THE UNIVERSITY OF CALGARY

A Practical Method For Determining The

Productivity of Multi-Fractured Horizontal Wells

by

Frank Conrad Kuppe

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE

OF MASTER OF ENGINEERING IN CHEMICAL ENGINEERING

DEPARTMENT OF CHEMICAL AND PETROLEUM ENGINEERING

CALGARY, ALBERTA

SEPTEMBER, 1995

© Frank Conrad Kuppe 1995

THE UNIVERSITY OF CALGARY FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of Graduate Studies for acceptance, a thesis entitled "A Practical Method for Determining the Productivity of Multi-Fractured Horizontal Wells" submitted by Frank Conrad Kuppe in partial fulfilment of the requirements for the degree of Master of Engineering.

Dr. A. Settari, Supervisor Department of Chemical & Petroleum Engineering

Dr. J.D.M. Belgrave Department of Chemical & Petroleum Engineering

Dr. R.C.K. Wong Department of Civil Engineering

Sept. 15, 95

ABSTRACT

This work investigates the productivity of different configurations of fractured horizontal wells by means of numerical simulation. Model results have been compared to a number of analytical solutions available for estimating the productivity of unfractured horizontal wells under various boundary conditions. The simulation model was expanded to include varying lengths of one, three, five and seven, infinite conductivity, vertical hydraulic fracture configurations. In this work, infinite (high) fracture conductivity was used, although the model can also be used to investigate the effect of finite conductivity. Based on the numerical results, a third order polynomial correction to the linear flow equation was developed to yield more accurate productivity index predictions without the limitations of analytical solutions.

The empirical formula, generated from this work, can be used easily for accurate predictions of multi-fractured horizontal well productivity and project economics, under a variety of reservoir and boundary conditions.

ACKNOWLEDGEMENT

First and foremost, I would like to acknowledge my wonderful wife, Lynn Kuppe and my daughter, Meghan Kuppe. They have been losing a "piece of me" to my academic pursuits for as long as they have known me. I can't thank them enough for their understanding and support and will gladly make a bigger piece of myself available to them for the rest of my life.

A big thank-you goes to my close friend, Richard Baker, who has broken many trails for me since our undergraduate years.

From my graduate years, I would like to acknowledge Chris Tomas and Rupum Bora, good friends that have made the ride a lot smoother.

Many thanks to the staff at Simtech Consulting Services Ltd., especially Bob Bachman, Alda Behie, Geoff Warren and Doug Boulton for their, often sought after, help and unwavering good cheer.

Thank-you John Myer, my supervisor at Suncor Inc., for supporting my studies and overlooking how the candle would sometimes burn unevenly at the respective ends.

A very special thanks is reserved for my graduate supervisor, Dr. Tony Settari, a great inspiration and mentor with contagious enthusiasm. I thank him for his time and his confidence in me. If graduate studies won't humble a student, working under his supervision will!

TABLE OF CONTENTS

Title Approv Abstrac Acknov Table of List of	val et wledgen of Conte Tables Figures	nent nts	· · · ·	Page i ii iii iv v viii ix
Nomen				м
Chapte	<u>r</u>			
1	Intro	duction		1
· 2	Liter	ature Rev	riew	4
	2.1	Applic	ation of Fracturing in Horizontal Wells	4
,	2.2	Metho	ds for Predicting Productivity	6
•	2.3	Scope	of this Work	10
. 3	Metł	nodology		13
	3.1	Prelimi	nary Work	13
	3.2	Develo	pment of Solutions for Fractured Horizontal Wells	14
	3.3	Testing	and Applications	15
4	Num	erical M	odel for Fractured Wells (FRACWELL)	16
٠	4.1	Model	Description	16
	4.2	Model	Formulation	18
6		4.2.1	Review of the Basic Equations	18
			4.2.1.1 Mass Conservation	18
			4.2.1.2 Equation of State	19
			4.2.1.3 Velocity Field	19
			4.2.1.4 Single Phase Flow Equation	20
	•	4.2.2	Special Features	21
	4.3	Finite I	Difference Formulation	21
		4.3.1	Flow Coefficient	22
		4.3.2	Compressibility Term	23
		433	Final Form of Discretized Flow Equation	23

TABLE OF CONTENTS (cont'd)

.

	4.4	Expansi	ion of the Accumulation Term	24	
	4.5	Bounda	ry Conditions	27	
	4.6	Repres	entation of Hydraulic Fractures	29	
		4.6.1	Increasing the Well Index	30	
		4.6.2	Fracture in Separate Grid Blocks	32	
		4.6.3	Modified Transmissibilities	32	
	4.7	Theory	of Coupling	38	
		4.7.1	Fully Coupled Models	38	
		4.7.2	Partially-Decoupled Models	39	
5	Prod	Productivity Indices: Simulation Model vs. Analytical Solutions			
	5.1	The An	alytical Solutions	43	
		5.1.1	Babu & Odeh's Solution	43	
		5.1.2	Goode & Kuchuk's Solution	44	
			5.1.2.1 Pseudo-Steady State	45	
			5.1.2.2 Constant Pressure Boundary	46	
		5.1.3	Joshi's Solution	46	
		5.1.4	Vertical Well Solution	47	
	5.2	Compar	rison of Analytical and Numerical Solution	48	
		5.2.1	Setup of Numerical Model	48	
		5.2.2	Re-Generating the Work of Gilman & Jargon	51	
6	Prod	uctivity E	Enhancement with Fractures	53	
	6.1	Single 1	Fracture	53	
	6.2	Multipl	e Fractures-General Approach	58	
		6.2.1	Errors of the Analytical Solution for Fracture Flow	61	
		6.2.2	First Order Correction of the Analytical Solution	63	
		6.2.3	Final Empirical Solution	66	
			6.2.3.1 Third Order Polynomial Correction	66	
			6.2.3.2 Optimizing Regression Analysis	68	
	6.3	Exampl	le Calculation	71	
		6.3.1	Productivity Comparisons	76	
		632	Economic Evaluation	78	

TABLE OF CONTENTS (cont'd)

7	Pern	neability Anisotropy	80
	7.1	Anisotropy Example	80
		7.1.1 Approximation of the Wellbore Productivity	81
		7.1.2 Approximation of the Fracture Productivity	81
	7.2	Generalizing the Empirical Solution	83
8	Con	clusions and Recommendations	91
	8.1	Conclusions	91
	8.2	Recommendations for Future Work	92
Reference	es.	,	93
Appendi	хA	Data File (3 Frac Case) of Reservoir Model	99
Appendix B		Interface File of Fracture	112
Appendix C		Regression Input and Output for Polynomial	
		Correction Term ("D")	115
Appendix D		Economic Summaries for Example Problem	128

LIST OF TABLES

5.1	Comparisons of Simulator and Analytical Productivities	52
6.1	Coefficients for Empirical Solution	70

LIST OF FIGURES

2.1	Dynamic Drainage Areas-Horizontal Well with Six Fractures	9
2.2a	Transverse Fracture in Horizontal Well	11
2.2b	Longitudinal Fracture in Horizontal Well	11
4.1	Point Centered Grid and Block Boundaries	25
4.2	Effective Wellbore Radius vs. Dimensionless Fracture Conductivity	
	for a Vertical Well	31
4.3a	Representation of a Fracture by a Well Index or by Source Terms	33
4.3b	Representation of a Fracture using True Dimensions and Properties	33
4.3c	Representation of a Fracture by Modified Transmissibilities	33
4.4	Grid Refinement of the Fracture	35
4.5a	Combining Transmissibilities for Interval Fully Penetrated by	
	Fracture	36
4.5b	Combining Transmissibilities for Interval Partially Penetrated by	
	Fracture	36
4.6	Schematic of a Partially-Decoupled Model for Hydraulic Fracturing	41
5.1	Placement of a Fracture Relative to the Reservoir Grid	49
6.1	Productivity Enhancement of Fractured Horizontal Well	54
6.2	Productivity vs. Fracture Half Length with Refined Grids	56
6.3	Varying Horizontal Lateral Length and Fracture Half Length	57
6.4	Multi-Fractured Well Configurations in Quarter Element of	
	Symmetry	60
6.5	Analytical vs. Simulation Results under Constant Pressure	
	Boundary	62

ix

LIST OF FIGURES (cont'd)

<u>Page</u>

	a .	
6.6	Orthogonal Fractures in Horizontal Wells	64
6.7	Slope Adjusted Analytical Solution vs. Simulation Results	67
6.8	Empirical Solution vs. Simulation Results for 1.0 md Case	72
6.9	Empirical Solution vs. Simulation Results for 10.0 md Case	73
6.10	Empirical Solution vs. Simulation Results for 50.0 md Case	74
6.11	Empirical Solution vs. Simulation Results for 100.0 md Case	75
7.1	Productivity vs. Fracture Half Length in Anisotropic	
	Permeability Conditions	82
7.2a	Pressure Distribution with Small Fracture and Permeability	
	Anisotropy	86
7.2b	Pressure Distribution with Large Fracture and Permeability	
	Anisotropy	8 6
7.3	Pressure Distribution for Anisotropic Conditions (0.1 Days)	87
7.4	Pressure Distribution for Anisotropic Conditions (60.0 Days)	88
7.5	Pressure Distribution for Isotropic Conditions (0.1 Days)	89
76	Pressure Distribution for Isotropic Conditions (60.0 Days)	. 90

х

NOMENCLATURE

а	large half-axis of elliptical drainage area (Joshi's equation)
b	reciprocal formation volume factor (STB/Bbl)
b′	derivative of reciprocal formation volume factor
\mathbf{b}_{f}	fracture width (ft.)
В	formation volume factor (Bbl/STB)
Bo	oil formation volume factor (Bbl/STB)
C	conversion factor in well index equation .
С	correction factor applied to fracture flow equation
C _A	Dietz shape factor
C _H	geometric factor as defined by Babu & Odeh ²¹
C_R	constant compressibility
d	depth (ft.)
D	polynomial correction term
F _{cd}	dimensionless conductivity = $k_f b_f / k X_f$
h	reservoir pay thickness (ft.)
k	permeability of the medium (md)
\mathbf{k}_{f}	permeability of the fracture (md)
k _H	permeability in the horizontal direction (md)
k,	permeability in the vertical direction (md)
$\mathbf{k}_{x,y,z}$	permeability in the x,y and z direction, respectively (md)
L	well length (ft.)
L_x	drainage width orthogonal to horizontal well (ft.)
Ly	drainage width parallel to horizontal well (ft.)
$L_{1/2}$	well half length (ft.)
N	Fourier transform variable in Goode & Kuchuk's solution
n	current time level
n+1	advanced time level
P	phase pressure (psia)
P _r	reference pressure (psia)

xi

NOMENCLATURE (cont'd)

Pw	bottom hole flowing pressure (psia)
P _{wD}	dimensionless bottom hole flowing pressure (psia)
P _{limit}	modeled well pressure constraint (psia)
ΔP_{s}	pressure loss due to skin (psia)
PI _h	productivity index of the horizontal well
PInf	productivity index of horizontal well with no fractures
PIv	productivity index of the vertical well
q .	ĝ/ρ _o
\hat{q}	source density
Q	rate at standard conditions = qv (STB/d)
Q _{lim it}	modeled well production constraint
r _b	effective grid block radius (ft.)
Γ _e	drainage radius (ft.)
۲ _w	wellbore radius (ft.)
S	skin factor
S _d	skin from change in formation permeability around wellbore
S_m	van Everdingen mechanical skin
S_p	skin due to partial penetration of vertical well
S_R	skin resulting from partial penetration of horizontal well
$T_{x,y,z}$	transmissibility in x, y and z directions, respectively
TXF	transmissibility of fracture gridblock
TXR	transmissibility of reservoir gridblock
TXT	total transmissibility
ū	velocity field of the reservoir fluid (ft./s)
V	reservoir volume element (ft. ³)
WI	well index
x	distance between fracture and no-flow boundary
Xw	wellbore coordinate in x direction
X 0	coordinate measuring well center in x direction
X_f	fracture half length
X_{fd}	dimensionless fracture half length
Уѡ	wellbore coordinate in y direction

NOMENCLATURE (cont'd)

zwwellbore coordinate in z directionz0coordinate measuring well center in z direction

Greek symbols

β	anisotropy indicator = $\sqrt{k_h/k_v}$
δ	vertical distance between horizontal well and reservoir midpoint
η, α, θ, λ	coefficients of the polynomial correction term D
μ	viscosity (cp)
γ	pressure gradient (psi/ft.)
ρ	phase density
ρο	phase density at standard conditions
ф	porosity of the medium
ф <i>r</i>	porosity at the reference pressure

Chapter 1

1. Introduction

The productivity and hydrocarbon recovery benefits of horizontal wells, compared to their vertical counterparts are, by now, well established concepts. The unstimulated horizontal well can generate production rates of two to five times that of an unstimulated vertical well at similar pressure drawdowns. In addition, horizontal wells that intersect natural fractures dramatically increases reservoir contact area and, consequently, further increases the productivity and drainage efficiency.

Historically, horizontal wells have been less effective in thicker reservoirs (with thicknesses in the order of 500 ft. or more), reservoirs with low vertical permeability (relative to horizontal permeability) and in stratified reservoirs with impermeable shale barriers. The improvement of well completion and stimulation technology, however, is renewing enthusiasm for horizontal well applications in areas that were previously considered unqualified. In reservoirs of thick pay intervals, low permeability, having an overlying gas cap or perhaps underlying water, the exposure of the horizontal well can be increased substantially by inducing one or more hydraulic fractures. The horizontal well essentially acts as a production conduit, connecting multiple vertical fractures but, in some cases, can also contribute to production.

Giger et al¹ mentioned that productivity improvements of a horizontal well over a vertical well "will rarely be more than a factor of 5 except, of-course, in the case of fractured reservoirs". One year later Giger² stated that hydraulic fracturing would be "a way of synthetically creating heterogeneity in a reservoir. Therefore,

1

as soon as reliable methods of cementing horizontal wells are industrially available, the idea of hydraulically fracturing such wells will arise". The timing of this somewhat prophetic prediction is testament to how rapidly technology has developed.

With the advent of fractured horizontal wells, or unstimulated horizontal wells, for that matter, has come a host of analytical solutions, developed to predict the productivity of these wells, although too few include fractures. Unfortunately analytical solutions are not very versatile or even accurate, in many cases, for predicting the productivity of multi-fractured horizontal wells. The derivation of analytical solutions requires simplifying assumptions to make the task possible. The three dimensional flow problem is usually simplified by combining two dimensional flow patterns, generated from mapping functions with or without comparisons to electrical analogs. Much discussion and research is focused on drainage patterns, the effect of boundary conditions, anisotropy and even the effective wellbore shape (elliptical or circular) when introducing anisotropy. When analytical solutions do match or are modified to match results from electrical analogs, other analytical solutions or "production history", they invariably break down when considering sensitivities to input parameters or boundary conditions.

This may be an over simplification, however, regardless of how the analytical solutions were derived, prerequisites for their development are the underlying assumptions of reservoir parameters, wellbore and fracture configurations and boundary conditions. This increases the complexity of analytical solution derivations which is challenging and interesting from an academic standpoint but very rigid for the practicing reservoir engineer. Suffice it to say, the mathematical

basis of most analytical solutions developed to date is the topic of much conjecture and debate that leaves abundant room for improvement or perhaps alternatives.

Fortunately, along with horizontal well and stimulation technology, improvements have also been made in the area of reservoir simulation. The power and resolution enhancements made to the reservoir simulator allow for larger and more refined simulation models. The dynamics of fracture propagation, filtrate leak-off and even heat transfer can be modeled in the fracture and subsequently combined with the larger reservoir model. Simulation models are being used as the basis against which analytical solutions are tested. Rather than modifying an analytical solution that remains confined to particular assumptions, this study will endeavor to show how the simulation model can be used to generate a practical, versatile empirical solution that can be adapted to any conditions or reservoir parameters.

The derived empirical solution has been developed for the more common, no-flow boundary conditions. The method of development, however, can be applied to any boundary conditions. Simulation results of non-fractured horizontal wells are compared to some of the more commonly used analytical solutions. The simulation model is then extended to include increasing lengths of multiple fractures yielding productivity data as a function of increasing fracture length. The analytical solution for linear flow into a fracture, combined with third order polynomial "correction factors" can then be fit to the productivity curves to yield a more exact empirical relationship.

Chapter 2

2. Literature Review

2.1 Application of Fracturing in Horizontal Wells

Some of the earlier applications of multiple fractures in a horizontal wellbore involved extending the already existing natural fractures as well as inducing additional fractures. Stimulation work performed by Overbey et al³ on the RET #1 well, penetrating the Devonian Shale formation, in West Virginia, reveals how multiple-oriented, multiple fractures can be induced from an open hole, horizontal wellbore. Natural fractures were stimulated by inflating them with non-damaging fluid and then propping these fractures to maintain the enhanced flow capacity (i.e. standard fracturing procedure). Additional fractures were induced by subsequently increasing the injection rate.

Two important features can be learned from the work. First, use of a video camera survey and radioactive isotopes provided conclusive evidence of multiple fracture orientations that showed relative deviations of $\pm 15^{\circ}$. Secondly, multiple fractures were induced between external casing packers, placed in an open hole wellbore. For modeling purposes, this case study would introduce complications with the multi-oriented fractures and would also require special considerations for a wellbore that not only connected fractures but also contributed production.

A large percentage of technical and economic successes (Chevron recorded a 93% success rate at the 1995 SPE technical conference in Banff), for horizontal wells,

occurs in applications trying to avoid coning of an overlying gas cap or underlying aquifer, into the production interval. The reduced pressure drawdown of the horizontal well, compared to it's vertical counterpart, required to achieve comparable production rates, prevents or at least delays coning of gas and/or water. Thus, not only can productivity be increased but sweep efficiency is enhanced. The general idea in these applications is to keep the horizontal wellbore as far as possible from the two phase contacts. Hydraulic fracturing of these wells was therefore usually avoided.

Maersk Oil and Gas Co⁴., however, proved that multiple fractured horizontal (MFH) wells can also be applied in these cases. They design hydraulic fracture jobs for their horizontal wells in the North Sea Dan Field, so that fractures are confined within the oil column, between the gas cap and the 50% water saturation level of a long transition zone. Their horizontal well sections range in length from 1000 ft. to 3000 ft. and incorporate up to seven hydraulic fractures. At the time of presentation (Oct. 1990), the six MFH wells contributed 45% of the field's oil production. This field is also penetrated by 42 conventional deviated wells.

The Dan structure containing almost 2 billion barrels of oil in place, is located some 200 km west of the coast of Jutland, in the North Sea. Prior to the drilling of horizontal wells the anticipated recovery factor, of 30° API oil, in this 1.0 md permeability reservoir, was less than 7%. Although revised predictions of the recovery factor were not indicated, the application of multi-fractured horizontal wells was proven to be economically successful and technically practical (i.e. optimum method of increasing reservoir exposure from an offshore drilling platform).

5

Tight gas reservoirs are becoming increasingly popular candidates for multifractured horizontal wells. Accelerated production accompanied with more moderate recovery increases, pays for the initial capital expense, especially as horizontal drilling and stimulation costs continue to decline. Multi-fractured horizontal well technology has recently been applied to enhance productivity from a tight gas field located offshore from the Netherlands⁵. A horizontal well with two hydraulic fractures was completed in the tight (permeability = 0.2-1.0 md) Ameland East reservoir.

The Ameland East reservoir is a classic example of how a poor candidate for horizontal wells can yield substantially improved production when produced from a multi-fractured horizontal wellbore. The reservoir exhibits a "low ratio" of vertical to horizontal permeability rendering the non-stimulated horizontal well uneconomic. Simulation of vertical infill wells and various combinations of multi-fractured horizontal wells, combined with economic evaluations showed that the case of a horizontal well with two hydraulic fractures provided the best economic return. The actual productivity improvement of this well, over the horizontal well with no fractures, is estimated to be a factor of four with only a 30% higher cost.

2.2 Methods for Predicting Productivity

With the increasing use of fractured and multi-fractured horizontal wells it seems appropriate to expect a more accurate method of determining the potential productivity index enhancement of these wells. How a productivity index is calculated, with consideration for a range of variables (i.e. fracture height and length, well length, reservoir and fracture permeability, etc.), could influence the size of hydraulic fractures, the number of fractures in the horizontal wellbore or if in fact a horizontal well should be drilled. As mentioned previously, use of the available analytical solutions, for fractured or unfractured horizontal wells, could lead to errors if the limiting assumptions are not taken into consideration or overlooked.

There is a growing trend to marry numerical simulation technology with analytical solutions. Improvements can be made to existing analytical solutions by comparing their predictions to numerical simulation results. Economides et al⁶ used a simulator with a "flexible grid scheme" (i.e. does not follow standard cartesian orthogonality) to modify Joshi's solution in anisotropic permeability conditions. The original form, of one version, of Joshi's equation was:

$$q_{H} = \frac{2\pi k_{h} h \Delta P}{\mu B \left[\ln \left(\frac{a + \sqrt{a^{2} - (L/2)^{2}}}{L/2} \right) \right] + \frac{\beta h}{L} \ln \left(\frac{\beta h}{2r_{w}} \right)} \qquad \text{for } L \geqslant \beta h$$

where:

L = well length, a = large half-axis of elliptical drainage area, $\beta = \sqrt{k_h/k_v}$,

All other variables are defined in the nomenclature.

Economides et al changed the second logarithmic expression in the denominator of this equation, replacing $\beta h/2r_w$ with $\beta h/r_w(\beta + 1)$. The rationale for this change was based on Peaceman's equivalent wellbore radius (discussed in Chapter 4) in an anisotropic formation. Recognition of the need to modify the analytical solution, however, was based on numerical simulation results. Economides et al ran a number of cases showing deviations between numerical results and analytical

solution predictions. Once the cause of the deviation was identified, modifications to the existing analytical solution provided results that were closer to the simulation results. It is interesting to note that simulation results were also used, in the same paper, as the basis for development of a new analytical solution (providing even closer approximations of the numerical results).

In some cases it becomes impossible to apply a "quick fix" to an existing analytical solution. For example, non-symmetrical spacing of fractures, between no-flow boundaries, was modeled by Walker et al⁷. The assumption of symmetrically spaced fractures is usually not practical due to either mechanical conditions in the well or reservoir conditions. The study was carried out to optimize the configuration of a multi-fractured well in Mobil's tight gas Sohlingen field (northwest Germany). It was found that non-symmetrical distances to no-flow boundaries can create "dynamic drainage areas". Figure 2.1 shows how a horizontal well with evenly spaced fractures can create non-symmetrical no-flow boundaries. Addressing this behavior with analytical solutions or type curves would be very difficult if not impossible. For accurate production forecasting this multi-fractured well would require an empirical formula based on simulation results or at least a simulation model.

8

Fig. 2.1 Dynamic Drainage Areas - Horizontal Well with Six Fractures

9

2.3 Scope of this Work

This work models multiple transverse, hydraulic fractures, intersecting an open hole horizontal wellbore. The rationale for both of these features shall be explained currently. Recent model developments suggest that productivity improvements can be realized by selectively perforating the wellbore between fractures. The development of a mathematical model by Raghaven et al.⁸ shows how the effective conductivity of a multi-fractured well can be improved by these perforations. In the extreme case (i.e. complete open hole), it has already been shown how multiple fractures were implemented in open hole wells in West Virginia. This study will show how the modeling of a multiple fractured open hole wellbore allows for productivity predictions of any type of horizontal well completion, whether it be open hole, perforated liner or cased liner.

Numerous papers in the literature discuss the benefits of horizontal wells with transverse fractures as opposed to longitudinal fractures.^{6,8-13} Figure 2.2a and 2.2b shows the fracture orientation and stress distribution for transverse and longitudinal fractures respectively. Note that the vertical stress is usually greatest (hence the predominance of vertical fractures) and fracture orientation is always parallel to the maximum principal stress direction. Transverse fractures are generally preferred, allowing for multiple parallel fractures and affecting a larger drainage area. This type of fracture has a minimum contact area with the well bore and can therefore result in a large skin effect. Provided the fracture conductivity is high or matrix permeability is low, this skin effect is, however, minimal. Economides et al.⁶ concluded that a single, large conductivity fracture ($k_rw/X_rk = F_{CD}$) 20) would yield little productivity improvements over the case of a fractured vertical well. For most applications the matrix permeability will rarely

Fig. 2.2a Transverse Fracture in Horizontal Well

Fig. 2.2b Longitudinal Fracture in Horizontal Well

exceed 100 md, the maximum permeability modeled in this study. The type of fractures that have been modeled in this study are of infinite conductivity and are orthogonal to the wellbore, simulating the commonly sought after configuration.

Assuming the pay thickness and drainage area of any particular reservoir candidate, are established as well as can be expected and ideal fracture placement can be achieved (i.e. infinite conductivity), the parameters having the greatest influence on the economics of a multi-fractured horizontal well are 1) the number of fractures, 2) length of the fractures and 3) the in-situ reservoir permeability. This study will compare numerical results with analytical solutions for non-fractured horizontal wells after which the model will be expanded to include varying lengths of multiple fractures while also varying the permeability.

Chapter 3

3. Methodology

3.1 Preliminary Work

The methodology chosen to arrive at the final empirical solution for multi-fractured horizontal wells began with the duplication of previous work involving non- fractured horizontal wells. This preliminary work served the dual purpose of a) ensuring the model was set up correctly and was accurate (grid sizing, transmissibility multipliers, etc.) and b) revealing some subtleties that may have been overlooked or at least have not been noted in published analytical solutions.

More specifically, Gilman and Jargon¹⁴ compared simulation results of nonfractured horizontal wells to some commonly used analytical solutions, which this study successfully reproduces. Boundary conditions and anisotropic conditions are varied for both numerical and analytical solutions to check accuracy and consistency of the analytical solutions.

To check productivity predictions of the fractured horizontal well, the work of Karcher et al¹⁵ was duplicated. Fracture half lengths were varied revealing some interesting differences, in productivity predictions, between this work and that of Karcher et al's. Sensitivities were run on grid sizing to ensure these differences were duplicated when the grid resolution was increased. Once a "base case" and confidence in the simulation model was established, the model was expanded to include multi-fractured horizontal wells.

3.2 Development of Solutions for Fractured Horizontal Wells

The linear analytical solution for flow into a fracture, as presented by Mukerjee and Economides¹⁶, is used as the basis which, with subsequent modifications, will yield an empirical solution that more accurately predicts the productivity of multi-fractured horizontal wells. The method applied to arrive at this solution can be suited to any reservoir conditions and well/fracture configuration.

For any given application the parameters having the greatest affect on well productivity are usually the reservoir permeability and the effective placement of some length of hydraulic fracture. Numerical methods were therefore applied to these two variables to achieve a match between numerical results and the modified analytical equation. Regression analyses, utilizing third order polynomials, were applied to these two variables. This technique could, however, be applied to other (or any number of) variables to generate an empirical solution for the desired conditions.

Using a typical oil drainage pattern of 2000 ft. x 2000 ft. and assuming a net pay thickness of 100 ft. a library of numerical solutions was created for 1,3,5 and 7 transverse hydraulic fractures in a horizontal well with a 1650 foot lateral. This library can be used to predict productivity for permeability ranging from 0 md to 100 md and any fracture half length within the given drainage area.

14

3.3 Testing and Applications

An empirical solution based on numerical results that have been generated at specific points along an interval (permeability range or dimensionless fracture half length, in this case) does not necessarily guarantee the solution to be applicable along the entire interval. Productivity predictions with the empirical solution were therefore plotted against numerical results. Methods to enhance prediction accuracy by modifying the data range used in the regression analysis, were explored and utilized.

The empirical solution is used in an example that evaluates the economics of various multi-fractured horizontal well options. Finally, the empirical solution can be used to investigate predictability of productivity indices with anisotropic conditions. An example application is analyzed to illustrate this.

Chapter 4

4. Numerical Model for Fractured Wells (FRACWELL)

This section provides a brief description of the simulation model used in this study, some of the basic equations that are similar in most models and also shows how certain model features or modifications affect this work.

4.1 Model Description

FRACWELL is the reservoir simulation module of the FRACANAL system developed by Simtech Consulting Services Ltd. This model can be used as a stand-alone reservoir simulator or with one of two available fracturing modules. When used with the fracturing modules, the fracture configuration is generated independently and subsequently combined with the standard reservoir description to simulate well performance with stimulated conditions. The fracturing modules also provide the user with the option of circumventing the dynamic fracture generation and specifying pre-determined fracture parameters. This second option was used for the purposes of this study.

The FRACWELL model operates under single phase, isothermal conditions with either oil or gas used as a reservoir fluid. These fluid properties are entered by means of tables. Anisotropic rock properties are permitted and all rock (and proppant) properties can vary with effective stress. The model is 3-dimensional and has several options for defining the grid. A cartesian, point centered, grid is used throughout this study. Any number of wells may be entered, subject only to dimension limits and can be completed in any set of vertically or horizontally contiguous grid blocks for vertical or horizontal wells respectively. Rate and/or pressure limitations can be specified for each well and cross-flow (through the wellbore or fracture) can be simulated. The time step control is automatic or manual.

The program requires the following input data:

- 1) Reservoir grid (radial or cartesian) and dimensions
- 2) Reservoir rock and fluid data
- 3) Initial conditions
- 4) Well locations with rate and/or pressure limitations
- 5) Production history data
- 6) Boundary conditions (i.e. constant pressure or no-flow)

Output generated from the program includes:

- 1) Reservoir initialization (pressures, initial volumes, etc.)
- 2) Time step and iteration summaries
- 3) Well performance summaries
- 4) Pressure distribution
- 5) Pre-frac/post-frac performance comparisons

The FRACANAL system utilizes the more precise and versatile partially-decoupled method of modeling hydraulic fractures, the details of which will be provided in section 4.8, "Theory of Coupling". This system is capable of modeling fracturing dynamics, fluid leakoff (and cleanup) or varying proppant density with rock properties that vary with the effective stress of the reservoir. This model not only provides the resolution required to generate the empirical relationships for this study but also provides a good basis for future work.

4.2 Model Formulation

4.2.1 Review of the Basic Equations

The equations which describe single phase flow are briefly reviewed in this section. A more detailed presentation may be found in Reference 17.

The flow equation in this, as in all reservoir models, is obtained by combining an equation of state and an equation for the velocity field with the mass conservation equation.

4.2.1.1 Mass Conservation

For a single component existing in one phase, the mass conservation is expressed by:

$$-\nabla \bullet (\rho \vec{u}) = \frac{\partial}{\partial t}(\rho \phi) - \hat{q}$$

where:

 ρ = phase density \vec{u} = velocity field of the fluid

 ϕ = porosity of the medium

 \hat{q} = source density (+ve for source, -ve for sink).

4.2.1.2 Equation of State

The equation of state for a single phase isothermal system is simply the formation volume factor relation:

$$\rho = \rho_o / B = \rho_o b$$

where: B = formation volume factor (reservoir volume/ standard volume) b = reciprocal formation volume factor $\rho_o =$ phase density at standard conditions.

4.2.1.3 Velocity Field

The velocity field, defined by Darcy's law, is given as:

$$\vec{u} = -\frac{k}{u}(\nabla P - \gamma \nabla d)$$

where:

k = permeability of the medium

 μ = phase viscosity

P = phase pressure

 $\gamma =$ pressure gradient

d =depth (where downward direction is positive).

The velocity field can be modified to accommodate pseudo pressures (for the more compressible gas reservoirs) or a non-Darcy flow (turbulence) coefficient which is also more prevalent in gas flow. For hydraulically fractured wells, two types of non-Darcy effects occur. One is associated with the reservoir and the other with the fracture with the difference typically being several orders of magnitude. A detailed formulation of the velocity field with inclusion of pseudo pressures and non-Darcy coefficients is beyond the scope of this study. The capability to model high compressibility, and/or turbulent flow environments is mentioned to note possible areas for further study.

4.2.1.4 Single Phase Flow Equation

Substituting the equation of state and the velocity field into the mass conservation equation and dividing through by the reference density, gives the standard single phase flow equation, namely:

$$\nabla \bullet \frac{kb}{\mu} (\nabla P - \gamma \nabla d) = \frac{\partial}{\partial t} (b\phi) - q$$

where: $q = \hat{q}/\rho_o$

Each term in this equation is now in terms of rate at standard conditions per unit of reservoir volume. The left side of the equation represents the difference between flow rates flowing into and out of a reservoir volume element. The right side of the equation represents the rate of mass accumulation in the volume element. The first term, on the right side, represents compressibility effects and the second term represents injection or production of mass.

4.2.2 Special Features

Aside from the previously mentioned pseudo pressure and turbulence features, the FRACANAL system is capable of modeling the dynamics of the fracture propagation, the stress dependency of fracture transmissibility (includes changing fracture geometry and proppant permeability) and finally the leak-off and subsequent cleanup of the fracture fluid filtrate.

A user defined fracture can also be implemented as has been for this study and is useful for determining the effect of various fracture properties and geometries on reservoir performance.

4.3 Finite Difference Formulation

The spatial discretization of the single phase flow equation in semi-discrete form (i.e. continuous in time but not in space) is simply stated as:

$$\Delta_{\mathbf{x}}[T_{\mathbf{x}}(\Delta_{\mathbf{x}}P - \gamma\Delta_{\mathbf{x}}d) + \Delta_{\mathbf{y}}[T_{\mathbf{y}}(\Delta_{\mathbf{y}}P - \gamma\Delta_{\mathbf{y}}d)] + \Delta_{\mathbf{z}}[T_{\mathbf{z}}(\Delta_{\mathbf{z}}P - \gamma\Delta_{\mathbf{z}}d)] = V_{\overline{\partial t}}^{d}(b\phi) - Q \qquad (4.1)$$

where:

 $V = \Delta X \Delta Y \Delta Z$ is a reservoir volume element Q = qV is the rate at standard conditions $T_x = \frac{kb}{\mu} \frac{\Delta Y \Delta Z}{\Delta X}$ is the transmissibility in the x direction Δ_x = the finite difference operator in the x direction (i.e. $\Delta_x d = d_{x+\Delta x} - d_x$) where the central-difference approximation is used in space

... and similarly for subscripts y and z.

All remaining equations pertain to the x direction however are identical in the y and z directions. To complete the discretization of the mass conservation equation, the time derivative must be discretized and the time level of various pressure dependent quantities must be specified. The current (known) time level is represented by the superscript n, while the advanced (next unknown) time level is superscript n+1.

The finite difference representation of the flow terms and compressibility term of equation 4.1 will be discussed presently while the representation of the rate term shall be introduced in the discussion on boundary conditions.

4.3.1 Flow Coefficient

The flow terms have the form:

$$\Delta_{\mathbf{x}}[T_{\mathbf{x}}(\Delta_{\mathbf{x}}P - \gamma \Delta_{\mathbf{x}}d)] \tag{4.2}$$

where γ , the pressure gradient, like density, is a function of pressure. The transmissibility, T_x , is the product of a geometric factor and the mobility, k/μ which is also a function of pressure. The pressure dependence of the flow terms causes the flow equation to be non-linear in pressure. The non-linearity which is not severe to begin with, is removed by evaluating all coefficients at the known time level and keeping them constant over the time step. Thus the flow terms have the form with time level shown as:

$$\Delta_x[T_x^n(\Delta_x P^{n+1} - \gamma^n \Delta_x d)] \tag{4.3}$$

4.3.2 Compressibility Term

The compressibility term;

$$V^{\partial}_{\overline{\partial t}}(b\phi),$$
 (4.4)

can be expanded in finite difference form in many ways. Care must be taken to ensure that material balance is satisfied upon expansion (Reference 17). The appropriate expansion is:

$$\mathcal{V}[(b\phi)^{n+1} - (b\phi)^n]/\Delta t. \tag{4.5}$$

By addition and subtraction of equal terms, this can be rewritten as:

$$\frac{\nu}{M} [b^{n+1}(\phi^{n+1} - \phi^n) + \phi^n (b^{n+1} - b^n)]$$
(4.6)

The expansion of this equation, in terms of pressure derivatives of ϕ and b will be dealt with in Section 4.4.

4.3.3 Final Form of Discretized Flow Equation

The standard backward difference approximation for time discretization, more commonly referred to as the implicit method, is combined with gravity terms that are evaluated explicitly. Honoring material balance with a conservative expansion
of the accumulation terms and combining with the gravity and rate terms yields the final form of the discretized flow equation in the x direction, namely:

$$\Delta_x[T_x(\Delta_x P^{n+1} - \gamma^n \Delta_x d)] = V[(b\phi)^{n+1} - (b\phi)^n]/\Delta t - Q$$
(4.7)

The spatial discretization is implemented with a point-centered grid, defined by distances between grid centers. Grid block boundaries are established as the mid-point between grid points. As an example, the point-centered grid with block boundaries for a $4 \times 3 \times 3$ grid (i.e. 36 blocks) configuration is shown in Figure 4.1.

4.4 Expansion of the Accumulation Term

This section briefly introduces the discretization that was implemented into the FRACWELL model to ensure mass conservation properties.

The two differences of equation 4.6 must be expressed in terms of the pressure difference over the time step. For the porosity term, this is obtained from the usual assumption that the formation is only slightly compressible, i.e.,

$$\phi = \phi_r [1 + C_R (P - P_r)] \tag{4.8}$$

where:

 ϕ_r = porosity at the reference pressure P_r = reference pressure C_R = constant compressibility

٠.

. 25

The pressure difference is accounted for in the density term, with the following expansion:

$$b^{n+1} - b^n = \frac{b^{n+1} - b^n}{P^{n+1} - P^n} (P^{n+1} - P^n) = b^{\prime n+1} (P^{n+1} - P^n)$$
(4.9)

where b'^{n+1} is the derivative of the reciprocal formation volume factor with respect to pressure at the advanced time level. The compressibility term of equation 4.6, can now be represented as:

$$\frac{\nu}{M} [\phi_r C_R b^{n+1} + \phi^n b^{n+1}] (P^{n+1} - P^n)$$
(4.10)

The reciprocal formation volume factor, b, is unknown at the n+1 timestep and because it is a function of pressure, is also non-linear. This term is linearized by using the latest iterate value (at oth iteration) for each of these quantities, i.e.,

$$\frac{\nu}{M} [\phi_r C_R b^{(\nu)} + \phi^n b^{\prime(\nu)}] (P^{n+1} - P^n)$$
(4.11)

where:

$$b^{\prime(0)} = \frac{b^{(0)} - b^n}{p^{(0)} - p^n}$$
$$b^{(0)} = b^n$$
$$b^{\prime(0)} - b^{\prime n}$$

Upon convergence of the solution $\upsilon = \upsilon + 1 = n + 1$ so that equation 4.11 can be evaluated as:

$$[\phi_r C_R b^{n+1} + \phi^n \frac{b^{n+1}-b^n}{P^{n+1}-P^n}][P^{n+1}-P^n]$$

which reduces to:

$$[(\phi^{n+1} - \phi^n)b^{n+1} + \phi^n(b^{n+1} - b^n)] = [\phi^{n+1}b^{n+1} - \phi^n b^n]$$

This proves that mass conservation is maintained. It is this treatment of the accumulation term that allows for subsequent modifications (e.g., required for stress-dependent porosity treatment in the model).

4.5 Boundary Conditions

The rate at which fluid is produced or injected through the wellbore is a function of the grid block pressure. This pressure is included in the constant quantity expression known as the well index (WI). Fluid production is determined from:

$$Q = -\frac{b}{u}WI(P - P_w) \tag{4.12}$$

where P is the original reservoir pressure or pressure at the constant pressure boundary, under steady state flow conditions. The form of the equation assumes radial flow conditions with P_w representing the bottom hole flowing pressure and b and μ representing the reciprocal formation volume factor and viscosity of the fluid respectively. The well index, as represented in this equation, is comprised of the following constant parameters:

$$WI = c(2\pi)/\ln(\frac{r_b}{r_a}) + S \tag{4.13}$$

An alternate form of this equation will be applied to the development of the modified analytical solution for productivity of a multi-fractured horizontal well. The constant c is 0.001127 in field units, r_w is the wellbore radius, S is the skin and r_b is the effective grid block radius. The effective well block radius in isotropic permeability conditions, as defined by Peaceman¹⁸ is simply given as:

$$r_b = 0.14(\Delta x^2 + \Delta y^2)^{0.5} \tag{4.14}$$

When anisotropic permeability conditions are introduced into the reservoir model the expression for effective wellbore radius is expanded to:

$$r_{b} = \frac{0.28[(\frac{k_{y}}{k_{x}})^{0.5}\Delta x^{2} + (\frac{k_{x}}{k_{y}})^{0.5}\Delta y^{2}]^{0.5}}{(\frac{k_{y}}{k_{x}})^{0.25} + (\frac{k_{x}}{k_{y}})^{0.25}}$$
(4.15)

For horizontal wells the Δy and k_y terms are interchanged with Δz and k_z terms, respectively. Subsequent refinements to equation 4.15 (Ref. 18), to account for the close proximity of other wells and vertical or horizontal grid boundaries, were not necessary as the horizontal well modeled in this study is sufficiently isolated.

To model the production (or injection) history of a well and for forecasting, realistic production and/or pressure conditions, constraints must be specified at the wellbore. For a producing well;

$$Q \ge Q_{\lim it}$$
 and $P_w \ge P_{\lim it}$ (4.16)

The signs are reversed for an injection well. The value of Q is negative for production and positive for injection. Only one constraint prevails at any given time. In each of the simulation models used for this study a rate constraint was set at a level that would be violated (i.e. well not able to maintain set rate) early in the well's production history but not before pressure transients have reached the no-flow boundaries.

Violation of the rate constraint combined with a measurable pressure drop at the no-flow boundaries, ensures that unconstrained productivity of the well is being measured under pseudo-steady state flow conditions. Alternatively, a constant sandface pressure constraint could have been utilized with unconstrained well production beginning immediately. In either case, productivity indices can only be measured when the pressure transients have reached the no-flow boundaries.

At the reservoir edge, constant pressure boundaries can be implemented by setting the pressure in one row of grid cells and simply connecting the cells in the constant pressure plane with the appropriate (i.e. large) transmissibility multipliers. A transmissibility multiplier can also be applied to the contiguous grid blocks of the horizontal wellbore to ensure infinite wellbore conductivity is being modeled. The fracture model also provides for the inclusion of infinite conductivity.

4.6 Representation of Hydraulic Fractures

This section discusses the three "classical" methods that have been applied in the past for modeling hydraulic fractures which includes 1) modifying the well index in a given reservoir model, 2) refining the grid to model the true dimensions of the fracture or 3) representing the fracture with modified transmissibilities. The third

method, the more rigorous coupling technique for fracture and reservoir models, shall be discussed in more detail. The discussion in this section assumes that the fracture dimensions are known. The methods for computing the dynamic fracture propagation, in the context of a reservoir simulator are discussed in Section 4.7.

4.6.1 Increasing the Well Index

The work of Cinco Ley and Samaniego¹⁹ showed how the wellbore radius can be altered to model fractures in coarse grid blocks. The half length of an infinite conductivity fracture is equated to an "effective" wellbore radius by:

$$r_{we} = X_f / 2 = r_w e^{-S} \tag{4.17}$$

In the case of finite conductivity fractures, the effective radius can be plotted against dimensionless fracture conductivity, defined as:

$$F_{cd} = k_f b_f / k X_f \tag{4.18}$$

where k_f is the fracture permeability, b_f is the fracture width and k is the permeability of the reservoir matrix. The relationship between r_{we}/X_f and F_{cd} is shown in Figure 4.2 and shows how rapidly the fracture effectiveness decreases below $F_{cd} = 1.0$. Infinite conductivity fractures are, effectively, those fractures with a dimensionless conductivity in excess of 30.0.

For large reservoir models with limited resolution, the fracture can be simulated by modifying the effective well radius (substituting r_{we} for r_{w}) or skin in the well index

Fig. 4.2 Effective Wellbore Radius vs. Dimensionless Fracture Conductivity for Vertical Fracture

equation (Equation 4.13). If the fracture cannot be confined to the well block, additional source terms or "pseudo-wells" may be required in all blocks communicating with the fracture (Fig. 4.3a). In this case the linear transient flow regimes and perhaps the long term non-radial flow is poorly approximated by single or multiple radial flow source points. Another inherent assumption is that fracture storage and pressure drop are negligible.

4.6.2 Fracture in Separate Grid Blocks

A more rigorous approach would be to represent the fracture with actual dimensions, in a plane of grid blocks (Fig. 4.3b). Incorporating the real dimensions of the fracture into the model allows the user to specify intrinsic fracture permeability (k_f) and porosity (ϕ_f) and thereby model the early-time transients.

The degree of refinement, however, required for this approach is so large that numerical stability is a concern even for fully implicit, single well models. Most models incorporating this method must artificially increase the fracture width and compensate this with a reduction in fracture transmissibility. This negates the original objective of modeling the real fracture dimensions.

4.6.3 Modified Transmissibilities

A more practical approach for modeling fractures essentially combines independently generated fracture transmissibilities with the transmissibilities of the reservoir blocks in the fracture plane (Fig. 4.3c). The productivity enhancements

Fig. 4.3a Representation of a Fracture by a Well Index or by Source Terms

Fig. 4.3b Representation of a Fracture using True Dimensions and Properties

Fig. 4.3c Representation of a Fracture by Modified Transmissibilities

of the fracture are included while the negligible volume of the fracture is excluded. This approach has better stability when compared with the previous methods. The accuracy can be improved by decreasing the reservoir grid block size, which, when reduced to true fracture dimensions, represents the previous method of fracture representation.

One of the disadvantages of this method is in the necessity to interface the fracture model with the reservoir model. Aside from the various coupling (or partially- decoupled) methods, which will be discussed in the next section, combining these models introduces complications associated with the averaging of transmissibilities. On the other hand, this is also one of the main advantages of this approach.

The transmissibility of the fracture varies spatially to model the potentially different proppants and/or varying proppant concentrations. In most applications the fracture grid is finer than the reservoir grid. When the fracture grid is subdivided to include the proppant transport grid and subsequently combined with the reservoir grid, the resulting refined grid could appear as shown in Fig. 4.4. Transmissibilities from the subdivided fracture grid must then be combined with the reservoir grid using the appropriate averaging technique.

Referring to Fig. 4.5, the combining of fracture and reservoir transmissibilities in the FRACANAL system, can be described briefly as follows:

 Any part of the reservoir grid completely covered by the fracture, such as the area between i and i+1 in Fig. 4.5a, has a transmissibility determined from the harmonic average of the refined grid transmissibilities:

Fig. 4.4 Grid Refinement of the Fracture

Fig. 4.5a Combining Transmissibilities for Interval Fully Penetrated by Fracture

$$TXF_{i+1/2} = 1/[1/\sum_{m} TXF_{m}],$$
 (4.19)

after which the total transmissibility is determined by:

$$TXT_{i+1/2} = TXR_{i+1/2} + TXF_{i+1/2}$$
(4.20)

- 2) For the partially penetrating (i.e. into reservoir grid) fracture tip:
 - a) the same method applied in (1) is applied up to the fracture tip and
 - b) beyond the fracture tip only the reservoir transmissibility is present. The two parts (refer to Fig. 4.5b) are averaged harmonically:

$$TXT_{i+1/2} = 1/[1/(TXR_1 + TXF_{i+1/2}) + 1/TXR_2]$$
(4.21)

where:
$$TXR_1 = TXR_{i+1/2}(x_{i+1} - x_i)/(x_L - x_i)$$
 (4.22)
and $TXR_2 = TXR_{i+1/2}(x_{i+1} - x_i)/(x_{i+1} - x_L)$ (4.23)

The vertical transmissibilities are calculated the same way. Numerical errors associated with the tip block transmissibility calculation can be magnified in the vertical direction where the reservoir grid is often coarser than in the horizontal direction.

These discretization errors can be reduced by applying the appropriate weighting technique (modifying Equation 4.21) and by reducing Δx . It should be noted that further "smoothing" of the discretization error, in multiphase applications, can be achieved by also incorporating a mobility weighting (different in the fracture) to the geometric portion of the transmissibility calculation.

These "fracture tip oscillations" are more prevalent in fully coupled simulation models and can be eliminated in the partially-decoupled model (used for this study) when applying dynamic gridding techniques. In any case, care was taken during this study to ensure fracture tips closely coincided with the point centers of the reservoir grid thereby minimizing this discretization error.

4.7 Theory of Coupling

This section briefly discusses the theory as well as advantages and disadvantages of fully coupled and partially de-coupled models. The latter model is utilized in the FRACANAL system used in this study.

4.7.1 Fully Coupled Models

Models combining or coupling a reservoir simulator with a fracture simulator were originally developed for waterflood induced fractures²⁰ and subsequently extended to include hydraulic fracturing²¹. In a fully coupled model, fracture variables and dimensions are solved simultaneously with the reservoir variables.

Advantages of a fully coupled model include:

- 1) Rigorous coupling (communicating) of the two models.
- 2) Representing the fracture with separate blocks.
- 3) Accurate prediction of leak-off (i.e. multi-dimensional).

The associated disadvantages are:

- Numerical problems associated with the coupling of a fine fracture grid with the coarser reservoir grid. The flow normal to the fracture face requires finer detail in the grid dimensions.
- 2) Multiphase flow in the fracture causes stability problems.
- 3) Models are large and CPU intensive.
- Another problem is associated with partial penetration of the fracture tip. This causes oscillations in injectivity and consequently in the fracture growth rate.

Because of the size limitations and numerical problems, fully coupled models are not commonly used.

4.7.2 Partially-Decoupled Models

The time required to generate a fracture is relatively short compared to the productive life of a well and can therefore be treated as an instantaneous event. The end result or static fracture can then be incorporated into the reservoir model where the combined transmissibilities are determined as described in section 4.6.3.

Modeling the dynamics of the fracturing process is achieved in a similar fashion. The complete simulation of the fracture growth is generated from the fracturing model with timesteps that are unique to the fracture model. These timesteps are subsequently interpolated with reservoir model timesteps using a "fracture interface" module. Transmissibilities are intermittently calculated in the same manner as with the static fracture case. A schematic representation of how the fracture model is coupled with the reservoir model is shown in Fig. 4.6. Details of the dynamic fracturing technique are provided in Reference 22.

Advantages of the partially-decoupled models include:

- Maximizing efficiency by applying the appropriate spatial and time scales to fracture mechanics and reservoir flow.
- 2) The varying of fracture or reservoir characteristics can be readily achieved.
- Fracture model can utilize a dynamic grid which eliminates the previously described fracture tip problems.

The disadvantages of this approach include:

- A one dimensional representation of leak-off and possibly heat transfer is usually required.
- 2) Fracture is lumped with adjacent reservoir gridblocks.

 The productivity enhancement of the fracture is uncertain and therefore may not satisfy pre-specified well conditions.

The enhanced stability and versatility of the partially-decoupled model, especially for static fracture applications, makes this model a practical tool for detailed predictions of multi-fractured horizontal well performance. This work deals with propped fractures and therefore the assumption of static fractures is justified.

Chapter 5

5. Productivity Indices: Simulation Model versus Analytical Solutions

Productivity indices of unfractured horizontal and vertical wells, generated from a numerical simulation model, are compared to analytical solutions in this chapter. The purpose here is to approximate, as closely as possible, Table 1 of the work published by Gilman and Jargon¹⁴, comparing horizontal well productivity indices (non-fractured), from the simulator, to productivity indices predicted from the commonly used analytical solutions of Babu & Odeh²³, Goode & Kuchuk²⁴ and Joshi²³. A "base" is established after running sensitivities on the number of grid blocks, size of grid blocks, transmissibility multipliers, etc., required to yield results approximating these analytical solutions and simulation work by Gilman and Jargon. This work assesses the reliability of the simulation model in general, and establishes a basis from which specific empirical solutions can be generated for multi-fractured horizontal well configurations.

5.1 The Analytical Solutions

The three equations considered and conditions governing their use, are as follows:

5.1.1 Babu & Odeh's Solution

Babu & Odeh²³ presented the following equation for pseudo-steady state conditions:

$$PI_{h} = \frac{0.00708 L_{y} \sqrt{k_{x}k_{y}}}{\mu B[\ln(\sqrt{L_{x}h}/r_{w}) + \ln(C_{h}) - 0.75 + S_{R} + S_{d}]}$$

where:

 $\ln(C_h) = 6.28L_x/h\sqrt{k_z/k_x} \left[\frac{1}{3} - \frac{x_o}{L_x} + (\frac{x_o}{L_x})^2\right] - \ln(\sin 180^o z_0/h) - 0.5\ln[(L_x/h)\sqrt{k_x/k_x}] - 1.088$

with x_o and z_o as coordinates measuring the center of the well in the vertical plane, L_x and L_y as dimensions of the drainage area, orthogonal and parallel, respectively, to the horizontal well. The procedure for calculating the skin S_R is simple but long. Two different methods are described for calculating this skin depending on whether;

$$L_x/\sqrt{k_x} \ge 0.75b/\sqrt{k_y} \ge 0.75h/\sqrt{k_z}$$
 or $L_y\sqrt{k_y} \ge 1.33a/\sqrt{k_x} \ge h/\sqrt{k_z}$

The skin calculation, for either case, is comprised of two to three components that consider the degree of penetration and location of the well on the x-y plane. Sample calculations of S_R can be found in Babu & Odeh's paper.²³

Conditions:

 $L_x \geq 0.75h\sqrt{k_x/k_z}$

a minimum distance between the well and boundaries must be maintained: $\min(x_0, L_x - x_0) \ge 0.75 \sqrt{k_x k_z}$

5.1.2 Goode & Kuchuk's Solution

Goode and Kuchuk²⁴ provide methods for evaluating inflow performance of a horizontal well bounded by no flow boundaries on all sides or with a constant

pressure upper boundary (e.g. gas cap). Using normalized pressure, to provide a measure of the pressure drawdown required to flow a unit of volume per unit of time, the productivity index is expressed as;

$$PI = 7.08 \times 10^{-3} k_h h / \mu B_o (p_{wD} + S_m^*)$$

where:

 $S_m^* = (h/2L_{1/2})\sqrt{k_xk_z} S_m$ and S_m is the van Everdingen mechanical skin, described by

$$S_m = \left[2\pi L_{1/2} \sqrt{k_y k_z} / \mu Q\right] \Delta p_s$$

5.1.2.1 Pseudo-Steady State (PSS)

The general solution for the PSS pressure drop for no flow boundaries is as follows:

$$\mathbf{p}_{wD} = \frac{2\pi L_y}{L_x} \sqrt{\frac{k_x}{k_y}} \left(\frac{1}{3} - \frac{y_w}{L_y} + \frac{y_w^2}{L_y^2}\right) + \frac{2L_x^2}{\pi^2 L_{1/2}^2} \sum_{N=1}^{\infty} \frac{1}{N} \Xi_x^2 (1 + \xi) + S_{zD}$$

where:

$$S_{zD} = -\frac{h}{2L_{1/2}} \sqrt{\frac{k_x}{k_x}} \left\{ \ln[\frac{\pi r_w}{h} 2 \sin(\frac{\pi z_w}{h})] + \sqrt{\frac{k_x}{k_x}} \frac{h}{L_{1/2}} (\frac{1}{3} - \frac{z_w}{h} + \frac{z_w^2}{h^2}) \right\}$$

$$v = (v + 2)(x + y + 2)v$$

 $r_{\rm in} = (r_{\rm in}/2)(1 + \sqrt{k_{\rm i}/k_{\rm in}})$

$$\xi = 2e^{\alpha L_y} + e^{\alpha (L_y - y_w)} + e^{\alpha y_w}/1 - e^{\alpha L_y},$$

$$\alpha = -\frac{2n\pi}{L_x}\sqrt{\frac{k_x}{k_y}},$$

N = Fourier transform variable

and
$$\Xi_x = \frac{1}{N} \sin(N\pi \frac{L_{1/2}}{L_x}) \cos(N\pi \frac{x_w}{L_x}).$$

Conditions:

The skin expression, S_{zD} is valid for $\sqrt{k_x/k_z} (h/L_{1/2}) \ge 5$. When this is not the case, additional terms must be included (see Ref. 24) and are solved with reference to the provided table. If the well's length does not greatly exceed $h\sqrt{k_x/k_z}$, distances to the lateral boundaries must be large relative to distances to the vertical boundaries (usually the case).

5.1.2.2 Constant Pressure Boundary

For the constant pressure boundary case the solution is:

$$p_{wD} = \frac{h}{2L_{1/2}} \sqrt{\frac{k_x}{k_x}} \left\{ \ln[\frac{8h}{\pi r_w^*} \cot(\frac{\pi z_w}{2h})] + \frac{z_w - h}{L_{1/2}} \sqrt{\frac{k_x}{k_x}} \right\}$$

Conditions:

The equation for constant pressure boundary conditions is valid when $\sqrt{k_x/k_z} (h/L_{1/2}) \ge 2.5$. If this condition is not satisfied, an extended version of this equation (Ref. 24) must be applied.

5.1.3 Joshi's Solution

Joshi (Ref. 25) presented the following equation for steady-state conditions:

PI = ____

$$B\mu[\ln(\frac{a+\sqrt{a^2-0.25L_w^2}}{0.5L_w})+\frac{\beta h}{L_w}(\ln(\frac{0.5(\beta h)^2+2(\beta \delta)^2}{\beta hr_w})+S_d)]$$

where:

 $\beta = \sqrt{k_h/k_v}$ = measure of the reservoir permeability anisotropy,

 δ = vertical distance between the horizontal well and vertical mid-point of the reservoir,

and

 $a = 0.5L_w[0.5 + \sqrt{0.25 + (2r_e/L_w)^4}]^{0.5}$ = the large half-axis of the elliptical drainage area.

This equation applies for steady-state flow conditions and is valid only for $\beta h \angle L_w$ and $L_w \angle 1.8r_e$

5.1.4 Vertical Well Solution

The analytical solution for the productivity index of a vertical well is also required for comparisons between vertical well and horizontal well productivities. The solution, as indicated by Gilman and Jargon, is given as:

PI_v =
$$\frac{0.00708k_hh}{B\mu[\ln(3.1725\frac{\sqrt{L_xL_y/C_A}}{r_w}) + S_p + S_d - 0.75]}$$

There the shape factor, C_A is 30.883 and the skin effect due to partial penetration, S_p , is given by:

$$S_p = (\frac{h}{h_p} - 1)[\ln(\frac{h}{r_w}\beta) - 2]$$

5.2 Comparison of Analytical and Numerical Solution

5.2.1 Setup of Numerical Model

The horizontal well cases without hydraulic fractures were simulated with half elements of symmetry utilizing cartesian, point centered grids. Prior to running quarter elements of symmetry, required for the multi-fractured well cases, half element and quarter element solutions were compared to ensure consistency (i.e. ensure flux distribution along well is symmetrical which is indicative of infinite conductivity). For fractured horizontal wells the (single) fracture is placed on the x-z plane while the wellbore is placed parallel to the y-z plane. The well and fracture intersect at the origin of the x and y plane and the desired gridblock in the z direction, depending on the vertical placement of the wellbore (as shown of Fig. 5.1).

For an infinite row of equally spaced fractures, the mult-fractured well can simply be modeled with the appropriate element of symmetry including only one fracture. A realistic placement of a multi-fractured well however, is not usually symmetrical about the center of any convenient "element" of the drainage area. In fact, due to mechanical or reservoir conditions, spacing between fractures is rarely consistent. These configurations (simulated in this study) require transmissibility multipliers that are generated from the single fracture run and incorporated in the reservoir model at the desired fracture spacings. Care was taken to ensure transmissibility multipliers were modified to suit the different grid dimensions in which they were placed. If this is not done, erroneous production enhancement results and is readily detected.

Fig. 5.1 Placement of a Fracture Relative to the Reservoir Grid

Reservoir and wellbore dimensions are provided with each case in the discussion on the empirical formula derivation. For the most part the modeled drainage area is slightly less than a 1/4 section drilling spacing unit (i.e. 2000 ft. x 2000 ft.). Grid spacing along the y axis is uniform (50 ft./grid block) while spacing in the x direction progresses from smaller dimensions near the wellbore, for better resolution, and increases away from the wellbore. Grid block sizing in the x direction was implemented so that block centers of the reservoir model, coincided with fracture half lengths to avoid numerical oscillations at the fracture tip as previously discussed. Grid dimensions for the nine layers are also spaced with smaller grid dimensions near the centrally located wellbore and larger dimensions towards the top and bottom of the reservoir. Grid spacing and transmissibility multipliers can be found in the example data file in Appendix A, printed from the three fracture case. The corresponding "static" fracture properties, found in the interface template, are provided in Appendix B.

The PVT properties, applied to most simulation runs, represents a single phase fluid with small compressibility. The variation of the formation volume factor (~ 1.0 Bbl/STB) with pressure is recorded in the attached data file (Appendix A). Viscosity is 1.0 cp when modeling runs for the empirical formulation work and is changed to 4.0 cp when duplicating the work of Gilman and Jargon.

Infinite conductivity in the wellbore and fractures was implemented with transmissibility multipliers. The fractures are orthogonal to the wellbore. Reservoir petrophysical parameters remained consistent, applying a 10% porosity, 10% connate water saturation and 30% residual oil saturation at a reservoir pressure of 1500 psia.

As mentioned previously, in Chapter 4, most simulation runs, in this study, were run with pseudo-steady state (PSS) boundary conditions. To ensure these conditions prevailed when measuring the productivity index, boundaries were checked for measurable pressure drops at the corresponding timesteps. The productivity index is determined by subtracting sandface (bottom hole pressure) from the <u>average</u> reservoir pressure and dividing into the production rate. Measurements were taken one timestep after violation of the rate constraint (i.e. when rate is not constrained).

5.2.2 Re-Generating the Work of Gilman and Jargon

Table 5.1 compares productivity indices between a 400 ft horizontal and a vertical well with the indicated boundary conditions and anisotropies. Model dimensions and viscosity, duplicate those used by Gilman and Jargon and are as follows:

 $L_x = 2000$ ft (reservoir width) $L_y = 2000$ ft (reservoir length) Centered well

The simulation results of this work show that productivity indices predicted by the horizontal well model closely approximate those predicted by the analytical solution. Productivity indices predicted by Goode & Kuchuk's equation are quite comparable to indices from the simulation model. Indices predicted by the Babu & Odeh equation are slightly less accurate and indices predicted by Joshi's equation were either too low or too high depending on anisotropy. As noted by Gilman and Jargon, Joshi's equation is for steady state flow and isotropic conditions and therefore yields less accurate results in anisotropic reservoir

conditions. Determining a representative horizontal permeability in anisotropic conditons was not attempted, in this work, for productivity calculations using Joshi's <u>pseudo-steady state</u> solution. This solution²⁴ was, however, applied to isotropic conditions to yield a comparable productivity index of 5.21 Bbls/day/psi in the 100 md case.

Lw (ft)	Horizontal well direction	kx (md)	ky (md)	Boundary Condition	Analytical Solutions				Simulation Results	
					Plv	Babu & Odeh	Goode& Kuchuk	Joshi	Plv	PIh
400		100	100	no flow	2.22	4.82	5.18	3.92	1.99	4.87
400		100	100	const press	2.83		7.13		2.97	7.36
400	x	10	100	no flow	0.70	2.21	2.49	1.60	0.67	2.37
400	у	10	100	no flow	0.70	1.22	1.30	1.60	0.67	1.31
400	x	1	100	no flow	0.22	0.42	0.47	0.60	0.21	0.48
400	у	1	100	no flow	0.22	0.22	0.23	0.60	0.21	0.27

Table 5.1 - Comparisons of Simulator and Analytical Productivities

In any case, the horizontal well configurations dealt with thus far yield results that support the general observations made by Gilman and Jargon and, for this work, establishes a "base" from which hydraulic fractures may be initiated.

Chapter 6

6. Productivity Enhancement with Fractures

6.1 Single Fracture

Productivity enhancements of a horizontal well with increasing fracture half length has been investigated by Karcher et al.¹⁵, whose work is also referred to in Joshi's book.²⁵ Using a numerical finite difference model Karcher et al. compared the productivity of fractured and unfractured horizontal wells using steady state boundary conditions. They used a model of 1000 ft. by 1000 ft. area with a 125 ft. thickness and a centralized 400 ft. horizontal well. Our work, using the same configuration yields productivity index ratios that are similar to Karcher et al's when the dimensionless fracture length (2X/drainage width) is greater than 0.5 as shown on Fig. 6.1. The work of Karcher et al. yields an almost linear relationship of productivity enhancement with frac length. As indicated on Figure 6.1, our work shows that larger productivity enhancements, for a horizontal well with one orthogonal fracture, occur at the beginning of fracture initiation (i.e. up to a dimensionless fracture length of 0.05). This feature is enhanced as the reservoir thickness is increased. For example, for a 250 ft. thick reservoir, the productivity can improve two fold when the hydraulic fracture half length is less than 50 feet (in the 1000 ft. by 1000 ft. reservoir) and must extend some 300 feet from the center of the 400 foot horizontal well before the productivity is increased four fold. This feature becomes important when designing proppant amounts for the stimulation treatment required to achieve the desired fracture length.

Fig. 6.1 Productivity Enhancement of Fractured Horizontal Well

These results were duplicated when running sensitivities on the grid block sizes. Figure 6.2 shows the relationship of productivity with increasing fracture half length holds when the number of grid blocks is increased almost three-fold. Note that this feature is not necessarily in contradiction with the work of Karcher et al. since they apparently did not simulate cases with small fracture lengths.

Before considering multiple fractures, sensitivities on horizontal well length were modeled for a well with a single fracture in a 2000 ft. by 2000 ft. drainage area with a 100 foot pay thickness and permeability of 100 md. The results of this example, plotted on Figure 6.3, reveal that a horizontal well with 700 feet of lateral length has three times the productivity of a horizontal well with 100 feet of lateral, when neither well has a fracture (i.e. $X_{fd} = 0$). However the same 700 foot well has less than a 15% productivity improvement over its' 100 foot counterpart when each well has a single fracture with a fracture half length of 550 feet. This example illustrates three points:

- Horizontal wells in a homogeneous reservoir, having one fracture of reasonable length, need not be very long (i.e. fractured vertical well may be more cost effective).
- For fractured horizontal wells, any additional length of the wellbore achieves real returns in productivity only when the length is fully utilized to space multiple fractures (rather than from the wellbore itself).
- Pseudo-steady state boundary conditions change the shape of the productivity vs. X_{fd} curve such that the slope begins to decline at X_{fd} ≅ 0.3 (compare with steady state conditions modeled in Fig. 6.1).

Fig. 6.2 Productivity vs. Fracture Half Length with Refined Grids

6.2 Multiple Fractures - General Approach

The empirical relationship, determining productivity enhancement from fractures in horizontal wells, developed in this work, begins with the linear flow equation of a horizontal well with a row of infinite conductivity fractures, as proposed by Mukerjee and Economides.¹⁶ Assuming a spacing of 2x between fractures, the flow into each fracture is given by:

$$Q/\Delta P = 0.00127(2K_h)(2X_fh)/\mu Bx \qquad [Bbls/day/psi] \qquad (6.1)$$

where:

Q = flow rate

 $\Delta P =$ pressure drawdown

 K_h = horizontal permeability

h = net pay thickness

 μ = viscosity of reservoir fluid

B = formation volume factor

and x = distance to no-flow boundary = 1/2 the distance between fractures.

The inaccuracy of this equation originates with the condition that only linear flow occurs in the formation producing to the fracture(s). Simulation work reveals that productivity, when plotted against the fracture half length is in fact curvilinear with productivity at fracture ends (origin at the wellbore and tip at reservoir edge) established by the linear equation. All points on a straight line between these two end points is, at best, a line of best fit and usually a rough approximation. These observations hold for both constant pressure boundary conditions, for which this equation was intended and PSS conditions, for which this equation can be used as a basis. For most reservoirs with pay thickness' of 100 feet or less and wells

having only one orthogonal fracture, spanning half the reservoir width or less, this equation probably has the required accuracy.

The primary focus of this work is the development of a relationship between productivity index and fracture length for multi-fractured wells. The results of the simulation model show that the non-linearity of this relationship can be extreme. An empirical relationship has therefore been developed by modifying the straight line, linear flow relationship with third order polynomials that are a function of fracture half length and matrix permeability, within any given well/fracture configuration.

Simulation model dimensions, used in this study, are consistent for all multi-frac cases. The quarter element of symmetry used to model the single frac, three frac, five frac and seven frac well configurations are illustrated in Figure 6.4. To illustrate the versatility of the derived empirical equation, fractures are not necessarily spaced evenly throughout the drainage area. The simulation model, fortunately, can accommodate any demands placed upon it to mimic real configurations. The fracture spacing, for example, may be influenced by isolated heterogeneities (while not greatly affecting the overall homogeneous assumption), reservoir parameters such as permeability deterioration near the spacing edge, rock properties that offer less fracture containment, down structure water and/or a host of other considerations.

A convenient feature of the empirical equation, derived from simulation runs, is that consistent fracture spacing is not required. The empirical relationship is based on simulation output and can therefore be determined from any well/fracture configuration. Conversely, once established, the empirical relationship will not hold if considering a change in fracture spacing for the same number of fractures.

Simulation runs would have to be repeated to develop a new empirical relationship.

6.2.1 Errors of the Analytical Solution for Fracture Flow

The underlying assumption of the equation (6.1) used to determine flow into a fracture, presented by Economides and Mukherjee, is that fluid flows normal to the fracture face and is linear. Therefore the actual productivity should be higher. Although end effects may provide minimal contributions to the productivity of the fracture in tight reservoirs, the understatement of this equation is dramatic in even a 10 md reservoir. This feature can be illustrated using the reservoir model shown in Figure 6.4a with the same boundary conditions for which this equation is intended (i.e. constant pressure). As indicated in Figure 6.5, the productivity indices of the analytical and simulation models compare at fracture initiation and when the fracture fully penetrates the reservoir, however they can be almost an order of magnitude different in between. The productivity index at $X_{rd} = 0.05$ is shown to be 1.51 bbls/ psi from simulation results yet it is anticipated to be only 0.23 bbls/psi from the analytical solution. This example shows how the linear flow assumption greatly underestimates fracture end effects, especially for shorter fracture lengths when pseudo-radial flow predominates.

Fig. 6.5 Analytical vs. Simulation Results under Constant Boundary Pressure Conditions

6.2.2 First Order Correction of the Analytical Model

The remainder of this study will focus on no-flow boundary conditions with a wellbore, open to the reservoir, connecting multiple fractures, as depicted in Figure 6.6. The various fracture spacings are as previously mentioned and illustrated in Figure 6.4. The proposed model is representative of an open hole completion intercepting natural fractures or could be a perforated, cemented liner with multiple hydraulic fractures. Deviations, from the linear analytical solution become more complicated when applying this model. The reduced pressure support resulting from the omission of the constant pressure boundary magnifies the wellbore interference, especially when applying short fracture lengths. As an example, the productivity index plotted against fracture half length, for the 100 md case, yields the results illustrated on Figure 6.7. Note that for each multi-frac configuration, the analytical solution (modified for PSS conditions) is compared to simulation output. Based on these results the original equation (6.1) is modified as follows:

- a) The straight line linear flow equation is modified by assigning the productivity index in the non-fractured well case, as the intercept on the ordinate.
- b) The slope is then modified to match the end point (i.e. PI at $X_{fd} = 1.0$) of the curve generated from simulation results.

The linear flow equation, proposed by Economides and Mukherjee then becomes;

$$Q_{fh}/\Delta P = \left(\frac{0.001127(2K_h)(2X_fh)C}{\mu Bx} + PI_{nf}\right) \qquad [Bbls/day/psi] \qquad (6.2)$$

kxy = 1, 10, 50, 100 mdkz = 0.5 kxyh = 100 ft.a = b = 2000 ft.

u = 1cp rw = 0.25 ft. Horizontal Well Length = 1650 ft. Centered Well (vertically & horizontally)

Fig. 6.6: Orthogonal Fractures in Horizontal well

where PI_{nf} is the productivity index of the non-fractured well and C is the correction factor applied to the slope to account for PSS conditions. The correction factor will always be greater than 1.0 by virtue of the way productivity indices are calculated for PSS conditions. Under these conditions the bottom hole flowing pressure is subtracted from the average reservoir pressure to determine ΔP . The average reservoir pressure will always be less than the pressure at the spacing boundary, even under constant pressure boundary conditions, for which this equation was intended. The productivity index, calculated for PSS conditions, using this analytical solution, will therefore always be greater than for constant pressure boundary conditions (for early flow period).

Numerical simulation results, forming the basis of the empirical solution, is modeled using a open horizontal wellbore. If the wellbore were not contributing production as would be the case with a cemented liner, this model can still be adopted. Sensitivity runs show a maximum error of less than 5% when using the open wellbore configuration to model cemented liner applications. The procedure being developed to determine the productivity of multi- fractured horizontal wells can therefore be applied to any type of wellbore completion.

For the single fracture case the dimension "x" from the fracture to the nearest no-flow boundary, is the distance to the spacing boundary. For multiple fracture cases, this value has been arbitrarily chosen to represent the arithmetic average of the two distances to no-flow boundaries on either side of the given fracture. So, for example, in the three fracture case, depicted in Figure 6.4(b), the productivity index as a function of frac half length, under PSS flow conditions, would be calculated as follows:

$$q_{fh}/\Delta P = 1.23015 \times \left[\frac{2(100 \text{ md})(2X_f(100\text{ ft}))}{1.0\text{ cp}(250\text{ ft})} + \left(\frac{2(100 \text{ md})(2X_f(100\text{ ft}))}{1.0\text{ cp}(375\text{ ft})}\right) \times 2\right]/3 + PI_{nf}$$

The 375 foot distance in the denominator of the second term represents the arithmetic average of 250 feet and 500 feet, the distance to no-flow boundaries for the two outer fractures. The correction factor, in this case, is 1.23015 and has the same order of magnitude regardless of the number of fractures. Subtle differences in correction factors are to be expected for inconsistent fracture spacing between the mult-frac cases. Note that the equation determines the average contribution of each fracture by dividing by the number of fractures. The productivity gains as well as recognition of the varied spacing, for each fracture is accounted for with the aforementioned average distance to no-flow boundaries.

6.2.3 Final Empirical Solution

The above form of the modified Analytical equation (6.2) only represents, at best, a rough approximation of a "line of best fit". This is illustrated in Figure 6.7 where the modified analytical solution varies from a poor best fit, in the seven frac case, to an understatement of productivity for all other multi-frac cases. Here we develop a much more accurate representation by introducing higher order correction terms.

6.2.3.1 Third Order Polynomial Correction

The next step in developing a more "exact" empirical relationship is to multiply the current representation of the modified equation by an additional term, "D", that represents a third order polynomial and is a function of the fracture half length. This term is in the following form:

Fig. 6.7 Slope Adjusted Analytical Solution vs. Simulation Results

$$D = \eta + \alpha X_{fd} + \theta X_{fd}^2 + \lambda X_{fd}^3, \tag{6.3}$$

where η is unity in the non-fractured case and a constant for the fractured cases, regardless of fracture length and α , θ , and λ are coefficients which are a function of the matrix permeability. The value of η anchors the intercept on the productivity axis (ordinate) and depending on the developer's choice of methods for polynomial regression, should not deviate much from unity. In fact, for higher order polynomials this coefficient approaches unity. A third order polynomial was, however, chosen for the regression analysis for simplicity and the required accuracy. Also the initial "hump" ($X_{fd} \leq 0.05$) was omitted from the regression data to yield a better representation of the S shaped curve. When the regression analysis excludes the ordinate intercept, the curve is smoothed in a manner that yields a much closer fit to productivity index variations with fracture half length in the area of interest ($X_{fd} > 0.05$).

6.2.3.2 Optimizing Regression Analysis

Applying regression analysis to selective portions of the curve (or any curve) will require some form of accomodation to portions of the curve that were omitted. In this case the area of the curve between $X_{fd} = 0.0$ and $X_{fd} = 0.05$ requires a function in the following form:

$$\eta = (\frac{\eta_{0.05} - 1}{0.05}) X_{fd} + 1 \qquad \text{for } X_{fd} \le 0.05 \qquad (6.4)$$

where:

 $\eta_{0.05}$ is the η value at $X_{fd} \ge 0.05$

Note that the form of this function is simply a straight line between 0.0 and 0.05 dimensionless fracture half length. The productivity of fracture lengths in this range would require a finer resolution (i.e. $X_{fd} \langle 0.05 \rangle$).

Each of the coefficients, α , θ and λ in the D term, also represents a third order polynomial that is a function of the matrix permeability for each fracture configuration. For example, the case of seven fractures the coefficients are as follows:

$$\begin{split} \eta &= 1.01445\\ \alpha &= -2.7873 + 0.003921 * k - 2.0695E - 5 * k^2 + 5.79E - 8 * k^3\\ \theta &= 7.1272 - 0.018051 * k + 2.3149E - 4 * k^2 - 1.2394E - 6 * k^3\\ \lambda &= -4.5551 + 0.013063 * k - 1.87085E - 4 * k^2 + 1.0356E - 6 * k^3 \end{split}$$

The number of significant digits, used in the various coefficients preceding the matrix permeability terms, becomes important when dealing with reservoirs of higher permeability. The final form of the modified empirical equation is as follows:

$$q_{fh}/\Delta P = \left(\frac{0.001127(2K_h)(2X_fh)C}{\mu Bx} + PI_{nf}\right) * D \qquad [Bbls/day/psi]$$
(6.5)

where:

$$D = \eta + \alpha X_{fd} + \theta X_{fd}^2 + \lambda X_{fd}^3$$

and $\eta = (\frac{\eta_{0.05}-1}{0.05})X_{fd} + 1$ for $X_{fd} \le 0.05$, $\eta = \eta_{0.05}$ for $X_{fd} > 0.05$

A summary of all coefficients comprising the "D" and "C" terms, for each of the four multi-frac cases (one, three, five and seven), are provided in Table 6.1.

Term	Single frac	Three fracs	Five fracs	Seven fracs
"C" poly	2.3316-0.024836k+0.0002 6062k^2-1.2829e-6k^3	1.5514-0.011630k+0.000 21149k^2-1.2734e-6k^3	1.6721-0.015495k+0.0003 5024k^2-2.2240e-6k^3	1.5433-0.007390k+0.000 13432k^2-7.885e-7k^3
α poly	-0.1000+0.006324k+1.65 95e-5k^2-5.725e-7k^3	-0.6300+0.018444k-0.000 43036k^2+2.7348e-6k^3	-2.0236+0.027019k-0.000 65918k^2+4.2812c-6k^3	-2.7873+0.003921k-2.069 5e-5k^2+5.79e-8k^3
θ poly	1.6787-0.024161k+0.0001 6310k^2-6.078e-7k^3	2.5276-0.044078k+0.000 93111k^2-5.7816e-6k^3	5.4892-0.063846k+0.0014 6191k^2-9.3269e-6k^3	7.1272-0.018051k-2.3149 e-4k^2-1.2394e-6k^3
λ poly	-1.3556+0.017561k-0.000 15199k^2+6.836e-7k^3	-1.9785+0.026139k-0.000 51766k^2+3.1575e-6k^3	-3.6679+0.035429k-0.000 76575k^2+4.8053e-6k^3	-4.5551+0.013063k-1.870 85e-4k^2+1.0356e-6k^3
η	1.01445	1.0768	1.14853	1.17907
perm = 1 m	$d PI_{nf} = 0.7$			
С	2.307	1.54	1.657	1.536
α	-0.3402	-0.6257	-1.9972	-2.78339
θ	1.6547	2.4844	5.42678	7.10939
λ	-1.3382	-1.9529	-3.63325	-4.54225
k = 10 md	$PI_{nf} = 7.0$			
С	2.108	1.455	1.55	1.482
α	-0.28198	-0.49958	-1.81501	-2.75009
·θ	1.45279	2.1741	4.98758	6.96861
λ	-1.19452	-1.76574	-3.3854	-4.44217
k = 50 md	$PI_{nf} = 35.0$			
·C	1.580995	1.339498	1.495005	1.410995
α	-0.03134	-0.45557	-1.7854	-2.63573
θ	0.80242	1.92872	4.78581	6.64846
λ	-0.7721	-1.57103	-3.2102	-4.24024
k = 100 mc	$PI_{nf} = 69.7$			
C	1.171358	1.229986	1.401043 ·	1.358963
α	0.11185	-0.36811	-1.63222	-2.54422
θ	0.28579	1.64924	4.39683	6.39763
λ	-0.43585	-1.38373	-2.97726	-4.08407

Table 6.1: Coefficients for Empirical Solution:

Comparisons of multi-frac well configurations are shown in figures 6.8 through 6.11 for the 1 md, 10 md, 50 md and 100 md cases, respectively. In all cases, curves generated from the derived empirical relationship very closely approximates the productivity versus fracture half length relationship from simulation output. Note that when the slope of the empirical relationship reduced to a value equal to or less than zero, a zero slope was manually input. This would usually occur at a dimensionless fracture half length of 0.8 or greater for the 3, 5 and 7 frac cases. A more complex set of constraints (i.e. do not allow the derivative of the polynomial to be negative) could have been included in the derivation of the empirical equation. Considering that the solution would only improve in an area of lesser practical significance (i.e. $X_{rd} \ge 0.8$) where increasing the frac length provides minimal increases in productivity, the additional refinement of the correlation was not included.

6.3 Example Calculation

The following example will illustrate how readily the empirical relationship can be applied to predict productivity and economics of various well/fracture configurations. Suppose we are given spacing and reservoir parameters upon which the derived empirical relationship is based, i.e.:

> $\mu = 1.0 \text{ cp}$ $r_w = 0.1875 \text{ ft}$ h = 100 ft $B_o = 0.966$

a = 2000 ft (reservoir width)b = 2000 ft (reservoir length)Centered horizontal well of length 1650'

Fig. 6.8 Empirical Solution vs. Simulation Results for 1.0 md Case

Fig. 6.9 Empirical Solution vs. Simulation Results for 10.0 md Case

Fig. 6.10 Empirical Solution vs. Simulation Results for 50.0 md Case

Fig. 6.11 Empirical vs. Simulation Results for 100.0 md Case

Suppose also that a buildup test suggested the reservoir is homogeneous with in-situ permeability in the order of 10 md ($k_v / k_h = 0.5$) and that the containing stresses, above and below the formation of interest, are such that a hydraulic fracture half length of 700 feet ($X_{rd} = 0.7$) can be readily achieved. The well is to be completed with a cemented liner and management is inquiring as to what productivity improvements can be realized, over the open hole completion scenario, with one, three or five fractures. Management already suspects that implementing more than 5 fractures is too costly! Assume that the various fracture configurations are as depicted in Figure 6.4(a,b & c).

For the given configuration, the productivity index for the horizontal well, without fractures, is 7.0 Bbls/psi based on the reservoir model. This would be the productivity of the horizontal well with an open hole completion. The available analytical solutions yield a similar productivity, the calculation of which will currently be omitted for expediency.

- 6.3.1 Productivity Comparisons
- Recall; $q_{fh}/\Delta P = (\frac{0.001127(2K_h)(2X_fh)C}{\mu Bx} + PI_{nf})D$

where: $D = \eta + \alpha X_{fd} + \theta X_{fd}^2 + \lambda X_{fd}^2$

... for the single frac case;

$$C = 2.3316 - 0.024836(10md) + 0.00026062(10md)^2 - 1.2829e-6(10md)^3$$
$$= 2.108$$

and
$$D = 1.01445 - 0.28198(0.7) + 1.45279(0.7)^2 - 1.19452(0.7)^3$$

= 1.119

The productivity of a horizontal well with one fracture of half length equal to 700 feet in a cemented liner (i.e. $PI_{nf} = 0$) is:

$$q_{fh}/\Delta P = (\frac{0.001127(2*10)(2*700*100)2.108}{1.0*0.966*1000ft} + 0.0)1.119 = 7.71 \ bbls/day/psi$$

We can see that the productivity of a single fracture is only slightly greater than that of the open hole horizontal wellbore (no frac case = 7.0 bbls/psi) and probably would not justify the cost of fracing, let alone the cemented liner completion.

... for the three frac case;

$$C = 1.5514 - 0.011630(10md) + 0.00021149(10md)^2 - 1.2734e-6(10md)^3$$
$$= 1.455$$

and $D = 1.0768 - 0.49958(0.7) + 2.17410(0.7)^2 - 1.76574(0.7)^3$ = 1.187

The productivity of a horizontal well with three fractures of half length equal to 700 feet is:

$$q_{fh}/\Delta P = \left(\frac{0.001127(2*10)(2*700*100)1.455}{1.0*0.966*333.3ft} + 0.0\right)1.187 = 16.93 Bbls/day/psi$$

where the distance to no-flow boundaries, equal 333.3 ft, is an arithmetic average distance for the three fractures.

... for the five frac case;

$$C = 1.6721 - 0.015495(10md) + 0.00035024(10md)^{2} - 2.2240e-6(10md)^{3}$$

= 1.550
and D = 1.14853 - 1.81501(0.7) + 4.98758(0.7)^{2} - 3.38540(0.7)^{3} = 1.161

The productivity of a horizontal well with five fractures of half length equal to 700 feet is;

$$q_{fh}/\Delta P = \left(\frac{0.001127(2*10)(2*700*100)1.550}{1.0*0.966*200.0/t} + 0.0\right)1.161 = 29.39 \ bbls/day/psi$$

The horizontal well completed with cemented liner and five fractures is more than four times as productive than the horizontal well with an open hole completion, at time of PSS flow conditions.

6.3.2 Economic Evaluation

Economic evaluations have been made for the three multi-fractured well scenarios using the Petroleum Economics Evaluation Program (PEEP). To get a general perspective of the economic impact of the three cases, the following simplifying assumptions have been incorporated:

- Forecasting one year of production as the long term productivity is uncertain.
- Applying a 100 psi pressure drawdown to the well.
- Using a \$24 Cdn/Bbl oil price.

- Using capital costs of 2.0 MM\$ for drilling, completion and tie-in costs of a horizontal well and 250 M\$ per hydraulic fracture.
- Well operating costs = \$7000/well/mth (not including fluid processing).
- Gas production and associated NGL's have been ignored. This more than pays for any gas or oil processing costs at the Plant.
- Water production and associated costs have been ignored.
- The above capital and operating costs are representative of a horizontal well with a 1,650 ft. long horizontal lateral in a 10,000 ft. deep reservoir (perhaps the Swan Hills or Leduc formation of northern Alberta).

The net present value (at a 15% discount rate) for the single fracture, three frac and five frac cases are 366 M\$, 3.1 MM\$ and 6.7 MM\$. In case the productivity enhancement cannot be maintained for one year due to productivity decline, a more conservative six month period was also evaluated. For the one frac case, payout has not been achieved at the end of six months and 742 M\$ is still owing on the initial 2.25MM\$ investment. However, the three frac and five frac cases still yield net present values of 439 M\$ and 2.0 MM\$ respectively at the end of six months.

These evaluations show that fracture costs are relatively insignificant and can be recovered with accelerated production alone (i.e. enhanced recovery benefits have not been included). This assumes, of-course, that no fracture cost overruns occur and ideal fracture placement has been achieved. In other words, no skin damage of the fracture from filtrate invasion has occured, as per assumptions used throughout this study. Economic Summaries for the multi-frac example runs, in the one year production case, are included in Appendix D.

Chapter 7

7. Permeability Anisotropy

The generalized empirical solutions, developed in Chapter 6, apply to isotropic permeability (i.e. $k_x = k_y = k_z$). Some interesting features have been observed when introducing permeability anisotropy to the reservoir model. The empirical solution yields accurate predictions at the fracture end points (i.e. @ $X_{fd} = 0.0$ and $X_{fd} = 1.0$) but is poor in between. The changing productivity of the well and fracture, as the fracture length increases, is more extreme than the variations observed under isotropic conditions. A simple example will illustrate this point more clearly and also point out differences between the isotropic and anisotropic permeability cases.

7.1 Anisotropy Example

The reservoir model used is the same as the one modeled with isotropic conditions, i.e. a 1650 foot horizontal lateral centered in all directions with length and width dimensions of 2000 feet each and a thickness of 100 feet. The permeability in the i, j and k directions are 1 md, 100 md and 5 md respectively. When a horizontal well is drilled in anisotropic conditions with the intention of inducing multiple fractures, it is advantageous to place the well parallel to the high permeability direction (the direction of minimum horizontal stress). Thus the resulting orthogonal fractures, having more height than the wellbore, will maximize the area exposure normal to this high permeability direction. We have therefore assumed this orientation in the example.

7.1.1 Approximation of the Wellbore Productivity

Simulations for a single fracture case produced the results on Fig. 7.1. If we assume, for this example, that the unfractured wellbore behaves as a fracture, we can apply the correlation as follows:

The constants C and D, for a permeability of 1 md and frac half length of 825 feet is 2.307 and 1.086 respectively, yielding a productivity for the well of;

$$PI_{well} = \left(\frac{0.001127(2*1.0)(2*825*100)2.307}{1.0cp*0.966f^3/f^3*1000ft}\right) 1.1086 = 0.99 Bbls/day/psi$$

The productivity of the wellbore compares to simulation results (Figure 7.1) of 1.13 Bbls/psi. The wellbore, assumed to behave as a fracture, does not span the entire height of the reservoir and would therefore be expected to yield less production in the simulation model. The simulation model however shows higher productivity probably due to wellbore end effects and the fact that vertical permeability is still five times greater than the horizontal permeability (1 md), perpendicular to the wellbore thereby essentially emulating a vertical fracture.

7.1.2 Approximation of the Fracture Productivity

For the fully penetrating fracture case the constants C and D, for a permeability of 100 md and frac half length of 1000 feet is 1.1714 and 1.0866 respectively, yielding a total productivity of;

Fig. 7.1 Productivity vs. Xf in Anisotropic Permeability Conditions

 $PI_{total} = PI_{frac} + PI_{well}$

$$= \left(\frac{0.001127(2 \cdot 100 md)(2 \cdot 1000 ft \cdot 100 ft) 1.1714}{1.0 c p \cdot 0.966 ft^3 / ft^3 \cdot 1000 ft}\right) 1.0866 + 0.99 = 60.4 Bbls/day/psi$$

The simulation model yields a productivity of 63.5 Bbls/psi for this case and is now only 5% over empirical predictions (compared to 14% in the no frac case). The difference in productivity indices can be attributed to the fact that the empirical solution for the 100 md case was developed using a vertical permeability of 50 md.

7.2 Generalizing the Empirical Solution

The vertical permeability used in the previous example is 5 md which does not impede the linear flow into the fracture but does reduce the vertical component of radial flow into the wellbore. In any case, a close approximation of endpoints has been determined for this anisotropic case.

Productivity between dimensionless fracture length endpoints, requires some intuitive thought if not imagination. The initial hump, observed in isotropic conditions (Fig. 6.7), is not evident in anisotropic conditions as shown in Figure 7.1. The curve now shows productivity increasing slowly (shallow slope) until almost half the reservoir width is penetrated by the hydraulic fracture. Flow into the fracture tips is substantially reduced due to the low permeability parallel to the fracture face.

This suppressed productivity can best be illustrated with plan views of the spacing unit with 1) flow into a short fracture (Figure 7.2a) and 2) flow into a longer fracture (Figure 7.2b). These plan views show how a fractured horizontal well in anisotropic conditions not only displays distinct flow patterns but can generate altered pressure profiles. Pseudo-steady state conditions, identified with pressure drops at the boundaries, can still be readily detected however the "average" reservoir pressure used to calculate productivity indices now represents lumped interpretation of the more complex flow and pressure regimes. It is this method for determining the productivity index (i.e. using P_{avg}) that has the greatest influence on the productivity versus frac half length curve shape, in anisotropic conditions.

The short fracture produces from the small area, normal to the fracture face, more rapidly than from the larger area beyond the fracture tips. Upon reaching pseudosteady state flow conditions, the bulk of the drainage area still maintains a high reservoir pressure since flow along the low permeability direction has yet to replace production removed from the area normal to the fracture face. The productivity index, in this case, may include an inordinately high reservoir pressure and therefore falsely understate actual productivity. In the case of the longer fracture length, the pressure regime more closely approximates one found in isotropic conditions where the drainage area is more uniformly depleted. The primary difference, is that the final "hump" on the productivity curve does not exceed the straight line relationship as much in anisotropic conditions as in the isotropic case due to reduced production contributions from the fracture tips.

To confirm the intuitive thought process depicted on Figures 7.2a and 7.2b the pressure distribution for anisotropic conditions at 0.1 days and 60.0 days (Fig. 7.3 & 7.4 respectively) was compared to the same reservoir configuration with

isotropic conditions, at the same time (Fig. 7.5 & 7.6 respectively). It is interesting to note the pressure magnitudes as well as pressure distributions. Figure 7.4 clearly shows how the linear flow patterns in anisotropic conditions creates "blocked" pressure distributions. Also, the pressure near the wellbore is only half the pressure at the reservoir edge, after 60.0 days (of 200 Bbls/d production). The isotropic case, conversely, shows a pressure distribution that has a range of some 10 psia at 60.0 days. The average pressure used in the productivity index calculation is fairly representative of the pressure distribution for this case.

These anisotropic examples illustrate how caution must be exercised when attempting to generalize empirical solutions, based on a specific set of parameters and conditions.

Fig. 7.2a: Pressure Distribution with Small Fracture and Permeability Anisotropy

Fig. 7.2b Pressure Distribution with Large Fracture and Permeability Anisotropy

0155PLA 11.0 N SIMTECH CONSULTING SERVICES . d b-800 1995 TUES 22 RUG, 13.37.05

, SIMTECH CONSULTING SCRVICES INC DISSPLA 11.0 -d.b--30 TUES 22 RUG, 1995 11.03.32 E -

SIMTECH CONSULTING SERVICES INC DISSPLA 11.0 • d b-80 14.16.40 TUES 22 RUG, 1985 PLOT 1

Chapter 8

8. Conclusions and Recommendations

8.1 Conclusions

The following conclusions can be drawn from this study:

- Analytical solutions, for predicting productivity indices of fractured horizontal wells can overlook the subtleties that are more readily exposed from simulation modeling. The simulation model will accommodate and more accurately determine the consequences of changes in reservoir parameters and well/fracture configurations.
- 2) The accuracy of analytical solutions becomes dependent upon where one is within the range of the particular parameter(s) being considered. This is especially true if assumed boundary conditions are not met and do not expose the non-linear relationship between the fracture half length and productivity calculation.
- 3) An empirical equation was developed for predicting the productivity of a horizontal well with multiple fractures, based on a library of simulation results.
- 4) This work has provided a practical formula for engineering calculations that, when applied to any particular reservoir type and size, will accurately predict productivity indices for the desired isotropic permeability and well/fracture configuration.

- 5) The developed empirical solution can be used for general economic screening and optimization of fractured horizontal wells.
- 6) The numerical model used to generate the data base for the formula can be used to investigate effects of anisotropy, finite fracture conductivity, turbulence, stress dependent reservoir properties and many other variables.

8.2 Recommendations for Future Work

Given any particular set of reservoir parameters this technique of determining productivity for any desired well/fracture configuration can be applied with a host of other parameter sensitivities. These might include finite fracture conductivities, gas turbulence, skin damage, varying the fracture orientation (i.e. non-orthogonal), multi-phase flow or stress dependent reservoir properties.

The regression analysis, perhaps with higher (or lower) order polynomials could be applied to other parameters, in addition to permeability and fracture half length, to enhance the versatility of this technique. Similar numerical techniques, as have been applied in this study, could also be used to assess the longer term productivity of multi-fractured wells. This would be important for evaluating the economic viability of accelerated production and long term enhanced recovery features.

REFERENCES

- Giger, F.M., Reiss, L.H. and Jourdan, A.P.,: "The Reservoir Engineering Aspects of Horizontal Drilling," SPE 13024, Sept. 1984.
- Giger, F.M.,: "Horizontal Wells Production Techniques in Heterogenous Reservoirs," Middle East Oil Technical Conference and Exhibition, Bahrain, Mar. 1985.
- Overbey, W.K., Yost, A.B. and Wilkins, D.A.,: "Inducing Multiple Hydraulic Fractures from a Horizontal Wellbore," SPE 18249, Oct. 1988.
- 4. Conlin, J.M. and Hale, J.L.,: "Multiple-Fracture Horizontal Wells: Performance and Numerical Simulation," SPE 20960, Oct. 1990.
- Baumgartner, W.E., Nederlandse Aarodolie Mij., B.V., Shlyapobersky, J., Abou Sayed, I.S. and Jacquier, R.C.,: "Fracture Stimulation of a Horizontal Well in a Deep, Tight Gas Reservoir: A Case History From Offshore The Netherlands," SPE 26795, Sept. 1993.
- Economides, M.J., Deimbacher, F.X., Brand, C.W., and Heinemann, Z.E.,: "Comprehensive Simulation of Horizontal Well Performance," SPE 20717, 1990.
- 7. Walker, R.F., Ehrl, E. and Arasteh, M.,: "Simulation Verifies Advantages of Multiple Fracs in Horizontal Well," Oil & Gas Journal, Nov. 1993.

- Raghavan, R., Chen, C.C. and Agarwal, B.,: "An Analysis of Horizontal Wells Intercepted by Multiple Fractures," SPE/CIM/CANMET Paper No. HWC94-39, Mar. 1994.
- Economides, M.J., McLennan, J.D., Marcinew, R.P. and Brown, J.E.,: "Fracturing of Highly Deviated and Horizontal Wells," CIM Paper 89-40-39, 1989.
- Economides, M.J., McLennan, J.D., Brown, J.E. and Roegiers, J.,:
 "Performance and Stimulation of Horizontal Wells," World Oil, June 1989.
- 11. Leising, L.J. and Rike, E.A.,: "Underbalanced Drilling with Coiled Tubing and Well Productivity," SPE 28870, Oct. 1994.
- 12. Soliman, M.Y., Hunt, J.L. and El Rabaa, A.M.,: "Fracturing Aspects of Horizontal Wells," JPT, Aug. 1990.
- Nghiem, L.X., Sharma, R., Collins, D.A. and Jha, K.N.,: "Simulation of Horizontal and Deviated Wells in Naturally Fractured Reservoirs," CIM Paper 92-15, 1992.
- Gilman, J.R. and Jargon, J.R.,: "Evaluating Horizontal vs. Vertical Well Performance," World Oil, April 1992.
- Karcher, B.J., Giger, F.M. and Combe, J.,: "Some Practical Formulas to Predict Horizontal Well Behavior," SPE 15430, Oct. 1986.

- Mukherjee, H. and Economides, M.J.,: "A Parametric Comparison of Horizontal and Vertical Well Performance," SPE Formation Evaluation, June 1991.
- Aziz, K., and Settari, A.,: "Petroleum Reservoir Simulation," Applied Science Publishers, London & New York, 1979.
- Peaceman, D.W.,: "Representation of a Horizontal Well in Numerical Reservoir Simulation," SPE 21217, Feb. 1991.
- 19 Cinco-Ley, H. and Samaniego-V.,F.,: "Transient Pressure Analysis for Fractured Wells," JPT, Sept. 1981.
- 20 Hagoort, J., Weatherill, B.D. and Settari, A.,: "Modeling the Propagation of Waterflood-Induced Hydraulic Fractures," SPE Journal, pp. 293-303, 1980.
- 21 Settari, A.,: "Simulation of Hydraulic Fracturing Processes," SPE Journal, pp. 487-500, Dec. 1980.
- Settari, A., Puchyr, P.J. and Bachman, R.C.,: "Partially Decoupled Modeling of Hydraulic Fracturing Processes," SPE Production Engineering, Feb. 1990.
- 23. Babu, D.K. and Odeh, A.S.,: "Productivity of a Horizontal Well," SPE Reservoir Engineering, Nov. 1989.
- Goode, P.A. and Kuchuk, F.J.,: "Inflow Performance of Horizontal Wells," SPE Reservoir Engineering, Aug. 1991.
- Joshi, S.D.,: "Horizontal Well Technology," Pennwell Publishing Co., Tulsa, 1991.
- Aguilera, R. and Ng, M.C.: "Transient Pressure Analysis of Horizontal Wells in Anisotropic Naturally Fractured Reservoirs," SPE 19002, Mar. 1989.
- Babu, D.K., Odeh, A.S., Al-Khalifa, A.J. and McCann, R.C.,: "The Relation Between Wellblock and Wellbore Pressures in Numerical Simulation of Horizontal Wells," SPE Reservoir Engineering, Aug. 1991.
- Chaperon, I.,: "Theoretical Study of Coning Toward Horizontal and Vertical Wells in Anisotropic Formations: Subcritical and Critical Rates," SPE 15377, Oct. 1986.
- FRACINT Fracanal I/II Interface to a Host Reservoir Simulator, User Documentation, Version 5.2.1, SIMTECH Consulting Services Ltd., Dec. 1995.
- Giger, F.M.,: "Analytic Two-Dimensional Models of Water Cresting Before Breakthrough for Horizontal Wells," SPE Reservoir Engineering, Nov. 1989.

- Guo, G. and Evans, R.D.: "Inflow Performance and Production Forecasting of Horizontal Wells with Multiple Hydraulic Fractures in Low-Permeability Gas Reservoirs," SPE 26169, June 1993.
- Guo, G. and Evans, R.D.: "Inflow Performance of a Horizontal Well Intersecting Natural Fractures," SPE 25501, Mar. 1993.
- 33. Joshi, S.D.,: "Augmentation of Well Productivity with Slant and Horizontal Wells," JPT, June 1988.
- Liao, Y. and Lee, W.J.,: "New Solutions for Wells with Finite-Conductivity Fractures Including Fracture-Face Skin: Constant Well Pressure Cases,"
 SPE 28605, Sept. 1994.
- 35. Nghiem, L.X., Forsyth, P.A. and Behie, A.: "A Fully Implicit Hydraulic Fracture Model," JPT, 1984, pp. 1191-98.
- Raghavan, R. and Joshi, S.D.,: "Productivity of Multiple Drainholes or Fractured Horizontal Wells," SPE Formation Evaluation, Mar. 1993.
- 37 Ryskin, G. and Leal, L.G.,: "Orthogonal Mapping," Journal of Computational Physics 50, 71-100, 1983.
- 38. Settari, A. and Price, H.S.,: "Simulation of Hydraulic Fracturing in Low-Permeability Reservoirs," SPEJ, April, 1984, pp. 141-152

- 39. Suprunowicz, R. and Butler, R.M.: "Discussion of Productivity of a Horizontal Well," SPE Reservoir Engineering, Nov. 1992.
- Suprunowicz, R. and Butler, R.M.: "The Choice of Pattern Size and Shape for Regular Arrays of Horizontal Wells," JCPT, Jan. 1992, Volume 31 No. 1 pp. 39-44.

APPENDIX A: Data File (3 Frac Case) of Reservoir Model

FILE: Multiple Fracture (3d) case Low compressibility, Pseudo-steady state boundary conditions NOECHO · 0 1 1 INIT 0 1 . + COM X + ۸ ٨ ٨ ۸ COM ^ '-- PROD. PLOT/FILE; 0=NO; 1=PLOT ONLY COM COM 2=PLOT AND GRAPHICS (ECON) FILE 3=PLOT AND LOTUS FILE COM 4=PLOT AND GEP PRODUCTION FILE COM 5=AS IN 4 + GEP BUILDUP FILE COM --O=SINGLE PASS ONLY; 1=WITH AND WITHOUT FRACTURE COM -->=0WELL NUMBER FOR WHICH SUMMARY IS PRINTED; -1=NO SUM COM --O=METRIC; 1=OILFIELD UNITS COM --O=OIL RESERVOIR; 1=GAS RESERVOIR COM -- 'INIT' KEYWORD OR 'REST' KEYWORD COM , COM COM COM * SIMTECH CONSULTING SERVICES LTD * COM ÷ FRACWELL TEMPLATE COM VERSION 4.0 COM 91-03-03 COM + + ***** COM COM COM *** 4.3.1 INITIALIZATION CONTROL DATA 1 - PROBLEM SIZE *** COM COM --NUMBER OF GRID BLOCKS IN X OR R DIRECTION ,--NUMBER OF GRID BLOCKS IN Y OR THETA DIRECTION COM COM COM --NUMBER GRID BLOCKS IN Z DIRECTION , -- NUMBER ENTRIES IN PVT TABLE COM сом v Ŵ - * COM * - -9 11 23 21 COM *--COM *** 4.3.1 INITIALIZATION CONTROL DATA 1 - GEOMETRY SPECIFICATIONS *** COM COM --O=CARTESIAN COORDINATES; 1=RADIAL COORDINATES COM --0=ORTHOGONAL GRID; 1=NONORTHOGONAL GRID ,--0=GRIDS SAME SIZE(UNIFORM); 1=IRREGULAR; 2=GEOMETRIC COM COM -. 0=HOMOGENEOUS RESERVOIR; 1=HETEROGENEOUS; 2=LAYERED COM --O=ELEMENT OF SYMMETRY; 1=MODEL IS FULL FIELD COM ,--GRID TYPE IN Z DIRECTION; 0=POINT; 1=BLOCK COM ú COM v Ŵ Ŵ ٦7 COM * -+ -- * 0 0 1 0 0 1 - * - -- + COM *-. . COM *** 4.3.1 INITIALIZATION CONTROL DATA 1 - OPTION SPECIFICATIONS *** COM COM -- KEY FOR STRESS DEPENDENT RESERVOIR PROPERTIES; 0=NO; 1=YES COM --KEY FOR TURBULENCE; 0=NO; 1=YES COM --KEY FOR WELLHEAD PRESSURE CALCULATION; 0=NO; 1=YES ,--KEY FOR RELATIVE PERM AS A FUNCTION OF TIME; 0=NO; 1=YES ,--NUMBER OF POROUS MEDIA; 0,1=SINGLE POR; 2=DOUBLE POR COM COM COM COM Ŵ V v Ŵ V - * * - - - * - - - * - -COM 0 0 0 0 0 COM *--COM COM *** 4.3.1 INITIALIZATION CONTROL DATA 1 - OUTPUT CONTROLS *** COM 0=PRINT AREAL PLANES; 1=CROSS-SECTIONAL PLANES OF 3-D ARRAYS COM --1=PRINT GRID ARRAYS; 0=NONE ,--2=PRINT ALL ROCK PROP ARRAYS; 1=PRINT PV + TRAN ARRAYS; 0=NONE COM COM --1=PRINT INITIAL RESERVOIR CONDITION ARRAYS; 0=NONE COM ν COM Ŵ Ŵ v COM * -* - + + 0 1 0 0 COM * -- * -- - * - - - * COM COM *** 4.3.2 INITIALIZATION GRID DATA *** COM

COM TABLE FOR WELL SPACING DATA ASSUMING SQUARE AND 1/4 ELEMENT COM COM . COM ACRES FEET METRES WELLS/SECTION 2640 COM 640 804.7 1 COM 569.1 2 320 1867 402.3 4 COM 160 1320 80 933 284.4 8 COM 16 40 660 201.2 COM COM 20 32 467 142.3 COM *** CARTESIAN GRIDS *** COM COM *** OPTION 0 - UNIFORM GRID *** COM (use for Cartesian Grid only) COM COM , - TOTAL GRID LENGTH Y DIRECTION COM , -- TOTAL GRID LENGTH X DIRECTION COM ,--TOTAL GRID LENGTH Z DIRECTION V COM COM V ý m/ft COM m/ft m/ft COM ----- |----- |----- | COM COM ----- |------ |------ | COM *** OPTION 1 - IRREGULAR GRID (SPECIAL CASES ONLY) *** COM COM (use for Cartesian Grid only) COM ---ARRAY OF VALUES SPECIFYING DISTANCES BETWEEN GRID POINTS X DIRECTION COM. COM (number of values equals number of grid intervals in x direction) COM V COM <----- m/ft -----TOTAL = 1000 FTCOM 10. 10. 35. 20. 100. 100. 5. 5. 30. 30. 100. 100. $\begin{array}{cccc}
 & 2 & & 3 \\
 & 2 & & 3 \\
 & 10 & & 20 \\
 & 100 & & 100 & & 1
\end{array}$ 10. 10. 100. 100. COM COM ,---ARRAY OF VALUES SPECIFYING DISTANCES BETWEEN GRID POINTS Y DIRECTION COM | (number of values equals number of grid intervals in y direction) сом v COM <----TOTAL = 1000 FTCOM 50. 50. 50 50 50. 50. 50. 50. 50. . s. 50. 50. 50. 50. 50. 50. 50. 50. 50. 50. 50. 50. FORM HEIGHT = 100 FT COM 2.25 27. 6. 2.25 1.5 6. 14. 14. 27. COM *** OPTION 2 - GEOMETRIC GRID *** COM (use for Cartesian Grid only) COM COM ,--TOTAL GRID LENGTH IN THE X DIRECTION COM | ,--SIZE OF INTERVAL NEAREST ORIGIN COM V V m/ft COM m/ft COM СОМ -----|-----| COM --TOTAL GRID LENGTH IN THE Y DIRECTION СОМ ,--SIZE OF INTERVAL NEAREST ORIGIN V COM сом v COM m/ft m/ft COM -----|------| COM COM -----|------| COM СОМ ,---ARRAY OF VALUES SPECIFYING DISTANCES BETWEEN GRID POINTS Z DIRECTION COM V (for one block use gross thickness of reservoir) ----- m/ft -----COM <---

COM -----COM COM COM *** RADIAL GRIDS *** COM *** OPTION 0 - UNIFORM GRID *** COM (use for Radial Grid only) COM COM COM -- TOTAL GRID LENGTH R DIRECTION , -- TOTAL GRID ANGLE THETA DIRECTION COM , -- TOTAL GRID LENGTH Z DIRECTION COM Į V , -- INNER WELL RADIUS COM COM V Ŵ 37 m/ft COM m/ft m/ft degrees ------COM COM COM COM COM *** OPTION 1 - IRREGULAR GRID (SPECIAL CASES ONLY) *** COM (use for Radial Grid only) COM --ARRAY OF VALUES SPECIFYING DISTANCES BETWEEN GRID POINTS R DIRECTION COM (number of values equals number of grid intervals in r direction) COM COM V COM <------- m/ft ------COM COM ---ARRAY OF VALUES SPECIFYING ANGLES BETWEEN GRID POINTS THETA DIRECTION COM COM | (number of values equals number of grid intervals in theta direction) COM V COM <-------- degrees COM COM COM , -- INNER WELL RADIUS COM V COM m/ft COM -----COM COM ----| COM ,---ARRAY OF VALUES SPECIFYING DISTANCES BETWEEN GRID POINTS Z DIRECTION COM СОМ (number of values equals number of grid intervals in z direction) COM V COM <----> COM COM *** OPTION 2 - GEOMETRIC GRID *** COM COM (use for Radial Grid only) COM --TOTAL GRID LENGTH IN THE R DIRECTION ,--SIZE OF INTERVAL NEAREST ORIGIN COM COM ,--INNER WELL RADIUS COM COM V Ŵ COM m/ft m/ft m/ft COM COM COM -----|-----|------| COM ---ARRAY OF VALUES SPECIFYING ANGLES BETWEEN GRID POINTS THETA DIRECTION COM ļ (number of values equals number of grid intervals in theta direction) COM COM V COM <---····· degrees ····· COM COM ---ARRAY OF VALUES SPECIFYING DISTANCES BETWEEN GRID POINTS Z DIRECTION COM (number of values equals number of grid intervals in z direction) COM |

COM V ----- m/ft -----COM <---COM -----COM COM *** POINT DEPTHS - GROUP 2 *** COM COM *** OPTION 0 - ORTHOGONAL GRID *** COM COM --DEPTH TO CENTRE PAY OR TOP OF (1,1,1) BLOCK FOR MORE THAN 1 LAYER , --SINE OF X DIRECTION DIP сом , COM --SINE OF Y DIRECTION DIP COM COM V v COM m/ft v COM ----- |----- |----- | Ο. 0. 5000.0 COM ----- |------ |------ | COM *** OPTION 1- NONORTHOGONAL GRID (DETAILED STUDIES ONLY) *** COM COM ---ARRAY OF VALUES SPECIFYING DEPTHS OF EACH GRID BLOCK COM COM (entries needed for all grid blocks read in rows of number of intervals in x direction + 1 COM 1 for purposes of block numbering x increments fastest then y then z) COM V COM <-----COM COM COM *** 4.3.3 INITIALIZATION ROCK DATA *** COM COM *** ROCK COMPRESSIBILITY - GROUP 1 *** COM COM --REFERENCE PRESSURE FOR ROCK COMPRESSIBILITY COM . - RESERVOIR ROCK COMPRESSIBILITY COM COM NOTE: v If properties are stress-dependent and the res. COM V COM kPa 1/kPa rock compressibility is non zero then the porosity reduction factors read in SECTION 4.3.5 will be 1/psi COM psia COM ----- ---ignored and a table will be constructed internally. 14.7 0.0000048 - - - - - - - - [COM -----COM COM *** RESERVOIR PROPERTIES - GROUP 2 *** COM COM *** OPTION 0 - HOMOGENEOUS RESERVOIR *** COM COM -- ABSOLUTE POROSITY FRACTION COM COM -- ABSOLUTE PERMEABILITY X-DIRECTION COM -ABSOLUTE PERMEABILITY Y-DIRECTION -- ABSOLUTE PERMEABILITY Z-DIRECTION COM -RELATIVE PERMEABILITY OF COM COM HYDROCARBON @ Sw --INSITU WATER COM COM SATURATION Sw COM ý COM ý ν COM V mð md md fraction fraction . - - - - - - - | - - - - - - - | COM -----25.0 50.0 50.0 1.0 0.1 0.1 COM -- - - - - - - - | ----| - - - - - - - - - - - - - - - - - - | - - - - - - - | COM COM *** OPTION 1 - HETEROGENEOUS *** COM COM COM ARRAYS FOR POROSITY(fraction) ,kx,ky,kz(md) (8F10.0) ARE EACH PRECEEDED COM BY THE FOLLOWING KEY WORDS: CON - CONSTANT VALUE FOR PERMEABILITY ie value on next card X - PROPERTY VARIES IN X-DIRECTION ie i-values on card(s COM COM ie i-values on card(s) -PROPERTY VARIES IN Y-DIRECTION ie j-values on card(s) COM Y - PROPERTY VARIES IN Z-DIRECTION 7. ie k-values on card(s)

- PROPERTY VARIES BLOCK BY BLOCK

read i no. on set of card(s)

COM

COM

XYZ

R - PROPERTY VARIES IN R-DIRECTION ie i-values on card(s) THET- PROPERTY VARIES IN THETA-DIRECTION ie j-values on card(s) RTZ - PROPERTY VARIES BLOCK BY BLOCK read i no. on set of card(s) COM COM COM COM key COM POROSITY ARRAY (repeated for kx,ky,kz arrays) FUNDELLI ANIGI (LEPERCEU LUI AA, KY, KZ ALLAYS) COM COM , -- RELATIVE PERMEABILITY TO HYDROCARBON AT INSITU WATER SATURATION COM | , -- INSITU WATER SATURATION Sw ý. COM V COM fractions СОМ -----| COM СОМ -----|-----| COM COM *** OPTION 2 - LAYERED RESERVOIR *** COM COM ,--LAYER ABSOLUTE POROSITY FRACTION COM ,--LAYER AVERAGE HORIZONTAL PERMEABILITY , -- LAYER AVERAGE PERMEABILITY Z-DIRECTION COM COM COM Ý Ý COM COM V md md СОМ -----|-----|-----| (provide one card for each layer) COM COM СОМ -----|-----|------| COM --RELATIVE PERMEABILITY TO HYDROCARBON AT INSITU WATER SATURATION COM COM | ,--INSITU WATER SATURATION SW COM V V COM V COM fractions СОМ -----| COM СОМ -----|-----| COM *** 4.3.4 DUAL POROSITY DATA *** COM (only if NMEDIA = 2) COM COM ,--OMEGA (FRACTURE TO TOTAL POROSITY RATIO) --LAMBDA (INTER-POROSITY FLOW COEFFICIENT) COM , -- KAPPA (FRACTURE TO TOTAL PERMEABILITY RATIO) V COM COM Ý COM V COM СОМ -----і COM COM *** RESERVOIR MODIFIERS - GROUP 3 *** COM COM DATA 1 - REGIONS TO BE MODIFIED COM COM ----LOWER X-DIRECTION INDEX I1 COM , -- UPPER X-DIRECTION INDEX 12 COMLOWER Y-DIRECTION INDEX J1 , -- UPPER Y-DIRECTION INDEX J2 COŃ . COM ,--UPPER Z-DIRECTION INDEX K1 COM COM V COM V v v v . _ * _ . . . * - - . * - - - * * - -COM 11 11 1 1 1 1 СОМ ----- - - - -- - | 0.0 1.0 1.0 0.0 1.0 15 11 1 1 2 11 0.0 1.0 1.0 49.40 1.0 16 16 11 11 1 1 0.0 1.0 1.0 1.0 13.58 17 23 11 11 1 1 0.0 1.0 1.0 1.0 1.0 2 2 1 1 11 11 97.80 2 0.0 1.0 1.0 1.0 2 15 11 2 11 97.80 49.40 1.0 1.0 1.0

16 16	11	11	12	2	1 0	1 0	
17 23	11	11	2	2	1.0	1.0	
1.0 1 1	$1.0 \\ 11$	11	1.0	3	1.0	1.0	
0.0.	1.0	11	97.80	3	1.0	1.0	
49.40	1.0		97.80	5	1.0	1.0	
16 16 16 13.58	$11 \\ 1.0$	11	1.0	د	1.0	1.0	
17 23 [·] 1 0	11	11	3 1.0	3	1.0	1.0	
1 1	11	11	4	4	1 0	1 0	
2 15	11	11	4	4	1.0	1.0	
49.40 16 16	1.0	11	97.80 4	4	1.0	1.0	
13.58 17 23	1.0	11	1.0	4	1.0	1.0	
1,0	1.0		1_0	-	1.0	1.0	
0.0	1.0	71	97.80	5	1.0	1.0	
2 15 49.40	$11 \\ 1.0$	11	5 97.80	5	1.0	1.0	
16 16	$11 \\ 1 0$	11	10	5	1.0	1.0	
17 23	11	11	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	5	1 0	1 0	
1.0	11	11	6	6	1.0	1.0	
$ \begin{array}{ccc} 0.0\\ 2 & 15 \end{array} $	1.0 11	11	97.80 6	6	1.0	1.0	
49.40	1.0	11	97.80 6	6	1.0	1.0	
13.58	1.0	11	1.0	ć	1.0	1.0	
1.0	1.0	11	1.0	0	1.0	1.0	
1 1 0.0	$11 \\ 1.0$	11	97.80	7	1.0	1.0	
2 15 49,40	$11 \\ 1.0$	11	7 97,80	7	1.0	1.0	
16 16	11	11	7	7	1 0	1 0	
17 23	11	11	7	7	1.0	1.0	
1.0	1.0 11	11	8	8	1.0	1.0	
$ \begin{array}{ccc} 0.0\\ 2 & 15 \end{array} $	1.0 11	11	97.80 8	8	1.0	1.0	
49.40	1.0	11	97.80	8	1.0	1.0	
13.58	1.0	**	1.0	0	1.0	1.0	
1.0	1.0	11	1.0	0	1.0	1.0	
1 1 0.0	$11 \\ 1.0$	11	9 97.80	9	1.0	1.0	
2 15 49 40	$11 \\ 1 0$	11	9 97,80	9	1.0	1.0	
	11	11	9	9	1 0	1 0	
17 23	11	11	9	9	1.0	1.0	
1.0	1.0		1.0		1.0	1.0	
COM **	*	* -	*	- *			
COM	DATA	2 -	TRANSM	ISSI	BILTY MU	JLTIPLIERS	
COM , MULTI	PLIER	ON	X-DIREC	TION	I "INTERE	LOCK" TRANS	MISSIBILITY
COM	í	MOLT	1PLIER ,M	ULTI	PLIER ON	J Z-DIRECTION	N "INTERBLOCK" TRANS
COM COM					, MUL 	TIPLIER ON D.	PORE VOLUME IPLIER ON MATRIX/NATURAL
COM COM V	ł		· V		l v	FRAC V	CTURE TRANSMISSIBILITY
COM	• • • • • •	-		-			
COM		1-		-			

COM NOTE: Data groups 1 and 2 are read in pairs, follow the modification set with a BLANK CARD COM COM COM *** 4.3.4 FLUID DATA INITIALIZATION *** COM COM COM *** REFERENCE DENSITY - GROUP 1 *** COM COM -- REFERENCE PRESSURE FOR DENSITY (FOR OIL USE BUBBLE POINT PRESSURE) COM - - HYDROCARBON DENSITY AT REFERENCE PRESSURE COM --RESERVOIR TEMPERATURE (default = 120 deg f) COM --STOCK TANK PRESSURE (default = 14.65 psia) ,--STOCK TANK TEMP (def = 60 deg f) VCOM СОМ v COM V v kg/m3 deg kPa deg c COM kPa С deg f 1b/ft3 deg f psia COM psia ----------СОМ ----- | ------ | 1348.0 38.825343 175.0 14.70 . 60.0 СОМ ----|-----| COM *** PVT TABLE - GROUP 2 *** COM COM NOTE: the number of entries in this set is given on 4.3.1 DATA 1 Prob Size COM COM -- PRESSURE (INCREASING ORDER) COM --FORMATION VOLUME FACTOR: Bt for Oil, Bg for Gas ,--HYDROCARBON VISCOSITY V COM сом у COM kPa v ср COM psia res/std -----COM COM SMALL CONST. COMPRESSIBILITY 1.0000 1. 14.65 200.00 0.9995 1. 0.9990 1. 400.00 0.9985 1. 600.00 0.9980 800.00 1. 0.9975 1000.00 1. 0.9970 1. 1200.00 0.9965 1. 1400.00 0.9960 1. 1600.00 0.9955 1800.00 1. 0.9950 1. 2000.00 - - - - - - - | СОМ ----| - - - -] COM COM *** 4.3.5 OPTIONAL INITIALIZATION DATA *** COM COM *** STRESS DEPENDENT PROPERTIES - GROUP 1 *** COM (read only if STRESS DEPENDENT OPTION is selected (4.3.1 DATA 1 Opt Spec)) COM COM DATA 1 - CONTROLS COM COM --NUMBER OF ENTRIES IN STRESS TABLE (1<#<dimensional limit) COM -- 0=PROPERTIES READ IN ARE AT ZERO STRESS ;1= INSITU STRESS COM COM COM V v COM * -COM COM *---* COM DATA 2 - ROCK MECHANICS DATA COM COM , -- VERTICAL STRESS COM СОМ --HORIZONTIAL STRESS --YOUNG'S MODULUS COM -- POISSON'S RATIO COM --BIOT'S CONSTANT Ý COM V v kPa COM kPa kPa psia COM psia psia COM ----| - - - - - - - - | COM COM COM NOTE: vertical stress > horizontal stress

. . . .

COM COM DATA 3 - STRESS DEPENDENT PROPERTIES СОМ COM NOTE: CR must be set to 0 in (4.2.3 GROUP 1) to use this table COM --EFFECTIVE STRESS (increasing order) ,--PERMEABILITY REDUCTION RELATIVE TO UNSTRESSED STATE COM COM ,--POROSITY REDUCTION RELATIVE TO UNSTRESSED V (ignored if CR > 0 on Card 4.3.3) COM V COM kPa ý frac COM psia frac COM - - - - - | ------COM COM COM COM *** NON-DARCY PROPERTIES - GROUP 2 *** (read only if TURBULENCE OPTION is selected (4.3.1 DATA 1 Option Spec)) COM COM -- NON-DARCY FACTOR FOR RESERVOIR FLOW COM -'A' COEFFICIENT IN NON-DARCY COM COM EQUATION (OPTIONAL) 'B' COEFFICIENT IN СОМ NON-DARCY EQUATION (OPTIONAL) COM -'C' COEFFICIENT IN COM NON-DARCY EQUATION (OPTIONAL) СОМ -- 'D' COEFFICIENT IN СОМ NON-DARCY EQUATION (OPTIONAL) COM COM V ν COM 1/m 1/mν ν fraction fraction 1/ft fraction COM 1/ft -----. | | | COM] COM ····· COM COM *** WELLBORE HYDRAULICS DATA - GROUP 3 *** COM (read only if WELLBORE HYDRAULICS OPTION is selected (4.3.1 Option Spec)) COM COM *** DATA 1 WELLBORE HYDRAULICS CONTROLS *** COM COM --NUMBER OF WELLBORE SEGMENTS COM COM COM COM V COM * COM COM * COM *** DATA 2 COMPLETION DATA *** COM (number of entries equals number of well segments) COM COM COM --KB DEPTH OF SEGMENT -- OUTER DIAMETER OF THE SEGMENT COM -- INNER DIAMETER OF THE SEGMENT COM (default to area of openhole with tubing diameter) ,--SEGMENT ROUGHNESS (default = 0.00006 in) V COM COM Ú COM V cm/in COM m/ft cm/in cm/in COM COM COM COM COM *** DATA 3 KB DATA *** COM COM --KB ELEVATION COM COM COM V COM m/ft COM ----| COM COM - - - - -] COM *** TIME DEPENDENT RELATIVE PERM PROPERTIES - GROUP 4 *** (read only if RELATIVE PERMEABILITY VS. TIME OPTION is selected COM COM (CARD 4.3.1 GROUP 3)) COM COM

COM , -- NUMBER OF ENTRIES IN RELATIVE PERM VS TIME TABLE COM V COM * COM COM * COM , -- RELATIVE PERMEABILITY TO HYDROCARBON --TIME (increasing order) COM COM 1 COM V fraction COM days COM -----|------| COM СОМ -----|------| COM *** 4.2.6 INITIAL CONDITION DATA *** COM COM *** REFERENCE PRESSURE - GROUP 1 *** COM COM (read as many of these cards as is necessary to cover entire reservoir) , COM ,--INITIAL PRESSURE AT REFERENCE DEPTH --REFERENCE DEPTH COM ,--TOP LAYER OF REGION TO BE INITIALIZED COM COM , --BOTTOM LAYER OF REGION TO BE INITIALIZED V (if layers left blank defaults to entire res) сом у v v COM m/ft kPa/psi COM -----1500.0 5000.0 ----* COM ----| COM *** 4.2.7 INITIALIZATION END *** COM COM (END CARD required) END NOECHO COM COM COM COM (repeat for each desired time step grouping) COM COM *** 4.4.1 RECURRENT CONTROL DATA *** COM COM *** CONTROL DATA - GROUP 1 *** COM COM COM , -- KEYWORD "REC" SIGNALS START OF THIS SET OF RECURRENT DATA ,--WELL DATA READ; 0=NO; 1=YES COM , -- 0 OR 1=GAUSSIAN ELIMINATION COM , -- MINIMUM ITERATIONS PER TIME STEP (default=2) ,--MAXIMUM ITERATIONS PER TIME STEP (default=2) V COM СОМ СОМ v v v COM - - * 1 0 2 40 REC COM - - * -COM *** FRACTURE INITIATION - GROUP 2 (optional) *** СОМ COM ,--ENTER KEYWORD "FRAC" IN COLS 1-4 when fracture treatment is desired; COM otherwise similation preceeds COM with unfractured case until a FRAC card COM COM is detected , only one frac card is allowed in any COM dataset but it can be at any time COM not valid for radial coordinate runs COM V COM *** 4.4.2 RECURRENT WELL DATA *** COM COM (used only if well data read) COM *** NUMBER OF WELLS - GROUP 1 *** COM COM -- TOTAL NUMBER OF WELLS , -- NUMBER OF BLOCKS HAVING A CONSTANT PRESSURE COM COM COM V COM *---* 0 1 COM * -- - * COM *** WELL LOCATIONS AND PARAMETERS -- GROUP 2 *** COM

COM -FIRST INDEX FOR BLOCK CONTAINING WELL COM IDIR=0,1 I INDEX; IDIR=2 K INDEX; IDIR=3 I INDEX ,-- SECOND INDEX OF BLOCK CONTAINING WELL COM COM IDIR=0,1 J INDEX; IDIR=2 J INDEX; IDIR=3 K INDEX ,--STARTING THIRD INDEX OF UPPERMOST PERFORATIONS IDIR=0,1 K INDEX; IDIR=2 I INDEX; IDIR=3 J INDEX ,--LAST THIRD INDEX OF LOWERMOST PERFORATIONS COM COM COM COM IDIR=0,1 K INDEX; IDIR=2 I INDEX; IDIR=3 J INDEX ,-- DIRECTION OF WELL 0,1=K(VERTICAL); 2=I(HOR); 3=J(HOR) COM COM --O=CALCULATE WELL INDEX INTERNALLY; 1=WI READ IN 2=SKIN FACTOR READ IN COM COM --0=PRODUCER; 1=INJECTOR ,--0=RATE AT STC WITH POSSIBLE BHP LIMIT COM COM 1=RATE AT RC WITH POSSIBLE BHP LIMIT COM 2=RATE AT STC WITH POSSIBLE THP LIMIT COM WITH POSSIBLE THP LIMIT 3=RATE AT RC COM COM Ŵ v v v COM * -- * -. * -- + -- * - -- + -5 2 0 0 1 1 17 3 COM * -COM *** RATE DATA - GROUP 3 *** COM COM ,--LIMITING RATE WHICH WELL CAN PRODUCE OR INJECT COM . - LIMITING BOTTOMHOLE OR TUBINGHEAD PRESSURE COM --WELLBORE RADIUS (default = 0.25 ft, COM ignored if radial coordinates and I=1) COM WELL SYMMETRY FACTOR COM (default = 0.25 if model is symmetry element and cartesian or TOTANG/360 COM COM if symmetry element and radial default = 1.00 if model is full field COM v COM m3/d see 4.3.1 DATA 1 Geom specs) v COM bbl/d kPa V psia m/ft fraction COM Mscf/d ----| COM -----. 0.5 100000. 0.25 200. 500. 0.0 - - - - - - - | - - - - - - - | -----COM ----| COM ĊOM *** WELL INDEX DATA - GROUP 4 *** (used only if well index or skin factor is specified) COM COM IF WELL INDEX IS SPECIFIED , COM COM ,WELL INDEX ARRAY FOR EACH LAYER; START AT TOP LAYER COM COM V COM COM IF SKIN FACTOR IS SPECIFIED , COM COM , SKIN FACTOR ARRAY FOR EACH LAYER; START AT TOP LAYER COM COM V COM ---
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0</th 0.0 0.0 0.0 0.0 0.0 COM *** 4.4.2A CONSTANT PRESSURE DATA *** (used only if positive number of constant pressure blocks COM COM enter as many cards as there are constant pressure blocks) COM COM *** TIME CARD - GROUP 1 *** COM COM --I INDEX OF CONSTANT PRESSURE BLOCK --J INDEX OF CONSTANT PRESSURE BLOCK COM , -- K INDEX OF CONSTANT PRESSURE BLOCK COM ,--GRID BLOCK PRESSURE V COM COM kPa/psi COM V v v COM SPEC P AT TOP AND CONNECT BY TZx100 COM

,

COM *** 4.4.3 RECURRENT TIME DATA *** COM COM *** TIME CARD - GROUP 1 *** COM COM -- END OF TIME INTERVAL WHERE CURRENT DATA APPLIES COM --TIME STEP SIZE (<0 INVOKES AUTOMATIC TIME STEP, VALUE IS INITIAL COM TIME STEP SIZE) COM (NOTE : next entries apply only for automatic time stepping) COM COM --MIN TIME STEP SIZE -MAX TIME STEP SIZE COM --LIMITING PRESSURE FOR TIME STEP COM -WEIGHT FACTOR FOR COM OSCILLATION CONTROL COM (default = 0.2)COM -CORD FOR DER COM CALCULATION COM Ŵ (default=50psi) COM V v kPa/psi kPa/psi v COM days days days days - - - -. COM ----0.1 100. 100. -0.1 0.1 COM ---. - - - - -. - - - - - - - - - | COM *** OUTPUT CONTROLS - GROUP 2 *** COM COM ,--1=PRINT SUMMARY EVERY TIME STEP; 0=NO SUMMARY ,--PRINT ITERATION SUMMARY EVERY TIME STEP; 0=NO; 1=YES COM COM --FREQUENCY OF TIME STEP OUTPUT (default = 1) ,-1=WRITE RESTART RECORD AT END OF PERIOD; COM ,--1=PRINT TURBULENCE ARRAYS WITH OTHER ARRAYS; 0=NO 0 = NOCOM COM v COM V COM * -. * . 0 0 1 1 100 COM COM COM END OF RECURRENT DATA COM COM OR GO BACK TO BEGINNING OF RECURRENT DATA SECTION *** * * * COM FOR ADDITIONAL RECURRENT TIME GROUPINGS COM * * * COM COM *** 4.4.1 RECURRENT CONTROL DATA *** COM COM COM *** CONTROL DATA - GROUP 1 *** COM --KEYWORD "REC" SIGNALS START OF THIS SET OF RECURRENT DATA COM --WELL DATA READ; 0=NO; 1=YES ,--0 OR 1=GAUSSIAN ELIMINATION COM COM --MINIMUM ITERATIONS PER TIME STEP (default=2) COM , -- MAXIMUM ITERATIONS PER TIME STEP (default=20) COM v COM V Ŵ ν COM 0 0 REC COM COM *** FRACTURE INITIATION - GROUP 2 (optional) *** COM COM --ENTER KEYWORD "FRAC" IN COLS 1-4 when fracture treatment is desired; COM otherwise similation preceeds COM with unfractured case until a FRAC card COM ĊOM is detected , only one frac card is allowed in any COM dataset but it can be at any time not valid for radial coordinate runs COM COM Ŵ FRAC COM *** 4.4.2 RECURRENT WELL DATA *** COM (used only if well data read) COM COM *** NUMBER OF WELLS - GROUP 1 *** COM COM -- TOTAL NUMBER OF WELLS COM , -- NUMBER OF BLOCKS HAVING A CONSTANT PRESSURE COM

COM V v COM *----* COM COM *---COM *** 4.4.2A CONSTANT PRESSURE DATA *** (used only if positive number of constant pressure blocks COM COM enter as many cards as there are constant pressure blocks) COM COM COM *** TIME CARD - GROUP 1 *** --I INDEX OF CONSTANT PRESSURE BLOCK COM ,--J INDEX OF CONSTANT PRESSURE BLOCK COM --K INDEX OF CONSTANT PRESSURE BLOCK COM ,--GRID BLOCK PRESSURE COM COM v kPa/psi COM V v v COM - * - - - - - - -- - -COM COM COM *** WELL LOCATIONS AND PARAMETERS - GROUP 2 *** COM COM , -- FIRST INDEX FOR BLOCK CONTAINING WELL COM COM IDIR=0,1 I INDEX; IDIR=2 K INDEX; IDIR=3 I INDEX -- SECOND INDEX OF BLOCK CONTAINING WELL COM IDIR=0,1 J INDEX; IDIR=2 J INDEX; IDIR=3 K INDEX ,--STARTING THIRD INDEX OF UPPERMOST PERFORATIONS | IDIR=0,1 K INDEX; IDIR=2 I INDEX; IDIR=3 J INDEX ,-- LAST THIRD INDEX OF LOWERMOST PERFORATIONS COM COM COM COM IDIR=0,1 K INDEX; IDIR=2 I INDEX; IDIR=3 J INDEX ,-- DIRECTION OF WELL 0,1=K(VERTICAL); 2=I(HOR); 3=J(HOR) ,--0=CALCULATE WELL INDEX INTERNALLY; 1=WI READ IN COM 3=J(HOR) COM COM 2=SKIN FACTOR READ IN COM --0=PRODUCER; 1=INJECTOR ,--0=RATE AT STC WITH POSSIBLE BHP LIMIT COM COM 1=RATE AT RC WITH POSSIBLE BHP LIMIT COM 2=RATE AT STC WITH POSSIBLE THP LIMIT COM 3=RATE AT RC WITH POSSIBLE THP LIMIT COM COM COM COM COM ---* - - * - . - . * - - - * -COM *** RATE DATA - GROUP 3 *** COM COM --LIMITING RATE WHICH WELL CAN PRODUCE OR INJECT. COM COM --LIMITING BOTTOMHOLE OR TUBINGHEAD PRESSURE --WELLBORE RADIUS (default = 0.25 ft, COM ignored if radial coordinates and I=1) WELL SYMMETRY FACTOR COM ŌОМ COM (default = 0.25 if model is symmetry element and cartesian or TOTANG/360 COM if symmetry element and radial default = 1.00 if model is full field COM COM m3/d ý COM bb1/d kPa v v see 4.3.1 DATA 1 Geom specs) m/ft COM Mscf/d psia fraction ----| COM СОМ -----|-----|-----|------| COM COM *** WELL INDEX DATA - GROUP 4 *** (used only if well index or skin factor is specified) COM COM COM IF WELL INDEX IS SPECIFIED , COM COM ,WELL INDEX ARRAY FOR EACH LAYER; START AT TOP LAYER COM V ----- m3*cp/kPa-d -----COM <---COM COM COM IF SKIN FACTOR IS SPECIFIED , COM COM

COM ,SKIN FACTOR ARRAY FOR EACH LAYER; START AT TOP LAYER COM V COM --. COM COM *** 4.4.3 RECURRENT TIME DATA *** COM COM *** TIME CARD - GROUP 1 *** COM COM --END OF TIME INTERVAL WHERE CURRENT DATA APPLIES ,--TIME STEP SIZE (<0 INVOKES AUTOMATIC TIME STEP,VALUE IS INITIAL COM COM TIME STEP SIZE) COM (NOTE : next entries apply only for automatic time stepping) COM --MIN TIME STEP SIZE COM --MAX TIME STEP SIZE COM --LIMITING PRESSURE FOR TIME STEP COM -WEIGHT FACTOR FOR COM OSCILLATION CONTROL COM (default = 0.2)COM --CORD FOR DER COM CALCULATION COM V (default=50psi) сом у Ŵ v V Ŵ kPa/psi kPa/psi Ý days COM days days days -----COM -----1 - | -0.1 0.1 100. 100. 365. COM - -. - - - | - - - -- - - [- - - - - - - | COM *** OUTPUT CONTROLS - GROUP 2 *** COM COM --1=PRINT SUMMARY EVERY TIME STEP; 0=NO SUMMARY --PRINT ITERATION SUMMARY EVERY TIME STEP; 0=NO; 1=YES ,--FREQUENCY OF TIME STEP OUTPUT (default = 1) ,--1=WRITE RESTART RECORD AT END OF PERIOD; 0=NO COM COM COM COM ,--1=PRINT TURBULENCE ARRAYS WITH OTHER ARRAYS; 0=NO COM ý v COM V ý ٩, COM * -* 0 0 1 100 1 COM - * - - -- - * - -. . * COM COM COM END OF RECURRENT DATA * * * OR COM GO BACK TO BEGINNING OF RECURRENT DATA SECTION *** COM * * * FOR ADDITIONAL RECURRENT TIME GROUPINGS * * * * * * COM COM END . EOF

COM --FRACTURE OPENING AND CLOSURE PRESSURE COM - DEPTH OF INVASION FOR FRAC FLUID FILTRATE , - MOBILITY OF THE FILTRATE COM COM -- IN-SITU WATER SATURATION COM --RESIDUAL HYDROCARBON SATURATION COM COM v COM ۲Ì m/ft 1/cp fraction fraction COM kPa/psi ----СОМ -----|------| - - - - - - - | - - - - - - - | 0.4 0.1 0.3 0.00 5180.0 - - - - - | ----СОМ ----| COM COM *** GROUP B - POST-CLOSURE FRAC DATA - PROPPED FRACS *** COM COM (Read as many sets of GROUP B as there are proppant types) COM COM *** B1 - PROPPANT STRESS DATA *** COM COM *** CARD 1 *** COM COM In this data, only the first 5 items are required if the prop size and type are in the StimLab data bank. Any of the 6 optional data COM COM items can be entered to modify the internal correlation coefficients. If the prop is not in the data bank, and the user enters ALL of the optional data, prop permeability will be still calculated by the COM COM COM StimLab correlation. In any other case, user must specify his own COM COM table under Card 2 below. COM , -- NCPR, NUMBER OF ENTRIES IN PERM. VS. STRESS TABLE FOR THIS PROP COM (default=13 for table generated by Stim-Lab correlation) , -NTPR,NUMBER OF ENTRIES IN PERM RED. FACTOR VS. TIME FOR THIS PROP COM COM --PROP SIZE (0816,1220,1020,1630,2040,4060,4070,100 or other) ,--PROP TYPE (JORD, BRAD, COLO, RCSC, RCSP, HS , CBOL, LWT , INT CBHC, ULTR, BAUX, ARIZ, ENGL, ENDC, SAND, ISP, ISPL or other) COM ,CBOL,LWT ,INTR, COM COM -DAMAGE FACTOR FOR FLUIDS (default = 1.) COM COM ----- Optional data -- PROP MEAN DIAMETER (mm) COM -- PROP POROSITY (fraction) COM -- PROP SPEC.GRAVITY COM --STD.DEV. OF PROP DIAM. COM FROM SIEVE ANALYSIS COM --COEFF a COM ,--b v COM ψ́ Ý COM V ν ν v - - * | - - - | | - - - | - - - | - -----------. COM * -COND 0 INF COM COM *** CARD 2 - PERMEABILITY VS. STRESS TABLE *** COM (as many lines as no. of perm vs. stress entries NCPR dictates) COM COM READ THIS TABLE ONLY IF DATA GIVEN IN CARD 1 IS NOT SUFFICIENT COM СОМ TO USE STIMLAB CORRELATIONS COM COM --STRESS ON PROPPANT -- PROPPANT PERMEABILITY COM --CROSSECTIONAL AREA REDUCTION FACTOR ,--FRACTURE NON-DARCY FACTOR (OPTIONAL) COM COM 'A' COEFFICIENT IN NON-DARCY COM EQUATION (OPTIONAL) COM 'B' COEFFICIENT IN COM NON-DARCY EQUATION COM (OPTIONAL) COM V v 1/m COM V Ŵ 1/mV v 1/ft COM kPa/psi mđ fraction 1/ft fraction | - | - - - - - - - | COM -----.] - - - - - - - - -10000000. 1. 0. 1000. 10000000. 1. 10000000. 1. 2000. 10000000. 1. 3000. COM ---COM *** B2 - PERM REDUCTION FACTOR VS TIME TABLE *** COM

(as many lines as no. of perm vs. time entries dictates) COM (data not used unless permeability vs time switch on) COM COM COM , COM | COM V --TIME SINCE FRACTURE WAS INITIATED -- PROPPANT PERMEABILITY REDUCTION FACTOR COM days v COM COM -----COM *** B3 - PLASTIC PERMEABILITY AND WIDTH REDUCTION MULTIPLIER *** COM (one value for this proppant if hysteresis is turned on) COM COM --PERMEABILITY AND WIDTH REDUCTION HYSTERESIS MULT (0 = full recovery) COM í 1 = no recovery) COM сом ѵ 0 < x < 1 = intermediateCOM frac СОМ -----COM СОМ -----COM *** GROUP BC - POST-CLOSURE FRAC DATA - ACID FRACS *** COM COM *** BC1 - EMBEDMENT STRENGTH AND TABLE SIZE *** COM COM --EMBEDMENT STRENGTH OF THE ROCK COM --NCPR, NO OF ENTRIES IN CONDUCTIVITY VS STRESS TABLE COM 0 = default: method of Nierode-Kruk COM = read table of reduction factor vs stress , - REDFNK, OVERALL REDUCTION FACTOR ON CONDUCTIVITY COM ×0 COM (used only if NCPR = 0, default REDFNK = 1) COM V COM kPa/psia Ý Ý COM -----. * * . COM COM ----- | ---- *---- *----- | COM *** BC2 - CONDUCTIVITY REDUCTION WITH STRESS *** COM Read only if no of entries NCPR > 0 COM COM -STRESS ON ACIDIZED FRACTURE , -- REDUCTION FACTOR (MULTIPLIER ON CONDUCTIVITY AT 0 STRESS) COM COM Í COM V COM kPa/psi (-) COM -----COM COM COM *** GROUP C - DAMAGE AND CLEANUP DATA *** COM COM --MULTIPLIER ON ABSOLUTE PERMEABILITY IN INVADED ZONE COM --RATE OF CLEANUP FROM THE FRACTURE FACE COM --RESIDUAL FILTRATE AS FRACTION OF ORIGINAL FILTRATE. COM --REL.PERM TO RES. FLUID AFTER CLEANUP COM (if > 0, different method of cleanup COM calc used-more suitable for gas wells) COM ý COM V V v frac/d fraction frac COM frac COM ---------| 0.33 0.0 1.0 COM ----| END

• 114

. .

APPENDIX C: Regression Input and Output for Polynomial Correction Term ("D") --MIN POLYN. ORDER TO REGRESS ON COM , -- MAX POLYN. ORDER COM --IPRINT=PRINT CONTROL (0=MIN, 1=STATISTICS, 2=DEBUG COM --IPLOT=PLOT CONTROL (NOT OPERATIONAL) COM COM COM Truceted date paints for COM V v V V letter definition of the curve COM *----*---*---4 3 3 1 0 COM *----* COM OBSERVED X- DATA COM COM 50.0 100.0 10.0 · 1.0 COM OBSERVED Y- DATA const for single frac. . COM COM 1.02551 1.0145 1.0154 1.02456 COM COM COM COM *----* 3 3 1 0 4 COM *----* COM OBSERVED X- DATA COM COM 50.0 100.0 10.0 1.0 COM first coeff for single frac. COM OBSERVED Y- DATA COM -0.3402 -0.28221 -0.0604 -0.12067 COM COM COM COM *----*---* 4 3 3 1 Ω COM *----*---* COM COM OBSERVED X- DATA COM 10.0 50.0 100.0 1.0 COM COM OBSERVED Y- DATA second coeff for single frac case

116 COM 1.6547 1.45279 0.80242 0.28579 COM COM COM COM *----*----*----* 3 4 3 1 COM *----*----* COM COM OBSERVED X- DATA COM 50.0 10.0 1.0 100.0 COM COM OBSERVED Y- DATA third coeff for single frac. case COM -1.3382 -1.194519 -0.77210 -0.43581 COM COM *----* 3 3 1 4 0 COM *---*---*---* COM COM OBSERVED X- DATA COM 50.0 1.0 10.0 100.0 COM COM OBSERVED Y- DATA const for three fracs COM 1.0765 1.0750 1.08468 1.09129 COM COM COM COM *----* 4 3 3 1 0 COM *----* COM COM OBSERVED X- DATA COM 10.0 50.0 1.0 100.0 COM · COM OBSERVED Y- DATA first coeff for three fracs COM -0.6257 -0.49958 -0.45557 -0.36809 COM COM COM COM *----*

117 4 3 3 1 0 COM *----*---* COM COM OBSERVED X- DATA COM 50.0 100.0 10.0 1.0 COM COM OBSERVED Y- DATA second coeff for three frac case COM 2.17410 1.92872 1.64925 2.4844 COM COM . COM COM *---*---* 3 3 1 4 0 COM *----*----* COM COM OBSERVED X- DATA COM 50.0 100.0 10.0 1.0 COM OBSERVED Y- DATA third coeff for three frac. case COM COM -1.9529 -1.76574 -1.57103 -1.38374 COM COM COM *----* 3 3 1 0 4 COM *---* COM COM OBSERVED X- DATA COM 50.0 100.0 1.0 10.0 COM COM OBSERVED Y- DATA const for five fracs COM 1.16109 1.16505 1.14985 1.15907 COM COM COM COM *----*----*----* 3 3 1 Ω COM *----* COM COM OBSERVED X- DATA COM 50.0 100.0 10.0 1.0

COM COM OBSERVED Y- DATA first coeff for five fracs COM -1.78540 -1.63221 -1.9972 -1.81501 COM COM COM COM *---*---*---* 4 3 3 1 0 COM *---* COM OBSERVED X- DATA COM COM 50.0 100.0 10.0 1.0 COM OBSERVED Y- DATA second coeff for five frac case COM COM 5.42678 4.98758 4.78581 4.39686 COM COM COM COM *----* 3 3 1 0 COM *----*---*----* COM OBSERVED X- DATA COM COM 50.0 100.0 10.0 1.0 COM OBSERVED Y- DATA third coeff for five frac. case COM COM -3.60325 -3.3554 -3.18020 -2.94729 COM COM COM *----* 3 1 0 4 3 COM *----* COM COM OBSERVED X- DATA COM 50.0 100.0 10.0 1.0 COM OBSERVED Y- DATA const for seven frac. case COM COM 1.18036 1.18954 1.194576 1.198511

COM 119 COM COM COM *----*---* '3 1 3 ____0 4 COM *----*---*---* COM OBSERVED X- DATA COM COM 10.0 50.0 100.0 1.0 COM OBSERVED Y- DATA first coeff for seven frac case COM COM -2.78339 -2.75009 -2.63573 -2.54422 COM COM COM COM *----*---* 3 4 3 1 Ω COM *----*---* COM COM OBSERVED X- DATA COM 10.0 100.0 50.0 1.0 COM OBSERVED Y- DATA second coeff for seven frac case COM COM 7.10939 6.96861 6.64846 6.39760 COM COM COM COM *----* 3 3 1 0 4 COM *----*---* COM COM OBSERVED X- DATA COM 50.0 10.0 100.0 1.0 COM OBSERVED Y- DATA third coeff for seven frac. case COM COM -4.53225 -4.43217 -4.23024 -4.07408 COM COM REPEAT THE DATA SETS, STOP BY PUTTING M=0 COM COM COM *----* 0

COM *----*---* COM / END

DLYNOMIAL REGRESSION, WITH M = 4

4 DATA POINTS

2

X(I)	Y(I)
1.00000 10.00000	1.01450 1.01540
50.00000 100.00000	1.02456 1.02551

THE LOWEST AND HIGHEST ORDER POLYNOMIALS TO BE TRIED ARE

MIN = 3 MAX = 3

POLYNOMIAL REGRESSION OF ORDER N = 3

DET = 0.15439477E+20

S = 0.0000000 A = 1.0144514073

В(1)	=	0.0000429504
В(2)	=	0.0000056925
В(3)	=	-0.000000502

COMPARISON OF COMPUTED AND INPUT VALUES OF Y

J.1014E+01O.1015E+01O.1025E+01O.1026E+01O.1014E+01O.1015E+01O.1025E+01O.1026E+01

POLYNOMIAL REGRESSION, WITH M = 4 DATA POINTS

X(I)	Y(I)
1.00000	-0.34020
10.00000	-0.28221
50.00000	-0.06040
100.00000	-0.12067

THE LOWEST AND HIGHEST ORDER POLYNOMIALS TO BE TRIED ARE

MIN = 3 MAX = 3

POLYNOMIAL REGRESSION OF ORDER N = 3

DET = 0.15439477E+20

S = 0.00000000A = -0.3465403581.

B(1) = 0:0063243354 B(2) = 0.0000165952 B(3) = -0.000005725

COMPARISON OF COMPUTED AND INPUT VALUES OF Y

-0.3402E+00 -0.2822E+00 -0.6040E-01 -0.1207E+00

. 120

-0.3402E+00 -0.2822E+00 -0.6040E-01 -0.1207E+00

POLYNOMIAL REGRESSION, WITH M = 4 DATA POINTS

.

X(I) Y(I)

1.00000	1.65470
10:00000	1.45279
50.00000	0.80242
100.00000	0.28579

THE LOWEST AND HIGHEST ORDER POLYNOMIALS TO BE TRIED ARE

MIN = 3 MAX = 3

POLYNOMIAL REGRESSION OF ORDER N = 3

DET = 0.15439477E+20

S = 0.00000000 A = 1.6786985908

	в(1)	=	-0.0241610835
н	B(2)	=	0.0001631005
	В(3)	=	-0.000006078

COMPARISON OF COMPUTED AND INPUT VALUES OF Y

0.1655E+01	0.1453E+01	0.8024E+00	0.2858E+00
0.1655E+01	0.1453E+01	0.8024E+00	0.2858E+00

POLYNOMIAL REGRESSION, WITH M = 4 D

4 DATA POINTS

Ч

3

.X(I) Y(I)

1.00000	-1.33820
10.00000	-1.19452
50.00000	-0.77210
100.00000	-0.43581

THE LOWEST AND HIGHEST ORDER POLYNOMIALS TO BE TRIED ARE

MIN = 3 MAX = 3

POLYNOMIAL REGRESSION OF ORDER N = 3

DET = 0.15439477E+20

S = 0.0000000 A = -1.3556092466

B(1) = 0.0175605521 B(2) = -0.0001519891 B(3) = 0.000006836

DMPARISON OF COMPUTED AND INPUT VALUES OF Y

-0.1338E+01 -0.1195E+01 -0.7721E+00 -0.4358E+00 -0.1338E+01 -0.1195E+01 -0.7721E+00 -0.4358E+00

122

X(I) Y(I) 1.00000 1.07650 10.00000 1.07500 50.00000 1:08468

50.000001:08468100.000001.09129

THE LOWEST AND HIGHEST ORDER POLYNOMIALS TO BE TRIED ARE

 $MIN = 3 \qquad MAX = 3$

POLYNOMIAL REGRESSION OF ORDER N = 3

DET = 0.15439477E+20

S = 0.00000000 A = 1.0767983515

В(1)	=	-0.0003124857
В(2)	=	0.0000142307
[.] В (3)	=	-0.000000966

COMPARISON OF COMPUTED AND INPUT VALUES OF Y

0.1076E+01 0.1075E+01 0.1085E+01 0.1091E+01 0.1077E+01 0.1075E+01 0.1085E+01 0.1091E+01

"OLYNOMIAL REGRESSION, WITH M = 4 DATA POINTS

X(I) Y(I) 1.00000 -0.62570 10.00000 -0.49958 50.00000 -0.45557 100.00000 -0.36809

THE LOWEST AND HIGHEST ORDER POLYNOMIALS TO BE TRIED ARE

MIN = 3 MAX = 3

POLYNOMIAL REGRESSION OF ORDER N = 3

DET = 0.15439477E+20

S = 0.00000000A = -0.6437160671

B(1) = 0.0184436887 B(2) = -0.0004303564 B(3) = 0.0000027348

COMPARISON OF COMPUTED AND INPUT VALUES OF Y

).6257E+00 -0.4996E+00 -0.4556E+00 -0.3681E+00 -0.6257E+00 -0.4996E+00 -0.4556E+00 -0.3681E+00

POLYNOMIAL REGRESSION, WITH M =

X(I) Y(I)

1.00000	2.48440
10.00000	2.17410
50.00000	1.92872
100.00000	1.64925

THE LOWEST AND HIGHEST ORDER POLYNOMIALS TO BE TRIED ARE

 $MIN = 3 \qquad MAX = 3$

POLYNOMIAL REGRESSION OF ORDER N = . 3

DET = 0.15439477E+20

S = 0.0000000 A = 2.5275529160

B(1) = -0.0440782457 B(2) = 0.0009311113 B(3) = -0.0000057816

COMPARISON OF COMPUTED AND INPUT VALUES OF Y

0.2484E+01 0.2174E+01 0.1929E+01 0.1649E+01 0.2484E+01 0.2174E+01 0.1929E+01 0.1649E+01

POLYNOMIAL REGRESSION, WITH M = 4 DATA POINTS

X(I)	Y(I)
1.00000	-1.95290 -1.76574
50.00000	-1.57103

100.00000 - 1.38374

THE LOWEST AND HIGHEST ORDER POLYNOMIALS TO BE TRIED ARE

 $MIN = 3 \qquad MAX = 3$

POLYNOMIAL REGRESSION OF ORDER N = 3

DET = 0.15439477E+20

S = 0.0000000 A = -1.9785248713

			•
В(1)	=	0.0261393777
В(2)	=	-0.0005176639
В(3)	=	0.000031575

COMPARISON OF COMPUTED AND INPUT VALUES OF Y

-0.1953E+01 -0.1766E+01 -0.1571E+01 -0.1384E+01 -0.1953E+01 -0.1766E+01 -0.1571E+01 -0.1384E+01

FOLYNOMIAL REGRESSION, WITH M = 4

4 DATA POINTS

8

X(I)

, 123

1.00000	1.14985
10.00000	1.15907
50.00000	1.16109
100.00000	1.16505

THE LOWEST AND HIGHEST ORDER POLYNOMIALS TO BE TRIED ARE

 $MIN = 3 \qquad MAX = 3$

POLYNOMIAL REGRESSION OF ORDER N = 3

DET = 0.15439477E+20S = 0.00000000 1.1485247949 . A = 0.0013573211 B(1) =-0.0000323200 B(2) =0.000002040 B(3) =COMPARISON OF COMPUTED AND INPUT VALUES OF Y 0.1161E+01 0.1165E+01 0.1150E+01 0.1159E+01 0.1150E+01 0.1159E+01 0.1161E+01 0.1165E+01 4 DATA POINTS POLYNOMIAL REGRESSION, WITH M = Y(I) X(I)-1.99720 1.00000 -1.81501 10.00000 -1.7854050.00000 -1.63221100.00000 THE LOWEST AND HIGHEST ORDER POLYNOMIALS TO BE TRIED ARE MAX = 3 MIN = 3 POLYNOMIAL REGRESSION OF ORDER N = 3 DET = 0.15439477E+200.0000000 S = -2.0235641571 A = 10 0.0270190515 B(1) =-0.0006591756 B(2) =0.0000042812 B(3) =COMPARISON OF COMPUTED AND INPUT VALUES OF Y -0.1997E+01 -0.1815E+01 -0.1785E+01 -0.1632E+01 -0.1997E+01 -0.1815E+01 -0.1785E+01 -0.1632E+01 4 DATA POINTS POLYNOMIAL REGRESSION, WITH M =

50.00000	4.78581
100.00000	4.39686

THE LOWEST AND HIGHEST ORDER POLYNOMIALS TO BE TRIED ARE

 $MIN = 3 \qquad MAX = 3$

POLYNOMIAL REGRESSION OF ORDER N = 3

DET = 0.15439477E+20 S = 0.00000000 A = 5.4891731823 B(1) = -0.0638457693 B(2) = 0.0014619138 B(3) = -0.000093269

COMPARISON OF COMPUTED AND INPUT VALUES OF Y

0.5427E+01	0.4988E+01	0.4786E+01	0.4397E+01
0.5427E+01	0.4988E+01	0.4786E+01	0.4397E+01

POLYNOMIAL REGRESSION, WITH M = 4 DATA POINTS

X(I)	Y(I)
1.00000	-3.60325
10.00000	-3.35540
50.00000	-3.18020
100.00000	-2,94729

THE LOWEST AND HIGHEST ORDER POLYNOMIALS TO BE TRIED ARE

MIN = 3 MAX = 3

POLYNOMIAL REGRESSION OF ORDER N = 3

DET = 0.15439477E+20

S = 0.00000000A = -3.6379178266

12

В(1)	=	0.0354287730
В(2)	=	-0.0007657517
В(3)	=	0.0000048053

COMPARISON OF COMPUTED AND INPUT VALUES OF Y

-0.3603E+01 -0.3355E+01 -0.3180E+01 -0.2947E+01 -0.3603E+01 -0.3355E+01 -0.3180E+01 -0.2947E+01

POLYNOMIAL REGRESSION, WITH M =

4 DATA POINTS

X(I)	Y(I)
1.00000	1.18036
10.00000	1.18954
50.00000	1.19458
100.00000	1.19851

i (

THE LOWEST AND HIGHEST ORDER POLYNOMIALS TO BE TRIED ARE

. •

MIN = 3MAX = 3POLYNOMIAL REGRESSION OF ORDER N = 3 DET = 0.15439477E+2013. S = 0.0000000A = 1.1790680231B(1) =0.0013209648 B(2) =-0.0000291669 B(3) =0.000001790 COMPARISON OF COMPUTED AND INPUT VALUES OF Y 0.1180E+01 0.1190E+01 0.1195E+01 0.1199E+01 0.1180E+01 0.1190E+01 0.1195E+01 0.1199E+01 POLYNOMIAL REGRESSION, WITH M = 4 DATA POINTS X(I) Y(I)1.00000 -2.78339 -2.7500910.00000 50.00000 -2.63573 -2.54422 100.00000 HE LOWEST AND HIGHEST ORDER POLYNOMIALS TO BE TRIED ARE MIN = 3 MAX = 3 POLYNOMIAL REGRESSION OF ORDER N = 3 DET = 0.15439477E+20S = 0.000000014 A = -2.7872905829B(1) =0.0039212202 B(2) =-0.0000206952 B(3) =0.000000579 COMPARISON OF COMPUTED AND INPUT VALUES OF Y -0.2783E+01 -0.2750E+01 -0.2636E+01 -0.2544E+01 -0.2783E+01 -0.2750E+01 -0.2636E+01 -0.2544E+01 POLYNOMIAL REGRESSION, WITH M = 4 DATA POINTS X(I) Y(I) 1.00000 7.10939 6.96861 10.00000 6.64846 50.00000 100.00000 6.39760

THE LOWEST AND HIGHEST ORDER POLYNOMIALS TO BE TRIED ARE

· 126

 $MIN = 3 \qquad MAX = 3$

POLYNOMIAL REGRESSION OF ORDER N = 3

DET = 0.15439477E+2015 S = 0.0000000A = 7.1272108077 B(1) = -0.01805106060.0002314923 B(2) =-0.0000012394 B(3) =COMPARISON OF COMPUTED AND INPUT VALUES OF Y 0.7109E+01 0.6969E+01 0.6648E+01 0.6398E+01 0.7109E+01 0.6969E+01 0.6648E+01 0.6398E+01 4 DATA POINTS POLYNOMIAL REGRESSION, WITH M = . Y(I) X(I) -4.53225 1.00000 -4.43217 10.00000 -4.23024 50.00000 100.00000 -4.07408 THE LOWEST AND HIGHEST ORDER POLYNOMIALS TO BE TRIED ARE MAX = MIN = 33 POLYNOMIAL REGRESSION OF ORDER N = 3 DET = 0.15439477E+20S = 0.000000016 A = -4.54512692970.0130629786 B(1) =-0.0001870845 B(2) =B(3) =0.0000010356 COMPARISON OF COMPUTED AND INPUT VALUES OF Y -0.4532E+01 -0.4432E+01 -0.4230E+01 -0.4074E+01 -0.4532E+01 -0.4432E+01 -0.4230E+01 -0.4074E+01

ROLEUM J	ECONOMICS	EVALU	NTION PRO	gram			ĩ							Ver	sion: R Time: 9 File: H	1 7.7.1c 5/08/27 01:36: DRZ1
[CASE DES	CRIPTION			1	[;	NET PR	ESENT V	ALUES ((M\$)]
Horizo	ontal well	l with	one frac	ture				DIS	C RATE	(\$)	0.0	10.0	12.0	15.0	18.0	20.0
								B.T	. OPER 1	INC	4373	4170	4132	4078	4026	3992
								B.1	. CAP IN	ŧ٧.	2250	2145	2126	2098	2071	2054
								B.1	. CASH I	FLOW	2123	2025	2006	1980	1955	1938
Royalt	y Regime	: ALBE	ERTA	Gas Holi	day: NO											
Reserv	e type:	PDP		Oil Holi	day: NO			х.т	. OPER 1	INC	2642	2519	2497	2464	2433	2412
Royalt	y Type:C	rvn.		Eval/Pro	d Start:	95- 1/	95- 1	х.т	. CVP 13	ŧ٧.	2250	2145	2126	2098	2071	2054
Revers	ion Pt:			Proj/Eco	n Life:	5.0/ 1	.0 yrs	Х.Т	. CASH F	LON	392	374	371	. 366	361	358
(ECON	MIC IN	DICATORS] (- PRODUC	TS RECO	VERY	•)	(COMPANY	W.I)
-			в.	ТАХ А.ТА	x		c	ROSS	WI	ROY	NET			Init*	Fir	11
ROR		- 20	rr 80	0.0 800.	0 01L		HSTB	256	256	70	186	REV	ENUE	100.0	100	0.0
PAYOUT	PERIOD	- EVA	<u>ت</u>	0.5 0.	ງ ເມຣ-	RAX	MSCF	٥	0			FIE	in cro	100.0	100	0.0
				,	as-	SALES	NSCF	0	0	0	0	PLA	NT CAP			
UNDISC	: PIR	- 5/5	; 0	.94 0.1	7 ЕТНА	NE	STB	0	0	0	0	GAT	н суъ			
15.0 1	CT PIR	- \$/\$; 0	.94 0.1	7 PROP	ANE	STB	0	0	0	0					
12.0 1	CT PIR	- \$/5	; 0	.94 0.1	7 BUTA	NE	STB	0	0	0	0	ORR	-ars			
NPV .	15.0	- \$/	'Bbl 7	.75 1.4	3 PENT	s.	\$78	0	0	0	0	ORR	-OIL			
NFV .	12.0	- s/	'BD1 7	.85 1.4	5 SULP	нuя	LT	0	0	٥	0					
					OTHE	R	STB	0	0	C	0	ROY	ALTY	27.3	¢	0.0
{					• • • • • • • • • • • • • • • • • • • •	WI	CASH FI	CH SUMM	ARY		•••••			<i>,</i>		
YEAR	(OIL	PRODUC	TION}	TOTAL	BURDENS -	-OPERA	TING	OPER	NETBACI	. с	17TL	B.TAX	TOTAL	(AF	TER TAX-]
	RATE	VOL.	PRICE	REV.		EXP	ENSE	INC.	B.TAX		inv.	CASH	TAX	CASH	15.04	C 2M
	B01/D	MSTB	\$/851	HŞ	MS	HS	\$/851	HŞ	\$/851	. ·	M\$	MS	K \$	H.S	MS	H\$
ZERO											0	0	0	0	o	0
1995	700	256	24.00	6132	1675	84	0.33	4373	17.12	2 :	2250	2123	1731	392	366	366
1996	0	0	0.00	0	0	0	0.00	0	0.00)	0	0	0	0	0	366
1997	0	0	0.00	0	0	0	0.00	0	0.00)	٥	0	0	0	0	366
1998	0	0	0.00	0	0	0	0.00	0	0.00)	0	0	0	0	٥	366
1999	0	0	0.00	0	0	0	0.00	0	0.00	3	0	0	0	0	. 0	366
SUBT		256		6132	1675	84		4373		:	2250	2123	1731	392	366	
REM.		••		0	0	0		0			0	0	0	O,	-0	
TOTL		256		6132	1675	84	•	4373		:	2250	2123	1731	392	366	
15.0%	DISC			5718	1562	78		4078		:	2098	1980	1614	366		

Appendix D: Economic Summaries for Example Problem

₽

PETROLEUM ECONOMICS EVALUATION PROGRAM

Comment: Horizontal well with one fracture Case Notes ---------Evaluation Begins in 1995 1 Production Begins in 1995 1 Discount date is 1995 1

Parameter File: Parameter file name: param (NOT all parameters read each run) SUNCOR PROJECT EVALUATION PARAMETERS BASE CASE July 1995

Discount Method: ANNUAL MID PERIOD

Default Escalation Rates

 Rev.
 Opc.
 Cap.
 Rev.
 Opc.
 Cap.
 Rev.
 Opc.
 Cap.
 Rev.
 Cap.
 <th

Case Parameters:

Category: PDP

Production:

Price Files Used:

Royalties: Oil for royalties is 100 % new in first year.

Alberta light oil par price files used: PAR95B1 Alberta old oil select price file used: ABOLD955 Alberta new light oil select price file used: ABLG955

Capital:

.....

1995	Development	investment	20	1600 MS: D	GC intangible	Delay 1995	years
1995	Tangibles	investment	of	400 MS: D	AC tangible	Delay 1995	years
1995	Development	investment	of	250 MS: #	ingle frac	Delay 1995	years

'Tax Data:

Versión: Rel 7.7.1c Time: 95/08/27 01:36:1 File: HORZ1

	ECONOMICS	EVALUJ	TION P	ROGRAM			x								Vez	rsion: R Time: 9 File: H	el 7.7.1c 5/08/27 01 10RZ3
[CASE D	ESCRIP	TION -]	[1	NET PR	ESENT V	LUES (M\$)	******	}
Horiz	contal wel	l with	three	fractu	res				DIS	IC RATE	(1)	0.0	10.0	12.0	15.0	18.0	20.0
									B.1	. OPER	INC	10642	10146	10055	9923	9796	9714
									8.7	. CAP I	NV.	2750	2622	2599	2564	2532	2510
									B.1	CASH	FLOW	7892	7524	7457	7359	7265	7204
Royal	lty Regime	: ALBE	RTA	Gas	Holid	ay: NO											
Reser	rve type:	PDP		011	Holid	ay: NO			λ.7	OPER	INC	6109	5825	5772	5697	5624	5577
Royal	Lty Type:C	rvn		Eva	1/Prod	Start:	95- 1/	95- 1	А.Т	. CAP I	NV.	2750	2622	2599	2564	2532	2510
Rever	rsion Pt:			Pro	j/Econ	Life:	5.0/ 1	.0 yrs	X. T	. CASH	FLOH	3359	3203	3174	3132	3092	3066
[ECON	OMIC IN	DICATO	RS	·,	t		- PRODUC	TS RECO	VERY			(COMPANY	W.I]
			,	B.TAX	λ.τλχ			Ċ	ROSS	WI	ROY	NET	•		Initt	Fi	nlt
ROR		- PCN	T	.00.0	800.0	OIL		MSTB	613	618	171	447	REVE	NUE	100.0	10	0.0
PAYOU	T PERIOD	- EVA	L	0.3	0.5	GAS	-RAW	MSC7	0	0			FIEL	D CAP	100.0	10	0.0
						GAS	-SALES	MSCF	0	0 0	0 0	0 PL	PLAN	ANT CAP			
UNDIS	C PIR	- 5/5		2.87	1.22	ETH	ANE	STB	0	0	0	0	GAT	CAP			
15.0	PCT PIR	- 5/5		2.57	1.22	PRO	PANE	579	0	0	0	0					
12.0	PCT PIR	• \$/S		2.87	1.22	BUT	ANE	573	0	0	0	0	CRR-	GAS			
NPV .	15.0	- s/	851	11.91	5.07	PEN	TS.	\$73	0	0	0	0	ORR-	OIL			
NPV a	12.0	- s/	B51	12.07	5.14	SUL	PHUR	LT	0	0	0	0					
						отн	ER	ST 9	٥,	0	0	٥	ROYA	LTY	27.7		0.0
[WI	CASH FI									
YEAR	(OIL								ON SUMM	ARY					•••••		!
		PRODUC	7108) то	TAL BU	JRDENS	OPERA	TING	OW SUMM OPER	NETBAC	< 0	NPTL	в.тах	TCTAL	[λF	TER TAX	}
	RATE	PRODUC	TION) TO: E RI	TAL BI EV.	URDENS	OPERA EXP	TING ENSE	OW SUMM OPER INC.	NETBAC: B.TAX	< 0 1	NPTL	B.TAX CASH	TCTAL TAX	(AF CASH	TER TAX 15.0%))
	RATE B51/D	PRODUC VOL. MSTB	TION PRIC \$/Bb) TO E RI 1	TAL BI EV. MS	URDENS MS	OPERA EXP MS	TING ENSE \$/9b1	OW SUMM OPER INC. MS	NETBACI B.TAX \$/951	< 27 1	NPTL INV. MS	в.тах сазн рз	TCTAL TAX MS	(AF CASH MS	TER TAX 15.0% MS) CUM MS
ŽERO	RATE B51/D	PRODUC VOL. MSTB	TION PRIC \$/Bb) TO' E RI 1	TAL BI EV. MS	URDENS M\$	OPERA EXP MS	TING ENSE \$/9bl	OW SUMM OPER INC. MS	NETBAC NETBAC B.TAX \$/95	(C) 1	NPTL INV. MS	в.тах сазн MS	TCTAL TAX MS	(AF CASH MS	TER TAX 15.01 MS) CCM %S
ŽERO 1995	RATE B51/D 1693	PRODUC VOL. MSTB	TION PRIC \$/Bb) TO' E RI 1	TAL BI EV. MS	MS	OPERA EXP MS	TING ENSE \$/9b1 0.14	CPER CPER INC. MS 10642	АКҮ NETBAC 8.TAX \$/95 17.2		NPTL INV. MS 0 1750	B.TAX CASH MS 0 7892	TCTAL TAX MS 0 4533	(AF CASH MS 0 3359	TER TAX 15.0% MS 0 3132) CZM MS 0 3132
ZERO 1995 1996	RATE B51/D 1693 0	PRODUC VOL. MSTB 618 0	TION PRIC \$/Bb 24.0 0.0) TO E Ri 1 D 141	TAL BI EV. MS IJ1 0	URDENS MS 4105 0	OPERA EXP MS 84	TING ENSE \$/Bb1 0.14 0.00	CPER CPER INC. MS 10642 0	NETBAC NETBAC B.TAX \$/95 17.2: 0.00	< 27 1 2 2 2 2	APTL (NV. MS 0 (750 0	B.TAX CASH MS 0 7892 0	TCTAL TAX MS 0 4533 0	(AF CASH MS 0 3359 0	TER TAX 15.0% MS 0 3132 0) CZM MS 0 3132 3132
ZERO 1995 1996 1997	RATE B61/D 1693 0 0	PRODUC VOL. MSTB 618 0 0	TION PRIC \$/Bb 24.0 0.0) TO E RI 1 0 141 3	TAL B EV. MS BJ1 0 0	URDENS MS 4105 0 0	OPERA EXP MS 84 0 0	0.14 0.00 0.00	OW SUMM CPER INC. MS 10642 0 0	XRY NETBAC B.TAX \$/95 17.2: 0.00	< 22 1 2 2 2 2 2 2	NPTL (SV. MS 0 (750 0 0	B.TAX CASH MS 0 7892 0 0	TCTAL TAX MS 0 4533 0 0	(AF CASH MS 0 3359 0 0	TER TAX 15.0% MS 0 3132 0 0) CCM MS 0 3132 3132 3132
ZERO 1995 1996 1997 1998	RATE Bb1/D 1693 0 0	PRODUC VOL. MSTB 618 0 0 0	24.0 0.0 0.0) TO' E Ri 1 0 144 0 0	TAL B EV. MS BJ1 0 0 0	MS 4105 0 0	OPERA EXP MS 84 0 0 0	0.14 0.00 0.00 0.00	OW SUMM CPER INC. MS 10642 0 0 0	XRY NETBAC B.TAX \$/95 17.22 0.00 0.00	< 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	N7TL (NV. MS 0 0 0 0 0 0	B.TAX CASH MS 0 7892 0 0 0	TCTAL TAX MS 0 4533 0 0	(AF CASH MS 0 3359 0 0 0	TER TAX 15.0% MS 0 3132 0 0 0) CLM MS 0 3132 3132 3132 3132 3132
ZERO 1995 1996 1997 1998 1999	RATE Bb1/D 1693 0 0 0	PRODUC VOL. MSTB 618 0 0 0 0	TION PRIC \$/Bb 24.00 0.00 0.00) TO E R 1 0 147 0 0 0 0	TAL B EV. MS 101 0 0 0 0 0	MS 4105 0 0 0 0	OPERA EXP MS 84 0 0 0 0 0	C.14 0.14 0.00 0.00 0.00	CPER INC. 10642 0 0 0	NETBAC: NETBAC: B.TAX \$/35: 17.22 0.04 0.04 0.04		N7TL (NV. MS 0 1750 0 0 0 0	B.TAX CASH MS 0 7892 0 0 0 0	TCTAL TAX MS 0 4533 0 0 0 0	[AF CASH MS 0 3359 0 0 0 0	TER TAX 15.0% MS 0 3132 0 0 0 0) CUM MS 0 3132 3132 3132 3132 3132 3132
ZERO 1995 1996 1997 1998 1999 SUBT	RATE Bb1/D 1693 0 0 0	PRODUC VOL. MSTB 618 0 0 0 0 0	TION PRIC \$/Bb 24.00 0.00 0.00 0.00) TO' E Ri 1 0 147 0 0 147	TAL B EV. MS 131 0 0 0 0	MS 4105 0 0 0 4105	OPERA EXP MS 84 0 0 0 0 0	0.14 0.00 0.00 0.00	CPER CPER INC. MS 10642 0 0 0 0 10642	NET 3.C		APTL (SV. MS 0 (750 0 0 0 0 0	B.TAX CASH PS 0 7892 0 0 0 0 0 0 7892	TCTAL TAX MS 0 4533 0 0 0 0 4533	[AF CASH MS 0 3359 0 0 0 0 0 3359	TER TAX 15.0% MS 0 3132 0 0 0 0 3132) Cum MS 0 3132 3132 3132 3132 3132
ZERO 1995 1996 1997 1998 1999 SUBT REM.	RATE Bb1/D 1693 0 0 0	PRODUC VOL. MSTB 618 0 0 0 0 0 618 0	TION PRIC \$/Bb 24.00 0.00 0.00 0.00) TO' E R: 1 0 14: 0 0 0 14:	TAL B EV. MS 131 0 0 0 0 131 0	MS 4105 0 0 0 4105 0	OPERA EXP MS 84 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.14 0.00 0.00 0.00 0.00	CPER INC. MS 10642 0 0 0 0 10642 0	NETEXCI B.TAX \$/35 17.22 0.04 0.04 0.04		APTL (SV. MS 0 (750 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B.TAX CASH MS 0 7892 0 0 0 0 0 7892 0	TCTAL TAX MS 0 4533 0 0 0 0 0 4533 0	(AF CASH MS 0 3359 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TER TAX 15.0% MS 0 31132 0 0 0 0 31132 0 0 0 0 0 0 0 0 0 0 0 0 0) Cum MS 0 3132 3132 3132 3132 3132 3132
2ERO 1995 1996 1997 1998 1999 SUBT REM. TOTL	RATE Bb1/D 1693 0 0 0 0	PRODUC VOL. MSTB 618 0 0 0 0 618	TION PRIC \$/Bb 24.00 0.00 0.00) TO' E Ri 1 0 144 0 0 144 144 144	TAL B EV. MS 0 0 0 0 131 0 131	URDENS MS 4105 0 0 0 0 4105 0 4105	OPERA EXP MS 84 0 0 0 0 0 84 0 84	C.14 0.14 0.00 0.00 0.00 0.00	CPER INC. MS 10642 0 0 0 0 10642 0 10642	NET 3.C	2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AFTL (NV. MS 0 (750 0 0 0 (750 0 (750)	B.TAX CASH MS 0 7892 0 0 0 7892 0 7892	TCTAL TAX MS 0 4533 0 0 0 0 4533 0 4533	(AF CASH MS 0 3359 0 0 0 0 3359 0 3359 0 3359	TER TAX 15.0% MS 0 3132 0 0 0 3132 0 3132 0 3132) CLM MS 0 3132 3132 3132 3132 3132 3132
ZERO 1995 1996 1997 1998 1999 SUBT REM. TOTL 15.0%	RATE Bb1/D 1693 0 0 0 0	PRODUC VOL. MSTB 618 0 0 0 0 618	TION PRIC \$/Bb 24.00 0.00 0.00) TO E RI 1 0 144 0 0 0 0 144 144 134	TAL B EV. MS 0 0 0 531 0 531 0 131	URDENS MS 4105 0 0 0 4105 0 4105 3828	OPERA EXP MS 84 0 0 0 0 0 84 0 84 78	TING ENSE \$/951 0.14 0.00 0.00 0.00 0.00	CPER INC. MS 10642 0 0 10642 0 10642 9923	NETSACI B.TAX \$/35 17.2: 0.00 0.00 0.00		APTL (NV. MS 0 2750 0 0 0 0 0 2750 0 2750 2564	B.TAX CASH MS 0 7892 0 0 0 0 0 7892 0 7892 0 7892	TCTAL TAX MS 0 4533 0 0 0 4533 0 4533 4227	(AF CASH MS 0 3359 0 0 0 0 3359 0 3359 0 3359 3359	TER TAX 15.0% MS 0 3132 0 0 0 0 3132 0 3132 0 3132) CCM %5 0 3132 3132 3132 3132 3132 3132

PETROLEUM ECONOMICS EVALUATION PROGRAM

Parameter File:

÷

...

Parameter file name: param (NOT all parameters read each run) SUNCOR PROJECT EVALUATION PARAMETERS BASE CASE July 1995

Discount Method: ANNUAL HID PERIOD

Default Escalation Rates

Rev. Opc. Cap. Rev. Opc. Cap. Rev. Opc. Cap. Year Rate Rate Rate Year Rate Rate Rate Year Rate Rate Rate 1991 0.00 0.00 0.00 1996 0.00 .3.00 3.00 2001 0.00 3.00 3.00 2002 0.00 3.00 3.00 1992 0.00 0.00 0.00 1997 0.00 3.00 3.00 1993 0.00 0.00 0.00 1998 0.00 3.00 3.00 2003 0.00 3.00 3.00 1994 0.00 0.00 0.00 1999 0.00 3.00 3.00 2004 0.00 3.00 3.00 1995 0.00 3.00 3.00 2000 0.00 3.00 3.00 2005 0.00 3.00 3.00

Case Parameters:

Category: PDP

Production:

•••••

Price Files Used:

Royalties:

:

Oil for royalties is 100 % new in first year.

Alberta light oil par price files used: PAR95B1 Alberta old oil select price file used: ABOLD955 Alberta new light oil select price file used: ABLG955

Capital:

Capital Comments:

Constant dollar year for capital comments is 1995.

1995 Development	investment of	1600 MS: D&C intangible	Delay 1995 years
1995 Tangibles	investment of	400 MS: D&C tangible	Delay 1995 years
1995 Development	investment of	750 HS: three frac	Delay 1995 years

Tax Data:

Version: Rel 7.7.1c Time: 95/08/27 01:51:4 File: HORZ3
OLEUH I	ECONOMICS	EVALUA	rion pro	GRAM										Ver	sion: Re Cime: 9	1 7.7.1c 5/08/27 01	
•														· 1	File: H	ORZS	
[(CASE DES	CRIPTION			}	[NET PRI	ESENT VI	alues (MS)		}	
Korizontal well with five fractures				DIS	C RATE	(4)	0.0	10.0	12.0	15.0	18.0	20.0					
								B.1	. OPER :	INC	18507	17646	17487	17258	17037	16894	
								B.1	. CAP II	ŧ٧.	3250	3099	3071	3031	2952	2967	
								3.7	. CASH I	LOW	15257	14547	14416	14227	14045	13928	
Royal	ty Regime	: ALBE	RTA	Gas Hol:	iday: NO			•									
Reserve type: PDP				Oil Holiday: NO				λ.1	OPER :	INC	10441	9955	9866	9737	9612	9532	
Royalty Type:Crwn Reversion Pt:				Eval/Prod Start: 95- 1/95- 1				λ.7	. CAP 11	N.	3250	3099	3071	3031	2992	2967	
				Proj/Econ Life: 5.0/ 1.0 yrs			A.T. CAS		ASH FLOW 7191		6857	6795	6706	6620	6565		
1	ECON	OHIC IN	DICATORS		-) (PRODUC	TS RECO	VERY			[COMPANY	W.I	}	
•			в.	TAX A.T	AX.		c	ROSS	WI	ROY	NET			Inict	Fi	nlt	
ROR		- PCN	r 80	0.0 800	.0 01L		MSTB	1073	1073	298	775	REV	ENUE	100.0	10	0.0	
PAYOUT PERIOD		- EVA	6	0.2 0	.) CVS	GAS-RAN M		0	0			FIELD CAP		100.0	10	100.0	
					GAS	-SALES	MSCT	0	0	٥	0	PLA	NT CAP				
INDISC PIR - \$/5		4	.69 2.3	21 ETH	ETHANE STB		0	0	0	0	GATH CAP						
IS A POT PIR		- 5/5	- 5/5 4.6		2.21 2802		\$18	. 0	0	٥	0						
13.0 PCT PIR		• s/s	• 5/S 4.65		2.21 BUTANE		\$73	٥	0	0	a	ORR-GAS					
NEV A 15 0		s/Bb1 13		.26 6.	25 PEN	PENTS+ STB		٥	0	0	0	ORR	-01L				
VDV .	17.0	- 5/	въ1 13	.44 6.1	33 SUL	PHUR	LT	0	0	0	٥						
		•••				OTHER STB		o	0	0	0	RCY	ALTY	27.8		0.0	
1		` •••				WI	CASH FI	LOW SURP	ARY							}	
YEAR	(01L	PRODUC	TION]	TOTAL	BURDENS	OPERAT	ING	OPER	NETBAC	ĸ	APTL	B.TAX	TOTAL	[אר	TER TAX]	
	RATE	VOL.	PRICE	REV.		EXPI	ENSE	INC.	B.TAX		INV.	CASH	TAX	CASH	15.0%	CH	
	851/D	MSTB	\$/861	MS	HS	H\$	\$/951	MS	\$/35	1	MS	MS	MS	M\$	MS	M\$	
ZERO								•			0	0	o	٥	٥	0	
1995	2939	1073	24.00	25746	7155	84	0.08	18507	17.2	5	3250	15257	8066	7191	6706	6706	
1996	0	0	0.00	0	0	0	0.00	٥	0.0	0	٥	0	٥	0	0	6706	
1997	0	0	0.00	0	0	٥	0.00	o	0.0	0	0	0	0	0	C	6706	
1998	٥	o	0.00	٥	0	0	0.00	0	0.0	0	o	0	0,	0	٥	6706	
1999	0	٥	0.00	0	0	0	0.00	0	0.0	0	, 0	0	0	0	٥	6706	
SUBT		1073		25746	7155	84		18507			3250	15257	8066	7191	6706		
REH.		0		٥	0	0		0			0	0	0	٥	0		
TOTL		1073		25746	7155	84		18507			3250	15257	8066	7191	6706		
15.0%	DISC			24008	6672	78		17258			3031	14227	7521	6706			
				100	24	•		77			13	59	31	28			

.

:

132

PETROLEUM ECONOMICS EVALUATION PROGRAM

Comment: Horizontal well with five fractures Case Notes ---------Evaluation Begins in 1995 1 Production Begins in 1995 1 Discount date is 1995 1

Parameter File:

Parameter file name: param (NOT all parameters read each run) SUNCOR PROJECT EVALUATION PARAMETERS BASE CASE July 1995

Discount Method: ANNUAL HID PERIOD

Default Escalation Rates

Rev.
Opc.
Cap.

Year
Rate
Rate
Rate
Year
Rate
Year
Rate
Year
Rate
Ra

Case Parameters:

Category: PDP

Production:

Price Files Used:

•••••

Royalties: Oil for royalties is 100 % new in first year.

Alberta light oil par price files used: PAR95B1 Alberta old oil select price file used: ABOLD955 Alberta new light oil select price file used: ABLG955

Capital:

.....

Capital Comments: Constant dollar year for capital comments is 1995.

1995 Development	investment of	1600 MS: D&C intangible	Delay 1995 years
1995 Tangibles	investment of	400 MS: DEC tangible	Delay 1995 years
1995 Development	investment of	1250 HS: five fracs	Delay 1995 years

Tax Data:

Version: Rel 7.7.1c Time: 95/08/27 01:38:4 File: HOR25