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Abstract

Krylov-based algorithms have recently been used, in combination with other methods, to solve sys-
tems of linear equations and to perform related matrix computations over finite fields. For example,
large and sparse systems of linear equations over F2 are formed during the use of the number field
sieve for integer factorization, and elements of the null space of these systems are sampled. Block
Lanczos algorithms have been used to perform this computation with considerable success. However,
the algorithms that are currently in use do not appear to be reliable in the worst case.

This report presents a block Lanczos algorithm that is somewhat simpler than block algorithms that
are presently in use and provably reliable for computations over large fields. This can be implemented,
using a field extension, in order to produce several uniformly and independently selected elements
from the null space at once. The amortized cost to produce each vector closely matches the cost to
generate such a vector with the methods currently in use.

An algorithm is also given to compute the rank of a matrix A ∈ Fm×n over a small finite field F. The
expected number of matrix-vector products by A or At used by this algorithm is in O(r), where r is
the rank of A. The expected number of additional field operations used by this algorithm is within
a polylog factor of r(n + m), and the expected storage space is within a polylog factor of n + m.
This is asymptotically more efficient than existing black box algorithms to compute the rank of a
matrix over a small field, assuming that the cost of matrix-vector products dominates the cost of
other operations.

1 Introduction

Consider the problem of selecting a vector uniformly and randomly from the null space of a given matrix.
As discussed in the report of Buhler, Lenstra, and Pomerance [1], this problem arises for large, sparse
matrices over the finite field F = F2 when the number field sieve is applied.
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Structured Gaussian Elimination has been used for this computation [11]. However, storage require-
ments may be prohibitive for large problems when this technique is applied. Krylov-based algorithms,
such as the algorithm of Lanczos [12], are reliable for computations over the real numbers, but require
modification if they are applied for computations over small finite fields. A block-Lanczos algorithm
was proposed for this purpose by Coppersmith [3] in the early 1990’s, with the objectives of improving
both reliability and coarse-grain parallelism. Variants of this algorithm, including a simpler algorithm
of Montgomery [13], have been used (frequently in combination with elimination-based methods) with
considerable success. Unfortunately, these algorithms have not been adequately analyzed, and there
is reason to believe that they are not reliable, in the worst case, for computations over small finite
fields: Krylov-based algorithms for singular matrix computations perform poorly if they are applied
to matrices whose minimal polynomials (in F[z]) are divisible by z2 and that have a large number of
invariant factors, and existing heuristics do not appear to address this problem. For example, they
are ineffective for computations over F2 when applied to block-diagonal matrices that include a large
number of diagonal blocks [

1 1
1 1

]

along with a large identity matrix as a final block. Heuristics that use symmetrization to condition the
input — replacing A by AtA or by AAt – are defeated by block diagonal matrices with a form similar
to the above, provided that copies of the blocks

[
1 1
0 0

]
and

[
1 0
1 0

]

are also used.

A related Krylov-based algorithm — namely, that of Wiedemann [15] — has subsequently been devel-
oped and fully analyzed. Furthermore, a block variant (with improved parallelism, once again) has also
been shown to be reliable — see Kaltofen [10] for the analysis in the large field case and Villard [14]
for the analysis over small finite fields. Indeed, the block Wiedemann algorithm allows the use of rect-
angular matrices as blocks and is asymptotically faster than existing block Lanczos algorithms. Yet,
variants of the Lanczos algorithm continue to be used instead. We are therefore lead to ask whether
algorithms that resemble the currently used heuristics are provably reliable.

A part of the answer to this question is provided in this report. In particular, a block Lanczos algorithm
that is provably reliable for computations over large fields is described in Section 2. This appears to be
both simpler than and at least as efficient as any Lanczos-based heuristic now in use. If implemented
over a field extension, this provides an algorithm that returns several elements of the null space of a
sparse matrix over a small finite field at once; the amortized cost to compute each vector is comparable
to the cost of current Lanczos-based heuristics.

A rather different algorithm is described in Section 3 for computation of the rank of a matrix A ∈ Fm×n

over a small field F. The number of matrix-vector products by A or At used by this algorithm is
linear in r, where r is the rank of A. The expected number of additional field operations used by the
algorithm is within a polylog factor of (n + m)r, and the expected amount of storage space used is
within a polylog factor of n+m. Previously available black-box algorithms either require computations
over a field extension or the use of binary search to find the rank, increasing the number of matrix-
vector products required by a logarithmic factor in each case. Consequently, the new algorithm is
asymptotically more efficient than existing black box algorithms, when applied to compute the rank of
a matrix over a small finite field, if (as usual) the cost of matrix-vector products dominates the cost of
other operations.
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2 A Block Lanczos Algorithm

Eberly and Kaltofen [8] present a simple scalar Lanczos algorithm and show that it is reliable over
arbitrary large fields. In this section, this algorithm is modified to produce a simple block algorithm
that is provably reliable for computations over arbitrary large fields, as well, and that can be used to
sample from the null space of a given matrix A.

2.1 A Matrix Conditioner

We begin with a diagonal matrix preconditioner described in the above paper. Additional information
about this preconditioner can be found in the report of Chen et. al. [2].

Lemma 2.1 (Eberly and Kaltofen [8]). Suppose F is a field and let A ∈ Fm×n be a matrix with
rank r. Let S be a finite subset of F \ {0}, and suppose

α1, α2, . . . , αn, β1, β2, . . . , βm

are chosen uniformly and independently from S. Let

D~α =




α1

α2

. . .

αn


 ∈ Fn×n and D~β

=




βm

β2

. . .

βm


 ∈ Fm×m.

Then, with probability at most 11n2−n
2|S| , the matrix

Ã = D~αAT D~β
AD~α ∈ Fn×n

is a matrix with rank r, whose characteristic polynomial is zn−rf for some squarefree polynomial f ∈ F[z]
with degree r such that f(0) 6= 0.

A consideration of the rank of A confirms that if the above-mentioned matrix Ã has the properties
described in the lemma, then the minimal polynomial of Ã is zf and Ã is similar to a diagonal matrix
over a suitable extension of F (namely, a splitting field of f).

Eberly and Kaltofen observe that if Ã is as described above, and if a system of linear equations

Ãx = b

is consistent, then a solution for the system can be found within the Krylov space of b. That is, there
exists a linear combination x of the vectors

b, Ãb, Ã2b, . . . ,

that satisfies the above system of equations. We may therefore select an element from the null space
of Ã by randomly selecting a vector z, choosing a vector x such that Ãx = b, for b = Ãz, and returning
the vector z − x.

Since A and Ã have the same rank, Ã = D~αAT D~β
AD~α, and the diagonal matrix D~α is nonsingular, a

vector y is in the null space of Ã if and only if D~αy is in the null space of A. Therefore, we may also
return the vector D~α(z − x) as an element of the null space of A.
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Suppose now that k ≥ 1, and that k vectors z1, z2, . . . , zk have been randomly selected from Fn×1.
Let ~z be the matrix in Fn×k whose ith column is zi, for 1 ≤ i ≤ k. It follows by a straightforward
generalization of the above process that a sequence of k vectors can be sampled from the null space of Ã
by finding a solution ~x ∈ Fn×k for the system

Ã~x = ~b for ~b = Ã~z,

and returning the columns of the matrix D~α(~z − ~x).

A block Lanczos algorithm that can be used to solve consistent systems of equations will next be
described. This can be applied to perform the middle step of the above process.

2.2 A Block Lanczos Algorithm

Consider the algorithm that is shown in Figure 1 on page 5. This is a straightforward generalization of
the “standard Lanczos algorithm” shown in Figure 1 of the paper of Eberly and Kaltofen [8].

Suppose that Ã ∈ Fn×n is a symmetric matrix with rank r. As suggested in the previous section, we
are interested in the behaviour of the given algorithm when Ã has a minimal polynomial zf for some
squarefree polynomial f ∈ F[z] with degree r such that f(0) 6= 0, so that Ã is similar to a diagonal
matrix over an extension of F.

Let ` = dr/ke − 1, where k is the “blocking factor” used in the algorithm.

If failure is not reported, then the algorithm generates a sequence of matrices

~w0, ~w1, ~w2, . . . , ~w`

such that ~wi ∈ Fn×k for 0 ≤ i ≤ `− 1 and such that ~w` ∈ Fn×h for some integer h such that 1 ≤ h ≤ k.
As noted in the next section, it will frequently be the case that h = k if r is divisible by k, and that
h = r − k` if m is not divisible by k.

The columns of the matrices
~w0, ~w1, ~w2, . . . , ~wi

are linearly independent and form a basis for the vector space spanned by the columns of the matrices

~b, Ã~b, Ã2~b, . . . , Ãi~b

for each integer i such that 0 ≤ i ≤ `. Consequently, if h has its usual value (as given above), then the
columns of the matrices

~w0, ~w1, . . . , ~w`

form a basis for the column space of Ã, and the number of these columns is equal to the rank of Ã.

A useful orthogonality condition is achieved:

~wt
iÃ~wj = 0 (2.1)

for all integers i and j such that 0 ≤ i, j ≤ ` and i 6= j, and

det ~wt
iÃ~wi 6= 0 (2.2)

for 0 ≤ i ≤ `.
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Input: A symmetric matrix Ã ∈ Fn×n and a matrix ~b ∈ Fn×k

Output: A matrix ~x ∈ Fn×k such that Ã~x = ~b, or failure

1. ~w−1 := 0n×k; ~v0 := 0n×k; ~x−1 := 0n×k; ~t−1 := Ik

2. ~w0 := ~b; ~v1 := Ã~w0; ~t0 := ~vt
1 ~w0

3. i := 0

4. while det~ti 6= 0 do

5. ~xi := ~xi−1 + ~wi~t
−1
i ~wt

i
~b

6. ~wi+1 := ~vi+1 − ~wi~t
−1
i ~vt

i~vi+1 − ~wi−1~t
−1
i−1~v

t
i−1~vi+1

7. ~vi+2 := Ã~wi+1

8. ~ti+1 := ~vt
i+2 ~wi+1

9. i := i + 1

end while

10. if ~wi 6= 0n×k then

11. Set h to the the largest integer such that the leftmost h columns of ~wi are linearly
independent.

12. Set ~wi to be the matrix in Fn×h that includes the leftmost h columns of the current
~wi.

13. Set ~ti to be the top left h × h submatrix of the current ~ti, so that ~ti ∈ Fh×h.

14. if h = 0 or det~ti = 0 then

15. report failure

else

16. ~x := ~xi−1 + ~wi~t
−1
i ~wt

i
~b

end if

else

17. ~x := ~xi−1

end if

18. if Ã~x = ~b then

19. return ~x

else

20. return failure

end if

Figure 1: A Block Lanczos Algorithm

Two other sequences of matrices are computed along the way, in order to minimize the number of
multiplications by Ã that are used: ~v0, ~v1, ~v2, . . . , ~v` are matrices such that

~vi+1 = Ã~wi for 0 ≤ i ≤ ` − 1, (2.3)

and ~t0,~t1, . . . ,~t` are square matrices such that

~ti = ~wt
iÃ~wi for 0 ≤ i ≤ `. (2.4)
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The algorithm maintains one more sequence of matrices, in order to produce a solution for the given
system:

~x0, ~x1, . . . , ~x`−1

are matrices in Fn×k such that
~wT

j (A~xi − b) = 0 (2.5)

for all integers i and j such that 0 ≤ j ≤ i ≤ ` − 1; this is used at the end of the algorithm to generate
a matrix ~x such that

~wT
j (A~x − b) = 0 (2.6)

for all j such that 0 ≤ j ≤ `.

A comparison of this algorithm with the scalar algorithm will confirm that this is, indeed, a straightfor-
ward generalization: The two algorithms maintain the same sequences of matrices when k = 1, using
virtually the same sets of operations. It is somewhat simpler than block Lanczos algorithms of Copper-
smith [3] or Montgomery [13], due to the omission of any kind of lookahead mechanism. There is good
reason to include such mechanisms for computations over small fields. However, as argued in the next
section, these are not required for computations over large fields, when the coefficient matrix Ã has the
properties that have been described here and the columns of ~b are randomly chosen from the column
space of Ã.

2.3 Analysis of Reliability

The following proof of reliability of the block Lanczos algorithm is, again, a modification of that of
the reliability of the algorithm of Eberly and Kaltofen [8]. Suppose, once again, that Ã ∈ Fn×n is a
symmetric matrix with rank r, and that ~b ∈ Fn×k for an integer k ≥ 1. Let us consider the following
block-Hankel matrices. For 1 ≤ i ≤ br/kc, let

Hi(Ã,~b) =




~btÃ~b ~btÃ2~b · · · ~btÃi~b
~btÃ2~b ~btÃ3~b · · · ~btÃi+1~b

...
...

. . .
...

~btÃi~b ~btÃi+1~b · · · ~btÃ2i−1~b


 . (2.7)

Let H(Ã,~b) ∈ Fr×r be the matrix Hr/k(Ã,~b) if r is divisible by k, and let H(Ã,~b) be the top left r × r

submatrix of Hdr/ke(Ã,~b), otherwise.

Lemma 2.2. Suppose that Ã ∈ Fn×n is a symmetric matrix with rank r, whose minimal polynomial
has the form zf , where f ∈ F[z] is a squarefree polynomial with degree r such that f(0) 6= 0.

Let ~b ∈ Fn×k be a matrix such that the system

Ã~x = ~b

is consistent — that is, each of the columns of ~b belongs to the column space of Ã.

Finally, suppose that det Hi(Ã,~b) 6= 0 for 1 ≤ i ≤ br/kc and that det H(Ã,~b) 6= 0 as well.

Then the algorithm shown in Figure 1 succeeds. In particular, it generates a sequence of matrices

w0, w1, . . . , w`

for ` = dr/ke − 1 whose columns are linearly independent and form a basis for the column space of Ã,
and it returns a matrix ~x ∈ Fn×k such that Ã~x = ~b.

6



Proof. Let i be an integer such that 0 ≤ i ≤ br/kc and suppose that matrices

~w0, ~w1, . . . , ~wi−1

have been computed as in the algorithm, and that the matrix

~tj = ~wt
jÃ~wj

is nonsingular, for 0 ≤ j ≤ i − 1. Then a consideration of elementary row and column operations can
be applied to Hi(Ã,~b) to produce the matrix




~t0 0
~t1

. . .

0 ~ti


 ,

so that this matrix is similar to Hi(Ã,~b). Since Hi(Ã,~b) is nonsingular, the matrix ti = ~wt
iÃ~wi must be

nonsingular as well.

A similar argument can be used to establish that the final matrix ~t` is nonsingular as well, if det H(Ã,~b)
is also nonzero. Thus condition (2.2) is satisfied. A consideration of the computation of w̃i (at step 6
of the algorithm) establishes that condition (2.1) is satisfied in this case as well.

Taken together, these can be used to establish that the columns of the matrices

~w0, ~w1, . . . , ~w`

are all linearly independent, so that they form the basis of an r-dimensional subspace of Fn×1.

If the system Ã~x = ~b is consistent, then these columns all belong to the column space of Ã. Since Ã
has rank r, it follows that they form a basis for the column space of Ã, as claimed.

Consider the vector ~x; it follows by an inspection of the algorithm (noting, in particular, lines 5 and 16)
that

~x =
∑̀

i=0

~wt
i
~t−1
i ~wt

ib.

The above-mentioned orthogonality conditions can be used to establish that

~wt
i(A~x −~b) = 0

for 0 ≤ i ≤ `, so that matrix A~x −~b is orthogonal to the column space of Ã. On the other hand, if the
columns of ~b belong to the column space of Ã (as given in the lemma), then the columns of the vector
A~x −~b clearly do as well. If the minimal polynomial of Ã is as described in the lemma (so that Ã is
similar to a diagonal matrix over an extension of F) then it follows that Ã~x −~b = 0, as required.

Suppose now that zi,j are distinct indeterminates over F, for 1 ≤ i ≤ n and 1 ≤ j ≤ k. Let

~z =




z1,1 z1,2 · · · z1,k

z2,1 z2,2 · · · z2,k
...

...
. . .

...
zn,1 zn,2 · · · zn,k


 ∈ F[z1,1 . . . , zn,k]

n×k, (2.8)
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and suppose that
~b = Ã~z. (2.9)

The determinants of the corresponding matrices Hi(Ã,~b) and H(Ã,~b) are polynomials in the ring
F[z1,1, . . . , zn,k] with total degrees at most 2ki and 2r, respectively.

Lemma 2.3. Suppose once again that A ∈ Fn×n is a symmetric matrix with rank r whose minimal
polynomial has the form zf , where f ∈ F[z] is a squarefree polynomial with degree r such that f(0) 6= 0.

Suppose as well that k is odd and k is not divisible by the characteristic of the field F.

Then if ~z and ~b are as given in Equations (2.8) and (2.9), then the polynomials Hi(Ã, b) are nonzero
for 1 ≤ i ≤ br/kc, and the polynomial H(Ã,~b) is nonzero as well.

Proof. If the minimal polynomial of Ã is as described in the statement of the lemma, then Ã is similar
to a diagonal matrix over some extension of F.

It follows that if k is not divisible by the characteristic of F, then then there exists a symmetric matrix
B ∈ En×n in some extension E of F such that

Ã = Bk.

In particular, E may be chosen to be an extension of F that includes kth roots of each of the roots of f .

In this case (since B is also similar to a diagonal matrix) B also has rank r, and the column spaces of Ã
and B are the same, when these are considered as matrices in En×n.

Now a result of Eberly and Kaltofen can be applied: there exists a vector γ ∈ En×1 such that γ is in
the column space of B and the Hankel matrix




γtBγ γtB
2γ · · · γtBrγ

γtB2γ γtB
3γ · · · γtBr+1γ

...
...

. . .
...

γtBrγ γtBr+1γ · · · γtB2r−1γ


 (2.10)

is in generic profile — each of its top left submatrices is nonsingular — see the full version of Eberly
and Kaltofen [8] for details.

Since k is odd, and B is similar to a diagonal matrix, there is a vector κ ∈ En×1 such that

B(3k−1)/2κ = γ.

Now consider the matrix
~ζ = [κ Bκ · · · Bk−1κ] ∈ En×k

along with the matrix
~β = Ã~ζ.

Since Ã = Bk, and B(3k−1)/2κ = γ, it is easily checked that

~βtÃ~β =




γtBγ γtB2γ · · · γtBkγ
γtB2γ γtB3γ · · · γtBk+1γ

...
...

. . .
...

γtBkγ γtBk+1γ · · · γtB2k−1γ


 .
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Furthermore, H(Ã, ~β) = H(Ã, Ã~ζ) is equal to the matrix shown in Equation (2.10), above.

It follows that the polynomials mentioned in the lemma are all nonzero — for their values are nonzero,
when evaluated over E by setting ~z to be ~ζ.

The following can be deduced using Lemmas 2.2 and 2.3, along with an application of the Schwartz-
Zippel lemma.

Theorem 2.4. Suppose that Ã ∈ Fn×n is a symmetric matrix with rank r, whose minimal polynomial
has the form zf , where f ∈ F[z] is a squarefree polynomial with degree r such that f(0) 6= 0.

Let k ≥ 1 such that k is odd and k is not divisible by the characteristic of F.

Finally, suppose that the algorithm shown in Figure 1 is applied with inputs Ã and a matrix ~b ∈ Fn×k,
where

~b = Ã~z

and the entries of the matrix ~z ∈ Fn×k are chosen uniformly and independently from a finite subset S
of F.

Then the algorithm succeeds, and returns a matrix ~x ∈ Fn×k such that

Ã~x = ~b,

with probability at least 1 − r(r + 1)/|S|.

Furthermore, if F is a finite field and S = F, then the resulting matrix ~x is uniformly chosen from the
set of solutions for the above system of equations.

It follows that the process described in this section can be used to produce a set of k elements of the
null space of a given matrix A: It suffices to sample elements uniformly and independently from a finite
subset S of F with size in O(n2/ε) in order to bound the probability of failure by ε, for any given error
tolerance ε > 0.

If F is a small finite field — as is the case in notable applications — then it is sufficient to implement
the given algorithm over an extension E of F whose degree d over F is logarithmic in n in order to ensure
that the process is reliable.

Note that — using the coordinate basis — a vector z ∈ En×1 in the null space of A can be used to
generate a set of d vectors in Fn×1 that are in the null space of A as well. Consequently the above
process can be used to produce a set of kd uniformly and independently selected elements of the null
space of A, if it is implemented using an extension E with degree d over F, and the block Lanczos
algorithm applied with blocking factor k.

The amortized cost of the computation — that is, the ratio of the total cost of this computation to the
number of elements of the null space that are produced — is competitive with that of any heuristic for
this computation that is presently in use.

3 Estimation of the Rank

Consider the problem of computing the rank of a sparse or structured matrix A ∈ Fm×n over a small
finite field F. The algorithm described in the previous section can be applied to solve this problem if it is

9



implemented over a field extension whose degree over F is at most linear in log|F| n — one simply needs
to keep track of the sums of the orders of the nonsingular matrices ti that the algorithm maintains.
However, both the time and storage requirements of the computation are increased by logarithmic
factors when computations over field extensions are used.

In this section, we present a rather different algorithm that can be used for this computation over small
fields. The algorithm is more complicated, and less amenable to parallelization, than the algorithm of
the previous section. The expected amount of storage space required is also greater, by a logarithmic
factor, than that required for the previous algorithm. However, the algorithm that is presented in this
section avoids computations over field extensions and is asymptotically more efficient than the first
algorithm when applied to solve the above problem over small finite fields, assuming (as usual) that the
cost of matrix-vector products dominates the cost of other operations.

3.1 The Frobenius Form

Consider a square matrix Â ∈ F`×` for a positive integer `. It is well known (see, for example, Gant-
macher [9]) that Â is similar to a unique block diagonal matrix with companion matrices of monic
polynomials f1, f2, . . . , fk on the diagonal, for some integer k ≤ `, where fi is divisible by fi+1 for
1 ≤ i ≤ k − 1. That is, there exists a nonsingular matrix V ∈ F`×` such that

V ÂV −1 =




Cf1
0

Cf2

. . .

0 Cfk


 (3.1)

and where

Cg =




0 · · · 0 −g0

1 0 −g1

. . .
...

...
0 1 −gd−1


 ∈ Fd×d (3.2)

is the companion matrix of a monic polynomial

g = xd + gd−1x
d−1 + gd−2x

d−2 + · · · + g1x + g0 ∈ F[x].

The block diagonal matrix shown on the right hand side of Equation (3.1) is commonly called the
Frobenius form of Â, and the polynomials f1, f2, . . . , fk are called the invariant factors of Â.

If the matrix Â is singular then one or more of the invariant factors of Â may be equal to the polyno-
mial x; we will say that an invariant factor fi is a nontrivial invariant factor if fi 6= x.

A considerable number of algorithms for the computation of the Frobenius form of a matrix are known.
In the rest of this section, we will compute the rank of a given matrix A by modifying a black box
algorithm for computation of the Frobenius form of Eberly [5], [6].

Unfortunately, this algorithm is not space-efficient: It also computes and stores the matrix V shown in
Equation (3.1). A modified algorithm is presented in the next section. As described below, the new
algorithm is more space-efficient if the number of nontrivial invariant factors of the given matrix is
small, and a reliable upper bound on this number is available.
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3.2 A Space-Efficient Algorithm

Let Â ∈ F`×` and suppose that we are given A along with a positive integer, h, which will be used as
an upper bound on the number of nontrivial invariant factors of Â.

Suppose that d is the sum of the degrees of the nontrivial invariant factors of Â.

In this section, we will modify the algorithm of Eberly [5] in order to produce a Monte Carlo algorithm
that satisfies the following properties when run on input Â ∈ F`×` and h.

• If the number of nontrivial invariant factors is, indeed, less than or equal to h, then the algorithm
will return the nontrivial invariant factors of Â with high probability.

• If the bound h is incorrect — that is, Â includes more than h nontrivial invariant factors — then
the algorithm will report failure with high probability, instead.

• If the algorithm is successful then expected number of matrix-vector products used by the algo-
rithm is in O(d). The expected number of additional operations required over F is in O(`hd), and
the amount of storage space used by the algorithm is in O(`h2 + ` log `).

The algorithm of Eberly [5] makes repeated use of a procedure minpolspace that is presented and
analyzed in Section 3.1 of the above paper.

On its initial application, the procedure uses a sequence of uniformly and independently selected vectors
from F`×1 in order to generate a pair of vectors u1 and v1 in F`×1, and a monic polynomial f1 ∈ F[x],
such that the following properties hold.

• f1 is the monic polynomial of least degree such that f1(Â)v1 = 0.

• f1 is also the monic polynomial of least degree such that f1(Â
t)u1 = 0.

• Finally, f1 is the minimal polynomial of the linearly recurrent sequence

ut
1v1, u

t
1Âv1, u1Â

2v1 . . .

• The expected number of vectors that must be selected from F`×1 to perform this computation is
in O(1). The expected number of matrix-vector products by Â or Ât that is used is linear in the
degree of f1. Finally, the expected number of additional operations over the field F that are used
by this procedure is linear in the product of ` and the degree of f1.

• The polynomial f1 is always a divisor of the minimal polynomial of Â; it is equal to the minimal
polynomial of Â with probability at least one-half.

Suppose the above polynomial f1 has degree d1. If the above conditions are satisfied then the Hankel
matrix 



ut
1v1 ut

1Âv1 · · · ut
1Â

d1−1v1

ut
1Âv1 ut

1Â
2v1 · · · ut

1Â
d1

...
...

. . .
...

ut
1Â

d1−1v1 ut
1Âd1

v1 · · · ut
1Â

2d1−2v1




is nonsingular. However, it is desirable to ensure that leading submatrices are likely to be nonsingular
as well.
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A first modification that will be made to the algorithm will therefore be a randomization: The vector
v1 will be replaced by g1(A)v1, where g1 is a randomly chosen polynomial in F[x] that is relatively prime
to f1. Then the above conditions are still satisfied, and the above Hankel matrix is still nonsingular.
Furthermore, it follows by a straightforward modification of a result of Eberly [7] that a scalar Lanczos
algorithm can be used, with u1 and v1, in order to orthogonalize a pair of set of k vectors with respect
to

u1, Â
tu1, . . . , (Â

t)d1−1v1 and v1, Âv1, . . . , Â
d1−1v1

respectively. In particular, this computation can be performed using the vectors u1, v1, and the vectors
to be orthogonalized, while using storage space for O(` log ` + k) field elements in the worst case.

A second modification can now be made: Rather than storing all of

u1, Â
tu1, . . . , (Â

t)d1−1u1

and
v1, Âv1, . . . , Â

d1−1v1,

— or a dual basis for the Krylov spaces that are generated by u1 and v1 — the algorithm will store u1

and v1 alone.

The algorithm of Eberly [5] requires a supply of vectors that have been generated by selecting O(h)
vectors uniformly and independently from F`×1, and orthogonalizing these vectors with respect to Krylov
spaces corresponding to the invariant factors that have currently been generated.

A third modification concerns the way that these vectors are produced. The first application of the
revised procedure minpolspace ends with the uniform and independent selection of 2ch vectors from F`×1,
for a suitable constant c. A scalar Lanczos algorithm is applied to u1 and v1 once again, in order to
orthogonalize these vectors, resulting in vectors

α1,1, . . . , α1,s1
, β1,1, . . . , β1,s1

∈ F`×1,

where s1 = ch, such that
αt

1,iÂ
jv1 = ut

1Â
jβ1,i = 0

for 1 ≤ i ≤ s1 and 0 ≤ j ≤ d1 − 1.

The amount of storage space needed to perform this computation is in O(` log ` + `h). It will be useful
to use the orthogonalized vectors in later steps, so these will be stored. The total amount of storage
space needed for all these vectors is linear in the product of `h and the total number of applications of
minpolspace that must be used. Since this number of applications is linear in h, the amount of storage
space required for all of these orthogonalized vectors is in O(`h2).

Each subsequent application of minpolspace will take place after a sequence of vectors and polynomials

(u1, v1, f1), (u2, v2, f2), . . . , (ui, vifi)

have been generated. A set of 2sj vectors

αj,1, . . . , αj,sj
, βj,1, . . . , βj,sj

∈ F`×1

will be available as well, for some integer sj such that 1 ≤ sj ≤ ch and for 1 ≤ j ≤ i. These vectors will
have been orthogonalized with respect to previous Krylov spaces — that is,

αt
j,kÂ

avb = ut
bÂ

aβj,k = 0

12



for all integers j, k, a, and b such that 1 ≤ b ≤ j, 1 ≤ k ≤ sj , and 0 ≤ a ≤ db, where db is the degree
of fb.

In order to ensure that the vectors ui+1 and vi+1 to be generated during the current application of
minpolspace are orthogonal to the Krylov spaces that have been generated already, vectors from the
sequences

αi,1, . . . , αi,si
and βi,1, . . . , βi,si

(3.3)

will be used instead of randomly selected vectors from F`×1. The vectors that are used will then be
discarded (decreasing the value of si). A scalar Lanczos algorithm will be applied, using ui+1 and vi+1,
to orthogonalize the vectors shown at line (3.3) with respect to the i + 1st Krylov spaces, in order to
produce the next set of vectors

αi+1,1, . . . , αi+1,si+1
and βi+1,1, . . . , βi,si+1

at the end of this application of minpolspace.

The algorithm will make repeated use of the modified procedure minpolspace, generating estimates of
the invariant factors (and discarding polynomials and Krylov spaces, when estimates are discovered to
incorrect) as in Eberly [5].

A fourth modification should now be made: The computation should be terminated as soon as it has
been established, with high probability, either that Â includes at most h invariant factors, or that the
h + 1st invariant factor is different from x. The algorithm reports failure in the latter case.

Unfortunately, the result is a Monte Carlo algorithm instead of a Las Vegas one: Since a complete set of
invariant factors (including all trivial factors, along with corresponding Krylov spaces) is not generated,
when Â has more than h+1 invariant factors, there is a small possibility that the polynomials returned
by this algorithm are not the invariant factors of Â in this case.

The analysis of Eberly [5] can now be modified to establish that the above algorithm computes the
desired values at the costs given at the beginning of this section.

3.3 Computation of the Rank

Suppose that the nontrivial invariant factors

f1, f2, . . . , fk

have been computed, as described above. Let

ei =

{
deg fi if fi is not divisible by x,

deg fi − 1 otherwise.

Then the rank of Â is e1 + e2 + · · · + ek. Consequently, the rank of Â can be computed by a Monte
Carlo algorithm with the (expected) cost stated at the beginning of Section 3.2. In particular, the rank
can be computed efficiently if the number of nontrivial invariant factors of Â is small.

13



3.4 A Sparse Matrix Conditioner

3.4.1 Definition of Conditioner

Suppose, once again, that A ∈ Fn×m. Let r be the (unknown) rank of A, let q = |F|, and let

` = min(n, m) + c

where c is a parameter whose value will be given later.

Consider another constant ĉ, as well, such that

ĉ ≥
(q − 1)c

q logq N
, so that c ≤

ĉq logq N

(q − 1)
. (3.4)

Consider matrices L ∈ F`×n and R ∈ Fm×` whose entries are randomly selected according to the
following distribution.

• If 1 ≤ i ≤ min(n, m) then each entry in row i of L or column i of R is set to be zero with
probability

max

(
1 −

ĉ logq N

i
,
1

q

)
for N = max(n, m).

• If 1 ≤ i ≤ min(n, m) then each entry in row i of L or column i of R that has not been set to be 0,
above, is chosen uniformly and independently from F \ {0}.

• Finally, if min(n, m) < i ≤ ` then each entry of row i of L or column i of R is chosen uniformly
and independently from F.

Notice that if 1 ≤ i ≤ c then

1 −
ĉ logq N

i
≤ 1 −

ĉ logq N

c

≤ 1 −
ĉ logq N

ĉq logq N/(q − 1)
(by condition (3.4))

= 1 −
q − 1

q

=
1

q
.

Thus the entries in the top c rows of L and the leftmost c columns of R are chosen uniformly and
independently from F if L and R are randomly chosen as described above.

Let
Â = LAR ∈ F`×`. (3.5)

Sparse matrices with the a similar structure have been investigated by Wiedemann [15]; additional
useful properties are discussed in the report of Chen et. al. [2]. In the rest of this section we will
establish another useful property, namely, that conditioning a matrix by pre- and post-multiplying by
these matrices ensures that the expected number of nontrivial invariant factors of a matrix is small.
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3.4.2 Useful Lemmas

Lemma 3.1. Let i be a positive integer such that ĉ logq N ≤ i. Then

(
1 −

ĉ logq N

i

)i

≤ N−bc/ ln q.

Proof. It is well known that if x is a real number such that |x| ≤ 1 then

1 + x ≤ ex ≤ 1 + x + x2

— see, for example, page 53 of the text of Cormen, Leiserson, Rivest and Stein [4]. Since i is a positive
integer such that ĉ logq N ≤ i, this implies that

(
1 −

ĉ logq N

i

)
≤ e−bc logq N/i.

Therefore

(
1 −

ĉ logq N

i

)i

≤ e−bc logq N

= e−bc ln N/ ln q

= N−bc/ ln q .

It will be useful to consider two other pairs of matrices that are chosen using a distribution similar to
the above.

Suppose that L0, R0 ∈ Fr×r are randomly chosen as follows.

• If 1 ≤ i ≤ r then each entry of row i or L0 or column i of R0 is set to be zero with probability

max

(
1 −

ĉ logq N

i
,
1

q

)
.

• Each entry in row i of L0 or column i of R0 that has not been set to 0, above, is chosen uniformly
and independently from F \ {0}.

Once again, this implies that the entries of the top c rows of L0 and the leftmost c columns of R0 are
chosen uniformly and independently from F.

Lemma 3.2. Let Ã ∈ Fr×r be a nonsingular matrix and let B ∈ Fr×r as well. Suppose that matrix
L0 ∈ Fr×r is randomly chosen as described above. Let

C = L0Ã + B ∈ Fr×r.

Suppose i is an integer such that 1 ≤ i ≤ r.

(a) The probability that row i of C is a linear combination of rows i + 1, i + 2, . . . , r is at most

q−i + N−bc/ ln q.
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(b) The probability that rows i, i + 1, . . . , r of C are linearly dependent is at most

q1−i

q − 1
+ N

1− bc
ln q .

(c) The probability that the nullity of C is greater than or equal to i is at most

q1−i

q − 1
+ N

1− bc
ln q .

(d) The expected value of the nullity of C is at most

q

(q − 1)2
+ N2− bc

ln q .

Proof. To begin, let us consider part (a) in the special case that Ã = Ir, the r × r identity matrix, so
that

C = L0 + B.

Suppose that 1 ≤ i ≤ r, and consider the probability that the ith row of C is a linear combination of
rows

i + 1, i + 2, . . . , r.

Let si be the rank of the submatrix Ĉi of C that consists of the above rows i + 1, i + 2, . . . , r. Clearly
si ≤ r − i, so that r − si ≥ i.

The matrix Ĉi has a set Si of si linearly independent columns, and each of the remaining columns is a
linear combination of those in this set. Consider any assignment of values to the entries in row i of L0,
in the columns of Si. There is exactly one assignment of values, that can be made to the remaining
r − si columns in row i, in order for row i of C to be a linear combination of rows i + 1, i + 2, . . . , r.

Either 1 − ĉ logq N/i ≥ 1/q or 1 − ĉ logq N/i < 1/q. These cases will be considered separately.

Case: 1 − ĉ logq N/i ≥ 1/q.

In this case, it follows by the above analysis, and the choice of L0, that row i of C is a linear combination
of rows i + 1, i + 2, . . . , r, with probability at most

(
1 −

ĉ logq N

i

)r−si

≤

(
1 −

ĉ logq N

i

)i

(since r − si ≥ i)

≤ N−bc/ ln q (by Lemma 3.1).

Case: 1 − ĉ logq N/i < 1/q.

In this case, the entries of row i of L0 are chosen uniformly and independently from F. It follows by the
above analysis that row i of C is a linear combination of rows i+1, i+2, . . . , r with probability at most

(
1

q

)r−si

≤

(
1

q

)i

= q−i.

Over-approximating, we see that if 1 ≤ i ≤ r, then row i of C is a linear combination of rows i + 1, i +
2, . . . , r with probability at most

q−i + N−bc/ ln q,
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as required to establish part (a) of the claim when Ã is the identity matrix.

Now suppose that Ã ∈ Fr×r is a nonsingular matrix. Then

C = L0Ã + B = C ′ · Ã

where
C ′ = L0 + B′ and B′ = B · Ã−1.

It follows by the above analysis that row i of C ′ is a linear combination of rows i + 1, i + 2, . . . , r with
probability at most

q−i + N−bc/ ln q.

However, since Ã is nonsingular, row i of C ′ is a linear combination of rows i+1, i+2, . . . , r of C ′ if and
only if row i of C is a linear combination of rows i + 1, i + 2, . . . , r of C, and this implies that part (a)
holds in the general case.

Now consider the probability that rows

i, i + 1, i + 2, . . . , r

are linearly dependent. In this case, there must exist at least one integer j such that i ≤ j ≤ r and
row j is a linear combination of rows j + 1, j + 2, . . . , r. The probability that this is the case is at most

r∑

j=i

(
q−j + N

− bc
ln q

)
=




r∑

j=i

q−j


 +




r∑

j=i

N
− bc

ln q




=




r∑

j=i

q−j


 + (r − i + 1) · N

− bc
ln q

≤




r∑

j=i

q−j


 + N1− bc

ln q (since r ≤ min(n, m) ≤ max(n, m) = N)

≤


∑

j≥i

q−j


 + N

1− bc
ln q

=
q1−i

q − 1
+ N

1− bc
ln q ,

establishing part (b).

In order to establish part (c) note that if the nullity of C is greater than or equal to i, then the rank of C
must be less than or equal to r − i, and rows i, i + 1, . . . , r of C must therefore be linearly dependent.
Consequently, part (c) of the claim is implied by part (b).

Finally, in order to establish part (d), note that, since the nullity of any r × r matrix is a nonnegative
integer that is less than or equal to r, the expected value of the nullity of C is

r∑

i=1

(Prob (nullity(C) ≥ i)) ≤

r∑

i=1

(
q1−i

q − 1
+ N

1− bc
ln q

)
(by part (c))

=
r∑

i=1

q1−i

q − 1
+

r∑

i=1

N
1− bc

ln q
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=
q

q − 1
·

r∑

i=1

q−i + r · N
1− bc

ln q

≤
q

q − 1
·

r∑

i=1

q−i + N2− bc
ln q (since r ≤ min(n, m) ≤ max(n, m) = N)

≤
q

q − 1
·
∑

i≥1

q−i + N
2− bc

ln q

=
q

(q − 1)2
+ N

2− bc
ln q .

Notice that the transpose of the matrix R0 is chosen using the same probability distribution as described
for L0. The next result can therefore be obtained as a consequence of the previous one, by considering
the transpose of the matrix D that is mentioned below.

Corollary 3.3. Let Ã ∈ Fr×r be a nonsingular matrix and let B ∈ Fr×r as well. Suppose that the
matrix R0 ∈ Fr×r is randomly chosen as described on page 15, above. Let

D = ÃR0 + B ∈ Fr×r.

Suppose that i is an integer such that 1 ≤ i ≤ r.

(a) The probability that column i of D is a linear combination of columns i + 1, i + 2, . . . , r is at most

q−i + N−bc/ ln q.

(b) The probability that columns i, i + 1, . . . , r of D are linearly dependent is at most

q1−i

q − 1
+ N

1− bc
ln q .

(c) The probability that the nullity of D is greater than or equal to i is at most

q1−i

q − 1
+ N

1− bc
ln q .

(d) The expected value of the nullity of D is at most

q

(q − 1)2
+ N

2− bc
ln q .

Lastly, consider matrices L1 ∈ F(r+c)×r and R1 ∈ Fr×(r+c) that are randomly chosen as follows.

• If 1 ≤ i ≤ r then each entry in row i of L1 or column i of R1 is set to be zero with probability

max

(
1 −

ĉ logq N

i
,
1

q

)
.

• If 1 ≤ i ≤ r then each entry in row i of L1 or column i of R1 that has not been set to 0, above, is
chosen uniformly and independently from F \ {0}.
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• Finally, if r < i ≤ r + c then each entry in row i of L1 or column i of R1 is chosen uniformly and
independently from F.

Note that the top r × r submatrix of L1 and the left r × r submatrix of R1 are chosen using the
distributions described for L0 and R0, respectively (as described on page 15). Consequently, the entries
in the top c rows of L1 and the leftmost c columns of R1 are chosen uniformly and independently from F.

Lemma 3.4. Let Ã ∈ Fr×r be a nonsingular matrix. Let B ∈ F(r+c)×r, and suppose L1 is chosen as
described above. Let

C = L1Ã + B ∈ F(r+c)×r.

Then the probability that rows c, c + 1, . . . , r of C are linearly dependent or C has rank less than r (or
both) is at most

2q−c

q − 1
+ N

1− bc
ln q .

Proof. To begin let us suppose that Ã = Ir, the r × r identity matrix.

Let L0, B0 ∈ Fr×r be the top r× r submatrices of L1 and B, respectively. Then the top r× r submatrix
of C is the matrix

C0 = L0 + B0 ∈ Fr×r.

Since L0 is selected using the distribution described on page 15, it follows by part (b) of Lemma 3.2
that rows c + 1, c + 2, . . . , r of C0 are linearly dependent with probability at most

q−c

q − 1
+ N1− bc

ln q .

The corresponding rows of C are linearly dependent with the same probability, since these are the same
rows.

Recall that the entries of L1 in rows 1, 2, . . . , c, and r + 1, r + 2, . . . , c, are chosen uniformly and inde-
pendently from F. It follows that the entries of C in rows 1, 2, . . . , c and r +1, r +2, . . . , r + c are chosen
uniformly and independently from F, as well.

Suppose that rows c + 1, c + 2, . . . , r of C are linearly independent. Then there exists a set S of r − c
columns of C such that the submatrix of C including the entries in rows c + 1, c + 2, . . . , r and in the
columns in set S is nonsingular.

In order the complete the analysis, in the case that Ã = Ir, suppose that we begin with an assignment
of values for the entries of L1 in rows c + 1, c + 2, . . . , r and the columns in S, and that we fill in
entries in each of the remaining columns, one at a time. Since the remaining entries are uniformly and
independently selected from F, we can see that the probability that the resulting columns of C are not
linearly independent is at most

∑

c+1≤i≤2c

q−i ≤
∑

i≥c+1

q−i =
q−c

q − 1
.

Thus the probability that C has rank less than r, when A = Ir, is at most

(
q−c

q − 1
+ N

1− bc
ln q

)
+

q−c

q − 1
=

2q−c

q − 1
+ N

1− bc
ln q .
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Suppose, next, that Ã is an arbitrary nonsingular matrix in Fr×r. Then

C = L1Ã + B = C ′ · Ã,

for C ′ = L1 + B′ and B′ = B · Ã−1.

It follows by the above analysis, using B ′ in place of B, that the matrix C ′ has rank less than r with
probability at most

2q−c

q − 1
+ N

1− bc
ln q .

Since Ã is nonsingular, the matrices C and C ′ have the same rank. Thus C has rank less than r with

probability at most 2q−c + N1− bc
ln q as well.

Notice that the transpose of the matrix R1 is chosen using the same probability distribution as described
for L1. The next result can be obtained as a consequence of the previous one by considering the transpose
of the matrix D that is mentioned below.

Corollary 3.5. Let Ã ∈ Fr×r be a nonsingular matrix. Let B ∈ Fr×(r+c), and suppose R1 is chosen as
described on page 18. Let

D = ÃR1 + B ∈ Fr×(r+c).

Then the probability that columns c, c + 1, . . . , r of D are linearly dependent or D has rank less than r
is at most

2q−c

q − 1
+ N

1− bc
ln q .

3.4.3 Preservation of Rank

If the matrix Â is as given in equation (3.5), then the rank of Â is at most that of A. The following
result therefore implies that the ranks of A and Â are the same, with high probability.

Theorem 3.6. Let A ∈ Fn×m be a matrix with rank r.

Suppose the matrices L ∈ F`×n and R ∈ Fm×` are randomly chosen as described in Section 3.4.1, and
that Â = LAR.

(a) The probability that either rows
c + 1, c + 2, . . . , r

of the matrix LA are linearly dependent, or that the (r + c) × m submatrix of LA that includes
rows with indices

1, 2, . . . , r and min(n, m) + 1, min(n, m) + 2, . . . , min(n, m) + c

has rank less than r, is at most
2q−c

q − 1
+ N

1− bc
ln q .

(b) The probability that Â has rank less than r is at most

4q−c

q − 1
+ 2N

1− bc
ln q .
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Proof. Let us begin by considering the matrix LA, noting that this does not depend in any way on the
choice of the matrix R.

Since A has rank r, there exist permutations P ∈ Fn×n and Q ∈ Fm×m such that the leading r × r
submatrix of PAQ is nonsingular.

Notice that, since P−1 is also a permutation matrix, the matrices L and L · P−1 are chosen according
to the same probability distribution. Now

LA = (L · P−1) · (PAQ) · Q−1,

and this matrix has the same rank as that of the matrix LA ·Q = (L ·P−1) · (PAQ). We may therefore
assume without loss of generality that the leading r× r submatrix of A is nonsingular in the rest of this
proof.

Using this simplifying assumption, let us write A as

A =

[
A1,1 A1,2

A2,1 A2,2

]

where A1,1 is now a nonsingular matrix in Fr×r, and where A1,2 ∈ Fr×(m−r), A2,1 ∈ F(n−r)×r, and

A2,2 ∈ F(n−r)×(m−r).

Consider the (r + c) × m submatrix of LA that includes rows with indices

1, 2, . . . , r and min(n, m) + 1, min(n, m) + 2, . . . , min(n, m) + c.

This can be written as
[
L1 L2

]
·

[
A1,1 A1,2

A2,1 A2,2

]

where L1 ∈ F(r+c)×r, L2 ∈ F(r+c)×(n−r), and where L1 is chosen using the probability distribution
described on page 18.

The submatrix consisting of the leftmost r columns of this matrix is

[
L1 L2

]
·

[
A1,1

A2,1

]
= L1 · A1,1 + L2 · A2,1 ∈ F(r+c)×r.

If we choose (and fix) the values in the matrix L2 then, since A1,1 ∈ Fr×r is nonsingular and L2 ·A2,1 ∈

F(r+c)×r, it follows by Lemma 3.4 that (when the entries of L1 are selected) the likelihood that rows

c + 1, c + 2, . . . , r

of this matrix are linearly dependent or that this matrix has rank less than r is at most

2q−c

q − 1
+ N1− bc

ln q .

Since this is true for any choice of values for L2 it follows — as claimed in part (a) above — that this
is also an upper bound on the probability that rows c + 1, c + 2, . . . , r of LA are linearly dependent or
LA has rank less than r, when L is randomly chosen as described above.

Now consider any fixed matrix L ∈ F`×n such that the matrix

LA ∈ F`×m
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has rank r. Repeating the above argument, using Corollary 3.5 in place of Lemma 3.4, one can establish
that the probability that

Â = LAR

has rank less than r is at most
2q−c

q − 1
+ N

1− bc
ln q

as well. Thus, if L and R are randomly chosen as above, then the probability that LAR has rank less
than r is at most twice the above value, as claimed in part (b).

3.4.4 Bounding the Number of Nilpotent Blocks

Consider the number of invariant factors of Â that are divisible by x2. This is the same as the number
of nontrivial nilpotent blocks in a Jordan form of Â.

A consideration of the Jordan form establishes that this is also the difference between the rank of Â
and that of Â2. In this section we will establish upper bounds on the expected value of this difference
and on the probability that this difference is high.

Lemma 3.7. Let L ∈ F`×n, A ∈ Fn×m, R ∈ Fm×`, and let Â = LAR ∈ F`×`. Suppose that

rank(A) = rank(Â).

Then
rank(Â2) = rank(ARLA).

Proof. Since
Â2 = (LAR)2 = L · (ARLA) · R,

it is clear that rank(Â2) ≤ rank(ARLA). It is therefore sufficient to prove that

rank(Â2) ≥ rank(ARLA)

as well in order to establish the claim.

Let s = rank(ARLA). Then the column space of ARLA has dimension s and there exist vectors

x1, x2, . . . , xs ∈ Fm×1

such that the vectors
y1, y2, . . . , ys ∈ Fn×1

are linearly independent if
yi = ARLAxi for 1 ≤ i ≤ s.

Suppose that
rank(A) = rank(Â).

Then, since Â = LAR,
rank(A) = rank(LAR) ≤ rank(AR) ≤ rank(A),

and rank(AR) = rank(A) as well. The matrices AR and A therefore have the same column space.
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Let wi = Axi for 1 ≤ i ≤ s. Then w1, w2, . . . , ws belong to the column space of A, so that they belong
to the column space of AR. It follows that there exist vectors

z1, z2, . . . , zs ∈ F`×1

such that
wi = Axi = ARzi for 1 ≤ i ≤ s.

Consequently
yi = ARLAxi = ARLwi = ARLARzi for 1 ≤ i ≤ s

as well.

Once again, since rank(A) = rank(Â) = rank(LAR),

rank(A) = rank(LAR) ≤ rank(LA) ≤ rank(A)

so that rank(LA) = rank(A). It follows that the matrices LA and A have the same right null space:
For any vector v ∈ Fm×1,

LAv = 0 ⇐⇒ Av = 0.

This can be used to establish that if k ≥ 0 and v1, v2, . . . vk ∈ Fm×1, then

LAv1, LAv2, . . . , LAvk are linearly independent

if and only if

Av1, Av2, . . . , Avk are linearly independent.

In particular, this is the case if k = s and vi = RLARzi for 1 ≤ i ≤ s. That is, since Avi = ARLARzi =
yi for 1 ≤ i ≤ k,

Ly1, Ly2, . . . , Lys are linearly independent,

because

y1, y2, . . . , ys are linearly independent.

It remains only to note that

Lyi = LARLARzi = Â2zi for 1 ≤ i ≤ s.

We have now established that the vectors

Â2z1, Â
2z2, . . . , Â

2zs

are linearly independent, implying that

rank(Â) ≥ s = rank(ARLA),

as required to complete the proof.
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Lemma 3.8. Let A ∈ Fn×m be a matrix with rank r, and let L ∈ F`×n be any matrix such that rows
c + 1, c + 2, . . . , r of LA are linearly independent and the submatrix of LA including rows

1, 2, . . . , r and min(n, m) + 1, min(n, m) + 2, . . . , min(n, m) + c

has rank r.

Suppose that the matrix R ∈ Fm×` is randomly selected as described on page 14.

Then, for any integer i ≥ 0, the probability that the matrix ARLA has rank less than r − i is at most

q1−i

q − 1
+ N

1− bc
ln q .

Proof. Since A has rank r, there exists a permutation matrix P ∈ Fm×m such that the leftmost r columns
of the matrix AP are linearly independent. There is therefore a set

S ⊆ {1, 2, . . . , n}

of size r such that the r × r submatrix of AP , including the rows in S and the leftmost r columns, is
nonsingular. The r × m submatrix of AP that includes the rows in S therefore has the form

[
Ã C

]

where Ã ∈ Fr×r is a nonsingular matrix and where B ∈ Fr×(m−r).

Suppose L has the properties given above. Then there exists a permutation matrix Q ∈ F`×`, with
(i, j)th entry Qi,j for 1 ≤ i, j ≤ `, such that Qi,i = 1 for c + 1 ≤ i ≤ r and such that the top r rows of
the matrix QLA are linearly independent. There is therefore a set

T ⊆ {1, 2, . . . , m}

of size r such that the r × r submatrix of QLA including the top r rows and the columns in T is
nonsingular. The ` × r submatrix of QLA that includes the columns in T therefore has the form

[
Â
D

]

where Â ∈ Fr×r is a nonsingular matrix and where D ∈ F(`−r)×r.

Notice that
ARLA = AP · (P−1RQ−1)(QL)A

and — since P and Q are permutation matrices, and Qi,i = 1 for c + 1 ≤ i ≤ r — the matrices R
and P−1RQ−1 are chosen using the same probability distribution. Consequently,

P−1RQ−1 =

[
R0 R1,2

R2,1 R2,2

]

where R0 ∈ Fr×r, R1,2 ∈ Fr×(`−r), R2,2 ∈ F(m−r)×r, R2,2 ∈ F(m−r)×(`−r), and where the matrix R0 ∈ Fr×r

is randomly chosen using the probability distribution described on page 15.
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Let us now consider the r × r submatrix of ARLA that includes the rows in S and the columns in T .
This matrix has the form

[
Ã C

]
·

[
R0 R1,2

R2,1 R2,2

]
·

[
Â
D

]

=
[
Ã C

]
·

[
R0Â + R1,2D

R2,1Â + R2,2D

]

= ÃR0Â + ÃR1,2D + CR2,1Â + CR2,2D

=
(
ÃR0 + B

)
· Â,

where
B = ÃR1,2DÂ−1 + CR2,1 + CR2,2DÂ−1 ∈ Fr×r.

Fix any choice of values for the entries of the matrices R1,2, R2,1, and R2,2; then the entries of the
above matrix B ∈ Fr×r are fixed as well. Since R0 is chosen using the above-mentioned probability
distribution, it follows by part (c) of Corollary 3.3 that the matrix ÃR0 + B has rank less than r − i
with probability at most

q1−i

q − 1
+ N

1− bc
ln q .

Since the matrix Â is nonsingular, the matrices ÂR1,1 + B and
(
ÂR1,1 + B

)
· Â have the same rank.

Since the latter matrix is a submatrix of ARLA, it follows that ARLA has rank less than r − i with
probability at most

q1−i

q − 1
+ N

1− bc
ln q

as well.

Theorem 3.9. Let A ∈ Fn×m be a matrix with rank r.

Suppose the matrices L ∈ F`×n and R ∈ Fm×` are randomly chosen as described in Section 3.4.1, and
that Â = LAR.

(a) The probability that i or more of the invariant factors of Â are divisible by x2 is at most

q2−i + 2q−c

q − 1
+ 2N

1− bc
ln q .

(b) The expected number of invariant factors of Â that are divisible by x2 is at most

q2

(q − 1)2
+

2Nq−c

q − 1
+ 2N

2− bc
ln q .

Proof. Let C denote the condition that rows c+1, c+2, . . . , r of the matrix LA are linearly independent
and the submatrix of LA including rows

1, 2, . . . , r and min(n, m) + 1, min(n, m) + 2, . . . , min(n, m) + c
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has rank r. This event depends on L, but not on the choice of R, and it follows by part (a) of Theorem 3.6
that

Prob (¬C) ≤
2q−c

q − 1
+ N

1− bc
ln q . (3.6)

On the other hand, it is easily established by Lemma 3.8 that

Prob (C ∧ (rank(ARLA) < r − i)) ≤
q1−i

q − 1
+ N

1− bc
ln q

for any integer i ≥ 0, because the above quantity bounds the probability that the rank of ARLA is less
than r− i for any choice of the matrix L such that condition C holds. Since the rank is an integer value,
it is less than r − i if and only if it is less than or equal to r − (i + 1) = r − i − 1. Thus

Prob (C ∧ (rank(ARLA) ≤ r − i)) ≤
q2−i

q − 1
+ N

1− bc
ln q . (3.7)

Notice that if the condition C holds, then the number of invariant factors of Â that are divisible by x2

is

rank(Â) − rank(Â2 ) ≤ r − rank(Â2 )

= r − rank(ARLA) (by Lemma 3.7).

Thus the number of invariant factors of Â divisible by x2 can only be greater than or equal to i, when
the condition C holds, if the rank of ARLA is less than or equal to r − i. It therefore follows, using
Equations (3.6) and (3.7), that the probability that Â has at least i invariant factors divisible by x2 is
at most

q2−i + 2q−c

q − 1
+ 2N

1− bc
ln q ,

as required to establish part (a).

Now let X be the number of invariant factors of Â that are divisible by x2, so that X is an integer-valued
random variable that can assume values

0, 1, . . . , r.

Then the expected value of X is

E [X] =
r∑

i=1

Prob (X ≥ i)

=
r∑

i=1

(
Prob (C ∧ X ≥ i) + Prob (¬C ∧ X ≥ i)

)

≤
r∑

i=1

(
Prob (C ∧ X ≥ i) + Prob (¬C)

)

=
r∑

i=1

Prob (C ∧ X ≥ i) + r · Prob (¬C)

≤

r∑

i=1

(
q2−i

q − 1
+ N

1− bc
ln q

)
+

2rq−c

q − 1
+ rN

1− bc
ln q (by Equations (3.6) and (3.7))
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≤
∑

i≥1

q2−i

q − 1
+ rN

1− bc
ln q +

2rq−c

q − 1
+ rN

1− bc
ln q

=
q2

(q − 1)2
+

2rq−c

q − 1
+ 2rN

1− bc
ln q

≤
q2

(q − 1)2
+

2Nq−c

q − 1
+ 2N

2− bc
ln q (since r ≤ N)

as required to establish part (b).

3.4.5 Bounding the Number of Invariant Factors That are Not Powers of x

Next consider the number of invariant factors of Â that are not powers of x. Suppose that there are k
such factors, so that the first k invariant factors of Â are

f1, f2, . . . , fk

where fi is divisible by fi+1, for 1 ≤ i ≤ k − 1, and where fk has a nonzero root, λ, in some extension
of F. Then λ is a root of fi as well, for 1 ≤ i ≤ k.

It follows that the Jordan form of Â (over a suitable extension of F) includes k blocks with eigenvalue λ,
and that the matrix

Â − λI`

has nullity k. We will use this observation to bound the number of invariant factors that are not powers
of x.

Suppose, for the rest of this section, that E is an algebraic closure of the finite field F.

Lemma 3.10. Let Ã ∈ Fr×r be a nonsingular matrix, and that B ∈ Er×r.

Let i be an integer such that 1 ≤ i ≤ r.

Suppose that R0 ∈ Fr×r is a matrix whose ith column is chosen as described for the probability distribution
on page 15. Let

D ∈ ÃR0 + B ∈ Er×r.

Then the probability that column i of D is a linear combination of columns i + 1, i + 2, . . . , r is at most

q−i + N
− bc

ln q .

Proof. This can be established using a straightforward modification of the the proof of part (a) of
Lemma 3.2 and Corollary 3.3 — which correspond to the case that the above matrix B has elements in
the field F.

In the original proof, (after restricting attention to the special case that Ã is the identity matrix) one
supposes that the submatrix D̂i consisting or rows

i + 1, i + 2, . . . , r

of D has rank si. Then, after choosing values for all but r − si of the entries in column i of R0 we
observe that there is exactly one choice of the remaining values (in F) for the remaining r − si entries
in column i such that the ith column of D is a linear combination of columns i + 1, i + 2, . . . , r.
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In order to prove the above result one works in almost the same way: One chooses values for all but
r − si of the entries in column i of R0. There is now exactly one choice of the remaining values —
in the extension E — for the remaining r − si entries in column i such that the ith column of D is a
linear combination of columns i + 1, i + 2, . . . , r. If any of the remaining values (to be assigned) lie
outside of F, then it is impossible to complete the choice of column i of R0, in such a way that the ith

column of D is a linear combination of columns i + 1, i + 2, . . . , r. Otherwise (the remaining values to
be selected lie in F) the probability that the values are selected in the required way can be bounded
using the argument given in Lemma 3.2.

To complete the proof, one removes the assumption that Ã is the identity matrix using the same
argument as is used in the proof of Lemma 3.2.

Lemma 3.11. Let A ∈ Fn×m be a matrix with rank r and let L ∈ F`×n be a matrix such that rows
c + 1, c + 2, . . . , r of the matrix LA are linearly independent and the submatrix of LA including rows

1, 2, . . . , r and min(n, m) + 1, min(n, m) + 2, . . . , min(n, m) + c

has rank r.

Suppose the matrix R ∈ Fm×` is randomly chosen using the probability distribution described in Sec-
tion 3.4.1.

Let i be an integer such that 1 ≤ i ≤ r. Then the probability that the matrix LAR has i or more
invariant factors that are not powers of x is at most

(r − i + 1)
q2−i

q − 1
+ (r − i + 1)2N

− bc
ln q .

Proof. Suppose that L is as described in the above claim. Then there exists a permutation matrix
P ∈ F`×` with (i, j)th entry Pi,j for 1 ≤ i, j ≤ ` such that Pi,i = 1 if c + 1 ≤ i ≤ min(n, m) and such
that the top r rows of the matrix PLA are linearly independent. One can see, by inspection of the
probability distribution described in Section 3.4.1, that the matrices R and RP−1 are chosen using the
same probability distribution.

Since the matrices LAR and PLARP−1 are similar, they have the same invariant factors.

It follows that — replacing matrices L and B with the matrices PL and RP−1, respectively — we may
assume without loss of generality that the top r rows of the matrix LA are linearly independent.

In this case, there exists a permutation matrix Q ∈ Fm×m such that the top left r × r submatrix of LA
is nonsingular. Note that, since Q−1 is also a permutation matrix, the ith column of the matrix Q−1R
is chosen using the same probability distribution as the ith column of R. Clearly

LAR = LAQ · Q−1R.

It follows that — replacing matrices L and R with LQ and Q−1R, respectively — we may now assume
that the top left r × r submatrix of LA is nonsingular.

We may therefore write LA as

LA =

[
Ã1,1 Ã1,2

Ã2,1 Ã2,2

]
(3.8)

where Ã1,1 ∈ Fr×r is nonsingular, and where Ã1,2 ∈ Fr×(m−r), Ã2,1 ∈ F(`−r)×r, and Ã2,2 ∈ F(`−r)×(m−r).
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Note that

R =

[
R0 R1,2

R2.1 R2.2

]
(3.9)

where R0 ∈ Fr×r is randomly chosen using the probability distribution given on page 15, and where
R1,2 ∈ Fr×(`−r), R2,1 ∈ F(m−r)×r, and R2,2 ∈ F(m−r)×(`−r).

Let B ∈ Fr×r be the top left r × r submatrix of LAR. Then if follows by the decompositions given in
equations (3.8) and (3.9), above, that

B =
[
Ã1,1 Ã1,2

]
·

[
R0

R2,1

]
= Ã1,1R0 + Ã1,2R2,1 ∈ Fr×r. (3.10)

Consequently if λ is an element of an algebraic closure E of F then the top left r × r submatrix of
LAR − λI` is

B − λIr = Ã1,1R0 + (Ã1,2R2,1 − λIr).

Suppose that i ≥ 2, and recall that if B has i or more invariant factors that are not powers of x, then
there exists a nonzero element λ of E such that

rank(B − λIr) ≤ r − i. (3.11)

Let Bj ∈ Fr×(r−j) denote the submatrix of B that includes columns j + 1, j + 2, . . . , r, and let Ir,j ∈

Fr×(r−j) denote the submatrix of the r × r identity matrix Ir that includes columns j + 1, j + 2, . . . , r.
Then condition (3.11) clearly implies that

rank(Bi−2 − λIr,i−2) ≤ r − i (3.12)

as well.

With this in mind, for 2 ≤ i ≤ r + 1, let pi denote the probability that there exists a nonzero element λ
of the algebraic closure E such that

rank(Bi−2 − λIr,i−2) ≤ r − i.

Clearly
pr+1 = 0, (3.13)

since it is impossible for the matrix Bi−2 − λIr,i−2 to have a negative rank for any choice of λ.

Suppose now that 2 ≤ i ≤ r and that there does not exist any nonzero element λ of E such that

rank(Bi−1 − λIr,i−1) ≤ r − i − 1.

Let Ci−1 ∈ F(r−i+1)×(r−i+1) be the submatrix of Bi−1 that includes rows i, i+1, . . . , r; then Ci−1 is also
the bottom right (r − i + 1) × (r − i + 1) submatrix of B.

Let fi−1 be the characteristic polynomial of Ci−1. Then fi−1 is a nonzero polynomial with degree
r − i + 1.

Consider any element λ of E. Clearly, either λ is a root of fi−1 or it is not; these cases will be considered
separately.

First consider the case that λ is not a root of fi−1. In this case, the matrix

Ci−1 − λIr−i+1 ∈ E(r−i+1)×(r−i+1)
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is nonsingular. Since this is the bottom submatrix of the r× (r− i+1) matrix Bi−1 −λIr,i−1, it follows
that

rank(Bi−1 − λIr,i−1) = r − i + 1.

Since Bi−1 − λIr,i−1 is the submatrix of Bi−2 − λIr,i−2 containing the rightmost r − i + 1 columns, it
follows that

rank(Bi−2 − λIr,i−2) ≥ r − i + 1

as well. Thus condition (3.12) cannot be satisfied in this case.

Next consider the case that λ is a root of fi−1, and recall the assumption that

rank(Bi−1 − λIr,i−1) ≥ r − i.

If rank(Bi−1 −λIr,i−1) ≥ r− i+1 then, as noted in the discussion of the previous case, this implies that

rank(Bi−2 − λIr,i−2) ≥ r − i + 1

as well, making condition (3.12) impossible. It is therefore sufficient to consider the case that

rank(Bi−1 − λIr,i−1) = r − i.

It would follow in this case that condition (3.12) is satisfied, for this choice of λ, if and only column i−1
of the matrix

B − λIr = Ã1,1R0 + (Ã1,2R2,1 − λIr)

is a linear combination of columns i, i + 1, . . . , r of this matrix. Applying Lemma 3.10 (for any choice
of entries of column i − 1 of the submatrix R2,1), we see that this probability of this is at most

q1−i + N
− bc

ln q .

The polynomial fi−1 has at most r − i + 1 roots. Over-approximating the probability of the union of
events by the sum of the probabilities of the events, we may now conclude that

pi ≤ pi+1 + (r − i + 1)
(
q1−i + N

− bc
ln q

)
(3.14)

for any integer i such that 2 ≤ i ≤ r.

Using equations (3.13) and (3.14), it is easily established by induction on r − i that if 2 ≤ i ≤ r then

pi ≤ (r − i + 1)
q2−i

q − 1
+ (r − i + 1)2N

− bc
ln q . (3.15)

To conclude, recall the assumption that the top r × r submatrix Ã1,1 of LA is nonsingular. The
matrix LA must then have rank r, since A does. It follows that if LA is as shown in equation (3.8), and

X = −Ã2,1Ã
−1
1,1 ∈ F(`−r)×r,

then
[
Ir 0
X I`−r

]
· LA
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=

[
Ir 0
X I`−r

]
·

[
Ã1,1 Ã1,2

Ã2,1 Ã2,2

]

=

[
Ã1,1 Ã1,2

0 0

]
,

since the choice of X ensures that the bottom left (` − r) × r submatrix of this product is zero, and
since the right (` − r) columns are linear combinations of the left r columns.

Applying the decomposition of R in equation (3.9) as well, one finds that

LAR =

[
Ã1,1 Ã1,2

Ã2,1 Ã2,2

]
·

[
R0 R1,2

R2,1 R2,2

]
,

so that
[
Ir 0
X I`−r

]
· LAR

=

[
Ir 0
X I`−r

]
·

[
Ã1,1 Ã1.2

Ã2,1 Ã2,2

]
·

[
R0 R1,2

R2,1 R2,2

]

=

[
Ã1,1 Ã1,2

0 0

]
·

[
R0 R1,2

R2,1 R2,2

]

=

[
B C
0 0

]

where B is the top left ` × ` submatrix of LAR and where C ∈ Fr×(`−r) is the top right r × (` − r)
submatrix of LAR.

Consequently, if λ is a nonzero element of E, then
[
Ir 0
X I`−r

]
· (LAR − λI`) =

[
B − λIr 0
−λX −λI`−r

]

and, clearly,
rank(LAR − λI`) = rank(B − λIr) + ` − r.

It follows that rank(B − λIr) ≤ r − i if and only if rank(LAR − λI`) ≤ ` − i.

Consequently, if L has the properties described in the claim, and R is randomly chosen as described,
then the probability that LAR has i or more invariant factors that are not powers of x is the same as the
probability that B does. Since this probability is at most pi, the claim now follows by inequality (3.15),
above.

Theorem 3.12. Let A ∈ Fn×m be a matrix with rank r.

Suppose the matrices L ∈ F`×n and R ∈ Fm×` are randomly chosen, as described in Section 3.4.1. Let
Â = LAR.

(a) Suppose i is an integer such that 2 ≤ i ≤ r. Then the probability that Â has at least i invariant
factors that are not powers of x is at most

(r − i + 1)q2−i + 2q−c

q − 1
+ (r − i + 2)N

1− bc
ln q .
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(b) The expected number of invariant factors of Â that are not powers of x is at most

logq r + 4 +
2rq−c

q − 1
+ r2N

1− bc
ln q .

Proof. Let fac(LAR) denote the number of invariant factors of the matrix LAR that are not powers
of x.

Consider the condition C that rows c + 1, c + 2, . . . , r of the matrix LA are linearly independent that
the (r + c) × m submatrix of LA that includes rows

1, 2, . . . , r and min(n, m) + 1, min(n, m) + 2, . . . , min(n, m) + r

has rank r. This event depends only on the choice of the matrix L, and it follows by part (a) of
Theorem 3.6 that

Prob (¬C) ≤
2q−c

q − 1
+ N

1− bc
ln q . (3.16)

On the other hand, it follows by Lemma 3.11 that

Prob (C ∧ fac(LAR) ≥ i) ≤ (r − i + 1)
q2−i

q − 1
+ (r − i + 1)2N− bc

ln q , (3.17)

because the above quantity bounds the probability that LAR has at least i invariant factors that are
not powers of x, for any choice of the matrix L such that condition C holds.

Since
Prob (¬C ∧ fac(LAR) ≥ i) ≤ Prob (¬C) ,

it follows by inequalities (3.16) and (3.17) and the fact that

(r − i + 1)2N
− bc

ln q ≤ (r − i + 1)N
1− bc

ln q ,

that if 2 ≤ i ≤ r then

Prob (fac(LAR) ≥ i) = Prob (C ∧ fac(LAR) ≥ i) + Prob (¬C ∧ fac(LAR) ≥ i)

≤
(r − i + 1)q2−i + 2q−c

q − 1
+ (r − i + 2)N

1− bc
ln q ,

as required to establish part (a).

The number of invariant factors fac(LAR) is an integer-valued random variable that can assume values
between 0 and r. Thus

E [fac(LAR)] =
r∑

i=1

Prob (fac(LAR) ≥ i)

≤

blogq r+3c∑

i=1

Prob (fac(LAR) ≥ i) +
r∑

i=dlogq r+3e

Prob (fac(LAR) ≥ i)

=

blogq r+3c∑

i=1

Prob (fac(LAR) ≥ i) +
r∑

i=dlogq r+3e

Prob (C ∧ fac(LAR) ≥ i)

32



+
r∑

i=dlogq r+3e

Prob (¬C ∧ fac(LAR) ≥ i)

= S1 + S2 + S3,

where

S1 =

blogq r+3c∑

i=1

Prob (fac(LAR) ≥ i) ,

S2 =
r∑

i=dlogq r+3e

Prob (C ∧ fac(LAR) ≥ i) ,

and

S3 =
r∑

i=dlogq r+3e

Prob (¬C ∧ fac(LAR) ≥ i) .

We will continue by bounding each of S1, S2, and S3 separately.

Clearly

S1 =

blogq r+3c∑

i=1

Prob (fac(LAR) ≥ i)

≤

blogq r+3c∑

i=1

1

= blogq r + 3c

≤ logq r + 3.

Inequality (3.17) can be used to establish that

S2 =
r∑

i=dlogq r+3e

Prob (C ∧ fac(LAR) ≥ i)

≤
r∑

i=dlogq r+3e

(
(r − i + 1)

q2−i

q − 1
+ (r − i + 1)2N

− bc
ln q

)

≤
rq2

q − 1

∑

i≥dlogq r+3e

q−i +

r∑

i=dlogq r+3e

(
(r − 2)2N

− bc
ln q

)

≤
rq2

q − 1
·
q1−dlogq r+3e

q − 1
+ (r − 2)3N

− bc
ln q

≤ 1 + (r − 2)2N
1− bc

ln q .

Finally, inequality (3.16) can be used to establish that

S3 =
r∑

i=dlogq r+3e

Prob (¬C ∧ fac(LAR) ≥ i)
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≤
r∑

i=dlogq r+3e

Prob (¬C)

≤ (r − 2)Prob (¬C)

≤
2(r − 2)q−c

q − 1
+ (r − 2)N

1− bc
ln q

≤
2rq−c

q − 1
+ (r − 2)N

1− bc
ln q .

The sum of the above bounds for S1, S2, and S3 is less than or equal to

logq r + 4 +
2rq−c

q − 1
+ r2N

1− bc
ln q ,

as required to establish part (b).

3.4.6 Conclusion

An invariant factor of the matrix Â is nontrivial if and only if it is divisible by x2, or it is not a power
of x. The maximum value of nonnegative integer-valued random variables is always less than or equal
to the sum of their values, so that the expected value of the maximum is less than or equal to the sum
of the expected values.

The next result is therefore a straightforward consequence of Theorems 3.9 and 3.12.

Theorem 3.13. Let A ∈ Fn×m be a matrix with rank r.

Suppose the matrices L ∈ F`×n and R ∈ Fm×` are randomly chosen, as described in Section 3.4.1. Let
Â = LAR.

(a) If 2 ≤ i ≤ r then the probability that Â has i or more nontrivial invariant factors is at most

(r − i + 2)q2−i + 4q−c

q − 1
+ (r − i + 4)N

1− bc
ln q .

(b) The expected number of nontrivial invariant factors of Â is at most

logq r + 8 +
4Nq−c

q − 1
+ (2N + r2)N

1− bc
ln q .

Let

ĉ =

{
3 if q = 2,

d3 ln qe otherwise,

and let c = d2 logq Ne. It is easily checked that condition (3.4) is satisfied.

We are not interested in small systems of equations; suppose that N ≥ 6.

In this case, it follows by Theorem 3.6 that

Prob
(
rank(Â) 6= rank(A)

)
≤ 6

N2 ≤ 1
N .
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Theorem 3.9 can be used to establish that the probability that Â has at least i invariant factors divisible
by x2 is at most

q2−i

q−1 + 4N−2,

so that, in particular, this probability is at most 1
2 if i = 4 and N ≥ 4. The expected number of invariant

factors that are divisible by x2 is at most 4 + 4
N < 5, since N ≥ 6.

It follows by Theorem 3.13 that the probability that Â has i or more nontrivial invariant factors (for
i ≥ 2) is at most

rq2−i

q−1 + (r − i + 8)N−2,

and, since N ≥ 6, the expected number of nontrivial invariant factors is at most

logq r + 10.

A straightforward modification of an analysis of Wiedemann [15] establishes that, with high probability,
L and R are sparse: The expected number of nonzero entries in each is in O((n + m)(log N)2).

Suppose that a given matrix A is conditioned, as described above, to produce a matrix Â ∈ F`×`, and
the Monte Carlo algorithm for matrix rank described in Sections 3.2 and 3.3 is then applied. An analysis
of this computation leads to the following.

Theorem 3.14. Let A ∈ Fm×n be a matrix over a finite field F and let N = max(n, m).

Then the rank r of A can be computed using a Monte Carlo algorithm such that the expected number of
matrix-vector products by A or by At is linear in r, the expected number of additional operations over F

is in O(Nr(logq N)2), and the expected amount of storage space required is in O(N(logq N)2).
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