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Abstract 

Artificial Impedance Surfaces (AIS) are attractive because they allow antennas to be 

placed much closer to them than to traditional electric conductors. Plane wave reflection 

coefficients of the AIS were used extensively to aid with antenna designs above them. 

However, it was not well-understood how these reflection coefficients translate to antenna 

radiation properties above them. In this thesis, a far-field model is developed for a I-Iertzian 

dipole above an AIS. This model makes a simple but clear connection between the far-field 

patterns of the dipole and the AIS reflection coefficients. It is shown that, with accurate 

reflection coefficients, the far-field patterns can be computed accurately and efficiently. 

In order to shorten computation time more, a constant grid impedance model is used 

to compute the AIS plane wave reflection coefficients. It is shown that the reflection 

coefficients can be computed accurately using this model. Errors of this model are also 

analyzed. 
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I 

Chapter 1 

Introduction 

1.1. Motivation 

With the development of telecommunication systems that use wireless wearable devices, 

small and low-profile antennas become more desirable for medical or entertainment purposes 

[4]. However, the design of antennas that operate near the human body can be quite 

challenging. When antennas are placed close to the body without proper shielding, a 

significant part of radiated energy can be absorbed by the body, which leads to poor 

antenna radiation efficiency. Moreover, the performance of these antennas is quite sensitive 

to their locations on the body, which is also undesirable in antenna designs. 

A common solution to the above problems is shielding the antennas from the body 

using a metal backing (e.g. an electric conductor or ground plane). The electric conductor 

can prevent antenna radiated energy from being absorbed by the body. Unfortunately, 

some antennas, such as a horizontally-oriented dipole, can not radiate efficiently over a 

practical bandwidth if they are placed too close to the electric conductor, (e.g. less than 

one tenth wavelength). For these antennas to radiate efficiently, these antennas can be 

placed one quarter wavelength away from the electric conductor, but the antenna profiles 

usually become too thick for wearable applications. 

For low-profile antenna designs, it is common to use a thin dielectric slab on top of 

an electric conductor. We refer to this configuration as the grounded dielectric in this 

thesis. The problem with this configuration is that it can support surface waves [5, 6]. 

Surface waves radiate at the edge of a finite grounded dielectric and can result in undesired 

antenna radiation patterns. 
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To solve the problems of the electric conductor, a structure called the mushroom 

structure was introduced in [7]. This structure has two interesting characteristics. Firstly, 

at a certain frequency (e.g. the resonant frequency), it exhibits a plane wave reflection 

coefficient of +1 at normal incidence, therefore behaving like a magnetic conductor for 

normally illuminated plane waves. This way, an antenna may be placed close to the 

mushroom structure, such as less than one tenth wavelength, and have reasonably good 

radiation efficiency. Secondly, the mushroom structure has a surface wave stop band where 

no surface waves can propagate. Because of these characteristics, the mushroom structure 

is quite attractive and has been used extensively in antenna designs to reduce the antenna 

profiles and improve antenna radiation performance [8-14]. 

Originally, vias were used in the mushroom structure design. However, since it is difficult 

and expensive to build these vias, people stopped using them and the resulting structure 

is called the Artificial Impedance Surface (AIS) in this thesis. As with the mushroom 

structure, the plane wave reflection coefficient of the AIS structure at normal incidence is 

+1 at the resonant frequency. Thus, they are also widely used in antenna designs [15-19]. 

Although a lot of antennas were designed above various AIS structures, it was not 

well-understood how antenna radiation properties are related to the properties of the 

AIS structures. As a result, antenna designs involving AIS structures mostly depend on 

full-wave simulations, which are quite time-consuming due to the complexity of the AIS. 

In [7], evaluation of the phase of plane wave reflection coefficients at normal incidence 

was used to find the resonant frequency of the mushroom structure and a few types 

of antennas were designed at this frequency. In this manner, the most common design 

methodology in literature was: - find the resonant frequency of the mushroom or the 

AIS structure, - designing an antenna to resonate at this frequency, - directly mount the 

antenna above the mushroom or the AIS. However, this method usually leads to unexpected 

results because plane wave reflection coefficient only at normal incidence is inadequate to 
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characterize the interaction between the antenna and AIS when they are close to each 

other. Therefore, people start to include reflection coefficients at oblique incidence in 

the AIS characterization. A topic of interest was designing a stable AIS, with reflection 

coefficient of +1 for all incident angles at the AIS resonant frequency [1, 20,21]. 

Although the AIS plane wave reflection coefficients were used extensively to aid in the 

designs of an antenna above an AIS surface, the relationship between the AIS plane wave 

reflection coefficients and antenna radiation properties, such as far-field patterns, has been 

rarely discussed. In [22] and [23], the far-field patterns of a half-wavelength dipole and an 

infinite line current above an AIS structure were given. However, the reflection coefficients 

and the equivalent impedance of the AIS were assumed to be a constant over the incident 

angle in [22] and [23], respectively. These assumptions are only valid for some AIS, and 

thus the far-field models in [22] and [23] were not accurate for most AIS structures. 

To better understand the mushroom structure and the AIS, a circuit consisting of an 

inductor in parallel with a capacitor was used in [7,24,25] to model these structures. This 

circuit is only valid at plane wave normal incidence. In [23,26], a similar circuit model was 

proposed for all incident angles. This circuit model consists of so-called a grid impedance 

in parallel with the equivalent impedance of a grounded dielectric. In [26], a few grid 

impedance models were given for some popular AIS, including two called the patch AIS 

and the Jerusalem cross AIS. However, it is shown in Chapter 4 that the grid impedance 

models of the patch and Jerusalem cross AIS were not accurate. Examples of a patch AIS 

and a Jerusalem cross AIS are shown in Chapter 2. 

1.2 Objectives 

The objectives of this thesis are summarized as follows. 

• To develop a far-field model which makes a clear connection between the far-field 

patterns of a Hertzian dipole above an AIS and the plane wave reflection coefficients of 
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the AIS. This model should allow direct and accurate far-field pattern computation using 

reflection coefficients of the AIS at all incident angles. No assumption should be made 

about the reflection coefficients and the equivalent impedance of the AIS surface so that 

the far-field model can be used for a wide range of AIS structures. 

To investigate if the circuit model used in [23,26] and another grid impedance model, 

called the constant grid impedance model [27], can compute the plane wave reflection 

coefficients and the grid impedance accurately for a patch AIS and a Jerusalem cross AIS 

at all incident angles. 

1.3 Thesis Outline 

In Chapter 2, the motivation of using the mushroom structure and the AIS are introduced. 

The characteristics of the mushroom structure and the AIS are discussed. The state-of-art 

research is also reviewed. 

In Chapter 3, a far-field model of a Hertzian dipole antenna above an AIS structure 

is derived from two methods. They are referred to as the transmitting method and 

the receiving method. Although approached differently, both methods result in far-field 

equations of the same form. These far-field equations are called our far-field model in this 

thesis. With this model, it is clear that the far-field patterns of the Hertzian dipole can 

be directly calculated from the plane wave reflection coefficients of the AIS. The accuracy 

of our far-field model is tested using a patch and a Jerusalem cross AIS. It is shown that, 

with accurate AIS reflection coefficients, the far-field patterns of the Hertzian dipole can 

be calculated quite accurately. Moreover, our far-field model is compared with far-field 

models introduced in [22] and [3], and it is shown that our model provides more accurate 

results. 

In Chapter 4, the circuit model given in [23, 26] and the constant grid impedance 

model [27] are used to calculate the plane wave reflection coefficients of the patch and 
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Jerusalem cross AIS used in Chapter 3. It is shown that the constant grid impedance 

model, although simple, computes the grid impedance and the reflection coefficients of 

the patch and Jerusalem cross AIS quite well. However, at the resonant frequency of 

the patch AIS, there is an error in the computed reflection coefficients. By analyzing the 

constant grid impedance model and the circuit model, it is found that the circuit model 

requires an extremely accurate grid impedance model at the AIS resonant frequency for 

accurate reflection coefficient computation. Therefore, the constant grid impedance model 

is modified for the patch AIS using a curve fitting technique. It is shown that this modified 

constant grid impedance model is quite accurate for various patch AIS at and below the 

AIS resonant frequency. 

In Chapter 5, this thesis is concluded. The thesis contributions are summarized and 

future work is suggested. 
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Chapter 2 

Background and Literature Review 

In this chapter, the background and literature review are provided. The disadvantages of 

electrical conductors as antenna reflectors are discussed. This leads to a discussion of the 

characteristics of the mushroom structure and AIS structures, which make them superior 

to electric conductors. Then, a review of recent designs and analyses of antennas above an 

AIS structure is presented. 

2.1 Electric Conductors as Antenna Reflectors 

Electric conductors are commonly used as a part of antennas (e.g. antenna reflectors) to 

improve antenna gain and to partially shield objects on the other side [28]. However, 

they have two undesirable features which limit their applications. The first problem 

of the electric conductors is that some antennas, such as a horizontally-oriented dipole 

antenna, can not radiate efficiently in a practical bandwidth when placed close to an electric 

conductor. The second problem is that, when used with a dielectric slab, electric conductors 

can support surface waves. 

Based on image theory [29], an equivalent image current can be used to model the 

influence of an electric conductor on a horizontally-oriented antenna. The equivalent image 

current that models an electric conductor is 1800 out of phase with the antenna current. 

As shown in Figure 2.1, when the antenna is placed too close to an electric conductor, its 

current is canceled by the image current. This results in quite a small antenna radiation 

resistance; thus matching the antenna becomes difficult. A common solution to this problem 

is to place the antenna one quarter wavelength away from the electric conductor, as shown 

in Figure 2.2. This way, the radiated energy of the image current and the antenna current 
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add constructively, resulting in a more reasonable radiation resistance for matching. The 

drawback, however, is that the optimal distance between the antenna and the electric 

conductor is a quarter wavelength (A/4), so the whole radiating structure can be quite 

thick. 

Destructive 

Interference 

Electric Antenna 
Conductor 4 L<<A/4 

Image 

Figure 2.1: An antenna is placed close to an electric conductor. The image current cancels 
the antenna current out. A is the wavelength. 

Constructive 
Interference 

Electric Antenna 
Conductor 4 L=A/4 

Image 

Figure 2.2: An antenna lying A/4 away from an electric conductor. The image current adds 
constructively to the antenna current. A is the wavelength. 

The second undesirable feature of an electric conductor is that, when used with a 

dielectric slab, surface waves [5,6] can be supported. Surface waves propagate along the 

surface of the grounded dielectric (e.g. the dielectric on top of the electric conductor) and 

decay exponentially in directions perpendicular to the surface. These waves do not radiate 

until they reach discontinuities. On a finite grounded dielectric, surface waves radiate at 
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the edge of the conductor, resulting in undesired antenna radiation patterns, as shown in 

Figure 2.3. 

Radiated 
Surface 
Waves 

\[  Surface waves 

Electric Conductor 

Radiated 
Surface 
Waves 

Figure 2.3: Surface waves propagate along the surface of an electric conductor and radiate 
at its edge. 

2.2 Mushroom Structures as Antenna Reflectors 

In 1999, Sievenpiper et al. introduced the mushroom structure as an attempt to solve the 

problems of the electric conductor [7]. This structure is composed of a layer of periodically 

arranged metal plates over an electric ground plane conductor, connected to the ground 

plane through vias. The top and side view of this structure is shown in Figure 2.4. The 

periodicity of the metal plates is typically much smaller than the free space wavelength. 

Periodic Metal Plates 

TTTTT *-via 
/ 

Electric Conductor 

Figure 2.4: Top view and side view of the mushroom structure. 

The mushroom structure, also referred to as a High Impedance Surface (HIS), has two 

interesting characteristics. Firstly, it has a frequency range over which no surface waves can 

propagate. This frequency range is known as the bandgap and for this reason the structure 

is also known as Electromagnetic Bandgap Structure (EBO) [8-10,30]. Secondly, there is 
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a frequency at which the phase of the reflection coefficient of the mushroom structure is 

equal to 00. This frequency is usually referred to as the resonant frequency of the structure. 

In Figure 2.5, the plane wave reflection phase of a mushroom structure at normal incidence 

is shown. As seen, the reflection phase varies from about 150° to _..1400 as the frequency 

increases. At the resonant frequency, the reflection phase is equal to 0°. Note that the 

resonant frequency is only defined at normal incidence. Due to the electric conductor at 

the bottom, waves incident on the mushroom structures are completely reflected. Therefore, 

the magnitude of the reflection coefficient is always 1. With the reflection coefficient being 

+1 at its resonant frequency, the mushroom structure works as a magnetic conductor for 

normally incident plane waves. 

A magnetic conductor can provide a closely placed antenna, such as a horizontally-

oriented dipole, a larger S11 bandwidth than an electric conductor. This is because the 

equivalent image current of a magnetic conductor is in-phase with the antenna current; 

thus constructively influences the antenna when antenna is close to the magnetic conductor 

[29]. Since magnetic conductors do not exist in nature, the mushroom structures become 

attractive for their ability to mimic magnetic conductors. Operated in this way, the 

mushroom structure is an Artificial Magnetic Conductor (AMC) [11, 12,18,31]. 

Because of the above properties, the mushroom structure solves both problems of the 

electric conductor, and is suggested to replace the electric conductor as antenna reflectors 

in [7]. As a result, they have been widely used in recent antenna designs [8-14]. 

2.3 Artificial Impedance Surfaces 

The vias used in the mushroom structure are expensive to build, so people start to use one 

dielectric slab only in between the periodic layer and the electric conductor. The modified 

structure is referred to as an Artificial Impedance Surface (AIS). Sometimes, it is also 

referred to as a Frequency Selective Surface (FSS) [32]. Figure 2.6 shows a portion of an 
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Figure 2.5: Plane wave reflection phase of a mushroom structure at normal incidence as a 
function of frequency. 

infinite patch AIS 1171, whose top layer is composed of periodically arranged patches. The 

top and side view of another popular AIS is shown in Figure 2.7. Due to its periodically 

arranged Jerusalem cross metal plate surface, this AIS is named as the Jerusalem cross 

AIS [2]. Other AIS designs, such as Uniplanar-Compact Periodic Bandgap Structures 

(UC-PBC), can be found in [12,31-34]. 

- --N 
O M E N 
MEMO 

(a) Top View (b) Side View 

Figure 2.6: Top and side view of a patch AIS. 

Sievenpiper et al. suggested that the 00 reflection phase property and the surface wave 

bandgap of mushroom structures occupy the same frequency range [7]. However, this 



(a) Top View 

11 

(b) Side View 

Figure 2.7: Top and side view of a Jerusalem cross AIS. 

characteristic does not apply to AIS structures. Luckily, the 00 reflection coefficient can 

still be found at the resonant frequency of the AIS structure, which is also defined at normal 

incidence. By using AIS structures with capacitive periodic top surfaces, such as the patch 

AIS, Jerusalem cross AIS and the U ni planar- Compact Periodic Bandgap Structure, the 00 

reflection phase property can be achieved at microwave frequencies with a thin dielectric 

slab. 

2.3.1 Antenna Designs over AIS Structures 

Due to their 00 reflection phase property at normal incidence, the AIS structures are used 

extensively in literature as reflectors for all kinds of antenna applications [15-191. The most 

common practice has been designing antennas that resonate at the resonant frequency of 

an AIS and directly mounting the antennas above the AIS. However, since the resonant 

frequency of an AIS is defined only for plane wave normal incidence, this procedure usually 

leads to unexpected antenna Sil and radiation patterns. 

Recently, it was realized that using only reflection coefficients at normal incidence 

is inadequate to describe antenna's interaction with the AIS structure, indicating the 

importance of including reflection coefficients at oblique incidence. The reflection phase 

(e.g. F phase) of an AIS structure at oblique incidence is shown in Figure 2.8. It is seen 

that at different incident angle 0, the 00 reflection phase locates at different frequencies. 
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This means that the AIS only behaves as a magnetic conductor for parts of the antenna 

radiated energy while it might be an electric conductor for the other parts of radiation. 

Therefore, it was suggested in [1, 20,21] to design an AIS that behaves as a real magnetic 

conductor at its resonant frequency. This requires the 00 reflection phase of all incident 

angles to locate at the resonant frequency, as shown in Figure 2.9. This AIS was referred 

to as a stable AIS. 

F phase, deg 

180° 

1300 

80° 

30° 

- 200 

- 700 

- 1200 

- 170° 
2 3 4 5 6 7 8 9 10 

Frequency, GHz 

Incident angle 0 

Is 

 46 

Figure 2.8: 0° reflection phase of an AIS structure shifts in frequency at different incident 
angles [1]. 

However, it was suggested that it, is more desirable for some antennas to operate away 

from the AIS resonant frequency. For example, Sarabandi et al. [25] suggested that the 

largest Sli bandwidth of a horizontally-oriented dipole antenna above an AIS can be found 

when the mutual coupling between the dipole and its image under the AIS is minimized. 

When the distance between the dipole and the AIS is small (approximately 0.02\), the 

least mutual coupling is achieved at the frequency where the reflection phase at normal 
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-170° 
2 3 4 5 6 7 8 9 10 

Frequency, GHz 

Figure 2.9: Reflection phase of a stable AIS at different incident angles [1]. 

incidence is about 145°. Dipoles operating at this frequency have higher gain and wider 

Sli bandwidth than at the AIS resonant frequency. This suggests that it is not critical for 

the dipole to operate above a stable AIS. 

2.3.2 Far-Field Models for Antennas above an AIS 

Although a lot of information about the plane wave reflection coefficient of an AIS is 

available, the relationship between this information and antenna radiation properties, such 

as far-field patterns, was rarely discussed. In [221, it was suggested that far-field patterns 

of a half-wavelength (A/2) dipole antenna over an AIS was the product of the dipole free 

space patterns and the so-called AIS screen pattern, defined as [22], 

E(0) = exp(—jkoh cos O) + exp(j( +jkoh cos O), (2.1) 
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where C is AIS reflection coefficient phase (e.g. F phase) at normal incidence; k0 is the free 

space wave number; h is the distance between the antenna and the AIS; 0 is the polar angle 

away from the AIS surface normal. This screen pattern was obtained by modeling the effect 

of the AIS surface as a dipole image, where a phase shift, C, was applied. Thus, the screen 

pattern can be viewed as the array pattern of two isotropic sources with a phase shift of C. 

In [22], C was assumed to be a constant when 9 changes, so we refer to Equation (2.1) as 

the constant r model in this thesis. However, since the AIS reflection phase usually varies 

with incident angle, the constant r model is not accurate for most AIS. 

Unlike [22], Tretyakov et al. [3] suggested that the H-plane far-field pattern of an infinite 

line current can be calculated by integrating the fields of the line current and its image 

current. With the help of exact image theory [35], the H-plane far-field pattern of the 

infinite line source was obtained as [3], 

E(9) = 1 + Cos 0 -  ex(-2kohcos9) 
Cos  +  

(2.2) 

Again, Ico is the free space wave number; h is the distance between the antenna and the AIS; 

O is the polar angle away from the AIS surface normal; and Y8 is the normalized equivalent 

admittance of the AIS to the intrinsic impedance of free space (flo = ,/jio/6o). In [3], the 

equivalent impedance of the AIS, Y3, was assumed to be a constant when 0 changes. This 

assumption is not valid for all AIS surfaces because the equivalent AIS impedance usually 

varies with the incident angle and plane wave polarizations (e.g. transverse electric field to 

the direction of propagation, TE plane wave, or transverse magnetic field to the direction 

of propagation, TM plane wave). As a result, a constant impedance of the AIS for all 

incident angles can only be achieved for some AIS. 

2.3.3 Circuit Models for AIS 

To explain the electromagnetic characteristics of the mushroom structure, Sievenpiper et 

al. [7] used a parallel circuit of an inductor, L, and a capacitor, C, to model the mushroom 
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structure. This circuit model is shown in Figure 2.10. With this circuit model, the 

equivalent impedance and the reflection coefficient of the mushroom structure can be 

obtained at plane wave normal incidence. In [25], the same parallel circuit was used to 

model a patch AIS structure. It was suggested that the capacitance, C, can be obtained by 

solving the equivalent capacitance between two coplanar strips and the inductance, L, is the 

equivalent impedance of the grounded dielectric [25]. This parallel circuit, however, is only 

valid at plane wave normal incidence, and can not be used for other angles of incidence. 

C 
Periodic Metal Plates 

f'T T T T T  
Electric Conductor 

via 

L 
(a) The Mushroom Structure (b) LC Equivalent Circuit 

Figure 2.10: Equivalent LC parallel circuit model for the mushroom structure. 

- - - - - - - 

Er 

Z-(0) 

Zin(0) 

(a) AIS Structure (b) LC Equivalent Circuit 

Figure 2.11: Equivalent LC parallel circuit model for the AIS structure. 

Zg(0) 

Zin(0) 

Z(0) 
Zg(0) 

short 

Figure 2.12: Equivalent transmission line circuit for Z r computation. Zd and kd are the 
characteristic impedance and wave number of the equivalent transmission line. d is the 
thickness of the AIS dielectric slab. 'Short' represents the electric conductor on the bottom 
of the AIS structure. 
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In order to compute the plane wave reflection coefficients at all incident angles, a more 

general circuit model was proposed in [23, 26]. This circuit consists of a so-called grid 

impedance, Z9(0), which models the impedance of the periodic surface of the AIS, in 

parallel with the equivalent impedance of the grounded dielectric, Z(0). This circuit 

model is shown in Figure 2.11(b). In this circuit, Z(0) can be computed from a shorted 

transmission line equivalent circuit as shown in Figure 2.3.3. The grid impedance Z9 (0) 

can be obtained from full-wave simulations or some circuit modeling. Usually, the grid 

impedance is different for different AIS. In [26], the grid impedance of the Jerusalem cross 

AIS is given as, 

ZTE (0) = Z9(0), Z9TM (0) = Z' (0) cos2(0), (2.3) 

and that of the patch AIS as, 

z-'(e) - Z9 (0) z'M(0) = z9 (o), 
cos-2 0' 

(2.4) 

for TE and TM incident plane waves. Z9 (0) is the grid impedance at normal incidence. 

Equation (2.3) and (2.4) were obtained by solving the grid impedance of an infinite array 

of infinite long wires. It will be shown in Chapter 4 that Equations (2.3) and (2.4) can not 

model the grid impedance of the patch AIS and the Jerusalem cross AIS very well. 

2.4 Summary 

In this chapter, the disadvantages of electric conductors as antenna reflectors were 

discussed. Due to its abilities to overcome the problems of electric conductors, the Artificial 

Impedance Surfaces (AIS) is quite attractive, and have been used in several antenna 

designs. Even so, the relationship between antenna properties and the AIS properties was 

not well-understood. Therefore, antenna designs mostly depend on time-consuming full-

wave simulations. Two far-field models have been proposed in literature to relate the AIS 

properties with antenna far-field patterns. However, both models made some assumptions 
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about the AIS properties so they can not be used for most AIS structures. In the next 

chapter, a new far-field model is derived using two different methods and it is shown that 

this far-field model can be used for a wide range of AIS structures. 
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Chapter 3 

Far-Field Modeling of a Dipole Antenna above an 

Artificial Impedance Surface 

In this chapter, H-plane and E-plane far-field patterns of a Hertzian dipole antenna above 

an infinite AIS surface are derived. In section 3.1, the method of modal expansion is briefly 

introduced to aid with the derivation. In sections 3.2 and 3.3, the far-field patterns of the 

Hertzian dipole are derived using two different methods, respectively. The first method, 

referred to as the transmitting method, uses the method of modal expansion to calculate 

the fields of the transmitting dipole. The second method first invokes the principle of 

reciprocity and then evaluates the terminal voltage of a receiving dipole using the method 

of modal expansion. Thus, this method is referred to as the receiving method. It is shown 

that these two methods result in the same normalized far-field pattern equations. These 

equations form our far-field model with which H- and E-plane patterns of the dipole above 

an AIS can be directly calculated using the plane wave reflection coefficients of the AIS 

structure. The accuracy of this model is tested in section 3.4, where far-field patterns 

computed using our model are compared with full-wave simulation results and two other 

far-field models. In the end, this chapter is summarized in section 3.5. 

3.1 The Method of Modal Expansion 

The method of modal expansion [29,36,37] is a useful tool to analyze cylindrical waveguides 

that consist of a homogeneous isotropic dielectric (with permittivity € and permeability t) 

and are bounded by a perfect electric conductor. Such a cylindrical waveguide is shown in 

Figure 3.1, where z is the direction of propagation, and the cross sections of the cylindrical 
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waveguides are independent of z. In this method, the transverse electromagnetic fields 

(Et and H) on a cylindrical waveguide cross section are mathematically represented as a 

summation of infinite numbers of modes. Each mode is expressed as a mode vector, e(x, y) 

or h(x, y), which depends on the waveguide cross section, and its amplitude, V(z) or 1(z), 

which satisfies the transmission line equations. In this manner, a complicated waveguide 

problem can be reduced to a set of transmission line with well-known characteristics. 

(a) Cross Section View (b) Side View 

Figure 3.1: A cylindrical waveguide consisting of a homogeneous isotropic dielectric 
material bounded by a perfect electric conductor. S is the cross section surface area. 
C is the boundary curve of the cross section. n. is the direction normal to the boundary 
curve C. o is the conductivity. 

By considering the AIS as the waveguide load, solving the far-fields of a Hertzian dipole 

above an AIS surface can be viewed as solving fields in a cylindrical waveguide that consists 

of a dielectric with free space permittivity and permeability (€o, ,u0), and has infinite cross 

sections. This equivalence is shown in Figure 3.2. Therefore, it is convenient to apply the 

method of modal expansion to analyze the Hertzian dipole's far-fields above an AIS surface. 

Before doing so, we first introduce some important equations used in this method. These 

equations can be also found in [29,36,371. 

As discussed, the transverse electric and magnetic fields (to the direction of propagation, 

z), Et and H, in a homogeneous source-free region in a cylindrical waveguide (shown in 

Figure 3.1) can be mathematically expressed as a summation of infinite modes. Moreover, it 

is well-known that any arbitrary fields in a homogeneous source-free region can be expressed 
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Cylindrical Wave 'guide Equivalence 
with Infinite Cross Section (xy plane) 

Figure 3.2: Cylindrical waveguide equivalence for a Flertzian dipole above an AIS. 

as the sum of TE (e.g. transverse electric to z) fields and TM (e.g. transverse magnetic to 

z) fields [291. In the same way, we can construct Et and Ht in the cylindrical waveguide 

as [36], 
00 00 

Et(x,y,z) = >_. VTE(z)eTE(x y)+ VqTM(z)eM(x ,y) , 

P=O q=O 

00 00 

H(x,y,z) = ITE(z)hTE (x y) + ITM(z)hTM(xy) 

P=O q=O 

(3.1) 

(3.2) 

Here, p and q are mode numbers. ell (x, y), TI h(x, y) and eTM(x, y), W'M(x, y) are called 

the mode vectors of TE and TM type, respectively. Their amplitudes, VTE(z), Ill (z) and 

VTM(z) , ITM(z) are called the modal voltage and current. 

For Equations (3.1) and (3.2) to satisfy the Maxwell's equations in the waveguide of 

Figure 3.1, we obtain for TE modes [29,37], 

hTE(x,y) = _vt TE(x,y), 

ell (x,y) = h Ill (x,y)X i. 

(3.3) 

(3.4) 

where I = p or 1 = q; V = + and is the unit vector in z direction; and (ITE (X, y) 

is obtained from, 

Vbt'E(x, y) + kIl'E(x, y) = 0, (3.5) 

where k 2+ k = k2 and k = w,/i; on the waveguide wall requires iiq'E(x, y)/t,  = 0 on 

C, where n is the direction normal to the waveguide boundary. 
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Similarly, for TM modes [29,37], 

eM(x,y) = _Vt(I i'M (x,y), 

hl'M(x, y) = x el' (x, y), 

where (DIM  (x, y) satisfy, 

(3.6) 

(3.7) 

v t (D?'M (x,y) + k]'M(x,y) = 0, (3.8) 

subject to the boundary condition on the waveguide wall, M(x, y) = 0 on C. 

With E(x,y,z) and Ht(x,y,z) defined as in Equations (3.1) and (3.2), the modal 

voltage and current, V1(z) and Iz(z), satisfy the transmission line equations [29,37], 

dV(z)dz 
= —jkjZozIj(z), 

where kj = /k2 - k and, 

dlj(z) - 

dz - jk 1YoV1(z), 

Z 1 _wp =---, 
.Lo — A, 

1 kzi 
Z M= yTM —-- 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

are the characteristic impedances for TE and TM modes, respectively. Therefore, we can 

draw an equivalent transmission line network for each mode, where 14(z) and I (z) are the 

voltage and current on the transmission line, Zol is the characteristic impedance of the 

transmission line and k1 is the wave number. 

When an transverse electric or magnetic current source, Jt or M, is applied in the 

cylindrical waveguide, Equations (3.9) and (3.10) are modified to as [37], 

dVz(z) 
dz - 3kzZozIz(z) - v1(z) (3.13) 

dli.(z) - 

dz --jk 1Yo1V1(z)—i1(z) (3.14) 



22 

where 

V1 (Z) = is M .hi*dS, 
i1(z) = I Jt . ei*dS, 

(3.15) 

(3.16) 

and Q* denotes the complex conjugate. 

It is shown, by using the method of modal expansion, solving the transverse elec-

tromagnetic fields in a complicated cylindrical waveguide can be reduced to solving the 

mode vectors using Equations (3.3) to (3.8), and the modal voltage and current on a 

set of equivalent transmission lines using Equations (3.9) to (3.16). Now, let us consider a 

cylindrical waveguide with infinite cross sections, as in the case of an infinite AIS structure. 

With an infinite cross section, D1(x, y) and p'M(, y) can be expressed as, 

y) = Ae'vu'), 

where A is the normalization factor and can be computed by ensuring, 

fS 
and, 

e e = f  TM TM e . e = 1,p q, 

fh = is h'M . hqTM 

where p and q are the mode numbers. 

3.2 The Transmitting Method 

(3.17) 

(3.18) 

=1,p=q. (3.19) 

In this section, the H- and E-plane far-field patterns of a Hertzian dipole over an infinite 

AIS surface are derived using the transmitting method. This method is referred to as the 

transmitting method because it directly calculates the fields of a transmitting Hertzian 

dipole. This method was used to solve an infinite magnetic line source above an impedance 

surface in [37]. Although the AIS surface is not an impedance surface, on which the 

impedance is everywhere the same, it can be modeled as an impedance surface when its 
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periodicity is small compared to free space wavelength [32,37]. Therefore, we can apply the 

transmitting method to solve for the far-fields of an Hertzian dipole above an AIS surface. 

To our knowledge, this has not been clone previously. In sections 3.2.1 and 3.2.2, H-plane 

and E-plane far-field pattern equations of the Flertzian dipole are derived, respectively. The 

far-field equations are summarized in section 3.2.3. 

Before the derivation, a Hertzian dipole above an AIS surface is shown in Figure 3.3. 

The dipole is oriented in the y direction, and the distance between the dipole and the AIS 

is h. The current density of the dipole is 

J = §8(x)6(y)6(z - h) jW e t, (3.20) 

where 8 denotes the Dirac delta function. The periodicity of the AIS is small compared to 

the free space wavelength. 

(a) H-Plane (b) E-Plane 

Figure 3.3: An Hertzian dipole above an AIS. 

3.2.1 H-Plane Pattern 

In this section, the principle H-plane far-field pattern is derived. On the principle H-

plane (e.g. y = 0 plane in Figure 3.3(a)) , the far-field pattern of the Hertzian dipole is, 

E(0)I = IE(0)I. Therefore, the transverse electric field, E(0), is first obtained using the 

method of modal expansion. Then, E(0) is simplified for the far-fields using a method 



24 

called the steepest descent method. Finally, a simple pattern equation is obtained at the 

end of this section for the principle H-plane. 

To obtain E. (0) using the method of modal expansion, the mode functions, e(x, y) 

and eM(x, y), and their corresponding amplitude functions, V1TE(z) and /1TM(z), are 

needed for each mode. As discussed in the previous section, ll (x, y) on an infinite cross 

section is, 

= TM(xy) = (3.21) 

for all modes. Substituting Equation (3.21) into Equations (3.3) and (3.6), we obtain the 

TM electric mode function, e'M(x, y), and the TE magnetic mode function, h'-1(x, y), as, 

e'M(x, y) = h(x, y) = 2 [AjkzeTi('z+'vzv)J + [Ajkyie_i(kxzx+kvzv)] 

With ky, = 0 in the principle H-plane, Equation (3.22) is simplified to, 

el'M(x, y) = h'E(z, y) = 2Ajkje_'. 

(3.22) 

(3.23) 

where Ajk = 1/2ir is obtained by solving Equations (3.18) or (3.19). With Equations (3.4) 

and (3.7), mode functions, ell' (x, v) and hjl'M(x, y), are also obtained, 

e1 (x,y) = —y--e' , (3.24) 

h'M(x,y) = (3.25) 

Now that (x, y) and e'M (x, y) are obtained, the next step is to calculate VT"' (z) and 

TTM (z). To do this, it is convenient to draw an equivalent transmission line network for the 

H-plane of the Hertzian dipole above the AIS surface. This Equivalent network is shown in 

Figure 3.4. In this equivalent network, the AIS is represented as an equivalent impedance 

Z3. Z"/ = wiio/k1 is the characteristic impedance of the equivalent transmission line of 

TE modes; and k1 = - k1. The source of the equivalent network is determined by, 

i1 (z) = ff 3. (edxdy, (3.26) 
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with J defined in Equation (3.20), and el defined in Equations (3.23) and (3.24), 

respectively. Note that only J . (e1"(x, y))* 0. Therefore, the only source in Figure 3.4 

is an electric current source that excites TE modes, 

jTE(z) = ff J - (e(x, y) )*dxdy - --ö(z - h). (3.27) 
2'ir 

This equation indicates that only TE modes are excited by the Hertzian dipole in the 

principle H-plane. 

IiTh(z) 
10 

V1Th(0) 

TE 

k1 

Z " 01 

z = 0 V1Th(z) z=h 

Match 

z 

Figure 3.4: Equivalent network for H-plane of a Hertzian dipole over an AIS surface which 
is modeled as an impedance surface. i?'E is an electric current source at z = h. Z is 
the impedance of the AIS surface. Z01 2  is the characteristic impedance of the equivalent 
transmission line of TE modes. k1 = A 2 - kXI-

By applying the basic circuit theory and transmission line theory, the modal voltage at 

any z on the transmission line can be calculated, 

/1TE(z) = __Z {e_i1_h1 + J2TE(k j, 
4ir 

(3.28) 

where 1T TE (ki, k1) is the plane wave reflection coefficient of the AIS at z = 0, defined as, 

'7 (7 7 \ rjTEfy 
pTE(j, -  'sVx1, (bzl) - Oi V'z1  
£ X1'Z1) - '7 (1 x1, ñ 7zt) \ r i qTEu 

01 i. 's''  

Substituting Equations (3.28) and (3.24) to Equation (3.1), the total transverse 

electrical field, E, above the AIS is obtained, 

E(x,z) = 
1=0 

)ZTE [e_ikzzlz_hl + i- TE'i,. (.._e_jkxzx '\ I XI , 
2ir 1' 

(3.30) 
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for z > 0, with FTE(k z, k1) defined in Equation (3.29). The first term in the above equation 

represents the contribution of the source, e.g. the I-Iertzian dipole, and the second term 

represents fields contributed by the AIS surface. 

The summation can be replaced with an integral since k1 of the dipole is continuous 

on an impedance surface, Equation (3.30) can be written as, 

- wito 1 
E(x, z) - __._ J [e .ikzlz_hl + FTE ' (kj, edk (3.31) 

With the change of variables [37], Equation (3.31) can be written as, 

0 [00 
E(x,z)= _ 1 [ei+FT(kx,kz)e_i]  S dk, 

kzir2 
(3.32) 

with k = - k. In order to evaluate the above integral, the following transformation 

is introduced [37], 

= ko cos w, k=k0 sin w, (3.33) 

where w is a complex value. Substituting Equation (3.33) to Equation (3.32) and 

introducing spherical coordinates, 

I 
-0,, (r, 0) = -WI_I0 7r  + e_jk 10 _G)dw, 

82 
(3.34) 

is obtained, where P is the appropriate path of integration. 

To evaluate Equation (3.34), the fast converging steepest descent method [38] is 

employed so that a simple asymptotic expression can be obtained for the far-fields 

(6 = k0r >> 1). The methodology of the steepest desöent method is finding a special 

path of the integral on which only a small part of this path contributes significantly to 

the integral. This path is called the steepest descent path. Since only a small part of this 

path is important to the integral, the integral in Equation (3.34) can be evaluated only 

around that region, and thus can be expressed as a simple function. A brief discussion of 

the steepest descent method is given in Appendix A. 
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By using this method, E(r, 0) in Equation (3.34) is simplified to the sum of two parts: 

a steepest descent part, ESDP, and a residue part, Er6&jd, 

E(r, 0) = EsDp + Eresid'ae 

/ 2'ir w/-to 
[e 0l 0sO + FTE(0)_.ikohcose] 6_j(kor_) 

kor 81r2 

+ Eresjd e, 

(3.35) 

for 6 = k0r >> 1. The residue term Ereaidue represents surface waves propagating along 

the AIS surface [37]. On an infinite AIS, no surface wave can radiate and affect far-field 

patterns. Moreover, the frequency range of interest in this thesis is below the resonant 

frequency of the AIS. In this frequency range, all AIS exhibit inductive impedances, which 

only support TM surface waves. Since the Hertzian dipole excites TE waves in the H-plane, 

no surface waves are excited in the H-plane. As a result, Eresidue term can be dropped from 

Equation (3.35). 

Hence, the total electric field above the AIS surface excited by the Hertzian dipole is, 

Vkor 
2ir wp0 

E(r, 0) - [6 kO030 + FTE(0)e5k0hc0s9] e_j(k0r_ ), (3.36) 

with the far-field approximation, and thus the normalized H-plane far-field pattern of the 

dipole above an AIS surface can be written as, 

IE#(0)I - eik0hc0s0 + tTE (0)e_3ko0s0 l, (3.37) 

with FTE(0), the plane wave reflection coefficient at the AIS surface, defined in Equa-

tion (3.29) and - < 0 < E. Equation (3.37) indicates that the principle H-plane far-field 

pattern of a Hertzian dipole above an AIS surface, IE#(0)I, can be computed directly from 

the plane wave reflection coefficient of the AIS, FTE(0). 

3,2.2 E-Plane Pattern 

In this section, the principle E-plane far-field pattern of the Hertzian dipole is derived. In 

this plane (e.g. x = 0 plane shown in Figure 3.3(b)), the far-field pattern is, IEo(0)I = 
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I cos OE, (0) - sin OE(o)I. As the previous section, E,, (0) and E, (0) are first obtained using 

the method of modal expansion. Then, they are simplified using the steepest descent 

method. Finally, a simple pattern equation is obtained for the principle B-plane. 

To calculate the transverse electric field E(0), the mode functions, e(x, y) and 

eM(x, y), and their amplitude functions, VTE(z) and TV1TM (z) , need to be computed. The 

normalized mode functions, e'M(x, y) and hTE (x, y), can be obtained by applying k1 = 0 

in Equation (3.22), 

eM(x, y) = TB h(x, y) Ajk 1e =y 
2'ir 

Substituting Equation (3.38) to Equations (3.4) and (3.7), we obtain, 

h'M(x,y)= 2 
2'ir 

e_3kvzY —el .1,,11 
e(x,y)=x  

2ir 

(3.38) 

(3.39) 

In order to calculate the amplitude functions, V(z) and TM(z), we draw the 

equivalent transmission line network for the principle B-plane of the Hertzian dipole, shown 

in Figure 3.5. This time, the only non-zero source of this equivalent network is an electric 

current source that excites TM waves, 

i?'M (z) = ff . (e'M(x,y))*ddy = -5(z - (3.40) 

since only J . (eM(x, y))* 0. Again, J = 6(x)5(y)6(z - h)eit is defined in 

Equation (3.20) and eM(x, y) in Equation (3.38). This indicates that only TM modes 

are excited in the B-plane. In Figure 3.5, Z3 is the equivalent impedance of the AIS; 

ZOM = k1/w€o is the characteristic impedance of the equivalent transmission line of TM 

modes, and k-,,, -  k1. 

With the help of the equivalent transmission line network, we can obtain the modal 

voltage at any z on the transmission line as before, 

1 TM(z) = __ZM [e-ikzzlz-hl + rTM(k1, ki)e(')], 
47r 

(3.41) 



29 

V1-1M(0) 

i-T TM1li '12TM (z) 

zs 

Z01 TM 

kzj 

TM 

zol TM 

k 

z=O v 1TM(z) z = h 

Match 

z 
 10. 

Figure 3.5: Equivalent modal network for the E-plane of the Hertzian dipole above an AIS 
surface. Z8 is the equivalent impedance of the AIS; ZM = kj/w€o is the characteristic 

12 impedance of the equivalent transmission line of TM mode, and k1 = /k02 — k1. 

where the plane wave reflection coefficient FTM (k 1, k1), measured at z = 0 is defined as, 

'7(7., 7 \ qTM(i. 
'-'s"y1, '"zi) — '-'01 V"zt  
7 11 7,, \ I '7TMu7 
hJs t.yi, hz1) ' "oz V"zl 

(3.42) 

Following the same procedure as in the H-plane derivation, the transverse electric field, 

E, can be approximated as, 

2ir W/20 E(r, 0) cos' oy'—._. [eui0I0So + FTM(o)e_ikohcoso] _j(kor) 

(—.. <0<.) 
(3.43) 

for far-fields (kor >> 1). FTM(0) is the reflection coefficient measured at the AIS top 

surface and is defined in Equation (3.42). 

As discussed before, in our frequency range of interest, (e.g. below the AIS resonant 

frequency), the AIS surface is inductive, so TM surface waves can be supported. In the 

E-plane, TM waves are excited by the dipole. Therefore, TM surface waves can propagate 

on the AIS surfaces in the frequency range of interest in this plane. On an infinite AIS, 

Eresidue term can be dropped because surface waves can not radiate and affect the far-field 

patterns. However, on a finite AIS, TM type surface waves can radiate at the edges of the 

AIS and thus Eresidue has to be included in Equation (3.43). With the assumption of an 
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infinite AIS, we can drop the Eresjd'ue term in Equation (3.43) and obtain, 

I 2ir wo 
E(r, 0) cos2 O ---- [eik0losO + FTM(0)e_ 00sO] _(k0r_) (3.44) 

To compute Eo(0), the axial electric field, E(0) is also needed. From the Maxwell's 

equations [29], 
CO 

__tLffj1'M (x, y)Ij"M (z) 
jw 

(3.45) 

is obtained for TM modes. Here, k = k1 and ('M(x ,y) = e_ikvW/(2)U1c,l) since k1 = 0 

on the principle E-plane. With the help of Figure 3.5 and transmission line theory, we 

obtain, 

for z ≤ h and, 

:1 
Ii1(z) = - rTM(k , kzz)e_ik (z )] 

4ir 

I12 (Z) = + rTM(k1, k2i)e] 
4ir 

(3.46) 

(3.47) 

for z ≥ h while rTM(k1, k1) is defined in Equation (3.42). Substituting Equation (3.46) 

and (3.47) into Equation (3.45) and employing the transformation as before, 

E, (r, 9) = - W/.L.-- sin w cos w Pkohcosw+ rTM(w)e_iko 0 ] C_jkorcos(w_O)dW . (3.48) 
jP 

is obtained for all z. Using the steepest descent method [38], Equation (3.48) becomes, 

I 2ir wpo 
E, (r, 9) - sinG cos 0 ---  kor 8.7r2 [eulc0I 03O + pTM(0)eiil08O] j(kor) (3.49) 

with FTM(0) defined in Equation (3.42) and for - <0 < 

With E(0) in Equation (3.44) and E(0) in Equation (3.49), IE0I can be obtained as, 

lEd I = l Cos 9E(0) — sin 0E(0)l 

1cos /2irwpoOi I [euII0sO +rTM(o)e_ikoI0s0 Vkor8ir2 

and the normalized E-plane far-field pattern is, 

[Ee(r,0)I 

6—j(kor—) 
(3.50) 

(3.51) 
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with FTM(0) defined in Equation (3.42) and for - < 0 < E. As before, it is seen from 

Equation (3.5 1) that the principle E-plane far-field pattern of the Hertzian dipole, IEo(r, 0)1, 

can be computed directly from the plane wave reflection coefficient of the AIS, FTM(0) . 

3.2.3 Far-field Pattern Equations Summary 

As shown in the previous two sections, the H- and E-plane patterns of a Hertzian dipole 

above an AIS surface are derived using the transmitting method. The pattern equations 

are summarized below, 

IE(r, 0)1 jkohcos8 + FTE(0)e_ikohcose I 

for the principle 11-plane and, 

IEo(r,0)I Icos0(eulc0l0se + 

(3.52) 

(3.53) 

for the principle E-plane. pTE(0) and FTM(0) are plane wave reflection coefficients measured 

at the AIS surface and can be obtained from Equations (3.29) and (3.42). 

3.3 Receiving Method 

Although the transmitting method can be used for deriving the far-fields for the Hertzian 

dipole above an AIS surface, it involves a lot of complicated computations. In this section, 

the far-field patterns of the dipole are derived using a much simpler method, the receiving 

method, and it is shown that the far-field patterns derived using the receiving method are 

the same as those derived using the transmitting method. By invoking the principle of 

reciprocity, the receiving method changes the problem of solving the far-field patterns of 

a Hertzian dipole into solving the transverse electric fields on the dipole terminal as the 

dipole is illuminated by plane waves. The transverse electric fields on the dipole terminal 

are then calculated using the method of modal expansion. The receiving method was used 

for analyzing leaky wave antennas [27], but to our knowledge, this is the first time that 
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it is being used for analyzing AIS surfaces. In section 3.3.1, the principle of reciprocity is 

reviewed. H- and E-plane pattern equations of the dipole are derived in sections 3.3.2 and 

3.3.3, respectively. Finally, the pattern equations are summarized and our far-field model 

is described in section 3.3.4. 

3.3.1 Reciprocity for Antennas 

The principle of reciprocity is illustrated in Figure 3.6. Assuming the medium between two 

antennas is isotropic and linear, the reciprocity [39] states that if a current, Ia is applied to 

the terminal of the transmitting antenna A, and energy flows from it producing a voltage, 

Vb, at the terminal of the receiving antenna B; then when 'a is applied to antenna B as 

a transmitting antenna, the voltage produced on antenna A is equal to Vb. Essentially, 

reciprocity indicates that the transmitting far-field pattern of antenna A, (e.g. the far-

field pattern of the transmitting antenna A, as shown in Figure 3.6(a)), is the same as its 

receiving far-field pattern, (e.g. the voltage induced on the receiving antenna A's terminal 

due to the transmitting antenna B, as shown in Figure 3.6(b)). 

Antenna A 
(a) 

Antenna B Antenna A 
(b) 

Antenna B 

Figure 3.6: Illustration of the principle of reciprdcity for antennas. 

Let both antenna A and B be Hertzian dipoles, and bring an infinite AIS structure close 

to the Hertzian dipole A (antenna A), as shown in Figure 3.7. According to reciprocity, 

when the Hertzian dipole A is transmitting, its far-field pattern, (IE#(0)I or IEo(0)I in 

Figure 3.7(a)), is equal to the absolute value of the transverse electric field, (IEI in 
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Figure 3.7(b)), produced at its terminal when the Hertzian dipole B is transmitting. 

Observing Figure 3.7(b) in which the Hertzian dipole B is transmitting, the dipole B is in 

the far-field of dipole A, so its radiated waves can be viewed as plane waves in the vicinity 

of the dipole A. Therefore, the computation of far-field patterns of a transmitting Hertzian 

dipole near an infinite AIS is equivalent to calculating the transverse electric fields at the 

terminal of the dipole when illuminated by plane waves. 

Hertzian E(0) 
dipole B V* Far-Field 

Hertzian 
dipole A 

'a / 
PA 

h 

PB 

Infinite AIS Fr 

Hertzian 
dipole B 

Infinite AIS 

Ta 

Far-Field 

I Hertzian 
h PA dipole A 

(a) Hertzian dipole A transmitting (b) Hertzian dipole B transmitting 

Figure 3.7: Applying reciprocity to Hertzian dipole above an AIS surface. 

3.3.2 H-Plane Pattern 

The principle H-plane of the Hertzian dipole above an infinite AIS is shown in Figure 3.8(a). 

Applying reciprocity, the far-field pattern at a polar angle 0 away from the z direction, 

(IE#(0)I as shown in Figure 3.8(a)), can be obtained by calculating the absolute value of 

transverse electric field, IEI (see Figure 3.8(b)), when the AIS is incident by a TE plane 

wave with an incident angle of 0. As shown in Figure 3.8(b), the TE plane wave has only 

transverse electric fields to the direction of propagation. By changing the incident angle of 

the TE plane wave from _900 to 900 and computing IEI at each incident angle, the whole 

H-plane far-field pattern can be obtained. 

When a plane wave is incident on an AIS, more than one plane waves is reflected due 

to the periodicity of the AIS [321. The fundamental reflected wave satisfies the law of 
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TE Plane Wave 

B, 

(a) H-Plane of the Hertzian Dipole above (b) TE Plane Wave Incident onto the AIS. 
an AIS. 

Figure 3.8: The H-plane pattern can be calculated from the transverse electric field near 
the AIS when the surface is incident by a TE plane wave. 

reflection, that is, the angle of reflection is equal to the angle of incidence. The rest are 

evanescent waves when the periodicity of the AIS is smaller than a half-wavelength [32]. 

These evanescent waves die out very quickly away from the AIS top surface, so they can 

be ignored for field computations above the AIS top surface. Since the periodicity of the 

AIS considered in this thesis is small enough, we only need to consider the fundamental 

reflected waves. This is equivalent to assuming that the AIS surface acts as an impedance 

surface. 

In order to compute the transverse electric field IEI at the Hertzian dipole terminal, 

the method of modal expansion is used. An equivalent transmission line network is shown 

in Figure 3.9. In this equivalent network, Z0 is the equivalent impedance of the AIS. Using 

Equation (3.11) and noting k k0 cos 0, the characteristic impedance of the transmission 

line can be obtained as, Z011 = Z0 cos 0, where Zo = /u0/€0 is the intrinsic impedance of 

free space. 

With Figure 3.9 and Equation (3.24), also keeping only the fundamental mode in 

Equation (3.1), the transverse electric field E at the dipole terminal (z = h) can be 
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Figure 3.9: Equivalent transmission line network for the H-plane of the Hertzian dipole 
over an AIS. Z8 is the equivalent impedance of the AIS. The characteristic impedance of 
the transmission line is Z'E = Zo cos 0. Zo = /po/o is the intrinsic impedance of free 
space. k = k0 cos 0 is the wave number in z direction. 

calculated as, 

ETE(z = h) = V(z = h)eTE(x,y) 

= _V+ (0)  + rTE(o)e_ikolwose) 2ir 
(3.54) 

where, V0 (0) is the voltage of the incident plane wave at z = 0; rTE(0) is the reflection 

coefficient of TE incident wave measured at the AIS surface. Therefore, the normalized 

H-plane far-field pattern is, 

IE#(0)I = JE'E(z = h)I = Ijk0 co88 +rTE(0)e_i10080 !, 

with, 

FTE(0) - Z3(0) - zTE(0) 

- 

3.3.3 E-Plane Pattern 

(3.55) 

(3.56) 

Similarly, the principle E-plane far-field pattern, JEo(0)I as shown in Figure 3.10(a), can 

be obtained by solving the transverse electric fields, E as shown in Figure 3.10(b), with a 

TM plane wave illuminate on the AIS. The TM plane wave only has transverse magnetic 

fields. By changing the incident angle 0 from _900 to 900, the whole E-plane pattern is 

obtained. 
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TM plane wave 

(a) E-Plane of the Hertzian Dipole above (b) TM Plane Wave Incident onto the AIS. 
an AIS. 

Figure 3.10: The E-plane pattern can be calculated from the transverse electric field near 
the AIS when the surface is incident by a TM plane wave. 

As with the H-plane derivation, modal expansion is used here. The equivalent 

,.transmission line network is shown in Figure 3.11. Again, Z3 is the equivalent impedance 

of the AIS. With Equation (3.12) and k = k0 cos 0, we can compute the characteristic 

impedance. of the transmission line, Z'M = = Zo cos 0, where Zo = \/uo/€o is the 

intrinsic impedance of free space. 

11M(z) 

T .t lvi 

fEz, ____ Match 

ko*cosO k= ko*cosO 

z = o y'IM(z) h z 

Figure 3.11: Equivalent network for the E-plane of the Hertzian dipole over an AIS. 

With Equations (3.1) and (3.38), the transverse electric field, E at the dipole terminal, 

z = h, can be calculated, 

ETM(z = h) = VTM(z = h)eTM(x, y) 

= V0+(0) cos 0(eik011c080 + FTM(0)e_ulcd! 08O) y 
2ir 

(3.57) 
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where V0 (0) is the incident voltage at z = 0, and pTM (0) is the reflection coefficient of the 

TM incident wave measured at the AIS surface. Therefore, the normalized E-plane pattern 

is, 

E0(0)I = IE'M(z = h)I = I cos O(e 0l08U + FTM (0)e_ 0)08o )I, 

with, 

rTM(o) - Z8(0) - Z M (0) 
- ZIP) +Z'M(0) 

3.3.4 Far-field Model 

(3.58) 

(3.59) 

It is seen that Equation (3.55) and (3.58), derived using the receiving method, are the same 

as far-field Equations (3.52) and (3.53), calculated with the transmitting method. This is 

because both methods are analytical techniques and use the same assumption, (e.g. the 

AIS can be modeled as an impedance surface). We rewrite these pattern equations, 

IE(9)I = eik0co8O + FTE(0)e_ik0hc0891 

I Ee(0)I = I cosO(ec0i08O + rTM(o)c_i1co1089)I, 

(3.60) 

(3.61) 

and refer to them as our far-field model for the Hertzian dipole above an AIS surface. 

FT-'(0) and rTM(o) are TEl and TM plane wave reflection coefficients measured at the AIS 

surface. 

As discussed in Chapter 2, the relationship between the far-field patterns of an antenna 

above an AIS surface and the plane wave reflection coefficients of the AIS were not clear. 

Now, with our far-field model, it is obvious that the far-field patterns of the Hertzian dipole 

above an AIS can be directly computed from the plane wave reflection coefficients using 

two simple equations. Since these far-field model equations, Equation (3.60) and (3.61), 

are derived analytically, they can be expected to be quite accurate for AIS with small 

periodicity compared to free space wavelength. In both the transmitting and receiving 
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methods, the AIS surface is modeled as an impedance surface. This means that all higher-

order modes, including surface waves and evanescent waves excited or reflected near the 

AIS, are ignored. The effect of ignoring these higher-order modes is discussed in the next 

section (section 3.4.5). 

3.4 Pattern Comparison 

In this section, the accuracy of our far-field model is tested by comparing the far-field 

patterns calculated from Equations (3.60) and (3.61) with full-wave simulation results for 

two popular AIS, a patch AIS and a Jerusalem cross AIS. The dimensions of both AIS are 

given in section 3.4.1. In order to compute the far-field patterns using Equations (3.60) and 

(3.61), we need plane wave reflection coefficients, FTE(0) and PTM(o). Here, FTE(0) and 

pTM(o) are obtained from a full-wave simulator Ansoft HFSS. The HFSS simulation setup 

is described in section 3.4.2. To test our far-field model equations, the far-field patterns 

are also obtained from another full-wave simulator FEKO. These patterns from FEKO 

form the benchmark for the computed patterns. The FEKO simulation setup is discussed 

in section 3.4.3. Finally, in section 3.4.4, the far-field pattern obtained from our far-field 

model is compared with FEKO full-wave simulation results, and pattern results obtained 

from two other far-field models in [22] and [3]. Our far-field model computes the far-field 

patterns quite accurately except the H-plane patterns at the AIS resonant frequency. This 

error is analyzed in section 3.4.5. 

3.4.1 AIS Selection 

A patch AIS and a Jerusalem cross AIS designed by Akhoondzadeh-Asl et al. [2] are chosen 

for pattern comparison. Both AIS structures have the same dielectric thickness (3 mm) and 

dielectric constants (€, = 2.2). The dimensions of each AIS are selected with a resonant 

frequency of 7.7 GHz in mind. As a result, the cell size of the patch AIS (7 mm) is 
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slightly larger than that of the Jerusalem cross AIS (5.8 mm). Dimensions of the patch 

and Jerusalem cross unit cell are shown in Figure 3.12. As was done in [2], a Hertzian 

dipole is placed 2 mm above each AIS surface. 

d 
4 

a 

(a) Patch 

a 
w  

V 

(b) Jerusalem cross 

b 

Figure 3.12: The dimensions of the Patch and Jerusalem cross unit cell. (a) a = 7 mm, b 
= 6mm. (b) a = 5.8 mm, h = 5.4 mm, h = 0.4 mm, w = 0.4 mm, d = 2.6 mm. For both 
AIS, the dielectric thickness is d = 3 mm, and the relative permittivity is e = 2.2. [2] 

3,4.2 Obtaining Reflection Coefficients for the Far-field Computation 

In order to use our far-field model (Equations (3.60) and (3.61)), the plane wave reflection 

coefficients at the AIS top surface, FTE(0) and rTM(o), are required. These are obtained 

using the commercial full-wave simulator, Ansoft HFSS. Figure 3.13 shows the HFSS 

simulation setup. A unit cell of the patch or Jerusalem cross AIS is surrounded by periodic 

boundary conditions (PB C) which models an infinite AIS structure [40]. A perfect matching 

layer (PML) boundary is placed at the top of the simulation space to properly absorb 

reflections from the AIS [41,42]. A TE or TM incident plane wave at an angle of 0 is 

applied to the AIS. To obtain ['(0), the phase of the scattered electric fields at five testing 

points are measured (see Figure 3.13). From these we subtract reference phases to obtain 

the phase shift of ['(0). The reference phases are obtained in separate simulations, shown 

on the right hand side of Figure 3.13. The setup is exactly the same as that of the AIS 

simulation except that the unit cell is a Perfect Electric Conductor (FEC) placed at the 
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same location as the top surface of the AIS. More than one testing point is chosen to ensure 

the accuracy of the simulation results. The phase of r(0) is obtained by, 

Lr(0) =  5(LE IS PE (0) - LEt0(0)+ 180 (3.62) 

Due to the electric conductor at the bottom of the AIS, the magnitude of ['(0) is equal to 1 

for all incident angles. Substituting FTE(0) and FTM(0) obtained here into Equations (3.60) 

and (3.61), we can compute far-field patterns of the Hertzian dipole above the infinite patch 

AIS or the infinite Jerusalem AIS. 
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Figure 3.13: Simulation setup in Ansoft HFSS for ['(0) calculation of the AIS surfaces. 

3.4.3 Full-wave Simulation Setup 

To verify the patterns computed using our far-field model, we also obtain the far-field 

patterns using a full-wave simulator FEKO. The FEKO simulation results form the 

benchmark for the computed results. Due to limitations of FEKO, it is impossible to 

simulate an infinite AIS with a dipole excitation. Therefore, a 10 X 10 patch array (70 mm) 

and a 12 X 12 Jerusalem cross array (69.6 mm) on an infinite grounded dielectric slab are 

simulated instead. The sizes of the patch array and the Jerusalem cross array are chosen so 
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that they are both approximately one free space wavelength at the lowest test frequency, 

4 GHz (X0 = 75 mm). The top view of the patch AIS in the FEKO simulation is shown 

in Figure 3.14. The plane on the bottom is an electric conductor (PEC); the middle area 

represents the dielectric slab, and the squares are the metal patch array. Note that both 

the electric conductor and the dielectric slab shown in Figure 3.14 are infinite in size. The 

dipole is placed in the center of the patch array. Since the patch array and Jerusalem cross 

array used in FEKO simulations are finite, we expect some difference between the computed 

patterns and the simulation results and this difference should decrease by increasing the 

array size. This is discussed in section 3.4.5. 

dielectric 
slab 

Patch 
array 

PEC 

Figure 3.14: Top view of the FEKO simulation setup for a patch AIS with 10 X 10 patch 
array. 
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3.4.4 Pattern Comparison Results 

Pattern comparison results are shown in this section. At first, the far-field patterns 

computed using our far-field model are compared with FEKO simulation results. Then, 

our far-field model is compared with the other two far-field models given in [22] and [3]. In 

the end, the error analysis is provided. 

Comparing with FEKO Simulations 

Comparisons are made at 4 GHz, 5.5 .GHz, and 7.7 GHz. As mentioned before, 7.7 GHz 

is designed to be the resonant frequency of the patch AIS and the Jerusalem cross AIS. 

According to Sarabandi et al. [25], when a dipole is close to an AIS surface, it is beneficial 

for the dipole to operate at the frequency where the mutual coupling between the dipole 

and its image is minimum. This is because the dipole has the largest S1  bandwidth at this 

frequency. To find this frequency, it was suggested in [25] that the plane wave reflection 

phase at normal incidence of the AIS is about 145°. Following this rule, we found that 

this frequency is 4 GHz for the patch AIS and the Jerusalem cross AIS. Therefore, it is 

important to test the far-field model at 4 GHz for both AIS. Moreover, a middle frequency 

point, 5.5 GHz, is chosen to show any trends in the far-field model. Figure 3.15 to 3.17 

and Figure 3.18 to 3.20 show the comparison results of the Patch AIS and the Jerusalem 

cross AIS respectively. Comparison of the Half-power Bandwidth (HPBW) between the 

calculated and simulation patterns of the patch and Jerusalem cross AIS are also shown in 

Tables 3.1 and 3.2. The error percentage is computed by JMode—FEKOl x 100%, where Model 
FBKO 

and FEKO denotes HPBW obtained using our far-field model (given by Equations (3.60) 

and (3.61)) and obtained from FEKO full-wave simulation results, respectively. 

It is clear from Figures 3.15 to 3.20 and Tables 3.1 and 3.2, that the H- and E-plane 

far-field patterns calculated by our far-field model match well with the full-wave simulation 

results for the patch AIS and the Jerusalem cross AIS, except for the H-plane at 7.7 GHz, 

the AIS resonant frequency. This indicates that with accurate reflection coefficients, F(0), 
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Figure 3.15: Far-field pattern comparison between the far-field model and FEKO simulation 
of a Hertzian dipole over a Patch AIS (10 X 10 array) at 4 GHz. 
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Figure 3.16: Far-field pattern comparison between the far-field model and FEKO simulation 
of a Hertzian dipole over a Patch AIS (10 X 10 array) at 5.5 GHz. 
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Figure 3.17: Far-field pattern comparison between the far-field model and FEKO simulation 
of a Hertzian dipole over a Patch AIS (10 X 10 array) at 7.7 GHz. 
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Figure 3.18: Far-field pattern comparison between the far-field model and FEKO simulation 
of a Hertzian dipole over a Jerusalem cross AIS (12 X 12 array) at 4 GHz. 
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Figure 3.19: Far-field pattern comparison between the far-field model and FEKO simulation 
of a Hertzian dipole over a Jerusalem cross AIS (12 X 12 array) at 5.5 0Hz. 

our model can predict the far-field patterns of a Hertzian dipole above an AIS surface with 

good accuracy, especially at frequencies below the resonance. Due to the complexity of 

the AIS surfaces, using our far-field model greatly reduces computation time while still 

providing accurate results. 

Comparing with the Constant F Far-field Model 

Since our far-field model uses accurate reflection coefficients F(0), it is more accurate 

than the models proposed in [22], which assumes a constant reflection coefficients over 

the incident angle. Here, we refer to this model in [22] as the constant r model. To show 
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Figure 3.20: Far-field pattern comparison between the far-field model and FEKO simulation 
of a Hertzian dipole over a Jerusalem cross AIS (12 X 12 array) at 7.7 GHz. 

Table 3.1: HPBW comparison between model and simulation for the patch AIS with 10 X 
10 patch array. 

HPBW (Degrees) 
4 GHz 5.5 -GHz 7.7 GHz 

H E H B H B 

FEKO 88.2 77.2 90.2 81 104.54 83.58 

Model 89.6 81.2 97.8 85.6 136 93.6 

Error (%) 1.59 5.18 8.43 5.68 30.09 11.99 

Table 3.2: HPBW comparison between model and simulation for the Jerusalem cross AIS 
with 12 X 12 array. 

HPBW (Degrees) 
4 GHz 5.5 GHz 7.7 GHz 

H E H E H E 

FEKO 90.6 81.18 95.56 81.1 115.5 93.44 

Model 92.2 80.98 98.76 76.1 151.6 89.1 

Error (%) 1.77 0.25 3.35 6.17 31.26 4.64 
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this, the H- and E-plane far-field patterns computed from our far-field model and from 

the constant r model are compared with FEKO simulation results for the patch AIS with 

10 X 10 array (Figures 3.21 to 3.23) and the Jerusalem cross AIS with 12 X 12 array 

(Figures 3.24 to 3.26). 
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Figure 3.21: Comparison of the far-field patterns computed from our far-field model and 
the constant r model with FEKO simulation results for a Hertzian dipole above a patch 
AIS (10 X 10 array) at 4 GHz. 
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Figure 3.22: Comparison of the far-field patterns computed from our far-field model and 
the constant r model with FEKO simulation results for a Hertzian dipole above a patch 
AIS (10 X 10 array) at 5.5 0Hz. 

Clearly, our far-field model is much more accurate predicting the H-plane patterns of 

the Hertzian dipole than the constant r model at all test frequencies in the case of both the 
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Figure 3.23: Comparison of the far-field patterns computed from our far-field model and 
the constant r model with FEKO simulation results for a Hertzian dipole above a patch 
AIS (10 X 10 array) at 7.7 GHz. 
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Figure 3.24: Comparison of the far-field patterns computed from our far-field model and the 
constant r model with FEKO simulation results for a Hertzian dipole above a Jerusalem 
cross AIS (12 X 12 array) at 4 GHz. 
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Figure 3.25: Comparison of the far-field patterns computed from our far-field model and the 
constant r model with FEKO simulation results for a J-Iertzian dipole above a Jerusalem 
cross AIS (12 X 12 array) at 5.5 GHz. 
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Figure 3.26: Comparison of the far-field patterns computed from our far-field model and the 
constant r model with FEKO simulation results for a Hertzian dipole above a Jerusalem 
cross AIS (12 X 12 array) at 7.7 GHz. 
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patch AIS and the Jerusalem cross AIS. This is because the reflection coefficients, FTE(o), 

of both AIS are not a constant over the incident angle. On the E-plane, the constant r 

model seems to be quite accurate. However, this is not because FTM(e) of both AIS are 

invariant over the incident angle. Instead, this is effect of the cosO term in the E-plane 

pattern equation of the Hertzian dipole (see Equation (3.61)). When the polar angle 0 

approaches 900, the cos 0 term goes to 0. This forces the E-plane patterns to approach 0 

no matter whether FTM(0) is accurate or not. 

Comparing with the Constant Z Far-field Model 

In [3], the H-plane pattern of an infinite line current was derived by assuming that the 

equivalent impedance of the AIS does not change with the incident angle. We refer to this 

model as the constant Z8 model, where Z6 denotes the equivalent impedance of the AIS. 

Using the transmitting method, we can obtain the normalized H-plane far-field pattern 

equation for an infinite line source, which is the same as Equation (3.60). Thus, we can 

compare our far-field model, the constant Z8 model with FEKO simulation results. The 

comparison results for the patch AIS are shown in Figures 3.27(a) to 3.29(a) and those for 

the Jerusalem cross AIS are shown in Figures 3.27(b) to 3.29(b). 
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Figure 3.28: Comparison of the H-plane far-field patterns computed from our far-field 
model and the constant Z model [3] with FEKO simulation results for a Hertzian dipole 
above a patch AIS (10 X 10 array) and above a Jerusalem cross AIS (12 X 12 array) at 
5.5 GHz. 
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Figure 3.29: Comparison of the H-plane far-field patterns computed from our far-field 
model and the constant Z3 model [3] with FEKO simulation results for a Hertzian dipole 
above a patch AIS (10 X 10 array) and above a Jerusalem cross AIS (12 X 12 array) at 
7.7 GHz. 
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It is seen that, at 4 0Hz and 5.5 0Hz, the constant Z8 model predicts the H-plane 

patterns of the Hertzian dipole as well as our far-field model. This is because the surface 

impedances of both the patch and Jerusalem cross AIS are almost invariant over the incident 

angle at these frequencies. However, at 7.7 0Hz, it can be seen that our far-field model is 

much more accurate than the constant Z8 model, since the AIS surface impedances are no 

longer a constant over the incident angle. 

3.4.5 Model Error Analysis 

While the far-field patterns from our model were in close agreement with simulated results, 

there was some error, particularly in the H-plane at 7.70Hz, the resonant frequency of the 

AIS. There are two reasons for this error. First, the model assumes an infinite AIS while 

only a finite array on top of an infinite dielectric slab were simulated in FEKO. Second, 

the model ignores the higher-order modes excited on the AIS, while in FEKO all possible 

modes are captured. Interestingly, these higher-order modes, evanescent waves or surface 

waves, do not affect far-field patterns on an infinite structure, but due to the finite array 

size, some of these modes reach to the edge of the array and are able to influence far-field 

patterns by radiating into space. Therefore, by increasing array size in FEKO simulation, 

we expected that the computed H-plane pattern at 7.7 0Hz match with FEKO simulation 

results better. 

To verify this, the Hertzian dipole is simulated in FEKO at 7.7 0Hz above a patch AIS 

with 14 X 14, 18 X 18, and 20 X 20 array, respectively. Then, we compare the computed 

H-plane far-field patterns at 7.7 0Hz with these simulation results. The comparison results 

are shown in Figures 3.30 and 3.33, and the half-power bandwidth comparison is shown in 

Table 3.3. 

Observing these comparison results, it is found that the error in the computed H-plane 

pattern at 7.7 0Hz decreases when the array size is increased from 10 X 10 (70 mm) to 18 X 

18 (126 mm). However, no benefit is gained by increasing the array from 18 X 18 (126 mm) 
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Table 3.3: HPBW comparison for the H-plane between model and simulation for the patch 
AIS with different array size. 

HPBW (°) 10 X 10 array 14 X 14 array 18 X 18 array 20 X 20 array 

FEKO 104.54 117.8 120 119.2 

Model 136 136 136 136 

Error (%) 30.09 15.45 13.33 14.09 

to 20 X 20 (140 mm). This observation can be explained by analyzing the higher-order 

modes excited on the AIS surface at 7.7 GHz, the AIS resonant frequency. 

As discussed before, the higher-order modes excited on the AIS surface are either 

evanescent waves or surface waves. Due to their different characteristics, we discuss them 

separately. Evanescent waves die out quickly away from Hertzian dipole. Therefore, when 

we increase the array size, less evanescent waves can reach to the edge of the array and 

affect far-field patterns. As a result, the computed far-field pattern using our model match 

better with simulation results. When the array is increased to a certain point that most 

evanescent modes die out, little or no benefit can be gained by continuing to increase the 

array size. 

Unlike evanescent waves, surface waves propagate along the AIS top surface without 

attenuating. Therefore, no matter how large the array is, as long as it is finite, surface 

waves can radiate at the array edge and affect the far-field patterns. Below the AIS 

resonant frequency, only TM surface waves can be supported on the AIS, so no surface 

waves propagate on the H-plane of the Hertzian dipole (since only TE waves are excited). 

Above the AIS resonant frequency, however, TE surface waves can propagate on the H-

plane of the Hertzian dipole. At 7.7 GHz, the resonant frequency of the patch AIS, the 

TE surface waves might have already started propagating, resulting in a gap between the 

computed and simulated H-plane pattern, which can not be removed simply by increasing 

the array size. 
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Figure 3.30: Far-field pattern comparison between the far-field model and FEKO simulation 
of a Hertzian dipole over a Patch AIS (10 X 10 array) at 7.7 GHz. 
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Figure 3.31: Far-field pattern comparison between the far-field model and FEKO simulation 
of a Hertzian dipole over a patch AIS (14 X 14 patch array) at 7.7 GHz. 

3.5 Summary 

In this chapter, H- and E-plane far-field patterns of a Hertzian dipole over an infinite 

AIS surface were derived using a transmitting and a receiving method, after modeling the 

AIS as an impedance surface and assuming that all higher order modes, (surface waves 

and evanescent waves), on the AIS can be ignored. Two simple equations were derived 

from both methods. These equations form the far-field model. With this model, the far-

field patterns of the Hertzian dipole can be directly calculated from plane wave reflection 
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Figure 3.32: Far-field pattern comparison between the far-field model and FEKO simulation 
of a Hertzian dipole over a patch AIS (18 X 18 patch array) at 7.7 GHz. 
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Figure 3.33: Far-field pattern comparison between the far-field model and FEKO simulation 
of a Hertzian dipole over a patch AIS (20 X 20 patch array) at 7.7 0Hz. 

coefficients measured at the AIS surface. This way, the connection between the far-field 

patterns of the dipole and plane wave reflection coefficients of a complicated AIS is clear. 

To verify the far-field, H- and E-plane patterns of a patch AIS and a Jerusalem cross 

AIS were computed and compared with full-wave simulation results from FEKO. It was 

shown that, for AIS with small periodicity compared to free space wavelength, the model 

provides quite accurate far-field patterns of the dipole, except for H-plane patterns at the 

AIS resonant frequency. Compared to other far-field models in the literature, our far-field 
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model was shown to give more accurate pattern results. The errors in the H-plane patterns 

at the AIS resonance are also discussed. 
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Chapter 4 

Grid Impedance Modeling 

With the far-field model introduced in the previous chapter, the H- and E-plane far-field 

patterns of a Hertzian dipole antenna over an AIS surface can be directly calculated from 

the TE and TM plane wave reflection coefficients, r(e). One way to obtain r(o) is from 

full-wave simulations. This method provides accurate r(0) results but is time-consuming. 

Alternatively, we can derive a model of the AIS and compute r(0) directly. For example, 

in [22], it is assumed that r(0) is a constant over the incident angle, while in [3, 7,25], 

the AIS is assumed to have a constant surface impedance. Another method uses a simple 

parallel circuit [23,26] of the so-called grid impedance and the equivalent impedance of the 

grounded dielectric slab for the calculation of F(0). The grid impedance is obtained with a 

cos2 0 model in [26] (discussed in section 4.1). In this chapter, the same parallel circuit as 

in [23,26] and a different grid impedance model, the constant grid impedance model, are 

used to calculate r(0) of the patch and Jerusalem cross AIS. 

This chapter is organized as follows. First, the circuit model and the constant grid 

impedance model are introduced in section 4.1. The constant grid impedance model is 

evaluated with respect to the accuracy of the grid impedance and the resulting reflection 

coefficients. It is shown that the constant grid impedance model, although simple, models 

the grid impedance and reflection coefficients of the patch and the Jerusalem cross AIS 

introduced in Chapter 3 reasonably well. However, the computed FTE(0) of the patch AIS 

have some errors at the AIS resonant frequencies. It is shown, in section 4.2, that this 

error is caused by a phenomenon referred to as circuit model sensitivity. To evaluate this 

phenomenon, the circuit model is analyzed in detail in section 4.3. Due to the circuit model 

sensitivity, a more accurate grid impedance model is required to calculate FTE(0) of the 
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patch AIS near its resonant frequency. For this reason, a modified constant grid impedance 

model is proposed for the patch AIS for the TB incidence in section 4.4. It is shown that 

this modified model computes both the grid impedances of a variety of patch AIS quite 

accurately. Section 4.5 summarizes this chapter. 

4.1 The Constant Grid Impedance Model 

The parallel circuit used in [26] to model the AIS and calculate the plane wave reflection 

coefficients, F(0), is shown in Figure 4.1. In the circuit, a grid impedance, Z9, models the 

periodic metal array, (e.g. the patch array or the Jerusalem array), of the AIS structure, 

and can be obtained from full-wave simulations or some circuit modeling (7,25]. Z(0) is 

the equivalent impedance of the grounded dielectric. Z0 (9) and 1c are the characteristic 

impedance and wave number of the equivalent transmission line that models the free space 

above the AIS surface. As shown in Figure 4.1, this transmission line is in z direction. 

Plane wave reflection coefficients, r(0), of the AIS can be calculated with, 

Z"  -  Z(0)Z9(0) r(o) - Z8(9) —Z0(0)  
Z1 (0)+Z9(0)' 

(4.1) 

where Z8 (0) is the surface impedance of the AIS. Since Zo (0) is the characteristic impedance 

of the free space equivalent transmission line, Equations (3.11) and (3.12) introduced in 

the method of modal expansion can be applied to obtain, 

Zr(0) = Zo/ Cos 0, Z'M(0) = Z0 Cos 0, (4.2) 

for all incident angles. Here, Zo = \//iO/EO is the intrinsic impedance of free space; 60 and 

to are the free space permittivity and permeability, respectively. Z1 (0), the equivalent 

impedance of the grounded dielectric, can be obtained in a similar way. By modeling the 

grounded dielectric as an equivalent transmission line that has a short load, a length of d, 

(e.g. the dielectric thickness), and a dielectric material with relative permittivity 6,. and 
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free space permeability J.Lo, it is easy to obtain, 

where, 

Z(0) = 3 Zd cosa tan(kddcosa), ZM(9) = jZd cos a tan (kdd cos a), 

Zd = Z0//, kd = k0/. 

(4.3) 

(4.4) 

Here, k0 = w/1/t00 is the wave number in free space. The incident angle, 9, and the 

transmitted angle in the dielectric, a, are measured from the AIS surface normal. According 

to Snell's law [43], 0 and a, as indicated in Figure 4.1, are related by 

sin  = \/  sin a. 

Z0(0) 
ZI 
F(0) 

Zg(9) 

Z1(0) 

Figure 4.1: The circuit model for an AIS structure. 

(4.5) 

In general, the grid impedance of an AIS varies with the incident angle and plane wave 

polarization. In [27], however, the grid impedance was assumed to be a constant over 

the incident angle for the leaky wave antenna analysis. If this assumption can be applied 

to AIS structures, reflection coefficient computations of the AIS can be made much more 

efficient. In order to verify this first-order assumption, we use it in this thesis for the patch 

and Jerusalem cross AIS, and refer to it as the constant grid impedance model for the AIS. 

This assumption is described in Equation (4.6), 

Z9TB(0) = Z9 (0), Z'M(0) = Z9(0). (4.6) 
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Another grid impedance model was proposed in [26], where the grid impedance was 

suggested to be proportional to the averaged current induced in the periodic metal array. 

The grid impedance of the patch AIS was given as [26], 

zTE - Z9(0) Z 'M(0) = Z9(0), (4.7) 
- Cos 207 

and that of the Jerusalem cross AIS as, 

= Z9(0), Z'M(0) = Z9(0) c0s2(0). (4.8) 

In [26], Equation (4.8). and (4.7) were obtained by solving the fields of an infinite array 

of infinite long wires. Because of the cos' 0 term in Equations (4.7) and (4.8), we refer to 

this model as the cos' 0 model in this thesis. This model is the same as the constant grid 

impedance model with TM incidence for the patch AIS, and with TB incidence for the 

Jerusalem cross AIS. 

In the following, the accuracy of the constant grid impedance model is tested. In section 

4.1.1, grid impedance of the patch and Jerusalem cross AIS, obtained using this model, 

are compared with full-wave simulation results and results of the grid impedance model 

in [26], the cos2 0 model. In section 4.1.2, reflection coefficients of both AIS are computed 

using the constant grid impedance model and the results are again compared with full-wave 

simulation results. 

4.1.1 Grid Impedance Test 

In this section, the grid impedance of the patch and Jerusalem cross AIS (with single unit 

cell dimensions shown in Figure 4.2) are obtained using the constant grid impedance model 

and the c0s2 0 model [26], and compared with results obtained from the full-wave simulator, 

Ansoft HFSS. The simulation results form the benchmark for the model results. 
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Figure 4.2: The dimensions of a single patch and Jerusalem cross unit cell. (a) patch: a = 
7 mm, b = 6mm. (b) Jerusalem cross: a = 5.8 mm, b = 5.4 mm, h = 0.4 mm, w = 0.4 
mm, d = 2.6 mm. 

Obtaining Model Results 

To calculate Z.9 (0) for both the constant grid impedance model and the cos20 model, 

the grid impedance at normal incidence, Z9(0), is obtained from an HFSS simulation. 

The simulation setup is shown in Figure 4.3. To simulate an infinite patch or Jerusalem 

cross array iUuminated with a plane wave incident at the normal direction, a single 

patch or Jerusalem cross unit cell (see Figure 4.2) is surrounded by two Perfect Electric 

Conductor (FEC) boundaries in the x-direction and two Perfect Magnetic Conductor 

(PMC) boundaries in the y-direction, shown in Figure 4.3. To satisfy the boundary 

conditions, the electric field, E, has to be perpendicular to the FEC boundaries, while 

the magnetic field, fl, has to be perpendicular to the FMC boundaries. The presence of 

the dielectric slab in the AIS influences the grid impedance [23], so the unit cell is backed 

by a dielectric half-space in the HFSS simulations. Wave ports are used to produce a 

normally incident plane wave and compute the reflection coefficient, Fgrid (0), of the patch 

and Jerusalem cross array. 

With Fgrid(0), the grid impedance at normal incidence, Z9(0), can be calculated with 

Zs,grici(0) = Zo(0)  1 + Fgrjd(0) - Zd(0)Zs,grid(0)  (4.9) 
1 Fgrjd(0)' Z9(0) - Zd(0) Z6,grid(0)' 
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where Zd(0) = Zo(0)/' and e, is the relative permittivity of the dielectric. Application 

of Equation (4.6) provides Z9(0) for the constant grid impedance model. Similarly, grid 

impedance results of the cos' U model can be obtained with Equations (4.7) and (4.8). 
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grid 
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(a) Side View 
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A  
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x 

Figure 4.3: HFSS simulation setup for grid impedance calculation at normal incidence. 

Obtaining Simulation Results 

To evaluate the two grid impedance models, we need to obtain the grid impedance for 

oblique incident plane waves in HFSS full-wave simulations as well. In order for proper 

computation of the infinite patch and Jerusalem cross array at oblique incidence, another 

HFSS simulation setup is used. This simulation is setup as shown in Figure 4.4(a). Here, 

the patch or Jerusalem cross unit cell is surrounded by periodic boundaries (PBC) to 

model an infinite structure. The unit cell is backed by a dielectric half-space to include 

interactions between the array and the dielectric slab. Perfect Matching Layer boundaries 

(PML) above and below the simulation space are used to absorb reflections. In order to 

compute Fgrid (0), total electric fields are obtained at five testing points in this simulation 
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as well as a reference simulation. The reference simulation setup is shown in Figure 4.4(b). 

In the reference simulation, there is only air between the two PML boundaries. More 

than one testing point was used to ensure the accuracy of the simulation results. From 

the simulations, the scattered fields of the patch or Jerusalem cross array can be obtained 

from, 
E t0t (0) - _E1101 (9) ref E° (9) -  9rid  

grid iEret0tf (0)1 

Then the amplitude and phase of the reflection coefficients can be calculated with, 

7 
5(IE(0)I)  

lI'grid (0) I 
5 

5(LE id (0) - LE(0) + 2k0zcos0) = LFgrid(0) 5 

(4.10) 

(4.11) 

(4.12) 

where k0 is the free space propagation constant and z is the distance between the testing 

point and the patch (or Jerusalem cross) array. With F grid (9), Z9 (0) can be calculated 

with, 

Zs,grid(0) = Zo(9) 
1 + Fgrid(0) Zd(0)Zs,grjd(0) 

1 - F9r d(0)' Z9 (0) = Zd(0) - Zs,grid(0)' 
(4.13) 

where Z0(0) is calculated from Equations (4.2) and Zd(0) = Zo(0)//. These grid 

impedance results, simulated in HFSS, form the benchmark for the constant grid impedance 

model and the c0s2 0 model. 

As discussed, the grid impedance of the patch and the Jerusalem cross AIS are computed 

with the constant grid impedance model and the cos2 0 model. The results are compared 

with the HFSS simulations at 4 GHz, 5.5 GHz, and 7.7 GHz for both TE and TM incident 

waves. Figures 4.5 to 4.7 are the grid impedance comparison results for the patch AIS and 

Figures 4.8 to 4.10 show those of the Jerusalem cross AIS. Since the patch and Jerusalem 

cross AIS considered in this thesis are lossless, their grid impedance should be only reactive, 

that is, the real part of Z9 should be equal to 0. However, Z. obtained from HFSS simultions 

(shown in Figure 4.4) usually has a small real part. This real part can be used to evaluate 

the accuracy of Z9 (0) obtained from HFSS simulations. The bigger the real part is, the 
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Figure 4.4: HFSS simulation setup for grid impedance calculation at oblique incidence. 

less accurate Z9 (0) is. In Figure 4.5, the real part of Z'E(0) and Z(0) obtained from 

HFSS simulations are shown for the patch AIS at 4 GHz. It is seen that, for the incident 

angle from 0° to 70°, the real part of Z9 (0) is quite small. However, this real part becomes 

quite big when 0 is 80°. This is due to the accuracy limitation of the HFSS simulator at 

high incident angles. Therefore, the HFSS Z9(0) results at 80° of incident angles are not 

considered in the following discussions. 

It is quite clear that, from these comparison results, the constant grid impedance model 

provides reasonably accurate grid impedance values for both TE and TM incident waves in 

case of both AIS surfaces. For the patch AIS, the constant grid impedance model is more 

accurate for TM incident waves than for TE waves, while for the Jerusalem cross AIS, 

the constant grid impedance model is quite accurate for both TE and TM incident waves. 

Compared with the constant grid impedance model, the cos2 0 model does not model Z. (0) 

well over the full range of incidence angles when it differs from the constant grid impedance 

model (e.g. Z(0) for the patch AIS and Z'M(0) for the Jerusalem cross AIS). Therefore, 
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Figure 4.5: Z9(0) comparison of the constant grid impedance model, the cos' 0 model with 
HFSS simulation results as benchmark for the patch AIS at 4 Gll. 
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Figure 4.6: Z9(0) comparison of the constant grid impedance model, the cos2 0 model with 
HFSS simulation results as benchmark for the patch AIS at 5.5 GHz. 

the constant grid impedance model, although simpler than the c052 0 model, provides a 

more accurate estimation of the grid impedance. 

4.1.2 Reflection Coefficient Test 

As discussed before, the goal of using the constant grid impedance model is to achieve 

more efficient reflection coefficient calculation for the AIS. Therefore, it is important to 

verify the accuracy of r(o) computed with this model. The grid impedance obtained in the 

previous section using the constant grid impedance model are used in Equation (4.1) to 
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Figure 4.7: Z9(0) comparison of the constant grid impedance model, the c052 0 model with 
HFSS simulation results as benchmark for the patch AIS at 7.7 GHz. 
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Figure 4.8: Z9(0) comparison of the constant grid impedance model, the c052 0 model with 
HFSS simulation results as benchmark for the Jerusalem cross AIS at 4 GHz. 
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Figure 4.9: Z9(0) comparison of the constant grid impedance model, the c052 0 model with 
HFSS simulation results as benchmark for the Jerusalem cross AIS at 5.5 GHz. 
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Figure 4.10: Z9 (0) comparison of the constant grid impedance model, the c0s2 0 model with 
HFSS simulation results as benchmark for the Jerusalem cross AIS at 7.7 0Hz. 

obtain the reflection coefficients, F(0), of the patch and Jerusalem cross AIS. The presence 

of the electric conductor at the bottom of each AIS ensures that the magnitude of ['(0) is 

always 1. Therefore, the phases of ['(0) values are compared with HFSS full-wave simulation 

results from Chapter 3. Figures 4.11 to 4.13 show the reflection phase comparison results 

of the patch AIS and Figures 4.14 to 4.16 show those of the Jerusalem cross AIS at 4 0Hz, 

5.5 0Hz and 7.7 GHz. 
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Figure 4.11: Comparison of reflection phase, L['(0), calculated with the constant grid 
impedance model and simulated in HFSS for the patch AIS at 4 0Hz. 
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Figure 4.12: Comparison of reflection phase, LF(0), calculated with the constant grid 
impedance model and simulated in HFSS for the patch AIS at 5.5 GHz. 

For both the patch and Jerusalem cross AIS, the calculated reflection phase, LP(0), 

match with the simulation results quite well at 4 GHz and 5.5 GHz. At 7.7 GHz, there is 

an error in the computed LFTE(0) of the patch AIS, while LPTM(o) matches well with the 

simulation (Figure 4.13). For the Jerusalem cross AIS, both the computed LPTE(0) and 

LPTM(o) match well with simulation results at 7.7 GHz (Figure 4.16). 

4,1.3 Constant Grid Impedance Model Summary 

In summary, the constant grid impedance model is simple but reasonably accurate for grid 

impedance and reflection coefficient computations of both the patch and Jerusalem cross 

AIS. As a grid impedance model, this model is simpler but more accurate than the cos2 U 

model proposed in [26]. An error, however, is found in the computed reflection coefficient 

FTE(0) of the patch AIS at the resonant frequency of the AIS. 
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Figure 4.13: Comparison of reflection phase, LF(0), calculated with the constant grid 
impedance model and simulated in HFSS for the patch AIS at 7.7 GHz. 
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Figure 4.14: Comparison of reflection phase, zT(0), calculated with the constant grid 
impedance model and simulated in HFSS for the Jerusalem cross AIS at 4 GHz. 
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Figure 4.15: Comparison of reflection phase, Lr(0), calculated with the constant grid 
impedance model and simulated in HFSS for the Jerusalem cross AIS at 5.5 GHz. 
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4.2 Reflection Phase Error Analysis 

As discussed in the previous section, there is some error in the calculated Zr,, (o) for the 

patch AIS at 7.7 0Hz, the AIS resonant frequency (see Figure 4.13). The possible sources 

of this error are the constant grid impedance model and the AIS parallel circuit model. In 

this section, the accuracy in both models are analyzed in detail. 

4.2.1 Error Analysis for the Constant Grid Impedance Model 

To help analyze the error in the constant grid impedance model, we define, 

Z9  '0T(0) 
z'' () - zon8tant () 

ZFSS(0) 
(4.14) 

where Zh1s(0) is the grid impedance obtained from the HFSS simulation shown in 

Figure 4.4, and is the grid impedance obtained with the constant grid 

impedance model. Since Z9a08tt(o) = Z'(0), Equation (4.14) can also be written 

as, 

z9B0r (0) = 
z'(0) - Z91 FSS(0) 

Z 1FSS(0) (4.15) 

Tables 4.1 and 4.2 show the maximum Z2'r"O'r over the incident angle, (from 00 to 70°), at 

4 0Hz, 5.5 0Hz, and 7.7 0Hz for the patch and Jerusalem cross AIS, respectively. 

For the patch AIS, it is first noted that, at 7.7 0Hz, the maximum Z0r in the constant 

grid impedance model is much larger for TE incident waves (or TE mode) than for TM 

waves (or TM mode). This explains why the error in the computed FTE(0) is larger than in 

1"' (0) at this frequency (see Figure 4.13). Then, it is also noted that the maximum ZgError 

for TE incident waves decreases as the frequency increases. This means that the error in 

the constant grid impedance model is the smallest at 7.7 0Hz. However, as observed in 

Figures 4.11 to 4.13, the error in the computed rTE(0) is the largest at 7.7 0Hz. Since the 

constant grid impedance model is the most accurate at 7.7 0Hz, errors in the constant grid 

impedance model can not explain the error in calculated FTE(0) at 7.7 0Hz. Therefore, 
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Table 4.1: Maximum Z0T over Incident Angles for the Patch AIS 

Maximum 4GHz 5.5GHz 7.7GHz 

TM mode 6.39% 4.62% 2.4% 

TE mode 24.94% 22.62% 21% 

Table 4.2: Maximum Z Error over Incident Angles for the Jerusalem Cross AIS 

Maximum Z g-Irror 4GHz 5.5GHz 7.7GHz 

TM mode 1.67% 7.83% 10.05% 

TE mode 3.32% 4.22% 1.92% 

it is suspected that, to achieve accurate FTE(0), the circuit model requires a extremely 

accurate grid impedance model at 7.7 GHz, the resonant frequency of the patch AIS. This 

phenomenon is referred to as the circuit model sensitivity in this thesis, and is analyzed in 

section 4.2.2. 

For the Jerusalem cross AIS, the maximum Z'°' is in general much smaller than 

that of the patch AIS. This indicates that the constant grid impedance model, as a grid 

impedance model, is a better approximation for the Jerusalem cross AIS. At 5.5 GHz and 

7.7 GHz, the maximum Zor of the Jerusalem cross AIS for the TM incident wave is 

7.83% and 10.05%, larger than that of the patch AIS (4.62% and 2.4%). However, the 

computed PTM(o) for the Jerusalem cross AIS at 5.5 GHz and 7.7 GHz match as well with 

simulation results (Figures 4.15 and 4.16) as for the patch AIS (Figures 4.12 and 4.13). 

This suggests that the grid impedance error may be less of a concern at the AIS resonant 

frequency for the TM incidence. 
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4,2.2 Circuit Model Sensitivity Analysis 

To evaluate the circuit model sensitivity, a constant grid impedance, Z9(0) = Z9(0) for all 

0, is used in Equation (4.1), with Z1 (0) still defined as in Equation (4.3). A constant error 

in Z9(0) is introduced and the resulting error in the phase of reflection coefficients, Zr, 

is observed. The error in Z9 (0) is defined as AZ., (0) = p%Z9 (0) and the error in zr, Zr 

Error (0), is calculated from, 

zrError(0) = ZFEI'7'07'(0) - L['(0), (4.16) 

where Lr07'(0) and ZIP(0) are the reflection phase with and without the grid impedance 

error, respectively. We use Z9(0) = Z 1B's'atth(0) and p% = 30% for this analysis. Thus, 

the resulting Zr Error (0) as a function of frequency are shown in Figures 4.17 to 4.19 for 

the incident angle of 00, 400, and 70° respectively. 
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Figure 4.17: Reflection phase error caused by grid impedance error for the patch AIS with 
incident angle 0 = 00 and grid impedance error AZ, (0) = 3O%Z',tth (0). 

At normal incidence, the TE and TM incident waves are essentially the same, so the 

absolute ZF Error of the TE and TM modes are also the same for this case. Observing 

Figure 4.17, it is noted, firstly, the reflection phase error, ZP Error, are less affected by a 
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relatively big grid impedance error at frequencies much below 7.7 GHz. For example, at 

4 GHz, the reflection phase error caused by ±30% of grid impedance error is only about 2.5° 

and 5.5°. At 5 GHz, zr Error is still less than 100 and 20°, respectively. Secondly, when we 

approach the resonant frequency, 7.7 GHz, the reflection phase error increase significantly 

and the maximum LF Error is found near 7.7 GHz. For example, at 7 GHz, the Zr Error, 

caused by —30% grid impedance error, becomes as large as 75°. When we move above the 

resonant frequency, the reflection phase error caused by the grid impedance error becomes 

small again. Thirdly, below 7.7 GHz, the reflection phase error caused by the +LZ9 is in 

general smaller than that caused by —\Z9. 

When 0 = 40° (Figure 4.18), similar phenomena are still observed. At frequencies much 

below the resonant frequency, say 4 GHz, 5 GHz and 6 GHz, the reflection phase error 

caused by the grid impedance error becomes even smaller. When approaching 7.7 GHz, 

the reflection phase error for TE incident waves still increases significantly and a maximum 

LI' Error can be found near 7.7 GHz. For TM incident waves, the maximum Zr Error 

shifts to a higher frequency, so the error in the phase of the reflection coefficient at 7.7 GHz 

is smaller than at normal incidence. As before, the error caused by +.Z9 is still smaller 

than that caused by —Z9 below the resonant frequency. 

At 70° of incident angle, (see Figure .4.19), the reflection phase error at frequencies 

below the resonant frequency, 7.7 GHz, becomes even smaller. Approaching 7.7 GHz, the 

reflection phase error for TE incident waves still increase dramatically and the maximum 

LI' Error can still found around 7.7 GHz. For TM incident waves, the reflection phase 

error caused by ±LZ9 becomes quite small between 4 GHz and 10 GHz and no peaks are 

found in this range. The same as before, the error caused by +LZ9 is still smaller than 

that caused by —LZ9 below the resonant frequency. 

The above observations explain why the error in the computed I'TE(0) of the patch AIS 

is the largest at 7.7 GHz even though the error in the constant grid impedance model is the 
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smallest. The maximum Z°' shown in Table 4.1 are usually located at higher incident 

angles. At high incident angles, the grid impedance errors have very little effect on the 

accuracy of the reflection phase computation for frequencies below the resonant frequency. 

As a result, although the constant grid impedance model has an error of 24.94% and 22.62% 

at 4 GHz and 5.5 GHz, the computed PTE(0) are still quite accurate. However, at 7.7 GHz, 

the reflection phase computation is quite sensitive to the grid impedance error. Therefore, 

a large error is resulted in rTE(0) at this frequency due to the 21% error in the constant 

grid impedance model. 

By observing Figures 4.17 to 4.19, some general rules for grid impedance models can 

be found in order to achieve accurate reflection coefficients computation for AIS structures 

using the circuit model. Here, we assume that the grid impedance model is accurate at 

normal incidence and errors tend to happen at high incident angles. The frequency range 

of interest is at and below the AIS resonant frequency. For TB incident waves, the grid 

impedance model only needs to be extremely accurate at and close to the AIS resonant 

frequency. For frequencies below the resonance, grid impedance errors are more tolerable. 

For TM incident waves, the accuracy requirement for the grid impedance model at the 

resonant frequency is not as high as TB incident waves. In another word, errors in the grid 

impedance model for the TM incidence are more tolerable at and below the AIS resonant 

frequency. For both TB and TM incidence, —zZ9 error, meaning the grid impedance model 

predicts a smaller Z9(0) than the accurate Z9(0), is more harmful than meaning 

the modeled grid impedance is larger than the accurate Z9(0), at and below the resonant 

frequency. 

4.2.3 Reflection Phase Error Analysis Summary 

In summary, it was shown that the error in the calculated 1TE(0) of the patch AIS 

at 7.7 GHz, using the constant grid impedance model, is caused by the circuit model 

sensitivity. This phenomenon requires the grid impedance model to be extremely accurate 
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near the AIS resonant frequency for accurate pTE(0) computation. Also, by studying the 

circuit model sensitivity phenomenon, a general outline for a grid impedance model to 

achieve accurate r(0) computation is given. 

4.3 Circuit Model Analysis 

In the previous section, the error in the computed ITE(0) of the patch AIS at 7.7 GHz 

was analyzed numerically. It was shown that this error is caused by the circuit model 

sensitivity at the resonant frequency of the patch AIS. Due to the circuit model sensitivity, 

the reflection phase error, caused by the grid impedance error, increases significantly near 

the AIS resonant frequency for TE incident waves, shown in Figures 4.17 to 4.19. Observing 

these figures, however, it is noted that the maximum Zr Error is not located exactly at the 

AIS resonant frequency, 7.7 GHz. Instead, it is slightly below or above the AIS resonance, 

depending on the sign of the grid impedance error, LZ9 (0) = p%Z9 (0). Also, it was 

observed that, the maximum LF Error behaves differently for TE and TM incident waves 

as the incident angle increases. However, the reason was not clear. In order to understand 

these phenomena better, the circuit model is analyzed analytically in sections 4.3.1 and 

4.3.2. In section 4.3.3, after simplifying the LF Error equation at the AIS resonant 

frequency, it was found that the error in ITTE(0) at the AIS resonance can be reduced 

for AIS with larger dielectric thickness. 

4.3.1 Frequency Location of the Maximum LF Error 

To find the frequency location of the maximum LF Error, caused by the grid impedance 

error, the reflection phase error, LIT' Error (0), is expressed as 

LFError(0) = LF0'(e) - Lr(0), (4.17) 

where, 

zr2rror (0) = —it - 2tan' IIma9(ZTh'r0?'(0))1 
Z0(0) j (4.18) 
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1 Zr(0) = —ir I - 2tan' lmag(Z8 (0))  
z0 (o) j 

The function Imag(x) takes the imaginary part of the complex variable x. The surface 

impedances, Z°' (0) and Z8 (0), are computed by, 

and, 
S.S (0) 

101ZHFSs(0' (.1) 
fl\ I I g ' / 

respectively. As before, Z(0) and Z0(0) are given by Equations (4.3) and (4.2); Z9HFSS(0) 

is the grid impedance obtained from HFSS at normal incidence, and Z SSErrar(0) is the 

grid impedance with the constant grid impedance error Z9(0) = p%Z9"FSS (0). 

To find the maximum LF Error, the derivative of Equation (4.17) is taken [44] over 

(4.19) 

= 

(4.20) 
Zin  + 

d(LPError) - d(LF 0r) d(LF) 

dZi. dZ1 ciZ1 

With the help of Matlab, we obtain, 

d(LF0r) - 2Z(1 +p%)2Zo 

dZ - Z(ZgI (1+p%)2 + Z) + Z(2ZZ9(1+p%)) + ZZ(1+p%)2' 

and, 
d(zT) - 2ZZ0 

dZi. Z(Z + Z02)+ Z1 (2ZZ9) + ZZ9 

For LF Error to reach its maximum value, Equation (4.22) = 0. Hence, 

2(i+p%). 
(2+p%) ' 

is obtained after simplification. Note that, for p> 0, 

and for p < 0, 

2(1 +p%)  
1 < (2 + p%) <(1 +p%), 

2(1 +p%)  
(1 +p%) < (2 + p%) <1. 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

(4.27) 
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Equations (4.26) and (4.27) indicate that the maximum LF Error caused by the constant 

grid impedance model is always located between the frequencies where the resonance 

condition Z(0) = —Z'"(0) or Z(0) = = —(1 + p%)Z9 is satisfied. 

These two resonance conditions are close to each other in frequency. The smaller the grid 

impedance error (p%) is, the closer in frequency these two resonance conditions are. 

4,3,2 LF Error Characteristic for TE and TM Incidence 

It has been shown the maximum LP Error is located between frequencies where the 

resonance conditions, Z(0) = _Z911 "9'9(0) and Z(0) = _Z'ss07'(0), are satisfied. 

In our analysis, ZIFSS(0) and ZFS3Eo.(0) are set for a chosen grid impedance error, 

so the frequency location of the maximum zr Error completely depends on the values 

of Z(0). When Z(0) increases with the increase of 0, these resonance conditions are 

satisfied at lower frequencies; when Z(0) decreases, they are satisfied at higher frequencies. 

The difference between Z(0) and Z7(0) with the increase of 0 results in the different 

frequency locations of the maximum LP Error for TE and TM incident waves. 

For TE incident waves, Z(0) is expressed as, 

ZIE  =  tan(kddcos a), 
Cos a 

or, 

(4.28) 

Zj(0) = i zo tan(,Jd Cos a), (4.29) 

since Zd = Z0/,/ and kd = k0/. Here, Z0 and A0 are the free space impedance and 

wavelength; e, is the relative permittivity of the dielectric slab of the AIS; and a is the 

transmitted angle in the dielectric slab which is related to the incident angle 0 by Snell's 

Law [431. Since the dielectric thickness of the AIS considered in this thesis is relatively 

small compared to the free space wavelength (for example, d/A = 0.0769 at 7.7 0Hz), 

,/dcos a << 1. Thus, Equation (4.29) can be approximated as, 

gTE(s) z0 Ed. (4.30) 
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This is a constant over the incident angle. Because of this, the maximum LI' Error of the 

TE incident waves are locate at almost the same frequency for all incident angles. 

For TM incident waves, 

ZM(0) =jZd cos a tan (kdd cos a). (4.31) 

Following the same procedure, Equation (4.31) can be approximated as, 

TMr 22,7r ,. sin 20  
Z O) .Zo---d1 (4.32) 

Unlike ZE (0), ZM (0) is not independent of frequency. It decreases with the increase of 

0. Thus, the maximum LIT Error shifts to higher frequencies as 0 increases. Therefore, the 

LIT Error of the TM incidence at 7.7 GHz decreases with the increase of 0. As a result, at 

the AIS resonant frequency, the reflection coefficients FTM(0) are less affected by the grid 

impedance errors. 

4.3.3 Decreasing FTE(0) Error at AIS Resonance 

As already discussed, a large error in LITTE(0) can be caused by a small grid impedance 

error near the AIS resonant frequency for all incident angles. In order to decrease LITTE(0) 

Error at the AIS resonant frequency, Equation (4.17) is studied. Note that, when (0) + 

2','"%O) = 0, Equation (4.17) can be simplified as, 

11 ±p% Imag(Z(0))] 
LlTError(0) = - 2tan' L ±p% Zo(0) (4.33) 

As discussed in section 4.3.2, the condition Z(0)+Z'(0) = 0 is approximately satisfied 

at the AIS resonant frequency at all incident angles for TE incident waves. Therefore, by 

using Equation (4.28), Equation (4.33) can be written as, 

LFError(0) = it - 2tan' [iso tan (kdd cos a)] , (4.34) 
±P% V/6—rcosa 

for TE incident waves. Observing Equation (4.34), it is noted that LI' Error is a function 

of the dielectric thickness, d. When d is increased, LIT Error decreases (-_* 0); when d is 
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Figure 4.20: H-plane far-field Pattern comparisons for a Hertzian dipole over two Patch 
AIS at 7.7GHz. (a) Original patch AIS: dielectric thickness, 3 mm; patch size, 6 mm. 
(b) New patch AIS: dielectric thickness, 6 mm; patch size, 3 mm. Both AIS resonate at 
7. 7GHz. 

decreased, LF Error increases (—p ir). Therefore, by increasing the dielectric thickness, the 

errors in computed FTE(0) using the constant grid impedance model at the AIS resonance 

can be decreased. 

Since the accuracy of FT-1(0) determines the accuracy of the H-plane far-field pattern 

computed from the far-field model, the calculated far-field patterns of the patch AIS 

with thicker dielectric are expected to match better with simulation results. Figures 4.20 

compare the calculated H-plane pattern of the original patch AIS and a new patch AIS 

with simulation at 7.7 GHz. The dielectric thickness of the new AIS is 6 mm while that 

of the original patch AIS is 3 mm. For comparison, we need to design the new AIS such 

that it resonates at the same frequency as the old AIS, e.g. 7.7 GHz. With the increased 

dielectric thickness, the new AIS has a larger Z (inductance). Thus, for the new AIS to 

resonant at 7.7 GHz, the gaps between patches of the AIS need to be increased, which is 

equivalent to a smaller capacitance between the patches (Z9). It is found that when the 

single patch size is reduced to 3 mm while the gap between patches is increased to 4 mm, 

the new patch AIS resonant at 7.7 GHz. Observing Figure 4.20, it is clearly seen that the 

calculated far-field pattern of the thicker patch AIS is much more accurate. 
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4.3.4 Circuit Model Analysis Summary 

The behavior of the circuit model is summarized here for the AIS with small dielectric 

thickness relative to free space wavelength. For TE incident waves, the circuit model 

requires an accurate grid impedance model near the AIS resonant frequency for all incident 

angles. However, it is found that the errors in r,, (o), caused ,by the grid impedance error, 

at the AIS resonant frequency can be reduced by increasing dielectric thickness, d. For TM 

incident waves, the requirement for accurate grid impedance models at the AIS resonant 

frequency is not as high as the TB incidence. Below the AIS resonant frequency, the circuit 

model is quite insensitive to grid impedance errors. 

4.4 Modified Constant Z9 Model for Patch AIS 

As shown in the previous sections, the constant grid impedance model, as a simple first-

order approximation, can be used to calculate the reflection coefficients of the patch and 

Jerusalem cross AIS. For the Jerusalem cross AIS, this model approximates the AIS grid 

impedance quite well at all test frequencies. Thus, reflection coefficients obtained using this 

model are quite accurate. For the patch AIS, the constant grid impedance model can be 

used for accurate reflection coefficients computation at all test frequencies except the pTE (0) 

computation at the AIS resonant frequency. In this section, the constant grid impedance 

model is modified for the patch AIS so that both FT-1(0) and rTM(o) can be computed 

accurately at and below the AIS resonant frequency for both TB and TM incidence. 

4.4.1 Model Description 

The constant grid impedance model is accurate except at the AIS resonant frequency for TE 

incident waves, so it needs to be modified at 7.7 GHz (the patch AIS resonant frequency) for 

TB incident waves. Therefore, a curve fitting technique is used at this frequency to obtain 

the modified grid impedance function. For this, we first note that Z(0) is a function 
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of the grid impedance at normal incidence Zg (0). This is evident from the HFSS results 

in Figure 4.5 to 4.7. Also, we assume that Z(0) is related to a trigonometric function, 

since the electric and magnetic fields are related to the incidentangle with such a function. 

At last, we expect Z(0) can be expanded into a series of trigonometic functions to the 

power of n. Based on these ideas, a model for the patch AIS can be expressed as 

Z"(0)=Z9(0)(1+K1 sin O+K2 sin 2O+I?3 sin 3t9+ ... +K  sin' O), (4.35) 

where, K(n = 1, 2,3...) are the empirical fitting parameters. At 7.7 CHz, it is found that, 

when K3 = 0.3, all other K can be reduced to 0. Therefore, Equation (4.35) is simplified 

to, 

0 

-20i 

E 
0 -400 

-600 

-800 

-1000 
0 

Z'E(0) = Z9(0)(1 + 0.3 sin 20). (4.36) 

-- HFSS Zg 
- Constant Zg Model 
-4—Modified Constant Zg Model 

20 40 60 80 
Incident angle, 0≤ 0 ≤ 80, deg 

Figure 4.21: Patch AIS grid Impedance comparison between the HFSS simulation, the 
constant grid impedance model, and the modified grid impedance model at 7.7 0Hz for 
the TE incidence. 

Figure 4.21 compares the grid impedance calculated using Equation (4.35), using the 

constant grid impedance model and HFSS simulation. As before, the grid impedance results 

obtained from HFSS simulations at 80° should be ignored. Clearly, the calculated Zr(0) 

is quite accurate with the empirical formula. As for the FTE(e) results, the calculated 
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Figure 4.22: Patch AIS reflection phase comparison between the HFSS simulation, the 
constant grid impedance model, and the modified grid impedance model at 7.7 0Hz for 
the TE incidence. 

Z(0) is used in the circuit model to obtain the results shown in Figure 4.22. Also shown 

here are the results from the HFSS simulation, the constant grid impedance model. It is 

obvious that the modified empirical formula provides results that are in close agreement 

with the simulation. In the next section (section 4.4.2), Equation (4.36) is tested at 4 GHz 

and 5.5 0Hz. 

4.4.2 Model Verification 

To test the accuracy of the modified constant grid impedance model, Z'E (0) and pTE (0) 

are calculated for the patch AIS at 4 0Hz and 5.5 0Hz. Results are shown in Figures 4.23 

to 4.26. Clearly, the modified constant grid impedance model approximates both the grid 

impedance, Z(0), and reflection coefficients, FT—'(0), quite well at 40Hz and 5.5GHz. 

To better illustrate the performance of this modified grid impedance model, the 

maximum over 0 of the modified model are compared with that of the constant Z9 

model for the patch AIS in Table 4.3. Only results for TE incident waves are shown. Results 
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Table 4.3: Comparing the Constant Z. Model and the modified Z9 Model (Maximum zr°' 
over incident angles for the Patch AIS) 

Maximum ZEn1'o' 4GHz 5.5GHz 7.7GHz 

Modified Z. Model 5.07% 2.13% 1.42% 

Constant Z. Model 24.94% 22.62% 21% 

indicate that Equation (4.36) is accurate not just at 7.7 GI-Iz, but at other frequencies below 

that as well. 

-200 
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60 80 

Figure 4.23: Patch AIS grid impedance comparison between the HFSS simulation, the 
constant grid impedance model, and the modified grid impedance model at 4 GHz for the 
TE incidence. 

4.4.3 Model Application 

Based on the above discussion, the modified constant grid impedance model for the patch 

AIS can expressed as 

Z(0) = Zg(0)(1 + 0.3 sin 2 0), 

Zg1M(0) 

(4.37) 

(4.38) 
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Figure 4.24: Patch AIS reflection phase comparison between the HFSS simulation, the 
constant grid impedance model, and the modified grid impedance model at 4 0Hz for the 
TE incidence. 
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Figure 4.25: Patch AIS grid impedance comparison between the HFSS simulation, the 
constant grid impedance model, and the modified grid impedance model at 5.5 0Hz for 
the TE incidence. 
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Figure 4.26: Patch AIS reflection phase comparison between the HFSS simulation, the 
constant grid impedance model, and the modified grid impedance model at 5.5 GHz for 
the TE incidence. 

for TE and TM incident waves, respectively. Since Equation (4.37) is obtained empirically 

for the patch AIS with dimensions shown in Figures 3.12 and 4.2, it is interesting to see if 

it applies for patc1i AIS of different dimensions. Here, grid impedance of three other patch 

AIS are obtained using Equations (4.37) and (4.38) and compared with HFSS simulation 

results. 

For comparison, the resonant frequency of these three patch AIS is set at 7.7 GHz. 

Since AIS with thin AIS are more desirable for low-profile antenna applications, the patch 

size, gap between patches and the dielectric thickness of these patch AIS are chosen as: 1) 

6.3 mm X 6.3 mm, 1.4 mm and 2.45 mm; 2) 6.6 mm X 6.6 mm, 0.9 mm and 1.95 mm; 3) 

6.9 mm X 6.9 mm, 0.2 mm and 1.26 mm. Each patch AIS is tested at 4 GHz, 5.5 GHz 

and 7.7 GHz. Comparison results are shown in Figures 4.27 to 4.35. The maximum ZError 

of the modified model is also shown in Tables 4.4 to 4.6 for these three patch AIS. Here, 

is defined as, 

z 9 ''0r (o) = 

z'  (0) - zModel  

Z9HFSS (0) 
(4.39) 
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Figure 4.27: Z9(0) comparison of modified constant grid impedance model with HFSS 
simulation results as benchmark for a patch AIS at 4 GHz. The dimensions of the single 
patch is 6.3 mm X 6.3 mm. 
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Figure 4.28: Z9(0) comparison of modified constant grid impedance model with HFSS 
simulation results as benchmark for a patch AIS at 5.5 GHz. The dimensions of the single 
patch is 6.3 mm X 6.3 mm. 

where Z''9(0) is the grid impedance value obtained from HFSS simulations, and 

zy'° 1(o) is obtained from the modified constant grid impedance model as in Equa-

tions (4.37) and (4.38). 

Observing the comparison results, it is quite clear that Equations (4.37) and (4.38), 

obtained from a particular patch AIS, can be used to approximate the grid impedance of 

patch AIS with different patch sizes quite well. This provides us with some insights in 

predicting the grid impedance behavior of patch AIS. 
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Figure 4.29: Z9(0) comparison of modified constant grid impedance model with HFSS 
simulation results as benchmark for a patch AIS at 7.7 GHz. The dimensions of the single 
patch is 6.3 mm X 6.3 mm. 
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Figure 4.30: Z9(0) comparison of modified constant grid impedance model with HFSS 
simulation results as benchmark for a patch AIS at 4 GHz. The dimensions of the single 
patch is 6.6 mm X 6.6 mm. 

Table 4.4: Comparing the Modified Z9 Model and the HFSS simulation results (Maximum 
ZError over incident angles for the Patch AIS with 6.3 mm patch size) 

Maximum zror 4GHz 5.5GHz 7.7GHz 

TE mode 3.72% 2.83% 5.07% 

TM mode 3.7% 3.42% 4.37% 
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Figure 4.31: Z9(0) comparison of modified constant grid impedance model with HFSS 
simulation results as benchmark for a patch AIS at 5.5 GHz. The dimensions of the single 
patch is 6.6 mm X 6.6 mm. 
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Figure 4.32: Z9(0) comparison of modified constant grid impedance model with HFSS 
simulation results as benchmark for a patch AIS at 7.7 GHz. The dimensions of the single 
patch is 6.6 mm X 6.6 mm. 

Table 4.5: Comparing the Modified Z. Model and the HFSS simulation results (Maximum 
Zrr0r over incident angles for the Patch AIS with 6.6 mm patch size) 

Maximum ZrOT 4GHz 5.5GHz 7.7GHz 

TE mode 6.17% 3.79% 2.21% 

TM mode 1.86% 2.25% 3.25% 
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Figure 4.33: Z9(0) comparison of modified constant grid impedance model with HFSS 
simulation results as benchmark for a patch AIS at 4 0Hz. The dimensions of the single 
patch is 6.9 mm X 6.9 mm. 
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Figure 4.34: Z9(0) comparison of modified constant grid impedance model with HFSS 
simulation results as benchmark for a patch AIS at 5.5 0Hz. The dimensions of the single 
patch is 6.9 mm X 6.9 mm. 

Table 4.6: Comparing the Modified Z. Model and the HFSS simulation results (Maximum 
zrror over incident angles for the Patch AIS with 6.9 mm patch size) 

Maximum Z T' 4GHz 5.5GHz 7.7GHz 

TE mode 8.29% 6.5% 5.72% 

TM mode 5.70% 1.9% 7.93% 



91 

-100 

E 
.0 

0-200 

0) 

'-300 

-400 
-,ê--HFSS Zg 
-4-Modified Constant Zg Model 

- 50  % 20 40 60 80 
Incident angle, 0≤ B ≤ 80, deg 

(a). TE Incidence 

-100 

E 
.0 
0-200 

0) 

-300 
E 

-400 

- 50 0 20 40 60 80 
Incident angle, 0≤ 0 ≤ 80, deg 

(b) TM Incidence 

-A--HFSS Zg 
-4-Modified Constant Zg Model 

Figure 4.35: Z9(0) comparison of modified constant grid impedance model with HFSS 
simulation results as benchmark for a patch AIS at 7.7 GHz. The dimensions of the single 
patch is 6.9 mm X 6.9 mm. 

4.5 Summary 

In this chapter, a circuit model and a constant grid impedance model were introduced for 

more efficient computations of the reflection coefficients of the AIS structures for use in the 

far-field model discussed in Chapter 3. It has been shown that the reflection coefficients 

calculated from the circuit model and the constant grid impedance model are quite accurate 

at frequencies below the resonant frequency of a patch and a Jerusalem cross AIS. At 

the AIS resonant frequency, reflection coefficients of the Jerusalem cross AIS can still be 

computed accurately. However, an error was found in the calculated FTE(0) of the patch 

AIS at this frequency. 

To analyze this error in the computed PTE(0) for the patch AIS, the accuracy of both the 

constant grid impedance model and the circuit model were discussed in detail. It was shown 

that the circuit model requires an extremely accurate grid impedance model near the AIS 

resonant frequency for accurate rTE (0) computation. On the other hand, grid impedance 

errors are more tolerable for the lTE(0) calculation below the resonant frequency or for the 

pTM(9) calculation at frequencies below and at the AIS resonant frequency. 
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While the constant grid impedance model is reasonably accurate for the Jerusalem cross 

AIS, a more accurate grid impedance model is required to calculate FTE(0) for the patch 

AIS at its resonant frequency (7.7 GHz). As a result, the constant grid impedance model 

was modified for TE incident waves for the patch AIS through a curve fitting technique at 

7.7 0Hz. This modified constant grid impedance model was verified at 4 0Hz as well as 

5.5 0Hz for the patch AIS and results showed that this model is quite accurate at these test 

frequencies. It was also found that grid impedance obtained from this modified constant 

grid impedance model was quite accurate for patch AIS with different patch sizes as well, 

leading to a broader application of this modified model. 
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Chapter 5 

Conclusion and Future Work 

5.1 Conclusion and Thesis Contribution 

In this thesis, a far-field model of a Hertzian dipole antenna above an Artificial Impedance 

Surface (AIS) was developed using a transmitting and a receiving method. With this 

model, it was clear that far-field patterns of the dipole can be directly computed from 

TE and TM plane wave reflection coefficients of the AIS structure. This way, one of the 

most important radiation properties of a Hertzian dipole over an AIS was related with the 

plane wave reflection properties of the AIS. In order to verify the far-field model, H- and 

E-plane patterns of the dipole over a patch and a Jerusalem cross AIS were calculated 

from the far-field model using accurate reflection coefficients, pTE (0) and pTM (0). These 

were obtained from the full-wave simulator, Ansoft HFSS. The results were compared with 

simulation results from another commercial full-wave simulator, FEKO. It was shown that, 

with accurate reflection coefficients, the calculated patterns of the Hertzian dipole were 

quite accurate in the frequency range of interest, at and below the resonant frequency of 

the AIS structure. 

To shorten computation time even more, a circuit model and a constant grid impedance 

model were used to approximate the reflection coefficients for the far-field model. Results 

showed that, as a simple first-order approximation, the constant grid impedance model 

is quite accurate in predicting the grid impedance and reflection coefficients as functions 

of incident angle for the patch and the Jerusalem cross AIS. Compared to the cos' 0 grid 

impedance model introduced in [26], the constant grid impedance model is simpler but more 

accurate. However, due to sensitivity of the circuit model, a more accurate grid impedance 

model is required for flT1(0) calculation of the patch AIS near its resonant frequency. 
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Therefore, the constant grid impedance model was modified at the resonant frequency of 

the patch AIS through a curve fitting technique. It was shown that this modified grid 

impedance model approximates the grid impedance and reflection coefficients of the patch 

AIS quite accurately at all frequencies. It was also shown that this modified constant grid 

impedance model provides accurate approximation for grid impedances of patch AIS with 

different patch sizes. 

The thesis contribution is divided into two parts: the developing of the far-field model 

and investigating the constant grid impedance model. The contribution in the first part, 

developing the far-field model, is summarized as follows. 

• Applying the transmitting and receiving methods to analyze antenna's far-fields above 

an AIS structure is novel. Our work suggests that the receiving method is a simple but 

accurate way for analyzing far-fields of more complicated antennas above an AIS. 

• The simple model equations, obtained from analytical derivation, clearly illustrate the 

relationship between the dipole's far-field patterns and the plane wave reflection coefficients 

of the AIS, which was not clear before this work. 

• The far-field model is simple yet accurate, for AIS structures with periodicity small 

compared to free space wavelength. It has been shown that it is more accurate than other 

models proposed in the literature [3,22]. 

• Since obtaining plane wave reflection coefficients in full-wave simulators is much faster 

than obtaining far-field patterns, our model makes antenna design above a complicated AIS 

structure much more efficient than before. 

The contribution in investigating the grid impedance model is given here. 

• The constant grid impedance model is investigated for the AIS structure, and it is 

found that, as a first-order approximation, the constant grid impedance model can be used 

along with the circuit model to compute AIS reflection coefficients with good accuracy. This 
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makes the computation of reflection coefficients of the AIS, and hence the computation of 

the far-field patterns much faster. 

• The detailed circuit model analysis suggests that for accurate reflection coefficients 

computation, the grid impedance model only needs to be extremely accurate at the AIS 

resonant frequency for the TE incident waves. This not only leads to our modified grid 

impedance model, but also provides grid impedance models with a lower accuracy bound 

for accurate reflection coefficient calculation. 

• The constant grid impedance model is modified such that reflection coefficients of the 

AIS can be computed accurately at all frequencies, including the AIS resonant frequency. 

5.2 Future Work 

Since Artificial Impedance Surfaces are complicated structures, it is difficult to fully 

understand how antennas interact with these structures, especially when the antenna 

and the AIS are in close proximity. The work in this thesis only provides a first step 

in understanding the properties of an antenna above an AIS. Much more work needs to be 

done. In this section, possible future work is discussed. 

In Chapter 3, a far-field model was derived for a Hertzian dipole antenna over an AIS. 

As discussed, a couple simplifications were made in the derivation. Firstly, a Hertzian 

dipole, or an infinitesimal dipole was used. Since the dipole is infinitely small, its current 

will not be changed by any waves reflected by the periodic surface of the AIS. Thus, in the 

model analysis, only the primary reflected waves were considered while all the higher-order 

evanescent modes were ignored. For a real dipole, this will not be the case. For example, the 

current on a half-wave length dipole will be influenced by propagating or evanescent waves 

reflected by the AIS. As a result, higher-order modes and transmission lines corresponding 

to these modes should be taken into consideration. Secondly, an infinite AIS was considered 

in the derivation, which makes the derivation much simpler than using a finite AIS. This is 
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because surface waves will not be radiated and influence far-field patterns of an antenna on 

an infinite AIS. On a finite AIS, however, surface waves will radiate and change the far-field 

patterns. Therefore, more surface wave analysis is needed for a finite AIS structure as an 

antenna reflector. 

In Chapter 4, a constant grid impedance model was used and modified for accurate 

computation of the reflection coefficient. By obtaining grid impedances, Z9(0), of patch 

and Jerusalem cross AIS from HFSS full-waves simulation, it was found that the Z1'M(0) 

of the patch AIS, and Z'--(0) and Z'M(0) of the Jerusalem cross AIS are almost constant 

over the incident angle while Z9T(0) of the patch AIS is a function of Z9(0), the grid 

impedance at normal incidence, and the trig function sin2 0. However, the reasons for these 

phenomena are not clear yet. In [32], it was suggested that the grid impedance of an AIS 

is related to the current patterns, on the center element of the periodic metal surface of the 

AIS. Observing the current patterns on the center patch and Jerusalem cross in the AIS 

when incident by a TE and a TM plane wave, it is clear that the currents on the patch vary 

more with the incident angle than those on the Jerusalem cross. It is suspected that this is 

because the Jerusalem cross has less metal area than the patch, confining the currents on 

the Jerusalem cross to a smaller area. However, it is still not clear why currents induced 

by a TE and a TM plane wave are different on a patch AIS. Moreover, the modified grid 

impedance model found through the curve fitting technique at 7.7 GHz for one certain 

patch AIS, (6mm X 6mm patch, 1mm gap between patches), also works well for patch AIS 

with different patch sizes. These phenomena will be interesting to investigate in the future. 
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Appendix A 

The Steepest Decent Method 

The method of steepest decent, or the saddle point method, is used to evaluate the integral 

of the form, 

I(fl) = jP F (W) eflf (-) dw, (A.1) 

where ,8 is large, positive and real; f(w) is an analytic function; P is the path of integration 

in the complex w plane as shown in Figure A.1. 

The philosophy of the steepest descent method is that, after contour deformation, a new 

path is chosen such that only a small segment of the path attributes most of contributions 

to the integral. This way, the integrand in equation (A.1) can be approximated by a simpler 

function over the important parts of the path. This new path is referred to as the steepest 

descent path, shown in Figure (A.1). If a pole is encountered during deformation, residues 

must be added. Thus, equation (A.1) can be written as a combination of the steepest 

descent part and the residue part. 

1(,6) = ISDP + Iresjdte. (A.2) 

The key to solve for the steepest descent part, ISDP, is to find the steepest descent 

path. The steepest descent path passes through the saddle point of f(w). A saddle point 

is neither a maximum nor minimum. To find the saddle point of f(w), write the analytical 

function f(w) as 

f(w) = U(w)+jV(w) (A.3) 

with U(e,n) and V(,'i7) being real functions. The first-order saddle points w can be 

obtained by solving 

f(w) Iw=ws f' (we) = 0 f" (we) 0. (A.4) 
ciw 
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Figure A.1: The original path (P) and steepest decent path (SDP). 

Thus, at the saddle point w 3, the following properties can be obtained 

and 

au av au av 
= = = 

- a2u a2v - a2v 
92 52 - 

(A.5) 

(A.6) 

By observing Equations (A.5) and (A.6), at w 8, either U(,'ii) moves the most rapidly 

while V(, ) remains constant. Since fi is real and positive, the exponential exp flU(e, ) 

will decrease rapidly with distance from the saddle point and only a small portion of the 

integration path, including the saddle point, will make any significant contributions to the 

values of the entire integral. 

The steepest decent path is found forming a function, 

f(w) = f(w3) - s2, (A.7) 

where w 3 is the saddle point and s is real (—co ≤ .s ≤ oo). Using Equation (A.7), we can 

write, 

U(w) = U(w8) - 2, V(w) = V(w8). (A.8) 
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Since V(w3) remains a constant while U(w8) attains maximum at the saddle point w and 

decrease for other w, Equations (A.8) describes the path of the steepest decent. 

Expanding f(w) by a truncated Taylor series at the saddle point, 

f(w) f(w3) + - w s)2f"(ws), (A.9) 

with the assumption that the higher derivatives of f(w) at w., are negligible, 'SDP in 

Equation (A.1) can be written as, 

'SDP = fSDP F(w)e'°)dw e() f F(w)e/2)(w_ 3)2f()dw, (A.10) 
SDP 

Assuming that F(w) is a slow varying function in the neighbourhood of the saddle point, 

Equation (A.10) can be simplified to, 

'SDP 
2'ir 

epi  
-,8f" (we) 

where f" (w3) is the second-derivative of f(w) at the saddle point w 3. 

(A.11) 


