases 

Bluetooth technology 

Bluetooth is a telecommunications industry specification that defines the protocol by which 

mobile phones, computers, personal digital assistants, car radios, and other digital devices 

can be interconnected using short-range wireless communications. Every Bluetooth 

device has a unique 48-bit address referred to as ID. Bluetooth transceivers that are powered 

on and are set in the "discover" mode continuously transmit their ID for the purpose of 

identifying a device to communicate with; and to establish a link with the “responding 

devices”. If receiver units are deployed on the side of roadways, they can register the ID 

associated with the Bluetooth enabled devices in vehicles that pass by as well as the time 

stamp associated with the detection instances. Therefore, travel time and average speed of 

individual vehicles on the road section between two consecutive Bluetooth receivers can be 

obtained. 

Bluetooth receivers were installed on a sub-section of the study area along a few arterial 

corridors and freeway to freeway ramps. Once Bluetooth enabled devices are in range of one 

of the receivers, the Media Access Control ID (MACID) of the Bluetooth device and the 

timestamp associated with this event were recorded. Then the MACIDs are matched between 

two consecutive Bluetooth receivers to calculate the travel time of individual vehicles. 

104 




 

 

 

 

 

 

  

 

 

In-Vehicle Navigation Systems 

The data from in-vehicle navigation systems were purchased from a data provider, which has 

millions of navigation devices in use around the world with a comprehensive historical 

database of traffic information. The service provider has developed a service which provides 

historical traffic information (e.g. travel time, speed, standard deviation of travel time, etc.) 

about transportation networks to potential customers in various geographical areas in the 

world. 

The data obtained from this provider included two components: (1) network data and (2) 

traffic data. The network data were obtained in the form of a GIS map that were then geo

referenced to the following traffic data: average travel time, standard deviation of travel time, 

average speed, number of observations, and percentiles of speed from 5% to 95% in 

increments of 5% (i.e. 5th percentile speed, 10th percentile speed, etc.). 

The data provider was only able to provide the aggregated traffic data for every 15 minutes 

and for every week in the study period (e.g. every Monday through Friday from 7:15 a.m. to 

7:30 a.m.). As a result, the data provided neither contained travel times of individual vehicles 

which travelled each roadway segment during the study period nor travel time for each 

individual day (e.g. October 3rd, 2012 from 7:15 a.m. to 7:30 a.m.). The primary source of 

traffic information was passenger cars and the technology was similar in nature to traditional 

travel time studies conducted by MTO. 

Mobile Phone Probes with GPS 

These data were also purchased from a data provider that uses a proprietary data fusion 

engine to process various sources of data and generate traffic information. The data sources 

include mobile phones, GPS navigation systems, and other sources of data, covering overs 

5,419 centerline km and 21,963 centerline km in the GTA and Ontario respectively. The 

coverage area includes freeways, urban arterials, rural arterials, and side streets. The data is 

in a very similar format (i.e., network data in a GIS format and traffic data) to that of the 

previous data provider with the following exception: 
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	 Average travel time and standard deviation of travel time were not explicitly 

provided. Therefore the average travel time and standard deviation of travel time (or 

variance of travel time) were estimated from average speed and variance of speed 

[105]. 

6.6.2 Evaluating Available Data Sources: Selecting the Candidate Technology   

The traffic data gathered from various data providers were validated in order to maintain the 

database consistency with the benchmark (i.e. GPS-equipped probe vehicle data) and prepare 

the database for comparison between each data source. A multi-criteria methodology was 

developed to evaluate data from each data provider based on accuracy, coverage, number of 

observations, and ability to provide data for special facilities such as High Occupancy 

Vehicle (HOV) lanes. 

In terms of accuracy, it was found that the Bluetooth technology is superior to the GPS-

equipped probe vehicle technology and can serve as the “ground truth” to evaluate the data 

purchased from other vendors. Therefore, the accuracy of the data provided from the in-

vehicle navigation system and mobile phone probes with GPS technologies were evaluated 

against the Bluetooth data. Figure 6.4a and Figure 6.4b represent visual comparisons of 

cumulative travel time and speed profile for an arterial route (which consists of multiple road 

segments) between the Bluetooth, in-vehicle navigation system, and mobile phone probes 

with GPS, during the study period respectively. As can be seen in the figures, the data 

obtained from the in-vehicle navigation systems is closer to the Bluetooth data, as the ground 

truth. However, as the average travel time and standard deviation of travel time were 

estimated for the mobile phone probes with GPS technology, this comparison might be 

biased. 
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Figure 6.4 Cumulative travel time and speed for DVP northbound during AM peak period  
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In terms of accuracy, the results of Figure 6.4 suggest that the Bluetooth technology can be 

replaced with the in-vehicle navigation system technology, as the wide-area deployment of 

the Bluetooth receivers in a large-scale network, such as the Water Front network, could to 

be costly. 

In terms of number of observations, in-vehicle navigation system had the highest number of 

observations per road section per peak period with more than 2300 observations for arterial 

roads and 3700 for freeways. The Bluetooth technology ranked second and mobile phone 

probes with GPS technology ranked third. It is noteworthy that the number of observations 

for the GPS-equipped probe vehicle (which is traditionally collected by road agencies) was 

as low as approximately 10 observations per link per AM and PM time periods. Each of the 

three data sources evaluated in this research provided significantly more observations. It 

should also be noted that the real time traffic data can be directly collected from Bluetooth 

receivers deployed onto the road; however there might be difficulties for collecting real-time 

traffic data from mobile phone probes such as encouraging smart phone owners use the 

application for tracking the device. This might highly affect the penetration rate of the mobile 

phone probes data. 

In-vehicle navigation system and mobile phone probes with GPS technology were able to 

provide traffic data for collector and express facilities, as well as separate data for HOV lanes 

and GPL. The Bluetooth technology was found generally incapable of providing data 

separately for GPL and HOV or express and collector lanes. 

In summary, the data provided by the Bluetooth technology was found the closest to the truth 

and the most reliable data source. However, the challenges involved with implementation of 

the Bluetooth receivers in a wide-area network and processing the data made it less desirable 

for MTO as the primary data source for the future Travel Time Studies. Therefore, it was 

recommended to acquire the traffic data from the private vendor associated with the in-

vehicle navigation technology. 

6.6.3 Speed Data from In-Vehicle Navigation System Technology 

As stated earlier, the available data from in-vehicle navigation systems were obtained from a 

private data provider, which included two components: (1) network data as shown in 
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Figure 6.5 and (2) traffic data. The network data were obtained in the form of a GIS map in 

which each link had a unique link ID. The traffic data was received in text files including link 

ID, date, time, average travel time, standard deviation of travel time, average speed, number 

of observations, and percentiles of speed from 5% to 95% (i.e. 5th percentile speed, 10th 

percentile speed, etc.). Table 6.2 presents a sample raw data obtained from the data provider.  

Table 6.2 Sample raw data 

TIME 

BIN 
HITS 

AVG 

TT 

(SEC) 

AVG 

SPEED 

(KPH) 

STD 

DEV 

TT 

P5_TT P10_TT P15_TT … P95_TT 

Weekdays 

AM peak 
37 280.2 32.3 36.8 144.6 152.9 160.1 … 683.9 

Weekdays 

PM peak 
80 308.7 29.3 53.5 147.7 157 164 … 724 

7:15-7:30 12 259.3 34.9 16.2 229.6 229.6 229.6 … 291.4 

9:15-9:30 26 286.7 31.6 35.5 158.2 158.2 169.8 … 564.5 

17:00

17:15 
74 289.9 31.2 30.2 186.7 186.7 187.6 … 451.4 

For the purpose of this thesis, the following temporal and spatial distributions of the traffic 

data were available: 

	 Temporal distribution: Selected weekday traffic data associated with the Fall season 

of 2012, averaged for both peak periods (e.g. 15:30-18:30 for PM peak period) and 

every 15-minutes (e.g. 15:30-15:45 averaged for the selected days).  

	 Spatial distribution: As stated earlier, the Water Front network contains of 1,483 

segments, and among those, the traffic data was available for 438 segments in the 

study area. In other words, the speed/travel time data coverage is approximately 30% 

of the road network. 
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Figure 6.5 Network data coverage  

In the next step, the aggregated 15-minutes data obtained from data provider were spatially 

matched with the study area segments. In this research, a road segment was defined as the 

section between two consecutive interchanges for freeways and two consecutive major 

intersections for arterials. This is consistent with the MTO definition of road segments 

applied in biannual Travel Time Studies.  

Travel time information including average travel time, variance of travel time, and average 

speed were obtained for the road segments. It should be noted that each of the interchange-to

interchange or intersection-to-intersection routes may consists of multiple links in the GIS of 

the vendor. Therefore, the GIS map of the vendor should be spatially matched with the 

segmentations of this research. For this purpose, Network Analyst Tool, as an extension of 

the ArcGIS engine, was used for the network-based routing analysis, to find the sequence of 

links between two consecutive boundaries for each segment, based on start-point and end

point coordination. The output of ArcGIS was then mapped with the associated traffic data. 

This process is called the Routing Process. Figure 6.6 visually illustrate the definition of the 

routes, segments, and links. 
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Figure 6.6 Route, segment, and link definitions 
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The main challenge associated with the spatial matching was that the GIS maps provided by 

the data vendors did not necessarily match pre-defined the road segmentations. For example, 

there was no node at the middle of interchanges and intersections. In other words, links were 

continuous through the interchanges and intersections. It was necessary to add nodes at 

interchanges and intersection because such nodes define the beginning or end of a given 

segment. Figure 6.7a illustrates a continuous segment at an interchange and Figure 4.4b 

shows the same interchange at the middle of which the links were broken. An extension tool 

in ArcGIS, called “Planarize lines”, was used to automatically break segments at the middle 

of interchanges and interchanges. 

a) Continous links through an interchnage b) Broken links at the interchange 

Figure 6.7 Continuous segments at an interchange 
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As stated earlier, for each road segment between two consecutive interchanges or 

intersections (i.e. segments), the following performance measures were provided: 

 Average travel time; 

 Average speed; 

 Variance of travel time; and 

 Percentiles of speed from 5% to 95% 

The variance of speed for each road segment was calculated based on average travel time and 

variance of travel time as follows [105]: 

T p  
, Vsu pVs  

,

4 
  Ls 

2 
(18)

Ts 
p 

Where: 

u: Variance of speed ( ௨,
௦ܸ ) for segment s during time interval p 

s: Average travel time of segment 
௦ܶ
ത

s: Length of Segment ௦ܮ 

 during time interval p 

Table 6.3 presents an example of travel time and speed performance measures along the 

Gardiner Expressway (both eastbound and westbound) during AM Peak Periods of the Fall 

Season. In addition, the minimum sample size requirement and the observed number of hits 

(e.g. sample size) are provided in this table. As shown in this table, the provided sample size 

is significantly higher than the minimum required sample size. Appendix A provides the 

methodology for sample size requirement. It summary, the data collected satisfied the sample 

size requirements for more than 99.5% of the segments in all peak periods.  
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Table 6.3 Example of performance measures for Gardiner Expressway during AM peak periods of the selected week in the Fall season 

Direction 
Interchange 

(From/To) 

Length 

(Km) 

Average 

travel 

time 

(h:mm:ss) 

Standard 

deviation 

of TT 

(sec) 

Variance 

of TT 

(sec2) 

Average 

speed 

(Km/hr) 

Standard 

deviation 

of Speed 

Variance 

of speed 

Minimum 

sample 

size 

Hits 

Westbound 

DVP 

Lower Jarvis 1.7 0:01:52 43.4 1883 54.7 21.2 450.2 57.8 564.3 

Spadina Ave 2 0:02:54 45.5 2070 41.1 10.8 117.1 26.6 542.8 

Jameson Ave 3.5 0:04:34 48.1 2313 46.3 8.1 64.9 11.6 787.5 

South 

Kingsway 
3.3 0:03:16 27.3 745 60.4 8.5 71.4 7.5 872.2 

Islington Ave 3.8 0:03:29 23.9 571 64.6 7.5 56.1 5.2 940.1 

Kipling Ave 1.1 0:00:47 9.4 88 80.7 16.8 281.6 16.6 758.5 

Hwy 427 1.9 0:01:33 26.1 681 74.4 20.7 429.7 29.8 598.2 

Total/Average 17.3 0:18:25 56.37 
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Direction 
Interchange 

(From/To) 

Length 

(Km) 

Average 

travel 

time 

(h:mm:ss) 

Standard 

deviation 

of TT 

(sec) 

Variance 

of TT 

(sec2) 

Average 

speed 

(Km/hr) 

Standard 

deviation 

of Speed 

Variance 

of speed 

Minimum 

sample 

size 

Hits 

Eastbound 

Hwy 427 

Kipling Ave 2.0 0:01:38 19.5 380 69.7 14.6 212.0 16.8 941.1 

Islington Ave 1.1 0:01:27 29 841 44 15.2 230.2 45.7 879.4 

Lake Shore Blvd 

(split) 
2.8 0:04:41 39.4 1552 35.9 5.0 25.4 7.6 1052.1 

Jameson Ave 4.3 0:08:28 58.7 3445 30.5 3.5 12.4 5.1 797.9 

Spadina Ave 3.5 0:04:20 35.2 1239 48.6 6.6 43.2 7.0 797.9 

York St 1.0 0:00:56 18.4 338 64.2 21.4 459.1 42.8 464.3 

Lower Jarvis 1.0 0:00:42 15.2 231 86.8 30.9 953.2 48.6 406.6 

DVP 1.7 0:01:10 7.99 63 87.9 10.1 101.8 5.1 390.5 

Totals/Averages 17.4 0:23:21  44.72 
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6.7 Implementation Details: A Note on the Degree of Freedom 

The accuracy of the calibration process highly depends on the quantity and quality of the 

observed available data for calibration. Traditionally, the OD estimation problem was highly 

underspecified as the number of unknown parameters (i.e. OD pairs) was significantly higher 

than the number of observations (e.g. traffic data from loop detectors). Within the 

incorporation of the enriched travel time/speed data into the calibration process, this research 

aimed to minimize the degree of freedom of the subject network (i.e. difference between the 

number of observed and unknown parameters), and ultimately, steered the estimated OD 

flows to the true (and unknown) OD pairs. 

As indicated earlier in Section 6.2, the theoretical number of unknown OD flows is 2809 

(53×53) for each time interval. However, 2140 of those OD pairs are not feasible (i.e. with 

zero counts). Therefore, the actual total number of unknown parameters is: 

ሺ669 ൈ 24ሻ  ሺ5 ൈ 24ሻ ൌ 16,176. 

On the other hand, the number of observed parameters is as follows: 

	 Observed traffic sensor data: The loop detectors are able to provide 67 sets of link 

flow counts for 24 time intervals. Therefore the total sensor measurement is 

67×24=1,608. 

	 Observed turning movement counts: Given the available aggregated peak hour (i.e. 

7:00-8:00 and 4:30-5:30) turning movement for 356 links (from 60 intersections), the 

total observed count measurements from this data source would be 356×2=712.  

	 Speed data: Among the 1,483 segments, the 15-minutes aggregated speed data were 

available for 438 segments in the study area. Therefore, the total speed available data 

is 438×24=10,512. 

In summary, the total number of available data for calibration is equal to 1,608  712  

10,512 ൌ 12,832. The degree of the freedom for the calibration problem would be equal to 
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16,176 െ 12,832 ൌ 3,344, which elaborates the complexity of the calibration process 

comparing to the synthetic test network with the degree of freedom of 20.  

It is important to note that in the initial runs, the assumption of fixed driver parameters and 

route choice parameters was relaxed by allowing these parameters to change each 15 min. 

That was based on the assumption that driver's route choice and vehicle following parameters 

are a function of congestion. In addition, the weight factors were determined as part of the 

optimization function, rather than through trial and error. Sections 6.9.1 and 6.9.2 discuss 

further the results of these tests. 

6.8 GA Control Parameters 

Similar to Section 5.2, the GA control parameters were selected after some initial trials. 

Table 6.4 summarizes the simple GA (SGA) and parallel GA (PGA) control parameters. It 

should be noted that the GENOTRANS library enhanced the trial and error process to select 

the appropriate control parameters for the large-scale network.  

Table 6.4 Simple and parallel GA control parameters 

Category Control Parameter Selected Value 

Selection method 
Ranked-based selection 

mechanism 

Cross-over α-blend crossover (α=0.2) 

Crossover rate ܲ= 90% 

Simple GA 
Mutation method Self-adaptive Gaussian 

Mutation rate ܲ= 5% 

Population size 100 

Number of generations 50 

Number of simulation runs for each 
chromosome evaluation in Paramics 

3 

Island topology Fully connected topology 

Migration policy 
Good migrants replace bad 

individuals 

Parallel GA 
Migration rate 8% 

Migration frequency (epoch interval) 5 

Number of demes 4 

Deme size 25 
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As is apparent from this table, the number of population and generation are not significantly 

greater than the simple synthetic network, as the computational constrains assume an 

important role in the convergence speed of the algorithms. The above GA control parameters 

were found to be effectively covering the search space for the optimal solution. A bigger 

search space in turn implies a larger population for evaluation, consequently meaning that 

more computation resources are needed to evaluate a single generation; thus a longer time to 

reach convergence. Given the available number of processors and Paramics licenses in the 

HPC, the size of the network, and the level of congestion during peak hours, the experiments 

in this chapter were designed using the selected GA control parameters. 

6.9 Calibration Results 

Similar to previous chapter, a number of experiments were carried out to demonstrate the 

transferability of the calibration methodology to a large-scale complex network: 

 Experiment 1: compare the calibration results from the loop detector and turning 

movement counts to the multi-source traffic data based on distributed computing. 

 Experiment 2: evaluate the effect of parallelization structure of GA population on the 

calibration accuracy using multi-source data (i.e. DGA vs. PDGA). 

 Experiment 3: OD estimation without count and turn data but using the raw speed 

data (segmentation)  

6.9.1	 Experiment I: Calibration based on Multi Source Traffic Data Using 

Distributed Computing 

In this experiment, the calibration results from the loop detector and turning movement 

counts were compared with results of the multi-source traffic data. The main objective of this 

experiment was to quantify the impact of incorporating the enriched speed data into the 

calibration process. The experiment was conducted in the HPC and other available Paramics 

resources. The number of available observed data from loop detector and turning movement 

count is equal to 1,608+712=2,320. On the other hand, the number of available traffic data 

for the multi-source case study is equal to 16,176. Given the wide coverage of the speed data 

across the study area and full temporal distribution of the data across 24 departure intervals, 
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it was expected that the incorporation of the speed data significantly improve the calibration 

accuracy and find the solution efficiently. 

In terms of computation time, the network was simulated a total of 15,000 times, which was 

the product of the number of generations (50), the number of chromosomes in each 

generation (100), and the number of DTA iterations in Paramics (3). The average CPU 

running time for the 6-hour simulation period (i.e. 24 time intervals of 15-minute each) was 

estimated to be an hour. Based on the available 80 distributed CPUs for running the 

simulation model, the calibration process took 198 hours (i.e. more than a week) to complete, 

compared to the estimated 15,000 hours running the process on a single CPU machine. In 

other words, the distributed GA was approximately 75 times faster than the simple GA. The 

final simulated dynamic OD flows, counts, speed data, and driver behavior parameters were 

obtained after running 46 generations. Table 6.5 present the calibration result statistics based 

on NRMSE measures of effectiveness for counts and speed values. For visual comparison, 

the MRMSE values for calibration are summarized in Figure 6.8. 

Table 6.5 Calibration result statistics based on NRMSE 

Category 
Before 

Calibration 

Base 

Calibration 

Case 

Base Calibration 

Case + Speed 

Data 

% change (Base 

Case vs. Before 

Calibration) 

% change (Base 

Case vs. Base 

Case + Speed) 

Count 37.3% 18.6% 14% 50.3% 24.6% 

Speed 36% 27.7% 10.7% 23.2% 61.3% 

In addition, Figure 6.9 presents the calibration results aggregated for each 15-minute interval 

of the analysis period (AM peak and PM peak) using the distributed GA (aggregated among 

all loop detectors and in-vehicle navigation system data). The number of intervals 

corresponds to the 24 simulation periods of 15-minutes, during AM and PM peak periods. 
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Figure 6.8 Comparison of different scenarios based on NRMSE values  
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As is apparent from Table 6.5 and Figure 6.9, the simultaneous calibration process using the 

distributed GA performed as expected and had the capability of minimizing the discrepancy 

between the observed and simulated traffic conditions (i.e., OD flows, loop detector counts, 

and turning movements). According to Figure 6.9, the percentage change in terms of count 

NRMSE between the “base case” and the “before calibration” ranged between 35.4% and 

67.7% for various time periods, with an average improvement of 50.3%. As noted earlier, the 

available traffic data from loop detector counts and turning movements were sparse relative 

to the number of unknown parameters and number of links in the network. However, such 

sensor coverage is not uncommon in the real-world situations with limited data. In this 

context, the proposed methodology was able improve the calibration accuracy by 

approximately 50%, comparing to the “before calibration” scenario. 

Following the same trend as the count measures of effectiveness, the percentage change in 

terms of speed NRMSE between the “base case” and the “before calibration” ranged between 

13.4% and 32.9% for various time periods, with an average improvement of 23.2%. It should 

be noted that for the “base case” scenario, the speed data was not incorporated into the 

calibration process. The speed NRMSE was calculated separately from the calibration 

process. In other words, it was found that the inclusion of count data (from loop detector and 

turning movements) into the calibration process improved accuracy not only in terms of 

lower count errors (i.e. 50.3%), but also lowered the travel time/speed errors (i.e. 23.2%).  

In addition to conducting a before/after calibration study using traditional count data, this 

research also incorporated the speed traffic data obtained from in-vehicle navigation system 

data provider into the calibration process. According to Figure 6.9, the following conclusions 

can be made: 

	 Incorporation of the speed data increased the calibration accuracy and made a 

reduction in the count NRMSE measure of effectiveness by 24.6%, comparing to the 

“base case” scenario, and an overall improvement of 63.2% comparing to “before 

calibration” case. This observation is in line with the results of the previous case 

study indicating that the speed information provides a better indication of the quality 
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of traffic flow and moves in the right direction on the optimization surface more 

efficiently. 

	 Incorporation of the speed data increased the calibration accuracy and made a 

significant reduction in the speed NRMSE measure of effectiveness by 61.3%, 

comparing to the “base case” scenario, and an overall improvement of 70.0% 

comparing to “before calibration” case. 

In summary, it was found that a) the proposed calibration methodology can efficiently 

estimate the unknown parameters and b) the inclusion of speed data into calibration process 

can significantly improve the quality of the solution and minimize the discrepancy between 

the observations and their simulated counterparts. It should be noted the previous studies in 

the subject of OD estimation and calibration of model parameters using the multivariate 

objective functions resulted in an improvement in the equivalent objective function ranging 

from 17% to 23% [30, 69, 73]. In this context, the proposed calibration methodology and the 

incorporation of the enriched speed data from GPS-enabled devices made a further progress 

towards the estimating the true dynamic OD flows and calibration the simulation model 

parameters.  

Figure 6.10 presents the plots of the observed counts (i.e. loop detector counts + turning 

movement count) and simulated entities for the before calibration, base calibration, and 

multi-source scenarios. In addition, the plots of the observed and simulated speed values in 

the multi-source scenario are presented in Figure 6.11. A visual comparison between these 

figures reveals that incorporation of the speed data from in-vehicle navigation system 

technologies significantly improved the calibration accuracy, in terms of NRMSE of both 

speed and count data. Appendix B presents these plots in more details. 

122 




 

9000 

8000 

7000 

h
/h

r)
 

6000 (v
e

5000 

4000 

S
im

u
la

te
d

 c
ou

n
ts

 
3000 

2000 

1000 

0 
0 2000 4000 6000 8000 

Observed counts (veh/hr) 
 

a) before calibration 
8000 

7000 

6000 

5000 

4000 

3000 

2000 

1000 

0 
0 2000 4000 6000 8000 

Observed counts (veh/hr) 

 

b) base case 

8000 

7000 

6000 

5000 

4000 

3000 

2000 

1000 

0 
0 2000 4000 6000 8000 

Observed counts (veh/hr) 

 

c) multi-source data 

Figure 6.10 Comparison between simulated and observed counts (all three scenarios) 
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Figure 6.11 Comparison between simulated and observed speed values (all three scenarios) 
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As stated earlier ,the weighting factors, α୧, were used to determine the weight to place on the 

priori OD flows, link counts, turning counts, and speed values. In the previous case study 

with synthetic data, a sensitivity analysis was carried out to identify the weights given to 

different components of the objective function. However, this method was found to be 

repetitive and computationally intensive, which requires multiple evaluation of the objective 

function based on different weighting schemes. In addition, the analysis was based on limited 

combinations of the discrete weighting factors (i.e. 20%, 30%, and 50% in Table 5.8).  

Considering the above limitations of the sensitivity analysis as well as the complexity of the 

Water Front network, the weighting factors were treated as unknown parameters (for both 

“base case” and “base case + speed data”). In this approach, the optimal values were obtained 

from the calibration process, based on NRMSE measures of effectiveness. Readers are 

referred to Section 3.2.2 for the detailed methodology. Table 6.6 presents the optimal 

weighting factors for the calibration of input parameters. 

Table 6.6 Optimal weighting factors, હܑ 

Scenario Weighting factors Optimal values 

 ଵ: a priori OD flows 0.327ߙ

Base case ߙଶ: traffic counts from loop detectors 0.345 

 ଷ: turning movements at selectedߙ

intersections 
0.328 

 ଵ: a priori OD flows 0.132ߙ

Multisource 

case (base case + 

speed data) 

 ଶ: traffic counts from loop detectors 0.218ߙ

 ଷ: turning movements at selectedߙ

intersections 
0.198 

 ସ: speed data from in-vehicleߙ

navigation systems 
0.452 
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The results in Table 6.6 highlight the importance of the low weight given to the historical OD 

demand term in the objective function and a high weight to speed data derived from in-

vehicle navigation devices. In other words, the calibration framework would be more reliant 

on the speed/travel time data as they are the direct measures of the link performances and 

highly affect the routing decision. These results show that the presence of reliable and wide 

spatial coverage of speed data from in-vehicle navigation systems improves the estimation of 

OD flows and calibration of driver behavior parameters and reduces the dependence on 

historical OD flows. Thus, it is possible to overcome the high dependency of the OD 

estimation problem on the historical OD flows and its accuracy.  

Considering the above optimal weighting factors, Table 6.7 summarizes the fitness function 

values (i.e. Z in Equation 10) based on different scenarios. The calibration results in this table 

confirms the minimum dependency of the calibration process to the historical OD flows as 

the starting point and the improvement in the fitness function values by incorporating the 

speed data into the calibration process. In addition, Table 6.8 presents the calibrated driver 

behavior parameters for 24 time intervals, and separated for AM and PM peak periods 

(multi-source scenario). 

Table 6.7 Optimal fitness function values (DGA) 

Scenario 

Weighting factors (ࢻ) 
Measure of effectiveness values 

 (ࢌ)

Fitness Function 

Value (Z) 

ସߙ ଷߙ ଶߙ ଵߙ ଵ݂ ଶ݂ ଷ݂ ସ݂ ݊݅ܯ ܼ ൌ  ߙ ݂ 

ସ 

ୀଵ 

Base case 0.327 0.345 0.328 0 21.2% 17.2% 19.4% 0 19.2% 

Multisource 

case (base 

case + speed 

data) 

0.132 0.218 0.198 0.452 29.6% 12.5% 16.8% 10.7% 14.8% 
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Table 6.8 Calibrated driver behavior parameters (multi-source scenario) 

Time interval 

Vehicle-driving behavior Route choice model parameters 

Mean headway (sec) 
Mean reaction time 

(sec) 
Feedback (min) Familiarity Perturbation 

AM PM AM PM AM PM AM PM AM PM 

1 0.641 0.732 0.582 0.695 2.8 3.1 73.6% 73.5% 20.5% 19.8% 

2 0.645 0.745 0.602 0.715 2.9 3.0 74.5% 76.4% 19.9% 19.5% 

3 0.652 0.748 0.584 0.721 2.9 3.3 76.3% 74.5% 19.8% 19.2% 

4 0.649 0.739 0.569 0.702 2.9 3.1 77.2% 76.6% 19.9% 18.5% 

5 0.638 0.756 0.582 0.709 3.0 3.0 76.0% 77.5% 19.5% 18.9% 

6 0.641 0.755 0.599 0.711 3.0 2.9 78.4% 76.5% 18.9% 19.8% 

7 0.645 0.745 0.597 0.701 3.4 2.9 79.0% 76.4% 18.8% 18.7% 

8 0.656 0.759 0.592 0.685 3.1 3.0 76.9% 75.6% 20.8% 19.4% 

9 0.654 0.765 0.545 0.698 3.0 2.9 78.9% 73.8% 20.4% 19.5% 

10 0.639 0.768 0.562 0.678 2.9 2.9 80.6% 78.5% 19.2% 19.4% 

11 0.664 0.77 0.571 0.674 2.9 2.6 74.5% 72.6% 20.2% 20.3% 

12 0.645 0.748 0.592 0.689 3.0 2.8 76.8% 74.8% 21.1% 19.7% 

Average 0.647 0.753 0.581 0.698 2.98 2.96 76.9% 75.6% 19.9% 19.4% 

Standard 
deviation 

0.008 0.012 0.017 0.015 0.15 0.17 2.1% 1.7% 0.7% 0.5% 

Coefficient of 
variation 

1.2% 1.6% 2.9% 2.1% 5.0% 5.8% 2.7% 2.3% 3.7% 2.6% 
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Based on the final calibrated values, the following conclusions can be made: 

	 Temporal variations of the driver behavior parameters in peak periods: The driver 

behavior parameters (i.e. vehicle-driving behavior and route choice model 

parameters) remained relatively unchanged for the 15-minutes intervals of the AM 

and PM peak periods. For example, the coefficient of variation of the mean headways 

during the AM peak period is less than 2% (i.e. 1.2%). These findings supported the 

initial hypothesis that the general driving behavior is not subject to temporal variation 

in each 15-minutes. Figure 6.12 and Figure 6.13 present the temporal variations of the 

vehicle-driving behavior and route choice model parameters in the peak periods, 

respectively. 

	 Comparing the driver behavior parameters in AM Peak vs. PM Peak: As is apparent 

from the calibrated driver behavior parameters presented in Table 6.8, the first two 

parameters corresponding to driver behavior parameters are less for the AM peak 

period than the PM peak period (average mean headway of 0.649 for AM peak vs. 

0.753 for PM peak). These findings support a recent research that showed that 

drivers’ headway is subject to temporal variation [106]. One possible explanation is 

that during AM peak, drivers consist mainly of commuters who need to arrive to their 

destination on time. Thus, they might be willing to accept or rather force shorter 

headways when following other cars, merging, turning maneuvers or changing lanes. 

In addition, during the morning peak, drivers might be more alert than in the 

afternoon when they might be more tired after a long day of work. This might explain 

their shorter mean reaction time in the morning. That was also supported by a study 

that showed that driving performance is affected by time of day [107]. Unfortunately 

there is a lack of research in human factors to further support such findings. On the 

other hand, there is no significant difference between the route choice model 

parameters during AM and PM peak periods.  
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Figure 6.12 Temporal variations of the vehicle-driving behavior during peak periods 
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Figure 6.13 Temporal variations of the route choice model parameters during peak periods 

As stated above, the vehicle-driving behavior parameters are less for the AM peak period 

than the PM peak period. In order to evaluate whether these parameters in the AM Peak 

period are statistically different from the PM peak period, F-test and t-test were conducted. 

The F-test is used to conduct a hypothesis test for equality of variances of the two samples 
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(AM vs. PM parameters). Also the t-test is the test for equality of two means regardless the 

variances are equal or different. Based on F-test, t-test, and 95% confidence interval, the 

driver behavior parameters were compared for AM and PM peak periods (Table 6.9). 

Table 6.9 F-test and t-test results for comparing vehicle driving behavior parameters (multi-

source case) 

Parameter 

types 
Parameter 

F-test t-test 

F-

value 

F 

critical 

(95%) 

Variance 

Comparison 
t-value 

t critical 

(95%) 

Mean 

Comparison 

Vehicle-

driving 

behavior 

Mean 

headway 
2.25 2.82 Equal 25.77 2.20 

Significantly 

different 

Mean reaction 

time 
1.34 2.82 Equal 18.02 2.20 

Significantly 

different 

Route choice 

Feedback 1.18 2.82 Equal 0.09 2.20 Equal 

model Familiarity 1.10 2.82 Equal 1.69 2.20 Equal 

parameters 

Perturbation 2.05 2.82 Equal 2.05 2.20 Equal 

Based on the comparison results for different scenarios and measures of effectiveness, the 

following conclusions can be made: 

	 Route choice model parameters in the AM and PM peak periods were not statistically 

different at a 95% confidence interval (both variance and mean), suggesting that the 

drivers in the downtown area of Toronto were familiar with the roadway network and 

the variations in the level of congestion could not significantly affect their decision in 

choosing a different route for reaching a destination. 

	 In contrast to the route choice model parameters, it was found that, the average of the 

driving behavior parameters in the AM and PM peak periods were statistically 

different at a 95% confidence interval. These findings support the earlier observations 
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that the vehicle-driving behavior parameters are less for the AM peak period than the 

PM peak period. 

6.9.2 Experiment II: Calibration based on Parallel Distributed GA 

The purpose of this experiment is to evaluate the effect of the parallelization scheme of GA 

population on the quality of the solution by comparing the performance of the DGA with the 

PDGA. The calibration process was based on the available traffic data from multiple sources 

(i.e. speed, loop detector counts, and turning movements).  

Based on the calibrated model parameters in the previous experiment (Table 22), the driver 

behavior and route choice model parameter were set to be fixed during the 15 minutes 

intervals of each peak period. Therefore, the total number of unknown parameters decreased 

from 16,176 to 16,066, and the degree of freedom would be equal to 3234. 

Comparing DGA and PDGA 

Following the methodology set forth in Section 3.2.2 and the parallel GA control parameters 

in Table 6.4, the final simulated dynamic OD flows, counts, speed data, and driver behavior 

parameters were obtained. Table 6.10 presents the calibration result statistics for counts and 

speed values. In addition, the calibration result statistics for DGA were adopted from 

Table 6.5 and Table 6.6 and incorporated in Table 6.10 for the direct comparison between 

DGA and PDGA. For the visual comparison, the count and speed NRMSE values for each 

15-minute interval of the analysis period (AM peak and PM peak) are presented in 

Figure 6.14. 

Table 6.10 Comparison between DGA and PDGA calibration result statistics based on counts 

and speed NRMSE values 

Category DGA PDGA 
Improvement 

percentage 

Count 14% 9.4% 33% 

Speed 10.7% 6.8% 37% 
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Figure 6.14 Comparison between measures of effectiveness of DGA and PDGA based on 

NRMSE for count and speed data 
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The reported results in Table 6.10 for the Water Front network is in line with the findings of 

the previous simple case study, suggesting that the parallel GA leads to further reduction in 

fitness function results, as compared to the single GA running in the parallel processors. 

According to Figure 6.14, the improvement in terms of count NRMSE values varies 

depending on the simulation periods ranging from 19.1% and 41.4%, as compared to the 

single population GA with an average improvement of 33.2%.  

Following the same trend as the count performance measures, Table 6.10 and Figure 6.14 

show that parallelization of GA result in an overall reduction of speed performance measures 

as compared to the DGA. The percentage change of speed NRMSE ranged between 23.4% 

and 47.1% for various time periods, with an average improvement of 37.7%.  

In summary, it was found that the parallelization structure of GA can significantly improve 

the quality of solution, even for the large-scale network (i.e. 33% and 37% for count and 

speed NRMSE, respectively), which resulted in the NRMSE of less than 10% for both count 

and speed measurements.  

Figure 6.15 presents the plots of the observed counts and simulated entities for the PDGA 

and DGA calibration scenarios, using multi-source traffic data. In addition, Figure 6.16 

compares the observed and simulated speed values for DGA and PDGA scenarios. A visual 

comparison between these figures reveals that PDGA significantly outperforms the DGA in 

terms of NRMSE of both count and speed data Appendix C presents these plots in more 

details. Figure 6.17 presents the evolution of the fitness function with each GA generations. 
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Figure 6.15 Comparison between simulated and observed counts using multi-source data (DGA 

vs. PDGA) 
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Figure 6.16 Comparison between simulated and observed speed using multi-source data (DGA 

vs. PDGA) 
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Figure 6.17 Effect of parallelization and distributed computing on GA convergence and quality 

of solutions (PDGA vs. DGA/SGA) 

Based on the evolution of the objective function in different generations, the following 

observations can be made: 

	 Termination point: As is apparent from Figure 6.17, the PDGA required a fewer 

number of generations to find the optimal fitness function value comparing to the 

DGA (i.e. 40 vs. 46). In addition, the PDGA could produce the same quality as the 

DGA (fitness of 14.8%) in 21 of the number of generations comparing to 46 for the 

DGA (see dotted line), i.e. the PDGA required approximately half the number of 

generations to find the optimal fitness function values, comparing to DGA. 

	 Quality of solution: PDGA outperformed the DGA in terms of fitness function value 

by producing a 31.5% reduction in the fitness function values (fitness of 14.8% vs. 

10.1%). 

	 Convergence speed: As noted earlier, the convergence speed of the algorithms were 

evaluated by the total CPU time (in hours) to reach the global optimal value. While 

the DGA significantly reduced the computation time comparing to SGA (198 hours 

vs. estimated 15,000 hours), the multi-deme structure of GA populations did not have 

any major impact on the convergence speed of the algorithm in terms of total CPU 

time (i.e. 198 and 214 hours for DGA and PDGA, respectively). While PDGA 
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requires more communication time between the core and slave processors for creating 

the necessary files/directories, fewer number of generation was required for 

convergence of this algorithm. This result was in line with the previous synthetic case 

study. 

Optimal Weighting Factors 

As stated earlier in Section 6.9.1, for the Water Front network, the weighting factors were 

treated as unknown parameters and their optimal values were obtained from the calibration 

process. Table 6.11 presents the optimal weighting factors for the calibration of input 

parameters.  

ܑહTable 6.11 Optimal weighting factors, 

Algorithm Weighting factors Optimal Values 

 ଵ: a priori OD flows 0.103ߙ

PDGA 

 ଶ: traffic counts from loop detectors 0.187ߙ

 ଷ: turning movements at selectedߙ

intersections 
0.184 

 ସ: speed data from in-vehicleߙ

navigation systems 
0.526 

The results presented in Table 6.11 is consistent with the previous experiment (Table 6.7), 

which highlight the importance of the low weight to the historical OD demand term in the 

objective function and a high weight to speed data derived from in-vehicle navigation 

devices. In other words, the calibration framework would be more reliant on the speed/travel 

time data as they are the direct measures of the link performances and highly affect the 

routing decision. These results show that the presence of reliable and wide spatial coverage 

of speed data from in-vehicle navigation systems improves the estimation of OD flows and 

calibration of driver behavior parameters and reduces the dependence on historical OD flows. 

Thus, it is possible to overcome the high dependency of the OD estimation problem on the 

historical OD flows and its accuracy. 
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As noted earlier, the PDGA outperformed the DGA in terms of fitness function value by 

further minimizing the discrepancy between the observed data and their simulated 

counterparts. The optimal weighting value of the speed data was increase from 0.452 in the 

previous experiment (i.e. DGA) to 0.526, while producing a lower NRMSE value (i.e. an 

average improvement of 37.7% from 10.7% to 6.8%).  

Considering the above optimal weighting factors, Table 6.12 summarizes the fitness function 

values (i.e. Z in Equation 10) based on the parallelization structure of GA (i.e. PDGA) 

comparing to the results of the simple GA running in multiple processors (i.e. DGA). The 

calibration results in this table confirm that with parallelization of GA structure, the quality 

of the solution in terms of fitness function values (i.e. Z) can be improved. This was achieved 

by reducing the NRMSE of each component of the objective function and the changes in the 

corresponding weighting factors of each component. In summary, the PDGA reduced the 

total fitness function value by 32%, comparing to the DGA.  

Table 6.12 Optimal fitness function values for multi-source scenario (DGA vs. PDGA) 

A
lg
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s 

Weighting factors (ࢻ) 
Measure of effectiveness values 

 (ࢌ)

Fitness 

Function 

Value (Z) 
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ସ ଵ݂ߙ ଷߙ ଶߙ ଵߙ ଶ݂ ଷ݂ ସ݂ 

 ݊݅ܯ ܼ

ൌ ߙ  ݂ 

ସ 

ୀଵ 

DGA 0.132 0.218 0.198 0.452 29.6% 12.5% 16.8% 10.7% 14.8% 

31.5% 

PDGA 0.103 0.187 0.184 0.526 28.5% 9.2% 10.5% 6.8% 10.1% 

Table 6.13 presents the calibrated driver behavior parameters, separated for AM and PM 

peak periods. As noted earlier in the previous experiment, it was found that the driver 

behavior and route choice model parameters remained relatively unchanged during the 15 

minutes intervals of each peak periods; however, the driver behavior parameters were found 

to be significantly different between AM Peak and PM Peak. As shown in Table 6.13, the 

calibrated vehicle-driving behavior parameters are less for the AM peak period than the PM 
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peak period (i.e. 14.5% less for mean headway and 16.0% for mean reaction time). The result 

of this experiment was in line with the previous findings, suggesting that drivers were 

accepting shorter headways during AM peak period comparing to PM peak period. In 

addition, during the morning Peak, drivers might be more alert than in the afternoon when 

they might be more tired after a long day of work. This might explain their shorter mean 

reaction time. Therefore for the purpose of this experiment, driver behavior parameters were 

set to be fixed during the 15 minutes intervals of each peak period.  

On the other hand, the results show no significant difference between the route choice model 

parameters during AM and PM peak periods (less that 3% for all cases). 

Table 6.13 Calibrated driver behavior parameters 

Parameter Types Description 
Optimal Value Difference 

between AM 
and PM 

AM PM 

Vehicle-driving behavior 
Mean headway (sec) 0.662 0.774 14.5% 

Mean reaction time 
(sec) 

0.590 0.702 16% 

Feedback (min) 2.89 2.82 2.5% 

Route choice model 
parameters 

Familiarity 77.4% 75.7% 2.2% 

Perturbation 18.4% 17.9% 2.8% 

Dynamic OD Flows 

In conjunction with the driver behavior and route choice model parameters, the off-line 

dynamic OD flows were estimated for the 24 time intervals on 15-minute each. It should be 

noted that the simulated OD flows represent the historical trip pattern for the typical 

weekdays in the Fall season of 2012. Table 6.17 and Table 6.18 present the summary of the 

estimated hourly OD flows during AM and PM peak hour for the Water Front network, 

respectively. In addition, the seed OD matrix of 2006 for the subject network is presented in 

Table 6.16. 
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Table 6.14 Summary of dynamic OD travel demand during AM peak periods (Fall 2012) 

Peak period trips 

6:30 AM – 9:30 AM 
To external 
gateways 

To study area 
zones 

Total 

From external gateways 37,616 19,625 57,242 

From study area zones 8,224 678 8,902 

Total 45,840 20,303 66,143 

Hourly trips 

6:30 AM – 7:30 AM 
To external 
gateways 

To study area 
zones 

Total 

From external gateways 10,260 5,345 15,605 

From study area zones 2,667 180 2,848 

Total 12,928 5,525 18,453 

7:30 AM – 8:30 AM 
To external 
gateways 

To study area 
zones 

Total 

From external gateways 14,763 7,528 22,291 

From study area zones 3,038 269 3,307 

Total 17,801 7,797 25,598 

8:30 AM – 9:30 AM 
To external 
gateways 

To study area 
zones 

Total 

From external gateways 12,593 6,753 19,345 

From study area zones 2,519 229 2,747 

Total 15,111 6,981 22,093 
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Table 6.15 Summary of dynamic OD travel demand during PM peak periods 

Peak period trips 

3:30 PM – 6:30 PM 
To external 
gateways 

To study area 
zones 

Total 

From external gateways 43,960 9,854 53,814 

From study area zones 18,036 805 18,841 

Total 61,997 10,658 72,655 

Hourly trips 

3:30 PM – 4:30 PM 
To external 
gateways 

To study area 
zones 

Total 

From external gateways 13,319 2,957 16,276 

From study area zones 5,555 246 5,801 

Total 18,874 3,203 22,077 

4:30 PM –5:30 PM 
To external 
gateways 

To study area 
zones 

Total 

From external gateways 16,316 3,715 20,031 

From study area zones 6,505 295 6,800 

Total 22,821 4,010 26,831 

5:30 PM – 6:30 PM 
To external 
gateways 

To study area 
zones 

Total 

From external gateways 14,326 3,181 17,507 

From study area zones 5,976 264 6,240 

Total 20,302 3,445 23,747 
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Table 6.16 2006 seed OD matrix for the Water Front network 

AM peak hour trips 

7:30 AM – 8:30 AM 
To external 
gateways 

To study area 
zones 

Total 

From external gateways 13,615 7,178 20,793 

From study area zones 2,641 251 2,892 

Total 16,256 7,429 23,685 

PM peak hour trips 

4:30 PM – 5:30 PM 
To external 
gateways 

To study area 
zones 

Total 

From external gateways 15,037 3,148 18,185 

From study area zones 5,942 273 6,215 

Total 20,979 3,421 24,399 

Based on the results presented in the above tables, the following observations can be made: 

	 Traffic growth in peak hours: during the AM and PM peak hours, the total trips from 

2006 to 2012 in the subject network were estimated to have increased by 8.1% and 

10%, respectively (i.e. from 23,685 to 25,598 for AM peak and from 24,399 to 

26,831 for PM peak period). In other words, the average annual growth rate for the 

AM and PM peak hours were found to be 1.25 and 1.51, respectively. 

	 Dynamic temporal distribution: the total trips in the AM and PM peak hours were 

found to be 38.7% and 36.9% of the total trips in the 3-hour peak period, respectively. 

In 2006, 40% of the peak period trips occurred in the peak hour, while this ratio for 

PM peak was estimated to be 38%. The distributions of the total trips in the 3-hour 

AM peak period were found to be 27.9% (6:30am-7:30am), 38.7% (7:30am-8:30am), 

and 33.4% (8:30am-9:30am). On the other hand, the distributions of the total trips in 
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the 3-hour PM peak period were found to be 30.4% (3:30pm-4:30pm), 36.9% 

(4:30pm-5:30pm), and 32.7% (5:30pm-6:30pm). Overall, the smoother trip 

distribution of the total traffic during the peak periods might be associated with 

flexible working hours in recent years. 

In addition to the above hourly flows, Figure 6.18 presents the temporal variations of the 

total trips within each 15-minutes interval. Finally, the summary of the dynamic OD flows 

for each 15-minute interval is presented in Appendix D. 
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Figure 6.18 Temporal variations of the 15-minutes dynamic OD flows 
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6.9.3 Experiment III: Testing the Impact of Link Segmentation 

As noted earlier in Section 6.6.4, the private vendor provided the raw speed traffic data was 

for each link in the GIS map, ranging from 5 meters up to 100 meters. For the past two 

experiments, the speed data from the GPS in-vehicle navigation systems were aggregated to 

constitute the interchange-to-interchange or intersection-to-intersection routes in the study 

area5. This step was found to be essential for the calibration of the large-scale Water Front 

network in terms of computation time and evaluation of the fitness function. However, the 

aggregation of consecutive link travel time/speed data compromises the accuracy of the 

observed data and increases the variance of the traffic data. In addition, one of the challenges 

with the previous experiments was that the covariance of travel time associated with two 

consecutive links was not known. As a result, variance of a route consisting of a number of 

smaller links was assumed to be the sum of variances of travel times. 

Considering the above limitations and challenges with aggregation of speed data, the purpose 

of experiment was to investigate the impact of the inclusion of the disaggregated speed data 

into the calibration process, comparing to the aggregated speed data. The logic behind this 

experiment is that basing the calibration process on disaggregate speed data reflects 

important information that would be masked if this data is aggregated. The disaggregate 

speed data includes valuable information capable to reflect the congestion level, queuing 

formation, occurrence and location of shockwave and delays on segment by segment basis. 

Since the disaggregate speed data was extracted from trajectory data of individual drivers, it 

is also capable to reflect more closely the driver behavior parameter as affected by 

congestion. In addition, it will add to the observability of the problem by reducing the 

number of degrees of freedom, as the segments can be broken down into smaller links and 

more observations will be available. Furthermore, while traffic flow information is not a 

reliable indicator of congestion, speed data are more reliable indicator of congestion. Speed 

data can be used easily to derive the flow information from the fundamental flow-speed 

5 Readers are referred to Figure 36 for the definition of links, segments, and routes. 
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relationship. That the presence of traffic data is believed to be redundant and thus the use of 

disaggregate speed data would remove the need for traffic counts.  

Since each segment in the study area is comprised of multiple smaller links, the calibration of 

the entire network with the disaggregated speed data would be computationally burdensome. 

Therefore, a small fraction of the Water Front network was chosen for this experiment.  

The comparison of the two scenarios (i.e. with and without aggregation of speed data) is 

based on the NRMSE of each component of the objective function, their associated 

weighting factors, and the total objective function value (i.e. Z in Equation 10). For this 

experiment, the historical OD flows used is identical to the fraction of the initial perturbed 

OD flows in the previous experiment. The calibration is based on the PDGA with the same 

SGA and PGA components presented in Table 17. The simulation was set for the AM peak 

period. It should be noted that the optimization formula only incorporates the traffic data 

from speed measurements and historical OD flows. In other words, the loop detector counts 

and turning movements were excluded for this experiment to test whether the unique OD 

flows can be estimated from the given enriched speed measurements. Figure 6.19 presents 

the selected subset of the Water Front network for this experiment with available 

disaggregate, speed measurements for each segment. The network coded in Paramics 

contains 17 OD pairs, 325 segments comprised to 1462 links, 36 junctions, 255 nodes, and 

22.1 km of roadway. The average segment length and link length in this network are 

approximately 68m and 15m, respectively.  

The simulation period took place between 6:30 to 9:30 for the AM peak period with a half an 

hour warm-up. The observed speed data was acquired for the same time period as the 

previous experiments (i.e. 15th-19th of October, 2012, aggregated for each 15 minutes interval 

during the AM peak period). In this experiment and since the results of the previous 

experiments showed no significant change in the value of both driver behavior and route 

choice model parameters within a given peak period, these parameters behavior were set to 

be fixed during the AM peak period. 
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Figure 6.19 Subset of the Water Front network in ArcGIS 

As noted earlier, the degree of freedom for the calibration problem would be the discrepancy 

between the number of unknown parameters and the number of available observed data. 

Among 325 segments of the small network, the 15-minutes aggregated speed data were 

available for 92 segments in the study area. Therefore for the 1st scenario (i.e. aggregated 

speed data), the total available speed data was 92×12=1,104. Considering that the number of 

unknown OD flows is 272, the total number of unknown parameters would be ሺ272 ൈ 12ሻ  

5 ൌ 3,269. Therefore, the degree of freedom for the calibration process is equal to 3,269 െ 

1,104 ൌ 2,165. 

As stated earlier, the traffic data was available for 92 segments in the subject network. These 

92 segments consist of 349 smaller links. Among the 349 links, there were many links with 

zero number of observations for the 12 time intervals of the peak periods. This was identified 

as one of the limitations of the data provider, which is due to an inaccurate and/or missing 

signal of the GPS devices in the urban canyon (i.e. high-rise buildings in Downtown 

Toronto). In these cases, the average speed data were obtained from adjacent links to acquire 
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the speed data for each segment. In addition, the vendor requires a six-month waiting time to 

provide an enrich traffic data with an acceptable number of observations, while the traffic 

data was acquired after a three-month waiting period.  

Based on the above noted reasons, the total available speed data was 2,424 (i.e. 58% 

coverage of the 349 links during 12 time intervals). The degree of freedom for the 2nd 

scenario would be equal to 3,269 െ 2,424 ൌ 845. Therefore, the incorporation of the 

disaggregated traffic data into the calibration process significantly decreased the degree of 

freedom.  

Following the methodology set forth in Section 3.2.2, the final simulated dynamic OD flows, 

speed data and driver behavior parameters were obtained for both scenarios. Table 6.17 

compares the fitness function values (i.e. Z in Equation 10) of the above noted scenarios. For 

the visual comparison, the speed NRMSE values for each 15-minute interval of the AM peak 

period are presented in Figure 6.20. In addition, Table 6.18 summarizes the calibrated driver 

behavior parameters of the two scenarios along with the calibrated results from Experiment 

II. 
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Table 6.17 Optimal fitness function values for two scenarios 

Scenario Description 

Weighting factors (ࢻ) NRMSE values (ࢌ) 
Fitness Function 

Value (Z) Improvement 
Percentage (scenario 2 

over scenario 1) ߙଵ (a priori 

OD flows) 

 ସ (speedߙ

data) 
ଵ݂ ସ݂ ݊݅ܯ ܼ ݂ଵൌ ߙ ݂ସ  ଵ ସߙ

1 
Aggregated 

speed data 
0.124 0.876 25.4% 7.6% 9.80% 

24.08% 

2 
Raw speed 

data 
0.098 0.902 22.6% 5.8% 7.44% 

Table 6.18 Comparing driver behavior parameters of the two scenarios with previous experiment 

Parameter Types Description 

Experiment III: Subset of 
the Water Front network 

Experiment II 
(AM peak): 
Water Front 

network 

Scenario 1: 
Aggregated 
speed data 

Scenario 2: 
Raw speed 

data 

Vehicle-driving behavior 
Mean headway (sec) 0.672 0.676 0.662 

Mean reaction time (sec) 0.602 0.611 0.590 

Feedback (min) 2.77 2.78 2.89 

Route choice model parameters Familiarity 78.3% 78.8% 77.4% 

Perturbation 18.6% 18.9% 18.4% 
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Figure 6.20 Comparison between NRMSE of speed data for the two scenarios 

Based on the calibration results presented in Table 6.17, Table 6.18, and Figure 6.20, the 

following observations were made: 

	 For both scenarios, the low weight of the historical OD demand term in the objective 

function and a high weight to speed data were found to be consistent with the 

previous experiments, which highlights the importance of the quality and spatial 

distribution of the observed data for the calibration process.  

	 The incorporation of the disaggregated speed data into the calibration process reduced 

the NRMSE of speed data from the average of 7.6% for the 1st scenario to 5.8% for 

the 2nd scenario (i.e. 23.7% improvement). 

	 The weighting factor of the speed data for the 2nd scenario is higher than the 

weighting factor for the 1st scenario (0.902 vs. 0.876). 

	 The total objective function value for the 2nd scenario is less than the objective 

function value for the 1st scenario (9.80% vs. 7.44%). 

	 As is apparent from Table 6.18, the calibrated driver behaviour and route choice 

model parameters of the two scenarios are very similar. In other words, there is no 
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evidence to support that the incorporation of the disaggregated speed data into the 

calibration process has a significant impact on the final driver behavior parameters. In 

other words, the major contribution of this experiment was to evaluate the 

dependency of the calibration process to the historical OD flows, without having a 

significant impact on the final results (i.e. driver behavior parameters and OD flows).  

	 As expected, the calibrated driver behavior parameters of the two Experiments 

(Experiment II and III) are very close, as the network for segmentation was a subset 

of the Water Front network. 

In summary, the incorporation of the enriched raw speed data without aggregation into the 

calibration process improved the calibration accuracy by reducing the NRMSE of each 

component of the objective function and the changes in the corresponding weighting factors 

of each component. 

The results of this experiment was as expected since a) the segments were broken down into 

smaller links and the calibration process was based on the discrepancy between the observed 

raw speed data and their simulated counterparts, b) the degree of freedom for the 2nd scenario 

was significantly less than the 1st scenario (845 vs. 2,165). This experiment highlighted the 

significant impact of the aggregation level of the observed data on the calibration results and 

made a further progress towards the application of the “observability”, which allowed the 

modeler to test if the dynamic OD flows can be estimated from the high quality speed data 

with an acceptable coverage of the network. 

While the incorporation of the disaggregated speed data improved the quality of the solution, 

the convergence speed of the two scenarios was found to be similar. In terms of CPU time, 

the final OD flows and model parameters for the 1st scenario were obtained after 65 hours, 

while for the 2nd scenario the calibration process was completed after 71 hours. For the 2nd 

scenario, the elapsed time (TE) and communication time (TC) for creating the files/directories 

necessary for each processor in the available slave list would be greater than the 1st scenario 

because of the significant increase in the number of observations. However, the degree of 

freedom for the 2nd scenario is significantly less than the 1st scenario, which resulted in a 

fewer number of generation for convergence of the algorithm (30 for 2nd scenario vs. 38 for 
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the 1st scenario). Figure 6.21 presents the evolution of the fitness function with each GA 

generations. 

In summary, the results of this experiment revealed that the incorporation of the 

disaggregated speed data for smaller links in a mediums-sized network can improve the 

calibration accuracy (24.08%) without having a major impact on the computational time for 

the subject network. As noted earlier, the major challenges with the incorporation of 

disaggregated speed data into the calibration process would be the extensive modifications on 

the encoded network in a simulation environment and in order to ensure the consistency with 

the acquired speed data, especially for a large-scale complex network.  
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Figure 6.21 Comparing the evolution of the fitness function of the two scenarios  

6.10 Summary 

The purpose of this chapter was to demonstrate the feasibility of the proposed calibration 

approach in a large-scale network using the traffic data from various sources. Special 

considerations were given to the enriched speed data from in-vehicle navigation systems to 

improve the calibration accuracy and minimize the discrepancy between the observed traffic 

data and their simulated counterparts. Several simulation experiments were performed to 

achieve the objectives of this chapter. In summary, the following observations were made: 
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	 The inclusions of speed data into calibration process significantly improved the 

quality of the solution in terms of count and speed NRMSE comparing to the “base 

case” scenario (i.e. loop detector and turning movement counts). 

	 The high network coverage of speed data from in-vehicle navigation systems was 

shown to be capable in decreasing the dependency of the estimation on historical OD 

flows while improving the calibration accuracy in terms of the pre-defined measures 

of effectiveness. 

	 The driver behavior parameters (i.e. vehicle-driving behavior and route choice model 

parameters) remained relatively unchanged for the 15-minutes intervals of the AM 

and PM peak periods. However, the vehicle-driving behavior parameters (i.e. mean 

headway and reaction time were found to be significantly different from AM peak 

period to PM peak period. 

	 Parallelization structure of GA (PDGA) significantly improved the quality of 

solution, comparing to DGA, even for the large-scale network. However, the total 

CPU time for convergence of the two algorithms was not significantly different. 

	 PDGA required a fewer number of generations to find the optimal fitness function 

value comparing to the DGA. 

	 The incorporation of the enriched raw speed data without aggregation into the 

calibration process improved the calibration accuracy and reduced the dependency of 

the calibration process to the historical OD flows by 24%, without having a major 

impact on the computational time for a medium-sized network. 

153 




 

 

 

 

 

 

 

 

  

 

 

 

 

 

Chapter 7: Conclusions and Recommendations 


This final chapter concludes the thesis with a summary of the context and scope of this 

research, the findings of the case studies, the major contributions of this thesis, and some 

future research directions. 

7.1 Context and Scope of Research 

During the last decade, many studies have focused on the calibration of demand and supply 

parameters of dynamic traffic assignment (DTA) models, in order to replicate prevailing 

traffic conditions and drivers’ behaviors. In the microscopic context, the demand variables 

are the time-dependent origin-destination (OD) flows for the period of interest, while the 

driver behavior and route choice model parameters are considered as supply parameters. 

Review of the previous studies revealed the following gaps in the context of calibration of 

DTA model parameters: 

	 The majority of the earlier calibration efforts rely on the iterative sequential 

calibration of demand and supply model parameters. However, this approach ignores 

the presence of interaction among the various demand and supply parameters and 

may lead to suboptimal solutions.  

	 Recent simultaneous calibration frameworks of DTA model parameters are highly 

dependent on the quality of historical information (e.g. historical OD flows, historical 

driver behavior parameters). Therefore, these techniques are mostly applicable when 

the starting point is close to the optimal one. 

	 Traditional calibration frameworks proposed in most previous studies ignore the 

reliability of the different components of the objective function (e.g. historical OD 

flows, count data from loop detectors). A limited number of studies have considered 

trial-and-error methodology with limited combinations of weights given to different 

components of the objective function (i.e. manual adjustments). 

	 Most previous efforts focused on the loop detector data available at the aggregate 

level, with traffic data collection mostly relying on surveys and vehicle counts that 

are costly and time-consuming. They have, therefore, been applied infrequently and 

often do not capture the full range of demand and supply patterns of the network. The 

154 




 

 

 

 

 

 

 

extensive deployment of emerging wireless technologies have resulted in the 

collection and archiving of time-varying traffic data at the network level and across 

multiple days, providing enrich datasets for the calibration of complex DTA models. 

Based on the above-noted gaps in the context of DTA calibration, this study has focused on 

the simultaneous calibration of demand and supply parameters of the DTA model in a 

microscopic context that can capture the interactions between all demand and supply 

parameters. The calibration process has been formulated as a multi-objective optimization 

problem that incorporates the traffic data from multiple sources and allocates relative weights 

to different terms of the objective function. One of the benefits of the proposed calibration 

framework is that it can incorporate the traffic data from these new sources (upon 

availability) and significantly improve calibration accuracy. In addition, the proposed 

framework is flexible and can incorporate any other measure of reliability into the calibration 

process. 

A genetic algorithm (GA) was selected as a suitable solution algorithm for the resulting 

nonlinear stochastic optimization problem. The quality of the solution and convergence speed 

of a GA is further enhanced by dividing the GA population into multiple demes and running 

the GA on a high-performance computer (HPC) cluster with multiple processors.   

For this research, traffic data for a real-world network were available from three different 

sources: loop detector counts, turning movement counts at signalized intersections, and speed 

data from in-vehicle navigation system technology. The roles of the enriched speed data from 

in-vehicle navigation system technology are improved calibration accuracy and the 

application of the observability in order to minimize the dependency of the calibration 

process on historical OD flows. 

The proposed methodology was applied in a synthetic case study as well as a complex real-

world network in the business district core of downtown Toronto, Ontario, Canada. The 

results obtained from the case studies are briefly described in the next section. 
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7.2 Summary of Findings 

Several conclusions are drawn from the experiments performed for the network of the 

synthetic case study, and are summarized below: 

	 In the various experiments conducted, the simultaneous calibration process using GA 

revealed a remarkable improvement over the starting values, in terms of calibration 

accuracy. In addition, the incorporation of the AVI data into the calibration process 

further enhanced the quality of solution by further minimizing the objective function. 

It can be argued that speed information, in contrast to flow measurements, can clearly 

distinguish between congested or uncongested conditions. Thus, the incorporation of 

AVI readings improves the solution quality by decreasing the number of local point 

solutions.  

	 In the tests conducted, a superior quality solution and savings in computation costs 

and resources were achieved for the distributed computing and hybrid runs. The 

distributed GA (DGA) model was 10 times as efficient as the simple GA (SGA). The 

parallel distributed GA (PDGA) had a better performance than the DGA in terms of 

fitness function value (26.9%) and termination point (i.e. required number of 

generations). However, because of its requirement for parallel processing, the 

convergence speed of PDGA in terms of CPU running time was an hour more than 

the DGA (9 vs. 11 hours). 

	 Experiment results revealed the importance of the weights of the objective function 

and their impact on the solution quality. A weighting scheme of (0.2, 0.3, 0.5) 

provided the best results for the apriori demand, traffic counts, and speed values 

respectively. Therefore, it was found that more weight can be given to the 

speed/travel time data from AVI sensors as the direct measures of the link 

performance, which can affect the routing decision, comparing to the traffic counts 

from inductive loop detectors. 

Considering the outcomes of the synthetic network, different experiments were performed for 

the real-world complex network to test the performance of the proposed approach with a 

larger number of variables and where drivers had more sophisticated route choice alternatives 
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to reach their destination. Several conclusions are drawn from the experiments performed for 

the Water Front network in Toronto, and are summarized below: 

	 The proposed calibration approach was successfully transferable to large-scale 

network. The incorporation of the in-vehicle navigation system speed data 

significantly improved the calibration accuracy, in terms of normalized root mean 

square error (NRMSE) for both count and speed measurements. In addition, a 

significantly higher quality of solutions and lower computation times were achieved 

by augmentation of GA with efficiency-enhancement techniques of parallelization 

and distributed computing.  

	 In the experiment examining the simulation supply model parameters, it was found 

that general driving behavior parameters were not subject to temporal variation in 

each 15-minute intervals of the peak periods. However, the mean headways and 

reaction times were found to be lower for the AM peak period compared to those of 

the PM peak period. 

	 The incorporation of the speed data from in-vehicle navigation system technology 

significantly reduced the dependency of the calibration process to historical OD 

flows. In the test conducted with more refined disaggregated speed data for smaller 

links, it was found that the dependency of the calibration process to the apriori OD 

information can be reduced to less than 10% for a subset of the large-scale network. 

7.3 Research Contributions 

As noted earlier in the chapter, this research identified a number of gaps in the context of 

calibration of DTA model parameters. Previous works on DTA-based dynamic OD 

estimation and calibration of model parameters were highly dependent on the quality of 

historical information, especially dynamic OD flows. Therefore, in the absence of such 

information, the estimated OD flows and model parameters cannot truly replicate the current 

traffic conditions. In addition, the weighting factors for different components of the objective 

function were identified through manual adjustments and limited sensitivity analyses. 

However, such approaches were found to be computationally intensive and inaccurate. 

Finally, considering the above-noted limitation, the majority of the past studies only 
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considered loop detector counts for calibration of the DTA model parameters on small-sized 

or medium-sized networks for one hour simulation period.  

The outcome of this research is a step towards filling in the gaps in these areas. In summary, 

the primary contributions of this research are as follows: 

General simultaneous calibration framework 

In contrast to previous DTA calibration framework which required manual adjustments, this 

thesis addresses the more general case of multi-objective optimization problem that 

simultaneously captures the non-linear interactions between demand and supply parameters, 

uses model outputs to directly capture complex relationships between the traffic data and 

model parameters, and incorporates different types of traffic data into the calibration process 

without any limitations. As is shown in various experiments, this resulted in a more complete 

representation of the state of the traffic network by taking advantage of all surveillance data 

and, thus, reducing the possibility of suboptimal solutions. Additionally, this research defines 

a mathematical formulation to quantify the “reliability” of the observed measurements and 

estimated the optimal weighting factors though the calibration process. Thus, this research 

proposes a novel way to automate the calibration framework which significantly reduces the 

computation costs and improves the accuracy and quality of the final solutions. It should be 

noted that proposed framework is flexible to incorporate any other measure of reliability into 

the calibration process. Furthermore, constraints can be added to delimit the size of a feasible 

search space. 

Off-line calibration framework 

One of the major contributions of this thesis is the creation of reliable off-line dynamic OD 

flows and Paramics model parameters that can be used as a priori estimates for the on-line 

calibration process. In other words, the outputs of the off-line calibration process can be used 

for real-time OD estimation along key corridors, incident management, reduction in 

unexpected congestion and, ultimately, provision of real-time traffic data to travelers. 
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Application of advanced GA to the calibration process 

The thesis proposes an innovative application of GA methods and their advanced features to 

the problem of DTA model calibration in a large-scale network. The application of GA with 

parallel computing and multi deme architecture results in a superior quality solution and 

savings in computation costs and resources for all conducted experiments.  

Minimum dependency to historical information by incorporation of enriched speed data  

This research addresses the problem of a DTA-based approach with inaccurate apriori 

information. In fact, conventional DTA-based calibration approaches place high expectations 

on the quality of apriori information. Therefore, improvement over the starting point is 

usually limited as the adopted optimization techniques are likely to find the nearest local 

optimum. However, the proposed GA techniques are multipoint searching methods, having 

global and probabilistic search capabilities. Additionally, this research incorporates the 

enriched speed data from in-vehicle navigation systems into the calibration process and 

demonstrates the significant impact of such data on the quality of solution. In fact, this thesis 

addresses one of the biggest challenges of the OD estimation and calibration of model 

parameters by minimizing the impact of apriori OD information to less than 10% for a large-

scale network. 

Testing the impact of link segmentation 

This research further improves the calibration accuracy with the incorporation of the enriched 

raw speed data without aggregation for smaller links into the calibration process. This further 

reduced dependency of the calibration process on historical OD flows in a medium-sized 

network. 

Temporal variation of driver behavior parameters 

While the OD estimation problem was extensively reviewed in the past, very few studies 

have investigated the effect of time of day on the driving performance. This research takes a 

further step towards analyzing the temporal variations of the driving behavior of travelers, 

especially during different time intervals of peak periods. The evaluation of driver behavior 
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parameters reveal that mean headway is less for the AM peak period than the PM peak 

period, suggesting that drivers are willing to accept or rather force shorter headways. In 

addition, the mean reaction time of drivers is found to be less for the AM peak period than 

the PM peak period, as the drivers are more alert in the morning than in the afternoon when 

they might be more tired after a long day of work. On the other hand, there is no significant 

difference between the route choice model parameters during AM and PM peak periods. 

7.4 Research Challenges 

This section of the thesis highlights some of the challenges and lessons learned during the 

course of this research, summarized as follows: 

	 Segment definition: Discrepancies in the defined segments between the acquired 

speed data and the coded network in the simulator created some issues and challenges 

when mapping the speed data to the Water Front Network. For example, the 

aggregation of consecutive link travel time/speed data compromised the accuracy of 

the observed data and increased the variance of the traffic data. 

	 Level of aggregation of the speed data: The quality of the solution and the 

dependency of the calibration process to the historical OD flows were limited by the 

aggregation of purchased data, provided spatially on an interchange-to-interchange 

basis and temporally on a 15-minutes basis. A finer aggregation of data (i.e. links) 

and more frequent temporal groupings (e.g. 5 minutes) will significantly improve the 

calibration accuracy and create a more refined dynamic OD matrix.   

	 Covariance of segments: One of the challenges with this research was that the 

covariance of travel time associated with two consecutive links was not known. As a 

result, variance of a segment consisting of a number of smaller links was assumed to 

be the sum of variances of travel times. 

	 Number of available processors: One of the limitations of this research was with the 

available number of processors in the HPC to run the simulation in parallel. Among 

the total 265 number of processors in HPC, only 80 processors were made available 

for this research, and among those, a number of CPUs in the HPC became unavailable 
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(non-responsive), therefore the simulation models were run in other available CPUs 

with Paramics licenses. 

	 Considering the limited number of available processors, the total efficiency of the 

cluster was approximately 49%. Upon the full availability of the cluster processors 

(i.e. 80), it is expected that the efficiency of the Cluster significantly increases to 90% 

[91]6. Therefore, in an ideal situation where all the processing nodes can be assigned 

to the problem, the DGA can be more than 70 times faster than SGA 

7.5 Future Research Directions 

While this thesis contributes to the literature on the calibration of microscopic traffic 

simulation models in several ways, there are a number of topics for future research: 

	 In this research, two measures of effectiveness (i.e. the Geoffrey E. Havers statistic, 

GEH, and normalized root mean square error, NRMSE) were selected to quantify the 

relationship between the observed and simulated measurements for the synthetic 

network. Due to computational burdens, only one of them (i.e. NRMSE) was selected 

for the real-world complex network. More research regarding the use of different 

measures of effectiveness is necessary. 

	 In this research, a mathematical formulation was obtained from the literature to 

quantify the “reliability” of the observed measurements, based on the average and 

variance of both observed and simulated data. However, there is a lack of research 

and experimental studies in the definition of different measures of reliability and their 

combinations. Therefore, it is recommended the proposed weighting schema be 

validated with different measurements and the final calibration results compared 

based on different weighting formulas. 

	 The off-line calibration process was successfully demonstrated in a large-scale 

network in downtown Toronto, Canada, with a combination of both highways and 

6 Abd, H. M. A. E. H. (2010). Optimization of Multimodal Evacuation of Large-scale Transportation Networks, 
Doctoral dissertation, University of Toronto 
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arterials. The calibrated OD and Paramics model parameters can be used as the most 

recent sources of data for calibration of the entire network of downtown Toronto, 

based on a more refined and powerful HPC. 

	 One of the contributions of this research was that the enriched speed data from in-

vehicle navigation system technology minimized the dependency of the calibration 

process on historical OD flows. It can be argued that the incorporation of traffic data 

from other reliable resources (e.g. traffic data from Bluetooth receivers) with the 

current disaggregated speed data may fully diminish the dependency of OD 

estimation on historical information. Considering emerging technologies and growing 

interest of different municipalities and jurisdictions in low-cost and accurate traffic 

data acquisition, it is possible to further expand this research and estimate the unique 

true dynamic OD flows without a priori information.    

	 As for the data obtained from in-vehicle navigation systems, the variance of a 

segment was considered a function of the variance of each link constituting the 

segment and the covariance between these links. However, the covariance terms were 

not known in this study. As a future work, it is recommended that the magnitude of 

travel time covariance using Bluetooth data obtained from the strategic routes be 

investigated, comparing the results with data from in-vehicle navigation system 

technology. 

	 As noted earlier, the outputs of the off-line calibration process can be used for real-

time OD estimation along key corridors, incident management, reduction in 

unexpected congestion and, ultimately, provision of real-time traffic data to travelers. 

For these real-time operational purposes, it would be more desirable to update the 

dynamic OD flows within more refined time intervals (e.g. each 5 minutes). 

Therefore, for real-time operational analysis and incident managements, it is 

recommended that traffic data be acquired from Bluetooth technology (or other 

vendors in the market) and used to update the off-line OD flows every 5 minutes for 

key corridors in the study area. 

162 




 

 

  

 

  

 

 

 

 

 

 

 

 

 

 

Bibliography 


1.	 Peeta, S., & Ziliaskopoulos, A. K. (2001). Foundations of dynamic traffic assignment: 

The past, the present and the future. Networks and Spatial Economics, 1(3), 233-265. 

2.	 PTV Group, VISUM. http://www.english.ptv.de/cgi-bin/traffic/traf vision.pl. 

Accessed on May 4th, 2011. 

3.	 EMME/2: INRO transportation forecasting software. 

http://www.inrosoftware.com/en/products/emme/index.php. Accessed on 4 April 

2012. 

4.	 Wang, Y., Messmer, A., & Papageorgiou, M. (2001). Freeway network simulation 

and dynamic traffic assignment with METANET tools. Transportation Research 

Record: Journal of the Transportation Research Board, 1776(1), 178-188. 

5.	 Halati, A., Lieu, H., & Walker, S. (1997). CORSIM-corridor traffic simulation model. 

In Traffic Congestion and Traffic Safety in the 21st Century: Challenges, Innovations, 

and Opportunities. 

6.	 Cameron, G. D., & Duncan, G. I. (1996). PARAMICS—Parallel microscopic 

simulation of road traffic. The Journal of Supercomputing, 10(1), 25-53. 

7.	 Barceló, J., & Casas, J. (2005). Dynamic network simulation with AIMSUN. In 

Simulation Approaches in Transportation Analysis, 57-98, Springer US. 

8.	 Yang, Q., & Koutsopoulos, H. N. (1996). A microscopic traffic simulator for 

evaluation of dynamic traffic management systems. Transportation Research Part C: 

Emerging Technologies, 4(3), 113-129. 

9.	 Yang, Q., Koutsopoulos, H. N., & Ben-Akiva, M. E. (2000). Simulation laboratory 

for evaluating dynamic traffic management systems. Transportation Research 

Record: Journal of the Transportation Research Board, 1710(1), 122-130. 

163 


http://www.inrosoftware.com/en/products/emme/index.php
http:vision.pl
http://www.english.ptv.de/cgi-bin/traffic/traf


 

 

 

  

 

 

 

 

 

 

  

10. Fellendorf, M., & Vortisch, P. (2001). Validation of the microscopic traffic flow 

model VISSIM in different real-world situations. In National Research Council (US). 

Transportation Research Board. Meeting (80th: 2001: Washington, DC). Preprint 

CD-ROM. 

11. Park, B. B., & Schneeberger, J. D. (2003). Microscopic simulation model calibration 

and validation: case study of VISSIM simulation model for a coordinated actuated 

signal system. Transportation Research Record: Journal of the Transportation 

Research Board, 1856(1), 185-192. 

12. Caliper,	 TransModeler traffic simulation software, 

http://www.caliper.com/transmodeler/. Accessed on April 27th, 2011. 

13. Ahmed, K. I. (1999). Modeling drivers’ acceleration and lane changing behavior, 

Doctoral dissertation, Massachusetts Institute of Technology. 

14. Ben-Akiva, M., Bierlaire, M., Koutsopoulos, H., & Mishalani, R. (1998, February). 

DynaMIT: a simulation-based system for traffic prediction. In DACCORS Short Term 

Forecasting Workshop, The Netherlands. 

15. Ben-Akiva, M., Bierlaire, M., Koutsopoulos, H. N., & Mishalani, R. (2002). Real 

time simulation of traffic demand-supply interactions within DynaMIT. Applied 

optimization, 63, 19-34. 

16. Mahmassani, H. S., Hu, T., & Jayakrishnan, R. (1995). Dynamic traffic assignment 

and simulation for advanced network informatics (DYNASMART).Urban traffic 

networks: Dynamic flow modeling and control. Springer, Berlin/New York. 

17. Mahmassani, H. S. (2001). Dynamic network traffic assignment and simulation 

methodology for advanced system management applications. Networks and Spatial 

Economics, 1(3-4), 267-292. 

18. Mahut, M., Florian, M., Florian, D., Velan, S., & Tremblay, N. (2005). Equilibrium 

dynamic traffic assignment for large, congested networks. INRO white paper. 

164 


http://www.caliper.com/transmodeler


 

 

 

 

 

 

 

 

 

 

 

  

 

19. Florian, M. A., Mahut, M., & Tremblay, N. (2006). A simulation-based dynamic 

traffic assignment model: DYNAMEQ. Centre for Research on Transportation. 

20. Dynamic Urban System for Transportation (DynusT), 	http://dynust.net/. Accessed 

July, 12th, 2010. 

21. Chiu, Y. C., Nava, E., Zheng, H., & Bustillos, B. (2011). DynusT User's Mannual, 

University of Arizona. 

22. Cascetta, E., Inaudi, D., & Marquis, G. (1993). Dynamic estimators of origin-

destination matrices using traffic counts. Transportation science, 27(4), 363-373. 

23. Tavana, H. (2001). Internally-consistent estimation of dynamic network origin-

destination flows from intelligent transportation systems data using bi-level 

optimization. Ph.D. Dissertation, University of Texas at Austin. 

24. Zhou, X., Qin, X., & Mahmassani, H. S. (2003). Dynamic origin-destination demand 

estimation with multiday link traffic counts for planning applications. Transportation 

Research Record: Journal of the Transportation Research Board, 1831(1), 30-38. 

25. Nie, Y. (2006). A variational inequality approach for inferring dynamic origin-

destination travel demand. Ph.D. Dissertation, University of California Davis. 

26. Zhang, H. M., Nie, Y. M., & Qian, Z. (2008). Estimating time-dependent freeway 

origin-destination demands with different data coverage: sensitivity 

analysis. Transportation Research Record: Journal of the Transportation Research 

Board, 2047(1), 91-99. 

27. Kim, H., Baek, S., & Lim, Y. (2001). Origin-destination matrices estimated with a 

genetic algorithm from link traffic counts. Transportation Research Record: Journal 

of the Transportation Research Board, 1771(1), 156-163. 

28. Kattan, L., & Abdulhai, B. (2006). Non-iterative approach to dynamic traffic origin-

destination estimation with parallel evolutionary algorithms. Transportation Research 

Record: Journal of the Transportation Research Board, 1964(1), 201-210. 

165 


http:http://dynust.net


 

 

 

 

 

 

 

 

 

 

 

 

 

29. Stathopoulos, A., & Tsekeris, T. (2004). Hybrid meta‐heuristic algorithm for the 

simultaneous optimization of the O–D trip matrix estimation. Computer‐Aided Civil 

and Infrastructure Engineering, 19(6), 421-435. 

30. Vaze, V., Antoniou, C., Wen, Y., & Ben-Akiva, M. (2009). Calibration of dynamic 

traffic assignment models with point-to-point traffic surveillance. Transportation 

Research Record: Journal of the Transportation Research Board, 2090(1), 1-9. 

31. Cipriani, E., Florian, M., Mahut, M., & Nigro, M. (2011). A gradient approximation 

approach for adjusting temporal origin–destination matrices. Transportation Research 

Part C: Emerging Technologies, 19(2), 270-282. 

32. Zhou, X., & Mahmassani, H. S. (2005). Recursive approaches for online consistency 

checking and OD demand updating for real-time dynamic traffic assignment 

operation. Transportation Research Record, 1923, 218-226. 

33. Hu, S. R., Peeta, S., & Chu, C. H. (2009). Identification of vehicle sensor locations 

for link-based network traffic applications. Transportation Research Part B: 

Methodological, 43(8), 873-894. 

34. Zhou, X., Erdogan, S., & Mahmassani, H. S. (2006). Dynamic origin-destination trip 

demand estimation for subarea analysis. Transportation Research Record: Journal of 

the Transportation Research Board, 1964(1), 176-184. 

35. Verbas, 	İ. Ö., Mahmassani, H. S., & Zhang, K. (2011). Time-dependent origin-

destination demand estimation. Transportation Research Record: Journal of the 

Transportation Research Board, 2263(1), 45-56. 

36. Chiu, Y. C., Zhou, L., & Song, H. (2010). Development and calibration of the 

anisotropic mesoscopic simulation model for uninterrupted flow facilities. 

Transportation Research Part B: Methodological, 44(1), 152-174. 

37. Tung, R., Wang, Z., & Chiu, Y. C. (2010). Integration of dynamic traffic assignment 

in a four step model framework: a deployment case study in Seattle model. In 

166 




 

 

 

 

 

 

  

 

 

Proceeding of the Third Conference on Innovations in Travel Modeling, Arizona 

State University, Arizona. 

38. Tavana, H., & Mahmassani, H. S. (2000). Estimation and application of dynamic 

speed-density relations by using transfer function models. Transportation Research 

Record: Journal of the Transportation Research Board, 1710(1), 47-57. 

39. Huynh, N., Mahmassani, H. S., & Tavana, H. (2002). Adaptive speed estimation 

using transfer function models for real-time dynamic traffic assignment 

operation. Transportation Research Record: Journal of the Transportation Research 

Board, 1783(1), 55-65. 

40. Qin, X., & Mahmassani, H. S. (2004). Adaptive calibration of dynamic speed-density 

relations for online network traffic estimation and prediction 

applications. Transportation Research Record: Journal of the Transportation 

Research Board, 1876(1), 82-89. 

41. Doan, D. L., Ziliaskopoulos, A., & Mahmassani, H. (1999). On-line monitoring 

system for real-time traffic management applications. Transportation Research 

Record: Journal of the Transportation Research Board, 1678(1), 142-149. 

42. Peeta, S., & Bulusu, S. (1999). Generalized singular value decomposition approach 

for consistent on-line dynamic traffic assignment. Transportation Research Record: 

Journal of the Transportation Research Board, 1667(1), 77-87. 

43. He, R., Miaou, S., Ran, B., & Lan, C. (1999). Developing an on-line calibration 

process for an analytical dynamic traffic assignment model. In 78th Annual Meeting of 

the Transportation Research Board, Washington, DC. 

44. He, R. R., & Ran, B. (2000). Calibration and validation of a dynamic traffic 

assignment model. Transportation Research Record: Journal of the Transportation 

Research Board, 1733(1), 56-62. 

167 




 

  

 

  

 

 

 

 

 

 

  

45. Hawas, Y. E. (2002). Calibrating simulation models for advanced traveler 

information systems/advanced traffic management systems applications. Journal of 

transportation engineering, 128(1), 80-88. 

46. Hawas, Y. E. (2000). Integrated traffic assignment and signal control for on-line 

operation. In Proc., 7th World Congress on Intelligent Transportation Systems. 

47. Chen, Y. S., Van Zuylen, H. J., & Lee, R. (2006). Developing a large-scale urban 

decision support system. In Control in Transportation Systems, 11(1), 216-221. 

48. Chu, L., Liu, H. X., Oh, J. S., & Recker, W. (2003). A calibration procedure for 

microscopic traffic simulation. In Intelligent Transportation Systems, 2003. 

Proceedings. 2003 IEEE, Vol. 2, pp. 1574-1579, IEEE. 

49. Mahut, M., Florian, M., Tremblay, N., Campbell, M., Patman, D., & McDaniel, Z. K. 

(2004). Calibration and application of a simulation-based dynamic traffic assignment 

model. Transportation Research Record: Journal of the Transportation Research 

Board, 1876(1), 101-111. 

50. Mahmassani, H. S., Qin, X., & Zhou, X. (2004). DYNASMART–X evaluation for 

real–time TMC application: Irvine test bed. Maryland Transportation Initiative, 

University of Maryland, College Park, Maryland. 

51. Balakrishna, R., Koutsopoulos, H. N., & Ben-Akiva, M. E. (2005). Calibration and 

validation of dynamic traffic assignment systems. In Transportation and Traffic 

Theory. Flow, Dynamics and Human Interaction. 16th International Symposium on 

Transportation and Traffic Theory. 

52. Ben-Akiva, M., Bierlaire, M., Koutsopoulos, H. N., & Mishalani, R. (2002). Real 

time simulation of traffic demand-supply interactions within DynaMIT. Applied 

optimization, 63, 19-34. 

53. Ben-Akiva, M., & Bierlaire, M. (2003). Discrete choice models with applications to 

departure time and route choice. In Handbook of transportation science (pp. 7-37). 

Springer US. 

168 




 

 

 

 

 

 

 

 

 

 

 

54. Kundie, K. K. (2002). Calibration of mesoscopic traffic simulation models for 

dynamic traffic assignment, Doctoral dissertation, Massachusetts Institute of 

Technology. 

55. Box, M. J. (1965). A new method of constrained optimization and a comparison with 

other methods. The Computer Journal, 8(1), 42-52. 

56. Gupta, A. (2005). Observability of Origin-destination matrices for dynamic traffic 

assignment, Doctoral dissertation, Massachusetts Institute of Technology. 

57. Mahanti, B. P. (2004). Aggregate calibration of microscopic traffic simulation 

models. Master’s thesis, Massachusetts Institute of Technology. 

58. Toledo, T., Ben-Akiva, M. E., Darda, D., Jha, M., & Koutsopoulos, H. N. (2004). 

Calibration of microscopic traffic simulation models with aggregate data. 

Transportation Research Record: Journal of the Transportation Research 

Board, 1876(1), 10-19. 

59. Toledo, T., Koutsopoulos, H. N., Davol, A., Ben-Akiva, M. E., Burghout, W., 

Andréasson, I & Lundin, C. (2003). Calibration and validation of microscopic traffic 

simulation tools: Stockholm case study. Transportation Research Record: Journal of 

the Transportation Research Board, 1831(1), 65-75. 

60. Darda, D. (2002). Joint calibration of a microscopic traffic simulator and estimation 

of origin-destination flows, Doctoral dissertation, Massachusetts Institute of 

Technology. 

61. Jha, M., Gopalan, G., Garms, A., Mahanti, B. P., Toledo, T., & Ben-Akiva, M. E. 

(2004). Development and calibration of a large-scale microscopic traffic simulation 

model. Transportation Research Record: Journal of the Transportation Research 

Board, 1876(1), 121-131. 

62. Kim, S. J. (2006). Simultaneous calibration of a microscopic traffic simulation model 

and OD matrix, Doctoral dissertation, Texas A&M University. 

169 




 

  

 

 

 

 

 

 

 

 

  

63. Balakrishna, R. (2006). Off-line calibration of dynamic traffic assignment models, 

Doctoral dissertation, Massachusetts Institute of Technology. 

64. Balakrishna, R., Ben-Akiva, M., & Koutsopoulos, H. N. (2007). Offline calibration of 

dynamic traffic assignment: simultaneous demand-and-supply 

estimation. Transportation Research Record: Journal of the Transportation Research 

Board, 2003(1), 50-58. 

65. Huyer, W., & Neumaier, A. (2008). SNOBFIT: stable noisy optimization by branch 

and fit. ACM Transactions on Mathematical Software (TOMS), 35(2), 9. 

66. Spall, J. C. (1998). An overview of the simultaneous perturbation method for efficient 

optimization. Johns Hopkins APL Technical Digest, 19(4), 482-492. 

67. Pel, A. J., Bliemer, M. C., & Hoogendoorn, S. P. (2009). Hybrid route choice 

modeling in dynamic traffic assignment. Transportation Research Record: Journal of 

the Transportation Research Board, 2091(1), 100-107. 

68. Qian, Z. S., & Zhang, H. M. (2012). A hybrid route choice model for dynamic traffic 

assignment. Networks and Spatial Economics, 1-21. 

69. Balakrishna, R., Antoniou, C., Ben-Akiva, M., Koutsopoulos, H. N., & Wen, Y. 

(2007). Calibration of microscopic traffic simulation models: Methods and 

application. Transportation Research Record: Journal of the Transportation 

Research Board, 1999(1), 198-207. 

70. Antoniou, C. (2004). On-line calibration for dynamic traffic assignment, Doctoral 

dissertation, Massachusetts Institute of Technology. 

71. Antoniou, C., Ben-Akiva, M., & Koutsopoulos, H. N. (2005). Online calibration of 

traffic prediction models. Transportation Research Record: Journal of the 

Transportation Research Board, 1934(1), 235-245. 

170 




 

  

 

 

  

  

 

 

 

 

 

 

  

72. Ashok, K., & Ben-Akiva, M. E.	 (2000). Alternative approaches for real-time 

estimation and prediction of time-dependent origin–destination flows. Transportation 

Science, 34(1), 21-36. 

73. Vaze, V. S. (2007). Calibration of dynamic traffic assignment models with point-to

point traffic surveillance. MSc thesis, Massachusetts Institute of Technology. 

74. Huang, E. (2010). Algorithmic and implementation aspects of on-line calibration of 

dynamic traffic assignment, Doctoral dissertation, Massachusetts Institute of 

Technology. 

75. Huang, E., Antoniou, C., Lopes, J., Wen, Y., & Ben-Akiva, M. (2010). Accelerated 

on-line calibration of dynamic traffic assignment using distributed stochastic gradient 

approximation. In Intelligent Transportation Systems (ITSC), 2010 13th International 

IEEE Conference on (pp. 1166-1171). IEEE. 

76. Hooke, R., & Jeeves, T. A. (1961). Direct search solution of numerical and statistical 

problems. Journal of the ACM (JACM), 8(2), 212-229. 

77. Huang, E., Antoniou, C., Wen, Y., Ben-Akiva, M., Lopes, J., & Bento, J. (2009). 

Real-time multi-sensor multi-source network data fusion using dynamic traffic 

assignment models. In Intelligent Transportation Systems, 2009. ITSC'09. 12th 

International IEEE Conference on (pp. 1-6). IEEE. 

78. Appiah, J. & Rilett L.R. (2010). Joint estimation of dynamic origin-destination 

matrices and calibration of micro-simulation models using aggregate intersection turn 

count data. Transportation Research Board 89th Annual Meeting, Transportation 

Research Board Annual Meeting Paper, 10-2764. 

79. Omrani, R., & Kattan, L. (2012). Demand and supply calibration of dynamic traffic 

assignment models: past efforts and future challenges. Transportation Research 

Record: Journal of the Transportation Research Board, 2283(1), 100-112. 

80. Special Report 209: Highway Capacity Manual, 3rd Edition. (1994). Transportation 

Research Board, National Research Council, Washington, D.C. 

171 




 

 

  

 

 

 

 

 

 

 

 

 

 

81. Kattan, L. (2005). Dynamic traffic origin/destination estimation using evolutionary 

based algorithms, Doctoral dissertation, University of Toronto. 

82. Cantu-Paz, E. (2000). Efficient and accurate parallel genetic algorithms, Vol. 1, 

Springer. 

83. Holland J. (1975). Adaptation in natural and artificial system. University of Michigan 

Press, Ann Arbor. 

84. Ma, T., & Abdulhai, B. (2002). Genetic algorithm-based optimization approach and 

generic tool for calibrating traffic microscopic simulation parameters. Transportation 

Research Record: Journal of the Transportation Research Board, 1800(1), 6-15. 

85. Maslov, I. V., & Gertner, I. (2006). Multi-sensor fusion: an evolutionary algorithm 

approach. Information Fusion, 7(3), 304-330. 

86. Goldberg, D. E. (2002). The design of innovation: lessons from and for competent 

genetic algorithms, by David E. Goldberg (Vol. 7). Springer. 

87. Mohamed, M. S. M. (2007). Generic parallel genetic algorithms	 framework for 

optimizing intelligent transportation systems (GENOTRANS). In Masters Abstracts 

International, Vol. 46, No. 06. 

88. Baker, J. E. (1985). Adaptive selection methods for genetic algorithms. In 

Proceedings of the 1st International Conference on Genetic Algorithms, pp. 101-111, 

L. Erlbaum Associates Inc.. 

89. Herrera, F., Lozano, M., & Verdegay, J. L. (1998). Tackling real-coded genetic 

algorithms: Operators and tools for behavioral analysis. Artificial intelligence 

review, 12(4), 265-319. 

90. Back, T., Hammel, U., & Schwefel, H. P. (1997). Evolutionary computation: 

Comments on the history and current state. Evolutionary computation, IEEE 

Transactions on, 1(1), 3-17. 

172 




 

 

 

 

 

 

 

 

 

  

  

91. Abd, H. M. A. E. H. (2010). Optimization of Multimodal Evacuation of Large-scale 

Transportation Networks, Doctoral dissertation, University of Toronto. 

92. Cantu-Paz, E. (2000). Efficient and accurate parallel genetic algorithms (Vol. 1). 

Kluwer Academic Publisher, Springer. 

93. Tomassini, M. (1999). Parallel and distributed evolutionary algorithms: a review. 

Evolutionary Algorithms in Engineering and Computer Science: Recent Advances in 

Genetic Algorithms, Evolution Strategies, Evolutionary Programming, Genetic 

Programming, and Industrial Applications: 113-131. 

94. Mohamed, M. (2007). Generic parallel genetic algorithms framework for optimizing 

intelligent transportation systems (GENOTRANS), Master of Science Thesis, 

University of Toronto. 

95. Cantu-Paz, E. (1998). Using Markov chains to analyze a bounding case of parallel 

genetic algorithms. In Genetic Programming: Proceedings of the Third Annual 

Conference, pp. 456-462, San Francisco, CA: Morgan Kaufmann Publishers. 

96. Brown, M., Fukui, K., & Trivedi, N. (2005). Introduction to grid computing. IBM, 

International Technical Support Organization. 

97. Ivanov, N., 	Real Time Big Data Processing with GridGain, Grid Computing, 

http://www.gridgain.com/book/book.html, Accessed 12/07/2012. 

98. Pop, F., Lovin, M. A., Cristea, V., Bessis, N., & Sotiriadis, S. (2012, July). 

Applications monitoring for self-optimization in GridGain. In Complex, Intelligent 

and Software Intensive Systems (CISIS), 2012 Sixth International Conference on (pp. 

755-760). IEEE. 

99. Dowling, R., Skabardonis, A., & Alexiadis, V. (2004). Traffic analysis toolbox 

volume III: Guidelines for applying traffic micro-simulation modeling software (No. 

FHWA-HRT-04-040). 

173 


http://www.gridgain.com/book/book.html


 

 

 

 

 

 

 

 

 

 

 

 

  

100. Abdulhai B, Georgi A, Roorda MJ, Tarabain A, and Tang E. (2004). 	Micro 

simulation of the Toronto waterfront revitalization plan: impact assessment of 

roadway configuration alternatives. Final Report for the Toronto Waterfront 

Revitalization Corporation. 

101. 2012 Travel Time Studies, Ministry of Transportation Ontario, Ontario, Canada. 

102. Roorda, M. J., Hain, M., Amirjamshidi, G., Cavalcante, R., Abdulhai, B., & 

Woudsma, C. (2010). Exclusive truck facilities in Toronto, Ontario, Canada. 

Transportation Research Record: Journal of the Transportation Research 

Board, 2168(1), 114-128. 

103. Internet, 	ONE-ITS: The next level of traffic innovation, http://one

itswebapp1.transport.utoronto.ca/web/one-its, accessed 27/11/2012. 

104. Omrani, R., Izadpanah, P., Hellinga, B., Hadayeghi, A., & Abdelgawad, H. (2013). 

Evaluation of wide-area traffic monitoring technologies for travel time studies. 

In Transportation Research Board 92nd Annual Meeting (No. 13-5273). 

105. Hayya, J., Armstrong, D., & Gressis, N. (1975). A note on the ratio of two normally 

distributed variables. Management Science, 21(11), 1338-1341. 

106. Brackstone, M., Waterson, B., & McDonald, M. (2009). Determinants of following 

headway in congested traffic. Transportation research part F: traffic psychology and 

behavior, 12(2), 131-142. 

107. Lenné, M. G., Triggs, T. J., & Redman, J. R. (1997). Time of day variations in driving 

performance. Accident Analysis & Prevention, 29(4), 431-437. 

108. Theil, H. (1961). Economic forecasts and policy. North-Holland,	 Amsterdam, 

Netherlands. 

174 


http://one


 

 

 

  

 

          

           

                                                 

  

 
 

 
 

    
  

Appendix A: Statistical Validity of Sample Size 

The traffic data obtained from in-vehicle navigation system technology include the 

minimum, maximum, and average number of observations for each road segment within the 

study area. As stated earlier, the vendor was able to provide a significantly large number of 

observations per road section and per peak period.  

In the probability theory, the central limit theorem (CLT) states that the mean of a 

sufficiently large number of independent random variables, each with a well-defined mean 

and well-defined variance, will be approximately normally distributed7. Most statistical text 

canܺ books have stated that if sample size is larger than 30, the distribution of sample mean 
9,10,11,assume to be normally distributed8, 12. Given a large sample size from the data provider 

enables us to assume that the distribution of the sample can be approximated as a normal 

distribution. 

and unknownߤ is normally distributed with unknown mean ܺ Suppose a random variable 

 is collected from the population with ݊ ) of size௦ܺ. Also, a sample data ( ܵ standard deviation 

the sample mean of ̅ݔ and a standard deviation of ߪ, with the following notations: 

ሻଶܵ ሺߤ, ~ܰܺ

ሻଶሺ̅ݔ, ߪ  ~ܰ௦ܺ

 (19) 

(20) 

The difference between the sample mean and the true value of the population mean can be 

expressed as an error term (ߜ) as follows: 

7 Rice, J, Mathematical Statistics and Data Analysis (Second ed.), Duxbury Press, ISBN 0-534-20934-3, 1995. 

8 Becker, W. E., Statistics: for Business and Economics, South-Western, Cincinnati, pp.271-273, 1995 

9 Freund, J. E. and Perles, B. M., Statistics: A First Course, 7th ed., Prentice-Hall, New Jersey, pp.275-279, 

1999. 

10 Hogg, R. V. and Tanis, E. A., Probability and Statistical Inference, 6th ed., Prentice-Hall, New Jersey, 

pp.307-313, 2001

11 Levine, D. M., Ramsey, P. P. and Berenson, M. L., Business statistics for quality and productivity, Prentice-

Hall, New Jersey, pp.259-264, 1995. 

12 Watson, C. J., Billingsley, P., Croft, D. J. and Huntsberger, D. V., Statistics: for Management and Economics,
 
5th ed., Prentice-Hall, New Jersey, pp.297-305, 1996.
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ߜ-  ߤ െ ݔ̅  ߜ  (21) 

. ߪ
ଶൗ

ఈܼ 
ߜ ൌ

݊√
൘  (22) 


is the Z-score of the standard normal distribution table with the confidence 
ଶൗ

ఈܼ Where 

interval of 100൫1 െ ߙൗ2൯%, and ߙ is the predetermined significance level (e.g. 0.05). For 

 value for the 95% confidence interval is 1.96.  
ଶൗ

ఈܼ , theߙ ൌ 0.05

Based on the equation for the error term, Equation 21 can be rephrased as follows: 

 
ഀൗమ

.ఙ
ߤ| െ (23) |ݔ̅

√

In Equation 23, the absolute difference the population and sample means (i.e. |ߤ െ  is (|ݔ̅

unknown. A 10% margin of error between the population mean and the sample mean were 

assumed in this research. 

|ఓି

̅

௫̅|  0.1  (24)
௫ 

Equation 24 was then integrated into Equation 5 to determine the minimum required sample 

), as follows: ݊size ( 

ഀൗమ
.ఙ |ఓି

̅

௫̅|

√ൈ௫ ̅
 

௫ 
 0.1  (25) 

݊   ቀ
ഀൗమ

.ఙ 
(26)

.ଵ௫ ̅
ቁ
ଶ

.ఙ
మൗ

ഀ
ൌ ቀ݊

.ଵ௫ ̅
ቁ
ଶ

The following table presents an example of travel time and speed performance measures 

along the Gardiner Expressway during AM Peak Periods of the Fall Season. In addition, the 

minimum sample size requirement and the observed number of hits (e.g. sample size) are 

provided in this table. As shown in this table, the provided sample size is significantly higher 

(27) 
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than the minimum required sample size. As noted earlier, the data collected satisfied the 

sample size requirements for more than 99.5% of the segments in all peak periods 

Example of minimum sample size and the number of observations 

D
ir

ec
ti

on Interchange 

(From/To) 

Length 

(Km) 

Average 

travel 

time 

(h:mm:ss) 

Standard 

deviation 

of TT 

(sec) 

Average 

speed 

(Km/hr) 

Standard 

deviation 

of Speed 

Minimum 

sample 

size 

Hits 

W
es

tb
ou

n
d 

DVP 

Lower Jarvis 1.7 0:01:52 43.4 54.7 21.2 57.8 564.3 

Spadina Ave 2 0:02:54 45.5 41.1 10.8 26.6 542.8 

Jameson Ave 3.5 0:04:34 48.1 46.3 8.1 11.6 787.5 

South Kingsway 3.3 0:03:16 27.3 60.4 8.5 7.5 872.2 

Islington Ave 3.8 0:03:29 23.9 64.6 7.5 5.2 940.1 

Kipling Ave 1.1 0:00:47 9.4 80.7 16.8 16.6 758.5 

Hwy 427 1.9 0:01:33 26.1 74.4 20.7 29.8 598.2 

Total/Average 17.3 0:18:25 56.37 
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Appendix B: Comparison between Observed Counts/Speed Data and Their Simulated Counterparts for Different Scenarios 

(Experiment I) 
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Appendix C: Comparison between Observed Counts/Speed Data and Their Simulated Counterparts for Multi-Source Scenario 
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Appendix D: Simulated OD Flows for Different Time Intervals Using PDGA (Experiment II) 

Dynamic OD trips for 15-minutes intervals (6:30AM-7:30AM) 

6:30 AM – 6:45 AM 
To external 
gateways 

To study area 
zones 

Total 

From external gateways 2,225 1,234 3,459 

From study area zones 634 29 663 

Total 2,859 1,263 4,122 

6:45 AM – 7:00 AM 
To external 
gateways 

To study area 
zones 

Total 

From external gateways 2,425 1,255 3,680 

From study area zones 679 43 722 

Total 3,104 1,298 4,402 

7:00 AM – 7:15 AM 
To external 
gateways 

To study area 
zones 

Total 

From external gateways 2,698 1,389 4,087 

From study area zones 689 52 741 

Total 3,387 1,441 4,828 

7:15 AM – 7:30 AM 
To external 
gateways 

To study area 
zones 

Total 

From external gateways 2,912 1,467 4,379 

From study area zones 665 56 721 

Total 3,577 1,523 5,100 
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Dynamic OD trips for 15-minutes intervals (7:30AM-8:30AM) 

7:30 AM – 7:45 AM 
To external 
gateways 

To study area 
zones 

Total 

From external gateways 3,495 1,695 5,190 

From study area zones 745 63 808 

Total 4,240 1,758 5,998 

7:45 AM – 8:00 AM 
To external 
gateways 

To study area 
zones 

Total 

From external gateways 3,845 1,868 5,713 

From study area zones 778 75 853 

Total 4,623 1,943 6,566 

8:00 AM – 8:15 AM 
To external 
gateways 

To study area 
zones 

Total 

From external gateways 3,672 1,975 5,647 

From study area zones 769 62 831 

Total 4,441 2,037 6,478 

8:15 AM – 8:30 AM 
To external 
gateways 

To study area 
zones 

Total 

From external gateways 3,751 1,990 5,741 

From study area zones 746 69 815 

Total 4,497 2,059 6,556 
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Dynamic OD trips for 15-minutes intervals (8:30AM-9:30AM) 

8:30 AM – 8:45 AM 
To external 
gateways 

To study area 
zones 

Total 

From external gateways 3,521 1,825 5,346 

From study area zones 697 61 758 

Total 4,218 1,886 6,104 

8:45 AM –9:00 AM 
To external 
gateways 

To study area 
zones 

Total 

From external gateways 3,225 1,698 4,923 

From study area zones 674 54 728 

Total 3,899 1,752 5,651 

9:00 AM – 9:15 AM 
To external 
gateways 

To study area 
zones 

Total 

From external gateways 3,091 1,705 4,796 

From study area zones 592 65 657 

Total 3,683 1,770 5,453 

9:15 AM – 9:30 AM 
To external 
gateways 

To study area 
zones 

Total 

From external gateways 2,756 1,525 4,281 

From study area zones 556 49 605 

Total 3,312 1,574 4,886 
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Dynamic OD trips for 15-minutes intervals (3:30PM-4:30PM) 

3:30 PM – 3:45 PM 
To external 
gateways 

To study area 
zones 

Total 

From external gateways 2,958 678 3,636 

From study area zones 1,270 58 1,328 

Total 4,228 736 4,964 

3:45 PM –4:00 PM 
To external 
gateways 

To study area 
zones 

Total 

From external gateways 3,258 685 3,943 

From study area zones 1,395 62 1,457 

Total 4,653 747 5,400 

4:00 PM – 4:15 PM 
To external 
gateways 

To study area 
zones 

Total 

From external gateways 3,498 795 4,293 

From study area zones 1,425 67 1,492 

Total 4,923 862 5,785 

4:15 PM – 4:30 PM 
To external 
gateways 

To study area 
zones 

Total 

From external gateways 3,605 799 4,404 

From study area zones 1,465 59 1,524 

Total 5,070 858 5,928 
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Dynamic OD trips for 15-minutes intervals (4:30 PM-5:30PM) 

4:30 PM – 4:45 PM 
To external 
gateways 

To study area 
zones 

Total 

From external gateways 3,925 842 4,767 

From study area zones 1,531 71 1,602 

Total 5,456 913 6,369 

4:45 PM –5:00 PM 
To external 
gateways 

To study area 
zones 

Total 

From external gateways 4,218 880 5,098 

From study area zones 1,674 79 1,753 

Total 5,892 959 6,851 

5:00 PM – 5:15 PM 
To external 
gateways 

To study area 
zones 

Total 

From external gateways 4,115 1,009 5,124 

From study area zones 1,665 76 1,741 

Total 5,780 1,085 6,865 

5:15 PM – 5:30 PM 
To external 
gateways 

To study area 
zones 

Total 

From external gateways 4,058 984 5,042 

From study area zones 1,635 69 1,704 

Total 5,693 1,053 6,746 
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Dynamic OD trips for 15-minutes intervals (5:30 PM-6:30PM) 

5:30 PM – 5:45 PM 
To external 
gateways 

To study area 
zones 

Total 

From external gateways 3,714 877 4,591 

From study area zones 1,526 58 1,584 

Total 5,240 935 6,175 

5:45 PM –6:00 PM 
To external 
gateways 

To study area 
zones 

Total 

From external gateways 3,605 829 4,434 

From study area zones 1,476 65 1,541 

Total 5,081 894 5,975 

6:00 PM – 6:15 PM 
To external 
gateways 

To study area 
zones 

Total 

From external gateways 3,577 733 4,310 

From study area zones 1,512 68 1,580 

Total 5,089 801 5,890 

6:15 PM – 6:30 PM 
To external 
gateways 

To study area 
zones 

Total 

From external gateways 3,430 742 4,172 

From study area zones 1,465 73 1,538 

Total 4,895 815 5,710 
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