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Abstract A working hypothesis is presented and justified, called the Fundamental
Systems Hypothesis. It relates expected net output value, complexity, risk and resources,
and governs all agent-directed systems. The general veracity of this Hypothesis appears
such that it could be considered a Fundamental Law of Systems. The risk measure is either
conventional standard deviation risk or mean deviation risk. There are two risk
parameters: positive and negative risk. There are two complexity parameters: monitoring
or checking complexity, and resource scheduling & utilization complexity. Complexity is
defined as a specification length after Gell-Mann. Both complexity parameters measure
complexity in the system's environment-coping procedure that monitors an often close-to-
random time function representing the unfolding environment. The Hypothesis is
expressed as a mathematical relationship that reduces to numerical values for specific
system circumstances. The established Markowitz-Sharpe-Lintner relationship between
return, capital resources and risk for the subclass of financial systems is inherent in the
Hypothesis. The Hypothesis can be subjected to experimental test.

Key words Complexity, fractal, Hurst constant, time function, random walk, resources,
risk, spectral density.

1.0 Introduction

In recent decades the complexity of systems, particularly computer systems and
systems containing major computer subsystems, has very greatly increased. At the same
time complex systems are increasingly having to cope with serious risk in their operating
environment. Examples are systems in aircraft and ships, both military and commercial,
systems in spacecraft and orbital vehicles, systems in power plants, especially nuclear
plants, systems in hospitals, systems in bioengineering, and systems in critical
manufacturing processes. With all of these systems, despite their complexity and
associated risk, there are always directing human agents in the background. Unfortunately,
these agents may not always be able to reason clearly about the relationship between
system output, resources, environment risk, and complexity. As a result serious mistakes
can occur, both in system design and system operation. The purpose of this paper is to
report the results of research that clearly reveals the nature of this relationship, in order to
help prevent such mistakes.

In this paper we argue for a working hypothesis, called the Fundamental Systems
Hypothesis, relating system output, complexity, risk and resources, which governs all
systems. However, we are confident of the general veracity of this hypothesis, so that it




could also be considered as a Fundamental Law of Systems. This Systems Hypothesis is of
course relevant to computer systems and software engineering, and the author believes
that persons familiar with its workings will be better equipped to think about, analyse,
create and understand the implications of, and manage computer systems of all kinds.

There seems to be no record in the literature on systems, particularly computer
systems, of work done to relate coping complexity to risk. However, there is a very great
deal in the financial literature on research relating financial returns to risk and financial
resources. The ground-breaking work in this area was done by Markowitz [18], Sharpe
[23, 24] and others [7, 13, 14, 27] in the 1950s and 1960s. Their results are widely used in
the financial arena [3, 19, 21] and are standard material in undergraduate finance courses.
The work described in this paper first of all extends Markowitz's and Sharpe's work to
how system output in general is related to risk and resources. But most importantly, it
brings complexity in a highly specific manner into the overall scheme of things along with
system resources, risk and output, for systems in general.

2.0 A Fundamental Systems Hypothesis

At the outset, we consider a system to be an entity that functions under the
direction of one or more agents. A system also employs resources in converting a set of
inputs, informational or material or both, to a set of outputs. The system outputs are
normally of greater value to the agents than the total inputs, so that is there is a net
positive output value, measurable by the agent, associated with system operation. In
addition a system is usually made up of a network of subsystems, each of which can be
considered to be a system, all or part of the outputs from one or more subsystems can be
the all or part of the inputs to another subsystem. With a subsystem the agent is not
necessarily human.

To begin, we state the Hypothesis as a relationship between net output value,
resources, environment risk and complexity as follows:

V=KR (1 + blrp - ber + b3P +aiCp t azcs) (1)

* V is the dependent variable equal to the expected net value per unit time produced by
the system.

* R is an independent variable equal to the value of the resources of the system directed
towards exploiting an environment.

* rp is an independent variable equal to a measure of the risk in the system's operating
environment of loss of value, for risk it can pay to run repeatedly (positive risk), the
independence of rp is such that it can be varied by the agent shifting the system to a
different operating environment.

* ry is an independent variable equal to a measure of the risk in the system's operating
environment of loss of value, for risk it can not pay to run (negative risk) but can pay to
prevent; ry will frequently be zero; the independence of ry is such that it can be varied by
the agent shifting the system to a different operating environment.







The exact meaning of the resource measure R (and P) and net output measure V is
important. The units of both R and V are the same, namely units of value. With respect to
a human agent, the quantity Q of any commodity can serve as a measure of value, e.g.
quantity Q salt, quantity Q of 64-Mbit DRAMSs, by comparison to that quantity S of a
commodity that serves as the standard of value, assuming that the quantity Q can be freely
exchanged by system agents for a quantity of the standard. Thus the ultimate measure of R
and V will be in units of a (standard) currency, although we can use any other units, such
as quantity of any commodity, provided there exists some potential exchange rate (that is,
the price), even if not currently known, between the commodity and the standard.

It should be clear that time must be considered as a resource when dealing with
systems. All systems have a finite life, so that the resources R of the system are consumed
over the system's life, this consumption affecting net output V. Suppose a system
generates a specific net output v, in a time t;. If system operation is changed so that it now
takes time 2t; to generate a net output v;, resources vi/2 have been diverted from the
system over time period t;. Thus time must be considered a resource.

Risk versus resources

This part of the Systems Hypothesis for the most part shows how output V depends on
resources R applied and the positive risk rp in the operating environment of the system.
But before we proceed to analyse risk versus resources, we need a measure of risk.

Risk is normally run to secure some gain, and is therefore of primary interest.
Consequently, the concept of risk has been thoroughly studied in the insurance and
financial industry [2, 5, 7]. A major result is that we know that there are only two basic
methods of dealing with risk to secure the associated gain, either run the risk or do not run
the risk. These two methods lead to a deeper classification as follows:

A. Running the risk

(2) Run the risk directly without insurance, and suffer unpredictable losses when the
hazard occurs.

(b) Run the risk directly but insure it too, in whole or in part, and so distribute over time
(at least some of) the losses due to the hazard occurring. Some risks cannot be insured.

(c) Run the risk directly but counterbalance it by operating in two areas that behave
oppositely, so that what is lost in one is counterbalanced, at least partly, by a gain in the
other. Some risks cannot be counterbalanced.

B. Not running the risk, while retaining the gain possibility

(a) Avoid the risk, by finding an alternative activity that still achieves the gross benefits
(even at some additional cost) but eliminates running the risk; for some risks there is no
such alternative.

(b) Prevent the risk, by applying resources




1. From detailed knowledge of the nature of the hazard, apply relevant material
resources to eliminate the threat of the hazard occurring. For some risks this is not
possible.

2. From detailed knowledge of the nature of the hazard apply material resources to
prevent the loss should the hazard occur. For some risks this is not possible.

(c) Neutralize the risk, by applying a complex environment coping procedure or
procedures to detect either early hazard warnings, in time to undertake preventative
action, or exploit compensating opportunities. For some risks this is not possible.

Simple risk measures

From classification B(b) above, it is clear that risk has two components, namely the
probability p of a hazard occurring and the size L of the loss should the hazard occur. This
can also be looked at statistically in terms of the frequency f of a hazard's occurrence over
period of time T, together with size L of the loss. Thus over T, Lf is the total loss and thus
a simple measure of the risk, that is, Lf/T, or Lp per unit of time. If the system is exposed
to a set of hazards over T, each of probability p,, p,, ... and with associated losses L;, L,,
..., the aggregate risk is Lyp; + Lyp, + ... Thus a simple measure of risk is the 2-tuple (p,
L) or the product pL. Unfortunately, with complex systems these simple measures can be
seen to be inadequate.

With any system, losses due to risk exposure show up as a reduction in net output V
(but notice that since V is a net quantity, a V reduction may have its source in a loss in R).
However remember that in a situation where there is exposure to possible loss (risk), there
will be exposure to possible gains in addition. Both rain and sunshine occur. This
complicates matters very considerably. Suppose a situation with loss probabilities py, p,, ...
and loss sizes L, L,, ... over a time T with a total loss of therefore (Lip; + L,p; + ...).
Suppose in addition gain probabilities q;, q, ... with gains G;, G, ..., so that there occurs
an offsetting gain (q;G; + q2G, + ...). In such a situation the risk appears to be less than it
would otherwise be if the gains were not possible, for it can be argued that at least some
of the losses will have been offset by the gains. However this appearance can be an
illusion.

The essence of understanding the nature of risk in general, and developing an
adequate measure, lies in the nature of how offsetting gains affect risk. Even if

(Pili +pala + ) = (@G + G2 + )
so that there is no net loss over time T, because the gains and losses will not occur at the
same time - in one unit of time it may be all losses and no gains and vice versa - most will
agree that while the offsetting gains may ameliorate the risk to some extent, they do not
eliminate the risk. Instead the observable result of this stream of unpredictable losses and
gains will be a fluctuating V with time. The solution to the problem of a risk measure that
allows for unpredictable gains as well as losses in any system case corresponds to the risk
measure developed in the 3rd quarter of the century by H. Markovitz [18] and W.F
Sharpe [23,24] and others [7, 13, 14, 27] for financial systems. This solution is widely
accepted and used in practice with financial and corporate systems [3, 5, 7, 21], and is
believed to be fundamentally correct. We will develop it further for the case of any system,
financial or otherwise.




Deviation Risk Measures

Suppose that over a long period of time, involving many time units (e.g. years,
minutes) the total net output of a system is W. Suppose that over the same time the
system was exposed to unpredictable losses and gains, and the results of all of the realized
losses and gains are included in W. Assuming that output at the end of each time unit was
never used as part of the system resource R in the next time unit (that is, the equivalent of
reinvestment in financial systems, or growth in economic or biological systems), then the
average or expected net output V per time unit must be W/T. (If there was
reinvestment/resource growth during T then V must be computed from W in a non linear
fashion; but as this does not affect the essense of the argument and risk measure being
developed, we ignore reinvestment/growth as an irrelevant complication.)

Although the average output (or expected output) may be V, the actual outputs in
each of n time periods during T will be something like:

V-L,V-L,,..V-L,V+G, V+ Gy, ... V+G;
where L;, L,, ... are deviations downward (losses) from the average output V, and G,, G,,
... are deviations upward (gains) from V. These outputs can occur in some unpredictable
order, and we will have

j+i=n, and

Lt +  L)=(G + G +..Gy)
since we must have:

(nV+ (G +Gy+...+Gj-Li-L, ... -Ly) n=V

Thus in practice with any system we must deal with unpredictable losses (L;, or Lo, ...)
and gains (G,, or Gy, ...) with respect to an average output V in a given time unit (year,
minute, etc), and it is such losses with respect to an average output that must be used in
the measure of risk.

In the context of a fluctuating output and an average output per unit of time, for a
meaningful measure of risk there are now two main choices:

Choice 1. Take the mean deviation of (L, L,, ... G, Gy, ...) to give the Mean Deviation
(MD) risk measure.

Interpretation: An MD-risk of m means that over the next time unit (year, month) there is
a 50% chance of a loss, with respect to the expected average output V, equal to m, and
that to a good approximation, there is a 25% chance of a loss less than m and 25% chance
of a loss greater than m.

Choice 2. Take the standard deviation of (L, L,, ... G;, Gy, ...) to give the Standard
Deviation (SD) risk measure.

Interpretation: A SD-risk of s means that over the next time unit, there is a 50% chance of
a loss with respect to the expected V, and 34% chance of a loss < s and a 16% chance of
a loss > s; in addition there is a 47.5% chance of a loss < 2s and a 2.5% chance of a loss >




2s. In addition there is a 68% chance of either a loss <s or gain <s, with respect to the
expected V. The percentages assume that losses and gains in each time unit are distributed
reasonably normally.

To be quite specific about the meaning of these risk measures, suppose a 20 unit
time period T, with a net output W = 2000 over T. Suppose also 5 time units each with a
loss 15, 5 time units each with a loss 5; and furthermore suppose 5 time units each with a
gain S and 5 time units each with a gain 15; all gains and losses are with respect to the
expected output V and are assumed to occur in some random order.

The expected output V per time unit is 2000/20 or 100, and the average deviation
is (15*5 + 5*5 + 15%5 + 15*5)/20 or 10, giving an MD-risk of 10. Thus in any time period
looking forward, there is a 50% chance of a loss of 10, and 50% chance of a gain of 10;
there is also a 25% chance of a loss <10 (i.e. 5) and a 25% chance of a loss >10 (i.e. 15),
with respect to the expected V of 100, all of which make sense. (But notice, a person who
considers only the losses and ignores the gains will find total losses over the 20 time units
of 15*5 + 5*5 or 100, or an average of 5 per time unit, which will be half the MD-risk,
and less than half the SD-risk.)

The standard deviation of the 20 deviations above is sqrt(5*225 + 5*25 + 5*25 +
5*225)/20) = sqrt(125 ) or 11.2, giving a SD-risk of 11.2. Thus there will be 50% chance
of a loss, but 34% chance of a loss less than 11.2 and 16% chance of a loss greater than
11.2.

It is clear either deviation risk measure could be used, as they are closely
equivalent. The MD-risk measure has the advantage of being more intuitively appealing
when seeking insight into a situation, whereas the SD-risk measure is more mathematically
tractable when involved statistical analysis is necessary. The SD-risk measure is widely
used in data processing relevant to portfolio selection and management in investment
analysis [3, 5, 18, 21, 23] Since this paper is seeking insight into fundamental matters, we
will tend to discuss matters with the MD-risk measure in mind; however the same results
will be obtained if the reader relies on the SD-risk measure.

The influence of resources on risk

We must now show using MD (or SD) risk measures rp and ry, that V = K;R(1 +
a rp + apry + bsP. Readers will be aware that a somewhat similar but simpler expression is
used in finance and developed by Sharpe [23, 23] to relate the income (I) from an invested
principal sum S under conditions of risk, namely

I=S(+i+kr) ... Q)
where i is the rate (expressed as a fraction of S) of return, or interest rate, in the absence
of risk, and kr is the extra rate of return added by the presence of risk (SD-risk) r in the
environment. This expression can be rewritten
I=(1+1)SA +rk/(1+1i)), or I=KS(1+Br) (52)

where K and B are constants. This converts expression (5) to an expression in the same
form as the Hypothesis-derived expression (2a) or V = KR(1 + brp) with negative risk ry
assumed zero and risk prevention resources P assumed zero. This indicates that the
financier's risk r is the equivalent of the general system positive risk rp.




This relationship (5) is basic for financial systems. For example, a principal sum S
invested in a long bond environment (higher fluctuation or SD-risk) will give a higher
average income than S in medium-term bond environment (medium SD-risk), which
income in turn will be higher than from P in very short term bond environment (little SD-
risk). In general, the rule that return on investment of a given principal sum S increases
with the associated risk of the financial environment selected for investment, or
equivalently, that for a given income, less S is needed as environments with increasing risk
are selected, seems to hold true in the environments of financial systems [3, 24].

We can now show that there is a reason for a positive linear relation between
system output and the the (positive) risk of the operating environment, applicable to all
systems, but true only for risk of a specific type. This can be deduced from the existence
of only two fundamental choices in dealing with a risk associated with a system, namely
(A) run the risk, or (B) do not run it, while preserving the associated gain, as earlier
classified.

Now consider two environments E;, and E,. E; is risk free and gives a fixed output
F per time unit for application of a system with resources R which regularly transforms
inputs N to outputs U. E, is the same as E; except that in E, the transformation of N to U
is risky. Carrying out an operation in a risky environment must generate more value than
carrying out exactly the same operation with the same resources in a risk-free
environment. Hence the value output in E; must be higher than F as follows. Suppose
gross output value in E; is F + G per time unit, in circumstance where the risk resulting
from the environment E, is run but the hazard does not occur. Thus G is a gain in gross
out only if the hazard does not occur when the risk is run,

The agent for this system in E; can achieve the routine input-output transformation
N to U and generation of the gross output value F + G by either (1) running (accept
exposure to) the risk or (2) by finding a way of not running it while preserving the
transformation N to U, the value output F, and the extra gross value output G. Either way,
on average, there is a cost with respect to the extra gross output G.

Choice-1. Although it is possible to run a risk successfully during some executions of a
system process, it is not possible over a significant time period. When a risk is run
repeatedly, losses must occur over time, which affects system net output value. If the loss
per time unit due to the hazard occurring is L,, then the value output from running the risk
in reality will on average be F + G - L, per time unit. (Running the risk with insurance is
essentially no different from running the risk; with insurance the inevitable long run losses
are simply paid for in a regular way. Risk can also sometimes be reduced by
counterbalancing it (classification A(c) earlier), but can rarely be eliminated; assume in this
case of running the risk, that it is a fundamental risk that cannot be reduced further by
counterbalancing.)

Choice-2. In order not to run the risk while preserving transformation of N to U and the
extra gain G there are three basic choices: (a) avoid the risk; or (b) prevent the risk by
investing resources; or (c) neutralize the risk with an environment coping procedure,
which we assume for the present is not an open option. Avoiding the risk will involve
alternative processing to transform N to U and achieve gross output F + G, and this will




involve a cost (L,) in losses per time unit. Preventing a risk involves a cost of applying
additional material resources to the hazard, which we assume costs L, per time unit, in
order to maintain transformation of N to U and achieve gross output F + G; the risk may
be prevented by investing resources P, corresponding to L, per time unit, either to
eliminate the hazard or to eliminate the loss when the hazard occurs. Thus the net output
from the transformation of N to U by a method that does not involve running the risk will
be either F + G - L, in the case of risk avoidance, or F + G - L, for the case of risk
prevention.

An example may clarify: Suppose a ferry system operating in risk-free
environment E; that takes people from one side of a river (input N) to another side
(output U) with constant value F generated per unit time. Suppose now the ferry
operating environment shifts to environment E,, similar to E;, in which it continues to
carry out the same operations of E1 to take people across the river; however suppose that
in E, the river-crossings are carried out at a risky place and that the value output is now F
+ G per unit, where an additional output value G is generated per time unit for getting
passengers from one side (system input N) to the other side (system output U) in the case
where the risk is run but the hazard never occurs.

Choice-1. If passengers run the ferry risk, although sometime they will escape hazard and
generate gross output F + G per time unit, on average there will be losses L, per time unit,
reducing the output to F + G - L; per time unit

Choice-2. Passengers might avoid the crossing risk and take a long way round to a bridge
at extra cost L, per time unit, reducing output to F + G - L, per time unit; alternatively the
ferry risk might be preventable by directly applying material resources P to the ferry or
crossing place, corresponding to a cost L, per time unit, to make the crossing safe,
reducing output to F + G - L,, per time unit.

Thus for a system in an environment E, with a risk whose successful (in theory)
running would be beneficial by producing additional gross system output G, there is a cost
L, to running the risk and a cost L, or L, to not running the risk. We can distinguish the
following cases:

Case A. Risks which it can pay to run repeatedly : L, <G & L, <L, & L, <L,

There is a positive extra net output G-L; on average from running the risk. This extra
output cannot be improved while maintaining the transformation of inputs to outputs by
either avoiding the risk or investing resources to prevent it.

Case B. Risks it can pay to run repeatedly but can pay better to either avoid or prevent.
L <G & (Lo <Ly or (Lp <Ly))

There is a positive extra net output G-L, on average from running the risk. This extra
output can be made more positive (a very important point), while maintaining the
transformation of inputs to outputs, by either avoiding the risk or investing resources P to
prevent the risk.
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Case C. Risks it cannot pay to run but can pay to either avoid or prevent. L, > G & ((L, <
G) or (L, <QG))

There is a negative extra net output G-L, on average from running the risk. This extra
output can be made positive (also a very important point), while maintaining the
transformation of inputs to outputs, by either avoiding the risk or investing resources P to
prevent the risk.

Case D. Risks it cannot pay to run or avoid or prevent. L, > G &L,>G & L,>G

There is a negative extra net output G-L, on average from running the risk. This output
cannot be made positive, while maintaining the transformation of inputs to outputs, by
either avoiding the risk or investing in resources to prevent it. In this final case the
transformation will typically never be undertaken, and need not concern us.

It seems reasonable to assume that system agents will one way or another become
aware of the nature of risks in the system operating environment. Case-A risks will be
run. Case-B risks will often be run and often prevented. Case C risks will be either avoided
or prevented, but sometimes run, due to incompleteness of agents' education.

Most of this discussion has been for environment E,, where total net output from
running the risk in E; and applying resources R is F + G - L. Assume now for E, that G-
L, is positive so that E, has a risk it can pay to run repeatedly. Now recall that
environment E, was risk free giving out F value units per unit time for resources R
applied. In both environments input N is transformed to output U. It is clear that there will
be an increase in output by shifting R, from an environment E; with no risk and output F,
to a similar one E, with output F + G - L, that differs only in having a risk it can pay to run
repeatedly.

But out of E; and E, we can construct an arbitrary number of synthetic
environments, each with risk it can pay to run repeatedly, intermediate between the zero
risk of E; and the risk L, of E;. Assuming resources R are large enough, we can do this in
actual practice by taking a fraction of R and applying it to E; and the remainder of R to
E,. For example, suppose a such a synthetic environment E; when the fraction is 50%.
(Referring to the ferry example earlier, in E; half the ferry runs per time unit are at a risky
crossing, half are not). In E,, for the resources R/2 operating risk free, the value output
will be F/2, and for the remaining resources in risky operations, it will be (F + G - L,)/2 for
a total of F + G/2 - L/2. Thus in E, the risk, with resources R applied, will be Ly/2, and
the increased output in excess of F will be G/2.

It is now important to grasp that, because of agent competition, in every similar
but naturally occurring environment with risk L,/2, the output for the system, with R
applied, must still be G/2. We put this forward as a premise. From this it follows that
output must increase linearly with R and with the environment risk rp, where it is risk it
can pay to take; the output will be proportional to R when there is no risk. Accordingly
we must have:

V=KR(1+birp) (2a)
where 1p is a measure of the class of risk which it can pay to run, which we may also call
positive risk.
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It should also be clear from a similar analysis of an environment E; containing
only a risk it can not pay to run but pay to avoid or prevent, that we must have
. V =KR( 1+ brp - byry) (2b)
where ry is a measure of the class of risk which it can not pay to run, which we may also
call negative risk.

Furthermore, since it some environments it will be possible to apply additional
resources P to prevent (or reduce L,) without affecting G, with the amount of L, offset
being proportional to P. Hence V must rise as P increases, so that the full relationship
must be

V= KR( 1+ blrp - ber + b3P) (2)

Expression (2) states that as the resources R of a system are applied to riskier and
riskier environments up to limiting environment E,, with maximum risk r,, output
increases. However with environments after environment E,,,, if the increasing risk is due
to addition of negative risk to r,, output will peak with environment E,, and then fall off.
This behaviour of output with respect to risk embodied in expression (2) was noticed by
Adam Smith 250 years ago [25] in the economic arena when he wrote: "The reward for
assuming risk increases in proportion to the risk taken except where the risk is very great
and the venture very speculative, in which case the reward for assuming risk may vanish or
even be negative".

However expression (2) has more to say. For any environment with either positive
risk, or negative risk, or both, it may be possible to increase the return by applying
resources P to the direct reduction of the (losses in output due to the) risk, whether
positive risk or negative risk. Where the environment does not allow this, P will be zero.

The relationship between MD and SD-risk and output and resources

It remains to demonstrate that the risk parameters in (2) can be treated as either
SD-risk or MD-risk. An example will suffice. Suppose a system with resources R = 1000
value units. Suppose it operates in a risk free environment E; transforming inputs N to
outputs U with a regular net output F equal to 200 value units per unit time. Suppose now
we shift the environment to a similar one in which the system still transforms inputs N to
U but for a randomly fluctuating output value. Assume the output is 250 on average, but
will have randomly fluctuating values 350, 150, 150, 350, ... of 350 or 150. This means an
expected output of 250 and an MD-risk r of 100. The output if the risk is run but the
hazard (a downward fluctuation) never occurs will therefore be 250 + 100/2 or 300 on
average per time unit. Thus F + G must equal this 300, so that G = 100; the risky
environment contributes 100 per time unit to output F = 200 if the hazard does not occur.
But will hazard does occur repeatedly, and the output can in reality fluctuate downward to
150, one time period in two, for an average loss of 100/2 or 50, which must be L,. (Since
L, is an average loss due to risk, it equals half the MD-risk of 100, as demonstrated in the
analysis deviation risk measures earlier.) Hence L, = 1/2, and is thus also a measure of risk.
Hence the net output must be

F+G-L=F+G-1r/2=200+100-50=250
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which is also the expected value. We can therefore treat F + G - L, as the expected output,
and L, as half the MD-risk, when the output due to risk is fluctuating. In this case of MD
risk 100, since G is 100 and L, = 50, the value G-L, is positive, and shifting to E, involves
a risk it can pay to run repeatedly, as it increases the expected value of 200 to 250. An
analysis in terms of SD-risk is very similar but less tidy in this case.

For the environments E; and E,, other similar environments and synthetic
environments constructed by applying the resources R = 1000 partly to E; and partly to
E,, expression (2a) will apply to systems converting input N to output U. Substituting
appropriate values for the constants, the expression becomes:

V=02R(1 +2.51p) (2¢)
if the risk variable rp is 2 mean deviation measure (MD-risk) expressed in per unit values.
(MD-risk of 100 is 0.1 per unit of 1000.)

[For readers familiar with financial analysis, the following example using MD and
SD-risk and risk it can pay to run repeatedly may clarify better. Suppose E; involves
$1000 in risk free T-bills at 5% p.a. and E, $1000 in long bonds at 8% p.a. or nominal
income of $80, with long bond annual return or income fluctuating (20% of $1000)
between $280 and -$120, giving an MD-risk of $200 annually. Hence F is $50 or 5%, and
if the hazard (annual return of -$120) never happens, average extra return for E; over E; is
30 + 200/2 or $130 or G per annum. L, is the average loss in E2 per annum, equal to half
the MD-risk of $200. So L, =100, and G - L, = 130 - 100 = $30 per annum or the excess
over 5% return or $50 income (F) per annum due to risk in E,. Since G-L, is positive, this
indicates bonds are a risk it can pay to run repeatedly if T-bills return 5% in E,. The
expected income in E; will be F + G - L, = 50 + 30 = $80 per annum, or expected return
of 8%. SD-risk is also $200 annually in E,. Using MD-risk for rp expression (2a)
expressed as per unit values of R (MD-risk of 200 is 0.2 of 1000), the relevant version of
expression (2a) will be

V=0.05R(1+3.01p) (2d)
which will be applicable to other similar environments, e.g. medium term bonds, or
synthetic environments constructed by placing part of R in (say) long bonds and part in T-
bills [3, 24]. This illustrates that expression 2a can be put to real practical use.]

3. Resources versus Monitoring & Scheduling Complexity

This part of the Fundamental Systems Hypothesis states that for a system with a
given environment coping procedure with effective complexity c., and given resources R,
output V can be increased by increasing the effective complexity c. in the coping
procedure in accordance with

V =KR(1 + a ¢y + 25¢s) 3)
V =KR(1 + ac,) (3a)

To show that (3) holds generally we need to solve two problems. First we need a
reasonable and sensible measure of the complexity of (or in) a coping procedure. Second,
for a given level of system output we need to show that increasing coping procedure
complexity will increase output.
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In approaching the first problem, we observe that a system can benefit from a
complex procedure that deals with the system environment only if the complexity of the
procedure is oriented directly towards coping with that environment. A procedure may be
said to cope with its environment to the degree to which it can extract positive net value
from it. But for a system operating in real time the environment may unfold with a degree
of unpredictability or randomness. Consequently (some of the) complexity in the
environment-coping procedure must directly depend on the procedure's ability to monitor
and detect regularity in the unfolding environment, as this will enable it to predict the
unfolding environment, and so enable it to exploit opportunities and avoid pitfalls. In
addition, resource scheduling & utilization complexity in the coping procedure that
enables system resources to be better scheduled and utilized over opportunities and pitfalls
in the environment will enable increased environment exploitation per unit time and so
increase output.

An effective complexity measure in relationship to algorithmic information content

Consider any system operating in real time and confronted with an unfolding
environment that can be characterised by a continuous data stream of bits, ones and zeros.
For example, if we have a financial management system, the data stream is the prices
coming from the markets, if it is the paging supervisor of a virtual operating system, the
data stream consists of page access data, if is a mobile robot systems, the data stream
consists of image data, and so on. Data that has already arrived constitutes a history of
past environment unfolding, i.e. the historical data string.

We can characterizes the data stream in terms of its Algorithmic Information
Content (AIC). The AIC is simply the length of the briefest algorithm, which, given the
data string already stored in memory, can print the string. AIC is not a complexity
measure.

If the historical data string is perfectly random, then the AIC will be the length of
the data string near enough, since there are no string compression possibilities; the
algorithm to print the string must be:

Print ('01100110101000101 ...01101".

If the data string is perfectly regular, such as '01' repeated n times, the algorithm

will now be brief and the AIC will be small;

Print (01" n times.
If the data string is random but with some order, or regularities, the algorithm can
incorporate string compression techniques, in which case the AIC will be intermediate
between that for the regular string and that for the random string.

However AIC does not tell us how complex the historical data string is. An
important idea proposed by Gell-Mann and others [10, 11] is that the most appropriate
complexity measure for the string is an effective complexity measure c that must equal, or
at least be proportional to, the length of a (concise) specification of the regularities or
order in the string. Accordingly, ¢ must be very small or zero both when the AIC is zero
(completely regular string) and when it is at a maximum (completely random string with
no compression possible). But most importantly, ¢ must have a maximum at some point
intermediate between minimum AIC and maximum AIC.




14

It would therefore appear that the specification-length measure of effective
complexity for an historical data string must in some way be related to the complexity of a
coping procedure to monitor and exploit an unfolding environment signaled by a historical
data string of effective complexity c. We shall argue that if the effective complexity of the
incoming data stream is c, then the complexity in the coping procedure needed to monitor
the regularities in the string must also be ¢ or proportional to it.

Incoming time-function data stream and the Hurst constant H

Rather than consider effective complexity of an historical data string in relation to
AIC, the author has found it somewhat more enlightening to consider ¢ in relation to the
Hurst constant of an equivalent time function. [Hurst was a British engineer who studied
time series of water levels on the Nile around 1900, in an effort to design (complex)
systems to prevent risk of flooding]

Instead of considering the historical string as a bit sequence, consider it as multi-
pulse time function B(t), randomly generating a sequence of values 0.5 & -0.5
corresponding to bits 1 & 0. Conventionally, if the values of B(t) are the values of a
random variable G; (a fair coin toss), the sum (or integral) of B(t) to time t will be a
random walk time function S(t) about origin zero. If the values of B(t) are still 0.5 and -
0.5 but only partly random the integral of B(t) to time t will yield a partial random-walk
time function S(t). Thus we can study effective complexity of the historical summary
function S(t), instead of the underlying historical bit string B(t). This is more useful, since
the regularity in a partial random walk can to some extent be characterized in terms of the
Hurst constant H for the function.

Now suppose si(n) is the sum of n consecutive pulse amplitude values B(i+1),
...B(i+n) beginning at time i+1; where n is small compared to the total number of single-
pulse functions summing to S(t) Suppose now a large collection of such sums s;(n) for
constant n but beginning at different i values. Applying the Binomial theorem to this
collection of s;(n) values:

StDev[si(n)] = (pqn)0->
where p and q are the probabilities for the G;. Since in S(t), n is proportional to the time T
between pulse B(i) and B(i+n), and since

si(n) = S(i+n) - ()

it follows that

StDev[S(t + T) - S(t)] =KT0.5
or the well-known result that in a random walk the standard deviation of the increments to
S(t) over time intervals T is proportional to the square root of T (to go twice as far on
average in magnitude S, it takes 4 times as long). The mean of the increments is zero. The
above expression is fundamental and can be rewritten:

StDev[S(t + T) - S(t)] = KTH

where H is the Hurst constant, equal to 0.5 for a random walk or Brownian motion in one
dimension.
. However, for many time series S(t) representing an unfolding environment in the
real world, the StDev[S(t+T) - S(t)] is not proportional to T0-5, but to TH where H is <0.5
or >0.5, with increment mean zero. Mathematically, a time function S(t) with H not equal
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to 0.5 is a generalization of a random walk, often referred to a a fractal time function or
fractal Brownian motion time function [6, 12, 15, 16, 17, 28] .

A value of H close to 0.8 seems to hold for many series, including economic time
series, river heights over time, terrain height as measured over time by airborne telemetry
systems, and so on [16, 28]. A value close somewhat about H = 0.0 occurs in music [29]
and many physical systems [9].

Functions with -0.25 < H < 0.25, including music, are usually called 1/f noise,
since the spectral density [8, 20, 28] varies with 1/f Spectral density at frequency f
estimates mean square amplitude fluctuations at frequency f. If spectral density of a time
function is K/fB, it can be shown that B = 1 + 2H, so that spectral density for music (H =
0) must vary with 1/f, which means that the amplitude of high frequency fluctuations is
lower than that of lower frequency fluctuations. Unfortunately, despite much research, the
mechanisms behind 1/f noise in nature are not understood [29]. For a random walk
spectral density varies with 1/f2.

Fractal time functions with H <> 0.5 are poorly understood. It is generally not
possible to give a simple set of rules that will cause one to be generated, like the simple
rules for the random walk case with H = 0.5. We can simulate these time functions from a
sum of generalized single-pulse time functions [28]. Simulations throw little light on any
physical mechanism behind fractal Brownian functions, however.

Time functions with constant H over time and zero mean increment can be
superimposed on time functions whose mean increment is non zero, that is, regular growth
or decay time functions. An example would be a function with H=0.8 and mean
increments zero superimposed on f{(t) = kt. The new function would still have H = 0.8, but
non zero mean increments. Since the additional regularity due to the superimposition
typically adds zero to a complexity specification, we ignore this class of function and
restrict our attention to functions with mean increment zero, that is where S(t) always
fluctuates about zero.

We can classify all such time functions in terms of H.

1. Self-affine or fractal time functions, H is constant.

Examples are random walks with H= 0.5, or functions with H <> 0.5. Since the
standard deviation of function increments over time T is proportional to TH, these
functions are statistically similar, that is, statistically fractal-like or self-affine, at all levels
of scaling for S(t) and T. Such functions are idealistic and probably do not exist in nature.
As we shall see, for H > 0.5 the functions are trend prone, for H < 0.5 they are reversal
prone.

2. Pseudo self-affine functions where H is constant for T-values up to a maximum of 1.
These functions are self-affine over a finite range of scaling. If T is very large we
can treat H as a constant. Functions of this kind are common in nature.

3. Time functions where H varies slowly with T.
Functions of this kind do not appear to be very common. However, for short periods
T, they often have constant positive H, but as T gets very large H typically falls. Time
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functions derived from underlying bit streams generated by pseudorandom number
generators are ultimately of this kind.

4. Time functions where H oscillates over T.

With these functions, for one period of time D of random length, H appears to
have one constant value for T < D, but in a succeeding period of random length, H has
another value, and then, in the next period, H reverts to close to the original value, and so
on. Such functions, although uncommon, since they are both trend prone and reversal
prone, are extremely difficult to specify regularity for, and recently there have been
attempts to use neural nets that can learn in real time [21] in this area .

For our purposes the really important aspect of these functions is that when H >
0.5, S(t) will be random but trend prone, such that if S(t) increases over a time period d,
there is a greater probability of an further increase over the next d time units than a
decrease, whereas with a random walk and H = 0.5 the probabilities of increases and
decreases are always equal. Also with H < 0.5, S(t) is random but is reversal prone, such
that if S(t) increases over a time period d, there is a greater probability of a decrease (a
reversal) over the next d time units than an increase. We will demonstrate the truth of this
presently, but if the above is true then one would expect an positive autocorrelation
coefficient for S(t) when H > 0.5, a negative one for H < 0.5 and a zero one for H=10.5.

H as indicator of trend or reversal propensity of a time function

To demonstrate that H is a measure of the trend-prone or reversal prone nature of
the time function S(t), suppose W; is any increment of S(t) over time T, where W; in turn
breaks down into T successive increments I, Ip,... Lir of S(t), with one increment per unit
time. If we use notation < > to denote the average of the of sum of many similar
expressions, each for a different increment W;, the variance of the W; over time period T
will be <(W;)2> or:

<2+ 12 + . Lip2 >
+ <Ijlip + Ll .. + Lplyy + Lpliz ..>
For a random walk the elements I [, will be distributed randomly about 0, the correlation
coefficient for I, versus I, will be zero, so that the variance thus reduces to
<L,2> + .. <[p2>
=T<[;2> =TK2

so that the standard deviation is KT0.5. Thus H=0.5, when successive increments of S(t)
are uncorrelated, that is, if the probability p of the next increment being positive, or
negative, is 0.5, as derived earlier from the Binomial Theorem.

Now suppose that for increment Iy in unit time period that the next increment
Li+1y has probability p of having the same sign as its predecessor. In that case, the term

< (Lulip + Ll ... + Lol + Il ..)>
above must have a fraction p - (1-p) or 2p-1 of its elements of the form Lylig+1y or Ligeenlix
that do not cancel and which are all of the same positive sign for p > 0.5 and all of the
same negative sign for p <0.5. The variance therefore reduces to
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<2+ T2+ LD >
+ 2[<(Ijlip + Lplis + Lkia + ... + Lipylir )> 12p-1)

= TK2 + 2K2(2p-1)T

Hence the standard deviation must be:
K[(4p-1)T]0>
If we let p= 0.5 + h, the standard deviation becomes, to a fair approximation
K[(1 +4 h)T]05

When p is 0.5, or h =0, for the case where a successor increment in any unit time period is
as likely to be positive or negative, this standard deviation reduces to KT0.5. But where p
> 0.5, the standard deviation exceeds KT0.5, and is less than KT0.5 when p is less than 0.5.

The above result comes from assuming there is a probability p that an increment of
W, has the same sign as its successor. But this will mean that there is also a (much smaller)
probability (p;) that an increment of W; has the same sign as the increment immediately
after the successor. This will have a small affect on the evaluation of

< (il + Tndis .. + Il + Lplig .)>

and we can get a better result for the standard deviation by taking it into account.

It is easy to show that

p1= p2+(p-1)(p-1)=2p2 -2p + 1
Since therefore (1-p1) = 2p-2p2
we must have a fraction (4p2-4p+1)
of terms of the type I;;I;; or I;3l;; that do not cancel, that is, an additional contribution to
the variance of:
2[<(Iyli + Ikig + Iglis + ... + Lirplir )> 1(4p2-4p+1)

that is: K2(4p2-4p+1)T, or K2(4h2)T
allowing for the fact that there are half as many terms as previously. This contribution is
clearly minor but not negligible. Contributions from other terms involving more distant
successors will be negligible, however. Adding this contribution to the standard deviation,
it becomes:
K[4p2T]0-5 or 2pKTO0.5 or  (1+2h)KTO0.5
We can rewrite the standard deviation as KTH where H= 0.5 + X where
TX =2p,

so that X =1n(2p)/(In(T)),
and where, as is typical of this kind of analysis, this H is not constant with T, and we still
get a random walk at large T; X is also zero at p = 0.5. Still, it is simpler to note that in
2pKTO0.5 | as T increases, the factor 2p becomes less important than the factor T0.5 .

Thus when p > 0.5 the time function S(t) must be trend prone and the Hurst
constant H must exceed 0.5 provided T is not too great, since the inherent trend due to p
will drive S(t) further from O in either direction over a time period T than would otherwise
be the case, thus giving a higher standard deviation (proportional to p) than otherwise for
increments of S(t) over T. Similarly, when p < 0.5 the function S(t) is reversal prone,
which will make the standard deviation (still proportional to p) less than otherwise, so that
H<O05.
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This simple analysis demonstrates clearly the fundamental nature of the relationship
between H and autocorrelation coefficient for the time function - when H > 0.5 the current
trend is likely to continue, but is likely to reverse if H < 0.5. Unfortunately, there can be
no simple relationship between H and autocorrelation function. However the fact of the
nature of the relationship is enough for our purposes.

It should thus be clear that there are two types of regularity occurring in time
functions, order of a trending nature in functions where H > 0.5 and order of a reversal
nature in function with H < 0.5. As H increases from 0.5, trending order increases from
zero, and it seems unlikely that any functions encountered in a system's environment will
have H exceeding 1.0 However, as H decreases from 0.5, reversal order increases from
zero. When H is 0.0, the standard deviation of the function increments is constant with T,
so that the function is highly reversal ordered. This is also 1/f noise, discussed above.
When H is -0.5, we have a white noise function [8, 22], of which the random walk is the
integral. The spectral density for white noise [8, 22, 28] varies with 1/f0, so that all
frequencies are equally present. A white noise function can be taken as being the values of
a random number generator, and is highly disordered. It is the derivative of a random
walk.

The zero-regularity in a time function with H=0.5 seems to correspond to Gell-
Mann's zero effective complexity for a random string with maximal AIC. The fractal
function with H=0, that is, standard deviation constant with time, is very reversal prone,
and contains a mixture of randomness and predictable reversibility, like music. It probably
corresponds to low effective complexity for a highly ordered string with minimal AIC. But
maximum effective complexity for a random string with inherent regularity and medium
AIC has two possible correspondences; to a maximally complex reversal-ordered time
function with 0.0 <H < 0.5 and to a maximally complex trend-ordered time function with
H > 0.5. Currently it does not appear possible to state at what, if any, specific H values
these complexity maxima will occur. All the current state of knowledge allows us to state
with confidence is that when the trend (or reversal) order of a fractal time function is
maximally complex it will take a longer specification to specify its regularity than that of
any other functions with lesser or greater H, that is, with greater or lesser AIC equivalent.

Effective monitoring complexity of a coping procedure monitoring a time function

A coping procedure that exploits the trend or reversal propensity of a time
function whose effective complexity is ¢ must contain the equivalent of a sequence of pairs
of conditional imperatives of the form:

If <order specification-type-S,;> then <exec operation-type-A>;
If <order specification-type-Sa,> then <stop operation-type-A>;

If <order specification-type-Sg,> then <exec operation-type-B>;
If <order specification-type-Sg,> then <stop operation-type-B>;

where for operation type A there is either an output gain G,, where (Sa;,Sa2) signals an
opportunity, or there is an output loss avoidance Ga, where (Sa;,S4,) signals a pitfall;
however with execution of A, G, is not certain, there is only a probability p, of its
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occurrence, with a probability (1-ps) of a loss L, instead. Similarly for operation types B,
C etc.

The coping procedure may be said to be saturated with monitoring complexity if
all regularity inherent in the time function being monitored is listed in the procedure's
order-specifications. For a saturated procedure, it follows that the sum of the lengths of
Sai, Siaz, Sgi, Smo, ...] will be equal to the effective complexity ¢ of the time function,
since these specifications reflect all the regularities in the function. If the procedure is
unsaturated, we define the sum of the lengths of Sa;, Sas, Sgi, Sipa, ... as the effective
monitoring complexity ¢, of the procedure. Adding additional conditional-imperative pairs
to the coping procedure, with order specifications taken from the function, will then
increase the procedure's effective monitoring complexity up to its maximum of c.

The total additional expected output E of a system with this procedure, as a result
of applying the procedure must then be:

E = [paGa - (1-pa)Lal + [psGg - (1-pp)Lg] + ...

when the coping procedure is saturated. When it is unsaturated with effective monitoring
complexity c,, < ¢, it is reasonable to average the additional expected output as E =
cm(E/c) = Kajc,,, where K and a; are constants. Thus the output of the system will
increase with the effective monitoring complexity of a coping procedure adapted to and
monitoring the unfolding environment. However since the system will have resources able
to generate output without the application of the coping procedure, as covered in Section
2, additional expected output in the presence of the coping procedure must depend on
KR(1+ a;cy)
where the procedure contains monitoring complexity specifications measured by c,,.

Effective resource scheduling & utilization complexity of a coping procedure

However relating expected output to effective monitoring complexity ¢, in the
coping procedure is not the end of the matter. We should also take into account the
complexity of any resource scheduling & utilization (RSU) specifications embedded within
the coping procedure for efficient scheduling and utilization of system resources that
carry out operations of types A, B, C etc. However, the complexity, inherent in scheduling
& utilizing system resources for the operations, has nothing to do in general with the
unfolding time function being monitored. The time function merely signals each of
opportunities/pitfalls specified by Sa;, Sas, Sgi, etc. to the coping procedure. In some
cases the time function may be so ordered, that is, effectively non-existent, that c,, is zero.
Specifications for efficiently scheduling and utilizing system resources for the operations
carried out will be implemented in the coping procedure in the instructions for

<exec operation-type-A>, <close operation-type-A>
<exec operation-type-B>, <close operation-type-B>

Let the total length of the RSU specifications in the coping procedure be c,, the effective
complexity of the RSU specifications in the coping procedure.
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We can use the risk analysis in Section 2 to show that (6) must be wrong. Suppose an
environment E,4 in which there is a large risk ry it can not pay to run (but can pay to
avoid), so large that with application of

V:KR(l +b1rp-b2rN+b3P) (2)

output V is forced negative. In the analysis in Section 2 it was noted that a risk could be
prevented by a coping procedure, as well as by prevention resources P, but this was not
further included in the discussion. With expression (6), no matter how we increase
complexity ¢, or ¢, V will stay negative. But it is known that risk can be mitigated by
using a complex procedure, so that c,, and ¢, ought to behave in the expression like P, as
far as mitigating risk is concerned. It follows that (6) must be wrong, so that expression
(1) must be correct.
Hence, for a given level of resources R, expected value V is given by

V=KR(1+brp +ac,) (4a)

if we use composite coping complexity c., assume no negative risk, and no resources
applied directly to preventing risk. The full expression relating risk and complexity for a
system with fixed (capacity) resources is of course:

V=K R(l + blrp - b2rN + b3P + a0y T azcs) (4)
6. Concluding Remarks

There appears to be some misunderstanding about such concepts as risk and
complexity, so it is important to summarize clearly and exactly what the Fundamental
System Hypothesis in expression (1) is saying. The following should help.

Suppose a system with resources R could be operated in a variety of similar
environments E;, E,, ... but with differing risk characteristics, as measured by the level of
positive risk (risk it can pay to run repeatedly) rp and negative risk ry (risk it can not pay
to run repeatedly but can pay to prevent).

First of all, for the system in any environment E, output V increases with
increased resources R applied. This is merely stating that if you double a system, you
essentially double the value output, so that R can be taken as a measure of system
capacity.

Next it says that for a given R, if the agent directing the system shifts it from one
environment to another with higher positive risk rp, output V will also be increased. If
shifted to an environment with comparable positive risk rp, but much increased negative
risk ry, expected output V will fall and may even be driven negative.

It then goes on to say that for a system in a given environment with certain
inherent risks, typically positive risk, but occasionally negative risk or both, losses due to
the hazards associated with these risks actually taking place can be reduced by the agent
without affecting the gross gain due to then. This is accomplished if the agent increases
the resources P devoted to preventing these risk, so that in consequence output V will
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increase with increased applied risk-preventing resources P. P will normally be obtained
from outside the system and will not affect R. Such resources P must be considered as a
special category of resources separate from R. Nevertheless, total resources utilized by the
system will of course be P + R. However, it may happen, when the agent realizes
unexpectedly that the system is in an environment with large negative risk, that the agent
cannot shift the system out of that environment, and that there are no resources available
from outside the system to increase P to prevent the large negative risk ry that will likely
be making (expected) output V negative; in such cases the only option will be for the
agent to divert (cannibalise) resources from R (reducing output) to increase P (increasing
output much more). [A trivial example is the out-of-fuel ship in a remote isolated region
burning its superstructure for fuel.]

It also states that for a system with a given environment with fixed risks, typically
positive risks, output can be increased by increasing the monitoring complexity of the
coping procedure (increased r,) provided there is predictability in the environment (the
unfolding time function is not a random walk.) A simple financial example would be funds
placed in long bonds. The output would be improved by a monitoring procedure that
could signal the market swings in advance. In practice bond fluctuations are close to a
random walk so that this would be difficult, if not impossible, to do.

Finally, it says that for system with a given environment E,, with fixed risks, either
the usual positive risks rp, but also negative risks ry, or with zero risk, for a given R, and
for a coping procedure where monitoring complexity ¢, is zero (because the environment
is highly ordered and predictable) output can be increased if the agent increases the
effective resource scheduling & utilization complexity c, of the coping procedure, for
example according to :

V=KR(I + ayy) @)

This phenomenon is easily observed in computer systems, where it is common practice to
increase system throughput by increasing effective RSU complexity. Obvious examples
following expression (7) are multiprogramming operating systems [26] and file and
database systems [1]. [A classic everyday example is the couple with extensive but
different daily business and social engagements but only one car (R), they need a complex
everyday-executed procedure for resource allocation and scheduling (high c,) in order to
manage (achieve acceptable V); acquiring a second car (much increased R) will instantly
remove the need for the complex procedure (zero ¢;) and fulfill the same needs (same V).]

For specific classes of environments, the constants and variable parameters in
expression (1, 4) can be reduced to numbers and measurable quantities. Thus the
Fundamental Systems Hypothesis can be subject to experimental verification. Given the
manifold nature of the Hypothesis, many experiments will be required. In the field of
financial systems much work has already been done that confirms its validity with financial
subsystems [3, 24]. In other areas, experience with complex systems points to the veracity
of Hypothesis. The reader who has taken care to fully grasp the Hypothesis will no doubt
be able to see that it fits with his or her own experience of practical functioning systems. If
there is a weakness, it is likely to do with the measures of complexity c,, and c; it is
possible that future experimental work may require some minor modifications here.
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