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Abstract 

The propagation of solitary waves in fluid-filled elastic tubes was investigated by 

direct analysis of the governing field equations. The primary advantage of this ap- 

proach over the widely used asymptotic techniques is that, for a specified wave speed, 

the solution of the 'exact' amplitude of the solitary waves only requires the roots of 

an algebraic equation. The shape of the wave can be found to any required de- 

gree of accuracy numerically. This approach can be applied beyond the long-wave 

approximation for any amplitude of wave. 

The presented direct approach was used to consider a fluid-filled elastic thin- 

walled tube where axial displacements were neglected and the velocity of the fluid 

was averaged over the tube radius. It was shown that errors can become as large as 

20% for displacements up  to 25% of the tube radius when the reductive perturbation 

technique is used. The direct approach .was also used to investigate a problem in 

plasma physics, specifically ion-acoustic waves, to  illustrate a broader application of 

the proposed technique. 

The kinematically exact shell equations for the tube, including both axial and 

radial displacements were considered and it was shown that, by casting the problem 

in a variational framework, it becomes possible to find explicit first integrals of the 

governing equations. The first integrals then allowed the speed, amplitude and shape 

of the resulting solitary wave to be determined 'exactly' using the proposed direct 

approach. The results showed that the wave amplitude calculated using the exact 

displacements were an order of magnitude greater than found when axial displace- 

ments were neglected. It was subsequently shown that the axial strain was of the 



same order as the magnitude of the radial strain and that in the prestressed reference 

configuration their relationship was approximately linear. 

Exploiting this approximate linear relationship, a linear function was found from 

the axial first integral, permitting the reduction of the governing equations to a 

problem of one equation in one dependent variable, while still retaining a contribution 

for the axial displacement. The amplitude predicted using this approximate approach 

was found to differ from the exact value by as little as 3%. 

Finally, the tube wall pressure predicted from our inviscid, incompressible one- 

dimensional fluid model was compared to a two-dimensional flow, simulated using 

a modified discrete-vortex method. The tube geometries examined corresponded to 

the solitary wave profiles for four representative wave speeds. It was shown that the 

predicted pressures from the existing one-dimensional model compared well with the 

two-dimensional flow. Based upon this, it should be expected that solitary waves 

predicted using a two-dimensional fluid model will be in close agreement with the 

results presented in this dissertation. 
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Chapter 1 

Introduction 

In this dissertation solitary waves propagating in fluid-filled elastic tubes have been 

examined. Solitary waves have been investigated in several physical contexts due 

to their characteristic of propagating with a constant speed and form. If asked to 

describe how solitary waves can exist, the standard answer tends to be that they 

exist through a balance of dispersion and nonlinearity. While mathematically and 

physically true, this answer provides little in tangible understanding. Therefore, for 

the first part of this dissertation, a brief introduction to the basic concepts used in 

this approach, with an emphasis on physical meaning, is provided. Having done that, 

a brief historical introduction to the problem considered here will also be examined. 

1 .  What is a Wave? 

-4 persons understating of waves is often influenced by their background. Someone 

working in acoustics likely envisions waves as periodic, while an aerodynamicist is 

more likely to envision a shock. Therefore, one should begin by assigning a definition 

to the term wave. 

To that end, we will adopt the definition given by Whitham (1974), where a wave 

is defined as 

any  recognizable signal t h a t  i s  transfered f rom one part of  the m e d i u m  to 

another with a recognizable velocity of propagation. 



The signal may take the form of a maximum or an abrupt change, so long as the 

position and speed may be determined a t  any time. This definition is very broad 

but is intended to encompass the wide range of physical entities called waves. 

With this frame of reference, it is worthwhile for us to consider two other char- 

acteristics of waves, with implications to this work, and to examine their physical 

features. A more complete treatment can be found in Bhatnagar (1979), who pro- 

vides a n  excellent introduction to topics particularly important to this dissertation 

and some of whose explanations and definitions are reproduced here. 

1.1.1 Dispersion 

The first point of interest is the effect of dispersion. The discussion of dispersion is 

begun through the consideration of a generic example. Let us consider a general, lin- 

ear partial differential equation (PDE) for a function 4 of two independent variables 

x and t ,  such that 

where L is a linear operator. In Eq. (1.1), we assume that the variables x and t do 

not appear explicitly and that the equation is homogeneous. Because this equation 

is linear its solution can be found through superposition. Assuming this, we can seek 

a harmonic wave type solution by substituting 

into Eq. (1.1). In Eq. (?.2), a is the amplitude, k is the wave number and w is 

the wave frequency. In making this substitution, all the derivatives of x and t now 



become 

d d - + - and - + -iw 
dx dt 

Having done this, the original differential equation reduces to the algebraic relation 

where Ai are any parameters appearing in Eq. (1.1) - 

Equation (1.3) is then defined as the linear dispersion relation and gives the wave 

frequency in terms of the wave number and any parameters. We can re-write Eq. 

(1.3) so that 

where we have assumed the dependence on the parameters Ai. This is the form of 

the dispersion relation most commonly considered. Now, if Eq. (1.4) determines a 

real value of w for every value of 0 5 k < ca and = w"(k) # 0 the wave is said 37 
to be dispersive. 

In order to provide some physical meaning to this theoretical definition of disper- 

sion, let us consider the superposition of two harmonic waves that differ by a small 

amount in their frequencies and wave numbers, but are of the same amplitude. We 

can write this as 

where the superposition of these two waves produces 

1 dk 
2 

6") t] (1.6) # = dl + 42 = (22 aos s5(z6k - t s w ) ] )  eos [(k + -)s - (w + 



The resulting interference pattern produces a wave with the familiar appearance of 

repeating 'beats'. 

From Eq. (1.6), we see that  the effective amplitude of the larger 'beats' is given by 

2a cos( f (xbk - t6w)). From this we can determine that the larger 'beats' propagate 

a t  a velocity given by 

dx 6w - = -  
d t  61c (1.7) 

which in the limit of k -+ 0 becomes = w l ( k )  and is defined as the group velocity. 

Therefore, from our definition of dispersion, if the condition wl1(k) # 0 is true 

then the group velocity, wl(k) must be a function of k. This implies that waves with 

different wave numbers must travel at different speeds. If we consider a disturbance 

which consists of a number of different wave numbers, like our example above, then 

each component will travel with a different speed and will, therefore, spread out over 

a certain length and that length increases with time. Therefore, any linear PDE 

that satisfies our mathematical definition will include waves that spread out as they 

propagate and the PDE is said to be dispersive. 

1.1.2 Nonlinearity 

We shall start our discussion of the effects of nonlinearity by first considering a simple 

linear PDE given by 

where a is a constant and u is a function of x and t. We wish to consider a traveling 

wave solution such that 



where u(e) is some arbitrary function, c is the constant wave speed and ,$ = x - ct. 

Therefore, if we assume that the solution of Eq. (1.8) has this form, we can rewrite 

it as 

where the primes indicate differentiation with respect to c. Assuming u' # 0, we can 

cancel it and be left with 

From this we can say that for any initial conditions, Eq. (1.8) will propagate a wave 

undisturbed at the speed c = a. If we assume a parabolic shaped pulse as the initial 

conditions, then the propagation of that  linear wave will be as illustrated in Figure 

1.1. 

Let us now consider the  corresponding nonlinear case. A nonlinear generalization 

of Eq. (1.8) is given by 

If we again consider a traveling wave solution and introduce Eq. (1.9) into Eq. (1.12) 

we can write 

-cur + uur = 0 

If, as before, u' # 0 we can eliminate i t  from Eq. (1.13) and leave 

c = u(C> 



Figure 1.1: Development of a parabolic pulse governed by Eq. (1.8) (from Bhatnagar, 
1979) 

For a traveling wave, the speed c is a constant, and therefore Eq. (1.14) contradicts 

this, meaning no traveling wave solution exists for Eq. (1.12). 

In order to  further examine our nonlinear example, we can consider the char- 

acteristics of Eq. (1.12). We can determine that the characteristics of Eq. (1.12) 

are 

In the (x, t)-plane then, on each characteristic of Eq. (1.12), the value u retains a 

definite constant value and the slope of each characteristic is given by Eq. (1.15). 

If we interpret each characteristic in the (x, t)-plane as a moving wavelet where 



the speed of each particular wavelet is the piece of information that moves with its 

corresponding characteristic, then Eq. (1.12) represents a series of wavelets each 

moving with a different velocity. The wavelet that carries a higher value of u moves 

faster. In broad sense, Eq. (1.14) could also be interpreted in this way. What then 

is the implication of this as compared to the linear case? 

Let us now consider a parabolic shaped pulse as the initial conditions for the 

nonlinear case also. We can see the evolution of this pulse in Figure 1.2 .  We see that 

the effect of each wavelet moving with a speed u causes the initially parabolic pulse 

to distort, with greater distortion of the wave occurring for increasing time. We see 

that the points of u = 0 do not move at all while the point u = u,,, is distorted 

the most. Therefore, based upon this simple comparison, we can say that the role 

of nonlinearity is to produce increasing amounts of deformation in the wave profile 

as time progresses. 

So we now have some insight into the.physica1 meaning of dispersion and nonlin- 

earity. The dispersion will tend to spread the wave out over time and the nonlinearity 

tends to deform the wave. As stated earlier, a balance in these two properties can 

produce a solitary wave, which propagates without change in form. Yet, waves can 

be governed by equations that contain both dispersion and nonlinearity, but do not 

exhibit a solitary wave. What characteristics do the governing equations need to 

exhibit in order to produce the delicate balance? For some insight we shall consider 

the famous Korteweg-de Vries (KdV) equation. 

The nonlinear KdV equation is considered by many to be synonymous with soli- 

tary waves. When looking for solitary waves, very often the goal is to find a KdV 

type equation. The KdV equation (originally derived by Korteweg and de Vries, 



Figure 1.2: Development of a parabolic pulse governed by Eq. (1.12) (from Bhatna- 
gar, 1979) 

1895) is the simplest model of dispersive and nonlinear waves. Therefore, in our ex- 

amination of the KdV equation we will look to see what determines the appropriate 

balance between dispersion and nonlinearity. 

The KdV equation can be generalized to the following well recognizable form: 

ut 3 UU= + Ku,,, == 0, K < 0 (1.16) 

Let us first consider the dispersion relation for Eq. (1.16). To do this, we first 

linearize Eq. (1.16), which leads to 



from which we find the following dispersion relation 

So, by inspection we can see that for 0 5 k < oo we wiIl have all real roots for w and 

that w"(k) = will indeed not be zero. Therefore, the wave is dispersive. 

Now, let us consider a traveling wave solution of Eq. (1.161, such that 

Substituting this into Eq. (1.16) yields 

which on integration leaves 

where A is a constant of integration. If we multiply Eq. (1.20) by ut and integrate 

again, we get 

which can be rearranged to produce 

~ K U :  = -u3 + 3m2 + 6Au + 6B f (u) (1.22) 

Now f (u) is cubic and therefore has three roots. The roots off (u) will determine 

the type of solution we get for the original KdV equation. For our purposes, we will 

only be interested in non-constant, bounded solutions, which correspond to three 



real roots for f(u): a, p and y. We shall also assume that the roots are real and 

have the following order: a > ,f3 2 y. 

It can be shown that three unique solutions for Eq. (1.16) arise depending on the 

values of a, p and y. We do not present the formal derivations for each situation, 

but refer the reader to Bhatnagar (1979) for further details. If a # P # y then the 

solution to the KdV equation is periodic waves, generally called Cnoidal waves. If 

a! = p # 7 then the solution is unbounded, and is therefore of little interest. The 

last possibility is that a! # /3 = 7. I t  is for this situation that the solitary wave is 

the solution to  Eq. (1.16). Figure 1.3 illustrates how this combination of the roots 

would appear if Eq. (1.22) were plotted. We also notice that for this solution to be 

possible the function f (u) must be positive between p = 7 and a. It  is interesting 

that while solitary waves are considered synonymous with the KdV equation, the 

solitary wave is only one of the possible solutions to  the KdV equation for particular 

initial conditions. 

Figure 1.3: Appearance of roots of f (u) for solitary wave solution for Eq. (1.16) 

Therefore, we see that the balance of dispersion and nonlinearity is manifested 

in the combination of the roots of f (u). Therefore, only specific values of K and c 



will admit the solitary wave solution. Further, we can determine whether a solitary 

wave will exist by plotting Eq. (1.22) and confirming that the double root and the 

single root exist and that the function is positive in between. 

If we were considering a generic PDE, would it be possible to generalize the above 

approach to determine if i t  also had a solitary wave solution? The answer is, in fact, 

yes and is the basis of the method presented in this dissertation. 

For a single PDE for a function u with independent variables x and t ,  we begin 

by assuming that the solution will take the form'of a traveling wave and substitute 

a = f (x - d) = f (c) into our PDE. This creates an ordinary differential equation 

(ODE) with independent variable E. Next, we take the ODE and attempt to put it 

in the form 

where f c ( f )  depends on the original form of the PDE. Based upon the procedure 

described above, we can determine if solitary waves exist for the original PDE by 

simply plotting f,( f) .  If the plot of fc(  f )  reveals a double root, a single root and the 

function is positive on the interval between the roots then it will have a solitary wave 

as one of its solutions. An application of this to the specific case of elastic tubes will 

be presented in greater detail in Chapter 2. 

1.2 Background 

Having given a general introduction to the basic concepts used in our approach, it 

may also be useful to provide a brief introduction to previous work done in this 

field. The problem of solitary waves in fluid-filled elastic tubes is derived from the 



study of two fields that have developed independently. Therefore, the background 

for our work will be initially divided into two components: solitary waves and waves 

in fluid-filled tubes. From there we will discuss their convergence and the previous 

work specifically considering solitary waves in fluid-filled tubes. 

1.2.1 Solitary Waves 

The first observation of a solitary wave was made in 1834 by John Scott Russell and 

was first reported in 1837 a t  a meeting of the Society for the Advancement of Science 

(Russell, 1837). The best description of what he observed is from Russell himself: 

"I was observing the motion of a boat which was rapidly drawn along 

a narrow channel by a pair of horses, when the boat suddenly stopped- 

not so the mass of water in the channel which it had put in motion; it 

accumulated around the prow of the vessel in a state of violent agita- 

tion, then suddenly leaving it behind, rolled forward with great velocity 

assuming the form of a large solitary elevation, a rounded, smooth and 

well-defined heap of water, which continued its course along the channel 

apparently without change of form or diminution of speed. I followed it 

on horseback, and overtook it still rolling at a rate of some eight or nine 

miles an hour, preserving its original form some thirty feet long and a 

foot to a foot and a half in height. Its height gradually diminished, and 

after a chase of one or two miles I lost i t  in the windings of the channel. 

Such, in the month of August, 1834, was my first chance interview with 

that singular and beautiful phenomenon." 



At the time, many were reluctant to accept Russell's observations as they appeared to 

contradict the prevailing shallow water theory, which, in part, claimed that a wave of 

finite amplitude could not propagate undeformed (e.g., see Ablowitz and Clarkson, 

1999, for a more detailed discussion). Theoretical investigations of solitary waves 

were carried out at  the time by Boussinesq and Rayleigh in a n  effort to resolve the 

apparent paradox (for a full discussion of these studies see Miles, 1980). While these 

studies provided valuable insight and support of Russell's observations, i t  was the 

work of Korteweg and de Vries (1895) that is considered the seminal work in the field. 

I t  is from this work tha t  the famous KdV equations [cf. Eq. (1.16) ] was derived. The 

existeqce of solitary waves was conclusively resolved because, as was shown above, 

the KdV equation has permanent wave solutions that include the solitary wave. 

After the existence of solitary waves was firmly established, interest in the subject 

seems to have waned. I t  is considered by some (see Allen, 1998) that a renewed 

interest in solitary waves was spurred by the work of Adlam and Allen (1958). In 

their study Adlam and Allen (1958) examined the propagation of hydromagnetic 

waves in a collisionless plasma and happened across a solitary wave, though this 

was not their intention. While i t  is not a t  all obvious, in retrospect this work could 

be considered the launching point towards the study of solitary waves in fluid-filled 

elastic tubes for reasons that  will be explained later. 

The next significant work on solitary waves was a study by Zabusky and Kruskal 

(1965). The major contribution of the work by Zabusky and Kruskal (1965) was 

their determination that solitary waves traveling towards each other will collide and 

interact elastically, emerging from the collision with no alterations in speed or shape. 

It was also in this paper that  the term soliton was first used. While Zabusky and 



Kruskal (1965) considered no physical situation specifically, they were also interested 

in hydromagnetic waves. 

The work of Zabusky and Kruskal (1965) stimulated further interest in solitary 

waves in plasmas. Of most interest to us is the development of what has been 

termed the reductive perturbation technique. The formal development of the reduc- 

tive perturbation technique was undertaken in the late 1960s (Washimi and Taniuti, 

1966; Taniuti and Wei, 1968). I t  was originally developed as a method to exam- 

ine ion-acoustic waves in collisionless plasmas, but was inspired by work done on 

hydromagnetic waves. A parallel development of this technique was also presented 

a t  the time by Su and Gardner (1969). The study by Taniuti (1974) is considered 

the culmination of the original development of the reductive perturbation technique. 

This study also presented other possible applications for the technique. 

The reductive perturbation technique will be referred to  throughout this disser- 

tation and so it seems appropriate to present a brief description of its application. 

The reductive perturbation technique requires that the waves under consideration be 

dispersive, weakly nonlinear waves that have long wavelengths. The long wavelength 

approximation implies that the wave number, k, is small (<< 1). Consequently, 

the reductive perturbation technique is only applicable to small-but-finite amplitude 

waves. Based on that framework the reductive perturbation technique utilizes a co- 

ordinate stretching, resulting in a change of independent variables. The coordinate 

stretching enables the waves t o  be considered in the far field. The dependent vari- 

ables are then re-written in terms of a perturbation expansion from which the KdV 

equation appears as the first order approximation. 



From our perspective, it was the development of the reductive perturbation tech- 

nique for studying ion-acoustic waves that stimulated the study of solitary waves in 

fluid-filled tubes. 

1.2.2 Waves in Fluid-Filled Elastic Tubes 

The propagation of waves in fluid-filled tubes has been an ongoing area of study for 

at least 200 years. The body of literature that exists on this topic today is immense 

and continues to grow rapidly. It would be impossible to provide a detailed account 

of all the studies in this area. As a result, we propose a short introduction to some 

of the more important historical studies and then to concentrate on the literature 

concerning solitary waves in fluid-filled elastic tubes. For a detailed background of 

this field, specifically related to blood flow in large arteries, the books by Pedley 

(1980) and Fung (1997) are recommended. Reviews by Skalak (1966) and Sawatzky 

and Moodie (1988) also provide a comprehensive account of the literature of the 

field. 

The first published work concerning pressure waves in elastic tubes was by Young 

(1808). In this work, Young derived a formula for the velocity of propagation of a 

pressure pulse through an incompressible fluid contained in an elastic tube. He 

derived his equation by drawing an analogy with the propagation of sound in a 

compressible fluid. He also considered the application of his formula to blood flow 

in a subsequent paper (Young, 1809). 

In is interesting that, while Young was the first to publish results on this topic, the 

first mathematical model was actually developed by Leonhard Euler in 1775. Euler 

had developed the basic equations governing blood flow in arteries by assuming an 



unsteady flow of an incompressible Auid in a distensible tube. Euler was, however, 

unable to find a solution to his equations. In the end, his work was not published 

until 1862. An interesting evaluation of Euler's work can be found in Skalak (1966). 

The equation derived by Young (1808) was re-derived several times by investiga- 

tors such as Moens, Korteweg and Lamb. A summary of each of their contributions 

can be found in Skalak (1966). The most common form of the equation for the speed 

of propagation of waves in elastic tubes is credited to Korteweg (1878), but is known 

as the Moens-Korteweg equation. The Moens-Korteweg wave speed has been used 

to non-dimensionalize velocities in many studies. 

The modern consideration of waves in fluid-filled tubes began with the work of 

Morgan and Kiely (1954) and Womersley (1955). In these studies, periodic waves 

were considered for linearized, viscous fluid equations and equations for a thin-walled 

isotropic membrane. This work provided much of the basis for the development of the 

field over the next decade, where extensions to these linear theories were examined 

in order to model the transmission of pulse waves more precisely (e.g. see Sawatzky 

and Moodie, 1988, for more detail). 

In the 1970's and 1980's the investigation of waves in fluid-filled elastic tubes 

continued to progress rapidly. The literature during this time expanded significantly. 

Much of the work still utilized linear theory (for example see Pedley, 1980), but 

extended it for aspects such as prestresses, tube wall viscoelasticity, tube taper and 

even nonlinearity. 

It has also been inevitable that the wide availability of massive computing power 

has resulted in the consideration of these problems from a purely numerical perspec- 

tive such as in Bathe and Kamm (1999). Nevertheless, the analytical model has 



been established as an indispensable tool in obtaining an accurate description of the 

propagation of waves in elastic tubes, with particular application to blood flow in 

arteries. 

1.2.3 Solitary Waves Meet Fluid-Filled Tubes 

The specific study of solitary waves in fluid-filled elastic tubes was initiated primarily 

by the development of the reductive perturbation technique (RPT) in plasma physics. 

As a result, over the last 15 years the study of solitary waves in fluid-filled elastic 

tubes has expanded. Additionally, the vast majority of studies examining solitary 

waves have used the reductive perturbation technique. 

One of the original studies to examine solitary waves in fluid-filled elastic tubes 

was Hashizurne (1985). Solitary waves were found using the RPT for a thin elastic 

tube containing an inviscid, incompressible fluid. The membrane equations used 

included some approximation, but a two-dimensional fluid model was used. In a 

subsequent study by Yomosa (1987), a further simplified tube model was considered. 

The deformations in the axial direction were neglected and the fluid properties were 

averaged over the tube radius, varying only in the axial direction. The significant 

contribution of this study was that the solitary wave solution was considered in 

light of experimental data and was found to approximate the pulse wave in larger 

arteries. A study conducted by Demiray (1996) also considered the shell and the 

fluid as one-dimensional, with limitations on the displacements, but considered a 

constitutive equation constructed for biological material (Demiray , 19 72), whereas 

the earlier studies had not. 

The practice of neglecting the axial displacement has been applied in a number 



of other studies as well. This was often done based on the consideration of the long 

wave approximation used in the reductive perturbation technique, where small radial 

displacements of the tube are assumed to produce negligible axial displacements. 

Demiray (1998a) assumed that the tube was axially tethered and so neglected all 

axial displacements, while also considering both a one and two-dimensional fluid 

model. In another study Demiray (1999d) again neglects axial displacements but this 

time considers only the two-dimensional fluid model. All of these studies considered 

only inviscid and incompressible fluids. 

A two-dimensional viscous fluid was considered by Demiray (199813) where only 

the radial displacements were considered. The results showed the solution to be a 

solitary wave only for specific magnitudes of the viscosity. In a very recent article, 

Demiray (2001a), still neglecting axial displacements, considers an incompressible 

two layer fluid model. In doing so Demiray considers an outer flow region, which is 

two-dimensional and inviscid, and an inner fluid core, where the flow does not vary 

radially and viscosity is not negligible. 

In order to better account for the axial displacements, Derniray (1997~) assumed 

that the axial displacements were small, but not negligible, and linearized the field 

equations in terms of the axial displacement. The stresses were also determined 

through a series expansion and the fluid was assumed one-dimensional. In Demiray 

and Dost (1998a) a solitary wave solution is found when both the axial and radial 

displacements of the tube are considered using the exact membrane equations. A 

two-dimensional inviscid fluid model is also considered. 

Recently, there has been some work done on developing perturbation methods 

that retain higher order terms than the reductive perturbation technique. The most 



common of these approaches utilizes the hyperbolic tangent method (Malfliet and 

Hereman, 1996) to include higher order terms. The resulting equations have been 

termed 'dressed solitary waves' by Malfliet and Wieers (1996). 

The concept of dressed solitary waves has been used in studies by Malfliet and 

Ndayirinde (1998) and Sarioglu (1999) for one-dimensional equations for both the 

shell and fluid, and studies by Demiray (1999a,b) for a two-dimensional fluid model 

and a thick walled tube, respectively. A parallel approach, referred to as the modified 

reductive perturbation approach, has also been used by Demiray (2001b, 2000b). The 

solitary waves predicted using the modified RPT reduces t o  a dressed solitary wave 

for similar parameters. 

The reductive perturbation technique has also been used to find solitary waves 

propagating in fluid-filled thick walled elastic tubes (see Demiray, 1997a; Demiray 

and Dost, 1998b). The existence of solitary waves in fluid-filled viscoelastic tubes (see 

Erbay et al., 1992; Demiray, 1997b,c) has been found to depend on the magnitude 

of certain parameters. 



Chapter 2 

Direct Approach for Solitary Waves in 

Fluid-Filled Elastic ~ubes l  

2.1 Introduction 

In considering models for waves in fluid-filled tubes, we see that many different solu- 

tion techniques have emerged to deal with the wide range of the anaIytical models. 

If we canvas the vast literature in the field, we find the use of techniques such as 

the method of characteristics (Moodie and Haddow, 1977), the inverse scattering 

method, the Fourier approach, and various asymptotic methods (Jeffrey and Kawa- 

hara, 1982). With attention focused on solitary waves in particular, it is clear that 

the reductive perturbation technique is the most commonly used approach. 

The reductive perturbation technique (RPT) was formally developed in the late 

1960's (Washimi and Taniuti, 1966; Taniuti and Wei, 1968; Su and Gardner, 1969). 

In considering solitary waves, the RPT utilizes the long-wave approximation which 

asserts that the wavelength must be much greater than the tube radius. Put another 

way, only waves of small amplitude with small slopes may be considered. In addi- 

tion, the RPT applies a coordinate stretching, resulting in a change of independent 

variables. Finally, the dependent variables are re-written in terms of a perturbation 

expansion. 

lThis chapter is based on the article: Epstein, M. and Johnston, C. (1999) Improved solution 
for solitary waves in arteries. Journal of Mathematical Biology, 39, 1-18. 



The existence of solitary waves in fluid-filled elastic tubes has been investigated by 

means of the reductive perturbation technique by Hashizume (1 985) ; Yomosa (1 987) ; 

Erbay et al. (1992); Demiray (1996, 1999d), where an equation of the Korteweg-de 

Vries (KdV) type results for the first order approximation. There are, however, a 

number of potential causes for concern inherent in using the reductive perturbation 

technique. 

The first concern that should be considered is that the solitary wave obtained 

using the RPT might be an artifact of the approximation procedure, rather than a 

feature of the exact solution. In other words, the existence of solitary waves as the 

first-order approximation may be perceived as a necessary but  not sufficient condition 

for a solitary wave solution of the governing equations. In fact, that this question 

has only been considered recently (Sun and Shen, 1995). 

The second consideration results from the dependence of the RPT on the long- 

wave approximation. The long-wave approximation requires that the wavelength be 

very large as compared to  the tube radius. This in turn imposes a limitation on 

the amplitude of the wave that can be considered, so that the RPT is only valid for 

small amplitude waves. The long-wave approximation is also sometimes invoked as 

the rationale for neglecting the slope squared terms in the governing equations of 

the tube, as was done in Demiray (1996, 1998a). 

A final obvious limitation of the RPT is that the obtained shape of the solitary 

wave and the the relationship between its amplitude and its speed of propagation 

are approximate, with no clear estimate of the errors involved. The fact that the 

KdV equation appears as the first order approximation places even greater signifi- 

cance on this issue. Certainly for very small amplitude waves this error may not be 



significant, but the approximate nature of the solution further limits the range of 

-wave amplitudes reasonably assessed by a solution attained using the RPT. 

With this as a framework, this chapter shall be concerned with presenting a 

procedure that produces a solitary .wave solution for the original field equations 

without recourse to a perturbation procedure. This direct procedure allows the wave 

speed, wave amplitude and the shape of the solitary wave to be determined to any 

desired accuracy. By operating directly on the differential equations we are able to 

extend the analysis beyond the long-wave approximation and to establish the range 

of validity of the reductive perturbation technique. 

As a means of comparison, we have chosen to examine a problem originally consid- 

ered by Demiray (1996). As a starting point all axial variations have been neglected 

for this case study. This effectively reduces the field equations to one-dimensional for 

the tube. We also utilize a one-'dimensional inviscid fluid model, where the velocity 

has been averaged over the tube cross section. 

Section 2.2 provides a detailed mathematical description of our proposed exact 

procedure. Two special cases of the field equations are considered in detail. In 52.3 

the one-dimensional field equations for a tube and a one-dimensional fluid model 

are presented. Section 2.4 presents a numerical example for the field equations and 

52.5 compares the results obtained using our direct method to the results arrived at 

using the reductive perturbation technique. In $2.6 the possibilities for extending this 

procedure and the limitations of the reductive perturbation technique are examined. 

Finally, 82.7 summarizes the main outcomes of this chapter. 



2.2 Mathematical Preliminaries 

For the Iimited purposes of this work, we adopt the following, admittedly imperfect, 

definition of a solitary wave: 

Definition. A partial differential equation (PDE) for a function w of two indepen- 

dent variables, x and t ,  is said to admit solitary waves if a solution of the form 

with 

exists such that: 

1. c is a constant (the speed of propagation); 

2. f is bounded; and 

3. lirn,t,, f exists. 

For our particular application, we will replace condition (3) by the more stringent 

condition: 

3'. f approaches its limits at infinity exponentially fast, from one side. 

This last restriction implies that outside of a "small" interval of c, the function f does 

not oscillate and is practically indistinguishable from a constant function (usually 

zero). It follows from Eq. (2.1) and (2.2) that 



and 

where primes indicate derivatives. Introducing these results into the original PDE, 

therefore, one obtains an ordir. .ry differential equation (ODE) for f .  If we assume, 

for example, that the original equation was a quasi-linear second-order PDE, with 

coefficients not explicitly dependent on x or t ,  the resulting ODE can be brought to 

the form 

where Fc is a function whose form depends on the original PDE and on the parameter 

c. The properties and Long-term features of the solutions of this generic nonlinear 

equation are amenable to  treatment by means of the theory of dynamical systems 

(see e.g. Guckenheimer and Holmes, 1986)2. We will confine our attention t o  two 

particular cases corresponding to special forms of the right-hand side of Eq. (2.5). 

Case 1. The first case we shalI consider is given by the following 

Let us assume henceforth, for definiteness, that we are searching for a solitary wave 

of the general appearance shown in Figure 2.1. It is obvious, then, that Fc must 

satisfy the following conditions: 

2Guckenheimer and Holmes (1986):"We must start by admitting that almost nothing beyond 
general statements can be made about most nonlinear systems. [Any] tool in the workshop of applied 
mathematics, including numerical integration, perturbation methods, and asymptotic analysis, can 
and should be brought to bear on a specific problem." 



Figure 2.1: General appearance of solitary wave 

(i) it must have two roots, one a t  f = 0 (behaviour a t  infinity), and the other one 

a t  some (positive) finite value f = fl (point of inflection); 

(ii) it must be positive in the interval (0, fl) , and negative in the interval ( f i  , f,,) ; 

and 

(iii) the integral of Fc( f )  between 0 and f,., must vanish, as it follows by integrat- 

ing Eq. (2.6) between those limits and enforcing the vanishing thereat of the 

slope of f .  . 

Figure 2.2 shows the desired general appearance of Fc( f ) .  The actual shape, it must 

be remembered, is controlled by the parameter c, so that the value of fmaz satisfying 

condition (iii), if it exists, depends on c. The behaviour of Fc(f) beyond the interval 

[0, fmw] is of no interest. A different way to arrive at the above conditions is by 

noting that the first-order ODE 



where C is a constant, is a first integral of Eq. (2.6), as can be verified directly 

Figure 2.2: General appearance of F, 

by differentiation of Eq. (2.7) with respect to c. The analysis then requires that 

the right-hand side of Eq. (2.7) have a double root at f = 0 (which implies that 

C = 0 and Fc(0) = 0) and a single root a t  f = fmax , and be positive in the interval 

0 f a x )  One should bear in mind, however, that although every solution of Eq. 

(2.6) satisfies Eq. (2.7), the converse is not true. For example, when Eq. (2.7) is 

differentiated we find 

f'f" = Fc(f)fl  

In order to recover Eq. (2.6) we must divide both sides by f '  which is only valid if 

f '  # 0. This means that Eq. (2.7) can admit the solution f = const and therefore 

Eq. (2.7) has a solution which equation Eq. (2.6) does not. Therefore, for numerical 



integration purposes it is best to operate directly on Eq. (2.6). 

When integrating Eq. ( 2 . 6 )  numerically, one should observe that if the initial 

conditions satisfy: f f ( 0 )  = 0 and 0 < f ( 0 )  < f,,, the behaviour will be smoothly 

periodic, while if the initial conditions satisfy: f ' ( 0 )  = 0 and f (0) > f,,,, the be- 

haviour will drastically change and may become unbounded. Therefore, the solitary 

wave can also be identified, for a given c, as that solution corresponding to a value 

of f (0) situated exactly at  the transition between those two modes of behaviour. 

In a phase portrait of Eq. (2.6), therefore, the solitary wave will correspond to the 

separatrix between regions of closed and open orbits (see Arnold, 1978, p19). 

More general cases of Eq. (2.5), where first derivatives are present, can also be 

considered. 

Case 2. We will confine our attention to the particular form 

where G, and H, are smooth functions. It is remarkable that this case can be reduced 

to  the previous one, as shown in the following proposition. 

Proposition. Let 

and 

Then: (a) the expression 



where D is a constant, is a first integral of Eq. (2.8); and 

(b)every (non-constant) solution of Eq. (2.8) is also a solution of 

and, vice-versa) among all the solutions of Eq. (2.121, that corresponde'ng in Eq. 

(2.7) to C = 012, is also o solution of Eq. (2.8). 

Proof. Part ( a )  follows directly by differentiating Eq. (2.11) and making use of 

definitions Eq. (2.9) and (2.10). Part (b) is obtained by introducing Eq. (2.11) into 

Eq. (2.8) and, vice-versa, by enforcing Eq. (2.7) on the right-hand side of Eq. (2.12) 

and integrating by parts. For this last step it is convenient to write Eq. (2.9) as: 

H, = -h-'dhldf. 

For a solution of the form shown in Figure 2.1, the conditions a t  infinity imply 

that D = 0 and Gc(0) = 0. 0 

2.3 Analysis of the equations of motion 

We begin by writing the non-dimensionalized governing field equations for a thin 

membrane, allowing for radial displacements only, measured from a prestressed ref- 

erence configuration, as derived by Demiray (1996): 



atz I ac, aa 
-+-(lft3)-+a,-=O at- 2 a3 az 

where 

S2, S2 = total non-dimensional longitudinal and hoop stresses; 

Sl,, SZm = initial (prestress) non-dimensional longitudinal and hoop stresses; 

C = radial displacement (measured from initial radius); 

ii = axial coordinate; 

@ = total pressure; 

&, = 2S2, = initial fluid pressure; 

5 = time coordinate; and 

8f = fluid speed, which is assumed constant across the tube cross-section. 

These quantities have been rendered non-dimensional as follows: 

a1 = pSl = true longitudinal stress; 

02 = pSz = true hoop stress; 

w = Ra = true radial displacement; 

x = LoZ = true longitudinal coordinate; 

p = @ = total fluid pressure; 

t = T'Z = true time; 

Vf = $pf 
with 

p = shear modulus of the isotropic and incompressible elastic tube material; 

Rhp 1/2 Lo = ( ,,, 
To = (y2 R 

h = tube wall thickness; 



p = tube material density; 

pf = fluid density; 

R = initial (prestressed) radius; and 

&Q = = thickness parameter. m=(.)  2&, 

Equation (2.13) is the equation of motion of the tube, and Eq. (2.14) and (2.15) 

represent, respectively, the continuity and balance of momentum for the (inviscid) 

fluid. Equation (2.13) is approximate only in the sense that the slope is assumed 

small everywhere, so that terms proportional to (g)2 have been neglected. 

At this point, we begin to apply the direct approach. Our first step towards the 

search for possible solitary waves for the field equations (2.13), (2.14) and (2.15), 

consists of effecting the main substitution implied in the definition and expressed in 

Eq. (2.1) and (2.2) for a traveling wave. As a result, and taking into account Eq. 

(2.3) and (2.4), we obtain the following system of ODE'S: 

where, with some abuse of notation, we have retained the same symbols already 

used for the two-variable functions $, S2, a,  gfr p, to indicate the corresponding 

functions of the single variable <. Fortunately, Eq. (2.17) and (2.18) turn out to be 

exactly integrable, yielding the following links between p, fj and a: 



and 

where C and D are constants of integration. Imposing the initial conditions fi = 

Gf = 0 and p = Is,, these integration constants are obtained as C = pw and D = c, 

so that we may finally write the following explicit expression connecting the pressure 

with the radial displacement: 

which, substituted into Eq. (2.16), results in the following final form for the single 

ODE governing the radial amplitude of the solitary wave: 

which is of the form Eq. (2.6). The explicit forms of the functions Sl , S2 in terms of 

zij depend on the particular constitutive equation chosen for the tube material. For 

the sake of comparison, we shall use two of the constitutive equations employed by 

Demiray (1996), namely, the (I-H-T) strain energy density (Ishiara et al., 1951), and 

Demiray's own (Dl) (Demiray, 1972). Both equations are expressed in terms of the 

first two invariants, 11 and I2 , of the Green deformation tensor: 

1 

and 



where, within the small-slope approximation, the principal hoop and longitudinal 

stretches A1, Az are given in terms of the known initial (prestress) values A,, .Ae by 

and 

For a given non-dimensional strain energy density C ,  the stresses are found by 

The non-dimensionalized I-H-T strain energy function is given as 

I 
CI-H-T = -[b(ll  - 3) + (1 - b)(I2 - 3) + P(I1 - 3)2] 

2 
(2.28) 

where b and are material constants. We obtain, by differentiation as shown in Eq. 

(2.27), the following expressions for the non-dimensional stresses: 

and 

It is important to verify that, for the Mooney-Rivlin material (obtained from 

the above expressions by setting /3 = 0), effecting all the substitutions implied in 

equations (2.23)-(2.29) into Eq. (2.22), one obtains: 



The numerator of the right-hand side of this equation is a polynomial in tij whose 

only real positive root is at zero. Therefore, according to condition (i) of Section 

2.2, there will be no solitary waves for a tube wall made of the Mooney-Rivlin 

material. It is remarkable that this fact, as we have just proven, is intrinsic in the 

field equations themselves, namely, it is not merely a result of the approximation 

entailed in obtaining the Korteweg-deVries equation as a first-order perturbation of 

the field equations (Erbay et al., 1992; Derniray, 1996). 

Turning now to the non-dimensionalized D l  strain energy function 

for which the stresses are again found by Eq. (2.27) so that 

and 

For any prescribed constitutive equation, our task is to find, for given values of 

c and m, whether or not, in addition to the zero root, there exists a second root 

for the right-hand side of Eq. (2.22), and a value dm, satisfying condition (iii) of 

Section 2.2. 

2.4 Sample calculations 

I n  order to illustrate the numerical procedure used, we present a detailed account 

of one particular case corresponding to the Dl-material. The following values are 



chosen: a = 1.948, m = 0.4, Ae = 1.2, A, = 1.5, and c = 8, which lie within the 

ranges used by Demiray (1996) in his examples and are of the order of magnitude of 

actual biologically relevant parameters (see Yomosa, 1987, for experimental data in 

dogs). The Mathematicaa package is used for all numerical computations. Figure 

2.3 shows the right-hand side of Eq. (2.22) for the given values of t h e  constants. The 

positive root is found at = 0.0691952, and, by numerical integration, the value 

ha, satisfying condition (iii) is found at 0.0933322. Figure 2.4a and b, obtained 

directly from the Mathernaticaa differential equation solver, show respectively the 

solutions for the initial conditions 0.0933321 and 0.0933322. 

Figure 2 -3: RHS of Eq. (2.22) in numerical example 

The dramatic change in behaviour of the solution for a change in initial conditions 



Figure 2.4: (a) Periodic behaviour of solution with ~ ( 0 )  = 0.0933321, (b) Divergent 
behaviour of solution with 8(0)  = 0.0933322 

of little over one part per million, clearly illustrates the presence of a solitary wave 

solution, as anticipated by the satisfaction of conditions (i)-(iii). The shape of the 

solitary wave is accurately represented by the shape of any one period just before 

the transition, as per Figure 2.4a. 

An alternative way of searching for the solitary wave, without resorting to finding 

the root of Fc, consists of specifying (rather than am,) a very small positive initial 

value ~ ( 0 ) .  The solution will then be periodic but, as the value of ~ ( 0 )  becomes 



vanishingly small, the solution will approach the solitary wave. In our example, for 

the values of 3(O) = we obtained the amplitudes 0.093328, 0.093332, 

respectively. 

The solitary wave just found is of moderate amplitude, so that it is to be expected 

that a comparison with Demiray (1996) application of the perturbation technique 

will produce satisfactory results. To effect such a comparison we recall that Demiray 

(cf. Erbay et  al., 1992) introduces a coordinate stretching given by 

where c is "a small parameter measuring the weakness of dispersion and the non- 

linearity," and the quantity g is defined in terms of the pressure and the slope St2(0) 

of the hoop-stress constitutive equation at the initial state of prestress as 

The first-order perturbation, containing the solitary wave as a solution to the 

Korteweg-de Vries equation, results in the following approximation: 

where a is an arbitrary constant representing the amplitude, and 

The constants 7 and v are given by 



with K involving up to the second derivative, Sn2(0) , of the hoop-stress constitutive 

equation at the initial state through the expression: 

By introducing Eq. (2.35), (2.38) and (2.39) into E q  (2.371, we obtain that the 

actual (non-dimensional) speed of propagation is related to  the amplitude z i ~ ~ ,  by: 

an expression not explicitly determined when using the reductive perturbation tech- 

nique, but implied in the derivation. Moreover, at the point of inflection of the 

perturbation solution one always has: 

For the chosen values of the constants, we obtain g = 6.59736 and K = 0.415564, 

whereby Eq. (2.41) yields the value c = 7.723 for the approximate speed predicted 

by the reductive perturbation technique for a wave amplitude of 0.0933321. The 

discrepancy with the 'exact' value (c = 8) is of about 3.5%. Likewise, at the point of 

inflection the perturbation technique predicts the approximate value = 0.06222, 

representing an error of 10% relative to  the exact value. This error is less severe than 

it appears, when one realizes that the points of inflection themselves are located at 

< = 0.912 and 1.057, respectively, for the 'exact' and the approximate solutions. 

To emphasize this point, Figure 2.5 shows a composite picture of the two profiles. 

It is interesting to note that Eq. (2.41) predicts, in the limit of vanishingly small 

amplitudes, a propagation speed equal to g, which is thus to be interpreted as the 



smallest possible speed of propagation for a solitary wave for the particuIar initial 

stretches. Accordingly, our numerical solution of the 'exact' field equations should 

yield the coincidence of the two roots at zero. And indeed this is the situation, as 

can be seen from Figure 2.6. 

t 
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Figure 2.5: Comparison between the 'exact' and Demiray (1996) solution 

2.5 Comparative results 

Following the technique of the example just discussed, the speeds of propagation have 

been calculated for a range of amplitudes up to 25% of the initial radius of the tube, 



Figure 2.6: Behaviour of F' for limiting propagation speed 

made of a Dl material. As Table 2.1 shows, Demiray's (Demiray, 1996) perturbation 

technique yields generalIy excellent results, but the error in the estimated speed 

progressively increases, reaching a value of about 20% for an amplitude of 0.25. The 

table includes also a comparison of the magnitude of the radial displacement at  the 

point of inflection, but (as already pointed out) this is not a true estimate of the 

discrepancy between the wave profiles on a global scale, as Figure 2.5 clearly shows. 



Table 2.1: Comparison between 'exact' method and Demiray's approach 

Speed of Propagation Magnitude at Inflection 

Amplitude 'exact' Demirayl 'exact ' Demirayl 

Demiray (1996) 

2.6 Extension of the theory 

The preceding numerical technique, not being bound by asymptotic considerations, 

should be applicable to more complex modeling of the solid kinematics. In order 

to avoid the necessarily lengthy presentation of additional theoretical elements, the 

development is confined to the extension of the kinematic formulation of the mem- 

brane theory by adopting a version of the field equations before the terms containing 

squares of the tube-profile slope were neglected (on the basis of the long-wave ap- 

proximation). Obviously, more sophisticated shell theories could be invoked, such 

as Budiansky (1968). That is left for a later chapter. The inclusion of some of the 

neglected slope-square terms should clearly demonstrate the versatility of the direct 

approach presented in this chapter. The reinstatement of the neglected terms results 



in, among other effects, an additional term in Eq. (2.13), which naturally propa- 

gates also into Eq. (2.16) and (2.22), and in a more complicated relation between the 

initial and final longitudinal stretches. Accordingly, Eq. (2.22) should be replaced 

and Eq. (2.25) by 

I t  is important to  note that Eq. (2.43) is no longer of the form Eq. (2.6), since it  

includes a (quadratic) term in the first derivative of z i j  and, in addition, it depends 

also on this derivative through the implementation of Eq. (2.44) in the constitutive 

equations. Even with the corrections just suggested, the equations for the tube are 

still not kinematically exact. This is the case for a number of reasons, including the 

fact that horizontal displacements (and the accompanying dynamic equation) have 

been altogether neglected, and that the elements of length and area have not been 

consistently updated everywhere. The numerical calculations are confined to the 

correction entailed in Eq. (2.43), which is severe enough to modify the equations in 

a substantial way. The derivative of the stress appearing in the new term will be 

calculated, firstly, as the constant value at the initial state, and, secondly, as the 

more correct variable present state. The corrections stemming from Eq. (2.44) will 

be ignored. 

To apply the numerical procedure, we note that Eq. (2.43) is of the form Eq. 

(2.8). Since all the additional terms are even functions of 2iit , the solitary wave profile 



will stiII be symmetric, so that the initial condition a' = 0 can still be enforced. A 

good starting point for guessing the amplitude of the solitary wave could be derived 

by using the alternative technique suggested in Section 2.4, namely, b y  specifying a 

small initial value and reading the amplitude of the resulting periodic solution. For 

our calculations, however, we have preferred to program  ath he ma tic am to actually 

perform the integrations entailed in Eq. (2.9) and (2. lo), and to then integrate the 

resulting right-hand side of Eq. (2.12) so as to find the value f,, satisfying con- 

dition (iii) of Section 2.2 with any desired accuracy. Comparative results for a few 

values of the speed of propagation are shown in Table 2.2. The material constants 

are the same as for Table 2.1. The results show that significant differences can be 

expected in a fully consistent kinematically nonlinear theory. We have purposely 

compared amplitudes for equal speeds, rather than vice versa, in order to empha- 

size this point, since the amplitude of solitary waves is extremely sensitive to small 

changes in the coefficients of the equations of motion. Moreover, even for the mod- 

erate radial displacement regime corresponding to a speed of c = 8, the correction 
1 as, 

term - [ y ] o ( @ ' ) 2  attains a value of as much as 2% of the term ip,, although the 
m dw 

square of the slope is only of the order of 0.1%. We note, finally, that for amplitudes 

larger than 0.1107 (corresponding to  a speed of 7.762), the 'more nonlinear' version 

of the theory fails 6 produce solitary waves that tend to zero at infinity. This ex- 

ample should serve as a warning signal against the use of kinematically approximate 

theories for the tube without a careful estimate of their true range of validity. 



Table 2.2: Comparison of wave amplitudes with additional slope-square terms 

Wave Amplitude 
- - - - 

Wave Speed no slope-squares some slope-squares more slope-squares 

2.7 Conclusions 

Based on theoretical considerations implicit in the very definition of a solitary wave, a 

numerical scheme has been presented which predicts with a high degree of accuracy 

the speed and shape of solitary waves of any given amplitude in an elastic tube. 

Using this method, it has become possible to establish the magnitude of the errors 

incurred through the use of reductive perti~~rbation techniques. As expected, these 

errors are initially very small, but increase dramatically with the amplitude (and 

speed) of the wave, reaching, in a specific example, a value of 20% of the speed, for 

amplitudes of about 25% of the radius of the tube. As a by-product of the technique 

employed, it was shown that the absence of solitary waves, within the small-slope 

regime, in a tube made of a Mooney-Rivlin material, is a direct consequence of the 

governing field equations, rather than a feature of the linear degeneration of the 

first-perturbation approximation. Finally, it was demonstrated that the inclusion of 

more geometrically nonlinear terms in the field equations can influence the results 

to a significant degree. 



Chapter 3 

Example of Direct Approach in Plasma ~hysics' 

3.1 Introduction 

The investigation of the solitary wave as a solution for certain nonlinear systems of 

equations has been driven, perhaps to a greater extent than in wave propagation in 

elastic tubes, by the field of plasma physics. A renewed interest in solitary waves 

began with the work of Adlam and Allen (1958), in which they examined the propa- 

gation of hydromagnetic waves in a collisionless plasma. The formal development of 

the reductive perturbation technique (see for example Washimi and Taniuti, 1966; 

Taniuti and Wei, 1968) was intended for examining ion-acoustic waves in collision- 

less plasmas. Many investigations examining ion-acoustic waves have utilized this 

technique (Ikezi, 1973; Das and Tagare, 1975; Verheest, 1988). The reductive per- 

turbation technique was only later applied as a method to solve for solitary waves in 

fluid-filled elastic tubes. 

Recognizing the limitations of the RPT, attempts were made to include higher 

order terms, but it was found that singular terms appeared. While techniques to work 

around this problem were suggested, the solutions presented additional hazards and 

consequently this approach was not widely used. Recently, there has been further 

work done on developing perturbation methods that would seek to retain higher order 

terms without the difficulties of the earlier attempts. The most common of these 

'This chapter is based on the article: Johnston, C.R. and Epstein, M. (2000) On the exact 
amplitude, speed and shape of ion-acoustic waves. Physics of Plasmas, 7, 906-910. 



approaches utilizes the Hyperbolic Tangent method (Malfliet and Hereman, 1996) to 

include higher order terms and 'dressed solitary waves' (so termed by Malfliet and 

Wieers, 1996) result. 

In their systematic study of this problem, Malfliet and Wieers (1996) advocated 

the use of a traveling wave solution up to a third-order perturbation and also suggest 

a modification to the RPT. As a result of their analysis they show that, for a par- 

ticular example, the first order solution would underestimate the amplitude of the 

solitary wave by as much as 20%. Thus, Malfliet and Wieers (1996) clearly illustrate 

the dangers and limitations inherent in the use of any perturbation technique. 

Not surprisingly, the concept of dressed solitary waves has also been applied 

to problems of solitary waves in fluid-filled elastic tubes. Dressed solitary waves 

have been examined in studies by Malfliet and Ndayirinde (1998); Sarioglu (1999) 

with one-dimensional equations for both the shell and fluid and studies by Demiray 

(1999a,b) for a two-dimensional fluid model and a thick walled tube, respectively. A 

parallel approach, referred to as the modified reductive perturbation approach, has 

also been applied to ion-acoustic waves (Demiray, 1999c, 2000a) and fluid-filled elas- 

tic tubes (Demiray, 2001b, 2000b). The solitary waves predicted using the modified 

RPT were virtua1Iy identical to those of a dressed solitary wave. 

The relevance of including a chapter on ion-acoustic waves in cold-collisionless 

plasma in this dissertation is based upon three consideration. First, considering the 

historical association between ion-acoustic waves and solitary waves in fluid-filled 

elastic tubes in terms of the reductive perturbation technique, this chapter allows us 

to demonstrate the broader application of our direct approach and to show that the 

advantages of using this approach are not limited to one area. 



Secondly, when considering ion-acoustic waves we are able to extend the analytic 

portion of our solution further than for fluid-filled tubes. For example, the exact 

amplitude of the ion-acoustic wave involves only the finding of a root of a simple 

algebraic equation. By illustrating this feature for ion-acoustic waves, we are able to 

illustrate more effectively how the computational effort involved in finding the exact 

solution is minimal. 

Finally, with the recent activity aimed at retaining higher order terms in the 

perturbation approach this chapter permits us to compare our results to a dressed 

solitary wave found by Malfiiet and Wieers (1996). In doing this, we are able to  

highlight that while the retention of higher order terms can improve the accuracy 

of the solution, the effort required is substantially greater than required to find the 

exact solution using our direct approach. Moreover, the technique we propose is 

not limited to the particular equations a t  hand, but can in principle, be applied to  

situations beyond the range of validity of .the simplifying physical assumptions of the 

theory. 

Section 3.2 introduces the governing equations for ion-acoustic waves in cold 

collisionless plasma. The direct approach is applied to these equations giving a rela- 

tionship of the form f" = F,.( f).  In 53.3 i t  is shown that the analytic considerations 

can be extended to the point were the maximum wave amplitude is determined by 

finding the root of a simple algebraic equation. In 53.4 a numerical example is pre- 

sented for a moderate amplitude wave. In 53.5 the exact solution is compared to the 

dressed solitary wave found by Malfliet and Wieers (1996) and the relative benefits 

of our procedure are discussed. Finally, 53.6 presents a summary of the major results 

from this chapter. 



3.2 The Governing Equations and their Reduction 

We begin this analysis with the well-known dimensionless set of nonlinear equations 

describing a one dimensional, collisionless plasma given by Davidson (1972) as 

where ni is the ion density, vi is the flow velocity of the ions and p is the electrostatic 

potential. At equilibrium ni = 1, v; = 0 and cp = 0. Our interest is in examining 

the fluctuations of the ion density and so we introduce the substitution ni = 1 + n, 

where n is now the fluctuation of the ion density from its equilibrium value. 

Following the approach set out in $2.2, our first step in the search for solitary 

waves for the field equations Eq. (3.1), Eq. (3.2) and Eq. (3.3) is to perform the 

substitutions implied in assuming the traveling wave solution, so that = x - ct.  

The approach of assuming the solution to be a function of = x - ct has been 

used as far back as Adlam and Allen (1958) in a setting of simplified field equations. 

Since then it has also been applied to cases of multi-component and relativistic 

plasmas (Bhattacharyya and Roychoudhury, 1988; Chatterjee and Roychoudhury, 

1994; Pope1 et al., 1995) by using the pseudopotential approach. It is important to 

note that our method exploits this assumption (< = x - ct) as a starting point in 

obtaining a n  exact solution of the complete field equations. 



By substituting 2 = f '  and % = -c fJ  into Eq. (3.1), Eq. (3.2) and Eq. (3.3) 

we obtain the following set of ODE'S 

where, without risk of confusion, the original variable names are used to indicate 

corresponding functions of the single variable. Integrating Eq. (3.4) exactly yields 

the following link between vi and n, 

where A is a constant of integration. If we then impose the initial equilibrium 

conditions vi = p = n = 0 (from nc = 1)) the integration constant is found to be 

A = -c. 

We now solve in terms of vi to avoid the irrational expression (square root) which 

appears when solving for p. Substituting Eq. (3.7) and the derivative of Eq. (3.6) 

into Eq. (3.5) results in the following single ODE governing the ion-acoustic solitary 

waves, 

exp (mi - $v,?) - (vi/ (C - vi)) - 1 + (v,') 
v:' = 

(C - vi) 



which is of the form of Eq. (2.8). Following the description in 52.2, we can transform 

Eq. (3.8) into an equivalent equation of the form of Eq. (2.6), allowing us to apply 

conditions (i) - (iii) directly. 

By inspection of Eq. (3.8), we determine Hc(vi) and G,(vi) to be the following 

Performing the integrations described in Eq. (2.9) and Eq. (2.10) we determine that 

We can now write Eq. (3.8) in the form of Eq. (2.12) by utilizing Eq. (3.11) and Eq. 

(3.12) from above. After re-writing Eq. ' (3.8) and performing some simplifications 

we are left with 

By condition (i), establishing the behaviour at infinity, we must have D = 0, yielding 

v; = 
1 1 2  

( ((c - vi) + 2) exp(cvi - Zvi ) - c(c + vi) - 2) 
(C - vi)3 

(3.14) 

This ODE is equivalent to Eq. (3.8) but is in the form of Eq. (2.6), thus providing 

a reduced form of the governing equation for ion-acoustic solitary waves in a cold 

collisionless plasma. 



3.3 Solitary Wave Solution 

It is now necessary to verify whether and under what circumstances the RHS of Eq. 

(3.14) satisfies conditions (i)-(iii) (92.2) for the existence of solitary waves. We notice 

that the root of Eq. (3.14) at vi = 0 always exists, regardless of the value of the 

wave speed c. Our task now is to find, for any given value of c, whether or not, in 

addition to the zero root, there exists a positive root, v , ~ ,  for the right-hand side 

of Eq. (3.14), and more importantly, prove the existence of a value vim,, satisfying 

condition (iii). 

While Eq. (3.14) permits a complete numerical analysis of the solitary waves, 

in this problem we have been able to  extend the closed-form analysis by integrating 

Eq. (3.14) to obtain a first integral exactly. Indeed, employing integration by parts 

we find the first integral, 

where B is the constant of integration (which is zero). Every solution of Eq. (3.8) 

will also satisfy Eq. (3.15). This allows us to find q,,, exactly by solving a simple 

algebraic equation, namely, 

which can be easily solved numerically to any degree of precision. To obtain the 

shape of the solitary wave, we need only to perform a numerical integration of Eq. 

(3.15) with ~ ~ ( 0 )  = vi map Finally, we must check that the solution satisfies the 

original Eq. (3.14). 



3.4 Numerical Example 

To demonstrate another application of our direct method, we present a detailed 

example of one particular case. We will choose a value of c = 1.25 for the example 

case presented here. This value of c corresponds to a case presented in Malfliet and 

Wieers (1996), permitting us to compare our approach to a perturbation approach 

which includes higher order terms. 

Figure 3.1: Evaluation of the RHS of Eq. (3.14) for a wave speed of c = 1.25. 

Figure 3.1 shows the right-hand side of Eq. (3.14) evaluated for the value of 

c given above. We can determine that in addition to the root at zero, a second 

positive root does exist at vi 1 = 0.56018, which can be found to any specified degree 



of precision. Figure 3.2 shows the right-hand side of Eq. (3.15), also evaluated with 

the value of c given above. The value of vi ,,, = 0.71 1603, satisfying condition(iii), 

was determined by numerically solving Eq. (3.16). Again, this root can easily be 

found to any specified degree of accuracy. 

-0.15 L 
Figure 3.2: Evaluation of the RHS of Eq. (3.15) for a wave speed of c = 1.25. 

By way of illustration, Figure 3.3a and Figure 3.3b, obtained directly from the 

~a themat ica@ differential equation solver, show the solutions of Eq. (3.14) for the 

initial conditions vi (0) = 0.711603 and vi (0) = 0.711604. The dramatic difference in 

solutions for a change in initial conditions of only one-one millionth, again illustrates 

the existence of a solitary wave solution. The shape of the solitary wave can be 

accurately represented by the shape of any one period, just before the transition, as 



shown in Figure 3.3a. 

Figure 3.3: Solution of Eq. (3.14) for a wave speed of c = 1.25 showing (a) Periodic 
behaviour for ~ ~ ( 0 )  = 0.711603 and (b) Divergent behaviour for ~ ~ ( 0 )  = 0.711604. 

We could also apply the alternate method of searching for the solitary wave given 

in 52.2, where a very small initial value for vi(0) is used as the initial conditions 

instead of vi ,,. In our example, for the values of vi (0) = lo-', we obtain the 

amplitudes 0.711601 and 0.711602. 



3.5 Discussion 

The solitary wave found is of moderate amplitude, and a comparison with the results 

of Malfliet and 'wieers (1996) perturbation reduction technique would be expected to 

produce satisfactory results. In order to make a comparison we recall that Malfliet 

and Wieers (1996) introduced a wave-number-like parameter, k, such that ui = 

k ( x  - ct)  . To determine a value of k, we use equation (14) from Malfliet and Wieers 

(1996) where 

and calculate that k = 0.3 for c = 1.25. 

Substituting the above value of k into (31) of Malfliet and Wieers (1996) for = 0 

(initial shape at t = 0) yields vim, = 0.699925 and a wave speed of c = 1.24318 

(up to the k6 approximation). For the 'exact' solution, we recall from above that 

vi ,,, = 0.711603 and c = 1.25. The error in the perturbation solution is then 

approximately 1.6% in vimd2 and 0.55% in c. To illustrate these differences, Figure 

3.4 shows the comparison of the predicted solitary wave from the 'exact' solution and 

the dressed solitary wave of Malfliet and Wieers (1996). Although these differences 

do not appear significant, it should be pointed out that a third order perturbation 

was required to approach the 'exact' solution for a case of moderate amplitude. 

The perturbation approach would require an undetermined number of additional 

perturbations for waves of higher amplitude, yet it would still not be clear whether 

and in what sense the solution had converged. We should also note that the modified 

reductive perturbation technique used by Demiray (1999~) would produce the same 

wave as the dressed solitary wave shown in Figure 3.4. 
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Figure 3.4: Comparison between the 'exact' solution (-) and the dressed solitary 
wave of Malfliet and Wieers (1996) (----) with c = 1.25 and k = 0.30. 

It is interesting to  note that Malfliet and Wieers (1996) observed that with suc- 

cessive (higher order) approximations, the predicted solitary wave became larger, 

taller and moved faster. In Figure 3.4 this trend continues from the highest order 

perturbation solution to  the 'exact7 solution, where the 'exact7 solution is larger, 

taller and faster than the k6 perturbation approximation. 

While it may be argued that the perturbation approach could eventually approx- 

imate the 'exact' solution by including additional perturbations, there exist three 



major advantages to the procedure developed here. Firstly, the approach used in 

this study is not limited to small amplitude waves, unlike the reductive perturba- 

tion approach. The relatively close agreement between the 'exact' solution and the 

perturbation solution was expected because the example considered was of moderate 

amplitude. If larger amplitudes (or faster waves) had been considered the discrep- 

ancy between the two solutions would have widened. Evidence of this is suggested by  

Malfliet and Wieers (1996). They point out that for waves with k 5 0.2 (i.e. c + 0) 

no significant difference is observed between successive approximations (k2 -t k6), 

yet for k 2 0.3 (i.e. increasing c) they observe significant differences. Secondly, the 

proposed technique offers the advantage of yielding a highly accurate solution (one 

might say an exact solution) of the exact equations, with no intermediary equations. 

Thirdly, and perhaps most importantly, the 'exact' solution is obtained with less ef- 

fort than the perturbation solution. This is especially true for large amplitude waves 

where an unspecified number of additional perturbations would be required. 

3.6 Conclusions 

Based on theoretical considerations implicit in the very definition of a solitary wave, 

in this chapter an  analysis has been presented which predicts with high accuracy the 

amplitude and shape of ion-acoustic solitary waves for any given wave speed in a 

cold collisionless plasma. 

Using this technique it is possible to  determine the magnitude of errors incurred 

through use of the reductive perturbation techniques. As expected, the errors are 

relatively small for cases of moderate amplitude, but would be expected to increase 



with the increase in amplitude (and speed) of the wave. While the retention of 

higher order terms will, to some degree, reduce these differences, the advantages of 

the proposed technique are that it is not limited to small amplitude waves, it yields a 

solution for the exact equations and the effort required to determine a solution does 

not vary with amplitude. Finally, the method proposed can be applicable to more 

general physical models. 



Chapter 4 

Two Dimensional Considerations for Solitary 

Waves in Fluid-Filled Elastic Tubes1 

4.1 Introduction 

In the previous chapters (also in Epstein and Johnston, 1999; Johnston and Ep- 

stein, 2000), the reasons for abandoning the reductive perturbation technique were 

argued, particularly as it was shown that by operating directly on the original dif- 

ferential equations the speed and amplitude of the wave can be found exactly, and 

the shape of the wave found through a simple integration to any degree of accuracy. 

In this chapter, we will build on this and consider the common practice of invoking 

the long-wave approximation (Demiray, i996; Demiray and Akgiin, 1997; Derniray, 

1998a; Malfliet and Ndayirinde, 1998) as the rationale for neglecting the axial dis- 

placements the solitary wave induces in the tube. This assumption unnecessarily 

rigidifies the elastic behaviour of the tube, but is adopted so as  to reduce the num- 

ber of dependent variables to one, thus rendering the problem tractable by certain 

numerical techniques. 

The studies of Hashizume (1985); Demiray (1997d); Demiray and Dost (1998a); 

Antar and Demiray (1999) have included the axial displacement in the shell equa- 

tions, but followed the common practice of finding a KdV type equation for the first- 
- -- -- - - - 

'This chapter is based on the article: Epstein, M. and Johnston, C. R. (2001) On the exact 
speed and amplitude of solitary waves in fluid-filled elastic tubes. Proc. R. Soc. Lond. A., 457, 
1195-1213. 



order approximation using the reductive perturbation technique. Unfortunately, the 

use of the reductive perturbation technique still limits the equations to small dis- 

placements. 

The fortunate circumstance of having a method available that allows exact so- 

lutions for the displacements, with no limitation on their magnitude permits full 

consideration of the effect of the axial displacement on the predicted solitary wave. 

However, the consideration of large deformations and the associated inclusion of ax- 

ial displacements leads to  a coupled system of nonlinear differential equations, rather 

than just one equation. 

Therefore, one of the main aims of this chapter is to show that by casting the prob- 

lem in a variational formulation, and invoking Noether's theorem, enough conserved 

quantities can be derived to  reduce the analysis of the two dependent variables (axial 

and radial displacement) to  a situation similar to that with just one dependent vari- 

able. The availablity of a variational formulation, essential to the treatment, emerges 

as a result of the exploitation of the usual modelling of the fluid-solid interaction. 

Section 4.2 presents a derivation of the exact nonlinear membrane equations. 

These equations could have been obtained directly by particularizing exact field 

equations of general nonlinear shell theory (Budiansky, 1968). Nevertheless, the 

short independent derivation presented here, valid only for initially cylindrical mern- 

branes, is equivalent and renders this Chapter complete and self-contained while 

affording a direct interpretation of each of the terms in the equations. Section 4.3 

presents the fluid equations and their treatment in the presence of solitary waves. 

The subtle point that the fluid equations are Eulerian while the solid equations are 

Lagrangian is discussed and resolved. Section 4.4 presents the variational formula- 



tion and the explicit derivation of the conserved quantities. Section 4.5 discusses the 

basis for the numerical procedure. Section 4.6 presents numerical examples support- 

ing the surprising conclusion that solitary waves exist but not necessarily where one 

would expect them on the basis of the long-wave approximation. In other words, 

the long-wave approximation appears to be qualitatively wrong, even when the am- 

plitudes involved are very small. This point is further discussed in 54.7. Section 

4.8 provides a recap of the main results presented in this Chapter and comments on . 

their significance. 

4.2 Derivation of the equations of motion 

We adopt an infinite horizontal cylinder of radius R and axis x, shown in Figure 4.1, 

as a reference configuration for the membrane . For axisyrnmetric deformations, the 

displacement vector v has only two components, u and w,  along the axis and the 

radius, respectively. These components are functions of x alone. The axial and hoop 

elements of length, dx and ds = RdO, become, respectively, upon deformation: 

dx* = J(1 + ut)2 + wt2 dx 

w 
ds* = (R+ w)dO = (1 + z ) d ~  

where 13 is the circumferential angular coordinate and where 



reference t t~ ' =' configuration 
u 

Figure 4.1: Reference and deformed configurations 

The middle surface of the membrane, with reference area element dA = dxds, is 

deformed to an element with area 

The slope of the deformed meridian is given by 

The preceding formulae are straightforward geometric facts and involve no limitations 

as to the magnitude of the displacements or slopes. In order to obtain exact equations 

of motion, we will utilize the 'physical' longitudinal and hoop components, 01 and 

w, of the three-dimensional Cauchy stress. Denoting by h* the deformed thickness, 

by p the reference mass density, and by p the external normal pressure per unit 



deformed area, shown in Figure 4.2, the longitudinal balance of momentum implies: 

where superimposed "dots" denote partial time-derivatives, and nl is the Kirchhoff 

1ongitudinaEstress resultant (per unit undeformed length) : 

Figure 4.2: Forces acting upon element of deformed tube in longitudinal direction 

Equation (4.6) has been obtained through imposition of Eq. (4.1), (4-2), (4.41, 

and (4.5) on the forces shown in Figure 4.2 and projection on x. Similarly, taking 

radial and hoop stress components shown in Figure 4.3, we obtain the radial equation 

of motion as: 

n2 [(I + u ' ) ~  + wR] w 
[nl w]' - 

(R + w) + p(l + jj) (1 + u') = phzii 

where 



Figure 4.3: Hoop and longitudinal forces acting upon element of deformed tube 

is the Kirchhoff hoop-stress resultant. . 

Equation (4.6) and (4.8) coincide, via the appropriate specialization to axisym- 

metric deformations of a cylinder,with the general nonlinear membrane equations of 

Budiansky (1968). In effecting the comparison, care has to be exercised when re- 

lating physical components (ai) with their doubly contravariant tensor counterparts 

(09). In our case: 

When the material is incompressible, Eq. (4.6) and (4.8) can be slightly simplified 

to the extent that the radicals involved in the definitions of Eq. (4.7) and (4.9) 



disappear. Indeed, incompressibility means that 

h*dA* = hdA 

or using Eq. (4.1), (4.2) and (4.4): 

whence: 

The exact equations of motion for an incompressible membrane undergoing axisym- 

metric deformations are, therefore, 

An important point to  be made is that, since nothing beyond its cylindrical shape 

has been assumed for the reference configuration, these equations will have the same 

form for any cylindrical reference, regardless of whether it is stress-free or not. To 

check that this is the case, let U (a linear function) and W (a constant) denote 

displacements from one cylindrical reference to another, and let hatted quantities 

represent those measured with respect to the second reference. Then 



These relations, when substituted back into Eq. (4.15) and (4.16) or Eq. (4.6) 

and (4.8), reproduce identical equations in terms of the hatted quantities. 

4.3 Fluid-solid Interaction 

Equations (4.15) and (4.16) are exact. To obtain a complete theory for the axisym- 

metric dynamics of fluid-filled elastic tubes, two elements are still missing: (i) a 

formula for the pressure p, representing the fluid-solid interaction, and (ii) a consti- 

tutive equation for the (incompressible) tube material. 

As far as the fluid-solid interaction, we follow Chapter 2 by adopting a simple 

model, whereby the conservation of mass and momentum are enforced under the 

assumption that the velocity profile is constant throughout the tube cross section. 

At this point, however, we examine the fluid model within a broader context. 

The axial coordinate x is a material coordinate for the tube. Let us denote by 

q a spatial coordinate in the axial direction, so that while each x represents a fixed 

material tube cross section, each q represents a fixed position in space along the 

axis. Any dynamical variable, say, is expressible either in terms of x and t, or, 

equivalently, in terms of q and t .  The connection between the two descriptions is 

obtained through the motion of the solid wall, i.e., 

We then have, with a typical abuse of notation, 



Note that x is not a material coordinate for the fluid, so whenever @ measures a fluid 

property, the passage from q to x is to be regarded as a mere change of variables. 

Denoting by vf the fluid speed and pf  the (constant) fluid density, the continuity 

and linear momentum equations are obtained in a standard Eulerian way as: 

By means of the transformation formulas (4.19) and (4.20), we cast equations (4.21) 

and (4.22) in the form 

We repeat that these are not ~ a ~ r a n ~ i a n  equations, but simply Eulerian equations 

pulled back to another coordinate system. Within the context of the constant velocity 

profile, these equations are exact, in the sense that they impose no limitation to the 

magnitudes of the displacements. 

As far as the constitutive equation of the tube is concerned, we will only assume 

a hyperelastic isotropic behaviour, governed by a stored energy density C per unit 

volume of a natural state, given by: 

where Al and A2 are the principal stretches measured from the natural state. If, for 

instance, the reference configuration happens to be in a natural state, the principal 



stretches are given by 

For any other (cylindrical) reference configuration, the formulas for the principal 

stretches are obtained from Eq. (4.17) as: 

where 'hatted' quantities are measured from the prestressed reference configuration 

and U' is the constant longitudinal prestretch with respect to the natural configura- 

tion. We recall from Eq. (2.27) the Cauchy stresses are obtained as 

4.4 Solitary Waves and Variational Formulation 

In a typical problem, the tube is assumed to be prestressed uniformly while the fluid 

moves a t  a constant speed vf,. It is upon this background state that the solitary 

pulse travels. Therefore, to look for the traveling wave we seek a solution of the form 

where t? is the wave speed and where, as before, hatted quantities refer to  the pre- 

stressed background configuration. For the natural state, therefore, according to Eq. 



(4.17) we must have, after some simple transformations, 

u = u ( x  - ~ t )  + U1ct = u(<) + U'ct 

w = w ( x - c t )  = w(<) (4.30) 

where u and w are the shape functions to  be found and c is the solitary wave speed 

per unit length (I) of the natural state. 

Retaining the primes for <-derivatives, and substituting Eq. (4.30) into Eq. (4.15) 

and (4.16), yields the reduced system of nonlinear ODES 

Similarly, Eq. (4.23) and Eq. (4.24) yield 

Remarkably, although Eq. (4.23) and Eq. (4.24) contain terms involving derivatives 

of the axial displacement u, these terms cancel out upon enforcing the conditions 

embodied in Eq. (4.30). Recalling 52.3, we know that these two equations can 

be integrated exactly to obtain an explicit connection between pressure and radial 

displacement. A straightforward integration yields: 



where p,, u, and w, are known conditions a t  infinity. This rather sophisticated . 
pressure-displacement coupling will be the basis for our considerations. In fact, since 

an observer moving with the solitary wave will perceive a state of steady flow in a 

fixed tube, Eq. (4.35) could have been obtained directly by elementary means, a fact 

that will be used in a later chapter. 

Whatever configuration is used as reference, therefore, once the values of W and 

U' are specified, the values of Al and A2 in the prestressed configuration can be 

calculated, and hence the corresponding values of the stress components. Moreover, 

given the background fluid velocity vj,, the value of the pressure at infinity can be 

calculated from Eq. (4.32), using wb, = w; = 0, as 

We now attempt to provide a variational formulation for the whole problem. 

In other words, we seek a Lagrangian density L = L(u, u', w,  w') whose associated 

Euler-Lagrange equations are Eq. (4.31) and (4.32), with p given by Eq. (4.35). It 

should not be surprising that the elastic part of these equations may be cast in a 

variational form governed by the stored energy function. What seems less likely is 

that the complicated terms involving the pressure, as given by Eq. (4.35), may also 

be obtainable in this way. Indeed, if we regard Eq. (4.31) and (4.32) as a dynamical 

system with two degrees of freedom (imagining for a moment that the primes denote 

time derivatives), it is apparent that the pressure terms are not conservative, since 



they involve derivatives. Nevertheless, it can be verified that the function 

when used in the variational statement 

yields the desired result. Indeed, it can be verified by direct calculation that the 

~ u l e r - ~ a g r a n ~ e  equations of Eq. (4.38), via, 

reproduce exactly Eq. (4.31) and (4.32), with the pressure given by Eq. (4.35). 

In the dynamical system analogy, we observe that  the pressure contribution to Eq. 

(4.37) will affect both the "potential" and the "kinetic" energy of the system. 

4.5 Noether's Theorem, first integrals and numeric solvabil- 

ity 

If Eq. (4.31) and (4.32) are regarded as a general coupled nonlinear system of second- 

order ODES, the problem of finding a solution with the typical shape of a solitary 

wave would is frighteningly difficult. This is because, for any assumed value of the 

speed of propagation c, we would have to find, by trial and error, the finely tuned 



values of the 'initial' conditions (at say < = 0) which lie exactly at the transition 

(the separatrix) between the oscillatory and divergent behaviours. When only one 

displacement component is considered, this task is reasonably simple, but luckily we 

do not have to resort to such brute force approaches. We hold the advantage of having 

a way to calculate the amplitude which admits a solitary wave for a particular wave 

speed either numerically or analytically a-priori, as has already been demonstrated 

for a single dependent variable in Chapter 2 and Chapter 3. In the case of two coupled 

displacement variables, these a-priori calculations become absolutely necessary. 

The key to such procedures resides in finding first integrals ('conserved quanti- 

ties'). When a variational principle is involved, a celebrated theorem of Noether (see, 

for example Lovelock and Rund, 1975) establishes, roughly, that for every symmetry 

of the Lagrangian there is an associated conserved quantity. Symmetries, in the 

most general setting, are given by one-parameter groups of transformations leaving 

the Lagrangian unaffected. Noether's theorem then gives explicit conserved quan- 

tities in terms of quantities associated with the corresponding group. In our case, 

moreover, two symmetries of the Lagrangian are obvious: the absence of an explicit 

dependence on u (conservation of axial 'momentum'), and the absence of an explicit 

dependence on 5 (conservation of 'energy'). The associated conserved quantities do 

not have the physical meaning of momentum and energy, but have the same formal 

meaning and mathematical usefulness. The conservation law associated with u is 

obvious from Eq. (4.39): 

while the conserved quantity associated with the explicit absence of 5 is, according 



to  Noether's theorem: 

where Cl and C2 are constant on the solutions of the system. Equation (4.42) is also 

known as Jacobi's integral. These conservation laws would have been very hard to 

recognize by direct inspection of Eq. (4.31) and (4.32), but emerge quite naturally 

from the variational formulation. 

Combining Eq. (4.37) with (4.41) we obtain: 

By enforcing the conditions at infinity (including wb, = 0) we obtain: 

Note the presence of c as a parameter. Using Eq. (4.42) for the second conserved 

quantity, and taking account of Eq. (4.37) and (4.41), we obtain: 

Again, using the conditions at infinity yields the value of Cz as: 



It is worth noting that the dependence on w' is everywhere through its square. 

Let us represent Eq. (4.43) and (4.45) as: 

where Fc and Gc are the functions embodied in Eq. (4.43) and (4.45), with the 

constants given by Eq. (4.44) and (4.46), and where the dependence on the speed 

c is specified as a parameter. In the vicinity of points where a suitable Jacobian 

determinant does not vanish, the implicit function theorem allows us to eliminate u' 

from Eq. (4.47) and (4.48) and to write the result as a function of the form 

Figure 4.4: General shape of the solitary wave 

Let us now confine our attention to a solitary wave having the general appearance 

shown in Figure 4.4, that is, satisfying the following condition: it has one 'bump' 



and then it tends exponentially, without any oscillations, to a common value, w, 

on either side of the origin. In other words, outside of the 'small' interval where the 

pulse exists, the function is practically indistinguishable from a constant. This case 

is analogous to the situation examined in Chapter 3, where the first integral was 

determined exactly. Equation (4.49) therefore immediately implies that the function 

f, must have a double root at  w = w, and have another (simple) root at w = w,,, 

(> w,), namely, at the value of the amplitude of the wave. The general appearance of 

f, is shown in Figure 4.5. The behavior outside the interval (w,, wma,) is irrelevant. 

Note that since Eq. (4.49) prescribes that j, a t  w, must be non-negative, it follows 

that the curvature of f, a t  w = w, must be positive. We recall then that all that 

has t o  be done in order to find the amplitude of the solitary wave for any specified 

speed c is: (i) verify that the function f, and its first derivative vanish a t  w = w,, 

and that the curvature thereat is positive; and (ii) find the next root (w = w,,,). If 

either (i) or (ii) are not feasible, then there is no solitary wave. Fkom the practical 

point of view, then, we simply plot the function to get an idea about whether and 

where the root lies and then find the root to any desired degree of accuracy by, say, 

the method of halving the interval, or any other such simple procedure. 

Because the shape of the wave is of interest, we could proceed to integrate Eq. 

(4.49) with the initial condition w = urn.,. But, as has been discussed previously, this 

procedure would run into the difficulty that the solution w = constant = w,,, has 

been introduced in the process of producing the first integrals. One way to eliminate 

this problem consists of differentiating Eq. (4.49) and dividing by w' resulting in the 



Figure 4.5: General appearance of Eq. (4.49) 

second order equation 

with the, now known, initial conditions w(0) = w,,,, wt(0) = 0. Either this equa- 

tion or, better still, the original system of coupled differential equations ((4.31) and 

(4.32)), can now be integrated by any of the common forward integration procedures 

for initial value problems in ordinary differential equations. 

The crucial point has been the obtaining of the initial conditions by a direct pro- 

cedure. For our direct approach, specifying initial conditions w(0) < w,,,, wl(0) = 

0 results in the behaviour of the solution becomes oscillatory where if w(0) > 

wmaz, wt(0) = 0 the behaviour is divergent. I t  is a good idea, as has been shown, 

to verify that once a solution has been produced, a slight change of initial condition 

produces the desired effect. 

To complete this section, we verify that the condition of w, being a double root is 



satisfied automatically, regardless of the constitutive equation for the wall material. 

We start by noting that, by construction of the constants of integration, w, must 

be a root. Moreover, the derivative of f, with respect to its argument (w) is given 

by the corresponding implicit expression as: 

where the subscripts in the right-hand side denote partial differentiation with respect 

to the indicated variable. From Eq. (4.43) and (4.45) we obtain: 

At], = 0 

A], = 0 

Equation (4.53) and Eq. (4.54) follow from a careful substitution of the values of 

Cl and p,. Equation (4.51) --t (4.55) imply that the root at  w, is indeed a double 

root. 

4.6 Numerical Example 

In order to demonstrate the usefulness of our direct method with two displacement 

components, we present a numerical example. We will make a qualitative comparison 

of the results with the one-dimensional example presented in Chapter 2. For this 



example, we adopted the natural state as the reference configuration. The equations 

for the strain will then be given by Eq. (4.26). 

We begin by non-dimensionalizing Eq. (4.31) and (4.32), (4.35) and the first inte- 

grals, Eq. (4.43), (4.44), (4.45) and (4.46). We will adopt a non-dimensionalization 

similar to Chapter 2, where 

and where p is a "shear modulus" of the isotropic and incompressible elastic tube 

material, 

h tube wall thickness before deformation, p is the tube material density, p j  is the 

Auid density, R is the unstressed radius, and 

is the thickness parameter. 

Rewriting Eq. (4.31), (4.32), (4.35), (4.43), (4.44), (4.45) and (4.46) in terms of 

non-dimensional variables yields 



The only information missing is an expression for the strain energy density, C. 

We will again adopt the Dl  constitutive equation used in Demiray (1996), which, in 

dimensional form, is given as 

where Il is 



Using Eq. (4.28) we find the non-dimensional stresses to  be 

Substituting Eq. (4.63) and (4.65) into Eq. (4.59) and (4.61) leaves two first order 

ODES in terms of ti', z i j  and flR which are the embodiment of Eq. (4.48) and (4.47). 

We can therefore find a function of the form of Eq. (4.49) and determine the existence 

of solitary waves through the method described in $2.3. 

We begin by selecting a representative wave speed of c = 3.175 (which corresponds 

to E = 7 in the prestressed reference configuration). Initial prestrains of the tube are 

A1 = 1.5 in the axial direction and A2 = 1.2 in the hoop direction, which correspond 

to  W = = 0.2 and U' = GL = 0.5. The constant a is 1.948 and m, in the natural 

reference configurtation, is 0.864 (corresponds to m = 0.4). The last constant in the 

equations to be considered is gr,, which in this example will be c/2 or 1.5875. 

We note that since 8f, appears always in the combination [ef fm - (1 + U')cI2, it 

follows that if a solitary wave exists for some fluid speed gf,, the same solitary wave 

will propagate at the same speed c for a fluid speed of 2(1+ U')c - aim. For given 

prestress conditions, solitary waves will exist only for certain combinations of c and 

afm, conforming a 'domain of existence' in the c,gf,-plane which will be symmetric 

with respect to the line @fm = (1 + Ut)c. For the prestress conditions of our example, 

this domain of existence does not cut the vj, axis, namely, solitary waves do not 

propagate when the fluid velocity is below a certain threshold (depending on the 

wave speed). Nevertheless, in past studies based on the long-wave approximation 

(see Erbay et al., 1992; Demiray, 1996) GI, has been assumed to be zero, as was 



aIso done for our example in Chapter 2. 

Figure 4.6: Actual shape of Eq. (4.49) for c = 3.175 

With all the pieces in place, we can now attempt to determine a function of 

the form of Eq. (4.49) for this example. Upon inspection of equations (4.59) and 

(4.61) we can see that an equation of the form of Eq. (4.49) would be impossible 

to find analyticaIly when using the Dl constitutive equation. As a consequence, 

the relationship between w R  and w was calculated numerically by algebraic means. 

Figure 4.6 shows the relationship between aR and d as was determined for c = 3.175. 

We can see that this function does indeed have the predicted shape, shown in Figure 



4.5. This function confirms the existence of a double root at 0, = 0.2 and a single 

root at  G,, = 0.449539. In order to solve the original differential equations, we 

also need d a t  By substituting amas and a' = 0 into Eq. (4.48) and (4.47) 

we can solve for a'. Doing this we find G' = 0.300717 a t  g,,,. 

Figure 4.7: Comparison of solutions for initial conditions (a) w,, = 0.4495390 and 
(b) w,, = 0.4495391 

It is important to note that the wave amplitude, a,,,, and the corresponding 

value of ii' were found, for a given speed, by purely algebraic means. To obtain 

the shape of the wave all we need is to solve the system of ordinary differential 



equations (4.56) and (4.57) using these values as initial conditions. As a further 

definite verification that the initial conditions are correct, one observes the drastically 

different behaviours of the solution for very slight changes in the initial conditions. 

Indeed, if ~ ( 0 )  < g,,, the solution should be periodic, a feature that is lost as soon 

as m(0) > tZmaz. Figure 4.7a illustrates the solution obtained with MathematicaQ 

when CJ,,, = 0.4495390 is used and Figure 4.7b illustrates the effect of increasing the 

initial condition to tZ,,, = 0.4495391. As the value of a,,, is increasingly refined, 

the period between successive pulses will increase until the solution reaches a limit 

of a single pulse. We can approximate this limit by the first pulse in the periodic 

solution. Figure 4.8 illustrates the shape of the solitary wave for a wave speed of 

c = 3.175. The final shape of the wave includes the effects of both Q and ti, with 

each material point, E having a position given by ~ ( c )  and ( + i i ( E ) .  

While there have been some'observations concerning the legitimacy of neglecting 

the axial deformation (see Kuiken, 1984), there have been few attempts to determine 

the implications of this approximation analytically. Three recent papers (Demiray, 

1997d; Demiray and Dost, 1998a; Antar and Demiray, 1999) are important in that 

they include axial displacements in the formulation of the equations of motion. Of 

particular interest for the purpose of comparison would be the first two (Demi- 

ray, 1997d; Derniray and Dost, 1998a), where the viscosity effects are neglected and 

where the reductive perturbation technique is used, as in most previous studies (Er- 

bay et al., 1992; Demiray, 1996). The comparison with their own previous studies 

neglecting axial deformation, however, are not explicitly carried out in either of the 

studies of Demiray (1997d); Derniray and Dost (1998a). Our own results, based on 

the integration of the exact equations, seem to indicate qualitative differences with 



5 + m  
Figure 4.8: Calculated shape of the solitary wave for c = 3.175 

those obtained using the reductive perturbation technique. In particular, the usual 

assumption iifm = 0 cannot be enforced in the solution of the exact equations. 

As far as a comparison with our results obtained neglecting the axial displace- 

ment, the most notable difference is seen in the maximum amplitude of the solitary 

wave for equivalent wave speeds. The amplitude of the wave shown in Figure 4.8 

is significantly larger (approximately 8 times) than that predicted in Table 2.1 (for 

E = 7). This discrepancy suggests that the methodology of neglecting u (i.e. the long- 



wavelength approximation) has a substantial impact on the physics of the problem. 

We can further examine this assertion by considering a less complex, but analogous 

closed form theoretical example. 

4.7 Discussion 

So as to understand qualitatively the underlying mathematical structure that may 

help to explain the drastic difference between solutions obtained by means of the 

long-wave approximation and those obtained from the exact equations, we consider 

now a highly simplified example that can be solved in closed form. Let the equations 

of motion for some system, after implementation of Eq. (4.30) he of the form 

It is easy to verify that this system derives from the Lagrangian density 

In our intended analogy, y and u are parameters related to the wave speed and to the 

background fluid speed, respectively. In the long-wave approximation, Eq. (4.66) 

would be altogether neglected, while Eq. (4.67) becomes: 

which has the first integral: 



With w, = w k  = 0, the constant of integration C vanishes. The right-hand side 

has a double root a t  w = 0 and a single root at  w = (7 - v)~, and is positive in 

between, revealing that a solitary pulse-like wave corresponding to any speed y wilI 

propagate with an amplitude: 

Consider now, however, the original coupled system constituted by Eq. (4.66) 

and (4.67). Equation (4.66) has the first integral: 

where, from the conditions u, = w, = 0, the integration constant D vanishes. 

Substituting this resuIt back into Eq. (4.67) yields: 

which has the first integral 

Thus we obtain the amplitude 

which must be positive for the plot of the right-hand side of Eq. (4.74) to  have the 

needed positivity between 0 and w,,,. It folIows that a solitary pulse-like wave will 

exist provided that  



Assuming, for example, p = 1/8, it turns out that v must lie in the interval 

(y/2,37/2). In particular, v = 0 lies outside of this domain of existence (see Figure 

4.9), so that, in this example at least, the fluid must have a non-vanishing background 

speed for the solitary wave to exist. 

Figure 4.9: Domain of existence ( p  = 1/8) for simple model 

This illustration, albeit an oversimplification of the model, shows the potential 

dangers involved in neglecting terms in a nonlinear setting. We turn now to the 

question of whether the long-wave approximation is justifiable in the case of an 

elastic membrane under small axisymmetric deformations. Prompted, perhaps, by 

the superficial analogy between these deformations and those of the classical linear 

beam theory, one may be tempted to conclude that the deformed meridian may 



be obtained approximately by neglecting axial deformations. Nevertheless, in the 

case of a shell the radial deformation w is entirely accountable for the hoop strain 

(w/R). The Poisson effect, therefore, will in general provide for the appearance 

of a longitudinal strain of the same order of magnitude as the hoop strain. Even 

assuming that the slope w' is negligible (long-wave approximation), the longitudinal 

strain is measured by u'. It follows that the neglected displacement derivative, u', 

is of the same order of magnitude as the main (non-dimensionalized) displacement 

(w/R) which the theory is supposed to  predict! In other words, what is wrong with 

the long-wave approximation is not the neglecting of the slope w', but the disregard 

of that part of the longitudinal strain due to the derivative d. Figure 4.10 shows 

&' as a function of 'lir in the prestressed reference configuration for the numerical 

example of 54.6. Their ratio can be calculated to be about -0.63, hardly a negligible 

amount! It is this type of reasoning that led us to the consideration of the coupled 

system described above. 

In this chapter we have derived the kinematically exact governing equations for 

the tube wall accounting for both axid and radial displacements. The inclusion of 

both components of displacement produces a system of two nonlinear differential 

equations that must now be considered. This is accomplished through the use of the 

variational formulation of the governing equations. By invoking Noether's Theorem, 

we are able to exploit two obvious symmetries of the governing equations and find 

the corresponding first integrals. The first integrals are found to be functions of u', 



Figure 4.10: 6 and C' in the prestressed reference configuration of for c = 3.175 

w and w" alone. From this, a function of only w and wa can be determined and the 

direct approach applied to the problem. Solitary wave solutions were determined for 

a wave speed of c = 3.175. 

Several interesting consequences of including the axial displacement were found. 

Firstly, the wave amplitude determined in this chapter was found to be approximately 

8 times greater than the amplitude found for the equivalent wave speed when only 

radial displacements are considered (Chapter 2). Additionally, it was found that the 

condition vfm = 0 could not be enforced for the exact equations. This is exactly 



opposite to the situation for the approximate equations when axial displacement is 

neglected. 

In order to further examine the effects of including the axial displacement a simple 

theoretical example was examined. The benefit of this example was that it permitted 

a closed form solution to  be determined. Based on this and an examination of the 

relationship between the axial and radial displacements in the prestress reference 

configuration, we concluded that the axial displacement is of the same order of mag- 

nitude as the radial displacement. This one point clearly illustrates the dangers in 

neglecting axial displacements and is perhaps the main contribution of this chapter. 

In spite of its obvious extra complexity, the variational formulation with its atten- 

dant conserved quantities, permitted us to obtain a solution to the exact equations 

with hardly any extra computational effort. This is so because the existence of 

the first integrals allows for the prediction of the amplitude of the wave and the 

corresponding value of ti' by solving algebraic equations alone. 



Chapter 5 

Approximat ion of Axial Displacement 

5.1 Introduction 

The results of Chapter 4 clearly indicate the potential risk involved in assuming 

that the long wave approximation extends to allow the axiaI displacements to be 

neglected, as was done in Demiray (1996); Malfliet and Ndayirinde (1998) and many 

other studies. Clearly the axial displacement plays as significant a role as the ra- 

dial displacement. While studies by Hashizume (1985), Demiray (1997d), Demiray 

and Dost (1998a), Antar and Demiray (1999) have investigated the effects of re- 

taining the axial displacement, the solutions were determined through approximate 

techniques (RPT) and were not compared to existing results. In fact, Malfliet and 

Ndayirinde (1998) suggest in their study that neglecting u' has no significant effect 

on the solution. Clearly, that is not correct. 

One of the motivations for neglecting u' in the governing equations is to render 

a problem of one dependent variable, which is less effort to solve than a problem 

of two dependent variables. In light of the approach presented in Chapter 4, which 

permits the determination of the exact solution of the two-dimensional equations 

with minimal effort, would a single variable problem be equally as compelling? In 

the end, there is still a certain appeal to formulating the problem in terms of only a 

single dependent variable. 

How do we then do this when examination of the two-dimensional results clearly 



shows that simply disregarding u' is not reasonable? A second possible option is to 

find a reasonable approximation for u' in terms of w. For this we can exploit the 

proposition that .11j and a' are not only of the same order of magnitude, but their 

relationship can be closely approximated by a linear function. This seems to be a 

reasonable assumption based upon the results shown in Figure 4.10. 

In Chapter 4, the first integrals for the exact membrane equations were deter- 

mined by applying Noether's theorem (Lovelock and Rund, 1975). Using the first in- 

tegrals, the exact speed and amplitude of the solitary waves were determined through 

algebraic means. In this chapter, we also wish to  utilize the first integrals, specifically 

the first integral of Eq. (4.15). In this chapter we will exchange Eq. (4.15) for its 

first integral, while retaining Eq. (4.16) exactly. Using this system of equations we 

can derive a single differential equation in terms of w, but one that also considers 

the contributions of u'. 

In 55.2 we will derive the first integral of Eq. (4.15) in a manner similar t o  the 

derivation of the governing equations of the shell. We do this t o  present this approach 

in a self contained manner that does not rely on the use of variational principles. The 

formal description of this approximate approach is outlined in 55.2. The usefulness 

of this approach is illustrated in $5.4 by the presentation of two numerical examples. 

Finally, $5.5 presents a summary of the main points presented in this chapter. 

5.2 Derivation of First Integral 

We begin by considering a tube with the shape as shown in Figure 5.1, representing 

a section of a tube deformed by a solitary wave. Summing the forces in the axial 



direction we find 

where a1 and 01, represent the 'physical' longitudinal components of the three- 

dimensional Cauchy stress, as before, and a, is the axial acceleration an element of 

tube dx long with mass dm. Substituting Eq. (4.4), dA = dxds and ds = 27rR into 

Eq. (5.1) results in 

27r(R + w) h*al cos q5 - al,2nRh 

Figure 5.1: Section of tube deformed by solitary wave 

From Eq. (4.5) we can find both sin$ and cosq5. Substituting these into Eq. 



(5.2) yields 

Again, we assume that the material is incompressible and so Eq. (5.3) can be 

simplified. Substituting Eq. (4.13) into Eq. (5.3) we find 

If we consider the right hand side (RHS) of Eq. (5.4), we can write the mass of 

an element of the tube as dm = p2.rrRh dx and that the acceleration of an element 

of mass in the axial direction a, = u. If we substitute this into Eq. (5.4) we are left 

with 

It appears that without additional informat ion concerning the variation of the 

dependent variables on x we cannot completely evaluate the integrals of Eq. (5.5). 

At this point, recalling that we have assumed a prestressed reference configuration, 

we invoke the traveling wave solution given by Eq. (4.29). 

Retaining the primes for c-derivatives, and substituting Eq. (4.29) into Eq. (5.5) 



yields the following 

e + 1' pw' ( 1  + i) 2nR d[ = lw c2u" p2nRh d t  
-00 

Recognizing that d w  = wJd< and du' = u"dJ and substituting this into Eq. (5 .6) ,  

with the appropriate change of limits of integration, produces 

The last piece of this puzzle comes in assuming a form for the expression for 

the pressure p, representing the solid-fluid interaction. We have already presented 

the basic equations for our one-dimensional, inviscid fluid model in terms of the 

traveling wave and have arrived at Eq. -(4.35), which for the prestressed reference 

configuration will be 

The free stream velocity is the fluid speed measured in the prestressed reference 

configuration. If we now substitute Eq. (5.8) into Eq. (5.7), perform the integrations 

and divide both sides by 2nRh, we find the final result to be 



This equation represents the balance of forces acting on the tube, in the axial direc- 

tion, for any deformation imposed by the solitary wave. 

If we compare Eq. (5.9) to Eq. (4.43), including Eq. (4.44), we find that they 

are identical. While we could have skipped the above derivation by simply taking 

Eq. (4.43) directly from Chapter 4, the presentation of this alternate derivation of 

the first integral provides an alternate and independent approach, which is our aim 

in this chapter. 

5.3 Approximation of U' 

Having derived the first integral of Eq. (4.31), we can now choose to consider Eq. 

(5.9) in its place, while still retaining the radial equation of motion, Eq. (4.32), 

exactly. The advantage of making this substitution is that Eq. (5.9) provides the 

means to determine a direct relationship between u' and w, which can be used in 

Eq. (4.32) to eliminate the dependence on u' and leave a function of w only. 

If we assume that all terms involving w" in Eq. (5.9) can be neglected, (i.e. the 

waves are relatively long), we are left with 

(5.10) 

which now involves only terms of u' and w. 

If we refer to Figure 4.10, it would appear reasonable to assume that, in the 

prestressed reference configuration, the relationship between ii' and could be ap- 

proximated well by a linear function. I t  would then follow that Eq. (5.10) could also 



be approximated by a linear function. This is a consequence of the fact that any 

solution of Eq. (4.43) and Eq. (4.45) would have to satisfy both equations separately. 

Let us then say that Eq. (5.10) could be replaced by a function of the form 

u' = Kc W ,  where the constant Kc is unique for each wave speed. The procedure for 

determining the constant Kc involves performing a simple linear regression on Eq. 

(5.10). Once the value of Kc is determined, u' = Kc w can be substituted into Eq. 

(4.32), leaving 

We would, of course, also need to substitute u' = Kc w into Eq. (4.27), which would 

appear in Eq. (5.1 1) through 0. A problem of this form could then be easily tractable 

using the direct approach presented in Chapter 2. 

We have, however, chosen to retain the w R  terms in Eq. (5.11). This is, in general, 

not necessary if the waves are small (long wavelength), but becomes significant when 

the waves take on larger amplitudes, as we have shown previously. It will be shown 

in the numerical example that the necessity of ignoring w R  in determining the linear 

approximation of u' does not introduce any significant error into the final solution. 

5.4 Example of Approximate Solution 

We now proceed to  examine two sample cases numerically. In doing so, we begin 

by non-dimensionalizing our equations. We continue to use the non-dimensional 

parameters given in 54.6. We now consider Eq. (4.57) in place of Eq. (4.32) and the 

non-dirnensionalized form of Eq. (5.10), where we recall that @ItR has been neglected, 



so that 

rnc2a' - Sl 1 (1 + 
(1 + a') 

+ 

4 
- c ) ~  I +  - ( l 4  (5.12) 

and 3 is an approximation of the true stress with zijR = 0. In order to make a 

comparison to the results of Chapter 4, we will continue to use the D l  constitutive 

equation given by Eq. (4.63). 

For this example, we will consider two waves speeds, c = 6.05, a small amplitude 

wave, and c = 7, a moderate wave amplitude. These values correspond to c = 2.744 

and c = 3.175 in the natural reference configuration. The background fluid velocity, 

afm, will be set to c/3 in each case (corresponding to c/2 in the natural reference 

configuration). We also choose the initial prestretches to be A1 = 1.5 and A2 = 1.2, 

which corresponds to U' = 0.5 and W = 0.2. 

We now look to find a linear approximation to Eq. (5.12) for our two example 

wave speeds. Figure 5.2 and Figure 5.3 show the plots of Eq. (5.12) and the linear 

functions over appropriate intervals for c = 6.05 and c = 7 ,  respectively. The 

best fit linear approximation for c = 6.05 is a' = -0.533376C and for c = 7 is 

tit = -0.637578 W .  

We can now make a complete substitution of at in Eq. (4.57) as well as Eq. 

(4.27). This will leave us with a single second-order ODE, given by 
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5.2: Plot of Eq. (5.12) (- - -) and the linear approximation (-) for c = 

where the principal stretches are now 

We can now solve this problem exactly using our direct approach. The approach 

for solving a problem of this form prescribes that we attempt to write Eq. (5.13) in 

the form given by Eq. (2.5), or 
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Figure 5.3: Plot of Eq. (5.12) (-- -) and the linear approximation (-) for 

where iij and iijn must be able to be separated into the form of Eq. (2.8). Rewriting 

Eq. (5.13) in this form would allows us to reduce it to the form of Eq. (2.6) and to 

determine the wave amplitude, a,,,, for which a solitary wave exists. Unfortunately, 

if the terms involving Sl and S2 are expanded, we find that we cannot separate the 

terms containing and da into the form of Eq. (2.8). Consequently, we cannot 

match either Case 1 or Case 2 from 92.2. 

The alternate approach presented in $2.4 is t o  consider a very small initial value 

of the wave amplitude as the initial conditions in the numerical integration. The 

solution will then proceed asymptotically to the maximum wave amplitude, G,,,, for 



the specified wave speed. If we do this for Eq. (5.13), we find that the maximum wave 

amplitude for c = 6.05 is 0.040928 and for c = 7 is 0.203071, representing an error of 

approximately 3% from the exact values of 0.042190 and 0.20791 7 respectively. Using 

the maximum wave amplitude determined here, we are able to determine the shape of 

the solitary waves. Figure 5.4 illustrates the waves predicted using this approximate 

approach as compared to the waves determined using the exact approach in Chapter 

4. We can clearly see that the predicted shape of the waves with the approximation 

for u' match closely with the shape of the exact waves. 

If we were also to neglect w R  in Eq. (5.13) we would be able to simplify Eq. 

(5.13) to a function of the form w" = F,(w), namely 

Using this relationship we could easily find the maximum amplitude for the solitary 

waves. Having done this, the maximum wave amplitude determined with w R  = 0 

was 0.0471267 for c = 6.05 and 0.230291 for c = 7. This represents a 11% error from 

the exact wave amplitudes, for both wave speeds. 

It should be noted that the appropriate interval for the linear fit is given by 

the maximum wave amplitude. In some cases this may need to be determined by 

an iterative procedure where an initial estimate of the maximum wave amplitude is 

used to determine the linear function. If the wave amplitude calculated using this 

linear function is significantly different from the initial guess, the linear function 

would be recalculated using the new wave amplitude. Iterations are continued until 

the calculated wave amplitude converges with the bounding amplitude of the linear 

fit. 
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Figure 5.4: Solitary wave profiles for the approximation fir = KCG and the exact 
solution for c = 6.05 and c = 7 

It is interesting to notice that a solution to Eq. (5.13) is also only possible if the 

value of of, is non-zero; exactly as it is for the exact equations. The significance of 

this is seen in Figure 5.5, which illustrates graphically the domain of existence for 

the solitary waves in the c,Gl,-plane. It was noted in Chapter 4 that the domain of 

existence will be symmetric with respect to the line 8t, = c. We have not shown 

this symmetry in Figure 5.5. If we had proceeded by disregarding fit completely (and 

consequently Eq. (4.31)), a solution would only be possible if the value of Of, was 



exactly zero. This certainly ullderscores the effect even small parameters can have 

on the solution of nonlinear problems. 

C 

Figure 5.5: The Domain of Existence of the solitary wave solutions of Eq. (5.13) 

It is interesting that a simple linear approximation for u' produces good results 

when compared to the exact solution. Indeed, this was not the first approach ex- 

amined. The original development of this approach involved a Taylor series approx- 

imation of Eq. (5.12) about zij = 8' = 0. This approximation produced very poor 

results. The error of this approach was that by taking the series expansion about 

w = ti' = 0, only a very small neighborhood of Eq. (5.12) was approximated when it 

is clearly the behaviour of u' over the entire range of wave amplitudes that must be 



considered. Quadratic and cubic approximations were also examined, but the linear 

approximat ion still provided the best results. 

5.5 Conclusions 

In this chapter, an approach was developed where approximating the contribution 

of the axial displacement as a linear function of the radial displacement reduced the 

system of exact governing differential equations to a single equation of a single de- 

pendent variable. By using the derivation of the governing shell equations presented 

in $4.2 coupled with the derivation of the first integral of Eq. (4.15), presented in 

this chapter, an excellent approximation of the exact solution is obtained. 

The results with the linear function approximating the contribution of u' differed 

by only 3% when compared to the exact solution. From this it is clear that the com- 

mon practice of neglecting the axial displacement, either in conjunction with the long 

wave approximation or by arguing axial tethering, produces significant differences in 

the predicted amplitude and shape of the solitary waves sought. 

It is also shown that if the slope squared terms are neglected from Eq. (5.13) 

that the maximum wave amplitudes are over predicted by approximately 10%. An 

increase in the error when slope-squared terms are neglected is consistent with the re- 

sults of Chapter 2. This, however, is not as physically misrepresentative as neglecting 

the axial deformations. 

If the axial displacements are to be neglected as part of the long wave approxima- 

tion or based on other assumptions, then it needs to be done with the foreknowledge 

of its inherent limitations. 



Chapter 6 

Consideration of the Fluid ~ o d e l l  

6.1 Introduction 

The final area of the solitary wave model to be considered is the fluid model. To this 

point, we have only considered a one-dimensional fluid model where the velocity is 

assumed to be averaged over the radius of the tube. This has not been an uncom- 

mon assumption for many previous studies (Yomosa, 1987; Derniray, 1996, 1997d; 

Sarioglu, 1999) examining solitary waves in fluid-filled elastic tubes. At the same 

time, there have been other studies that have made a specific attempt to include 

both axial and radial velocities in their models (Hashizume, 1985; Demiray, 1998a; 

Demiray and Dost, 1998a). 

As we have seen, the fluid model is responsible for the pressure exerted on the 

tube wall. It would not be unreasonable to assume that the pressure predicted at  

the wall, and consequently the shape of the solitary wave, could differ from a one to 

two-dimensional fluid model. With a number of studies having considered both fluid 

models, the comparison must already have been made. In fact, that is not the case. 

The difficulties lie in two main areas. 

Firstly, while studies exist that have considered both one- and two-dimensional 

fluid models, only the study of Demiray (1998a) has attempted to  make any com- 

parison of the respective results. In Derniray's study, the effect of the fluid model on 

lThe author wishes to thank Prof. R. Hugo for advice regarding the material contained in this 
Chapter. 



the predicted solitary wave was examined, but was done using the  reductive pertur- 

bation technique. This presents the second problem. Even if the existing data were 

compared, the reductive perturbation technique was used to determine the solitary 

wave profile. As we have seen already in this dissertation, the use of the reductive 

perturbation technique presents its own set of limitations. 

As a result, we propose to examine what, if any, differences in the tube wall 

pressure exist by comparing the pressure predicted by our existing one-dimensional 

fluid model and a two-dimensional fluid model. For this purpose, we present a 

modified discrete-vortex method that will allow the pressure along the tube wall t o  

be simulated as a two-dimensional flow. 

The most common use of vortex methods has been in the modeling of two- 

dimensional shear layers. The first study of this type was undertaken by Rosen- 

head (1932) who calculated by hand the development of a spatially periodic, two 

dimensional shear layer using two, four, eight and twelve point vortices. 

Several studies have also been conducted using vortex methods t o  model jet 

diffusion. One of the first studies of this type was performed by Acton (1980), where 

large eddy formation in axisymmetric jets exiting a tube was modeled through the 

superposition of a series of axisymmetric vortex rings. Similar studies have also been 

conducted by Chung and Troutt (1988) and Shimizu (1995). All of these studies, 

not surprisingly, focused their computational effort on the jet. However, the fluid 

flow in the tube was needed for the model and Acton, at  least, attempted to model 

the flow in the tube but was unsuccessful. This part of the work was not discussed 

explicitly, but Acton (1980) did remark that the boundary conditions for the jet-tube 

surface could not be satisfied. Neither of the studies by Chung and Troutt (1988) 



or Shimizu (1995) deviated from the procedure used by Acton (1980). The study by 

Acton (1980) provides part of the inspiration for the simulations undertaken in this 

chapter as her use of axisymrnetric vortex rings is well suited to our axisymmetric 

model. 

The other area of influence for this work is the panel method, originally presented 

by Hess and Smith (1966). The panel method is used, primarily, for modeling the 

flow around two-dimensional thin airfoils. The basics of the panel method involves 

the placement of distributed vortex panels of unknown strength along the surface of 

a body. By imposing boundary-flow conditions on the body surface, the unknown 

vortex circulations can be determined, which in turn allows the calculation of the 

velocity around the body. The modified discrete-vortex method proposed here could 

be considered a hybrid of the discrete-vortex method and the panel method. 

Section 6.2 provides a formal derivation of the modified discrete-vortex model, 

including a detailed description of the boundary conditions. In $6.3, the parameters 

required by the vortex model are determined with special consideration paid to the 

solitary wave application. In 56.4, the results of the simulations using the modified 

discrete-vortex model are presented and discussed. Finally, $6.5 re-caps the main 

contribution of this chapter. 

6.2 Modified Discrete Axisymmetric-Vortex Model 

Let us begin a formal consideration of the modified discrete-vortex model by consid- 

ering a single axisymmetric ring vortex. 

We continue to employ a cylindrical coordinate system, where the direction of the 



Position of vortex ring 
[ (x?yO) 

Figure 6.1: Orientation of a typical vortex ring element 

vortex ring axis is x and the radius is y, as shown in Figure 6.1. For an axisymmetric 

vortex ring of strength tc, with its center a t  (xO, yo) ,  as shown in Figure 6.1, the Stokes 

stream function at (x, y )  is given by Lamb (1945) as 

where, 

and 

The variables K(X) and E(A) are the complete elliptic integrals of the first and 



second kind, respectively. They are given by 

The resulting stream function will have the appearance shown in Figure 6.2. 
-. -.-. 

Figure 6.2: Stokes stream function for an axisymmetric vortex ring (Lamb, 1945) 



We can find the axial and radial velocities from Eq. (6.1) through 

If we calculate the derivatives of Eq. (6.1) in Eq. (6.6), we find that  

and 

These equations permit us to calculate the velocity a t  any position (x, y) due to  the 

influence of a single axisymmetric vortex ring. The two limitations on Eq. (6.7) and 

Eq. (6.8) are a t  y = 0 and (xo, yo), where the velocity becomes singular. 

To this point, nothing has been assumed regarding the core size of the vortex 

ring. If we consider Acton (1980) we see that two core sizes were specified. As 

discussed in Saffman (1992), a core size must be specified to permit the calculation 

of the self-induced velocity of the vortex ring. For the free-jet simulation this is very 

important. In this study, however, the vortices are fixed to the tube boundary and 

we consequently never consider a self-induced velocity. The second value of the core 

is specified t o  eliminate model instabilities arising from two vortices coming in very 



close contact while convecting in the jet. Again, because the vortex rings are fixed to 

the tube boundary, we need not worry about this problem. For our purposes then, 

assigning a core size is of little practical benefit. 

The influence of several vortex rings can be determined by superimposing the 

individual contributions from each vortex at a specified point. 

Bounding Vortices Tube Vortices Bounding Vortices 

CP, CP, . . - 
CPN-1 

V 

Control Points 

Figure 6.3: Illustration of placement of ring vortices, bounding vortices and control 
points for a simple tube 

Let N be the total number of equally spaced axisymmetric vortex rings placed 

on the tube boundary, each defining a node, where KI, K;Z, - - , are the source 

strengths of the vortex rings. Figure 6.3 illustrates the positioning of the axisym- 

metric vortex rings on the tube boundary for a simple, uniform tube. Using super- 

position, we can write the velocity induced by all N vortices at any arbitrary point 

where u: and v,P represent the velocity contributions from the ith vortex ring posi- 

tioned a t  (I:, yr) . 



We observe that both Eq. (6.7) and Eq. (6.8) have rc as a common term and as 

such, K, could be written explicitly in the summations of Eq. (6.9). If we do this we 

find that 

where rci is the vortex strength of the ith vortex ring and ii! and d: are the axial and 

radial velocities per K i .  

We now need to  define boundary conditions at  the inflow and outflow bound- 

aries of the tube. We shall specify a zero-change boundary condition, such that no 

stepchanges in circulation or velocity are permitted a t  the boundaries. Following an 

approach described in Leonard (1980), we will satisfy the inflow/outflow boundary 

condition by placing a series of bounding vortices at the inflow and outflow bound- 

aries. The bounding vortices are assigned a vortex strength of and radial position 

of y, a t  the inflow boundary and a vortex- strength of K,N and radial position of y~ a t  

the outflow boundary. The bounding vortices are placed with the same axial spacing 

as the tube vortex rings. The placement and strength of the bounding vortices are 

also illustrated in Figure 6.3. The net effect of assigning bounding vortices is to nu- 

merically generate an infinitely long tube. The velocity at any point in the flow must 

now consider the contributions from the tube vortices and the bounding vortices. 

Let us consider M bounding vortices placed at each boundary of the tube. If we 

consider the kth bounding vortex a t  the inflow boundary and the lth bounding vortex 



at the outflow boundary, we find that 

where uk, vk, UI and v1 are the velocity components a t  (x, y )  due to the bounding 

vortices at positions (xg , yg) and (xp, yf). 

Writing the total axial and radial velocitiesy, including contributions from both 

tube and bounding vortices, we find that 

Writing the terms for i = 1 and i = N explicitly leaves 

Grouping terms with like values of K ,  we find 



From Eq. (6.15) and Eq. (6.16) we can clearly see that the entire effect of the 

bounding vortices can be combined with the influence of the tube vortex rings at 

i = 1 and i = N .  No other terms are affected. The velocity at any point in the flow 

(I, y )  is then given by Eq. (6.15) and Eq. (6.16). 

Now, let us define N - 1 control points, where the jth control point is defined as 

the mid-point between the i and (i + 1) tube vortices and let  its inclination to the 

x axis be Oj, as shown in Figure 6.4. No control points are assigned to the image 

vortices because they are defined outside the computational domain of the tube. We 

now let 

sin Oj = Yitl - Yi 
. l j  
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where l j  = J(xi+l - + - yJ2. The position of the jth control point is 

given as xj, gj ,  such that 

At each control point we shall impose a no-flow boundary condition, such that the 

normal velocity a t  each control point must be zero. The no-flow boundary condition 

can be written as 

vT(xj y j )  COS Bj - uT(xj, y j )  sin 8, = 0 



Figure 6.4: Orientation of arbitrary tube segment 

To account for the boundary conditions a t  every control point over the entire tube, 

we sum j from I to N - 1, such that 

While no control points are defined for the bounding vortices they, of course, con- 

tribute to the no-flow boundary condition so that the values of u T ( x j ,  yj) and vT(xj ,  yj) 

are given by Eq. (6.15) and Eq. (6.16). 

The final boundary condition requires us to specify a velocity at some point in 

the flow. For the purposes of this work, a free stream velocity Uj, will be defined 

at the known location given by (xf3, yfJ). Additionally, the free stream velocity will 

always be defined in a uniform section of tube and is, therefore, a function of a alone 

(i.e. horizontal). This is not required, but greatly simplifies the calculations for this 

boundary condition. The free stream condition is given by 

and where uT(xjs ,  yls) is given by Eq. (6.15). 



Now, for a given tube configuration, (x4 , y:), (x f., yf,) and Uf, will be known. 

The values of ( ~ j ,  yj), Bj, (xi, yi) and (xj', yf) can then also be calculated. This 

leaves N simultaneous algebraic equations, given by Eq. (6.20), and (6.21), in terms 

of only the unknown vortex strengths, K I ,  ~2 , , EN. The vortex strengths are then 

easily determined using any procedure for solving simultaneous equations. Once the 

values of K L ,  K Z ,  , KN have been determined, the velocity at any point in the tube 

can be calculated. 

6.3 Application of Modified Discrete-Vortex Model 

The aim of this study is to use the the modified discrete vortex model to predict 

the pressure exerted on a tube wall using a two-dimensional inviscid fluid model 

and to  compare that to the pressure predicted using the one-dimensional fluid model 

proposed in 54.4. We are specifically interested in examining the magnitude of the 

pressure difference between the two models to quantify the potential error of the soli- 

tary wave solution 'from using the one-dimensional fluid model. In order to proceed 

with our simulations, we must first specify a number of model parameters. 

6.3.1 Tube Geometry 

It is important that we consider tube geometries encompassing a wide range of 

solitary wave solutions. By examining small and large amplitude waves we can gain 

a broader assessment of the appropriateness of the current fluid model. Consequently, 

we investigated the tube wall pressure for four unique tube geometries corresponding 

to the solitary wave solutions for the wave speeds of c = 3.175,3.402,3.629 and 3.856, 



measured in the natural reference configuration. The solitary wave solutions were 

determined using our direct method and the equations derived in Chapter 4. Figure 

6.5 shows the geometry of the tube for each wave speed. The displacements are 

all measured with respect y = 0 in the undeformed reference configuration. The 

radial and axial distances are non-dimensionalized using the expressions given in 

54.6. Therefore, all the axial distances quoted in this chapter are per Lo and all 

radial distances are per R. For m = 0.864, the value of m used earlier in the natural 

refernce configuration, we can write Lo = 0.93R. The non-dimensionalized axial 

distances can be put in more physical terms by realizing that a unit axial distance 

is 93% of R. 

Our application of the discrete-vortex model assumes that the flow in the tube is 

steady. In order to cast the flow for a traveling wave as a steady flow, we introduce an 

observer traveling with the wave. The moving observer has no effect on the reference 

configuration we have adopted. With the observer moving at  the wave speed, the 

axial velocity will appear to be the speed of the fluid less the speed of the wave. 

Considering the definition of the free stream velocity for our vortex model, we can 

write it in terms of the solitary wave model as Uf, = i j j ,  - e(l  + U'), where i j j ,  

is the fluid speed in the undeformed tube and c(1 + U') is the speed of the wave 

measured in the natural reference configuration. 

We recall from 54.6 that U' = 0.5 and aim = c/2. Therefore, for a wave of 

speed c = 3.175, the traveling observer would observe a free stream velocity of 

Uf, = 3.175. Therefore, the free stream velocity for the each tube geometry is 

simply the corresponding wave speed. 

I t  is also interesting to notice that the term - c(l + U') also appears in Eq. 



(4.35), the pressure resulting for the one-dimensional model. This should not be a 

great surprise, in that the pressure will only be concerned with the relative speed of 

the fluid with respect to the boundary. 

x, Axial Position 

Figure 6.5: Tube geometries corresponding t o  the solitary wave solution for speeds 
c = 3.175, 3.402, 3.629 and 3.856 

6.3.2 Vortex Spacing & Tube Length 

In the formal derivation of the discrete vortex method above, we began by defining 

the total number of vortex rings. In practice, however, the number of vortex rings 



is not set a przori, but rather is determined a a consequence of setting the spacing 

between each vortex ring, A,, and the overall length of tube, Lt. Let us first concern 

ourselves with examining the effect of the vortex spacing. 

The  vortex spacing plays a significant role in the effectiveness of the discrete-vor- 

tex method. Upon further examination of Acton (1980) it is clear that the difficulty 

in modeling the tube flow was a direct result of the choice, or limitation, of the 

vortex spacing. The vortex spacing proposed by Acton (1980) (and by Chung and 

Trout*, 1988; Shimizu, 1995) was, in terms of the current non-dimensionalization, 

approximately 0.100. Therefore, to avoid difficulty with the tube wall boundary 

conditions we will need to employ a vortex spacing smaller than the one proposed 

by Acton. After some initial consideration, we considered the follow three vortex 

spacings: A, = 0.010, 0.004 and 0.0025. 

The vortex spacing was evaluated by modeling the flow in a tube of radius y = 1 

and length -5 5 x 5 5. The free stream velocity was set to  Uf, = 1 at  x = 0 

and y = 0.5. The velocity profiles a t  several axial locations were calculated and 

evaluated against the exact solution for uniform, inviscid tube flow, namely the 

'top hat' velocity profile. Not unexpectedly, the deviation from the exact solution 

occurred near the tube wall for each vortex spacing. Figure 6.6 shows the near wall 

velocities at  x = 0 for each vortex spacing. 

From Figure 6.6 we see that the best approximation of the 'top hat' velocity 

profile is achieved using A, = 0.0025. Using this vortex spacing the predicted 

velocity profile deviates from the exact solution at  y = 0.995. While, using vortex 

spacing does not allow us to exactly match the top hat velocity profile, it will allow 

us to calculate an excellent approximation of the tube wall pressure. 



Velocity 

Figure 6.6: Near wall velocity at x = 0 for A, = 0.010, 0.004 and 0.0025 

It seems apparent from the results shown in Figure 6.6 that using a smaller 

vortex spacings could further improve the accuracy near the tube wall. In theory 

that is correct; however, the limiting factor affecting vortex spacing becomes the 

availability of computer memory. In the test case above, a tube of length 10 with 

A, = 0.0025 corresponds to  N = 4001 vortex rings. This in turn means there will be 

4001 equations with 4001 unknowns resulting in 16,008,001 elements that need to  

be stored in memory. If each element requires 8 bytes of memory (assuming double 

precision), our simple example will use 128MB of memory. If we doubled the length 



of our tube, the required memory would quadruple. 

With all this in mind we can certainly see the difficulty Acton (1980) faced in 

trying to model the tube flow. We can see that the resolution attainable now would 

not have been possible with the computational resources of 1980 and that based on 

our tests, Acton's spacing of 0.100 would not have come close to approximating the 

exact solution. 

Following directly from determining the vortex spacing is the consideration of 

the tube length, Lt , for the model. For the tube geometries shown in Figure 6.5, the 

changing radius of the tube, not surprisingly, results in variations in vortex strength. 

These variations can be seen, in the neighborhood of the pulse, even once the tube 

has returned to  a constant radius. Therefore, in choosing a tube length our primary 

concern is to ensure that the vortex strength has become constant a t  the inflow 

and outflow boundaries so that the no-change boundary condition may be properly 

enforced. Additionally, a section of tube ,with constant vortex strength also ensures 

the appropriate conditions for specifying the free stream velocity. 

After running several initial tests, the length of the tube selected for use in these 

simulations was -20 < x 5 +20, an overall length of Lt = 40. This tube length 

ensured that both the vortex strength and the fluid velocity were uniform for at least 

x = 9.5 from the inflow and outflow boundaries. This axial range was adopted for 

all tube geometries. 

A tube of length Lt = 40 with A, = 0.0025 would correspond to N = 16001 

unknown circulations, which following the calculation above, requires a minimum 

of 2GB of memory. As a result, all numerical simulations were run on a Compaq 

ES40 4-CPU, 667 MHz EV67 Alpha, with 4GB of memory. This resource was made 



available by the MAC1 Alpha Cluster at the University of Calgary. The average 

processing time for the full tube geometry with A, = 0.0025 was approximately 55 

hours. 

6.3.3 Bounding Vortices 

The number of bounding vortices needed to satisfy the inflow and outflow no-change 

boundary conditions was evaluated, after several initial trials, using numerical tests 

on a uniform tube of radius y = 1 and length Lt = 40, with Uf, = 1 a t  x = 0 and 

y = 0.5. Tests were performed for M = 0, 2N and 4N,  where the number of bounding 

vortices is referred to  the number of tube vortices. The outcomes were evaluated by 

examining the resulting vortex strengths. Figure 6.7 shows the effect of bounding 

vortices on the calculated vortex strengths near the outflow boundary for each test 

case. Figure 6.7 shows that when using M = 0 or M = 2N bounding vortices, the 

vortex strengths near the outflow (and identically at the inflow) boundary are not 

constant, compromising the zero-change boundary condition. However, we also see 

that when using M = 4N bounding vortices the vortex strength is constant at the 

inflow/outflow boundary and consequently the zero-change boundary condition can 

be satisfied. Based upon these results, M = 4N, or M = 64,004, bounding vortices 

were used for all simulations. 

The free stream velocity was assigned the appropriate value for each tube geome- 

try at the axial position x = -15 and the radial position y = 0.5 for all simulations. 

The velocity profile a t  this location was uniform, which was verified by the results 

of the simulation. 

An issue also arose concerning the precision of the calculations performed in the 
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Figure 6.7: Effect of bounding vortices on the calculated vortex strength near the 
outflow boundary using M = 0, 2N and 4N 
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point. This appeared to provide excellent results when using A, = 0.004. However, 

when calculations were performed using A, = 0.0025 an interesting instability ap- 

peared. Figure 6.8 shows the appearance of this instability for the c = 3.175 tube 

geometry. The source of this sinusoidal instability is uncertain, but is resolved when 

double precision calculations are used. As a consequence of this, all results were 

obtained using double precision calculations. 



Figure 6.8: Vortex strengths determined using single and double precision calcula- 
tions for c = 3.175 tube geometry 
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Simulations were run for the tubes geometries shown in Figure 6.5 using the pa- 

x, Axial Position 

rameters specified in $6.3 for A,, L,, and M. The resulting vortex strengths were 

determined for each tube geometry and are shown in Figure 6.9. 

The effect of the increase in tube radius, resulting form the solitary wave, pro- 

duces a decrease in vortex strength. This variations in the vortex strength appear 

to extend no further than x = &10 from the tube center and confirms our selection 
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Figure 6.9: Vortex strengths determined using discrete-vortex model for for tube 
geometries corresponding to  c = 3.175, 3.402, 3.629 and 3.856 

of tube length. Not surprisingly, the cases with larger free stream velocities have 

greater vortex strength over the entire tube. 

Having calculated the vortex strengths for the four tube geometries, the velocity 

a t  any point in the flow field can now be calculated. Visualization of the flow in the 

tube was provided by incorporating streaklines. Virtual particles were introduced 

into the flow at the inflow boundary and were allowed to move in the induced velocity 

field of the tube. The resulting streaklines corresponded identically to streamlines 



for the steady tube flow. Eleven equally spaced streamlines were determined for each 

tube geometry. The particle paths were determined using a second-order Ralston RK 

method (global error 0 ( h 2 ) ) ,  with a time step of 0.0025. The resulting streamlines 

for two representative tube geometries (c = 3.175 and c = 3.856) are shown in Figure 

6.10. 

x, Axial Postion 

Figure 6.10: Streamlines determined for tube geometries corresponding to c = 3.175 
and 3.856 

Because our interest is in the effects a t  the tube wall, we shall focus our attention 

on the streamline nearest the tube wall. However, as we have seen in Figure 6.6, the 



Table 6.1: Comparison of velocities at two positions 0.006 and 0.012 below the tube 
wall for c = 3.175 tube geometry 

Total Velocity 

Axial Position 0.006 below wall 0.012 below wall Error 

vortex spacing limits how close to the tube wall we can calculate the velocity of the 

fluid. Consequently, the top streamline resolvable for our model is approximately 

0.006 below the tube wall. The question we therefore have is how much will the 

velocity, and subsequently the pressure, differ between the tube wall and the top 

resolvable streamline. 

Figure 6.11 shows the velocity profile over the tube radius for the axial position 

x = 0 for each of the tube geometries. As we might expect, this plot shows that the 

velocity varies smoothly over the tube radius a t  this position. With inviscid flow, 

the velocity a t  the wall shouId continue to follow this profile. Therefore, the close 

proximity of the top streamline to the tube wall suggests that there would be little 

deviation between the velocity at the two locations. As additional confirmation of 

this, Table 6.1 shows, for several downstream distances, a comparison of the total 

velocity (u$+v;) 4 calculated at  0.006 and 0.012 below the tube wall for the c = 3.175 

tube. This separation was used to approximate the separation between the tube wall 

and the top streamline. 



Velocity at x = 0 

Figure 6.11: Velocity profiles at  axial position x = 0 for tube geometries correspond- 
ing to c = 3.175, 3.402, 3.629, and 3.856 

We can see from Table 6.1 that the maximum error in total velocity between the 

two positions is 0.12%, which not unexpectedly occurs a t  x = 0. The small difference 

in velocity at these radial position indicates, based on the smooth velocity profile 

and inviscid flow, that the difference in velocity between the tube wall and the top 

streamline will also be small. We can, therefore, use the top streamline to provide 

an excellent approximation to the tube wall streamline. 

We can now apply Bernoulli's equation at points along the top streamline to 

determine an estimate of the pressure distribution at the tube wall. We begin by 



writing Bernoulli's theorem (Batchelor, 1967) for an incompressible, inviscid fluid, 

such that 

where H is constant along any streamline of a steady fiow and V2 = u$ + vg. For the 

tube geometries we have considered, we can assume that the variation of gy along the 

streamline will be small as compared to the velocity and can therefore be neglected. 

If we can identify a position with known conditions, for example the inflow bound- 

ary, then we can write the explicit values for V, and p,. Since H is constant along 

a streamline we can easily re-write Eq. (6.22), taking advantage of the definitions at 

oo so that 

where p and V are determined at any other point along the streamline. Grouping 

the pressure and velocity terms we find 

We will find it useful to  re-write the left-hand side of Eq. (6.24) as p* = p - p ,  

leaving 

At this point we non-dimensionalize Eq. (6.25) using the expressions given in s4.6, 

leaving 



Eq. (6.26) permits us to  calculate the pressure a t  any point along a streamline. 

We recall from $4.6 the non-dimensionalized pressure determined using the one- 

dimensional, inviscid fluid model, given by Eq. (4.58). Re-writing Eq. (4.58) in 

terms of p*, and y, leaves us with 

where V, and y, are the velocity and radius a t  the inflow boundary. The value of 

y will be the radial position of any other point on the tube waIl streamline. 

If we now consider the top streamline for each tube geometry, we can calculate 

the approximate pressure at the tube wall using Eq. (6.26) and compare it to Eq. 

(6.27). Figure 6.12 shows the pressure exerted on the tube wall predicted by the 

one-dimensional and two-dimensional fluid models. 

The two pressure distributions, for each tube geometry, shown in Figure 6.12 

appear to agree quite closely, with the greatest difference occurring for the peak 

pressure a t  the maximum tube radius. The difference in peak pressure between Eq. 

(6.27) and Eq. (6.26) is found to be 9.8%, 10.2%, 10.8% and 11.9%, for each of the 

tube geometries respectively. It is not surprising that the difference in peak pressure 

increases with an increase in maximum tube radius owing primarily to the increasing 

contribution of the radial velocity. 

The reasonably close agreement of the pressure between the two models suggests 

that we could anticipate little difference between solitary wave profiles determined 

using the one-dimensional and two-dimensional fluid models. In fact, there is other 

evidence to support such a claim. 

If we examine the studies that have included the radial velocity in the fluid 
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Figure 6.12: Tube wall pressures predicted using Eq. (6.26) (-) and Eq. (6.27) 
(- - -) 

model (Hashizume, 1985; Demiray and Dost, 1998a; Demiray, 1998a; Antar and 

Demiray, 1999; Demiray, 1999d), we find that only one study makes any comparison 

to the results for a one-dimensional fluid model. The study by Demiray (1998a) 

considers a one-dimensional membrane (neglect axial displacements) with both a 

one-dimensional and two-dimensional fluid model. The reductive perturbation tech- 

nique is used and coefficients are determined for the KdV equation using each fluid 

model. Using the Dl constitutive equation used in the earlier chapters, Demiray 



(1998a) calculates the shape of solitary waves for each of the fluid models. The 

results of this comparison indicate that the shape of the waves predicted using the 

one-dimensional fluid model are not significantly different from the waves predicted 

using the two-dimensional fluid model. This certainly supports our contention that 

the close agreement in the pressures predicted using the one-dimensional and two- 

dimensional fluid models would lead to the prediction of similar solitary wave profiles. 

It is surprising that more studies have not made this same comparison. Nev- 

ertheless, the results of Demiray (1998a) offers clear support of the results of this 

chapter. As a result, it appears that the extra effort that would be required to include 

the two-dimensional fluid model may not provide greater accuracy in the predicted 

solitary wave profile. 

6.5 Conclusions 

In this chapter we have addressed the final area of interest for solitary waves: the 

fluid model. The physical existence of solitary waves has been attributed to the 

inertia of the fluid moving in the tube and the restoring force applied by the tube 

wall. Clearly, the key is in the interaction a t  the tube wall. 

In this chapter a novel discrete vortex model is derived, based on the discrete 

vortex model used for simulating axisymmetric jets and the panel method. In this 

model, discrete axisyrnmetric vortex rings are placed at equal intervals on the tube 

wall. By specifying locations of zero-flow and a free stream velocity, the strength 

of the discrete vortices can be determined. Once the vortex strengths are known 

the velocity a t  any point in the flow can be calculated. This model was used to 



simulate the steady two-dimensional flow in tubes with geometries corresponding to 

the solitary wave profiles for c = 3.175, 3.402, 3.629, and 3.856. 

Using Bernoulli's equation the pressure at  the tube wall was approximated for 

each of the four tube geometries. This pressure was then compared to the one- 

dimensional pressure derived in Chapter 4. The results of this chapter suggest that 

for the tube geometries considered the one-dimensional fluid model approximates 

closely the pressure predicted using the two-dimensional fluid model. Based on 

this result, the use of the one-dimensional fluid model appears to provide a. good 

approximation of the two-dimensional flow for the range of tube geometries we have 

considered and that the solitary waves predicted using either fluid model would be 

comparable. 



Chapter 7 

Conclusions and Recommendat ions 

7.1 Conclusions Drawn from the Study 

The goal of this study was to investigate solitary waves in fluid-filled elastic tubes by 

applying a technique that operates directIy on the governing field equations to deter- 

mine the exact solution. Using this technique we were able to consider a number of 

problems and comment on the accuracy of the commonly used reductive perturbation 

technique. 

In Chapter 2 we presented a method for determining solitary wave solutions for 

fluid-filled elastic tubes that considers the governing equations exactly without re- 

sorting to  using approximate methods. This approach permits the determination of 

the speed and amplitude of the solitary waves by merely determining the roots of 

a simple algebraic equation. A numerical example was considered for a thin mem- 

brane, allowing only radial displacements. The results using the exact approach were 

compared to the results determined using the reductive perturbation technique and 

it was shown that the error in the RPT can become as large as 20% for displacements 

up to 25% of the tube radius. 

Chapter 3 illustrated the broader application of our proposed technique through 

an investigation of a problem in plasma physics, specifically ion-acoustic waves. The 

purpose of presenting this problem was to illustrate how the analysis could be ex- 

tended further than in the first example and to  compare our approach to results that 



include higher order terms in the approximation. Our comparison showed that using 

our approach resulted in more accurate results with much less effort. 

In Chapter 4, we began by deriving the exact shell equations for the tube, in- 

cluding both axial and radial displacements. We then showed that by applying the 

calculus of variations to our system of equations, conserved quantities could be found 

that allowed us to determine the first integrals of our governing equations. The first 

integrals then allowed us t o  determine the speed, amplitude and shape of the result- 

ing solitary wave 'exactly'. The results showed that the amplitude calculated using 

both displacements was an order of magnitude greater than was found for the exam- 

ple in Chapter 2. Based upon a less complex, closed-form example it was shown that 

the axial strain u' is of the same order as the magnitude of the radial displacement 

w. Consequently, the practice of neglecting the axial displacement is shown to have 

inherent limitations. 

In Chapter 5, based upon the results of the previous chapter, we examined a pro- 

cedure for considering the axial displacement approximately to reduce the governing 

equations to one dependent variable. Exploiting the approximately linear relation- 

ship between the ii' and 6 in the prestressed reference configuration, we suggest 

that the first integral of the axial governing equation be used to determine a linear 

function a' = KCG, which is then substituted into the radial governing equation thus 

reducing it to a function of w alone. Using this procedure the amplitude and shape 

are determined for two wave speeds and compared to the exact solution. With proper 

tuning the error in the approximate technique was found to be about 3%. The effect 

of neglecting the slope-squared terms was also considered and was found to increase 

the error in the predicted amplitude to approximately 10%. In either of these cases, 



the error is an order of magnitudes less than the error resulting from neglecting the 

axial displacement. 

Finally, in Chapter 6 the potential error resulting from using a one-dimensional 

fluid model is examined. To accomplish this, a two-dimensional potential flow model, 

referred to as the modified discrete-vortex method, is developed using axisymmetric- 

vortex rings placed on the tube boundary to model the pressure for tube geometries 

corresponding to the shape of solitary waves with wave speeds c = 3.175, 3.402, 

3.629 and 3.856. The approximation of the tube wall streamline is used to calculate 

the pressure along the wall of the tube for each tube geometry. It is shown that the 

predicted pressures from our existing one-dimensional model compare very well with 

the two-dimensional flow, with a maximum error of 12% occurring at  the maximum 

tube radius. Based upon this, the solitary waves predicted using both models are 

expected to be in close agreement. 

Therefore, we have presented a method by which an exact solitary wave solution 

is determined directly from the governing field equations. 

7.2 Recommendations for Future Work 

There are several areas that should be considered in future work in this area: 

A direct comparison to experimental data should provide even further verifi- 

cation of the results of our proposed direct approach. Therefore, any future 

studies should include the development of a series of experiments aimed at  gen- 

erating solitary waves in fluid-filled elastic tubes and measuring their speed, 

amplitude and shape. 



The minimal effort required to find the exact solution using our proposed 

method could be applied to examining more complex tube models. In this 

regard, the tube could be considered as thick-walled (so the tube resistance to 

shear force is included) or anisotropic (so the response of the tube is direction 

specific) or viscoelastic. 

It  would also be useful to further develop the fluid model to account for both 

the axial and radial velocities. While our results have shown that the one- 

dimensional fluid model should provide very similar results, it would be bene- 

ficial to be able to determine the solitary wave solutions for the different fluid 

models and to undertake a direct comparison between them. 
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