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ABSTRACT 

This thesis presents the analysis, characterization, and design of a class of oversam-

pled sigma-delta converters. An overview of sigma-delta conversion, modern uses of 

sigma-delta converters, and important issues regarding these converters is presented. 

Then, the closed-form solution for the granular quantization error for this class of 

sigma-delta converters is derived using a state-space approach. An input signal bound 

to guarantee the quantizer is not overloaded is also derived. A closed-form solution 

for the quantizer output signal based on state-space equations is derived along with 

an open-loop equivalent system based on the dosed-form, solution for the granular 

quantization error. Stability issues and spectral analysis methods of sigma-delta con-

verters are examined. Finally, design techniques for cascaded sigma-delta converters 

are presented. New converters are developed and analysed. The operation of these 

new converters is then characterized with regard to signal-to-quantization noise ratio 

through simulation. 
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CHAPTER 1 

INTRODUCTION 

1.1 Historical background of sigma-delta (E - z) modulation 

The widely recognized field of sigma-delta ( - z) conversion has its origins back 

in the early 1960's. It was at that time when H. Inose, Y. Yasuda, and J. Murakami 

[IYM62] with the Faculty of Engineering at the University of Tokyo developed the 

delta-sigma ( - E) conversion technique as a code modulation scheme in the field of 

communications. They proposed the new scheme as an alternative to the conventional 

delta modulation where pulses are generated by the differentiation of the amplitude of 

the input signal in an encoder at the transmit end, and integrated at the decoder on 

the receive end to obtain the original waveform. This technique is known to suffer from 

the effects of transmission noise having an accumulative error upon the demodulated 

signal. The E - L modulator provides a solution to this drawback, i.nvolving the 

integration of the input signal prior to modulation so that the generated output 

pulses would carry the information corresponding to the input signal amplitude (see 

Fig.1.1). 

In recent years, the fields of signal processing and communications have become 

more important with the continuing advances in very large scale integrated (VLSI) 

circuit technology; This is because the robustness, accuracy, and flexibility of VLSI 

technology have created new areas for signal processing applications and new imple-

mentation alternatives. One such area that is receiving increased attention is that 
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Figure 1.1. Comparison of delta and sigma-delta modulation 
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of analog-to-digital (A/D) and digital-to-analog (D/A) conversion. This is mainly 

due to the fact that continuing improvements in digital signal processing resolution 

are causing the resolution requirements for interface circuits (i.e. A/D and D/A 

converters) to increase as well. 

There are several methods available for accurate A/D conversion. These include: 

a) Parallel (also known as flash) as well as serial-parallel converters. 

b) Pipelining and multiplexing converters. 

c) Serial (also known as successive-approximation) converters. 

d) Counting converters. 

e) Oversampling converters. 

A thorough discussion of each of these conversion methods may be found in the 

existing literature such as [LT93]. These methods may also be used for D/A conversion 

also. In order to facilitate the discussion of the increased resolution requirements, it 

is expedient to discuss some of the drawbacks that limit the resolution capability of 

the above named A/D conversion methods. 

Parallel Converters These converters offer rapid conversion in one clock cycle with 

the use of 2' + 1 comparators (where N is the desired number of bits). This 

creates problems for resolution exceeding 9 bits, as the circuit complexity, power 

dissipation, and chip area all become large. In addition, the accuracy of the 

comparisons increases for a larger number of bits, thus making the necessary 

manufacturing tolerances of circuit components more difficult to achieve. 
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Pip elining and multiplexing converters Pipelining converters are much more ex-

pensive in chip area compared to parallel converters as they require N sample-

and-hold stages in addition to N - 1 analog gain stages. The multiplexing 

converters employ N sample-and-hold and converter stages with one N-bit mul-

tiplexor to achieve an A/D conversion in M clock cycles. Additionally, skew or 

timing jitter in any of the N clocks will translate into more accumulated noise 

in the system. 

Serial converters These converters require very few analog components, but require 

N clock cycles to process all the bits of an N-bit conversion. The complexity 

of the digital logic and storage, however, becomes much higher than previously 

mentioned methods. 

Counting converters These converters like the serial converters mentioned above 

contain only a modest amount of components such as multiple converters, digital 

logic, a counter, and a D/A converter. However, these converters trade a larger 

processing time for the desired accuracy, as they require 2N steps to achieve an 

N-bit conversion. 

Oversampling converters It has been clearly demonstrated in the literature that 

the use of a coarse quantizer embedded in a feedback loop and operated at a 

sampling rate much higher than the Nyquist rate (hence the term oversampled), 

will result in a high' resolution digital approximation of the original analog input 

signal after processing the output digital bit stream. One apparent drawback is 

that for high resolution, the oversampling ratio (OSR) which is the ratio of the 

sampling frequency f3 over twice the highest input signal frequency f0 must be 

very large. A second drawback is that due to the simple structure of this network, 
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there exists a correlation between the input signal and the generated quantizer 

error at DC and very low frequencies which may cause resonance effects. This in 

turn causes large inband tones to be generated in the quantization error (seriously 

degrading resolution). These problems may be overcome with the use of more 

complex networks containing more loops, which will be discussed later in Section 

1.3. 

One of the inherent benefits of ?versamPled E - A A/D converters is that the anti-

aliasing requirement for the circuit becomes less stringent. The sampling of analog 

signals has been extensively established, and is governed by the minimum rate at 

which a signal must be sampled to prevent loss of information (the Nyquist rate). 

However, no restrictions have been placed on the upper bound at which the signal 

may be sampled except those due to technological limitations. For example, in digital 

audio where the passband is limited to 20 kHz, the designated sampling frequency 

is 44.1 kHz. This would require an anti-aliasing filter with a sharp roll-off (see Fig. 

1.2). Note, that in Figs. 1.2 and 1.3, the frequency axis has been exaggerated to show 

the change in the anti-aliasing filter roll-off more clearly. Utilizing the oversampling 

I H(f)I 

f 
b 

anti-aliasing filter's frequency response 

FS/2 F 

Figure 1.2. Anti-aliasing filter requirements 
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techniques however, causes the signal spectra to become more further separated in 

frequency due to the higher sampling rate, thus reducing the requirements for the 

anti-aliasing filter (see Fig. 1.3). In some special applications, with a sufficiently 

high oversampling ratio, the anti-aliasing requirements for certain circuits may be 

met with a simple RC filter. 

I H(f) 
anti-aliasing filter's frequency response 

for an increased sampling rate. 

N Fs/2 NF8 

f 

Figure 1.3. Reduced anti-aliasing requirements 

Originally developed for code modulation in the field of communications, the E - 

modulation technology has now evolved dramatically in the past two decades. This 

technology is currently employed in a large number of consumer audio products such 

as Compact Disc players, digital tape decks and other electronic stereo products. It is 

also employed in the digital conversion of intermediate frequency (IF) in digital radio 

products, interface circuits for instrumentation, and is being utilized quite heavily in 

telecommunication codecs. 

1.2 Sigma-Delta converter operation 

This section is concerned with a brief study of the basic operating principles of 

E - L1 converters. For simplicity, let us discuss E - L converter operation for a 

single-loop converter (see Fig. 1.4). This converter is implemented with a differential 
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(One bit Quantizer) 

Y(t) 

Figure 1.4. Single-loop sigma-delta converter 

integrator, a coarse quantizer (a simple comparator for 1 bit quantization), a D/A 

converter, and a delay. The input to the circuit is fed to the quantizer via the in-

tegrator, after which the resulting signal is fed back and subtracted from the input 

signal. Thus the slowly moving short term average value of the quantized signal tracks 

the average input due to the forcing action of the feedback signal. These structures, 

also known as noise shapers, have the additional property of reducing the quantiza-

tion error spectral density at low frequencies and increasing the quantization error 

spectral density at higher frequencies. This noise shaping property is subsequently 

increased for converters containing multiple loops or stages. In order to facilitate the 

discussions in this and the following chapters, it is more useful to represent the above 

sampled data system with its discrete-time equivalent representation shown in Fig. 

1.5. Although the operation of such oversampled systems may seem straightforward, 

U(z) Y(z) 

Figure 1.5. Discrete-time equivalent system 

there are important issues regarding the analysis, characterization, and design of such 

systems. Analysis is a key issue because exact analysis methods for the quantization 

error will provide essential insight into the basic nature of such devices that approxi-
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mation methods for the quantization error cannot predict. Next, characterization of 

system output behaviour for various input signals is important as it is the "yardstick" 

by which implemented circuits are judged as to their performance capabilities and 

therefore more exacting analysis techniques that characterize system behaviour must 

be used to overcome the shortcomings of analytical approximations. Finally, design 

is a key issue that requires some rigouróus methods so that implemented circuits ac-

tually meet the original design criteria and not the designer's perceived ideal output 

response. 

1.3 Survey of design methods for lowpass E - L converters 

There are different methods available for the design of oversampled E - convert-

ers. These converters may be used for either lowpass or bandpass signal applications 

such as A/D conversion of low frequency audio signals in CD players or A/D conver-

sion of high frequency IF frequency signals in digital radio. This section will survey 

design methods used for lowpass applications, and the next section will survey design 

methods used for bandpass applications. As mentioned in Section 1.1, simple over-

sampled converters suffer from two shortcomings, the first being that an extremely 

large oversampling ratio must be used to reduce the in-band quantization error and 

obtain high resolution, and the second being that the quantizer, error signal is corre-

lated to the input signal for certain inputs that are not sufficiently random. These 

problems have been circumvented by using multibit quantization, multiloop config-

urations, or cascaded simple multiloop networks. It was noticed quite early in this 

field of research, that further decorrelation between the input signal and the quantizer 

error occurs for networks employing more than a single loop in a E - L converter 

[Can85} and that such structures shaped more low frequency noise into the higher 

frequency bands for the same oversampling ratios (see Fig. 1.6 for a comparison). 
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From the above research, two distinct approaches emerged for the design of higher-

order converters providing improved noise shaping. These approaches are discussed 

in the following two subsections. 

1.3.1 Multiloop E - A converters 

Research into higher-order oversampled converters [Can85] made it clear that im-

proved resolution becomes possible by using circuit configurations with higher-order 

noise shaping properties to achieve a much higher signal-to-quantization noise ratio 

for the same given modest oversampling ratio (the benefits are not apparent for low 

oversampling ratios). However, it was also determined that for coarse quantization 

(1 bit), system stability became an important issue for structures with N ≥ 3 loops, 

unless multil?it quantization was used [CT92]. 

In gençral, multiloop E - converter circuits may be represented by using the 

configuration in Fig. 1.7. From this representation, two transfer functions can be de-

U(z) Pr®  H(z) Q(-)l  

Figure 1.7. The general multiloop converter representation 

rived. The first is between the input signal and the output, which is referred to as the 

signal transfer function (STF), and the second is between the generated quantization 

error signal and the output and is referred to as the noise transfer function (NTF). 

These transfer functions may be represented as functions of the feedforward transfer 
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function H(z) in accordance with 

STF: H(z) = 1 +H(z) 

and 

NTF: HN(z) = 1 + H(z) (1.2) 

Thus, for circuit configurations with a given feedforward transfer function 11(z), if 

care is not taken in choosing the transfer function parameters, circuit instability will 

result. In the design of higher-order single quantizer E - converters, the following 

circuit configurations have been used with varying amounts of success. 

1) A chain of integrators configuration with weighted feedforward summation. 

2) A chain of integrators configuration with distributed feedback. 

3) A chain of integrators configuration with distributed feedback and distributed 

feedforward paths. 

4) A chain of integrators configuration with distributed feedback and local resonator 

feedbacks. 

5) A chain of integrators configuration with distributed feedback and distributed 

feedforward paths with local resonator feedbacks. 

The first three methods may be attributed to the work of Chao, Naddeem, Lee, and 

Sodini [CNLS9O] who implemented an Nth order loop subsystem with feedforward 

and feedback coefficients as shown in Fig. 1.8, resulting in the following signal and 

noise transfer functions. 

E0 A(z - 
H(z) = z[(z - - B(z - i)N_i] + E0 A1(z - 
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U (z) 

c  
<B1 - 

 <2 - 

<3 -  

-3i 1r> i1r  

+1;:;>  
-0 Al 

3 

Q(.) 

Figure 1.8. The Nth order loop topology with feedforward and feedback coefficients 

H - (z - -  E ly 1  B(z - 

N(Z) - z[(z - - - i)N} + E A1(z - 1) 

The other methods may be attributed to the work of Jantzi, Sneigrove, Ferguson, 

Thurston, Pearce, Hawksford, and others [JSF93], [Ge89], [TPH91], who realized 

STF and NTFs with non-Butterworth responses using a chain of integrators with 

feedforward and feedback paths containing local resonator feedback loops. These 

methods have proven useful in implementing both bandpass signal and bandstop noise 

transfer functions and will be examined in the succeeding subsection on bandpass 

conversion design. 

For analytical purposes, multiloop and cascaded sigma-delta converters may be 

accurately modelled as a linear subsystem with , a nonlinear operator (the quantizer). 

Therefore, the quantizer may be represented as an additive error signal source pro-

vided that no prior assumptions are made regarding the behavior of this error signal 

source (e.g. assuming quantizer error behaviour as an independent identically dis-

tributed noise source). In this way the Z - converter may be characterized by the 

following input-to-output relationship in the z-domain 

Y(z) = Hs(z)U(z) + HN(z)E(z) (1.3) 
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where U(z) denotes the z-transformed input signal and E(z) denotes the z-transformed 

quantization error signal, and where Y(z) denotes the corresponding z-transformed 

converter output signal. Moreover, the signal transfer function is denoted as Hs(z) 

and the noise transfer function by HN(z). 

For the single-loop converter shown in Fig. 1.5, the converter may be analyzed 

by using Mason's gain formula to obtain the converter output response. Using the 

method outlined above, the output signal Y(z) of the single-loop converter may be 

obtained as 

Y(z) = Giz'U(z) + (1 - Giz 1)Ei(z) (1.4) 

By setting the multiplier gain G1 to unity (the ideal condition where multipliers would 

not be required), the equation reduces to 

Y(z) = z'U(z) + (1 - z')Ei(z) (1.5) 

It may be clearly observed from (1.5), that Hg(z) = z 1 has an alipass nature, while 

HN(Z) = (1 - z') has a highpass nature. 

Other examples of chain of integrator structures are the basic second-order con-

verter [Can85] shown in Fig. 1.9. This converter can be analysed to give 

U(z) 

Figure 1.9. Double-loop E - A converter 

Y(z)= U(z) 
(1 - (1 - G1G2 - G2)z' + (1 - G2 )Z-2) G2)z 2) 

(1 - 

+ (1 (1 - G1G2 - G2)z' + (1 - G2)z_2)E1 

G1G2z' 

Y(z) 

(1.6) 
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which may be further simplified by assuming ideal matching i.e. multipliers G1 = 

G2 = 1, to the form 

Y(z) = z'U(z) + (1 - z')2E1(z) (1.7) 

The basic third-order converter in Fig. 1.10 can be similarly analysed to obtain 

Y(z) = z'U(z) + (1 - z')3E1(z) (1.8) 

This converter configuration provides the desired noise shaping function of (1— z')3. 

U(z) 

Figure 1.10. Triple-loop E - A converter 

Y(z) 

In the design of higher-order multiloop converters, only a few design methods 

besides that of cascade structures have been used successfully to implement cicuits 

with more than 3 loops. The design method by Chao, et al. is the most prevalent 

of these. There have been other methods employed that also utilize feedforward and 

feedback techniques, but they may be shown to be variations of the Chao, et al. 

design method only. 

This section will examine the performance of the basic version of the Nth order 

loop topology sigma-delta converter proposed by Chao, et al., the Triple Order Single 

Loop All Pole (TOSLAP) converter [CNLS9O], where all the feedback coefficients 

(B's) are set to zero resulting in the simplified converter shown in Fig. 1.11. The 

converter configuration was analysed according to the original design specifications 

where: A0 = 0.8653, Al = 1.1920, A2 = 0.3906, A = 0.06926, and A4 = 0.005395. 

After performing a signal flow graph analysis of the TOSLAP converter to determine 
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the signal and noise transfer functions, and simplifying the result, the output equation 

for this converter configuration was found to be 

YW 
- O.8653z' - 2.2692z 2 + 2.0064z3 - 0.59714z -4 + 0.000035z -5 

- 1 - 3.1347z' + 373O8z 2 - 1.9936z 3 + O.40286z 4 + O.000035z5 (z) 
1-4z 1+6z 2-4z 3+z 4  E' Z1 

+ 1 - 3.1347z' + 3.7308z2 - 1.9936z 3 + O.40286z 4 + O.000035z5 1  (1.9) 

It may be observed from this equation that the noise shaping performance of HN(z) 

U (Z) >31 -T-7LT— >G-r:E1T- >G 

>0  

'1 

- >2  

Q(.) 

Figure 1.11. The triple order single loop all pole (TOSLAP) converter 

in (1.9) approaches that of the desired fourth order NTF, 

HN(Z)  

due to the placement of the NTF poles away from the origin. 

1.3.2 Cascaded L converters 

An alternative method for achieving high order noise shaping and therefore im-

proved signal-to-quantization noise ratio and stability has been achieved with the use' 

of cascaded low-order subsystems. It is well known that single-loop and double-loop 

- L converters exhibit good stability properties [CT92], and with the cascade of 

such structures (with a modest increase in additional components), converters can be 
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constructed that achieve higher order noise shaping without the high parameter tol-

erances required for high-order multiloop converters. These converter configurations 

which contain multiple quantizers, are designed such that the quantizer error signal 

from the first through the (N - 1)th stage (for an N stage converter configuration) 

are combined so their effects cancel one another. This results in only one source of 

quantizer error signal (the Nth) remaining at the output being shaped by the NTF 

HN(z) (1 - z_1)N. (1.10) 

In this manner, the noise shaping properties of higher-order multiloop converters may 

be obtained without their inherent stability problems due to high precision compo-

nent requirements. A few converter configurations that have been designed using this 

technique will be presented next in order ,f increasing converter complexity, begin-

ning with second-order converter configuratiois and ending with third-order converter 

configurations. 

Second-order converter configurations were developed to exploit the second-order 

noise shaping of double-loop converters while retaining the stability properties of the 

basic first-order converter. In the field of converter design , there are different ideas 

as to how to achieve the desired output equation 

Y(z) = z_NU(z) + (1 - z')2E2(z)  

where N is the number of delays chosen by the designer for the overall output signal. 

There. have been several different second-order converter configurations developed, 

such as those by Candy & Temes [CT92], or by Wong & Gray [WG9O], and those 

by Uchimura, Hayashi, Kimura, and Iwata [UHKI88]. The signal and noise transfer 

functions introduced in the preceding section will be determined for each of these 

converter configurations in order to evaluate their performance characteristics. 
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The Candy & Temes converter is shown in Fig. 1.12. The overall output signal 

for this modulator assuming ideal matching (G1 = G2 = 1), is given by 

Y(z) = z'U(z) + (1 - z')2E2(z) (1.12) 

This converter performs the same as the double-loop converter of Fig. 1.9, while 

U(z) 

Figure 1.12. The cascade 2 converter by Candy & Temes 

retaining the more stable structure of the basic first-order converter. 

Y(z) 

• The Wong & Gray converter is shown in Fig. 1.13. By analysing the converter 

signal flow graph configuration, and assuming ideal matching (G1 = G2 1), one 

obtains the overall output signal as 

Y(z) = z'U(z) + (1 - z')2E2(z) (1.13) 

which is identical to that of the Candy & Temes converter in Fig. 1.12. The con-

verter configuration proposed by Candy & Temes, however, requires one less adder 

for obtaining the second-order noise shaping transfer function. 

The final cascade 2 converter to be examined was developed by Uchimura, et al. 

seen in Fig. 1.14. The overall output signal for this configuration assuming ideal 

matching is given by 

Y(z) = z 2(2 - z')U(z) + z'(l - z')2E1(z) + (1 - z')2E2(z) 
(1.14) 
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Figure 1.13. The cascade 2 converter by Wong & Gray 

V 

Y(z) 

Y(z) 

Figure 1.14. The cascade 2 converter by Uchimura, Hayashi, Kimura, and Iwata 
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This section will examine and compare the performance of cascade converter con-

figurations of a more complex nature, that of third-order converter configurations. 

There have been several third-order cascade converters developed such as the Second 

Order First Order Cascade 1 (SOFOC1) converter [LC88], the Second Order First 

Order Cascade 2 (SOFOC2) converter [Rib91], and the Cascade21 converter [CT92]. 

The first of these converter configurations is the SOFOC1 seen in Fig. 1.15. The 

overall output signal for this configuration assuming ideal matching, is obtained as 

Y(z) = z'U(z) + (1 - z')3E2(z) (1.15) 

This converter provides the desired third-order noise shaping transfer function for 

a third-order converter. The next converter configuration to be examined is the 

SOFOC2 converter shown in Fig. 1.16. By analysing the converter signal flow graph 

configuration the overall output signal assuming ideal matching, is given by 

Y(z) = (1— '+ z) U(z) + (  Ei(z) 
(1 —4z' + 7z2 - 7z 3 + 4z4 - z 5) 

+ (1 - z 1 + z 2) E2 (Z) 

This converter gives a decreased noise shaping performance (and therefore a reduced 

signa1to-quantization noise ratio) due to the placement of the poles of the noise 

transfer function away from the origin in (1.16). The final third-order converter to 

be examined is the Cascade21 converter configuration (see Fig. 1.17). This converter 

merely takes the output from the second integrator of a second-order converter (prior 

to quantization) and passes it through a second stage consisting of a first-order con-

verter. The overall output signal for this converter assuming ideal matching, is given 

by 

2z 3 - 2z 4 + Z U(z) + z'(l _1)3 
Y(z) = (1 - z' + z 2) (1 - Z _2) E1 

(1 - 4z 1 + 7z2 - 7z 3 + 4z 4 -' + - z ' E2 (Z) 
(1—z'+z 2) 

(1.16) 

(1.17) 
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It must be noted that the design of any cascaded E - A converter configurations must 

be done carefully as improper cancellation of quantization noise sources from prior 

stages preceding the final stage will result in converters with poor noise shaping 

U(z) 

Figure 1.15. The second order first order cascade 1 (SOFOC1) converter 

Y(z) 

transfer functions or multiple sources of quantization error existing at the output, as 

seen in (1.14), (1.16) and (1.17). 

1.4 Survey of design methods for bandpass E - A converters 

Lowpass E - converters have extremely low quantization noise only around DC 

[CB81}. By making use of this property, designers [SS89] have developed converters 

where quantization noise is reduced to zero at some frequency w0 = 2irf0 to obtain 

good noise suppression in a band around wo (see Figs. 1.18a and 1.18b). Then, 

through the use of a narrow bandpass filter centered around w0 a bandpass E - 

converter may be obtained for the suppression of noise around w0 and not DC. 

One important difference between bandpass E - /1 conversion and that of lowpass 

- A conversion is the definition of the oversampling ratio. The oversampling ratio 

for a lowpass E - converter is defined as 

2fo 
(1.18) 
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U (Z)-T•l 

U (z) 

Q(.) 

Q(.) 

Figure 1.16. The second order first order cascade 2 (SOFOC2) converter 

Y(z) 

Figure 1.17. The cascade 21 converter 
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B 

=0 

a) Lowpass Sigma-Delta b) Bandpass Sigma-Delta 
Converter(Second order) Converter (Fourth order) 

Figure 1.18. Comparison of pole and zero placements of NTF for lowpass and band-
pass E - A converters (the passbands are highlighted) 

while that for a bandpass E - converter is given by 

21b 

where f& is the frequency bandwidth of interest. Thus for a signal centered around 

1 MHz with lb = 100kHz and f3 = 5MHz, the oversampling ratio would be 25 

instead of 2.5 as in the case of a lowpass converter. 

(1.19) 

In bandpass E - A converters, the STF and NTF are chosen as follows. The 

STF must provide a unity gain in the desired passband (preferably a gain < 1 in 

frequencies outside the passband). The NTF is then chosen such that 

a) large inbnd attenuation is obtained; 

b) the out-of-band NTF gain is chosen to be less than 2 to keep the converter stable 

according to Lee's rule of thumb for 1 bit quantizers [CNLS9O]; and 

c) the first NTF impulse response coefficient is chosen to be unity to avoid delay-free 

loops and guarantee the realizability of the converter [JSS91]. 

By adopting these criteria together-with other criteria such as trade-offs between 

sampling rate, oversampling ratio, and the anti-aliasing requirement for choosing 
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the location and width of the of the frequency band of interest, filter optimization 

routines [JSS91] are usually employed to obtain a circuit configuration suitable for 

implementation. To illustrate the point, the following bandpass E - L converter 

composed of a chain of integrators with feedforward and feedback coefficients and 

resonator feedback loops (see Fig. 1.19) was designed to produce the STF and NTF 

magnitude reponses shown in Fig. 1.20. These responses were useful in the design of 

an A/D converter for IF frequency applications [JSF93]. 

1.5 Overview of the thesis 

In the years following the resurgence of research on E - A modulators as trig-

gered in the mid 1970's by J. Candy [Can74] - [CB81], considerable effort has been 

made in examining trade-offs between the performance of E - A converters and their 

complexity. Numerous results have been obtained and reported through computer 

simulations, but these results only provide limited information regarding the actual 

behaviour of the considered E - A converters. It is more important, to develop ana-

lytical methods for the derivation of the relationships characterizing these converters, 

not only for a basic understanding of these converters but also for the development 

of novel type converters and their improvement. 

The purpose of this thesis is twofold: (a) to introduce generalized state-space 

methods for the analysis and characterization of a class of Z - A converters, and (b) 

to introduce several new Z - A converters. To facilitate these objectives, this thesis 

is organized in the following manner. 
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a 

Figure 1.19. Fourth-order bandpass resonator converter 

<— NW Magnitude response 

- STF Magnitude response 

0.5 1 1.5 2 2.5 3 
Normalized Frequency omega*T 

35 

Figure 1.20. The STF and NTF magnitude/frequency responses for a fourth order 
bandpass converter 
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Chapter 2 will introduce a general state-space formulation for the representation of 

single-quantizer E - converters. Using this formulation, a closed-form solution will 

be derived for the granular quantization error under the assumption of no-overload 

quantizer operation. An input signal bound will then be derived to guarantee the no-

overload operation. The results are exploited to place in evidence interrelationships 

between converter parameters such as the input signal range, quantization bin-width, 

and number of quantization levels. Finally, several application examples are presented 

to illustrate the results. 

Chapter 3 will utilize the proposed state-space representation to derive the closed-

form solution for the quantizer output signal. This will then be followed by the 

derivation of an open-loop equivalent system. Proof by empirical results will then be 

presented using some application examples. Finally the stability aspects of E - 

converters with regard to both circuit parameters and input signal range will be 

discussed together with several application examples. 

Chapter 4 will 'examine E - /. converter quantization noise spectra, beginning 

with a brief overview of several spectral analysis techniques, particularly the method 

for use with the linearized E - L converter model. Then more realistic methods 

taking into account the nonlinear nature of the quantizer error into account will be 

examined, resulting in a Fourier series expansion of the quantization error. Finally, 

this chapter will conclude with a calculation of the signal-to-quantization noise ratio 

for the three discussed methods. 

Chapter 5 will discuss the desired characteristics of the signal and noise transfer 

functions in E - A converter design. Then several new E - A converters are presented 

and subsequently analysed with regard to signal and noise transfer functions. It will 

then characterize their performance with regard to signal-to-quantization noise ratio. 
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Chapter 6 will finally conclude the thesis with a brief overview of the material pre-

sented, a discussion of the fields of analysis and design of Z - t≥. converters that should 

be explored more fully in the future, and then present some concluding remarks. 



CHAPTER 2 

CLOSED-FORM SOLUTION OF GRANULAR 
QUANTIZATION ERROR FOR A CLASS OF 

SIGMA-DELTA CONVERTERS: A STATE-SPACE 
APPROACH 

2.1 Introduction 

The main objective of this chapter is to develop a closed-form solution for the 

granular quantization error to be subsequently used in the analysis of a widely used 

class of E - converters. The development is facilitated by extracting the constituent 

quantizer from the E - L converter configuration, thus partitioning the converter 

configuration into a linear time-invariant subsystem and the quantizer itself. This 

partitioning leads in a straightforward manner to the derivation of a nonlinear matrix 

difference equation relating the quantizer error to its past values and the present 

and past values of the input signal via the arithmetic operation of the quantizer. 

The closed-form solution is subsequently obtained by solving this matrix equation for 

arbitrary input signals. This closed-from solution is derived under the assumption 

that the constituent quantizer operates in its no-overload region. To render the results 

of the closed-form solution complete, an input signal bound is derived to guarantee 

no-overload quantizer operation. 
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2.2 Formulation of the Problem Statement 

A general E - L converter configuration can be represented as shown in Fig. 

2.1. This representation is obtained by extracting the constituent quantizer Q from 

the E - Li converter configuration, resulting in the identification of the linear time-

invariant subsystem Al. 

  oe(n) 

Al 

y(n) 
Q(.) 10  

q(n) 

Figure 2.1. The general single quantizer converter representation 

'O q(n) 

By using a state-space formulation for the linear time-invariant subsystem Al, the 

state and output equations for the subsystem Al may be written as 

x(n +1) = Ax(n) + Biu(n) + B2q(n) (2.1) 

y(n) = Cx(n) + Du(n) (2.2) 

where x(n) represents the state vector and u(n) represents the converter input signal, 

and where y(n) represents the signal before and q(n) represents the signal after quan-

tization (q(n) also represents the converter output signal). Moreover, A is an N x N 

matrix, B1 and B2 are N x 1 vectors, C is a 1 x N vector, with D being a scalar. 

Note that in order to render the overall E - A converter output q(n) computable, it 
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has been implicitly assumed y(n) is independent of the present value of q(n) (cf. Fig. 

2.1). Finally, the quantizer subsystem operates on its input according to the equation 

( (M - 1)/2 for (M/2 - I)A ≤ y 
q(y) (k - 1/2)A for (k - 1)L ≤ y < kz (2.3) 

I (—M + 1)/2 for y < (—M/2 + 1)L 

where k = (—M/2+2),... , (M/2—l), where M represents the number of quantization 

levels, and where L represents the quantization bin-width [Gra9O} (the separation 

between adjacent quantization levels). In this formulation, M is taken as an even 

number (the case of an odd M can be considered in the same manner). 

In Fig. 2.1, the quantizer error signal is defined as 

e(n) = q(n) - y(n) (2.4) 

If the quantizer input y(n) is confined to the interval [—Mi./2, MA/2], then the 

quantizer error will be guaranteed to be bounded from above by ./2,. reducing to 

granular quantization error. Otherwise, the quantizer operates in the so-called over-

load region. 

The problmunder consideration is to derive a closed-form solution for the granular 

quantization error e(n) by solving (2.1) and (2.2) in combination with (2.3). 

2.3 Derivation of the Closed-form Solution of the Granular 
Quantization Error 

The objective of this section is three-fold, a) to derive a nonlinear matrix equa-

tion characterizing the quantization error e(n) for arbitrary input signals u(n), b) to 

define the condition for no-overload quantizer operation, and c) to derive a closed-

form solution for the granular quantization error e(n) (i.e. the error associated with 

overload-free quantizer operation). 
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2.3.1 Nonlinear matrix difference equation 

To begin with, (2.4) and (2.2) are used in (2.1) to obtain 

x(n + 1) = (A + B2C)x(n) + (B1 + B2D)u(n) + B2e(n) (2.5) 

By solving this equation recursively and by substituting the result in (2.2), one obtains 

y(n) = C(A + B2C)x(0) + + B2C)1(Bi + B2D)u(n - i - 1) 

+ c(A + B2C)B2e(n —ji— 1) + Du (n) 

Furthermore, the quantizer operation is represented by 

1 
q(n) = q(y(n)) 

1 
= + 

where LJ denotes the floor of its argument. Similarly, y(n) is represented by 

y(n) = L1y(n)J + i(ky(n)) 

(2.6) 

(2.7) 

(2.8) 

where (•) represents the fractional part of its argument. Then, by substituting (2.7) 

and (2.8) into (2.4), one obtains 

1 
e(y) = - 

Finally, the substitution of (2.6) into (2.9), yields 

e(n) = - ( [c(A + B2C)x(0) 
+ CE(A + B2C)(B1 + B2D)u(n - i —1) 

i=O 

+CE(A + B2C)B2e(n - i - 1)+ Du(n) ]) 

(2.9) 

(2.10) 
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2.3.2 Closed-form solution 

Definition 1 If the input signal y(n) to the quantizer Q in the E - A modulator in 

Fig. .1 is such that 

- ML/2 ≤ y(n) ≤ iVIi../2 (2.11) 

for n = 0, 1, 2,... 00, then Q is said to operate in its no-overload region. 

In the no-overload region, the quantization error e(n) becomes granular in accor-

dance with 

—i./2 < e(n) <z/2 

for n = 0, 1, 2,. .. ,00. 

The closed-form solution for the granular quantization error is given in the follow-

ing theorem. 

Theorem 2.1 ([BN95]) If the scalars C1xN4,XNB2Nx1 are integral numbers for 

each I = 0, 1,... , co, then the closed-form solution of (2.10) is given by 

e(n) = - (-[CAtx(0) + CE A'Biu(n - i - 1) 

+CEAB2-+Du(n)])' 
i=O 

(2.12) 

The proof of Theorem 2.1 will be given after establishing Lemmas 1, 2, and 3 

below. 

Lemma 1 For any, integer n ≥ 1, 

(A + B2C)' - E(A + B2C)B2CA -' = An (2.13) 
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Proof: By induction. The lemma is clearly valid for ri = 1. Therefore, it is sufficient 

to show that if it holds true for n = in, then it is also valid for n = m + 1. 

For n = m + 1, the left-hand side of (2.13) can be written as 

(A + B2C)m+l - E(A + B2C)iB2CAm 
1=0 

rn-i 

= (A+ B2C)mA - (A + B2C)iB2CAm 1] A 

But, by setting n = m in (2.13), one has 

rn-i 

(A + B2C)m - (A + B2C)B2CA' 1 = Atm 
1=0 

(2.14) 

(2.15) 

Then, by substituting (2.15) in (2.14), and by simplifying the result, one arrives at 

M 
(A + B2C)m+l - E(A + B2C)tB2CAtm 2 = A"' (2.16) 

which shows that the lemma also holds true for n = m + 1. 0 

Lemma 2 For any integer n ≥ 0, 

n n-i-1 fl 

E(A + B2C)1 - (A + B2C)B2C E A' = A' 
1=0 1=0 k=0 1=0 

(2.17) 

Proof: By induction. The lemma clearly holds true for n = 0. Therefore, it suffices 

to show that if it is valid for n = in, then it also holds true for ii = m + 1. 

For n = m + 1, the left-hand side of (2.17) can be written in the form 

rn+1 rn+1 rn-i 
(A + B2C)1 - (A + B2C)ZB2C Ac 

1=0 1=0 k=0 

= (A+ B2C)m+l + E(A + B2C)1 (2.18) 
i=0 

m+1 rn-i--i rn+i 
L (A+B2C)1B2C E Ak_ E (A+B2C)lB2CAm 

1=0 k=0 1=0 

But, by setting n = in in (2.17), one gets 

rn-i-I 
(A + B2C) - E(A + B2C)1B2C E A' = A (2.19) 
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Then, by making use of (2.19) and Lemma 1 for ii = m, the right-hand side of (2.18) 

simplifies to 

LAi+Am+I= >A1 (2.20) 
1=0 1=0 

which shows that the lemma is also valid for n = in + 1. 0 

Lemma 3 For any integer n ≥ 0, 

n 
E(A + B2C)tBju(n - i) 
1=0 

- >(A + B2C)1B2C L AkB1u(m - i - k - 1) 
1=0 k=O 

= LA1 Biu(n —i) 
1=0 

Proof: By induction. The lemma is clearly valid for n = 0. Therefore, it is sufficient 

to show that if it holds true for n = in, then it is also valid for ri = m + 1. 

For n = in + 1, the left-hand side of (2.21) can be manipulated as 

m+1 

L (A + B2C)Biu(m - i +1) 
1=0 

,n+1 rn-i 
- L (A + B2C)8B2C L AICB1U(m - i - k) 

1=0 k=0 

m+1 

= L(A+B2c)1Biu(m—i+1) 
1=0 

,n+1 I 

- L L(A + B2C)IB2CA1Biu(m - i +1) 
1=0 k=O 

Then, by invoking Lemma 1, the right-hand side of (2.22) simplifies to 

rn+11 

L [(A + B2C) - L(A + B2C)IcB2CA* Biu(m +1— i) 
1=0 k=0 

m+1 

= LA1 Biu(m+1—i) 
1=0 

which shows that the lemma also holds true for n = m + 1. 0 

(2.22) 

(2.23) 
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Proof of Theorem 2.1. By induction. The theorem clearly holds true for n = 0. 

In this way, it is sufficient to show that if is valid for n = 0, 1,2,... , in, then it also 

holds true for n = m + 1. 

By setting ii = in + 1 in (2.10), one has 

e(m +1) = - ( [c(A + B2C)mIx(0) 
+ C (A + B2C)(B1 + B2D)u(m - i) (2.24) 

i=O 

+CE(A+B2C)'B2e(m - i) + Du(m +1)]) 

By invoking (2.12) for the terms e(in - i) in (2.24), and utilizing the property 

(ri + K(r2)) = (ri + Kr2) (2.25) 

for real numbers r1 and r2 and integer number K in the result, one can obtain 

e(m +1) = - ( [c(A + B2C)m+lx(0) 
In 

• + C E(A + B2C)'(B1 + B2D)u(m - i) 
i=O 

• +CE(A+B2CYB4_CE(A+B2C)tB2CAm X(0) 

In rn-i-i 

—C(A+B2C)1B2C E A'I31u(m—i—k-1) 
i=O k=O 

m rn-i-i 

—C(A+B2C)B2C E A'cB4 
i=O k=O 

rn 

—c (A + B2C)iB2Du(m - i) + Du(m +1)]) 
i=O 

(2.26) 

By invoking Lemmas 1, 2, and 3 above in (2.26), and some tedious manipulation, 

one arrives at 

e(m +1) = IC Am+1x(0) + C> AB1u(m - i) 1 i=O 

+CEA*B4+ Du(m +1)]) 
i=O 

(2.27) 
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which shows that the theorem is also valid for n = n-i + 1. 0 

Using the necessary condition that the matrix product must be an integer for all 

i, we may define the class of E - A converters for which Theorem 2.1 holds as being 

those single-quantizer converters that contain integer valued multipliers. This class 

therefore includes the single, double; and triple-loop converters as special cases. 

2.4 Derivation of the input signal bound for overload-free 
- A converter operation 

The closed-form solution in (2.12) for the E - A converter granular quantization 

error was derived under the assumption that the constituent quantizer operates in the 

no-overload region. The objective of this section is to derive a bound on the E - 

converter input signal u(n) for the required overload-free quantizer operation. The 

result is first obtained for the case of zero initial state x(0), followed by the case of 

nonzero initial state x(0). 

In accordance with (2.6), the quantizer input may be represented by 

y(n) = C(A + B2C)'x(0) + C E(A + B2C)1(Bi + B2D)u(n - i - 1) 

+C E(A+ B2C)B2e(n - i — i) + Du(n) 

Let the matrix (A + B2C) be stable, i.e. let the magnitudes of its eigenvalues be 

strictly less than unity. Then it can be shown that for a bounded initial state 

vector, a bounded input u (for n = 0, 1,2,... , co), and a bounded error e (for 

n 0, 1,2,... , co), one produces a bounded output y(n) from the linear time-

invariant subsystem H which is also the quantizer input. Now by using the property• 

IIABII ≤ hAil . IIBII 

(2.28) 

for a matrix A and a vector B (having compatible norms [11J93]) and by using the 
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Triangle Inequality, (2.28) may be rewritten as 

y(n)I ≤ IICII II(A + B2C)Thx(0)II + ItCh E Il(A + B2C)1(B1 + B2D)u(n - i - 
1=0 

+ ItCh hh(A + B2C)1B2e(n - i - 1)11 + hIDu(n)II 
i=0 

≤ IICII hh(A + B2C)'hI IIx(0)hI 

+ itch hl(A + B2C)thh II(B1 + B2D)hh . hiu(n - i - 1)11 o  

+ ticil E hI(A + B2C)111 . hIB2hh . hie(n - i - 1) 11 + ilDhl 11u(n)II 
1=0 

(2.29) 

If the input sequence is bounded, there exists a finite number U such that Il uill < U 

for i = 0, 1,2,..., and if the error sequence is bounded, then 11 ej 11 < L/2 for i = 

0, 1,2.....Consequently, (2.29) may be rewritten as 

n—i 

hly(n)hh ≤ liGht ii(A + B2Chi . lhX(0)hi + UhiChi hi(A + B2C)111 hl(Bi + B2D)ih 
1=0 

+ hiChI L IKA + B2C)hi hiB2hi + UhiDhI (2.30) 

As the matrix (A + B2C) is stable, it can be shown that there exists a finite number 

W, and a positive real number p such that [ZD63] 

hi(A+ B2C)111 <Wp2 i = 0,1,2,... (2.31) 

Moreover, p < 1 but is greater than the magnitudes of all the eigenvalues of (A+B2C). 

Consequently 

n 

Ih(A. + B2C)111 < W(1 - p'')(1 - p)' < W(1 - (2.32) 
i=0 

In this way, the first term in the right-hand side of (2.30) is bounded by Wit Cii ihx(0)ii 

for all n, the second by Uii(Bi+B2D)iiW(1—p)', the third by (L/2)iiB2iiW(1—p)' 

and the final term by UIIDII. Therefore, 

hty()ii ≤ T'ViiCii11 x(0)II + Uii(Bi + B2D)iiW(1 - 

(2.33) 

+ 1iiB2iiW(1 - p) + UD 
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2.4.1 For the case: x(0) = 0 

For the case where the initial states are set to zero, the quantizer input signal may 

be shown to be 

y(n) = C E (A + B2C)(B1 + B2D)u(n - i - 1) 
i=o 

+ C(A + B2C)B2e(n - i - 1) + Du(n) 
i=O 

(2.34) 

By using this equation, the input signal bound for the no-overload condition is ob-

tained as given in the following theorem. 

Theorem 2.2 If(A+.B2C) is a stable matrix, and if the input signalu(n) is confined 

to the range u(n) E [—U1, U1] with 

(J - IICII . 11B211W(1 -  

U1 ≤ (IlCil II(Bi + B2D)IlW(1 - p)-' + IIDII) (2.35) 

then the quantizer Q will operate in its no-overload region for n = 0, 1,2,... , 00, 

where W and p are as stated previously. 

The proof of Theorem 2 will be given after establishing the following lemma. 

Lemma 4 

IIDil(/4 - IICI . lB2 IlT'V(l - p)')  A Mi. 

(uGh hl(Bi + B2D)IIT'V(l - p)' + hlDhl) 2 - 

Proof: By contradiction. Let 

Then, 

IlDhl(M - huGh . hiB2hhw(1 - p)-')  A MA 
(hhChh hh(Bi + B2D)IIW(1 - p)-' + hhDhD 2 > 2 

- hhDhh hIGh IIB2hhT'V(l - o) j > IhChl . hI(Bi + B2D)11W(1 - 

(2.36) 

(2.37) 
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which is a contradiction, as a negative number cannot be greater than a positive 

number. 0 

Proof of Theorem 2.2: By induction. For n = 0, from (2.32) and (2.34) 

IIDII(Af - IICI . IIB2IIT'v(1 - p)')  L 
Iiy(0)lt = IlDil . 11u(0)II <'IIDIIUi (IICI II(B1 + B2D)IjW(l - p)-' + IIDII)(39) 

By making use of Lemriaa 4, this reduces to y(0) ≤ ML/2 yielding Ile(0)II ≤ 

A/2. Therefore, it is sufficient to show that if —L/2 < e(n) L/2 is true for 

n = 0, 1,2,... , m - 1, then —L/2 ≤ e(n) L/2 is also valid for n = m. 

For ii = rn, from (2.34) one gets 

rn-i 

IIy(m)II ≤ IICIIE II( 4 + B2C)II II(Bi + B2D)IIUi 
i=O 

rn-i MA 
+ uGh E uI(A+ B2CYII . hIB2hI-- + IIDIIU1 < (2.40) 

2 

By using (2.32) in (2.40), one obtains 

y(m)II ≤ IICIIr'V(l - hh(B1 ± B2D)lIUi 
A MA 

+ IhChIW(1 - p)hhlB2hI y + IIDIIU1 ≤ 
(2.41) 

Moreover, by invoking (2.35) in (2.41) one obtains IIy(m)hI ≤ M/2, yielding —L/2 ≤ 

e(m) ≤ L/2. 0 

2.4.2 For the case: x(0) 0 0 

In accordance with (2.6), the quantizer input may be represented by 

n-i 

y(n) = C(A + B2C)'x(0) +9 E. (A + B2C)2(Bi + B2D)u(n - i - 1) 

n-i 

+ C E (A+ B2C)*B2e(n - i —1) + Du(n) 
i=O 

By using this equation, the input signal bound for the no-overload condition is oh-

tamed as given in the following theorem. 

(2.42) 
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Theorem 2.3 If(A+B2C) is a stable matrix, and if the input signalu(n) is confined 

to the range u(n) E [—U2, (12] with 

U2 <  - IIII IIB2II1'V(l - p)-') - G 
- (uGh II(Bi + B2D)uu14T(1 - p)-' + 11DM) 

(2.43) 

then the quantizer Q will operate in its no-overload region for n = 0, 1,2,... 

where W and.p are as stated previously, and where 

G = WIICII Ila(0)II 

,00, 

(2.44) 

The proof of Theorem 2 will be given after establishing the following lemma. 

Lemma 5 

hlDIl[(1f - Mcli uiB2uIW(1 - p)-') -  G] M 
(llCui ui(Bi + B2D)IIW(i - p) -' + liDil) 

Proof: By contradiction. Let 

Then, 

iIDii[(AI - iiCil llB2ii'V(1 - p) -') - GI MA 
(uGh. ui(i + B2D)liW(1 - p)-' + ilDil) > 

- MDII . 11CM . IIB2IIW(1 - - IIDIIG 

> uGh . il(B1 + B2D)IIW(1 - 

which is a contradiction, as a negative number cannot be greater than a positive 

(2.45) 

(2.46) 

number. 0 

Proof of Theorem 2.3: By induction. For ii = 0, from (2.42) and (2.32) 

IIy(0)II = IlDil . IIu(0)II≤ IIDIIU2 
< hIDiI[M - MCM 11B211T'V(l -  p)-11'6 -  G  

(uGh . hh(Bi + B2D)hIV(1 - )..1 + 11DM) 

(2.47) 

(2.48) 
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By making use Lemma 5, this reduces to I(0)II ≤ ML./2 yielding Ile(0)II /2. 

Therefore, it is sufficient to show that if —L/2 ≤ e(n) ≤ L/2 is true for n = 

0, 1,2,. .. , m - 1, then —/2 ≤ e(n) < z/2 is also valid for n = in. 

For n = m, from (2.42) one gets 

Iy(m)It ≤ IICII - JI(A + E2C) 11x(0)II 
rn-i 

+ uGh hI(A + B2C)hI . hI(Bi + B2D)11U2 
i=O 

+ uGh rn-i E IRA + B2C)hl . hIB2II - + IIDhIU2 M2 
i=O 

By using (2.32) and (2.44) in (2.49), one obtains 

hly(m)II ≤ G + IC IIT'V(l - p) 1II(Bi + B2D)11U2 
A MA 

+ IICIIT'V(l - p)—'IIB2II + IIDU2 ≤ 

(2.49) 

(2.50) 

Moreover, by invoking (2.43) in (2.50) one obtains y(m)hI MA/2, yielding —z/2 ≤ 

e(m) ≤ t/2. 0 

2.5 Interrelationships between the input signal bound and 
quantizer parameters 

By using the. above bounds and by using the facts that M = 2W and A = 2_(_1), 

some interesting relationships can be obtained for E - A converters. From (2.35), it 

can be shown that the minimum required number of quantizer levels must satisfy the 

relationship 

"4.— IICII IIBII'V(1 - p)—'  >0 
lIGht hI(Bi + B2D)IIT'V(l - p)—' + IIDII 

(2.51) 

or equivalently the minimum required wordlength w must satisfy the relationship. 

2W - ItCh . IIB2IIT'V(1 -  >0 
uGh . hI(Bi + B2D)11W(1 - p)—' + IIDhl 

(2.52) 

Moreover, in design situations where the E - A converter is preceded by a saturator 

to limit the dynamic input signal range, the clipping levels may be chosen quite easily 
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in accordance with 

V. (2'' - IICII IIB2IIT'V(l -  ±  
(uGh II(Bi + B2D)IIT'V(l - p)-' + IIDII) 2 

if condition (2.52) is met. 

2.6 Application Examples 

(2.53) 

In this section, the above results are applied to the determination of the input 

signal bound U1 and the closed-form solution of the quantization error for conventional 

single, double, and triple-loop F, -, A converters given AC input signals having the 

form 

u(n) = a cos(m2irf/f3 +0) = a cos(nw +9) 

and DC input signals having the, form 

u(n)=X, for all m=O,1,2,... 

To simplify matters, it is assumed that x(0) = 0 throughout. 

2.6.1 Single-loop Z - Lt converter 

For the single-loop converter in Fig. 1.5, the subsystem Al is represented by the 

state equations. 

x(n + 1) = [1]x(n) + [1]u(n) + [-1]q(n) 

y(n) = [1]x(n) + (0)u(n) 

By comparing these equations with the general form in (2.1) and (2.2), to identify 

the matrix A, and the vectors B1, B2, C, and D, and by using the results in (2.35), 
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one obtains the general input signal bound 

U1≤(M—l)-

By choosing the number of quantizer levels as M = 2 together with a bin-width of 

= 1, one obtains the exact input signal bound U1 ≤ 1/2 and the exact quantizer 

no-overload region as ≤ 1 from (2.33). 

Verification of overload-free quantizer operation, given the above choices for M 

and t, may be seen in Fig. 2.2 for AC and DC inputs. By substituting for the 

matrix A, and vectors B1, B2, C, and D, the closed-form solution of the quantization 

error may be determined as 

( In-i 

e(n) = !• —,6, G [u(n_i_1)_J)) 

Evaluating the above equation for an AC input signal and choosing L = 1, results 

in the quantization error shown in Fig. 2.3b which matches exactly the quantization 

error obtained by using difference equations in Fig. 2.3a. 

2.6.2 Double-loop E - A converter 

For the double-loop converter of Fig. 1.9, the subsystem H is represented by the 

state equations 

x(n+l) = [i ]x(n)+ []un+ []n 
y(n) = [o ill x(n) + (0)u(ri) 

By comparing these equations with the general form in (2.1) and (2.2), to identify 

the matrix A, and the vectors B1, B2, C, and D, and by using these results in (2.35), 
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one obtains the general input signal bound 

Ui 

Choosing the number of quantizer levels as M = .4 together with a bin-width of 

= 1, one obtains the exact input signal bound U1 ≤ 1/2 and the exact quantizer 

no-overload region as IIy(ri)II < 2 from (2.33). 

Verification of overload-free quantizer operation, given the above choices for M and 

, may be seen in Fig. 2.4 for AC and DC inputs. By substituting for the matrix A, 

and the vectors B1, B2, C, and D, the closed-form solution of the quantization error 

may be determined as 

e(n) = - ( (i=O [(i + 1)u(n - —1) ( +2)])) 

Evaluating the above equation for an AC input signal and choosing A = 1, results in 

the quantization error seen in Fig 2.5b which matches exactly the quantization error 

obtained by using difference equations in Fig. 2.5a. 

2.6.3 Triple-loop E - A converter 

For the triple-loop converter of Fig. 1.10, the subsystem H is represented by the 

state equations 

100 1 r—2' 
x(n+1)= 1 1 0 x(n)+ 1 u(n)+  q(n) 

1 1 1 1 3 

y(n) = [o 0 1] x(n) + (0)u(n) 

By comparing these equations with the general form in (2.1) and (2.2), to identify 

the matrix A, and the vectors B1, B2, C, and D, and by using these results in (2.35), 
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one obtains the general input signal bound 

Ui 

Choosing the number of quantizer levels as M = 8 together with a bin-width of 

1, one obtains the exact input signal bound U1 ≤ 1/2 and the exact quantizer 

no-overload region as Iy(n)II ≤ 4 from (2.33). 

Verification of overload-free quantizer operation, given the above choices for M and 

z, may be seen in Fig. 2.6 for AC and DC inputs. By substituting for the matrix A, 

and the vectors B1, B2, C, and D, the closed-form solution of the quantization error 

may be determined as 

e(n) = 2 (k' ( [ + 1)(i + 2) ( 1) (i + 2)(i + 3)])) 

Evaluating the above equation for an AC input signal and choosing A = 1, results in 

the quantization error seen in Fig 2.7b which matches exactly the quantization error 

obtained by using difference equations in Fig. 2.7a. 

2.7 Conclusion 

This chapter has presented a closed-form solution for granular quantization error 

of a class of E - A converters using a state-space approach. This was accomplished 

by first developing a state-space representation of a single quantizer E - con-

verter. Then, the state-space equations describing this subsystem were used to derive 

a closed-form equation for the granular quantizer error under the no-overload con-

dition. An input signal bound was then derived to guarantee no overloading of the 

quantizer for the two cases of a) x(0) 0 0, and b) x(0) = 0. Some interrelation-

ships between the input signal bound and quantizer parameters were then discussed, 

and finally the utility of the results obtained for the determination of the input signal 
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bound and the closed-form solution for the quantization error were illustrated through 

some practical application examples. 
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AC input (a = 0.491272, f = 0.072289 Hz, OSR = 10) 
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Figure 2.2. Quantizer input y(n) for a single-loop converter with an a) AC input 
signal, b) DC input signal 
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AC input (a = 0.491272, f = 0.072289 Hz, OSR = 10) 
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Figure 2.3. Quantization error for the single-loop converter (AC input) obtained by 
using a) difference equations b) closed-form solution 
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AC input (a = 0.491272, f = 0.072269 Hz, OSR = 10) 

1.5-

0.5 

—0.5 

—1.5 

II 

50 100 150 200 250 300 

a)'1 

DC input = 0.491272 V 

1.5-

—0.5 

it  II 
III 

50 100 150 200 250 300 

bY' 

Figure 2.4. Quantizer input y(n) for a double-loop converter with an a) AC input 

signal, b) DC input signal 
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AC input (a = 0.491272, f = 0.072289 Hz, OSR = 10) 
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Figure 2.5. Quantization error for the double-loop converter (AC input) obtained by 
using a) difference equations b) closed-form solution 
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AC input (a = 0.491272, f = 0.072289 Hz, OSR = 10) 
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Figure 2.6. Quantizer input y(n) for a triple-loop converter with an a) AC input, b) 
DC input 
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AC input (a = 0.491272, f= 0.072289 Hz, OSR = 10) 
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Figure 2.7. Quantization error for the triple-loop converter (AC input) obtained by 
using a)difference equations b) closed-form solution 



CHAPTER 3 

DERIVATION OF AN OPEN-LOOP EQUIVALENT 
SYSTEM FORE - A CONVERTERS 

3.1 Introduction 

In the preceding chapter, the state-space formalism was exploited and applied to 

the derivation of the closed-form solution of the granular quantization error for a class 

of Z - A converter configurations. In the present chapter, the state-pace formalism is 

used to derive the corresponding closed-form solution of the quantizer output signal. 

The latter closed-form solution is established by means of a mathematical theorem 

complete with a formal proof. The solution is verified through its application to two 

practical examples and through comparison with the corresponding results obtained. 

by direct computation using Matlab simulations. Then, the state-space formalism is 

used to derive a second closed-form solution for the quantizer output signal, which 

is then subsequently combined with the closed-form solution of the granular quanti-

zation error e(n) in (2.12) to develop an equivalent open-loop system for the E - 

modulator configuration in Fig. 2.1. This solution is also verified through its applica-

tion to two practical examples and through comparison with the corresponding results 

obtained by direct computation using Mat1ab. The stablity of E - A converters is 

then examined with regard to subsystem parameters and also input signal amplitude, 

with the utitlity of these discussed issues being shown through the presentation of 

some practical application examples. 
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3.2 Derivation of the closed-form solution of the quantizer 
output signal 

In this section, a closed-form solution is derived for the quantizer output signal 

q(n) in the general E - Li converter configuration in Fig. 2.1. Recall the state-space 

formulation for the linear time-invariant subsystem N. 

x(n + 1) = Ax(n) + Biu(n) + B2q(n) (3.1) 

y(n) = Cx(n) + Du(n) (3.2) 

Then, by solving the recursion in (3.1), and by replacing the result in (3.2), one 

obtains 

n-i n-i 

y(n) = CAnx(0) + C E AtBiu(n - i - 1) + C E AB2q(n - i - 1) + Du(n) 
1=0 i=0 (3.3) 

Let the quantizer operate in the no-overload mode, yielding 

q(n) = + 1 

Then, by substituting (3.3) into (3.4); one obtains 

q(n) +A I I CAnX(0) + C>2 A1Biu(n - - 1) 

+C E A1B2q(n —i - 1) + Du(n) ]j 
1=0 

Theorem 3.1 If the scalars ClxN(A+B2C)XNB2Nx1 are integral numbers for each 

j = 0,11 ... , co then the closed form solution of (3.5) is given by 

q(n) = + [ + C > 1u(n - k - 1) + CAkB2 + Du(n))j 

n-i 1 / n-2-j 

+ C L(A + B2C)3B2 (CA"-j-lx(0) + C E A'Bju(n —2—j —1) 
.1=0 \ 1=° (3.6) 

(3.4) 

n-2-j 

+C E A1B4+ Du(n _1_i))j] 
1=0 

(3.5) 
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The proof of Theorem 3.1 will be given after establishing Lemmas 6 and 7 below. 

Lemma 6 For any integer n ≥ 0, one has 

A n + E AB2C(A + B2C)' = (A + B2 C) (3.7) 

Proof: By induction. The lemma is clearly valid for n = 0. Therefore, it is sufficient 

to show that if it holds true for n = m, then it is also valid for n = m +  

For n = rn + 1, the left-hand side of (3.7) may be written as 

A' +E AB2C(A + B2C)mi 
i=O 

m-1 
= [Am + AB2C(A + B2C) 1] (A + B2C) 

But, by setting n = in in (3.7), one has 

Am + E AB2C(A + B2C)ml = (A + B2C)m (3.9) 

Then, by substituting (3.9) in (3.8), and simplifying the result, one arrives at 

(A + B2C)m(A + B2C) = (A + B2C)' (3.10) 

which shows that the lemma also holds true for n = m + 1. 0 

(3.8) 
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Lemma 7 For any integer n ≥ 1, one can show that 

n-i n-2-i 

AB2 [CA n-1-i x(o) + C E A'Bu(n - 2 - i - k) 
i0 Ic=0 

n-2-i 

+C E i)ll 
k=0 2 

n-i 

+ AB2C (A+ B2C)3B2 Lk (cAn-2-i-ix(o) 
i=0 j-0 

+C E A'Biu(n-3—j-1—i) 
1=0 

n-3-j--t 

+C E A1B4+Du(n_2_i_i))j 
l=0 

=  n-i (A+ B2C)B2 - CAn_l_ix(0) + C E A'Biu(n — 2 —  

[1 [ 2=0 1=0 

n-2-j 

+C E AIB4+Du(n_1_i)]j 
1=0 

(3.11) 

Proof: By induction. The lemma clearly holds true for n - 1 = 0. Therefore, it 

suffices to show that if it is valid for n = m, then it also holds true for n = in + 1. 
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For n = m + 1, the left-hand side of (3.11) can be written in the form 

rn+i 

AB2 1k I 
k=O k= 

CA + CAkBiu(m  - i - k) + CAkB4 + Du(m + 1i)]] 
i=0 O 

m+i rn-i 1 
+ AiB2C E(A + B2C)B2 [. (CAM-i-ix(0) 

m-i-j-i rn-i-j-i 

+C > A1B1u(m-1-j-1-i)+C A'B2--+Du(m-j-

/ in 

= (Am+1 + AiB2C(A + B2C)m) B2 Lkcxo + Du(0)J] 
i=0 

+ (i=o 
AiB2 - CAm_ix(0)+C A'Bju(m-1-i-k) 

rn  rn-i-i 

k=0 

rn-i-i 

+C E AkB2 + Du(m - i)]] 
lc=0 

rn  + C 

AB2C E (A + B2C)B2 Lk [CAmix(0) 
i=0 j=0 

m-2-j-i rn-2-j-i 

+C A'Bju(m-2-j-1-i)+C AB4+Du(m-
1=0 1=0 

But, by setting n = m in (3.11), one gets 

rn [CAm-'x(o) rn-i-i AB2 -  + C E A'Biu(m -1 - i - k) 
i=0 k=0 

+C E AkB4+Du(m_i)]j 
k=0 

+ AiB2C + B2C)B2 Lk (CAm1-iix(0) 
rn-2-j-i 

+C L A1Biu(m.-2-j-1-i) 
1=0 

rn-2--j-i 

+c E A'B2—+Du(m-1-j-i) 
1=0 2 

= >(A + B2C)2B2 L- [CA (0) + C rn-ix A'Biu(m -1 
in rn-i-i 

j=0 1=0 

rn-i-i 
+C E A1B4+Du(m_i)]j 

1=0 

(3.13) 

(3.12) 
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Then, by making use of (3.13) and Lemma 6 for n = m, the right-hand side of (3.12) 

simplifies to 

(A + B2C)m+iB2 [1[Cx(0) + Du(0)J] 
rn m-i-j 

+ (A + B2C)1B2 - A'Biu(m —1 L [ CAmix(0) + C  

j=0 1=0 

rn-i-i 

A1B2 +Du(m _i)]j 

rn+i I [ rn-j = E (A + B2C)3B2 - CAm+1 ix(0) + C A'Biu(m -  

j=0 1=0 

-i 

+C rn A1B4+Du(m + i_i) ]j 
E1=0 

which shows that the lemma is also valid for n = m + 1. 0 

—j-1) 

1) 

(3.14) 

Proof of Theorem 3.1. By induction. The theorem clearly is valid for n = 0. 

In this way, it is sufficient to show that if it is valid for n = 0,1,2,... ,rn,.then it also 

holds true for n = m + 1. 

By setting n = i-n + 1 in (3.5), one has 

q(r +1) + Lk [CAm+1x(0) - C E AB1u(m - i) 

+0 AB2q(m - i) + Du(m +1)]] 
i=0 

(3.15) 

By invoking (3.6) for the terms q(m - i) in (3.5), and by making use of the property 

Lr+Ksii = tn +Ktsj (3.16) 
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(for r and s being real numbers and K being an integer) in the result, one can obtain 

rn 

q(n) = + A - CAm+1x(0)+CE i AiBiu(m_i)+CAiB2 +Du(m+l)]] L[ rn =0 i=0 

L [CAM-ix(0) rn-i-i +L.C>2AB2 +C A' -- Biu(m—li—k) 
i=0 k=0 

rn-i-i 

A1B4 +Du(m_i)]j 
k=0 

rn rn-i-i 

+ zC AB2C (A + B2C)3B2 [-L [CAM-1-j-ix(0) 
i=0 j=0 

(3.17) 

rn-2-j-i rn-2-j-i 

A'Biu(rn-2—j-1—i)+C E A'B2—+Du(m—l--j—i) 
1=0 2 

By invoking Lemmas 6, and 7 in (3.17), and by simplifying the result, one arrives 

at 

q(rn + 1) = + A [CAm+lx(0)C E A'Blu(ra - i) + CEAiB4 + Du(rn + 1)]] 

rn 

+ zC(A + B2C)B2 (CAM-ix(0) 
j=0 

m-i-j rn-i-i 

+C E , A'Biu(rn—l—j--l)+C E A1B4+Du(m_j) 
1=0 1=0 

which shows that the theorem is also valid for n = m + 1. 0 

3.3 Derivation, of the equivalent open-loop system 

(3.18) 

In this section, a closed-form solution is derived for the quantizer output signal 

q(n). The result is subsequently combined with the closed-form solution of the gran-

ular quantization error e(n) in (2.12) to develop an equivalent open-loop system for 

the E - A modulator configuration in Fig. 2.1. 

By solving (2.1) recursively for x(n), and by substituting the result into (2.2), the 
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quantizer input signal y(n) may be obtained as 

y(m) = CAx(0) +•c E ABiu(n - 1) 

(3.19) 

- 1)+Du(n) 

But, from (2.4), 

q(n) = y(m) + e(n) 

Therefore, by substituting, (3.19) into (3.20), one has 

q(n) = CA'x(0) + CE ABiu(n - i - 1) 

+C T. AiB2q(n_i_1)+Du(n)+e(n) 

(3.20) 

(3.21) 

Theorem 3.2 The closed-form solution of the quantizer output signal q(n) in the 

E - modulator configuration in Fig. 2.1 can be obtained as 

q(n) = C(A + B2C)?x(0) 

-i- C (A + B2c)(Bi + B2D)u(n - - 1) (3.22) 

+ C >2(A + B2C)2B2e(n - i - 1) + Du(n) + e(n) 

via (2.12). 

The proof of Theorem 3.2 will be given after stating the following two lemmas. 

Lemma 8 For any integer n ≥ 0, it may be shown that 

A n +E A1B2C(A + B2C)' = (A + B2C) (3.23) 

Proof: By induction. The lemma is clearly valid for n = 0. Therefore, it is sufficient 

to show that if it holds true for n = m, then it is also valid for n = m + 1. 



60 

For n = m + 1, the left-hand side of (3.23) may be written as 

A 1 +T. AB2C(A + B2C)m 

rn-i 
= Am + AB2C(A +B2C)' (A + B2C) 

i=O 

But, by setting n = m in (3.23), one has 

(3.24) 

Am + AB2C(A + B2C) ml = (A + B2C)m (3.25) 

Then, by substituting (3.25) in (3.24), and simplifying the result, one arrives at 

(A + B2C)m(A + B2C) = (A + B2C)m (3.26) 

which shows that the lemma also holds true for n = m + 1. 0 

Lemma 9 It may be shown that for any integer n 0, 

A +E AB2C >(A + B2C)1 = EA + B2C) (3.27) 

Proof: By induction. The lemma is clearly valid for n = 0. Therefore, it is sufficient 

to show that if it holds true for n = m, then it is also valid for n = m + 1. 

For n = m + 1, the left-hand side of (3.27) may be written as 

rn+i m+i rn-i 
A+ E A'B2C(A+B2C) 

i=0 i=0 1=0 

= (A-+' - A1B2C(A + B2C)m-2) 

m rn 
+ >A1+LAB2C (A+B2C)' 

1=0 1=0 1=0 

But, by setting n = m in (3.27), one obtains 

(3.28) 

E A1 + E A1B2C + B2C)' = (A + B2C)1 (3.29) 
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Then, by making use of (3.29) and Lemma 9 for n = m, the right-hand side of (3.28) 

simplifies to 

m m+i 

(A + B2C)m+i + + B2C)i = T (A + B2C 

which shows that the lemma is also valid for n = m + 1. 0 

(3.30) 

Proof of Theorem 3.2. By induction. The theorem clearly holds true for n = 0. 

In this way, it is sufficient to show that if it is valid for n = 0, 1, 2,... , in, then it also 

holds true for n = in + 1. 

By setting n = m + 1 in (3.21), one has 

rn 
q(m + 1) = CAm+lx(0) + c E A1Biu(rn - i) 

i=0 
m 

cAiB2q(m_j)±Du(m±1)+e(m+ 1) 

i=0 

(3.31) 

Then, by invoking (3.22) for q(m - i) in (3.31), and by grouping terms, one obtains 

q(m +1) = ICA- x(0) + C E AiB2C(A + B2C)m_ix(0)} 

+ {M m C>Ai(Bi + B2D)u(m - i) + CAB2C 

rn-i-i 

x E (A + B2C)'(B1 + B2D)u(m - i — 1 — 1) 
1=0 

+{CA*B2e(m _i) 

+C E Ai B2C (A + B2C)'B2e(m - i — 1 — i)} 

+Du(m+ 1)+e(m+1) 

Finally, by invoking Lemmas 8 and 9 in (3.32), one arrives at 

q(m + 1) = C(A + B2C)m+ix(0) 

+ C E(A + B2c)1(Bi + B2D)u(m —1) 
i=0 

+ C >(A + B2C)iB2e(m - i) +Du(m +1) + e(rn +1) 
i=0 

(3.32) 

(3.33) 
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which shows that the theorem is also valid for n = m + 1. 0 

To proceed further, (3.22) is recast into the form 

q(n) = C(A + B2C)x(0) + E h(i)u(n - i) + E hN(i)e(n - i) 
i=O i=o 

where 

ID, n=O 
hs(n) = C(A+ B2C)'(B1+ B2D), n ≥ 1 

is the impulse response associated with signal transmission, and where 

hN(n) = { C(A + B2C)'B2, n > 1 (3.36) 

represents the impulse response associated with the noise transmission through the 

E - modulator configuration in Fig. 2.1. 

(3.34) 

By using (3.22) in combination with (2.12), one obtains the equivalent open-loop 

system shown in Fig. 3.1 for the E - A modulator configuration in Fig. 2.1. 

u(n) 

C(A +B2C 

CA°x(0)+C ABiu(n—i-1) 

+C En- i=OAB2 + Du (n) 
- 

h(n) 

h ( )  .oq(n) 

Figure 3.1. Equivalent open-loop systeni for the Z - Li modulator in Fig. 2.1 

where the quantizer error sequence e(n) is generated from the input sequence u(n) 

according to the closed-form granular quantizer error equation. Therefore in the 

diagram above, the e(.) operator produces an output according to 

e(x) = - (3.37) 
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3.4 Application Examples 

In this section, the above results are applied to the determination of the closed-

form solution of the quantizer output q(n) for conventional double-loop and triple-loop 

E - Li converters. To simplify matters, it is assumed that x(0) = 0 throughout. 

3.4.1 Double-loop E - L converter 

For the double-loop converter in Fig. 1.9, by substituting for the matrix A, and the 

vectors B1, B2, C, and D from the state equations in (3.6), the closed-form solution 

for the quantizer output can be obtained as 

ii r 
I(i+l)u(n.—i—l) 

1•LL I (i=O L 

I  
+ [o i] L1 —i i. J L—'i L 

(1+1)u(n——i_1) (1+ 2)z  
[ 2 ])j] 

Similarly, by substituting for the matrix.A, and the vectors B, B2, C, and D in 

(2.12) and by using the open-loop equivalant system given in Fig. 3.1, the quantizer 

output may be obtained as 

q(n) = z"ii(n) 

+ (1— z1)2 (z (i (n1 [(i+ 1)u(n — i — i) (i 
i=O  M) 

The quantizer output obtained using these two methods may be seen to be equivalent 

to that obtained using general difference equations (see Fig. 3.2). 

3.4.2 Triple-loop E - A converter 

For the triple-loop converter in Fig. 1.10, by substituting for the matrix A, and the 

vectors B1, B2, C, and D from the state equations in (3.6), the closed-form solution 
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100 150 200 250 

Cr 

-1 

50 300 

100 150 200 250 300 

50 100 150 200 250 300 
n 

Figure 3.2. Quantizer output q(n) for the double-loop converter obtained from a) 
difference equations, b) closed-form solution for q(n), c) open-loop equivalent system 

output q(n) 
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for the quantizer output can be obtained as 

ri 1 (i=O -'1(i+1)(i+2) (i+2)(i+3)L.1\ IL  L 2 u(n—i-1) 4 )j 

X 

1 0 
o ijE 1 1 —2 —2 

=° 1 1 —2 —3 I 
1 (n_2_i I (1+1)(1+2)  u(n —2--i 1) (1+ 2)(1 + 3)z])j] 

2 4. NL '. -1=0 

Similarly, by substituting for the matrix A, and the vectors B1, B2, C, and D in 

(2.12) and by using the open-loop equivalant system given in Fig. 3. 1, the quantizer 

output may be obtained as 

q(n) = z'u(n) 

+ (1— Z-1)3 (L. (1 (i=O' I (i+ 1)(i+2) ( 1) (i+2)(i +3)L]))) 

The quantizer output obtained using these two methods may be seen in Fig. 3.3. 

3.5 Stability analysis of E — converters 

Stability is one of the primary concerns in the deign of E - A/D converters. 

The two causes of instability in these A/D converters may be traced to 

1) Instability induced by the linear time-invariant subsystem. 

2) Instability induced by the input signal amplitude. 

The first is caused by improper design or by the required manufacturing precision 

for consituent converter configuration components not being met. In this case, the 

overall result is that the matrix (A + B2C) ends up with eigenvalues located outside 

the unit circle. Some discussion may be considered as to the preferred method used 

to analyse the stability of the single quantizer converter, as it is overall a nonlinear 

system which suggests the use of traditional nonlinear analysis techniques. In this 

fashion, this system may be examined with regard to 
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2 

-2-

50 100 150 200 250 300 

2 

-2-

50 100 150 200 250 300 

2 
C 
Cr 

-2 

50 100 150 200 250 300 
n 

Figure 3.3. Quantizer,. output q(n) for the triple-loop converter obtained from a) 
difference equations, b) closed-form solution for q(n), c) open-loop equivalent system 

output q(n) 
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a) Zero input stablity. 

b) Zero state stability. 

as will be discussed in the following two subsections. 

3.5.1 Zero input stablity 

First let us examine the above equivalent system by using the concept of asymptotic 

stability. 

The asymptotic stability concerns itself only with the state of the system, therefore 

imposing requirements on the motion of the state in state-space under zero input 

conditions only. 

Definition 1 ([ZD63]) A linear time-invariant discrete-time system described by 

(3.19) is said to be asymptotically stable (in the large) if 

i) For any M> 0, there is a 5> 0 such that IIxoII <5 II(fl; so, 0; 0)11 <M 

for n = 0, 1, 2,... ,00. 

ii) For all initial states X, s(n; xO, 0; 0) = 0 

where x(n; X, 0; 0) represents the state at time index n resulting from the initial state 

o at time 0 and a zero input. 

The above statements clearly imply that for zero input, the state remains bounded 

and tends to the zero state as n -+ oo. The implication of this result is that the 

multiplier values in the subsystem Al must be chosen such that the matrix (A + B2C) 

has all eigenvalues located inside the unit circle for the system to be zero input stable. 
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3.5.2 Zero state stability 

The second portion of this analysis will examine the zero state response of the 

equivalent system. Analysis of the quantized output (3.34) with regard to the zero 

state response only, reveals that it consists of the sum of two separate convolution 

sums as shown abovç. As the zero-state response consists of only the past and present 

e(n) 

q(n) 

u(n) 

Figure 3.4. The zero state response of the linear time-invariant subsystem .%f 

values of the two inputs u(n) and e(n) given in (3.22), it is obviously causal (non-

anticipative). Therefore, the two sequences {hs(n)} and {hN(n)} will be right-sided 

sequences, i.e. hs(n) = 0 and hN(n) = 0 for n <0. 

Now, from (3.35) it is clear that the two casual sequences {hs(n)} and {hN (n)} 

are related to the state matricies A, B1, B2, C, and D in the following manner 

hs(
n)— { D, - C(A + B2C)"'(B1 + B2D), n ≥ 1 

(3.38) 

hN(n)— { 1, n=0 
(3.39) 

- C(A + B2C)''B2, n ≥ 1 

Given that the matrix (A + B2C) is stable, then the two responses will be absolutely 

summable. i.e. 

00 

Elhs(m)I<oo 
n0 

(3.40) - 
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and 

00 
EIhN(n)I <00 (3.41) 

As the impulse response and the transfer function are a z-transform pair, we may 

obtain the signal transfer function and the noise transfer function by taking the z-

transforms of the two impulse responses. 

00 Z{hs(n)} = Ehs(n)z 

00 

= E C(A + B2C)'(B1 + B2D)z + D 

and 

ZhN (m)} = h(n)z 
n0 

00 

= E C(A + B2C)'B2z +1 
n1 

Simplification of the two above equations yields 

00 Hs(z) = C + B2CY'z) (B1 + B2D) + D 
(n=1 

= c (' (z'(A + B2C))n) (B1 + B2D) + D 

and equivalently 

(3.42) 

(3.43) 

(3.44) 

00 
HN(Z) = C (f-' L(z'(A + B2C))) B2 +1 (3.45) 

It is well known that for a matrix M whose eigenvalues lie inside the unit circle, 

(3.46) 
n0 

By using this matrix identity with. M = z-1 (A + B2C), and by manipulating (3.44) 

and (3.45), one can obtain 

H(z) = C(zl - (A + B2C))'(Bi + B2D) + D (3.47) 
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and 

HN(z) = C(zl - (A ± B2C))'B2 + 1 (3.48) 

Due to the facts that the eigenvalues of M must lie within the unit circle (by assump-

tion) and that z lies outside a circle whose radius is the magnitude of the largest 

eigenvalue of (A + B2C), the region of convergence of Hs(z) and HN(z) will lie out-

side the outermost pole (due to causality) and will include the unit circle (due to 

stability). This result again implies that for bounded inputs u(n) and e(n), the zero 

state stability of the equivalent system requires that all multiplier values of the sub-

system Al be chosen such that the matrix (A + B2 C) has all its eigenvalues located 

inside the unit circle. 

3.6 Stability aspects of E - converters due to input signal 

range 

In the analysis of E - converters, a complete analysis of the converter stability 

should always also reflect the dependence of the nonlinear subsystem on its input 

signal and not just stability due to system parameter values alone. Therefore, let 

us consider the conditions under which the quantizer is input signal or no-overload 

stable. 

It was determined in Chapter 2 that for the quantizer to remain overload free, the 

input signal bound must be chosen such that u(n) E [—U2, (12]. This would guarantee 

that the input signal to the quantizer would be bounded and the E - L converter 

remain free of limit cycles induced by quantizer saturation as documented in [Gra90]. 

In this manner, (2.35) or (2.43) may be used to define the no-overload stable region 

of the E - A converter as 

U2 <  (M - uGh uhB2uu1'V(l - )-') - G 

- (hiChi hI(Bi + B2D)huT,4T(1 - p)-' + hlDhl) 
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3.7 Application examples 

In this section, the above results are applied to the stability analysis of conventional 

double-loop and triple-loop E - L. converters. Throughout the discussions, it is 

assumed that x(0) = 0 to simplify matters. 

3.7.1 Double-loop E - LX converters 

In the design of higher order E - t converters realized as cascades of mutli-loop 

stages, the problem of stability arises. In particular, these multi-loop stages may 

become prone to limit cycle oscillation. For example, there are different variations of 

the double-loop converter in use which may be seen in the SOFOC1, and the SOFOC2 

cascade converters seen in Figs. 1.15 and 1.16. The first version contains two simple 

integrators with a delay in the feedback path, and the second two delayed integrators 

as seen in Fig. 3.5. 

The state-space equations for the two systems (for the case of matching gains 

U(z) 

U(z) 

a) Double-loop converter (variation one) 

Y(z) 

b) Double-loop converter (variation two) 

Figure 3.5. Two variations of the double-loop converter 

Y(z) 
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= G2 = 1) are 

1 0 —1 1 0 
x(n + 1) = 1 1 L2 x(n) + 1 0 w(n) 

1 1 —2 1 1 

1,1(n) = [i 1 —2] x(n) + [1 i] w(n) 

for the first double-loop converter, and 

x(n +1)= [i 1]x(n)+[ I]w(n) 

y(n) = [o 1] s(n) + [o 1] w(n) 

for the second double-loop converter, where the state vector w(n) consists of the 

inputs wi = U(z), and w2 = Ei(z). Using linear stability analysis shows that the 

eigenvalues of the matrix 

1 0 —1 
(A+B2C)= 1 1 —2 

1 1 —2 

are 

and that the eigenvalues of the matrix 

(A+B2C)__[ A 

are 

• 1.\/ 

Now it is well knoivn that for a filter to be asymptotically stable, it must satisfy 

max IAI <1 
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where p is a positive real number greater than zero, and for the filter realization to 

have no limit cycles [BF77] it must satisfy 

max I.\I<l 

It is quite obvious from the eigenvalues obtained, that the second converter does not 

meet the requirements of it max jAjj < 1 and is therefore prone to limit cycle oscilla-

tions. Stabilization of this converter is easily accomplished by the matrix transfor-

mation 

A' = TAT-' 

This approach has been used to decrease the values of the two multipliers and thus 

move the eigenvalues of the matrix (A + B2C) into the stable region within the unit 

circle. 

Similarly, it may be shown that a stable second order section of SOFOC1 may be 

driven into an unstable mode if the input signal amplitude exceeds the no-overload 

stable range of the converter given by y(n) ≤ 2, determined in Section 2.6.2 (see Fig. 

3.6). 

3.7.2 Triple-loop E - A converter 

There are different variations of the triple-loop converter [CT92}, [BF94] as may 

be seen in Fig. 3.7. 

The state-space equations for the systems (for the case of matching gains G, = 

G2=G3 =1)are 

W(n) x(n+1) 1 1 —1 x(n)+ 0 —1 
010 0-1 
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AC Input (a = 1.491272, t = 0.072289 Hz, OSA = 10) 

0 so 100 200 250 300 

Figure 3.6. Input signal amplitude overloading the double-loop converter quantizer 

()= [o 0 1]x(n)+{0 1]w(n) 

for the first triple-loop converter, and 

1 0 —1 1 —1 
x(n + 1) = 1 1 —2 x(n) + 1 —2 w(n) 

1 1 —2 1 —3 

y(n)=[0 0 1]x(n)+[0 1]w(n) 

for the second triple-loop converter, where the state vector w(n) consists of the inputs 

= U(z), and w2 = El (z). Using linear stability analysis shows that the eigenvalues 

of the matrix 

1 O —1-
(A + B2C) = 1 1 —1 

010 

are 
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U(z) 

U(z) 

a) Triple-loop converter (variation one) 

b), Triple-loop converter (variation two) 

Figure 3.7. Two variations of the triple-loop converter 

and that the elgenvalues of the matrix 

1 0 —1 
(A+B2C)= 1 1 —2 

1 1 —2 

are 

Y  

A1 = A2 = A3 = 0 

Stabilization of the first converter is again performed by the matrix transformation 

A' = TAT' 

to decrease the values of the three multipliers and thus move the eigenvalues of the 

matrix (A + B2C) into the stable region within the unit circle. 

Similarly, it may be shown that a stable triple-loop converter may be driven into 

an unstable mode if the input signal amplitude exceeds the no-overload stable range 

of the converter given by y(n) ≤ 4, determined in Section 2.6.3 (see Fig. 3.8). 

3.8 Conclusion 

This chapter has presented the derivation of a closed-form solution for the quantizer 

output as well as the derivation of an open-loop equivalent system based on the state-
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AC Input (a = 1.491272,1 = 0.072289 Hz, OSR = 10) 

C 

0 I 
50 100 ISO 200 250 300 

n 

Figure 3.8. Input signal amplitude overloading the triple-loop converter quantizer 

space equations describing a general class of single quantizer F, - A  converters. It then 

presented application examples verifying the closed-form solution of the quantizer 

output signal and the equivalent open-loop system, through the comparison with the 

corresponding results obtained by direct computation using Matlab. This chapter 

then examined stablity of E - t converters with regard to circuit parameters and 

also input signal amplitude. Finally, the utitlity of these discussed issues were then 

shown through the presentation of some application examples. 



CHAPTER 4 

SIGMA-DELTA CONVERTER QUANTIZATION NOISE 
SPECTRA 

4.1 Introduction of spectral analysis methods used with E—z 
converters with a brief discussion of the linearized model 

Spectral analysis is one of the most prominent tools, used to characterize the be-

haviour and performance of E - converters. There are several different techniques 

available for the determination of the spectral analysis of E - L converters. This 

chapter will examine the three most widely used spectral analysis methods for E - 

converters, beginning with the linear system theory method (amounting to the repre-

sentation of the quantization error, by a white noise source), followed by the Fourier 

series analysis method, and ending with the characteristic function method. These 

three methods are later demonstrated through a practical application example. This 

chapter will then conclude with the use of the resulting spectral information in the 

calculation of the signal-to-quantization noise ratio which is the primary "yardstick" 

used to evaluate E - A converter resolution capability using all three methods. 

4.2 Determination of spectral information using linear sys-

tem theory 

The primary technique used today for the analysis of E - L. converters is based 

on a linear model for the converter [Can85]. In this technique, the quantizer error 

is replaced by an independent identically distributed noise source, allowing spectral 
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information to be derived using standard linear system theory. This method is based 

on the work of Bennett [Ben48] who derived his results under the conditions that 

a) The quantizer has a large number of levels. 

b) The quantizer bin-width is small. 

c) The quantizer noise is signal independent (i.e. the quantizer error is uncorrelated 

to the quantizer input signal). 

This approach is quite restrictive, however. This is due to the fact that single-loop 

E - converters violate the conditions required for the above assumptions to hold, 

namely that the quantizer usually has very few levels (in most cases only two), the bin-

width is not small, and that for simple inputs the quantizer error response is quite 

dependent on the amplitude and frequency of the input. Even though this linear 

model representation is incorrect for single-loop E - converters, it does provide a 

good prediction for the behaviour of high-order E - A converters under most input 

conditions [HKB92], [WG9O], and therefore must be included in this discussion of 

- A quantization noise spectra for completeness. 

Assuming that a one bit quantizer is utilized, the quantization error (e) added to 

the converter at the locationof the quantizer will be bounded by ±(i/2). If one also 

assumes that the quantizer error has a uniform probability over the interval 

we may find its mean square value as [CT92] 
1 /2 

erms =  e2de 

1- i'.1 
[ 2 ' 2j' 

(4.1) 

12 
This value will then be quite useful in the calculation of the spectral density of the 

sampled error (quantization error), and then the results obtained may be used to 

evaluate the system signal-to-quantization noise ratio. 
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The signal-to-quantization noise ratio may be calculated very simply for the single-

loop E - A converter. When the quantized signal is sampled at f = 1/T, all the 

quantization error power will be folded into the range of frequencies over 0 < f ≤ f3/2 

[CB81]. Assuming that the quantization error is white, the spectral density of the 

sampled noise is found to be 

E(f) = erm3 (2/fs)'12 = ermsv' f 

Therefore the spectral density of the output quantizer noise will be given by 

N(f) =11- e TIE(f) 

or 

/wT\ \ 
N(f) = 6r m3 T)) 

(4.2) 

(4.3) 

In the search for more accurate methods in the analysis of the spectral behaviour, 

several alternative techniques have emerged. These alternatives have included an 

exact Fourier series representation of the error sequence [RL94], the method of char-

acteristic functions [Gra89], [GCW89], [HKB92], and a continous time approximation 

[CB81]. With the development of a closed-form solution for the quantization error, it 

would be natural to exploit the techniques that utilize the closed-form solution of the 

granular quantization error to determine spectral information. The next two sections 

will discuss the determination of the quantization noise spectrum first by using a 

Fourier series representation of the closed-form solution of the quantization error and 

second by using the characteristic function method. 

4.3 Determining spectral information using a direct Fourier 
series representation of the quantizer error sequence 

The quantization noise spectrum is an important characteristic in evaluating the 

resolution performance of A/D converters. An exact determination of this noise 
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spectrum is made difficult in the case of oversampled E - A converters due to the 

constituent nonlinear coarse quantizer. One method that generally is used, is to 

determine the asymptotic autocorrelation of the quantization noise and then find the 

spectrum of this noise using the autocorrelation function and ergodic theory. A much 

more practical approach is to derive a Fourier series representation of the granular 

quantization error equation, such as used in the analysis of single-loop and double-

loop converters based on the techniques originally used by Iwersen [Iwe69], or Clavier, 

Panter , and Grieg [CPG47]. This thesis will adopt the approach of Clavier, et al. as 

it allows the noise spectrum of the E - Lt quantizer to be determined using 

e = e(u(n)) = l e21rj1!±1 

100 (4.4) 
00 1 

=>—sin(2ir L. 

This Fourier series will hold for most converter input signals u(n) provided that 

u(n) satisfies the no-overload condition. Otherwise, e(u(n)) would not be periodic 

function of u(n) and the Fourier series representation could not be used. Similarly, 

one could write a Fourier series for e2 as 

= - +  e2h u1 
b?O 2('l), 

1 00 1 u(n) 
= + 2(irl)2 cos(2irl--) 

In this case, it is desired to study the behaviour of the normalized error sequence 

6(n) = e(n)/A, this form of analysis may take two different paths. The first will be 

that of Clavier, et al. We know that the normalized error may be represented as 

€(n) = 1 = 1 _ ( -1[y(n)]) 
L2 

,1 [ n-i 

= -( CA'x(0)+CEABiu(n 
i=o 

n-i 

+C E AB2j + Du(n) 
i=O 

i — i) 

(4.5) 

(4.6) 
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From (4.6) and (4.4) it may be immediately seen that 

= 1  2rjlL1!.1 
10-o 2irjl 

00 1 y(n) 
= —sin(2irl----) 

in 1=1 

(4.7) 

Now for some specific examples of sequences y(n), (4.7) can be easily used to obtain 

a direct Fourier series representation. Moments and spectral behaviour may then 

be determined with this representation, as the power spectral density (PSD) of the 

quantization error may be determined by 

00 
S, (f) = X6(f - nfo) (4.8) 

n=-00 

where X, represents the amplitude of the nth Fourier series component determined 

by using (4.7). One drawback of this method is that it may only work for input signals 

that are simple, e.g. sinusoids, as one may not be able to evaluate certain terms such 

as n2 or n3 in the exponential portion of (4.7). Another problem that can occur is 

that the ordinary Fourier series may not converge as €(n) need not necessarily be a 

periodic function of n. 

4.4 Determining spectral information using the characteris-

tic function method 

This approach will focus on the moments of the quantizer error process, leading to 

a variation of the characteristic function method described by Rice [Ric54], and Dav-

enport and Root [DR58] under the name "transform method". In this case however, 

discrete time replaces continuous time, Fourier series replace Laplace transforms, and 

quasi-stationary processes will replace stationary processes as in [GCW89]. 

In this form of analysis, the main interest will be the long term average behaviour 

of the normalized error function €(n). This will be in terms of the first moment, 
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second moment, and the autocorrelation functions defined by 

= lim - > e(n) 
N—co N 

n=1 

1N 

M{e(n)2} = Jim -. 
N-400 

n1 

iN 

r6(k) = M{e(n)e(n + k)} = urn e(n)e(n + k) 
N—*c.o n ni 

respectively. As in the past [Gra9O], a unified developement of both deterministic 

and random inputs will be performed using the technique of quasi-stationary processes 

proposed in {Lj u87}. Using these results, the discrete time process e(n) will be defined 

as quasi-stationary if there exists a finite constant C such that 

C ; for all n 

IRc(n,k)I≤C ; for all n,k 

where R(n,k) = E(e(n)e(k)) and the limit 

k) 

exists for each k. To avoid the implicit assumption of a zero mean, one must also 

include the first moment condition that the limit 

exists. Now given some process w(n), 

N 

{w(n)} = lim -- E(w(n)) 
N-+oo N n1 

if the limit exists. Thus for a given quasi-stationary process {e(n)}, the autocorrela-

tion will be given by 

the mean by 

R(k) = {€(n)€(n + k)} (4.9) 

M , = (4.10) 
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and the average power by 

Re(0) = (4.11) 

The power spectrum of the process will be defined as the discrete time Fourier trans-

form of the autocorrelation function 

00 

S(f) = E R(n)e2,3 
n=-00 - 

where the frequency f is normalized to lie in [0, 1]. 

Now by proceeding to invoke (4.32) and (4.4) to find the basic moments given by 

(4.9) - (4.11), one obtains the following expressions after some manipulation. 

and 

= urn ._Le2j1 
N—oo N 1:00 2irjl 

= le 2 Ili I100  

= T2  > 2(lrl)2E {2i41} 
100 

R(k)=>E-2— j 
: i0O 1:00 2iri2ir1  

(4.12) 

(4.13) 

(4.14) 

for k 0. Redefining these results in terms of the one-dimensional and two-dimensional 

characteristic functions 

(1) fe21nu111} (4.15) 

= E{23+1) e } 

will give 

(4.16) 

(4.17) 
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{(Ti)2} - 1 + E 2(1r1)21(1) -i 
l•o 

and 

R(k) = 11 
i0O 100 - 

fork 54 0. 

(4.18) 

(4.19) 

If the characteristic functions given by (4.15) and (4.16) can be evaluated (i.e. the 

appropriate moments of the quasi-stationary process are bounded), then using (4.17) 

- (4.19), the moments and spectrum of the quantizer error process can be computed. 

4.5 Application Examples 

The utility of the linear analysis method, and the two nonlinear analysis methods 

will now be demonstrated with the presentation of some application examples. In the 

following examples, the specific closed-form error equation will be evaluated under 

the conditon that a(0) = 0. This is justified, as it has been shown that the reset 

of intial states will not have any effect on the long term asymptotic behaviour of a 

- A converter [Gra89]. 

4.5.1 The case of DC input signals 

First we will examine the results obtained for DC input signals. The use of a DC 

input signal can represent a reasonable idealization to a slowly varying signal due to 

oversarripling. The input to the system will be defined as 

u(n)_—X, forall n=0,1,2,... 

where X is a constant amplitude. To evaluate the Fourier series using a general 

synthesis equation, it will be necessary to represent the two geometric matrix series 
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in (4.6) with their equivalent closed-form representations. It is well known that a 

general geometric series may be calculated using . 

n—i 

A problem arises, however, if the matrix A contains an eigenvalue of unity. In this 

case, the geometric series may be evaluated as follows. Let the matrix A be replaced 

by the matrix A given by 

A=aA 

where a represents some scalar. Then the series can be evaluated as 

n—i n—i 

EAi=limAt* 
a-41. 

= lim(I - a 1A'')(I - aA)' 
a-+1 

Next, let us represent tEe closed-form representation by some matrix P, where 

P = lim(I - a''A')(I - aA)' 

Then using this result, the normalized error sequence may be represented as 

c(n) = - ( (CPB,X + CPB4)) 
Evaluating (4.20) for the single-loop converter results in 

1 /nX n 

Then using (4.5), the Fourier series representation may be written as 

2irjl '(nX n\ 6(n) = 'e2i1(_) = -i sin (27ri --- - 

and 

= >: 1  
+ 6100 

21nu1 1 

12 2(7r1)2  

'nX n\\ 
= 2(1)2 (2)) 

(4.20) 
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These results may then be used to find moments and spectral behaviour. 

Similarly, using the method of characteristic functions, one may obtain 

,11_(nX _ n)l = , 1 

(nX \2 1 -   = + 2(1)2 

and 

R(k) = - E 11 1) 
i0Q 1O 

where 

(1) = 

,(k)(, 1) = E A 2 

4.5.2 The case of AC input signals 

In a similar manner, results for (4.5), (4.6), and (4.17) - (4.19) may be obtained in 

the case of a general Z - A converter for a sinsoidal input. Suppose that the input 

signal has the form 

u(n) = a cos(n2ir f/f3 +0) = a cos(nw +0) 

where a, f, and 0 are the amplitude, frequency, and phase, respectively, and f 

is the sampling frequency. This sampling frequency is assumed to be much larger 

than f since the the oversanipling ratio, OSR = f3/2f, is usually large. Therefore 

w = 2irf/f3 will be small and u(n) slowly varying. The amplitude a ≤ U1 (due to 
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the no-overload condition) and the phase component will be set to zero for simplicity. 

In this case, the first matrix series may be evaluated as 

a A cos(n - j - 1 i(ni)1 Ae + 6_j(m1)w Aie) 
i=O i=O i=O (42].) 

Let the solution to the two geometric matrix series in (4.21) be represented by 

and 

R = e_i(m+i)wAn+1) (I - e 

n-i 

S = : Ae = (i - ei(n+1)wAn+1) (i - 
i=O 

Therefore, substituting (4.22) and (4.23) into (4.21) yields 

n-i 
a > A cos(n - i - 1)w = a (ei _i)wR + e_i(T_11S) 

i=O 

Using this result, the normalized error sequence may be written as 

(eiCRBi + e''CSB2) + CPB2 ) 

(4.22) 

(4.23) 

(4.24) 

Similarly, as for the DC input case, let us determine the Fourier series for the single-

loop converter. From (424) the normalized error sequence is obtained as 

I , -i n(-w) 1 / a cos(—n --)w sin 2  

2 \ A sin() 2 

Then using (4.5), the Fourier series may be evaluated as 

1 1 . I a (cos(%)w sin n(-w) \ nj) 
e(n) = exp 2ir.j1 100 27rjl sin() ) 

This form after manipulation and application of the Jacobi-Anger formula 

00 
jzsinip = Jm(z)eimh1 

m-oo  
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gives the result 

00 1 
6(n) = moo 21Jm(21 

x exp(i I 27rlf I +(n — )]) 
2 2 

where Jm is the Bessel function of order in and 

= 2A sin() 

The square of the error sequence may also be calculated as 

= + 2(1)2 cos (21 [ - +sin - )J) 
These two results may then be used in the calculation of moments and spectral 

behaviour using (4.8). 

In the same manner, one may use the method of characteristic functions to obtain 

1 /a cos()wsin n\) - _., 

12 \ sin() 2/J too  2irjl 

sin() 2  1a cos()w sin n(w) ) ) 21  - + 2(l)2 1) 
2 too 

and 

R6(k) = 11 
oQ too 

where 

= urn > e-j1r1nj21rysin(nw_) 
N-*oo 

n1 

4.6 Using spectral information to calculate the signal-to-quantization 

noise ratio 

The underlying reason for the determination of spectral behaviour of E - con-

verters has always been for the calculation of the achievable signal-to-quantization 
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noise ratio (SQNR) of the converter under investigation. The achievable SQNR in 

turn gives designers the resolution or performance capability of the converter. 

In this way, by using results presented in the preceding sections, the power spec-

trum of the quantization error can be determined. The determination of the signal-

quantization-noise ratio when using the linear analysis method may be áccomp1ished 

by using (4.2) and (4.3). Thus, for the case of the single-loop converter, the quanti-

zation noise power in the signal band can then be evaluated by using 

= Ifo IN(f)I2df n 

which gives the result 

(4.25) 

= 4em3(2T) [f (2irT)sin(2irfT)] (4.26) 

Further manipulation and expansion of sin2rT in a Taylor's series (truncating after 

the second term) will give the result 

2 
2 2 no = e?.fl2 (7r) (2foT)3 (4.27) 

where 2foT represents 1/(oversampling ratio) for the system. Finally the signal-to-

quantization noise ratio may be calculated using the knowledge that the maximum 

input signal the converter may accomodate without saturating is z/2 (due to a one-

bit quantizer). This will give a signal power value of (L/(2/))2 (assuming a sinsoidal 

input). Using previous results, the maximum signal-to-quantization noise ratio as a 

function of the oversampling ratio is found to be 

2 4•5 
= --(2f0T 3 

n2 2 
(4.28) 

Similarly, the power spectral density of the noise for a double-loop modulator may 

then be determined as 

irT 2 

N(f) = 4ermsV' (i-)) 
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The inband power may then be calculated as 

fl () (2f0T)5 
resulting in a signal-to--quantization noise ratio of 

32 7•5 
(2f0T) 5 

n 2 7 4 

(4.29) 

(4.30) 

This implies that without loss of generality the relative rms signal-to-quantization 

noise ratio of an Nth order modulator as a function of oversampling ratio may be 

calculated as 

- 3(2N + 1)  (2f0T)-(2"') 
2ir 

(when the signal amplitude is maximum), and as 

- A2 3(2N + 1)  (2f0T)(21) 
1 n2 22N 

when the signal amplitude satisfies A < /2. 

(4.31) 

(4.32) 

For the cases of the two nonlinear analysis methods, the determination of the 

signal-to-quantizatidn noise ratio may be accomplished by using (4.7) to find the 

amplitudes of the Fourier series components of the quantization error and substitute 

the results into the PSD equation for the Fourier series given by 

00 
S6(f) = X5(f - nb) (4.33) 

Similarly, the autocorrelation of the quantization error may be found using the method 

of characteristic functions as 

Re(1) = —EE !Jk)(,l) 
i0O 1O 

The power spectrum of the error for both methods will be given by the discrete 

time Fourier transform of either (4.33) or (4.34). Using this information, the average 

(4.34) 
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quantizer noise power at the output of the converter after subsampling or decimation 

may then be calculated as 

4=f IHN(f)I2 HD(f)I2 S(f)df (4.35) 

where I Hi,r (f) I represents the magnitude response of the noise transfer function, and 

IHD(f)I the magnitude response of the decimation filter. Similarly the average signal 

power at the output after decimation may be calculated as 

cT =11 IHs(f)I2 IHD(f)12 Ss(f)df (4.36) 

where IHs(f)l and I Hj. (f) I represent the magnitude responses of the signal transfer 

function and the decimation filter respectively. 

The signal-to-quantization noise ratio of the E - A converter may then be given 

by 

SQNR=.f (4.37) 

It may be observed that for E - t converters containing more than one loop, 4 

is not a function of the input signal (it is approximately constant), and therefore 

the signal-to-quantization noise ratio will increase for an increase in the power of the 

input signal until the allowable input range has been exceeded and the quantizer is 

overloaded. 

4.7 Conclusion 

This chapter has examined the spectral analysis of E - A converters using three 

different methods based on 

a) The linear white noise model for the quantizer error. 

b) The Fourier series representation of the error sequence. 
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c) First and second moments of the error sequence derived using characteristic func-

tions. 

Some applications examples were then given and the three methods were used in the 

calculation of the converter signal-to-quantization noise ratio which is the primary 

method of determining E - A converter resolution. 



CHAPTER 5 

DESIGN OF E - A CONVERTERS 

5.1 Introduction 

This chapter will present a design methodology for the construction of cascaded 

sigma-delta converters which may be used in either Analog-to-Digital (A/D) or Digital-

to-Analog (D/A) converters. Section 5.2 will formulate the overall design methodol-

ogy in terms of the signal and noise transfer functions, while Section 5.3 will present 

various sigma-delta converters designed using such methods and the inherent benefits 

of such converters. Section 5.4 will then analyze the new converters with regard to 

their signal and noise transfer functions. Then the operation of these new converters 

will be characterized with regard to their signal-to-quantization noise ratio. This will 

be examined in subsections 5.5.1 and 5.5.2, the first with the signal-to-quantization 

noise ratio as a function of the input signal amplitude and the second with signal-to-

quantization noise ratio as a function of the oversampling ratio. 

5.2 Signal and noise transfer function properties necessary 
for E - A converters 

• It is clear from the literature [CT92] that the purpose of sucessive stages in cascade 

sigma-delta converter design is to further quantize the quantizer error from the first 

and sucessive stages (depending on the order of the system) for cancellation at the out-

put. A more stringent criteria would be to state that the overall purpose of successive 
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stages is to cancel all sources of quantization noise but the last, where the quantiza-

tion noise (error) will be shaped by the noise transfer function HN(z) = (1 - z1)" 

[BN94]. For baseband signals, the signal transfer function H(z) is desired to have 

a lowpass magnitude/frequency response, while the noise (error) transfer function 

HN(z) is desired to have a highpass magnitude/frequency response. For all such de-

sired system responses, the two final output signal spectra will be complimentary, 

with the noise signal occupying the portion of the frequency spectrum that may be 

filtered out leaving a final output signal (after decimation) that is contaminated with 

very little quantization noise. 

It has been shown in the literature and discussed in Chapter 1, that through the 

use of cascaded stages, higher order sigma-delta converters may be constructed that 

have superior noise suppression in the desired frequency band of operation for lower 

oversampling ratios. This is due to the fact that the overall converter will retain the 

sum of the noise shaping properties of all the constiuent sections. For higher order 

converters consisting of the cascade of a second order and a first order section, one way 

to achieve the necessary cancellation (noise from the prior stages) is by isolating the 

quantization noise from the first section for processing and cancellation in the second 

section. The available internal signals that may be accessed for noise cancellation in 

the constituent second order section are its overall output signal 

• z'U(z) + (1 - z')2E1(z)  

the signaloutput from the first integrator 

U(z) - (1 - z')Ei(z) (5.2) 

and the signal from the output of the second integrator (prior to the error source) 

z'U(z) - z'Ei(z) - z'(l - z')Ei(z) (5.3) 



95 

as may be clearly seen in Fig. 5.1. It is most convenient to cancel out the contribution 

E 1(z) 

X(z) 

Point 1 Point 2 Point 3 

Figure 5.1. Available internal signals from the double-loop converter 

Y(z) 

of the input signal to the overall output formed through the second section. This may 

be achieved easily in two ways. The first is by subtracting a delayed version of (5.2) 

from (5.3), resulting in the negative delayed noise signal —z'Ei(z). Alternatively, 

(5.1) may be subtracted from a delayed version of the signal in (5.2), resulting in the 

noise signal —z-'(l - z')Ei(z). This signal may then be passed through a discrete 

integrator to form the output —z 1 El (z) which is the same result as obtained by using 

the first method. The third possible combination of signals (which is not considered), 

would be to subtract (53) from (5.1). This method is not chosen, as it would result 

in a noise signal (1 + 2z 2)Ei(z) which could not be converted to the desired form 

(—z'Ei(z)) with simple structures as outlined for the other two methods outlined 

above. The isolated noise signal may then be fed into the second stage (a first-order 

sigma-delta converter) as the input signal. It will pass through this second stage being 

delayed and adding a second quantizer noise signal (1 - z')E2(z). Cancellation is 

then achieved by making the noise transfer functions that shape the first noise source 

equivalent in both paths to the output. This will result in the two new sigma-delta 
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converter configurations as shown in Figs. 5.3 and 5.4 which shall be referred to as the 

Mash21a and Mash21b converters (as they are multistage noise shaping converters). 

In a similar manner, a third-order sigma-delta converter may be constructed by 

cascading a first-order converter with a second-order converter. The available internal 

signals to be used for noise cancellation in the constituent first-order section are its 

output signal 

z'U(z) + (1 - z')Ei(z) (5.4) 

and the output signal from the integrator 

z'U(z) - z'Ei(z) (5.5) 

which are illustrated in Fig. 5.2. 

x  

Point 1 Point 2 

Y(z) 

Figure 5.2. Available internal signals from the single-loop converter 

As for the previous designs, it is expedient to cancel out the contribution of the 

input signal to the overall output formed from the second section. This is achieved 

by simply subtracting (5.6) from (5.7), resulting in the noise signal —Ei(z). This 
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signal then serves as the input signal to the second stage and by making the transfer 

functions for the two paths to the output equal, this first noise source may be can-

celled resulting in only the second noise signal (1 - z')3E2(z) existing at the overall 

converter output. The converter implemented using this method may be seen in Fig. 

5.5 and will be referred to as the Mash12 converter configuration. 

5.3 Introduction of new cascade E - L converters 

Several new cascade E - A converters were constructed using the techniques in the 

previous section, consisting of four third-order converters and one fourth-order con-

verter. The third order converters will be presented first and consist of the Mash21a, 

Mash21b, Mash12, and Mashill converters. 

5.3.1 New third-order converters 

The first two converters consist of the double-loop converter being the first stage 

in the design.The next one consists of the single-loop converter being the first stage 

which reduces the required amount of neccessary components by one delay and one 

adder. The final third-order converter utilizes a similar approach to that used by 

Candy and Temes [CT92] to obtain third-order noise shaping. 

U(z) 

V 

Figure 5.3. New Mash21a converter 
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U (Z) 

U(z) 

Figure 5.4. New Mash21b converter 

Figure 5.5. New Maslal2 converter 

Y(z) 
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Figure 5.6. New Mashlil converter 

Y(z) 

Figure 5.7. New .Mash22 converter 
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5.3.2 A new fourth-order converter 

The final new converter is a fourth-order converter using a cascade of two double-

loop converters to provide fourth-order noise shaping. 

5.4 Analysis of new converters with regard to signal and 
noise transfer functions 

Verification of the obtained transfer functions of these new converters may be made 

via two methods, the first being signal flow-graph analysis and the second being state-

space analysis. In the analysis of the signal and noise transfer functions to follow, 

the latter method will be employed. For the Mash21a converter one may write the 

state-space representation as 

x(n+1) 

1 —1 0 0 0 0 0 0-
-1 0 0 . 0  0 0 0 
01000000 
00100000 
1 —1 0 0 0 0 0 0 
0 1 0 0 —1 0 0 0 
00000100 
0 0 0 0• 0 1 —1 0 

1 —1 0-
1 —2 0 
010 
000 
1 —1 0' 
0 0 —1 
00 1 
•0 0 1_ 

w(n) 
(5.6) 

y(n) = [o 0 0 1 0 1 —1 —i] x(n) + [o 0 i] w(n) (5.7) 

where w(n) = [u(n) el(n) e2(n)J'. Substitution of the A, B, C, D matricies above 

in 

H(z) = C[zl - A]-'B + D (5.8) 

with simplification results in the following 

Y(z) = z 3U(z) + (1 - z')3E2(z) 
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Similarly, the Mash21b converter may be represented as 

x(n+1) = 

1 —1 0 0 0 0 0 0 0 
1 -1 0 0 0 0 0 0 0 1 
010000000 0 
001000000 0 
1 —1 0 0 0 0 0 0 0 x(n)+ 0 
0 —1 0 0 0 0 0 0 0 0 
000001000 0 
000000100 0 
0 0 00.00 1 —1 0 _0 

—1 0 
—2 0 
10 
00 
—1 0 w(n) 
—1 0 (5.9) 
0 —1 
01 
0 1.. 

y(n) = [o 0 0 1 0 0 1 —1 —i] + [o 0 1] w(n) (5.10) 

Substitution of the given A, B, C, D matricies in (5.8) with simplification results in 

Y(z) = z 3U(z) + (1 - z')3E2(z) (5.11) 

In a like manner, the output equations for the Mash12 and Mashull converters may 

be generated as 

Y(z) = z 2U(z) + (1 - z')3E2(z) (5.12) 

Y(z) = f 3U(z) + (1 - ')3E2(z) (5.13) 

which clearly shows that the remaining quantizer error sequence is shaped by the 

desired third order noise transfer function HN(z) = (1 - z')3. 

Writing the state-space eqautions for the Mash22 converter and then solving for 

them using (5.8), one obtains the output 

Y(z) = z 3U(z) + (1 - z')4E2(z) (5.14) 

which has the signal transfer function Hs(z) = 't-3 and the desired fourth order noise 

shaping transfer function HN(Z) = (1 - z')4. 
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Variants of each of these converter configurations were simulated, as it was found 

that the inclusion of additional, delays in the system had the effect of further decor-

relating the remaining error signal in the output from the input signal. This may be 

explained quite simply as 'the error sequence (generated by the first quantizer and 

correlated to the input signal) is further decoupled in relation to its nearest neighbor 

in the sequence by the inclusion of the additional delay. The second quantizer then 

operates on the additionally delayed error sequence from the first stage yielding a 

second error sequence that is in turn, further decorrelated with the original system 

input. 

The benefit of the additional delay in both paths to the output may be clearly seen 

in the comparison between the noise output power spectral density of the Mash21a 

converter and a variant of the Mash21a (Fig. 5.8) seen in Figs. 5.9 and 5.10. Other 

-.-. z_ 1 

Figure 5.8. A variation of the Mash21a converter 

Y  

such variants were tried and simulation results' have shown further improvements in 

the signal-to-quantization noise ratio, but improvements were only significant with 

the addition of the first delay. The relation between further delay additions and im-

provements in the signal-to-quantization noise ratio decrease exponentially and would 

not be viable for the, additional amount of hardware required for implementation. 
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Mash21a Quantizer Noise Power Spectral Density 
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Figure 5.9. The Noise PSD for the Mash21a converter 

Mash21 a (Variant) Quantizer Noise Power Spectral Density 
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Figure 5.10. The Noise PSD for the modified Mash21aconverter 
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5.5 Characterization of the new converters with regard to 
signal-to-quantization noise ratio 

To evaluate the resolution performance of the new structures, it is necessary to 

compute the signal-to-quantization noise ratio that is attainable under various con-

verter specifications such as a change in the oversampling ratio or a change in the 

input signal amplitude (under the no-overload condition). The following results were 

obtained using the dynamic simulation package SIMULINK in MATLAB where the fi-

nite arithmetic effects of the quantizer operation were simulated for two's compliment 

rounding with saturation. 

5.5.1 Signal-to-quantization noise ratio as a function of input signal am-

plitude 

The first sets of data were accumulated for each converter as the input signal 

amplitude was varied from .a low value up to the maximum allowable input signal 

given by U1 in (2.35). The input signal contained a simple sinusoid with a designated 

frequency of 10kHz and a fixed oversampling ratio of 64. The performance results of 

the various new converters may be seen in Figs. 5.11 - 5.13. The simulated results 

obtained using SIMULINK for the new converters, may be clearly seen to compare 

favorably with the theoretical results for triple-loop and quadruple-loop converters 

(using the linear white noise model for the quantizer error). 

5.5.2 Signal-to-quantization noise ratio as a function of oversampling ra-

tio 

The second set of data values were accumulated for each converter as the oversam-

pling ratio was varied from 40 to 520 while the input signal amplitude was set to the 
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maximum allowable. The performance results of the various new converters may be 

seen in Figs. 5.14 - 5.16. Again, the simulated results using SIMULINK may be seen 

to compare favorably with the theoretical results for triple-loop and quadruple-loop 

converters (using the linear white noise model for the quantizer error). 

5.6 Conclusion 

This chapter has presented design techniques for the construction of cascaded 

- A converter configurations. It first discussed the overall design technique in terms 

of both signal and noise transfer functions, and then presented several new E - 

converters designed using these techniques. It then analyzed these new configurations 

with regard to signal and noise transfer functions, and finally characterized their 

performance using their signal-to-quantization noise ratio through simulation. This 

was performed in two sections, where first the variation in signal-to-qi.antization noise 

ratio as a function of input signal amplitude for the new converters was calculated and 

plotted, and second, the variation in signal-to-quantization noise ratio as a function 

of oversampling ratio for the new converters was calculated and plotted. 
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CHAPTER 6 

CONCLUSION 

6.1 Review of material presented 

In Chapter 1 a brief overview of E - L conversion, with regard first to its orig-

inal application, then its uses in the field of signal conversion particularly with its 

applications in modern day interface and communication circuits was given. Also dis-

cussed was the basic operation of such converters, and the important issues regarding 

these converters such as analysis, characterization, and design. Finally, this chapter 

provided an overview of design methods being utilized to create lowpass E - A and 

bandpass E - converters. 

Chapter 2 then laid the foundation for the next three chapters by first presenting 

a general state-space representation of a single-quantizer E - A converter. The state-

space equations describing this subsystem were then utilized to derive a closed-form 

solution for the granular quantizer error. Next, an input signal bound to the converter 

was derived to guarantee that no overloading of the quantizer would occur for the 

two cases of a) x(0) = 0 (the initial states are reset), and b) x(0) 54 0 (the initial 

states are nonzero). Some interrelationships between various converter parameters 

were then discussed and finally the utility of the derived theorems was shown with 

some application examples. 

Chapter 3 continued the work started in chapter 2 by deriving a closed-form solu-

tion for the quantizer output signal based on the general state-space equations (2.1) 
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and (2.2) describing the class of single-quantizer E - Li converters. It also derived an 

open loop equivalent system seen in Fig. 3.1. Application results using these solutions 

were then compared to results obtained using general difference equations. Finally, 

discussed were stability issues of E - L converters with regard to circuit parame-

ters and input signal amplitude. The chapter then concluded with some application 

examples illustrating these points. 

Chapter 4 then dealt with the issue of spectral analysis of E - L converters and 

how such spectral information is used to analyze converter behavior and determine 

converter performance. It examined some of the different techniques used by designers 

to determine spectral behavior of E - L, converters with a particular look at the three 

spectral analysis methods of 

a) The linear white noise model of the quantizer error. 

b) The Fourier series representation of the error sequence. 

c) First and second moments of the error sequence derived using characteristic func-

tions. 

Some applications examples were then presented and finally all discussed methods 

were used in the calculation of the converter signal-to-quantization noise ratio. 

Chapter 5 concluded the research material presented by presenting design tech-

niques for the construction of cascaded E - converters applicable to either A/D 

or D/A converter circuits. It first formulated the overall design technique in terms 

of the signal and noise transfer functions, and then presented various new E - 

converter configurations designed using these techniques. The third section of this 

chapter then analysed the new converter configurations with regard to their signal 
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and noise transfer functions and finally, the operation of these new converters was 

characterized with regard to their signal-to-quantization noise ratio through simula-

tion. This was examined in two subsections, the first determining the variation in 

signal-to-quantization noise ratio as a function of input signal amplitude and the sec-

ond determining signal-to-quantization noise ratio as a function of the oversampling 

ratio. 

6.2 Proposed areas for future research and improvements 

This thesis has presented several formal analytical methods that will give designers 

of E - converters insight into system behavior which cannot be obtained with the 

application of ad hoc. design techniques and simulations alone. It may be said that 

while simulations are useful tobls for analysing final designs, they do not provide 

sufficient knowledge into certain system behaviour that may occur only for particular 

given input signals. Such shortcomings of simulation tools (such as the use of a 

independent identically distributed noise model for the quantizer) are exactly why 

formal analysis methods are so valuable. 

The value of closed-form solutions for determining granular error and quantizer 

output and their subsequent use in spectral analysis has been clearly due to the 

reduction in the number of computations required to obtain a solution, but the closed-

form solutions obtained in this thesis have also been shown to operate for only a 

certain class of E - A converters. This class may include a large number of multiloop 

and cascade E - L. converters, but it is still limited to those configurations that 

contain integer valued multipliers only. This limitation may be clearly traced to the 

two relations used in deriving (2.12) and (3.6);name1y 

(ri + K(r2)) = (ri + Kr2) 



112 

and 

[r + K Ls] j = tn + K  

which dictate that K must be an integer and therefore the matrix products C(A + 

B2C)1B2 and CA1B2 are required to be integers for each I = 0, 1,... , co (implying 

that all ,multipliers in the subsystem Al given in Fig. 2.1 must be integer valued 

multipliers). New analytical methods must be examined and developed that would 

make such general state-space equations applicable to E - Li converter structures that 

contain noninteger valued multipliers as well, such as the TOSLAP converter of Fig. 

1.11. This would permit designers to analyse arbitrary E - A converter structures 

using only general equations and thus preclude the necessity of writing and solving a 

set of difference equations for each different converter configuration. 

A second area that needs to be explored in detail, is that of the analysis of E - 

converters under quantizer overload, for at present there are not any analytical tools 

that this author is aware of that could determine the quantizer error when the sina1 

input to the quantizer exceeds the no-overload or granular range. 

Finally, an area that is often overlooked and quite naturally needs more develop-

ment is that of formal design methods to produce E - A converters for given specifi-

cations (either lowpass or bandpass applications). These methods must fully exploit 

the complimentary nature of such structures unlike the trial and error development 

method with optimization packages that usually occurs today. 

6.3 Concluding remarks 

It may be said with all honesty, that result of this research is built upon the foun-

dation of such pioneering analytical work in the field of E - A converters by such 

researchers as Candy, Temes, Gray, and others. To paraphrase my old highschool 
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football coach, " We have taken the ball passed to us by others, and we have run 

further down the field with it.", signifying that while some work has been accom-

plished, there is much more work yet to be done that will be accomplished by others. 

However, as one whom is thoroughly captivated by oversampled E - L converters, 

this field will always be of constant interest to me, due to the continual introduction 

of new and innovative techniques and approaches of analysis. 
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