
University of Calgary

PRISM Repository https://prism.ucalgary.ca

The Vault Open Theses and Dissertations

2013-04-29

Effectiveness of Unique Grouping

Techniques for Network Nodes in

Serving Various Application Domains

Chen, Alan

Chen, A. (2013). Effectiveness of Unique Grouping Techniques for Network Nodes in Serving

Various Application Domains (Master's thesis, University of Calgary, Calgary, Canada).

Retrieved from https://prism.ucalgary.ca. doi:10.11575/PRISM/25788

http://hdl.handle.net/11023/642

Downloaded from PRISM Repository, University of Calgary

UNIVERSITY OF CALGARY

Effectiveness of Unique Grouping Techniques for Network Nodes in Serving Various

Application Domains

by

Alan Chia-Lung Chen

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

APRIL, 2013

c⃝ Alan Chia-Lung Chen 2013

Abstract

A network is an abstract representation of entities, which can be objects or concepts. Entities

are generally represented by nodes, and connected to other entities in the model by links

based on their relationship or interaction with the other entities. Networks are a simple but

powerful tool for modeling and analyzing relationships between entities, which have become

an important technique in many different fields of study. The semantics of the nodes and

the links are determined based on the specific domain of study. Nodes in a network could

be classified into groups. A group in a network is a subset of the nodes in the network

that is being considered together for certain functions. Grouping network nodes refers to a

technique of assigning labels to the nodes; grouping techniques are important for building an

understanding of the network, and can be used in solving many problems in various domains.

Various techniques have been explored to group network nodes together, such that nodes

in each group are highly connected, and nodes between groups have fewer connections.

General grouping techniques will discover these high density groups in a wide variety of

networks for further examination in numerous fields. The problem with general grouping

techniques is that they are multipurpose tools, thus they produce groups of nodes with some

characteristics that are commonly sought. Nevertheless, there may be situations that call

for discovering groups that have an unusual characteristic. In these problems, a unique

grouping technique that is designed specifically to address that particular problem would

be a much more effective means to solve the problem. Accordingly, a general framework is

proposed in this thesis to help guide the design of unique grouping techniques. This thesis

will demonstrate the effectiveness and significance of unique grouping techniques through the

development, and application of unique grouping techniques in four distinctive cases. This

thesis will show that unique grouping techniques should be a serious consideration alongside

general grouping techniques for research work dealing with networks.

ii

Acknowledgements

I want to thank my supervisor Professor Reda Alhajj for his guidance throughout my pro-

gram, and especially for his counseling in completing this thesis. I also want to thank Shang

Gao, another member of the research group whom has given me direction for many of the

projects I’ve worked on. I would also like to thank NSERC (The Natural Sciences and En-

gineering Research Council of Canada) and Alberta Innovates, whose financial support was

a major factor for me deciding to complete this program. And I want to thank my mother

and sister for their support.

I simply want to thank everyone that have contributed to my success during my Master’s

program, and everything else that has made this all possible.

iii

Table of Contents

Abstract . ii
Acknowledgements . iii
Table of Contents . iv
List of Tables . vi
List of Figures . vii
1 INTRODUCTION . 1
1.1 Background . 1

1.1.1 General Networks . 1
1.1.2 Social Networks . 1
1.1.3 Neural Networks . 3

1.2 Grouping . 3
1.3 Thesis Overview . 4
2 RELATED WORK . 6
2.1 General Grouping Techniques . 6
2.2 Unique Grouping Techniques . 8
3 IMPLEMENTING UNIQUE GROUPING TECHNIQUES IN PRACTICE . 11
3.1 Grouping Techniques . 11

3.1.1 Grouping Nodes . 11
3.1.2 Input and Output . 12
3.1.3 Arrangement . 13
3.1.4 Aspects . 17

3.2 The Framework . 19
3.2.1 Overview . 19
3.2.2 Analysis . 20
3.2.3 Design . 21

4 CASE STUDY ONE: Post Processing of Association Rules into Segments . . 23
4.1 Introduction . 23

4.1.1 Background . 23
4.1.2 Problem and Solution . 24

4.2 Related Work . 27
4.3 Proposed Solution . 29

4.3.1 Overview . 29
4.3.2 Phase One: Network Construction 29
4.3.3 Phase Two: Node Partition . 33
4.3.4 Phase Three: Partition Refinement 38

4.4 Results . 42
4.4.1 Experimental Method . 42
4.4.2 Experimental Results . 44

4.5 Summary . 44
5 CASE STUDY TWO: Finding Hidden Links in Criminal Networks 46
5.1 Introduction . 46

5.1.1 Background . 46

iv

5.1.2 Problem and Solution . 48
5.2 Related Work . 49
5.3 Proposed Solution . 50

5.3.1 Overview . 50
5.3.2 Phase One: Main and Sub-Networks Creation 51
5.3.3 Phase Two: Hidden Network Detection 53
5.3.4 Phase Three: Hidden Link Weights Computation 55

5.4 Results . 58
5.4.1 Experimental Method . 58
5.4.2 Experimental Results . 58

5.5 Summary . 60
6 CASE STUDY THREE: Finding Hidden Nodes in Criminal Networks 62
6.1 Introduction . 62

6.1.1 Background . 62
6.1.2 Problem and Solution . 64

6.2 Related Work . 66
6.3 Proposed Solution . 69

6.3.1 Overview . 69
6.3.2 Mapping Method . 71
6.3.3 Measures . 78

6.4 Results . 79
6.4.1 Adjust Measures Method . 79
6.4.2 Proposed Method . 81

6.5 Summary . 83
7 PLACE2GIVE CASE STUDY: Applying Neural Networks to Score Surveys . 85
7.1 Introduction . 85

7.1.1 Background . 86
7.1.2 Problem and Solution . 89

7.2 Related Work . 90
7.3 Implementation . 92

7.3.1 Overview . 92
7.3.2 Padded Static Input Nodes Modification 93
7.3.3 Dynamic Neural Network Modification 97

7.4 Summary . 100
8 CONCLUSION AND FUTURE RESEARCH DIRECTIONS 102
8.1 Conclusions . 102
8.2 Future Research Directions . 104
Bibliography . 105

v

List of Tables

5.1 Experimental Data Sets . 58

7.1 RAScore Equation . 95
7.2 Adjusted RAScore Equation (c⃝ 2012 Dexterity Ventures Inc.) 96

vi

List of Figures and Illustrations

1.1 Example of a Network . 2

2.1 Infection Simulation Network [14] . 10

3.1 Positions of Grouping Techniques . 14
3.2 Framework for Developing Unique Group Techniques 19

4.1 Different Graph Colorings (Red and Yellow Sets Swapped) 25
4.2 Graph Coloring with Different Number of Colors (Three and Four Colors) . . 27
4.3 Graph Coloring Comparison (Colorings of Inner Three Nodes Unimportant) 27
4.4 Example of a Transactional Database and the Accompanying Network 31
4.5 Example of a Created Network . 31
4.6 Example of a Threshold Applied to a Network 32
4.7 Partitioning Network Example . 34
4.8 First Iteration of Partitioning Network Example 36
4.9 Second Iteration of Partitioning Network Example 37
4.10 Contradictory Rule Set Hierarchy . 38

5.1 Main Network Creation Example . 52
5.2 Sub-Networks Creation Example . 53
5.3 Hidden Networks Creation Example . 56
5.4 Compute Hidden Networks Weights Example 57
5.5 Hidden Group Network Example . 59
5.6 Hidden Group Sub-Network Example . 59

6.1 Induced Subgraph Example . 63
6.2 Isomorphism Example . 63
6.3 Incorrect Assignment Example (Translation) 65
6.4 Incorrect Assignment Example (Scaling) . 66
6.5 Maximum Common Subgraph Isomorphism Problem Example 68
6.6 Maximum Common Subgraph Isomorphism Problem Issue 68
6.7 Stable Network Plot . 70
6.8 Unstable Network Plot . 70
6.9 Quadrants (2-D Orthants) . 72
6.10 Octants (3-D Orthants) . 73
6.11 Mapping Example - Inputs . 73
6.12 Proposed Method Example Sets . 73
6.13 Centers of Sets by Considering the Network in Figure 6.12 74
6.14 Set Partitions for First Level . 74
6.15 First Set Partitions for k = 4 . 75
6.16 Set Partition Centers for k = 1 . 75
6.17 Transformation Result . 76
6.18 Mapping Example - Distance Calculations 76

vii

6.19 Mapping Example - More Distance Calculations 77
6.20 Mapping Example - Output . 77
6.21 Final Transformed Set of Points for Experiment 1 79
6.22 Final Transformed Set of Points for Experiment 2 80
6.23 Final Transformed Set of Points for Experiment 3 81
6.24 Chart of Results . 82

7.1 General Single-Layer Feed Forward Neural Network 90
7.2 Implemented Neural Network . 93
7.3 System (Charity Side) . 94
7.4 System (Donor Side) . 99

viii

Chapter 1

INTRODUCTION

1.1 Background

1.1.1 General Networks

A network is an abstract representation of entities, which can be objects or concepts; these

entities are generally represented by circles (nodes), and connected to other entities in the

model by lines (links) based on their relationship or interaction with the other entities (see

Figure 1.1). There are many different types of networks with different features. For example,

the links of some networks are directed to indicate a one-sided connection or interaction. A

number of other networks have weighted links to indicate strong or weak relationships, and in

some cases these weights are signed to indicate positive or negative relationships. Networks

are a simple but powerful tool for modeling and analyzing relationships between entities,

which have become an important technique in many different fields of study [55]. Network

analysis is an emerging field that is heavily based on graph theory, statistics, mathematics,

and more recently computer science techniques, which have influenced the scalability of

modeling and analysis. The power of network modeling is the interpretation of relationships

or connections between entities, and the ease of visualization with graphical models.

1.1.2 Social Networks

Social networks are valuable structures that involve individuals or groups of individuals, and

their relationship with the other individuals or groups in the network. The nodes in a social

network represent individuals or groups, such as organizations, residents of particular areas,

families, etc. The links in a social network indicate the relationship between the individuals

or groups, such as organization position, communication, kinship, etc. Links in the social

1

Figure 1.1: Example of a Network

network can often be directed, e.g., to indicate which individuals supervise which other

individuals; in addition, these links can also be weighted, e.g., to indicate how strong of a

friendship two individuals have. However, different types of nodes can also be present within

social networks which represent other entities that have some connection to individuals or

groups in the network, such as events or locations which the individuals or groups were

present at.

Social networks are a model of the connections of individuals or groups within a society,

and thus social network analysis is vital in the study of sociology. They provide a method

to study the interactions of a large number of individuals to find special entities, patterns,

or make predictive models. For instance, in order to find out who plays the most central

role in an organization, we can construct a social network with individuals being the nodes

and the link between two individuals representing certain social connections, like working on

the same project. Once the social network has been constructed, it could be analyzed using

knowledge discovery techniques, which look for how well connected nodes are to determine

the most influential individuals. In this context I look specifically at criminal networks,

which are a type of social networks where the individuals involved are criminals, related to

crimes, or connected to illegal activities.

2

1.1.3 Neural Networks

Neural networks are models that are based on the biological neural network of the brain,

and how the neurons transmit information [27]. They are a model of information processing

in the brain, which can be used to model complex relationships between inputs and outputs,

and to find patterns in data [22]. The nodes in a neural network represent neurons, which

are cells in the brain that manage the processing and transmission of information. The

links in a neural network indicate the structure of the interconnected neurons, and thus how

information passes through the neural network.

A learning algorithm is used to adapt the structure of the neural network to uncover

complex patterns in a training data set. The goal is to use the simple processing of neural

networks to emulate a complex system. Neural networks are used in a variety of fields to

solve problems, such as speech recognition, image recognition, artificial intelligence in video

games, robotics, and other machine learning problems [20, 1, 52, 19].

1.2 Grouping

A group in a network is a subset of the nodes in the network that is being considered together

for certain functions; these sets may contain any number of nodes which are related in some

way. There are many different names for groups in networks, such as clusters, communities,

modules, and partitions. Grouping network nodes refers to a process of assigning labels to

the nodes within the network under consideration, where the labels assigned may or may

not be distinct. These labels determine which groups the nodes in the network belong to.

Grouping techniques may produce any number of groups from a network, where the

groups may overlap with other groups meaning nodes can belong to several groups. Grouping

techniques are important for building an understanding of the network, and can be used to

help solve many problems in different domains. Grouping techniques can be used in a direct

matter to solve problems, where the grouping results provide the required information. In

3

other cases, grouping techniques can be used in an indirect matter to tackle problems by

generating informative groups of nodes, which go on to be further processed to achieve an

ideal solution.

There are many researched grouping techniques for network nodes, such as clique based

techniques, clustering techniques, modularity optimization techniques, etc. However, these

are general techniques that typically focus on finding groups of nodes with a high density of

links within the group. These are general grouping techniques that have been developed for

common situations, which have the advantages of being well researched, and documented

for good reliability and easy implementation. Additionally, general grouping techniques are

broadly applicable to many different types of networks for various situations.

The problem with general grouping techniques is that they are multipurpose tools, thus

they produce groups of nodes with some characteristics that are commonly sought. Nev-

ertheless, there may be situations that call for discovering groups that have an unusual

characteristic, such as finding groups of nodes with no links to each other. In these prob-

lems, a unique grouping technique that is designed specifically to address that particular

problem would be a much more effective means to solve the problem. While unique group-

ing techniques are developed for a singular problem, these grouping techniques can prove

valuable to the research of unrelated work. For these reasons, a framework for developing

unique grouping techniques is proposed and discussed in this thesis. This thesis will also

demonstrate the effectiveness and significance of unique grouping techniques through the

development, and application of unique grouping techniques in four distinctive cases.

1.3 Thesis Overview

This chapter (Chapter 1) provides a background on networks and an overview of the thesis.

Chapter 2 will describe other related research on general and unique grouping techniques

to give a sense of the current pool of research knowledge, utilizing grouping techniques on

4

network nodes. Chapter 3 explains the general framework this thesis proposes for developing

and applying unique grouping techniques in practice. Chapters 4, 5, 6, and 7 are case studies

that show the effectiveness of using unique grouping techniques for networks to solve a wide

range of problems.

The problem of finding and tracking the customer shopping behaviors in different market

segments, with no impositions on the customers is detailed in Chapter 4. The social networks

of criminals are a valuable source of information for investigation, but naturally criminals

will seek to conceal their connections or their presence in the criminal network to impeded

investigators. It follows that exposing hidden links and hidden nodes in criminal networks

is a critical problem. Chapters 5, and 6 present a solution to each of these two problems,

respectively. The last case study (Chapter 7) illustrates a real world example of developing,

and applying a unique grouping technique to support the computation of the results for

surveys in a charity and donor matching service. The final chapter (Chapter 8) summarizes

the work of this thesis, and gives the conclusion on the importance of developing and applying

unique grouping techniques. In addition, the final chapter discusses some future research

directions for this thesis.

5

Chapter 2

RELATED WORK

2.1 General Grouping Techniques

Various techniques have been explored to group network nodes together, such that nodes in

each group are highly connected, and nodes between groups have fewer connections. This

means that groups of nodes have a high density of links, whereas there are sparser links

between the groups of nodes. General grouping techniques will discover these high density

groups in a wide variety of networks for further examination in numerous fields. In extreme

cases where the group of nodes has the highest density possible, it is known as a clique.

A clique is a set of nodes such that every node in the set is connected in the network to

every other node in the set, which means there cannot be anymore links included between

nodes of the clique. This is because every possible link already exists, thus making cliques

the groups of nodes with the highest density of links.

One type of general grouping techniques are clique based techniques. These are methods

that locate the maximal cliques or cliques of a specified size; maximal cliques are essentially

the biggest cliques possible, such that no other clique can be found that contain every node

of the maximal clique. There are many clique based techniques, one example of which is

the Bron-Kerbosch algorithm [30]. This is a recursive algorithm that finds all the maximal

cliques in a network by considering three sets of nodes, R, P , and X. The algorithm starts

with two empty sets R and X, with the set P containing all the nodes of the network, then

considers one node at a time from P , makes a recursive call by moving the node into R, and

reducing P and X down to the neighbors of the node. The final step after the recursive call

will add the node in consideration into the set X. This recursion continues until the set P

is empty, and if the set X is empty as well, it signifies that R is a maximal clique.

6

Another type of general grouping techniques use clustering methods, which incorporates

different types of similarity measures to assess how alike two nodes are. A variety of clustering

methods will group similar nodes together based on the similarity measure chosen, and

keep dissimilar nodes in different groups. For example, the Jaccard index can be used

as the similarity measure with agglomerative hierarchical clustering. The Jaccard index

calculates the similarity between two sets by dividing their intersection by the union of the

two sets (see Equation 2.1). The sets in networks can be established by the links in the row

representation of the nodes in the adjacency matrix. Agglomerative hierarchical clustering

begins by considering every node in the network as a cluster, then finds the clusters with

the closest similarity between each other’s centers and merges the two clusters into one

cluster [33]. The merging of two clusters with the closest similarity repeats until there is

only one cluster remaining, or the minimum cluster similarity or quantity is reached to stop

merging the clusters [64].

J(A,B) =
|A ∩B|
|A ∪B|

(2.1)

Modularity optimization techniques are another type of general grouping techniques that

is prevalent in many research works. A modularity score is utilized in these methods to aid

in the arrangement of the groupings of nodes by searching for groupings that maximize the

modularity score. The modularity score provides feedback on the strength of the groupings

produced based on the structure of the network, considering the density of links within and

between the groups of nodes (see Equation 2.2). Hence groupings of nodes with many links

inside the groups, but very few links outside the groups will have a high modularity score.

In Equation 2.2, Aij represents the weight of the link between nodes i and j, ki =
∑

j Aij,

ci denotes the group to which node i is assigned, δ(a, b) is 1 if a = b and 0 otherwise, and

m = 1
2

∑
ij Aij.

The Louvain method is an example of a modularity optimization method that uses a

7

greedy algorithm [10]. In the Louvain method’s first stage, all nodes of the network start off

by being considered in its own group, then the method moves nodes into their neighboring

(linked to) groups that give the most increase in modularity. The second stage assembles

a new network based on the original network by aggregating the nodes of the groups into

a node representation, combining link weights, and creating or updating self loops for links

between nodes in the groupings. These two stages are repeated until the modularity score

stops increasing, thus a maximum modularity will be obtained.

Q =
1

2m

∑
i,j

[
Aij −

kikj
2m

]
δ(ci, cj) (2.2)

2.2 Unique Grouping Techniques

There have been a number of unique grouping techniques created in diverse areas of disci-

plines that generate groups of nodes with distinctive properties to address different problems.

These unique grouping techniques are difficult to identify, because these techniques are typ-

ically not labeled as grouping techniques, but just methods that produce a solution to their

problem at hand. This is a problem, because even though each unique grouping technique is

not broadly applicable to many situations, there can still exist some substantially different

subject matter which can benefit from the application of the unique grouping technique.

Christley et al.’s research work on simulating the spread of infections in social networks

to identify high risk individuals gives an example of a unique grouping technique [14]. In

this study, several networks were randomly generated to be used as the social network for

the simulation model. The simulation model assumed that every node in the network was

susceptible to infection, and began by randomly selecting a node from the network to become

infected. The model simulates time steps iteratively until the infection has disappeared from

the network, and each time step gives the infection a chance to spread to a infected nodes’

neighbors based on an infection probability, and the number of infected neighbors a node

8

is connected to. After a set amount of time steps, infected nodes in the simulation model

will recover from the infection, thus no longer spreading the infection and also becoming

immune to future infections. The study ran three sets of 500 simulations of the model for

each network, with different infection probabilities for each set, and recorded the number

of times each node was infected within a set of 500 simulations. Figure 2.1 illustrates the

results of one network, where the shape of the nodes correspond to the number of times the

nodes were infected throughout the 500 simulations. In this figure, nodes shaped in a cross

had the least amount of infections, while nodes shaped in a circle had the most amount of

infections during the 500 simulations. The shape of the nodes essentially groups the nodes

of the network into several groupings based on their likelihood of being infected. These

groupings supply infectious disease control agencies with groups of individuals with varying

risk factor levels for becoming infected, which can provide a guideline for what groups of

people to monitor for detecting possible outbreaks of an infectious disease.

A technique like this can be informative for businesses promoting a new product. For

example, word of mouth is considered by many to be the most effective advertising. Accord-

ingly, the infection simulation model can be used to forecast the effects of word of mouth

advertising for a product. In the model, an infection can be seen in this context as a cus-

tomer purchasing and enjoying the product, and would thus likely spread positive word of

mouth advertising to influence other customers to buy the product. The recovery from an

infection can be seen in this context as the hype of the new product dying down. Conse-

quently, the customer would likely stop talking about the product, and would probably not

buy the same product again in most cases. In this scenario, businesses can use information

from popular social networking websites to build their social networks, and determine the

groups of individuals who are not expected to buy the product, so future promotions can be

developed to target these groups.

9

Figure 2.1: Infection Simulation Network [14]

10

Chapter 3

IMPLEMENTING UNIQUE GROUPING

TECHNIQUES IN PRACTICE

3.1 Grouping Techniques

3.1.1 Grouping Nodes

There are many challenges where the grouping of nodes in networks is an essential technique

in establishing a solution, because the groupings of nodes can provide valuable information

for solving the problem. For many businesses, social networks are an important source

of data, which need to be examined to better plan business strategies. Specific business

promotions may want to find groups of close friends, so they can target the promotion to

one or a few of the people in the grouping, who are most likely to spread word of mouth

advertising to the rest of their friends in the group. This is especially vital for businesses

that offer products or services that engage more than one person, because the groups of close

friends provide a set of potential customers who can make full use of the product or service

with their friends, and split the cost.

Market researchers may want to study groups of people in the social network who have

similar interests or characteristics, to determine how to best tailor their products, services, or

advertisements to attract people with similar attributes to the group into purchasing from

them. Businesses may also want to find many different groupings of people with similar

characteristics, to evaluate how well their products are doing in the market according to

each segment.

Some other examples of challenges that require the grouping of nodes can still be found

in social networks, where researchers may want to find the groups of people who are highly

11

connected to determine how a highly infectious disease will spread from area to area [14].

Security experts might want to study networks of criminals to determine how best to operate

resources for preventing criminal activities [57]. In bioinformatics, networks of genes may

be studied to find groups of genes that have a lot of interaction with each other, which

may lead to medical breakthroughs on causes or treatments of diseases [9]. For financial

analysts, they may want to find tightly knit groupings of stocks modeled using networks of

nodes that are correlated to help predict share prices [34]. These are some examples which

demonstrate how the grouping of nodes in networks is an important set of techniques that

provide a pivotal role in answering many challenges.

3.1.2 Input and Output

Unique grouping techniques will often need to be developed to solve specific problems for

networks, because general grouping techniques do not separate the network nodes in a matter

that is required for solving the problem. Or if general grouping techniques do prove useful in

providing the needed partitions of nodes, then the development of unique grouping techniques

might be pursued to address specific issues with much more effective results than general

grouping techniques. The main input of these grouping techniques will be the network of

nodes that need to be processed to produce the main output, which would be the groupings

of the network nodes.

Both the input network of nodes and output groupings of network nodes may or may

not be flexible, which will have important implications for the development of the grouping

technique. If there is flexibility for the input to the grouping technique, then this is a pos-

itive for the development of the grouping technique. The reason is because this allows for

more options with regards to the network to be used as input when designing the grouping

technique, since vital information can be collected from the input network if the most ap-

propriate network is used. On the other hand, if there is no flexibility for the input to the

grouping technique, then this is a negative for the development of the grouping technique.

12

This will impose a constraint on the design of the grouping technique to consider a specific

configuration of the input network, which can limit the information available and thus limit

the options available when designing the grouping technique.

In the case that there is flexibility for the output of the grouping technique, then this

is beneficial for the development of the grouping technique. This is advantageous because

the design of the grouping technique has the opportunity to produce an intermediary result

for the groupings of nodes, after that this can be further processed and fine tuned to find

a solution to the problem. When there is no flexibility for the output of the grouping

technique, then it will be more problematic for the development of the grouping technique.

When the output of the grouping technique is constrained, this means the grouping technique

by itself will need to produce a solution to the problem, because there will not be any other

procedures to further improve the results, and will thus limit the design options for the

grouping technique.

3.1.3 Arrangement

The grouping technique implemented to solve the problem may be the only process required

to solve the problem, or it may be a process in a series of procedures carried out to solve the

problem (see Figure 3.1). Regardless, the grouping technique is an essential process, which

should be looked at carefully. If the grouping technique is the only step required, then it is

likely that the input network itself is not preset and thus flexible. This is because there is

no process that occurs before the grouping technique to produce a particular network to be

used as input to the grouping technique. On the other hand, the outcome from the grouping

technique in this situation is not flexible, because there is no process afterward to further

revise the output of the grouping technique to provide a better solution.

The grouping technique may also be a part of a chain of procedures, where it can occupy

an initial, intermediate, or final step in the chain. If the grouping technique is the initial

procedure to execute, then it is likely that there is no fixed input network for the grouping

13

Figure 3.1: Positions of Grouping Techniques

technique; therefore there would be flexibility for the input. The reason for this is the same

as the reason for the situation where the grouping technique is the only step. Since there is

no process that precedes the grouping technique, it is likely that no specific network has been

created to be utilized in the grouping technique. In this case, the output is also likely to be

flexible, as processes can be developed to improve the results of the grouping technique.

One example of this is mentioned initially in the Grouping Nodes section, where a business

would want to find groupings of close friends for their promotions, to target the people in the

group most likely to spread word of mouth advertising to the rest of their friends in the group.

In this case, the grouping technique to find groupings of close friends will likely be the initial

step, because the social network data would likely be readily available, either from online

sources, or the business data warehouses. This means there is no need for any processing of

the social network to prepare it for the grouping technique. After the grouping technique

produces the groupings of close friends, then the final step would proceed to identify the

people in the grouping with the highest chance of spreading word of mouth advertising to

the rest of their friends in the group.

Another example of a grouping technique which is part of the initial step in the chain of

procedures can be found in the example of Finding Hidden Nodes in Criminal Networks (see

Chapter 6). In this example, there are two correlated criminal networks and one network

is being used to infer if there are hidden nodes in the other criminal network, and what

14

the characteristics of those nodes are. As the networks are already given, the first step

partitions the nodes of both networks to help find and match similar partitions between the

two networks. These groups provide information which is used in the final step to determine

which criminal nodes from one network match the criminal nodes of the other network, and

the criminal nodes which have no matches could potentially indicate a hidden criminal node

in the other network.

For grouping techniques that are an intermediate step in a chain of tasks, it is likely

that the input is not flexible. The task that finishes before the grouping technique will

probably generate or have some hand in creating a particular network for input into the

grouping technique. In contrast, the output of the grouping technique in this instance is

likely flexible, for the same reason as when the grouping technique is the initial step. Since

there are additional procedures which execute after the grouping technique, tasks can be

designed to touch up the groupings of the nodes produced.

An example of this is mentioned previously in the Grouping Nodes section in the field

of bioinformatics. Researchers in bioinformatics might want find groups of genes with a

high amount of interaction in gene networks to discover causes or treatments for numerous

diseases. For this task, the first step would most likely be to have a procedure to create

the network of genes, as this network is not likely to be present in the data set collected

from experiments and would need to be inferred from the data set instead. The grouping

technique to find genes with a high degree of interaction could then proceed after the network

of genes is created. The groupings of genes produced by the grouping technique would then

have to be further investigated in the final step. This could help determine if a specific gene

is a major source for contributing to a disease and how this gene affects the disease, which

may lead to medical treatments.

One more example of a grouping technique that is an intermediate procedure can be

found in the example of Finding Hidden Links in Criminal Networks (see Chapter 5). In this

15

example, a criminal network is being examined to determine if there are any hidden links

within the network and reveal where these hidden links may be. Although the network is

already available in this situation, the first step in the solution needs to further process the

network and divide the network up into smaller sub-networks. Subsequently, the grouping

technique will find potential hidden groupings of nodes in each of the criminal sub-networks

who may all be connected. The final step cross examines the potential hidden groupings

found to indicate prospective hidden links, and the involved nodes in the criminal network,

which should be examined by law enforcement agencies.

When the grouping technique is the final step in the series of processes, the input network

for the grouping technique is likely not flexible. This is because of the same reason as for

when the grouping technique is in the intermediate step, as the previous step will probably

influence the composition of the network given to the grouping technique. In addition, the

output of the grouping technique is also likely not flexible; because just as in the case where

the grouping technique is the only step, this grouping technique needs to produce the correct

groupings of nodes to solve the problem, as it is the last step.

There is an example of this mentioned in the Grouping Nodes section with regards to

financial analysts, who may be interested in modeling stocks in networks of nodes to uncover

strongly correlated or dependent groupings of stocks, to forecast when share prices might

rise or fall, depending on the performance of the other shares in the same group. Here, the

financial analysts will probably have access to a large collection of data on the stock market,

but there is most likely no network of stocks available within this data. This indicates that

the first step is to create a network of stocks which are connected based on how dependent

their share prices are. The creation of the network will then feed into the grouping technique,

allowing it to function as the final step to discover groups of stocks which are well correlated,

and then the financial analyst can watch for fluctuations of shares within the groups to

anticipate the fluctuations of other shares in the group.

16

An alternative example of a grouping technique which is part of the final step in the

chain of procedures can be found in the example of Post Processing of Association Rules

into Segments (see Chapter 4). This example deals with using a data set consisting of

transactions in a supermarket, and the buying behaviors of the customers, to group the

buying behaviors of the customers into different market segments to better serve the business

operation. The first step in the solution takes the data of customer buying behaviors and

the transactions of the supermarket, and models this information in a network of nodes.

The final step in the solution runs a grouping technique multiple times over the created

network to generate groupings of customer buying behaviors, and further refines these into

several groups that represent the buying behaviors of different market segments. These

groups provide valuable information to business mangers on what the buying behaviors are

for specific market segments, which can be monitored for how they change over time to

better plan and adapt business strategies.

It is best if the grouping technique is not required to be the only step, and intermediate

step, or the final step. This will generally allow for the greatest flexibility when designing the

grouping technique, given that the input network of nodes and output groupings of nodes

would not be constrained. This indicates that the design of the grouping technique can

consider different types of input networks, and post processing to better refine the groupings

of nodes generated by the grouping technique.

3.1.4 Aspects

In designing a unique grouping technique, there are two significant benefits; and one is the

understanding of how and why the grouping technique works. This is harder to comprehend

with the implementation of grouping techniques created by others, because it is work which

may need further investigation to understand all the nuances of the technique. When de-

signing a unique grouping technique, all the subtle intricacies of the grouping technique are

apparent to the designer, due to it being conceived in their minds. Another significant ben-

17

efit is that unique grouping techniques are likely more effective in solving the problems they

are designed for, when compared to general grouping techniques. This is because general

grouping techniques are broad-spectrum and thus not problem specific.

When designing a unique grouping technique, there are many important factors to take

into consideration. Some of these considerations include the time and resources that are

needed, as well as the feasibility and risks of the project. While timelines and resources

can be set, it is very difficult to forecast exactly what assets and how much time will be

needed. One of the main reasons is because there is an element of creativity needed during

the development of unique grouping techniques, which is not a science. The feasibility and

risks are other important factors to consider, because sometimes the solution requirements

for the problem may be too difficult to solve, or it may be unachievable.

It can be difficult to develop a unique grouping technique, and although the grouping

technique is unique, it does not have to be entirely original. The unique grouping technique

can be based on or inspired by existing grouping techniques if they can help solve the

problem (see Chapter 4). Furthermore, the uniqueness of the grouping technique does not

mean that the unique grouping technique cannot be reused to solve other problems (see

Chapter 5). The uniqueness of the grouping technique just makes it not as applicable to

as many problems as general grouping techniques. Once the unique grouping technique is

designed, the comprehensive understanding of how the unique grouping technique works may

help make it less challenging to apply to other problems. The unique grouping technique

developed also does not need to be complicated, and can be kept simple as long as it provides

satisfactory groupings to solve the problem (see Chapter 6). Furthermore, unique grouping

techniques are not just techniques that can only solve theoretical problems, but are also

applicable to real world problems (see Chapter 7).

18

3.2 The Framework

3.2.1 Overview

A general framework is proposed to help guide the design of unique grouping techniques

(see Figure 3.2). There are two main phases of this framework, which are the analysis phase

and the design phase. In the analysis phase, the main tasks are to create the network and

conduct research on existing grouping techniques, and other research works related to the

problem. The design phase is the difficult part, because the main tasks are to develop a

method to separate the nodes into the required groupings, and then test that method to

ensure that it does what it is suppose to do. Developing the method is the most difficult

part, because there is some degree of ingenuity needed to formulate the solution. This

would be unique to each situation, and it is difficult to describe the exact steps needed in

sequence for the development of the grouping method. It is also difficult to recycle the same

steps used to develop a grouping method, because different situations will require different

approaches. Some people may need to look at the problem from a different perspective, and

some problems might be better tackled with other methodologies.

Figure 3.2: Framework for Developing Unique Group Techniques

19

The framework proposed is a general system to guide the development of unique grouping

techniques for various problems. This framework may not be applicable in some situations,

or maybe some practices in the framework will not be appropriate for solving the problem

depending on the nature of the case. Nevertheless, this framework can serve as a reference

point, and provide direction for the development of unique groupings techniques that cannot

utilize this framework.

3.2.2 Analysis

The first step in the analysis phase is to determine the network of nodes that is needed to

solve the problem. This includes determining what the nodes and links in the network will

represent, and the source of data that is needed to create this network.

Depending on the specifics of the problem, sometimes the network of nodes may essen-

tially be predetermined, as there cannot be any other network that can be used to solve the

problem. The network settled on in this phase does not have to be permanent; this network

can be adjusted in later stages if a more suitable network is discovered. The purpose for con-

ceiving the network initially is to get a sense of the network model for solving the problem,

as well as to employ the model of the network for the next step.

The last step in the analysis phase is to conduct research on existing grouping tech-

niques. This research will help determine if there are existing general or unique grouping

techniques that can be utilized to successfully solve the problem. It is a good idea to use

existing grouping techniques when possible, assuming that the grouping technique has ade-

quate performance in terms of efficiency and results. Existing grouping techniques will have

documentation regarding the technique, which will help in their implementation for solving

the problem. Furthermore, existing grouping techniques will have already been tested and

have most if not all of the faults resolved. Therefore, using existing grouping techniques will

likely be less time consuming, and less uncertain than developing a new unique grouping

technique. The research will also help brainstorm ideas, which can aid in the development of

20

the unique grouping technique, by revealing mechanisms from existing grouping techniques

that can be applicable to the development of the unique grouping technique.

3.2.3 Design

After the analysis phase, the main and most difficult component is the design of the unique

grouping technique. The major step in the design phase is the development of the unique

grouping method. This is a step that requires innovation and can be complex or simple,

extensive or short, successful or disastrous, and so forth. This step is a huge variable that

can be drastically different depending on the situation. There are two suggested steps to

take in developing the unique grouping technique, depending on whether there is sufficient

knowledge on the contents of the groupings of nodes needed for the solution.

Knowledge on what nodes from the network will be in which groupings could possibly

be deduced from the details of the problem, the identities of the nodes, and the type of

connections in the network. There are many other ways to infer this knowledge, such as

examining other data that relates to the source of information used to create the network,

or examining the groupings of nodes in other research with similar problems. With this

knowledge, sample groupings of nodes from the network can be composed to contribute to

solving the problem. These groupings may contain a pattern or model that can be significant

to the development of the unique grouping technique. The unique grouping technique might

be able to replicate this pattern or model found in the sample groupings to solve the problem.

In the case where this knowledge cannot be obtained, or when there is no pattern or

model discovered in the sample groupings compiled, then the next suggestion is to search

for ways to separate the nodes into groupings that will solve the problem. Consideration

of the nodes’ different elements may lead to logical approaches for breaking up the nodes

into groups to solve the problem. This approach can then be used in the unique grouping

technique to produce the groupings of nodes that are desired.

Designing the unique grouping method can be a daunting task. However there are prac-

21

tices that can provide some assistance during this designing process. One practice is to look

at existing grouping techniques for inspiration, or the opportunity to adapt the technique

to fit the problem at hand. Existing grouping techniques can provide a starting point, and

possibly reduce the amount of work needed for developing a unique grouping technique. An-

other good practice is to try applying simple solutions first, which keeps the technique less

complex, therefore it will be easier to understand, test, and implement. Taking into account

different networks if that selection is available can provide new opportunities when designing

the unique grouping technique, and is a good practice when there is no progression made in

the development.

Once the unique grouping technique has been developed, then the next step is to test

the technique. This is a critical step to find the faults of the developed unique grouping

technique. The testing should aim to ensure that the outcome of the grouping technique is

what is expected and required for solving the problem. Additionally, the testing should also

examine all the extreme conditions of the network, as well as any unique circumstances where

the network might be configured in a way that can possibly produce errors. When the testing

completes, then adjustments will need to be designed for the unique grouping technique to

fix the errors found. Therefore, the development process in the previous step should be

returned to for the development of the renovations to the unique grouping technique. The

testing and repairing of the unique grouping technique should continue indefinitely in a loop

until there are no more errors found. Subsequently, the unique grouping technique will be

complete and ready for implementation.

22

Chapter 4

CASE STUDY ONE: Post Processing of Association

Rules into Segments

4.1 Introduction

This case study demonstrates the effectiveness of a unique grouping technique in segmenting

association rules, which are mined data that can represent customer behaviors. In this case

study, the developed unique grouping technique is the final step in the series of processes.

The unique grouping technique encompasses phase two of the solution, where the groups

are created, and phase three of the solution, where the groups are merged and reduced.

The unique grouping technique in this case study is based on a graph problem known as

graph coloring, which shows that unique grouping techniques can be inspired by existing

techniques to help with the creativity part of developing unique grouping techniques. The

developed solution in this case study is an important technique in data mining, especially

for businesses as they have a target market. The partitioning of rules into non-contradictory

market segment rules will assist businesses by grouping the rules into non-contradictory

groups, so it will be less likely that the business considers contradictory rules from conflicting

customer segments.

4.1.1 Background

Association rule mining is a useful technique for discovering relationships between items in

transactional databases. The relations are provided in the form of implication rules, such

as P → Q, which in market analysis means that if a customer buys item P, the customer

will likely buy item Q. In transactional databases, there are finite sets of transactions, and

23

items, as well as a binary matrix describing what items a transactions contains.

A transaction from a transactional database supports a rule, if that transaction contains

both the antecedent (items before the implication) and the consequent (items after the

implication) of the rule. Similarly, a transaction from a transactional database contradicts

a rule, if that transaction contains the antecedent but not the consequent. This is based

on formal logic, as an implication rule is only false when the antecedent is true, but the

consequent is false. However, the current trend of increasing data collection poses a problem

to using association rule mining in areas such as market analysis. The reason is that more

and more association rules will likely be generated with the addition of more information;

although the pruning thresholds can be increased to reduce the number of rules, this strategy

is not always best as it can lead to eliminating some relevant information. There is also the

problem of having little information about the association rules in relation to each other,

and this problem increases exponentially as more and more association rules are generated.

This is an issue known as information overload, which leads to difficulty in understanding

the outcome and hence making decisions using the information generated, because of many

different factors, such as the individual being given too much information or contradicting

information. Post processing on the association rules is essential to group and prune the rules

into non-contradictory sets, to better understand and utilize the association rules without

the problem of information overload.

4.1.2 Problem and Solution

Association rule mining has been shown to be useful for various applications, one of which

is market analysis. The large number of items and transactions present in a supermarket

contributes to this information overload problem for market analysis. In 2008, the average

number of items in a supermarket in USA was 46,852 [29], thus the number of possible

combinations for items in association rules is enormous. The large number of items along

with the large number of transactions could potentially lead to the generation of a vast

24

quantity of association rules, which would be overwhelming to examine.

Another problem is the issue of contradictory association rules. These rules can be

generated in a market database due to different customer segments. For example, a mother

might always buy milk and cereal, but not bread; and a senior might always buy milk and

bread, but not cereal. Association rule mining may generate the two rules milk → cereal

and milk → bread, but these two rules should not be considered together. The reason is

because each rule is associated with a different customer segment, and when one rule takes

affect, the other does not.

Customer segments are an important factor for business strategies, because a business has

a target market that they are catering their products and services to, and it would be more

beneficial for businesses to focus on the association rules of their target market. It is difficult

to distinguish which generated rules apply to which customer segments, because businesses

do not always have the data needed to segment customer transactions, and there are also

privacy concerns with collecting and using such information. Furthermore, the potentially

large number of rules also presents an obstacle to finding the solution for this problem. A

method is needed to partition rules based on the buying behaviors of customers without

raising privacy concerns.

Figure 4.1: Different Graph Colorings (Red and Yellow Sets Swapped)

The solution developed incorporates a fundamental graph coloring like technique; graph

coloring refers to coloring the nodes of a graph so that no two connected nodes share the

25

same color [12]. In graph coloring, the problem is finding the minimum number of colors

needed to color a graph, or finding the number of different ways in which a graph can be

colored with a specified number of colors. This problem originates from the coloring of maps,

where the minimum number of colors were sought such that no territories sharing a common

border were colored with the same color. Algorithms for this problem can also be used

to partition the network into non-contradictory rule sets. The problem with using graph

coloring algorithms that color nodes such that no adjacent nodes have the same color for k

colors, is that the user does not know the number of contradicting rule sets, so it is hard to

decide on how many colors to use. The problem with using graph coloring algorithms that

find all the possible sets of colors assignments for k colors, is that the different assignments

of colors are not always important as they result in the same set of rules in most cases (see

Figure 4.1). There is also the problem that not all the possible rule sets can be found with

one number of colors. For example in Figure 4.2, three and four colors are needed to find

all the possible combinations of non-contradictory rules such that these sets are maximal,

because the set of the three outer nodes cannot be part of only three colorings. Another

problem is that all nodes are assigned a color, but this problem is only interested in finding

sets of nodes that are not connected. Therefore the graph coloring algorithm is redundant

when it assigns some rule sets, as some rule sets are just subsets of a larger non-contradictory

rule set. For example, in Figure 4.3 the three inner nodes are part of three sets of one, but

these are subsets of the colorings found in Figure 4.1. This is the reason a custom technique

is designed to find non-contradictory rule sets.

This solution proposed is a procedure to segment rules into different sets with no internal

conflicts. The method establishes all the possible non-contradicting rule sets, then further

reduces and combines the different sets to find the final sets of rules that represent the

different customer segments. First, a network of association rules is generated, and a graph

coloring like algorithm is applied to find all the non-contradicting sets of association rules.

26

Figure 4.2: Graph Coloring with Different Number of Colors (Three and Four Colors)

Figure 4.3: Graph Coloring Comparison (Colorings of Inner Three Nodes Unimportant)

The rules and rule sets are mapped to nodes in a network connected based on co-occurrences

to determine which sets to prune and combine. The final sets of rules can then be used as

classification rules, or further inspected by comparing the current result to previous results

to determine changes in customer behaviors.

4.2 Related Work

Researchers have already realized the need for post processing of the reported set of rules.

For instance, Baesens, et al. [5] reports about the need for, and importance of post process-

ing techniques for association rule mining, which include reducing the amount of association

rules, summarizing the association rules, grouping the association rules, and visualizing the

association rules. Liu, et al.’s post processing of associative classification rules using closed

27

sets [43] is an example of a post processing method to reduce the amount of available in-

formation by pruning rules. Domingues and Rezendes post processing of association rules

using taxonomies [21] is an example of a post processing method that involves summarizing

the information. Reducing the amount of available information and summarizing the infor-

mation has been the main focus of many research projects, but there has been less work on

grouping and visualizing the information [5].

Some research on grouping association rules involve clustering the association rules using

distances based on features such as support, confidence, lift or the bit-vector representa-

tion [59]. There are several algorithms developed for grouping association rules, such as

Won et al.’s variation of hierarchical clustering algorithm [62], Gupta, et al.’s agglomerative

clustering algorithm [25], and Lent, et al.’s BitOp algorithm [40]. An et al. also provides

an objective and subjective algorithm to group association rules, which are similar to clus-

tering algorithms [2]. The clustering algorithms will group the association rules into groups

of similar rules, but customer segments will likely have a broad range of rules, therefore the

grouping of similar rules is not an effective method to find the rules of different customer

segments.

Sung et al. presents a method to predict association rules in different situations by

grouping association rules together based on similar characteristics of the customers, and

then uses those groupings to sample the correct proportion relative to the new situation [58].

The problem with grouping rules based on characteristics of customers is that not all the

information on the customers may be available to separate them correctly, such as lifestyle

information which is generally not collected, and difficult to collect as well. Even if collected,

it is hard to keep such information up to date because people tend to change their life style

based on several factors, including income and the community they live in. This also has

privacy issues as many people value personal information, and are reluctant to give it away

for fear of uncontrolled usage.

28

4.3 Proposed Solution

4.3.1 Overview

In general the solution has three phases; in the first phase, a network of association rules is

built to find association rules occurring together in the same segments. The main idea is to

start off by building a network of association rules, connected based on the logic contradic-

tions in the raw data. This network can than be visualized to give the user a general idea

of the status on contradictions between the association rules; such as which rules contradict

which other rules. General graph and network properties can also be derived from the net-

work, to give the user more information regarding the contradictions between the association

rules.

In the second phase, all the non-contradicting sets of association rules are found by

partitioning the network to group rules into contradictory rule sets (a set of rule sets), where

the rule sets (a set of rules which are not contradictory to each other) of a contradictory

rule set are contradictory to each other, and the user should not consider any of the rule

sets together. There can also be multiple contradictory rule sets, and this would mean that

rule sets from one contradictory rule set is independent of another contradictory rule set,

therefore rule sets from different contradictory rule sets can be considered together.

Afterwards in the third phase, a network of the non-contradicting sets of association rules

is built using the links of a generated co-occurrence network to eliminate, and combine the

non-contradicting sets of association rules to produce the final sets of rules. The final sets of

rules can be checked and matched against all the previously found sets of rules, to determine

which sets is the new representation of the old set, so the discrepancies between the newer

and older sets can be reported to track the behavioral changes in market segments.

4.3.2 Phase One: Network Construction

An algorithm is shown to produce a network of the association rules, which are connected

29

Algorithm 1 Building Contradiction Network of Association Rules

INPUT: Set R of rules, Database D, Threshold t0
OUTPUT: Network of association rules G0
for every rule in R do
Make the a node for the rule

end for
for each transaction in D do
Find all the rules that transaction supports SR
Find all the rules that transaction contradicts CR
for every pair of rules in between SR and CR do
if there is a link between the pair of rules then
Increase the weight by 1

else
Create a edge of weight 1

end if
end for

end for
Decrease all edges by t0
for every edge do
if weight < 1 then
Remove edge

end if
end for

based on contradictions in the transactional database (see Algorithm 1). The links in the

network hold information on which rules have a contradiction with which other rules, and

are used to ensure that contradicting rules are not grouped into the same set. This algorithm

is illustrated in the following example; assume there are rules A → B, A → C, B → C, and

D → E.

The first step is to make each rule a node (see Figure 4.4), afterwards the connections

are made by processing the transactions. For instance, transaction C1 supports A → B, and

contradicts A→ C and B→ C, therefore a link is created between A→ B and A→ C, as well

as a between A → B and B → C with a weight of one for both connections. For transaction

C2, the transaction supports the rule A → C, and contradicts A → B, as a result the weight

of the link between A → B and A → C is increased to a weight of two. For transaction C3, B

→ C is supported, while the transaction contradicts no rules; accordingly no modification to

30

Figure 4.4: Example of a Transactional Database and the Accompanying Network

the network is performed as this transaction gives no indication of contradicting rules. For

transaction C4, it supports A → C and D → E, and contradicts A → B, consequently the

weight of the link between A → B and A → C is increased to a weight of three; in addition,

a link between A → B and D → E is created with a weight of one. For transaction C5, no

rules are supported, and even though it contradicts D → E, no changes to the network is

needed as this transaction also gives no indication of contradicting rules.

Figure 4.5: Example of a Created Network

After the completion of the above process with all the transactions and rules, a potentially

complex network of rules can be generated (see Figure 4.5). The final step is to decrease the

weight of every link based on the user specified threshold. This step will eliminate the outlier

31

data to more accurately partition the network into contradictory rule sets. A threshold of

four is applied to the network in Figure 4.5, and will change the initial network by deleting

four links and isolating several components of the network (see Figure 4.6). The threshold

of four was chosen because a few links had a weight of less than four, which were significantly

different from the majority of the weights that were at one hundred.

Figure 4.6: Example of a Threshold Applied to a Network

The generated network can provide crucial information visually in extreme or near ex-

treme cases, such as where there are no contradictions found among the rules, in the cases

when the network created is totally disconnected, meaning there are no connections between

any nodes. This means there are no contradictions among the rules, and all the rules can

be considered together. This gives the user the freedom to consider any rules together,

but the result is similar to one large group of rules, and does not give the user much more

information than was previously present. The other extreme case is one where every rule

contradicts every other rule. This occurs when the nodes in the network are linked to every

other node, meaning all possible connections between nodes exist. This means that since

every rule contradicts each other, then no rules should be considered together. This allows

for elimination of many rules from consideration, because the user should only consider one

group, thus removing from consideration all other rules. Furthermore, the properties of the

32

network can be computed for further knowledge on the rules and their relationship with one

another.

4.3.3 Phase Two: Node Partition

Algorithm 2 Finding All Non-Contradictory Rule Sets

INPUT: Network of association rules G0
OUTPUT: All non-contradictory rule sets
for every component in G0 do
Find the node with the lowest degree and add it to the set N
for every node in N do
if node is not assigned a rule set # then
Assign node the next available rule set #
Assign neighbors the same rule set # is “not available” (unavailable for assignment)
Assign non-neighbors the same rule set #

else
for each rule set # assigned to the node do
Assign all neighbors the rule set # is “not available” (unavailable for assignment)

end for
end if
Add all the nodes neighbors to N

end for
end for
Build # of rule sets based on max rule set #
for each node in N do
for every rule set # assigned do
if rule set # is not assigned “not available” then
Add the nodes rule to the rule set #

end if
end for

end for
for each rule set # do
Create a rule subset
Consider a sub graph of the nodes where the rule set # is assigned and assigned “not
available”
Apply this algorithm to this sub graph

end for
Traverse rule set heirarchy and merge rule sets

The rules of the generated network are then partitioned into contradictory rule sets (a set

of rule sets). The rule sets are a set of rules with no contradictions with one another, but the

33

rules sets contradict the other rule sets in the contradictory rule set (see Algorithm 2). Rule

sets from one contradictory rule set is independent of other rule sets from another contra-

dictory rule set, thus all the combinations of rule sets are found to form all the combinations

of non-contradictory rule sets. The algorithm will be demonstrated with a running example;

suppose the graphical structure of a network is as shown in Figure 4.7; for partitioning the

network of entities, start at the node Z → E, because this node has the lowest degree, a

degree of one. It is also possible to start at node Z → D to end up with the same hidden

sets, because Z → D also has a degree of one. The algorithm needs to start at the node

with the lowest degree, because it is a recursive algorithm that calls itself on the subgraphs.

Starting at the node with the lowest degree, allows for omission of the nodes with the least

links in the subgraphs, and makes sure that all possible sets are generated.

Figure 4.7: Partitioning Network Example

The node Z → E does not have a set number assigned to it, so the next step is to

assign the node a set number that has not been marked as unavailable for assignment, the

first available set number is one. Then assign all of its neighbors the same set number is

“not available” (denoted with negative numbers in the figures), which in this case is the

assignment of the set number one is “not available” to its neighbor Z → C. The assignment

34

of the set number being unavailable to its neighbors will make sure that no connected nodes

will appear in the same set. After, assign all of its non-neighbors the same set number one.

Assigning the same set number to all of the non-neighbors will make sure that every possible

set is generated, because this will add the non-neighbor nodes to the set, or make sure the

non-neighbor nodes are considered in the subgraphs for other iterations.

Next, move onto a neighboring node Z → C, and since it also does not have a set number

assigned to it, assign it the set number two, because the set number one was marked as “not

available” for assignment. Then assign its neighbors Z → E, Z → A, and Z → B, the set

number two is “not available”. After, assign all of its non-neighbors the same set number

two.

Look to the next neighboring node Z → A, or it is also possible to move onto the node Z

→ B to end up with the same sets; now because Z → A already has a set number assigned

to it, the only step needed is to assign its neighbors Z → D, Z → B, and Z → C, the set

number one is “not available”, because this node has been assigned the set number one.

This assignment of the assigned set number is “not available” to the node’s neighbors in this

case will make sure that all the possible subsets, where there are no connected nodes are

considered. For the neighboring node Z → D, since it already has a set number assigned, its

neighbor Z → A will be assigned the set number one is “not available”, because this node is

assigned the set number one.

Now that there are no neighbors for Z → D to move onto, we will move onto a previous

neighboring node that was skipped, which was Z → B. Z → B already has a set number

assigned to it, so its neighbors Z → A, Z → C, and Z → F are assigned the set number

one is “not available”, because this node is assigned the set number one. Moving onto a

neighboring node Z → F, a set number is already assigned to it, therefore its neighbors Z →

G, Z → B, and Z → H need to have the set number one and two assigned as “not available”,

because this node is assigned the set number one and two. Next, move onto a neighboring

35

node Z → G, and since it already has a set number assigned to it, assign its neighbors Z

→ F, and Z → H, the set numbers one and two are “not available”, because this node is

assigned the set number one and two. Repeating again for the next neighboring node Z →

H, which already has a set number assigned to it, assign its neighbors Z → F, and Z →

G, the set numbers one and two are “not available”, because this node is assigned the set

numbers one and two.

Figure 4.8: First Iteration of Partitioning Network Example

With all the nodes having been traversed, the first iteration is finished, and the algorithm

will start building the sets (see Figure 4.8). In the figure, the negative sign is used to denote

that a set number is assigned as “not available”. Continuing onward the next step is to build

sets for each set number, and assign the entities with nodes that are only assigned one set

number to that set number. The entity Z → E is assigned to set one, and the entities Z →

C and Z → D are assigned to set two (see Figure 4.8). The other entities also have nodes

that are assigned set numbers, but in addition, they are also assigned the same set number

is “not available”. They will not be assigned to a set at this stage, because they will be

assigned to a subset in following iterations of the algorithm on subgraphs.

At this point, the next step is to consider the subsets for set one by using the same

36

Figure 4.9: Second Iteration of Partitioning Network Example

procedure on the subgraph of nodes that were assigned set number one, and assigned set

number one is “not available” (see Figure 4.9). In the case of the second iteration, all the

nodes except for Z → E and Z → C are omitted in the subgraph, because we know from

the set assignment, whether or not Z → E and Z → C will appear in all the subsets of set

number one. The sets generated from the subgraph will be subsets of the original set one

(see Figure 4.9). This recursion will continue until the subgraph is empty, and then the

process moves to the other sets to begin the same procedure. At the end of the process, a

set hierarchy is generated as shown in Figure 4.10. From this we can see that there are nine

possible rule sets, which are contradictory to each other. They can be built from the bottom

up from Figure 4.10:

1. Z → G, Z → B, Z → D, Z → E

2. Z → H, Z → B, Z → D, Z → E

3. Z → F, Z → D, Z → E

4. Z → G, Z → A, Z → E

37

5. Z → F, Z → A, Z → E

6. Z → H, Z → A, Z → E

7. Z → G, Z → C, Z → D

8. Z → F, Z → C, Z → D

9. Z → H, Z → C, Z → D

The rule sets have no links between the nodes in each individual set, and therefore no

contradictions. Any other possible sets of rules with no contradictions will be a subset of one

of the nine rule sets. This makes the contradictory rule sets maximal, and this is important,

because it contains the rule sets that hold the most rules with no contradictions. This means

there is no possible set of non-contradictory rule combinations that is not covered by one of

the rule sets, so the user will not have any missing groups.

Figure 4.10: Contradictory Rule Set Hierarchy

4.3.4 Phase Three: Partition Refinement

The third phase is split into two parts, the algorithm for the first part starts by creating

a node for each rule, and then checking every transaction in the database to link all the rules

that occur in the same transaction and updating their respective links (see Algorithm 3). The

links are then removed based on the threshold to eliminate links that do not represent rules

that occur frequently together in the same transactions. The threshold in this algorithm

is an integer input specified by the user. This threshold should be specified such that it

eliminates any co-occurrences of rules from random chance; this is similar to the minimum

38

Algorithm 3 Building Support Network of Association Rules

INPUT: Set R of rules, Database D, Threshold t1
OUTPUT: Network of association rules G
for every rule in R do
Make the a node for the rule

end for
for each transaction in D do
Find all the rules that transaction supports SR
for every pair of rules in SR do
if there is a link between the pair of rules then
Increase the weight by 1

else
Create a edge of weight 1

end if
end for

end for
Decrease all edges by t1
for every edge do
if weight < 1 then
Remove edge

end if
end for

support threshold used for frequent pattern mining. The resulting network is a network

where connected nodes represent rules that frequently occur in the same transactions.

The algorithm for the second part utilizes all the non-contradictory rule sets using found

in phase two, and creates a node for each of these rule sets (see Algorithm 4). The rule sets

are linked together if they contain rules that occur in the same transaction frequently, and

this can be checked by looking at the links in the network generated in the first part of phase

three. The links are then removed based on which rule sets contradict with each other, and

this information is obtained from the contradicting rules sets generated in phase two. The

links are also removed based on the threshold to eliminate links that do not represent rule

sets that contain rules occurring frequently together in the same transactions. The threshold

in this algorithm is an integer input specified by the user. This threshold should be specified

such that rule sets with rules that do not occur frequently together are eliminated, and rule

sets that do not share rules that frequently occurs together do not share a link. The resulting

39

Algorithm 4 Finding Rule Sets of Different Customer Segments

INPUT: Set R of rules, Database D, Network of association rules G, Threshold t2, Thresh-
old t3
OUTPUT: Set of rule sets representing different customer segments S
Find all non-contradictory rule sets NCR with R and D, and t3
for every rule set in NCR do
Make the a node for the rule set

end for
for each edge(A,B) in G do
RSA = all rule sets that contain rule A
RSB = all rule sets that contain rule B
for every pair of rule sets between RSA and RSB do
if there is a link between the pair of rulesets then
Increase the weight by 1

else
Create a edge of weight 1

end if
end for

end for
Eliminate all edges between contradictory rule sets
Decrease all edges by t2
for every edge do
if weight < 1 then
Remove edge

end if
end for
for every maximal clique in the network do
Build a rule set by merging every rule set in the clique and add it to S

end for

network is a network where connected nodes represent non-contradicting rule sets that have

rules which frequently occur in the same transactions. The last step is to find every maximal

clique in the network, and build the final rule sets by merging the rule sets in the maximal

cliques, because each maximal clique in the network represents a set of rule sets that share

rules which occur frequently together.

The rules sets generated can then be examined and labeled by market research experts

with the customer segments they represent. These market segment behaviors can then be

used for a variety of purposes, such as using the information to plan business strategies with

40

Algorithm 5 Finding the Rule Set Representations

INPUT: Set of rule sets representing different customer segments S, Set of previous rule
sets representing different customer segments SO
OUTPUT: Discrepancies between rules for current and previous rule sets of different cus-
tomer segments
for every rule set A in S do
for every rule set B in SO do
Similarity(A,B) = |A ∩B| / |A ∪B|

end for
end for
Find the best matching using the Hungarian algorithm
Find the discrepancies between matched rule sets

market promotions, classifying customers into the market segments and tailoring services

based on their behaviors, or using this data to track changes in market segment behaviors.

For example, tracking the changing behviors of market segments can be accomplished by

calculating a similarity measure, based on the number of common rules between each rule

set from the current set of rule sets found, and the previous set of rule sets found during

the last execution of this proposed method (see Algorithm 5). An combination optimization

algorithm, such as the Hungarian algorithm can then be used to find the rule sets that are

the current representation of the previously found rule sets [37], and this is done by finding

the best matching for the rule sets’ similarity measures, because the majority of rules for

customer segments are likely to remain the same over time with only gradual changes. Any

rule sets that have no matches would indicate a new or dissolved customer segment, and

new customer segments can be checked against previous customer segments to determine

if they are new variations of already discovered customer segments. Discrepancies between

the matched sets can then be searched for to inform businesses of the changes in customer

behaviors.

41

4.4 Results

4.4.1 Experimental Method

To validate the proposed method, a simulation has been generated to allow for checking the

various aspects considered by the proposed approach. The generated databases and details

of the conducted experiments are described next in this section. Groups of customers with

contradicting association rules were created, and were assigned a percentage of the popula-

tion to demonstrate how the proposed method works with a range of different population

sizes from majority to minority. In addition, a group with subgroups who all share one

same association rule, but also have their own contradicting association rules was created to

demonstrate how the proposed method can group these rules together as well.

Married mothers (30%)

milk → cereal, pop → chips, vegetables → fruits

Single young adults (30%)

milk → bread, pop → vegetables

Health cautious adults

water → sport drinks

Regularly active (10%)

vitamins → cereal

Athletes (10%)

vitamins → fruits

Professional athletes (10%)

vitamins → protein shake

Seniors (10%)

water → vitamins

Transactional databases with 1000 transactions using the pseudo code in Algorithm 6

42

along with the customer groups above were created, in an attempt to simulate the buying

behavior of the customer groups according to the association rules, while taking into con-

sideration the randomness of customer buying behaviors. Several transactional databases

were created with minor changes to the customer groups’ behaviors for each transactional

database. The first database is created with no changes to the customer segments, and

tested with phase one and two. The rule sets generated in the final phase are used as the

old rule sets for the other simulation experiments. Four other databases were created for

testing by removing a rule from a customer segment, adding a rule to a customer segment,

removing an entire customer segment, and adding an entire customer segment, to simulate

the buying behavior of the customer segments changing over time. The method for creating

the transactional databases that were used in this experiment is detailed in Algorithm 6.

Algorithm 6 Simulating Transactional Databases

INPUT: Customer Segments Populations and their Rules
OUTPUT: Transactional Database DS
for 1000 transactions do
Select a customer segment based on the populations
Create a transaction
for every item in the database do
Add the item to the transaction with a 5% chance

end for
for every customer segment’s rule’s antecedent item do
Add the item to the transaction with a 50% chance

end for
for every customer segment’s rule’s consequent item do
if the rule’s antecedent is in the transaction then
Add the item to the transaction with a 80% chance

else
Add the item to the transaction with a 50% chance

end if
end for

end for

43

4.4.2 Experimental Results

The proposed method was applied on the simulated transactional databases with thresholds

of 10 for t1, 1 for t2, and 80 for t3. All the customer segments and their respective rules

were discovered. The simulation experiments were successful for all four of the simulated

transactional databases. For the modified transactional database with a rule from a customer

segment removed, the proposed method was able to detect that the customer segment had

lost the rule. For the modified transactional database with a new rule added to a customer

segment, the proposed method was able to detect that the customer segment had gained

the rule. For the modified transactional database with a customer segment removed, the

proposed method was able to detect that the customer segment had disappeared. For the

modified transactional database with a new customer segment added, the proposed method

was able to detect that the new customer segment had emerged. In all these simulation

experiments, the proposed method also discovered all the rules that remained in the customer

segments. This demonstrates that the proposed method can produce accurate rule sets,

which can be used to discover changes in the customer segment behaviors, or the customer

segments in general over time. The simulation experiment is a simple experiment that

illustrates the effectiveness of the method when the changes to customer segments are applied.

4.5 Summary

This case study establishes an effective method to reduce the difficulty for businesses to

review the association rules of different customer segments, and track the behaviors of market

segments based on their buying behaviors. The method established in this case study has

the advantage of not needing customer information, thus removing the need for businesses to

obtain customer information, and removing the threat of intrusions into customer privacy.

The method also generates the rule sets based on conflicting rules, and dividing rules based

on customer behaviors is more accurate than customer characteristics, because the behavior

44

is the focus and customers with similar characteristics such as age, income, and education

can still have widely different behaviors.

“Data mining applications have proved highly effective in addressing many important

business problems” [3]. This has great importance for businesses, because it can help busi-

nesses focus on their target market by reviewing the rule set representing the target market.

This method can also inform businesses the changing behaviors of their customers, thus

allowing for businesses to adjust their strategy to meet the current market conditions. Fur-

thermore, the rule sets generated from this method can be used for classification purposes;

accordingly, this method can then be used to update the classification rules over time to

ensure accuracy does not drop due to changing behavior.

45

Chapter 5

CASE STUDY TWO: Finding Hidden Links in

Criminal Networks

5.1 Introduction

This case study demonstrates the effectiveness of a unique grouping technique in finding

hidden links in criminal networks, which can provide a more accurate picture for investigators

to analyze. In this case study, the developed unique grouping technique is an intermediate

step in the series of processes. The unique grouping technique is part of phase two of the

solution, where the groups are created to determine hidden sets based on the sub-networks

created. The unique grouping technique in this case study is based on part of the unique

grouping technique in the previous case study (see Chapter 4), which shows that unique

grouping techniques can be reused for other problems despite the fact that unique grouping

techniques are specifically designed to solve one particular problem. The developed solution

in this case study is an important technique in social network analysis, especially for law

enforcement agencies as they need to have correct information. Finding hidden links in

criminal networks will assist investigators by helping reduce the errors in the current data,

so it will be less likely that the law enforcement agencies will make poor decisions.

5.1.1 Background

Social network analysis is an emerging and valuable approach to model and investigate

connections between social entities [55]. Social network analysis can be applied to criminal

networks, and more specifically this case study will be focused on terrorist networks; though

the two are different as each have a different type of target, the same analysis applies to

46

both networks. There has been much research work on criminal networks, and more recently

the focus has been on terrorist networks. Social networks can help to elaborate on good

strategies to prosecute or prevent criminal activities [6, 36, 39, 48, 50, 51]; for example, the

works described by Baumes and Xu constructed social networks to analyze the organizational

structure of terrorists groups [8, 63].

Social networks provide a way for law enforcement agencies to analyze criminal activ-

ities [42, 16], but here the agencies face the problem of missing links in the network [39].

This problem is known as incompleteness, which Sparrow identified along with two other

main problems for using social network analysis for criminal activities [57]. Incompleteness

in social network analysis for criminal activities is defined as having missing nodes and/or

links in the network. This is due to the law enforcement agencies’ inability to uncover every

relevant node and link. The problem can arise because criminals may attempt to hide their

ties to other criminals or events, in order to minimize their connection with criminal activ-

ities [36]. For example, one simple method for criminals to conceal their connection with

another person or event is to have a middleman. In this case, there would be a link between

the criminals and the middleman, as well as a link between the middleman and the other

person or event, but there will be no direct link between the criminals and the other person

or event. Furthermore, the criminals can have several middlemen to reduce the weights of

the links by spreading their connection with all the middlemen, thus making it less obvious

that there is any connection between the criminals to the other person or event. In addition,

the criminals can place several middlemen in between themselves and the other person or

event, thus further distancing themselves, and making it more difficult for law enforcement

agencies to make the connection. These are simple methods which can be achieved by the

criminals, but they result in effectively eliminating the link in the social network for analysis

by law enforcement agencies. The goal of this case study is to provide a method to help

identify hidden links between nodes in a network with the current information available to

47

investigators.

5.1.2 Problem and Solution

Sparrow [57] identified having missing nodes and links in the network as one of the three main

problems for using social network analysis to analyze criminal activities. The investigators

are just not able to discover all the nodes and links due to criminals attempting to hide their

ties to each other, in order to minimize any compromises to the network. An example of

this is the network created by Krebs of the 19 dead hijackers of the events during September

11th, 2001 [36]. The network was very sparse, and members on the same team were not

directly linked to all other members of the same team. For social network analysis to be

more effective for criminal networks, where there are likely missing links, the amount of

missing links needs to be reduced.

Although criminals will try to minimize information about the criminal organization to

avoid detection, our solution uses the information recorded about the individual, such as

where they work, where they have studied, who their friends are, who their family are, what

events they participated in, etc. The method will find the number of times two individuals are

indirectly connected (connected through a chain of links and nodes) in different relationships.

For example, if there is no connection between person A, and person B, but they have a

chain of friends in common, attended the same schools, been to the same cities, are members

of the same club, etc. This cannot be considered coincidental that entities A and B are not

linked together if the number of indirect links is very high. This would mean that it is likely

there’s a hidden link between A and B, because each indirect connection implies there’s a

possibility of a hidden link, and a large number will indicate a higher likelihood. It is like

each indirect connection is flipping a coin to determine whether there is a hidden link. The

more indirect connections, the more coin flips to determine if there is a hidden link, thus

this is why there’s a higher likelihood of a hidden link if there’s more indirect connections.

In this case study, the goal is to provide a method to help identify hidden links between

48

nodes in a network with the current information available to investigators. The solution to

this problem is for law enforcement agencies to look at the unconnected entities of a social

network, and find the number of different indirect links in the various social networks be-

tween the unconnected entities. A higher number of indirect links between two unconnected

entities than the average would indicate a potential hidden link, and thus should be further

investigated by the law enforcement agency. This however can be a daunting task when the

social networks are large, as there can be too many factors to manually keep track of. In

this case, an automated solution becomes a very appealing method.

5.2 Related Work

Work on hidden links in networks, such as the work by Baumes and Magdon-Ismail [8,

46], deal with communication networks, but do not take into consideration other types

of data to be used for identifying hidden links. Another piece of work published [53],

provides an alternative solution to infer missing links, which uses a sampling technique on

the network along with Bayes’ theorem. Although similar to our solution, the difference

is that our solution breaks down the network into many different sub-networks based on

relationships, rather than take samples of the network; also, their approach predicts links

based on Bayes’ theorem, whereas our approach predicts links based on the number of times

nodes are indirectly connected in the different sub-networks. In terrorist networks, hidden

groups or structures can be mined [60, 45] and social network measures can be used to

analyze the structure [16, 18]. Criminals and terrorists will try to keep minimal information

from being revealed in order to avoid being traced and dissolved.

The problem of finding these hidden links can be considered similar to the problem

of predicting links for the future state of the social network [42]. The main difference is

the context of the uncovered link, whether or not the link exists in the current timeframe.

Although there are methods that uncover links, which represent either links likely to exist in

49

a later timeframe or hidden links in the current timeframe such as Backstrom and Leskovec’s

work [4]; this research work focuses only on uncovering hidden links within the timeframe of

the network data. Leskovec also has done similar work in predicting positive and negative

links [41], and although signed networks are not explored here, the method can still be applied

to uncover positive or negative links. This can be accomplish by splitting the network into

two with the positive and negative links occurring only in one network, thus when the method

is applied to each network, it will uncover hidden positive links in the positive network and

hidden negative links in the negative network. Some other research work on link prediction

uses a proximity measure to determine the similarity of two nodes in the network to predict

links. Research on this technique has involved efficient algorithms to approximate these

proximity measures to handle large data sets [56], and also consideration of weights for

proximity measures to improve the effectiveness of the prediction method [49]. Classifiers

can also be used to predict links by using a set of features extracted from the social network

for training in a binary model [26]. Regardless of the methodology, once the hidden links

are found and connected, the uncovered network will be ready for use with various analysis

techniques [51, 48, 50].

5.3 Proposed Solution

5.3.1 Overview

The general idea for the solution is split into three phases, where the first phase is to use

various sources of data to create social networks based on the type of relationships between

the entities. This is done by building a main network of all the entities, connected based on

whether there is any type of relationship between the entities. The entities are the nodes, and

they can be anything, such as people, places, companies, accounts, etc. The relationships

are the links, and they can be any type of association, such as friend of, been to, works for,

deposited in, etc. In addition, sub-networks will be built with all the entities, connected

50

based on the same relationship types. It is from these social networks that we generate more

networks in the second phase that represent all the possible hidden links, and have the links

between the nodes represent the number of times the two entities are indirectly connected

in different relationship types.

The relationship type of networks can be anything that links two entities together, such

as friend of, family of, coworker of, been to, studied at, eats at, participated in, plays in,

and member of. The network partitioning algorithm discussed in Chapter 4 is used on the

main network to find all the possible hidden groups in the network. These groups can be

represented as weighted networks, and the weights can be updated based on the number of

indirect links for each relationship type. The higher the weights, the more times the nodes

are indirectly connected, thus the more likely there exists a hidden link between them. In the

third phase, the links with the highest weights are searched for, which would indicate that the

entities do not have a direct link, but do have many indirect links across the different social

networks generated based on relationship types. These are the links that are significant, and

thus in need of more investigation. At the end, the investigators can create and analyze the

hidden links based on different criteria, such as having weights above a certain threshold, or

being in the top portion of the highest weighted links.

5.3.2 Phase One: Main and Sub-Networks Creation

The method uses data that is structured to connect two entities with a specific relationship

type. The idea is to start by creating a main social network of all the entities, with a link that

specifies the different relationship types connecting the two entities. The next step is to split

the main social network up into several smaller sub-networks based on the relationship type,

such that each relationship type has its own social network, and the links of the sub-network

represent that there is a link of that relationship type in the main network. Afterwards,

we need to partition each of the sub-networks into groups of nodes that represent potential

hidden links in phase two.

51

Figure 5.1: Main Network Creation Example

This phase is illustrated in the following example, where the creation of the main social

network is achieved by making each entity a node and linking the nodes with the relationship

type in the source data. The process is illustrated in Figure 5.1, and with the data presented

in Figure 5.1, each entity is made into a node. The next step makes the links by processing

each relationship, in this instance there are relationships between A and B, A and C, as well

as A and D, so there are links created with A and all the other nodes (see Figure 5.1). The

relationships between B and A, as well as C and A, also indicate there are links, but the

links are already formed by the previous relationships processed.

Algorithm 7 Sub-Network Creation

INPUT: Main network
OUTPUT: Sub-network by relationship types
for each relationship type in data do
make each entity a node
for each relationship do
if the relationship is the same as the relationship type then
link the two entities together

end if
end for

end for

The next part constructs the sub-networks based on the main network just created, by

dividing the network into separate components, as described in Algorithm 7. To illustrate

the process, an example is shown with the data presented in Figure 5.1. For relationship

“Leader of”, there is a relation of this type between A and B, so there is a link between A

52

and B (see Figure 5.2). The other relationships are not of type “Leader of”, so there are no

more links to be formed for this sub-network. For relationship “Friend of”, there is a relation

of this type between B and A, as well as A and C, so there is a link created between A and

B, as well as A and C. The relationship between C and A, also indicates that there should

be a link, but that link is already formed by a previous relationship that has already been

processed. The other relationships are not of type “Friend of”, so there are no more links to

be formed for this sub-network. For relationship “Works at”, there is a relation of this type

between A and D, so there is a link between A and D. The other relationships are not of

type “Works at”, so there are no more links to be formed for this sub-network.

Figure 5.2: Sub-Networks Creation Example

5.3.3 Phase Two: Hidden Network Detection

The method presented in this case generates networks that represent all the possible

hidden links, and the links of these generated networks represent the number of times the

two entities are indirectly connected in each relationship type. This solution incorporates

Algorithm 2 presented in phase two of the previous case study (see Chapter 4). The algorithm

concepts are generalized and customized for the problem in this case study (see Algorithm 8),

but the implementation of the procedures remain the same. Given a network, represented

with a graph G = (V,E), where V is the vertex set and E is the set of edges connecting pairs

of vertices. Vertices are referred as nodes, actors, or individuals and edges are termed links,

ties, or relationships between nodes in social networks. The method presented in this case

53

Algorithm 8 Graph Partitioning to Find Hidden Vertex Sets

INPUT: Graph G = (V,E)
OUTPUT: Subsets of V that are non-contradictory
for each component of G do
N={any node with the lowest degree}
for each node in N do
if node is not assigned a set number (denoted as ℵ) then
assign node the next available ℵ
mark neighbors the same ℵ is n/a
assign non-neighbors the same ℵ

else
for each ℵ assigned to the node do
mark ℵ as n/a for all node’s neighbors

end for
end if
add all the node’s neighbors to N

end for
partition into vertex sets based on the max ℵ
for each node in N do
for every ℵ assigned do
if ℵ is not marked n/a then
add the node to the set indicated by ℵ

end if
end for

end for
for each ℵ do
create a subset
apply the algorithm to subgraphs of all nodes with the same ℵ and nodes marked n/a

end for
end for

makes use of the algorithm to partition the vertex set of a graph into non-contradictory sets,

which in this case represents possible hidden groups of nodes. The network partitioning

algorithm will return results similar to graph coloring techniques. The specialty of the

terrorist network prompts the need for a graph traversal method to effectively find these

hidden groups.

Algorithm 9 is applied to find the hidden networks, by partitioning each sub-network into

all possible unconnected groups for each component of the sub-networks, which represent

the possible hidden links. Subsequently, a set hierarchy with sets of nodes will be generated,

54

Algorithm 9 Find Hidden Networks

INPUT: Main network
OUTPUT: Hidden networks
Apply Algorithm 8 to the main network
for each non-contradictory vertex set do
make a network with each entity in the set being a node
create a link between every node of weight 1

end for

and from this a depth first method is employed to create the hidden groups. All the hidden

groups represent the maximal of all the possible groupings of nodes with no direct links to

each other in the sub-network. These grouping of nodes will be referred to as the hidden

sets. The partitioning method is also applied to the main network, where all the different

relationship types are considered for links. Each hidden group generated by this method can

treated as a complete graph, so that all the nodes in the hidden group are connected to all

the other nodes of the hidden group with a link weight of 1. These new networks will be

referred to as the hidden networks. For example, if the process gets the non-contradictory

vertex set {B, G, E, D} from the application of Algorithm 8 to the main network, the

process will make each entity a node, and create every possible link between each node of

weight 1 (see Figure 5.3). This conversion of the set to a network representation needs to be

applied to each hidden set.

5.3.4 Phase Three: Hidden Link Weights Computation

The final phase is to update the weights of the links in the hidden networks, which will reflect

the number of indirect links between two nodes in a hidden network across the different social

networks generated based on the type of relationship. This is achieved by comparing every

hidden set generated from each sub-network to every hidden network, and if there is a link

in the hidden network, where the two nodes are both in the hidden set, then increase the

weight of the link by some value; as long as the weight has not already been increased for

that run through of that sub-network hidden set comparison. The value to increment the

55

Figure 5.3: Hidden Networks Creation Example

weight is set to 1 in the experiment ran for the results section. When the increment is set

to 1 for all situations, then this simply counts the number of times the nodes are indirectly

linked in the social networks of relationship types. Although the increment can be different

values for different relationship types, in the case where one relationship type should be given

more weight if there is an indirect connection with that relationship type. The increment

can even become a decrement for relationship types that lowers the likelihood of a hidden

link. When the computation of the weights for the links of the hidden networks is complete,

then the last step is to locate the links with the highest weights for investigation.

Algorithm 10 Compute Hidden Weights

INPUT: Non-contradictory vertex set
OUTPUT: Hidden networks with weights
for each non-contradictory vertex set do
for each hidden network from Algorithm 9 do
for all links in the hidden network do
if the two nodes linked together are in the hidden set, and the link weight has not
been increased during this run through each sub-network then
Increase the weight of the link by δ

end if
end for

end for
end for

56

In order to differentiate different relationship types in terrorist networks, Algorithm 10

is used to determine the weight of hidden links. The variable δ can be any number. It can

be 1 to count the number of times two nodes are indirectly connected in each network of

different relationship types. The variable δ can take positive values to check whether different

relationship types have more significance. For example, sub-networks for the relationship

type “met” will have δ = 1, whereas sub-networks of the relationship type “friend of” will

have δ = 2. This is to signify that indirect connections through being a “friend of” are more

likely to have a hidden link, than indirect connections through having “met” the different

entities. In addition, the variable δ can also be negative values to take into account if certain

relationship types represent that links are less likely between indirectly connected entities.

Different values of δ will need sociological studies, and expert involvement to determine the

values for the different relationship types.

Figure 5.4: Compute Hidden Networks Weights Example

The hidden network presented in Figure 5.3 is used as a reference for the last example,

along with the assumption that the process has obtained the hidden sets {B,D,E}, and

{B,D} for relationship type 1, and the hidden set {B,G,E,D} for relationship type 2.

Using δ = 1 in this example will count the number of times unconnected nodes are indirectly

linked. The first step here is to increase the weights of the links between B and D, B and

57

E, as well as D and E by 1, because the entities B, D, and E are in one of the hidden sets

for relationship type 1. Relationship type 1 has another hidden set with B and D, but the

weight for B and D will not be increased again, because it has already been increased for

this sub-network for relationship type 1. The following step will increase the weights of all

the links by 1, because the entities B, G, E, and D are part of the hidden set for relationship

type 2. The new weights for the hidden network are the ones presented in Figure 5.4.

5.4 Results

5.4.1 Experimental Method

The proposed approach has been applied to small terrorist data sets based on 2002, 2005,

London, Madrid, and WTCB information (se Table 5.1) [18]. The value for δ, used in all the

relationship types was set to 1. The conducted experiments used the proposed approach to

measure the number of indirect links for potential hidden links. The highest weights were

then noted to be the most interesting.

Table 5.1: Experimental Data Sets

2002 2005 London Madrid WTCB

Event General General General
2004 Madrid

Train Bombings
September 11

Attacks
Number of
Entities

166 14 31 67 19

Number of
Relationship
Types

36 13 11 12 14

Number of
Links

260 21 44 88 23

5.4.2 Experimental Results

All components of the hidden group networks generated will always be cliques, but with

different weights that give information on the likelihood of the hidden link based on the

58

Figure 5.5: Hidden Group Network Example

data. Figure 5.5 shows an a generated hidden network in a circle layout with the links

colored to be lighter if they are closer to 1, and darker if they are closer to the highest

value based on the 2002 data set. The majority of the cells are light gray, but there are

several that stand out. There is a black link of weight 7 and a dark gray link of weight 6,

and they indicate interesting links, as the other link weights are quite low in comparison.

Figure 5.6 shows a smaller graph visualization of several nodes in the network in Figure 5.5,

and this again highlights the interesting link, because there is a large weight of 7, and the

other weights are 1 and 2.

Figure 5.6: Hidden Group Sub-Network Example

For the 2002 terrorist data set, applying the proposed approach generated hidden net-

59

works with the majority of the link weights between 1 and 3. There was one hidden link

exposed with a weight of 7 between Azahari Husin and Wan Min Wan Mat; thus, this sug-

gests that there is a higher likelihood that these two entities are linked, than other entities

based on this data, because the weight of 7 was a very high weight that occurred only once.

For the 2005 terrorist data set, applying the proposed approach generated hidden net-

works with the majority of the link weights as 1 or 2. There was no hidden link weight that

was interesting, thus this suggests that there is likely no hidden links in the data set based

on this data, because all the weights were low and remained in the same low range.

For the London and Madrid terrorist data set, applying the proposed approach generated

hidden networks with the majority of the link weights between 1 and 3. There was no hidden

link weight that was interesting, thus this again suggests that there is likely no hidden links

in the data set based on this data, because all the weights were low and remained in the

same low range.

For the WTCB terrorist data set, applying the proposed approach generated hidden net-

works with the majority of the link weights to be 1. There were three hidden links with a

weight of 2 between Abd al-Karim Yousef and Abd al-Mun’im Yousef, Konsonjaya and Mo-

hamed Jamal Khalifa, as well as Mohamed Salameh and Sheikh Omar Abdul Rahman; thus

this suggests that there is a higher likelihood that these three hidden links exist compared to

the other links based on this data, because the weight of 2 was a weight that rarely occurred.

5.5 Summary

The proposed method creates hidden networks that give weights to all the possible hidden

links. This provides valuable information for law enforcement agencies, as they can use the

weights to help determine what hidden links are more likely to exist for further investigation,

and therefore reduce the number of hidden links in their network. The problem with the

proposed method is that the solution addresses only part of the problem of incompleteness

60

by identifying hidden links. The problem of missing nodes still remains, and thus there is

likely also some hidden links associated with the hidden nodes, which will not be uncovered.

The problem of discovering hidden nodes in criminal networks is discussed in the next case

study (see Chapter 6).

The proposed method considers all the possible hidden connections, and allows investi-

gators to compare the likelihood of hidden links against other hidden links. In addition, the

method also provides flexibility to law enforcement agencies in that it allows for modifica-

tions for different scenarios, as the increment weight can be adjusted for different relationship

types, by modifying the δ value in the algorithm. This is a valuable technique in criminal net-

work analysis, because it can help investigators find hidden links in the network, and reduce

the amount of missing data. The δ value in the algorithm will allow for this method to be

used with different types of data, and the weights generated give investigators a measure on

the likelihood of the hidden links’ existence. This weight can be used in a variety of analysis

methods, such as finding the certainty of the links’ existence and comparing against other

hidden links. Accordingly, this is why the method is an excellent tool for law enforcement

agencies to reduce the number of hidden links in criminal networks, which will improve the

results of the analysis by addressing one of the major issues for these types of networks.

61

Chapter 6

CASE STUDY THREE: Finding Hidden Nodes in

Criminal Networks

6.1 Introduction

This case study demonstrates the effectiveness of a unique grouping technique for finding

hidden nodes in criminal networks, which can supply substantial clues for investigators to

consider. In this case study, the developed unique grouping technique is an initial step in

the series of processes. The unique grouping technique is the first part of the solution, when

the network properties are calculated for the plotting of each node from the two networks;

then the plots of the nodes are partitioned into several groups by just grouping nodes with

similar properties in relation to the average value of each property measure. In the solution,

similar nodes are just partitioned by determining if the node properties are above or below

the average for each property measure. This shows that unique grouping techniques can be

simple and not overly complex to be an effective solution, which means that unique grouping

techniques can be simple to develop and implement. The developed solution in this case study

is an important technique in social network analysis, especially for law enforcement agencies

as they need to have correct information. Finding hidden nodes in criminal networks will

assist investigators by revealing hidden information in the criminal network, so it will be less

likely that the criminals will continue to avoid law enforcement agencies.

6.1.1 Background

Social networks can be represented as graphs, where the nodes are the vertexes and the

links are the edges. This means that the well researched graph theories can also be applied

62

Figure 6.1: Induced Subgraph Example

to social networks. In graph theory, an induced subgraph is a subgraph that contains all

possible edges of the supergraph with respect to the vertexes (see Figure 6.1). This means

there are no more edges that can be added to the subgraph, such that the graph remains a

subgraph. Another important concept for this case study is isomorphism, which is a mapping

of vertexes between two graphs, such that if there is an edge between two vertexes in one

graph, then there is also an edge between the two mapped vertexes in the other graph (see

Figure 6.2).

Figure 6.2: Isomorphism Example

The solution established in this case study is based on two social psychological theories,

known as the status quo bias and system justification theories. Status quo bias states that

people will not be inclined to change an established behavior, unless there is a strong enough

incentive to change [47]. System justification theory states that people have a reason to

defend and strengthen the status quo [31]. Applying these theories to the individuals

in social networks implies that the overall structure of the social network will not change

63

dramatically overtime, unless there is a dramatic event that gives the individuals in the

network incentive to change.

6.1.2 Problem and Solution

One of the issues with using social networks for analysis is the problem of having missing

nodes in the network. Having missing nodes can significantly impact the results of the

analysis, and should be avoided as much as possible [35]. Missing nodes are the result of

researchers having incomplete information due to their inability to attain all the information

needed, given the uncertainty of which entities to include in the network, or the entities

being hidden.

Social network analysis can be applied to criminal networks to elaborate on good strate-

gies to prosecute or prevent criminal activities [39]. For social network analysis to be more

effective when applied to criminal networks, where there are likely missing nodes, the amount

of missing nodes needs to be reduced. The problem of having missing nodes in a network

is an important problem in criminal network analysis. Incompleteness is identified by Mal-

colm Sparrow as one of the three main problems for using social network analysis to analyze

criminal activity [57]. Incompleteness is having missing nodes and links in the network,

because the investigators are not able to discover all the nodes and links during the initial

investigation phase. Investigators also cannot keep investigating to include all entities found

in the network, because there is the uncertainty of when to stop looking for missing nodes;

furthermore, networks can become inconceivably large if all entities are included, as there

can be links connecting insignificant entities. This is the problem of fuzzy boundaries that

Malcolm Sparrow has identified as another one of the three main problems for using social

network analysis to analyze criminal activity [57].

This case study provides a method to help identify hidden nodes in a network using

previously collected social network data. The method maps the nodes in the network to

the nodes in a past network using the similarity of various measures from social network

64

analysis. The mapping also provides a confidence value to help determine the likelihood of

a missing node, and the confidence in the overall mapping. The social network measures

of the nodes that are not mapped, or have a low confidence value, indicate the importance

that the missing nodes would likely have. This information will help investigators identify

the importance of the missing nodes, and decide whether the missing nodes are significant

enough to spend the time to uncover or not.

The proposed method for finding hidden or missing nodes in social networks is done by

an assignment of nodes from an old network to the current network, based on the properties

of the nodes, such as the betweenness, closeness, degree, and eigenvector centrality measures.

The nodes can be modeled as points on Cartesian coordinate system, and the idea is that

similar nodes will stay close together if there are slight differences in the networks, due to

the hidden or missing node element. There will be two sets of points S1 and S2 from each

of the networks, and each point in S1 can only be mapped to one point in S2. The points

are assigned such that the sum of the distances between the assigned points is minimized.

This assignment will imply what nodes in the first network are the same nodes in the second

network, and the bad assignments or no assignments will indicate missing nodes.

Figure 6.3: Incorrect Assignment Example (Translation)

There is a problem that a missing node and/or additional nodes can produce too much of

a shift in the properties of all the nodes in the network, such as the betweenness, closeness,

degree, and eigenvector centrality measures. This can reposition their points in a certain

direction, thus making it difficult to find the correct assignment of points based on these

properties, such as the shift in degree from a missing node that is connected to every other

65

node. For example by considering the information in Figure 6.3, the minimum assignment

would result in an incorrect assignment, because the center black point represents the missing

node, but will be part of the optimal solution, thus it will be incorrectly assigned to another

node, instead of being indicated as the missing node. The solution to this is to translate

the points to the right, and this is why translation is considered in the solution. There can

also be the possibility that a new node will produce slight shifts in some nodes, but not

others, such as the degree of a missing node that is connected to several other nodes, but

the new node’s point location may be closer to another node’s previous point. For example,

by considering Figure 6.4, the minimum assignment could result in an incorrect assignment,

because the center bottom red point which represents a new node, may be closer to the

center black point than the center top red point, which would be the correct assignment.

The solution to this is to scale the points along the y-axis of the top red point, and this is

why scaling is also considered. The two problems can also occur together, which is why both

translation and scaling are considered together in the solution.

Figure 6.4: Incorrect Assignment Example (Scaling)

6.2 Related Work

Finding hidden nodes in social networks is a hard problem due to the difficulty of determining

if a node is missing, because networks can take any shape and can be significantly different

for each situation. Kim and Leskovec published a solution that uses the Kronecker graphs

model as the basis for the structure of real world networks [32]. The information from the

66

available network is used in the Kronecker graphs model to produce a completed network,

which is then divided into the observed part of the available network, and the unobserved

part of the missing nodes and links; the two parts are linked based on a probabilistic model.

This is similar to the proposed solution which tries to fill in the missing pieces by comparing

the current known network to a previously uncovered network. The idea of comparing the

structures of networks to fill in the missing blanks is also used by Clauset. Clauset proposes

that networks are likely to have a hierarchical structure, where nodes “divide into groups

that further subdivide into groups of groups, and so forth over multiple scales” [15, 38].

This hierarchical network structure is used as a basis for predicting links once the available

network is fitted to this model.

There is a related graph problem that is similar, and can be seen as an alternative solution

to the method proposed in this case study. The related graph problem is the maximum

common subgraph isomorphism problem, which takes two graphs as inputs, and outputs the

largest induced subgraph of one graph which is isomorphic to a subgraph of the other graph

(see Figure 6.5). This graph problem can be applied to solve the problem of missing nodes

by employing the current social network and a past social network. The output can then

be examined, and the measures of the nodes of the past social network that are not part of

the subgraph can help indicate the importance of the missing nodes. The problem with this

approach is that the structure of the social network needs to remain the same and cannot

change even slightly, except for the missing nodes. A change in the structure of the social

network will mean that using this approach will not yield the most optimal mapping, and

many nodes may be said to be missing when in fact they are not (see Figure 6.6).

For the challenge of repositioning the points representing the nodes, there is a similar

problem in the field of pattern matching and computer vision called the absolute orienta-

tion problem; where there are two sets of points and the objective is to find the similarity

transformation, which includes translation, scaling, and rotation, that would return the least

67

Figure 6.5: Maximum Common Subgraph Isomorphism Problem Example

Figure 6.6: Maximum Common Subgraph Isomorphism Problem Issue

mean square error between the two sets of points [61]. There are various types of algorithms

developed to solve this problem with different performances, and there is also a variation of

the problem where instead of seeking a similarity transformation, a rigid transformation is

sought to maintain the size and shape, containing only translations, rotations, or both [44].

Shih-Hsu Chang et al. also proposes an alternative algorithm with a limit on the transfor-

mation, such that it only gives transformations of scaling, and/or rotation, which has the

advantage of not considering the noise effects of translations [13].

There is also a similar problem addressed in statistics called Procrustes analysis for

biological applications, such as analyzing bones [54]. In Procrustes analysis, shapes of objects

are considered for comparison, and landmark points of the shape are selected to represent

the shape; then the transformation, which consists of translation, scaling, rotation, and

reflection, is found by determining the transformation with the minimum sum of squared

errors between the two objects [24]. As with the absolute orientation problem, there are

also variations with Procrustes analysis, such as the common variant where only scaling is

considered in the transformation.

68

Current solutions to the problem look for the optimal minimum or close to it, but what

is needed in this case study is a approximation to transform the points close to their original

position, so that the algorithm can match the correct nodes together. The reason for this is

because the two sets of data may not have the exact same shape, but only an approximation is

needed to reduce errors during the assignment phase, seeing as a few missing nodes in a large

network is not expected to radically change the social network structure. Furthermore, the

current solutions incorporate rotation or reflection, which is not necessary in this problem,

because the missing data in this problem does not give rise to differences that can be solved

by rotation or reflection. Many of the solutions developed also specifically address 3-D and

2-D data, but this problem needs to be able to deal with any number of dimensions, because

considering different combinations with the properties of nodes may lead to better results

depending on the situation.

6.3 Proposed Solution

6.3.1 Overview

In general, the main idea is to take a social network and match its nodes to the nodes of a

older version of that social network, where most of the overall structure of the social network

is preserved. This mapping is completed by using various measures of the social network

as distance measures, and adjusting the measures for the nodes of the network to better fit

the measures for the nodes of a previous social network. Afterwards, confidence measures

on the mappings can be calculated to show the confidence in the mappings, as well as the

likelihood of missing nodes. The measures and connections of the nodes from the previous

social network with no mapping would then indicate the importance, and links of the missing

node.

This approach can only be applied to stable systems. Stable systems are where the

nodes and links of the social network will change minimally over a significant period of time,

69

Figure 6.7: Stable Network Plot

thus the overall structure of the network will remain quite similar to the original state (see

Figure 6.7). For example, the structure of a business organization network will likely remain

the same over time with employees coming and leaving, because the job positions will still be

there. A few links and nodes may appear and disappear due to factors such as unemployment

or training. The approach should not be applied to unstable systems. Unstable systems are

where the nodes and links of the social network suddenly change dramatically, thus the

overall structure of the network will be significantly different from the original state (see

Figure 6.8). For example, the structure of a business organization network will likely be

significantly different after a restructuring of the whole company, because many employees

will be coming and leaving for new job positions. There will be many links and nodes

appearing and disappearing, because of factors like merging or new ownership.

Figure 6.8: Unstable Network Plot

70

6.3.2 Mapping Method

Algorithm 11 Mapping of Social Networks

INPUT: oldNetwork, newNetwork
OUTPUT: Mapping of nodes with similarity measures
Calculate measures for both networks
Adjust Measures(set of oldNetwork measures, set of newNetwork measures, 0) //Algo-
rithm 12
for every oldNetwork node do
for every newNetwork node do
Calculate distances of network measures

end for
end for
Find the best matching using the Hungarian algorithm

Algorithm 12 Adjust Measures

INPUT: Set of measures SO, Set of points SN , k level
Transposition = Center(SN) - Center(SO)
Partition Points(SN , SO, 0)
//Algorithm 13
Apply transposition and scaling to newNetwork measures

The mapping method is detailed in Algorithm 11, and in this solution, the main idea

when adjusting the measures is to treat the nodes as points with their measures as the

dimensions. The method uses the difference between the two sets’ centers to determine the

translation, and then partitions the points of each set into similar components that make

up the shape of each set. Each set’s partitions will be compared to their corresponding

partitions of the other set, and the scale will be determined by finding the scaling needed

to scale a partition’s center to its counterpart, and this will be weighted by the number of

points in both partitions in relation to the total number of points. Ultimately, each partition

is stretching the other set’s points in a certain direction, and these are all averaged together

using the density of each partition as the weights.

The points in each set are partitioned using a concept based on orthants. In two dimen-

sions, the plane can be divided up into four quadrants, which represent the entire positive

71

Algorithm 13 Partition Points

INPUT: Set of measures SO, Set of points SN , k level
if SN and SO are not empty then
for each point in SN do
Find it’s relative orthant i
Add the point to SNi

end for
for each point in SO do
Find it’s relative orthant i
Add the point to SOi

end for
for each relative orthant i do
if level is not reached then
ParitionPoints(SNi, SOi, level+1)

else
Portion = |SNi + SOi| / |SN + SO|
OrthantScale = (Center(SOi) − Center(SO)) / (Center(SNi) − Center(SN))
Scaling = Scaling + OrthantScale * Portion

end if
end for

end if

Figure 6.9: Quadrants (2-D Orthants)

and negative set of combinations for the dimensions (see Figure 6.9). Octants are the same

idea applied to three dimensions, with eight divisions, each representing a unique combi-

nation of positive and negative values for the dimensions (see Figure 6.10). The orthant

is the n-dimensional concept of the idea, with 2n orthants. The points in each set will be

partitioned into their relative orthants. Relative orthants for a set of points are found by

treating the center of the set of points as the origin, or translating the center of the set of

72

Figure 6.10: Octants (3-D Orthants)

Figure 6.11: Mapping Example - Inputs

Figure 6.12: Proposed Method Example Sets

points to the origin, and then determining which orthant the points reside in.

An example of the mapping method would start with the calculation of all the associated

73

measures of both networks (see Figure 6.11). The proposed method will treat the nodes from

each network as points on a Cartesian coordinate system with their measures as the values

of the numerical coordinates. For example, it will find the translation to translate the red set

of points (network nodes) to the blue set of points (past network nodes) in Figure 6.12, by

finding the center point of each set (see Figure 6.13), and calculating the difference between

the two center points to determine the amount needed to translate the red set of points to

the blue set of points.

Figure 6.13: Centers of Sets by Considering the Network in Figure 6.12

Figure 6.14: Set Partitions for First Level

74

Figure 6.15: First Set Partitions for k = 4

Figure 6.16: Set Partition Centers for k = 1

Afterwards, the proposed method will find the non-uniform scale needed to stretch the

red set of points to become similar to the blue set of points. The method will partition

the points into their relative orthants (see Figure 6.14), and will continue to repeat this

step on each partition for k − 1 more repetitions (see Figure 6.15). The method then finds

the center point of each partition (see Figure 6.16), and ignores partitions with an empty

set of points. The corresponding center points of the two sets are used to calculate the

scale, and center points with no other corresponding point from the other set are ignored.

75

Figure 6.17: Transformation Result

Corresponding points are center points from the two sets that were determined in the same

relative orthants. Applying the translation and scaling to the red set of points will result in

a transformation that keeps the structure and orientation of the red set of points the same,

while shifting it to fit with the blue set of points (see Figure 6.17). The adjustment of the

network measures is then complete.

Figure 6.18: Mapping Example - Distance Calculations

Using the calculated and adjusted measures, the distance for every pair of nodes in the

past network and current network would be calculated and stored; this step will compare

the nodes between the two networks to determine their similarity (see Figure 6.18 and 6.19).

76

Figure 6.19: Mapping Example - More Distance Calculations

The solution then uses the Hungarian algorithm to find the best mapping of nodes using

the distances calculated between the past network nodes, and the current network nodes.

The output from the algorithm will be a mapping of nodes from the current network to

the previous network (see Figure 6.20). The nodes from the previous network that are

not mapped (nodes 1 and 5) are the missing nodes from the network. The missing nodes

social network measures will tell investigators their importance to help determine if they are

worth the effort of further investigations, and the missing nodes connections will help give

investigators leads on what links likely exist for the hidden nodes found.

Figure 6.20: Mapping Example - Output

77

6.3.3 Measures

There are eight measures used in the distance calculation for this case study, which include

the betweenness centrality (normalized to be between 0 and 1), closeness centrality (brought

down to be 0 if it is infinity), degree centrality, and eigenvector centrality. The other four

measures are the averages of all the node’s neighbors’ centrality measures to better differen-

tiate between nodes and more accurately match nodes. The eight measures all have values

between 0 and 1, which makes all the centrality measures equal; meaning no one central-

ity measure carries more weight than another in the distance calculation. The maximum

distance will be between a node that has 0 on all centrality measures, and a node that

has 1 on all centrality measures ((0,0,0,0,0,0,0,0) and (1,1,1,1,1,1,1,1)), hence the maximum

distance is 2.83 (
√

(1− 0)2 + (1− 0)2 + (1− 0)2 + (1− 0)2... = 2.83). As a general rule for

normalized measures, the maximum distance is the square root of the number of measures

(
√
number of measures). This maximum distance can be used to calculate a similarity

measure for the entire mapping produced, or for each individual mapping. The similarity

measure for the entire set of mappings can be calculated using Equation 6.1.

number of mapped nodes ∗maximum distance−
∑

distance

number of mapped nodes ∗maximum distance
(6.1)

This gives a confidence measure of the entire set of mappings assigned, which can be

used to indicate the probability that the mappings are correct. In the case of a 100%

similarity measure for the entire set of mappings, this means that the two social networks

are isomorphic. The similarity measure for a individual assigned mapping can be calculated

using Equation 6.2.

maximum distance− distance of the mapping

maximum distance
(6.2)

This gives a confidence measure of a individual mapping assigned, which can also indicate

the probability that the mapping is correct. In the case of a low percentage similarity measure

78

for a individual mapping, this means that there is a high likelihood that the mapping is

incorrect, and the mapped past network node indicates a missing node.

6.4 Results

6.4.1 Adjust Measures Method

Figure 6.21: Final Transformed Set of Points for Experiment 1

Three experiments were conducted in two dimensions for easy visualization, with ran-

domly generated data based on probability distributions that were 99% correlated for the

point dimensions. The result for the first experiment is shown in Figure 6.21, and consists of

100 points for SO (blue points) and SN (green points), along with the final transformed SN

(red points). The x dimension of SO was generated using a normal distribution with a mean

of 0 and standard deviation of 10, and the y dimension was generated using a triangular

distribution with a minimum of -200, a likelihood of -100, and a maximum of 0. The x

dimension of SN was generated using a normal distribution with a mean of 100 and standard

deviation of 55, and the y dimension was generated using a triangular distribution with a

minimum of -10, a likelihood of 0, and a maximum of 10.

The result for the second experiment is shown in Figure 6.22, and consists of 500 points

79

Figure 6.22: Final Transformed Set of Points for Experiment 2

for SO (blue points) and 505 points for SN (green points), along with the final transformed

SN (red points). The additional 5 points in SN represent possible additional new nodes. The

x dimension of SO was generated using an exponential distribution with a rate of 2, and the

y dimension was generated using a beta distribution with a minimum of -10, a maximum of

10, an alpha of 2, and a beta of 3. The x dimension of SN was generated using an exponential

distribution with a rate of 10, and the y dimension was generated using a beta distribution

with a minimum of 10, a maximum of 20, a alpha of 2, and a beta of 3.

The result for the third experiment is shown in Figure 6.23, and consists of 1100 points

for SO (blue points) and 1000 points for SN (green points), along with the final transformed

SN (red points). The missing 100 points in SN represent possible hidden or missing nodes.

The x dimension of SO was generated using a Poisson distribution with a rate of 100, and

the y dimension was generated using a uniform distribution with a minimum of -1000, and

a maximum of 1000. The x dimension of SN was generated using a Poisson distribution

with a rate of 100, and the y dimension was generated using a uniform distribution with a

minimum of -1, and a maximum of 1. The results show that the adjust measures method

does a reasonably good job in shifting and stretching one set of points to fit another set,

as Figures 6.21 - 6.23 show with the final transformed set of points (red points) mostly

80

Figure 6.23: Final Transformed Set of Points for Experiment 3

overlaying and covering the original set of points (blue points). This means that using this

method can help readjust the measures of the current network to better match the measures

of the previous network.

6.4.2 Proposed Method

The proposed method was implemented in Java using the JUNG library to create the social

networks and calculate the measures. It was tested on a randomly generated network of

100 nodes using the small world method. The generated network used in the testing is

unweighted and undirected, because this is the type of network with the least amount of

information available. This means that if the method proves to be effective for unweighted

and undirected networks, then it will also be effective for weighted and directed networks,

as they can be reduced to unweighted and undirected networks. The original network was

used as the old network input, and modified versions of the network were used as the new

network input.

The network was modified in three different ways to simulate missing data or slight

changes in the network. In the first trial, a random node was removed from the network to

81

simulate the case of investigators failing to uncover an entity that is part of the network.

In the second trial, two random nodes were removed from the network to simulate the case

of investigators failing to uncover several entities that are part of the network. This also

simulates the case of investigators failing to uncover an entity that is part of the network,

and a slight change in the network with the absence of one other node. In the third trial,

two random nodes were removed from the network, and two random links were removed in

the network. The removal of the links in this case simulates a slight change in the network

structure with the absence of two links.

Figure 6.24: Chart of Results

The results of the first trial showed that 93% of the nodes had been mapped correctly (see

Figure 6.24). Many of the nodes with incorrect mappings, had similarity measures similar

to the correct nodes in the original social network. The first trial also successfully identified

which node was the missing node (the node randomly removed). The results of the second

trial showed that 87% of the nodes had been mapped correctly (see Figure 6.24). The drop

in the proportion of correct mappings was expected, because the removal of more data from

the network will make it more difficult to determine the original state of the network. Several

nodes with incorrect mappings, had similarity measures that were noticeably different from

82

the correct nodes in the original social network. This is because the removal of the two nodes

had significantly altered the centrality of several of the nodes in the network. The second

trial also successfully identified both nodes which were missing. The results of the third trial

showed that 72% of the nodes had been mapped correctly (see Figure 6.24). The third trial

was unsuccessful in identifying both missing nodes. The incorrect mapping of the missing

node did have a lower similarity measure, and several of the other incorrect mappings had

some of the lowest similarity measures. This indicates a lower confidence in their mapping,

which also helps to indicate that there might be an incorrect mapping. The third trial had

the worst results due the most amount of missing information.

6.5 Summary

This case study provides a solution to assist in detecting hidden nodes in criminal networks.

This is accomplished by using two social networks, one that represents the current structure

of the network, and another that represents the past structure of the network. The solution

plots the nodes of each network on a Cartesian coordinate system using various network

elements, and adjusts the plot points of one network to account for the missing data, while

maintaining the overall structure of the social network. The last step locates the nodes of the

other social network which are the closest and maps them together, where then the confidence

measures of these mappings are computed. This information can help investigators identify

missing nodes, thus preventing further criminal activity.

The solution presented in this case study can be used to determine if two graphs are

isomorphic, and thus determine whether there are missing nodes or not. The experiment

results show that the method can correctly map the majority of nodes in cases where the

amount of data missing is minimal. However, as the amount of missing data grows, the

proportion of the correctly mapped nodes will shrink. The method also relies on the past

network data collected, which means that using unreliable past network data will also give

83

unreliable results. In terms of criminal network analysis, this also relates to the problem of

never having reliable past network data; because the acquisition of the network data will

compromise the criminal network, thus introducing an incentive for the criminal network to

change. This means the network can be unstable and the method can lose its effectiveness.

84

Chapter 7

PLACE2GIVE CASE STUDY: Applying Neural

Networks to Score Surveys

7.1 Introduction

This real world case study demonstrates the effectiveness of a unique grouping technique

in producing a solution for allowing the application of neural networks in the following

situation, where there are some technical issues with applying neural networks to solve the

problem just as they are. In this case study, the developed unique grouping technique is an

initial step in the series of processes. The unique grouping technique plays an important

role in the creation of the neural network, where it manipulates the composition of the

input nodes in the neural network. This operation will adapt the neural network to function

effectively for this particular real world problem. The unique grouping technique groups

the input nodes in the neural network based on their associated questions and benchmarks,

then determines which groups need special input nodes to be incorporated. This shows

that unique grouping techniques can be applicable to real world problems, which means

that unique grouping techniques are an important technique for both academic and industry

research. The developed solution in this case study is an important technique for modifying

neural networks to be effective in different situations. The unique grouping technique in this

case study has been developed and implemented for Dexterity Consulting’s online service

named Place2Give.

85

7.1.1 Background

Automation is a practice that incorporates a system which independently assists in com-

pleting a process, and thereby reduces the amount of human intervention required for said

process. This is an important practice for businesses due to its advantages of freeing up

human resources, as well as the consistency and precision of the technologies implemented

for such systems. Automation technology involves the usage of mechanical devices to reduce

the physical labour required; now, with the advances in technology and machine learning

techniques, automation is also capable of reducing examination and analysis work.

This real world case study will detail the implementation of a machine learning tech-

nique, neural networks, for Dexterity Consulting, and the modifications designed for neural

networks to suit the needs of Dexterity Consulting. Dexterity Consulting is a company

who has had over fifteen years of experience in the charitable sector, and whose mission is

“To change the way that North America’s Non-Profit sector operates by maximizing donor

impact” [28]. Dexterity Consulting has created an online service that connects charities

and donors called Place2Give (www.place2give.com). This website allows users to search a

database containing thousands of charities with financial, social media, and other relevant

information regarding the charity. This information is an amalgamation of data that is col-

lected from various sources, which includes Charity Intelligence, The Donner Award, Canada

Revenue Agency, and other publicly available information, such as the websites of the char-

ities themselves. The goal of Place2Give is to help find the best combination of charities for

donors to support, by matching the individual preferences and needs of the donor to the best

corresponding charities. This will ensure that the donations from their clients are reaching

the intended parties to maximize the impact of the donation.

The matching process consists of collecting information about charities and donors, by

having charities and donors complete surveys; then the matching of charities and donors is

achieved by calculating a risk assessment score for both charities and donors using informa-

86

http://www.place2give.com

tion primarily collected from the surveys. Another source of information used to calculate the

risk assessment score for charities come from the financials of the charity, which is provided

by Canada Revenue Agency. The risk assessment score of the charities and donors are based

on seven benchmarks: governance, funding, financial, delivery, volunteering, administration,

and community perception. Based on this score, the charities and donors are classified into

one of three categories: maverick, steady, and informed. The charities and donors in the

same categories with the lowest differences in the risk assessment scores are then matched

to one another.

The charity survey is static in that the questions do not regularly change, whereas the

survey for donors incorporates dynamic questions to accommodate inquires regarding current

events, such as recent disasters to better score and categorize the donor at that moment.

Both surveys contain many questions which are optional for the charity or donor to answer,

and the questions contribute a score of zero to ten for one or more benchmarks related to

the content of the question.

The risk assessment score is calculated by averaging every average benchmark score;

the average benchmark score is calculated by averaging all the benchmark scores for that

benchmark. The risk assessment score uses the following equation:

RAScore = 1/7 × avg(b1) +
1/7 × avg(b2) + ...+ 1/7 × avg(b7) (7.1)

where avg(bx) is the average of the question scores for benchmark x, excluding skipped

questions. The reason that the average function is used here is because many of the questions

in the surveys are optional, and there was a desire to not punish the charity or donor for

skipping questions. Therefore, using the average allows for the system to best score the

charity or donor based on the current available information. By default, the risk assessment

score is an average of the benchmark scores, which is why each benchmark score is multiplied

by 1/7, as there are seven benchmarks.

87

Equation (7.1) is the only formula used to find the risk assessment score of donors, but

each average benchmark score of the donor can be used to help tweak the risk assessment

score of a charity to better match the individual preferences of that particular donor. This

is accomplished by making the risk assessment score for charities dependent on the donor’s

preferences, which can be based on the average benchmark scores of the donor that the charity

is being compared to. This risk assessment score would change based on the individual

preferences of each donor, by weighing the benchmark scores of the charity to the donor’s

corresponding benchmark scores. This would give more weight to the benchmark scores

which are important to the donor, and less weight to the benchmarks for which the donor

has little concern for. The risk assessment formula for the charities when being compared to

a donor is presented in the following equation:

RAScoreCHARITY = w1 × avg(b1) + w2 × avg(b2) + ...+ w7 × avg(b7) (7.2)

where wx is the weight adjustment for benchmark x, which is determined based on the average

benchmark scores of the donor. The weight adjustment is determined by the percentage of

the total risk assessment score that the donor scored for benchmark x multiplied by seven,

because there are seven benchmarks. The formula for this weight adjustment is shown in

the following equation:

wx =
avg(bx)

RAScore× 7
(7.3)

where both the avg(bx) and the RAScore are the scores of the donor. This will assign each

charity a unique risk assessment score for each donor based on their benchmark preferences,

which will allow for a more accurate categorization of the charity from the perception of the

donors.

88

7.1.2 Problem and Solution

The scoring process for charities was originally completed by an expert manually reviewing

the survey results, and then assigning the charity a risk assessment score based on their

knowledge of the charitable sector. There was a need to automate this process due to

the thousands of charities in the database, thus a system was needed to autonomously score

charities similar to the expert’s assessment by learning the score of each question and answer

from the expert.

The scoring process for donors was originally automated with scores assigned to each

answer based on the best approximation by the expert. There was also an option for the

donors to manually readjust their assigned categories, in case they did not feel that the system

had properly categorized their donation preferences; there was a need for a more accurate

scoring system, which will continue to allow for the donors to correct their categorization,

and learn from these readjustments to assign more accurate categorizations in future donor

surveys.

The main problem in automating the matching process is the need for a system that

is able to learn and assign scores to the answers from the survey. Neural networks were

the chosen machine learning technique to help automate the process by learning from the

previous risk assessment scores evaluated by the expert, and the categorization corrections

recorded from the donors. Neural networks were chosen, because of its ability to find patterns

by learning from various examples, and also because the neural network’s output node’s value

equation (7.4) is similar to the risk assessment score equation (7.1). In using neural networks

to tackle this challenge, two issues needed to be addressed in order for neural network’s to

succeed in learning to assign scores to the questions. One is that although the risk assessment

score equation (7.1) and the neural network’s output node’s value equation (7.5) are similar,

there remain slight differences between the equations that need a resolution. The other

issue is that the system will also need to take into consideration the dynamic questions in

89

the donor survey, and dynamic learning examples due to donors completing the survey at

different times with different questions.

Figure 7.1: General Single-Layer Feed Forward Neural Network

7.2 Related Work

There are many different types of neural networks; a simple type of neural network was

implemented for the system, which is called a single-layer feed forward neural network (see

Figure 7.1). These neural networks consist of one set of input nodes known as the input

layer, and one set of output nodes known as the output layer [17]. Each input node is linked

to one or more output nodes with a numerical weight attached to each of these links. The

input node is said to have fired if the input value of the node is greater than some threshold

defined by the user, which will be zero in the implemented system. Values for the input nodes

are provided by the user, and the values for the output nodes are calculated by summing

all the products of the link weights, and their input node values, for each input node that

has fired [17]. The output node value calculation for each output node would involve the

90

following equation:

yj = x1 × w1,j + x2 × w2,j + ...+ xn × wn,j (7.4)

where yj is the jth output node’s value, xi is the ith input node’s value, and wi,j is the

weight of the link from the ith input node to the jth output node. In the simplest case

of the single-layer feed forward neural network, where there is only one output node, the

output value formula for the output node becomes the following equation:

y = x1 × w1 + x2 × w2 + ...+ xn × wn (7.5)

where y is the output value of the neural network, xi is the ith input node’s value, and wi is

the weight of the link from the ith input node to the output node.

The weights of the links in a single-layer feed forward neural network can be trained to

find a pattern, by using a learning algorithm called the delta rule with a training data set

consisting of input values and output values (see Algorithm 14). The delta rule is a simple

learning algorithm that calculates the error between the output nodes’ calculated values, and

the correct output values based on the output data corresponding to the provided inputs in

the training data set [7]. This error is used to adjust the weights of the links in the network,

and all of the data will generate weight adjustments that gradually correct the weight of the

links in the neural network in repeated iterations; this will teach the system to reproduce

the same pattern in the training data set. The following equation shows the formula for

calculating the new weight of the link:

wi,jNEW = wi,jOLD + α× (dj − yj)× xi (7.6)

where wi,jNEW is the new weight of the link between the ith input node and the jth output

node, wi,jOLD is the old weight between the two input and output nodes, α is a learning rate

91

that is usually set to 0.1, and dj is the output value for the jth output node from the data

set.

Algorithm 14 Learning Algorithm

INPUT: Neural network(N) with input nodes(xi), links(wi,j), and output nodes(yj);
training set(T) of input samples(ci) and output samples(dj);
error threshold(γ) and/or iteration limit(n)

Initalize link weights(wi,j) to 0
for each sample in the training set(T) and
while error(dj − yj) is less than the threshold(γ) or
the iteration is less than the limit(n) do
Set the input node values(xi) to the input sample values(ci)
Calculate each of the output node’s value(yj) (see Equation (7.4))
Calculate each links’ new weight value(wi,jNEW) (see Equation (7.6))
Set all link weights(wi,j) to their new value(wi,jNEW)

end for

7.3 Implementation

7.3.1 Overview

Two similar neural networks were implemented, one for the system to mimic the behavior of

the expert in assigning a risk assessment score using the charity surveys. The other was for

the system to learn from the donors corrections to more accurately assign risk assessment

scores in the future, based on the donor surveys. The neural networks will do this by finding

the best score to assign for each answer to the questions from the charity and donor surveys.

Although the equation to calculate the value of the output node (7.5) closely resembles the

risk assessment score equation (7.1), modifications to the single-layer feed forward neural

network were designed to accommodate the slight differences in the risk assessment score,

and output node value formulas in both neural networks. Furthermore, there were also

modifications designed for the neural network and the learning algorithm implemented for

computing the risk assessment score of donors, and finding the scores to assign the questions

92

from the donor survey. This modification is to address the donor questions being dynamic,

and the training data for this neural network being dynamic as well.

Figure 7.2: Implemented Neural Network

7.3.2 Padded Static Input Nodes Modification

For the charity component, the neural network implemented for learning the scores to the

answers in the charity survey, contains a set of input nodes representing the answers for each

question (see Figure 7.2 [gray nodes]). The input nodes’ values are set to one if the question

answered corresponds to the answer representation of that input node, otherwise the value is

set to zero. For example, in the charity survey for question one, if the answer was determined

to score a low value, then the input nodes “Q1 High” and “Q1 Med” would have their values

set to zero, and the input node “Q1 Low” would have a value of one. This will fire the nodes

based on how the survey is answered, and thus help the network determine what score to

assign for a specific answer. The neural network also consists of one output node, which

93

represents the risk assessment score of the charity based on their survey answers (see Figure

7.2 [green node]). The output from this node will be compared to the output specified by

the expert in the training data to train the weights of the network, which represent the

score for the answer associated with the link’s node. The charity survey answers are used

in this model as the inputs of the training set, and the corresponding risk assessment scores

provided by the expert serve as the outputs of the training set (see Figure 7.3).

Figure 7.3: System (Charity Side)

The solution to applying neural networks in this situation with the difference between

the risk assessment score equation and the neural network’s output value equation is simple,

in the case where every benchmark has the same number of questions associated with it.

This is because the risk assessment score equation can be algebraically altered to have the

same form as the neural network’s output value equation (see Table 7.1). The equation in

step 5 of Table 7.1 shows an altered form of the risk assessment score equation that matches

the output node value equation. In this form, n represents the number of questions for

each benchmark, and qi,b represents the score of the answer for the ith question related to

benchmark b. Here the “n × 7 × RAScore” part represents the output value in the output

node’s value equation, and each qi,b represents a input node that has fired. Although this

would have to rely on each benchmark having the same number of questions associated with

it, and that each question is also required to be answered in the surveys.

94

1. RAScore = 1/7 × avg(b1) +
1/7 × avg(b2) + ...+ 1/7 × avg(b7)

2. 7×RAScore = avg(b1) + avg(b2) + ...+ avg(b7)

3. 7×RAScore =
1/n1 × (q1,1+ q2,1+ ...+ qn1,1)+

1/n2 × (q1,2+ q2,2+ ...+ qn2,2)+
...+ 1/n7 × (q1,7 + q2,7 + ...+ qn7,7)

4. 7×RAScore =
1/n × (q1,1 + q2,1 + ...+ qn,1) +

1/n × (q1,2 + q2,2 + ...+ qn,2) +
...+ 1/n × (q1,7 + q2,7 + ...+ qn,7)

5. n× 7×RAScore = q1,1+q2,1+...+qn,1+q1,2+q2,2+...+qn,2+...+q1,7+q2,7+...+qn,7

Table 7.1: RAScore Equation

The reason there is a need for a modification is because we cannot change the form of

the risk assessment score equation to match the form of the output value equation, without

adding in extra variables in the case where the benchmarks do not have the same number

of associated questions. In this case, we cannot continue after step 3 in Table 7.1, where

nb represents the number of questions for benchmark b, because we cannot move all the nb

variables to the other side, and separate them from the qi,b variables that represent a fired

input node value multiplied by the input node’s link weight.

The solution to changing the risk assessment score equation’s form to match the output

value’s equation, is to pad each benchmark to the maximum number of related questions in

any of the benchmarks, with variables that represents the average of that benchmark. This

will keep the equation the same, because adding the average score of the benchmark scores

will not change the overall average score of the benchmark scores; this is because the new

padded variable is the original average, thus it will not be pulling the average up or down.

In doing so, all nb become equal (nMAX), because this essentially brings up the count for

the number of questions in the benchmarks with lower number of associated questions, to

the same number as the benchmark with the highest number of associated questions. Once

this is done, the risk assessment equation can be rearranged to match the form of the output

node’s value formula (see Table 7.2). In this form, “nMAX × 7 × RAScore” becomes the

output of the neural network; and each qi,b becomes the input nodes which are fired, with

the padded avg(bx) becoming special input nodes that would have a link weight of one.

A modification called padded static input nodes was designed for the neural networks

95

1. 7×RAScore =
1/n1 × (q1,1+ q2,1+ ...+ qn1,1)+

1/n2 × (q1,2+ q2,2+ ...+ qn2,2)+
...+ 1/n7 × (q1,7 + q2,7 + ...+ qn7,7)

2. 7×RAScore =

1/nMAX
× (q1,1 + q2,1 + ...+ qn1,1 + (nMAX − n1)× avg(b1)) +

1/nMAX
× (q1,2 + q2,2 + ...+ qn2,2 + (nMAX − n2)× avg(b2)) +

...+ 1/nMAX
× (q1,7+ q2,7+ ...+ qn7,7+(nMAX −n7)×avg(b7))

3. nMAX × 7×RAScore =
q1,1 + q2,1 + ...+ qn1,1 + (nMAX − n1)× avg(b1) + q1,2 + q2,2 +
...+qn2,2+(nMAX −n2)×avg(b2)+ ...+q1,7+q2,7+ ...+qn7,7+
(nMAX − n7)× avg(b7)

4. nMAX × 7×RAScore =
q1,1 + q2,1 + ...+ qn1,1 + avg(b1) + ...+ q1,2 + q2,2 + ...+ qn2,2 +
avg(b2) + ...+ ...+ q1,7 + q2,7 + ...+ qn7,7 + avg(b7) + ...

Table 7.2: Adjusted RAScore Equation (c⃝ 2012 Dexterity Ventures Inc.)

implemented, which function similar to the basic input nodes; their purpose is to address

the differences between the risk assessment score and output node’s value equations (see

Figure 7.2 [yellow nodes]). Padded static input nodes are the special input nodes that have

a input value of either avg(bx) or zero, and a link weight of one. These nodes are padded

into the network, and will not have their link weights adjusted in the learning algorithm

to address the issue of having a different number of questions for each benchmark, and a

question being skipped on the charity survey. The latter issue is quite similar to the former

issue, because if a question is skipped, then it could create an imbalance in the number of

questions associated with each benchmark.

Each input node in the neural networks represents a question associated with a bench-

mark, thus each input node is associated with a benchmark, and there needs to be an equal

amount of input node nodes associated with each benchmark. Therefore, these padded static

nodes are added to the neural network to balance out the number of input nodes correspond-

ing to each benchmark, so that each benchmark has the same number of input nodes, and

these padded static nodes are always assigned the value of the average for the benchmark

scores that correspond to the node, meaning they are always fired. These padded static

nodes are also added to the neural network for each question in the survey, and are assigned

a zero value if the question they represent is not skipped, but if the question is skipped

then the values of these nodes become the average of the benchmark scores that correspond

96

to the question. In essence, for each question on the survey, a group of network nodes is

created along with a padded static input node, where only the node that represents the

answer chosen is fired, or in the case of a skipped question the padded static input node

is fired. Every node created is then essentially grouped together based on the benchmark

of the questions the nodes are associated with; subsequently, the groups are all filled with

padded static input nodes that are always fired to bring the number of nodes in each group

to the same capacity.

7.3.3 Dynamic Neural Network Modification

For the donor component, the neural network implemented for learning the scores to the

answers in the donor survey is similar to the neural network for the charity component, but

this neural network needs to take into consideration the recurring changes in the questions

of the donor survey. It is important to note that as the questions for the donor survey are

dynamic, the neural network also needs to be dynamic, as the input nodes that represent the

answers to the questions may no longer be required in the model of the neural network at

later times. This neural network contains a set of input nodes representing the answers for

each question, but the input nodes are generated each time the survey is taken, because the

questions in the donor survey may change frequently; hence, each time the survey is taken,

an input node needs to be generated for each question answered, and thus all input nodes in

this network are always fired. For this neural network, there is no need to create input nodes

that will not be fired, because the neural network needs to be reconstructed each time to

represent the current set of questions in the donor survey, which is what makes this neural

network dynamic.

The dynamic neural network implemented also contains the padded static input nodes

modification to address the differences in the risk assessment score and output node’s value

equations, which are also dynamically generated. These nodes are used to pad the network

to resolve the issue of having a different number of questions associated to each benchmark,

97

and a question being skipped the donor survey. These padded static input nodes are similar

to the input nodes of this dynamic neural network as they are also always fired, because

they are only generated if they are needed.

The dynamic neural network also consists of one output node, which represents the risk

assessment score of the donor based on their survey answers. The output from this node

will be compared to the output specified by the donor’s readjustment of their category in

the training data, to learn the weights of the network, which represents the score for the

answer associated with the link’s node. The donor survey answers are used in this model

as the inputs of the training set, and the corresponding risk assessment score readjustments

provided by the donor in the case where they correct their categorization, serve as the

outputs of the training set (see Figure 7.4). Similar to the dynamic neural network, the

associated training set is also generated each time the donor survey is completed; therefore

the training set will always only contain one training sample. The learning phase can only

use one training sample during the learning phase. The reason for this is because of the

changing input nodes in the neural network, which means that the input data in training

samples will not always match the neural network, since the input nodes representing the

input data may have disappeared. For this reason, the dynamic neural network needs to be

reconstructed and trained each time a donor completes and readjusts their categorization in

the donor survey.

There is a problem with using the original learning algorithm for training the weights

of the dynamic neural network, because as input nodes are generated on the fly, there is

only one training sample to use for the learning phase. This causes a problem because the

learning algorithm would only ever consider the current training sample, and disregard any

changes made to similar questions from the past learning phases. The solution to this is

to keep track of the link weights for each node, and the average change of the link weight

between the ith input node and the output node (∆wi). One of the changes to the learning

98

Figure 7.4: System (Donor Side)

algorithm implemented for training on only one sample, is to start off by reinitializing the

weights of each input node to their previous value from the last iteration of the learning

algorithm (see Algorithm 15 [first step]). This will start the neural network off at the last

point in the previous learning phase, but it is important to note that there must be some

method of identifying each input node uniquely. The next change to the learning algorithm is

to add another step of adjustment after the first adjustment of weights, based on the average

change (∆wi,j) of that weight in the previous learning phases (see Algorithm 15 [second last

step]). This will simulate running the learning algorithm on the previous training samples,

while giving more influence to the current training sample. This step would be ignored

for the weights of links that have just appeared in the network, or weights of links that

have disappeared altogether. The final step in the new learning algorithm is to record

the new average change (∆wi,j) for each weight after the weight adjustment iterations have

completed, so it can be used once again in the next generation of the dynamic neural network

(see Algorithm 15 [last step]). The resulting system learns from the donors to assign a risk

assessment score based on the current version of the donor survey.

99

Algorithm 15 Dynamic Learning Algorithm (c⃝ 2012 Dexterity Ventures Inc.)

INPUT: Neural network(N) with input nodes(xi), links(wi,j), and output nodes(yj);
training sample(Ts) with input samples(ci) and output samples(dj);
error threshold(γ) and/or iteration limit(n)

Initialize link weights(wi,j) to previous values or
0 for new link weights
for the training sample(Ts) and
while error(dj − yj) is less than the threshold(γ) or
the iteration is less than the limit(n) do
Set the input node values(xi) to the input sample values(ci)
Calculate each of the output node’s value(yj) (see Equation (7.4))
Calculate each links’ new weight value(wi,jNEW) (see Equation (7.6))
Set all link weights(wi,j) to their new value(wi,jNEW)
Adjust all link weights(wi,j) by their average change(∆wi,j) if available

end for
Update and record all link weights’ average change(∆wi,j)

7.4 Summary

The implementations of the two neural networks with the designed modifications to address

the specific issues in this situation, will create a system that is able to autonomously calculate

the risk assessment scores of charities and donors based on information primarily from the

surveys. The neural networks learn from the expert and donors to model the same patterns

in evaluating the two surveys. This will greatly reduce the analytical work of the expert in

examining the charity surveys, and evaluating risk assessment scores for the many charities

in the database. This will also increase the accuracy of the system’s categorization of donors,

and reduce the frequency of donors readjusting their categorizations after they have taken the

survey. The automation for the remainder of the matching process, where the risk assessment

scores of the charities and donors are compared, was completed with simple query operations

to the database.

The required modifications to the neural networks, which were essential for their imple-

mentation in this situation, show that while machine learning techniques provide an effective

option for computers to automate analytical work, the machine learning techniques cannot

100

always be utilized in the same manner. This is because machine learning techniques cannot

accomplish every objective with great results, which is why they are not suited for every sit-

uation. This is also evidenced by the large variety of different machine learning techniques

to address different problems [11]. There are even many different types of neural networks in

research to consider for different issues, such as spiking neural networks which address time

dependent issues [23]. For businesses looking to machine learning techniques as a solution

to automate analysis work, they will also need to consider altering the machine learning

technique they have chosen to best fit their particular situation.

101

Chapter 8

CONCLUSION AND FUTURE RESEARCH

DIRECTIONS

8.1 Conclusions

In conclusion, this thesis establishes the effectiveness and significance of unique grouping

techniques through the development and application of unique grouping techniques in four

distinctive cases. A general framework for developing and implementing unique grouping

techniques is proposed. The proposed framework is made up of two phases, where analysis

is initially prepared to determine the structure of the network and related research. The

second phase guides the design of the unique grouping technique through searching for pat-

terns and exploring different groupings of nodes, and finishes with examining and revising

the developed technique. Four case studies in the thesis illustrates that unique grouping

techniques are applicable to various types of networks, and fields of study.

The first case study proves that unique grouping techniques are applicable to abstract

networks, by grouping nodes in a network of association rules to find the customer behaviors

of separate market segments. This case study shows that unique grouping techniques do not

need to be completely original, but can be based on grouping techniques that currently exist;

part of the unique grouping technique developed in this case study is very similar to graph

coloring techniques. This case study establishes an effective method in reducing the difficulty

for businesses to review the association rules of different customer segments, and track the

changes of market segments based on their buying behaviors. This has great importance for

businesses, because it can help businesses focus on their target market by reviewing the rule

set representing the target market.

102

The second case study proves that unique grouping techniques are applicable to social

networks, by grouping nodes in a criminal network to find the hidden links. This case study

shows that unique grouping techniques can be reused for other vastly dissimilar problems,

despite being uniquely developed for a specific situation; the unique grouping technique

developed in this case study uses the graph coloring like technique developed in the first

case study. The case study demonstrates a method to locate possible hidden links, thus

providing valuable information for law enforcement agencies, and reducing the number of

hidden links in their network. Accordingly, this is will improve the results for the analysis

of such networks by addressing one of the major issues in analyzing criminal networks.

The third case study also proves that unique grouping techniques are applicable to social

networks, by grouping nodes in a criminal network to find the hidden nodes. This case study

shows that unique grouping techniques do not need to be complex in nature, but can be kept

simple and still provide a effective solution; the unique grouping technique developed in this

case study groups nodes, with similar measured properties together with respect to being

above or below the average of each property. This case study provides a solution to assist

in detecting hidden nodes for criminal networks. This information can help investigators

identify missing nodes, thus preventing further criminal activity.

The last case study proves that unique grouping techniques are applicable to neural

networks, by grouping nodes in a neural network to help score surveys in a charity and

donor matching service. This case study shows that unique grouping techniques are not just

applicable in theory, but can be used for real world problems; the unique grouping technique

developed in this case study is used to modify neural networks, and adapt them to the

particular conditions required by the surveys for the charity and donor matching service.

The implementations of the two neural networks in this case study will create a system that

is able to autonomously calculate the risk assessment scores of charities, and donors based

on information primarily from the surveys. The modifications to the neural networks were

103

essential for their implementation in this situation.

This thesis shows that unique grouping techniques should be a serious consideration

alongside general grouping techniques for research work dealing with networks.

8.2 Future Research Directions

This thesis presents three theoretical unique grouping techniques with central roles in solv-

ing three vastly different research problems; each of these three unique grouping technique

solutions can be further expanded upon. The drawback with the method presented in the

first case study is in finding the thresholds values to use. Future work can be conducted

on researching heuristics for finding the best thresholds to input at each phase, based on

the database and rule information available. Future research for the solution in the second

case study can delve into pattern mining methods to identify what the relationship types of

the determined hidden links are; this will provide even more valuable information to inves-

tigators using social network analysis. Additional research can be conducted on the unique

grouping technique in the third case study, to determine the effectiveness for comparing the

similarity between different types of social networks; for example, the method can be applied

to different successful information technology companies, to determine if there are similar

key aspects in their social network structure which lead to the success of the business.

This thesis presents a general framework for implementing unique grouping techniques;

however, there are opportunities to build on this framework, and develop specialized unique

grouping technique frameworks for different types of networks. Different guiding principles

may perhaps be better suited for the progression on the development of unique grouping

techniques dealing with different types of networks. In addition, the system of the framework

can be further focused for diverse areas of study, thus altogether creating a comprehensive

and in depth framework for the development of unique grouping techniques.

104

Bibliography

[1] M. Agarwal, H. Agrawal, N. Jain, and M. Kumar. Face recognition using principle

component analysis, eigenface and neural network. In Signal Acquisition and Processing,

2010. ICSAP ’10. International Conference on, pages 310–314, Feburary 2010.

[2] A. An, S. Khan, and X. Huang. Objective and subjective algorithms for grouping

association rules. In Proceedings of the Third IEEE International Conference on Data

Mining, ICDM ’03, pages 477–, Washington, DC, USA, 2003. IEEE Computer Society.

[3] C. Apte, B. Liu, E. P. D. Pednault, and P. Smyth. Business applications of data mining.

Commun. ACM, 45:49–53, August 2002.

[4] L. Backstrom and J. Leskovec. Supervised random walks: predicting and recommending

links in social networks. In Proceedings of the fourth ACM international conference on

Web search and data mining, WSDM ’11, pages 635–644, New York, NY, USA, 2011.

ACM.

[5] B. Baesens, S. Viaene, and J. Vanthienen. Post-processing of association rules. Techni-

cal report, 2000.

[6] W. Baker and R. Faulkner. The social organization of conspiracy: Illegal networks in

the heavy electrical equipment industry. American Sociological Review, 58(6):837–860,

1993.

[7] I. A. Basheer and M. N. Hajmeer. Artificial neural networks: fundamentals, computing,

design, and application. Journal of Microbiological Methods, 43(1):3–31, 2000.

[8] J. Baumes, M. Goldberg, M. Magdon-Ismail, and W. A. Wallace. Discovering hidden

groups in communication networks. In H. Chen, R. Moore, D. D. Zeng, and J. Leavitt,

105

editors, Intelligence and Security Informatics, volume 3073 of Lecture Notes in Com-

puter Science, pages 378–389. Springer Berlin / Heidelberg, 2004.

[9] A. Bhan, D. J. Galas, and T. G. Dewey. A duplication growth model of gene expression

networks. Bioinformatics, 18(11):1486–1493, 2002.

[10] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding of com-

munities in large networks. Journal of Statistical Mechanics: Theory and Experiment,

2008(10):P10008, 2008.

[11] I. Bose and R. K. Mahapatra. Business data mining - a machine learning perspective.

Information & Management, 39(3):211–225, 2001.

[12] D. Brélaz. New methods to color the vertices of a graph. Commun. ACM, 22(4):251–

256, Apr. 1979.

[13] S.-H. Chang, F.-H. Cheng, W.-H. Hsu, and G.-Z. Wu. Fast algorithm for point pattern

matching: Invariant to translations, rotations and scale changes. Pattern Recognition,

30(2):311 – 320, 1997.

[14] R. Christley, G. Pinchbeck, R. Bowers, D. Clancy, N. French, R. Bennett, and J. Turner.

Infection in social networks: using network analysis to identify high-risk individuals.

American journal of epidemiology, 162(10):1024–1031, 2005.

[15] A. Clauset, C. Moore, and M. E. Newman. Hierarchical structure and the prediction of

missing links in networks. Nature, 453(7191):98–101, 2008.

[16] F. D. Breaking al qaeda cells: A mathematical analysis of counterterrorism operations.

Studies in Conflict Terrorism, 26(6):399–411, 2003.

[17] J. Dalton and A. Deshmane. Artificial neural networks. Potentials, IEEE, 10(2):33–36,

April 1991.

106

[18] K. Dawoud, R. Alhajj, and J. Rokne. A global measure for estimating the degree of

organization of terrorist networks. In International Conference on Advances in Social

Networks Analysis and Mining, pages 421–427, August 9-11 2010.

[19] J. E. Dayhoff and J. M. DeLeo. Artificial neural networks: Opening the black box.

Cancer, 91(Supplement 8):1615–1635, 2001.

[20] G. Dede and M. H. Sazl. Speech recognition with artificial neural networks. Digital

Signal Processing, 20(3):763–768, 2010.

[21] M. Domingues and S. Rezende. Post-processing of association rules using taxonomies.

In Artificial intelligence, 2005. epia 2005. portuguese conference on, pages 192 –197,

dec. 2005.

[22] C. Fyfe. Artificial neural networks. In Do Smart Adaptive Systems Exist?, volume 173

of Studies in Fuzziness and Soft Computing, pages 57–79. Springer Berlin / Heidelberg,

2005.

[23] S. Ghosh-Dastidar and H. Adeli. Spiking neural netwoks. International Journal of

Neural Systems, 19(4):295–308, 2009.

[24] C. Goodall. Procrustes Methods in the Statistical Analysis of Shape. Journal of the

Royal Statistical Society. Series B (Methodological), 53(2):285–339, 1991.

[25] G. Gupta, A. Strehl, and J. Ghosh. Distance based clustering of association rules. In

In Intelligent Engineering Systems Through Artificial Neural Networks (Proceedings of

ANNIE 1999, pages 759–764. ASME Press, 1999.

[26] M. Hasan and M. Zaki. A survey of link prediction in social networks. In Social Network

Data Analytics, pages 243–275. Springer US, 2011.

[27] J. J. Hopfield. Artificial neural networks. Circuits and Devices Magazine, IEEE, 4(5):3–

10, September 1988.

107

[28] D. V. Inc. Who is dexterity consulting?, 2008.

[29] M. G. I. Inc. Supermarket facts industry overview 2008, 2010.

[30] B. J. Jain and K. Obermayer. Extending bron kerbosch for solving the maximum weight

clique problem. CoRR, abs/1101.1266, 2011.

[31] J. T. Jost and R. Andrews. System Justification Theory. Blackwell Publishing Ltd,

2011.

[32] M. Kim and J. Leskovec. The Network Completion Problem: Inferring Missing Nodes

and Edges in Networks. In SDM, pages 47–58. SIAM / Omnipress, 2011.

[33] H. Koga, T. Ishibashi, and T. Watanabe. Fast agglomerative hierarchical clustering

algorithm using locality-sensitive hashing. Knowledge and Information Systems, 12:25–

53, 2007.

[34] N. Koochakzadeh, F. Keshavarz, A. Sarraf, A. Rahmani, K. Kianmehr, M. Rifaie, R. Al-

hajj, and J. G. Rokne. Stock investment decision making: A social network approach.

In ISMIS Industrial Session, pages 47–57, 2011.

[35] G. Kossinets. Effects of missing data in social networks. Social Networks, 28:247–268,

2003.

[36] V. Krebs. Mapping networks of terrorist cells. Connections, 24:43–52, 2002.

[37] H. W. Kuhn. The hungarian method for the assignment problem. Naval Research

Logistics Quarterly, 2(1-2):83–97, 1955.

[38] L. L and T. Zhou. Link prediction in complex networks: A survey. Physica A: Statistical

Mechanics and its Applications, 390(6):1150 – 1170, 2011.

[39] V. Latora and M. Marchiori. How the science of complex networks can help developing

strategies against terrorism. Chaos, Solitons & Fractals, 20(1):69–75, 2004.

108

[40] B. Lent, A. Swami, and J. Widom. Clustering association rules. In Data Engineering,

1997. Proceedings. 13th International Conference on, pages 220 –231, apr 1997.

[41] J. Leskovec, D. Huttenlocher, and J. Kleinberg. Predicting positive and negative links

in online social networks. In Proceedings of the 19th international conference on World

wide web, WWW ’10, pages 641–650, New York, NY, USA, 2010. ACM.

[42] D. Liben-Nowell and J. Kleinberg. The link-prediction problem for social networks.

Journal of the American Society for Information Science and Technology, 58(7):1019–

1031, 2007.

[43] H. Liu, J. Sun, and H. Zhang. Post-processing of associative classification rules using

closed sets. Expert Syst. Appl., 36:6659–6667, April 2009.

[44] A. Lorusso, D. W. Eggert, and R. B. Fisher. A comparison of four algorithms for

estimating 3-d rigid transformations. In Proceedings of the 1995 British conference on

Machine vision (Vol. 1), BMVC ’95, pages 237–246, Surrey, UK, UK, 1995. BMVA

Press.

[45] S. M., , and W. J. Discovering hierarchical structure in terrorist networks. In Proceed-

ings of the International Conference on Emerging Technologies, pages 238–244, 2006.

[46] M. Magdon-Ismail, M. Goldberg, W. Wallace, and D. Siebecker. Locating hidden groups

in communication networks using hidden markov models. In H. Chen, R. Miranda,

D. Zeng, C. Demchak, J. Schroeder, and T. Madhusudan, editors, Intelligence and

Security Informatics, volume 2665 of Lecture Notes in Computer Science, page 958.

Springer Berlin / Heidelberg, 2010.

[47] Y. Masatlioglu and E. A. Ok. Rational choice with status quo bias. Journal of Economic

Theory, 121(1):1 – 29, 2005.

109

[48] N. Memon, U. Wiil, and A. Qureshi. Design and development of an early warning

system to prevent terrorist attacks. In Proceedings of the International Conference on

Artificial Intelligence and Neural Networks, pages 222–226, 2009.

[49] T. Murata and S. Moriyasu. Link prediction of social networks based on weighted

proximity measures. In Web Intelligence, IEEE/WIC/ACM International Conference

on, pages 85 –88, nov. 2007.

[50] K. P. The network paradigm applied to criminal organizations. Connections, 24(3):53–

65, 2001.

[51] J. Qin, J. Xu, D. Hu, M. Sageman, and H. Chen. Analyzing terrorist networks: A case

study of the global salafi jihad network. pages 287–304, 2005.

[52] T. Randall, P. Cowling, R. Baker, and P. Jiang. Using neural networks for strategy

selection in real-time strategy games. In AISB Symposium on AI & Games, 2009.

[53] C. J. Rhodes and P. Jones. Inferring missing links in partially observed social networks.

Journal of the Operational Research Society, 60(10):1373–1383, 2009.

[54] F. J. Rohlf and D. Slice. Extensions of the procrustes method for the optimal superim-

position of landmarks. Systematic Biology, 39(1):40–59, 1990.

[55] S. S. Exploring complex networks. Nature, 6825(410):268–276, 2002.

[56] H. H. Song, T. W. Cho, V. Dave, Y. Zhang, and L. Qiu. Scalable proximity estimation

and link prediction in online social networks. In Proceedings of the 9th ACM SIGCOMM

conference on Internet measurement conference, IMC ’09, pages 322–335. ACM, 2009.

[57] M. Sparrow. The application of network analysis to criminal intelligence: An assessment

of the prospects. Social Networks, 13(3):251–274, 1991.

110

[58] S. Y. Sung, Z. Li, C. L. Tan, and P. A. Ng. Forecasting association rules using existing

data sets. IEEE Transactions on Knowledge and Data Engineering, 15:1448–1459, 2003.

[59] H. Toivonen, M. Klemettinen, P. Ronkainen, K. Htnen, and H. Mannila. Pruning and

grouping discovered association rules, 1995.

[60] M. Tsvetovat and K. Carley. Structural knowledge and success of anti-terrorist activity:

The downside of structural equivalence. Journal of Social Structures, 6(2), 2005.

[61] S. Umeyama. Least-squares estimation of transformation parameters between two point

patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13:376–380,

1991.

[62] D. Won, B. M. Song, and D. McLeod. An approach to clustering marketing data. In 2

nd International Advanced Database Conference (IADC, 2006.

[63] J. Xu and H. Chen. Crimenet explorer: A framework for criminal network knowledge

discovery. CM Transactions on Information Systems, 23(2):201–226, 2005.

[64] R. Xu and I. Wunsch, D. Survey of clustering algorithms. Neural Networks, IEEE

Transactions on, 16(3):645–678, May 2005.

111

