An objlect-ralatianahip diagraamatic rechnique for object-orientad

databpse definicionn.
Totrodockian

The abject-orieoted (0} approach to datmbm=e manmsgement
avoalved frem the chject-orientad mpprosch to programming [1, 5, 6],
and 1g finding use inm anch application ErEas-au spftwere englineer-
ing, de¢cument preparation and menegenent, and in the desizn and
production of engineering perts. Typilcelly OO0 databesae eyatems in-
volve g builr-inm object-oriented programming langusage khat is
necegasrily proecedursl [2, 4, 10, 11, 12, 13, 1471, unlike non pra-
cadural relational datebase manipulastion languagas like 20L [91.

A conmimtent feature of the object-oriented appramch i=s
that asscrciated with every object representation, which crudsly
corresponds to a tuple in the relaticoel spproach [8, 8], is =2 eve-
tam generated identifier together with both lists of refecsncaes,
end Tndfvidunl referéncea, to the object idenrrifierm of ralated ogh-
fackca.

In an 0O database, the relationahips can be one-ta-many,
hinary maABY—Lta—-many, ELarnary msny—tn-mﬁn?, reciiraive mapy-to-meniy,
sand T84 one-to-one relstionshipa, aa with relatisonl datehaaeg, .
Howevar, unlike relsvionzl databesea, thess relationships ara
definad by the Euppnrting individual and liets of refecence, and
ara all included in the eenceptuzl datsbase definition. Further-
more, the reference arttributes supparting a vrelatiaoehip in tha

oshject-oriented database definition are twa-wav.

All this, despite the utility of the approach for many ap-
plications, does introduce a level of complexity in the database
definition that is absent from the relational approach, at least as
far as relationships are concerned. An undesirable consequence is
that an 00 database definition does not easily communicate the
structure of the database. As a result, it can be difficult for a
programmer attempting to manipulate an 00 database to keep all the
objects, their relationships, and supporting individual and lists
of references in mind. Consequently, there is a need for an easily
interpreted diagrammatic approach to 00 database definitions that
is relatively rich - from a semantic viewpoint. In other words,
database definition diagrams should be able to capture a great deal
of the database semantics, particularly with respect to rela-
tionships.

Currently, entity-relationship (E-R) diagrams are frequent-
ly used for communicating database structure [7]. However, because
E-R diagrams do not explicitly incorporate the system generated
identifiers and method of handling relationships that is unique to
the 00 approach, it can be criticized as being semantically poor -
at least in the context of 00 databases.

The diagrammatic technique presented in this paper, or
object-relationship (0-R) diagrammatic technique, is designed only
for final database designs with the 00 approach, and appears to
satisfy the requirements of relationship-semantic richness and ease
of interpretation in the 00 context. This object-relationship tech-
nique has its origins in the extended Bachman diagrams that are

fairly commonly used with relational databases in the final design

stage. Extended Bachman diagrams, originally proposed in [3], give
explicit information about how relationships are supported, unlike
E-R diagrams.

Extended Bachman diagrams were first introduced in the
late 1970s with an experimental data model that attempted to com-
bine the symplicity of relations with the owner-coupled set rela-
tionship concept of CODASYL [3]. The strong point of extended Bach-
man diagrams is that they capture more of the explicit support me-
chanism for relationships than most other types of database defini-
tion diagrams. Since the 00 approach involves very explicit and
quite complex support methods for relationships, this type of
diagram, suitably modified, is a good candidate for 00 database
definition diagrams. The modifications are quite extensive however,
so that the object-relationship diagrams presented in this paper do
not look much like extended Bachman diagrams.

It is worth emphasizing that the object-relationship
diagrams are not intended to replace the E-R diagrams commonly used
in the initial high level design stage of 00 database. Object-
relationship diagrams are rather intended for ease of communicating
the final 00 database design, and for use by programmers when writ-

ing database manipulation programs.

Relational version of the project database

The project database chosen to illustrate the ideas behind object-

relationship diagrams concerns document management. A relational

version of the database is presented first, as this will permit

T @an814

NNY
ILVANNY [ANTHOVI | GWONNNY | SHONKVEO0Ud
u:g A
WV¥50¥d
ONV'I mgHHH* FHONDOY
ALIAIIOVIOE ALIAIIOVIOHLANV . YALAVHD
M T T T
% ana mz:zqu_mZDZZOmmmm_mz:zuoa ILNAWAVd | GWONNOSYAd ~mz:zooa‘ SEOVAN | ITLIL| GWONVHD| GHANDOT
] u:y
C“H\7 u:y \7 u:y M u:sy c.ﬁAM \/.
AMVHETIT _ NOS¥dd INIWND0a
00TdIT | AWVNEIT | dWONgI 1 NOIIISOd mz:zm% GWNNNOSYHL| _lm‘ QIOMAAN | QISIATY | A1LIL | GNONDOT
AONAYTITY u:y u:g
\'A
49vd | ooaol | ooawodd

easy grasp of the semantics of the database, before the 00 version
need be discussed. The base tables for the database are illustrated
by the extended Bachman diagram in Figure 1.

In an extended Bachman diagrams, a rectangular box is used
for each relation, whether that relation represents a thing or a
relationship, and the relation box is a string of further boxes
that shows the primary key (underscored) and the attributes of the
relation. A one-to-many (l:n) relationship is shown as an arrow
from the primary key (or sometimes a candidate key) of the parent
relation to the foreign key of the child relation. Many-to-many re-
lationships are shown as composed of 1:n relationships, consistent
with the way they are modeled in a relational database. Subtypes,
taking part in IS-A-TYPE-OF or ISA relationships are shown as a
line from the primary key of the supertype to the primary key of
the subtype, with the line containing a bowl to symbolize the ep-
silon set inclusion symbol. As a result, E-B diagrams enable the
relationship structure of a relational database to be evident at a
glance, with the primary and foreign keys supporting any rela-
tionship being equally self-evident.

The database in Figure 1 contains all the types of rela-
tions that are encountered in 00 databases. It is an extended and
modified version of a database used by Cattell in a discussion of
00 databases [6]. It has one-to-many relationships as well as a
binary many-to-many, a ternary many-to-many, a recursive many-to-
many, and a subtype (ISA) relationship, this last relationship
permitting utilization of the inheritance concept in 00 databases.

The main relation is DOCUMENT, each tuple of which de-

scribes a document. A document can have many chapters, with each

chapter represented by a tuple of the relation CHAPTER. A person
can be both an author and a borrower of a document. A person can
author many documents and a document can be authored by many per-
sons. A person is represented by a tuple in PERSON and relation AU-
THORACTIVITY enables the resulting many-to-many relationship be-
tween PERSON and DOCUMENT.

A document can have copies in many libraries, and can be
checked out of a library by a person. A tuple in the relation LI-
BRARY represents a library, and a tuple in the relation BORACTIVITY
represents a check-out of a document event from a library by a per-
son. Thus BORACTIVITY enables the ternary many-to-many relationship
between DOCUMENT, PERSON and LIBRARY.

A document contains references to other documents and to
itself. A tuple in the relation REFERENCE describes a reference
from a document (FROMDOC attribute) on a page number (PAGE at-
tribute) to a document (TODOC attribute). Since a document can have
many references there is a one-to-many relationship between DOCU-
MENT and REFERENCE supported by the foreign key FROMDOC. But, in
addition, since a document can be referred to by many documents
there is another one-to-many relationship between DOCUMENT and
REFERENCE supported by the foreign key TODOC. These two l:n rela-
tionships mean that DOCUMENT participates in a many-to-many rela-
tionship with itself, that is, in a recursive or cyclic many-to-
many relationship. Thus there can be an explosion of references
emanating from a single document: One document can reference a set
of documents; each document of the set references a further set of

documents, each of which references a further set of documents, and

so on. Similarly there can be an implosion of references. One docu-
ment can be referred to by a set of documents, each of which can be
referred to by a further set of documents, and so on.

Each tuple of the relation PROGRAM describes a computer
program. Since a program is a kind of document, the set of PROGNUMB
primary keys in PROGRAM are to be found among the set of DOCNUMB
primary keys in DOCUMENT. Thus the relations DOCUMENT and PROGRAM
form a subtype hierarchy, the relationship between PROGRAM and DOC-
UMENT being an ISA relationship. A tuple of RUN describes an execu-
tion of a program in PROGRAM. Since a program can be executed many
times there is a one-to-many relationship between PROGRAM and RUN.

Note the significance of the ISA relationship in the data-
base. Because of this relationship a tuple in PROGRAM inherits not
only the attributes of the corresponding DOCUMENT tuple but also
each relationship in which that DOCUMENT tuple participates. Thus
we can have both legitimate requests involving attribute in-

heritance, such as:

"What are the titles of programs executed more than 100

times?"

SELECT TITLE FROM DOCUMENT, PROGRAM
WHERE DOCUMENT.DOCNUMB = PROGRAM.PROGNUMB
AND 100 < (SELECT COUNT(*) FROM RUN

WHERE RUN.PROGRAMNUMB = PROGRAM.PROGNUMB);

and legitimate requests involving relationship inheritance:

"Who are the authors of C programs that have never been ex-

ecuted?"”

SELECT PERSON# FROM PERSON
WHERE PERSONNUMB IN (SELECT PERSONNUMB FROM AUTHORACTIVITY
WHERE DOCNUMB IN (SELECT PROGNUMB FROM PROGRAM
WHERE LANG = "C" AND PROGNUMB NOT IN

(SELECT PROGRAMNUMB FROM RUN)));

The names of the attributes in Figure 1 were chosen to make the
semantics self-apparent. Where this is not so, more detailed dis-

cussion later in the paper should clarify matters.

00 Data Models

An 00 data model, like the relational data model, consists
of the conceptual level and external level data structures
permitted plus the operations neccessary to manipulate them [1].
However, unlike the relational model, in the 00 approach many of
the manipulation operations are so restricted that they are en-
capusulated with the conceptual-level data structures, which then,
in essence, become abstract data types.

A diagram of the conceptual level of 1 specific database is
most useful for depicting the specific conceptual level data struc-
tures involved, and not the (very restricted in the case of 00

databases) processing to which those data structure might be sub-

10
jected. Nevertheless, although most would probably agree that a
diagrammatic technique for 00 databases should be able to easily
communicate the database structure, it would sometimes be useful if
it could include the routines that were encapsulated with individu-
al objects. Nevertheless, this aspect of the matter is not ad-
dressed in this paper, for two reasons. First, it is a trivial mat-
ter, to diagrammatically enclose the representation for an object
(including subtypes, if any) in a box that includes the encapsu-
lated routines, and second, such enclosures, no matter what the
diagrammatic technique, will severely clutter the diagram. A better
way is probably to use simple structure diagrams to show encapsu-
lated routines. Consequently, the object-relationship diagrammatic
techniques proposed in this paper will be directed to the data
structures used in conceptual-level 00 databases, and will not be

concerned with encapsulated routines.

Objects, attributes, object identifiers and primary keys

In the 00 approach, an object has a unique identity that is inde-
pendent of any values it contains [1, 6]. An object normally has
associated attributes (sometimes called "instance variables"), and,
as in the relational approach, one of these attributes, or a group
of them, may be regarded as a primary key. However, because every
object has a unique identity, an object need not have a primary
key. Instead, the database system will generate a unique object
identifier, which may or may not be accessible by the user, depend-

ing on the database system employed.

Figure 2c¢

Document STRING STRING DATE SET[STRING]
docnumb | title revised keyword ...
|
Document
Figure 2a
!
1
Document STRING DATE SET[STRING]
doc# title revised keyword
T Document
Figure 2b
doct title revised keyword ...

Document

11

As well as a possible primary key attribute, an object may
have either simple attributes, such as a quantity or a name, whose
type allows either literal numeric or alphnumeric values, or other
defined values such as the type DATE . indicating a date value. An
object may also have collection attributes, such as sets or lists,
for example, the set of keywords in a document. The relational ap-
proach does not allow collection attributes.

These points can be illustrated by the diagrams in Figure
2a, 2b and 2c for Document objects. The conceptual database defini-

tion is shown in Figure 2d.

Document: <
doc#: Document;
title: STRING;
revised: DATE;
keyword: SET[STRING]; >
Figure 2d

The version of the object Document where the primary key (docnumb,
underscored) is included is shown in Figure 2a. The object name be-
gins with an upper case character, attributes with lower case, and
types are in upper case immediately above the attribute names. In
this case no name is given for the internally generated object
identifier "attribute", but its type is Document. Furthermore, the
object identifier, which will normally not be visible to users, is

shown as a larger rectangle attached to the rectangle for the other

12

13

attributes. This larger rectangle thus serves as a visual symbol
for the unique identifier attribute of the object. The collective
attribute keyword is denoted by the attribute name followed by el-
lipsis.

Because of the existance of an object identifier for each
object, the primary key attribute can always be omitted, unless
needed by users for non system purposes. This is done in the ver-
sion in Figure 2b. In addition, the lack of a name for the object
identifier attribute is remedied by using the attribute doc#, which
therefore must have the type Document. Finally, the version in Fig-
ure 2c omits the attribute types, and shows just the attribute
names, including the system-generated object identifier doc#, en-
closed in a large rectangle.

Any of these versions could be used. We envision the third
version (Figure 2c) as the most practical in the design stage. The
advantage is that the named object identifier attribute, even if
system generated and not normally accessible, is easier to handle
than one with no name. It is not easy to discuss or communicate de-
signs involving things with no names. Accordingly, we will proceed
with objects diagrammed as in Figure 2c. 1In more complex diagrams,
for clarity, this large rectangle for the object identifier can

also be shaded (see Figure 3a, for example)

One-to-many relationships

In handling relationships, a simple diagrammatic principle

is used: A list attribute recessed in, but protruding, from the

chapli

- //////

1\1;1

" ///// 1

L

doc#

/

Figure 3s

title | revised | keyword ..
Document
title npagesAJ
Chapter

14

15

shaded rectangle representing the internally generated object iden-
tifier is a 1list of references to related objects, that is, a col-
lective attribute of type LIST[Object], as in Figure 3a.

In Figure 3 there is an object-relationship diagram for the
l:n relationship between Document and Chapter objects, as based on

the database definition in Figure 3b.

Document: <
doc#: Document;
title: STRING;
revised: DATE;
keyword: SET[STRING];
chaplist: LIST[Chapter]; >
Chapter: <
chap#: Chapter;
doc#: Document;
title: STRING;
npages: INTEGER; >

Figure 3b

In the object Chapter, the attribute chap# is taken as naming the
object identifier for a chapter of a document. Accordingly,
chaplist, which is a list of chap# values, is just one additional
collective attribute of the object Document, but placed, according

to the basic diagram rule, protruding from the object identifier

attribute in the object Document. Thus a Document object has a
list, among its other attributes, of the object identifiers of its
chapters. The type of chaplist must be LIST[Chapter]. Furthermore,
in a Chapter object, there is an attribute doc# with the type Docu-
ment, that is, its value must be a Document object identifier.
These reference atributes define the 1:n relétionship between the
objects Document and Chapter.

In the diagram, an arrow, with a 1:n label, from the
chaplist attribute in the parent Document object, to the object
identifier attribute chap# in the child Chapter object, defines the
reference pathway from the one parent to the many children of the
1:n relationship. Conversely, the return reference pathway from a
single child to its parent is denoted by an arrow, with a 1:1
label, from the doc# attribute (a kind of foreign key) in the Chap-
ter attribute to the object identifier attribute doc# in the Docu-
ment object.

Since the two pathways of a l:n relationship are actively
used in the 00 approach, they must both be clearly diagrammed. Un-
fortunately, in a diagram for a complex database, this can lead to
a lot of arrows. In order to minimize relationship arrow clutter in
a complex diagram, the two arrows may merge along the bodies of the

arrows, as shown in Figure 3a.
Binary many-to-many relationships

Referring first to the relational database structure in Figure 1b,

in Figure 4 we show how to diagram the 00 version of the many-to-

many relationship between Person and Document objects. Protruding

16

v

pname |position

. }}7’//,,

/ldoclist

lm

ln

authlist

Person

//

chaplist

9

title revisged

keyword ...

i

Figure 4a

Document

17

Document: <
doci#: Document;
title: STRING;
revised: DATE;
keyword: SET[STRING];
chaplist: LIST[Chapter];
authlist: LIST[Person]; >

Person: <

persi: Person;

doclist: LIST[Document];

pname: STRING;

position: STRING; >
Figure 4b

from the object identifier attribute pers# in the Person object is
a LIST attribute doclist. In symetrical fashion, protruding from
the object identifier doc# in the Document object is the LIST at~-
tribute authlist. The attribute doclist in Person gives the object
identifiers of the documents authored by the Person object, and at-

tribute authlist in Document. These references define the many~-to-

18

19

BG 2an314g

IsSTIYINY §
JuswAied #saad ~%UOU \\AWMWM“W

u:

5
€
~

T'T
uosiag Jusunsoqg \/\\\ E
T
uoT3tsod *** piomhay | pestasaf e13131 %uoﬂ\\ﬂn
/. L

\\\\
IsTTYInE

is11o0p — uwﬂaam:m_

=

uT

20

many relationship between Document and Person, and are diagrammed
by two arrows - one from authlist to pers# and one from doclist to
doc#.

This method of handling a many-to-many relationship, using
symmetrical reference lists, and only two objects, is different
from the relational approach, which requires three relations,
equivalent to three objects (Figure la). However, using only two
objects is possible in the 00 approach only in the less common case
where there is no intersection data that are attributes of the pair
of objects participating in the relationship, as is the case in
Figure 4. But if it were the case, for example, that an author
received a payment for each document that he or she contributed to,
and this information was required, then a third object Authact is
required, where the object is an authoring activity (see the rela-
tional version in Figure 1, where a corresponding relation like AU-
THORACTIVITY is always necessary). This is handled as a pair of 1:n
relationships, along the lines of the relational approach, but with
reference lists to handle the 1:n relationships. This is il-

lustrated in Figure 5.

Document: <
doc#: Document;
title: STRING;
revised: DATE;
keyword: SET[STRING];
chaplist: LIST[Chapter];

authlist: LIST[Person];

actlist: LIST[Activityl; >

Authact: <

act#: Authact;
doc#: Document;
persi: Person;
payment: INTEGER; >

Person: <

persi: Person;

doclist: LIST[Document];

actlist: LIST[Authact];

pname: STRING;

position: STRING; >
Figure 5b

Notice that in Figure 5a the lists doclist and authlist, which
enabled the many-to-many relationship in Figure 4 without intersec-
tion data, were not removed in this new version, although they
could have been. By allowing them to remain the user has two ways
of handling the many-to-many relationship. If the intersection data
is of no interest, because of the inclusion of doclist and authlist
the user can go directly from the Document entity to related Per-
sion entities, and vice versa, and can thus group related Person

data with a specific Document object, and vice versa. But in addi-

21

22

tion, because of actlist in both Document and Person, details of
all the authoring activity for a given document can be retrieved,
and details of all the document activity for a given author can be
retrieved. This dual possibility of either using or ignoring the
intersection data in a many-to-many relationship is found only in

the 00 approach.

Ternary many-to-many relationships

Referring first to the relational database structure in Figure 1b,
in Figure 6 we show how to diagram the 00 version of the ternary
many-to-many relationship between Person, Library and Document ob-
jects. Unlike the case of a binary many-to-many relationship, with
a ternary many-to-many relationship intersection data is necessary,
and there has to be an object for the activity in which the objects
Person, Library and Document participate. This is the borrowing ac-
tivity object Boractivity, where an object is a borrowing event in-
volving a library, a person and a document copy. Thus the rela-
tionship is handled in a2 manner similar to a binary many-to-many

relationship, and is illustrated in Figure 6.

Document: <
doc#: Document;
title: STRING;
revised: DATE;
keyword: SET[STRING];

chaplist: LIST[Chapter];

23

BQ 2In314

K31AT3O®BIOg
e
anp #4711 #saad J#o0p #1oBa10q
EWAHU\\\\AM
A, N
usppusy u:g
T'T
4 _ t HL\ 1ST]
Aieaqr —- 1s113o®i10q uosiag AHM\\ Jusunooq T -12Bl10qQ
7 |
b |
= | \\\\ =~
20T1q17 | sweuqi] #4711 —coﬂuﬂmoa sweud #saad *** paomkay | pesTa1|aT31l #uov
7~ \
] P

_\\\
— um.:u\i 110°0pP _[uw.zﬂusm um.:uomQ
u:y _ u:g

authlist:

actlist:

boractlist:

Person: <

persi:

doclist:

actlist:

boractlist:

pname:

position:

Library: <

lib#:

boractlist:

libname:

libloc:

Boractivity:
boract#:
doc#:
persi:
1ib#:

Due:

LIST[Person];
LIST[Activity];

LIST[Boractivityl;

Person;

LIST[Document];
LIST[Activity];
LIST[Boractivity];
STRING;

STRING; >

Library;
LIST[Boractivity];
STRING;

STRING; >

Boractivity ;
Document;
Person;
Library;

DATE; >

Figure 6b

24

It is always possible to regard a ternary many-to-many relationship
as consisting of three binary many-to-many relationships, in this
case, between Document and Library, between Library and Person and
between Document and Person. However, it is well known [9] that
with most other database approaches, including the relational ap-
proach, if there is no primary key or equivalent that does not in-
clude the foreign keys, viewing a ternary relationship as three
binary relationships is dangerous and may result in a loss of in-
formation. For example, if person pl borows document dl from li-
brary 11, and pl also borrows dl from library 13, then if we just
consider the binary relationship between person and document, we
have that pl borowed dl, when in reality there are two distinct
borrowings, one from 11 and the other from L2. However, if there is
a unique event (event object) identifier, as will be the case in
the 00 approach, it will be clear that there were two separate bor-
rowings even if only the binary many-to-many relationship between
Document and Person is considered. This is conveyed by the diagram
in Figure 6a, since there are two pathways (and twin arrows) for

each of the 1:n relationships involving Boractivity.

Recursive many-to-many relationships

Referring to Figure 1, the relationship between the object
Document and an object Reference is recursive (or cyclic) many-to-
many, and breaks down into two distinct one-to-many relationships
between Document and Reference. The recursive relationship can be

regarded as a many-to-many relationship between Document and it-

26

B/ 2i1n314g

9ousaagoy

T\\\\
?8ed | g#oopoa #o0pwoag 301

ﬁ»_

| .. "

Jusund0(Jg

H“H/N\

umaﬂamsu_

=z

Jioop <=+ paomkey| pesiasil a1312 %
H\waﬁsu:mwliﬁumaauom M

Voo

.
M 4
. .

27

self, supported by an object Reference that contains intersection
data. [Recursive many-to-many relationships always appear to re-
quire interesection data, although in theory a recursive many-to-
many relationship is possible where interesection data is not re-
quired, the examples are not useful in practice.] Accordingly, the
relationship can be diagrammed using the object-relationship
diagram principles for each of the two 1:n relationships required.
The object-relationship diagram is shown in Figure 7a and database

definition is in Figure 7b.

Document: <
doc#: Document;
title: STRING;
revised: DATE;
keyword: SET[STRING];
chaplist: LIST[Chapter];
authlist: LIST[Person];
actlist: LIST[Activity];

boractlist: LIST[Boractivity];
reftolist: LIST[Reference];

reffromlist: LIST[Reference]; >

Reference: <

refi#: Reference;
fromdoc#: Document;
todoc#: Document;
page: INTEGER; >

Figure 7b

At this stage in the build-up of the attributes of Document, be-
cause the object Document has become involved in so many rela-
tionships, it contains many lists of identifers of related objects.
When there are so many relationships involving a single object, in
a diagram there will not be space for all of the lists of identi-
fiers that protrude from the rectangle denoting the object identi-
fier. The solution is to replicate the object identifier in the
diagram for the object, as many times as are needed, as shown in
Figure 7a for the case of Document. Incidently, this proliferation
of reference list attributes, so obvious in Figure 7a, is complete-
ly avoided in the relational approach - by simply omitting it.

Note that reftolist in Document pairs with fromdoc# in
Reference to support one of the two one-to-many relationships, and
refromlist pairs with todoc# to support the other one. The diagram
thus makes clear a state of affairs that frequently causes confu-
sion and programmer errors. This problem does not occur in the re-

lational approach.

Subtype one-to-one (ISA) relationships

We now show how a subtype or IAS relationship is be be

diagrammed, recalling the DOCUMENT and PROGRAM relations from the

database in Figure 1, a Program object is a kind of Document ob-

28

29

—P—%...

L

1

N\

\

N

Bg 9an8T14
uny
91epUNI wcﬂcumE~ #30ad
weidoig

[ewi e

Juswnooq

P
VI

o

A\

c-- Uhozkmx~ Ummﬂ>wka‘wauﬂu

\
N

30

ject. Not all documents are programs but all programs are docu-
ments, so that there is a subtype 1:1, or ISA relationship between
Document and Program. A program can have many executions, so that
there is also a one-to-many relationship between Program and Run.
The one-to-many relationship is handled in the usual way (Figure
2). The ISA relationship is dagrammed using an ISA cup, with the
curved part of the cup symbolizing the epsilon set membership sym-
bol from set theory (Figure 8a). Thus the diagram shows that a pro-
gram is a type of document, and not the other way round. Not that
with this relationship, since it is a kind of 1:1 relationship, no
list of identifiers is needed in either participant. The database
definition is in Figure 8b (reference lists needed in Document for

other relationships are omitted to avoid clutter)

Document: <
doc#: Document;
title: STRING;
revised: DATE;
keyword: SET[STRING];
chaplist: LIST[Chapter];
authlist: LIST[Person];
actlist: LIST[Activity];

boractlist: LIST[Boractivity];
refto: LIST[Reference];

reffrom: LIST[Reference]; >

Program: <

progit: Document
title: STRING;
lang: STRING;
runlist: LIST[Runl; >
Run: <
runi: Run;
prog# Program;
machine: STRING;
rundate: DATE; >
Figure 8b
Summary

An object-relationship diagrammatic technique for capturing and
communicating the semantics of 00 databases has been presented and
analysed. It is capable of display of objects, in terms of system
generated object identifiers, simple attributes, collection at-
tributes, and simple and collection reference attributes. The type
of each attribute may be included in the diagram if required for
displaying additional semantics. A one-to-many relationship may be
diagrammed by means of a list of references, that is, a collection
attribute of the parent object, together with a simple reference
attribute of the child object; in addition, a pair or arrows indi-

cates the two resulting reference pathways, one from parent to

children, and the other from child to parent.

31

Two alternative methods of diagramming a binary many-to-
many relationship are allowed, in accordance with the two possible
ways such a relationship may be defined in the 00 approach. One ap-
proach involves a third object with intersection data attributes
and two one-to-many relationships. The other method involves no in-
tersection data object, but a pair of arrows and symetrical lists
of reference attributes, each arrow emanating from a list of
references.

Ternary many-to-many relationships are handled like binary
many-to-many relationships with interesection data. A recursive re-
lationship is handled as a pair of one-to-many relationships. A
simple diagrammatic symbol is used to denote a subtype (ISA) one-
to-one relationship.

Object relationship diagrams are not meant to replace
entity-relationship diagrams commonly used in the early stages of
object-oriented database design. They are intended instead for cap-
turing the semantics of final database design and ease of communi-
cation of database structure to programmers and others involved in

using 00 databases.

32

REFERENCES

1. Abiteboul, S., Hall, R. IFO, a formal semantic data base model,

ACM Trans. on Database Systems, 12 (4), 1987.

2. Bancilhon, F., et al. The design and implementation of 0y, an
object-oriented DBMS, in "Advances in Object Oriented Database Sys-
tems,"” K. R. Dittrich, ed., Computer Science Lecture Notes 334,

Springer Verlag, New York, 1988.

3. Bradley, J., An extended owner-couple set data model and predi-
cate calculus for data base management, ACM Trans. on Database Sys-

tems, 3(4), 1978, 385-416.

4. Bret, R., et al. The Gemstone Data Management System, in
"Object-Oriented Concepts, Databases and Applications, W. Kim, F.H.

Lochovsky, Eds., Addison-Wesley, Reading, Mass, 1988.

5. Cardenas, A. F., McLeod, D. "Research Foundations in Object-
Oriented and Semantic Databases," Prentice Hall, Englewood Cliffs,
New Jersey, 1990,

6. Cattel, R. G. G. "Object Data Management" . Addison Wesley, 1991.

7. Chen, P.P. The entity-relationship model: Towards a uniform view

of data, ACM Trans. on Database Systems, 1 (1), 1976, 9-36.

33

34

8. Codd, E. F. Relational databases, a practical design for produc-

tivity, CACM, 25(2), 1982, 109-117.

9. Date, C. J. "Introduction to Database Systems, 5th ed., Addison

Wesley, Reading, Mass., 1990.

10. Kim, W. et al. Features of the ORION object-oriented DBMS, in
"Object-Oriented Concepts, Databases and Applications, W. Kim, F.H.

Lochovsky, Eds., Addison-Wesley, Reading, Mass, 1988.

11. Object Design. ObjectStore Reference Manual, Object Design,

Inc., Burlington, Mass., 1990

12. Objectivity. Objectivity Database Reference Manual, Objectivity

Inc., Menlo Park, California, 1990.

13. Ontologic. ONTOS Reference Manual, Ontologic Inc., Billerica,

Mass., 1989.

14, Versant Object Technology. Versant Reference Manual, Versant

Object Technology Inc., Menlo Park, California, 1990.

