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ABSTRACT 

The objective of this thesis is the development of a 

computationally efficient estimation technique for computing the 

first-order gradients of the anomalous gravity potential T at the 

earth's surface from airborne second-order gradients of T. With the 

first operational test of airborne gravity gradiometry just a few 

months away, computationally efficient techniques are necessary for 

processing the huge amounts of second-order gradient data collected 

during a gradiometry survey. The technique developed in this thesis 

is based on the multiple input-single output filtering equations 

taking as input the fully-correlated second-order gravity gradients 

and as output individual first-order gradients. The method is capable 

of combining all second-order gradients and taking into account the 

gradiometer noise. More generally, the, method developed is capable of 

combining all possible terrestrial and airborne first and second-order 

gravity gradient data collected in a local area, provided that they 

are sampled on a regular grid. The multiple input-single output 

filtering equations are equivalent to the Wiener filtering equations 

which in turn can be derived as the spectrum of the least-squares 

collocation formulas for stationary and ergodic signals. One of the 

major contributions of this thesis is that it shows these 

relationships explicitly. The advance the new method brings to 

Geodesy is the possibility of implementing gradient combinations for 

very large data sets. 

Due to the lack of actual second-order gradient data, simulated 

data were used to test the developed technique. Numerical results 
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indicate that first-order gradients can be computed from airborne 

second-order gradients with an accuracy of better than 1 mgal when 

assuming currently planned profile spacing and the accuracy of the 

existing system. Each first-order gradient T i is most accurately 

computed from the combination of the second-order gradients ix Tiy 

and The numerical tests dembnstrate that results are not 

adversely affected if noise, much higher than that of.the presently 

existing gradiometer, is assumed. In addition the tests show thatfor 

the assumed grid spacing and flying altitude, downward continuation 

amounts to less than 1.5% of the total error budget in the estimation 

of the first-order gradients T1. The estimation technique developed 

in this thesis is very efficient computationally because it employs 

the Fast Fourier Transform. 
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u spatial frequency in x direction 
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AY grid spacing in y direction 

partial differentiation symbol 
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direct Fourier transform 

inverse Fourier transform 
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Chapter 1 

INTRODUCTION 

Research on the determination of the earth's gravity field using 

airborne measurements of gravity started in 1959, when the concept of 

airborne gravimetry was first tested ( Thompson, 1959). At that time, 

the possibility of success seemed rather remote. Considerable work 

has been done in airborne gravimetry since then ( Nettleton et al., 

1960; Coons et al., 1962, Gumert and Cobb, 1970, Szabo and Anthony, 

1971; La Coste et al., 1977), but only in the last five -years some 

progress has been reported ( Hammer, 1982; Hammer, 1983; Brozena, 

1984). The major advantage of airborne gravity methods compared to 

terrestrial methods is the speed with which gravity measurements can 

be taken. The major problem with airborne gravimetry is that, 

theoretically, the gravitational and the inertial forces can not be 

separated ( Meissi, 1970). This'problem has not been solved yet. 

These difficulties led to the development of airborne gravity 

gradiometry, where work on these problems started towards the end of 

the sixties and has continued since then (Trageser, 1970; Moritz, 

1975; Paik, 1976; Forward and Ames, 1977, Metzger and Jircitano, 

1981). The inertial and gravitational forces are separated by mounting 

three gravity gradiometer sensors on an inertially stabilized platform 

(Moritz, 1967; Moritz, 1971). A gravity gradiometer measures the six 

second-order gravity gradients. Elimination of the effect of the 

earth's normal gravity field from these six gravity gradients and 

integration of the proper combination of the resulting gradients 

yields the first-order gradients of the anomalous potential. The 
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measurement of second-order instead of first-order gravity gradients 

provides more short-wavelength ( high frequency) information which is 

needed for a precise determination of the gravity field in a local 

area. In addition, the high frequencies of the anomalous gravity field 

provide useful information for geophysical prospecting ( Jordan, 1978). 

Hardware development for gravity gradiometers started in the 

early ' 70s and has continued till now. During the seventies four 

gravity gradiometers were under development, the floated g"adiometer 

(Trageser, 1975), the Hughes gradiometer ( Forward, 1971), the Bell 

gradiometer ( Metzger and Jircitano, 1977) and the superconducting 

gradiometer ( Paik, et al., 1978). Of those four, two are further 

developed, namely the Gravity Gradiometer Survey System ( GGSS) 

developed by Bell Aerospace and the superconducting gradiometer 

developed by Paik at the University of Maryland. The superconducting 

gradiometer is planned to be used for satellite gradiometry. The GGSS 

gradiometer is the one which will be employed for airborne 

gradiometry. The first flight tests are expected to be conducted at 

the end of 1986 or early in 1987. 

Feasibility and accuracy studies on the determination of the 

anomalous gravity field from airborne gradiometry have been conducted 

since the middle of the last decade (Moritz, 1975; Schwarz, 1976, 

Schwarz, 1977). Those studies led to some important conclusions. 

First, the gradiometry survey geometry is the major factor in the 

precise determination of the earth's gravity field. Second, the 

vertical second-order gradient is necessary for downward continuation 

and the mixed vertical-horizontal gradients are ' needed for 

interpolation between flight tracks. Third, airborne second-order 
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gradients collected at altitude of 10 km, with across track spacing of 

03 determine 5'x 5' block anomalies at the earth's surface with an 

accuracy of 2.3 mgals. Fourth, least-squares collocation is a 

theoretically ideal method for estimating the first-order from the 

second-order gradients. In practice though, due to the large amount 

of data, it must be properly applied so that only one batch of data 

over a subregion of the whole area is processed at a time ( Schwarz, 

1977). 

The satisfactory laboratory performance of the GGSS gradiometer, 

the development of the GPS providing good worldwide navigation 

capability and a decision for a 600 m flying altitude stimulated again 

interest in airborne gradiometry during the early ' 80s ( Jordan, 1982; 

Heller and Senus, 1983; Jekeli, 1983; Jekeli, 1984a; Jekeli, 1984b). 

Covariance studies by Jekeli ( 1983, 1984a) showed clearly that with a 

flying altitude of 600 ni and along, across-track sampling intervals of 

1 and 5 km, respectively, gravity disturbances can be determined with 

an accuracy blow the 1 mgal level. Simulation analysis performed by 

Hutcheson and Grierson ( 1985), showed that for an area of 315015 km 

an accuracy of 0.9 mgal can be achieved for all the elements of the 

first-order gradient vector within 40 km inside the borders of the 

area. 

The main problem with the determination of the gravity field 

from airborne gradiometry is the huge amount of gradient data col-

lected during a gradiometry survey. For a survey over a 300000 km 

area with 1 and 5 km along and across-track spacings, respectively 

about 216 000 measurements have to be processed. This large amount of 

data makes it impossible to apply space domain least-squares col-

location for the estimation of the first-order gradients from second-
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order gradient measurements. At present, three methods have been 

proposed for this estimation. The first one is a modification of 

least-squares collocation in the space domain similar to that employed 

by Schwarz ( 1977). The whole area is subdivided into different sets 

of data points, called templates. The gradient measurements are 

averaged over one template and least-squares collocation is employed. 

Then, this template is shifted from region to region so that finally 

the whole area is covered. This method is called the template method 

(White and Goldstein, 1984) and has been successfully tested with 

simulated gradient data. The second method is a hybrid method which 

combines least-squares collocation in the space domain and Wiener 

filtering in the frequency domain. Least-squares collocation deals 

with the low frequency part of the gradient signal while Wiener 

filtering takes care of the high frequency part of the spectrum 

(Hutcheson and Grierson, 1985). The third method employs Wiener 

filtering in the frequency domain and uses tie astrogeodetic points to 

estimate the low-frequency part of the local anomalous gravity field 

(Jekeli, 1985). 

The objective of this research is to present an alternative 

method to the problem of processing large amounts of airborne gravity 

gradient measurements which incorporates gradient combination and 

computational efficiency and furthermore takes the gradiometer 

noise into account. The method is based on the application of 

multiple input-single output filtering equations, using as inputs the 

'linearly correlated second-order gravity gradients and as output the 

first-order gradients. In this way, each first-order gradient ( e.g. 

T) is estimated from a combination of its gradients ( e.g. Tyz 
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T zz ) in the frequency domain. The frequency domain formulas for plane 

integration lead to some new integral formulas in the space domain, 

relating for example T and T, Ty' T. The method uses all the 

gradient measurements at once for the whole area. To make the method 

computationally efficient, the Fast Fourier Transform ( FFT) is employ-

ed. It requires the data points to be on a regular two-dimensional 

grid and assumes flat earth approximation. Due to the lack of actual 

gradiometer data, simulated data were used. 

The thesis has been subdivided into four main parts. In the 

first part, i.e. Chapters 2 and 3, background information on the 

gradiometer sensor hardware is given and the Fourier transform, as well 

as the multiple input-single output filtering equations are reviewed. 

The second part, namely Chapter 4, deals with the application of the 

multiple input-single output filtering equations to the estimation of 

the first-order gradients from the second-order gradients. The 

simulation of the airborne gradient data is discussed in the third 

part, consisting of Chapter 5. In the last part of the thesis, 

contained in Chapters 6, 7, 8, the theoretical formulation is 

implemented, results are analyzed, the conclusions are drawn and open 

questions discussed. 



Chapter 2 

GRAVITY GRADIOMETER SYSTEMS  

2.1 THE BASIC HARDWARE CONFIGURATION OF THE BELL GRADIOMETER  

The Gravity Gradiometer Survey System ( GGSS) is scheduled to be 

used for airborne gravity gradiometry at the end of 1986 or the 

beginning df 1987. The system concept will be described in this 

section. First the basic sensor hardware is presented and then the 

mechanization equations are analyzed. The GGSS consists of three Bell 

rotating accelerometer gradiometers. These gradiometers are mounted 

on an inertially stabilized platform. The system will be integrated 

with the Global Positioning System ( GPS) updating the position 

obtained from the inertial system at regular intervals. 

Each of the three gradiometers consists of four accelerometers 

positioned on a rotating platform. The rotation axis is perpendicular 

to -the sensitive axes of the accelerometers. A typical gradiometer is 

shown in Fig. 2.1 where ü denotes the angular velocity and z the 

rotation axis. 

Fig. 2.2 Single Bell Gravity Gradiometer Sensor 

6 
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The gradiometer measurement f is the combination of the specific 

forces sensed by all four accelerometers. In other words 

f = + f2 - f3 - f4 (2.1) 

where f1, f2, f3, f4 are the specific forces sensed by the 

accelerometers 1, 2, 3, 4. For ideal measurements the specific forces 

f(i=l ,2,3,4) can be Written as 

f = g - a (2.2) 

where and a are the gravity component and the acceleration along 

the sensitive axis of the ith accelerometer respectively. The concept 

of gravity, gravity potential and gravity gradients are discussed in 

chapter 4 of this thesis and they are clearly introduced in Heiskanen 

and Moritz ( 1967). The gravity vector Ri at the location i can be. 

described by the sum of the gravity vector at the origin and the 

gravity gradient matrix W. multiplied by the position vector r of 

the point i 

where 

= + 

Wxx Wxy Wxz 

Wxy Wyy Wyz 

Wxz Wyz Wzz , 

Rcoswt 

= -2 Rsinwt 

0 

(2.3) 

(2.4) 

(2.5) 
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= - = 

-Rsjnwt 

Rcoswt 

0 

(2.6) 

where R is the distance between the origin of the cartesian system of 

the platform and each accelerometer. In equations ( 2.3), (2 .4), 

(2.5), ( 2.6) and all the following equations underlined small letters 

denote vectors and underlined capital letters denote matrices. The 

gravity component gi is related to the gravity vector 

following relation ( White, 1980) 

where 

•1 = 2 

13 54 

COSwt 

0 

-coswt 

-sinwt 

0 

Ri by the 

(2.7) 

(2.8) 

(2.9) 

and the superscript t in equation ( 2.7) denotes the transpose of a 

vector. For a space-stable platform the accelerations are mutually 

opposite 

a1 = a2 

a3 = - a4 (2.10) 
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Thus combining equations ( 2. 1), ( 2.2), ( 2.3) and ( 2.10) the measure-

ment f is expressed as 

= i ij 1 + 2 Yij E2 - 3 ij 3 - it —Wij  14 (2.11) 

and making use of equations ( 2.5), ( 2.6), ( 2.8), ( 2.9) and ( 2.10), 

equation ( 2.11) takes the form 

f = 2 - 2 s 3 W ij r 3 1or 

f = yy - W)sin 2ut + 2RW xy cos2wt 

(2.12) 

(2.13) 

Equation ( 2.13) shows clearly that the second-order gradients of the 

gravity potential are modulated at twice the frequency of the platform 

rotation. In case of angular velocity with components Q ' in the x 

and y axes equation ( 2.13) is rewrittei as 

f. =  R(W, - + 2 - Q2)sin2wt + 2R(W xy - x y )COS2O)t• (2.14) 

The quantities (c - c)sin2wt and (_ xy)cos2t are the so called 

centripetal gradients. Besides the gravity and the centripetal 

gradients, a gradiometer also senses self gradients and gradients 

caused by acceleration sensitivity ( Hutcheson and Grierson, 1985). 

Self gradients are caused by masses close to the measuring instrument 

and are part of the total gravitational gradients. They are 

subdivided into two categories. One caused by masses in the outer 

area of the instrument and one in the close proximity of it. The 

self gradients are eliminated analytically by the self-gradient 

function. Most of the gradients caused by acceleration sensitivity 
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contain spectral components at frequency bands centered at multiples 

of the rotation rate (A and are eliminated by calibration. When the 

self-gradient, linear acceleration sensitivity and centripetal 

gradient corrections are made, the remaining signal is demodulated at 

twice the rotation frequency and it is filtered to generate the inline 

output f1 and the cross channel outputs f defined by 

f1 = R(Wyy - W) 

fc = 2RW,y 

(2.15) 

(2.16) 

From equations ( 2.15), ( 2.16) the total gradiometer system output 1, 

after the elimination of the normal gravity field effect, is given 

after changing the signs of the in- line output, by 

- Tyy 
2 

- 

2 

xz 

Tyy - zz 

2 

Tyz 

(2.17) 

where T, denotes the anomalous gravity potential. The vector I is 

related linearly to the gradient vector T ij containing the anomalous 

gradient tensor elements through the matrix N 
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0.5 - 0.5 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 1.0 0.0 0.0 

- 0.5 0.0 0.5 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 1.0 0.0 

0.0 0.5 - 0.5 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 1.0 

or 

(2.18) 

(2.19) 

The actual Bell GGSS system is oriented in an " umbrella" configuration 

(Jekeli, 1984a). Assuming that the gradiometer moves eastward the 

umbrella configuration is obtained by first rotating the local coor-

dinate system x,y,z about the y axis by an angle equal to -arctan / 2. 

The new coordinate system is then rotated about the new z axis by a 

-45° angle. In this way the local coordinate system and the new 

gradiometer coordinate system are related by 

X  

x2 

X3 

= R3(-45°)R2(- arctan 

x 

y 

z 

(2.20) 

where x1, x2, x3 are the coordinates of a point in the gradiometer 

system. For example using equations ( 2.18) and ( 2.20) the final 

relation between the gradient measurement vector 1 and the gradient 

vector Ti, for eastward motion is obtained from 
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1 

or 

0 0 0 

1 1 1 
6 2 3 

1 1 
4 4 

0 

1 
- 7 

1 /2 
2/3 

7-6 
2 

0 

1 1 1 1 1  
- 7 3 3/2 / 6 

1 1 0 1 1 
2/3 

1 0 
3/2 

(2.21) 

(2.22) 

When the gradionieter is moving northward, equation ( 2.21) is modified 

as follows 

0 0 1 

1 1 0 1 1 
•21: 2/3 T 

0 

IT 

1 1 1 1 1 
- 3/2 

1 1 
4 4 

0 

0 1 1 
2/3 

1 1 1 . 1 I 
T T 3/2 
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or l=M1 T. 
- ——ij  (2.24) 

The gradient vector T. cannot be recovered because the matrices M and 

in equations ( 2.18), ( 2.21) and ( 2.23) are singular. For 

reasons of simplicity only the recovery of T ij from equation ( 2.18) is 

analyzed. The vector T. has a triad of gradients, namely 

linearly related via Laplace's equation 

T + T + T = 0. 
xx yy zz 

(2.25) 

Eliminating the element T ZZ from the vector T., substituting ( 2.25) 

into ( 2.17), ( 2.18), the following relation holds 

or 

1R 

= 1R 13R 

T xx -  Tyy 

2 

T 
xy 

2T + T 
xx yy 
2 

xz 

T + 2T 
xx yy 
2 

YZ 

0.5 - 0.5 0 0 0 

0 0 1 0 0 

1 - 0.5 0 0 0 

0 0 0 1 0 

0.5 1 0 0 0 

0 0 0 0 1 

(2.26) 

yy 

Txy ( 2.27) 

Tyzj . 

The matrix MR is still singular but it now has a full column rank. 

Thus a unique vector T. . can be computed from the simple least-

squares solution 
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lij = ( R)T' 
R —O 

The full vector T. is then given by the equation 

Iij = 
'3R 

-(T + T ) 
xx yy 

(2.28) 

(2.29) 

2.2 THE BELL GRADIOMETER NOISE 

The gradiometer system noise model is derived from spectral 

analysis of data from the Bell gradiometer. The data were analyzed 

using Fast Fourier Transform ( FF1) techniques and least-squares 

autoregressive model fitting (White, 1980). Thus the noise models are 

presented in terms of power spectral densities defined by 

Sgg(u) 7 e'rut  Rgg (t) dt 
00 

(2.30) 

where S 9  is the power spectral density ( PSD) of the function g(t), u 

is the frequency ( in cycles/sec), R 9  is the autocorrelation function 

of g(t) and ,j is the square root of - 1. 

Results from the spectral analysis of the gradient data showed 

that the PSD of the noise , is characterized by a low frequency " red" 

noise and a high frequency white noise. The " red" noise is decaying 

as u 2, thus the noise PSD can be written as follows 

Snn (u) - 

+ w (2.3,1) 

where n denotes the gradiometer noise, R is the red noise constant and 

W is the white noise constant. The break frequency between the red 
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and the white noise is between 0.1 mHz and 2 mHz. The constants R,W 

have been determined for the gradiometer spin axis in vertical 

position and in horizontal position and are shown in the following 

table (White, 1980). 

Table 2.1 

Red and white noise constants ( in E2/Hz) 

Red noise White noise 

Spin axis 
vertical 

Spin axis 
horizontal 

Spin axis 
vertical 

Spin axis 
horizontal 

2.0x10 6 16.0x10 6 81.0 86.0 

Thegradiometer noise PSD is shown in Fig. 2.2 

NOISE 
PSD 
Snn 

RED NOISE 

WHITE NOISE 

Ubr frequency u 

Fig. 2.2 Gradiornter noise PSD(Ubr denotes break frequency) 
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Since 1980, the gradiometer noise model has been improved so 

that the rms noise is 1 Eotvos using a 10 second moving window 

averager. 

2.3 THE SUPERCONDUCTING GRAVITY GRADIOMETER 

The recent developments in cryogenic technology and superconduc-

tivity have led to the design of gravity gradiometers with much higher 

sensitivity than room temperature gradiometers as e.g. the Bell 

gradiometer. The much improved sensitivity , in a cryogenic gravity 

gradiometer is demonstrated mathematically by the equation of the 

minimum detectable gravity gradient signal W. ( Pal-k, 1979) 

W KT + KBTN 

ii M1 2 Q Ws 
(2.32) 

where M, w0, Q, T0, 1 1, ws s a , TN , Af are the mass, resonance 

frequency, quality factor, operational temperature, baseline of the 

proof masses, signal frequency, transducer coupling coefficient, 

amplifier noise temperature and detection bandwidth. The resonance 

frequency c' is considered as much higher than the signal frequency. 

To reduce the level of the minimum detectable gravity gradient signal 

the two terms inside the parenthesis of eqn. ( 2.32) have to be 

minimized. This is achieved by having high quality factors Q as well 

as very low amplifier noise temperatures TN. For the operational 

temperature T of liquid helium ( 4.2° K), quality factors of certain 

metals can be as high as io8. At the same temperature T0 some 

amplifiers have very low noise temperatures TN. Under liquid helium 

temperature the overall reduction in noise is three to four orders of 
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magnitude smaller than that of a device operating under room 

temperature ( Paik, 1981). Operating a gravity gradiometer in low 

temperatures provides an environment almost free of thermal gradients. 

On the other hand superconductivity provides a very good magnetic 

shielding. 

A superconducting gravity gradiometer can either be built in the 

form of an in- line component gradiometer, or in the form of a cross 

component gradiometer. Both of these types bf gradiometers are 

non-rotating instruments. A single axis in- line component gradiometer 

senses the gravity gradient T ii along the sensitive axis i and the 

common mode forces g. A cross-component gradiometer with its super 

conducting circuit and its sensitive axis j perpendicular to the 

sensitive axis i, provides the gravity gradient W. and the common 

mode angular acceleration ak. A single in- line superconducting 

gradiometer is shown in Fig. 2.3. 

I COMMON 
2 G ACCELERATION 

-'y'rry-----

Fig. 2.3 Diagram of an in-line gravity gradiometer. 
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The superconducting in- line gradiometer consists of two 

superconducting proof masses allowed to move along a common axis. 

Each proof mass is surrounded by a pair of superconducting coils 

connected to form a loop on which a current I or 12 is stored, 

respectively. Due to the superconductivity of this loop, magnetic 

flux is coupled with the displacement of the proof masses. The 

magnetic signals thus generated are proportional to the gravity 

gradient T ii and to the common mode acceleration g1, and are detected 

by two SQUID (Superconducting Quantum Interference Device) amplifiers, 

shown in Fig. 2.3 by circleswith crosses. Assuming that the 

sensitive axes of the two proof masses are properly aligned, the 

common mode accelerations can be balanced by controlling the ratio 

11/12 of the two currents stored in the two sensing loops. The same 

operation principle holds for a cross-component gradiometer, in which 

the common mode angular accelerations are balanced by properly 

controlling the ratio of the currents stored in each pair of super-

conducting loops. The common mode balance of both linear and angular 

accelerations coupled with the high stability of persistent currents 

in a superconducting loop provides a low-drift gradiometer with stable 

scale factors. The linear and angular accelerations of the gradiometer 

platform are monitored by a superconducting accelerometer ( Paik, 

1976). The high sensitivity of the superconducting accelero- meters 

to translational and rotational motions of the platform in the order 

of 4x1O 12ms 2Hz and 3x1O 11rads 2Hz, respectively, opens the way 

for using an integrated superconducting gradiometer-accelerometer 

system as an inertial navigation system as well. 
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At present, a superconducting gradiometer measuring three 

in- line components of the gradient tensor, has been developed at the 

University of Maryland by Paik. This gradiometer has been chosen by 

NASA to be used for 'satellite gradiometry in the early. 90's. The 

design of the superconducting gradiometer is for a noise of less than 

O.O7EHz. The noise level currently achievable is definitely much 

higher than this design noise level. For lower frequencies, between 

0.01 Hz and 0.03 Hz, the noise level is about 10-50 EHz. For the. 

rest of the spectrum the noise is at the level of 0.7 to 0.3 E.Hz _1 2 

(Paik, 1985). It is expected that in a few years however the goal for 

the noise level will be reached. 



Chapter 3 

THE FOURIER TRANSFORM, INPUT-OUTPUT FILTERING EQUATIONS 

3.1 THE FOURIER TRANSFORM 

3.1.1 The Continuous and the Discrete Fourier Transforms  

In this section and throughout the following sections 

two-dimensional problems are analyzed, therefore only two-dimensional 

Fourier transforms will be discussed. Since many textbooks exist in 

which Fourier transforms are treated in detail ( Brigham, 1974; 

Bracewell, 1978; Bloomfield, 1975), only a review of the Fourier 

transform will be given in this section. 

The continuous two-dimensional Fourier transform is defined 

(Bracewell, 1978) as 

co co 
• G(u,v) = F{g(x,y)} = f f g(x,y) e'2+ dxdy 

- - 

(3.1) 

where G(u,v) is the Fourier transform of g(x,y), F denotes Fourier 

transform, u and v are the spatial frequencies in ' cycles per distance 

(or time) unit and j is the imaginary unit. The continuous inverse 

two-dimensional Fourier transform is given by 

00 co 

g(x,y) = F 1 {G(u,v)} = f 1 G(u,v) e32+ dudv 
- _o 

(3.2) 

where F 1 is the inverse Fourier transform symbol. The autocorrela-

tion function Rgg (x,y) of a function g(x,y) is defined by 

2.0 



21 

T1 T2 

R (x,y) = urn 1 f g(x gg T1 °° T1T2 T T2 0,y0)g(x+x0,y+y0)dx0dy0 

----T2-).°° 

(3.3) 

where T1, T2 are the record lengths in the x and y directions 

respectively. For a stationary signal g(x,y) the autocovariance 

function Cgg (x,y) is the same as the autocorrelation function Rgg (XY) 

except for the fact that the mean is subtracted from the data 

Cgg (x,y) = Rgg (x,y) - Pg2 (3.4) 

where Pg is the mean of the stationary , signal g(x,y). The 

two-dimensional continuous power spectral density function Sgg (XY) is 

defined as the Fourier transform of the autbcorrelation function 

00 

Sgg (x,y) = - 00 _2 Rgg (XY) dxdy (3.5) 

Cross-correlation, cross-covariance and cross-power spectral density 

functions are defined in an analogous way as correlation, covariance 

and power spectral density functions. 

The functions given in real-world applications are discrete 

function values at a finite number of points. If the data are sampled 

at equidistant points, then the Discrete Fourier Transform ( DFT) is 

used. The DFT of a function g(x,y) sampled at MN points on a regular 

{x,y} grid is given by 
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G(niu,nv 
M-1 N-i 

= xy g(k x,ly) e 2 mu (3.6) 
k=0 1=0 

where AX, Ay are the space intervals in the x, y directions of the 

grid, kx, ly are the wavelengths in the x, y directions, AU, AV are 

the frequency intervals in the x,y directions, defined by AU = 

AV = i/T2 T1, T2 are the record lengths in the x,y directions defined 

as T1 = MAX, T2 = Ny. Substituting the expressions for u, 

T2 in equation ( 3.6), the discrete Fourier transform of the function 

g(x,y) is given by 

mk n 
T T M-1 N-i -J2w(W- + 2  

G(mu,nv) = k0 lO g.(kx,ly)e (3.7) 

and similarly the inverse discrete Fourier transform is defined as 

1 1 M-1 N-i j'2( + 

g(kx,ly) = Tj ' G(mAu,nv)e 
m=0 n=0 

(3.8) 

Using only k,l and m,n instead of wavelengths kx, ly and frequencies 

mu, nv respectively, equations ( 3.7), ( 3.8) take the form 

T1 T2 M-i N-i i  nl mk + 

G(m,n) = Fg(k,l wT k0 lO g(k,l )e  
(3.9) 
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M-i N-i j 2,, (mk 
g(k,l) = F 1{G(m,n)} = G(m,n)e M (3.10) 

Ti 12 m=0 n=0 

An unbiased estimate of the discrete power spectral density for v 

sample records is obtained from the formula 

1  
G (m,n)G(m,n) gg(mn) = vT1T2 T (3.11) 

where G is the discrete spectrum of the function g(x,y) and G* is the 

complex conjugate of G. The discrete autocorrelation and autocovari-

ance functions R99 (k,l) and C99 (k,l) are defined as the inverse 

discrete Fourier transforms of the discrete power spectral density 

function 

Rgg (kl) = Cgg (kl) + 112 = F'{sgg (mn)} (3.12) 

3.1.2 The Properties of the Discrete Fourier Transform 

The properties of the Fourier transform are derived in a number 

of text books ( Papoulis, 1968; Bracewell, 1978). Here only the 

properties necessary for this research are listed. 

mk •nl 

i) Space shifting g(k-k0,l-1 0) <F> G(m,n) + 

ii) Time scaling g(ak,bl) < F _' 1 m  labi 

(3.13) 

(3.14) 

iii) Space domain convolution g1(k,l)*g2(k,l)G 1(m,n)G2(m,n) 

(3.15) 
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iv) Partial differentiation ag(kl) +fj2 mG(m,fl) (3.16) 
ak 

ag(k,l)  
a1 E-. F J •2rnG(m,n) (3.17) 

a2 g(k,l) + a2g(k,l) < F> 4 2(m2+n2)G(mn) (3.18) 
ak2 

v) Multiplication by wavelength kg(k,l)<F>j aG(m,n) (3.19) 
am 

lg(k,l) J 4Ef 9G(m,n)  
an 

klg(k,l)+!.._ a2G(m,n)  
aman 

T1 T2 M-1 ' N-i 
g(k,l) = T1T2Pg vi) dc value G(O,0) = k=0 1=0 

For an isotropic function g(k,l) we also have 

g(k,l) = g( /k2 + 12) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

In this case the two-dimensional Fourier transform equals the Hankel 

transform 

G(m,n) = ( /m2 + n 2 ) (3.24) 

where the Hankel transform of an isotropic function g(r) is defined by 
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g(r) (w) = f r g(r) J0(wr) dr (3.25) 

where the symbol h denotes Hankel transform, and the function J0(x) is 

the unmodified zero-order Bessel function. 

3.1.3 Spectral Leakage and Aliasing Effects  

The discrete Fourier transform is periodic in both domains, the 

space and the frequency domain. This implies that the finite data 

sets on which the DFT is applied should bestrict1y speaking periodic. 

In practice though, it is rather rare to deal with data sets periodic 

over their record length. Most of the time the data sets are not 

periodic, and furthermore they are discontinuous at the edges of the 

record length. When these non-periodic discontinuous sets of data are 

transformed in the •frequency domain, through the DFT, the components 

with frequencies other than those spanning the discrete gampled 

spectrum contribute to those thasis° frequencies. This is the problem 

of spectral leakge ( Brigham, 1974). To reduce the spectral leakage 

effects, smooth windows eliminating discontinuities at the edges of 

the record length are used to multiply the data. These windows have 

zero values at the edges. By multiplying a set of data by a window, a 

spectral component of any frequency is projected only on those basis 

frequencies which are very close to this component frequency. Two 

windows are used in this research, the Kaiser-Bessel window and the 

cosine taper rectangular window. The one-dimensional Kaiser-Bessel 

window has a flat part for the ( 1-b) portion of its record length and 

a (b/2) part expressed in terms of the zero-order modified Bessel 

function at each edge of the record length. It can be expressed by 
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w(l) 

•Iü(irc[1_(—& ] 2) 

I0(itc) 
for 0lb 

1.0 , for Ml [1 

2(M-l)  
- M )2]) 

I0(ira) 

M 
2 

b 
2 ]M ( 3.26) 

for [ 1- b 2 ]M 5 1 M-1 

where I0(x) is the zero-order modified Bessel function of the first 

kind, and the argument c is equal to 3.0. The one-dimensional cosine 

taper window has a flat part for the ( 1-b) part of the record length 

and a (b/) cosine lobe part at each edge of the record length. It is 

expressed by 

2 7r 
0.5(1.0 - cos[S.—]) 

1.0 

for0 1 M 

for M 6 1 6 [1 - ]M 

2 ir(M-1)  
0.5(1.0 - cos[ M , for [ 1 - IM 1 M-1 

For two dimensional problems the gridded data are first windowed row 

by row and then column by column using a; 1-D window or vice versa. 

When a window is applied to a data set, there is clearly a loss of 

power.. This lost power in the data set can be accounted for by 

applying a correction factor 

CF 
M-1 N-i 

k0 l0 w2(k,l) (3.27) 
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where M, N is the number of points in the two dimensions and w(k,l) is 

the window. More details on specific windows and their spectral 

characteristics can be found in Harris ( 1978). 

As was mentioned in section 3.1.1, the data sets encountered in 

actual applications consist of a number of discrete regularly spaced 

points. These points can be considered as the sample values of a 

continuous function. The sampling theorem states under which 

conditions the original function can be reconstructed from its sampled 

values. A continuous function g(x) can be uniquely reconstructed from 

a set of known sample values g(x) if the Fourier transform of g(x), 

G(u), is zero for all frequencies higher than uN. The frequency UN is 

called the Nyquist frequency. The quantity Ax 

(3.28) 

is called the Nyquist sampling rate and it is the maximum sampling 

rate allowable to represent the original function. In case of a 

larger sampling rate, the spectrum of this function is distorted. 

This distortion of the spectrum is called aliasing. Details on 

aliasing, its effects and how to minimize aliasing are given in Bendat 

and Piersol ( 1971) and Brigham ( 1974). 

3.1.4 The Fast Fourier Transform ( FFT)  

The Fast Fourier Transform is an ingenious way to compute the 

Discrete Fourier Transform ( DFT) of a data set. It computes the DFT 
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of a data set using complex operations proportional to MlogM. The 

normal DFT requires complex operations proportional to M2. The Fast 

Fourier Transform was originally developed by Cooley and Tukey ( 1965). 

Since then it has made the spectral analysis much more efficient. 

Furthermore it has contributed to the solution of a broad range of 

problems which previously were considered almost intractable. In 

geodesy fo.r example the use of FFT has facilitated the computation of 

global geoidal undulations and gravity anomalies (Colombo, 1981), the 

use of gravity data for geophysical inversion problems ( Forsberg, 

1984a), the computation gravity anomaly covariance functions 

(Vassiliou and Schwarz, 1985), etc. Standard routines exist for 

computing the FFT of a given data set. The International Mathematical 

and Statistical Library ( IMSL) and the geophysics software package 

MAGEV contain such routines. For the purpose of this research, the 

FFT subroutines from IMSL were used. 

3.1.5 Interpolation Using the Fast Fourier Transform 

A signal sampled at equidistant points can be interpolated using 

the Fourier transform. For simplicity; this sectioh deals with 

one-dimensional signals only. Suppose that the given signal h(kx), 

where tx is the sampling interval, has to be interpolated in such a 

way that the new sampling interval is L times smaller than the initial 

one 

= AX (3.29) 

where L is a positive integer and x1 is the new sampling interval. 

The meaning of this interpolation is that L-1 sample values are 
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estimated between a pair of sample values of the original signal. To 

get the interpolation procedure going, L-1 zeros are filled in between 

each pair of samples of the signal h(k), thus resulting in the new 

signal g(l) expressed as 

h(l/L) for 1 = 0, ± L, ± 2L,... 

g(l) = (3.30) 

' 0 elsewhere 

The new signal g(l) has the following spectrum, see eqn. ( 3.14) 

G(m) = H(mL) (3.31) 

where G,H are the Fourier transforms of the input signals g,h respec-

tively; and m is the wavenumber in the frequency domain. The previous 

equation entails that the spectrum G has a period equal L times the 

period of the spectrum H. Therefore this spectrum has besides the 

band frequencies in the interval (- i/L, i/L ), which are of interest, 

the same frequency band centered at the frequencies ± -9 , ± etc. 

Those frequencies are not wanted, and therefore, have to be filtered 

out by a low-pass filter which ideally would be expressed as 

E, (m) = 

for frequencies 

elsewhere 

L = = L 

(3.32) 
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where E1 is the frequency response of the filter e1(l) and C is a 

constant which remains to be determined. The -signal g1(l) resulting 

from the filtering of the signal h(l) with the filter el(l), has a 

Fourier transform G1 

,- CH(mL) for frequencies - i/L v ilL 

G1(m) = -< (3.33) 

elsewhere 

The constant C can be determined by matching the zero samples of the 

signals h(l) and g1(l), h(0) and g1(0) respectively. The sample g1(0) 

is expressed 

1 L 
91(0) = f G1(v)dv = f E ( v)H(vL)dv 

-1 -L 1 

91(0) 

or. 

L 1 
C f H(vL)dv = C f H(v)dv/L , or 
1 -1 
L 

91(0) = C h(0) 

(3.34) 

Hence, in order to match the amplitudes of the interpolated and 

original signals g1(l) and h(l) respectively, the constant C has to be 

equal to. L. More details about interpolation and decimation of a 

signal using digital filters can be found in Schafer and Rabiner 

(1973), and a tutorial . review in Crochiere and Rabiner ( 1981). 
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3.2 INPUT-OUTPUT FILTERING EQUATIONS 

The problem of estimating the first-order from the second-order 

gradients of the anomalous potential can be considered as a filtering 

problem. In this filtering process each first-order gradient is the 

output of one or at most five second-order gradients. Therefore the 

present estimation problem can be thought of as a multiple ( single) 

input-single output filtering problem. This filtering is discussed in 

the next two sections. First the single input-single output filtering 

problem is discussed and then the multiple input-single output 

filtering is presented. All these filtering problems are formulated 

in the frequency domain. An alternative method in the space domain 

which can handle this estimation problem is least-squares collocation 

(Krarup, 1969; Moritz, 1980). However as it has already been 

mentioned in chapter 1, the application of least-squares collocation 

to very large data sets is practically impossible. Also application 

of - frequency-domain collocation for very large data sets is not 

advisable. A better way of solving the estimation problem posed in 

this thesis is by employing a multidimensional Wiener filter. The 

relations among multiple input-single output, multidimensional Wiener 

filter and least-squares collocation in the space domain are presented 

in section 3.3. 

3.2.1 Single Input - Single Output Filtering Equations  

Suppose that a continuous stationary signal described by a 

function f(x,y) is filtered by the filter function h(x,y), thus 

producing an output signal described by the function g(x,y). This can 

be mathematically described by the equation 
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_L L h(x0,y0) f(x-x0,y-.y0) dx0dy0 (3.35) 

where (x0,y0) are the points at which the signal h(x,y) takes non zero 

values. From equation ( 3.35), the autocorrelation function of the 

signal g(x,y) as well as the cross-correlation function of the signals 

f(x,y), g(x,y) are derived. 

Rgg (XY)= .1  .2 
CO CO 

Rf,g(X '=:' j 

h ( x1,y 1)h (x2)y2)Rff (x+x 1-x2,y+y1-y2)dx 1dx2dy 1dy2 

h(x 1 y1)Rff (x-x1 y-y1)dx 1dy1 

(3.36) 

(3.37) 

Taking the Fourier transforms of both sides of equations ( 3.36) and 

(3.37) leads to 

sgg (uv) = IH(u,v)I2 Sff (u,v) 

Sf g (UV) = H(u,v) Sff (u,v) 

(3.38) 

(3.39) 

where H(u,v) is the Fourier transform of the filter function h(x,y) 

and is called frequency response function or transfer function., 

Equations ( 3.38), ( 3.39) are the well-known input/output filtering 

equations, for an ideal linear system ( Bendat and Piersol, 1980). The 

filtering equation ( 3.35) can be readily transformed in the frequency 

'domain using property ( 3.15) of the Fourier transform 

G(u,v) = H(u,v) F(u,v) (3.40) 



33 

where G(u,v), F(u,v) are the Fourier transforms of the functions 

f(x,y), g(x,y). The coherence function between the functions f(x,y), 

g(x,y) is defined as 

i ,g (uv) -  Sf9 (u,v)1 2 
Sff(uv)Sgg (uv) (3.41) 

The coherence function takes values in the range (0,1). A coherence 

function equal to unity means that the input-output signals are 

linearly related. In case of a coherence function not equal to unity, 

there is either a non-linear relation between input and output, or 

there exists another input or noise. In this last case assuming 

uncorrelated input signal f(x,y) and noise n(x,y), equations ( 3.38) 

and ( 3.39) are modified as follows 

Sgg(UV) = IH(u,v)I2{Sff(u ,v) + Snn (u ,v)} (3.42) 

Sf,g (uv) = H(u,v)Sff (u,v) + Snn ( u,v) (3.43) 

where Snn(uv) is the power spectral density of the noise. Equations 

(3.38), ( 3.39) ( 3.42) and ( 3.43) are used in this research for system 

identification, which means that given the PSD's of the input and 

output signals, the frequency response function can be readily 

computed. Then the use of the inverse Fourier transform provides 

directly the impulse response function in the space domain. 
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3.2.2 Multiple Input-Single Output Filtering Equations  

A number of q stationary signals f(x,y) ( i=1,2, ... , q) are 

filtered through q linear systems with frequency response functions 

H(u,v), so that they produce a single output g(x;y). For the sake of 

simplicity, it is assumed that q=2,'. in other words two inputs f(x'y) 

(i=1,2), produce a single output g(x,y). This is illustrated in 

Fig. 3.1. 

M(u,v) 

f 

H2(u,v 

Fig. 3.1 Two input-sing7e output system 

In Fig. 3.1 above, the spectrum of the output signal equals the sum of 

the spectra of the filtered input signals ( ideal linear system). Any 

deviations from the ideal linear system are modelled by the system 

errors m(x,y) the spectrum of which M(u,v)is shown in this figure. 
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In most cases M(u,v) represents the spectrum of small high 

frequency effects from other possible inputs. For simplicity it is 

noted in Fig. 3.1 as additive effect to the sum of the filtered inputs 

. The perturbed two input-single output system is described by 

the equation 

G(u,v) = H1(u,v)F1(u,v) + H2(u,v)F2(u,v) + M(u,v) ( 3.44) 

where F1(u,v), F2(u,v), G(u,v) are the spectra of the signals f1(x,y), 

f2(x,y) and g(x,y) respectively. From equatfon ( 3.44) it is easy to 

derive the power spectral density of the output g(x,y), as well as the 

cross-spectral densities of g(x,y) with each of the inputs 

Sgg (uv) 
2 2 

i=1 j=1 
r(uv)H(uv)Sf . (u,v) + S (u,v) mm 

3.45) 

2 
sf,g(uv)_ + Sfim(u,v) i=1,2 . (3.46) 

j=1 

The optimum double input-single output system is the one which 

minimizes the PSD of the system errors m(x,y) for all possible choices 

of the transfer functions H (Bendat and Piersol, 1980). From 

equation ( 3.45) the PSD of m(x,y) equals 

22 
Smm(u,v) = Sgg (UV) . (3.47) 

1=1 j=1 

According to the previously stated criterion of optimality the 

following conditions should be fulfilled 
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aS(U , v) 
0 i=1,2 

Using equation ( 3.47), equation ( 3.48) can be rewritten 

2 
Sf. g(UV) - H(UV)Sf u,v) = 0 , or 

2 
Sf 9 (U,v) = I H (u j=1 V)Sff (u,v) 

(3.48) 

i=1,2 . (3.49) 

Equation ( 3.49) is similar to equation ( 3.46), except for the fact 

that the cross-spectral density between each input and the system 

error m(x,y) is zero. This in turn implies that the optimum system 

requires that each input be uncorrelated with the system error 

function. The optimum frequency response functions for the double 

input-single output system areobtained from the solution of the two 

-linear equations ( 3.49) which can be written analytically 

Sf,g (uv) = H1(uv)Sf19 f (uv) + H2(uv)Sf 1' . 2 (u,v) (3.50a) 

Sf2 29 (u,v)  = H1(uv)Sf 2' .. 1 ( u,v) + H2(uv)Sf 2' 2 ( u,v) . (3.50b) 

The solution to the system of linear equations ( 3.50a), ( 3.50b) is 

given ( Bendat and Piersol, 1980) by 

H, (u,v) 

Sf 2' f 2 ( uv)Sf g(uv) Sfl, f 2 ( uv)Sfg(uv) 

Sf 1' f 1 (u,v)Sf 2' 2 ( u,v) - Sf 1' 2 f (u,v)I2 
(3.51a) 
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Sf 1' . 1 (uv)Sf g(Uv) - Sf 2' . 1 (UV)Sf (u,v) 
H2(u,v) = 

Sf151  f 1 (u,v)Sf 2' 2 ( u,V) - 1Sf 1' f 2 (u,v)I2 
(3.51b) 

A very interesting case occurs when the input signals f1(x,y), 

f2(x,y) are linearly related. In this case the formulas ( 3.51a), 

(3.51b) can not be applied simply because, due to the linear relation, 

the coherence function becomes unity. This means that the denominator 

of both equations ( 3.51a) and ( 3.51b) is zero. In this case the, 

optimum transfer functions H(u ,v) ( i=1,2) can be derived in an easy 

way analytically by observing that due to the linearity of the input 

signals the following relations hold 

H2(uv)Sf1,f2 (uv) = H1(uV)Sf2,f2 (uv) (3.52a) 

H1(uv)S 2' 1 ( u,v) = H2(u,v)Sf1' f 1 ( u,v) . (3.52b) 

Substitution of equations ( 3.52a) and ( 3.52b) into equations ( 3.50a), 

(3.50b) yields the solution for the transfer functions H1(u,v), 

H2(u,v) for the case of linearly dependent inputs 

Sf1,g (UV) 

H1(u,v) - Sf f ( u,v) + Sf f ( u,v) 
1' 1 2' 2 

Sf ,g (u,v) 

H2(u,v) - S (u,v) + Sf f ( u,v) 
1' 1 2' 2 

(3.53a) 

(3.53b) 

Assuming that the same measurement noise ( x,y) affects both input 

signals f1(x,y), f2(x,y), equations ( 3.53a), ( 3.53b) take the form 
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H1(u,v) - 

Sf 1 29  (u,v) 

Sf 1' 1 f ( u,v) + Sf 2' f 2 ( u,v) + S (u,v) 

Sf2 g (UV) 

I-I2(u,v) - 

1' (u,v) + S  1 2' f 2 (u,v) + S ( u,v) 

(3.54a) 

(3.54b) 

where Snn(u,v) is the PSD of the noise. Equations ( 3.51a), ( 3.51b), 

(3.53a), ( 3.53b), ( 3.54a), ( 3.54b) can be easily extended to the 

multidimensional case when more than two input signals exist. More 

details on multiple/single output problems can be found in Bendat and 

Piersol ( 1980). The multiple input-single output filtering equations 

were used extensively in this research. The second-order gradients 

of the anomalous gravity potential are used as input signals, 

individual single first-order gradient as output. Due to the linear 

relations among the second-order gradients, equations ( 3.53a), 

(3.53b), ( 3.54a), ( 3.54b) are particularly useful as will be shown in 

chapters 4 and 7. 

3.3 WIENER FILTERS, LEAST-SQUARES COLLOCATION AND MULTIPLE INPUT-

SINGLE OUTPUT FILTERS  

Recently, Jekeli ( 1985) derived a relation between the second-

order gradients and the first-order gradients based on multidimensio-

nal Wiener filtering. The derivation of this relation emanates from 

least-squares collocation and multiple input-single output filtering. 

The following discussion goes along similar lines to the derivation of 

the Wiener filter equations discussed in Jekeli ( 1984a, 1985). 
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Suppose a vector of p1 continuous stationary measurements of 

field-related quantities U1 collected at each point (x,y) of the 

infinite plane is given. Those measurements are corrupted by 

stationary noise n(x,y) uncorrelated to u1 

!(x,y) = u1(x,y) + n(x,y) . (3.55) 

Assume thatanother vector of field-related quantities u2(x,y) with p2 

elements jointly stationary with u1(x,y) has to be estimated. The 

Wiener filter estimates u from u in the sense that provides the 

linear minimum variance estimator u2. A linear estimator of u2 in 

terms' of u1 is an integral estimator of the form,, 

= CO 7 K[(x0,y0),(x,y)] u1(x,y)dx 1dy1 (3.56) 

where K[(x0,y0),(x,y)] is a p1xp2 matrix of (x0,y0) and ( x,y) which 

remains to be determined. Due to the joint stationarity of u1(x,y), 

2(x,y) the matrix K possesses the following property 

K[(x0+x 1,y0+y 1), ( x+x 1,y+y1)] = K[(x0,y0), ( x,y)] . (3.57) 

Combining equations ( 3.56) and ( 3.57) leads to 

2(x0,y0) = .2  .1 K(x0-x,y0-y) u1(x,y)dx 1dy1 . (3.58) 

A minimum variance estimate is obtained by determining the matrix K in 

such a way that the variance of the ith residual in the estimate 

is minimum. This can be mathematically expressed by 
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var{u2 (x0,y0)-u 2 (x0,y0)} = var{ou2 (x0,y0)} = minimum. ( 3.59). 

If the random quantities u(x,y) ( i=1,2,3,...,p 1) generate a Hubert 

space H.1, then obviously the elements of the estimator 2(x0,y0) 

belong to that space as well. From the well known projection theorem 

of Hilbert spaces, it follows that the residual of the ith element of 

the estimator u2(x0,y0) must be orthogonal to each element of the 

Hilbert space H1, and thus to each element of the measurement vector 1 

E{[u2(xo,yo)_u2(?O,yQ)Jik(x,y)} = 0 (3.60) 

where E denotes the expectation operator. The element u2 (x0,y0) is 
1 

expressed by formula ( 3.58) 

CO CO 

u2(x0y0) = 1, f L L 

Substitution of ( 3.61) into ( 3.60) yields 

Co CO 

-u 2,l = _00 J K(r-r1) R11 (r1) ds 1ds (3.62) 

where R 1 is the cross-correlation matrix of u2 ,l and is the 
U2, 

autocorrelation matrix of 1 and 

r = (x0-x, y0-y) (3.63a) 
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= (x1-x, y1-y) . (3.63b) 

Taking the Fourier transforms of both sides of equation ( 3.62) leads 

to the equation 

1(u,v) = K1(u,v) S11 (u,v) (3.64a) 

where Su is the cross power spectral -density of u2,l, KI(u,v) is 
2' 

the spectrum of the matrix K(x,y) and Sil is the power spectral 

density of 1. Eqn. ( 3.64a) yields the spectrum K1(u,v) 

(u,v) = ,1(u ,y) S(u,v) (3.64b) 

Equatioyi ( 3.64b) states that given the pdwer spectral densities 

ill' s 1the filter matrix K(x,y) can be easily computed from its 

spectrum. Equation ( 3.64b) -can also be derived by transforming in the 

frequency domain the least-squares collocation formula in the two-

dimensional case 

or 

.2,1 (x-x 1 y-y 1) = A(x-xy-y) C11 (x_x 1 y_y1) (3.65a) 

x-xy-y)= C 1(xx1,yy1) Cl -x1 ,yk-y1) (3.65b) 

where C U2, 1 isthe cross-covariance matrix between u2, 1, C11 is the 
- - -- 

autocovariance matrix of the vector 1, and A is the best linear 
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estimator according to least-squares collocation estimation. The 

signals u1, 112 are assumed to be stationary. 

From equations ( 3.64b) and ( 3.65b) the relationship between 

Wiener filtering and least-squares collocation becomes clear. From 

the practical point of view, equation ( 3.64b) offers the advantage 

that for the estimation, of the spectrum K1(u,v), the matrix S11 (u,v) 

with a dimension equal to the number of observations per point has to 

be inverted. In contrast, in least squares collocation the matrix 

C11 with a size equal to the total number of observations- needs to be 

inverted. For example assume that two measurements are made per point 

and that a 2-D grid is established with'65 points in each dimension. 

Then for the estimation of K1(u,v) from ( 3.64b) only a 2x2 matrix 

needs to be inverted for each pair of frequencies u,v, while in the 

least squares collocation formula ( 3.65b), a 16 900 x 16 900 symmetric 

positive definite matrix needs to be inverted. Matrices that large, 

are very difficult to invert even on supercomputers. Typically a 

15 000 x 15 000 symmetric positive definite matrix needs approximately 

6 CPU hours to be inverted on a two - pipeline supercomputer CDC Cyber 

205 ( Hodus, 1985). Least-squares coll,ocation can be employed in both 

the space domain, as is usually the case, as well as in the frequency 

domain ( Eren, 1980). Least-squares collocation in the frequency 

domain converges to Wiener filtering ' for infinite number of noisy 

observations. However for non noisy observations of fully correlated 

inputs, the Wiener filtering equations cannot be used because the 

matrix S 11 in eqn. ( 3.64b) is singular. In this case the multiple 

input- single output filtering equations should be employd. 

It is important to notice that the Wiener . filtering and the 
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multiple input-single output filtering equations are the same. This 

can be seen by inspecting formulas ( 3.50a), ( 3.50b) and ( 3.64b). 

The coefficients of the system of linear equations ( 3.50a), ( 3.50b) 

are the same as the elements of the matrix S11 in equation ( 3.64b). 

Furthermore it can be proved that even in the case of linear relations 

existing among all elements of the vector l, the resulting Wiener 

filtering equations are exactly the same as those from the multiple 

input-single output equations ( 3.54a), ( 3.54b) ( Jekeli, 1985). In 

this special case a matrix of size lxi needs to be inverted for each 

pair ( u,v). This is definitely a very significant computational 

advantage of the multiple input-single output and Wiener filtering 

equations compared to the least-squares collocation formulas. The 

computational efficiency with which the gradient data processing is 

performed in this research, is mainly attributed to this computational 

advantage. 

For geodetic applications a statistical analysis of the 

residuals of the observations is always needed. Depending on the 

estimation method different expressions of the residuals are 

evaluated. For instance, in least-squares collocation the covariance 

matrix of the residuals is computed. In Wiener filtering due to the 

frequency domain formulation of the problem, the PSD of the residuals 

is computed. The derivation of the PSD of the residuals is given in 

the following. The expectation of the residuals 6u is given by 

E{u 2(x0,y0)ou 2t(x0-x ,y0-y)} = E{ [u2(x0,y0)- 2(x0,y0)][u 2(x0-x,y0-y) 

u2(x0-x,y0-y)] t} , or 

E{u 2(x0,y0)u 2t(x0-x,y0-y) } = E{[u2(x0,y0)-u2(x0,y0)]u2t(x0-x,y0-y)} 
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- E{[u2(x0,y0)- 2(x0,y0)][2(x0_x,y0_y)]t} . (3.66) 

The second term on the right hand side of ( 3.66) is zero because the 

residual 6u 2(x0,y0) is orthogonal to each element of the Hilbert 

space H1 and thus to each linear combination of its elements. Hence 

equation ( 3.76) takes the form 

E{6u2(x0,y0)u 2t(x0-x,y0-y)} = E{u 2(x0,y0)u 2t(x0-x,y0-y)} 

t 
- E{u 2(x0,y0)u2 (x0-x,y0-y)} 

The first term on the right hand side of equation ( 3.67) is the 

autocorrelation matrix of u2 

E{u 2(x0,y0)u 2t(x0-x,y0-y)} = R (x,y) 

(3.67) 

(3.68) 

In addition the second term on the right hand side of equation ( 3.67) 

can be explicitly expressed in terms of the cross-correlation matrix 

between u 2J 

E{u 2(x0,y0)4(x0-x,y0-y)} = 1 1 K(x1,y1)R1 ,u_xiy_yi)ii\hi 
(3.69) 

Substitution of equations ( 3.68) and ( 3.69) into ( 3.67) leads to •the 

equation 

E{6u2(x0,y0)S4(x0 x 

00 CO 

- _L _L K(x 10y1)R1 (x-x1 ,y-y1)dx 1,dy1. (3.70) 
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Transforming equation ( 3.70) in the frequency domain yields 

su2,u 2 (u,v) = S (u,v) - K1(u,v) . iu(u,v) (3.71) 

Finally, combining equations ( 3.64b) and ( 3.71) the final expression 

for the PSD of the residuals is obtained from 

—6u 2,ôu 2 u2,u (u,v)- u2,l' S 11(u,v) . (3.72) 
2 

The above PSD for the residuals can be directly obtained from the 

transformation of the residual covariance matrix in the frequency 

domain 

u2,u2O''O 2,2(x0y0)_ k''0'k &l,u2( (3.73) 

Again equations ( 3.72), ( 3.73) demonstrate clearly the relationship 

between least-squares collocation and Wiener filtering in the 

two-dimensional case. Furthermore they show the computational 

superiority of Wiener filtering compared to least-squares collocation. 

Assuming statistical independence between the measurement noise, and 

the estimated vector u2, equation ( 3.72) takes the form 

= S (u,v)- -  .u2 ,u 1 /) 1 u (u,v) 
2 —u2,u2 

+ S n , n(u,v)Y1 
— 

(3.74) 

Thus for the computation of the PSD of the residuals 5u 2, the 

measurement noise is explicitly taken into account via its PSD. This 

equation will be used in the next chapter for the estimation of the 

PSD of the residuals of the estimation of the first-order gradients. 



Chapter 4 

ESTIMATION OF FIRST-ORDER GRADIENTS OF T FROM SECOND-ORDER GRADIENTS 

As an introduction to this chapter the concept of the anomalous 

gravity potential is presented and least-squares collocation as an 

estimation technique for the determination of the anomalous gravity 

potential is briefly discussed. Next the transfer functions between 

the anomalous potential and all of its first and secondorder 

gradients are derived. Then in the ñiain part of this chapter the 

multiple input-single output filtering equations are applied to the 

estimation of the first-order , gradients of I from second-order 

gradients. First the estimation of the vertical first-order gradient 

T Z is presented and then the estimation of the horizontal gradients 

Ty is discussed. 

4.1 THE ANOMALOUS GRAVITY POTENTIAL 

Any point at thesurface of the earth is subjected to a force, 

which is the combined effect of the gravitational force and the 

centrifugal force of the earth's rotation. The total force is called 

gravity and the corresponding potential is called gravity potential 

and is denoted by W. The gravity potential is composed of the 

gravitational and the centrifugal potential V and respectively. 

The surface of the earth is uually approximated by an ellipsoid 

of revolution which is an equipotential surface of a normal gravity 

field of the earth as defined in Heiskanen and Moritz ( 1967). The 

normal gravity potential is denoted by U and the normal gravity by y. 

At each point with rectangular coordinates x,y,z, the anomalous 

46 
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gravity potential T is given as the difference between the actual 

gravity potential W and the normal potential U, both of them evaluated 

at the earth's surface 

T(x,y,z) = W(x,y,z) - U(x,y,z) (4.1) 

The first-order anomalous gravity gradients are defined as 

T aT 
x ax 

T aT 
y ay 

T DT 
z az 

(4.2) 

(4.3) 

(4.4) 

In addition the elements of the second-order anomalous gravity 

gradient tensor are defined by 

92  
Tyy 

Dy 

2 

xy yx axay 

(4.5) 

(4.6) 

(4.7) 

(4.8) 
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T - T -  2 
xz zx ax9z 

= a 2 T 

(4.9) 

(4.10) 

The diagonal elements of the second-order gravity gradient tensor 

satisfy Laplace's equation outside the surface of the earth 

T • T + T = 0 
xx yy zz 

(4.11) 

Usually measurements of the anomalous gravity potential are not 

available and thus it has to be determined from measurements of its 

'fi'rst and second-order gradients. Least-squares collocation is one 

method which estimates the 'anomalous potential from such-measurements, 

by fitting a smooth approximation to the given measurements of the 

linear functionals of T. More explicitly the problem can be foi'mu-

lated as follows. Given are m measurements 1 of linear functionals of 

T, corrupted by noise n 

= L T + i=1,2,... ,m (4.12) 

where the operator L1 describes the linear function operating on the 

potential T. In this research the measured linear functionals are the-

second-order anomalous gravity gradients defined above. Least-squares 

collocation provides the smoothest estimate of the anomalous potential 

based on the available measurements. The estimate of I at point P is 

given by 
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or 

T(P)=[C 1 C2 ... C] 

= sl . 11 .1 

C11 C12 . C1 

C21 C22 . • C 2m 

Cmi Cmm 

-1 

(4.13) 

12 

where ?( P) is the estimated anomalous potential at P, C1  

are the cross covariances between T(P) and the measurements l. forming 

the vector (matrix) &sl' and C ii are the elements of the covariance 

matrix CU equal to the covariances of the measurements 

l, 1(i=l2  ... m). In chapter 3, the multiple input-single output 

filtering equations as well as the Wiener filtering equations were 

analyzed. The necessary condition for the application of those 

filtering equations is that all the participating signals are 

stationary and ergodic. For a 2-D case, the Wiener filter ( or 

multiple input-single output filter) was shown in section 3.3 to be 

the spectrum of the least-squares collocator assuming that the 

stationarity and ergodicity conditions hold. 

Least-squares collocation provides the least-squares 

minimum-error estimate of the anomalous potential and possesses three 

main invariance properties. First, it reproduces the measurements, 

provided that they are errorless. Second, least-squares collocation 

is invariant with respect to any linear transformation of the 

estimated signal. Third, it is also invariant to any linear 
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transformation of the measurements. The statistical approach to 

collocation is widely used although there are some difficulties with 

the ergodicity assumption. Besides the probabilistic point of view 

with which least-squares collocation has been discussed in this 

section, it can be analyzed using Hilbert space theory ( Krarup, 1969; 

Tscherning, 1985). The statistical formulation is used here because 

it is always assumed in applications to gradiometry. 

Least-squares collocation can be used to estimate I or any of 

its linear functional from measurements of other linear functionals of 

T. It thus can ' theoretically be applied to the estimation of the 

first-order gradients T, l,, l from second-order gradients lxx' T. 

Txz T yz Tyy In practice the application of space domain 

collocation to this particular problem is not advisable however due to 

the large amounts of data i., which makes the inversion of the matrix 

ll a major numerical problem. 

4.2 TRANSFER FUNCTIONS BETWEEN THE ANOMALOUS POTENTIAL AND ITS  

GRADIENTS  

Airborne gravity gradiometry •surveys will be conducted over 

areas approximately 300 x 300 km. Without loss of accuracy the area, 

where the survey is to take place, can be approximated by a plane. 

This is the so-called flat earth approximation which indeed simplifies 

the relations between T and its gradients. 

Let the plane have' x, y, z as east, north and vertical ( upward) 

coordinate axes. Then the anomalous potential, and any of its 

functionals, at altitude h is expressed by the equation ( Heiskanen and 

Moritz, 1967) 
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T(x,y,h) = 

T(x 1,y 1,O) 

[(x-x1)2+(y-y1)2+h2]312 dx1dy1 
(4.15) 

The above integral is clearly a convolution integral between the 

anomalous potential at the surface of the earth and a geometrical 

kernel. The convolution is transformed into a multiplication of 

spectra in the frequency domain 

F{T(x,y,h)} = 27r F{T(x,y,O)} F{  X2+)+h2312} (4.16) 

The spectrum of the geometrical kernel appearing on the right hand 

side of equation ( 4.16) is known ( Bracewell, 1978) 

2h .-2rh(u2+v2)112 
F{ 22312} - e (4.17) 

Combining equations ( 4.16) and ( 4.17), the final equation relating the 

spectra of the anomalous potential at altitude zero and at altitude h 

is derived 

F{T(x,y,h)} = 

where q = (u2 + v2)112 

(4.18) 

(4.19) 

Equation (4.18) demonstrates the smoothing effect which the upward 

continuation has on the anomalous potential. It should be noted that 

the same equation as ( 4.18) holds for any gradient of T ( e.g. T, Ty, 

T , Tyy etc.). The inverse operation of the upward continuation 

is the downward continuation expressed by equation 
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F{T(x,y,O)} = F{T(x,y,h)}e2 (4.20) 

The above equation illustrates, clearly the problems related to 

downward continuation. On the one hand, the function I is smoother at 

altitude h than at altitude zero. On the other hand the, high 

frequencies are amplified in the downward continuation which in turn 

implies that the effect of the measurement errors is getting larger. 

More details about downward continuation and generally improperly 

posed problems can be found in Schwarz ( 1979). 

The spectra of the first-oder gradients can be derived from the 

spectrum of the anomalous potential. Those gradients are given as 

partial horizontal and vertical derivatives of the anomalous potential 

T as can be seen from equations ( 4.2), ( 4.3), ( 4.4). Applying 

properties ( 3.16), ( 3.17) of the Fourier transform to equations ( 4.16) 

(4.18) and considering also upward continuation leads to 

F{Tx(XY,h)} = j 2rhq F{T(x,y,0)} 

E{T(x,y,h)} = j22irh F{T(xyO)} 

(4.21) 

(4.22) 

Straightforward differentiation of ( 4.18) with respect to h yields the 

spectrum of the vertical first order gradient 

F{T(x,y,h)} = F{T(x,y,0)} (4.23) 

The spectra of the second-order anomalous gradients are derived from 

the spectrum of the anomalous potential in the same way. The first 

and second-order gradients of I as well ' as their frequency response 
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functions with respect to T are listed in the following table 4.1. 

The transfer functions from T to any gradient at altitude h are 

obtained by multiplying the transfer functions in table 4.1 by the 

27rhq upward continuation operator e. 
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Table 4.1. The Gradients of the Anomalous Potential and their 

Corresponding Transfer Functions with Respect to T. 

Gravity Gradient Relation to Anomalous 
Potential T 

Transfer Function from T 

T 
x 

Ty 

T 
z 

T 2 

-- T(x,y,O) 
ax 

T(x,y,O) 
ay 

-h T(x,y,O) 

2 
T(x,y,O) 

ax 2 

ay2 
x ,y , 0) 

2 
2 T(x,y,0) 

az 

a2  T(x,y,O) 
any 

a2 T(x,y,0) 
axaz 

a2 T(x,y,O) 

j 2iru 

j 2iry 

-2irq 

-rU 

-47r 2 v 2 

22 
4-it q 

-j4rr2uq 

-j4ir2vq 
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4.3 ESTIMATION OF THE VERTICAL FIRST-ORDER GRADIENT T 

4.3.1 Estimation of T z from  

From Table 4.1, the spectrum of the airborne gradients T zz is 

given as 

FIT ZZ} = F{T} 

Since the spectrum of T z at zero altitude is given by 

FIT  = -2'irq F{T}, 

it follows that 

FIT ZZ} = F{T} , or 

1 e27rhq 
F{T(x ,y,O)} = - q F{ ZZ T(x,y,z=h)} 

(4.24) 

(4.25) 

(4.26) 

Using the above equation,. the spectrum of the gradient T is expressed 

explicitly in terms of the spectrum of the airborne gradients 

The downward continuation operation appears through the exponential 

operator However as it will be shown later on in chapter 7, 

the downward continuation from a flying altitude of 600 m does not 

present any serious numerical problem. The same formula as ( 4.26) has 

been derived in Vassiliou ( 1985b) combining plane integration and 

downward continuation in the frequency domain. If the gradients T 

are estimated at flying altitude, then equation ( 4.26) is modified to 

F{T(x ,y,h)} = - 2 F{ zz T(x ,y,h)}. (4.27) 
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Equation ( 4.27) can be transformed into the space domain, taking the 

form of the Stokes integral formula - for flat earth approximation 

(Heiskanen and Moritz, 1967) 

T(x ,y,h) = - -1 
T(xi ,yi ,h) 

[(x-x1)2+(y-y1)2]112 dx1dy1. 
(4.28) 

Unfortunately there is no analytical inverse Fourier transform for 

equation ( 4.26), which incorporates plane integration and downward 

continuation. Therefore the values of the gradient T are computed 

from ( 4.26) numerically through the FFT. An extended form of equation 

(4.27) where the gradient measurement noise is , taken into account, 

using eqn. ( 3.43) results in 

H1(u,v) -

I-11(u,v) - 

ST zz , z T ( u,v) 

5T zz ,T zz (u , v)+Sn , n(u , v) 

87r3q3e_21rS(u,v) 

or 

16w4q4e4'S1(u , v ) i-S , (u , v) 
(4.29) 

where H1(u,v) is the frequency response function from T(x,y,h) to 

T(xy,O) ST,T is the PSD of the anomalous potential T and S is 

the PSD of the noise n. By setting the noise .level equal to zero, 

equation ( 4.29) becomes identical to ( 4.26). 
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4.3.2 Estimation of T z from a linear combination of T xz and  

The multiple input-single output filtering equations ( 3.53a), 

(3.53b), ( 3.54a), ( 3'.54b), where the inputs are linearly related, are 

used in this section. Assuming for the sake of simplicity that the 

measurements are noise-free, the frequency-response functions H1(u,v), 

I-I2(u,v) relating Txz , Tyz with T are derived from ( 3.53a), ( 3.53b) 

H1(u,v) - 

s1 r (u,v) 
-  x.z'z  

ST T (u,v)+ST T (u,v) 
xz' xz 'yz''yz 

,v) 
or 

,v) 

2irhq 
H1(u,v) - jue 

2irq2 

Similarly, the transfer function H2(u,v) is derived as 

2irhq 
H2(u,v) jve 

2irq 2 

(4.30) 

(4.31) 

Thus the spectrum of the gradient T at the surface of the earth is 

given in terms of the spectra of the airborne second-order gradients 

T and  
xz yz 

jue 27rhq jve 2irh 
F{T(x,y,O)} = 2irq2 F{T xz (x,y,h)}  2iiq2 F{Tyz(XYh)}•(4•32) 
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The above equation combines downward continuation and plane 

Integration in the frequency domain, and it can not be transformed 

analytically into the space domain. This transformation can be made 

numerically via FFT. Considering for a moment only plane integration, 

equation ( 4.32) takes the form 

F{T(xyh)} = - ju 2rq2 F{T(x,y,h)} 3V2 F{Tyz•(XYh)}• (4.33) 
2irq 

This equation can be analytically transformed into the space domain 

where it takes the form 

2'jr 

COCO (x-x 1) 

f f T xZ (x1,y1) (x-x1)2•(y-y1)2] dx1dy1 CO -CO 

Co Co 

Co 

27r Lcr 

-I 

- 
Ty (x 1 y1)  (y 2 y1) 2 dx 1dy1, or 

.1 
T xZ (x1,y1)sinc 

[(x-x1)2+(yy1)2]112 dx1dy1 -  

Co I yziYi)c0sa 
[(x-x1)2+(y-y1)2]112 dx1dy1 

(4.34) 

where c is the azimuth of the straight line passing through the points 

(x,y) and (x1,y1). The above relation is new relating the first order 

gradient T z to its horizontal gradients T and Tyz• It can be shown 
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in exactly the same way that a similar equation holds for the 

anomalous potential T and its two horizontal gradients T x and T 

T(x ,y) - 7;E- 7  7   Tx(XiYi)SiflO 
-CO- [( x-x1)2+(y-y1)2]112 dx1dy1 

1 
2ir 

T(x11 )cosct 

[(x- 1)2+(y-y1)2]112 dx1dy1 
(4.35) 

The above equation states that the anomalous potential I can be 

determined from both north and east deflections of the vertical 

gridded on a two dimensional regular grid. 

Taking explicitly the gradiometer noise into account, equation 

(4.32) takes the form 

F{I(x ,y,O)}=Hi(u ,v) F{T(x,y,h)}+H2(u ,v) F{I(xYh)}. (4.36) 

where the frequency response functions H1(u,v) and H2(u,v) are given 

by the equations 

H1(u,v) - 16ir4q4e 4 S 1(u,v)+S fl (u,v) (4.37) 

j81r 3uq2e_2 (1S (u,v)  

j8 r3vq2e 21 1S(u,v) 

H2(u,v) - (4.38) 

The PSD of the residuals of I are computed from equation ( 3.74) 

taking into account the linear relation between the gradients and 

T 
,yz 
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STT(U,V)_ST T (u,v)_{ST (u,v) ST T (u,v)}{ST T (u,v) + 
z'z xz'z yz'z xz'xz 

ST z' xz T ( u,v) 
1  

STYZ,TYZ(UV) + Snn(u,v)} ST T (UV) 
z yz 

, or 

- {64 r6q6e_4 T,TT,Tn,n . 

(4.39) 

A similar expression for the PSD of the residuals of TZ can be derived 

for the plane integration only. The estimated spectrum of i (eqn. 

(4.36)) as well as the estimated PSD of the residuals ( eqn. ( 4.39)) 

are transformed into the space domain via FFT. 

4.3.3 Estimation of T from Combination of  

Assuming noise-free measurements the frequency response 

functions of the gradients T 2 and T zz With respect to T, H1, H2 

and H3 respectively are given from the multiple input-single output 

filtering equations as follows 

ST xz T(u,v) 

H1(u,v)= STxzT (U,V)+ST T (u,v)+S1 (u Iv) - 4q2 
xz yz' yz zz' zz 

(4.40) 

ST,T yz (u,v) 

H2(u,v)= STT(u ,v)+STT (u,v)+51 T ( u,v) - 4q 2 
z zz'zz 

(4.41) 
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H3(u,v)= 
STzz Tz 2rhq 

T T (u,v)+ST T (u,v)+ST T ( u,v) - 4irq 
xz' xz yz' yz zz' zz 

(4.42) 

The estimated spectrum of the gradient T z is given by the equation 

F{Tz(x,Y)}=Hi(u,v)F{T(x,Y,h)}+H2(U,v)F{T YZ (x,Y,h)} 

+ H3(u ,v)F{T(x ,y,h)} . (4.43) 

Assuming that the noise-free gradient measurements are made at the 

surface of the earth, equation ( 4.43) becomes 

ju iv 1 
F{T(x,y)}- 4 zz rq2 F{T(x,y)} - 4irq2 F{T(xY)} F{T(x ,y)} , 

(4.44) 

and transforming this equation into the space domain yields the 

following integration formula 

T(x,y) 1 00 

1 

-I 

.2 
T(x 1 y1)sinc 
  dx 1dy1 

T yz 1  (x ,y1)cosc 
dx 1dy 1 

T(xi ,y1) 

[x-x1)2+(y-y1)2]112 dx1dy1. 
(4.45) 

This integral equation is very important because it shows the explicit 

relationship among the first-order gradient T z and of its second-order 
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gradients T'T yz and zz This integral equation is preferable' to 

equations ( 4.28) and ( 4.35) because it uses all the gradients of T z at 

once, which in turn means that it uses all the spectral information 

contained in the medium and high frequency partof T. In addition, a 

similar equation can be written, for the anomalous potentialT 

.1 
CO T(x 1,y 1)sinc 
  dx 1dy 1 

00 00 T(x 1 Y1)cosc 
1 

- , I I [( x-x1)2+(y-y1)2]112 dx1dy1 

CO CO T(xi ,yi) 1 

[(x-x1)2+(y-y1)2J112 dx1dy1 
(4.46) 

The meaning of this equation is that. given a regular two-dimensional 

grid on,which the gravity disturbances and the deflections of the 

vertical are sampled, the anomalous potential can be explicitly 

computed in terms of those sampled gradients. This equation, however, 

is of rather theoretical interest because there are no areas worldwide 

where a two-dimensional grid of north and south deflections of the 

vertical is available. In contrast equation ( 4.45) is of immediate 

use for the estimation of T simply because all its gradients ( i.e., 

Tyz T zz ) are available from the gradiometer system. 

When the , gradiometer noise is taken into account, then the 

transfer functions described by equations ( 4.40), ( 4.41) and ( 4.42) 
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are modified to the following equations 

H1(u,v) - 

H2(u,v) - 

j8 ir 3uq2e_2 C1S11(uIV) 

3 4q4_4wh 5 
11 (u ,v)+Sn ,1(u , v) 

j8Ir3vq2e_2 's1 (u , v) 

321r4q4e_4(1S(u,v)+S n,n (u,v) 

3 3 -2irhq 1(u,v) S1 

H3(u,v) - 

8'ir q e327r4 q4e-47rhqS T,T(ulv)+Sn,n(u IV) 

(4.47) 

(4.48) 

(4.49) 

and again the spectrum of T is estimated from equation ( 4.43) for 

which no analytical inverse Fourier transform exists. The accuracy of 

the estimation of T z can be estimated from the PSD of the residuals of 

T  

sT , T(u ,v)sT ,T(u ,v)_{ST ,T(u , v) SI. TYZ,TU , v) S11 (u,v)}. 

{S1 I (u,v)+ST i (u,v)+51 T (uv)+S(uv)}' 
xz' xz yz' yz zz' zz 

, or 
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S6Tz , T ( u , v ) 4r2q2S1 T(u , v ST T(U ,v) 2 

T,T 
{327r 4q4 e- 47rhqS (uv)+Snn(uv)Y' (4.50) 

Reviewing sections 4.2.1, 4.2.2 and 4.2.3 it can be said that the 

spectral relations relating T z at the surface of the earth to either 

the T zz or xz T yz or xz YZ zz at flying altitude are now well 

established by using the multiple (single) input-single output 

filtering equations. Theoretically, the combination of five 

independent second-order gradients will give the optimal estimate of a 

first-order gradient. As it will be shown in chapter 7 a smaller 

number of gradients will often give a result which is practically 

equivalent to the optimal solution. 

4.,4 ESTIMATION OF THE HORIZONTAL GRADIENTS T x AND T 

The gradient T x at the surface of the earth can be estimated 

from T xz ; TxxTxyTxz at flying altitude. The procedure for 

the derivation of the equations is exactly the same as in sections 

4.3.1, 4.3.2 and 4.3.3. Assuming noise-free gradient measurements, 

the spectrum of T x is given from the spectra of the airborne Txz; 

Txx'Txy TxxTxyTxz by the following equations 

F{T(x,y)} = = 1  77r q 2irhq F{ xz T(xyh)} (4.51) 

jue2'1 j 211h 

F{T(x ,y)}= - 2irq2 F{Txx(XYh)} 2irq2  xy   F{T(xYh)} (4.52) 
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F{Tx(x,y)}= - 4q2 F{T(x,y,h)} JveF{T 
4q 

2hq 
e4q  FT(x,yh)J. 

x,y,h)} - 

(4.53) 

The spectrum of T x as given in the above equations cannot be 

transformed analytically into the space domain. The transformation is 

performed numerically through the use of FFT. The plane integration 

formulas for the earth's surface analogous to ( 4.40), ( 4.41), ( 4.42) 

can be obtained by setting the flying altitude equal to zero 

F{T(x,y)}=_ 1 FfT—rq {xZ T(xy)} 

- ju 2 F{T(xy)} iv 2 FTxy (xY) 
27Tq 2 q  

(4.54) 

(4.55) 

- - U F{T(x,y)} - jv 1 
q2 4,rq2 F{Txy(XY)} -- F{T 2(xy)}. 4  

(4.56) 

An analogous formula to ( 4.54) has been derived in a very elegant way 

for the spherical earth approximation by Herring ( 1978). All three 

formulas above can be transformed analytically in the space domain - 

1 -CO 
00 T xz(x1,y1) 

L [(x-x1)2 - +(y-y 1) 
1/2 dx1dy1 (4.57) - 
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1 

1 

1 
4ir 

1 

.1 

.1 ..2 

T xx (xi,yi)sinc 
dxd 1 y1 

TXY (xiYi)Cosa 

[(x-x1)2+(y-y1)2]112 dx1dy1, 

CO T xx 1  (x ,y1)sinc 

L [( x-x1)2+(y-y1)2]112 dx1dy1 

-CO  I 

Tx(xiYi)Cosa 

[(x-x1)2+(y-y1)2]112 dx1dy1 

T(x 1,y 1) 
  dx 1dy1. 

(4.58) 

(4.59) 

Taking now the gradiometer noise' into account, equations ( 4.51), 

(4.52), ( 4.53) take the form 

  F{T(x ,y,h)} 4 2 2 4hS(u,v)+S (u,v) xz 
16ir U q e 1 (4.60) 

F{T(x,y)} - j8r3u3e 2 STT(u , v) F{T(x ,y,h)} 

16r4u2q2e41S(u V)+Sn,n(UV) 
xx 

T(u,V) 

16r4U2q2e4S1(u,v)+Sflfl(u,v) FIT (xYh)} 
(4.61) 
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{16i4u2q2e_4 S(u,v)+Sflfl (u,v)}' 

{ 16Tr4u2q2e_4'S T(u , v)+S ( u , v)} 1 

{324u2q2e4?(1ST,T (u v)+S ( u , v)} 1. 

F{T(x,y)} 
i83u3e_2 ST ,T(u ,v) F{T(x,y,h)} 

32 4u2q2e 4 S(u ,v)+S ( u , v) xx 
- n,n 

j.8ir3u ye 2 -2hq T, T(U ,V) FIT (xYh)} 

  F{T(x ,y,h)} 
327r4 u 2q2 e-47rhqS v)+S ( u , v) xz 

(4.62) 

The power spectral densities of the residuals of T estimated from the 

three previous equations are 

(4.63) 

(4.64) 

(4.65) 

The power spectral densities expressed by ( 4.63), ( 4.64), ( 4.65) show. 
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that, theoretically the signal to noise ratio gets higher when more 

second-order gradients are used. The highest signal to noise ratio is 

obtained for the combination of 

In addition to the estimation of T X from airborne 1' lxx' Txy' 

Tyy the gradient T x can be estimated from the gradient 

The transfer function from T zz to T, assuming zero gradiometer noise 

is derived from the single input-single output filtering equations 

-  zz' ST •T x (u,v) jue 2rhq 

H1(u,v) - ST T ( u,v) - 2q2 
zz' zz 

(4.66) 

Thus the spectrum of T is expressed in terms of the airborne zz 

F{T(x,y)} -  juel 2 F{T zz (x,y,h)} 
27r   

(4.67) 

This is an extended form of the equation derived in Vassiliou ( 1985b) 

relating T x to The plane integration formula corresponding to 

(4.67) is 

F{Tx(XY)} - ju 2 F{T(x ,y)} 
2irq  

and can be transformed analytically into the space domain 

-I 
CO T zzi,yi)5fta 

- [( x-x1)2+(y-y1)]112 dx1dy1 

(4.68) 

(4.69) 

Considering now the more complicated case when the gradiometer noise 
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is taken into account, equations ( 4.67), ( 4.68) take the form 

j8i3uq2e2C1S T(u,v) 

FIT (x,y)} -  4 4 4 h 
X 16w q e 1STT(u,v)+Snn(uv) 

i8ir3uq2S 1(u,v) 

F{T(x ,y)} - 16 4q4S 1(uv)+Sflfl (uv) 

(4.70) 

(4.71) 

The PSD of the residuals of T x estimated from the airborne 

measurements 

STT(Uv)+Sfln (UV)} ' (4.72) 

A general comment which can be made about all equations relating 

directly the spectra of the first-order gradients to the spectra of 

the airborne second-order gradients is that these equations cannot be 

used to estimate the mean of the first-order gradients. The mean has 

to be estimated from other sources. 

The horizontal gradient T can be estimated from airborne 

gradients Tyz TXy' T yy ; T XY ' yy T YZ with formulas similar to those 

developed in this section for the estimation of T)(• Thus limiting the 

estimation of T to the case of noise-free gradients, the spectrum of 

is given in terms of the spectra of the above mentioned gradients 

by the following equations 

1 2irhq 
F{Ty(XY)} 77T  q F.cT(xYh) (4.73) 
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F{Ty 2rrhq (x,y)}= - jue 2 

2irq 

2irhq 
xy JV;2  

(4.74) 

jue 21n11 d1 j 2irhq 

- 4irq2 F{T(xYh)}  4irq2 F{T(xYh)} 

2irhq 
e4q (4.75) 
7—r yz 

jve21 

2irq2 F{T(x,y,h)} zz (4.76) 

It must be mentioned that the same frequency domain equations relating 

the first order and the second order gravity gradients can be 

developed by the use of the Wiener filter equation ( 3.64) taking into 

account the linear relations between the second-order gradients. 



Chapter 5 

SIMULATION OF AIRBORNE GRADIOMETER DATA 

5.1 MODELLING THE LOCAL ANOMALOUS GRAVITY FIELD 

Because flat earth approximation is used throughout this 

research it is plausible to employ planar mass anomaly models, with 

their planes parallel to the surface of the earth, for the modelling 

of a local anomalous gravity field. In addition it would be 

advantageous if these mass fields are sampled on regular 

two-dimensional grids. There is a number of approaches which can be 

used for the modelling of a local gravity field. Some of the well 

known models are multi-layer point mass models, vertical dipoles and 

vertical mass line models. Details on these models can be found in 

Forsberg ( 1984b) and Vassiliou ( 1985a). In this research a two-layer 

point-mass model was used. 

A local coordinate system with origin at the center of the local 

area, x, y and z axes pointing east, north and upward is used in the 

following. A point mass buried at depth d below the earth's surface 

generates an isotropic anomalous potential. The gravity disturbance 

g(x,y) at the surface of the earth is given by 

g(x,y) = UN m(x'y d (5.1) 

where G  is the Newton's gravitational constant and ii(xY) is the 

point mass located at the point at depth d below the surface 

of the earth. The Fourier transform and the PSD of the gravity 

disturbance caused by a point mass are expressed as 

71 
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F{6g(x,y)} = 2IrGNme_21d 

S6g,g(UV) = 

(5.2) 

(5.3) 

A stationary white noise distribution of point masses on a plane 

parallel to the earth's surface generates a gravity field described by 

the following spectrum and PSD 

F{rsg(x,y)} = 2GFm(x,y)}e21Tdt (5.4) 

Sog ,o g(U , v)41r2GSmm (U,V)e 411d (5.5) 

where by m(x,y) in equation ( 5.4) is denoted the white noise mass 

distribution of the anomalous masses on the plane at depth d below the 

surface of the earth, and Sm,m is the PSD of this mass distribution. 

Considering a two- layer stationary white-noise point mass model, with 

the two layers being statistically independent, the power spectral 

density of the gravity disturbance is given by 

s6g6g(uv)=472Gsmm(uv)e-4irqd1 + 4ir2GSm (u,v)e-4irqd2 ( 5.6) 
2,m2 

where the subscripts 1,2 correspond to the layers 1 and 2, respective-

ly. The two layers are considered as statistically independent 

because they model high frequency uncompendated mass anomaly features. 

However for regional modelling of the anomalous gravity field, there 

is compensation and the resulting deeper layers ( probably at depths 20 

km and 4.0 km) are negatively correlated. The synthetic PSD shown in 

eqn. ( 5.6) is the basis for the determination of the depths d1,d2 and 

is plotted logarithmically in Fig. 5.1. 
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(d b) 

frequency u 

Figure 5.1 Gravity disturbance PSD generated by a two layer point 

mass model. 

The PSD plotted logarithmically in Fig. 5.1, is mainly composed of two 

straight line segments each of which is a measure of the depth of the 

corresponding layer. Hence, provided a 2-D grid at the surface of the 

earth on which gravity disturbances are sampled, the slope of each of 

these straight line segments composing the isotropic PSD, provides the 

depth of each layer. In this way two of the parameters of the two 

layer point mass model are determined. The remaining parameters for 

modelling a local gravity field are the grid spacings of the two 

layers and the distribution of the gridded point masses on the two 

layers. The next step in modelling a local gravity field by a two 

layer point mass model, is the determination of the anomalous masses 

on the two layers. As is always the case in the gravity inversion 

problem, there are many mass distributions which can be used to model 



74 

a certain gravity field. To overcome this ambiguity the following 

approach was adopted in this thesis. First, the low frequencies of 

the given anomalous gravity field are modelled by point masses on the 

deep layer only. Then the spectral content of those frequencies 

modelled by the deep layer point masses, is subtracted from the 

original gravity disturbance signal and the residual gravity 

disturbances are modelled by shallow layer point masses. 

Assuming one-to-one correspondence between the gravity 

disturbance sample points and the anomalous masses on one layer at 

depth d below the surface of the earth, the gravity disturbance at a 

grid point can be expressed as a convolution of the anomalous masses 

and the proper geometrical kernel 

M N 
g(xy1) = N I d   

i=1 ,j=1 [( xk-

m(x ,y) 

i ) 2+(yl -Yj ) 2+d2]312 
(5.7) 

where xy1 are the coordinates of the evaluation point, x., y are 

the coordinates of the mass point in(xy) and M, N is the number of 

points in the x,y directions respectively. This convolution equation 

can be readily transformed in the frequency domain ( in a discrete form) as 

F{g(k,l)} = 21rGN F{m(i,j)} 2rqd • (5.8) 

Equation ( 5.8) can be readily inverted to model the gridded gravity 

disturbances by a set of gridded anomalous masses 

1 
F{m(i,j)} = 2rGN F{og(k,l)} 2rqd (5.9) 
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The spectrum of the anomalous masses is directly computed from the 

spectrum of the gravity disturbances. There is a major problem though 

related to this equation, the downward continuation instability, 

appearing through the exponential operator e 21rqd The deeper the 

layer is buried, the more troublesome the downward continuation 

becomes. There is a number of methods to get around the downward 

continuation problem mentioned. in Nashed ( 1976). One of those methods 

is to smooth the data with a low pass filter so that the errors at the 

high frequencies are not amplified. 

5.2 IMPLEMENTATION OF THE MODELLING OF GIVEN GRAVITY DISTURBANCES BY 

A TWO-LAYER POINT MASS MODEL  

The modelling of the gravity disturbances by thetwo-layer point 

mass model is done in three major steps. First the grid spacings of 

the two layers are assigned. Second the anomalous point masses on the 

deep layer are determined and third the anomalous point masses on the 

shallow layer are computed. First, the grid spacings of. the •two 

layers, of which the depths have been already determined ( in section 

5.1), are chosen. The grid spacings of the deep layer are set equal 

to the double grid spacings of the original gravity disturbance grid, 

while the grid spacings of the shallow layer are the same as the ones 

of the gravity grid. Then the spectra of the geometrical kernels 

appearing in equation ( 5.7) are computed for both layers using either 

FFT or the continuous form of the spectra as shown in equation ( 5.8). 

The second step of the method then starts by sampling the gravity 

disturbances ona grid with double the grid spacings of the given grid 

and windowing the resulting data by a 2-D cosine taper window. The 
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spectrum of the windowed gravity disturbances is computed afterwards 

by a 2-D FFT. Then, since the kernel spectrum is known for the deep 

layer, the spectrum of the anomalous masses can be readily computed 

from equation ( 5.9). The downward continuation instability is taken 

care of by filtering the data with a 2-D low-pass filter having a 

cut-off frequency at 0.35 cycles/grid spacing in each direction. The 

anomalous masses can then be computed by transforming the spectrum of 

the mass anomalies in the space domain. The disturbances generated by 

the deep layer point masses are interpolated using 2-D FFT, as itis 

shown in section 3.1.5, so that the interpolated disturbances 

correspond to the original gravity grid. 

The third modelling step starts with the subtraction of the 

interpolated from the given gravity disturbances. The residual 

disturbances are then windowed and their spectrum is computed using 

the 2-D FFT. From those residual gravity disturbances and the 

geoñietrical kernel of the shallow layer, the spectrum of the anomalous 

masses located on the shallow layer is estimated using equation ( 5.9). 

The downward continuation instabilities are avoided by using a 2-D 

low-pass filter with cut-off frequency of 0.45 cycles/grid spacing in 

each direction. Then the spectrum of the anomalous masses is 

transformed via FFT into the space domain to yield the anomalous 

masses on the shallow layer. Using these anomalous masses and the 

kernel of the shallow layer, the gravity disturbances corresponding to 

the shallow layer can be computed. The sum of the gravity 

disturbances corresponding to the deep and to the shallow layer is 

within 0.1 to 0.2 mgals of the original gravity disturbances. 

The mass anomalies computed from the modelling of the gravity 
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disturbances ( gravity anomalies) by the two layer point mass model are 

used to compute any functional of the anomalous potential, for example 

first-order gradients are computed frbm the combined effect of the 

anomalous masses of the two layers. The expressions for the first-

order and second-order gradients at the earth's surface and their -

spectra generated by the anomalous masses of a single layer are given 

by 

M (x_xk) 

T(xy)= -GM k1 11 m(xy1) [(xxk)2+(y-yl)2+d2J312 

F{T(x ,y)} =GN F{m(x,y)} ju  -2irqd 

M N S  ( 1) 

- GN k1 m(xy1) [(xxk)2+(yyl)2+d2]3t2 

F{T(x,y)} GN F{m(x,y)} -2qd 

N N [2(x_x) 2_(y_y1)2_d2] 

G  k1 11 m(xk,yl) [( xx)2+(y-y1)2+d2]512 

F{T xx (x,y)}= - G  F{m(x,y)} 2u 2 _2qd 

MN 
Tyy (x,y)= G 

N k=1 1 

[2(y 2 
-y1)2 (xxk) -d2 I 

,y1) [( x-x) 2+(y-y1 ) 2+d2]512 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

(5.15) 

(5.16) 
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2'irv2 _2ffqd 
- GN F{m(x,y)) q 

M N [ 2d2- (x-xk) 2- (y-yl) 2] 

T(x ,y)= GN k1 11 m(xk,yl) [(x-xk)2+(y-yl)2+d2]5'2 

F{T zz (x,y)} = G  F{m(x,y)} 2irqe-≥irqd 

M N 3(x-x 
T V V ( 

xy"' N k1 11 m" vk' , 
1' [( x-xk)2+(y-yl)2+d2]512 

- GN F{m(x,y)}211 27rqd 

M N 3d(x_xk) 
T xz (x,y)= G  m(xk ,yl)  

k=1 1=1 

F{T xz (x,y) }= _GN 

M N 3d(y-yk) 
T(xY)= GN m(xk ,yl)  

k=1 1=1 

(5.17) 

(5.18) 

(5.19) 

(5.20) 

(5.21) 

(5.22) 

(5.23) 

(5.24) 

F{T(xY)}= -GN F{m(x,y)}j2irve 2 (5.25) 
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The airborne first-order and second-order gradients can be computed by 

upward continuation of the earth's surface gradients. This can be 

easily realized in the frequency domain by substituting _2irqd by 

_2irq(d+h) in equations ( 5.8), (. 11), ( 5.13), ( 5.15), ( 5.17), ( 5.19), 

(5.21), ( 5.23), ( 5.25) where h is the flying altitude. Similarly in 

the corresponding space domain relations the height difference d 

should be replaced by ( d+h). 

The gradient data at either the surface of the earth, or flying 

altitude are computed first in the frequency domain, taking advantage 

of the convolution property ( 3.15) of the Fourier transform. The 

spectra of the pofnt mass anomalies on the two layers are known from 

the modelling of the gravity disturbance data. The spectra of the 

geometrical kernels corresponding to the gravity gradients can be 

computed from either the FF1 of the space domain geometrical kernels, 

or from the corresponding continuous spectra appearing in equations 

(5.11), ( 5.13), etc. 

5.3 THE SIMULATED GRADIENT DATA 

Airborne gradient data were simulated in Northern Saskatchewan, 

Canada, where free-air gravity anomalies are given on a 5'xlO' grid. 

The extent of the area is 

56°02'30" 60°13'OO" 

2500051001 <= x 258°35'OO". 

There are 52 points in each diretion, 2704 points totally. Flat 

earth approximation was employed with the following transformation 
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dy = Rd 

dx = Rcos4dA 

with mean earth radius R=6371 km. In the above transformation the 

grid spacings in North-South and East-West directions are 

Ay = 9.266 km 

AX = 9.775 km. 

The spherical harmonic expansion of the Rapp 1978 geopotential 

model ( Rapp, 1978) truncated at degree 36 was subtracted from the 

free-air gravity anomalies to eliminate the long-wavelengths to which 

airborne gravity gradiometry is. not sensitive. The contour map of the 

gravity anomalies is shown in Fig. 5.2. The units along the x,y axes 

are in km and the gravity anomalies are in mgals. 

204 
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84 

44 
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Fig. 5.2 Contour map of the reduced 5'xlO' gravity anomalies 
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Then the isotropic PSD of the data was computed and' from its logarith-

mic plot the depths of the two layers are determined in Fig. 5.3. 

150 ( db) 
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Fig. 5.3 Isotropic power spectral density of the gravity anomalies 

The point masses of the two layers and the first and 

second-order gradients at the surface of the earth and at flying 

altitude of 600 m were computed as described in section 5.2. The 

results of the point mass computations are given in Vssiliou ( 1985a). 

The computed gradient data are given on the 9.266 km ( north) x 9.755 

km ( east) grid. These grid spacings are too large to ensure 

resolution of the gravity signal down to the 1 mgal level. Spectral 

analysis of Canadian gravity anomaly data has shown that for flat 

areas a minimum grid spacing of 3 km is necessary to resolve the 

gravity signal to the 1 mgal level ( Vassiliou and Schwarz, 1985). 
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Therefore the data were derisified to a 2.315 km ( north) x 2.444 km 

(east) grid. The new grid has 204 points in each direction and 41616 

points totally. The grid spacings are quarters of the former grid 

spacings, so the FFT interpolation method described in section 3.1.5 

can be employed to sample the gradient data on the new denser grid. 

However, the interpolated gravity signal sampled has the same 

smoothness as the original one. To add more high frequency content in 

the gradient data, a white noise distribution, of anomalous point 

masses was sampled at a 2-D grid on a layer buried 1 km below the 

surface of the earth. This white noise point mass grid has the same 

spacings as the new denser gradient grid ( 2.315 x 2.444 km). The 

simulated white noise masses have zero mean and standard error' of 2.5 

x 10  grams. The simulation was performed using the subrouting OU of 

the simulation software package ACSL installed on the CDC Cyber 175 

computer at the University of Calgary. The anomalous masses thus 

generated are used to compute the first and second-order gradient at 

the surface of the earth and at flying altitude of 600 m. Those 

gradients are added to the smoother gradients already sampled on the 

new grid, and thus the final simulated gradient data are created. The 

contour maps as well as the block diagrams of the first-order 

gradients T , T z simulated at the surface of the earth are shown 

in Figs. 5.4, 5.5, 5.6, 5.7, 5.8 and 5.9 respectively. The units of 

the x, y axes in the contour maps are in km and the first-order 

gradient data are in mga"ls. 



Fig. 5.4 Contour map of the simulated T2 gradients (h=O.0) 

Fig. 5.5 Block diagram of the simulated T5 gradients (h—O.0) 



84 

Fig. 5.6 Contour map of the simulated T x gradients (h=O.0) 

Fig. 5.7 Block diagram of the simulated T x gradients (h=O.0) 
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Fig. 5.8 Contour map of the simulated T gradients (h=O.0) 

Fig. 5.9 Block diagram of the simulated T gradients (h=C.0) 
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Gradiometer noise was added to the second-order gradient data at 

flying altitude. The simulated gradiometer noise is based on the Bell 

gradiometer noise model already discussed in section 2.2. The 

simulation of the noise is explained in detail in the next section. 

5.4 SIMULATION OF THE GRADIOMETER NOISE  

The gradiometer noise, based on the Bell gradiometer noise 

(White, 1980), was simulated using a time-domain Markov model. The 

model produces a spectrum consisting of low frequency red noise and 

high frequency white noise, similar to the one discussed in section 

2.2. The simulation starts With the generation of white noise, 

employing subrouting OU of the simulation software package ACSL 

The white noise has mean zero and 1 Etvos standard error. Then the 

white noise is integrated numerically from time zero to the evaluation 

time t1 aYid is multiplied by 27r / R , where R is the red noise 

constant. The numerical integration was performed by the trapezoidal 

rule, or the midpoint rule. The result of this integration-

multiplication is the red noise part of the total noise at time t1. 

The zero mean, 1 Eotvos standard error white noise at time t1, is 

multiplied by / W, where W is the white noise constant, to yield the 

white noise part at this time. The red and white parts of the noise 

are then summed to yield the total noise at time t1. This whole 

procedure is shown in Fig. 5.10. 
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Fig. 5.10 Simulation of gradiomtr noise by a 

time domain Markov model. 
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Chapter 6 

SOFTWARE 

Twenty five FORTRAN programs were written for this research. 

The first ten of those programs deal with the gravity data' modelling 

and the simulation of the airborne gradient data and they are 

discussed in section 6.1. The output of the last six of these 

programs are used as inputs for the airborne gradiometry programs. 

The other fifteen programs compute the first-order gravity gradients 

from the airborne second-order gravity gradients using the estimation 

procedures presented already in section 4. Those last fifteen 

computer programs are described in section 6.2 in more detail than the 

first tensimulation programs. 

The programs written for this thesis were optimized with respect 

to memory space. However the memory requirements for some of them 

were so high that some programs had to be split into two parts. For 

instance the program computing T from the gradients Tzz XZ yZ 51 

Txz' Tyz T zz taking into account the noise or neglecting it, had to 

be split into two' programs, one taking the noise into account and the 

second one neglecting it. 

6.1 DESCRIPTION OF THE PROGRAMS FOR GRAVITY SIMULATION 

The first two programs, GENER1 and GENER11 compute the gravity 

disturbance geometrical kernels for the three layers used for the 

modelling of the gravity data. The next program SHFA reads in the 

gravity disturbance geometrical kernels for the very shallow layer ( 1 

km depth) and the white noise point masses located at the grid points 
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of this layer. It computes the spectra of the anomalous masses and of 

the geometrical kernels, it multiplies the two spectra and then 

inverts the resulting spectrum via the inverse 2-0 FFT to get the 

gravity disturbances at the surface of the earth. 

The fourth program GRAVITYMOD reads in the reduced 5'xlO' 

gravity anomalies, shown in Fig. 5.2, the gravity disturbances 

corresponding to the very shallow layer, and the geometrical kernels 

corresponding to the two deeper layers. The gravity disturbances 

are windowed by a 2-0 cosine taper' window. • Then they are modelled by 

the two layer point mass model exactly as analyzed in section 5.2, and 

thus the anomalous point masses on' the two deeper layers are computed. 

Finally the gravity disturbances resulting from the anomalous point 

masses of all three layers are summed yielding the final gridded 

gravity disturbances at the surface of the earth. 

The next two programs GRAVMODEL1 and GRAVMODEL11 compute the 

first-order anomalous gravity gradients at the surface of the earth 

and at • flying altitude of 600 m respectively. The first program 

GRAVMODEL1, reads in the anomalous point masses of the three layers 

and computes the spectra of the gradients 1 Ty T  at the earth's 

surface using formulas ( 5.11), ( 5.13) and ( 5.8) respectively. Then by 

using the inverse 2-0 FF1, the values of T, Ty' T  at the earth's 

surface grid points are computed. The second program GRAVMODEL11, 

reads in the same data and performs the same computations as the 

program GRAVMODEL1. There is only one major difference, the 

exponential operator e 2" in equations ( 5.8), ( 5.11) and ( 5.13) is 

replaced by 2q(d+h) where h is the flying altitude of 600 m. 
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The seventh and eighth programs GRAVMODEL2 and GRAVMODEL22 

compute the second order anomalous gravity gradients 

both at the surface of the earth and at flying altitude of 600 m. The 

procedure is almost the same as with the programs GRAVMODEL1 and 

GRAVMODEL11, but instead of the equations ( 5.8), ( 5.11) and ( 5.13), 

the equations ( 5.15), ( 5.17) and ( 5.19) are used. In addition the 

gradients lxx' are corrupted by gradiometer noise, which is 

computed as described in section 5.4. The last two of the simulation 

programs GRAVMODEL3 and GRAVMODEL33 compute the second-order anomalous 

gra.vity gradients l ,,, T, and Tyz at the surface of the earth and at 

flying altitude of 600 m. 

6.2 DESCRIPTION OF THE PROGRAMS FOR AIRBORNE GRADIOMETRY  

The first program, DOWNWTZD, computes the first-order gradient 

T z at the surface of the earth, exactly below the grid measurement 

points, from airborne gradients T zz ; 

performing both plane integration and downward continuation. First, 

the program reads the general data, the true gradients l at the 

earth's surface and the airborne gradients T' TYZ' T• It sets the 

mean of T equal to zero, windows the second-order gradient data and 

computes the spectra of those data using the 2-D FFT. Then the 

program proceeds to compute the transfer functions corresponding to 

the estimation of T from 1zz Txz' 1yz according to 

equations (4.15), ( 4.21) and (4.29), (4.30), ( 4.31) and ( 4.32) 

respectively. The gradiometer noise is not taken into account in the 

computations of those transfer functions. Next, the spectra of T; 

Txz' T; are multiplied by the appropriate transfer 
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functions and the resulting spectra are transformed in the space 

domain by using the inverse 2-B FFT to yield the three estimates 

of T z at the surface of the earth. Finally the differences between 

the true T z and the three estimated T are computed and printed for-

a block about 45 km inside the borders of the area. In addition the 

root mean square value of those differences is computed and printed. 

The flow-chart of this program is given in Fig. 6.1. 

The next program, DOWNWTXD, computes the horizontal first-order 

gravity gradient T X at the surface of the earth from airborne gradient 

measurements T zz ; T xz ; T <, Txy; The program neglects 

the gradiometer noise and has the same structure as the program 

DOWNWTZD. The program DOWNWTYD computes the gradient T at the 

earth's surface from airborne gradient measurements T; T; 
xx 

Txy;Txx, Txy, I• The program neglects the gradiometer noise and 

has the same structure as the programs DOWNWTZD and DOWNWTXD. 

The next three programs DOWNWTZDN, DOWNWTXDN, DOWNWTYDN compute 

the first-order gradients T, Ty T from airborne second-order 

gradient data, taking the gradiometer noise into account. More 

specifically the.program DOWNWTZDN computes T z at the surface of the 

earth from airborne gradients T; T, •T; Txz yz' The 

programs DOWNWTXDN and DOWNWTYDN compute the gradients T X9 T 

respectively. The structure of these three programs is the same as of 

the program DOWNWTZD. 

The following three programs FINTZD, FINTXD and FINTYD compute 

the first-order gradients T, T and T, respectively, at flying 

altitude from airborne second-order gradient data. These three 

programs perform plane integration only and neglect the gradiometer 
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noise. They use almost the same formulas as the programs DOWNWTZD, 

DOWNWTXD and DOWNWTYD respectively, the only difference being that the 

downward continuation operator e21CI becomes unity. The next three 

programs FINTZDN, FINTXDN and FINTVDN compute the first-order 

gradients T , T, T at flying altitude from second-order gradient 

data, taking the gradiometer noise into account. 

The final three programs INTERTZ, INTERTX and INTERTY compute 

the gradients T T, T at the surface of the earth, but on a denser 

z X,grid, which has grid spacings equal to one half of the -spacings of the 

measurement grid. •Thus T, Ty T z are estimated besides the points 

directly below the points of the original grid, along orthogonal 

bidirectional profiles ( running north-south and east-west) of the 

densified grid. The program INTERTZ begins by first reading the true 

gradients T Z and the estimated gradients T , T , T computed from 
1 2 3 

the program DOWNWTZD all of them sampled on the 2.31x 2.44 km grid. 

Next the gradients T Z and the estimated gradients T 1 2 3 are 

interpolated at the grid points of the new grid, using the FFT 

interpolation procedure analyzed in section 3.1.5. Then the differen-

ces between the interpolated true gradients T z and the interpolated 

estimated gradients T , T , T are computed and at the same time 
1 2 3 

all interpolated gradients about 45 km inside the borders of the area 

are printed. Finally the rms values of these differences are computed 

and printed. 

Six subroutines were written to support the above programs: 

1. CAISBESWIND applies a 2-D Kaiser-Bessel window with argument 

c=3.O to a set of 2-D gridded values. 
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2. BESSMOD computes the zero order modified Bessel function of the 

first kind. 

3. COSWINDOW applies a 2-D cosine taper rectangular window to a set 

of 2-Dgridded values. 

4. SHIFTO shifts the origin of a 2-D direct Fourier transform from 

the south-west corner, where the IMSL subroutine FFT3D sets it, 

to the center of the 2-D complex array representing the 2-D 

Fourier transform. 

5. MINTER interpolates a set of 2-D values sampled on a grid with 

spacings Ax, Ay so that another set of 2-D values sampled on a 

new grid having spacings Ax, , y1 results. The former grid spa-

cings are multiples of the new spacings, i.e. x=M.x 1, y=N.y1, 

where M, N are positive integers. The interpolation is done 

with the help of FFT and the whole procedure is analyzed in 

section 3.1.5 of this research. 

6. SPECDEZ computes the transfer function of the airborne gradients 

T zz ; T, T yz ; xz zz with respect to the gradient T z at 

the earths surface. These transfer functions obviously combine 

plane integration and downward continuation. Depending on the 

first-order gradient which has to be estimated and the 

corresponding gradient data ( i.e. T is estimated from T; Txz; 

Txx Txy; Txx T xz ) this subroutine changes accordingly. 

In the case of plane integration estimation only, the downward 

continuation operator e27hq becomes unity. 

The subroutine FFT3D ( IMSL, 1981) evaluating the 1-D, 2-D, 3-D 

FFT is used very frequently in most of the previously described 

25 programs to compute the 2-D direct and inverse FFT. 
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start 

/'read in general data/ 

ead in the true T z gradients,/ 

at the earth's surface  

I the airborne 
gradients Txz ,T yz and TZZ 

window the gradients TXZ'TyZ'TZZ 

compute the 2-D direct FF1 of 

using the IMSL subroutine FFT3D 

compute the transfer functions of 

TXZTYZTZZ with respect to Tz using the 

subroutine SPECDEZ 

multiply the transfer functions by the corresponding 
gradient spectra, obtaining the spectra of three 

different sets of 1 values 

compute the differences between the true gradients 
T z and the three estimated gradients about 

47 km inside the borders of the area, and 
the rms values of these differences 

print the true and the estimated T values 

and the previously computed rms values,,,, 

( stop ) 

Fig. 6.1. Flow chart of the program DOWNWTZD 



Chapter 7 

TESTS AND RESULTS 

In this chapter the results of estimating T , T from 

airborne second-order gradient data are discussed focussing on five 

points. First the practical proof, provided by computer 

implementation, that the method developed in chapter 4 yields 

satisfactory results for the estimation of the gradients T, Ty T, 

in terms of accuracy and computer time requirements. This first point 

is discussed in all sections of this chapter. Second, the optimal 

choice of second-order gradients which provide the most precise 

determination of T, Ty T. Third, the analysis of the effect of the 

gradiometer noise on the estimation of the first-order gradients. 

Fourth, the. analysis of the effect of downward continuation on the 

accuracy of the estimation of I)( Ty T. Finally, the estimation of 

TX TY T z at points other than those below the measurement points. 

The results are presented in five sections. In the first one 

the edge effects due to the windowing are analyzed. In the second 

section the results from the determination of T, Ty T z directly 

below the measurement grid points by neglecting the gradiometer noise 

are discussed. In addition, the optimal choice of the second-order 

gradients providing the most accurate estimates of the first-order 

gradients is studied. The third section deals with the estimation of 

T, Ty Tat the same points as in the previous section taking the 

gradiometer noise into account. Also, in the same section the effect 

of higher gradiometer noise is analyzed. In the fourth section the 
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effect of downward continuation is studied by analyzing the results 

obtained from the plane integration of the second-order gradients. 

Finally, in the last section of this chapter the first-order gradients 

are estimated at points other than those directly below the 

measurement grid points. In all sections the estimated first-order 

gradients are compared to the true values of T Ty T. To avoid 

edge effects the comparison of the estimated and the true T , T  

is done in' an inner area, about 45 km inside the borders of the total 

area. The computer times cited in the following refer - to the 

Honeywell Multics DPS 68 computer of the University of Calgary. 

All the following results are subject to the parameters of the 

simulation. Those parameters are the grid spacings of the gradient 

data grid, the flying altitude, the gradiometer noise level and the 

depths of the layers used for the simulation of the gradient data. 

Somewhat different conclusions have to be expected when all those 

parameters change. More specifically higher flying altitude 

guarantees lower accuracy in the estimation of T)( T z and stronger 

downward continuation effects. Larger grid spacings will result in a 

smdother gravity signal which in turn will definitely create 

significantly worse estimates of T, Ty' T at points other than those 

directly below the measurement points. Higher gradiometer noise means 

lower accuracy in the estimation of T, Ty T, especially when the 

noise is not taken into account. Larger layer depths will necessarily 

imply larger grid spacings, in order to avoid downward continuation 

effects, and thus the same effects as for larger grid spacings will be 

apparent. 
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7.1 THE EFFECT OF WINDOWING  

Spectral leakage problems arising from the application of the 

2-D Fourier transform to all gradientdata, are minimized by windowing 

the data sets. The two windows used are the Kaiser-Bessel and the 

cosine taper window. Both have been discussed in section 3.1.4. The 

windowing percentages for both directions are 10%. Due to the 

windowing, edge effects are created, i.e. the estimation gets poorer 

towards the edges of the area. To find out how far from the borders 

of-the area the edge effects extend, the following test was conducted. 

The first-order gradients T , T z were computed from the gradients 

respectively as described in section 4. Then the. 

differences between the estimated and the true T , T z and the RMS 

of those differences were computed. The minimum acceptable RMS level 

was set to 1.0 mgal and the distances from the borders of the area at 

which the RMS value becomes smaller than 1.0 nigal were determined. 

These distances were 46 km from the north and south borders and 48 km 

from the east and west borders of the area. The inner area is shown 

in Fig. 7.1 and all subsequent results refer to this area. 

46 km 

472 
km 

46 km 

48 
km 

48 
km 

496 km 

Fig. 7.1 Inner area used for comparison of estimated and true 
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7.2 ESTIMATION OF TXTYTZ  WITHOUT THE GRADIOMETER NOISE  

The estimation of T , Tin this section as well as in the 

next section is done only at points lying directly below the 

measurement grid points. No interpolation between points on the same 

or neighboring tracks takes place. In this way the usefulness of 

gradients for downward continuation can be demonstrated numerically. 

In addition, the possibility of using a gradiometer measuring only 

gradients can be investigated. The results obtained and the computer 

times required are listed in Table 7.].. 

Table 7.]. 

Results and CPU Times for the Estimation of T, Ty' I 
Neglecting the Noise 

Measurements 

Tzz 

TXZ'TYZ 

TXZ TYZ TZZ 

RMS error of T(mgais) 

0.70 

0.46 

. 0.41 

CPU time required ( seconds) 

545 

560 

. 578 

Tzz 

Txz 
I I xx , xy 

Txx Txy Txz 

Txx Txy Txz Tzz 

RMS error of T(mgals) 

0.79 

0.87 

0.79 

0.63 

0.62 

584 

583 

601 

617 

632 

Tzz 

TxyTyy 

Txy Tyy Tyz Tzz 

RMS error of T(mgals) 

0.49 

0.69 

0.76 

0.60 

0.56 

583 

584 

601 

. 615 

634 
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Table 7.1 allows some interesting conclusions. First the 

estimation of T , T using T zz only is in general comparable in 

accuracy to all other second-order gradient combinations used. This 

means that a single vertical axis gravity gradiometer measuring 

only. can be considered as an alternative to a three axis gradiometer 

providing all elements of the second-order gradient tensor for 

downward continuation. Second, T' Ty' T are estimated with 

essentially the same level of accuracy which is usually well below the 

1 mgal level. Third, the horizontal gradients T, Ty are estimated 

with better accuracy from T zz than from Tyz' respectively. 

The explanation of this result is that the transfer functions of 

with respect to T, Ty ( eqns. 4.67, 4.76) are less sensitive to the 

combined downward continuation gradiometer noise effects than the 

transfer functions of Txz' Tyz with respect to T, T respectively 

(eqns. 4.51, 4.73). Fourth, there is always an improvement in 

accuracy when the vertical gradient T iz of any first-order gradient I. 

is added to the combination of its two horizontal second-order 

gradients T ix ,Tiy' i.e. it is better to choose the combination Txx 

Txz for T x instead of the combination Txx This is expected 

from equations ( 4.64), ( 4.65) which show an increase in the signal to 

noise ratio. Fifth, in general, the most precise estimate of the 

first-order gradients T i is obtained from the combination of its 

second-order gradients i.e. is most precisely estimated from 

the combination of Txz, T YZI Izz• Sixth, the estimation method 

developed is very efficient computationally. It takes about 10 CPU 

minutes to compute one first-order gradient at 41616 grid points from 

167000 values of airbone gradient data including input and output. 
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The computational efficiency can be attributed to the efficiency of 

the FFT and to the fact that inversion of matrices larger than lxi are 

avoided. 

Table 7.1 shows a surprisingly high accuracy achieved in the 

estimation of Ty from T gradients. In addition T is more precisely 

estimated from T than from This result is unexpected 

However there is a simple explanation for it. In this specific test 

field the gradient T varies much more in the y direction than in the 

x direction. The signal to noise ratio for the gradient T yy is high 

and it is very low for the gradient Therefore, when the Txy 

gradients are included in the determination of T the results are 

getting poorer. Thus the estimation of Ty from Txy provides 

less accurate results than those obtained from the gradient T7 only. 

The block diagrams of the T errors estimated from T ; T 
z zz xz 

T yz ; T xz , T yz , T zz are shown in Figs. 7.2, 7.3 and 7.4 respectively. 

They illustrate clearly the edge effects and they show the improvement 

in accuracy obtained when using more than one gradient. 

Fig. 7.2 Block diagran of T2 error determined from T22 
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Fig. 7.3 Block diagram of T z error computed from T 2, T 
yz 

Fig. 7.4 Block Diagram of T error estimated from T 2, T , T 
yz zz 
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7.3 EFFECT OF THE GRADIOMETER NOISE IN THE ESTIMATION OF TXTYTZ 

This section has two objectives. First, to investigate how much 

improvement is obtained in accuracy when the gradiometer noise is 

included in the estimation model. Second to analyze the effect of 

higher noise level in the determination of the first-order gradients 

T , T. 

For the first objective, the gradients T , Tz are computed 

and the gradiometer noise is taken into account. For this purpose it 

is necessary to have an estimate of the power spectral density of the 

anomalous potential TT(U,v) as shown in eqns. (4.29), ( 4.37), 

(4.38), etc.) The following model was used ( Vassiliou and Schwarz, 

1985). 

S,(q) - q16 (7. •:O. 

where the constant A was computed from gravity anomalies in the sample 

area. The PSD of the gradiometer noise Snn(u,v) was computed from 

the simulated gradiometer noise data and the white noise PSD level is 

80E2/Hz. 

For the second objective of the present section, the gradiometer 

noise is very significantly changed by increasing the white noise PSD 

level to 300 E2/Hz. The gradients T, Ty Tz are computed first by 

neglecting the gradiometer noise and second by taking the noise into 

account. The results from both parts of the section are summarized in 

Table 7.2 
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Table 7.2 

Results of Estimating of T, T Y I T z Taking the Gradiometer 

Noise into Account 

Measurements 

Noise: 

80 E2/Hz 
without 
noise 

Noise: 

80 E2/Hz 
with 
noise 

Noise: 

300 E2 /Hz 
without 
noise 

Noise: 

300E2 /Hz 
with 
noise 

RMS error of T(mgals) 

0.70 0.63 0.83 0.67 

0.46 0.44 0.48 0.44 

TXZ TYZ TZZ 0.41 0.37 0.47 0.41 

RMS error of T(mgals) 

zz 0.79 0.76 0.81 0.77 

0.87 0.88 0.99 0.88 

0.79 0.73 0.80 0.74 

TXX TXY TXZ 0.63 0.66 0.67 0.65 

TXX TXyTXZ TZZ 0.62 0.64 0.66 0.64 

RMS error of T (mgals) 

0.49 0.5 O.6Z 0.50 

0.69 0.70 0.85 0.71 

0.76 0.74 0.84 0.83 

TXY TYY TYZ 0.60 0.60 0.65 0.63 

TXY TYy TYZ TZZ 0.56 0.55 0.62 0.61 

Table 7.2 shows that at the noise level of 80 E2/Hz there is 

only a slight improvement in the accuracy of T I TyI T z by taking the 

noise into account instead of neglecting it. This slight improvement 

in accuracy is obtained at the expense of a 15% increase in the 

computation time. 
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Four major points can be inferred from Table 7.2 for the case of 

gradiometer noise level of 300 E2/Hz. First, there is only a small 

deterioration in accuracy when 'each .gradient T i is computed from 

•either its two horizontal second-order gradients Tix 91 Tiy or its three 

second-order gradients Second, there is also a small 

deterioration in accuracy when the first-order gradients T, T are 

computed from T only. This shows that for downward continuation a 
zz 

vertical single axis gradiometer measuring T zz only, can be considered 

as an alternative to a 3 axis gradiomter even for high noise levels. 

Third, when the gradiometer noise is not taken into account there is a 

pronounced deterioration in the estimation of T, Ty T z computed from 

their vertical second-order gradients T ' yz zz respectively. 

This fact can be explained by the low signal to noise ratios in the 

PSD of the residuals of T, T y 9 T z from yz zz respectively. 

Therefore for the estimation of any first-order gradient from its 

corresponding vertical second-order gradient the noise should be taken 

into account. Fourth, the same accuracy in estimating T , TY 9 T z is 

achieved for noise at the level of 80 E2 /Hz or 300 E2 / Hz when the 

gradiometer noise is included in the estimation process. This shows 

the stability of the estimation method. 

7.4 THE EFFECT OF DOWNWARD CONTINUATION  

Since the resul.ts.of the estimation of T , T z reported so 

far incorporate both plane integration and downward continuation, it 

is of interest to investigate how much the estimation of T, Ty T z is 

affected by downward continuation. This investigation can be easily 
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performed by computing T)( T. T z at flying altitude from the airborne 

second-order gradients and comparing them to the previous results. 

All fdrmulas necessary for this estimation have been developed in 

chapter 4. The results of this estimation when the gradiometer 

self-noise is neglected are summarized in Table 7.3. 

Table 7.3 

Determination of T, I3 T z at Flying Altitude 

Measurements 
RMS error of Tz(maTs) 

Tzz 0.61 

0.36 

TXZ TYZ TZZ 0.34 

RMS error of T(nigals) 

Tzz 0.71 

Txz 0.81 

0.7.3 

TXX TXY TXZ 0.58 

TXX TXY TXZ TZZ 0.54 

RMS error of T(mgals) 

Tzz 0.44 

Tyz 0.60 

Txy Tyy 0.73 

Txy Tyy Tyz 0.56 

Txy Tyy Tyz Tzz 0.55 
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Comparing Table 7.3 to Tables 7.1 and 7.2, the conclusion is that 

downward continuation generate errors of less than 0.1 mgal and 

usually less than 0.06 mgal. This conclusion agrees well with the 

covariance analysis results obtained by Jordan ( 1982). Similar 

results are obtained when the gradiometer noise is taken into account. 

The small effect of downward continuation can be explained from 

the ratio of flying altitude to grid spacing. In this research the 

ratio is about 1:4. This means that the values of the downward 

continuation operator e2X1 vary between 1.0 and 2.1. This is more 

clearly illustrated in Fig. 7.5. 

2.2-

2.0 - 

'1 . 8 - 

1.6-

1.4-

1 . 2 - 

1.0 I I I I II1 I I I J I I I I I I 

0.00 0.04 0.08 0.12 0.16 0.20 (cycles/km) 

Fig. 7.5 Downward continuation operator for flying altitude 
of 0.6 km and grid spacing of 2.4 km. 
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Fig. 7.5 shows that for frequencies between 0.0 and 0.18 cycles/km, 

the downward continuation operator is, below 2, so any errors 

introduced from the plane integration of the second-order gradients 

are amplified by a very small factor. With an increase in the flying 

altitude/grid spacing ratio, the downward continuation operator 

becomes larger and thus high frequency errors are greatly amplified. 

Fig. 7.6 illustrates the downward continuation operator for both 

flying altitude and grid spacing equal to 2.4 km, and the strong 

downward continuation effect becomes clear. 

20 - 

18-

16-

10 - 

8-

6 

4 

2-

0 I I I I I I IJ I III I I 

0.00 0.04 0.08 0.12 0.16 0.20 (c Y c  es/km) 

Fig. 7.6 Downward continuation operator for flying 'altitude 
and grid spacing equal to 2.4 km. 
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7.5 INTERPOLATION OF TXTYTZ BETWEEN PROFILE POINTS  

To test the estimation method developed in chapter 4, the 

estimated first-order gradients T , T z were interpolated between 

the grid points. For simplicity, the interpolation was done on a grid 

with spacings half the spacings of the measurement grid. In other 

words, the interpolation grid has north and east spacings equal to 

1.16 km and 1.22 km, respectively. The interpolated values of the 

estimated T, T were compared to the true values of T, Ty T z at 

the surface of the earth. The interpolation of the estimated and the 

true gradients is performed using the FFT algorithm, discussed in 

section 3.1.5. The root mean square values of thedifferences between 

the true and the estimated gradients T , T z at the earth's surface 

are given in Table 7.4. 
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Table 7.4 

Results from the Interpolation of T , T z Between Profile Points 

Measurements 

RMS error of T(mgals) 

TZZ 
0.85 

0.64 

TXZ TYZ TZZ 0.62 

RMS error of T(mgals) 

0.93 

Txz 0.97 

0.73 

TXX TXY TXZ 0.71 

RMS error of T(mgals) 

Tzz 0.92 

0.95 

TWIT yy 0.78 

TXY TYY TyZ 0.67 

Two major conclusions can be drawn from Table 7.4. First the 

accuracy of the interpolated gradients T from their vertical second-

order gradients T iz is about 0.2 mgal poorer than the accuracy of 

interpolated from their horizontal second-order gradients T ix ,Tjy• 

This confirms results reported in earlier investigations for the 

gradient T, namely that the gradient T zz is preferable for downward 

continuation while xz yz are better for the interpolation of 

(Schwarz, 1976; Schwarz, 1977). SecOnd, the accuracy of the 
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interpolated horizontal gradients T X5 T from gradients Tzz is 

significantly poorer than the accuracy of T, Ty computed from Tzz at 

points directly below the measurement points. Therefore T zz is not 

recommended for interpolation of T, I,,. 



Chapter 8 

CONCLUSIONS AND RECOMMENDATIONS 

This research deals with the estimation of first-order gradients 

T of the anomalous gravity potential from airborne second-order 

gradients Tij . Three major problems had to be solved by the estimation 

technique developed. First, it should be capable of combining all 

gradient data. Second, gradiometer noise should be included in the 

estimation. Third, computational efficiency was of high importance. 

The theoretical development, discussed in chapters 3 and 4 leads 

to the following conclusions. First, for stationary and ergodic 

signals a multiple input-single output filte.r system is equivalent to 

Wiener filtering in the plane. Second 2-D Wiener filtering can be 

derived as 2-D Fourier transform of least squares collocation under 

the above assumptions. Thus, the multiple input-single output 

filtering equations take into account the gradiometer noise' and the 

interrelations among the gradients of the anomalous potential. 

Assuming flat earth approximation these interrelations can be derived 

through the transfer functions of the gradients with respect to the 

anomalous potential. They combine plane integration and downward 

continuation as does least-squares collocation. Third, new interesting 

integral formulas relating each first-order gradient with its second-

order gradients are derived using the transformation of the frequency 

domain plane integration formulas to the space domain. In addition a 

new integral formula is derived relating the anomalous potential to 

the deflections of the vertical and the gravity disturbance. Those 

formulas hold assuming smooth topography for the survey area. 

111 
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Since no airborne gradiometer data are available at present the 

method was tested with simulated data as close as possible to the 

planned mission. The following conclusions can be drawn with respect 

to the results obtained. First, each first-order gradient is most 

precisely determined by combining its second-order gradients, i.e. T 

is most precisely estimated from the combination of xz Tyz 

Second, the gradient T zz provides accurate estimates of all first 

order gradients at points below the measurement points, however it 

provides significantly poorer interpolation results. Therefore a 

vertical single axis gravity gradiometer measuring the gradient 

only, may be considered as a less costly alternative to a three axis 

gradiometer if the decrease in accuracy is acceptable. Third, 

assuming gradiometer noise at the level of 80 E2/Hz, there is no 

difference between solutions modelling the noise or neglecting it. 

When the noise is at the level of 300 E2/Hz however, the accuracy of 

theestimation of T, Ty T z computed from Txz respectively 

is significantly deteriorated when the noise is neglected while it 

remains almost the same as before when the noise is taken into 

account. For the same higher noise level of 300 E2/Hz, the- accuracy 

of each first-order gradient computed from all other investigated 

second-order gradient combinations is essentially the same by either 

neglecting or taking the gradiometer noise into account. Fourth, the 

vertical second-order gradient of each first-order gradient is most 

useful for downward continuation, while the horizontal second-order 

gradients are better for interpolation. The accuracy to be expected 

from the currently available Bell gradiometer and the proposed survey 

geometry is about 0.7 mgals. This accuracy was obtained by assuming 
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constant flying altitude. For actual ( surveys this accuracy can be 

achievable if the aircraft altitude is measured with an accuracy less 

than 1 m, thus introducing errors in T , T z less than 0.3 mgals. 

Fifth, downward continuation from a flying altitude of 600 m and grid 

spacing of about , 2.4 km amounts to less than 0.1 mgals of the total 

estimation error of about 0.7 mgals. However, since this error 

contribution depends strongly on the ratio of flying altitude to grid 

spacing, this result is specific to the simulated gradiometer mission. 

Much higher values can be expected for a larger ratio. Sixth, the 

method is computationally fast. It takes about 10 CPU minutes to 

compute one first-order gradient at 41616 grid points, from 167000 

values of airborne second-order gradients including input and output. 

A fully optimized-vectorized version of these programs would take less 

than 30 cpu seconds on the Supercomputer CDC Cyber 205. Thus, 

computationally this method is superior to least-squares collocation. 

Recommendations for the coritini.iation of this research are made 

in four areas. , First, airborne gravity gradiometry recovers 

wavelengths of up to 500 km. , Therefore the estimated first-order 

gradients from airborne second-order gradient data do not contain long 

wavelength trends and the estimated gravity signal surface is tilted 

with respect to the actual gravity signal surface. Nevertheless the 

estimated gravity surface can 'be tied down to the actual gravity 

surface using a few astrogravimetric tie points in the following way. 

The differences between the measured and the estimated T, T from 

airborne gradients are computed at a few strategically placed tie 

points. Then, these differences can be used in a low' frequency 

least-squares collocator to tie the estimated Tx T,,, T z to the actual 



114 

T , T at any point of the gradiometry survey area. In this 

research long wavelength trends of the gravity signal were provided by 

means of the Rapp 1978 spherical harmonic expansion truncated at 

degree 36. Second, all estimation methods already proposed for the 

estimation of T z from airborne second-order gradients should 

be tested on a common data set. Such a test will reveal the strong 

and weak points of each method and in addition it will show which 

method is the most efficient computationally. Third, the effect of 

terrain and variable density on the airborne gravity gradients has not 

been investigated in this thesis. However the theoretical development 

for this investigation already exists ( Parker, 1972; Dorman and Lewis, 

1974). Since this effect can amount to several tenths or even a few 

hundreds of Eotvos, these formulas should be implemented. Finally, 

another area of future importance is the use of airborne gravity 

gradiometry in geophysical exploration. Advantages of airborne 

gra'ity gradiometry as compared to terrestrial gravity methods are the 

much finer resolution of the local anomalous gravity field and the 

much higher sensitivity to shallow structures (Schwarz and Vassiliou, 

1986). Airborne gravity gradiometry as an inverse potential method 

does not provide a unique solution, however when combined with other 

geophysical methods ( seismic, aeromagnetic methods, etc.) it may prove 

very useful. 



115 

BIBLIOGRAPHY AND REFERENCES 

1. Bendat, J.S. and A.G. Piersol ( 1971). Random Data: Analysis and 

Measurement Procedures. John Wiley & Sons. New York. 

2. Bendat, J.S. and A.G. Piersol ( 1980). Engineering Applications 

of Correlation and Spectral Analysis. John Wiley & Sons. New 

York. 

3. Bloomfield, P. ( 1975). Fourier Analysis of Time Series: An 

Introduction.John Wiley & Sons. New York. 

4. Bracewell, R. ( 1978). The Fourier Transform and its Applica-

tions.2nd Edition, McGraw-Hill; New York. 

5. Brigham, E.O. ( 1974). The Fast Fourier Transform. Prentice-Hall 

Inc. Englewood Cliffs, N.J. 

6. Brozena, J.M. ( 1984). A preliminary Analysis of the NRL Airborne 

Gravimetry System. GeophysicsVol. 49, No. 7, pp. 1060-1069. 

7. Colombo, O.L. ( 1981). Numerical Methods for Harmonic Analysis on 

the Sphere. Ohio State University. Reports of the Department of 

Geodetic Science and Surveying. Report No. 310. Columbus, Ohio. 

8. Cooley, J.W. and J. W. Tukey ( 1965). An Algorithm for the 

Machine Calculation of Complex Fourier Series. Math.Computation 

Vol. 19, pp. 297-301. 

9. , Coons, R.L. Strange, W.E. and G.P. Woolard ( 1962). Evaluation 

Study of Airborne Gravimeter Operational Test. University of 

Wisconsin Geophysical and Polar Research Center. Report No. 

62-2. 

10. Crochiere, R.E. and L.R. Rabiner ( 1981). Interpolation and 

Decimation of Digital Signals - A Tutorial Review. Proceedings 



116 

of the IEEE Vol. 9, No. 3, pp. 300-331. 

11. Dorman, L.M. and T.R. Lewis ( 1974). The Use of Nonlinear 

Functional Expansions in Calculation of the Terrain Effect in 

Airborne and Marine Gravity and Gradiometry. Geophysics, Vol. 

39, No. 1, pp. 33-38. 

12. Eren, K. ( 1980). Spectral Analysis of GEOS-3 Altimeter Data and 

Frequency Domain Collocation. Ohio State University. Reports of 

the Department of Geodetic Science and Surveying. Report No. 

297. Columbus, Ohio. 

13. Forsberg, R. ( 1984a). A Study of Terrain Reductions, Density 

Anomalies and Geophysical Inversion Methods in Gravity Field 

Modelling. Ohio State University. Department of Geodetic Science 

and Surveying. Report No. 355. Columbus, Ohio. 

14. Forsberg, R. ( 1984b). Local Covariance Functions and Density 

Distributions. Ohio State University. Department of geodetic 

Science and Surveying. Report No. 356. Columbus, Ohio. 

15. Forward, R.L. ( 1971). Geodesy with Orbiting Gravity 

Gradiometers. Hughes Research Laboratories. Research Report No. 

442, Malibu, California. 

16. Forward, R.L. and C.B. Ames ( 1977). Prototype Moving Base 

Rotating Gravity Gradiometer. Program Status Review, Hughes 

Research Lab. Malibu, California. 

17. Gumert, W.R., and G.E. Cobb ( 1970). Helicopter Gravity Measuring 

System. Included in Advances in Dynamic Gravimetry, W.T. Kattner 

(Editor), pp. 79-83. 

18. Hammer, S.I. ( 1982). Airborne Gravity is Here!oil and Gas 

Journal, Vol. 80, pp. 113-122. 



117 

19. Hammer, S.I. ( 1983). Airborne Gravity is Here! Geophysics, Vol. 

48, No. 2, pp. 213-223. 

20. Harris, F.J. ( 1978). On the Use of Windows for Harmonic Analysis 

with the Discrete Fourier Transform. Proceedings of the IEEE, 

Vol. 66, No. 1, pp. 51-83. 

21. Heiskanen, W.A. and H. Moritz ( 1967). Physical Geodesy. W.H. 

Freeman, San Fransisco. 

22. Heller, W.G. and W.J. Senus ( 1983). Emergent Moving-Base Gravity 

Gradiometer Systems and their Ultimate Potential Impact on 

Terrestrial Gravimetric Data Bases. Proceedings of the XVIII 

General Assembly of the International Union of Geodesy and 

Geophysics, Hamburg, Germany. 

23. Herring, T.A. ( 1978). Determination of the Deflections of the 

Vertical from Horizontal Gravity Gradients. M.Sc. Thesis. 

University of Queensland. Department of Surveying Engineering. 

24. Hodus, M.F. ( 1985). The Vectorization of BIEM. Included in 

Supercomputer Applications, A.H. Emmen ( Editor). Elsevier 

Science Publishers B.V. ( North-Holland). 

25. Hutcheson, W.J. and A.D. Grierson ( 1985). Gravity 6radiometer 

Post Mission Data Processing. Proceedings of the Third 

International Symposium on Inertial Technology for Geodesy and 

Surveying. Banff, Canada. 

26. International Mathematical and Statistical Library ( IMSL) 

reference manual ( 1981). Edition 8. Houston, Texas. 

27. Jekeli, C. ( 1983). Achievable Accuracies for Gravity Vector 

Estimation from Airborne Gravity Gradiometry. Proceedings of the 

XVII General Assembly of the International Union of Geodesy and 



.118 

Geophysics. Hamburg, Germany, pp. . 577-594. 

28. Jekeli, C. ( 1984a). Analysis of Airborne Gravity Gradiometer 

Survey Accuracy. Manuscripta Geodaetica, Vol. 9, No. 4, pp. 

323-379. 

29. Jekeli, C. ( 1984b). Data Processing Techniques for Airborne 

Gravity Gradiometry. Proceeding's of the International Summer 

School on Local Gravity Field Approximation.Beijing, China, pp. 

583-602. 

30. Jekeli, C.. ( 1985). Gravity Vector Estimation from a Large and 

Densely Spaced Heterogeneous Gradient Data Set Using Closed-Form 

Kernel Approximations. Proceedings of the Third International 

Symposium on Inertial Technology for Surveying and Geodesy. 

Banff, Canada. 

31. Jordan, S.K. ( 1978). Moving-Base Gravity Gradiometer Surveys and 

Interpretation. Geophysics, Vol. 43, No. 1, pp. 94-101. 

32. Jordan, S.K. ( 1982). Airborne Gravity Gradiometer Survey 

Accuracy. Geospace Systems Corporation. Report No. TR-34-1. 

33. Krarup, T. ( 1969). A Contribution to the Mathematical Foundation 

of Physical Geodesy. Danish Geodetic Institute. Meddelelse No. 

44. 

34. LaCoste, L., Ford, J., Bowles, R., and K. Archer. ( 1977). 

Gravity Measurements in an Airplane using State-of-the-Art 

Inertial Navigation. Paper presented at the 47th Annual 

International SEG Meeting. 

35. Meissl, P. ( 1970). Probabilistic Error Analysis of Airborne 

Gravimetry. Ohio State University. Reports of the Department of 

Geodetic Science and Surveying. Report No. 138. Columbu, Ohio. 



119 

36. Metzger, E.H. and A. Jircitano ( 1977). Application Analysis of 

Gravity Gradiometers for Mapping of Earth Gravity Anomalies and 

Derivation of the Density Distribution of the Earth Crust. 

Proceedings of the First International Symposium on Inertial 

Technology for Surveying and Geodesy. Ottawa, Canada, pp. 

334-342. 

37. Metzger, E.H. and A. Jircitano ( 1981). Application of Bell 

Rotating Accelerometer Gravity Gradiometers and Gravity Meters 

to Airborne or Land Vehicle Gravity Surveys. Proceedings of the 

Second International Symposium on Inertial Technology for. 

Surveying and Geodesy.Banff, Canada, pp. 521-535. 

38, Moritz, H. ( 1967). Kinematical Geodesy. Ohio State University. 

Reports of the Department of Geodetic Science and Surveying. 

Report No. 92. Columbus, Ohio. 

39. Moritz, H. ( 1971). Kinematical Geodesy II. Ohio State 

University. Reports of the Department of Geodetic Science and 

Surveying. Report No. 165. Columbus, Ohio. 

40. Moritz, H. ( 1975). Combination of Aerial Gravimetry and 

Gradiometry. Ohio State University. Reports of the Department of 

Geodetic Science and Surveying. Report No. 223. Columbus, Ohio. 

41. Moritz, H. (1980). Advanced Physical Geodesy. Herbert Wichmann 

Verlag, Karlsruhe. Abacus Press, Tunbridge Wells, Kent. 

42. Nashed, M.A. ( 1976). Aspects of Generalized Inverses in Analysis 

and Regularization. In Generalized Inverses and Applications 

M.Z. Nashed ( Editor). New York. 

Nettleton, L.L., LaCoste, L. and J.C. Harrison ( 1960). Tests on 

an Airborne Gravity Meter. Geop,hysics,VOl. 25, pp. 181-202. 



120 

44. Paik, H.J. ( 1976). Superconducting Tunable-Diaphragm Transducer 

for Sensitive Acceleration Measurements. Journal of Applied 

Physics,Vol. 47, No. 3, pp. 1168-1178. 

45. Paik, N.J. ( 1979). Unified Theory of Gravitational Radiation 

Detectors for Pulses and Monochromatic Signals. Proceedings of 

the Second Marcel Grossmann Meeting on the Recent Developments 

of General Relativity.Trieste, Italy. 

46. Paik, N.J. ( 1981). Superconducting Tensor Gravity Gradiomèter. 

Proceedings of the Second Inertial Symposium on Inertial 

Technology for Surveying and Geodesy. Banff, Canada, pp. 

555-568. 

47. Paik, N.J. ( 1985). Review of Superconducting Accelerometer and 

Gravity Gradiometer Research at the University of Maryland. 

Paper presented at the Thirteenth Moving Base Gravity 

Gradiometer Conference. Colorado Springs, U.S.A. 

48. Paik, N.J. Mapoles E.R. and K.Y. Wong ( 1978). Superconducting 

Gravity Gradiometers. Proceedings of the Conference on Future 

Trends in Superconductive Electronics. Charlottesville, U.S.A. 

49. Papoulis, A. ( 1968). Systems and Transforms with Applications in 

Optics. McGraw-Hill. New York. 

50. Parker, R.L. ( 1972). The Rapid Calculation of Potential 

Anomalies. Geophys. J.R. Astr. Soc-i, Vol. 31, pp. 447-455. 

51. Rapp, R.H. ( 1978). A Global 1°xl° Anomaly Field Combining 

Satellite GEOS-3 Altimeter and Terrestrial Anomaly Data. Ohio 

State University. Reports of the Department of Geodetic Science 

and Surveying. Report No. 278. Columbus, Ohio. 



121 

52. Rummel, R. ( 1975). Downward Continuation of Gravity Information 

from Satellite to Satellite Tracking or Satellite Gradiometry in 

Local Areas. Ohio State University. Reports of the Department of 

Geodetic Science and Surveying. Report No. 221. Columbus, Ohio. 

53. Schafer, R.W. and L.R. Rabiner ( 1973). A Digital Signal 

Processing Approach to Interpolation. Proceedings of the IEEE, 

Vol. 61. No. 6, pp. 692-702. 

54. Schwarz, K.P. ( 1976). Geodetic Accuracies Obtainable from 

Measurements of First and Second Order Gravitational Gradients. 

Ohio State University. Reports of the Department of Geodetic 

Science. Report No. 242. Columbus, Ohio. 

55. Schwarz, K.P. ( 1977). Simulation Study of Airborne Gradiometry. 

Ohio State University. Reports of the Department of Geodetic 

Science and Surveying. Report No. 253. Columbus, Ohio. 

56. Schwarz, K.P. ( 1979). Geodetic Improperly Posed Problems and 

Their Regularization. Bolletino di Geodesia E Scienze Affini, 

No. 3, pp. 389-416. 

57. Schwarz, K.P. and A.A. Vassiliou ( 1986). Requirements for the 

Use of Airborne Gravity Gradiometry in Geophysical Exploration. 

Paper presented at the Fourteenth Moving Base Gravity 

Gradiometer Conference. Colorado Springs, U.S.A. 

58. Szabo, B. and D. Anthony ( 1971). Results of AFCRL'S Experimental 

Aerial Gravity Measurements. Bulletin Geodesique, Vol. 45, pp. 

179-202. 

59. Thompson, L.G.D. ( 1959). Airborne Gravity Meter Test. Journal of 

Geophysical Research, Vol. 64, pp. 488-497. 



122 

60. Trageser, M.B. ( 1970). A Gradiometer System for Gravity Anomaly 

Surveying. The Charles Stark Draper Laboratory. Report R-588. 

Cambridge, Massachusetts. 

61. Trageser, M.B. ( 1975). Feasibility Model Gravity Gradiometer 

Test Results. The Charles Stark Draper Laboratory. Report P-179. 

Cambridge, Massachusetts. 

62. Tscherning, C.C. ( 1977). A Note on the Choice of Norm when Using 

Collocation for the Computation of Approximations to the 

Anomalous Potential. Bulletin Geodesique Vol.51, pp. 137-147. 

63. Tscherning, C.C. ( 1984). Local Approximation of the Gravity 

Potential by Least Squares Collocation. Proceedings of the 

International Summer School on Local Gravity Field 

Approxmation. Beijing, China, pp. 277-361. 

64. Vassiliou, A.A. ( 1985a). The Use of Spectral Methods for the 

Spatial Modelling of Gravity Data. Manuscripta Geodaetica. Vol. 

10, No. 4, pp. 235-244. 

65. Vassiliou, A.A. ( 1985b). Comparison of Methods for the 

Processing of Gravity Gradiometer Data. Proceedings of the Third 

International Symposium on Inertial Technology for Surveying and 

Geodesy. Banff, Canada. 

66. Vassiliou, A.A. and K.P. Schwarz ( 1985). Study of the High 

Frequency Spectrum of the Anomalous Gravity Potential. Paper 

presented at the Thirteenth Moving Base Gravity Gradiometer 

Conference. Colorado Springs, U.S.A. 

67. White, J.V. ( 1980). Error Models for Gravity Gradiometers in 

Airborne Surveys. Report No. AFGL-TR-80-022Q, Government Access 

No. ADA097745. Prepared by the Analytic Sciences Corporation 



123 

(TASC) for the Air Force Geophysics Laboratory. Bedford, 

Massachusetts. 

68. White, J.V. and J.D. Goldstein ( 1984). Gravity Gradiometer 

Survey Data Processing. Report No. AFGL-TR-84-0198. Prepared by 

the Analytic Sciences Corporation ( TASC). Reading, 

Massachusetts. 


