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Abstract 

This thesis proposes a tight integration architecture with an Inertial Measurement Unit (IMU) as 

the core sensor for land vehicle navigation. Kalman filter is used to fuse different types of 

measurements. The IMU provides the dynamic information of the land vehicle and it is used to 

predict the measurements of other sensors. When the measurements become available, the 

differences between the predicted and actual measurements are applied to estimate the error states 

in the Kalman filter. There are four types of integration implemented in this thesis. First, the IMU 

is integrated with the Stereo Visual Odometry (VO). In this tight integration, the camera attitude 

and perspective center position can be predicted by the IMU mechanization and the 3-dimensional 

(3D) coordinates of the features can be obtained by the triangulation of the stereo images at the 

previous epoch. Therefore, the pixel coordinates of the features can be predicted based on the 

feature position, perspective center position and camera attitude. The difference between the 

predicted and actual pixel coordinates can be used to estimate the errors. In this way, the 

accumulated errors of inertial sensors can be largely reduced by the tightly coupled integration. 

The integration can reduce the accumulated errors of an individual system. Second, the integration 

system can be easily expanded with GNSS measurements when GNSS measurements are 

available. The state vector in the Kalman filter needs to be extended with the receiver clock error 

and the clock drift to adopt the GNSS code, carrier-phase and Doppler measurements. In this thesis, 

Precise Point Positioning (PPP) using one receiver is integrated with the Inertial Navigation 

System (INS) and Stereo VO. Third, fuzzy logic Map Matching (MM) is introduced to be 

integrated into the system. When there is GNSS outage, the INS/ Stereo VO solution can be 

projected on the digital map by fuzzy logic MM. The projected point provides the position 

information for the system, which effectively limits the drift of DR systems. Fourth, when the land 
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vehicle is moving in open sky environment, PPP dominates the system accuracy. A fast PPP 

ambiguity resolution (AR) method is proposed to fix the ambiguities in the kinematic mode with 

the aid of MM. Generally, the float PPP solution is projected on the digital map. The projected 

point and the road link azimuth is applied as additional measurements to accelerate the 

convergence of ambiguities which reduces the integer search space, resulting in fast ambiguity 

resolution. Filed test datasets collected by Karlsruhe Institute of Technology and Toyota 

Technological Institute (KITTI) and datasets collected in Calgary are used to verify the 

effectiveness of the proposed methods. 
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Chapter One: INTRODUCTION  

1.1 Preamble 

The land vehicle navigation system is becoming increasingly important in recent years since it is 

the foundation of other applications like the autonomous car, Location-Based Services (LBS) and 

fleet management. Lots of sensors and technologies (e.g. satellite navigation, inertial navigation, 

vision-based navigation, etc.) have been developed for land vehicle kinematic positioning and 

navigation. Different sensors and technologies have their own advantages and drawbacks, which 

inspire people to integrate different sensors to take full advantage of their benefits. Multi-sensor 

integrated navigation has become a hot topic in both academic and industrial areas.  

One of the appealing positioning approaches is Global Navigation Satellite System (GNSS), which 

is capable of providing all-weather and worldwide positioning service. The GNSS receiver 

receives the messages containing the time of transmission (TOT) of the signals and the information 

about the satellite position. It also measures the time of arrival (TOA) of the signals of each 

satellite, according to its own clock. From the TOAs and the TOTs, the time of flight (TOF) values 

can be formed, which are (given the speed of light) approximately equivalent to the ranges between 

the satellites and receiver. With the known satellite position and ranges, the receiver position and 

clock errors can be estimated with at least four satellites.  

However, the GNSS signals can be easily blocked or interfered, which limits its application in 

certain circumstances (Cannon, 2007). To enable seamless navigation, especially in GNSS 

challenging environments, alternative sensors and systems are needed to bridge the GNSS outage. 

Inertial Navigation System (INS), which contains Inertial Measurement Unit (IMU) as a main 

component, is a dead reckoning system, which integrates the rotation rates to obtain attitude 
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changes, and doubly integrates the accelerations to obtain velocity and position increments (Jekeli, 

2001). INS is a self-contained navigation system but the errors of IMU output accumulate with 

time, resulting in degraded performance, especially for low-cost MEMS (Micro-Electro-

Mechanical System) based IMUs (Petovello, 2003; Shin, 2005; Sukkarieh, 2000).  

Vision-based navigation is another widely applied dead reckoning (DR) approach which utilizes 

continuously tracked features (landmarks) in consecutive frames to estimate the camera pose. With 

one image, based on the pin-hole model, the orientation information of features with respect to the 

optical center can be obtained. The features could lie in any position along the ray from the 

perspective center, resulting in unavailability of the depth information. The position of features 

can be obtained with a monocular camera by the intersection of rays from two perspective centers 

of two images with overlapped part during camera motion if camera motion is known (Ullman, 

1979). This method has been explored by many researchers with different assumptions (D G Lowe, 

1991; Poelman & Kanade, 1997; C. Tomasi & Kanade, 1993). Instead of using two overlapped 

images during camera motion, stereo cameras are capable of implementing intersection of rays 

from perspective centers simultaneously. The motion of perspective center can be obtained by 

resection with same features captured by consecutive images (Fraundorfer & Scaramuzza, 2012; 

Scaramuzza & Fraundorfer, 2011). Visual Odometry (VO) focuses on the estimation of the camera 

pose, which is a particular case of Structure from Motion (SFM). SFM tackles the problem of 3D 

reconstruction of both the structure and camera pose from image sets. It aims at the local 

consistency of the trajectory. In contrast to VO, simultaneous localization and mapping (SLAM) 

takes the feature coordinates into estimation as well, and it aims at the global consistency of the 

trajectory of the map (Bailey & Durrant-Whyte, 2006; Durrant-Whyte & Bailey, 2006). Stereo 
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VO, which consists of stereo cameras, is another self-contained system to estimate the motion of 

the platform. It can be applied in the land vehicle navigation as an alternative DR system. Similar 

to INS, Stereo VO suffers accumulated errors without external absolute positioning information. 

From the introduction of the three types of navigation systems above, it can be seen that each 

individual system has its own disadvantages. Multi-sensor integration is an effective way to take 

advantage of different systems and mitigate the disadvantages. Kalman filter has been widely used 

to optimally integrate different kinds of datasets and the integration can be conducted either in a 

‘loosely-coupled’ or a ‘tightly-coupled’ mode. The loosely-coupled integration has a 

straightforward implementation scheme in which each individual system is working separately and 

the outputs from each system are fused by a Kalman filter. Unlike the loose integration, the tight 

integration utilizes only one single centralized Kalman filter where the raw measurements or the 

differences between predicted and actual measurements are directly used. Although the 

implementation of a tightly coupled integration is more complicated, the system can still work 

even when one individual system cannot output viable position solutions such as no position 

available with less than four visible GNSS satellites in certain harsh environments due to signal 

blockages (Moon, Hwang, Sung, & Lee, 2000). 

The integration of GNSS and INS has been widely applied to increase the reliability and continuity 

of the system (Angrisano, 2010; Cannon, 2007; Petovello, 2003; Shin, 2005). In an integrated 

system, the inertial errors could be estimated with the GNSS measurements and therefore the 

accumulated error in INS can be avoided. On the other hand, the INS could help bridge the outage 

of GNSS when there are signal blockages to the navigation satellite signals. In addition to the 

position solution, an integrated system could also provide attitude solution which is important for 
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many applications. There are many other benefits of using an integrated system such as improved 

quality control of the positioning system (Du & Gao, 2012; Lee, Wang, & Rizos, 2003). Cameras 

are also increasingly integrated with GNSS to improve the overall performance and bridge GNSS 

outage due to cheaper price and capacity of proving system dynamics (Aumayer et al., 2014; Dusha 

& Mejias, 2012; Schleicher et al., 2009). GNSS denied environments, however, still exist where 

the GNSS signals could be blocked for a long time. An integrated system of IMU and cameras can 

provide navigation solutions over an extended time period with significant GNSS outages although 

INS and vision-based navigation both suffer error accumulation over time. With the integration of 

a monocular camera and IMU, the depth ambiguity of monocular camera can be solved by the 

dynamic information provided by the IMU (Kleinert & Schleith, 2010; Piniés, Lupton et al., 2007; 

Qian et al., 2001). As mentioned before, stereo cameras do not suffer the depth ambiguity since 

the feature coordinates can be obtained by triangulation of common features on the stereo images. 

Therefore, the integration of stereo cameras and IMU could be more flexible than the integration 

of IMU and monocular camera. For loose integration of INS/Stereo VO, one way is to apply the 

rotation and translation estimated by visual odometry to correct the corresponding initial states 

obtained by inertial datasets (Tardif, et al., 2010). Similarly, the inertial measurements of IMU 

could also be used to correct the ego-motion estimation by visual odometry (Konolige et al., 2007). 

Tight integration of Stereo VO and INS utilizes the raw measurements of each type of 

measurement to optimize the solution, which is expected to generate better estimation (Asadi & 

Bottasso, 2014; Carrillo et al., 2012; Liu et al., 2015, 2017; Usenko etal. 2016; Xian et al., 2015).  

Although the integration of INS and VO can reduce the accumulated errors in position solutions 

when there is GNSS outage, the system still suffers drift with time. To remove the accumulated 
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errors of a DR system, absolute positioning information is required. In GNSS denied 

environments, a digital map is another way to provide the absolute positioning information. 

Therefore, Map Matching can be further applied to a land vehicle navigation system using DR 

systems to improve the navigation accuracy (Balazadegan Sarvrood, 2016; Balazadegan Sarvrood 

& Amin, 2011; Brubaker et al., 2013; Floros et al., 2013). With Map Matching, the DR system 

solution can be projected on the digital map and the projected point position can be integrated to 

further improve the system accuracy. With the information provided by the projected point, the 

DR system errors can be largely reduced. To some extent, the accumulated errors can be avoided. 

When GNSS signal is available, the GNSS positioning dominates the system accuracy, especially 

when other low-cost navigation sensors are integrated. In an open sky environment, high-precision 

GNSS positioning is the key to improving the accuracy of land vehicle navigation. The GNSS 

positioning accuracy, however, is affected by many error sources (e.g. satellite orbit and clock, 

troposphere effects, sagnac effect, site displacements, antenna phase center correction, phase wind-

up). In the past, the Real-Time Kinematics (RTK) technique is widely applied which can perform 

precise relative positioning of a rover receiver with respect to a base receiver whose position 

coordinates are known. In recent years, the Precise Point Positioning (PPP) method becomes 

popular which is able to perform precise positioning using a single receiver coupled with advanced 

GNSS error calibration methods and International GNSS Service (IGS) precise products (Abdel-

salam, 2005; Bisnath & Gao, 2008; Gao Y, 2002; Kouba & Héroux, 2001; Rizos, Janssen, Roberts, 

& Grinter, 2012; M. Wang, 2014; Zumberge, Heflin, Jefferson, Watkins, & Webb, 1997). Usually, 

an ionosphere-free (IF) combination is applied in PPP to reduce the ionosphere delay. However, it 

usually takes tens of minutes before the position solution converges to a high precision in PPP, 
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which limits its applications. PPP ambiguity resolution (AR) has been proposed to fix the PPP 

ambiguities to accelerate the convergence (Collins, 2008; Ge, Gendt, Rothacher, Shi, & Liu, 2007; 

Laurichesse, D., Mercier, 2007). PPP AR aims to recover the integer property of the PPP 

ambiguities. An IF ambiguity can be decomposed as a wide-lane (WL) and a narrow-lane (NL) 

ambiguities. The WL ambiguities can be resolved by the Melbourne-Wübbena (MW) combination 

while the NL ambiguities can be fixed by the Least-squares AMBiguity Decorrelation Adjustment 

(LAMBDA) method. In most cases, PPP AR takes over ten minutes to fix the ambiguities due to 

a large serach space for the NL ambiguities. It would be more challenging for PPP AR in kinematic 

mode due to lower quality of GNSS observations. Map Matching can be used to accelerate the 

PPP ambiguity resolution (Liu, 2017). With the aid of MM, the integer search space of ambiguities 

can be reduced so that fast PPP AR can be achieved. 

In this thesis, a tightly coupled multi-sensor integration approach with IMU as the core sensor is 

proposed and implemented for land vehicle navigation. In the integrated system, the GNSS 

measurements and the visual measurements are applied to limit the accumulated errors in the 

inertial sensors. A tight integration of INS and Stereo VO using the feature pixel coordinates as 

raw measurement is used to output continuous navigation solutions in the GNSS-denied 

environment. The position, velocity and attitude errors together with the inertial sensor errors are 

estimated in a Kalman filter. To largely reduce the accumulated errors of the INS/Stereo VO 

integration system, Map Matching is also applied to provide the absolute positioning information 

independent of GNSS. In open sky environment, Map Matching is also used to accelerate PPP AR. 

The general aim of this thesis is to achieve center-meter level accuracy using PPP in open sky 
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environments and relative horizontal error within 1.2% with digital Map Matching for about 2 

kilometers in GNSS-denied environment. 

In the following part of this chapter, the backgrounds of GNSS, IMU and industrial camera are 

first introduced. A literature review is then provided with identified limitations, followed by the 

research objectives and contributions for this thesis. An outline of the thesis work is also given at 

the end. 

1.2 Background 

1.2.1 Global Navigation Satellite System 

Currently, there are four GNSS systems in operation namely the United States’ Global Positioning 

System (GPS), the Russian Federation’s Global Orbiting Navigation Satellite System 

(GLONASS), Europe’s Galileo system and China’s BeiDou satellite navigation system (BDS). 

GPS is the first GNSS system to reach Full Operational Capability (FOC) in the world.  The first 

launch was in 1978. All the GPS satellites are in medium earth orbit (MEO) with the altitude about 

20,200 km. As of February 9, 2017, there are 12 Block IIF, 12 Block IIR and 7 Block IIR-M 

satellites are operational. All GPS satellites broadcast at the same two frequencies (L1 and L2), 

encoding signals using unique code division multiple access (CDMA). The 12 Block IIF satellites 

are broadcasting the additional third civilian L5 signal. The signals broadcasted by GPS satellites 

are summarized in Table 1.1. 

The first launch of GLONASS was in 1982 and the system was completed in 1995. However, from 

the late 1990s, GLONASS was not in FOC until October 2011. The orbital height of GLONASS 

satellites is about 19,130 km. GLONASS broadcasts two types of signal (L1 and L2) as well. 

Different from other GNSS systems, GLONASS satellites transmit the same code as their 
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standard-precision signal on a different frequency using a 15-channel frequency division multiple 

access (FDMA) technique spanning either side from 1602.0 MHz (1602+n*0.5625 MHz, n=-7~6), 

known as the L1 band. The L2 signal adopts the similar FDMA strategy with center-frequencies 

1246+n*0.4375 MHz. At the moment (February 9, 2017), there are 24 GLONASS-M and 2 

GLONASS-K1 satellites in operational. The GLONASS-K1 satellites contain CDMA signal 

L3OC. In the future, GLONASS-K2 and GLONASS-KM satellites broadcasting more CDMA 

signals will be launched. The details of GLONASS signals are summarized in Table 1.2.  

Table 1.1 GPS signals 

Signal Block 

Frequency 

(MHz) 

PRN 

L1 IIR, IIR-M, IIF 1575.42 
IIR (G02, G11, G13, G14, G16, G18, G19, G20, 

G21, G22, G23, G28) 

IIR-M (G05, G07, G12, G15, G17, G29, G31) 

IIF (G01, G03, G06, G08, G09, G10, G24, G25, 

G26, G27, G30, G32) 

L2 IIR, IIR-M, IIF 1227.60 

L5 IIF 1176.45 

 

All the Galileo satellites are running in MEO with the altitude about 23,222 km. There are 3 In-

Orbit Validation (IOV) and 12 FOC Galileo satellites in service and 9 more satellites are to be 

launched to provide global service in near future. Galileo navigation signals are transmitted in four 

frequency bands as E1 (1575.42 MHz), E5a (1176.45 MHz), E5b (1207.14 MHz) and E6 

(1278.75MHz) using CDMA.  
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Different from the other GNSS systems, BeiDou system consists of 6 geostationary orbit (GEO) 

satellites, 8 55-degree inclined geosynchronous orbit (IGSO) satellites and 6 medium earth orbit 

(MEO) satellites. BeiDou system began to provide services to customers in the Asia-Pacific region 

in December 2012 and the global service is planned in 2020. Triple-frequency signals are 

broadcasted by BeiDou system using CDMA, which are summarized in Table 1.3. 

 

Table 1.2 GLONASS Signals 

Satellite 

Block 

L1, 

FDMA 

L1, CDMA 

L2, 

FDMA 

L2, 

CDMA 

L3, 

CDMA 

L5, 

CDMA 

GLONASS-

M 

L1OF, 

L1SF 

     

GLONASS-

K1 

L1OF, 

L1SF 

 

L2OF, 

L2SF 

 L3OC  

GLONASS-

K2 

L1OF, 

L1SF 

L1OC, L1SC 

L2OF, 

L2SF 

L2SC L3OC  

GLONASS-

KM 

L1OF, 

L1SF 

L1OC, L1OCM, 

L1SC 

L2OF, 

L2SF 

L2OC, 

L2SC 

L3OC L5OC 

‘O’: open signal (standard precision), ‘S’: obfuscated signal (high precision); 

‘F’: FDMA; ‘C’: CDMA 

 



 

10 

 

Table 1.3 BDS Signals 

Signal Orbit Frequency Satellite PRN 

B1 MEO, IGSO, GEO 1561.098 
GEO (C01, C02, C03, C04, C05) 

IGSO (C06, C07, C08, C09, C10) 

MEO (C11, C12, C13, C14) 

B2 MEO, IGSO, GEO 1207.140 

B3 MEO, IGSO, GEO 1268.520 

So far, the current GNSS constellations have been introduced. GNSS systems typically consist of 

three major parts, namely, the in-orbit satellites, the ground control and tracking stations, and the 

GNSS receivers. The ground control and tracking stations provide the satellites’ position and clock 

information for users with corresponding GNSS receivers. GNSS positioning has been widely used 

in various applications with different accuracy requirements (e.g. automobile navigation, land 

surveying, deformation monitoring, etc.) (Sickle, 2008; Skog & Handel, 2009; M. Wang, 2008). 

Usually, low-cost consumer-grade GNSS receivers can only achieve meter level accuracy. For 

GNSS precise applications in which centimeter to decimeter level accuracy is required, survey 

grade GNSS receivers are needed.  

To achieve high accuracy, Real-Time Kinematic (RTK) technique is widely applied. RTK requires 

a base station to broadcast its observations to the rover receivers through the communication link 

(e.g. radio). Then, the differential GNSS positioning algorithms can be adopted at the rover end 

with their own observations and the received messages. The differential algorithm is supposed to 

remove the satellite and receiver biases by double differencing the observations. Moreover, the 

distance between the base station and the rover station is usually within 10 km, the common 

atmosphere errors can be largely reduced as well, resulting in millimeter to centimeter level 
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solution. Besides, the high-accuracy solution can be achieved in short time using Least-squares 

AMBiguity Decorrelation Adjustment (LAMBDA) method proposed by Teunissen (1995). The 

main limitation of the conventional RTK is the short distance requirement because of the 

communication between the base and rover stations. To overcome this drawback, Network RTK 

is proposed with a network of evenly distributed base stations. The data from the base stations are 

processed in a control center. The sophisticated orbit, ionosphere and troposphere errors are 

estimated using the network, and virtual observations are formed and broadcasted to rover 

receivers through cellular communication to conduct RTK.  

Apart from RTK, Precise Point Positioning (PPP) is another increasingly widely used positioning 

technique. Different from RTK, in which at least two receivers are required to implement 

differential positioning algorithms to achieve accurate solution, PPP is capable of providing 

worldwide accurate solution with just one receiver. Therefore, it saves the hardware costs and 

overcomes the distance limitation. The key to implementing PPP is the application of precise 

satellite orbit and clock products and the error source models, which are illustrated in Chapter 2.  

1.2.2 Inertial Navigation System (INS) and Low-Cost MEMS IMU 

Inertial Navigation System (INS) is a self-contained system capable of determining navigation 

states of moving objects (e.g. position, velocity and attitude) using triad accelerometers and 

gyroscopes to measure the acceleration and rotation respectively (Angrisano, 2010). With known 

previous states, measurements are integrated once for gyroscopes and twice for accelerometers to 

yield orientation and relative position respectively (Noureldin, Karamat, & Georgy, 2013). Inertial 

Measurement Unit (IMU) is a device which contains the Inertial Sensor Assembly (ISA) 

constituting of inertial sensors and related electronics in a unit. The interrelationship of ISA, IMU 
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and INS is summarized in Figure 1.1. Based on the performance, IMU could be categorized as 

navigation grade, tactical grade and consumer grade, which is illustrated in Table 1.4. 

With the development of microelectromechanical system (MEMS) technology, the low-cost 

MEMS-based IMUs are widely used in various applications (e.g. land vehicle navigation,  mobile 

mapping). Since the MEMS-based IMU outputs are corrupted with significant sensor errors, 

MEMS IMUs are often categorized as consumer grade. The performance of some more expensive 

MEMS IMU could reach close to tactical grade (e.g. Crossbow NAV 440). Currently, for land 

vehicle navigation, the state-of-art technology can achieve within 25 meters (RMS) using low-cost 

MEMS IMU (customer grade) after 5 minutes with relative horizontal error about 1%. 

 

  

Figure 1.1. An illustration of terminologies used in INS and their interrelationship 

(Noureldin et al., 2013) 
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Table 1.4 Different Grade IMUs (El-Sheimy, 2013) 

Performance Navigation Grade Tactical Grade Consumer Grade 

Gyro drift rate (deg/hr) ≈0.015 0.1~10 100~3600 

Accel bias (mg) 0.05~0.1 0.2~1 100~500 

Price (USD) 150K~250K 100K~150K 10~100 

 

1.2.3 Visual Odometry (VO) and Industrial Camera 

Similar to INS, Visual Odometry (VO) is another self-contained navigation system using video 

cameras with detected and tracked (or matched) features. The pixel coordinate change of the 

tracked (or matched) features on consecutive images reflects the motion of the optical center. 

Industrial cameras are usually used in VO due to their light weight and good performance. The 

price of industrial cameras varies from several hundred to thousands of USD, based on their sensor 

format, resolution, frames-per-second (FPS), the capability of synchronization, etc.  

Several specifications of cameras have to be taken into consideration when they are utilized in 

visual odometry. The first things to be considered are the sensor format (or sensor size) and the 

focal length. The sensor format is the shape and size of the image sensor, and the focal length of 

the lens is the distance between the lens and the image sensor. Based on the application scenario, 

the approximate object distance is known. The sensor format, focal length and the object distance 

determine the field of view. The relationship among the focal length, object distance, field of view 

and the object distance can be simplified as  
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Figure 1.2 Sensor Format, Focal Length and Field of View 

Camera resolution defines how many individual pixels are available to record the actual scene, 

which describes both pixel count and pixel density. It is usually measured in megapixels (meaning 

millions of pixels) with width by height. The larger the resolution is, the more details can be 

presented on images due to more information being recorded by more pixels. The sensor format 

divided by the number of pixels is the unit pixel size. Larger pixel size can gather more photons in 

certain time, which means better performance in insufficient illumination circumstances.  

1.3 Literature Review and Limitations 

For multi-sensor integration, Soloviev and Miller (2012) proposed the navigation mechanization 

with a self-contained IMU as the core sensor while externally-dependent sources of navigation 

information are treated as secondary sensors. Wang et al., (2015) developed the integration 

stragergy without distinguishing the core sensor and secondary sensors. Most of the studies are 

based on the first architecture including this thesis. A considerable number of studies have 
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discussed the integration of INS and Stereo VO. Tardif et al., (2010) applied the rotation and 

translation estimated by visual odometry to correct the mechanization results obtained by inertial 

sensors in a loosely coupled integration. Carrillo et al., (2012) and Strelow (2004) used inertial 

and visual measurements to correct motion under certain assumptions. Bottasso et al. (2008) 

employed the inertial data to provide the information of the platform motion instead of assuming 

certain motion model. In this implementation, feature positions are also included in the filter state 

vector, which may increase the filter failure probability. Veth & Raquet, (2006) filtered out stale 

features whose tracking are lost for a given period to simplify the data association. Gopaul et al., 

ultilized multiple over-lapping image frames with time-differencing measurements to reduce the 

number of unknowns in the filter and optimize the integration results. Asadi and Bottasso (2014) 

summarized and compared the methods of tight integration of INS and Stereo VO. Xian et al. 

(2015) analyzed the impact of feature distance in the integration. Kong et al., (2015) utilized line 

measurements in addition to the point features. Usenko et al. (2016) excluded the feature position 

in the state vector. Most of these works focus on implementation in a self-defined local frame. 

Conventional INS error model in the local-level frame is seldomly used in the previous 

implementations. Liu et al, (2015) and Liu et al, (2017) proposed the implementation architecture 

of tightly coupled integration of INS/Stereo VO formed in the local-level frame for land vehicle 

navigation. 

However, few researcheres provide the implementation procedures of the tight integration of 

Stereo VO and INS, especially how the pixel coordinates of the features can be applied to estimate 

the errors in the state vector. Besides, most of the previous implementations are conducted in a 

self-defined local frame, which is not convenient for applications using geodetic coordinates. In 
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this thesis, how the pixel coordinates are used in the tight integration of INS and Stereo VO is 

derived and explained. In this implementation, 15 parameters are estimated in the Kalman filter 

including the errors in position, velocity, attitude and accelerometer, gyro biases. The difference 

between the predicted pixel coordinates based on the IMU and the actual measurements on the 

images is applied to estimate the errors. The IMU mechanization is conducted in the local-level 

frame and the matrices in the Kalman filter are illustrated in detail. The tight integration 

architecture is based on the IMU as the core sensor and it can be extended with GNSS by expanding 

the state vector with receiver clock error and receiver clock drift. In the integration of 

GNSS/INS/Stereo VO, the inertial measurements are applied all the time to provide the dynamic 

information of the land vehicle. When either GNSS or visual measurements are available, the 

measurements are applied in the Kalman filter to estimate the errors.  

Map Matching is another appealing way to reduce the accumulated errors in DR systems. Floros 

et al. (2013) adopted chamfer matching and particle filter to integrate Stereo VO and digital map. 

Specifically, the particles representing the land vehicle position are generated based on the VO 

results. Chamfer matching is applied to find out the most matched road link according to the 

trajectory. Then particle filter is used to optimize the localization. Mismatching may happen if the 

vehicle is traveling in an area where the shapes of road links are very similar to those around (e.g. 

mesh-like road links). Brubaker et al. (2013) proposed using visual odometry and digital map to 

determine the probabilistic location on the digital map. In this method, sample training is needed. 

In this work, The method proposed in this work is based on the INS/VO solutions and fuzzy logic 

Map Matching.The tight integration solution is directly projected on the digital map based on the 
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fuzzy logic algorithms, which avoids the sample training. Besides, mismatching can be greatly 

reduced.  

When the land vehicle is moving in open sky environment, GNSS dominates the system accuracy. 

High-precision GNSS positioning is the key to improving the accuracy of land vehicle navigation. 

PPP is an increasingly widely applied accurate method using just one receiver which saves the 

hardware cost and communications between the base and rover stations in RTK. PPP has been 

studied by many researchers in recent years (Abdel-salam, 2005; Bisnath & Gao, 2008; Gao Y, 

2002; Kouba & Héroux, 2001; Rizos et al., 2012; M. Wang, 2014; Zumberge et al., 1997). The 

main disadvantage of PPP is that it needs significant time to reach convergence. Fast ambiguity 

resolution (AR) is requested to reduce the convergence time. To recover the integer property of 

PPP ambiguities, Collins (2008) proposed the decoupled clock concept, Ge et al. (2007) developed 

the fractional cycle biases (FCB) product, and Laurichesse (2007) proposed the integer clock 

method. However, it still takes a few tens of minutes to obtain reliable ambiguity resolution if only 

with dual-frequency observations. This is because the large noise of code measurements leads to 

a long time smoothing with Melbourne-Wübbena (MW) combination (W.G., 1985; Wübbena, 

1985). Moreover, the narrow-lane (NL) ambiguities need more than ten minutes to be fixed due to 

short wavelength (Geng, Teferle, Meng, & Dodson, 2011). The current methods cannot fix the 

ambiguities in a short time. The method to accelerate the PPP ambiguity resolution still needs to 

be explored to make PPP suitable for applications. Balazadegan Sarvrood et al. (2017) adopted the 

Map Matching to project the PPP solution on an accurate digital map to accelerate the convergence. 

However, Map Matching to accelerate PPP AR is not discussed. In this thesis, PPP is tightly 
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integrated with Map Matching, which accelerates the PPP ambiguity resolution in kinematic mode. 

The implementation procedures are illustrated and field test results are presented and analyzed.  

1.4 Research Objectives and Contributions 

The main objectives of this thesis are to develop a tightly coupled GNSS/INS/Stereo VO 

integration system for land vehicle navigation with the IMU as the core sensor. When the GNSS 

signals are blocked, the tightly coupled INS/ Stereo VO method can still provide continuous 

solutions. The implementation details are presented and how the pixel coordinates of tracked 

features can be used in the estimation is illustrated. The system is also extended with GNSS when 

GNSS is available. Map Matching as another way of providing external position information for 

INS/ Stereo VO in GNSS denied environment is integrated to largely reduce the system drift. In 

addition, when the land vehicle is moving in open sky environment, the method of applying MM 

to aid PPP AR in kinematic mode is investigated. To fulfill the goals, the specific objectives are 

as follows:  

1. To derive and develop the method of tightly coupled integration of Stereo VO and INS. 

The tight integration utilizes the pixel coordinates on the images to limit the quick drift of 

INS. The method and the matrices in the Kalman filter need to be explored and illustrated. 

Field tests are needed to evaluate the system performance. 

2. To expand the tightly coupled Stereo VO and INS system with PPP. The integrated system 

will employ IMU as the core sensor for the Kalman filter. When either GNSS or visual 

measurements are available, the errors in the state vector can be estimated to improve the 

system accuracy. The system architecture needs to be explored. 
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3. To develop the integrated Stereo VO, INS and Map Matching system in GNSS denied 

environment. Map Matching is used to project the Stereo VO and INS solutions on the 

digital map and the projected points are used to largely reduce the accumulated errors. Field 

tests are needed to verify the effectiveness. 

4. To develop the fast PPP ambiguity resolution method in kinematic mode with the aid of 

Map Matching. Map Matching provides external position information by projecting the 

PPP solution on the digital map, which reduces the integer search space for PPP 

ambiguities.  

The major contributions of this thesis include: 

1. Development of a tightly integrated system for INS and VO to improve the system 

accuracy in GNSS denied environments. The implementation procedures of using pixel 

coordinates of tracked features on the images are presented in detail. 

2. Development of a tightly coupled integration scheme for GNSS PPP, INS and VO with 

IMU as the core sensor. The IMU acts as the core sensor to provide dynamic information 

of the navigation system while the GNSS pseudorange, carrier-phase and Doppler 

measurements together with the pixel coordinates of features captured by cameras are 

utilized to optimize the solution.  

3. Development of Map Matching (MM) integration with INS/Stereo VO system to provide 

absolute positioning information to further improve the navigation system accuracy 

without GNSS.  
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4. Implementation and analysis of fast PPP AR in kinematic mode with the aid of Map 

Matching. The MM has reduced the integer ambiguity search space, and the PPP 

ambiguities can be fixed in a short time after MM is conducted. 

1.5 Thesis Outline 

Chapter 2 introduces the fundamentals of different positioning systems used in this thesis including 

PPP, INS and VO. The error sources, float and fixed solution of PPP are introduced. The 

mechanization and error models of INS are reviewed. For Stereo VO, the used coordinate frames 

and the implementation procedures are illustrated. 

In Chapter 3, the integration scheme with IMU as the core sensor in this thesis is illustrated. The 

tightly coupled integration of INS and Stereo VO is illustrated in detail. The integration is also 

extended with GNSS, and the matrices are introduced.  

The fuzzy logic Map Matching is introduced in Chapter 4. The application of Map Matching with 

Stereo VO and INS integration system is presented, which effectively reduces the accumulated 

errors. The fast PPP AR method with the aid of MM is also investigated in this chapter. 

Chapter 5 provides the field test results. Datasets collected by KITTI are applied to verify parts of 

the proposed methods. Field tests in Calgary also proved the effectiveness of the methods 

proposed. Test settings in Calgary are explained in detail including the synchronization, 

calibration, etc. Analysis of the tests results using both datasets is provided. 

Chapter 6 summarizes the conclusions and provides the suggestions for the future work. 
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Chapter Two: FUNDAMENTALS OF NAVIGATION SYSTEMS USING GNSS PPP, INS 

AND STEREO VO 

The fundamentals of GNSS PPP, INS and Stereo VO are introduced in this chapter, including the 

GNSS error sources, PPP float and fixed solution, coordinate frames used in INS, INS 

mechanization and error models in the local-level frame, Stereo VO coordinate frames and 

implementation procedures.  

2.1 Precise Point Positioning 

Precise Point Positioning can achieve centimeter to decimeter level positioning accuracy using one 

single GNSS receiver with precise satellite orbit, clock products and advanced GNSS error 

calibration models (Navipedia, 2011; Zumberge et al., 1997). Compared with RTK, there is no 

spatial limit for PPP since it does not need to communicate with the base station. However, error 

source modeling for PPP is much more complex than the one for RTK. The error sources for PPP 

are illustrated in Section 2.1.1. After having applied of the error source models and IGS precise 

products, one can achieve centimeter-level float solution after convergence. Usually, it takes tens 

of minutes for PPP to reach convergence. PPP Ambiguity resolution (AR) can potentially reduce 

the convergence time and improve the positioning accuracy. 

2.1.1 GNSS Error Sources and Mitigation 

There are multiple error sources for GNSS positioning including the satellite orbit and clock errors, 

Sagnac effect due to earth rotation, relativistic effect with high satellite speed, atmosphere delay 

when passing through the atmosphere and site displacements on the ground. 
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2.1.1.1 Satellite orbit and clock 

International GNSS Service (IGS) provides different types of satellite orbit and clock products 

with different accuracies and latencies for GPS and GLONASS, which are summarized in Table 

2.1.  

Table 2.1 Satellite Orbit and Clock Errors (IGS 2017) 

Type Accuracy Latency Updates 
Sample 

Interval 

Broadcast 

orbits ~100 cm 

real time -- daily 

Sat. clocks 
~5 ns    RMS  

~2.5 ns SDev 

Ultra-Rapid  

(predicted half) 

orbits ~5 cm 

real time 
at 03, 09, 15, 21 

UTC 
15 min 

Sat. clocks 
~3 ns    RMS  

~1.5 ns SDev 

Ultra-Rapid 

 (observed half) 

orbits ~3 cm 

3 - 9 hours 
at 03, 09, 15, 21 

UTC 
15 min 

Sat. clocks 
~150 ps RMS  

~50 ps SDev 

Rapid 

orbits ~2.5 cm 

17 - 41 hours at 17 UTC daily 

15 min 

Sat. & Stn. 

clocks 

~75 ps RMS  

~25 ps SDev 
5 min 

Final 

orbits ~2.5 cm 

12 - 18 days every Thursday 

15 min 

Sat. & Stn. 

clocks 

~75 ps RMS  

~20 ps SDev 

Sat.: 30s  

Stn.: 5 min 

 

It can be seen from Table 2.1 that the accuracy of the widely used real-time broadcast ephemeris 

is about 1 meter, which cannot satisfy the requirement of PPP applications. The rapid and final 

products are accurate enough to be applied in post-mission PPP. The ultra-rapid (predicted half) 
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product is available in real time with orbit accuracy about 5 centimeters. However, the inaccurate 

satellite clock (45 cm) prevents the application in real-time PPP. To satisfy the increasing demands 

in real-time PPP, IGS announced the launch of Real-Time Service (RTS) (Inside GNSS, 2013), 

which provides the satellite orbit and clock corrections to the broadcast ephemeris as Radio 

Technical Commission for Maritime Services (RTCM) v3 State Space Representation (SSR) 

standard (IGS, 2010). The RTS accuracy was claimed as about 3 cm RMS for orbit and about 4.5 

cm STD for clock (IGS RTS Monitor, 2013). Apart from this, the Multi-GNSS EXperiment 

(MGEX) project can provide final precise ephemeris products for BeiDou, Galileo and QZSS 

systems (Montenbruck & Et.al, 2014; Rizos et al., 2013). 

2.1.1.2 Relativistic Effect 

Due to the high speed (about 4 km/s) of satellites at the altitude of about 20200 km with respect to 

the user receiver located on earth surface, the relativistic effect has to be taken into consideration 

for PPP (Xu, 2003), which is given as  
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where f is the satellite clock frequency in the inertial system on the ground; f’ is the signal 

frequency on the satellite; v is the speed of moving system; c is the light speed in the vacuum; ΔU 

is the earth’s gravitational potential difference between the satellite and the geoid. 

Since the fundamental frequency of satellite clock of GPS is f =10.23 MHz, according to Eq (2.1) 

and the assumption of a circular GPS orbit, the constant offset would be f – f’ = -0.00457 Hz, 

which has to be tuned before the satellite launch. However, the satellite orbit is eccentric, which is 
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not the same as the assumption. The gravitational potential and velocity of the satellite varies, 

which leads to an additional correction for the relativity correction as (Parkinson & Enge, 1996) 

c

vr
d ss

rel





2

                                                            (2.2) 

where drel is the relativity correction in meter; sr


and sv


 are the satellite position (m) and velocity 

(m/s) in the inertial system. The vector dot product could be evaluated in Earth-Centered, Earth-

Fixed (ECEF). 

Apart from this, the relativistic effect also has an impact on the signal propagation namely Shapiro 

delay. When GNSS signal passes through the Earth’s gravity field, the corresponding error 

generated can be given as (Xu, 2003) 
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                                        (2.3) 

where dShap is the Shapiro delay error in meter; GME is the earth gravitational constant; Rr is the 

geocentric distance of receiver (m); Rs is the geocentric distance of satellite (m); ρ is the geometric 

distance between the satellite and receiver (m). The combination of Eq (2.2) and Eq (2.3) would 

be the error corrected for relativistic effect on GNSS signals. 

2.1.1.3 Antenna Phase Center Offset and Variation 

Antenna Phase Center (APC) is the point where the GNSS signal is emitted or received. It varies 

with the orientation of the signal emitted or received. Antenna Reference Point (ARP) is usually 

used to represent the position. For example, the satellite antenna ARP is selected as the satellite 

Center of Mass (CM) and the receiver antenna ARP is usually selected as the center of the bottom 

surface of the receiver antenna. The offset between the APC and ARP is constituted of a mean 
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offset part and a variation depending on the signal orientation. The mean offset is called antenna 

Phase Center Offset (PCO) while the variation part is named Phase Center Variation (PCV). To 

achieve centimeter-level accuracy positioning, PCO and PCV have to be taken into consideration. 

Satellite and receiver PCO and PCV values are provided in an IGS atx file which can be 

downloaded from ftp://www.igs.org/pub/station/general.  

2.1.1.4 Phase Wind-up Effect 

Phase wind-up error exists in the phase measurements associated with the satellite and receiver 

antenna orientation due to the nature of circularly polarised waves intrinsic in the GNSS signals. 

For a static receiver, the phase wind-up error is generated due to the motion of satellites. This 

effect is generally neglected in differential positioning. However, it is significant for un-

differenced point positioning. The phase wind-up for satellite can be modeled as (Wu, et al,. 1992) 

  

 
  ykxkkxD

ykxkkxD

DD

DD
DDksign

d
N

Nd

Li

previous

LiwindLi










ˆˆˆ

ˆˆˆ

cos

2

)
2

(









































                                (2.4) 

where 
Liwindd is the phase wind-up correction on Li (in unit of meter); λLi is the wave length; dprevious 

is the phase wind-up effect at the previous epoch; the initial phase wind up can be set as 0; k


is 

the satellite to receiver unit vector; x

ˆ and y


ˆ are the first two components of the satellite body unit 

ftp://www.igs.org/pub/station/general
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vector ( x

ˆ , y


ˆ  , z


ˆ ) expressed in ECEF; x


ˆ  and y


ˆ  are the first two components of the receiver unit 

vector ( x

ˆ , y


ˆ , z


ˆ ) in east, north and up directions. 

2.1.1.5 Troposphere Delay 

When GNSS signal passes through the troposphere (0 to ~40 km above ground), it suffers non-

dispersive delay caused by the water vapor and gases. The troposphere delay can be divided into 

two main parts namely the wet and dry components. The wet component is caused by the lower 

part of troposphere which mainly consists of water vapor. Since the water vapor density in this 

part varies with position and time, the wet component is difficult to model. The dry component is 

caused by gases in both the lower part and higher part, which can be easily modeled (Ahmed El-

Rabbany, 2002). The wet and dry components of troposphere delay are usually modeled at zenith 

and then mapped to Line of Sight (LOS) direction by mapping functions, which can be given as  

drydrywetwettrop ZMZMd                                               (2.5) 

where dtrop is the troposphere delay (m); Mwet and Mdry are the wet and dry mapping functions 

respectively; Zwet and Zdry are the zenith wet and dry components (m) respectively. 

Different zenith models (e.g. Saastamoinen, Hopfield, Black-Eisner, etc.) and mapping functions 

(Davis, Chao, Marini, Niell, Global Mapping Function, etc.) have been widely used. One widely 

applied zenith model is Saastamoinen, which is given as  
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where P0 is the total surface pressure (mbar) at the receiver location; φ is the latitude of the 

receiver; H is the orthometric height of the receiver (km); T0 is the temperature in Kelvin and e0 is 

the water vapor pressure observed at the receiver location. With real pressure P0, the accuracy of 

modeled dry component can be at millimeter-level while the wet component cannot reach such a 

high accuracy. Therefore, the uncalibrated wet component is usually estimated in PPP together 

with other unknowns. One example for troposphere mapping function is Neill, given as  
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                                  (2.7) 

where ele is the satellite elevation; a, b and c are the empirical coefficients, which can be looked 

up in the table provided by Niell (1996). 

2.1.1.6 Ionosphere Delay 

The ionosphere is the higher part of the atmosphere (above 85 km from the ground). The ionized 

particles in the ionosphere would cause a dispersive-dependent effect on GNSS signals. Ionosphere 

advances the carrier-phase but delays the code measurements at the same frequency with the same 

magnitude. The ionosphere zenith error on code and phase measurements can be modeled as  
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where dionoP and dionoΦ (m) are the ionosphere effect on code and phase respectively; the three items 

on the right side of equations are first-, second- and third-order ionospheric errors; VTEC is the 
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vertical total electron content; f is the signal frequency; s2 and s3 are scalars related to the second- 

and third-order ionospheric errors. 

The first-order ionospheric error accounts for about 99.9% of the total ionosphere effect while the 

second- and third-order accounts for about 0.1% which can be neglected in PPP. When dual-

frequency observations can be received, based on Eq (2.9), the majority of ionospheric error can 

be removed by the combination of two different frequencies, given as  
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where PIF and ΦIF are the ionosphere-free code and phase measurements (in unit of meter). The 

first-order ionospheric error is eliminated in the combination. 

2.1.1.7 Sagnac Effect 

The time calculation in GNSS are performed assuming in an inertial system (Ashby, 2003). 

However, traveling from the transmitter to receiver, the signal obtained at the receiver location 

suffers a shift due to the movement of the receiver on earth surface with earth rotation, which needs 

to be carefully accounted for (Caligiuri & Sorli, 2014). 

The sagnac effect for GNSS signals can be written as (Parkinson & Enge, 1996) 
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                                                       (2.10) 

where dsagnac is the sagnac effect (m); rr


 is the geocentric vector of the receiver while sr


 is the 

geocentric vector of the satellite; rv


 is the velocity vector of the receiver; c is the light speed in the 

vacuum. 
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2.1.1.8  Site Displacements 

Site displacement is reffered to effects of earth elastic deformation due to time-varying surface 

loads. To be consistent with the commonly used reference frames such as ITRF2008, some 

periodic receiver site displacements have to be taken into consideration, including solid earth tides, 

the polar tides and the ocean loading. 

According to Kouba (2009), the solid earth tide can be expressed as  
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where 
tse

d   is the solid earth tide displacement vector; GME is the gravitation parameter of the earth; 

GMj is the gravitation parameter of moon (j=2) and sun (j=3); 
jR̂ and Rj are the geocentric unit 

vector of the moon (j=2) or the sun (j=3) and the magnitude of the geocentric vector; l2 and h2 are 

the nominal second degree Love and Sheba dimensionless numbers; rr̂  is the geocentric unit 

vector of the receiver; m is the order of the spherical harmonics; φ, λ and θg are the site latitude, 

longitude and the Greenwich Mean Sidereal Time. 

The ocean loading site displacement is caused by ocean tides on the underlying crust. Usually, 11 

tidal waves (e.g. the semi-diurnal waves M2, S2, K2 and N2; the diurnal waves O1, K1, P1 and Q1; 

the long-period waves Mf, Mm and Msa) are taken into account. The ocean loading displacement 

can be expressed as (Gérard & Luzum, 2010) 
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where 
lo

d   is the site displacement vector due to ocean loading in radial, west and south directions 

respectively; i represents the tidal waves introduced above; Aci and Φci are the amplitude and phase 

of the ith wave at a station; t is the computing time, ωi is the angular velocity of the ith wave; χi is 

the astronomical argument at time of 0 hour; fi and ui depend on the longitude of the lunar node.  

For polar tides, using the second degree Love and Shida numbers mentioned above, the model for 

latitude and longitude and height can be illustrated as (Kouba, 2009) 
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where 
tp

d   is the pole tide displacement in north, east and up directions;  pp xx   and  
pp yy   

are the pole coordinate variations from the mean polar (
px ,

py ) in arcseconds. The mean polar 

calculation can be found at IERS Conventions (Gérard & Luzum, 2010). 

2.1.1.9 Summary of Error Sources 

The magnitudes of the errors for GNSS signals and the corresponding mitigation tecchniques are 

are summerized in Table 2.2. Generally, the satellite orbit and clock can be compensated by using 

IGS precise products. The ionosphere delay can be largely reduced by forming ionosphere-free 

combination measurements. The troposphere delay can be first corrected by mathematical model. 

Then the residual wet delay at zenith can be estimated. The satellite and receiver antenna PCOs 

and PCVs can be compensated by applying the IGS atx file. The other types of error can be 

corrected by applying corresponding mathematical models illustrated in Section 2.1.1. 
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Table 2.2 Summary of GNSS Errors 

GNSS error sources Error impact Compensation approaches 

Orbit error of broadcast ephemeris ~1 m Use precise orbit product 

Clock error of broadcast ephemeris ~5 ns Use precise clock product 

Sagnac effect > 250 ns Eq (2.10) 

Relativistic effect on satellite clock ~2 m Eq (2.2) 

Relativistic effect on signal propagation ~1-2 cm Eq (2.3) 

Ionosphere 4~30 m Eq (2.9) 

Troposphere 3~15 m Eq (2.5) 

Satellite antenna PCO Up to 3 m IGS atx file 

Satellite antenna PCV 1~2 cm IGS atx file 

Receiver antenna PCO Up to 20 cm IGS atx file 

Receiver antenna PCV ~1 cm IGS atx file 

Phase wind-up > 0.1 cycles Eq (2.4) 

Solid earth tide ~ 30 cm Eq (2.11) 

Ocean tide <5 cm Eq (2.12) 

Pole tide <2.5 cm Eq (2.13) 

 

2.1.2 PPP Float Solution 

With the IGS precise products and error models introcued in the previous section, Precise Point 

Positioning (PPP) using ionosphere-free (IF) code and carrier-phase observations can achieve 

centimeter-level accuracy after convergence (Navipedia, 2011; Zumberge et al., 1997). The 
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obtained PPP solution is called float solution since the estimated ambiguities are real numbers and 

cannot be decomposed as integers. The PPP float ambiguities take tens of minutes to reach 

convergence and the biases are absorbed into the ambiguities. The details are introduced as 

follows. After applying the error source models in Section 2.1.1, the undifferenced ionosphere-

free code and carrier-phase observation model can be formed as  
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             (2.14) 

where PIF and ΦIF represent the undifferenced dual-frequency ionosphere-free (IF) code and 

carrier-phase measurements (m), f1 and f2 represent the L1 and L2 frequencies, P1, P2 and Φ1, Φ2 

are L1 and L2 code and phase measurements (in unit of meter) respectively, ρ is the geometric 

range between the receiver and satellite, c is the speed of light in the vacuum, cdt
s 

PIF
 (satellite code 

clock error), cdt
s 

ΦIF
 (satellite phase clock error), cdt

r 

PIF
 (receiver code clock error), and cdt

r 

ΦIF
 (receiver 

phase clock error) are functions of the actual satellite clock error dts, receiver clock error dtr, 

satellite dual-frequency IF code and phase biases b
s 

PIF
, b

s 

ΦIF
 and receiver dual-frequency IF code and 

phase biases b
r 

PIF
, b

r 

ΦIF
. T is the tropospheric delay, ε(PIF) and ε(ΦIF) are the noise including multipath 

of dual-frequency IF code and carrier-phase measurements, AIF represents the dual-frequency IF 

ambiguities (in the unit of meter), which can be given as  
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where N1 and N2 are the integer ambiguities of L1 and L2 frequencies, NWL is the wide-lane integer 

ambiguity formed by N1 and N2, λNL and λWL represent the narrow-lane (NL) and wide-lane (WL) 

wavelength formed by L1 and L2. 

In PPP float solution estimation, the satellite code clock error (cdt
s 

PIF
) is provided by IGS precise 

clock products, and the receiver position, tropospheric delay, receiver code clock cdt
r 

PIF
, together 

with the float ambiguities are estimated. The precise satellite phase clock (cdt
s 

ΦIF
) is not used in float 

PPP. If only one receiver clock is estimated, the differences between the receiver code and phase 

biases, together with the satellite code and phase bias difference are absorbed into float ambiguities, 

The carrier-phase observation can be rewritten as 
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where A'IF is the float ambiguities (in unit of meter). It can be seen that the IF float ambiguities 

cannot be decomposed as the combination of wide-lane and N1 ambiguities as in Eq (2.15), due to 

the absorbed biases namely (b
r 

ΦIF
-b

r 

PIF
)-(b

s 

ΦIF
-b

s 

PIF
). 

2.1.3 PPP Fixed Solution 

The main disadvantage of PPP float solution is that it needs significant time to reach convergence. 

If the PPP ambiguities can be fixed, the solution could get converged immediately after ambiguity 

resolution. PPP ambiguity resolution (AR) can also potentially improve the positioning accuracy 
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and the system reliability. Since the biases of satellites and receivers are absorbed into the float 

ambiguities, the PPP ambiguities are no longer integers anymore. PPP AR has to recover the 

integer property of the ambiguities to achieve the PPP fixed solution. Currently, there are three 

widely applied methods to obtain integer PPP ambiguities, namely uncalibrated phase delay 

method (Ge et al., 2007), the integer phase clock method (Laurichesse, D., Mercier, 2007) and 

decoupled clock model (Collins, 2008). All the methods aim to recover the integer property of 

ambiguities since the biases cannot be eliminated without double differencing in PPP.  

It can be seen from Eq (2.15) and Eq (2.16) that the IF ambiguities can be decomposed as wide-

lane ambiguities and N1 if the biases absorbed in the IF float ambiguities can be eliminated. To 

eliminate the biases absorbed into the IF ambiguities, Ge et al. (2008) proposed the single-

difference between-satellite method in which the receiver biases are eliminated by single-

difference while the satellite biases are estimated by a network. The estimated biases are then 

broadcasted to users to correct the raw measurements. In this way, the IF ambiguities contain no 

biases anymore. Besides, Collins (2008) and Laurichesse et al. (2009) also proposed decoupled 

clock and integer phase clock model respectively. In both methods, the precise satellite phase clock 

(cdt
s 

ΦIF
) is estimated using different methods through a global network. With the provided the 

precise satellite phase clock (cdt
s 

ΦIF
), the biases in the float IF ambiguities can be removed. Shi and 

Gao (2014) compared these three main PPP ambiguity resolution methods and concluded the 

mathematical equivalence of them. This thesis does not aim to generate the precise products at the 

server end. Therefore, only the implementation of PPP ambiguity resolution at the user end is 

presented. As an analysis center of IGS, Center National d’Etudes Spatiales (CNES) provides 
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regular precise phase clock products for users worldwide. In this thesis, the PPP AR method using 

the integer clock product by CNES is implemented. 

With the integer clock product provided by CNES, the satellite phase clock error is available, 

which means that the IF code and phase observation model in Eq (2.16) can be formed and the IF 

ambiguities can be resolved by N1 and NWL as shown in Eq (2.15). N1 can be called as NL 

ambiguities as well since the coefficient for N1 is the NL wavelength. In order to avoid setting two 

receiver clocks (code and phase) in implementation as indicated in Eq (2.14), single-difference 

between-satellite operator (Δ) can be applied to eliminate the receiver-related errors, given as  
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The wide-lane ambiguity in Eq (2.15) can be obtained by forming the Melbourne-Wübbena (MW) 

combination, the corresponding single-difference between-satellite wide-lane ambiguity can be 

achieved as follows. 
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It can be seen that if the wide-lane bias Δb
s 

MW is available, the wide-lane integer ambiguity can be 

calculated. The wide-lane biases are also included in the precise satellite phase clock product 

provided by CNES. After solving the wide-lane ambiguities in Eq (2.18), with the IF ambiguities 

obtained by Eq (2.17), N1 can be fixed using Least-squares AMBiguity Decorrelation Adjustment 

(LAMBDA) method. According to Eq (2.15), the N1 ambiguities can be calculated as  

2
1

1 2

ˆˆ ( ) /IF WL WL NL

f
N A N

f f
     


                                    (2.19) 

where ΔȂIF is the IF ambiguities obtained by Eq (2.17) with covariance matrix QȂ
IF 

, ŇWL is the 

fixed wide-lane ambiguities by Eq (2.18). Therefore, the variance-covariance matrix for N1 

ambiguities can be given as  

IFA
NL

N
QQ ˆ2ˆ

1

1 
                                                     (2.20) 

The N1 ambiguities by Eq (2.19) and their variance-covariance matrix by Eq (2.20) are the input 

of LAMBDA method. According to Teunissen (1997) and Geng & Bock (2013), the ambiguity 

search space would approximately be inverse to the carrier-phase wavelength, which means that 

the search space for N1 is relatively large and it takes time to fix the N1 in PPP AR.  

2.2 Inertial Navigation System 

INS is a dead-reckoning navigation system providing the current state (position, velocity and 

attitude) based on the previous states and current inertial measurements. IMU is the core 

component of INS consisting of three gyros and three accelerometers. The attitude of the system 

can be determined by the gyro measurements. The accelerometers can measure the acceleration in 

the body frame, which can be transformed to a specific frame based on the current attitude. With 
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the previous state and the acceleration, the velocity and translation within a specific frame can be 

generated. The mechanization is implemented in the local-level frame in this thesis. The 

mechanization involves multiple coordinate frames which are introduced first in Section 2.2.1. 

When INS is integrated with other systems, the INS error formulation needs to be derived, which 

is presented in Section 2.2.3. 

2.2.1 Coordinate Frames and Transformation 

The coordinate frames involve in the INS mechanization are Earth-Centered Inertial (ECI) frame, 

Earth-Centered Earth-Fixed frame (ECEF), local-level frame (LLF) and body frame. 

Earth-Centered inertial frame (ECI or i-frame): the origin is the earth’s center of mass. The X 

axis is pointing towards the mean vernal equinox, the Z axis is aligned with the earth’s spin axis, 

and the Y axis is orthogonal to X and Z axes completing the right-handed coordinate system. ECI 

is not exactly inertial since the earth center of mass itself is accelerating as it travels in its orbit. 

ECI is assumed inertial without rotating and accelerating. 

Earth-Centered Earth-Fixed frame (ECEF or e-frame): the origin is the earth’s mass center 

with X axis pointing to the mean meridian of Greenwich, Z axis parallel to the mean spin axis of 

the earth, Y axis completing the right-handed coordinate system. 

Local-Level frame (LLF or l-frame): it is a local geodetic frame with origin coinciding with the 

sensor center, X, Y and Z axes pointing towards the geodetic east, north and up respectively. 

Body frame (b-frame): the origin is the center of IMU, X axis points towards the right of the 

carrier in which the IMU is installed, Y axis points towards the forward direction of the carrier and 

Z axis completes the right-handed coordinate system. 
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Figure 2.1 Coordinate Systems 

The transformations between the body frame and the LLF are frequently used in the IMU 

mechanization, which is explained as follows. 

With Euler angles describing the attitude, the transformation direction cosine matrices (DCM) 

transforming the vector in body frame to local-level frame can be denoted as  
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where Ri (i=1, 2, 3) are elementary rotational matrices with respect to X, Y and Z axes respectively; 

b, l represent the body frame and LLF; r, p and y represent the roll, pitch and yaw respectively.  

2.2.2 INS Mechanization 

INS Mechanization is the process of converting the rotation rates and specific forces measured by 

the IMU into position, velocity and attitude. INS mechanization can be conducted in i-frame, e-

frame or l-frame. In this study, the INS mechanization is carried out in l-frame. 

The geodetic coordinates of the moving object are used to express the position, given as  

 Tl hr                                                        (2.22) 

where φ, λ, h are the latitude, longitude and ellipsoidal height respectively. The velocity is denoted 

in east, north and up as 

 Tune

l vvvV                                                    (2.23) 

The change rate of latitude, longitude and height can be denoted as  
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where Rm and Rn represent the meridian radius of curvature and the radius of curvature of the prime 

vertical respectively.  
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Figure 2.2 INS Mechanization (El-Sheimy, 2013) 

The general procedure is shown in Figure 2.2. In the figure, Ω
b 

ib is the skew-symmetric matrix of 

ω
b 

ib namely the angular rate vector sensed by the gyroscope triad, ω
l 

ie and ω
l 

el are the earth rotation 

rate projected in the local-level frame and the transport rate caused by the orientation change of 

the local-level frame respectively, ω
l 

il is the sum of the ω
l 

ie and ω
l 

el. It can be seen that to update the 

velocity and position, the specific forces measured by the accelerometers in the IMU body frame 

have to be first transformed to the local-level frame. The update of the rotation matrix from body 

frame to local-level frame can be given as 

 b

il
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ib
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b

b

lb
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l

b RRR                                             (2.25) 

where dot represents the time derivatives, and the superscripts ‘l’ and ‘b’ represent the local-level 

frame and IMU body frame, R
l 

b is the rotation matrix from body frame to the local-level frame 

matrix in Eq (2.21), Ω
c 

ab is the skew-symmetric matrix of the rotation rate ω
c 

ab, which represents the 
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rotation rate of frame ‘b’ relative to frame ‘a’ expressed in frame ‘c’. The Ω
b 

ib is the gyro output of 

IMU while Ω
b 

il  can be given as  
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il RRRR                                   (2.26) 

It can be seen from Figure 2.2, Ω
l 

ie and Ω
l 

el can be obtained from the current position and velocity, 

given as  
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where ωe is the earth rotation rate. After updating the rotation matrix, the specific forces can be 

transformed into the local-level frame. However, the transformed specific forces cannot be applied 

directly to calculate the acceleration. The Coriolis force of earth rotation (2Ω
e 

ieV
l) and the influence 

caused by the orientation change of the local-level frame (Ω
e 

elV
l) need to be removed from the 

transformed specific forces. Besides, the normal gravity has to be taken into consideration as well. 

Therefore, the acceleration in local-level frame can be given as  

  lll

el

l

ie

bl

b

l gVfRV  2                                        (2.28) 

where fb is the specific forces measured by IMU in its body frame, gl is the normal gravity in the 

local-level frame. Combining Eq (2.22) ~ (2.28), the mechanization process can be summarized 

as  
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where D-1 is the relationship between the position rate and the velocity in LLF, which is shown in 

the Appendix A.  

2.2.3 INS Error Formulation 

It is necessary to know the error accumulation with time in INS. Error-state Kalman filter is widely 

applied to mitigate the quick drift of INS when integrated with other systems. The INS errors need 

to be estimated in the integration with other systems to improve the overall performance. The INS 

errors can be derived from the mechanization process in Eq (2.29). 

Eq (2.29) can be linearized to achieve the dynamic information of the system errors (Noureldin et 

al., 2013) , given as  
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where δ represents the error of corresponding parameters; εl represents the attitude error in the 

local-level frame, namely pitch, roll and yaw errors; δfb and δωb are the accelerometer and gyro 

biases. After removing the deterministic parts of the inertial sensor biases, it is common to model 

the residual stochastic part as a first-order Gauss-Markov process. In the above equation, α and β 

are 3×3 matrices representing the reciprocal of the correlation time of the accelerometer and gyro 

biases respectively, G is the shaping matrix and w represents the driving white noise for the state 
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vector. The submatrices in Eq (2.30) are presented in Appendix A. In this thesis, the scale factors 

are not estimated in the state vector since it would not improve the accuracy too much with MEMS 

IMU appled. 

2.3 Stereo Visual Odometry 

VO is another widely applied dead-reckoning system using the continuously tracked (or matched) 

features on consecutive images with cameras. Based on the geometry change of static objects and 

perspective center, the motion of the optical center between two epochs can be calculated by the 

feature pixel coordinate variation on consecutive images. The accumulation of the motion between 

consecutive epochs generates the motion with respect to the beginning. In this thesis, pin-hole 

camera model is adopted, which is illustrated in the figure below. The projection of object P is the 

intersection of the beam from P to the optical center and the image plane.  

 

Figure 2.3 Camera Pin-hole Model 

Similar to INS, the Stereo VO implementation involves transformation between different 

coordinate frames, which is introduced in section 2.3.1. Then, the implementation procedures are 

illustrated in section 2.3.2 
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2.3.1 Coordinate Frames and Camera Modeling 

Image frame: the origin of the image frame is defined as the left-up corner of the image. The X 

axis and Y axis point to the right and down directions of the image respectively.  

Camera frame: the origin of camera frame is the perspective center C of the camera, as in the 

figure above. The X and Y axes are parallel to the X and Y axes of image frame. The Z axis points 

to the forward direction of the camera to complet the right-handed coordinate system. The 

projection of perspective center on the image is called the principal point.  

World frame: it is defined as the camera frame at the first epoch in this thesis. 

The pixel coordinate (u, v) of a point (Xc, Yc, Zc) in camera frame can be given as 
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fx, fy are the focal length of each image axis, (u0, v0) is the coordinate of the principal point on the 

image, (u, v) is the pixel coordinate of a feature projected on the image. 

For a point denoted in the world frame, it needs to be first transformed to the  current camera frame 

in order to form the Eq (2.31). The transformation of the coordinates in the world frame to the 

current camera frame can be expressed as  

    Twww

T

ccc ZYXtRZYX 1| 1333                            (2.32) 

where (Xw, Yw, Zw) is the point coordinate in the world frame, R3x3 and t3x1 are the rotation matrix 

and translation matrix which transform the coordinate in the world frame to the current camera 

frame. R3x3 and t3x1 can be obtained by accumulation of the estimated rotation and translation 

between consecutive epochs in VO.  
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As shown in Figure 2.3, with the image coordinates on one image, it is impossible to determine 

the object position in the camera frame. Only the orientation information is known with a 

monocular camera because the object could lie on any positioning along the ray. However, if stereo 

cameras are applied, the object coordinates in camera frame can be determined by triangulation of 

two rays, as shown in Figure 2.4.  

 

Figure 2.4 Projection of Stereo Cameras 

The depth ambiguity can be eliminated by the intersection of two rays from the left and right 

perspective centers. As shown in Figure 2.4, the line C1-C2 is parallel with the X axis and two 

image plane coincides when two images are rectified. The projection on the left and right image 

can be rewritten as  
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                   (2.33) 

where (Xc, Yc, Zc) is the point coordinate in the left camera frame; B is the baseline length between 

the two perspective centers C1 and C2.  

2.3.2 Stereo VO Steps 

When stereo cameras are rigidly mounted on a platform, the coordinates of the platform in the 

world frame can be calculated using Stereo VO algorithms. After having captured the image 

sequences, the Stereo VO implementation procedures can be divided into three main steps namely 

feature detection and tracking (or matching), motion estimation and local optimization. 

2.3.2.1 Feature Detection and Tracking (Matching) 

Feature detection and tracking (or matching) methods have been proposed by many researchers 

(Bay, Tuytelaars, & Van Gool, 2006; David G Lowe, 2004; Lucas & Kanade, 1981; Rosten & 

Drummond, 2006; Jianbo Shi, 1994; Carlo Tomasi & Kanade, 1991). Generally, the methods can 

be divided into two main categories. In the first category, optical flow algorithm is applied to track 

the features without descriptors. For example, Harris corner (Harris & Stephens, 1988) can be used 

to detect the corners or edges, and Kanada-Lucas-Tomasi (KLT) tracker (Lucas & Kanade, 1981; 

Shi, 1994; Tomasi & Kanade, 1991) can track the detected features based on optical-flow 

algorithms. The other category assigns a descriptor for each detected feature, based on which the 

features can be matched in subsequent images. Scale-Invariant Feature Transform (SIFT) (Lowe, 
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2004), Speeded-Up Robust Feature (SURF) (Bay et al., 2006) and Features from Accelerated 

Segment Test (FAST) (Rosten & Drummond, 2006) are widely used methods with a descriptor.  

Different methods have their own advantages and disadvantages. For instance, SIFT is accurate, 

stable and robust to scale and rotational variance. However, the processing speed of SIFT is too 

slow for visual odometry. Since feature detection and tracking (or matching) is not the focus of 

this thesis, only the KLT tracking method is introduced here. 

According to Baker & Matthews (2004), the goal of the KLT algorithm is to minimize the sum of 

squared errors between two images, given as  

      
x

xTpxWI
2

;min                                             (2.34) 

where x represents the image coordinates of features (u, v); I(x) is the input image namely the 

image at current epoch; T(x) is the template image namely the image at the previous epoch; W (x; 

p) denotes the parameterized set of allowed warps where p=(p1,…, pn)
T is the parameter vector. 

W(x; p) varies with different displacement models. Some examples are given in Table 2.2. 

Table 2.3 Warp Functions between Consective Images 
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Eq (2.34) needs be linearized at an initially estimated p0, and the correction for p0 can be iteratively 

solved using the equation below 
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0
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0 ;min;min     (2.35) 

where I  is the gradient of the image I evaluated at  0; pxW ; pW  /  is the Jacobian of the 

warp, which can be achieved by calculating the derivatives of the W(x;p) with respect to the 

parameters in Table 2.2. Eq (2.35) means to seek for a Least-Square solution of dp, which can be 

given as   
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where H is the Hessian matrix, which can be given as  
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Eq (2.34) ~ (2.37) can be repeated using the latest estimated p for better linearization until the dp 

is less than a threshold. Then p can be updated based on the previous p0 and the estimated dp as 

p=p0+dp.  

2.3.2.2 Motion Estimation 

After having found correspondences in consecutive epochs, the optimal ego-motion estimation can 

be achieved by minimizing the re-projection errors of the tracked features. The procedure is 

introduced in the following. Since stereo cameras are used, as illustrated before, with 

correspondences in stereo images, the feature coordinates in camera frame can be obtained by 

triangulation, which can be simplified as  



 

49 

 

1 0 1 2

1 0 1 2

1 2

( ) / ( )

( ) / ( )

/ ( )

c

c

c

X u u B u u

Y v v B u u

Z fB u u

    
   

  
   
      

                                        (2.38) 

where the parameters are the same as in Eq (2.33). Using Eq (2.38), the feature coordinates in the 

previous camera frame can be obtained. The ego-motion of the cameras can be estimated based on 

the 3D feature coordinates in the previous camera frame and the tracked feature pixel coordinates 

in the current image frame, which is called resectioning in Stereo VO. In resectioning, the rotation 

and translation of the camera need to be estimated. With the rotation and translation, the 3D feature 

coordinates in the previous camera frame can be transformed to the current camera frame, and the 

features can be re-projected on the current image frame. The three Euler angles and the translation 

vector to be estimated are set as α, β, γ and tx, ty, tz. By combining Eq (2.31) ~ (2.38), the re-

projection of the tracked (or matched) features on the current image can be given as  
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where [Xprevious, Yprevious, Zprevious]
T is the feature coordinate vector in the previous camera frame 

obtained by triangulation; [Xcurrent, Ycurrent, Zcurrent]
T is the transformed feature coordinate in the 

current camera frame R(α, β, γ) is the rotation matrix from the previous camera frame to the current 

camera frame formed by three Euler angles, which can be given as 
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When the current image pixel coordinates of the features are available, the rotation and translation 

can be estimated using least square by minimizing the re-projection errors of the features  

  PlHPHHx TT 1
                                                  (2.41) 

where δx is the correction vector estimated for the Euler angles and the translation vector, namely, 

δx = [dα dβ dγ dtx dty dtz]
T; P is the weight matrix of the measurements which can be set as identity 

matrix in this case; l is the misclosure vector and H is the design matrix, which can be expressed 

as  
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           (2.42) 

where (umi, vmi) (i=1, 2, …, n) is the ith measured pixel coordinate in current epoch; (u'i, v'i) (i=1, 

2, …, n) is the ith re-projection pixel coordinate based on the rotation and translation; huαi, huβi, huγi, 

hutxi, hutyi, hutzi are the elements of the design matrix of the ith um with respect to the six unknowns 

respectively; hvαi, hvβi, hvγi, hvtxi, hvtyi, hvtzi are the design matrix elements of the ith vm with respect 

to the six unknowns respectively. The design matrix elements hupi (p=α, β, γ, tx, ty, tz; i=1, 2, …, n) 

can be derived as follows 
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where X
i 

current and Z
i 

current (i=1, 2, …, n ) stand for the coordinates of the ith transformed feature in X 

and Z components in the current camera frame using the initial values α0, β0, γ0, tx0, ty0 and tz0.; the 

partial derivatives of u with respect to X
i 

current and Z
i 

current can be given as  
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and the partial derivatives of X
i 

current and Z
i 

current with respect to α, β, γ, tx, ty, tz can be given as 
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where α0, β0 and γ0 are the initial values of α, β and γ; X
i 

previous, Y
i 

previous and Z
i 

previous (i=1, 2, …, n) are 

the ith feature coordinates in the previous camera frame obtained by triangulation. Similarly, the 

design matrix elements hvpi (p=α, β, γ, tx, ty, tz; i=1, 2, …, n) in Eq (2.42) can be derived as follows 
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where Y
i 

current and Z
i 

current (i=1, 2, …, n) stand for the ith transformed feature coordinates in Y and Z 

components in the current camera frame; the partial derivatives of v with respect to Y
i 

current and  

Z
i 

current can be given as  



 

53 

 

i

current

y

i

current Z

f

Y

v





   

 2i

current

y

i

current

i

current Z

fX

Z

v





                             (2.47) 

and then the partial derivatives of Y
i 

current with respect to α, β, γ, tx, ty, tz can be given as 
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(2.48) 

The corrections of the rotation and translation parameters dα, dβ, dγ, dtx, dty and dtz to the initial 

values (α0, β0, γ0, tx0, ty0 and tz0) can be obtained using the Eq (2.38) ~ (2.48) iteratively until the 

corrections become less than a threshold. The final rotation and translation parameters can be 

achieved by adding their initial values and the corresponding corrections. The motion of the stereo 

cameras can be achived by accumulating the rotation and translation obtained between consective 

epochs introduced above. 

2.3.2.3 Local Optimization 

It is inevitable that some features are incorrectly tracked (or matched) using the method introduced 

in Section 2.3.2.1, which would lead to inaccurate motion estimation. To remove the outliers, the 

RANdom SAmple Consensus (RANSAC) algorithm is usually used. The RANSAC 

implementation steps can be summarized as follows. Firstly, a certain number of the tracked (or 

matched) features are randomly selected to perform the resectioning illustrated in Section 2.3.2.2 
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to calculate the rotation and translation. Secondly, all the tracked (or matched) features are re-

projected on the current image using the calculated rotation and translation in the first step. Thirdly, 

the number of inliers with the calculated rotation and translation is recorded. The re-projection 

error of a tracked point needs to be within a threshold. Fourthly, the above procedures with 

randomly selected features are repeated many times (e.g. 200 times) and the one with the maximum 

number of inliers is treated as the correction rotation and translation. Meanwhile, the outliers are 

filtered out. Finally, the rotation and translation are recalculated based on the inliers obtained.  

 

Figure 2.5 Image Sequence 

After the application of RANSAC, relatively reliable rotation and translation from the previous 

camera frame to current camera frame can be achieved. The rotation and translation with respect 

to the first epoch can be obtained by the accumulation of the rotations and translations between 

two consecutive epochs. However, in this way, the solution drifts quickly because the ego-motion 

estimation between two consecutive epochs is independent of each other and there is no constrains 

among them. To solve this problem, many researchers apply windowed bundle adjustment to 

optimize the solution within several epochs.  
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As illustrated in Figure 2.5, the bundle adjustment is performed using multiple images with 

commonly tracked (or matched) features. Usually, the 3D coordinates of the used features are the 

triangulation results when the features are first detected and matched in stereo images because 

solution drifts with time and earlier obtained 3D coordinates are more reliable.  
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Chapter Three: DEVELOPMENT OF A TIGHT INTEGRATION SYSTEM FOR LAND 

VEHICLE NAVIGATION USING IMU, STEREO VO AND GNSS PPP 

The fundamentals of PPP, INS and Stereo VO have been illustrated in the previous chapter. In this 

chapter, the multi-sensor integration strategy with IMU as the core sensor is introduced. Kalman 

filter is applied to fuse the inertial measurements with other types of aiding measurements. In 

general, the INS provides the dynamic information of the platform while the other systems are 

applied to correct the errors and optimize the solution. 

3.1 Multi-sensor Integration with IMU as the Core Sensor 

IMU is a self-contained sensor that can work in most circumstances, which makes it suitable to be 

applied as a core sensor in an integrated navigation system. When other types of measurements 

can be received, all the data are fused in an Extended Kalman filter (EKF). The Kalman filter deals 

with the linear system, which means that the non-linear integrated system model needs to be 

linearized. If the linearization is based on the states from the previous epoch, the filter is referred 

as an Extended Kalman filter (EKF). The EKF procedures after linerization can be summarized as 
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                                       (3.1) 

where the subscripts k and k-1 represent the current epoch and the previous epoch; X
- 

k  is the prior 

state vector; wk-1 is the process noise vector; P
- 

k is the predicted matrix of the estimation covariance 

of the state vector; Φk,k-1 is the transition matrix; Qk-1 is the covariance matrix of the process noise 

; Kk is the gain matrix; Hk is the design matrix; Rk is the covariance matrix of the measurements; 
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Zk is the measurement vector; I is the identity matrix; Xk is the posterior state vector; Pk is the 

corrected matrix of the estimation covariance of the state vector;. 

In this thesis, the errors of the current kinematic states are estimated in the state vector, given as  

 Tbblll

INS fVrX                                        (3.2) 

where XINS is the state vector related to the INS mechanization errors, 
lr  is error of geodetic 

coordinates,
lV , 

l are the velocity and attitude errors in LLF, bf and 
b  are the 

accelerometer and gyro biases in the body frame.  

Generally, there are three main integration strategies namely loose integration, tight integration 

and deep integration. The integration level of three methods is updated from loose integration to 

deep integration. Loose integration is the easiest to be implemented since it requires each system 

can work independently and only the outputs of each system are fused to achieve the optimal 

results. The tight integration is conducted at measurement level while the deep integration is at the 

hardware level. The deep integration is normally implemented by the equipment manufacturers 

(e.g. receiver for signal tracking), which is not discussed in this thesis.  

3.1.1 Loose Integration 

In loose integration, each system operates independently to estimate the position, velocity or 

attitude. The position, velocity or attitude solutions estimated form INS and other systems (e.g. 

GNSS, VO) are fused in a filter to output the integration solution and correct the inertial errors. 

The general processing procedures are illustrated in Figure 3.1. It can be seen in the figure that the 

estimated errors using the filter are used to compensate for the INS mechanization results, which 

is referred as closed-loop approach. The closed-loop approach is usually adopted for low-cost 
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MEMS IMU, of which the mechanization errors accumulate rapidly. In contrast to the closed-loop 

approach, in open loop approach, the INS mechanization operates without any feedback from the 

integration filter. Applications using navigation grade IMUs can adopt the open-loop approach 

because of small error propagation. 

 
Figure 3.1 Scheme of Closed-Loop Loose Integration 

According to the loose integration scheme, the dynamic matrix in the filter keeps the same as 

shown in Eq (3.2) while the measurements are the differences between the INS solution and the 

aiding source derived solution. With small time interval between two consecutive epochs, the 

transition matrix can be approximated as  

tFIe tF

kk  

1,
                                                (3.3) 

where I is the identity matrix; F is the dynamic matrix; Δt is the time interval between two 

consecutive epochs.  

The loosely coupled integration is easier to be implemented because of smaller dimension of the 

state vector and simpler scheme, compared to tightly coupled integration. However, it requires 

independent operation of each individual system. If the aiding sources fail to provide the 
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continuous solution in harsh environments, the performance of the integrated system degrades 

greatly.   

3.1.2 Tight Integration 

The difference between the loosely coupled and the tightly coupled integration is that the solutions 

of different systems are fused in the loose integration while the raw measurements are applied in 

the tight integration directly. The tight integration is achieved at a deeper level and more 

complicated using a centralized integration filter. However, the tight integration has its own 

advantages. All the information can be fully applied in the tight integration, and better outlier 

detection is possible in the tight integration. 

Within the tight integration architecture, the raw measurements from the aiding sources (e.g. code, 

carrier-phase and Doppler measurements from GNSS) are directly processed in an integration 

filter, as shown in Figure 3.2. Different from the loose integration, the inputs of the integration 

filter are the INS-derived aiding source measurements and the raw measurements of the aiding 

source instead of the direct navigation solutions. 

 
Figure 3.2 Scheme of Closed-Loop Tight Integration 
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The integration filter directly processes the measurement differences of different sensors and 

outputs the estimated errors. Similar to the loosely coupled integration, the tightly coupled 

integration can be implemented in both open-loop and closed-loop approaches as well. The 

corrected solution can be obtained by correcting the initial INS mechanization results with the 

estimated errors in closed-loop approach. 

When integrated with external sensors, external measurement related unknowns have to be 

included in the state vector if necessary. For instance, the receiver clock error or clock drift has to 

be estimated if GNSS raw measurements are used. If PPP algorithm is used, the phase ambiguities 

and troposphere delay need to be included as well. The extended state vector can be denoted as  

 TexternalINSk XXX                                                     (3.4) 

where Xk is the state vector in Eq (3.1); Xexternal is the augmented parameters for the measurements 

from the aiding sources. The dynamic matrix of the INS mechanization is provided in Eq (2.29). 

The extension of the dynamic matrix with external sensor related elements in state vector can be 

given as  











external

l

F

F
F

0

0
                                                       (3.5) 

where Fl is the dynamic matrix in Eq (2.30); Fexternal is the dynamic matrix for the augmented 

parameters. As shown in Figure 3.2, the measurements of Kalman filter are the differences between 

the external measurements and the INS-derived measurements. Therefore, the measurements Zk is  

 measuredderivedk ZZZ                                                (3.6) 

where Zderived is the INS-derived measurement vector while Zmeasured is the external measurement 

vector. The INS-derived measurement vector is calculated based on the kinematic state (e.g. 
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position, velocity and attitude) obtained from the mechanization results in current epoch using Eq 

(2.29). Fexternal, Hk, and R matrices are based on the external measurements applied, which will be 

specified in the following part of this chapter. 

In this thesis, the tight integration with IMU as the core sensor while GNSS and Stereo VO as 

aiding sources is investigated. Kalman filter is adopted as the integration filter to fuse different 

types of datasets. The core sensor IMU provides the dynamic information of the platform. When 

either GNSS or visual measurements are available, different types of measurements are fused in 

the Kalman filter to obtain the optimized solution. For GNSS, the pseudorange, carrier-phase and 

Doppler measurements are applied, and for Stereo VO, the pixel coordinates on the stereo images 

are utilized in a centralized Kalman filter. The derivation of how pixel coordinates can be used to 

integrate with INS using Kalman filter is illustrated in this chapter. If GNSS is not available, the 

tight integration of INS and Stereo VO utilizes both the INS and Stereo VO information, which 

limits the quick drift of stand-alone IMU and outperforms the stand-alone VO. The tightly coupled 

integration INS/ Stereo VO and GNSS/INS/Stereo VO are introduced in Section 3.2 and Section 

3.3 respectively. 

In this work, multi-sensor tight integration is implemented. Since the IMU data is available in most 

circumstances, IMU could be applied as the core sensor in the integration with other types of 

sensors. The other types of measurements are applied to update the filter when available. 

Corresponding elements in the state vector and dynamic matrix have to be extended if necessary 

when new types of measurements are used. In this work, error-state and error-measurement 

Kalman filter is applied to estimate the errors. IMU could provide not only position and velocity 

but also the attitude. Therefore, almost all the other types of measurements from other sensors can 
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be predicted based on the mechanization of the IMU. Then the difference between the predicted 

and measured measurements can be used to estimate the errors in the state vector in Kalman filter. 

In this way, the IMU can output solution all the time and other sensors are used to correct the 

accumulated errors when available.  

3.2 Tight Integration of INS and Stereo VO 

GNSS signals can be easily blocked or interfered, which limits the application of GNSS in certain 

circumstances. As mentioned in Chapter 2, the INS and VO are both self-contained dead-reckoning 

systems, which can be applied to bridge the GNSS outage. However, dead-reckoning systems 

suffer inevitable drift over time because of error accumulation without absolute positioning 

information. The integration of INS and VO still cannot avoid error accumulation, but it can greatly 

improve the results by restricting the quick drift of each individual system. In this section, the tight 

integration of INS and Stereo VO is illustrated. 

In our implementation, IMU is used as the core sensor, and the pixel measurements obtained by 

cameras are treated as external aiding measurements for the Kalman filter. The core sensor IMU 

provides the dynamic information of the platform and the state errors are estimated with the pixel 

coordinates obtained by the stereo cameras. To tightly integrate INS and Stereo VO, the 

measurement of the Kalman filter are supposed to be the difference between the Stereo VO 

measurements and INS-derived corresponding measurements. Since the measurements of stereo 

images are the feature pixel coordinates, corresponding feature pixel coordinates need to be 

derived based on the INS mechanization results. In other words, the feature pixel coordinates need 

to be predicted based on the position and attitude resulted from INS mechanization results. 

Specifically, to predict the feature pixel coordinates on the image, the 3D feature coordinates in 
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the current camera frame have to be known, according to Eq (2.31). The 3D feature coordinates in 

the previous camera frame can be obtained by triangulation based on Eq (2.38). The rotation and 

translation of the camera can be calculated using the mechanization results and the feature 

coordinates can be transformed to the current camera frame. Therefore, the feature pixel 

coordinates can be predicted by re-projecting the features on the image plane based on the current 

camera position, attitude and the 3D feature coordinates. When the actual pixel coordinates of the 

tracked (or matched) features on the images are available, the mechanization errors can be 

estimated in the Kalman filter. In this way, the drift of IMU can be limited by visual information. 

In our implementation, the state vector in the Kalman filter includes the position errors, velocity 

errors, attitude errors in the LLF and the gyro, accelerometer biases in the IMU body frame. All 

the elements in the state vector are INS related parameters introduced in Section 2.2.3. There are 

no additional unknowns needs to be added in the state vector. The measurement update in EKF 

are the differences between the predicted feature pixel coordinates by re-projection and the 

measured pixel coordinates on images as shown in Eq (3.7)  

                                                      T
measured

T

derivedk vuvuZ                                                 (3.7) 

where [u v]
T 

derived is the INS-derived feature pixel coordinate vector; [u v]
T 

measured is the measured 

feature pixel coordinate vector. 

The mechanization and its linear error-state system models are formed in the LLF defined as ENU 

(East-North-Up), which is widely applied in GNSS/INS and other fields. The INS mechanization 

procedures and the dynamic matrix of the INS errors in the LLF have been introduced in Section 

2.2.3. The general implementation procedure of the integration is shown in Figure 3.3. The 

advantage of such a system architecture is that continuous navigation solution is always available 
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from the core sensor IMU, and the system can be easily augmented to include additional aiding 

sources such as GNSS.  

 

Figure 3.3 INS/Stereo VO Tight Integration Implementation Architecture 

Since all the elements in the state vector are the INS related errors, the transition matrix Φk,k-1, 

shaping matrix G and process noise covariance matrix Q do not need to be changed. The key to 

implementing the tight integration of INS and Stereo VO is the formulation of the design matrix 

H. The full derivation of the design matrix is presented in the following part.  

In Stereo VO, the camera motion is usually denoted in a self-defined world frame (e.g. the camera 

frame in the first epoch). The triangulated feature coordinates expressed in the previous camera 

frame need to be transformed in the world frame, which can be done based on Eq (3.8). 

)( 01
0

0

10

10

ee

k

l

e

b

l

c

b

p

f

b

c

l

b

l

l

b

l

c

b

w

f TTRRRPRRRRRP k

k
 




                               (3.8) 

where P
w 

f  is the 3D feature coordinates expressed in the world frame, R
j 

i  represents rotation matrix 

from frame i to frame j, c is left camera frame, b is IMU body frame, lk-1 is the local-level frame 

at the previous epoch, l0 is the local-level at the first epoch, w is the world frame namely the left 
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camera frame at the first epoch, e is ECEF, P
p 

f is the 3D feature coordinates obtained by 

triangulation of stereo images in the previous epoch. It can be seen from Eq (3.8) that the 3D 

feature coordinates in the world frame  P
w 

f  can be decomposed as the vector from the perspective 

center to the feature and the vector from the beginning point to the perspective center. T
e 

k-1 is the 

perspective center at the previous epoch expressed in ECEF, subscript k-1 represents the previous 

epoch. T
e 

0  is the perspective center at the first epoch in ECEF. The rotation matrix R
c 

b  is available 

by the pre-measured misalignment, 1kl

bR is the rotation obtained from the solution at the previous 

solution. 

With the 3D feature coordinates in the world frame obtained from Eq (3.8), the feature coordinates 

expressed in the current camera frame can be given as  

)(0

0

w

cam

w

f

l

w

l

l

b

l

c

b

wc

w

c PPRRRRXRX 


                                     (3.9) 

where 
cX


is the vector from the perspective center to the features expressed in the current camera 

frame namely the feature coordinates in the current camera frame that need to be calculated; 
wX


 

is the vector expressed in the world frame. P
w 

cam is the perspective center position at the current 

epoch expressed in the world frame, which can be obtained by the position solution of IMU 

mechanization. The rotation matrix R
c 

b  is available by the pre-measured misalignment; R
b 

l  is the 

rotation matrix from LLF to body frame that can be obtained by the attitude solution of IMU 

mechanization. R
l0 

w  is known by initialization while the rotation matrix R
l 

l0  can be neglected if the 

translation from the beginning is not too far (within tens of kilometers). Otherwise, the rotation 

can be achieved as 

e

l

l

e

l

l RRR 00                                                           (3.10) 



 

66 

 

The rotation from LLF to ECEF is shown in Eq (3.11).  





























sincos0

sincossinsincos

coscoscossinsin
e

lR                                     (3.11) 

According to the feature coordinates in Eq (3.8), Eq (3.9) can be further derived as  
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The above equation can be simplified as  
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where T
e 

k  is the perspective center position at the current epoch expressed in ECEF, which is 

obtained from IMU mechanization.  

According to Eq (3.13), the predicted feature coordinates in the camera frame depends on the 

relative rotation and translation from the previous epoch to the current epoch. This can be 

explained by Figure 3.4. The reprojection on the current image is based on the 3D coordinates 

obtained in the previous epoch, and the camera translation and rotation between consecutive 

epochs. The vector 
cX


can be achieved by adding the vector from e

kT  to e

kT 1
 and the vector p

fP  

which are the first and second items in Eq (3.13). Before adding two vectors together, they should 

be transformed to the current camera frame. 
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Figure 3.4 Feature Coordinates in the Current Camera Frame  

The position and attitude solutions at the previous epoch are available, and the unknowns to be 

estimated in Eq (3.13) are the current position in ECEF and the current attitude. According to Eq 

(2.31), Eq (3.7) and Eq (3.13), the measurement vector is related to the position and the attitude 

errors, given as  
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where Hr and Hε represent the design matrix elements related to position error and attitude error. 

The partial derivatives with respect to 
cX


can be obtained easily by Eq (2.31), given as   
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where x, y, z, fx, fy, u0 and v0 are the same in Eq (2.31). The differential equation of Eq (3.13) can 

be given as  
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where Ψ represents the skew-symmetric matrix of the attitude errors namely pitch, roll and yaw 

errors (δp, δr, δy), given by 

























0

0

0

pr

py

ry







                                            (3.17) 

In addition, with known latitude, longitude and height, the ECEF coordinates can be obtained by  
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Acoording to Eq (3.18), δ e

kT  in Eq (3.17) can be further denoted in the local level frame as  
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Based on Eq (3.16) ~ Eq (3.19), the below equation can be derived  
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              (3.20) 

where R
c 

e  represents the rotation matrix from ECEF to the current camera frame, 1 kl

f
 is the skew-

symmetric matrix of the feature coordinates in the local-level frame at the previous epoch, l

kk ,1

is the skew-symmetric matrix of the perspective center translation from previous epoch k-1 to 

current epoch k in the local-level frame, εl is the attitude error in the state vector. Combining Eq 

(3.15) and (3.20), the submatrices in the design matrix associated with respect to position and 

attitude errors can be obtained, shown as follows 
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So far, the tight integration of INS and Stereo VO has been described and how the pixel coordinates 

on the images are used in the estimation is illustrated. Field test datasets have been applied to 

verifty the effectiveness of the integration, which will be presented in Chapter 5. 

3.3 Tight Integration of GNSS PPP, INS and Stereo VO 

When GNSS signals are not blocked or interfered, GNSS signals (e.g. pseudoranges, carrier-phase, 

Doppler) can also be applied in the Kalman filter. In this section, the tight integration of GNSS 

PPP, INS and Stereo VO is presented. The integration architecture is the expansion of INS/Stereo 

VO integration. For Stereo VO, no additional unknows need to be estimated. However, for PPP, 

apart from the position and velocity errors, the receiver clock error, receiver clock drift, 
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troposphere zenith delay and the ambiguities also need to be estimated. According to Eq (3.2), the 

state vector for the integrated system can be given as  

   TrbblllT

externalINSk AmbTtcdcdtfVrXXX      (3.22) 

where Xk has 18+n elements (n is the number of satellite), XINS is the same as in Eq (3.2) containing 

15 elements, cdtr is the receiver clock error, cdṫ is the receiver clock drift, T is the zenith 

troposphere delay, Amb represents the IF ambiguities. 

 

Figure 3.5 Implementation Procedures 

The IMU mechanization results provide the dynamic information of the system namely the initial 

state (e.g. position, velocity, attitude) to predict the corresponding measurements of GNSS PPP 
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and Stereo VO. For instance, the position and velocity provided by the IMU are used to predict 

the GNSS measurements, while the position and attitude provided by the IMU are used to calculate 

the predicted pixel coordinates of features on the Stereo images. When GNSS or Stereo VO 

measurements are available, the corresponding differences between the predicted and actual 

measurements can be calculated to update the state vector. The closed-loop scheme is used in this 

work, which means that the corresponding errors are corrected for IMU mechanization after 

estimation. The implementation procedure is summarized in Figure 3.5.  

The receiver clock error, receiver clock drift and troposphere delay for PPP need to be included in 

the state vector for PPP.  
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The ambiguities are modeled as random constant. The spectral density for troposphere is about 

0.00012 m2/s. The corresponding measurements applied in the Kalman filter with respect to 

different types of measurements are  
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where Z is the measurement update in the Kalman filter, δ represents the difference between the 

actual and INS-derived measurements. The five types of measurements listed are ionosphere-free 

pseudoranges, carrier-phase measurements, Doppler measurements from GNSS PPP together with 

pixel coordinates u, v from stereo cameras, *IMU are the predicted measurements. 
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The corresponding design matrix can be given as  
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where M, l

f , l

kk ,1  are the same as in Eq (3.20); C1 and C2 are the first row and second row of 

matrix C in Eq (3.15). In addition, Mtrop is the mapping function for the troposphere error in Eq 

(2.7), I is the identity matrix, R
b 

a  is the rotation matrix from frame a to frame b, S is the unit vector 

of line of sight from the receiver to the satellite, which can be given as  
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where n is the number of satellites, ρ is the distance between the satellite and receiver. S' in Eq 

(3.25) can be given as  

2 2

13 3 3 3 3 3

2 2
'

13 3 3 3 3 3

2

13 3 3

1 1

1 1

1

x y z x y zn

x y z x y zn

x y z

dx dydx dzdx dx dydx dzdx
dv dv dv dv dv dv

dxdy dy dzdy dxdy dy dzdy
S dv dv dv dv dv dv

dxdz dydz dz
dv dv dv

       

       

   

   
        

   

   
           

   

 
     

 

2

3 3 3

1

T

x y zn

dxdz dydz dz
dv dv dv

   

 
 
 
 
 
 
 

  
    

  

 



 

73 

 

r s

r s

r s

x xr xs

y yr ys

z zr zs

dx x x

dy y y

dz z z

dv v v

dv v v

dv v v

 

 

 

 

 

 

                                             (3.27) 

where xrv , 
yrv and zrv  represent the land vehicle velocity in x, y and z direction in ECEF; xsv , 

ysv and zsv represent the satellite velocity in x, y and z directions in ECEF.  

The determination of the variance-covariance matrix for the different types of measurements are 

as follows. The standard deviations for IF pseudoranges, carrier-phase and Doppler measurements 

are set as 3 meters, 0.03 centimeters and 0.03 cm/s respectively. As for the pixel coordinates, since 

KLT tracking method is adopted to find the correspondences in consecutive images, the tracking 

errors of features on the images are adopted as standard deviations for pixel coordinates. 

So far, the matrices in the Kalman filter are all presented. Base on the Kalman filter equations in 

Eq (3.1), the tightly coupled multi-sensor integration can be implemented. 

3.4 Summary 

The multi-sensor tight integration scheme with IMU as the core sensor in this thesis is first 

introduced. The IMU provides the dynamic information of the land vehicle and predicts the other 

types of the measurements based on the mechanization results. The differences between the 

predicted and received measurements are used to estimate the errors. 

The details of the implementation of tight integration of INS and Stereo VO have been presented. 

How the pixel coordinates are fused in the Kalman filter is also illustrated. Based on the rotation 

and translation between two epochs provided by IMU mechanization together with the 3D 
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coordinates of features obtained by the triangulation of stereo cameras, the pixel coordinates of the 

features in the next epoch can be predicted. The differences between the predicted pixel 

coordinates by IMU mechanization and measured pixel coordinates by tracking are used in the 

Kalman filter to correct the errors. In this way, the pixel coordinates are directly used to estimate 

the position and attitude errors. Since the position is highly correlated with the velocity estimation, 

the velocity can be updated as well. The correction of the velocity is the key to limiting the quick 

drift of INS mechanization.  

The tightly coupled integration of INS and Stereo VO architecture can also be extended with GNSS 

measurements. The multi-sensor integration in this work is based on IMU as the core sensor. All 

the other types of measurements are used as the external aiding measurements in the Kalman filter. 

In the Kalman filter, the state vector and the dynamic matrix need to be extended if additional 

parameters for external measurements are required. In the integration of INS, Stereo VO and 

GNSS, the receiver clock, clock drift, troposphere zenith delay and the ambiguities are included 

in the state vector, and the dynamic matrix needs to be extended correspondingly. The design 

matrix is the key to the implementation of the integration, which has been illustrated in detail. 
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Chapter Four: DEVELOPMENT OF MAP MATCHING AND INTEGRATED SYSTEM 

FOR LAND VEHICLE NAVIGATION 

In addition to GNSS, Map Matching is another way to provide the absolute positioning 

information. In this chapter, the fuzzy logic Map Matching method is introduced and integrated in 

the land vehicle navigation system. By projecting the INS/Stereo VO solution on the digital map 

in GNSS denied environements, the accumulated errors can be largely reduced. In Section 4.1, the 

fuzzy logic Map Matching method is introduced. In Section 4.2, Map Matching is integrated with 

INS/Stereo VO to improve the solution accuracy when there is GNSS outage. In open sky 

environment, GNSS outperforms the other types of navigation systems. With a single GNSS 

receiver, PPP can achieve centimeter to decimetre level accuracy after the convergence which 

takes tens of minutes. When the receiver is in kinematic mode, it takes even longer for PPP to get 

converged, and the PPP ambiguity resolution in kinematic mode is more difficult. A fast kinematic 

PPP AR method with the aid of Map Matching is proposed. The integer search space for N1 

ambiguities is reduced with the positioning information provided by Map Matching. The details 

are presented in Section 4.3. 

4.1 Fuzzy Logic Map Matching 

Map Matching can project the land vehicle position on digital maps by identifying the correct link 

that the land vehicle is moving along. Generally, the Map Matching algorithms can be classified 

into three main categories, namely the geometric Map Matching (Greenfeld, 2002), the topological 

Map Matching (Meng, 2006) and the advanced fuzzy logic Map Matching (Quddus, 2006). 

Geometric Map Matching algorithm only takes advantage of the geometry of the digital road 

network. Several geometric Map Matching methods have been developed namely point-to-point 

Map Matching, point-to-curve Map Matching and curve-to-curve Map Matching. Point-to-point 
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Map Matching finds the closest node to vehicle position, which is sensitive to how the road 

network is digitized and would generate numerous mismatches. Point-to-curve Map Matching 

identifies the closest road link to the vehicle position, which is easy to be implemented but a 

considerable number of mismatches exist as well. Curve-to-curve Map Matching finds the closest 

road link to a traveled line segment, which would reduce the mismatching possibility. Topological 

Map Matching algorithm makes use of not only the geometry of the digital road network but also 

the connectivity and continuity of the road links. A weighting scheme is used to assign weights to 

the candidate links. The perpendicular distance of the vehicle position from the link (proximity), 

the degree of the parallelism between the traveled line and the link (orientation), and the angle 

between the traveled line and the road link (intersection) are all taken into consideration. The 

topological Map Matching improves the correct link identification, but it is still sensitive to outliers. 

Quddus (2006) proved that the fuzzy logic Map Matching method outperforms the other two 

methods in terms of correct link identification, validation, and integrity. Fuzzy logic Map 

Matching utilizes the fuzzy logic theory to determine the maximum likelihood of the candidate 

links based on the land vehicle state and digital map information. Hence, the principles of fuzzy 

logic theory and fuzzy logic Map Matching procedures are illustrated below. 

4.1.1 Overview of Fuzzy Logic Theory 

Fuzzy logic utilizes the real number between 0 and 1 to represent the situation instead of true or 

false in Boolean logic, which has been widely applied in control theory and data processing 

(Rosyara, Vromman, & Duveiller, 2008). In other words, fuzzy logic uses an imprecise but very 

descriptive variable to represent the likelihood of current state. The fuzzy logic has several 

advantages. It is robust, does not require precise and noise-free inputs, generates smooth output 
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despite wide-range of input variation and can be applied to complicated systems which are difficult 

to model. The development of fuzzy logic theory is reviewed by Zadeh (1965), Van Broekhoven 

& De Baets (2008), Sugeno & Takagi (1983) and Mamdani (1974). This section only briefly 

overviews the fuzzy logic theory. The procedures of fuzzy logic can be divided into three main 

steps namely 1). Fuzzify all the input values into fuzzy membership functions; 2). Execute the 

rules of the membership functions to compute the fuzzy output; 3). De-fuzzify the fuzzy output to 

generate the final output. The membership function is a curve that defines how the inputs are 

mapped to a membership value between 0 and 1, as shown in Figure 4.1.  

 

Figure 4.1 Membership Function Example 

It can be seen from Figure 4.1 that in the fuzzy set, instead of defining the clear boundary in classic 

(crisp) set, the membership function converts the input to fuzzy values. Fuzzy logic usually adopts 

simple IF-THEN rules (e.g. If X is A and Y is B THEN Z is C) in the second step. In the IF-THEN 
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rules, non-numeric values are often used to facilitate the expression of rules and facts. One simple 

example is that IF the temperature is cold and the moisture is low THEN the fan speed is slow. 

The input variables of this rule are the temperature and moisture, and the input fuzzy subsets are 

cold and low. The output variable is the speed of the fan and the output fuzzy subset is slow. 

Sugeno’s Fuzzy Inference System (FIS) (Sugeno & Takagi, 1983) is applied to the fuzzy logic 

Map Matching in this thesis. To explain the fuzzy logic rules more clearly, this time we use a Map 

Matching example to illustrate the Sugeno’s FIS. Two fuzzy rules are applied as 1): IF the heading 

error (HE) (the difference between the vehicle heading and the link azimuth) is small and the 

perpendicular distance (PD) from the vehicle position to the road link is small THEN the likelihood 

of the correct link matching is high; 2). IF the HE is large and PD is long THEN the likelihood of 

the correct link matching is low. To be more specific, the procedure can be divided into 5 steps. 

The first step is to define the fuzzy variables, fuzzy subsets and their membership functions 

together with the fuzzy rules. The fuzzy variables in this example are the HE and PD, while the 

corresponding fuzzy subsets for HE and PD are small, large and short, long respectively in the two 

fuzzy rules. The challenging task is the shape definition of membership functions. There are 

different membership function shapes such as triangular, trapezoidal, Z-shaped, S-shaped, 

Gaussian, etc. One instance for the “HE is small” membership function can be defined as: 
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where μHE_SMALL is the membership value for “HE is small”, HE is the heading error input. In 

contrast, the membership function for “HE is large” can be given as: 
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Similarly, the membership functions for “PD is short” and “PD is long” can be defined as  
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The plots of the membership functions can be given as: 
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Figure 4.2 Membership Functions for HE 

 

 

Figure 4.3 Membership Functions for PD 

The second step is the application of fuzzy operators. In the example given above, there are two 

parts in one fuzzy rule to determine the correct link matching likelihood namely “HE is small” and 
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“PD is short”. Fuzzy operators (AND, OR) are normally used to combine the two parts in one rule. 

Two popular AND methods are min (minimum) and prod (product), and two widely applied OR 

methods are max (maximum) and the probabilistic OR method. In this thesis, the AND and OR 

methods adopt min and max methods respectively. For instance, given that HE is 20 degrees and 

PD is 3 meters, for the two parts “HE is small” and “PD is short” in the rule, the fuzzy membership 

values are 1 and 0 respectively. Using the min method, the final membership function output is 0. 

The third step is to assign weight to each rule. In the example, using Sugeno’s Fuzzy Inference 

System, a constant number is applied to describe the correct Map Matching likelihood (e.g. 100 

for high, 10 for low). In other words, multiplying the rule strength and the assigned weight for 

each rule is the result of each fuzzy rule. 

The fourth step is the aggregation of each fuzzy rule result. Assuming that Wi is the rule strength 

obtained in the second step, Zi is the weight assigned in the third step, the weighted average of the 

consequences is the output of the system shown as: 
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The last step is to determine the link as the correct one with maximum Z value. 

4.1.2 Fuzzy Logic Map Matching Procedures 

The fuzzy logic Map Matching adopts the fuzzy logic to calculate the likelihood of each road link. 

It can be divided into two steps: Initial Map Matching Process (IMP) and Subsequent Map 

Matching Process (SMP). SMP can be further divided as SMP along a link (SMP-1) and SMP 

close to a junction (SMP-2). Each step is illustrated in the following part.  
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4.1.2.1 Initial Map Matching Process. 

As the name indicates, an initial road link is selected in IMP. Road links around the land vehicle 

within a certain radius are selected as the candidates for IMP. At least one link should be included 

in the candidates. Otherwise, the radius has to be increased. Each road link candidate needs to be 

assigned likelihood value based on the five steps introduced in above. The inputs of MF are the 

land vehicle position, velocity, heading error (HE), perpendicular distance (PD) from the vehicle 

position to the road link and the GNSS HDOP (Horizontal Dilution Of Precision). IF-THEN rules 

are applied to identify the likelihood of matching the vehicle position to the link. Here, LH1 is 

used to denote the likelihood. The rules for IMP can be summarized as follows.  

1) If HE is small and velocity is high, then LH1 is average. 

2) If HE is large and velocity is high, then LH1 is low. 

3) If PD is short and HE is small, then LH1 is high.  

4) If PD is long and HE is large, then LH1 is low. 

5) If PD is short and HDOP is good, then LH1 is average. 

6) If PD is long and HDOP is good, then LH1 is low.  

According to Quddus (2006), the membership functions for “HE is small”, “HE is large”, “PD is 

short” and “PD is long” are shown in Figure 4.11 and Figure 4.12 while “velocity is fast”, “velocity 

is slow”, and “HDOP is large”, “HDOP is small”  are given as: 
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Figure 4.4 Membership Functions for Velocity 

 

Figure 4.5 Membership Functions for HDOP 

The weights assigned for “LH1 is high” “LH1 is average” and “LH1 is low” are 100, 50 and 10 

respectively. Using Eq (4.5), the road link with the largest likelihood is determined as the correct 
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one and the perpendicular projection of the vehicle position on the selected link is the map matched 

point. If the same link is selected for several consecutive epoch, IMP is finished, and the fuzzy 

logic Map Matching starts the second step SMP. IMP is of great importance since it is the first step 

and the result would have an impact on the following step SMP. 

4.1.2.2 Subsequent Map Matching Process 

After determination of the correct link in IMP, SMP is activated to check whether the vehicle is 

still on the same road link (SMP-1) and whether the land vehicle is approaching or just crossing 

the junction (SMP-2). In addition to the inputs for IMP, the vertical gyro-rate reading Δθ and the 

parameters illustrated in Figure 4.6 are also input to SMP. In Figure 4.6, α is the angle between 

the current point, previous map matched point and the junction; β is the angle between the current 

point, junction and the previous map matched point; Pk is the current vehicle position and Pk-1 is 

the previous vehicle position; d1 is the distance between the previous map matched point and the 

junction; d2 is the distance travelled by car; d3 is the shortest distance between the perpendicular 

projection of the vehicle position on the candidate road links and the previous map matched point.  

 

Figure 4.6 Parameters for Fuzzy Logic Map Matching (Quddus, 2006) 
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The fuzzy logic rules for SMP-1 are as follows. The likelihood for SMP-1 is denoted as LH2. 

1) If α is below 90, β is below 90 and Δθ is small, then LH2 is high. 

2) If Δd (d1-d2) is positive, α is above 90 and Δθ is small, then LH2 is low. 

3) If Δd is positive, β is above 90 and Δθ is small, then LH2 is low. 

4) If α is below 90, β is below 90 and HI (Heading Increment, namely the difference between 

the vehicle headings at consecutive epochs) is small then LH2is high. 

5) If Δd is positive, α is above 90 and HI is small then LH2 is low. 

6) If Δd is positive, β is above 90 and HI is small then LH2 is low 

7) If α is below 90, β is below 90 and Δθ is small, then LH2 is low. 

8) If α is below 90, β is below 90 and HI is large, then LH2 is low. 

9) If HI is small and the velocity is high, then LH2 is average. 

10)  If the velocity is zero and HDOP is good, then LH2 is high. 

11) If Δd is negative and HDOP is good, then LH2 is low. 

12) If Δd is positive and HDOP is good, then LH2 is average. 

13) If velocity is high, HI is 180º and HDOP is good and Δθ is small then LH2 is high 

According to Quddus (2006), the membership functions for “α is below 90”, “α is above 90”, 

“vertical gyro-rate reading Δθ is small”, “vertical gyro-rate reading Δθ is large”, “Δd is negative”, 

“Δd is positive”, “HI is small”, “HI is large”  and “HI is 180º”are given as: 
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Figure 4.7 Membership Functions for α 

 

 

Figure 4.8 Membership Functions for Δθ 
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Figure 4.9 Membership Functions for Δd 

 

Figure 4.10 Membership Functions for HI 
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Figure 4.11 Membership Functions for HI at U-Turns 

The weights assigned for “LH2 is high” “LH2 is average” and “LH2 is low” are 100, 50 and 10 

respectively. Using Eq (4.5), the likelihood of the selected road link can be calculated. If the 

calculated value is greater than a certain threshold, the vehicle is still moving on the same road 

link. Otherwise, the Map Matching moves to the next step SMP-2. The SMP-2 is also activated 

when the vehicle is near the junction or has just crossed the junction. SMP-2 fuzzy inference 

system has ten fuzzy rules (Quddus 2006). Apart from the six rules used in IMP, four additional 

rules are listed as follows 

1)  If the connectivity with the previous link is true, then LH3 is high. 

2)  If the connectivity with the previous link is false, then LH3 is low. 

3)  If the distance error is high, then LH3 is low. 

4)  If the distance error is low, then LH3 high. 
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where distance error equals to |d2 - d3|, connectivity checks whether the candidate links are 

connected to previously selected link or not. The connectivity is Boolean logic while the 

membership functions for “distance error is low” and “distance error is high” are given as: 

 

Figure 4.12 Membership Functions for Distance Error 

Similarly, the weights is defined as the constant values used in IMP and SMP-1. The link with the 

largest likelihood is selected as the correct one. If the selected link likelihood is smaller than a 

threshold, Map Matching goes back to the IMP step. 

4.2 Tight Integration of INS, Stereo VO and Digital Map 

As illustrated before, in addition to GNSS, the digital map can also provide absolute positioning 

information for DR systems to limit the unbounded accumulated positioning errors. The fuzzy 

logic Map Matching algorithms can be further integrated with the INS/Stereo VO system 

introduced in the previous chapter. This section is mainly about the integration of the INS, Stereo 

VO and Map Matching. INS/Stereo VO system can provide the navigation solution for Map 

Matching. Map Matching has two roles. The first role is to identify the correct road link and to 
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project the vehicle position on the selected road link based on the integrated results and the digital 

map information. The second role is to reduce the drift error of INS/Stereo VO system by 

constraining the vehicle position on the road link. Map Matching provides the feedbacks including 

the position of the map matched point and the azimuth of the road link for IMU mechanization in 

next epoch to reduce the drift of the integration solution of INS and StereoVO.  

In this thesis, the digital used map is based on the OpenStreetMap (OSM) 

(https://www.openstreetmap.org). OSM provides digital maps of most cities worldwide in shape 

files. An open source Relational DataBase Management System (RDBMS) named PostgreSQL 

was used to load the road link shape file which includes the information about road line string 

geometry, start point and end point position of each road link, road link length and azimuth. The 

Map Matching algorithm introduced in the previous section was applied with PostgreSQL 

managing the spatial queries. The processing flow is illustrated in Figure 4.13. 

 

Figure 4.13 Tightly Coupled Integration of Digital Map and INS/Stereo VO. 
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This figure is the expansion of Figure 3.3. It can be seen from Figure 4.13 that the outputs of tightly 

coupled INS/Stereo VO (e.g. position, velocity and azimuth) are used for fuzzy logic Map 

Matching together with the digital map information from OSM. PostgreSQL is used to manage the 

digital map data. The fuzzy logic Map Matching algorithms illustrated in the previous section are 

used to find out the map matched points on the digital map, which are further used as feedbacks to 

compensate for the errors in IMU mechanization in the next epoch, in order to limit the drift of 

INS/Stereo VO. For the fuzzy logic rules in IMP, SMP-1 and SMP-2, the GNSS related rules are 

removed since only IMU and stereo cameras are used in this implementation. It is of great 

importance that the map matched points found by the fuzzy logic Map Matching algorithms are 

correct since it would cause significant error in positioning if incorrect Map Matching feedback is 

used for INS/Stereo VO. To avoid incorrect map matched points, a feedback filter is designed to 

guarantee the correctness of the map matched points. The criteria of the feedback filter are listed 

as follows. Firstly, the SMP-1 has to show that the vehicle is still on the same road link. Secondly, 

the HE needs to be smaller than a threshold. Thirdly, the vertical rotation angle has to be smaller 

than a threshold, which means that the vehicle is not turning. Lastly, the distance to junctions 

should be greater than a threshold. Map Matching has to meet all the four requirements to pass the 

feedback filter.   

After passing the feedback filter, the map matched point position and the road azimuth information 

would be used for the IMU mechanization in next epoch. Specifically, the integrated output roll, 

pitch and the road link azimuth are used to calculate 𝑅𝑏
𝑙  (the rotation matrix from the body frame 

to the local-level frame), and the map matched latitude and longitude are used to calculate 𝑅𝑙
𝑒 (the 

rotation matrix from the local-level frame to the ECEF frame), the position is replaced with the 
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map matched point. In this way, the estimated position of INS/Stereo VO is forced to the road 

links on the digital map, which could largely reduce the quick drift.  

4.3 Tight Integration of GNSS PPP and Map Matching 

In open sky environment, GNSS is still the best option to achieve accurate solutions. PPP can 

provide world-wide decimeter to centimeter level solutions using just one receiver after 

convergence of ambiguities. However, it usually takes tens of minutes for PPP to get converged 

especially in kinematic mode, which limits its applications. PPP AR could reduce the convergence 

time by fixing the PPP ambiguities. But it still needs tens of minutes for PPP AR to fix the 

ambiguities because the float IF ambiguities have to get converged to a certain accuracy level first 

to ensure the successful fixing rate. The key to reducing the ambiguity integer searching time is to 

reduce the number of integer candidates. One way is to increase the carrier-phase wavelength 

toward decreasing the number of the candidate. This involves the application of triple-frequency 

signals. However, triple-frequency precise products are not widely applied yet, and there exist 

some issues in the GPS third frequency phase signals (Li, Zhou et al., 2012; Liu and Gao, 2017; 

Montenbruck, et al., 2012). The other way is to reduce the search space of the integer ambiguities. 

The second stratergy is adopted in this thesis. To accelerate the ambiguity convergence, external 

position information is needed. For the conventional multi-sensor integration system (e.g. 

GNSS/INS), DR systems are usually integrated with GNSS PPP. However, DR system solutions 

depend on the previous solution, which means that it could make the integrated system get re-

converged faster than the stand-alone GNSS PPP system. However, the integration with DR 

systems does little to the PPP convergence at the very beginning. In this research, different from 

the GNSS and DR system integration method, the accurate digital map is used to provide the 
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external position information. When the land vehicle is moving on the road, the PPP solution is 

projected on the corresponding road link by Map Matching. The projected point position on the 

road link would be applied as additional measurements in Kalman filter to accelerate the PPP 

convergence. If the map matched point on the road link is accurate, the error of PPP solution in 

the cross-road direction can be largely reduced. Since the projection is perpendicular to the road 

link, the along-road error is not reduced. 

The PPP ambiguity resolution and Map Matching methods have been reviewed in Section 2.1.2 

and Section 4.2.2 respectively. In this section, the method to tightly integrate GNSS PPP and Map 

Matching algorithms is introduced. In this work, the integer clock products provided by CNES are 

used to recover the integer properties of PPP ambiguities. Eq (2.17) ~ Eq (2.20) are used to 

implement the PPP AR. Specifically, single-difference between-satellite is implemented to remove 

the receiver clock error. The PPP IF ambiguities can be decomposed as WL and NL ambiguities 

according to Eq (2.15). The MW combination is applied to fix the WL ambiguities while 

LAMBDA method is adopted to search for the NL ambiguities. The fuzzy logic Map Matching 

method introduced in Section 4.2.2 is applied to project the PPP solutions on the road links. The 

Map Matching rules are illustrated before, and the gyro related rules are removed since only GNSS 

is applied in this implemention. Generally, at the very beginning, the correct road link is selected 

around the PPP solution in IMP with several candidates. While the land vehicle is moving on, 

SMP-1 checks whether it is still on the selected road link. When the land vehicle is approaching 

to or just crossing an intersection, the road link has to be re-selected according to SMP-2 rules. 

The map matched points and road link azimuth can be applied as additional measurements apart 

from code and phase measurements as  
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where Xmap and αmap represent the map matched point coordinates and road link azimuth 

respectively; XPPP and αPPP are the PPP position and azimuth solutions. With the additional Map 

Matching constraints, not only the positioning accuracy would be improved, the ambiguities can 

get converged faster. This is because the ambiguities are correlated with the position parameters. 

The general implementation procedure of the tight integration of PPP and Map Matching is shown 

in Figure 4.14. The Precise Point Positioning is implemented using P3 software developed at the 

University of Calgary. Position errors, zenith tropospheric delay and ambiguities are estimated in 

Kalman filter. In general, the float solution is first projected on the road links if the Map Matching 

passes the feedback filter. Then the outputs of Map Matching are further used as external 

measurements to estimate the float solution and accelerate the convergence of ambiguities. The 

feedback filter is to ensure the road link selected by Map Matching is correct. Because the incorrect 

map matched point would cause a serious problem for the PPP AR. In this implementation, the 

feedback filter has to check whether the land vehicle is still moving on the previous road link 

selected, the heading error is smaller than the given threshold, and the distance to the road junction 

is larger than the given threshold. When the covariance of the ambiguities is reduced to a certain 

level, the fixed solution can be achieved. In this way, fast kinematic PPP ambiguity resolution 

becomes possible. 
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Figure 4.14 Implementation Procedure of PPP AR with the Aid of Map Matching 

In this implementation, the PPP position solution is generated epoch-by-epoch. Specifically, the 

spectral densities for the position are set to large values, which indicates that the position needs to 

be estimated without any prior information at every epoch. For Map Matching implementation, 

OpenStreetMap (OSM) is used to provide the map information. Since the road accuracy provided 

by OSM is in meter level, which cannot satisfy the accuracy requirements for PPP, the OSM shape 

file was modified based on the RTK (Real Time Kinematic) fixed solution using QGIS software. 

PostgreSQL is used to manage the digital map data and PPP solutions. The road link shape files 

of the modified digital map are managed by PostgreSQL, and P3 software can connect to 

PostgreSQL for the spatial queries. The inputs for the fuzzy logic Map Matching algorithm are the 

PPP solution (e.g. the position, velocity, azimuth and DOP values) and the digital map information. 

Based on the Map Matching algorithms introduced in the previous section, the outputs of fuzzy 
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logic Map Matching are the map matched points and the road link azimuth, which are applied as 

external measurements in Kalman filter.  

4.4 Summary 

Fuzzy logic Map Matching utilizes the fuzzy logic to find the correct road link based on the land 

vehicle states (e.g. position, velocity, heading, etc.) and the digital map information. The fuzzy 

rules used in Map Matching and the implementation procedures are illustrated in this chapter. Map 

Matching can project the Stereo VO and INS integrated solution on the road link to force the 

trajectory back to the road link, which effectively reduces the horizontal errors. In addition, the 

road link azimuth can be used to reduce the heading errors as well. With the application of Map 

Matching, the integrated solution can be greatly imporved. 

The integration of GNSS PPP and Map Matching is also proposed. In open sky environment, with 

an accurate digital map, when the PPP float solution is projected on the road links, the map 

matched point coordinates and the road link azimuth can be applied as additional measurements 

to accelerate PPP convergence. The PPP ambiguities are correlated with the position, which means 

the ambiguity convergence could be accelerated as well. In this way, the integer search space will 

be reduced and fast PPP AR can be achieved.  
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Chapter Five: RESULTS AND ANALYSIS 

In this chapter, the experiment results of using datasets from the field tests conducted by KITTI 

(Karlsruhe Institute of Technology and Toyota Technological Institute) and from the field tests 

conducted in Calgary are presented and analyzed. The KITTI datasets are widely applied by 

professionals for performance analysis with inertial and visual data synchronized better than 5 ms. 

The stereo images provided by KITTI are also well calibrated and rectified. The land vehicle tests 

were also conduced at Calgary, which include a GNSS receiver, an IMU and two cameras mounted 

on the roof rack attached to a land vehicle. Measurements from all sensors are synchronized and 

tagged with GPS time. The camera images are also calibrated and rectified. The results with KITTI 

and Calgary datasets are presented in Section 5.1 and Section 5.2 respectively. 

5.1 Results and Analysis of KITTI Datasets 

5.1.1 Data Description 

In this section, the datasets collected by KITTI are used to test the tight integration of INS/Stereo 

VO. All the sensors are mounted on the roof of a land vehicle including a GPS/IMU unit and stereo 

cameras, which is shown in Figure 5.1 (A Geiger et al., 2013). The lever arms and misalignment 

between each sensor are accurately measured before the field test. Besides, different types of 

datasets (e.g. inertial measurements, images) are already synchronized and the stereo images have 

been well calibrated and rectified. The cameras are set at 10 FPS (Frame Per Second) and the IMU 

data sampling rate is 10 Hz. The GPS/IMU used is OXTS RT 3003, which is a MEMS-based IMU, 

and grayscale cameras are PointGrey Flea 2 (FL2-14S3M-C). The installation of the sensors is 

shown in Figure 5.2. The GNSS raw measurements are not provided by KITTI, therefore, there 

are not GNSS related test results shown in Section 5.1. 
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Figure 5.1 KITTI Equipment Installation (A Geiger et al., 2013) 

In addition to the IMU and stereo cameras, a laser scanner and another stereo camera unit are also 

installed on the land vehicle roof. In this test, only the gray stereo cameras and IMU are used. The 

specifications of the gray camera PointGrey Flea 2 (FL2-14S3M-C) are shown in Table 5.1. The 

OXTS RT 3003 unit is a dual-antenna GPS/IMU system with the positioning accuracy of 0.4 m 

(circular error probable) with DGPS applied, the velocity accuracy of 0.05 km/h (RMS) and the 

heading accuracy of 0.05º  (RMS) . The OXTS RT 3003 solution is used as the reference to verify 

the effectiveness of the proposed method in different scenarios. The acceleration bias stability of 

the IMU is 5 µg (1σ) and the angular rate bias stability is 36º/h (1σ).  The misalignment and lever 

arms between each sensor are illustrated in Figure 5.2. The Cam 0 and Cam 1 are the cameras used 

in this thesis. 
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Table 5.1 Specifications of FL2-14S3M-C 

Specifications 

Resolution 1384*1032 

Frame Rate Up to 15 FPS 

Megapixels 1.4 MP 

Chroma Mono 

Sensor Name Sony ICX267 

Sensor Type CCD 

Sensor Format 1/2" 

Pixel Size 4.65 µm 

 

 

Figure 5.2 Installation Details of Each Sensor (A Geiger et al., 2013) 
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5.1.2 Tight Integration of INS and Stereo VO 

The first dataset contains 1200 epochs (2 minutes), which was collected in a residential area with 

several maneuvers in the City of Karlsruhe in Germany. The distance traveled by the land vehicle 

is approximately 940 meters in this dataset. The test environment is shown in Figure 5.3. Stereo 

VO results are compared with the tight integration of INS and Stereo VO. For Stereo VO, Harris 

corner detector and KLT (Kanade-Lucas-Tomasi) feature tracker are used to detect and track the 

corresponding features between consecutive epochs. Bucketing is applied to avoid too many 

mismatched features and optimize the distribution of features on the image. Specifically, the image 

is divided into 9 rectangle parts in bucketing, and a certain number of features are randomly 

selected in each rectangle part. After that, the mismatched features and moving objects on the 

images need to be filtered out. In this work, RANSAC (RANdom SAmple Consensus) method is 

used to reject outliers. To be more specific, a certain number of features are randomly selected to 

calculate the rotation and translation between two adjacent epochs based on the resectioning model. 

With the calculated rotation and translation, the other features are projected on the image as well. 

A certain threshold is determined to define inliers and outliers. This procedure is repeated for 200 

times to find out the rotation and translation with the maximum number of inlier in this epoch. In 

Stereo VO, the rotation and translation with respect to the first epoch can be achieved by 

accumulation of rotation and translation between two adjacent epochs. In the tight integration 

proposed in this thesis, the raw measurements of stereo images are the pixel coordinates of features 

detected and tracked. Sarvrood and Gao (2014) and Geiger et al. (2011) have detailed the method 

of Stereo VO. In addition to the Stereo VO, the Stereo VO with windowed bundle adjustment is 

also compared with the proposed method in this section.  
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Figure 5.3 Test Environment of the First Dataset 

 

Figure 5.4 Trajectories of the First Test 
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Figure 5.5 Position Error in East, North and Height 

 

Table 5.2 Position Error RMS in East, North and Height (Unit: meter) 

 East North Height Horizontal Total 

INS/Stereo VO 4.704 8.619 2.066 9.819 10.0345 

Stereo VO 56.916 61.507 10.651 83.474 84.151 

Windowed Stereo VO 40.768 39.881 12.666 56.706 58.100 

INS 160.266 100.384 15.118 188.922 189.525 
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Figure 5.6 Forward Velocity Error 

 

Figure 5.7 Azimuth Error 

Figure 5.4 shows the trajectories obtained by different solutions using different colors. The start 

point is at (0, 0). It can be seen that the tight integration outperforms the other methods. The Stereo 
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VO adopts the same feature detection and matching strategies as in the integrated solution. Stereo 

VO solution drifts faster than the integrated solution. Even with windowed bundle adjustment 

applied, the Stereo VO performs worse than the tight integration proposed. To see the position 

accuracy clearly, the positioning errors of each solution are also plotted in Figure 5.5. The stand-

alone IMU mechanization result is the worst (shown in Figure 5.4) and its position errors in each 

direction are not plotted. It is obvious that the tight integration of INS/Stereo VO has the best 

performance in three directions, which is less than 15 meters most times. The RMS (root-mean-

square) of positioning errors using different methods is shown in Table 5.2. From Table 5.2, it can 

be seen that the Stereo VO and IMU mechanization results are large in each direction while the 

tight integration largely reduces the drift with the smallest error in every direction. Another 

advantage of tightly coupled integration method is that the velocity can be obtained directly. Stereo 

VO has to use position to calculate the velocity, and the noise of velocity is larger with this method. 

Usually, the velocity obtained by Stereo VO has to be processed (filtering out spikes and 

smoothing) before being used in other applications. Figure 5.6 shows the forward velocity errors 

obtained directly from the proposed method and Stereo VO. Slight improvement in the forward 

velocity can be achieved. The RMS of the forward velocity error obtained by the proposed method 

is 0.438 m/s while the RMS of the Stereo VO with windowed bundle adjustment applied is 0.449 

m/s. The azimuth is much improved with the proposed method, which can be seen from Figure 

5.7. The azimuth error of the proposed method is less than 10 degrees most times. Although the 

pixel measurements are directly related to the position and attitude, the velocity can be corrected 

since it is closely coupled with the position solution. Therefore, the tight integration improves not 

only the velocity and azimuth estimation in addition to the position solution.  
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To test the performance of the proposed method over a longer period, the second dataset with 5100 

epochs (8.5 minutes) is applied. Similar to the first dataset, the lever arms and misalignment are 

measured before the data acquisition, and the stereo images are rectified and calibrated. The 

scenario of the second dataset is similar to the first one, which can be seen from Figure 5.8. The 

total distance of the second trajectory is approximately 4105 meters. The trajectories and position 

errors of each method are shown in Figure 5.9 and Figure 5.10 respectively. The trajectory of the 

tight integration is the closest one to the reference, compared with other methods. The RMS values 

of the positioning errors with different methods are summarized in Table 5.3. The RMS of the 

proposed method is only 20% of the Stereo VO in the horizontal plane. Due to much longer period, 

the IMU mechanization errors accumulate up to thousands of meters. The RMS of the forward 

velocity estimated by the integrated method is similar to the Stereo VO (0.74 m/s). As for azimuth 

estimation, the integrated solution is more accurate, which is one important reason for the 

improved position solution. The DGPS heading is not used in the integration. 

 

 

Figure 5.8 Test Environment of the Second Dataset 
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Figure 5.9 Trajectories of the Second Test 
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Figure 5.10 Position Error in East, North and Height 
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Table 5.3 Position Error RMS in East, North and Height (Unit: meter) 

 East North Height Horizontal Total 

INS/Stereo VO 39.319 22.847 9.638 45.475 46.486 

Stereo VO 128.367 241.764 78.766 273.780 284.885 

Windowed Stereo VO 111.738 188.042 21.822 218.788 219.873 

INS 9140.053 6067.490 322.632 10965.131 10969.870 

 

 

Figure 5.11 Forward Velocity Error 
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Figure 5.12 Azimuth Error 

 

The results from both datasets demonstrate better performance using the proposed algorithm in 

residential areas. One more test in suburban was conducted as well. This dataset was collected on 

the road with trees on both sides, as shown in Figure 5.13. The traveled distance of the land vehicle 

is about 4980 m. The trajectories are plotted in Figure 5.14. This time, the position accuracy of the 

integrated solution is worse than the results from the previous two datasets. However, the 

integrated solution is still the best when compared to others. The Position errors in each direction 

are plotted in Figure 5.15, and the RMS is summarized in Table 5.4.   
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Figure 5.13 Test Environment of the Third Dataset 

 

 

Figure 5.14 Trajectories of the Third Test 
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Figure 5.15 Position Error in East, North and Height 

 

Table 5.4 Position Error RMS in East, North and Height (Unit: meter) 

 East North Height Horizontal Total 

INS/Stereo VO 42.806 87.338 35.060 97.264 103.390 

Stereo VO 182.786 157.509 102.512 241.374 262.240 

Windowed Stereo VO 138.681 117.677 62.851 182.019 192.566 

INS 1199.560 1725.890 289.567 2100.406 2120.221 
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Table 5.5 Relative Horizontal Position Errors of Each Method 

Dataset Distance (meter) Stereo VO Windowed Stereo VO INS/Stereo VO 

1 940 8.88% 6.03% 1.04% 

2 4105 6.67% 5.33% 1.11% 

3 4980 4.85% 3.65% 1.95% 

 

To see the horizontal position accuracy more clearly, the relative horizontal position error for each 

test is provided in Table 5.5. The relative horizontal position error is the horizontal error divided 

by the total traveled distance. It can be seen that the relative horizontal position error for all three 

datasets using the proposed method is less than 2%, which is much better than the Stereo VO. 

5.1.3 Tight Integration of INS, Stereo VO and Map Matching 

The used digital map is provided by OpenStreetMap with meter-level accuracy. The straight road 

link accuracy is within 4~5 meters while accuracy degradates at the maneuvers. The covariance 

matrix for visual measurements is based on the tracking errors of features. The map matched point 

is directly used as the output. The The first dataset contains 5186 epochs (about 8.6 minutes), 

which was collected in a residential area with several maneuvers in the City of Karlsruhe in 

Germany. There are seldom pedestrians, bicycles and vehicles in this dataset. The average number 

of valid features used in this dataset is 81 per epoch. The maximum and a minimum number of 

valid features used are 137 and 23 respectively. The horizontal distance traveled by the land vehicle 

in the first dataset is approximately 4130 meters. It has been proved that the tightly coupled 

integration of INS and Stereo VO outperforms the individual sensor in the previous section. Thus, 
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only the reference trajectory, tightly coupled INS/Stereo VO and INS/Stereo VO/MM are plotted 

in red, green and blue respectively in Figure 5.16. As can be seen, it is inevitable that the 

INS/Stereo VO suffers drift after a certain time. The Map Matching forces the solution to project 

on the road link when the correct road link can be determined. In this way, the position information 

of the map matched point is utilized in the INS/ Stereo VO system. This is also the reason that the 

INS/Stereo VO/MM trajectory is not continuous since the trajectory is forced to the road link. It 

might cause incorrect Map Matching when the land vehicle is turning. With the algorithms used 

in this thesis, it is obvious that there is no Map Matching point when the land vehicle is turning. 

This is due to the uncertainty of the road link determination in SMP-2 and the feedback filter 

conditions in the Map Matching. The RMS values of the positioning error in each direction are 

shown in Table 5.6. It can be seen that the RMS in the horizontal plane is largely reduced after the 

application of Map Matching algorithms.  
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Figure 5.16 Trajectories of the First Dataset for Map Matching 

 

 

Table 5.6 Positioning Error RMS for the First Dataset (Unit: meter) 

 East North Height Horizontal Total 

INS/Stereo VO 52.720 23.308 9.621 57.642 58.440 

INS/VO/MM 11.588 8.109 12.522 14.144 18.891 

 

In addition to the improvement in position, the azimuth and velocity estimation has also been 

improved. The digital map azimuth is used in INS mechanization after Map Matching. The RMS 

of azimuth error with Map Matching feedback is reduced from 8.03 degree to 5.01 degree. With 
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the improvements in position and azimuth, the velocity estimation is slightly better as well. The 

RMS of the forward velocity error is decreased from 1.49 m/s to 1.05 m/s. 

The second dataset was collected in suburban with trees on both sides. The distance of this dataset 

is about 4980 meters. At the beginning of the dataset, not enough valid features can be tracked due 

to similar scenes with trees along the road. In two epochs, no valid visual measurements can be 

used, which means only mechanization results of IMU is provided for Map Matching. Averagely, 

84 valid features are used in each epoch in this test. The trajectories are plotted in Figure 5.17, and 

the position error RMS is provided in Table 5.7. The horizontal accuracy is greatly improved with 

the application of Map Matching while the height accuracy keeps the same level. This is due to 

the 2D digital map used can only provide horizontal position information. Since the digital map 

can provide the azimuth, the azimuth error is reduced from 7.15 degrees to 4.12 degrees. With the 

improvement of azimuth estimation, the velocity estimation is also slightly improved. 
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Figure 5.17 Trajectories of the Second Dataset for Map Matching 

Table 5.7 Positioning Error RMS for the Second Dataset (Unit: meter) 

 East North Height Horizontal Total 

INS/Stereo VO 34.639 69.681 32.296 77.816 84.252 

INS/VO/MM 7.579 17.293 33.373 18.881 38.344 

 

The third dataset contains 2761 epochs (around 4.6 minutes). The distance of the third test is about 

2206 meters. Averagely, there are 78 features used in each epoch. The maximum number of inliers 

of visual measurements is 138 while the minimum number is 25. There are almost no moving 

objects in this dataset. The trajectories of each method are plotted in different colors shown in 

Figure 5.18. The trajectory with the Map Matching feedback is not continuous like the previous 

tests. The RMS values of the positioning errors with different methods are provided in Table 5.8. 

It can be seen that the horizontal accuracy is much improved with the application of Map Matching. 

The RMS is reduced from over 50 meters to less than 10 meters. Similarly, the azimuth error 

decreased from 8.68 degrees to 2.29 degrees, and the horizontal velocity error is reduced from 

1.435 m/s to 0.719 m/s.  
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Figure 5.18 Trajectories of the Third Dataset for Map Matching 

The Map Matching method used in this paper would not improve the estimation of the height 

component since the digital map can only provide horizontal information. For all the datasets, the 

positioning error in height is higher when applying INS/Stereo VO/MM. The reason for this might 

be that only the horizontal coordinates of map matched point are used while other states (velocity 

and attitude) keep the same, resulting in little improvement in velocity. With no height information 

and the velocity is not too much improved, the height error stays the same. However, the height 

accuracy is not the concern in this case since the horizontal position is more important for land 

vehicle navigation.  

The relative horizontal errors of all three datasets of each solution are listed in Table 5.8. As 

expected, the tightly coupled integration with no Map Matching has the largest relative horizontal 
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position error for the third dataset while INS/Stereo VO/MM solution provides more accurate and 

stable performance with relative horizontal position error less than 0.4% in each case. 

Table 5.8 Positioning Error RMS for the Thrid Dataset (Unit: meter) 

 East North Height Horizontal Total 

INS/Stereo VO 40.471 31.299 5.587 51.162 51.466 

INS/VO/MM 7.814 3.358 7.832 8.505 11.562 

 

Table 5.9 Relative Horizontal Positioning Errors of Different Methods 

Dataset Distance (meter) INS/Stereo VO INS/VO/MM 

1 4130 1.40% 0.34% 

2 5061 1.54% 0.37% 

3 2206 2.32% 0.39% 

 

5.2 Results and Analysis of Calgary Datasets 

In addition to the KITTI datasets, we also conducted field tests in Calgary to verify the methods 

developed in this thesis. The sensors used in the field tests are shown in Figure 5.19. The GNSS 

receiver, IMU and cameras used are Trimble R10, Crossbow NAV440 and PointGrey CM3-U3-

13Y3M-CS respectively. Trimble R10 is a survey grade receiver capable of RTK and high-

frequency output. In the implementation in this thesis, only one Trimble R10 receiver is used to 

conduct PPP with the data rate at 1 Hz. Crossbow NAV440 is a MEMS-based IMU with an internal 

GPS receiver. The gyro bias stability in run is 10 deg/h and the bias stability over temperature is 
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0.02º/s. The accelerometer bias stability in run is 1mg and the bias stability over temperature is 4 

mg. In this implementation, data rate for Crossbow NAV440 is 100 Hz. PointGrey CM3-U3-

13Y3M-CS is an industrial camera with a global shutter. The details of the camera specifications 

are shown in Table 5.10. In the implementation, 10 FPS is used. The lenses mounted on the 

cameras are Fujinon DV3.4x3.8SA-1. The focal length is 3.8mm-13mm and the optical format is 

1/2". 

                               

Figure 5.19  Sensors in the Field Tests 

All the sensors are mounted on a rack installed on the roof of a land vehicle. The Trimble R10 

receiver, the IMU and the left camera are mounted close to each other. The lever arms between 

them are neglected. The baseline between two cameras is about 80 cm. The installation of each 

sensor on the roof  can be seen from Figure 5.20. The Trimble R10 receiver has one internal battery 

that can last for several hours. The Crossbow NAV440 IMU needs to be connected to external 

power source. The PointGrey CM3-U3-13Y3M-CS cameras can be powered by laptop through 

USB 3.0 cables.  

Table 5.10 PointGrey CM3-U3-13Y3M-CS Specifications 

Specifications 
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Resolution 1280*1024 

Frame Rate Up to 149 FPS 

Megapixels 1.3 MP 

Chroma Mono 

Sensor Name ON Semi PYTHON 1300 

Sensor Type CMOS 

Sensor Format 1/2" 

Pixel Size 4.8 µm 

 

 
Figure 5.20 Installation of Sensors 

5.2.1 Test Preparation 

Before the field tests, the sensors used need to be set up properly including the synchronization of 

all sensors, the stereo camera settings, the stereo camera calibration and rectification. Since 

different types of measurements are fused into one filter, they need to be synchronized first. The 
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exact setting and synchronization of the stereo cameras are of great importance in Stereo VO 

because the 3D objects have to be projected on the stereo images in the same way. Otherwise, the 

feature tracking, correct triangulation and rectification in Stereo VO would be impossible. The 

camera calibration and rectification are also required because the Stereo VO models introduced in 

Chapter 2 would be invalid with distorted images applied in the Stereo VO. 

5.2.1.1 System Synchronization 

For the integrated system, one of the most important things is the synchronization of all the sensors. 

In our implementation, all sensors are synchronized to GPS time. The GNSS measurements from 

Trimble R10 are tagged with GPS time. The Crossbow NAV440 IMU has an internal GPS receiver 

which enables the inertial measurements to be tagged with GPS time. Here the difference between 

the receiver clocks in Trimble R10 and Crossbow NAV440 is small enough (less than 0.5 ms) that 

they can be safely neglected. For the PointGrey cameras, firstly, the two cameras need to be 

synchronized together to capture images simultaneously. Secondly, the images captured by the 

two cameras have to be tagged with GPS time, in order to be integrated with other types of 

measurements in Kalman filter. Apart from the USB port on the camera, there is a 9-pin General-

Purpose Input/ Output (GPIO) port, which can be used to send or receive trigger signals. The GPIO 

port on the camera is shown in Figure 5.22. The functions of each pin of the GPIO port can be 

seen in Figure 5.23. In the implementation, an Ublox M8T receiver is used to trigger the stereo 

cameras to capture images at the same time. Ublox M8T can send up to 10M Hz time-pulse signals 

to triger external sensors. The stereo cameras are triggered by the same time-pulse signals from 

the Ublox M8T receiver. In this way, not only the synchronization of two cameras can be 

guaranteed, but also the images are synchronized with GPS time. When the camera is set in the 
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trigger mode, the camera starts capturing images from external trigger input falling/rising edge. 

The camera can be triggered in this mode by using the GPIO pins as an external trigger or by using 

a software trigger. In our implementation, the external trigger input is from the Ublox M8T 

receiver. M8T is used to trigger the cameras instead of Trimble R10 is due the cability of M8T to 

send scalable frequency signals. The synchronization procedure can be seen from Figure 5.21. It 

can be seen from the figure that the exposure duration also affects the time that images are taken. 

Therefore, the exposure duration should be as short as possible. 

 

Figure 5.21 PointGrey Camera Trigger Mode (FLIR Knowledge Base, 2017) 

The other issue is the time tag of each image taken by the cameras. The FlyCapture Software 

Development Kit (SDK) provides basic functions for PointGrey cameras, e.g. trigger, strobe, time 

tag, etc. When the stereo cameras are connected to a laptop with USB 3.0 cables, the laptop UNIX 

time can be assigned to each image captured. The UNIX time is defined as the seconds that have 

elapsed since 00:00:00 Coordinated Universal Time (UTC), Thursday, 1 January 1970, minus the 

leap seconds that have taken place since them. In other words, the images can be tagged with UTC 

time provided by the laptop. However, as we know, the laptop clock is not accurate in most cases. 

If the laptop cannot access the Internet, the error of laptop time can be up to several seconds. To 

https://en.wikipedia.org/wiki/Second
https://en.wikipedia.org/wiki/Coordinated_Universal_Time
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solve this problem, the Ublox receiver is not only used to trigger the cameras, GPS time of the 

Ublox receiver is also recorded on the laptop connected to the cameras. Meanwhile, the laptop 

time is recorded at the same time. In this way, the time gap between GPS time and the laptop time 

can be known. Therefore, the image time tags can be converted to GPS time. In this way, all the 

sensor measurements are tagged with GPS time. The method used to record the Ublox receiver 

GPS time is to decode the measurements of the receiver. There is a 50 ~ 150 ms delay receiving 

and decoding the GNSS measurements compared with the time-pulse signals. 100 ms is subtracted 

when recording the GPS to compensate for the delay.  

 

 
Figure 5.22 GPIO Port on PointGrey CM3-U3-13Y3M-CS 
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Figure 5.23 Functions of the 9-pin GPIO Port on PointGrey CM3-U3-13Y3M-CS (FLIR 

Knowledge Base, 2017) 

The field test setup is illustrated in Figure 5.24. A laptop is used to record the inertial measurements 

and the images. When the Crossbow NAV440 is connected to a GPS antenna, it can work 

independently, and the inertial measurements are time tagged with GPS time. The IMU is powered 

up by an external power box and the inertial measurements are recorded by the laptop connected 

to the IMU. The Trimble R10 receiver can work by itself with its own internal antenna and battery. 

The Ublox M8T plays two roles here. Firstly, it sends out 10 Hz time-pulse signals to trigger the 

stereo cameras to take images at the same time and synchronize the images with GPS time. 

Secondly, it provides the time gap between the laptop time and GPS time in order to tag the images 

with GPS time. When the stereo cameras are triggered, they capture the images at the same time, 

and the images are saved by the laptop. 
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Figure 5.24 Field Test Setup 

5.2.1.2  Camera Settings 

The settings (e.g. Brightness, Exposure, Sharpness, Gamma, Shutter, Gain, etc.) should be exactly 

the same for the stereo cameras to take the same images to the largest extent. The PointGrey 

cameras provide auto modes for some settings. For example, the shutter and exposure can be set 

as an automatic mode to obtain the best images in the current situation. However, such optimized 

functions should be turned off when taking stereo images since the automatic mode cannot 

guarantee the same settings for both cameras at the same time. The slight difference might lead to 

degradation of Stereo VO results. For example, if the shutters for two cameras are different, the 
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times that the cameras take images may not be the same since the trigger time is the same, but 

shutters could take unequal time. The camera settings for the field tests are shown in table 5.11. 

Table 5.11 Camera Settings for Field Tests 

Property Value Auto Mode 

Sharpness 1024 (default) OFF 

Shutter 7 ms OFF 

Gain 5 dB OFF 

GAMMA 1 OFF 

Brightness 17% OFF 

Auto Exposure 0 OFF 

 

One thing needs to be mentioned is that a buffer is needed to save the images during tests. This is 

to prevent the loss of images during the tests due to the large size of data storage. For instance, one 

raw image is about 1.25 M so 10 FPS with two cameras make the total size 25M/s. Therefore, a 

buffer is necessary to make the captured images first queue in the buffer before saving in case loss 

of images during the tests. All the images taken during the tests are in binary format  in order to 

reduce the image storage size.  

5.2.1.3 Calibration and Rectification 

The Visual Odometry equations introduced in Section 2.3.2 (e.g. Eq (2.31) and Eq (2.33)) are 

based on the assumption that all the images used are not distorted. However, it is inevitable that 

distorted images are captured using industrial cameras in applications. Therefore, to apply VO 

algorithms, the first thing to do is to correct the distorted images. This can be done by estimating 
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the parameters of the camera lens (Bradski & Kaehler, 2008; Heikkila & Silven, 1997; Zhang, 

2000). Generally, the distortion consists of the radial distortion and the tangential distortion. The 

radial distortion is most visible with straight lines appearing curved, as shown in Figure 5.25. The 

radial distortion can be modeled as Eq (5.1),  
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where (xundistorted, yundistorted ) is the undistorted image point used in Eq (2.31), (xdistorted, ydistorted ) is 

the distorted imaged point as captured on the image, (u, v) is the principal point pixel coordinate, 

k1, k2 and k3 are the radial distortion coefficients, 
22 )()( vyuxr distorteddistorted  . 

 

(a). Negative Radial Distortion        (b). No Radial Distortion         (c). Positive Radial Distortion 

Figure 5.25 Radial Distortion (Mathworks Documentation, 2017) 

The tangential distortion occurs if the camera lens and the sensor format are not parallel as shown 

in Figure 5.26. The tangential distortion can be modeled in Eq (5.2).  

)1))()(2())((2(

)1))()((2))(2((

6

3

4

2

2

1

22

21

6

3

4

2

2

12

22

1

rprprpvyrpvyuxpy

rprprpvyuxpuxrpx

distorteddistorteddistorteddundistorte

distorteddistorteddistorteddundistorte




 

(5.2) 



 

130 

 

where u, v, r, (xundistorted, yundistorted), (xdistorted, ydistorted) have the same meaning in Eq (5.1), p1, p2 and 

p3 are the tangential distortion coefficients. 

 

 

                 (a). No Tangential Distortion                             (b). Tangential Distortion 

Figure 5.26 Tangential Distortion  

Combining Eq (5.1) and Eq (5.2), the calibration model can be written as  
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(5.3) 

The Least Square method can be used to estimate the unknows in Eq (5.3). Eq (2.31) is used to 

calculate the undistorted point (xundistorted, yundistorted). Therefore, the 3D coordinates of objects 

should be known and the projection on the image should be easily distinguished, which makes the 
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chessboard a good pattern for camera calibration. There are two camera calibration methods using 

the chessboard. The first one is to capture multiple chessboards in a single shot (Geiger et al., 

2012) and the second one is to capture multiples images of one chessboard with different locations 

(Laganière, 2017). In this thesis, the second method is used, and the chessboard is captured from 

different views, shown in Figure 5.28. The total number used for camera calibration is 54. Here 

only parts of the images are shown. In the calibration, the chessboard was placed at 2~10 meters 

away from the cameras from different views. 

 

Figure 5.27 Chessboard for Camera Calibration 

The valid chessboard size is 6 by 3 squares with each square side 6.9 cm. The chessboard is 

attached to a flat surface, which is shown in Figure 5.27. In Figure 27, the left-up corner is selected 

as the origin of the world frame. The X axis and Y axis lie on the chessboard plane while the Z 

axis is perpendicular to the chessboard plane. The 3D coordinates of each detected corners are easy 

to be determined since the world frame is based on the chessboard plane. It can be seen that the 
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projected point of each corner can be easily detected on the image and the projected point pixel 

coordinates namely (xdistorted, ydistorted) can be known. With multiple images taken from different 

views, multiple equations based on Eq (2.31) and Eq (5.3) can be set up. The unknowns ki, pi, u, 

v, f can be estimated. 

 

Figure 5.28 Images for Camera Calibration 

For stereo camera calibration, two cameras need to capture the same chessboard at the same time. 

In addition to the unknows in single camera calibration, the rotation and translation between two 

cameras are also included in the estimation. The next step after stereo calibration is stereo 
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rectification, which transforms the stereo image planes on the same plane paralleling to the 

baseline between two cameras (Bradski & Kaehler, 2008; Forsyth & Ponce, 2011; Hartley & 

Zisserman, 2003). After stereo rectification, epipolar lines become collinear and parallel to 

baseline as well. Shown in Figure 5.29 is the rectified and calibration stereo images. The rectified 

and calibrated images are used in the Stereo VO, which makes the tracking between left and right 

images in consecutive epochs easier. More importantly, the equations introduced in Section 2.3.2 

can be applied after stereo calibration and rectification. 

 

Figure 5.29 Stereo Images After Rectification 

5.2.2 Tight Integration of INS and Stereo VO 

The first test was in the Triwood community near the University of Calgary. The test lasted for 

about three and half minutes. It started with the point (0, 0). There are trees and houses along the 

roads. The general test environment can be seen in Figure 5.30. During the test, the land vehicle 

made four maneuverers.  
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Figure 5.30 First Test Environment  

The trajectories of stand-alone Stereo VO and tightly coupled INS/Stereo VO are plotted in green 

and blue respectively in Figure 5.31. The meter level GPS standard point positioning (SPP) result 

is used as the reference. The horizontal accuracy is within 5 meters, which is good enough to 

evaluate the positioning results of the DR systems used in this thesis since all the DR systems 

suffer accuracy degradation over 20 meters. The reference trajectory is plotted in red in Figure 

5.31. In this implementation, the windowed bundle adjustment of Stereo VO is not applied. The 

Stereo VO results are obtained by triangulation and resection at every single epoch. RANSAC is 

applied to filter out obvious outliers of the tracked features. Specifically, RANSAC is applied to 

find out the rotation and translation with the maximum number of inliers within a certain threshold 

(7 pixels). Features are randomly selected to calculate the rotation and translation for 200 times. 

Based on the calculated rotation and translation, the other features are projected on the images. 
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Those with projection error larger than the threshold are rejected. The calculation with the most 

inliers is treated as the resectioning results of Stere VO, and the inliers on the images are used for 

the tightly coupled integration. In other words, the visual measurements used in the stand-alone 

Stereo VO and the tightly coupled integration are the same. In this way, if the tightly coupled 

integration method result is better, it is proved that the integration has an effect on position 

accuracy improvement. 

 

Figure 5.31 Trajectory of the First Test 

From Figure 5.31, it can be seen that the stand-alone Stereo VO drifts more than the tightly coupled 

INS/ Stereo VO system. The integration results follow the correct trajectory for longer time. The 

result of the stand-alone INS is not provided in Figure 5.31 since the IMU mechanization results 
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drift quickly after beginning. To see the positioning results more clearly, the positioning errors of 

each system are shown in Figure 5.32. The moving direction was changed at 150 s, which reduces 

the Stereo VO error while increases the INS/Stereo VO error. The RMS values of the positioning 

errors are summarized in Table 5.12. For this dataset, the tightly coupled integration of INS and 

Stereo VO proposed in this thesis outperforms the stand-alone Stereo VO in all directions, which 

verifies the effectiveness of the proposed method. As explained in Chapter 4, the dynamic 

information provided by IMU improves the results of the stand-alone Stereo VO. The IMU 

position and attitude are used to predict the pixel coordinates of features on the next image. In this 

way, the IMU information is fused in the filter. With closed-loop method used, the IMU 

mechanization errors are corrected, which maintains the dynamic information of IMU within 

certain accuracy. Compared with the stand-alone IMU solution, the pixel coordinates corrections 

provided by the Stereo VO correct not only the IMU mechanization position but also the velocity 

and attitude. Due to the correction of the velocity, the accumulation of position error is not as fast 

as the stand-alone IMU. This is the main reason the integration greatly improves the mechanization 

results.  
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Figure 5.32 Position Errors in East, North and Height 

Table 5.12 RMS of Position Errors in East, North and Height (Unit: meter) 

 East North Height 

Stereo VO 37.545 83.505 123.500 

INS/ Stereo VO 21.672 61.777 91.390 

 

To test the tightly coupled integration of INS and Stereo VO, a longer test was conducted in the 

same area. The second test lasted for more than five minutes. This test was conducted on a different 

day, but the implementation was the same as the first test. The trajectories of the reference, Stereo 

VO and tight integration of INS and Stereo VO are plotted in red, green and blue respectively in 

Figure 5.33. This time, it is also very clear that the tightly coupled integration trajectory is closer 
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to the reference. For the first 150 seconds, the tight integration result follows the correct trajectory 

very well. After that, the east direction is not as good as the north direction, but still in a reasonable 

range (about 30 meters). The integrated trajectory still followed the reference. The position error 

RMS in each direction are summarized in Table 5.13. This time, the height error is much larger 

than the Stereo VO, but the horizontal accuracy is much improved by the integration method 

proposed, especially for the north direction. It can be seen that the horizontal error drops from 

about 185 meters to about 35 meters. Although the error in the height component increases greatly, 

the 3D error is still reduced by the proposed method.  

 

 

Figure 5.33 Trajectory of the Second Test 
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Table 5.13 RMS of Position Errors in East, North and Height (Unit: meter) 

 East North Height 

Stereo VO 57.863 176.770 41.055 

INS/ Stereo VO 34.866 6.862 114.768 

 

 

Figure 5.34 Third Test Environment 

The results of the tight integration method depend on the quality of the visual measurements 

namely the pixel coordinates on the stereo images. Since the same visual measurements are used 

for Stereo VO and the integration, good integration results can be expected if the stand-alone 

Stereo VO performs well. This is because the good Stereo VO results mean that the quality of the 

detected and tracked features is high. If the Stereo VO results are not as good as expected, which 
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means the accuracy of tracked feature coordinates on the images is not good enough, the tight 

integration of Stereo VO and INS would suffer quick degradation of positioning results as well. 

However, with the dynamic information provided by the IMU, the tightly coupled integration 

should have a better result than stand-alone Stereo VO as well. This is the case for the third case. 

In the third test, the land vehicle was moving in the Brentwood community near the University of 

Calgary. There are trees and houses along the road that the land vehicle was moving on. The test 

environment can be seen in Figure 5.34. 

 

Figure 5.35 Trajectory of the Third Test 

The test contained 3450 images lasting about 5.75 minutes. The trajectories of each method are 

plotted in Figure 5.35. It can be seen that the Stereo VO suffered quicker and larger drift, compared 
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with the previous two datasets. The reason might be that the cameras suffered more flare due to 

the weather that day. This results in more outliers and inaccurate pixel coordinates of features. 

Even though, with INS applied, the tight integration still shows better performance using the 

method proposed. It can be seen that the trajectory of the integration method becomes closer to the 

reference with the same features used. The positioning errors in North, East and Height are plotted 

in Figure 5.36. The errors in each direction using two methods show a similar tendency, but the 

magnitude of the integration is clearly smaller than the stand-alone Stereo VO. The RMS of the 

errors is shown in Table 5.14. The RMS values for the integration in three directions are much 

smaller than the stand-alone Stereo VO.  
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Figure 5.36 Position Errors in East, North and Height 
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Table 5.14 RMS of Position Errors in East, North and Height (Unit: meter) 

 East North Height 

Stereo VO 227.351 433.893 425.356 

INS/ Stereo VO 185.235 271.206 175.487 

 

For DR systems used in the land vehicle navigation, the horizontal accuracy is more important 

than the vertical accuracy. Therefore, the relative horizontal position errors in each method are 

summarized in Table 5.15. The tightly coupled integration has the best performance using the 

second dataset. In comparison, the stand-alone Stereo VO has the worst accuracy for the third 

dataset due to the inaccuracy of the visual measurements. Improvements can be found for in all 

three datasets regardless of the performance of the Stereo VO. 

 

Table 5.15 Relative Horizontal Position Errors of Each Method 

Dataset Distance (meter) Stereo VO INS/Stereo VO 

1 1520 6.02% 4.31% 

2 1925 9.66% 1.85% 

3 2629 18.63% 12.49% 

 

So far, all three datasets collected in Calgary also show the effectiveness of the tightly coupled 

integration of INS and Stereo VO. But the results of self-collected datasets are not as good as the 

KITTI datasets. One of the reasons is that the synchronization of the KITTI dataset is much better 
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than the dataset collected in Calgary. The more blurred images collected in Calgary also 

contributes to the degradation of the positioning accuracy. Moreover, the alignment between the 

sensors, the stereo camera calibration and rectification may also affect the performance of each 

method. 

5.2.3 Tight Integration of INS, Stereo VO and Map Matching 

An integrated DR system will suffer a drift after a while as demonstrated in the results of the 

previous section. Map Matching is necessary in order to further reduce the accumulated error when 

there is GNSS outage. The results of INS/ Stereo VO/ Map Matching with datasets collected in 

Calgary are shown in this section. The feature detection and tracking methods used in this part are 

the same as before. The tightly coupled integration scheme keeps the same as well. The map 

matched point’s coordinates and the road link azimuth are further applied in the IMU 

mechanization in the next epoch.  

The first dataset was collected in the Triwood community near the University of Calgary campus. 

It lasted for 4 minutes with the traveled distance of about 1716 meters. The estimated trajectories 

from the tight integration of INS and Stereo VO, INS/ Stereo VO/Map Matching and the GPS SPP 

reference trajectory are plotted in green, blue and red respectively in Figure 5.37. The road link 

provided by OpenStreetMap is also plotted. There is an offset between the road link and the GPS 

trajectory (about 2 meters), which is neglected in the calculation of the position error RMS. The 

GPS solution is still used as the reference. When there are feedbacks from Map Matching, the tight 

integration solution is forced to the map matched point on the road link. Therefore, the trajectory 

of the one with Map Matching suffered discontinuity. If no feedbacks from Map Matching 

available, the INS/Stereo VO solution is the output, resulting in offset at turnings. With the 



 

146 

 

correction of Map Matching, the accumulated drift of the integration is greatly reduced. Generally, 

the trajectory with Map Matching followed the reference. The RMS of positioning errors for INS/ 

Stereo VO and INS/ Stereo VO/ MM are shown in Table 5.16. It is clear that the horizontal error 

drops from over 90 meters to less than 20 meters, which indicates the effectiveness of Map 

Matching. Since the digital map can only provide horizontal coordinates of the map matched point. 

There is no improvement in the height direction.  

Table 5.16 Position RMS of Different Methods for the First Dataset (Unit: meter) 

 East North Height Horizontal 

INS/Stereo VO 39.114 85.206 113.980 93.755 

INS/VO/MM 15.503 10.765 121.419 18.874 

 

Figure 5.37 Test Trajectories for the First Dataset 
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The second dataset was collected around the research park near the campus of the University of 

Calgary. The length of the trajectory with this data is about 1816 meters, and the test lasted for 

about 4 minutes. The trajectories of each method are plotted in different colors in Figure 5.38. 

Similar to the previous dataset, the trajectory of the one with Map Matching is forced to the road 

link when there are feedbacks from Map Matching. The position errors of INS/Stereo VO and 

INS/Stereo VO/MM are shown in Table 5.17. The horizontal position errors are greatly reduced 

with Map Matching applied.  

Table 5.17 Position RMS of Different Methods for the Second Dataset (Unit: meter) 

 East North Height Horizontal 

INS/Stereo VO 117.984 99.263 135.561 154.186 

INS/VO/MM 12.317 16.256 141.008 20.395 
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Figure 5.38 Test Trajectories for the Second Dataset 

The relative horizontal position errors of these two datasets are summarized in Table 5.18. It can 

be seen that the horizontal accuracy is greatly improved with the Map Matching applied. The 

positioning errors decrease from 5.46% to 1.10% and from 8.49% to 1.12% respectively.  

Table 5.18 Relative Horizontal Position Errors of Each Method 

Dataset Distance (meter) INS/Stereo VO INS/Stereo VO/MM 

1 1716 5.46% 1.10% 

2 1816 8.49% 1.12% 
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5.2.4 Tight Integration of GPS, INS and Stereo VO 

The dataset of GPS/INS/Stereo VO was collected around the Alberta Children’s Hospital in 

Calgary. All used used were introduced in Section 5.2.1. One Trimble R10 receiver is also set up 

on the roof of the Engineering Building at the University of Calgary, which is used as the base 

station for RTK positioning. The RTK solution will be used as the reference to evaluate the results 

using different sensors. The test environment was open sky with trees and low buildings along the 

road as shown in Figure 5.39.  

The kinematic test lasted for about 6 minutes. The trajectory of this test is shown in Figure 5.40. 

The trajectory started at (0, 0). Since with GNSS applied, the trajectories are similar, only the one 

with stand-alone GPS PPP is plotted in Figure 5.40. The land vehicle was in static mode for tens 

of minutes to make the PPP converged before moving. During the test, code measurements on L1 

for some satellites cannot be recorded by the receiver for unknown reasons. To form PPP 

observations, both L1 and L2 signals are needed. Therefore, only 5 ~6 valid satellites were used 

for PPP in this test. However, the PPP results are still at decimeter level in the test. The lever arm 

between sensors were not taken into consideration. The reason for worse GPS/INS solution than 

GPS PPP may due to the lever arm between the IMU and the GNSS receiver.  
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Figure 5.39 Test Environment 

The position errors in east, north and up directions with GPS, GPS/INS and GPS/INS/Stereo VO 

are plotted in different colors in Figure 5.41. The accuracy of results using different sensors is 

similar to each other. Besides, the error tendency of the three methods is similar as well. In open 

sky environment, GNSS dominates the positioning accuracy because of accurate GNSS 

measurements. The RMS of results using different sensors in east, north and up directions is 

summarized in Table 5.19.  

The spikes for GPS/INS/Stereo VO are due to the inaccurate synchronization. When the land 

vehicle is taking maneuvers, there might be a large difference between the predicted measurements 

and the actual measurements. There is no obvious accuracy difference with GNSS applied in the 

open sky environment. Since the number of satellite used is only 5~6 and the test time is not long 

enough, which may lead to the offset in the east direction. 
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Figure 5.40 The First Test Trajectory 

Table 5.19 Positioning Errors with Different Sensors (Unit:meter) 

 GPS/INS GPS PPP 

GPS/INS/Stereo 

VO 

East 0.168 0.158 0.059 

North 0.147 0.125 0.073 

Up 0.175 0.176 0.177 
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Figure 5.41 Positioning Results in Each Direction 

5.2.5 Kinematic PPP AR with the Aid of Map Matching 

A field test was conducted to demonstrate the effectiveness of the tight integration of PPP and Map 

Matching around the campus of the University of Calgary. A Trimble R8 receiver mounted on a 

land vehicle roof was used to implement the kinematic PPP. A base station was set up at the roof 

of Engineering Building of the University of Calgary to achieve RTK fixed solution, which is 

applied as the reference to verify the test results. The test environment is shown in Figure 5.42. 

There are constructions and trees along the road. The multipath effect of satellites with low 

elevation would be obvious. Therefore, the elevation mask is set as 15 degrees in this test to 

exclude those satellites with large noise. The test trajectory is shown in Figure 5.43. The land 

vehicle began to move after 2 minutes of data collection.  
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Figure 5.42 Test Environment 

This field test was about 13 minutes, and the average velocity of the land vehicle is about 7 m/s. 

The digital map used in this test is made based on the RTK solution. The fixed RTK solution is in 

centimeter level, which means the accuracy of the generated digital map is within 20 centimeters. 

The Map Matching is not applied in the first several minutes during the WL ambiguity resolution. 

This is to make the float IF ambiguities more converged before Map Matching constraints applied. 

If the Map Matching is conducted at the beginning, the error of the Map Matching constraints may 

have a great impact on the ambiguity convergence. In contrast, if the ambiguities take a few 

minutes to get more converged, it is more likely for the ambiguities to get converged to the correct 

value. It takes a few minutes to fix the WL ambiguities due to the large noise of code measurements. 

The MW combination has to be smoothed with multiple measurements collected in order to 

guarantee the correctness of the fixed WL ambiguities. With Map Matching, the cross-track error 

of PPP results can be largely reduced while the along-road error cannot be effectively removed. 
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The ambiguities are correlated with the position errors. With external position measurements, the 

ambiguities can get converged faster as well, which makes fast PPP AR possible. 

 

Figure 5.43 Test trajectory 

Figure 5.44 shows the satellite sky plot. It can be seen that G21 is the satellite with the highest 

elevation. In this test, the single-difference between-satellite was implemented. Therefore, G27was 

chosen as the reference satellite. In this test, the total number of observed satellites was 9, as shown 

in Figure 5.44. Among the rest 8 satellites, there were 6 single-difference measurements used in 

the implementation. G29 was only observed for a short period due to the low elevation. G16 was 

rejected due to the quality check in the PPP AR, results in ambiguity re-initialization during the 

test. Partial ambiguity resolution method is applied in this test to improve the ambiguity resolution 

speed. 
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Figure 5.44 Satellite Sky Plot 

The positioning results of PPP only and PPP/MM are shown in Figure 5.45 with the RTK fixed 

solution used as the reference to calculate the positioning errors of each method. The PPP only and 

PPP/MM results are plotted in different colors. There is no difference between the two different 

methods in the first half session. This is because the Map Matching was not applied yet before the 

WL ambiguities were fixed. Application of the Map Matching started at 450th epoch in this test. It 

is obvious in Figure 5.45 that the Map Matching algorithm immediately improved the positioning 

acracy after application, especially for the North direction. The improvement in East is not as good 

as in North. This is because most of the along-track error is in East direction while the cross-track 

error mainly lies in North direction. There is little improvement in Up direction with Map Matching 
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applied, compared with the horizontal directions. This is because the map matched points can only 

provide horizontal restrictions. 
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Figure 5.45 Positioning Errors of Each Method 

According to Figure 5.45, the NL ambiguities are fixed just several seconds after applying Map 

Matching. In comparison, without the aid of Map Matching, it takes about another six minutes to 

fix the NL ambiguities. To see the positioning errors more clearly, the RMS of the positioning 

errors are shown in Table 5.20. With the aid of Map Matching, the positioning errors in each 

direction are largely reduced, especially in the north direction. This is not only due to the position 

improvement with Map Matching constraints, the fast ambiguity resolution also helps improve the 

positioning results. The horizontal accuracy is at centimeter level after Map Matching and 

ambiguity resolution. 

Table 5.20 Position Error RMS in Each Direction (Unit: meter) 

 East North Up 

PPP only 0.035 0.138 0.151 

PPP/MM 0.022 0.024 0.086 
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As illustrated before, the ambiguities are highly correlated with the estimation of position. Since 

the position results are improved with the Map Matching constraints, the estimation of ambiguities 

is improved as well. Besides, with the constraints of Map Matching, the variance-covariance of 

ambiguities is reduced, which means the search space in ambiguity resolution is reduced, and the 

ambiguities can be fixed in much shorter time. The estimation of ambiguities is shown in Figure 

5.46. 

 

Figure 5.46 Single Difference IF Ambiguities 

Shown in Figure 5.46 is the estimated IF ambiguities. Although the corrections for the ambiguities 

may not be that accurate, it is good enough to achieve partial ambiguity resolution in less than 10 

seconds. The stand-alone PPP still needs approximately 200 seconds more to get the NL 

ambiguities fixed. To see the variation of NL ambiguates more clearly, the NL ambiguities after 
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applying Map Matching are shown in Figure 5.47. The NL ambiguities with Map Matching are 

fixed at the 457th epoch while the PPP only fixed the ambiguities at the 688th epoch. 

 

 

Figure 5.47 Single Difference NL Ambiguities 

From Figure 5.47, it can be seen that the NL ambiguities are overcorrected after application of 

Map Matching, but the reduced search space of integer ambiguities makes the LAMBDA method 

find the correct integers in much shorter time, compared with the statnd-alone PPP. 

5.3 Summary 

The results of the tests using both KITTI and Calgary datasets have verified the effectiveness of 

the proposed multi-sensor integration methods. The KITTI data provides the IMU inertial 

measurements and stereo images, but the raw GNSS data is not available. Therefore, only the 
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integration of INS, Stereo VO, and the integration of INS, Stereo VO and Map Matching has been 

conducted with KITTI datasets. The data collection procedures in Calgary are described in detail. 

The synchronization, calibration and rectification are done professionally for the KITTI datasets, 

while the datasets collected in Calgary are not as good as KITTI datasets. However, the tightly 

coupled integration of INS and Stereo VO has shown better performance than the stand-alone 

Stereo VO using both datasets. Moreover, the application of Map Matching has further reduced 

the accumulated navigation errors during GNSS outage periods using both datasets.  

The integration of INS, Stereo VO and GNSS with IMU as the core sensor is tested using the data 

collected in Calgary. The IMU data is available all the time, which makes it suitable to provide the 

dynamic information of the land vehicle while the measurements from other sensors are used to 

correct the errors and update the solution. The result shows that the GNSS dominates the 

positioning accuracy in open sky environments.  

In open sky environment, fast kinematic PPP ambiguity resolution method with the aid of Map 

Matching is explored and verified by the Calgary data. Map Matching projects the PPP float 

solution on the road links, and the projected point could be used as additional measurements in 

Kalman filter. Besides, the road link azimuth can be treated as constraints for PPP as well. With 

these external position information, the PPP ambiguities can converge faster since the ambiguities 

are correlated with the position unknown parameters. The Calgary dataset shows that the PPP 

ambiguities can be fixed in several seconds after the application of Map Matching.  
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Chapter Six: CONCLUSIONS AND FUTURE WORKS 

The development and analysis of GNSS, INS and Stereo VO tight integration system for land 

vehicle navigation is the major aim of this thesis. The tight integration architecture for three 

different types of systems is proposed and developed to improve the performance of the navigation 

system. In addition, Map Matching is integrated with INS/ Stereo VO in GNSS denied 

environment to limit the accumulation of errors, and it is also used to accelerate the PPP ambiguity 

resolution in kinematic positioning in open sky environment. Generally, IMU is applied as the core 

sensor in the implementation. When GNSS or Stereo VO measurements are available, the 

accumulated error of INS can be limited, and the solution can be improved because of external 

measurements. In this way, the system can work in most environments. When the land vehicle is 

in GNSS denied environments, an INS/ Stereo VO integrated system can provide a continuous 

solution to bridge the outages of GNSS. Map Matching integrated with INS/ Stereo VO can further 

improve the position accuracy. When the land vehicle is traveling in open sky environments with 

just one GNSS receiver, the accurate digital map can be used to provide external position 

information to aid PPP AR. 

6.1 Conclusions 

1. A tightly coupled integration of INS and Stereo VO method can effectively reduce the 

accumulation of errors, compared to an INS-alone or VO-alone system. The 

implementation aspects for tightly coupled integration of inertial sensors and stereo 

cameras are explored in detail. The IMU mechanization provides the dynamic information 

for the system. Specifically, the position and attitude can be utilized to predict the pixel 

coordinates of features on the stereo images. The visual measurements from the Stereo 
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cameras, namely the pixel coordinates of the tracked features are used to reduce the inertial 

errors. The error-state model in the Kalman filter is used in this implementation. The 

difference between the predicted and measured pixel coordinates is used to estimate the 

errors. In this way, the visual information could be fully applied in the integration. The 

improvements are obvious when compared to stand-alone Stereo VO. Besides, Stereo VO 

cannot provide direct velocity while the tightly coupled integration is capable of providing 

the velocity with less noise.  

2. The tightly coupled integration architecture for INS and Stereo VO can be extended to 

include GNSS measurements as well. A tight integration of GNSS, INS and Stereo VO is 

proposed. The IMU is applied as the core sensor while GNSS and Stereo VO measurements 

are used to correct the INS errors. With such integration architecture, the implementation 

can be flexible. With either type of the measurements is available, it can be applied in the 

integrated system. GNSS dominates the system in open sky environments and the accuracy 

of the integrated system is similar to a stand-alone GNSS system.  

3. Digital maps can be used to provide external position information to the integrated 

navigation system in addition to GNSS. With the fuzzy logic Map Matching method used 

in this thesis, the INS/Stereo VO solutions can be projected on the digital map. With the 

information of the projected points on the digital map, the cross-road errors can be largely 

reduced and better results can be achieved. The integration of INS, Stereo VO and Map 

Matching could be a valid method for land vehicle navigation in GNSS denied 

environments.  
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4. In open sky environment, Map Matching can also be used to accelerate the PPP ambiguity 

resolution. With the position information provided by the accurate digital map, the PPP 

ambiguities can converge faster since the ambiguities are correlated with the position. The 

projected point on the digital map and the road link azimuth is applied as the additional 

measurements in Kalman filter. With the additional measurements, the integer ambiguity 

search space is reduced and the efficiency of finding the correct integer ambiguities can be 

greatly improved. This results in fast kinematic PPP AR.  

6.2 Future Work 

Several future research works are identified and provided as follows: 

1. Improvement of feature detection and tracking algorithms. The current feature detection and 

tracking still need to be further improved to have better performance for stand-alone Stereo VO.  

2. The correlation between the tracking pixel coordinates needs to be taken into consideration in 

implementation. 

3. Development of quality control methods for GNSS and Stereo VO measurements, based on the 

tightly coupled integration architecture. One of the advantages of tightly coupled integration is 

better quality control with the prediction of measurements based on INS. More efficient outlier 

detection methods should be developed and implemented. 

4. Development and test of the integrated system in challenging environments (e.g. not enough 

number of satellites). With the development of multi GNSS constellations, it is more frequent to 

meet the situation where some satellites are not working properly, compared with GNSS denied 

environment. In some cases, only few satellites can provide valid measurements. Methods for 
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positioning with less number of satellites should be developed. Combined with the outlier 

detection, this could further improve the system integrity. 

5. Development of real-time processing system. The real-time system would be much more 

challenging, but it is also much more useful for land vehicle navigation. The processing speed 

needs to be improved and the saved images have to be handled properly to deal with the large size 

of image data. 

6. Development of integration with other sensors. There are other sensor options that can be 

utilized for the land vehicle navigation. For example, a depth camera can provide the depth 

information to avoid the depth ambiguity with a monocular camera. The laser scanner can work 

without illumination, which could further improve the integrity of the system.  

7. Integration with reduced IMU (2 accelerometers, 1 gyro) to reduce the quick accumulation of 

errors. For land vehicle navigation, the reduced IMU can satisfy the application in general cases. 

The integration with reduced IMU needs to be studied. 

8. IMU mechanization with non holonomic constraints. The main drawback of the low-cost IMU 

is the quick drift with full mechanization. The non holomic constraints can effectively reduce the 

quick accumulation of errors. Integration with holomic constraints can further reduce the error. 
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Appendix A 

The dynamic matrix of INS error propogation: 
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  ; e is the earth rotation angular rate; α and β are the 

reciprocal of the correlation time of accelerometers and gyros respectively. 

In discrete-time system, the covariance matrix of the process noise can be formed as  
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where F is the dynamic matrix; Qk-1 is the covariance matrix of the process noise in Eq (3.1); σ
2 

f  

and σ
2 

ω are the variance of the white noise in first-order Gaussian-Markov model for accelerometer 

and gyro biases respectively; q is the power spectral density (PSD) of the white noise w as follows 

[ ]T

ar ab gr gbw w w w w  

where war, wgr are the white noise for velocity random walk and angular random walk; wab, wgb are 

the white noise in first-order Gaussian-Markov model for accelerometer and gyro biases with 

Gaussian distribution N(0, 1). 


