
Efficient Bounded Timestamping from Standard
Synchronization Primitives
BENYAMIN BASHARI, University of Calgary, Canada

ALI JAMADI, University of Calgary, Canada

PHILIPP WOELFEL, University of Calgary, Canada

Bounded timestamps [9, 19] allow a temporal ordering of events in executions of concurrent algorithms. They

are a fundamental and well studied building block used in many shared memory algorithms. A concurrent

timestamp system keeps track of𝑚 timestamps, which is usually greater or equal to the number of processes

in the system, 𝑛. A process may, at any point, obtain a new timestamp, and later determine a total order of all

process’s most recent timestamps. Known timestamp algorithms do not scale well in the number of processes.

Getting a new timestamp takes at least a linear number of steps, and a lower bound by Israeli and Li [19]

implies that each timestamp needs to be represented by at least Ω(𝑚) bits.
We introduce a slightly different semantics for timestamping, where there is no fixed timestamp value asso-

ciated with an event. A process can execute operation updateTS() to update its latest timestamp, associating

it with the (linearization) point of that operation, and isEarlier(𝑝 ,𝑞) to determine the temporal order of the

latest updateTS() operations executed by processes 𝑝 and 𝑞. Since no static timestamp value is returned by

updateTS(), the lower bound of Israeli and Li does not apply.

We present efficient linearizable and wait-free implementations of these methods using a single bounded

fetch-and-add object and𝑂 (𝑛2) bounded compare-and-swap objects, which are available on standard hardware.

The step complexity of each method call is constant, and base objects need only store 𝑂 (log𝑛) bits.

CCS Concepts: • Theory of computation→ Shared memory algorithms.

Additional Key Words and Phrases: timestamping, shared memory, concurrency, distributed algorithms

1 INTRODUCTION
Timestamp algorithms are an important tool for synchronizing processes in asynchronous systems.

They play a key role in solving many fundamental problems in concurrent algorithms, such as

mutual- and 𝑘-exclusion [3, 14, 22, 25], consensus [1], obtaining snapshots of shared memory

[16], and register constructions [17, 27]. Using a timestamp algorithm, processes in a system

can determine a temporal ordering of events. A timestamp object typically provides two main

functionalities: assigning a new timestamp to an event, and returning the temporal ordering of

some events based on their timestamps.

Early work, starting with Lamport’s logical clocks [23], assumed that timestamps can be chosen

from an infinite totally ordered domain. Israeli and Li [19] considered bounded timestamp systems,

where each timestamp is chosen from a finite domain, even though processes can infinitely often

update their timestamps. (But there is only a finite number of “active” timestamps, typically one

per process.) Since then many concurrent bounded timestamp algorithms have been devised

[9–11, 15, 17, 20].

All of these algorithms have the property that the timestamps are immutable: Once a process
assigns a timestamp to an event, the value of that timestamp remains the same until it is updated

and assigned to a new event. This allows for easy comparison of active timestamps, by applying an

appropriate irreflexive and antisymmetric “dominance” relation defined on all timestamps, which

needs to be transitive only on the set of active timestamps.

Authors’ addresses: Benyamin Bashari, University of Calgary, Calgary, Canada, benyamin.bashari@ucalgary.ca; Ali Jamadi,

University of Calgary, Calgary, Canada, ali.jamadi@ucalgary.ca; Philipp Woelfel, University of Calgary, Calgary, Canada,

woelfel@ucalgary.ca.

2 Benyamin Bashari, Ali Jamadi, and Philipp Woelfel

Assuming that the order of events is uniquely determined by these timestamp values, a lower

bound by Israeli and Li [19] implies that at least 2
Ω (𝑚)

timestamps are necessary, where𝑚 is the

maximum number of active timestamps. Generally,𝑚 is at least as large (and often equal to) the

number of processors in the system, 𝑛. Thus, employing such algorithms requires memory words

of size at least 𝑛. This is generally not a realistic assumption, unless large memory words are

simulated from smaller ones, which is very inefficient. (A common assumption for shared memory

algorithms is that memory words can store Θ(log𝑛) bits.) Moreover, even if large memory words

are assumed, these bounded timestamp algorithms exhibit a high step complexity of at least Ω(𝑛)
for each operation.

In this paper, we consider a slightly different semantics for timestamping, where timestamps are

not immutable. Instead, the timestamps obtained by two processes, 𝑝 and 𝑞, may change as a result

of other processes getting new timestamps. But the relative order of these two timestamps does

not change. Because of this, the lower bound of Israeli and Li does not apply, and we can hope for

much more efficient timestamping algorithms.

To have a natural and simple interface, we consider the following sequential specification. A

mutable timestamp system (short: MTS) maintains 𝑛 timestamps, one for each process. It supports

two operations, updateTS() and isEarlier(). Method updateTS() by process 𝑝 updates 𝑝’s

timestamp, but does not return anything. Method isEarlier(𝑝, 𝑞) takes as parameter two process

IDs, 𝑝 and 𝑞, and returns True either if 𝑝 called updateTS() at least once and 𝑞 called updateTS()
at least once after 𝑝’s latest updateTS() call, or if neither 𝑝 nor 𝑞 has called updateTS() and 𝑝’s
ID is less than 𝑞’s ID. Otherwise, it returns False.

Observe that an MTS object has consensus number infinity, as processes can agree on the ID of

one of the processes participating in a consensus protocol (i.e., solve name-consensus): A process

calls updateTS(), and then determines and outputs the ID of the process that called updateTS()
first, using 𝑛−1 isEarlier() calls. Hence, to implement a linearizable MTS, we need strong atomic

operations, such as CAS() (compare-and-swap). Conventional immutable timestamp algorithms

have weaker than linearizable semantics, and can be implemented from registers. It is easy to

implement an efficient MTS on a system supporting unbounded FAA() (fetch-and-add) in addition to
CAS(), if memory words have infinite size. But assuming unbounded word size defeats the purpose

of a bounded timestamp system. Therefore, it is a natural question, whether there exists an efficient

linearizable MTS implementation on a system with reasonably bounded word size, and using only

commonly available atomic operations. We answer this question affirmatively, assuming a system

with word-size 𝑤 = 𝑂 (log𝑛) that supports (bounded) FAA() and CAS() operations. (Overflows

caused by FAA() operations are allowed to cause arbitrary value changes.)

Theorem 1. There is a linearizable implementation of an 𝑛-process MTS on a system supporting
FAA() and CAS(), assuming 𝑂 (𝑛2) memory words of size𝑤 = 𝑂 (log𝑛), such that each updateTS()
and isEarlier() operation terminates within a constant number of its own steps.

Instead of FAA(), our actual algorithm employs a bounded object that provides an operation

to fetch and increment modulo 𝜑 for some fixed integer 𝜑 . We will give a simple algorithm that

implements such a mod𝜑-FAI() operation from a single bounded FAA object, provided that the

word-size is at least log(𝑛 · 𝜑) bits. This algorithm may be of independent interest.

Contrary to many conventional timestamp systems, the MTS does not directly support a scan()
operation that returns a total order of all timestamps. While adding such a scan() may be possible,

this is beyond the scope of this work. However, for many applications such a scan() is not necessary.
Often pairwise comparisons suffice, or the algorithm can be modified to use pairwise comparisons

[3, 7, 16, 22].

Efficient Bounded Timestamping from Standard Synchronization Primitives 3

It is also easy to extend the semantics of our MTS to allow 𝑘 > 1 active timestamps. To

that end, we allow any process 𝑝 to call updateTS(𝑖) with a parameter 𝑖 ∈ {0, . . . , 𝑘 − 1}. An
isEarlier((𝑝, 𝑖), (𝑞, 𝑗)) call then determines the temporal order of 𝑝’s 𝑖’th timestamp and 𝑞’s 𝑗 ’th

timestamp. Such an extended semantics can easily be obtained using a regular 𝑘𝑛 process MTS, by

allowing each of the 𝑛 processes to assume 𝑘 different IDs. This way we obtain an algorithm with

constant step complexity, but using 𝑂 ((𝑘𝑛)2) memory words of size 𝑂 (log(𝑘𝑛)). One application
of this extended specification is a recent efficient single-writer snapshot algorithm by Bashari and

Woelfel [7]. That algorithm uses a single unbounded FAI object in addition to CAS and registers.

Applying some minor modification to the algorithm, that FAI object can be replaced with an MTS

with 𝑘 = 𝑂 (𝑛) active timestamps per process (see Section 7 for more details).

2 RELATEDWORK
Most work on timestamping considers systems that support only atomic read and write operations.

Unless otherwise mentioned, this is what we assume in this section.

Lamport defined the “happens-before” order, where event 𝐴 by process 𝑝 happens-before event

𝐵 by process 𝑞 if 𝐴 can cause or influence 𝐵 [23]. He also defined logical clocks that assign integer

values, called timestamps or labels, to events, such that the order of timestamps is consistent with

the happens-before order of the associated events. Fidge and Mattern introduced the notion of

vector clocks [13, 24]. Here, every timestamp is a vector of 𝑛 integers. A timestamp 𝑇 is considered

smaller than a timestamp 𝑇 ′, if every component of 𝑇 is smaller or equal to the corresponding

component of 𝑇 ′. The authors present algorithms that guarantee that the order of timestamps is

consistent with the happens-before order of events.

In the above algorithms the size of timestamps may grow without a bound. Israeli and Li [19]

considered the bounded timestamping problem, where timestamp sizes are bounded, provided that

at any point only a bounded number of timestamps,𝑚, are active (i.e., may still be compared or

accessed at a later point). They also presented a sequential algorithm for this problem, and proved

that timestamps of size Ω(𝑚) bits are sufficient and necessary (even without concurrency). The

lower bound applies to sequential systems supporting two operations, getTimestamp() and scan().
A getTimestamp(i) call, for 𝑖 ∈ {0, . . . ,𝑚 − 1}, returns a value, called timestamp, and a scan() call
returns the temporal order of the latest getTimestamp(j) calls for all 𝑗 ∈ {0, . . . ,𝑚 − 1}. The lower
bound assumes, that this order is uniquely determined by the return values of the corresponding

getTimestamp() operations (and thus, timestamps are immutable).

Dolev and Shavit [9] presented the first bounded concurrent timestamp algorithm. Assuming

that 𝑛 is the number of processes in the system, their implementation requires 𝑂 (𝑛2 log𝑛) shared
memory steps for a scan() operation, and 𝑂 (𝑛) shared memory steps for assigning a timestamp

to an event. They assume registers of size Θ(𝑛) bits, which matches Israeli and Li’s lower bound

for timestamps. Gawlick, Lynch, and Shavit [15] presented a bounded timestamping system that

requires 𝑂 (𝑛 log𝑛) steps for scanning and assigning timestamps, but uses registers of size Θ(𝑛2).
Israeli and Li [20] improved the step complexity to 𝑂 (𝑛). Dwork and Waarts [11] presented a new

primitive, called traceable use abstraction, which allows each process to determine which variables

from a private pool are in use by other processes. They demonstrated how such a primitive can be

used to solve the bounded timestamp problem with linear step complexity, by allowing processes

to safely recycle variables from their own pool. Their system has a specification that differs slightly

from the one presented by Dolev and Shavit. It allows the order of timestamps to be determined

by the system state (e.g., by information stored in shared variables), and not only by timestamp

values. Even though the lower bound of Israeli and Li does not apply in this case, the algorithm

uses registers of size Θ(𝑛 log𝑛) bits. Other algorithms implementing this specification improved

the number of shared memory registers [17] and process-local space [26].

4 Benyamin Bashari, Ali Jamadi, and Philipp Woelfel

Dwork, Herlihy, Plotkin, and Waarts [10] presented a bounded timestamp system with the same

sequential specification as the one by Dolev and Shavit. It maintains linear step complexity, and

reduce register size to 𝑂 (𝑛).
Ellen, Fatourou, and Ruppert [12] proved that Ω(

√
𝑛) registers are required for obstruction-free

unbounded timestamping, assuming only atomic reads and writes. This was later improved to Ω(𝑛)
[18].

3 MODEL AND PRELIMINARIES
We consider the standard asynchronous shared memory model, where 𝑛 processes communicate

by performing atomic operations on shared objects, each of which can store𝑤 = 𝑂 (log𝑛) bits. For
this paper, we assume the system provides registers, compare-and-swap (CAS), and fetch-and-add

(FAA) objects. All these objects support read() operations, and a register supports also write()
operations. A CAS objects supports the operation CAS(𝑜𝑙𝑑, 𝑛𝑒𝑤), which changes the value of the

object to 𝑛𝑒𝑤 , if it is 𝑜𝑙𝑑 , and otherwise does not change the object’s value. In either case it returns

the previous value of the object (or sometimes a Boolean value reporting whether it did change

the object’s value). An FAA object stores an integer in {0, . . . , 2𝑤 − 1}, and supports the operation

FAA(𝑑), which increases the value of the object by the given integer 𝑑 , provided that the sum is in

{0, . . . , 2𝑤 − 1}, and then returns the previous value of the register. We assume that in case of an

overflow, i.e., if the sum is outside this range, the behavior of the FAA() operation can be arbitrary.

(Our algorithm ensures that this never happens.)

In order to avoid the ABA problem, our algorithm uses load-linked/store-conditional (LL/SC)

instead of CAS objects. Such an object supports the operations LL(), which returns the value

of the object, and SC(𝑥), which succeeds and stores 𝑥 in the object, provided that the calling

process previously called LL(), and no other successful SC() operation has been performed (by

any process) since then. Otherwise, the operation fails. The operation returns True if successful and
False, otherwise. Moreover, the LL/SC object also supports an operation VL(), which returns True
if an SC() operation executed in its place by the same process at the same time would succeed, and

False otherwise. Our algorithm uses 𝑂 (𝑛) LL/SC objects, each storing 𝑂 (log𝑛) bits. LL/SC objects

are generally not available on hardware. Therefore, we employ a linearizable implementation

of Jayanti and Petrovic [21], which uses 𝑂 (𝑛) registers and CAS objects of size 𝑂 (log𝑛) bits to
simulate one of our LL/SC objects with constant step complexity. This leads to the overall space

complexity claimed in Theorem 1.

We will also need a mod𝜑-fetch-and-increment (mod𝜑-FAI) object. Such an object stores an

integer in {0, . . . , 𝜑 − 1}, and supports the operations read() and FAI(). The latter operation

increments the value of the object by 1 modulo 𝜑 , and returns the previous value. Even though it

is possible that FAA() operations on modern hardware “wrap around” on overflow, i.e., perform

arithmetic modulo 2
𝑤
, this may not always be so, and the exact overflow behavior is often not

well documented. Moreover, we need to increment modulo 𝜑 for a value that does not divide 2
𝑚
.

Therefore, in Section 6 we will present an implementation of a linearizable mod𝜑-FAI object, for

any 𝜑 ∈ {0, . . . , ⌊2𝑤/𝑛⌋}, from a single bounded FAA object. The algorithm is simple and efficient:

each FAI() operation requires only two operations on the bounded FAA object.

4 ALGORITHM
4.1 High Level Description
In our MTS implementation, each process maintains an active timestamp, which is a value from a

bounded domain 𝐷 . We use an array TS of 𝑛 LL/SC objects, where TS[p] stores process 𝑝’s active
timestamp, in addition to some auxiliary information. An irreflexive and antisymmetric dominance

Efficient Bounded Timestamping from Standard Synchronization Primitives 5

order ≺ on 𝐷 is used to decide the temporal order of the corresponding updateTS() operations. In

order to keep the size of 𝐷 polynomial in 𝑛, the active timestamp of a process 𝑝 may need to be

reassigned a different value, if other processes repeatedly get new timestamps.

We will partition 𝐷 into three clusters, with numbers 0, 1, and 2. For a positive integer 𝛿 = 𝑂 (𝑛3),
which is specified precisely in section 4.2, each cluster 𝑖 ∈ {0, 1, 2} comprises 𝑛 + 𝛿 timestamps

(𝑖, 𝑗), where −𝑛 ≤ 𝑗 < 𝛿 . Timestamp (𝑖′, 𝑗 ′) dominates timestamp (𝑖, 𝑗), in short (𝑖, 𝑗) ≺ (𝑖′, 𝑗 ′), if
either 𝑖 = 𝑖′ and 𝑗 < 𝑗 ′, or 𝑖 = (𝑖′ − 1) mod 3.

4.1.1 Updating Timestamps.
There is always one active cluster fromwhich new timestamps are chosen. We use a globalmod (3𝛿)-
FAI object, Counter, whose value determines the active cluster, and also the next timestamp a

process is trying to choose from that cluster. Specifically, the active cluster is ⌊Counter/𝛿⌋. Once a
cluster 𝑖 is active, new timestamps from that cluster are chosen in increasing (but not necessarily

consecutive) order starting with (𝑖, 0). The “negative” side of the cluster containing timestamps

(𝑖, 𝑗) with 𝑗 < 0 is reserved for later use.

Reassigning Timestamps. Ideally, a process can obtain a new timestamp by performing

Counter.FAI(), and using the result of that increment operation. The main problem occurs, when

the active cluster changes. E.g., suppose a process 𝑝 increments Counter from 2𝛿 to 2𝛿 + 1, and thus
obtains the first timestamp from cluster 2, i.e., (2, 0), while the active timestamp of some process

𝑞 ≠ 𝑝 is in cluster 0. Then the dominance order between 𝑝’s and 𝑞’s timestamps does not match

the temporal order of their updateTS() operations. To deal with this, we make sure that all active

timestamps from cluster 0 are moved to cluster 1, before any process can get a new timestamp

from cluster 2. (The idea of using values modulo 3 and assigning timestamps in such a way that

one “cluster” is always empty originates from Israeli and Li’s timestamping system [19].)

Whenever we move a timestamp from cluster 0 to cluster 1, we have to make sure that the

dominance order of active timestamps is not affected. For that we use the reserved negative side

of cluster 1: While cluster 1 is still active, all active timestamps from cluster 0 are reassigned to

the negative side of cluster 1. Moreover, two active timestamps (0, 𝑖) and (0, 𝑗), where 𝑖 < 𝑗 , are

moved to (1, 𝑖′) and (1, 𝑗 ′) such that 𝑖′ < 𝑗 ′ < 0. We also reassign timestamp (0, 𝑗) to cluster 1

before we reassign timestamp (0, 𝑖) to ensure that their dominance order remains preserved during

this reassignment process. Timestamps that were obtained from cluster 1 before this reassignment,

and timestamps that processes obtain during this reassignment, are located on the non-negative

side of cluster 1. Therefore, the dominance order of those timestamps and the ones moved from

cluster 0 to cluster 1, matches the temporal order of the corresponding updateTS() operations.

Distributing Work. Reassigning a single timestamp from cluster 0 to cluster 1 (or, more generally

from cluster 𝑖 to cluster (𝑖 + 1) mod 3) involves, roughly, taking a partial snapshot of the TS array,

determining the index 𝑞, such that TS[q] stores the dominant timestamp in cluster 0, and replacing

the value of that array entry with a new value that corresponds to the appropriate timestamp

in cluster 1. (Using LL/SC operations, we can avoid that outdated values get written to the TS
array.) In order to keep individual step complexity constant, the work needed for reassigning all

timestamps from one cluster to the next needs to be shared by the processes performing updateTS()
and isEarlier() operations. I.e., during each updateTS() and isEarlier() operation a process

performs a constant number of steps contributing to this reassignment process.

Helping. Recall that in its updateTS() operation, a process 𝑝 performs FAI() on Counter in
order to determine a new timestamp. After that, it has to update TS[p] accordingly, using an

SC() operation. Because its timestamp may in the meantime have been reassigned to a different

cluster, this SC() operation may fail. (In fact, it is important that 𝑝’s SC() does not succeed, as

6 Benyamin Bashari, Ali Jamadi, and Philipp Woelfel

otherwise the dominance order of 𝑝’s active timestamp and other active timestamps might not

be consistent with the order of the updateTS() operations.) Process 𝑝 can repeatedly obtain a

new timestamp from Counter and try to store it in TS[p], but obviously it may fail every time.

However, if 𝑝 fails three times, then over that interval TS[p] must be changed by other processes

at least three times. This can only happen if all other processes complete at least Ω(𝛿) = Ω(𝑛3)
updateTS() and isEarlier() calls. The idea is now that during each updateTS() method call

and on average during one out of 𝑛 isEarlier() calls, some process 𝑞 helps some other process

𝑟 that has a pending updateTS() call, by repeatedly determining a new timestamp (using FAI()
on Counter) and trying to update TS[r] accordingly, until some process has updated TS[r] with a

new timestamp. (This will happen if at least one process 𝑞 helps 𝑟 a constant number of times.)

Thus, our algorithm guarantees that in an interval in which Ω(𝑛3) updateTS() and isEarlier()
calls occur, process 𝑝’s timestamp will be successfully updated, either by 𝑝 itself, or by some other

process.

To indicate that it needs help, process 𝑝 changes an announce bit in a separate single-writer

register A[p]. Similarly, TS[p] stores an auxiliary bit (in addition to 𝑝’s active timestamp), called

𝑝’s flag. The idea is that if 𝑝’s flag does not match the value of A[p], then 𝑝 wants help, i.e., it is

trying to update its timestamp. This allows a process 𝑞 to determine if 𝑝 wants help, and also to

indicate that 𝑝’s timestamp has been updated to a new one (i.e., 𝑝 has received help) with the same

successful SC() operation that stores that new timestamp in TS[𝑝].

The Invalidation Phase. It is possible that, when trying to reassign timestamps to a new cluster, a

process 𝑝 loads an array entry TS[𝑖], then falls asleep, and later uses the information it obtained

earlier from TS[𝑖] to determine the dominant timestamp in a cluster to reassign to the next cluster.

Reassigning that dominant timestamp is not affected by any possible changes to TS[𝑖] that may

have happened in the meantime, and so 𝑝 may base its decision on outdated information. To

avoid that, we add an invalidation phase that invalidates all links processes may have with the TS
array. This phase starts when the active cluster number changes from 𝑐 to (𝑐 + 1) mod 3 (and thus

Counter mod 𝛿 becomes 0), and ends after Z · 𝑛 increments of Counter, for some value Z = 𝑂 (𝑛)
that will be defined later. At the beginning of the invalidation phase, all active timestamps are in

cluster 𝑐 , and the phase ends before any of these timestamps is moved to cluster (𝑐 + 1) mod 3.

If, during the invalidation phase, a process reads a value 𝑖 from Counter, it invalidates all other

process’s links to TS[𝑖], where 𝑖 =
⌊
Counter mod 𝛿

Z

⌋
, provided that no process has already done so

during the ongoing invalidation phase. As a result, if some process performs an LL() and SC() pair
of operations on an entry of the TS array, and both are separated by a complete invalidation phase,

then the SC() fails.

Wrap-Around-Detection. It is necessary for processes to be able to detect if the cluster number

has “wrapped around”, which can happen once Counter has been incremented at least 2𝛿 + 1 times.

To avoid employing additional shared memory variables, we will sacrifice one of the processes,

and repurpose its TS array entry. Specifically, we will not allow process 𝑛 − 1 to perform any

updateTS() operation (clearly, this does not affect the asymptotic complexity analysis). Thus, if a

process performs TS[𝑛 − 1] .LL(), and later TS[𝑛 − 1] .VL(), then the latter operation will fail once

Counter has been incremented at least 2𝛿 + 1 times, because at least one invalidation phase must

have been completed since the LL() operation.

4.1.2 Comparing Timestamps.
To compare two timestamps in an isEarlier(i,j) call, a process 𝑝 first checks if one of processes 𝑖

or 𝑗 is currently trying to update its timestamp, and if yes, helps it do so (by getting new timestamps

and trying to store them in TS[i] and TS[j], respectively). Process 𝑝 then announces the process

Efficient Bounded Timestamping from Standard Synchronization Primitives 7

IDs it wants to compare. To do this, 𝑝 performs an LL() and an SC() operation on a separate LL/SC

object, LookupTable[p]. (The algorithm guarantees that the SC() operation succeeds.) Then 𝑝 tries

to obtain a consistent view (i.e., a snapshot) of TS[i] and TS[j], and determine the return value of the

isEarlier(i,j) call according to the dominance order of the timestamps stored in those registers.

The fact that 𝑝 helped any pending updateTS(i) and updateTS(j) calls then ensures that the

dominance order of TS[i] and TS[j] matches the relative order of the latest linearized updateTS(i)
and updateTS(j) calls preceding the linearization point of 𝑝’s isEarlier(i,j) operation.

We will now show how 𝑝 can obtain a consistent view of TS[i] and TS[j]: It first sandwiches a
TS[j].LL() operation in-between a TS[i].LL() and a TS[i].VL() operation. If the VL() operation

succeeds, 𝑝 has obtained (with its LL() operations) a consistent view of TS[i] and TS[j]. Otherwise,
𝑝 repeats the above, just with 𝑖 and 𝑗 swapped. If this still does not yield a consistent view of TS[i]
and TS[j], then both of TS[i] and TS[j] must have changed at least once.

This is a good scenario, as we will now explain. Clearly, at the point when the updateTS() call of
some process 𝑧 linearizes, its timestamp should be the latest one among all linearized updateTS()
calls. So only if some process𝑚 ≠ 𝑧 with a higher process ID has never called updateTS(), then
𝑚’s timestamp must be ordered after 𝑧’s. We now observe the following: If each of those two array

entries changed at least once as a result of updateTS(i) and updateTS(j) calls, respectively, then

both 𝑖 and 𝑗 have at least one linearized updateTS() call. Hence, if TS[i] and TS[j] change one
more time because of updateTS(i) and updateTS(j) calls, respectively, then 𝑝’s isEarlier(i,j)
can return either Boolean value, because it overlaps with the linearization point of the second

updateTS() calls. But is possible that one (or both) of these array entries change because they

are being invalidated (see the description of the invalidation phase, above), or that 𝑖’s and 𝑗 ’s

timestamps are reassigned to a new cluster. If such events happen a constant number of times (for

a large enough constant), then many updateTS() operations must be executed during that time.

The idea is now the following: With each updateTS() operation, a process 𝑞 chooses a different

index ℓ ∈ {0, . . . , 𝑛 − 1} and performs an LL() operation on LookupTable[ℓ], which returns a triple

(𝑖′, 𝑗 ′, 𝑟𝑒𝑠). If 𝑟𝑒𝑠 = ⊥, then process ℓ wants help completing an isEarlier(𝑖′, 𝑗 ′) call. In that case,

𝑞 calls isEarlier(𝑖′, 𝑗 ′) itself, and attempts to store the result in LookupTable[ℓ].res using an SC()
operation.

As a result, once process 𝑝 has written (𝑖, 𝑗,⊥) to LookupTable[𝑝], indicating that it wants help

to complete an isEarlier(𝑖, 𝑗) call, it takes at most Ω(𝑛2) updateTS() calls of other processes,
until the result of some isEarlier(𝑖, 𝑗) call gets written to LookupTable[𝑝].res. Hence, if during
its isEarlier(i,j) operation, process 𝑝 does not itself manage to obtain a consistent view of TS[i]
and TS[j] despite trying a (large enough) constant number of times, then such consistent view will

be provided by some other process.

4.2 Low Level Description
We will now describe the algorithm in detail. See Figures 1 and 2 for the pseudocode.

Shared Variables and Initial Configuration. We use an array of single bit (single-writer) registers,

A[0..𝑛 − 1]. Process 𝑖 uses A[𝑖] as its announce bit, to let other processes know that it wants to

update its timestamp. Initially, all 𝑛 bits are 0. We also employ an array TS[0..𝑛−1] of LL/SC objects,

where TS[i] stores a quadruple with the following components in order: cluster, index, flag, and
inv. Components cluster and index store the cluster and index number, respectively, of process

𝑖’s active timestamp. Component flag stores a bit that can be compared to 𝐴[𝑖], to determine if

process 𝑖 needs help completing an updateTS() operation. Lastly, inv stores an element in {0, 1, 2}.
Every time a process performs a successful SC() operation on TS[i], it sets TS[i].inv to the last

active cluster number it observed. All entries of the TS array are initially (0,⊥, 0, 2). We use an

8 Benyamin Bashari, Ali Jamadi, and Philipp Woelfel

array LookupTable[0..𝑛 − 1] of LL/SC objects, where each entry stores a triple with the following

components in order: x, y, and res. Components x and y store process IDs, and res stores either ⊥
or a Boolean value. All entries of the LookupTable array are initially (0, 0, True). Processes use this
array to announce the process IDs they want to compare during an isEarlier() call. Also, each
process has a variable helpID with global scope, which is initially 0. During each updateTS() call,

a process attempts to assist the process with ID helpID, and updates helpID to a different process

ID. The shared variable Counter is a mod 3𝛿-FAI, where the value of 𝛿 is given below.

Constants. Throughout the paper we assume that the number of processes, 𝑛, is fixed. We define

the following:

Z = 6𝑛 + 2 [= Z · 𝑛 = 6𝑛2 + 2𝑛
` = 6𝑛3 + 6𝑛2 + 2 𝛾 = 3𝑛3 + 4𝑛
𝛿 = [+ ` + 𝛾 = 9𝑛3 + 12𝑛2 + 6𝑛 + 2

During an execution, the algorithm cycles through three clusters, each of which comprises three

phases : 1. invalidation phase, 2. move phase, and 3. update-only phase. The constants [, `, and

𝛾 are the number of Counter increments that occur during an invalidation phase, a move phase,

and an update-only phase, respectively. Additionally, 𝛿 = [+ ` + 𝛾 is the total number of Counter

increments in each active cluster.

Finally, the algorithm uses an operator “≪” (see lines 49 and 54). TS[i] ≪ TS[j] returns True if
one the following conditions is true, and otherwise returns False.

• TS[i].index = TS[j].index = ⊥ ∧ 𝑖 < 𝑗 (none of processes 𝑖 and 𝑗 have performed an

updateTS() call),

• TS[i].index ≠ ⊥ ∧ TS[j].index = ⊥ (process 𝑖 has performed at least one updateTS() call,
and 𝑗 has not performed any)

• (TS[i].cluster, TS[i].index) ≺ (TS[j].cluster, TS[j].index) and TS[i].index ≠ ⊥ and

TS[j].index ≠ ⊥ (both, 𝑖 and 𝑗 , have performed at least one updateTS() call and 𝑗 ’s active

timestamp dominates 𝑖’s).

Function updateTS(). When process 𝑖 executes this function, it first announces that it wants to

update its timestamp in lines 2-3. It does so by reading TS[𝑖].flag (i.e., the flag component of its own

timestamp) and setting its announce bit to the complement of the value read. As a consequence,

TS[i].flag ≠ A[i]. Then, in line 4, process 𝑖 calls helpUpdateTS(𝑖). Before this call completes,

either 𝑖 or some other process assisting 𝑖 must have obtained and written a new timestamp to TS[𝑖].
Subsequently, in line 5, process 𝑖 performs a helpSystem() call, in which it attempts to help

another process complete its pending updateTS() or isEarlier() call. The details of this method

are explained later. Performing one helpSystem() call during each updateTS() call guarantees
that, by performing sufficiently many updateTS() calls, process 𝑖 helps every process at least once.

Finally, in line 6, process 𝑖 calls helpActiveCluster(). This function handles invalidating and

reassigning active timestamps, and is explained later.

Function helpUpdateTS(). Consider a helpUpdateTS(𝑝) call by process 𝑞. If 𝑝 has announced

that it wants to update its timestamp, then 𝑞 must first try to help 𝑝 . To that end, it repeats the

following up to three times: First, in line 9 it performs an LL() operation on TS[p]. Then it reads

𝑝’s announce bit in line 10 and compares that with TS[p].flag. If the two are the same, then 𝑝 does

not need help, so 𝑞 returns in line 11. Note that 𝑞 obtains TS[𝑝] .flag and 𝐴[𝑝] in two separate

shared memory steps, but since both store bits, the result of the comparison is correct at some

point between these two steps.

Efficient Bounded Timestamping from Standard Synchronization Primitives 9

1 Function updateTS():
2 ts← TS[myID].LL()

3 A[myID].write(¬ts.flag)
4 helpUpdateTS(myID)

5 helpSystem()

6 helpActiveCluster()

7 Function helpUpdateTS(id):
8 repeat 3 times
9 ts← TS[id].LL()

10 a← A[id].read()

11 if a = ts.flag then return

12 𝑐 ← Counter.FAI()

13 if TS[id].SC(⌊ 𝑐
𝛿
⌋, 𝑐 mod 𝛿, a, ⌊ 𝑐

𝛿
⌋) then

return

14 Function helpSystem():
15 helpUpdateTS(helpID)

16 (x, y, res) ← LookupTable[helpID].LL()

17 if res = ⊥ then
18 𝑐 ← isEarlier(x, y)

19 LookupTable[helpID].SC(x, y, 𝑐)

20 helpID← (helpID + 1) mod 𝑛

21 Function helpActiveCluster():
22 conditionalReset()

23 perform ^ steps from helpMoveTS()

24 Function conditionalReset():
25 repeat 2 times
26 𝑐 ← Counter.read()

27 if 𝑐 mod 𝛿 ≥ [then return

28 𝑖 ← ⌊ 𝑐 mod 𝛿
Z
⌋

29 ts← TS[𝑖].LL()

30 𝑐 ← Counter.read()

31 if 𝑐 mod 𝛿 ≥ [then return

32 if ts.inv = ⌊ 𝑐
𝛿
⌋ then return

33 TS[𝑖].SC(ts.cluster, ts.index, ts.flag, ⌊ 𝑐
𝛿
⌋)

34 Function isEarlier(x, y):
35 flag← TS[x].LL().flag

36 if A[x].read() ≠ flag then helpUpdateTS(x)

37 flag← TS[y].LL().flag

38 if A[y].read() ≠ flag then helpUpdateTS(y)

39 helpActiveCluster()

40 LookupTable[myID].LL()

41 LookupTable[myID].SC(x, y,⊥)
42 LookupTable[myID].LL()

43 repeat 6 times
44 xTS ← TS[x].LL()

45 yTS ← TS[y].LL()

46 if TS[x].VL() then
47 res← xTS ≪ yTS

48 LookupTable[myID].SC(x, y, res)

49 return res

50 xTS← TS[x].LL()

51 if TS[y].VL() then
52 res← xTS ≪ yTS

53 LookupTable[myID].SC(x, y, res)

54 return res

55 LookupTable[myID].SC(x, y, True)

56 return LookupTable[myID].LL().res

Fig. 1. MTS algorithm part 1

Now suppose that 𝑞 reads different values from TS[𝑝] .flag and 𝐴[𝑝]. In that case it continues to

execute lines 12-13. Here, 𝑞 performs an FAI() operation on Counter and uses the return value to

compute a new timestamp for 𝑝 . Process 𝑞 then attempts to store the newly created timestamp into

TS[𝑝] by performing an SC() operation. In the same SC() operation, 𝑞 also updates TS[𝑝] .flag to
the value it read from 𝐴[𝑝]. If the operation succeeds, then 𝑞 returns in line 13, and otherwise it

repeats the whole procedure (up to three times).

10 Benyamin Bashari, Ali Jamadi, and Philipp Woelfel

57 Function helpMoveTS():
58 localTS[𝑛 − 1]← TS[𝑛 − 1].LL()

59 𝑐 ← Counter.read()

60 if 𝑐 mod 𝛿 ∉ [[, [+ ` − 1] then return

61 for 𝑖 ∈ {0, . . . , 𝑛 − 2} do localTS[𝑖]← TS[𝑖].LL()

62 𝑐 ← Counter.read()

63 if 𝑐 mod 𝛿 ∉ [[, [+ ` − 1] then return

64 for 𝑖 ∈ {0, . . . , 𝑛 − 1} do
65 if

(
localTS[i].cluster = (⌊ 𝑐

𝛿
⌋ − 1) mod 3

)
∧ ¬ (TS[i].VL()) then return

66 if ¬TS[𝑛 − 1].VL() then return

67 activeCluster←
{
𝑥 ∈ {0, . . . , 𝑛 − 1} | localTS[x].cluster = ⌊ 𝑐

𝛿
⌋
}

68 oldCluster←
{
𝑥 ∈ {0, . . . , 𝑛 − 1} | localTS[x].cluster = (⌊ 𝑐

𝛿
⌋ − 1) mod 3

}
69 if oldCluster = ∅ then return

70 Let j ∈ oldCluster such that localTS[j].index is maximal

71 Let i ∈ activeCluster such that localTS[i].index is minimal

72 if localTS[j].index ≠ ⊥ then newIndex← min(localTS[i].index,0) − 1 else newIndex← ⊥
73 TS[j].SC(⌊ 𝑐

𝛿
⌋, newIndex, localTS[j].flag, ⌊ 𝑐

𝛿
⌋)

Fig. 2. MTS algorithm part 2

If 𝑞’s SC() in line 13 is successful, then as a result TS[p].flag = A[p]. Therefore, all processes
(including 𝑝) can observe that 𝑝 does not need help anymore updating its timestamp.

We prove that if 𝑞’s SC() operation in line 13 fails three times, then some other process has

helped 𝑝 receive a new timestamp. Therefore, once 𝑝 has announced that it wants to update its

active timestamp, it takes at most one complete helpUpdateTS(𝑝) call by any process until 𝑝 is

assigned a new timestamp.

Function helpSystem(). The purpose of this function is to help other processes in

the system. Every time a process 𝑞 executes this function, it calls helpUpdateTS(helpID)
(line 15). This way, 𝑞 helps the process with ID helpID if needed. Additionally, in lines 16-

17, process 𝑞 checks if the value of LookupTable[helpID].res is equal to ⊥. If yes, then

the process with ID helpID, has a pending isEarlier() call. Thus, 𝑞 will perform an

isEarlier(LookupTable[helpID].x, LookupTable[helpID].y) call and attempt to store the result

back into LookupTable[helpID] (lines 18-19). Process 𝑞’s attempt to write to LookupTable[helpID]
fails only if that entry has already been updated by some other process. Lastly, 𝑞 changes helpID to

(helpID + 1) mod 𝑛 (line 20). This ensures that 𝑞 attempts to help every process over a period in

which it completes 𝑛 helpSystem() calls.

Function helpActiveCluster(). This function helps maintain the following two invariants.

Invariant 1: After a cluster-𝑘 invalidation phase, and as long as the active cluster remains the

same, any successful TS[i].SC() operation updates TS[i].cluster to 𝑘 . The conditionalReset()
call in line 22 helps to maintain this invariant.

Invariant 2: Throughout the cluster-𝑘 update-only phase, no active timestamp is in cluster

(𝑘 − 1) mod 3. Performing ^ steps of a helpMoveTS() call in line 23 during a cluster-𝑘 move phase,

for a large enough constant ^ (such that a complete helpMoveTS() call requires at most 𝑛 ×^ steps)

contributes to maintaining this invariant. Observe that using a large enough constant ^ is sufficient

Efficient Bounded Timestamping from Standard Synchronization Primitives 11

for the algorithm to function properly, because the helpMoveTS() function requires Θ(𝑛) steps to
complete. Thus, the step complexity of helpActiveCluster() is constant.

Function isEarlier(). During an isEarlier(𝑖, 𝑗) call process 𝑝 first checks if process 𝑖 or 𝑗

is trying to update its active timestamp. To do this, 𝑝 compares 𝑖’s announce bit to 𝑖’s flag, and

similarly 𝑗 ’s announce bit to 𝑗 ’s flag (lines 35-38). If either 𝑖 or 𝑗 is updating its active timestamp,

then 𝑝 ensures that the new timestamp is stored in the TS array by calling helpUpdateTS(i) or
helpUpdateTS(j), respectively. This is necessary to ensure that 𝑝’s isEarlier() call can linearize.

Recall that during helpUpdateTS() a process may increment Counter, and the value of Counter
determines the currently active phase of the algorithm. Hence, 𝑝 must contribute to the progress of

the currently active phase by calling helpActiveCluster() (line 39).
In lines 40-41, process 𝑝 sets LookupTable[p] to (𝑖, 𝑗,⊥) in order to announce that it wants to

compare 𝑖 and 𝑗 . Then, by executing the loop in line 43, 𝑝 attempts up to six times to obtain a

snapshot (𝑥𝑇𝑆,𝑦𝑇𝑆) of (TS[i], TS[j]), as described in Section 4.1.2. If 𝑝 succeeds with that, then

in line 48, or 53 𝑝 resets its announcement by performing a LookupTable[𝑝].SC() operation that

sets LookupTable[𝑝].res to the result of 𝑥𝑇𝑆 ≪ 𝑦𝑇𝑆 . That same result 𝑝 then returns in line 49, or

line 54.

If after six iterations of the loop in line 43, process 𝑝 has not succeeded in capturing a snapshot,

then it attempts to reset its announcement by setting LookupTable[p].res to True with an SC()
operation (line 55). Then process 𝑝 calls 𝐿𝑜𝑜𝑘𝑢𝑝𝑠𝑝.LL() to determine the value of 𝐿𝑜𝑜𝑘𝑢𝑝𝑠𝑝.res,
which it returns (line 56). If, while 𝑝 is executing the loop, some process 𝑞 sees 𝑝’s announcement,

performs an isEarlier(i,j) call, and updates LookupTable[p].res, then 𝑝’s attempt to reset its an-

nouncement will fail. In this case, 𝑝’s isEarlier() call returns the same result as 𝑞’s isEarlier()
call. If, on the other hand, 𝑝’s attempt to reset its announcement succeeds, then the algorithm

guarantees that both 𝑖 and 𝑗 have performed sufficiently many updateTS() calls, such that 𝑝’s

response can be arbitrary.

In any case, before returning a response, 𝑝 executes a LookupTable[p].SC() operation that

sets LookupTable[p].res to a non-⊥ value, effectively resetting 𝑝’s announcement. Since this SC()
fails only if some other process has already updated LookupTable[𝑝].res with the result of an

isEarlier() call, LookupTable[p].res ≠ ⊥ immediately after this operations. This ensures that

no outdated values get stored in LookupTable[p], and that 𝑝’s SC() operation in line 41 always

succeeds.

Function conditionalReset(). In a conditionalReset() call, process 𝑝 repeats the following

up to two times: in lines 26-27, 𝑝 reads Counter to determine the currently active phase. If this is

not the invalidation phase, then 𝑝 returns in line 27. Otherwise, for 𝑖 =

⌊
Counter mod 𝛿

Z

⌋
, 𝑝 performs a

TS[i].LL() operation in line 29. Since during the invalidation phase the value of Counter mod 𝛿 is

between 0 and [− 1 = 𝑛 · Z − 1, we have 0 ≤ 𝑖 ≤ 𝑛 − 1. Then in lines 30-31, process 𝑝 reads Counter,
again, determines the currently active cluster, 𝑘 , and checks the algorithm’s current phase. If the

algorithm is not in an invalidation phase, 𝑝 returns in line 31. Otherwise, in line 32, 𝑝 compares

TS[i].inv to 𝑘 , and returns if TS[i].inv is equal to 𝑘 . This helps ensure that during an invalidation

phase every active timestamp is invalidated at most once, so that a process that attempts to update

an active timestamp, is guaranteed to succeed after a constant number of tries. Lastly, in line 33, 𝑝

performs a TS[i].SC() operation that sets TS[i].inv to the active cluster number. If this operation is

not successful, 𝑝 repeats the whole procedure.

The algorithm ensures that if a process performs an LL() and subsequent successful SC()
operation on TS[𝑖′] while cluster 𝑘 is continously active, then the SC() operation sets TS[𝑖′].inv to
𝑘 . Therefore, even if 𝑝’s TS[𝑖].SC() operation in the second iteration of the loop fails, TS[i].inv = 𝑘

12 Benyamin Bashari, Ali Jamadi, and Philipp Woelfel

immediately after that SC(), because some other process must have performed an LL() and

subsequent successful SC() operation, while cluster 𝑘 was active.

Function helpMoveTS(). This function reassigns active timestamps from a previously active

cluster to the currently active cluster. It only has an effect when executed during a move phase.

In fact, we must ensure that if a helpMoveTS() call is invoked in a cluster-𝑘 interval, and before

TS[𝑛 − 1] gets invalidated, or if the active cluster changes, during its execution, it does not change

any process’s active timestamp.

During its helpMoveTS() call, process 𝑝 first loads TS[𝑛 − 1] in line 58. Then, in lines 59-60, it

reads Counter in order to determine the currently active phase. If this is not the move phase, then

𝑝 returns in line 60. Otherwise, 𝑝 continues, and in line 61, loads all indices 0, . . . , 𝑛 − 2 of the TS
array. Then in lines 62-63, process 𝑝 reads Counter again, to determine the current phase. If the

algorithm is not in a move phase, 𝑝 returns in line 63.

Otherwise, in line 62 process 𝑝 reads Counter into a local variable 𝑐 . Thus, 𝑘 = ⌊𝑐/𝛿⌋ is the active
cluster number at that point. Then, in lines 64-65, 𝑝 executes a VL() operation on every entry of

the TS array that was in cluster (𝑘 − 1) mod 3 at the point when 𝑝 first loaded it (in lines 58 and 61).

If any of 𝑝’s VL() operations returns False, then 𝑝 returns in line 65. Otherwise, 𝑝 continues to

execute a TS[𝑛 − 1].VL() operation in line 66 and returns in the same line, if this VL() returns

False.
In lines 67-70, process 𝑝 uses its local view of the TS array (obtained in lines 58 and 61) to find the

process, 𝑗 , such that TS[j] stores the dominant active timestamp of cluster (𝑘 − 1) mod 3. Hence,

process 𝑗 has the next active timestamp that needs to be reassigned during the ongoing cluster-𝑘

move phase. Similarly, in line 71, process 𝑝 finds the process, 𝑖 , such that TS[i] stores the dominated

active timestamp of cluster 𝑘 . In line 72, process 𝑝 , uses its local view of the TS array to calculate a

new index newIndex for 𝑗 ’s active timestamp. If the index of TS[j] is ⊥, then newIndex is also ⊥.
Otherwise, newIndex is the largest negative integer less than the index of TS[i]. Lastly, in line 73,

process 𝑝 executes a TS[j].SC() operation to update 𝑗 ’s active timestamp to (𝑘, newIndex). Process
𝑝’s SC() fails only if some other process has reassigned 𝑗 ’s active timestamp to cluster 𝑘 .

5 CORRECTNESS OVERVIEW
In this section we give an overview for a correctness proof (see Appendix A for the full proofs). We

first explain the connection between the number of Counter increments and helpActiveCluster()
calls. We then discuss the purpose of the invalidation and move phases, and analyze the interplay

between a process’s flag and announce bit. Lastly, we will give an overview of our linearizability

proof.

The following relates the number of helpActiveCluster() calls a process 𝑝 completes to the

number of times it increments Counter.

Lemma 2. During any interval in which process 𝑝 increments Counter 𝑖 times, it completes at least⌈
𝑖
6

⌉
− 1 helpActiveCluster() calls.

Recall that at any point during an execution, the currently active cluster is ⌊ Counter
𝛿
⌋. The value of

Counter at point 𝑡 is denoted 𝐶𝑡 , and 𝑐𝑙𝑡 = ⌊𝐶𝑡

𝛿
⌋ is the active cluster at point 𝑡 . A cluster-𝑘 interval,

where 𝑘 ∈ {0, 1, 2}, is an interval throughout which cluster 𝑘 is active (i.e.,

⌊Counter
𝛿

⌋
= 𝑘 throughout

the interval). We define 𝑖𝑑𝑥𝑡 = 𝐶𝑡 mod 𝛿 . Hence, for any point 𝑡 during a cluster-𝑘 interval, if

𝑖𝑑𝑥𝑡 ∈ [0, [− 1], then the algorithm is in the cluster-𝑘 invalidation phase. If 𝑖𝑑𝑥𝑡 ∈ [[, ` + [− 1],
then the algorithm is in the cluster-𝑘 move phase. Lastly, if 𝑖𝑑𝑥𝑡 ∈ [` +[, 𝛿 − 1], then the algorithm

is in the cluster-𝑘 update-only phase.

Efficient Bounded Timestamping from Standard Synchronization Primitives 13

The main goal of the cluster-𝑘 invalidation phase is to ensure that after this phase, and while the

active cluster remains unchanged, any successful TS[i].SC() operation will set TS[𝑖].cluster to 𝑘 .

Lemma 3. Let 𝑘 ∈ {0, 1, 2}, and let [𝑡, 𝑡 ′] be a maximal cluster-𝑘 interval, such that 𝐶𝑡 ′ mod 𝛿 > [.
Furthermore, let 𝑡∗ be the first point during this interval, such that 𝑖𝑑𝑥𝑡∗ = 𝐶𝑡∗ mod 𝛿 = [. If process 𝑝
executes a successful TS[q].SC() operation during [𝑡∗, 𝑡 ′], then that SC() writes 𝑘 to TS[q].cluster.

Therefore, after the cluster-𝑘 invalidation phase, no process can be assigned a timestamp

from cluster (𝑘 − 1) mod 3. Hence, processes can safely change active timestamps from cluster

(𝑘 − 1) mod 3 to cluster 𝑘 , and thus, the cluster-𝑘 move phase can begin.

The objective of that phase is to move up to 𝑛 active timestamps from cluster (𝑘 − 1) mod 3

to cluster 𝑘 . The phase begins immediately after the cluster-𝑘 invalidation phase. Therefore, as

discussed above, no process gets assigned a timestamp in cluster (𝑘 −1) mod 3, during the cluster-𝑘

move phase. Furthermore, at the beginning of the cluster-𝑘 move phase at most 𝑛 active timestamps

can be assigned to cluster (𝑘 − 1) mod 3. Thus, immediately after this phase, no process’s active

timestamp is in cluster (𝑘 − 1) mod 3.

Lemma 4. Let 𝑘 be an element in {0, 1, 2}, and 𝐼 a cluster-𝑘 interval. If Counter mod 𝛿 ≥ [+ ` at
some point 𝑡 ∈ 𝐼 , then at that point, no active timestamp is in cluster (𝑘 − 1) mod 3.

At the start of the execution, cluster 0 is the active cluster, and initially processes are assigned

timestamps in cluster 0 until

⌊Counter
𝛿

⌋
= 1 for the first time. At this point, cluster 1 becomes

active. While this cluster remains active, any process executing an updateTS() call is assigned a

timestamp in cluster 1. However, some processes might still have pending updateTS() calls that
started before the active cluster changed, which means that they may be assigned timestamps

from cluster 0 even after cluster 1 has become active. By Lemma 3, after the cluster-1 invalidation

phase, no process can be assigned a timestamp from cluster 0, until the active cluster changes

again. Immediately following the cluster-1 invalidation phase, the cluster-1 move phase begins.

By Lemma 4, when this phase completes, no process remains assigned to cluster 0. Hence, at this

point, all active timestamps are in cluster 1, and they remain in cluster 1 until the active cluster

changes. By repeatedly, applying Lemmas 3 and 4 in the same way, we obtain the following.

Lemma 5. For any 𝑝 ∈ {0, . . . , 𝑛 − 1}, at any point in a cluster-𝑘 interval TS[p].cluster is equal to 𝑘
or (𝑘 − 1) mod 3.

While moving timestamps to the active cluster during a move phase, it is crucial to maintain the

dominance relation between any pair of active timestamps. This is guaranteed by the following

lemma.

Lemma 6. An SC() executed in line 73 does not affect the dominance order of any entries of the TS
array.

Recall that a process 𝑝 announces that it wants to update its timestamp by changing its announce

bit to the complement of its flag. Additionally, while updating 𝑝’s active timestamp, either 𝑝 or some

other process helping 𝑝 , sets 𝑝’s flag to the value of 𝑝’s announce bit. Therefore, TS[p].flag ≠ A[p]
only while 𝑝 wants to update its timestamp.

Lemma 7 states three important properties of the algorithm. Part (a) states that, if some process

𝑝 executes a helpUpdateTS(𝑞) call (𝑞 may be the same as 𝑝), then before this call responds,

some process updates 𝑞’s active timestamp, provided that 𝑞 wants to update its timestamp (i.e.,

TS[q].flag ≠ A[q]). Part (b) shows that during an interval in which 𝑝 wants to update its timestamp,

at most two successful TS[p].SC() operations can be executed. Lastly, part (c) shows that during

an interval 𝐼 , in which Counter is incremented 𝑂 (𝑛3) times, some process 𝑝 executes at least 𝑛

14 Benyamin Bashari, Ali Jamadi, and Philipp Woelfel

complete helpSystem() calls. During each complete helpSystem() call, process 𝑝 tries to help a

different process update its timestamp or complete an isEarlier() call. Thus, any updateTS()
or isEarlier() call that has “announced” that it wants help before the start of interval 𝐼 , either

finishes, or gets helped.

Lemma 7. Let 𝑝 be a process, and let 𝑡 and 𝑡 ′ be points in time such that 𝑡 < 𝑡 ′.

(a) Suppose process 𝑝 calls helpUpdateTS(𝑞) at point 𝑡 , and the function call responds at point
𝑡 ′. Let 𝑡𝑟 ∈ [𝑡, 𝑡 ′] be the first point during the helpUpdateTS(𝑞) call at which 𝑝 executes
the read() operation in line 10. If TS[q].flag ≠ A[q] at point 𝑡𝑟 , then there exist a point
𝑡∗ ∈ [𝑡𝑟 , 𝑡 ′] at which TS[q].flag changes.

(b) If TS[p].flag ≠ A[p] throughout [𝑡, 𝑡 ′], then there are at most two successful SC() operations
on TS[p]during [𝑡, 𝑡 ′].

(c) During an interval in which Counter gets incremented 3𝑛3 + 6𝑛2 + 6𝑛 times, some process
performs at least 𝑛 complete helpSystem() calls.

Using Lemma 7, we can describe the interplay between a process’s announce bit and flag.

Specifically, for any process 𝑝 , the pair of bits (A[p], TS[p].flag) changes cyclically as follows:

(1) Initially, both bits are zero, and they will remain zero until 𝑝 executes an updateTS() call.
(2) When 𝑝 executes line 3 during its updateTS() call, it causes A[p] to change, and as a result,

TS[p].flag ≠ A[p].
(3) During the same updateTS() call, 𝑝 calls helpUpdateTS(𝑝). Before 𝑝 finishes its

helpUpdateTS() call, 𝑝 or some other process helping 𝑝 executes line 13, which causes 𝑝’s

announce bit and flag to become equal again.

(4) After the updateTS() call completes, the pair of bits (A[p], TS[p].flag) is in the same state

as in the beginning of this cycle, except that both bits have been flipped. The cycle repeats.

The interplay of process 𝑝’s flag and announce bit indicates that during every updateTS() call
by process 𝑝 , there exists a point at which some process 𝑞 (which may be the same as 𝑝) performs a

successful TS[p].SC() operation in line 13. We call this point the publishing point of 𝑝’s updateTS()
call. Immediately after this, the effect of 𝑝’s updateTS() is reflected by the dominance order of

the TS array entries. Prior to executing that TS[p].SC() operation, process 𝑞 executes an FAI()
operation in line 12 to obtain a new timestamp for 𝑝 . We call the point of this FAI() the linearization
point of 𝑝’s updateTS() call.

The interpreted value of the MTS object at point 𝑡 is the lexicographical order of pairs (𝑡𝑝 , 𝑝),
where 𝑝 is a process ID, and 𝑡𝑝 is obtained as follows: If none of 𝑝’s updateTS() calls linearizes

before 𝑡 , then 𝑡𝑝 = ∞, and otherwise 𝑡𝑝 is the linearization point of 𝑝’s latest updateTS() call

satisfying 𝑡𝑝 < 𝑡 .

To prove that our algorithm is linearizable, we will show for each isEarlier(𝑖, 𝑗) operation that

there is a point during that operation at which the interpreted value of the MTS object is consistent

with the return value of the operation. Thus, the isEarlier(𝑖, 𝑗) operation can linearize at that

point.

Lemma 8. Consider an isEarlier(𝑖, 𝑗) call that gets invoked and responds at points 𝑡 and 𝑡 ′,
respectively. The response of the isEarlier() call is consistent with the interpreted value of the MTS
object at some point 𝑡∗ ∈ [𝑡, 𝑡 ′].

The main difficulty with proving this lemma is that the effect of an updateTS() operation does

not get reflected in the interpreted value of the object at the linearization point of the operation,

but only at the publishing point, which occurs later. The following lemma helps us deal with that.

Efficient Bounded Timestamping from Standard Synchronization Primitives 15

Lemma 9. Let 𝑖 and 𝑗 be two distinct processes, 𝑡 a point in time, and 𝑡∗ the latest point before 𝑡 , such
that the publishing point of any updateTS() call by 𝑖 or 𝑗 with linearization point before 𝑡∗ occurs
before 𝑡 . Then the dominance order of TS[i] and TS[j] at point 𝑡 is consistent with the interpreted value
of the MTS object at point 𝑡∗

We now highlight the main ideas behind the proof of Lemma 8. Consider an isEarlier(𝑖, 𝑗)
call by process 𝑝 that gets invoked and responds at points 𝑡 and 𝑡 ′, respectively. While executing

lines 35-38, process 𝑝 checks if either 𝑖 or 𝑗 has announced that it wants help completing an

updateTS() call, and if yes, helps accordingly (as detailed in Section 4.2). This ensures that if either

𝑖 or 𝑗 executes an updateTS() operation with a linearization point before 𝑡 , then the operation’s

publishing point occurs before 𝑝 finishes line 38.

Let 𝐿𝑝 be the interval spanning 𝑝’s execution of the loop comprising lines 43-54. Suppose that

𝑝 successfully obtains a snapshot of TS[i] and TS[j] at some point 𝑡𝑠 ∈ 𝐿𝑝 (in the same way as

described in Section 4.2). In this case, 𝑝 returns a Boolean value that reflects the dominance order

between TS[i] and TS[j] at point 𝑡𝑠 . As discussed above, the publishing points of 𝑖’s and 𝑗 ’s last

updateTS() calls which linearized before 𝑡 are before 𝐿𝑝 . Therefore, by Lemma 9 𝑝’s response is

consistent with the interpreted value of the MTS object at some point in [𝑡, 𝑡𝑠] ⊂ [𝑡, 𝑡 ′].
Now suppose 𝑝 fails to capture a snapshot while executing the loop. In this case, both of TS[i]

and TS[j] change at least six times during 𝐿𝑝 (as explained in Section 4.2). We can prove that if

none of these changes is due to an updateTS() call published during 𝐿𝑝 , then the active cluster

wraps around at least once during 𝐿𝑝 . Hence, by Lemma 7(c), during some interval 𝐼𝑞 ⊊ 𝐿𝑝 , some

other process 𝑞 executes isEarlier(𝑖, 𝑗), and writes the response of this isEarlier() call to

LookupTable[p].res. Then in line 56, process 𝑝 returns the value 𝑞 stored in LookupTable[p].res.
Therefore, with a simple induction on the number of isEarlier() calls, we can prove that the

response of 𝑝’s isEarlier() call is consistent with the interpreted value of the MTS object at some

point in 𝐼𝑞 ⊊ 𝐿𝑝 ⊊ [𝑡, 𝑡 ′].
Lastly, suppose that 𝑝 fails to capture a snapshot while executing the loop, and that a long

enough interval has not passed to guarantee that some other process has updated LookupTable[p].
During 𝐿𝑝 each of 𝑖 and 𝑗 must execute at least one complete updateTS() call during the first 3

iterations of 𝑝’s loop, and another one during the second 3 iterations. It it not hard to see that then

the response of 𝑝’s isEarlier(𝑖, 𝑗) call can be arbitrary: Let 𝑡𝑖 and 𝑡 𝑗 be the linearization points of

𝑖’s and 𝑗 ’s updateTS() calls, respectively, during the second 3 iterations of the loop. Since each

of 𝑖 and 𝑗 completed at least one updateTS() call before min{𝑡𝑖 , 𝑡 𝑗 }, at point 𝑡𝑖 process 𝑖 has the
timestamp dominating all other ones (in the linearization order), and at point 𝑡 𝑗 process 𝑗 has it.

Thus, if 𝑝’s isEarlier(𝑖, 𝑗) call returns False, we can linearize this operation immediately after 𝑡𝑖 ,

and otherwise immediately after 𝑡 𝑗 .

Lemma 8 implies that our MTS object is linearizable. It is easy to see that the step complexity of

the algorithm is constant, since both, updateTS() and isEarlier(), comprise a constant number

of shared memory steps. Finally, according to Section 4.2, our algorithm uses onemod𝜑-FAI object,
where 𝜑 = 𝑂 (𝑛3), and 𝑂 (𝑛) LL/SC objects and registers of size 𝑂 (log𝑛), each.

Corollary 10. The algorithm presented in Figures 1 and 2 is a linearizable MTS object with constant
step complexity using one mod𝜑-FAI object, where 𝜑 = 𝑂 (𝑛3), and 𝑂 (𝑛) LL/SC objects and registers
of size 𝑂 (log𝑛), each.

Theorem 1 follows immediately from this, and the fact that we can implement an LL/SC object

from𝑂 (𝑛) CAS objects [21], and amod𝜑-FAI object from a bounded FAA object of size𝑂 (log(𝜑𝑛))
bits (see the next section).

16 Benyamin Bashari, Ali Jamadi, and Philipp Woelfel

6 BOUNDED FAI FROM BOUNDED FAA
In this section, we present ourmod𝜑-FAI implementation, which uses a single bounded FAA object.

We assume that the FAA object can store values in {0, . . . , 𝐵 − 1} (i.e., 𝐵 = 2
𝑤
assuming a word-size

of𝑤), and that 𝑛 × 𝜑 < 𝐵.

The algorithm is quite simple (see Figure 3): We define a threshold, 𝑇 = 𝑛(𝑚 − 1). To increment

the mod𝜑-FAI object, a process first reads the object. If the value returned is smaller than the

threshold, then the process performs Counter.FAA(1), and otherwise Counter.FAA(−𝜑 + 1). Then
it returns the result of the FAA() operation.

Clearly, as long as the FAA() operations cause no overflows, this is linearizable. We prove that if

a process executes FAA(𝑥) at a point when Counter has value 𝑣 , then 𝑣 + 𝑥 ∈ {0, . . . , 𝐵 − 1} (see
Appendix B). This immediately yields the following result.

Theorem 11. There exists an algorithm with constant step complexity, that implements a lineariz-
able mod𝜑-FAI from a bounded FAA object that can store values in {0, . . . , 𝐵 − 1}, provided that
𝐵 > 𝜑 · 𝑛.

74 Function FAI():
75 tmp← Counter.read()

76 if tmp ≥ (𝜑 · 𝑛 − 𝑛) then tmp← Counter.FAA(1 − 𝜑)
77 else tmp← Counter.FAA(1)

78 return tmp mod 𝜑

Fig. 3. Bounded mod𝜑 − FAI

7 SNAPSHOTS WITH BOUNDEDWORD-SIZE
Bashari andWoelfel [7] presented a single-writer snapshot algorithm that supports three operations,

Update(), Scan(), and Observe(). The object stores an array of size 𝑛, and process 𝑝 can write

value 𝑥 to the 𝑝-th component by calling Update(𝑥). To obtain a snapshot, process 𝑝 can call

Scan(). But contrary to a conventional snapshot object [2, 6], such a Scan() call does not return
anything. Instead, process 𝑝 can later call Observe(𝑖) to determine the value of the 𝑖-th component

of the array at the point of 𝑝’s latest preceding scan. Conventional snapshot algorithms usually

provide Scan() methods that return the entire state of the snapshot object (e.g., an 𝑛-component

array). To achieve this efficiently, it is often assumed that the entire state of the array fits into a

single memory word. This is not a realistic assumption. In the solution of Bashari and Woelfel, a

memory word only needs to be asymptotically large enough to store a single array component and

some auxiliary information. However, that auxiliary information contains a counter value, which

increases linearly in the number of operations executed on the object, and thus is not bounded.

The algorithm uses a single-writer predecessor data structure 𝑃𝑟𝑒𝑑𝑝 for each process 𝑝 , con-

structed from a single-writer balanced search tree. Process 𝑝 can insert and remove key-value pairs

(with keys from a totally ordered universe) into and from 𝑃𝑟𝑒𝑑𝑝 . Any process can determine the

key-value pair with the largest key in 𝑃𝑟𝑒𝑑𝑝 that is smaller than a given key.

The algorithm also employs an unbounded fetch-and-increment (FAI) object 𝐹 to keep track of

the order of Update() and Scan() operations. To update its snapshot component with value 𝑥 ,

process 𝑝 increments 𝐹 from 𝑓 to 𝑓 + 1, and then inserts the key-value pair (𝑓 , 𝑥) into 𝑃𝑟𝑒𝑑𝑝 . To
perform a Scan(), a process can read 𝐹 into a variable 𝑓 ′. A subsequent Observe(𝑖) operation then

Efficient Bounded Timestamping from Standard Synchronization Primitives 17

only needs to return the value of the predecessor of 𝑓 ′ in 𝑃𝑟𝑒𝑑𝑖 . (Additional tricks, such as helping,

are necessary to make this a linearizable solution; but these are not affected by our modification.)

The algorithm ensures that each predecessor data structure stores at any point at most𝑚 elements,

where𝑚 = 𝑂 (𝑛). This is achieved by periodically recycling “unreachable” key-value pairs.

The fact that unbounded counter values obtained from the FAI object 𝐹 need to be stored, is the

only reason why the algorithm requires shared memory words of unbounded size. But the only

purpose of 𝐹 is to associate Update() and Scan() operations with counter values that can later be

used to determine the temporal order of these operations. Hence, it seems natural to replace the

FAI with a bounded timestamp object.

Specifically, we can replace 𝐹 with a variant of our MTS object, where each process maintains

𝑘 = 𝑂 (𝑚 · 𝑛) timestamps. Recall that a process can do that by simply simulating 𝑘 distinct process

IDs (e.g., 𝑘𝑛, . . . , (𝑘 +1)𝑛−1). Timestamps then act as keys in the predecessor data structure. Instead

of incrementing or reading 𝐹 in an Update() or Scan() operation, respectively, a process chooses

one of its “free” IDs (i.e., one, for which no associated timestamp occurs in any predecessor data

structure), and updates the timestamp associated with that ID. It then uses that ID in place of the

key when inserting a key-value pair into the predecessor data structure. Thus, in an Observe(𝑖)
operation, a process can determine the value of the latest preceding Update() of process 𝑖 , by

comparing timestamps instead of keys in 𝑃𝑟𝑒𝑑𝑖 .

The problem of finding a “free” ID is essentially a memory reclamation problem, which is well

understood, and several known solutions with constant step complexity can be applied here (e.g.,

[4, 5, 8]).

ACKNOWLEDGMENTS
We thank the anonymous reviewers, who provided insightful comments and suggestions. Support

is gratefully acknowledged from the Natural Science and Engineering Research Council of Canada

(NSERC) under Discovery Grant RGPIN-2019-04852, and the Canada Research Chairs program.

REFERENCES
[1] Karl Abrahamson. 1988. On Achieving Consensus Using a Shared Memory. In Proceedings of the 7th ACM Symposium

on Principles of Distributed Computing (PODC). 291–302. https://doi.org/10.1145/62546.62594

[2] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. Shavit. 1993. Atomic Snapshots of Shared Memory. Journal of
the ACM 40, 4 (1993), 873–890.

[3] Yehuda Afek, Danny Dolev, Eli Gafni, Michael Merritt, and Nir Shavit. 1994. A Bounded First-in, First-Enabled

Solution to the l-Exclusion Problem. ACM Transactions on Programming Languages and Systems 16 (1994), 939–953.
https://doi.org/10.1145/177492.177731

[4] Zahra Aghazadeh, Wojciech Golab, and Philipp Woelfel. 2014. Making Objects Writable. In Proceedings of the 33rd
ACM Symposium on Principles of Distributed Computing (PODC). 385–395. https://doi.org/10.1145/2611462.2611483

[5] Zahra Aghazadeh and Philipp Woelfel. 2016. Upper bounds for boundless tagging with bounded objects. In Proceedings
of the 30th International Symposium on Distributed Computing (DISC). 442–457. https://doi.org/10.1007/978-3-662-

53426-7_32

[6] James H. Anderson. 1993. Composite Registers. Distributed Computing 6, 3 (1993), 141–154. https://doi.org/10.1007/

BF02242703

[7] Benyamin Bashari and Philipp Woelfel. 2021. An Efficient Adaptive Partial Snapshot Implementation. In Proceedings
of the 40th ACM Symposium on Principles of Distributed Computing (PODC). 545–555. https://doi.org/10.1145/3465084.

3467939

[8] Guy E. Blelloch and Yuanhao Wei. 2020. LL/SC and Atomic Copy: Constant Time, Space Efficient Implementations

Using Only Pointer-Width CAS. In Proceedings of the 34th International Symposium on Distributed Computing (DISC).
5:1–5:17. https://doi.org/10.4230/LIPIcs.DISC.2020.5

[9] Danny Dolev and Nir Shavit. 1997. Bounded concurrent time-stamping. SIAM Journal on Computing 26, 2 (1997),

418–455. https://doi.org/10.1137/S0097539790192647

[10] Cynthia Dwork, Maurice Herlihy, Serge Plotkin, and Orli Waarts. 1999. Time-lapse snapshots. SIAM Journal on
Computing 28, 5 (1999), 1848–1874. https://doi.org/10.1137/S0097539793243685

https://doi.org/10.1145/62546.62594
https://doi.org/10.1145/177492.177731
https://doi.org/10.1145/2611462.2611483
https://doi.org/10.1007/978-3-662-53426-7_32
https://doi.org/10.1007/978-3-662-53426-7_32
https://doi.org/10.1007/BF02242703
https://doi.org/10.1007/BF02242703
https://doi.org/10.1145/3465084.3467939
https://doi.org/10.1145/3465084.3467939
https://doi.org/10.4230/LIPIcs.DISC.2020.5
https://doi.org/10.1137/S0097539790192647
https://doi.org/10.1137/S0097539793243685

18 Benyamin Bashari, Ali Jamadi, and Philipp Woelfel

[11] Cynthia Dwork and Orli Waarts. 1999. Simple and efficient bounded concurrent timestamping and the traceable use

abstraction. Journal of the ACM 46, 5 (1999), 633–666. https://doi.org/10.1145/324133.324161

[12] Faith Ellen, Panagiota Fatourou, and Eric Ruppert. 2008. The space complexity of unbounded timestamps. Distributed
Computing 21, 2 (2008), 103–115. https://doi.org/10.1007/s00446-008-0060-6

[13] C. J. Fidge. 1988. Timestamps in Message-Passing Systems That Preserve the Partial Ordering. Proceedings of the 11th
Australian Computer Science Conference 10, 1 (1988), 56–66.

[14] Michael J. Fischer, Nancy A. Lynch, James E. Burns, and Allan Borodin. 1989. Distributed FIFO allocation of identical

resources using small shared space. ACM Transactions on Programming Languages and Systems 11, 1 (1989), 90–114.
https://doi.org/10.1145/59287.59292

[15] Rainer Gawlick, Nancy A. Lynch, and Nir Shavit. 1992. Concurrent TimestampingMade Simple. In Theory of Computing
and Systems (ISTCS). 171–183. https://doi.org/10.1007/BFb0035176

[16] Rachid Guerraoui and Eric Ruppert. 2007. Anonymous and fault-tolerant shared-memory computing. Distributed
Computing 20, 3 (10 2007), 165–177. https://doi.org/10.1007/s00446-007-0042-0

[17] Sibsankar Haldar and Paul Vitányi. 2002. Bounded concurrent timestamp systems using vector clocks. Journal of the
ACM 49, 1 (2002), 101–126. https://doi.org/10.1145/505241.505246

[18] Maryam Helmi, Lisa Higham, Eduardo Pacheco, and Philipp Woelfel. 2014. The Space Complexity of Long-Lived and

One-Shot Timestamp Implementations. Journal of the ACM 61, 1 (2014), 7:1–7:25. https://doi.org/10.1145/2559904

[19] Amos Israeli and Ming Li. 1987. Bounded Time-Stamps. In Proceedings of the 28th Annual IEEE Symposium on
Foundations of Computer Science (FOCS). 371–382. https://doi.org/10.1109/SFCS.1987.10

[20] Amos Israeli and Meir Pinhasov. 1992. A Concurrent Time-Stamp Scheme which is Linear in Time and Space. In

Distributed Algorithms, Vol. 647. 95–109. https://doi.org/10.1007/3-540-56188-9_7

[21] Prasad Jayanti and Srdjan Petrovic. 2003. Efficient and Practical Constructions of LL/SC Variables. In Proceedings of the
22ed ACM Symposium on Principles of Distributed Computing (PODC). 285–294. https://doi.org/10.1145/872035.872078

[22] Leslie Lamport. 1974. A New Solution of Dijkstra’s Concurrent Programming Problem. Commun. ACM 17 (1974),

453–455. Issue 8. https://doi.org/10.1145/361082.361093

[23] Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a Distributed System. Commun. ACM 21 (1978),

558–565. Issue 7. https://doi.org/10.1145/359545.359563

[24] Friedemann Mattern. 1989. Virtual Time and Global States of Distributed Systems. Parallel and Distributed Algorithms
(1989), 215–226.

[25] Glenn Ricart and Ashok K. Agrawala. 1981. An optimal algorithm for mutual exclusion in computer networks.

Commun. ACM 24 (1981), 9–17. Issue 1. https://doi.org/10.1145/358527.358537

[26] Vivek Shikaripura and Ajay D. Kshemkalyani. 2002. A Simple, Memory-Efficient Bounded Concurrent Timestamping

Algorithm. In Proceedings of the 13th Annual International Symposium on Algorithms and Computation (ISAAC). 550–562.
https://doi.org/10.1007/3-540-36136-7_48

[27] PaulM. B. Vitanyi and Baruch Awerbuch. 1986. Atomic shared register access by asynchronous hardware. In Proceedings
of the 27th Annual Symposium on Foundations of Computer Science (SFCS ’86). 233–243. https://doi.org/10.1109/SFCS.

1986.11

https://doi.org/10.1145/324133.324161
https://doi.org/10.1007/s00446-008-0060-6
https://doi.org/10.1145/59287.59292
https://doi.org/10.1007/BFb0035176
https://doi.org/10.1007/s00446-007-0042-0
https://doi.org/10.1145/505241.505246
https://doi.org/10.1145/2559904
https://doi.org/10.1109/SFCS.1987.10
https://doi.org/10.1007/3-540-56188-9_7
https://doi.org/10.1145/872035.872078
https://doi.org/10.1145/361082.361093
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/358527.358537
https://doi.org/10.1007/3-540-36136-7_48
https://doi.org/10.1109/SFCS.1986.11
https://doi.org/10.1109/SFCS.1986.11

Efficient Bounded Timestamping from Standard Synchronization Primitives 19

A CORRECTNESS PROOF
It is easy to see that our implementation has constant step complexity:

Lemma 12. Functions updateTS() and isEarlier() have constant step complexity.

Proof. Both functions, isEarlier() and updateTS(), comprise a constant number of shared

memory operations, and one call of helpActiveCluster(). The helpActiveCluster() function

comprises a constant number of shared memory operations and one call of helpMoveTS(). Due
to the for loops in lines 61 and 64, a helpMoveTS() call has a step complexity of Θ(𝑛). In each

helpActiveCluster() call, only a constant number of steps of a helpMoveTS() call are executed.

Therefore, updateTS() and isEarlier() have constant step complexity. □

The remainder of this section is structured as follows. We first, prove Lemma 2. Next, we

demonstrate the connection between a process’s announce bit and its flag. We then investigate

the algorithm’s behavior during the invalidation and move phases. Additionally, we describe how

the timestamps change throughout an execution, and how an active timestamp changes during

an updateTS() call. We also discuss what causes the dominance relation between two active

timestamps to change. Finally, we define a linearization point for each operation, such that ordering

operations based on their linearization points yields a history that is consistent with the sequential

specification.

Observation 13. For each updateTS() or isEarlier() function call, a process 𝑝 can increment
Counter at most six times.

Proof. The only shared memory operation in the algorithm that increments Counter is in
line 12 of helpUpdateTS(). Because of the repeat loop spanning lines 8-13, during every call of

this function, Counter can be incremented at most three times. An updateTS() call performs

helpUpdateTS() at most twice, once in line 4, and once in line 15 of its helpActiveCluster() call
in line 5. Therefore, for every updateTS() call, process 𝑝 can increment Counter at most six times.

Similarly, a complete isEarlier() call can call helpUpdateTS() at most twice, once in line 36 and

once in line 38. Thus, during an isEarlier() call, process 𝑝 can increment Counter at most six

times as well. □

In the following lemma we show that between any two consecutive helpActiveCluster() calls
of a process 𝑝 , it can increment Counter at most 6 times.

Lemma 14. Between any two consecutive helpActiveCluster() calls of process 𝑝 , it can increment
Counter at most 6 times.

Proof. There are two shared memory operations in the algorithm that execute a call of

helpActiveCluster(), line 6 in the updateTS() function and line 39 in the isEarlier() func-

tion. Therefore, after executing a call of helpActiveCluster() process 𝑝 can either respond to

an updateTS() call, or execute lines 40-56 and then respond to an isEarlier() call. Executing

lines 40-56 does not incrementCounter. Therefore, after responding to a helpActiveCluster() call
process 𝑝 does not increment Counter until it responds to its pending updateTS() or isEarlier()
call. Furthermore, after responding to its isEarlier() or updateTS() call and before invoking

another helpActiveCluster() call, 𝑝 can either invoke updateTS(), and execute lines 2-5, or

invoke isEarlier() and execute lines 35-38. By Observation 13, in both cases 𝑝 can increment

Counter at most 6 times. Thus, between any two consecutive helpActiveCluster() calls of 𝑝 , it

can increment Counter at most six times. □

Using Lemma 14 and observation 13, we can prove Lemma 2.

20 Benyamin Bashari, Ali Jamadi, and Philipp Woelfel

Lemma 2. During any interval in which process 𝑝 increments Counter 𝑖 times, it completes at least⌈
𝑖
6

⌉
− 1 helpActiveCluster() calls.

Proof. From the beginning of the execution until the first time 𝑝 executes a

helpActiveCluster() call, it can either execute lines 2-5 during an updateTS() call, or

execute lines 35-38 during an isEarlier() call. By Observation 13, in both cases 𝑝 can increment

Counter at most six times before executing a call of helpActiveCluster(). Executing a call

of helpActiveCluster() does not increment Counter. Furthermore, By Lemma 14 between

any two consecutive calls of helpActiveCluster() by 𝑝 , it can increment Counter at most 6

times. Hence, after at most six Counter increments 𝑝 executes a call of helpActiveCluster().
Therefore, in any interval in which 𝑝 increments Counter 𝑖 times, it must complete at least

⌈
𝑖
6

⌉
− 1

helpActiveCluster() calls. □

Flag and Announce Bit Interplay
In this section we state some useful properties of A[p] and TS[p].flag for a process 𝑝 , and describe

the interplay between them.

Observation 15. A successful TS[p].SC() operation in line 33 or 73 does not change TS[p].flag.

Proof. First we prove the statement for a successful SC() executed in line 33. Assume that a

successful SC() in line 33 changes TS[p].flag. Let𝑏 be the flag component returned by the preceding

LL() on TS[p] in line 29. Since the SC() writes 𝑏 to the flag component of TS[p], at some point

after the LL() in line 29 and before the SC() is executed, TS[p].flag must change. This contradicts

the assumption that the SC() is successful.

The proof for the case that the successful SC() is executed in line 73 is identical to the case where

the SC() is executed in line 33, except that its preceding LL() happens in line 61 (if 𝑝 ≠ 𝑛 − 1), or
in line 58 (if 𝑝 = 𝑛 − 1). □

We now observe that a process’s announce bit only changes due to a write operation in line 3,

and its flag changes only due to successful SC() operation in line 13.

Observation 16. Let 𝑝 be a process.

(a) If A[p] changes at point 𝑡 , then at that point process 𝑝 executes a write operation in line 3.
(b) If TS[p].flag changes at point 𝑡 , then at that point some process executes an SC() in line 13.

Proof. Part (a) follows immediately from the fact that the only line in the only shared memory

operation in the algorithm, which modifies the value of an array entry A[p], is the write operation
by 𝑝 in line 3.

We now prove part (b). Assume TS[p].flag changes at point 𝑡 . The algorithm has three shared

memory operations that can perform an SC() on TS[p] in lines 13, 33 and 73. By Observation 15,

an SC() in line 29 or 73 does not change TS[p].flag. Therefore, only an SC() in line 13 can change

TS[p].flag. □

The following shows how the equality relation between a process’s flag and announce bit changes,

if either its announce bit or flag changes.

Lemma 17. Let 𝑝 be a process, and let 𝑡 be a point in time at which a shared memory operation is
executed.

(a) If A[p] changes at point 𝑡 , then TS[p].flag ≠ A[p] immediately after 𝑡 .
(b) If TS[p].flag changes at point 𝑡 , then TS[p].flag = A[p] immediately after 𝑡 .

Efficient Bounded Timestamping from Standard Synchronization Primitives 21

Proof. Suppose the lemma is not true, and let 𝑡 be the first point in time when one of the

statements is not true. First assume part (a) is not true at this point. Suppose A[p] changes from
1 − 𝑏 to 𝑏 at point 𝑡 , and TS[p].flag = A[p] immediately after 𝑡 . By Observation 16(a) at point

𝑡 , process 𝑝 executes the write operation on TS[p] in line 3. Let 𝑡𝐿𝐿 < 𝑡 be the point when 𝑝

executes the preceding LL() in line 2. Then the flag component returned by this LL() is 1 − 𝑏. So
TS[p].flag = 1 − 𝑏 at point 𝑡𝐿𝐿 . Furthermore, because A[p] is a single-writer register, and 𝑝 is the

only process that can write to it, A[p] = 1 − 𝑏 throughout [𝑡𝐿𝐿, 𝑡]. Thus, by the assumption that

TS[p].flag = A[p] immediately after 𝑡 , at some point 𝑡∗ ∈ (𝑡𝐿𝐿, 𝑡) process 𝑝’s flag changes from 1−𝑏
to 𝑏. Then TS[p].flag changes at point 𝑡∗, and TS[p].flag ≠ A[p] immediately after 𝑡∗. Therefore, at
point 𝑡∗ < 𝑡 part (b) does not hold. This contradicts the assumption that 𝑡 is the first point in time

when one of the statements is not true — a contradiction.

Now assume at point 𝑡 , part (b) is not true. Suppose TS[p].flag changes from 1 −𝑏 to 𝑏 at point 𝑡 ,

and TS[p].flag ≠ A[p] immediately after 𝑡 . By Observation 16(b), at point 𝑡 , some process 𝑞 executes

a successful SC() on TS[p] in line 13. Let 𝑡𝐿𝐿 < 𝑡 be the point when 𝑞 executes the preceding LL()
in line 9. Since 𝑞’s SC() is successful, TS[p].flag = 1 − 𝑏 throughout [𝑡𝐿𝐿, 𝑡]. Furthermore, since 𝑞

does not execute the return statement in line 11, it holds A[p] = 𝑏 at the point 𝑡𝑟𝑒𝑎𝑑 ∈ [𝑡𝐿𝐿, 𝑡], when
𝑞 executes line 10. Therefore, by the assumption TS[p].flag ≠ A[p] immediately after 𝑡 , process 𝑝’s

announce bit must change from 𝑏 to 1 − 𝑏 at some point 𝑡∗ ∈ (𝑡𝑟𝑒𝑎𝑑 , 𝑡). Then A[p] changes at point
𝑡∗, and TS[p].flag = A[p] immediately after 𝑡∗. Therefore, at point 𝑡∗ < 𝑡 part (a) does not hold — a

contradiction. □

Lemma 17 and Observation 16 yield the following.

Corollary 18. Let 𝑡 be a point in time when a shared memory operation is executed.

(a) If TS[p].flag ≠ A[p] immediately before 𝑡 , and TS[p].flag = A[p] immediately after 𝑡 , then
TS[p].flag changes at point 𝑡 due to a process executing a successful SC() in line 13.

(b) If TS[p].flag = A[p] immediately before 𝑡 , and TS[p].flag ≠ A[p] immediately after 𝑡 , then
A[p] changes at point 𝑡 due to 𝑝 executing a write operation in line 3.

Invalidation Phase
In this section, we focus on the properties of the algorithm during an invalidation phase. We first

show that with any successful TS[p].SC() operation that has a matching TS[p].LL() during the

same active cluster, the inv component of TS[𝑝] gets updated to the current active cluster number.

Lemma 19. Consider a cluster-𝑘 interval. Suppose during this interval process 𝑝 performs a TS[q].LL()
operation at point 𝑡 , and a successful TS[q].SC() operation at point 𝑡 ′ > 𝑡 . Then, TS[q].inv = 𝑘 ,
immediately after 𝑡 ′.

Proof. The algorithm has three shared memory operations that can perform an SC() on TS[q]
in lines 13, 33 and 73. First, we prove the lemma for the case that the SC() is executed in line 13.

If 𝑝 performs a successful SC() on TS[q] in line 13, its preceding LL() at point 𝑡1, happens in

line 9. Then, at point 𝑡𝑟 ∈ (𝑡1, 𝑡 ′) process 𝑝 reads𝐶𝑡𝑟 from Counter in line 12, and at point 𝑡 ′, process
𝑝’s TS[q].SC() operation sets ⌊𝐶𝑡𝑟 /𝛿⌋ to the inv component of TS[q]. By the assumption that at

point 𝑡 < 𝑡 ′ process 𝑝 performs a TS[q].LL() operation, 𝑡1 ≥ 𝑡 . Hence, 𝑡𝑟 ∈ (𝑡, 𝑡 ′). Since (𝑡, 𝑡 ′) is a
cluster-𝑘 interval, 𝑐𝑙𝑡∗ = ⌊𝐶𝑡∗

𝛿
⌋ = 𝑘 for any point 𝑡∗ ∈ (𝑡, 𝑡 ′). Therefore, 𝑝’s TS[q].SC() operation

writes ⌊𝐶𝑡𝑟 /𝛿⌋ = 𝑐𝑙𝑡𝑟 = 𝑘 to the inv component of TS[q].
The proofs for the other two cases are identical except if the SC() is executed in line 73, its

preceding LL() is executed in line 61 or in line 58, and Counter is read in line 62, and if the SC() is

executed in line 33, its preceding LL() is executed in line 29, and Counter is read in line 30. □

22 Benyamin Bashari, Ali Jamadi, and Philipp Woelfel

Lemma 19 immediately yield the following.

Corollary 20. For any 𝑘 ∈ {0, 1, 2} and a cluster-𝑘 interval [𝑡, 𝑡 ′], if at some point 𝑡∗ ∈ [𝑡, 𝑡 ′] a
successful TS[p].SC() operation sets TS[p].inv = 𝑘 , then TS[p].inv = 𝑘 throughout [𝑡∗, 𝑡 ′].

The following lemma states during the invalidation phase of an active cluster, if there exists

a long enough sub interval during which
Counter mod 𝛿

Z
= 𝑖 for some 𝑖 ∈ {0, . . . , 𝑛 − 1}, then there

exists a point where TS[i].inv = 𝑘 .

Lemma 21. For any 𝑘 ∈ {0, 1, 2} consider a cluster-𝑘 interval [𝑡, 𝑡 ′] during which Counter gets
incremented at least 6𝑛 + 1 times. If throughout this interval Counter mod 𝛿 < [and Counter mod 𝛿

Z
= 𝑖 ,

for some 𝑖 ∈ {0, . . . , 𝑛 − 1}, then there exists a point 𝑡∗ ∈ [𝑡, 𝑡 ′] at which TS[i].inv = 𝑘 .

Proof. Suppose TS[i].inv ≠ 𝑘 throughout [𝑡, 𝑡 ′]. Since during this interval Counter gets incre-
mented at least 6𝑛 + 1 times, there exists a process 𝑝 that increments Counter at least seven times.

Hence, by Lemma 2, process 𝑝 completes at least one helpActiveCluster() call in (𝑡, 𝑡 ′), and thus,
also a conditionalReset() call in line 22. Therefore, process 𝑝 , during its conditionalReset()
call, executes the loop spanning lines 25-33 up to two times. Let 𝑡1 ∈ (𝑡, 𝑡 ′) be the point when 𝑝 exe-

cutes line 26 in the first iteration the loop. Thus, 𝑝 reads 𝐶𝑡1 from Counter. Then in line 27, process

𝑝 computes 𝑖𝑑𝑥𝑡1 = 𝐶𝑡1 mod 𝛿 and compares it to [. Moreover, 𝑖𝑑𝑥𝑡1 < [, because of the assumption

that Counter mod 𝛿 < [throughout [𝑡, 𝑡 ′]. Therefore, 𝑝 does not execute the return statement in

line 27. Then, in line 28, process 𝑝 calculates ⌊𝐶𝑡 mod 𝛿

Z
⌋ which is 𝑖 , because of the assumption that

⌊ Counter
Z
⌋ = 𝑖 throughout [𝑡, 𝑡 ′]. Thus, at some point 𝑡𝐿𝐿 ∈ (𝑡1, 𝑡 ′) process 𝑝 performs a TS[i].LL()

operation in line 29. Then in lines 30-31, process 𝑝 repeats the same operations as in lines 26-27.

Hence, at point 𝑡2 ∈ (𝑡𝐿𝐿, 𝑡 ′) process 𝑝 reads𝐶𝑡2 from Counter. Similarly, 𝑖𝑑𝑥𝑡2 < [, since 𝑡2 ∈ [𝑡, 𝑡 ′].
Thus, 𝑝 does not execute the return statement in line 31 either. Then, in line 32, process 𝑝 compares

TS[i].inv to 𝑐𝑙𝑡2 = ⌊
𝐶𝑡

2

𝛿
⌋. Since 𝑡2 is in [𝑡, 𝑡 ′] which is a cluster-𝑘 interval, 𝑐𝑙𝑡2 = 𝑘 . Therefore, by the

assumption that TS[i].inv ≠ 𝑘 throughout [𝑡, 𝑡 ′], process 𝑝 does not execute the return statement

in line 32. Hence, at some point 𝑡𝑆𝐶 ∈ (𝑡2, 𝑡 ′) process 𝑝 performs a TS[i].SC() operation in line 33.

This SC() must fail, because otherwise, by Lemma 19 at point 𝑡𝑆𝐶 ∈ (𝑡,𝑡 ′), process 𝑝 changes

TS[i].inv to 𝑘 . Process 𝑝 then repeats the loop another time, and with the same reasoning, 𝑝’s

TS[i].SC() operation in the second iteration the loop must fail as well. Hence, during (𝑡, 𝑡 ′) at least
two successful TS[i].SC() operations must get executed.

Let 𝑞 and 𝑟 be the two (not necessarily distinct) processes that perform the first two of those

successful TS[i].SC(), respectively. Furthermore, let 𝑡𝑞 , and 𝑡𝑟 > 𝑡𝑞 be the points when 𝑞 and 𝑟

perform their TS[i].SC(), respectively. Since 𝑟 ’s SC() is successful, 𝑟 performs its corresponding

LL() at some point 𝑡𝑟 ′ ∈ (𝑡𝑞, 𝑡𝑟). Furthermore, since [𝑡𝑟 ′ , 𝑡𝑟] ⊊ (𝑡, 𝑡 ′), process 𝑟 ’s LL() and SC()
happen during the same cluster-𝑘 interval. Therefore, by Lemma 19, at point 𝑡𝑟 ∈ (𝑡, 𝑡 ′) process
𝑟 writes 𝑘 to the inv component of TS[i]. This contradicts the assumption that TS[i].inv ≠ 𝑘

throughout (𝑡, 𝑡 ′), because 𝑡𝑟 ∈ (𝑡, 𝑡 ′). □

We now show that during the invalidation phase of an active cluster, a long enough sub-intervals

exists for any 𝑖 ∈ {0, . . . , 𝑛 − 1} such that ⌊ Counter mod 𝛿
Z

⌋ = 𝑖 , and Counter gets incremented at least

6𝑛 + 1 times.

Lemma 22. For any cluster 𝑘 ∈ {0, 1, 2}, consider a maximal cluster-𝑘 interval [𝑡, 𝑡 ′]. If 𝑡 ′ is the
first point after 𝑡 such that 𝑖𝑑𝑥𝑡 ′ = 𝐶𝑡 ′ mod 𝛿 = [, then for any process ID 𝑖 ∈ {0, . . . , 𝑛 − 1} there
exists an interval [𝑡1, 𝑡2] ⊊ [𝑡, 𝑡 ′) such that throughout it Counter mod 𝛿 < [, ⌊ Counter mod 𝛿

Z
⌋ = 𝑖 ,

and Counter gets incremented at least 6𝑛 + 1 times.

Efficient Bounded Timestamping from Standard Synchronization Primitives 23

Proof. Since [𝑡, 𝑡 ′] is a maximal cluster-𝑘 interval, it begins when cluster 𝑘 becomes active.

Thus, 𝑖𝑑𝑥𝑡 = 𝐶𝑡 mod 𝛿 = 0. Recall that Counter is amod 3𝛿-FNI object, and 𝛿 = [+ ` +𝛾 > [. Since

𝑡 ′ is the first point after 𝑡 when Counter mod 𝛿 = [= 𝑛 ·Z , during [𝑡, 𝑡 ′] the value of Counter never
decreases, and is incremented 𝑛 · Z times. For any 𝑖 ∈ {0, . . . , 𝑛 − 1} consider an interval [𝑡𝑖 , 𝑡𝑖′),
such that 𝑖𝑑𝑥𝑡𝑖 = 𝐶𝑡𝑖 mod 𝛿 = 𝑖 · Z and 𝑡𝑖′ is the first point after 𝑡𝑖 , such that 𝑖𝑑𝑥𝑡𝑖′ = 𝐶𝑡𝑖′ mod 𝛿 =

(𝑖 + 1) · Z . Observe that, throughout this interval, ⌊ 𝑖𝑑𝑥𝑡𝑖
Z
⌋ ≤ ⌊ Counter mod 𝛿

Z
⌋ < ⌊ 𝑖𝑑𝑥𝑡𝑖′

Z
⌋. Therefore,

⌊ Counter mod 𝛿
Z

⌋ = 𝑖 throughout [𝑡𝑖 , 𝑡𝑖′), because ⌊
𝑖𝑑𝑥𝑡𝑖
Z
⌋ = ⌊ 𝑖 ·Z

Z
⌋ = 𝑖 , and ⌊ 𝑖𝑑𝑥𝑡𝑖′

Z
⌋ = ⌊ (𝑖+1) ·Z

Z
⌋ = 𝑖 + 1.

Furthermore, observe that the maximum value of 𝑖𝑑𝑥𝑡𝑖′ = 𝑛 · Z = [(for 𝑖 = 𝑛 − 1), and the minimum

value of 𝑖𝑑𝑥𝑡𝑖 = 0 · Z = 0 (for 𝑖 = 0). Therefore, for any 𝑖 ∈ {0, . . . , 𝑛 − 1} the interval [𝑡𝑖 , 𝑡𝑖′) is a
sub-interval of [𝑡, 𝑡 ′), since during [𝑡, 𝑡 ′), the value of Counter mod 𝛿 goes from 0 to [−1 = 𝑛 ·Z −1.
Lastly, since Counter mod 𝛿 never decreases during [𝑡𝑖 , 𝑡𝑖′) ⊊ [𝑡, 𝑡 ′], during this interval Counter
is incremented 𝐶𝑡𝑖′ mod 𝛿 −𝐶𝑥1 mod 𝛿 − 1 = (𝑖 + 1) · Z − 𝑖 · Z − 1 = 6𝑛 + 1. □

Lemmas 21 and 22 immediately yield the following.

Corollary 23. For any 𝑘 ∈ {0, 1, 2} and a maximal cluster-𝑘 interval [𝑡, 𝑡 ′] such that 𝑡 ′ is the first
point during the interval when Counter mod 𝛿 = [, for each process ID 𝑖 ∈ {0, . . . , 𝑛 − 1} there exists
a point during [𝑡, 𝑡 ′) at which TS[i].inv = 𝑘 .

Now we show that during a cluster-𝑘 invalidation phase, for every process 𝑝 , there exists a point

when a successful SC() operation sets the inv component of 𝑝’s active timestamp to 𝑘 .

Lemma 24. For any 𝑘 ∈ {0, 1, 2}, consider a maximal cluster-𝑘 interval [𝑡, 𝑡 ′] such that 𝑡 ′ is the first
point during the interval when Counter mod 𝛿 = [. Then for each 𝑝 ∈ {0, . . . , 𝑛 − 1}, there exists a
point 𝑡𝑝 ∈ [𝑡, 𝑡 ′) at which a successful TS[p].SC() operation changes TS[p].inv to 𝑘 .

Proof. Suppose the statement is not true. During an execution, let [𝑡1, 𝑡2] be the first maximal

cluster-𝑘 interval such that 𝑡2 is the first point during the interval when Counter mod 𝛿 = [, and

throughout [𝑡, 𝑡 ′) no successful TS[p].SC() operation that changes TS[p].inv to 𝑘 is performed.

Since [𝑡1, 𝑡2] is a maximal cluster-𝑘 interval, it begins when cluster 𝑘 becomes active. Thus, 𝑖𝑑𝑥𝑡1 =

𝐶𝑡1 mod 𝛿 = 0. The interval [𝑡1, 𝑡2] is either within the maximal cluster-0 interval that starts at the

beginning of the execution, or it happens after the first time cluster-1 becomes active.

First consider the case that interval [𝑡1, 𝑡2] happens during the first maximal cluster-0 interval.

Since the beginning of the execution is when cluster 0 becomes active, point 𝑡1 is at the begin-

ning of execution. Therefore, TS[p].inv = 2 at point 𝑡1, since TS[p].inv is initialized to 2. Since

by Corollary 23, there exists a point 𝑡∗ ∈ [𝑡1, 𝑡2), at which TS[p].inv = 0, there exist a point

𝑡∗∗ ∈ [𝑡1, 𝑡∗] ⊂ [𝑡1, 𝑡2] at which a successful TS[p].SC() operation changes TS[p].inv() to 0 — a

contradiction.

Now consider the case that [𝑡1, 𝑡2] starts at some point after the first time cluster-1 becomes active.

By the assumption that [𝑡1, 𝑡2] is the first maximal cluster-𝑘 interval during which the statement is

not true, the statement holds during the maximal cluster-(𝑘−1) mod 3 interval, [𝑡0, 𝑡1) that happens
immediately before 𝑡1. Therefore, there exists a point 𝑡

∗ ∈ [𝑡0, 𝑡1) at which a successful TS[p].SC()
operation sets TS[p].inv = (𝑘 − 1) mod 3. Thus, by Corollary 20, TS[p].inv = (𝑘 − 1) mod 3

immediately before 𝑡 . Lastly, since by Corollary 23, there exists a point 𝑡𝑘 ∈ [𝑡1, 𝑡2) at which
TS[p].inv = 𝑘 , there must exists a point 𝑡∗∗ ∈ [𝑡1, 𝑡𝑘] at which a successful TS[p].SC() operations
changes TS[p].inv to 𝑘 — a contradiction. □

The following statement is a direct result of Lemmas 19 and 24.

Corollary 25. For any 𝑘 ∈ {0, 1, 2}, consider a cluster-𝑘 interval [𝑡, 𝑡 ′], such that 𝐶𝑡 mod 𝛿 ≥ [.
Then for every 𝑝 ∈ {0, . . . , 𝑛 − 1}, TS[p].inv = 𝑘 throughout [𝑡, 𝑡 ′].

24 Benyamin Bashari, Ali Jamadi, and Philipp Woelfel

The following statement shows that if at some point during a cluster-𝑘 interval a successful SC()
operation sets TS[p].𝐼𝑛𝑣 = 𝑘 , then as long as the cluster 𝑘 remains active, no successful TS[p].SC()
operation in line 33 is executed.

Lemma 26. For any 𝑘 ∈ {0, 1, 2}, consider a cluster-𝑘 interval [𝑡, 𝑡 ′]. If at some point 𝑡∗ ∈ [𝑡, 𝑡 ′] a
successful TS[p].SC() operation changes TS[p].inv to 𝑘 , then during (𝑡∗, 𝑡 ′] no successful TS[p].SC()
operation in line 33 is executed.

Proof. Suppose at point 𝑡𝑆𝐶 ∈ (𝑡∗, 𝑡 ′], process 𝑞 performs a successful TS[p].SC() operation

in line 33 (𝑝 and 𝑞 may be the same). Let 𝑡𝐿𝐿 < 𝑡𝑆𝐶 be the point when 𝑞 executes the preceding

LL() in line 29. Since 𝑞’s SC() is successful, 𝑡𝐿𝐿 > 𝑡∗. By Corollary 20, TS[p].inv = 𝑘 at point

𝑡𝐿𝐿 ∈ [𝑡∗, 𝑡𝑆𝐶]. Furthermore, let 𝑡𝑟 ∈ (𝑡𝐿𝐿, 𝑡𝑆𝐶) be the point in time when 𝑞 executes the read

operation in line 30, and reads 𝐶𝑡𝑟 from Counter. Since 𝑡𝑟 ∈ (𝑡𝐿𝐿, 𝑡𝑆𝐶) ⊂ [𝑡, 𝑡 ′] and [𝑡, 𝑡 ′] is a
cluster-𝑘 interval, ⌊𝐶𝑡𝑟

𝛿
⌋ = 𝑘 . Therefore, TS[p].inv = ⌊𝐶𝑡𝑟

𝛿
⌋ = 𝑘 , and process 𝑞, in line 32 executes a

return statement. This contradicts the assumption that at point 𝑡𝑆𝐶 process 𝑞 executes a TS[p].SC()
operation in line 33. □

Lemma 26 and corollary 25 immediately yield the following corollary. The corollary states that

if the algorithm is in a move phase or an update-only phase, no successful SC() in line 33 gets

executed.

Corollary 27. Suppose at point 𝑡 a successful TS[p].SC() operation is performed in line 33. Then
𝑖𝑑𝑥𝑡 = 𝐶𝑡 mod 𝛿 < [.

Furthermore, Lemma 26 directly result following, which states that during a cluster-𝑘 invalidation

phase, for each active timestamp, at most one successful SC() is executed in line 33.

Corollary 28. For any 𝑘 ∈ {0, 1, 2}, consider a maximal cluster-𝑘 interval [𝑡, 𝑡 ′], such that 𝑡 ′ is the
first point during the interval when Counter mod 𝛿 = [. Then for any 𝑝 ∈ {0, . . . , 𝑛 − 1}, during
[𝑡, 𝑡 ′) at most one successful TS[p].SC() operation in line 33 gets executed.

Recall that the main purpose of a cluster-𝑘 invalidation phase is to guarantee that during the

following cluster-𝑘 move phase and cluster-𝑘 update only phase, no process is assigned a timestamp

in cluster-(𝑘 − 1) mod 3. Lemma 3 states that the algorithm has guarantees this property, and the

following observation is used to prove it.

Observation 29. Suppose [𝑡, 𝑡 ′] is a cluster-𝑘 interval for some 𝑘 ∈ {0, 1, 2}. Suppose during this
interval 𝑝 performs a TS[q].LL() operation at point 𝑡𝐿𝐿 , and then a successful TS[q].SC() operation
at point 𝑡𝑆𝐶 > 𝑡𝐿𝐿 in line 13, or line 73. Then TS[q].cluster = 𝑘 , immediately after 𝑡𝑆𝐶 .

Proof. The proof for the case that 𝑝 performs the SC() in line 13 is similar to the proof where

the SC() is performed in line 73. Below we write the proof for the first case and note the differences

in parentheses.

If 𝑝 performs a successful SC() in line 13 (73), its preceding LL() at point 𝑡𝐿𝐿 , happens in line 9 (61
or line 58 if𝑞 = 𝑛−1). Let 𝑡𝑟 ∈ (𝑡𝐿𝐿, 𝑡𝑆𝐶) be the point in time when 𝑝 reads𝐶𝑡𝑟 fromCounter in line 12
(62). Then, at point 𝑡𝑆𝐶 , process 𝑝 writes ⌊𝐶𝑡𝑟

𝛿
⌋ = 𝑐𝑙𝑡𝑟 to TS[q].cluster. Since 𝑡𝑟 ∈ (𝑡𝐿𝐿, 𝑡𝑆𝐶) ⊆ [𝑡, 𝑡 ′],

by the assumption that [𝑡, 𝑡 ′] is a cluster-𝑘 interval, 𝑐𝑙𝑡𝑟 = 𝑘 . □

Lemma 3. Let 𝑘 ∈ {0, 1, 2}, and let [𝑡, 𝑡 ′] be a maximal cluster-𝑘 interval, such that 𝐶𝑡 ′ mod 𝛿 > [.
Furthermore, let 𝑡∗ be the first point during this interval, such that 𝑖𝑑𝑥𝑡∗ = 𝐶𝑡∗ mod 𝛿 = [. If process 𝑝
executes a successful TS[q].SC() operation during [𝑡∗, 𝑡 ′], then that SC() writes 𝑘 to TS[q].cluster.

Efficient Bounded Timestamping from Standard Synchronization Primitives 25

Proof. Suppose the lemma is not true and let 𝑡𝑆𝐶 ∈ [𝑡∗, 𝑡 ′] be the first point in time when 𝑝

performs a successful TS[q].SC() operation that sets TS[𝑞].cluster to 𝑧 ≠ 𝑘 . The algorithm has three

shared memory operations that can perform an SC() on TS[q] in lines 13, 33 and 73. By Corollary 27,
no successful SC() in line 33 gets executed during [𝑡∗, 𝑡 ′]. Therefore, 𝑝’s SC() must have been

executed in line 13 or line 73. By Observation 29, process 𝑝’s preceding LL() must have happened

at some points 𝑡𝐿𝐿 < 𝑡 , since otherwise 𝑝’s SC() would write 𝑘 to TS[q].cluster. Furthermore, by

Lemma 24, there exists a point 𝑡∗ ∈ [𝑡, 𝑡∗) ⊊ (𝑡𝐿𝐿, 𝑡𝑆𝐶) when a successful TS[q].SC() operation is

executed. This contradicts the assumption that 𝑝’s SC() at point 𝑡𝑆𝐶 is successful. □

Lastly, observe that the conditionalReset() calls do not affect any active timestamp’s cluster
or index.

Observation 30. If 𝑝 performs a successful TS[q].SC() operation in line 33, then the SC() does not
change TS[q].cluster or TS[q].index.

Proof. Assume that a successful SC() in line 33 changes the cluster or index component of

TS[q]. Since the SC() sets the same cluster and index components that are returned by the preceding

LL() in line 29, TS[q].cluster or TS[q].index must change at some point between when the LL()
and the SC() are executed. This contradicts the assumption that the SC() is successful. □

Move Phase
We continue by analyzing the properties of the algorithm during a move phase.

We define TS𝑡 to be the value of the TS array at point 𝑡 , and we denote the set of all active

timestamps in cluster 𝑘 at point 𝑡 with TS𝑘,𝑡 . More formally, TS𝑘,𝑡 = {𝑠 ∈ TS𝑡 | 𝑠 .cluster = 𝑘}.
The following lemma states that during a cluster-𝑘 move phase, if some process 𝑝 in line 58

performs TS[𝑛 − 1].LL(), and TS[n-1].cluster ≠ (𝑘 − 1) mod 3 at that point, then 𝑝’s subsequent

TS[𝑛 − 1].VL() operation in line 66 returns True.

Lemma 31. Let 𝑘 ∈ {0, 1, 2}, and let [𝑡, 𝑡 ′] be a cluster-𝑘 interval such that Counter mod 𝛿 ∈
[[, [+ ` − 1] throughout the interval. Suppose at point 𝑡𝐿𝐿 ∈ [𝑡, 𝑡 ′] process 𝑝 performs an LL() on
TS[𝑛 − 1] in line 58, and TS[𝑛 − 1].cluster ≠ (𝑘 − 1) mod 3 at that point. If 𝑝 performs the subsequent
TS[𝑛 − 1].VL() operation at some point during (𝑡𝐿𝐿, 𝑡 ′], then its VL() returns True.

Proof. Suppose at some point 𝑡VL ∈ (𝑡𝐿𝐿, 𝑡 ′] process 𝑝 preforms the TS[𝑛 − 1].VL() operation
in line 66, and it returns False. Hence, at some point 𝑡∗ ∈ (𝑡𝐿𝐿, 𝑡VL), another process 𝑞, performs a

successful SC() on TS[𝑛 − 1]. There are three shared memory operations in the algorithm that can

modify the TS array: Lines 13, 33 and 73. Since process 𝑛 − 1 never calls the updateTS() function,

process 𝑛 − 1 never executes line 3. Thus, by Lemma 17(a), throughout the execution A[𝑛 − 1] does
not change. Hence, by corollary 18, throughout the entire execution, TS[𝑛 − 1].flag = A[𝑛 − 1].
Therefore, any process executing a helpUpdateTS(𝑛 − 1) call, executes the return statement

in line 11, and thus, no process performs an SC() on TS[𝑛 − 1] in line 13. Furthermore, since

Counter mod 𝛿 ≥ [throughout [𝑡, 𝑡 ′] by Corollary 27 during (𝑡𝐿𝐿, 𝑡𝑉𝐿) ⊊ [𝑡, 𝑡 ′] no successful SC()
in line 33 is executed. Hence, at point 𝑡∗ process 𝑞 performs a successful SC() on TS[𝑛 − 1] in
line 73. Let 𝑡𝑞𝐿𝐿 < 𝑡∗ be the point when process 𝑞 performs its corresponding LL() on TS[𝑛 − 1] (in
line 58). Since in line 73, process 𝑞 executes the SC() operation on TS[𝑛 − 1], it must add 𝑛 − 1 to
its local variable oldCluster in line 68. Therefore, TS[𝑛 − 1].cluster = (𝑘 − 1) mod 3 at point 𝑡𝑞𝐿𝐿 .

Furthermore, TS[𝑛 − 1].cluster ≠ (𝑘 − 1) mod 3 throughout [𝑡𝐿𝐿, 𝑡∗], because TS[𝑛 − 1].cluster ≠
(𝑘−1) mod 3 at point 𝑡𝐿𝐿 , and by Lemma 3 any successful TS[𝑛 − 1].SC() operation during [𝑡𝐿𝐿, 𝑡∗]
sets TS[𝑛 − 1].cluster to 𝑘 . Thus, 𝑡𝑞𝐿𝐿 < 𝑡𝐿𝐿 . Therefore, there exists a point during [𝑡𝑞𝐿𝐿, 𝑡𝐿𝐿] ⊊
[𝑡𝑞𝐿𝐿, 𝑡∗] when a successful SC() on TS[𝑛 − 1] changes its cluster component. This contradicts the

assumption that 𝑞’s SC() at point 𝑡∗ is successful. □

26 Benyamin Bashari, Ali Jamadi, and Philipp Woelfel

The following lemma shows that every complete helpMoveTS() that is executed during a cluster-
𝑘 a move phase, moves at least one active timestamp from cluster (𝑘 − 1) mod 3 to cluster 𝑘 ,

provided that there exists at least one active timestamp in cluster (𝑘 − 1) mod 3 at the invocation

of the helpMoveTS() call. Intuitively, this means if at least 𝑛 complete and separate helpMoveTS()
calls happen during a move phase then all timestamps from previous cluster get reassigned to the

active cluster.

Lemma 32. For any 𝑘 ∈ {0, 1, 2}, consider a cluster-𝑘 interval [𝑡, 𝑡 ′]. Suppose process 𝑝 starts
and finishes a helpMoveTS() call at point 𝑡𝑠 ∈ [𝑡, 𝑡 ′) and 𝑡𝑓 ∈ (𝑡𝑠 , 𝑡 ′], respectively, such that
throughout the interval the value of Counter mod 𝛿 is in [[, [+ ` − 1]. If

��TS(𝑘−1) mod 3,𝑠

�� > 0,
then

��TS(𝑘−1) mod 3,𝑠

�� > ��TS(𝑘−1) mod 3,𝑓

��, and ��TS𝑘,𝑓 �� > ��TS𝑘,𝑠 ��.
Proof. Suppose the statement is not true. Therefore, either

��TS(𝑘−1) mod 3,𝑠

�� ≤ ��TS(𝑘−1) mod 3,𝑓

��
or��TS𝑘,𝑓 �� ≤ ��TS𝑘,𝑠 ��. First, observe that since [𝑡𝑠 , 𝑡𝑓] ⊂ [𝑡, 𝑡 ′] is a cluster-𝑘 interval, and Counter mod

𝛿 ≥ [throughout [𝑡𝑠 , 𝑡𝑓], then by Lemma 3, during this interval, if any process performs successful

SC() on an entry of the TS array, it writes 𝑘 to that entry’s cluster component. Therefore,

during [𝑡𝑠 , 𝑡𝑓], no successful SC() on an active timestamp

assigned to cluster (𝑘 − 1) mod 3 is performed.

(∗)

While executing the helpMoveTS() during [𝑡𝑠 , 𝑡𝑓], first, in line 58, process 𝑝 performs an

TS[𝑛 − 1].LL(). Then in lines 59-60, process 𝑝 reads 𝑐 from Counter, and checks that 𝑐 mod 𝛿

is in [[, [+ ` − 1]. Since Counter mod 𝛿 ∈ [[, [+ ` − 1] throughout [𝑡𝑠 , 𝑡𝑓], process 𝑝 does not

execute the return statement in line 60. Then in line 61, process 𝑝 performs an LL() on every

entry in the TS array, except TS[𝑛 − 1]. Let 𝑡1 be the point immediately after 𝑝 completes executing

line 61. Hence, during [𝑡𝑠 , 𝑡1], process 𝑝 preforms an LL() on every entry in the TS array. Process 𝑝
then, by executing lines 62-63, reads 𝑐′ from Counter, and checks that 𝑐′ mod 𝛿 ∈ [[, [+ ` − 1].
Again, since Counter mod 𝛿 is in [[, [+ ` − 1] throughout [𝑡𝑠 , 𝑡𝑓], process 𝑝 does not execute

the return statement in line 63. By executing lines 64-65, process 𝑝 performs a VL() on every

active timestamp 𝑖 that was in cluster (𝑘 − 1) mod 3, when 𝑝 executed the TS[i].LL() during [𝑡𝑠 , 𝑡1].
Therefore, since by (∗) during [𝑡𝑠 , 𝑡𝑓] no successful SC() on an active timestamp assigned to cluster

(𝑘−1) mod 3 is executed, 𝑝 does not execute the return statement in line 65. Then, in line 66 process

𝑝 performs a TS[n-1] .VL() operation, and execute a return statement if TS[n-1] .VL() returns False.
If TS[n-1].cluster = (𝑘 − 1) mod 3 when 𝑝 performed the TS[n-1] .LL() operation in line 58, then

by (∗), The TS[n-1] .VL() operation in line 66 returns True. Also, If TS[n-1].cluster = (𝑘 − 1) mod 3

when 𝑝 performed the TS[n-1] .LL() operation, then by Lemma 31, the TS[n-1] .VL() operation in

line 66 returns True. Thus, either way, 𝑝 does not execute the return statement in line 66. By execut-

ing line 68, process 𝑝 stores the index 𝑖 , of every TS[i]where TS[i].cluster = (⌊ 𝑐′
𝛿
⌋ −1) mod 3. Since

[𝑡𝑠 , 𝑡𝑓] is a cluster-𝑘 interval, ⌊ 𝑐′
𝛿
⌋ = 𝑘 . Hence, by (∗), and the assumption that

��TS(𝑘−1) mod 3,𝑠

�� > 0,

process 𝑝 stores at least one index in oldCluster. Hence, oldCluster ≠, and 𝑝 does not exe-

cute the return statement in line 69. Then by executing line 70, process 𝑝 assigns some pro-

cess ID 𝑞 ∈ oldCluster to the variable 𝑗 . Therefore, at some point 𝑡𝑆𝐶 ∈ (𝑡1, 𝑡𝑓], process 𝑝 per-

forms a TS[q].SC() operation in line 73. Let 𝑡𝐿𝐿 ∈ [𝑡𝑠 , 𝑡1] be the point when 𝑝 performs the

TS[q].LL() operation while executing lines 58-61. Since by (∗), TS[𝑞] does not change through-
out [𝑡𝐿𝐿, 𝑡𝑆𝐶], at point 𝑡𝑆𝐶 process 𝑝’s SC() on TS[𝑞] is successful. Thus, at point 𝑡𝑆𝐶 process 𝑝

changes TS[q].𝐶𝑙𝑢𝑠𝑡𝑒𝑟 from (𝑘−1) mod 3 to ⌊ 𝑐′
𝛿
⌋ = 𝑘 . As such,

��TS(𝑘−1) mod 3,𝑠

�� > ��TS(𝑘−1) mod 3,𝑡𝑆𝐶

��
,

and

��TS𝑘,𝑡𝑆𝐶 �� > ��TS𝑘,𝑠 ��. Finally, ��TS(𝑘−1) mod 3,𝑓

�� ≤ ��TS(𝑘−1) mod 3,𝑡𝑆𝐶

��
, and

��TS𝑘,𝑓 �� ≥ ��TS𝑘,𝑡𝑆𝐶 ��, since by
Lemma 3, any successful SC() operation on any index 𝑖 of the TS array, sets TS[i].𝐶𝑙𝑢𝑠𝑡𝑒𝑟 = 𝑘 .

Therefore,

��TS(𝑘−1) mod 3,𝑠

�� > ��TS(𝑘−1) mod 3,𝑓

��
, and

��TS𝑘,𝑓 �� > ��TS𝑘,𝑠 �� — a contradiction. □

Efficient Bounded Timestamping from Standard Synchronization Primitives 27

Using Lemma 2 it is easy to see the relation between the number of Counter increments during

a move phase and the number of complete helpMoveTS() calls.

Lemma 33. For any 𝑘 ∈ {0, 1, 2}, consider a cluster-𝑘 interval [𝑡, 𝑡 ′]. If 𝑖𝑑𝑥𝑡 = 𝐶𝑡 mod 𝛿 = [, and 𝑡 ′

is the first point after 𝑡 such that 𝑖𝑑𝑥𝑡 ′ = 𝐶𝑡 ′ mod 𝛿 = [+ `, then during [𝑡, 𝑡 ′), some process executes
at least 𝑛 complete helpMoveTS() calls.

Proof. Since Counter is mod3𝛿-FNI object, where 𝛿 > [+ `, throughout [𝑡, 𝑡 ′] the value of
Counter never decreases. Furthermore, during this interval Counter is incremented 𝑖𝑑𝑥𝑡 ′ − 𝑖𝑑𝑥𝑡 = `

times. Therefore, Counter is incremented at least ` − 1 times during [𝑡, 𝑡 ′). Thus, there exists a
process 𝑝 that increments Counter at least

⌈
`−1
𝑛

⌉
during [𝑡, 𝑡 ′). Since ` = 6𝑛3 + 6𝑛2 + 2, during

[𝑡, 𝑡 ′) process 𝑝 increments Counter at least 6𝑛2 + 6𝑛 + 1 times. Therefore, by Lemma 2, during

this interval 𝑝 executes at least

⌈
6𝑛2+6𝑛+1

6

⌉
− 1 = 𝑛2 + 𝑛 complete helpActiveCluster() calls.

Hence, 𝑝 executes ^ · (𝑛2 + 𝑛) steps of helpMoveTS() function calls. Since only one these calls can

be invoked before 𝑡 , and a complete helpMoveTS() call requires at most ^ · 𝑛 steps, 𝑝 performs

⌊^ · (𝑛
2 + 𝑛)

^ · 𝑛 ⌋ − 1 = ⌊^ · 𝑛 · (𝑛 + 1)
^ · 𝑛 ⌋ − 1 = 𝑛 complete helpMoveTS() calls in [𝑡, 𝑡 ′). □

Lemma 4. Let 𝑘 be an element in {0, 1, 2}, and 𝐼 a cluster-𝑘 interval. If Counter mod 𝛿 ≥ [+ ` at
some point 𝑡 ∈ 𝐼 , then at that point, no active timestamp is in cluster (𝑘 − 1) mod 3.

Proof. Let 𝑡1 be the latest point before 𝑡 such that 𝑖𝑑𝑥𝑡1 = 𝐶𝑡1 mod 𝛿 = [, and let 𝑡2 < 𝑡 be the

first point after 𝑡1 such that 𝑖𝑑𝑥𝑡2 = 𝐶𝑡2 mod 𝛿 = [+ `. It is trivial to see that the interval [𝑡1, 𝑡2]
is a cluster-𝑘 interval. By Lemma 33, there exists a process 𝑝 such that during [𝑡1, 𝑡2) ⊊ [𝑡1, 𝑡]
process 𝑝 executes 𝑛 complete helpMoveTS() calls. Hence, by Lemma 32, during each of 𝑝’s

helpMoveTS() calls, if there exists at least one active timestamp in cluster (𝑘 − 1) mod 3 when

𝑝 invokes the helpMoveTS() call, then before the helpMoveTS() call responds, at least one of

those active timestamps is moved to cluster 𝑘 . Furthermore, since [𝑡1, 𝑡] is a cluster-𝑘 interval, and

Counter mod 𝛿 ≥ [throughout [𝑡1, 𝑡], during this interval any successful SC() on an entery in the

TS array, sets its cluster to 𝑘 . Thus, during this interval no active timestamp 𝑖 , is changed such that

𝑖 .cluster is set to (𝑘 −1) mod 3. Therefore, since at point 𝑡1 there can be at most 𝑛 active timestamps

in cluster (𝑘 − 1) mod 3, after 𝑛 complete helpMoveTS() calls (at point 𝑡2), no active timestamp is

in (𝑘 − 1) mod 3. Lastly, since during [𝑡2, 𝑡] ⊊ [𝑡1, 𝑡] no active timestamp gets reassigned to cluster

(𝑘 − 1) mod 3, at point 𝑡 no process has an active timestamp assign to cluster (𝑘 − 1) mod 3. □

The next statement follows directly from Lemmas 3 and 4. Simply put, it states that if at the

beginning of the move phase during an active cluster 𝑘 , no active timestamp is in cluster (𝑘 −
2) mod 3, then during the following update-only phase, all active timestamps are in cluster 𝑘 .

Corollary 34. For any 𝑘 ∈ {0, 1, 2}, consider a maximal cluster-𝑘 interval [𝑡, 𝑡 ′], such that
𝑖𝑑𝑥𝑡 = 𝐶𝑡 mod 𝛿 = [, and 𝑖𝑑𝑥𝑡 ′ ≥ [+ `. Let 𝑡∗ be the first point after 𝑡 such that 𝑖𝑑𝑥𝑡 ′ = [+ `. If��TS(𝑘−2) mod 3,𝑡

�� = 0, then for any 𝑖 ∈ {0, . . . , 𝑛 − 1}, TS[i].cluster = 𝑘 throughout [𝑡∗, 𝑡 ′].
The following lemma states that a successful SC() in line 73 happens only if the algorithm is in

a move phase.

Lemma 35. Suppose at some point 𝑡 , a process 𝑝 executes a successful TS[q].SC() in line 73. Then
𝑖𝑑𝑥𝑡 = 𝐶𝑡 mod 𝛿 ∈ [[, [+ ` − 1].

Proof. Suppose process 𝑝 in line 73 performs a successful SC() on TS[𝑞] at some point 𝑡 such

that 𝐶𝑡 mod 𝛿 = 𝑖𝑑𝑥𝑡 ∉ [[, [+ ` − 1]. Let 𝑡𝐿𝐿 < 𝑡 be the point when 𝑝 performs the preceding

LL() on TS[𝑞] in line 61 or line 58, and let 𝑡𝑟𝑒𝑎𝑑 ∈ (𝑡𝐿𝐿, 𝑡) be the point when 𝑝 subsequently

28 Benyamin Bashari, Ali Jamadi, and Philipp Woelfel

performs the read() operation in line 62. Since 𝑝 does not execute the return statement in line 63,

𝑖𝑑𝑥𝑡𝑟 = 𝐶𝑡𝑟 mod 𝛿 ∈ [[, [+ ` − 1]. Then in line 70, process 𝑝 must assign 𝑞 to the variable 𝑗 . Hence,

TS[q].cluster = (⌊𝐶𝑡𝑟

𝛿
⌋ − 1) mod 3 = (𝑐𝑙𝑡𝑟 − 1) mod 3, at point 𝑡𝐿𝐿 . Since 𝑖𝑑𝑥𝑡𝑟 ∈ [[, [+ ` − 1], and

𝑖𝑑𝑥𝑡 ∉ [[, [+ ` − 1], there exists at least one point during [𝑡𝑟 , 𝑡] at which, Counter mod 𝛿 ≥ [+ `.
Let 𝑡∗ ∈ [𝑡𝑟 , 𝑡] be the first of such points. Since by Lemma 4 at point 𝑡∗ no process is assigned

to cluster (𝑐𝑙𝑡𝑟 − 1) mod 3, there exists a point in [𝑡𝐿𝐿, 𝑡∗] ⊂ [𝑡𝐿𝐿, 𝑡] when a successful SC() on

TS[𝑞] change its cluster number. This contradicts the assumption that at point 𝑡 process 𝑝’s SC() is

successful. □

Similar to the invalidation phase, in the following lemma we show that during a cluster-𝑘 move

phase, for every process 𝑖 at most one successful TS[i].SC() operation gets executed in line 73

Lemma 36. For any 𝑘 ∈ {0, 1, 2}, consider a cluster-𝑘 interval [𝑡, 𝑡 ′] such that Counter mod 𝛿 ∈
[[, [+ ` − 1] throughout this interval. Then for each 𝑖 ∈ {0, . . . , 𝑛 − 1}, at most one successful
TS[i].SC() operation is executed in line 73, during [𝑡, 𝑡 ′].

Proof. Suppose during [𝑡, 𝑡 ′], two successful SC() operations on TS[𝑖] are executed in line 73. Let
𝑝 and 𝑞 be the two, not necessarily distinct processes that execute these successful SC() operations

at points 𝑡𝑝 and 𝑡𝑞 , respectively, such that 𝑡𝑝 < 𝑡𝑞 . Since process 𝑞’s SC() at point 𝑡𝑞 is successful,

at some point 𝑡𝐿𝐿 ∈ (𝑡𝑝 , 𝑡𝑞) process 𝑞 must have performed a preceding LL() on TS[𝑖] in line 61,

or in line 58. Furthermore, since [𝑡, 𝑡 ′] is a cluster-𝑘 interval, and Counter mod 𝛿 ≥ [throughout

[𝑡, 𝑡 ′], by Lemma 3 during [𝑡𝑝 , 𝑡𝐿𝐿] ⊊ [𝑡, 𝑡 ′] any successful SC() on TS[𝑖] sets TS[i].cluster to 𝑘 .

Hence, TS[i].cluster = 𝑘 at point 𝑡𝐿𝐿 . Therefore, after 𝑞 subsequently executes line 68 process 𝑖 is

not added to the local variable oldCluster. Since in line 73, process 𝑞 performs an SC() on an index

𝑗 ∈ oldCluster of the TS array, at point 𝑡𝑞 process 𝑞 performs an SC() on TS[𝑗] for some 𝑗 ≠ 𝑖 . — a

contradiction. □

The following lemma states that if a process 𝑝 that executes a successful SC() in line 73, during

a cluster-𝑘 move phase, then 𝑝 has performed an LL() on all entries of the TS array, during the

same active cluster 𝑘 .

Lemma 37. For any 𝑘 ∈ {0, 1, 2}, consider a maximal cluster-𝑘 interval [𝑡, 𝑡 ′] Suppose at some
point 𝑡𝑆𝐶 ∈ [𝑡, 𝑡 ′), process 𝑝 performs a successful SC() on TS[𝑞] in line 73. Then, during an interval
𝐼 ∈ [𝑡, 𝑡𝑆𝐶) process 𝑝 performs a TS[n-1] .LL() operation in line 58, and an LL() operation on all other
entries of the TS array in line 61.

Proof. Suppose process 𝑝 performs a successful SC() in line 73 at point 𝑡𝑆𝐶 , during a

helpMoveTS() call, and performs the preceding LL() on TS[𝑛 − 1] in line 58, at some point 𝑡∗ < 𝑡 .

Let 𝑡𝑐 > 𝑡∗ be the point when process 𝑝 reads𝐶𝑡𝑐 from Counter in line 62. Since in line 49 process 𝑝

does not execute the return statement, 𝑖𝑑𝑥𝑡𝑐 ∈ [[, [+ ` − 1]. Also, since process 𝑝 does not execute

the return statement in line 66, there exists a point 𝑡𝑉𝐿 > 𝑡𝑐 when 𝑝’s VL() on TS[𝑛 − 1] in line 66

returns True.
First suppose 𝑡𝑐 > 𝑡 . Let 𝑡1 be the first point after 𝑡 such that 𝑖𝑑𝑥𝑡1 = 𝐶𝑡1 mod 𝛿 = [. Then,

𝑡 < 𝑡1 ≤ 𝑡𝑐 < 𝑡𝑉𝐿 , since 𝑖𝑑𝑥𝑡𝑐 ∈ [[, [+ ` − 1]. Therefore, during [𝑡, 𝑡1] ⊊ [𝑡∗, 𝑡𝑉𝐿], by Lemma 24, at

least one successful SC() is performed on TS[𝑛 − 1]. This contradicts the assumption that at point

𝑡𝑉𝐿 , process 𝑝’s VL() returns True.
Now suppose 𝑡𝑐 ≤ 𝑡 . Let 𝑡𝑞 < 𝑡𝑐 be the point in time when process 𝑝 performs an LL() on TS[𝑞]

in line 61 or line 58 if 𝑞 = 𝑛 − 1. Since 𝑡𝑆𝐶 > 𝑡 and by Lemma 35, 𝑖𝑑𝑥𝑡𝑆𝐶 ∈ [[, [+ ` − 1], there
exists a point 𝑡1 ∈ [𝑡, 𝑡𝑆𝐶) such that 𝑖𝑑𝑥𝑡1 = [. Therefore, during [𝑡, 𝑡1] ⊊ [𝑡𝐿𝐿, 𝑡𝑆𝐶] by Lemma 24 at

least one successful SC() is performed on TS[𝑞]. This contradicts the assumption that at point 𝑡𝑆𝐶 ,

process 𝑝’s SC() on TS[q] is successful.

Efficient Bounded Timestamping from Standard Synchronization Primitives 29

Hence, 𝑝’s preceding TS[𝑛 − 1].LL() operation in line 58, must happen at some point 𝑡𝑛𝐿𝐿 ∈
[𝑡, 𝑡𝑆𝐶). Then at some point after 𝑡𝑛𝐿𝐿 , during the same helpMoveTS() call, process 𝑝 executes

line 61, and performs an LL() on every entry of TS array except TS[𝑛 − 1]. Therefore, during the
interval [𝑡𝑛𝐿𝐿, 𝑡𝑆𝐶), process 𝑝 performs a TS[n-1] .LL() operation in line 58, and an LL() operation

on all other entries of the TS array in line 61. □

Timestamp Invariants
In the following two statements we show how all active timestamps change during an execution.

We first show that during any active cluster 𝑘 no successful SC() can assign a timestamp in

cluster (𝑘 − 2) mod 3 to a process.

Lemma 38. For any𝑘 ∈ {0, 1, 2}, consider a cluster-𝑘 interval [𝑡, 𝑡 ′]. Let 𝑡𝑆𝐶 ∈ [𝑡, 𝑡 ′] be a point in time
at which a successful TS[q].SC() operation changes TS[q].cluster. Then TS[q].cluster ≠ (𝑘−2) mod 3

immediately after 𝑡𝑆𝐶 .

Proof. Suppose at point 𝑡𝑆𝐶 ∈ [𝑡, 𝑡 ′] process 𝑝 performs a successful SC() on TS[𝑞] changes its
cluster component to (𝑘 − 2) mod 3. There are three shared memory operations in the algorithm

that can modify the TS array: Lines 13, 33 and 73. Since by Observation 30, a successful SC()
executed in line 33 does not change the cluster component of any active timestamp, 𝑝 must have

executed the SC() in line 13 or line 73. The proof for the two cases are identical, we prove for the

first case, and note any differences with the proof of the second case in parentheses.

Suppose at point 𝑡𝑆𝐶 , process 𝑝 executes line 13 (73). Let 𝑡𝐿𝐿 < 𝑡𝑆𝐶 be the point when 𝑝 performs

its corresponding LL() in line 9 (61 or line 58 if 𝑞 = 𝑛 − 1). Furthermore, let 𝑡𝑟 ∈ (𝑡𝐿𝐿, 𝑡𝑆𝐶) be the
point in time when 𝑝 rs 𝐶𝑡𝑟 from Counter in line 12 (62). Then, 𝑐𝑙𝑡𝑟 = ⌊𝐶𝑡𝑟

𝛿
⌋ = (𝑘 − 2) mod 3, since

𝑝 writes ⌊𝐶𝑡𝑟

𝛿
⌋ to TS[q].cluster. Since point 𝑡 is in a cluster-𝑘 interval, 𝑐𝑙𝑡 = ⌊𝐶𝑡

𝛿
⌋ = 𝑘 . Therefore,

⌊ Counter
𝛿
⌋ must change at least twice during [𝑡𝑟 , 𝑡]. Hence, there exists two points 𝑡1, 𝑡2 ∈ (𝑡𝑟 , 𝑡)

where 𝑡1 is the first point after 𝑡𝑟 , such that 𝑐𝑙𝑡1 = (𝑘 − 1) mod 3, and 𝑡2 is the first point after 𝑡1,

such that 𝑖𝑑𝑥𝑡2 = 𝐶𝑡2 mod 𝛿 = [. Lastly, by Lemma 24 there exists a point in [𝑡1, 𝑡2] ⊊ (𝑡𝐿𝐿, 𝑡𝑆𝐶)
when a successful SC() on TS[𝑞] is performed. This contradicts with the assumption that at point

𝑡𝑆𝐶 , process 𝑝’s SC() is successful. □

Now, we prove that during an execution all active timestamps are always assigned to two

consecutive clusters.

Lemma 5. For any 𝑝 ∈ {0, . . . , 𝑛 − 1}, at any point in a cluster-𝑘 interval TS[p].cluster is equal to 𝑘
or (𝑘 − 1) mod 3.

Proof. Let 𝑡0 be the point in time that the execution begins. The statement is initially true, since

𝑐𝑙𝑡0 = ⌊
𝐶𝑡

0

𝛿
⌋ = 0 and every process has an active timestamp in cluster zero.

Let 𝑡1 be the first point in time after 𝑡0 when the active cluster changes. Hence, 𝑐𝑙𝑡1 = ⌊
𝐶𝑡

1

𝛿
⌋ =

(𝑐𝑙𝑡0 + 1) mod 3 = 1, and 𝑐𝑙𝑡∗ = 𝑐𝑙𝑡0 for any 𝑡
∗ ∈ [𝑡0, 𝑡). Furthermore, let 𝑡2 be the first point after 𝑡1

when the active cluster changes again. Thus, 𝑐𝑙𝑡2 = ⌊
𝐶𝑡

2

𝛿
⌋ = (𝑐𝑙𝑡1 + 1) mod 3 = 2.

By Lemma 38, during [𝑡0, 𝑡1) no process is assigned to cluster (𝑐𝑙𝑡0 − 2) mod 3 = 1. Hence, during

[𝑡0, 𝑡1) the invariant holds. Let 𝑡𝑖 ∈ [𝑡0, 𝑡1) be a point in time such that 𝑖𝑑𝑥𝑡𝑖 = 𝐶𝑡𝑖 mod 𝛿 = [

(end of the invalidation phase during active cluster 0) Let 𝑡𝑚 ∈ [𝑡𝑖 , 𝑡1) be the first point such that

𝑖𝑑𝑥𝑡𝑚 = 𝐶𝑡𝑚 mod 𝛿 > [+ ` (end of the move phase during active cluster 0). Since

��TS1,𝑡𝑖 �� = 0,

by Corollary 34 at point 𝑡𝑚 all active timestamps are assigned to cluster 𝑐𝑙𝑡𝑖 = 0. Furthermore,

since during [𝑡𝑚, 𝑡1), by Lemma 3 any successful SC() on any active timestamp sets its cluster

number to 𝑐𝑙𝑡0 = 0, at point 𝑡1 all processes are assigned to cluster 𝑐𝑙𝑡0 = 0. Therefore, immediately

30 Benyamin Bashari, Ali Jamadi, and Philipp Woelfel

before the start of the new active cluster 1 all active timestamps are assigned to cluster 0. With this

configuration, identical arguments can be made to prove that the invariant holds during [𝑡1, 𝑡2),
and immediately before 𝑡2, the MTS object is in the similar configuration to its configuration

immediately before 𝑡1. Meaning immediately before 𝑡2 all active timestamps are assigned to cluster

1. □

UpdateTS() function
In this section, we will analyze the properties of the updateTS() function.
The following observation states that during an interval in which a process executes 𝑛

helpSystem() calls, for every process 𝑞 at least one helpUpdateTS(𝑞) gets executed.

Observation 39. Suppose during an interval [𝑡, 𝑡 ′] a process 𝑝 performs 𝑛 complete helpSystem()
calls. Then for each 𝑞 ∈ {0, . . . , 𝑛 − 1}, there exists a point 𝑡∗ ∈ [𝑡, 𝑡 ′] when 𝑝 executes a
helpUpdateTS(𝑞) call.

Proof. By executing lines 15 and 20 during each helpSystem() call, 𝑝 performs a complete

helpUpdateTS() for a different process ID, going through all IDs in a round-robin fashion. There-

fore, after 𝑛 complete helpSystem() calls, process 𝑝 has performed a complete helpUpdateTS(𝑞)
for every 𝑞 ∈ {0, . . . , 𝑛 − 1}. □

The following two statements relate announce bit changes to helpSystem() calls, and

helpUpdateTS() calls.

Lemma 40. Consider an interval [𝑡, 𝑡 ′] during which process 𝑝’s announce bit changes 𝑖 times. Then,
𝑝 performs at least 𝑖 − 1 complete helpSystem() calls.

Proof. Since during [𝑡, 𝑡 ′] process 𝑝’s announce bit changes 𝑖 , by Observation 16(a) during this

interval 𝑝 performs the write() operation in line 3 of the updateTS() function 𝑖 times. Since 𝑝

must complete the updateTS() call before calling it again, 𝑝 executes lines 3-5 at least 𝑖 − 1 times.

Therefore, 𝑝 completes the helpSystem() call (in line 5) at least 𝑖 − 1 times. □

Lemma 41. Suppose Counter gets incremented 𝑖 times during an interval [𝑡, 𝑡 ′]. Then, there exists
two not necessarily distinct processes 𝑝 and 𝑞 such that during [𝑡, 𝑡 ′], process 𝑝 performs at least⌈ ⌈
⌊𝑖/3⌋
𝑛

⌉
−2

𝑛

⌉
complete helpUpdateTS(𝑞) calls, each of which increment Counter at least once.

Proof. Since Counter can only be increment at most three times during a helpUpdateTS() call,
and the only shared memory operation in the algorithm that increments Counter is in line 12, at

least

⌊
𝑖
3

⌋
such calls overlap with the interval [𝑡, 𝑡 ′]. Therefore, there exists some process 𝑝 such

that it performs at least

⌈
⌊𝑖/3⌋
𝑛

⌉
of these helpUpdateTS() function calls. Since at most two of 𝑝’s

helpUpdateTS() calls can be not completely in [𝑡, 𝑡 ′], during [𝑡, 𝑡 ′] process 𝑝 performs at least⌈
⌊𝑖/3⌋
𝑛

⌉
− 2 complete helpUpdateTS() function calls such that each of them increments Counter

at least once. Lastly, there must exist a process ID 𝑞 (𝑝 and 𝑞 are not necessarily distinct) such

that during [𝑡, 𝑡 ′], process 𝑝 performs at least

⌈ ⌈
⌊𝑖/3⌋
𝑛

⌉
−2

𝑛

⌉
complete helpUpdateTS(𝑞) calls, each of

which increment Counter at least once. □

The next lemma states that during an interval 𝐼 , if three successful TS[p].SC() operations get
executed, and none of them is due to 𝑝’ timestamp being updated in line 13, then Counter get
incremented 𝑂 (𝑛3) times during 𝐼 .

Efficient Bounded Timestamping from Standard Synchronization Primitives 31

Lemma 42. Suppose during an interval 𝐼 , three successful SC() operations are performed on TS[p]
and none of them are executed in line 13. Then Counter is incremented at least 3𝑛3 + 6𝑛2 + 6𝑛 times
during 𝐼 .

Proof. Consider the shortest possible interval 𝐼 ′, during which three successful SC() operations
are performed on TS[p] and none of them are executed in line 13 There are three shared memory

operations in the algorithm that can modify the TS array: Lines 13, 33 and 73. By the assumption

that none of the three successful SC() operations is performed in line 13, during 𝐼 ′ two of the

successful SC() operations must be performed in the same line.

Case 1: Suppose at least two of the successful SC() operations are performed in line 33. Let

𝑡1 ∈ 𝐼 ′ be the point when the first successful SC() on TS[𝑝] in line 33 is executed, and let 𝑡2 ∈ 𝐼 ′ be
the point when the last such operation is performed. Then, by Corollary 27, these SC() operations

can only happen if the algorithm is in an invalidation phase. Furthermore, by Corollary 28, these

SC() operations cannot happen during the same invalidation phase. Therefore, the shortest interval

[𝑡1, 𝑡2] happens when 𝑡1 is at the end of an invalidation phase (i.e., 𝑖𝑑𝑥𝑡1 = 𝐶𝑡1 mod 𝛿 = [− 1), and
𝑡2 is at the beginning of the next invalidation phase (i.e., 𝑖𝑑𝑥𝑡2 = 𝐶𝑡2 mod 𝛿 = 0). Thus, Counter is
incremented at least 𝛿 −[= [+ ` +𝛾 −[= ` +𝛾 times during [𝑡1, 𝑡2]. Lastly, ` +𝛾 > 3𝑛3 + 6𝑛2 + 6𝑛,
since ` = 6𝑛3 + 6𝑛2 + 2 and 𝛾 = 3𝑛3 + 4𝑛.
Case 2: Suppose at least two of the successful SC() operations are performed in line 73. Let

𝑡1 ∈ 𝐼 ′ be the point when the first successful SC() on TS[𝑝] in line 73 gets executed, and let

𝑡2 ∈ 𝐼 ′ be the point when the last such operation is performed. Then, by Lemma 35 these SC()
operations can only happen when the algorithm is in a move phase. Furthermore, by Lemma 36,

these SC() operations cannot happen during the same move phase. Therefore, the shortest interval

[𝑡1, 𝑡2] happens when 𝑡1 is at the end of a move phase (i.e., 𝑖𝑑𝑥𝑡1 = 𝐶 mod 𝛿 = [+ `), and 𝑡2 is

at the beginning of the next move phase (i.e., 𝑖𝑑𝑥𝑡2 = [). Thus, Counter is incremented at least

𝛿 − ([+ `) + [= ([+ ` +𝛾) − ([+ `) + [= 𝛾 + [times during [𝑡1, 𝑡2]. Lastly, 𝛾 + [= 3𝑛3 + 6𝑛2 + 6𝑛,
since [= 6𝑛2 + 2𝑛 and 𝛾 = 3𝑛3 + 4𝑛.
Therefore, Counter is incremented at least 3𝑛3 +6𝑛2 +6𝑛 times during any interval in which three

successful TS[p].SC() operations gets executed, such that none of them is executed in line 13. □

We now restate and prove Lemma 7.

Lemma 7. Let 𝑝 be a process, and let 𝑡 and 𝑡 ′ be points in time such that 𝑡 < 𝑡 ′.
(a) Suppose process 𝑝 calls helpUpdateTS(𝑞) at point 𝑡 , and the function call responds at point

𝑡 ′. Let 𝑡𝑟 ∈ [𝑡, 𝑡 ′] be the first point during the helpUpdateTS(𝑞) call at which 𝑝 executes
the read() operation in line 10. If TS[q].flag ≠ A[q] at point 𝑡𝑟 , then there exist a point
𝑡∗ ∈ [𝑡𝑟 , 𝑡 ′] at which TS[q].flag changes.

(b) If TS[p].flag ≠ A[p] throughout [𝑡, 𝑡 ′], then there are at most two successful SC() operations
on TS[p]during [𝑡, 𝑡 ′].

(c) During an interval in which Counter gets incremented 3𝑛3 + 6𝑛2 + 6𝑛 times, some process
performs at least 𝑛 complete helpSystem() calls.

Proof. Suppose the lemma is not true. Let 𝑡 ′ be the first point in time such that there exists an

interval [𝑡, 𝑡 ′] during which one of the parts is not true.

First suppose process 𝑝’s helpUpdateTS(q) call starts and finishes at points 𝑡 and 𝑡 ′, respec-
tively. Let 𝑡𝑟 ∈ [𝑡, 𝑡 ′] be the first point during helpUpdateTS(𝑞) call when 𝑝 performs the read()
operation in line 10. For the purpose of contradiction, assume TS[q].flag ≠ A[q] at point 𝑡𝑟 and
TS[q].flag does not change during [𝑡𝑟 , 𝑡 ′] (i.e., part (a) is not true). Since TS[q].flag ≠ A[q], process
𝑝 does not execute the return statement in line 11. Furthermore, 𝑝’s SC() in line 13 must fail,

because otherwise TS[q].flag would change. Therefore, during [𝑡, 𝑡 ′] process 𝑝’s SC() on TS[𝑞]

32 Benyamin Bashari, Ali Jamadi, and Philipp Woelfel

fails three times, once in each iteration of the repeat loop. Hence, there should be at least three

successful SC() on TS[𝑞] during (𝑡𝑟 , 𝑡 ′). Let 𝑡∗ ∈ (𝑡𝑟 , 𝑡 ′) be the point when the third successful SC()
is executed. Since TS[p].flag ≠ A[p] during [𝑡𝑟 , 𝑡∗] ⊊ [𝑡, 𝑡 ′], at point 𝑡∗ < 𝑡 ′ part (b) does not hold.
This contradicts the assumption that 𝑡 ′ is the first point in time when one of the statements is not

true.

Now assume TS[p].flag ≠ A[p] during [𝑡, 𝑡 ′], and there are three successful SC() operations in
this interval (i.e., part (b) is not true). By Lemma 17(b), none of the SC() operations is executed

in line 13. Therefore, by Lemma 42, Counter is incremented at least 3𝑛3 + 6𝑛2 + 6𝑛 times during

[𝑡, 𝑡 ′]. Thus, by part (c) there exists a process 𝑞 that performs at least 𝑛 complete helpSystem()
calls. Hence, by Observation 39, there exists an interval [𝑡𝑠 , 𝑡𝑓] ⊊ (𝑡1, 𝑡2) when process 𝑞 performs

a complete helpUpdateTS(𝑝) call. Since, TS[p].flag ≠ A[p] throughout [𝑡𝑠 , 𝑡𝑓] ⊊ (𝑡, 𝑡 ′), at point
𝑡𝑓 < 𝑡 ′ part (a) does not hold. This contradicts the assumption that 𝑡 ′ is the first point in time when

one of the statements is not true.

Lastly, consider the case where Counter is incremented 3𝑛3 + 6𝑛2 + 6𝑛 times during [𝑡, 𝑡 ′] and
no process performs at least 𝑛 complete helpSystem() calls (i.e, part (c) is not true). Since Counter
is incremented 3𝑛3 + 6𝑛2 + 6𝑛 times during [𝑡, 𝑡 ′], by Lemma 41, there exists two processes 𝑝 and

𝑞 (𝑝 and 𝑞 might be the same process) such that during [𝑡, 𝑡 ′] process 𝑝 performs at least 𝑛 + 2
complete helpUpdateTS(𝑞) calls. Let 𝑡𝑖𝑠 be the points when 𝑝 starts the 𝑖-th helpUpdateTS(𝑞) call
and let 𝑡𝑖

𝑓
the point when 𝑝 finishes that call. Furthermore, Let 𝑡𝑖𝑟 ∈ [𝑡𝑖𝑠 , 𝑡𝑖𝑓] be the first point during

the 𝑖-th helpUpdateTS(𝑞) call when 𝑝 performs the read() operation in line 10. Since during this

helpUpdateTS(𝑞) call process 𝑝 increments Counter at least once, TS[q].flag ≠ A[q] at point 𝑡𝑖𝑟 .
Otherwise, 𝑝 performs the return statement in line 11 and would not increment Counter. Therefore,
by the assumption that until 𝑡 ′ all the statement are true, and by Part (a), there exists a point

𝑡𝑖𝑒 ∈ [𝑡𝑖𝑟 , 𝑡𝑖𝑓] when 𝑞’s flag change and TS[q].flag = A[q] immediately after 𝑡𝑖𝑒 . Otherwise, at point

𝑡𝑖
𝑓
< 𝑡 ′ Part (a) does not hold. Therefore, during each separate interval [𝑡𝑖𝑟 , 𝑡𝑖+1𝑒] for 𝑖 ∈ [0, 𝑛+1], there

exists at least one point, 𝑡∗ when a shared memory operation is executed such that TS[q].flag = A[q]
immediately before 𝑡∗ and TS[q].flag ≠ A[q] immediately after 𝑡∗. By Corollary 18(b) at those

points process 𝑞’s announce bit changes. Since during [𝑡, 𝑡 ′] there are at least 𝑛 + 1 such points,

𝑞’s announce bit changes at least 𝑛. Therefore, by Lemma 40 during [𝑡, 𝑡 ′] process 𝑞 performs at

least 𝑛 complete helpSystem() calls. This contradicts the assumption that during [𝑡, 𝑡 ′] no process
performs at least 𝑛 complete helpSystem() calls. □

Lemma 43. Let 𝑝 be a process, then throughout the execution of the algorithm, the pair (A[p],
TS[p].flag) changes in the following way (see also Figure 4).

(1) Initially, TS[p].flag equals A[p], and they will remain equal until 𝑝 executes line 3.
(2) Process 𝑝 executes line 3 during an updateTS() call. As a result of that, A[p] changes, and

immediately after that TS[p].flag ≠ A[p].
(3) During the same updateTS() call, 𝑝 calls helpUpdateTS(𝑝). Before 𝑝 finishes its

helpUpdateTS() call, its announce bit and flag become equal again.

Proof. Part (1) follows immediately from Corollary 18(b), part (2) from Lemma 17(a), and part

(3) from Lemma 7a. □

Lemma 44. Consider an updateTS() call by process 𝑞 that starts and finishes at points 𝑡𝑠 and 𝑡𝑓 ,
respectively. Suppose process 𝑝 performs a successful SC() on TS[𝑞] in line 13 at point 𝑡𝑆𝐶 ∈ [𝑡𝑠 , 𝑡𝑓].
Let 𝑡∗ < 𝑡𝑆𝐶 be the point when 𝑝 performs the preceding FAI() operation in line 12. Then 𝑡∗ is in the
(𝑡𝑠 , 𝑡𝑓) interval.

Efficient Bounded Timestamping from Standard Synchronization Primitives 33

(0, 0) (1, 0)

(1, 1)(0, 1)

In
itia
l
c
o
n
f. 𝑝 calls updateTS().

Executes line 3

By Lemma 17(a)

𝑝
fi
n
i
s
h
e
s
e
x
e
c
u
t
i
n
g
helpUpdateTS(

𝑝
)

B
y
L
e
m
m
a
7
a

𝑝 calls updateTS().
Executes line 3

By Lemma 17(a)

𝑝
fi
n
i
s
h
e
s
e
x
e
c
u
t
i
n
g
helpUpdateTS(

𝑝
)

B
y
L
e
m
m
a
7
a

Fig. 4. A diagram illustrating how a process’s flag and announce bit changes during any execution

Proof. Let 𝑡𝐿𝐿 < 𝑡∗ be the point when process 𝑝 performs the LL() in line 9, corresponding to

its SC() at point 𝑡𝑆𝐶 . Also, let 𝑡𝑟 < 𝑡∗ be the point when 𝑝 performs the preceding read() operation
in line 10. Thus, 𝑡𝐿𝐿 < 𝑡𝑟 < 𝑡∗. Since 𝑝’s SC() is successful, TS[𝑞] does not change during (𝑡𝐿𝐿, 𝑡𝑆𝐶).
Furthermore, TS[p].flag ≠ A[p] at point 𝑡𝑟 , because 𝑝 does not execute the return statement in

line 11. By Lemma 43, TS[p].flag is not equal to A[p], only during an updateTS() call by process 𝑞.

Therefore, 𝑡𝑟 must be after the invocation of an updateTS() call by process 𝑞. Hence, 𝑡𝑠 < 𝑡𝑟 < 𝑡∗.
Also, since TS[p].flag = A[p] after the updateTS() call responds, by Lemma 17(b), TS[𝑞] changes
at some point before 𝑡𝑓 . Thus, 𝑡𝑆𝐶 < 𝑡𝑓 , because TS[q] does not change throughout [𝑡𝐿𝐿, 𝑡𝑆𝐶].
Therefore, 𝑡∗ ∈ [𝑡𝑠 , 𝑡𝑓]. □

Dominance relation between active timestamps
There are three functions in the algorithm that might write to the TS array: helpUpdateTS(),
helpMoveTS(), and conditionalReset(). In this section we will show that only a

helpUpdateTS() call can affect the dominance order between any pair of active timestamp.

We first show that during any cluster-𝑘 interval, if a process gets assigned a timestamp in cluster

𝑘 , its active timestamp remains in cluster 𝑘 , as long as the active cluster does not change.

Lemma 45. For any 𝑘 ∈ {0, 1, 2}, consider a cluster-𝑘 interval [𝑡, 𝑡 ′]. Suppose TS[q].cluster = 𝑘 at
some point 𝑡∗ ∈ [𝑡, 𝑡 ′]. Then TS[q].cluster = 𝑘 throughout [𝑡∗, 𝑡 ′].

Proof. Suppose at some point 𝑡𝑥 ∈ (𝑡∗, 𝑡 ′] process 𝑝 performs a successful SC() on TS[q] such
that TS[q].cluster ≠ 𝑘 . By Lemma 5 throughout [𝑡∗, 𝑡 ′] ⊂ [𝑡, 𝑡 ′] all process are assigned to cluster

𝑘 or (𝑘 − 1) mod 3. Hence, 𝑝’s TS[q].SC() operation at point 𝑡𝑥 must change TS[q].cluster to
(𝑘 − 1) mod 3. By Lemma 3 any successful SC() at some point 𝑡𝑠 such that 𝑖𝑑𝑥𝑡𝑠 = 𝐶𝑡𝑠 mod 𝛿 ≥ [

writes 𝑘 to TS[q].cluster. Hence, 𝑖𝑑𝑥𝑡𝑥 = 𝐶𝑡𝑥 mod 𝛿 < [. There are three shared memory operation

in the algorithm that modify the TS array: Lines 13, 33 and 73. By Observation 30 a successful SC()

34 Benyamin Bashari, Ali Jamadi, and Philipp Woelfel

in line 33 does not change any active timestamp’s cluster component. Furthermore, since 𝑖𝑑𝑥𝑡𝑥 < [̸,
by lemma 35, at point 𝑡𝑥 , no successful SC() in line 73 is executed. Hence, at point 𝑡𝑥 process 𝑝 must

have executed the SC() in line 13. Let 𝑡𝐿𝐿 < 𝑡𝑥 be the point when process 𝑝 performs the preceding

TS[q].LL() operation in line 9, and let 𝑡𝑟 ∈ (𝑡𝐿𝐿, 𝑡𝑥) be the point when process 𝑝 reads 𝐶𝑡𝑟 from

Counter by executing the FAI() operation in line 12. Then 𝑐𝑙𝑡𝑟 = ⌊𝐶𝑡𝑟

𝛿
⌋ = (𝑘 − 1) mod 3, since

at point 𝑡𝑥 process 𝑝 writes ⌊𝐶𝑡𝑟

𝛿
⌋ to TS[q].cluster. Therefore, at point 𝑡𝑟 , the cluster component

of TS[q] is not 𝑘 , because by Lemma 5, at this point TS[q].cluster is 𝑐𝑙𝑡𝑟 = (𝑘 − 1) mod 3 or

(𝑐𝑙𝑡𝑟 − 1) mod 3 = (𝑘 − 2) mod 3. Since 𝑡𝑥 > 𝑡∗ and 𝑡𝐿𝐿 < 𝑡𝑟 there exists at least one point

during [𝑡𝐿𝐿, 𝑡𝑥] when a successful SC() on TS[q] changes its cluster number. This contradicts the

assumption that at point 𝑡𝑥 process 𝑝’s SC() is successful. □

In Lemma 37, we have shown that a process 𝑝 that performs a successful SC() in line 73 obtains

its local view of the TS array (lines 58-66) during the same active cluster. The following statement

extends the former and shows that the local view that process 𝑝 obtains is consistent with all active

timestamps in the previously active cluster at some point while 𝑝 executes lines 58-66.

Lemma 46. For any 𝑘 ∈ {0, 1, 2}, consider a cluster-𝑘 interval 𝐼 Suppose at some point 𝑡𝑆𝐶 ∈ 𝐼 ,
process 𝑝 , while performing a helpMoveTS() call, executes a successful SC() operation in line 73.
Let 𝐿𝑝 be the interval spanning 𝑝’s execution of lines 58-66 during the same helpMoveTS() call.
Then there exists a point 𝑡∗ ∈ 𝐿𝑝 when Counter mod 𝛿 ≥ [, and for every 𝑞 ∈ {0, . . . , 𝑛 − 1} if
TS𝑡∗[𝑞].cluster = (𝑘 − 1) mod 3, then localTS[q] = TS𝑡∗[𝑞].

Proof. Suppose at point 𝑡𝑆𝐶 ∈ 𝐼 , process 𝑝 performs a successful SC() in line 73 and the lemma

is not true. By Lemma 37, the interval 𝐿𝑝 is in the same maximal cluster-𝑘 interval as 𝑡𝑆𝐶 . During

𝐿𝑝 , process 𝑝 performs an LL() on all entries of the TS array and stores their values in the localTS
array (lines 58 and 61). Let 𝑡𝑟 ∈ 𝐿𝑝 be the point when 𝑝 executes the read() operation in line 62.

Since 𝑝 does not execute the return statement in line 63, Counter mod 𝛿 ∈ [[, ` + [− 1]. Let
[𝑡1, 𝑡2] ⊊ 𝐿𝑝 be the interval spanning 𝑝’s execution of the loop comprising lines 64-65. Since during

[𝑡𝑟 , 𝑡2] ⊊ 𝐿𝑝 the active cluster does not change, the value of Counter mod 𝛿 during this interval

never decreases. Therefore, Counter mod 𝛿 ≥ [, throughout [𝑡1, 𝑡2]. Furthermore, during [𝑡1, 𝑡2],
process 𝑝 performs a VL() in line 65, on every active timestamp that was in cluster (𝑘 − 1) mod 3

when 𝑝 previously preformed an LL() on it. Since 𝑝 does not execute the return statement in

line 65, all of 𝑝’s VL() operations during [𝑡1, 𝑡2], return True. Hence, there exists a point 𝑡∗ ∈
[𝑡1, 𝑡2] when Counter mod 𝛿 ≥ [and localTS[q] = TS𝑡∗[𝑞] for every 𝑞 ∈ {0, . . . , 𝑛 − 1} such that

localTS[q].cluster = (𝑘 − 1) mod 3. By the assumption that the lemma is not true, at point 𝑡∗, there
must exist an index 𝑖 such that localTS[i].cluster ≠ (𝑘 −1) mod 3 and TS[i].cluster = (𝑘 −1) mod 3.

Let 𝑡𝐿𝐿 < 𝑡1 be the point when process 𝑝 performs an LL() on TS[𝑖]. Since 𝐿𝑝 is a cluster-𝑘

interval, and TS[i].cluster ≠ (𝑘 − 1) mod 3 at point 𝑡𝐿𝐿 ∈ 𝐿𝑝 , then by Lemma 5, TS[i].cluster = 𝑘

at point 𝑡𝐿𝐿 . Therefore, by Lemma 45, TS[i].cluster remains 𝑘 throughout [𝑡𝐿𝐿, 𝑡2]. This contradicts
the assumption that TS[i].cluster = (𝑘 − 1) mod 3 at point 𝑡∗ ∈ [𝑡1, 𝑡2] ⊊ [𝑡𝐿𝐿, 𝑡 ′]. □

The following two lemmas show that TS[p].index = ⊥ at any point 𝑡 if and only if process 𝑝 has

not performed any updateTS() call until point 𝑡 .

Lemma 47. Suppose at point 𝑡 a successful SC() is executed on TS[p] in line 13. Then throughout the
rest of the execution TS[p]index ≠ ⊥.

Proof. Suppose TS[p].index = ⊥ at some point 𝑡∗ > 𝑡 . Since line 13 cannot set TS[p].index = ⊥,
immediately TS[p].index ≠ ⊥ after 𝑡 . Therefore, there exists at least one point after 𝑡 such that a

successful SC() on TS[p] sets its index to ⊥. Let 𝑡∗∗ ≤ 𝑡∗ be the first of these points, and let 𝑞 the

Efficient Bounded Timestamping from Standard Synchronization Primitives 35

process that performs the SC(). Therefore, TS[p].index ≠ ⊥ throughout (𝑡, 𝑡∗∗). There are three
shared memory operations in the algorithm that can modify the TS array: Lines 13, 33 and 73. Since
any successful SC() in line 13 cannot set TS[p].index to ⊥, at point 𝑡∗∗ a successful SC() happens in
either line 33 or line 73. An SC() in either of these lines set TS[p].index to⊥ only if TS[p].index = ⊥
at the point of their preceding LL() operation. Thus, their preceding LL() operation must happen

before 𝑡 , because TS[p].index ≠ ⊥ throughout [𝑡, 𝑡∗∗]. This contradicts the assumption that at point

𝑡∗∗, process 𝑝’s SC() on TS[p] is successful. □

Lemma 48. For any point 𝑡 and any process 𝑞, if form the beginning of execution until the point 𝑡 ,
process 𝑝 does not perform any updateTS() call, then TS[p].index = ⊥ at point 𝑡 .

Proof. Let 𝑡0 be the beginning of execution. Suppose 𝑝 does not call updateTS() throughout
[𝑡0, 𝑡] and TS[p].index ≠ ⊥ at point 𝑡 . Initially TS[p].index = ⊥. Therefore, there exists at least
one point during [𝑡0, 𝑡] when a successful SC() on TS[p] changes TS[p].index. Let 𝑡∗ ∈ [𝑡0, 𝑡] be
the first of these points and let 𝑞 be the process that performs the SC(). Thus, TS[p].index = ⊥
throughout [𝑡0, 𝑡∗). There are three shared memory operations in the algorithm that can modify

the TS array: Lines 13, 33 and 73. Since 𝑝 never calls the updateTS() function, 𝑝 never executes

line 3. Thus, by Lemma 17(a), A[n-1] does not change throughout [𝑡0, 𝑡]. Hence, by corollary 18,

throughout the entire execution, TS[q].flag = A[q]. Therefore, no process performs a successful

SC() on TS[𝑝] in line 13. Furthermore, by Observation 30 a successful SC() in line 33 does not

change any active timestamp’s index. Therefore, at point 𝑡∗, process 𝑞 performs a successful SC()
in line 73. However, 𝑞 in line 73 sets TS[q].index ≠ ⊥ only if TS[p].index ≠ ⊥ at the point of 𝑞’s

preceding LL() on TS[p] (see line 72). This is a contradiction because TS[p].index = ⊥ throughout

[𝑡0, 𝑡∗). □

As a result of Lemmas 47 and 48, it is easy to see that for any pair of process (𝑖, 𝑗) as long as at
least one of them has not invoked an updateTS() call, a successful SC() in line 73 does not affect

the order of dominance between TS[i] and TS[j]. Thus, for the statements below until Lemma 6,

we consider processes that have obtained at least one timestamp (i.e., TS[i].index ≠ ⊥).
The following two observations show that TS[p].index is less than zero if and only if the last

successful TS[p].SC() operation that changed TS[p].index happens in line 73.

Observation 49. Suppose at point 𝑡 process 𝑝 performs a successful SC() on TS[q] in line 73. If
TS[q].index ≠ ⊥ immediately before 𝑡 , then at point 𝑡 process 𝑝 sets TS[q].index to a negative value.

Proof. By executing line 73, process 𝑝 writes the value of its newIndex local variable to

TS[q].index. This value is last set when 𝑝 executes the preceding operations in line 72. By ex-

ecuting line 72, process 𝑝 assign some value 𝑖 ≤ −1 to newIndex variable if TS[q].index ≠ ⊥ at

the point of 𝑝’s preceding LL() operations preceding on TS[q]. Thus, we only have to show that

TS[q].index ≠ ⊥ at the point of 𝑝’s preceding LL(). This is trivially true based on the assumptions

that TS[q].index ≠ ⊥ immediately before 𝑡 , and 𝑝’s SC() at point 𝑡 is successful. □

Observation 50. Suppose at point 𝑡 process 𝑝 performs a successful SC() on TS[q] that changes its
index to a negative value. Then 𝑝’s SC() at this point is executed in line 73.

Proof. There are three shared memory operations in the algorithm that can modify the TS
array: Lines 13, 33 and 73. A successful SC() in line 13 cannot write a negative value to the index
component of any active timestamp. Furthermore, by Observation 30, a successful SC() in line 33

does not change the index component any active timestamp. Hence, only a successful SC() in

line 73 can change the index component of process 𝑞’s timestamp to a negative value. □

36 Benyamin Bashari, Ali Jamadi, and Philipp Woelfel

The following statement is the last lemma we need to prove that a helpMoveTS() call does not

change the order of dominance between active timestamp. It states that a successful SC() in line 73,

changes an active timestamp in the previously active cluster to a timestamp in the currently active

cluster, such that it remains dominated by every active timestamp in the active cluster.

Lemma 51. For any 𝑘 ∈ {0, 1, 2}, consider a maximal cluster-𝑘 interval [𝑡, 𝑡 ′]. Suppose at point 𝑡𝑆𝐶 ∈
[𝑡, 𝑡 ′], process 𝑝 performs a successful SC() in line 73 on TS[q]. Furthermore, suppose TS[q].index ≠ ⊥
immediately before 𝑡 . Let 𝑟 be the process that has the active timestamp with the minimum index 𝑖 ,
among all active timestamps in cluster 𝑘 immediately before 𝑡𝑆𝐶 . Then at point 𝑡𝑆𝐶 , process 𝑝 writes
some value less than 𝑖 to TS[q].index.

Proof. Suppose at point 𝑡𝑆𝐶 process 𝑝 performs a successful SC() on TS[𝑞] in line 73, and

writes some value 𝑧 ≥ 𝑖 to TS[q].index. By Observation 49, 𝑧 < 0. Hence, TS[j].cluster = 𝑘

and TS[j].index = 𝑖 < 0 immediately before 𝑡𝑆𝐶 . Let 𝑡1 be the point when process 𝑝 executes

line 58 during the same helpMoveTS() call that it executes the SC() at point 𝑡𝑆𝐶 . Furthermore, let

𝑡2 ∈ (𝑡1, 𝑡𝑆𝐶) be the point when process 𝑝 is poised to execute line 67. By Lemma 46, at some point

𝑡∗ ∈ [𝑡1, 𝑡2], the value of Counter mod 𝛿 ≥ [, and process 𝑝 has a local view of the TS array that is

consistent with TS(𝑘−1) mod 3,𝑡∗ . Moreover, by Lemma 37, [𝑡1, 𝑡2] happens during the same maximal

cluster-𝑘 interval as 𝑡𝑆𝐶 . Therefore, Counter mod 𝛿 ≥ [throughout [𝑡∗, 𝑡𝑆𝐶]. Thus, by Lemma 3,

no process gets assigned to cluster (𝑘 − 1) mod 3 during [𝑡∗, 𝑡𝑆𝐶]. By executing line 70 during

the same helpMoveTS() call, process 𝑝 selects TS[q] as the most dominant active timestamp in

cluster (𝑘 − 1) mod 3. Thus, TS[q] dominates every other active timestamp in cluster (𝑘 − 1) mod 3

at point 𝑡∗. Furthermore, TS[q] dominates every other active timestamp in cluster (𝑘 − 1) mod 3

during [𝑡∗, 𝑡𝑆𝐶], since TS[q] does not change during [𝑡∗, 𝑡𝑆𝐶] and no process gets assigned to cluster
(𝑘 − 1) mod 3 during this interval.

Let 𝑡𝑟 < 𝑡∗ be the point when 𝑝 performs the preceding LL() on TS[r] in line 61. Then, there

must exist a point 𝑡𝑦 ∈ (𝑡𝑟 , 𝑡𝑆𝐶), when some process 𝑞 performs a successful SC() on TS[r] that
changes its index to 𝑖 . Otherwise, process 𝑝 by executing line 72, sets minIndex < 𝑖 , and at point

𝑡𝑆𝐶 changes TS[q].𝑖𝑛𝑑𝑒𝑥 to minIndex.
By Observation 50, at point 𝑡𝑦 process 𝑠 performs the SC() in line 73. Then by Lemma 46, at some

point 𝑡∗∗ < 𝑡𝑦 process 𝑠 has a local view of the TS array that is consistent with TS(𝑘−1) mod 3,𝑡∗∗ . With

the same reasoning as above, TS[r] dominates every other active timestamp in cluster (𝑘−1) mod 3

throughout [𝑡∗∗, 𝑡𝑦]. Therefore, the interval [𝑡∗∗, 𝑡𝑦] must be completely before [𝑡∗, 𝑡𝑆𝐶]. Hence,
𝑡𝑦 < 𝑡∗. By Lemmas 5 and 37, TS[r].cluster is either 𝑘 or (𝑘 − 1) mod 3 at point 𝑡𝑟 .

First, suppose at point 𝑡𝑟 , process 𝑝 reads TS[r].cluster = 𝑘 by executing the LL() on TS[𝑟]. Then
by Lemma 45, TS[r].cluster = 𝑘 throughout [𝑡𝑟 , 𝑡 ′]. This is a contradiction since TS[r].cluster must

be (𝑘 − 1) mod 3 throughout [𝑡∗∗, 𝑡𝑦], and [𝑡∗∗, 𝑡𝑦] overlaps [𝑡𝑟 , 𝑡 ′] (because 𝑡𝑦 > 𝑡𝑟).

Now suppose at point 𝑡𝑟 , process 𝑝 reads TS[r].cluster = (𝑘 − 1) mod 3 by executing the LL() on
TS[𝑟]. Therefore, there exists a point 𝑡𝑉𝐿 ≥ 𝑡∗ when process 𝑝 performs a VL() on TS[𝑟] in line 65.

Since 𝑝 does not execute the return statement in line 65, at point 𝑡𝑉𝐿 process 𝑝’s VL() on TS[𝑟]
must return True. This is a contradiction, since 𝑡𝑟 is the last point when process 𝑝 performs an LL()
on TS[𝑟] and 𝑡𝑦 ∈ (𝑡𝑟 , 𝑡𝑉𝐿). □

In the following lemma we prove that a helpMoveTS() function call does not change the order

of dominance between active timestamps.

Lemma 6. An SC() executed in line 73 does not affect the dominance order of any entries of the TS
array.

Proof. Suppose at point 𝑡𝑆𝐶 process 𝑝 performs a successful SC() in line 73 on TS[i] such that

it changes the dominance relation between TS[𝑖] and TS[𝑗]. Let TS[i]− denote the value of TS[i]

Efficient Bounded Timestamping from Standard Synchronization Primitives 37

immediately before 𝑡𝑆𝐶 , and TS[i]+ denote the value of TS[i] immediately after it. By Lemma 35,

𝑝’s SC() happens in during a cluster-𝑘 move phase (i.e., 𝑖𝑑𝑥𝑡𝑆𝐶 = 𝐶𝑡𝑆𝐶 mod 𝛿 ∈ [[, [+ ` − 1]). Let
𝑡 < 𝑡𝑆𝐶 be the latest point such that 𝑖𝑑𝑥𝑡 = [. By Lemmas 37 and 46, at some point 𝑡∗ ∈ [𝑡, 𝑡𝑆𝐶]
process 𝑝 has a local view of the TS array that is consistent with TS(𝑘−1) mod 3,𝑡∗ . Process 𝑝 , in

line 70, selects TS[i] as the dominant active timestamp assigned to cluster (𝑘 − 1) mod 3. Thus,

TS[i].cluster = (𝑘−1) mod 3, and TS[i].index is larger than the index component of any other active

timestamp in cluster (𝑘−1) mod 3 at point 𝑡∗. Furthermore, TS[i]− .cluster = (𝑘−1) mod 3, because

TS[i] does not change during [𝑡∗, 𝑡𝑆𝐶]. Also, by Lemma 3, TS[i]+.cluster = 𝑘 , since 𝑖𝑑𝑥𝑡𝑆𝐶 ≥ [.

If either TS[i]− .index = ⊥ or TS[j].index = ⊥ it is trivial to see that the dominance relation

between TS[i] and TS[j] is not affected. Hence, consider the case where TS[i]− .index ≠ ⊥, and
TS[j].index ≠ ⊥.

First suppose TS[j] ≪ TS[i] immediately before 𝑡𝑆𝐶 , and TS[i] ≪ TS[j] immediately after 𝑡𝑆𝐶 . By

Lemma 5, at point 𝑡𝑆𝐶 all active timestamps are in cluster (𝑘 − 1) mod 3 or 𝑘 . Then, TS[j].cluster =
(𝑘 − 1) mod 3 immediately before 𝑡𝑆𝐶 , since TS[i]− .cluster = (𝑘 − 1) mod 3 and TS[𝑖] dominates

TS[𝑗] immediately before 𝑡𝑆𝐶 . Furthermore, TS[j].cluster = (𝑘 − 1) mod 3 immediately after 𝑡𝑆𝐶 ,

because TS[𝑗] does not change at point 𝑡𝑆𝐶 . This contradicts the assumption that TS[i] ≪ TS[j]
immediately after 𝑡𝑆𝐶 , since TS[i]+ .cluster = 𝑘 , which dominates TS[j].cluster.
Now suppose TS[i] ≪ TS[j] immediately before 𝑡𝑆𝐶 , and TS[j] ≪ TS[i] immediately after 𝑡𝑆𝐶 .

Again by Lemma 5, at point 𝑡𝑆𝐶 all active timestamps are in cluster (𝑘 − 1) mod 3 or 𝑘 . Then,

TS[j].cluster = 𝑘 at point 𝑡∗, since at this point TS[𝑖] dominates every active timestamp in cluster

(𝑘 − 1) mod 3. Furthermore, by Lemma 45, TS[j].cluster remain 𝑘 throughout [𝑡∗, 𝑡]. Let 𝑖 be the
TS[j].index, immediately before 𝑡 . Then, by Lemma 51 at point 𝑡 process 𝑝 sets TS[i].index < 𝑖 .

This contradiction the assumption that TS[j] ≪ TS[i] immediately after 𝑡 , since TS[j].cluster =
TS[i].cluster and TS[i].index < TS[j].𝐼𝑛𝑑𝑒𝑥 . □

Now we can easily show that only a successful SC() in line 13 can affect the dominance order

between active. The following lemma states this property.

Lemma 52. Let 𝑡 be the point when a shared memory operation is executed. If TS[i] ≪ TS[j]
immediately before 𝑡 , and TS[j] ≪ TS[i] immediately after 𝑡 , then at point 𝑡 a successful SC() in
line 13, is executed on either TS[i] or TS[j].

Proof. Since at point 𝑡 the dominance relation between TS[i] and TS[j] changes, at point 𝑡
the cluster or the index component of one of them must change. Hence, at point 𝑡 a successful

SC() is executed on either TS[i] or TS[j] that changes their cluster or index component. There

are three shared memory operations in the algorithm that can modify the TS array: lines 13, 33

and 73. By Observation 30 a successful SC() in line 33 does not change the cluster or the index
component of any active timestamp. Furthermore, by Lemma 6, a successful SC() executed in

line 73 on either TS[i] or TS[j], does not change dominance order between TS[i] and TS[j]. Hence,
at point 𝑡 a successful SC() on TS[i] or TS[j] must be executed in line 13. □

Linearizability
During an interval 𝐼 , that spans an updateTS() call by process 𝑝 , by Lemma 43, there exists a

point when some process 𝑞 (𝑝 and 𝑞 may be the same) executes a successful TS[p].SC() operation

in line 13. Furthermore, by Lemma 44, process 𝑞’s preceding FAI() operation, during the same

helpUpdateTS(p) call happens during 𝐼 as well. Hence, the linearization point of an updateTS()
call is between its invocation and response. In the remainder of this section, we provide useful

statement to prove Lemma 8, and finally provide a complete proof for that lemma.

38 Benyamin Bashari, Ali Jamadi, and Philipp Woelfel

Let 𝑖 and 𝑗 be two processes. We say 𝑖 ≺ 𝑗 at point 𝑡 , if 𝑖 comes before 𝑗 in the total order of the

interpreted value of the MTS object at point 𝑡 .

The following lemma shows that immediately after the publishing point 𝑡 , of some process 𝑖’s

updateTS() call, TS[i] dominates every other active timestamp 𝑗 , provided that 𝑗 ≺ 𝑖 at point 𝑡 ,

and at this point 𝑗 has no updateTS() which is linearized before 𝑡 but not published before 𝑡 .

Lemma 53. For any 𝑘 ∈ {0, 1, 2}, consider a maximal cluster-𝑘 interval [𝑡, 𝑡 ′]. Suppose at point
𝑡𝑝 ∈ [𝑡, 𝑡 ′], process 𝑝 performs a successful SC() on TS[𝑖] in line 13. For any 𝑗 ∈ {0, . . . , 𝑛 − 1}, where
𝑗 ≠ 𝑖 , if 𝑗 ≺ 𝑖 at point 𝑡𝑝 , and at this point, 𝑗 has no updateTS() call which is linearized before 𝑡𝑝 but
not published, then TS[j] ≪ TS[i] immediately after 𝑡𝑝 .

Proof. Suppose 𝑗 ≺ 𝑖 at point 𝑡 and TS[i] ≪ TS[j] immediately after 𝑡𝑝 . First observe that since

𝑗 ≺ 𝑖 at point 𝑡𝑝 , and 𝑖 has an updateTS()which is linearized before 𝑡𝑝 , process 𝑗 ’s last updateTS()
call (before 𝑡𝑝) must linearize before 𝑖’s. Furthermore, since at point 𝑡𝑝 , process 𝑗 has no updateTS()
which is linearized before 𝑡𝑝 but not published, by Lemma 47, at this point TS[j].index ≠ ⊥. Also,
TS[i].index ≠ ⊥ immediately after 𝑡𝑝 . Since [𝑡, 𝑡 ′] is a maximal cluster-𝑘 interval, and any maximal

cluster-𝑘 interval must begin when cluster 𝑘 becomes active, 𝑖𝑑𝑥𝑡 = 𝐶𝑡 mod 𝛿 = 0.

Let 𝑡𝑓 < 𝑡𝑝 be the point when 𝑝 performs the preceding FAI() operation in line 12. Then

at point 𝑡𝑝 , process 𝑝 writes ⌊
𝐶𝑡𝑓

𝛿
⌋ = 𝑐𝑙𝑡𝑓 = 𝑟 to TS[i].cluster and 𝐶𝑡𝑓 mod 𝛿 = 𝑖𝑑𝑥𝑡𝑓 = 𝑖 to

TS[i].index. Since TS[i] ≪ TS[j] immediately after 𝑡𝑝 , then either TS[j].cluster dominates 𝑟 , or

TS[j].cluster = 𝑟 and TS[j].index > 𝑖 . By Lemma 5, at point 𝑡𝑝 all processes are assigned to cluster

𝑘 or (𝑘 − 1) mod 3. Therefore, immediately after 𝑡𝑝 , either TS[i].cluster = TS[j].cluster = 𝑘 and

TS[i].index < TS[j].index, or TS[i].cluster = (𝑘 − 1) mod 3 and TS[j].cluster = 𝑘 .

Case 1: suppose TS[i].cluster = TS[j].cluster = 𝑘 , and TS[j].index > TS[i].index ≥ 0 immedi-

ately after 𝑡𝑝 . Let 𝑡𝑞 < 𝑡𝑝 be the last point when some process 𝑞 performs a successful SC() on TS[j]
that changes TS[j].cluster or TS[j].index. Thus, 𝑞’s SC() sets TS[j].cluster = 𝑘 , and TS[j].index > 0.

Hence, 𝑡𝑞 > 𝑡 , since by Lemma 5, TS[j].cluster ≠ 𝑘 immediately before 𝑡 .

There are three shared memory operations in the algorithm that can modify the TS array:

Lines 13, 33 and 73. By Observation 30 a successful SC() in line 33 cannot change the cluster or
index component of any active timestamp. Furthermore, by Observation 49, a successful SC() in
line 73, writes a negative number to TS[j].index. Therefore, at point 𝑡𝑞 , process 𝑞 must perform the

SC() in line 13.

Let 𝑡𝐿𝐿 < 𝑡𝑞 be the point when process 𝑞 performs the corresponding LL() on TS[j] in line 9, and

let 𝑡𝑟 ∈ (𝑡𝐿𝐿, 𝑡𝑞) be the point when 𝑞 performs the FAI() operation in line 12. Thus, 𝑐𝑙𝑡𝑟 = ⌊𝐶𝑡𝑟

𝛿
⌋ = 𝑘

and 𝑖𝑑𝑥𝑡𝑟 = 𝐶𝑡𝑟 mod 𝛿 > 𝑖 , since at point 𝑡𝑞 process 𝑞 writes ⌊𝐶𝑡𝑟

𝛿
⌋ = 𝑐𝑙𝑡𝑟 = 𝑘 and𝐶𝑡𝑟 mod 𝛿 = 𝑖𝑑𝑥𝑡𝑟

to TS[j].cluster and TS[j].index, respectively. Therefore, 𝑡𝑟 is in a cluster-𝑘 interval. Furthermore,

if 𝑡𝑟 is not in the same maximal cluster-𝑘 interval as 𝑡𝑞 , then during [𝑡𝐿𝐿, 𝑡𝑞] the active cluster

changes at least two times. This contradicts the assumption that at point 𝑡𝑞 , process 𝑞’s SC() is

successful, because by Lemma 5, at least two successful TS[j].SC() operations happen during

[𝑡𝐿𝐿, 𝑡𝑞]. Therefore, 𝑡𝑟 must be in the same maximal cluster-𝑘 interval as 𝑡𝑞 . Furthermore, 𝑡𝑟 > 𝑡𝑓 ,

since 𝑖𝑑𝑥𝑡𝑟 > 𝑖𝑑𝑥𝑡𝑓 = 𝑖 . This contradicts the assumption that 𝑗 ≺ 𝑖 at point 𝑡𝑝 , because 𝑡𝑟 and 𝑡𝑓
are the linearization points of 𝑗 ’s, and 𝑖’s last updateTS() calls, respectively, which are linearized

before 𝑡𝑝 .

Case 2: Suppose TS[i].cluster = (𝑘 − 1) mod 3, and TS[j].cluster = 𝑘 immediately after 𝑡𝑝 . Then,

𝑡𝑓 < 𝑡 , since 𝑟 = (𝑘 − 1) mod 3. Therefore, by Lemma 24, 𝑖𝑑𝑥𝑡𝑝 < [. Let 𝑡𝑞 < 𝑡𝑝 be the last point

when some process 𝑞 performs a successful SC() on TS[j] that changes TS[j].cluster, such that

TS[j].cluster = 𝑘 immediately after 𝑡𝑞 . Then, 𝑡𝑞 ∈ [𝑡, 𝑡𝑝], since by Lemma 5, TS[j].cluster ≠ 𝑘

immediately before 𝑡 .

Efficient Bounded Timestamping from Standard Synchronization Primitives 39

There are three shared memory operations in the algorithm that can modify the TS array: Lines 13,
33 and 73. By Observation 30 a successful SC() in line 33 cannot change the cluster component of

TS[j]. Furthermore, since 𝑖𝑑𝑥𝑡𝑝 < [, by Lemma 35 no successful SC() in line 73, happens during

[𝑡, 𝑡𝑝]. Hence, at point 𝑡𝑞 ∈ [𝑡, 𝑡𝑝], process 𝑞 performs the SC() in line 13.

Let 𝑡𝐿𝐿 < 𝑡𝑞 be the point when process 𝑞 performs the corresponding LL() on TS[j] in line 9,

and let 𝑡𝑟 ∈ (𝑡𝐿𝐿, 𝑡𝑞) be the point when 𝑞 performs the FAI() operation in line 12. With the same

reasoning as case 1, 𝑡𝑟 happens during the same active cluster-𝑘 as 𝑡𝑝 . Therefore, 𝑡𝑟 > 𝑡 > 𝑡𝑓 . This

contradicts the assumption that 𝑗 ≺ 𝑖 at point 𝑡𝑝 , because 𝑡𝑟 and 𝑡𝑓 are the linearization points of

𝑗 ’s, and 𝑖’s last updateTS() calls, respectively, which are linearized before 𝑡𝑝 . □

The following lemma extends Lemma 53.

Lemma 54. Let 𝑖 and 𝑗 be any two processes. Suppose at point 𝑡 , a successful SC() on TS[𝑖] is
performed in line 13 and 𝑗 ≺ 𝑖 . Furthermore, suppose at point 𝑡 , process 𝑗 has no updateTS() call
which is linearized before 𝑡 and published after 𝑡 . Let 𝑡 ′ be the first point after 𝑡 when 𝑖 ≺ 𝑗 . Then
TS[j] ≪ TS[i] throughout (𝑡, 𝑡 ′).

Proof. By Lemma 53, TS[j] ≪ TS[i] immediately after the successful TS[i].SC() operation at

point 𝑡 . By Lemma 52, only a successful SC() operation executed in line 13, on either TS[i], or TS[j]
can change the dominance relation order TS[i] and TS[j] Furthermore, since the first point after

𝑡 when 𝑖 ≺ 𝑗 is 𝑡 ′, process 𝑗 has no updateTS() call which linearizes during (𝑡, 𝑡 ′). Thus, during
(𝑡, 𝑡 ′) no successful SC() on TS[j] is executed in line 13, since the first point after 𝑡 when such SC()
happens is after the linearization point of an updateTS() call by 𝑗 . Lastly, by Lemma 53, during

(𝑡, 𝑡 ′), after every successful TS[i].SC() operation executed in line 13, TS[j] ≪ TS[i]. Therefore,
TS[j] ≪ TS[i], throughout (𝑡, 𝑡 ′). □

Lemmas 53 and 54 and the fact that initially the dominance relation between all active timestamps

is consistent with the interpreted value of the MTS object, immediately yields Lemma 9.

Lemma 9. Let 𝑖 and 𝑗 be two distinct processes, 𝑡 a point in time, and 𝑡∗ the latest point before 𝑡 , such
that the publishing point of any updateTS() call by 𝑖 or 𝑗 with linearization point before 𝑡∗ occurs
before 𝑡 . Then the dominance order of TS[i] and TS[j] at point 𝑡 is consistent with the interpreted value
of the MTS object at point 𝑡∗

In the following lemma we show that the last updateTS() call by process 𝑖 or 𝑗 , that is linearized
before some process 𝑝 invokes a isEarlier(𝑖, 𝑗) call, is also published before 𝑝 executes lines 39.

Lemma 55. Suppose at point 𝑡 , process 𝑝 starts a isEarlier(𝑖, 𝑗) call. Let 𝑡 ′ > 𝑡 be the point when 𝑝
is poised to execute line 39. Furthermore, suppose at some point 𝑡𝑆𝐶 > 𝑡 ′, process 𝑞 performs a successful
SC() on TS[𝑖], or TS[𝑗] in line 13. Let 𝑡𝑓 𝑒𝑡𝑐ℎ < 𝑡𝑆𝐶 be the point when process 𝑞 performs the preceding
FAI() operation in line 12. Then 𝑡𝑓 𝑒𝑡𝑐ℎ > 𝑡 .

Proof. Here we consider the case that at point 𝑡𝑆𝐶 process 𝑞 performs a TS[i].SC() operation
in line 13. The proof for the case that 𝑞 performs a TS[j].SC() operation is identical.

Suppose at point 𝑡𝑆𝐶 , process 𝑞 performs a successful TS[i].SC() operation, and at point 𝑡𝑓 𝑒𝑡𝑐ℎ < 𝑡

process 𝑞 performs the preceding FAI() operation in line 12. Let 𝑡𝐿𝐿 < 𝑡𝑓 𝑒𝑡𝑐ℎ be the point when

process 𝑞 performs the preceding LL() in line 9. Therefore, TS[i] does not change during [𝑡𝐿𝐿, 𝑡𝑆𝐶].
Furthermore, let 𝑡𝑟 ∈ [𝑡𝐿𝐿, 𝑡𝑓 𝑒𝑡𝑐ℎ] be when 𝑞 reads the announce bit of 𝑖 in line 10. Since 𝑞 does not

execute the return statement in line 11, TS[i].flag ≠ A[i] at point 𝑡𝑟 . Therefore, by Lemma 17, the

next component of these two that changes is TS[i].flag. Therefore, TS[i].flag ≠ A[i] throughout
[𝑡𝑟 , 𝑡𝑆𝐶], since this change happens at point 𝑡𝑆𝐶 . Thus, during some interval [𝑡1, 𝑡2] ⊂ [𝑡, 𝑡 ′] process
𝑝 by executing lines 35-38 performs a complete helpUpdateTS(𝑖). Hence, by Lemma 7a there exists

40 Benyamin Bashari, Ali Jamadi, and Philipp Woelfel

some point 𝑡∗ ∈ [𝑡1, 𝑡2] when TS[𝑖] changes. This contradicts the assumption that 𝑞’s SC() at point

𝑡𝑆𝐶 is successful, since 𝑡∗ [𝑡1, 𝑡2] ⊊ (𝑡𝐿𝐿, 𝑡𝑆𝐶). □

In the following observation we show that the response of an isEarlier(𝑖, 𝑗) call that returns

in either line 49, or 54, is consistent with the dominance order of TS[i] and 𝑗 at some point during

the execution of isEarlier(𝑖, 𝑗) call.

Observation 56. Suppose 𝑝 starts and finishes an isEarlier(𝑖, 𝑗) call at points 𝑡𝑠 and 𝑡𝑓 , respectively.
Let 𝑡 ′ ∈ (𝑡𝑠 , 𝑡𝑓) be the point 𝑝 is poised to execute line 39 during the same isEarlier() call. If at point
𝑡𝑓 process 𝑝 executes the return statement in line 49 or line 54, then there exists a point 𝑡∗ ∈ [𝑡 ′, 𝑡𝑓] when
the dominance relation between TS[i] and TS[j] is the same as the response of 𝑝’s isEarlier(𝑖, 𝑗)
call.

Proof. The proof for the case when 𝑝 executes the return statement in line 49 is similar to the

case when 𝑝 executes the return statement in line 54. Below we write the proof for first case and

note the differences in parentheses.

Suppose at point 𝑡𝑓 , process 𝑝 executes the return statement in line 49 (line 54). Let 𝑡1 ∈ [𝑡 ′, 𝑡𝑓]
be the point when 𝑝 performs an LL() on TS[𝑖] (TS[𝑗]) in line 44 (line 45). Furthermore, let 𝑡2 > 𝑡1
be the point when 𝑝 subsequently performs the VL() in line 46 (line 51). Therefore, TS[𝑖] (TS[𝑗])
does not change during [𝑡1, 𝑡2], because 𝑝’s VL() operations returns true. Let 𝑡∗ ∈ [𝑡1, 𝑡2] be the
point when process 𝑝 performs an LL() on TS[𝑗] (TS[𝑖]) in line 45 (line 50). Thus, 𝑝’s local view

of TS[i] and TS[j] is consistent with the values stored in the TS array at point 𝑡∗. Lastly, since 𝑝’s
return is based on the dominance relation between its local view of TS[i] and TS[j], its return is

consistent with the dominance relation between TS[i] and TS[j] at point 𝑡∗ ∈ [𝑡1, 𝑡2] ⊊ [𝑡, 𝑡 ′]. □

The following lemma states that when an isEarlier() call by process 𝑝 responds, LookupT-
able[𝑝] is not ⊥.

Lemma 57. Let 𝑡 be a point at which an isEarlier(i,j) call by process 𝑝 responds. Then
LookupTable[p].res ≠ ⊥ at point 𝑡 .

Proof. Suppose the lemma is not true. Let 𝑡 be the first point during the execution when

process 𝑝’s isEarlier(𝑖, 𝑗) call responds, and LookupTable[p].res = ⊥ at this point. Since initially

LookupTable[p].res ≠ ⊥, there exists at least one point before 𝑡 when a successful SC() sets it

to ⊥. Let 𝑡∗ < 𝑡 be the last point before 𝑡 , when some process performs a successful SC() on

LookupTable[p] that sets LookupTable[p].res = ⊥. There are five shared memory operations in the

algorithm that can modify the LookupTable array: Lines 19, 41, 48, 53 and 55. However, a successful
SC() in line 55 cannot set LookupTable[p].res to⊥, since it sets it to the constant value True. Neither
a successful SC() in lines 48 and 53 can set LookupTable[p].res = ⊥, since they use the result of a

≪ operation which is a Boolean value. Therefore, at point 𝑡∗, either process 𝑝 executes a successful

SC() in line 41, or some process 𝑞 executes a successful SC() on LookupTable[p] in line 19.

First, suppose at point 𝑡∗, process 𝑝 executes a successful SC() in line 41 during the same or

a preceding isEarlier() call. Let 𝑡∗∗ ∈ (𝑡∗, 𝑡] be the point when 𝑝 completes that isEarlier()
call. There are three return statements in the isEarlier() call that 𝑝 can execute: lines 49,

54 and 56. Before executing the return statement in line 49, 54, or 56, process 𝑝 executes an

SC() on LookupTable[p] in line 48, 53, or 55, respectively, These SC() operations cannot set

LookupTable[p].res to⊥. Thus, either 𝑡∗ is not the last point before 𝑡 when some process performs a

successful SC() on LookupTable[p] that sets LookupTable[p].res = ⊥, or at LookupTable[p].res ≠ ⊥
at point 𝑡 . — a contradiction.

Now suppose at point 𝑡∗ < 𝑡 some process 𝑞 executes a successful SC() on LookupTable[p]
in line 19 and sets LookupTable[p].res to ⊥. Since 𝑞 in line 19 write the results of its preceding

Efficient Bounded Timestamping from Standard Synchronization Primitives 41

isEarlier(i,j) call in line 18 to LookupTable[p].res, at some point 𝑡∗∗ < 𝑡∗ its isEarlier(i,j)
returns⊥. There are three return statements in the isEarlier() function: Lines 49, 54 and 56. Since
return statements in lines 49 and 54 return the result of a≪ operation, an isEarlier() call that
executes either of these return statements does not return ⊥. Hence, at point 𝑡∗∗, process 𝑞 executes

the return statements in line 56 during its isEarlier(i,j) call. Since by executing line 56, process

𝑞 performs an LL() on LookupTable[q] and return its res component, LookupTable[q].res = ⊥ at

point 𝑡∗∗ < 𝑡 . This contradicts the assumption that 𝑡 is the first point in time when the lemma is

not true. □

In the following observation, we show that the return value of an isEarlier() is never ⊥.
Observation 58. The return value of an isEarlier() call cannot be ⊥.
Proof. There are three return statements in the isEarlier() function: Lines 49, 54 and 56.

Since the return statements in lines 49 and 54 use the result of a≪ operation, an isEarlier() call

that executes either of those return statements returns a Boolean value. Furthermore, any process

𝑝 that executes the return statement in line 56 during an isEarlier() call returns the value of

LookupTable[p].res at the point of its response. By Lemma 57 at that point LookupTable[p].res ≠ ⊥.
Thus, the result of any isEarlier() call cannot be ⊥. □

The following observation states that if at some point 𝑡 , the value of LookupTable[p].res changes
to ⊥, then at point 𝑡 , process 𝑝 executes the SC() in line 41.

Observation 59. Let 𝑡 be a point in time when a shared memory operation is executed. If
LookupTable[p].res ≠ ⊥ immediately before 𝑡 and LookupTable[p].res = ⊥ immediately after 𝑡 ,
then at point 𝑡 process 𝑝 executes a successful SC() in line 41.

Proof. There are five shared memory operations in the algorithm that can modify

LookupTable[p]: Lines 19, 41, 48, 53 and 55. A successful SC() in line 55, sets LookupTable[p].res =
True. Also, a successful SC() in line 53 or 48 sets LookupTable[p].res to the result of a≪ operation

which is a Boolean value. Lastly, a successful SC() in line 18 sets LookupTable[p].res to the result

of a preceding isEarlier() call, which by Observation 58 cannot be ⊥. Hence, only a successful

SC() in line 41 performed by process 𝑝 can set LookupTable[p].res to ⊥. □

The following lemma shows the SC() in line 41 is guaranteed to be successful.

Lemma 60. If process 𝑝 perform an SC() in line 41, then its SC() is successful.

Proof. Suppose at point 𝑡 , process 𝑝 performs an SC() in line 41 during an isEarlier(i,j) call,

and 𝑝’s SC() not successful. Let 𝑡𝐿𝐿 < 𝑡 be the point when 𝑝 performs the preceding LL() on

LookupTable[p] in line 40. Since 𝑝’s SC() at point 𝑡 is not successful, LookupTable[p]must change at

least once during (𝑡𝐿𝐿, 𝑡) by some other process. Let 𝑡∗ ∈ (𝑡𝐿𝐿, 𝑡) be the first point after 𝑡𝐿𝐿 when some

other process 𝑞 performs a successful SC() on LookupTable[p]. Since the only line in the algorithm

where 𝑞 might perform an SC() on LookupTable[p] is line 19, at point 𝑡∗ process 𝑞 executes line 19.

Let 𝑡𝑞 < 𝑡∗ be the point when 𝑞 performs the preceding LL() on LookupTable[p] in line 16. Since

before executing line 19 process 𝑞 checks the condition in line 17, LookupTable[p].res = ⊥ at point

𝑡𝐿𝐿 . Consider the last point 𝑡𝑠 < 𝑡𝐿𝐿 when LookupTable[p].res changed. By Observation 59 at that

point 𝑝 executes line 41 during a isEarlier() call. Since 𝑝’s pending isEarlier() call at point
𝑡𝑠 must finish before 𝑝 can invoke another isEarlier() call. There exists a point 𝑡𝑓 ∈ (𝑡𝑠 , 𝑡𝐿𝐿)
when 𝑝’s pending isEarlier() call at point 𝑡𝑠 responds. By Lemma 57, LookupTable[p].res ≠ ⊥
at point 𝑡𝑓 . Thus, there exists a point 𝑡

∗∗ ∈ (𝑡𝑠 , 𝑡𝑓) when LookupTable[p].res changes. Since we
defined 𝑡𝑠 to be the last time before 𝑡𝑞 when LookupTable[p].res changes, 𝑡𝑞 < 𝑡∗∗ < 𝑡𝑓 < 𝑡𝐿𝐿 < 𝑡∗.
This contradicts the assumption that 𝑞’s SC() on LookupTable[p] at point 𝑡∗ is successful. □

42 Benyamin Bashari, Ali Jamadi, and Philipp Woelfel

The following lemma shows under what condition LookupTable[p] gets updated by another

process helping 𝑝 complete a isEarlier(𝑖, 𝑗) call.

Lemma 61. Suppose process 𝑝 starts and finished an isEarlier(i,j) call at point 𝑡𝑠 and 𝑡𝑓 , re-
spectively. Furthermore, suppose at point 𝑡𝑓 process 𝑝 executes the return statement in line 56. Let
𝑡𝑎 ∈ [𝑡𝑠 , 𝑡𝑓] be the point when 𝑝 executes line 41. If no successful SC() on either TS[i] or TS[j] (or both)
is executed in line 13 during [𝑡𝑎, 𝑡𝑓], then there exist a point 𝑡∗ ∈ (𝑡𝑎, 𝑡𝑓) when some other process 𝑞
performs a successful SC() on LookupTable[p] in line 19.

Proof. For the purpose of contradiction suppose the lemma is not true, and at no point during

(𝑡𝑎, 𝑡𝑓) some other process 𝑞 performs a successful SC() on LookupTable[p] in line 19. Let 𝑡 ′ < 𝑡𝑓
be the point when 𝑝 perform the SC() in line 55. Since during (𝑡𝑎, 𝑡 ′) ⊊ [𝑡𝑠 , 𝑡𝑓], process 𝑝 does not

execute either of the return statements in line 49 or line 54, both TS[i] and TS[j] must change at

least six times (once in each iteration of the loop comprising lines 43-54). Furthermore, since none

of these change is because of a successful SC() in line 13, by Lemma 42 during (𝑡, 𝑡 ′) the value
of Counter is incremented at least 3𝑛3 + 6𝑛2 + 6𝑛 times. Thus, by Lemma 7(c) during (𝑡, 𝑡 ′) there
exist a process 𝑞 such that during (𝑡, 𝑡 ′), process 𝑞 performs 𝑛 complete helpSystem() calls. With

every helpSystem() call, by executing line 20 process 𝑞 updates the helpID variable to another

process ID in a round-robin fashion. Thus, after 𝑛 complete helpSystem() calls, there exist an

interval [𝑡1, 𝑡2] ⊊ (𝑡, 𝑡 ′) where 𝑞 executes lines 16-19 with helpID = 𝑝 . Let 𝑡𝐿𝐿 ∈ [𝑡1, 𝑡2] be the point
when 𝑞 performs an LL() on LookupTable[𝑝] in line 16. By Lemma 60, LookupTable[p].res = ⊥
immediately after 𝑡 . Since during (𝑡, 𝑡 ′) process 𝑝 does not execute either of the SC() operations
in line 48 or 53, process 𝑝 does not change LookupTable[p] during (𝑡, 𝑡 ′). Furthermore, the only

other line in the algorithm where another process might perform an SC() on LookupTable[p] is
in line 19. Thus, LookupTable[p] does not change during (𝑡, 𝑡 ′). Therefore, at point 𝑡𝐿𝐿 ∈ (𝑡, 𝑡 ′)
process 𝑞 reads LookupTable[p].res = ⊥. Hence, the condition in line 17 is met. Thus, there exists a

point 𝑡∗ ∈ [𝑡1, 𝑡2] when process 𝑞 executes the SC() in line 19. Lastly, since no successful SC() is
executed on LookupTable[p] during [𝑡𝐿𝐿, 𝑡∗] ⊊ (𝑡, 𝑡 ′), process 𝑞’s SC() on LookupTable[p] at point
𝑡∗ is successful. This contradiction the assumption that at no point 𝑡∗ ∈ (𝑡, 𝑡𝑓) some other process

𝑞 performs a successful SC() on LookupTable[p] in line 19. □

The following lemma shows that if LookupTable[p] gets updated by some other process𝑞, helping

𝑝 complete an isEarlier() call, then 𝑞 sets LookupTable[p].res to the result of an isEarlier()
call executed during the interval in which, 𝑝 is executing its isEarlier() call.

Lemma 62. Suppose process 𝑝 starts and finishes an isEarlier(𝑖, 𝑗) call at points 𝑡𝑠 and 𝑡𝑓 , re-
spectively. Furthermore, suppose at point 𝑡𝑞 ∈ (𝑡𝑠 , 𝑡𝑓), some process 𝑞, performs a successful SC()
on LookupTable[p] in line 19. Let 𝑡𝑞𝐿𝐿 < 𝑡𝑞 be the point when 𝑞 performs the preceding LL() on
LookupTable[p] in line 16. Then 𝑡𝑞𝐿𝐿 ∈ [𝑡𝑠 , 𝑡𝑞).

Proof. Suppose 𝑝 starts and finishes an isEarlier(𝑖, 𝑗) call at points 𝑡𝑠 and 𝑡𝑓 , respectively,

and at point 𝑡𝑞 ∈ (𝑡𝑠 , 𝑡𝑓) process 𝑞 performs a successful SC() on LookupTable[p] in line 19. Let

𝑡𝑞𝐿𝐿 < 𝑡𝑞 be the point when 𝑞 performs the preceding LL() on LookupTable[p] in line 16. For the

purpose of contradiction suppose 𝑡𝑞𝐿𝐿 < 𝑡𝑠 . Therefore, LookupTable[p].res = ⊥ at point 𝑡𝑞𝐿𝐿 , since

before executing line 19 process 𝑞 checks the condition in line 17. Let 𝑡1 be the last point before

𝑡𝑞𝐿𝐿 when LookupTable[p].res changes such that LookupTable[p].res = ⊥ immediately after 𝑡1. By

Observation 59 at point 𝑡1 process 𝑝 executes line 41 during a preceding isEarlier() call. Let

𝑡 ′
𝑓
< 𝑡𝑠 be the point when that isEarlier() call finishes. By Lemma 57, LookupTable[p].res ≠ ⊥

at point 𝑡 ′
𝑓
. Thus, there exist a point 𝑡∗ ∈ (𝑡1, 𝑡 ′𝑓) when a successful SC() on LookupTable[p]

changes LookupTable[p].res. Furthermore, 𝑡𝑞𝐿𝐿 ∈ (𝑡1, 𝑡∗), since 𝑡1 is the last time before 𝑡𝑞𝐿𝐿 when

Efficient Bounded Timestamping from Standard Synchronization Primitives 43

a successful SC() changes LookupTable[p].res to ⊥. This contradicts the assumption that 𝑞’s SC()
at point 𝑡𝑞 is successful, since 𝑡𝑞𝐿𝐿 < 𝑡∗ < 𝑡𝑞 . □

Lemma 8. Consider an isEarlier(𝑖, 𝑗) call that gets invoked and responds at points 𝑡 and 𝑡 ′,
respectively. The response of the isEarlier() call is consistent with the interpreted value of the MTS
object at some point 𝑡∗ ∈ [𝑡, 𝑡 ′].

Proof. Suppose the lemma is not true, and let 𝑡 ′ be the first point during the executing at which
a isEarlier(𝑖, 𝑗) call of some process 𝑝 responds such that at no point during its execution, its

response is consistent with the interpreted value. Let 𝑡 < 𝑡 ′ be the point when 𝑝 invokes this

isEarlier(𝑖, 𝑗) call. Furthermore, let 𝑡1 ∈ (𝑡, 𝑡 ′) be the point when 𝑝 is poised to execute line 39

during the same isEarlier(𝑖, 𝑗) call. First observe that by Lemma 55:

If 𝑖 or 𝑗 has an updateTS() call that is linearized before 𝑡 , then

the publishing point of that call is before 𝑡1.
(∗)

There are three return statements in the isEarlier() function: lines 49, 54 and 56. Thus, at

point 𝑡 ′ process 𝑝 must execute one of these three statements.

Case 1: suppose at point 𝑡 ′ process 𝑝 executes the return statement in line 49, or 54. By Observa-

tion 56 there exist a point 𝑡∗ ∈ [𝑡1, 𝑡 ′] when 𝑝’s responds is consistent with the dominance relation

between 𝑖 and 𝑗 ’s active timestamp. Furthermore, by (∗) there exists a point 𝑡𝑥 ∈ [𝑡, 𝑡1] when 𝑖

has no pending updateTS() call that is linearized but not published. Similarly, there exists a point

𝑡𝑦 ∈ [𝑡, 𝑡1] when 𝑗 has no pending updateTS() call that is linearized but not published. Without

loss of generality assume 𝑡𝑥 < 𝑡𝑦 . Thus, there exists a point between 𝑡𝑥𝑦𝑖𝑛[𝑡𝑥 , 𝑡𝑦] when neither 𝑖

nor 𝑗 has a pending updateTS() call that is linearized but not published. Therefore, by Lemma 9

the dominance relation between TS[i] and TS[j] at point 𝑡∗ is consistent with the interpreted

value of the MTS object at some point 𝑡∗∗𝑖𝑛[𝑡𝑥𝑦, 𝑡∗]. This contradicts the assumption that at no

point during 𝑝’s isEarlier(𝑖, 𝑗) call 𝑝’s response is consistent with the interpreted value, since

𝑡∗∗ ∈ [𝑡𝑖, 𝑗 , 𝑡∗] ⊊ [𝑡, 𝑡 ′].
Case 2: suppose at point 𝑡 ′ process 𝑝 executes the return statement in line 54. Let 𝑡𝑎 be the point

when 𝑝 executes the SC() in line 41. Furthermore, let 𝑡𝑆𝐶 ∈ (𝑡𝑎, 𝑡 ′) be the last point when some

process executes a successful SC() on LookupTable[p]. Since the last time before 𝑡 ′ when 𝑝 might

perform a successful SC() on LookupTable[p] is when 𝑝 executes the SC() operation in line 55, at

point 𝑡𝑆𝐶 either 𝑝 executes the SC() in line 55 or some other process 𝑞 execute a successful SC()
on LookupTable[p].
Case 2a: suppose at point 𝑡𝑆𝐶 some process 𝑞 performs a successful SC() on LookupTable[p]. The
only line in the algorithm that 𝑞 might perform an SC() on LookupTable[p] is line 19. Thus, at
point 𝑡𝑆𝐶 ∈ (𝑡𝑎, 𝑡 ′) process 𝑞 executes a successful SC() in line 19. Let 𝑡𝑞𝐿𝐿 be the point when 𝑞

executes the preceding LL() operation on LookupTable[p] in line 16. By Lemma 62, 𝑡𝑞𝐿𝐿 ∈ [𝑡, 𝑡𝑆𝐶).
At point 𝑡𝑆𝐶 process 𝑞 sets LookupTable[p].res to the response of its preceding isEarlier(𝑖, 𝑗)
call in line 18. By the assumption that 𝑝’s isEarlier(𝑖, 𝑗) call is the first isEarlier() call for

which the lemma is not true, there exist a point 𝑡∗ ∈ (𝑡𝑞𝐿𝐿, 𝑡𝑆𝐶) such that at 𝑡∗ the response of
𝑞’s isEarlier(𝑖, 𝑗) call is consistent with the interpreted value of the MTS object. Since 𝑡𝑆𝐶 is

the last time before 𝑡 ′ when a successful SC() on LookupTable[p] is executed, at point 𝑡 ′ process
𝑝 returns the same response as 𝑞’s isEarlier(𝑖, 𝑗) call. This contradicts the assumption that at

no point during [𝑡, 𝑡 ′] process 𝑝’s response is consistent with the object’s interpreted value, since

𝑡∗ ∈ (𝑡𝑞𝐿𝐿, 𝑡𝑆𝐶) ⊊ [𝑡, 𝑡 ′].
Case 2b: suppose at point 𝑡𝑆𝐶 process 𝑝’s SC() in line 55 is successful. Thus, LookupTable[p].res =
True immediately after 𝑡𝑆𝐶 . Since 𝑡𝑆𝐶 is the last point when a successful SC() on LookupTable[p]
is executed before 𝑡 ′, at point 𝑡 ′ process 𝑝 returns True. Let 𝑡2 be the point when 𝑝 executes the

44 Benyamin Bashari, Ali Jamadi, and Philipp Woelfel

LL() operation in line 42 during the same isEarlier() call. Since 𝑝 does not execute either of

the return statements in line 49, or 54, during [𝑡2, 𝑡 ′], both TS[i] and TS[j] each change at least six

times (once in each iteration of the loop in line 43). Furthermore, during the first three iteration of

the loop, by Lemma 61, if no successful SC() on either TS[i] or TS[j] is executed in line 13 during

[𝑡, 𝑡𝑓], then there exist a point during (𝑡2, 𝑡𝑆𝐶) when some other process 𝑞 performs a successful

SC() on LookupTable[p] in line 19. Therefore, during the first three iteration of the loop, both TS[i]
and TS[j] each have at least one successful SC() in line 13. Otherwise, 𝑝’s SC() at point 𝑡𝑆𝐶 is

not successful. Let 𝑡𝑥1 and 𝑡𝑦1 be the first points during the first three iteration of the loop when

some process in line 13 performs a successful SC() on TS[i] and TS[j], respectively. Similarly, in

the second three iteration of the loop both TS[i] and TS[j] each have at least one successful SC()
in line 13. Let 𝑡𝑥2 and 𝑡𝑦2 be the first points during the second three iteration of the loop when

some process in line 13 performs a successful SC() on TS[i] and TS[j], respectively. Thus, 𝑡𝑥1 and
𝑡𝑦1 are both before 𝑡𝑥2 and 𝑡𝑦2 . A successful SC() in line 13 is the publishing point of a linearized

updateTS() call. By (∗) the linearization point of these updateTS() operations must be after 𝑡 . Let

𝑡∗𝑥1 ∈ (𝑡, 𝑡𝑥1) and 𝑡
∗
𝑦1
∈ (𝑡, 𝑡𝑦1) be the linearization point the updateTS() calls that are published at

points 𝑡𝑥1 and 𝑡𝑦1 , respectively. Similarly, let 𝑡∗𝑥2 ∈ (𝑡𝑥1 , 𝑡𝑥2) and 𝑡
∗
𝑦2
∈ (𝑡𝑦1 , 𝑡𝑦2) be the linearization

point the updateTS() calls that are published at points 𝑡𝑥2 and 𝑡𝑦2 , respectively. If 𝑡
∗
𝑥1

< 𝑡∗𝑦1 , then
𝑖 ≺ 𝑗 at point 𝑡∗𝑥1 . Otherwise, 𝑖 ≺ 𝑗 at point 𝑡∗𝑦2 . This contradicts the assumption that at no point

during 𝑝’s execution its response is consistent with the interpreted value, since both 𝑡∗𝑦2 and 𝑡
∗
𝑥1

are

during the interval (𝑡, 𝑡 ′). □

Lemma 8 implies that our MTS object is linearizable, and by Lemma 12 its step complexity

is constant. Finally, according to Section 4.2, our algorithm uses one mod𝜑-FAI object, where

𝜑 = 𝑂 (𝑛3), and 𝑂 (𝑛) LL/SC objects and registers of size 𝑂 (log𝑛), each. This immediately yields

Corollary 10, which in turn yields Theorem 1 (see Section 5).

B BOUNDED FAI OBJECT
Lemma 63. Let 𝑡 be a point in time when a shared memory operation is executed, and let 𝑣 be the
value of Counter at point 𝑡 . Furthermore, let 𝑘− and 𝑘+ be the number of processes that immediately
before 𝑡 are poised to execute the FAA operations in line 76 and line 77, respectively. Then the algorithm
holds the following invariant.

𝑣 ∈ [(𝜑 − 1)𝑘−, 𝜑 × 𝑛 − 𝑘+]
Proof. Since at the beginning no process is poised to execute the FAA operation in line 76 or

line 77, both 𝑘+ and 𝑘− are 0. Hence, the invariant is true initially, because Counter is initialized
with value 0 and 0 ∈ [0, 𝑣𝑎𝑟𝑝ℎ𝑖 × 𝑛]. There are three possible shared memory operations that can

effect at least one of the terms in the invariant: the read operation in line 75, the FAA operation in

line 76, or the FAA operation in line 77. Below, for each case, we prove that if the invariant holds

before this operation, then the invariant still holds after the operation. Therefore, since the invariant

is true initially, and it remains true after any of the shared memory operations, the invariant holds

true at any point during an execution.

Case 1: Suppose at point 𝑡 a process, 𝑝 performs the FAA operation in line 77. Then at point 𝑡

the value of 𝑣 increases by 1. Also, 𝑘+ decreases by 1, since immediately before 𝑡 process 𝑝 was

poised to execute the FAA operation in line 77. Hence, the upper bound of the invariant (𝜑 ×𝑛 − 𝑘+)
increases by 1 as well. Thus, immediately after 𝑡 the invariant still holds, because both 𝑣 and the

upper bound of the invariant increase by 1, and its lower bound does not change.

Case 2: Suppose at point 𝑡 a process, 𝑝 performs the FAA operation in line 76. Then at point 𝑡

the value of 𝑣 decreases by 𝜑 − 1. Also, 𝑘− decreases by 1, since immediately before 𝑡 process 𝑝 was

poised to execute the FAA operation in line 76. Hence, the lower bound of the invariant ((𝜑 − 1)𝑘−)

Efficient Bounded Timestamping from Standard Synchronization Primitives 45

decreases by 𝜑 − 1. Thus, immediately after 𝑡 the invariant still holds, because both 𝑣 and the lower

bound of the invariant decrease by 𝜑 − 1, and its upper bound does not change.

Case 3a: Suppose at point 𝑡 a process, 𝑝 performs the read operation in line 75 and becomes

poised to execute the FAA operation in line 77. Hence, 𝑘+ increases by 1 and 𝑣 < 𝜑 × 𝑛 − 𝑛 at point

𝑡 . Since 𝑘+ is at most 𝑛, at any point during an execution the upper bound of the invariant is at

least 𝜑 × 𝑛 − 𝑛. Therefore, immediately after 𝑡 the invariant still holds, because the upper bound of

the invariant is at least 𝜑 × 𝑛 − 𝑛, and neither 𝑣 nor the lower bound of the invariant change.

Case 3b: Suppose at point 𝑡 a process, 𝑝 performs the read operation in line 75 and becomes

poised to execute the FAA operation in line 76. Hence, 𝑘− increases by 1 and 𝑣 ≥ 𝜑 × 𝑛 − 𝑛 at point

𝑡 . Since 𝑘− is at most 𝑛, at any point during an execution the lower bound of the invariant is at

most 𝜑 × 𝑛 − 𝑛. Therefore, immediately after 𝑡 the invariant still holds, because the lower bound of

the invariant is at most 𝜑 × 𝑛 − 𝑛, and neither 𝑣 nor the upper bound of the invariant change. □

The following is a direct result of the Lemma 63.

Corollary 64. Suppose a process executes FAA(𝑥) at a point when Counter has value 𝑣 . Then
𝑣 + 𝑥 ∈ {0, . . . , 𝐵 − 1}

	Abstract
	1 Introduction
	2 Related Work
	3 Model and Preliminaries
	4 Algorithm
	4.1 High Level Description
	4.2 Low Level Description

	5 Correctness Overview
	6 Bounded FAI from Bounded FAA
	7 Snapshots with Bounded Word-Size
	Acknowledgments
	References
	A Correctness Proof
	B Bounded FAI object

