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Abstract

This is a collection of essays on networks, volatility and trade, based on confidential micro-

data on manufacturing, trade, and input-output networks in Canada. I have chosen methods

and data to support or challenge arguments around these subjects, and aim to show how

ownership, production, and trading networks affect firm characteristics, and how, in turn,

those firm characteristics affect aggregate volatility.

These essays represent my contribution to the study of networks, volatility and trade in

Canada. I show that firm input-output networks matter most for the firm size distribution

and aggregate volatility; that firm ownership matters for volatility; that firm size distribu-

tions aren’t always distributed like a power law; and that there are barriers to domestic

trade.
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Introduction

This is a collection of essays on networks, volatility and trade, based on confidential micro-

data on manufacturing, trade, and input-output networks in Canada. I have chosen methods

and data to support or challenge arguments around these subjects, and aim to show how

ownership, production, and trading networks affect firm characteristics, and how, in turn,

those firm characteristics affect aggregate volatility.

First, I explore theories of microfoundations for aggregate volatility, or the variation in

the economy’s growth rate over time. Those theories rely on a skewed individual size dis-

tribution, which may be skewed because of a skewed productivity distribution, or because

of skewed demand characteristics that result in an asymmetric production network. What

matters more? To find out, I use detailed data on firm-firm trade (i.e., the transaction

between a buyer firm and a supplier firm) in Canada to calibrate a model in which produc-

tivity and demand characteristics vary independently. This allows me to recover unobserved

demand characteristics from the observed production network, which conflates productivity

and demand. I find that the demand network accounts for 60% of the firm size distribution,

productivity explains little, and that approximately half of the demand network effect is due

to higher-order network interconnections. Microeconomic shocks can account for approxi-

mately 32% of aggregate volatility, and removing variation in the demand network would

reduce aggregate volatility by 25%.

Continuing with the idea of volatility, the second chapter is a study of the correlations

of growth shocks within firms. Due to its association with cross-country business cycles,

propagation of idiosyncratic shocks, and even financial contagion, firm comovement is an

important facet of macroeconomic research. However, we know little about whether pairs

of establishments within firms comove more than pairs of establishments that are from

different firms. Using a long panel of Canadian manufacturing establishments, which allows
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a more precise measurement of the covariances compared to existing research, I investigate

the correlations and covariances of within-firm pairs of establishments and decompose them

into labour inputs, intermediates and profit. I find that within-firm establishment pairs have

correlations 0.0477 higher than between-firm establishment pairs (which have an average

correlation very close to zero) after controlling for industry and region effects. Covarying

intermediate input costs account for 49% of the within-firm comovement effect.

The third chapter examines the firm size distribution a bit more closely. Since research

on gains from trade and volatility typically rely on the power law size distribution for certain

results, I critically evaluate the data on size distributions using recent developments in power-

law estimation. Given a firm size distribution, I test the null hypothesis that the distribution

is best fit with a power law. Using data from Compustat and OSIRIS on several countries,

as well as confidential microdata on Canadian establishments and firms. I find that a power

law distribution fits the U.S. firm size distribution for most years, but France, Germany,

and Canada confidently reject the null hypothesis that their firm size distributions are best

fit with power laws. However, Canadian manufacturing plants are best fit with power laws,

supporting the microfoundation of aggregate volatility argument above.

Fourth, I explore Canadian trade and geography. We use sub-provincial trade flows

generated from a transaction-level transportation dataset to measure the effects of borders

on trade. The results show that border effects fall as geographies are more fine-grained and

uniform. In contrast to the U.S., where state border effects were eliminated using similar

approaches, provincial border effects remain, with an implied 6.9% tariff equivalent.

These essays represent my contribution to the study of networks, volatility and trade in

Canada. I show that firm input-output networks matter most for the firm size distribution

and aggregate volatility; that firm ownership matters for volatility; that firm size distribu-

tions aren’t always distributed like a power law; and that there are barriers to domestic

trade.
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Chapter 1

The microfoundations of aggregate volatility:

productivity or network asymmetry?

1.1 Abstract

Theories of microfoundations for aggregate volatility rely on a skewed individual size distri-

bution, termed granularity. If so, what causes granularity? I use detailed data on firm-firm

trade in Canada to estimate a model in which productivity and demand characteristics vary

independently to determine firm sizes. This allows me to recover unobserved demand char-

acteristics from the observed production network, which conflates productivity and demand.

I find that the demand network accounts for 60% of the firm size distribution, productivity

explains little, and that approximately half of the demand network effect is due to higher or-

der network interconnections. Microeconomic shocks can account for approximately 32% of

aggregate volatility, and removing variation in the demand network would reduce aggregate

volatility by 25%.

1.2 Introduction

Are idiosyncratic shocks sources of aggregate volatility? How do they propagate across the

economy? The idea that aggregate demand and supply shocks are the only source of volatility

in the economy leaves important mechanisms in the shadows. Previously, the possibility that

idiosyncratic shocks to firms can cause aggregate fluctuations had been debunked by the law

of large numbers; how can tens of thousands, or millions, of uncorrelated shocks average

out to anything but zero? However, if the economy is structured in such a way that certain

firms are disproportionately large, the law of large numbers argument may fail. Idiosyncratic
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shocks to these firms may propagate through the economy and make up a substantial portion

of aggregate volatility.

Theories of microfoundations of aggregate volatility all rely on this skewness of the firm

size distribution, called granularity. If granularity allows idiosyncratic shocks to cause ag-

gregate fluctuations, what causes granularity? In this paper, I study the sources of skewness

in the firm size distribution—productivity and the firm-firm production network—and how

they affect aggregate volatility.

A skewed productivity distribution is the usual culprit in models with skewed size dis-

tributions: the standard source of firm heterogeneity is a Pareto productivity distribution

in a simple Melitz (2003) model. However, the size distribution is also skewed if the firm-

firm production network is skewed. A firm may produce goods that are required inputs in

production for a substantial fraction other firms, which causes that firm to be very large.

The first and second order effects of the interactions between these factors turn out to be

very important. For instance, a firm may have low productivity and few customers in the

production network, but if those customers are themselves large, it will be large in turn.

The key to differentiating these features is to use a model in which they vary indepen-

dently, and, more importantly, data that allows me to calibrate and estimate the model.

I extend a model of firm-firm trade with firm heterogeneity in not only productivity, but

pair-specific demand characteristics that define the production network as well. The most im-

portant thing to note is that production networks are endogenous—using expenditures shares

as measures of input-output requirements, such as those used in industry level input-output

tables, conflates the three factors I study here. Recovering the true source of granularity

requires data and a model that differentiate these things. After doing so, I perform coun-

terfactuals on the parameters to see how changing the underlying productivity and demand

would change the size distribution and aggregate volatility.

The model extends a simple firm-firm Cobb-Douglas production network model to in-

2



corporate productivity differences, trade costs and substitutability across firms. Each firm

is in a region, and total regional income is the sum of all value-added in that region; re-

gional income can be spent on goods from any firm, subject to trade costs. The market

structure determines the skewness of the size distribution, which in turn affect the way id-

iosyncratic shocks propagate across the economy. Almost all of the shocks are transmitted

through input-output links, though the reasons the production links exist in the first place

are determined by productivity and demand characteristics.

One must note that it is not enough to use industry input-output characteristics to define

the economy, in the model or in the data. First, in the model, using industry input-output

shares as demand characteristics implies all within-industry firm heterogeneity cannot be

due to demand characteristics, which is refuted by the data. Using industry-level IO data

also implies that within a pair of industries with an input-output linkage (i.e., a positive

direct requirement coefficient, which is the term for the expenditure share in the industry-

by-industry input-output tables produced by national statistical agencies), all firms trade

with each other. And in any industry with an input-output linkage with itself, all firms

within the industry trade with each other, including itself. This is again refuted by the data,

which I turn to next.

The microdata1 are from several sources: the Annual Survey of Manufacturing (ASM),

the Surface Transportation File (STF), the detailed-confidential Input-Output and Supply-

Use tables (IOT), the Inter-Provincial Trade Flow file (IPTF), and the Import-Export Reg-

ister (IER). For more details of each database and on data construction and benchmarking,

see Appendix 1.9.

1Here I make the first distinction between firms and establishments. I use the term ‘firm’ to be consistent
with previous work on firm-to-firm production networks, firm size distributions and aggregate volatility, and
because it’s shorter and easier to say and write than ‘establishment.’ This is convenient for the writer and
reader when describing establishment-establishment trade. Nevertheless, the data are at the establishment
level. Firm-level microdata are difficult to study geographically, because they typically do not have ‘locations’
in the physical sense used in models of economic geography. When using administrative data, the firm unit
is defined by tax accounting standards, not economic or physical standards, and so firms are not guaranteed
to have actual physical locations. Instead, they have corporate headquarters that may have complex legal
and operational heirarchies and no geographic information on economic activity.

3



The data show clear skewness in the productivity and size distributions and a very

asymmetric firm-firm production network. The empirical strategy works in two parts. First, I

start with the observed data and use the model to uncover unobserved demand characteristics

and the implied demand network. Next, after uncovering the parameters that govern the

firm size distribution, I turn to calculating aggregate volatility. It is difficult to infer the

parameters that determine idiosyncratic volatility due to the general equilibrium nature of

shock propagation: if the granularity hypothesis is true, a large aggregate shock is the result

of idiosyncratic shocks, not evidence against them. This is called the “reflection problem.” I

attempt to circumvent this problem by estimating uncorrelated productivity shocks and using

those as a lower bound for the contribution of idiosyncratic shocks to aggregate volatility.

After calibrating the model, I can investigate the effect of each feature’s skewness on

the economy. For instance, what happens to aggregate volatility if we remove the variation

in productivity across firms? What if we remove variation in the demand network instead?

The relative changes in aggregate fluctuations after changing the distributions of each feature

give important insights into the economy. Perhaps surprisingly, removing skewness in pro-

ductivity actually increases skewness in the size distribution, which would increase aggregate

volatility by 11% and highlighting the importance of the complexity of the network.

Research on idiosyncratic shocks and aggregate volatility restarted in earnest when

Gabaix (2011) and Acemoglu et al. (2012) revived the debate between Horvath (1998, 2000)

and Dupor (1999) on whether idiosyncratic shocks average out in aggregate. Gabaix (2011)

proposes that the largest, granular firms are so big that their idiosyncratic shocks do not

average out at the aggregate level. Acemoglu et al. (2012) suggest the reason for non-

diversification of idiosyncratic shocks is an asymmetric input-output network, in which a

shock to a sector that supplies a large number of other sectors propagates through the

economy and generates aggregate fluctuations. I add an understanding of the connections

between the two theories at an empirical level, specifically showing the complementarity be-
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tween granularity and production networks and how idiosyncratic firm-level shocks rely on

firm-level input-output variation within industries.

The most direct predecessors of this paper are empirical studies of aggregate fluctuations.

Starting with Shea (2002), and continuing most recently with Foerster et al. (2011), Di

Giovanni et al. (2014), Acemoglu et al. (2015). Foerster et al. (2011) combined factor analysis

with structural model of industrial production in the US, finding common shocks are the

source of the majority of volatility, with idiosyncratic shocks becoming more important after

the great moderation. Di Giovanni et al. (2014) study fluctuations of French firm sales to

individual countries and find idiosyncratic fluctuations account for the majority of aggregate

volatility, and that much of it comes from covariances between firms. They suggest the firm

covariances are due to firm-to-firm linkages, although they only observe industry-level IO

data. In contrast to both papers, I use firm-level network data to establish the determinants

of firm covariances, using deeper levels of disaggregation to examine both covariances (firm

level to establishment level) and input-output networks (industry level to establishment

level). As well, I study the determinants of the network itself, something taken as exogenous

in previous empirical work.

Any study of granularity builds on a body of work on the determinants of firm size

and the characteristics of its distribution, from specific applications in international trade

(Di Giovanni et al., 2011; Di Giovanni and Levchenko, 2012, 2013), or studies on general

characteristics and theories of the size distribution itself (Luttmer, 2007). I add an endoge-

nous network perspective to this research and use it to further explore the determinants of

the firm size distribution and the sources of granularity. My work also fits naturally with

Hottman et al. (2016), who use detailed retail scanner data on consumer non-durables to

suggest ‘firm appeal’ is the dominant source of firm heterogeneity, accounting for 50-70% of

firm size. Holmes and Stevens (2014) also provide evidence that demand characteristics are

the main source of firm heterogeneity, in contrast to standard Melitz applications. In my
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case, the input-output requirements of downstream firms translate into a dominant source

of firm appeal, and therefore are a large determinant of firm size.

My argument is also related to recent work on customer-supplier relationships, especially

Barrot and Sauvagnat (2016), who study the disruption of production networks after nat-

ural disasters. In addition, research on customer-supplier relationships in Japan (Bernard

et al., 2015; Carvalho et al., 2014) and the US (Atalay et al., 2011) suggests larger firms

have different input-output characteristics than smaller firms. Most recently, Lim (2016)

studies creation and destruction of firm-firm relationships, although he notes the difficulty

of matching geographic characteristics. Typically, customer-supplier relationship data only

includes an indicator for whether a firm supplies another firm, not the strength of the rela-

tionship or the commodities made and used. In my case, I have measures of the strength of

the interaction between firms. To this research, I add a characterization of the complexity

of the production network in Canada.

These papers are also part of a recent wave of interest in the formation and effects of

social and economic networks. Carvalho and Voigtländer (2014), Oberfield (2017) and Jones

(2011) each apply these ideas specifically to production and growth, whereas other works

focus on volatility and contagion in financial markets such as Acemoglu et al. (2015) or Elliott

et al. (2014), or network formation and volatility in Anthonisen (2016). Other applications

and background on network measures used in this paper can be found in Jackson (2010).

In Section 1.3, I present a simple, but necessary, extension to the Cobb-Douglas input-

output model used in Acemoglu et al. (2012) to allow three features crucial to reconcile

the empirical regularities in the economy: I incorporate productivity variation and substi-

tutability across firms and unobserved demand network characteristics. The asymmetry of

the production network and the productivity distribution combine to determine firm sizes,

which is the key to evaluating the granularity of the economy and its effect on aggregate

volatility. In Section 1.4, I present the firm-level volatility and production network data.
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I document an unbalanced production network at a disaggregated level, with a few firms

acting as central suppliers to the network.

In Section 1.5, I calibrate the model to uncover the underlying demand characteristics

network from the endogenous, observed input-output network and evaluate the competing

theories of the microfoundations of aggregate fluctuations. In Section 1.6, I present results.

Previewing the main calibration results, the productivity distribution is not heterogenous

enough to account for the asymmetry in the observed production network. The majority of

the firm size distribution is due to the underlying demand network, consistent with results

in Holmes and Stevens (2014) that challenge the reliance of the firm size distribution on

productivity alone. In addition, higher order interconnections are economically significant

determinants of the firm size distribution. Turning to the macroeconomy, I find idiosyn-

cratic shocks can account for approximately 32% of aggregate volatility, and that removing

variation in productivity would actually increase firm size skewness and aggregate volatility

by 11%.

Section 1.7 concludes, and two Appendices follow, giving details on theory, measurement

and development of the firm-to-firm production network, and other necessary but tedious

details.

1.3 Model

To study the relationships between volatility, endogenous asymmetric production networks

and the factors that determine them, I adapt the sectoral model of Acemoglu et al. (2012),

which is itself based on Long and Plosser (1983). There are three key additions.

First, I study individual firms and not sectors. Although technically easy (e.g., relabeling

sectors as firms), it puts the focus on the determinants of granularity—is it the production

network or productivity? This becomes crucial as we turn to the study of a very disaggregated

economy, which is the primary reason for studying microfoundations of aggregate volatility.
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Third, and most importantly, I relax the assumption that the production network is

exogenous. In my model, a firm may be a central supplier of the network because it is a

required input in many other products (it has many high unobserved demand characteristics)

or because it is so productive that many other firms substitute toward it.

To introduce these features, I need a model in which productivity and unobserved demand

characteristics can vary independently to create an observed firm-firm production network

that I can take to the data. I give a table of important notation in Table 1.5 in Appendix 1.8.

In general, I use capital letters to refer to matrices, lowercase to refer to vectors and elements

of vectors and matrices, latin characters for observed variables and greek characters for the

equivalent unobserved variables. For example, G = [gij] is the observed expenditure share

matrix, Γ = [γij] is the unobserved demand matrix.

1.3.1 Model Basics

To start, there are R regions. A representative household in a specific region r inelastically

supplies a labour Lr, and has Cobb-Douglas preferences over N different goods (I relax this

assumption later, but it is useful to focus first on firm-firm demand characteristics),

ur(cr) =
∏
i∈N

cλ
ri

ri (1.1)

where cri is region r’s consumption of good i. There is free migration between regions, so

that the wage w in equilibrium is constant across regions. Later, I normalize w = 1.

Each good is produced by a single firm using Cobb-Douglas combination of labour and

a firm-specific intermediate input which is itself a CES aggregate of other products,

qi = zil
β
i

(∑
j∈N

γ
1
η

ijq
η−1
η

ij

) (1−β)η
η−1

(1.2)

where zi is productivity, β is the labour share in production, qij is the quantity of firm j’s

product demanded by firm i, and η is the elasticity of substitution between intermediates.

The crucial part of production is γij ≥ 0, which is the exogenous direct input coefficient. If
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γij is high, then independent of firm j’s productivity, firm i requires a lot of firm j’s input

to produce. If γij is low but positive, then firm i may still demand a lot of qij if firm j is

very productive. In this way, the endogenous production network is determined jointly by

productivity, substitutability and unobserved demand characteristics. Firm i can only draw

labour from its region r. There can be multiple firms in any given region.

With perfect competition, prices equal marginal costs for firm i,

pi = Cz−1
i

(∑
j∈N

γijp
1−η
j

) 1−β
1−η

(1.3)

where C ≡ β−β(1− β)β−1wβ is independent of i.

pri =
∏
i∈N

(
pi
λri

)λri
(1.4)

The full derivation of the model, along with any extra notation needed, can be seen in

Appendix 1.8.1.

1.3.2 Important model features

The model is simple, but it delivers several important results that are typically ignored when

looking at models of production networks.

Remark 1 Observed expenditure shares depend on productivity and unobserved demand

characteristics.

The input-output tables provided by statistical agencies give an expenditure share of industry

i on goods from industry j. The firm production network I detail in the previous section is

constructed in a similar way, an expenditure share of firm i on firm j. If we assume production

is Cobb-Douglas, then the expenditure share parameter in production exactly determines the

observed expenditure share. This is no longer true if the elasticity of substitution is not equal

to 1. Define the observed expenditure share gij,

gij =
pjqij
piqi

(1.5)
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In equilibrium, this simplifies to

gij = (1− β)

[
γijp

1−η
j∑

k∈N γik(pk)
1−η

]
(1.6)

If η = 1, the observed expenditure share is exactly determined by the relative exogenous

coefficient γij (that is, if you rederive the solution starting with η = 1 in the production func-

tion). However, it is clear that the observed expenditure shares are jointly determined by

the vector of direct input coefficients γi· and the vector of prices, which are themselves deter-

mined by the vector of firm productivities (and more complex interconnections). Again, the

observed production network is endogenously determined by the vector of firm productivities

and demand characteristics.

Remark 2 Expenditure shares still “determine” size, but they say nothing about the under-

lying determinants of the size distribution.

In an important result, Acemoglu et al. (2012) shows that the vector of industry sizes,

normalized by total sales in the economy, which he calls the influence vector v, is the crucial

link between the production network network and volatility. The influence vector determines

the extent to which microeconomic shocks contribute to aggregate volatility, and the influence

vector is determined by the characteristics of the exogenous production network. Hence their

claim that the production network is the main determinant of aggregate volatility. Here

I show that the same holds for the observed production network. That is, an empirical

association between the influence vector and observed production network does not tell you

the effect of the production network on volatility, because the observed network may be

entirely determined by productivity. Write the system of market clearing equations,∑
r∈R

pricri +
∑
j∈N

τijpiqji = piqi, for i ∈ N (1.7)

And rewrite in terms of gij using (1.5),∑
r∈R

pricri +
∑
j∈N

gjipjqj = piqi, for i ∈ N (1.8)
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Then a similar derivation to Acemoglu et al. (2012) (see Appendix 1.8.2) gives you the

influence vector as a function of the matrix of observed expenditure shares G = [gij], observed

demand shares A = [ari], and regional labour L = (L1, . . . , LR),

v′ = β

(
L′

1′L

)
A(I −G)−1 (1.9)

The influence vector, v, is always related to the observed production network, but the ob-

served production network is endogenous. So observing the association between the influence

vector and the production network does not give you any information on the importance of

the underlying demand characteristics, Γ = [γij], or region demand characteristics, Λ = [λri].

Example 1 Suppose γij = 1 for all i, j ∈ N . Then there is no exogenous demand variation,

and all of the observed production network characteristics are due to productivity.

If γij = 1, then all firms use the same intermediate bundle and face the same intermediate

input price. This means the expenditure share equation (1.5) reduces to

gij = (1− β)

[
zη−1
j∑

k∈N z
η−1
k

]
(1.10)

Which is determined solely by relative productivities. In this case, if productivities are

distributed with a power law, we will still observe an influence vector consistent with the

unbalanced production network, even though the underlying demand characteristics are ho-

mogenous.

Example 2 Suppose zi = 1 for all i ∈ N for all i, j ∈ N . Then there is no productivity

variation, and all of the observed production network characteristics are due to the exogenous

demand characteristics.

When productivities are identical across all firms, the expenditure share terms reduce to

gij = (1− β)

[
γijp

1−η
j∑

k∈N γikp
1−η
k

]
(1.11)

where the prices can be written as a recursive function of prices and demand parameters,

which implies the expenditure shares are determined only by demand parameters.
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1.3.3 Outdegree and unbalanced production networks

An unbalanced production network is one in which individual firms are central suppliers to

the entire economy. The easiest way to ask how central a firm is by adding up the demand

parameters of a firm’s customers (unobserved outdegree, δi), or the observed expenditure

shares of a firm’s customers (observed outdegree, di),

δi =
∑
j∈N

γji; di =
∑
j∈N

gji, (1.12)

Example 3 Suppose γij = δj/N , for j ∈ N .

Expenditure shares are

gij = (1− β)

[
δjz

η−1
j∑

k∈N δkz
η−1
k

]
(1.13)

Observed outdegree is

di = (1− β)

[
δiz

η−1
i

(1/N)
∑

k∈N δkz
η−1
k

]
(1.14)

And one element of the influence vector is

vi =
β

N
+ (1− β)

[
δiz

η−1
i∑

k∈N δkz
η−1
k

]
(1.15)

This examples highlights the dependence of the influence vector on productivity and the

unbalanced production network—the distribution of vi is determined by the distribution

of δiz
η−1
i . Recall that the argument for microfoundations of aggregate shocks requires the

distribution of vi to have a thick tail even as the number of firms grows large. However, as

the number of firms grows large, the thick tail of vi will tend to be dominated by the thickest

tail of the two distributions of outdegree and productivity.

1.4 Data

The microdata are from several sources: the Annual Survey of Manufacturing (ASM), the

Surface Transportation File (STF), the detailed-confidential Input-Output and Supply-Use
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tables (IOT), the Inter-Provincial Trade Flow file (IPTF), and the Import-Export Register

(IER). For more details of each database and on data construction and benchmarking, see

Appendix 1.9.

The establishment data is from the ASM, a defacto census of industrial output in Canada.

It is a long-running annual panel of manufacturing establishments, including data on ship-

ments by destination province (and exports), and inputs and outputs by commodity.

I analyze volatility over the period from 1990 to 2010, covering several volatile periods

in Canadian manufacturing, including in the early 1990s, as well as 2001 and the Great

Recession. Aggregate volatility, measured by the standard deviation of the aggregate growth

rate of total output, over this period was approximately 6% in manufacturing, slightly higher

than the overall for Canada during the same period, around 4%.

The trade data is from the STF, a transaction-level database of goods shipments in

Canada, including trade to and from the United States. Each shipment includes value,

tonnage, commodity classification, mode, shipper and receiver names, addresses and postal

codes. This allows the identification of origin and destination establishments from the ASM,

as well as establishment origins and final demand destinations.

1.4.1 Skewed distributions: output, productivity and demand

In this section, I document the skewness in each feature of the economy. For one-dimensional

firm measures (i.e., firm size and firm productivity), I measure skewness with the herfindahl,

the 90/10 percentile ratio and the slope of the right tail of the distribution on a log-log

rank-size plot. Herfindahls are directly related to the granular theory (see Gabaix, 2011),

with more concentrated distributions supporting more aggregate volatility. To estimate the

shape parameter of the tail of the distribution, following Gabaix and Ibragimov (2011), I

trim the distribution to the top 20th percentile of variable x and estimate

log(rank(xi)− 1/2) = α− β log xi (1.16)
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The estimated shape parameter β̂ is a measure of the strength of the asymmetry in the

distribution—a shape parameter of 1 is Zipf’s law.

In the Canadian manufacturing sector, a few industries play outsized roles in output,

employment and value-added. Transportation equipment production alone accounted for

21.5% of total manufacturing output in Canada in 1997, and the top ten firms in that

industry account for the vast majority of its output. The herfindahl of firm sales is 0.048,

and the tail parameter of the log-log rank-size plot is 0.99. The firm size distribution is

clearly skewed.

I measure firm productivity in several ways. First, labour productivity, defined as total

value-added divided by employment. Next, labour productivity, defined as total value-added

divided by total payroll. Next, näıve total-factor-productivity, measured as the residual of

a log-linear regression of output on employment, capital and total input cost. Finally, the

estimation procedure developed by Gandhi et al. (2013), which I refer to as TFP (GNR).

Each method has benefits and drawbacks. The goal is to rely on the robustness of

the results to a variety of different productivity estimates, rather than stick to a single

productivity estimation procedure. First among the drawbacks, all estimates are of revenue

productivity, not physical productivity (see Foster et al., 2008, for a discussion of the relevant

differences). The drawback here is not as stark as it would be in reduced form studies

that rely on the difference between revenue TFP and physical TFP, since I can recover

the unobserved demand characteristics in the model, conditional on the assumptions. The

productivity measures and results are consistent with previous work on firm heterogeneity,

specifically that demand characteristics matter more for firm heterogeneity than physical

productivity itself. Therefore, although I have no a priori justification for only using revenue

productivity, the results suggest revenue productivity is a decent measure of productivity,

as long as I account for the unobserved demand characteristics in the model.

In addition, both labour productivity measures have the obvious drawback of being
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partially determined by capital. Using payroll instead of employment tends to reduce this

bias (since firms with higher capital-per-worker tend to pay higher wages, which reduces the

variation in the payroll-based measure due to capital). Again, the real strategy is to show

robustness across each measure.

The observed production network is defined by expenditure shares between firms, G =

[gij], and the firm-region expenditure shares A = [aij]. A directed link exists from firm j

to firm i if i buys some positive amount of firm j’s output. The intensity of the link is

determined by the value of gij ∈ [0, 1]. In this setting, observed (di) and unobserved (δi)

outdegrees are

gi =
∑
r∈R

ari +
∑
j∈N

gji; δi =
∑
r∈R

λri +
∑
j∈N

γji (1.17)

The observed shares and show considerable asymmetry. As we saw in the model in Section

1.3, the asymmetry of the influence vector and the asymmetry of the observed production

network do not necessarily let us infer anything about the underlying economic relationships

between firms. We only know that a firm buys a lot of input from another firm, not why.

1.4.2 The importance of higher-order interconnections

Can we simplify the study of the complex firm-firm network to a one-dimensional measure?

Acemoglu et al. (2012) cite outdegree as the main measure of network importance; can we

focus on that one-dimensional firm measure and leave the complex network alone? Here, I

show that one-dimensional measures do not explain much of the firm size distribution, and

therefore higher-order interconnections are significant factors in explaining the economy—we

cannot rely on one-dimensional firm measures alone.

Suppose the input-output connection is constant across firms, and equal to δj/N for firm

j, as in Example 3. Then first-order outdegree and productivity alone explain the firm-size

distribution,

log vi = χ+ (η − 1) log zi + log δi, (1.18)
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If this equation defines the firm-size distribution, estimating this equation with OLS should

give an R2 close to 1, subject to measurement and numerical error. However, the estimated

R2 is only 26.4% (about 5% when including productivity alone, and 21% when including

outdegree alone). This leaves 73.6% of the firm-size distribution unexplained, which means

the higher-order interconnections matter—it matters which firms you supply, and which

firms they supply, and so on, and the complex effects of the network cannot be reduced

to one-dimensional firm measures. Note that using a skewed distribution δj as demand

parameters implies (skewed across suppliers j, constant across customers i within a given

supplier) implies skewed distributions of second-order and higher-order outdegrees as well

(see Acemoglu et al., 2012). This suggests it is not only the higher order demand connections,

but how they interact with productivity as well.2

1.5 Calibration

In this section, I calibrate the model to match features of the data to further explore the

relationships between productivity, the unbalanced production network and volatility. In ad-

dition, I add iceberg trade costs to the model to attempt to account for Canadian geographic

characteristics. Instead of relying on asymptotic results to infer which factor dominates the

size distribution (see Appendix 1.8.3), using the model described in Section 1.3, I use data on

firm productivity z, trade costs T = [τij], the observed region demand A, and the observed

input share matrix G to solve for the unobserved region demand characteristics Λ and the

unobserved technical requirement matrix Γ.

Although final demand did not add to the explanation of the model and asymptotic

theory, it is important empirically. Therefore, to match the data better, I change the regional

2δi is calculated as the column sums of Λ plus the column sums of Γ. Using observed outdegree (via A
and G) gives similar results. Variation in β also matters quantitatively for the firm size distribution, but
this again suggests it matters which firms you supply, and who they supply, and so on, not just that you
have a high outdegree.
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consumer’s utility function to a CES combination of each product,

ur(cri) =

(∑
i∈N

λ
1
ε
ric

ε−1
ε

ri

) ε
ε−1

(1.19)

Where cri is region r’s consumption of firm i’s output. Now the unobserved final demand

characteristic λri is similar to a γji in firm j’s production function, and the observed final

demand share ari is similar to the observed expenditure share gji. In addition, variation

in the value added share of output per firm matters for the distribution of output. After

adding these features, the goal is to use the model to uncover the unobserved region-firm

and firm-firm demand parameters from the data.

1.5.1 Parameters

There are several sets of parameters that determine the model. Most of the parameters I

can select directly from data, a few I need to set, and the rest I use the model (and the given

parameters) to solve. The observable set of parameters are: output si, the expenditure share

matrices A and G, value added shares βi, productivities zi, regional income wLr, and trade

costs T . Next, I set the elasticities of substitution η and ε at 2. Finally, using the data and

model, I solve for the unobserved demand parameters Λ and Γ. For a full description of the

data sources, benchmarking, calibration and solutions to the model, see the Appendix.

1.5.2 Productivity vs. demand

Productivity and demand characteristics are tough to define. Productivity zi is some tech-

nology specific to firm i that tells us how effective that firm is at turning inputs into outputs.

However, with CES production technology, firm i is more productive (and is larger) if it uses

more inputs (and γij = 1 for all inputs j), even holding zi constant. In this case, even

though the demand characteristics are increasing its size, we’d like to associate that effect

with productivity. In other words, if we normalize the demand characteristics γij for each

i, and associate that effect with productivity instead, we can more accurately describe the
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relative effects of demand and productivity:

qi = Ciw
βi

zi(∑
j

γ
1/η
ij

) (1−βi)η
η−1


︸ ︷︷ ︸

z̃i

(∑
j

[
γ

1/η
ij∑
k γ

1/η
ik

]
︸ ︷︷ ︸

γ̃ij

q
η−1
η

ij

) (1−βi)η
η−1

, (1.20)

and I refer to z̃i as augmented productivity, and Γ̃ as augmented demand. In the following

empirical results, I use these augmented measures instead. The final results using the aug-

mented measures suggest demand accounts for a significant portion of firm size, and using

the raw productivity and demand measures only reinforce that result. Using the augmented

measures serves to adjust for a producer’s demand characteristics that results in higher pro-

ductivity. It may also adjust for bias in raw productivity measures, since the model uncovers

demand parameters that justify the size distribution—if a firm with low raw productivity zi

ends up with large measured demand characteristics, then the raw productivity measure was

not enough to justify the firm’s size, and the demand characteristics provide an augmented

productivity measure z̃i that is correct and consistent with the model and data.

1.5.3 Dynamic model

To adapt the static model in Section 1.3 to include volatility, I use a strategy similar to

Acemoglu et al. (2012). In each period, firms receive idiosyncratic demand shocks γ′ijt and

λ′rit, as well as productivity shocks z′it. In each period, the equilibrium is equal to the static

model with the new parameters γijt = γijγ
′
ijt, λijt = λijλ

′
ijt, and zit = ziz

′
it.

There are several important factors in the dynamic model that help us study the micro-

foundations of aggregate fluctuations, and the relative contributions of granularity, geography

and exogenous production characteristics to aggregate volatility. Similar to the rest of the

paper, the difference between the unobserved and observed parameters matters. The data

are observed sales growth rates, but we would like to know the unobserved idiosyncratic

shocks that gave rise to them. Furthermore, uncorrelated idiosyncratic shocks naturally re-

sult in correlated sales growth rates, depending on the linkages between firms and firms, and
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firms and regions.

Next, demand and productivity shocks may contribute differently to aggregate volatility.

In previous work (see, e.g., Acemoglu et al., 2015; Shea, 2002), productivity shocks only

propagate downstream, and demand shocks only propagate upstream. However, using a

CES function in productivity and demand, both types of shocks can propagate in both

directions. For example, a positive productivity shock can propagate upstream because it

affects downstream expenditure for the product (positively, if the elasticity of substitution

is greater than one).

The distinction between demand and productivity is an important factor in the literature

on the firm-size distribution (see Foster et al., 2008, and Section 1.3 above), so it’s reasonable

to expect the same pattern in volatility. Demand variation by firm contributes significantly

more to the firm-size distribution than does variation in productivity. Similarly, idiosyn-

cratic demand shocks may contribute significantly more to volatility than does idiosyncratic

productivity shocks.

The last important note: idiosyncratic shocks may or may not be correlated. First, I

attempt to match aggregate volatility by using uncorrelated shocks, but if the simulations

cannot match the data, I’ll re-examine the assumptions, and see how far idiosyncratic shocks

can go with reasonable parameter estimates.

1.5.4 Counterfactuals of the firm size distribution

To examine the effect of the demand network, productivity, and the interplay between these

factors, I perform several counterfactuals on the data and model. The general idea is to

remove variation in one or more of the parameters, solve the model, and (i) compare the

true firm density with the counterfactual firm density, and (ii) regress the firm size from

the data on the firm size implied by the counterfactual. The density comparison gives an

effective visual comparison of the effect of each factor, but lacks sufficient detail to reject

any hypotheses. Specifically, the firm density may be similar, but the rank of firm sizes may
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be scrambled, suggesting the distribution of parameters may give rise to similar aggregate

effects, but the underlying parameters do not match the data well. In this case, it is better to

compare the individual firm sizes with their corresponding counterfactuals. That is, compare

firm i’s actual size vi with its implied size v̂xi after performing some counterfactual x. That

gives a better idea of what is truly determining the density by asking what determines the

individual units that make up the density.

Demand network

In order to test the importance of the unobserved demand network to the firm size distri-

bution, I eliminate variation in all other factors, recalculate the model and compare the

resulting firm sizes with the firm sizes observed in the data. Specifically, I set zi = z̄ and

τij = τ̄ , and leave βi, Λ and Γ at their original levels, and then recalculate the set of firm

sizes vi implied by the model.

The importance of higher order interconnections, counterfactual version

In Section 1.4.2, I found that higher order interconnections were significant determinants of

the firm size distribution (or more specifically, one dimensional firm attributes like produc-

tivity and outdegree cannot explain much of the observed firm size distribution, which leaves

the rest to be explained by the interactions betweent the two). Here, I offer similar evidence

from a different method. Suppose the counterfactual firm demand networks Λ′ and Γ′ were

such that the outdegrees were the same as the original networks, but the variation across

customers for a given supplier was eliminated. Instead of variation across γij for a given j,

they are all set at a constant value of δj/N . The biggest source of change here is the exten-

sive margin—setting the demand network to a constant adds all the firm connections that

originally did not exist, turning the network from incredibly sparse to as dense as possible.

Then, keeping productivity and value added shares as they are, recalculate the firm sizes.

This strategy keeps the outdegree centrality of a firm constant across the data and coun-

terfactual, but eliminates the true variability in the higher-order interconnections betweens
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firm demand and productivity. Specifically, a firm that had been a central supplier to some

subset of the economy, the same firm is of equal importance to the economy, but spreads

the importance of its demand over the entire set of firms in the economy. This eliminates

variation in the set of customers each firm has (and the set of customers those customers

have), while keeping its ‘importance’ measures (and ranking thereof) intact. The resulting

equilibrium sizes tell us how important the higher-order interconnections are for the economy.

Again, it is important to note that the skewness in the distribution of outdegree shown

by Acemoglu et al. (2012) is not enough to explain the firm size distribution, since a skewed

distribution of outdegree that results from a γij that is constant across i will result in a

skewed distribution of higher order outdegrees, but there’s no guarantee that the resulting

second order outdegree distribution explains firm sizes. In other words, there may be higher

order variation in the data that does not match the pattern implied by a constant γij across

i. So, the evidence here will show not only that the higher order interconnections matter for

the shape of the firm size distribution, but that the higher order interconnections matter for

explaining the individual firm sizes themselves.

Productivity

Here, I ask whether productivity alone can match the firm size distribution. To remove the

demand from the model, I eliminate all variation in demand and calculate the implied firm

sizes. To be specific, I set γij = 1/N for all i, j ∈ N and λri = 1/N for all r ∈ R and i ∈ N ,

and τij = τri = 1 for all r ∈ R and i, j ∈ N .

1.6 Results and discussion

There are several main results. The counterfactual firm densities are shown in Figure 1.1.

The herfindahl, ratio of 90th/10th percentiles, and regression results are in Table 1.2. First,

productivity accounts for very little, between 5-10%, of the existing firm size distribution.

Second, the demand network accounts for much more, around 60% of the firm size distri-
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Figure 1.1: Counterfactual firm densities

Notes: ‘x’ is the resulting firm size density after removing all variation in the model except value added
shares and the x parameters, where x is ‘Demand,’ or ‘Productivity.’

bution, and much of that comes from higher-order interconnections. Finally, a reasonable

calibration of idiosyncratic shocks can explain approximately one-third of aggregate volatil-

ity.

1.6.1 Counterfactual firm size densities

The firm density defined by productivity alone bears some resemblance to the empirical

density but lacks the long right and left tails, suggesting there are demand characteristics

that make some firms very small and very big relative to their productivity levels. This is

reflected in the herfindahl, which is about 38% of the data, which would make aggregate

volatility that much lower if productivity were the only source of variation in the data (see

Section 1.6.2 for additional volatility results). Furthermore, the R2 of a regression of log vi

on log vxi is 0.092. This shows that productivity, although bearing visual similarities to the

empirical distribution, cannot match the individual firm sizes themselves.

This result is robust to different measures of productivity, including different methods of
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estimating TFP and labour productivity. The fact that productivity does not vary enough or

in the right directions to explain the firm size distribution accords well with other firm-level

studies, including Holmes and Stevens (2014) and Hottman et al. (2016). Both show that

demand characteristics explain much more of the firm size distribution than productivity,

but in much different settings; Holmes and Stevens (2014) focuses on product differentiation

and Hottman et al. (2016) focuses on scanner data for retail goods. Here, I show this

same idea applies if you consider the input-output production network as defining demand

characteristics.

That brings me to my main result: demand parameters explain much more of the firm

size distribution. Visually, the shape of the Demand counterfactual distribution matches

the data somewhat well, especially compared to the other counterfactuals. The mean is

shifted left, with a slightly higher variance, with a similar right tail but longer left tail.

Next, the herfindahl is slightly higher, 0.073 in the counterfactual to 0.046 in the data,

implying volatility would increase if demand were the only firm variation in the economy. In

addition, the percentile ratio is higher, with 54 in the data and 321 in the counterfactual,

which is largely due to the long left tail of the Demand counterfactual distribution (see

Figure 1.1). This significantly reduces the denominator of the 90/10 ratio. In spite of this

drawback, the shape of the distribution of the demand counterfactual is very similar to the

data. The Demand counterfactual does well explaining the individual firm sizes; the R2

of a regression of log vi on log vxi gives an R2 of 0.596, suggesting the demand measures

alone explain 60% of the variation in the firm size distribution. In addition, removing higher

order interconnections reduces the R2 of the counterfactual sizes by 35 percentage points.

Furthermore, the percentiles ratio increases substantially to an unreasonable number, again

because of a very long left tail.

Although other studies of retail goods would consider the Λ and Γ parameters ‘firm

appeal,’ and studies of production networks would call them direct-requirement or input-
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output parameters, they are conceptually the same. Here, an increase in γij could mean an

increase in preference by firm i for firm j’s product, or a technical requirement for i to use

j in production, and both are consistent with demand interpretations in other studies. The

relevant distinction here is that these demand parameters are not constant within a firm j—

different customers, both firms and final consumers, have different preferences for one firm’s

output. The interconnections between a firm’s customer’s preferences, and the preferences

of their customers, and so on, have aggregate implications that single-firm measures cannot

explain.

Note that each counterfactual has drawbacks, and cannot explain the firm size distribu-

tion alone. Specifically, demand explains a lot of the firm size distribution, but the herfindahl

is actually higher after removing variation in productivity. This suggests the factors combine

in complex ways, sometimes complementary (e.g., a firm with high demand characteristics

is located close to its customers), sometimes not (e.g., a firm with higher than average

productivity is in a remote area), to arrive at the final equilibrium.

1.6.2 Volatility

The contribution of microeconomic shocks to aggregate volatility depend on the skewness

of the firm size distribution, and the skewness of the firm size distribution depends on the

factors outined previously. Specifically, the contribution of idiosyncratic shocks to aggregate

volatility can be calculated with the formula

σ̂GDP =
∑
i

(
si∑
k βksk

)
σzi, (1.21)

where the term in brackets is a firm-level Domar weight (sales over total value added), see

Gabaix (2011) for a discussion of the justification Domar weights and Hulten’s theorem.

Using the weighted standard deviation of productivity as a measure of σzi, and writing β as

the share of total value added in total output, this equation can be rewritten

σ̂GDP =

(
h

β

)
σz, (1.22)

24



which provides an easy estimate of the contributions of microeconomic shocks to aggregate

volatility. Using data on h, β, and σz, Table 1.3 shows the relative contribution of microe-

conomic shocks to aggregate volatility. These results are consistent with other studies of

aggregate volatility.

In addition, the formula gives an easy calculation of aggregate volatility using counter-

factual estimates of h and β. The sales herfindahl implied by the productivity distribution

alone is very low, 0.018, and the aggregate value added share is higher at 0.70, giving an

implied idiosyncratic volatility of 0.004, which lowers aggregate volatility by 25% (assum-

ing the macroeconomic factors remain the same). However, using only variation in demand

actually raises the herfindahl to 0.073, raising aggregate volatility by 11% (after accounting

for a slight increase in the value added share).

1.7 Conclusion

In this paper, I ask whether productivity or network asymmetry provide better microfoun-

dations for the propagation of idiosyncratic shocks. If granularity, a skewed firm size dis-

tribution, determines aggregate fluctuations, what determines granularity? Using detailed

data on firm-firm trade in Canada, I study a firm-firm production network and its effect on

aggregate volatility.

To differentiate between productivity and the unobserved demand network, I use a model

in which these factors vary independently and use the production network data to uncover the

model parameters. I find two main results: first, the demand network explains approximately

60% of the observed firm size distribution. One dimensional firm demand measures can only

explain about 25%, which leaves higher order interconnections between firms to account for

35 p.p. of the firm size distribution. This suggests the complex demand network, i.e., your

customers and the customers of your customers, is a significant determinant of the firm size.

Second, I find that productivity only explains 10% of the firm size distribution. Productivity
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does not vary enough to explain the aggregate shape of the distribution and is not correlated

enough with firm size to explain much of the individual sizes themselves.

Finally, reasonable levels of idiosyncratic shocks can account for approximately 32% of

aggregate volatility. Counterfactual estimates suggest that removing cross-sectional demand

variation in the economy would reduce aggregate volatility by 25%, while removing produc-

tivity variation would increase it by 11%.

The major conclusion to draw from this paper, and something that sets the stage for

future work, is that the empirical results confirm the idea that the demand network signif-

icantly determines the firm size distribution and aggregate volatility. Futhermore, higher

order interconnections between firms explain a large part of the firm size distribution. Firm-

firm trade is complex, and studying the implications of the production network for aggregate

volatility, trade, transaction costs, vertical integration, and many other subjects, will require

much more theoretical and empirical work.

1.8 Appendix: Theory

See important model notation in Table 1.5.

1.8.1 Full model

Consumers

There are R regions, with a representative consumer in each with utility function ur(cr),

ur(cr) =

(∑
i∈N

λ
1
ε
ric

ε−1
ε

ri

) ε
ε−1

(1.23)

Labour is inelastically supplied given the stock of labour in region r, Lr. Consumer r’s

problem is

max
cr

ur(cr) s.t.
∑
i∈N

pricri ≤ wrLr (1.24)
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Consumer r must pay a trade cost τri to buy from plant i, so that

pri = τripi (1.25)

The solution gives r’s price index

pr =

(∑
i∈N

λri(τripi)
1−ε

) 1
1−ε

(1.26)

Producers

There are N producers. Producer i’s production function is

fi(li, qi1, . . . , qiN) = zil
βi
i

(∑
j∈N

γ
1
η

ijq
η−1
η

ij

) (1−βi)η
η−1

(1.27)

Producer i’s problem is to minimize cost

min
(li,qi1,...,qiN )

∑
i∈N

pijqij s.t. fi ≥ q̄i (1.28)

Producer i’s input cost for one unit of the intermediate input is

pmi =

(∑
j∈N

γij(τijpj)
1−η

) 1
1−η

(1.29)

Given perfect competition, plant i’s price is (including wages),

pi = β−βii (1− βi)βi−1z−1
i p1−βi

mi (1.30)

Market clearing

Labour is free to migrate between regions. Total labour in the economy is

∑
r∈R

Lr = L (1.31)

Now, each plant i is in a region r, and the total value added produced by those plants in r

add up to total income in that region,

∑
i∈r

βisi = wLr (1.32)
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For goods, producer i supplies the other producers j ∈ N , and each region r ∈ R, giving

market clearing ∑
r∈R

csri +
∑
j∈N

qsji = qsi , for i ∈ N (1.33)

Iceberg trade costs mean producer i ships csri = τricri to region r and qsji = τjiqji. Replacing

those terms and multiplying all terms by pi,

∑
r∈R

piτricri +
∑
j∈N

piτjiqji = piq
s
i , for i ∈ N (1.34)

Equilibrium

Equilibrium in the economy means two sets of prices {pr : r ∈ R}, {pi : i ∈ N}, wage w

normalized to 1, and labour stocks by region {Lr : r ∈ R}, that solve the consumer’s and

producer’s problems for each region and producer, and the labour and goods markets clear.

Solving the model given data

Given data on T , G, A, w, β, solve for Λ and Γ. We must also solve for prices of pr and

pi that are incidental to the desired parameters, and normalize w = 1. In addition, I make

assumptions about the elasticities η and ε. I have price equations:

pr =

(∑
i∈N

λri(τripi)
1−ε

) 1
1−ε

, for r ∈ R (1.35)

pmi =

(∑
j∈N

γij(τijpj)
1−η

) 1
1−η

, for i ∈ N (1.36)

pi = z−1
i β−βii (1− βi)βi−1wβip1−βi

mi , for i ∈ N (1.37)

And share equations:

ari = λriτ
1−ε
ri

(
pi
pr

)1−ε

, for r ∈ R, i ∈ N (1.38)

gij = (1− βi)γijτ 1−η
ij

(
pj
pmi

)1−η

, for i ∈ N, j ∈ N (1.39)
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λri = ariτ
ε−1
ri

(
pi
pr

)ε−1

, for r ∈ R, i ∈ N (1.40)

γij = (1− βi)−1gijτ
η−1
ij

(
pj
pmi

)η−1

, for i ∈ N, j ∈ N (1.41)

And region income equations,

βisi = wli (1.42)∑
i∈R

βisi = wLr (1.43)

∑
r∈R

Lr = L (1.44)

And finally, sizes:

wA′~L+G′s = s, or (1.45)

s = w(I −G′)−1A′~L (1.46)

How many unknowns are there in this system? pr → R, pi, pmi → 2N , Λ → RN , Γ →

N2, s → N , Lr → R, w. So R + 2N + RN + N2 + N + R + 1. How many equations?

R + 2N + RN + N2 + R + 1 + N . The number of equations is the same as the number of

unknowns.

Solving the model given parameters

Once we uncover the underlying parameters of the model, we’d like to simulate it. Given

the same equations, and given with z, β, T (data), η (by assumption), Γ, Λ, solve the same

equations for the outcome variables s, all p, A, G. That is, solve for firm sizes, prices, and

observed input-output parameters.

Solve for Λ, Γ

Given data on T , G, A, w, β, solve for Λ and Γ. We must also solve for the prices pr and

pi that are incidental to the model, and normalize w = 1. In addition, I make assumptions
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about the elasticities η, ε. We have price equations:

pr =

(∑
i∈N

λri(τripi)
1−ε

) 1
1−ε

, for r ∈ R (1.47)

pmi =

(∑
j∈N

γij(τijpj)
1−η

) 1−βi
1−η

, for i ∈ N (1.48)

pi = β−βii (1− βi)βi−1wβiz−1
i pmi, for i ∈ N (1.49)

λri = ariτ
ε−1
ri

(
pi
pr

)ε−1

, for r ∈ R, i ∈ N (1.50)

γij = (1− βi)−1gijτ
η−1
ij

(
pj
pmi

)η−1

, for i ∈ N, j ∈ N (1.51)

To solve this system, propose initial values for Λ0 and Γ0, then solve for all unknowns.

Given those unknowns and the data, solve back for new candidate solutions Λ1 and Γ1, then

check how close the new solutions are to the previous solutions. If they’re close enough, stop,

if not, use the new solutions to generate another set of candidates. Repeat.

1.8.2 Derivation of influence vector

Using the definition of observed expenditure shares,

gji =
τjipiqji
pjqj

(1.52)

Rewrite the system of market clearing equations

∑
r∈R

τripicri +
∑
j∈N

τjipiqji = piqi, for i ∈ N (1.53)

as ∑
r∈R

τripicri +
∑
j∈N

gjipjqj = piqi, for i ∈ N (1.54)
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Then replace τripicri = ariprcr = ariwLr and define total sales as si = piqi,

∑
r∈R

ariwLr +
∑
j∈N

gjisj = si, for i ∈ N (1.55)

Rewrite in vector form, using L = (L1, . . . , LR)′, write a·i as the i-th column of A and g·i as

the i-th column of G,

wa′·iL+ g′·is = si, for i ∈ N (1.56)

Now stack those N equations on top of each other, which stacks the vectors g′·i (now the row

vectors of G′), which gives

wA′L+G′s = s (1.57)

Rearrange and factor out s,

s−G′s = wA′L (1.58)

(I −G′)s = wA′L (1.59)

Then pre-multiply by the Leontief matrix, the inverse of (I −G′),

s = w(I −G′)−1A′L (1.60)

To get the influence vector, use w1′L = β
∑

i∈N si and vi = si/
(∑

j∈N sj

)
, and finally

normalize wages to 1 (w = 1) and take the transpose of both sides:

v′ =

(
β

1′L

)
L′A(I −G)−1 (1.61)

If value-added varies across plants, the relevant equation is

A′
−−−→
(β′v)r +G′v = v (1.62)

Or,

A′
−−−→
(β′v)r = (I −G′)−1v (1.63)
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1.8.3 Asymptotic Theory

Asymptotic results are key to the arguments for and against the microfoundations of aggre-

gate shocks.3 The granular hypothesis relies on a thick tail of the size distribution. The

unbalanced network hypothesis claims the reason why the size distribution has a thick tail

is because of a thick tail of outdegree, a telling characteristic of an asymmetric production

network. Only by combining the two approaches can we understand the forces that shape

the observed centrality and size distributions.

In what follows, I rely especially on the following property of power law distributions:

Remark 3 Suppose the random variables X and Y follow power law distributions with pa-

rameters ζX and ζY . Then the distribution of X + Y and the distribution of XY both follow

power laws with parameter min{ζX , ζY }.

The same result follows for many similar combinations of power law random variables (see

Gabaix, 2009; Jessen and Mikosch, 2006). Using Remark 3, we are interested in explaining

the tail parameter of the size distribution, βv, given the tail parameters of the distributions

of observed outdegree (ζd) and productivity (ζz).

Therefore, if the asymptotic results hold for this economy, network asymmetry cannot be

the fundamental cause of the skewed firm size distribution because of the relative values of

each tail parameter. But like so many other applications of power laws, the reality is not so

black and white. In any case, we must understand the asymptotic argument first, and then

ask if and when is it reasonable to apply it.

The network hypothesis relies on two sequential arguments. First, the tail of the distribu-

tion of the firm-level exogenous production network characteristics must determine the tail

of the distribution of the observed firm-level production network characteristics. Second,

3In Appendix 1.8.4, I use Hulten’s Theorem to show aggregate volatility depends on the herfindahl of
the economy, and the herfindahl of the economy depends on the distribution of outdegree and productivity.
These results are standard when applying the granular and network theories of aggregate fluctuations, so I
omit them and focus on the new idea provided in this paper.
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the tail of the distribution of the observed production network determines the tail of the

firm size distribution. If either of these arguments fail, it is unlikely the underlying demand

characteristics are the cause of the skewed firm size distribution.

I approach the second part of the argument first. For the observed network to matter

asymptotically, the outdegree distribution must have a thick tail. If not, outdegree cannot

be the ultimate source of the thick tail of the size distribution. If the outdegree distribution

does have a thick tail, the parameter must match, or be “close” to matching (in a statistical

sense) the tail of the size distribution. However, the measured tail parameter for the net-

work is 1.21, about 20% higher than the firm size distribution’s parameter of 1.04, which is

consistent with a Zipf’s law distribution of firm size. Therefore ζz < ζd implies the degree

distribution is dominated by some other firm characteristic, and thus does not determine

firm size asymptotically or turn idiosyncratic shocks into aggregate fluctuations.

We can see this conclusion supported by prior research in different settings. A plethora

of research on the firm size distribution conclude it is approximately described by Zipf’s law

in the upper tail (see Luttmer, 2007; Gabaix, 2009), while Acemoglu et al. (2012) measure

the tail of the sector outdegree distribution at 1.38, much larger than the typical Zipf’s law

size distribution parameter of 1.

The first part of the argument, the required relationship between the observed and un-

observed network characteristics is more problematic. The production network data are

necessarily the observed shares, and so depend on both the underlying demand characteris-

tics and other firm characteristics, especially productivity.

To establish this formally, I show that, under the assumptions of the model in the previous

section, the tail of the size distribution is dominated by the thickest tail between productivity

(adjusted for substitutability) and outdegree.

Proposition 1.8.1 Suppose the distributions of outdegree and productivity both follow power

33



laws with parameters ζd and ζz,

P (d > x) = Cdx
−ζdLd(x), (1.64)

P (z > x) = Czx
−ζzLz(x) (1.65)

Here, Ld(x) and Lz(x) are slowly varying functions, Cd and Cz are constants, and ζd

and ζz are positive. Then the size distribution also follows a power law with parameter

min{ζd, ζz/(η − 1)},

P (v > x) = Cvx
−min{ζd, ζz

(η−1)}Lv(x) (1.66)

Proof 1 One element of the influence vector, vi, is

vi =
β

N
+ (1− β)

(
diz

η−1
i∑

k∈N dkz
η−1
k

)
(1.67)

As N → ∞, the first term approaches zero, and the distribution of w is determined by the

relative product term diz
η−1
i , which means

vi → χdiz
η−1
i (1.68)

Fv(x) = Fv
(
χdiz

η−1
i

)
(1.69)

P (v > x)→P (χdzη−1 > x) (1.70)

=P (dzη−1 > χ−1x) (1.71)

P (v > x) =P (dzη−1 > χ−1x) (1.72)

=

∫ ∞
d

P

(
z >

[
x

χd

]1/(η−1)
)

dFd(d) (1.73)

=

∫ ∞
d

Cz

[
x

χd

]−ζz/(η−1)

dFd(d) (1.74)

=χζz/(η−1)Czx
−ζz/(η−1)

∫ ∞
d

dζz/(η−1)dFd(d) (1.75)

For the integral to exist, we need ζz/(η − 1) < ζd. If so, it is a constant (independent of

x), so combine the other constants into Cv = χζz/(η−1)Cz
∫∞
d
dζz/(η−1)dFd(d), and write

P (v > x) = Cvx
−ζz/(η−1) (1.76)

34



So v has a power law distribution with parameter ζz/(η − 1). If ζz/(η − 1) > ζd, we need

to derive it the other way, and end up with a power law distribution with parameter ζd.

Therefore the distribution can be expressed by

P (v > x) = Cvx
−min{ζd,ζz/(η−1)} (1.77)

Or,

logP (v > x) = logCv −min{ζd, ζz/(η − 1)} log x (1.78)

The distribution of productivity has a tail parameter of approximately 1.98, so for a suit-

able choice of η, it is easy to match the empirical tail parameter of the firm size distribution.

In particular, if η ≈ 2.89, the size distribution will approximately satisfy Zipf’s law. It also

could satisfy both, if substitutability for final goods is higher than for intermediates. Note

that similar studies on productivity and size, especially ones focusing on international trade

models, (e.g., see Appendix 1.9.2 for an extension of the model with monopolistic competi-

tion and firm entry and exit) gives the same result—firm size is determined by a combination

of productivity and substitutability, with the size tail parameter being very close to 1 (see,

e.g., a series of papers by di Giovanni and Levchenko and their co-authors (Di Giovanni et al.,

2011; Di Giovanni and Levchenko, 2012, 2013). The difference here is that they observe the

size distribution and assume it must be because of productivity. For more on power laws

and the determination of firm size, see Luttmer (2007) or Gabaix (2009).

Although the asymptotic theory gives clear cut answers as to which factor is responsible

for the shape of the size distribution, the empirical results suggest the truth is somewhere

between the two extremes.

1.8.4 Aggregate volatility depends on the product of the distributions of outdegree and

productivity

Aggregate volatility scales according to ||v||2, according to Hulten’s Theorem (Hulten, 1978)

and Theorem 1 of Acemoglu et al. (2012). To add to those results, I characterize the
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behaviour of ||v||2 in terms of the distributions of outdegree and productivity.

Write an element of the influence vector vi as

vi =
β

N
+ (1− β)

(
diz

η−1
i∑

k∈N dkz
η−1
k

)
(1.79)

Then the Euclidean norm of v can be written

||v||2 =

√√√√√∑
i∈N

 β2

N2
+ (1− β)2

(
diz

η−1
i∑

k∈N dkz
η−1
k

)2

+ 2(1− β)

(
β

N

)(
diz

η−1
i∑

k∈N dkz
η−1
k

)
(1.80)

||v||2 =

√√√√β2

N
+ (1− β)2

∑
i∈N

(
diz

η−1
i∑

k∈N dkz
η−1
k

)2

+ 2(1− β)

(
β

N

)∑
i∈N

(
diz

η−1
i∑

k∈N dkz
η−1
k

)
(1.81)

Rewrite slightly,

||v||22 =
β2

N
+ (1− β)2

∑
i∈N

(
diz

η−1
i∑

k∈N dkz
η−1
k

)2

+ 2(1− β)

(
β

N

)
(1.82)

||v||22 =
β2

N
+ 2(1− β)

(
β

N

)
+ (1− β)2h2

g (1.83)

||v||22 =
β(2− β)

N
+ (1− β)2h2

g (1.84)

||v||22 ≥ (1− β)2h2
g (1.85)

Implying ||v||22 = Ω
(
h2
g

)
. In addition, ||v||22 = O

(
h2
g

)
. To see this, first note

h2
g ≥

1

N

(∑
i∈N

diz
η−1
i∑

k∈N dkz
η−1
k

)2

=
1

N
(1.86)

which we can rearrange to get 1/(Nh2
g) ≤ 1.

||v||22/h2
g =

β(2− β)

Nh2
g

+ (1− β)2 (1.87)

Meaning

lim sup
N→∞

||v||22
h2
g

= lim sup
N→∞

[
β(2− β)

Nh2
g

+ (1− β)2

]
(1.88)

36



Using the result that (Nh2
g)
−1 is bounded above by 1,

lim sup
N→∞

||v||22
h2
g

≤ lim sup
N→∞

[
β(2− β) + (1− β)2

]
(1.89)

lim sup
N→∞

||v||22
h2
g

≤ β(2− β) + (1− β)2 <∞ (1.90)

So ||v||22 = O
(
h2
g

)
, which combined with the Big-Ω result gives

||v||2 = Θ (hg) (1.91)

1.9 Appendix: Data and Empirics

1.9.1 Data sources

Additional descriptions of available data available at CDER: http://www.statcan.gc.ca/

eng/cder/data.

Annual Survey of Manufacturing (ASM)

Also called the Annual Survey of Manufacturing and Logging (ASML). See http://www.

statcan.gc.ca/eng/survey/business/2103, and an example survey at http://www23.

statcan.gc.ca/imdb-bmdi/instrument/2103_Q31_V3-eng.pdf. Years available: 1961-

2012.

Surface Transportation File (STF)

Based on the Trucking Commodity Origin and Destination File and Railway Universe File.

Transaction-level trade database with shipper and receiver names, addresses and postal

codes. Used to identify input shipments between establishments, and final demand ship-

ments from establishments to regions. Includes information on carrier, mode, commodity

classification (SCTG), value, tonnage, distance, and revenue to the carrier. Years available:

2004-2012.
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Inter-provincial Trade Flows (IPTF)

CANSIM Tables 386-0001, 386-0002, 386-0003, 386-0004, http://www5.statcan.gc.ca/

cansim/a04. I use the detailed-confidential versions of these tables in the paper. A province

× province × commodity dataset of trade, including international imports, exports and

re-exports. Years available: 2002-2012.

Input-Output Tables / Supply-Use Tables (IO)

CANSIM Tables 381-0033, 381-0034, 381-0035, http://www5.statcan.gc.ca/cansim/a04.

I use the detailed-confidential versions of these tables in the paper. An province × industry

× commodity dataset. Industry classification is IOIC, commodity classification is IOCC.

Years available: 2002-2012.

Import-Export Registry (IER)

Records enterprise-product level imports and exports. I use this to impute the import

share of each firm in order to generate an ‘international’ region. For more information, see

http://www.statcan.gc.ca/eng/cder/data#a2.

1.9.2 Intensive and Extensive Margins of Volatility

In the main text, I assume there is no extensive margin of volatility. One may wonder how

the results change if I allow for plant entry and exit. To test this empirically, I use a similar

decomposition to Di Giovanni et al. (2014).

First, write sales of plant i at year t as sit. Let It be the set of plants operating in year

t, and It/t−1 be the set of plants operating in both years t and t− 1. Then the log-difference
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aggregate growth rate of sales is

g̃At ≡ ln

(∑
i∈It

xit

)
− ln

∑
i∈It−1

xit−1

 (1.92)

= ln

( ∑
i∈It/t−1

xit∑
i∈It/t−1

xit−1

)
−

[
ln

(∑
i∈It/t−1

xit∑
i∈It xit

)
− ln

(∑
i∈It/t−1

xit−1∑
i∈It−1

xit−1

)]
(1.93)

= gAt − ln

(
νt,t
νt,t−1

)
(1.94)

where gAt is the intensive margin of growth and the other term is the extensive margin of

growth. Now aggregate volatility is

σ̃2
A = σ2

A + σ2
ν − 2Cov(gAt, gν) (1.95)

Calculating each of these in the data, we see that the extensive margin matters little (con-

sistent with the results in Di Giovanni et al. (2014). Although large establishments do exit,

it is more common for one to have large losses in one year, have a low value of output, and

then exit the following year. This puts the volatility on the intensive margin, not extensive.
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Table 1.1: Skewness of main variables

Mean Median S.D. 90/10 Tail, β̂

Output ($× 106) 16.46 2.1 147.03 42.92 0.99
Value added ($× 106) 6.42 1.1 36.69 49.80 1.05
Value added share 0.55 0.6 0.18
TFP (Näıve) 1.10 1.0 1.46 2.12 1.98
TFP (GNR) 1.06 1.0 1.17 1.71 1.99
Labour prod. (Emp.) 1.23 1.1 0.85 4.89 3.99
Labour prod. (Pay.) 1.11 1.0 0.60 2.78 3.81
Outdegree 0.45 0.1 2.09 439.11 1.61

Notes: Output and value added are measured in millions of Canadian dollars. The 90/10 ratio is the ratio of
the 90th percentile to the 10th percentile of the distribution of the variable. Output, value added, TFP and
labour productivity are from the ASM, 2010. The tail parameter is estimated using the method of Gabaix
and Ibragimov (2011). Outdegree di is calculated with the observed production networks A and G.

Table 1.2: Counterfactual firm density statistics

Herfindahl 90/10 Coef. R2

Data 0.048 54.0
Demand (§1.5.4) 0.073 321.92 0.536 0.596
Higher Order (§1.5.4) 0.052 14683.71 0.220 0.245
Productivity (§1.5.4) 0.018 27.72 0.379 0.092

Notes: The coefficient and R2 are from a regression of log vi on log vxi, where vxi is the predicted value
of the firm size in counterfactual scenario x, where x can be ‘Demand’, ‘Productivity’ or ‘Higher Order’.
‘Demand’, and ‘Productivity’ counterfactuals are the resulting firm size density after removing all variation
in the model except value added shares and x. ‘Higher Order’ is the resulting firm size density after removing
the higher order interconnections between demand and productivity.

Table 1.3: Microeconomics shocks and aggregate volatility in the data

Productivity, z σz σ̂GDP Rel. S.D.

TFP (Näıve) 0.17 0.019 0.32
TFP (GNR) 0.27 0.031 0.51

Notes: σz is the weighted standard deviation of productivity shocks. I remove industry and region shocks
from z in an attempt to approximate idiosyncratic productivity shocks. The sales Herfindahl in the data
is h = 0.048, the share of value added in aggregate sales is β = 0.41. The implied volatility is defined as
σ̂GDP = σzh/β. Actual value added volatility is 0.06.
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Table 1.4: Robustness of firm size counterfactuals to different measures of productivity

Productivity

LP (Pay.) TFP (Näıve) TFP (GNR)

Coef. R2 Coef. R2 Coef. R2

Demand 0.536 0.596 0.581 0.603 0.549 0.619
Higher order 0.220 0.245 0.210 0.246 0.216 0.239
Productivity 0.379 0.092 0.475 0.146 0.388 0.089

Notes: productivity measures are described in Section 1.4.1. The coefficient and R2 are from a regression of
log vi on log vxi, where vxi is the counterfactual firm size in each case x, where x can be ‘Demand,’ ‘Higher
order,’ or ‘Productivity.’ All coefficients are statistically significant with t-stats of less than 2× 10−16, so I
omit standard errors from the table.

Table 1.5: Table of Notation

R , Set of regions. Abusing notation, R is also the number of regions.

N , Set of plants. Abusing notation, N is also the number of plants.

G , N × N matrix of observed plant input shares. An element gij is
the share of plant j’s input in plant i’s sales.

Γ , N × N matrix of exogenous plant input demand characteristics.
An element γij enters plant i’s demand for plant j’s output.

A , R×N matrix of observed region-plant demand shares. An element
ari is the share of region r’s total expenditure on plant i’s output.

Λ , R ×N matrix of exogenous region input demand characteristics.
An element λri enters region r’s demand for plant i’s output.

T , (R + N) × (R + N) matrix of trade costs. An element τri is the
cost of trade between region r and i, and an element τij is the
cost of trade between plants i and j.

zi , Productivity of plant i.

ε , Final demand elasticity of substitution.

η , Intermediate elasticity of substitution.

βi , Share of value-added in plant i’s production.

Table 1.6: Intensive vs. Extensive Margin Volatility

Rel.
Volatility measure S.D. S.D.

Aggregate Volatility, σ̃A 0.065 1.00
Intensive Volatility, σA 0.066 1.02
Extensive Volatility, σν 0.009 0.14

Notes: Aggregate volatility is the standard deviation of total manufacturing output. Intensive volatility
is the standard deviation of total manufacturing output from firms that are alive in periods t and t − 1.
Extensive volatility is the standard deviation of total manufacturing output from firms that entered or exited
in period t.
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Chapter 2

Correlated shocks within firms

2.1 Abstract

Due to its association with cross-country business cycles, propagation of idiosyncratic shocks,

and even financial contagion, firm comovement is an important facet of macroeconomic

research. However, we know little about whether pairs of establishments within firms comove

more than pairs of establishments from different firms. Using a long panel of Canadian

manufacturing establishments, I investigate the correlations and covariances of within-firm

pairs of establishments and decompose them into labour inputs, intermediates and profit. I

find that within-firm establishment pairs have correlations 0.0477 higher than between-firm

establishment pairs (which have an average correlation very close to zero) after controlling

for industry and region effects. Covarying intermediate input costs account for 49% of the

within-firm comovement effect.

2.2 Introduction

This paper explores the determinants of comovement between and within firms. Firm co-

movement has recently been blamed for things like financial contagion, the propagation

of idiosyncratic shocks, and explaining positive cross-country business cycle correlations.

However, most of the microeconomic research has focused on individual-level measures and

explanations (e.g., size, granularity) and have not focused on the (even more micro-) eco-

nomic linkages between and within firms themselves. I use detailed establishment-level panel

data to investigate the magnitude and significance of these comovements.

The research on firm comovement is broadly divided into macro and microeconomic
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areas. In the macroeconomic literature, aggregate GDP comovement is either associated

with aggregate measures of integration (the country-country strategy) or individual firms

and their integration with other countries (the firm-country strategy).

The country-country studies, such as Frankel and Rose (1998); Kose and Yi (2006),

have little information on the actual mechanism driving the comovement—do establish-

ments within multinationals really comove? Is it because of vertical linkages? Or financial

dependence? Or common firm-level shocks? Is it because of capital, labour, or intermediate

input comovement? Although the qualitative mechanisms seem obvious, we do not seem to

understand them quantitatively (Johnson, 2014).

The firm-country studies in the microeconomic literature on firm comovement attempts

to address and uncover these mechanisms, and have shown that shocks to parent firms are

correlated with aggregate movements in regions where they have affiliate firms (see Kleinert

et al., 2015; Cravino and Levchenko, 2016; di Giovanni et al., 2016, 2017). Overall, the firm-

country research has aggregate results and calibrated models that strongly suggest firm-

comovement can account for a significant amount of cross-country correlations. Previous

empirical and theoretical work on firm comovement (or shock transmission and linkages

in general) identified a myriad of possible causes: vertical linkages Burstein et al. (2008),

internal capital markets Lamont (1997); Stein (1997), technology shocks Atalay et al. (2014),

rent sharing Budd et al. (2005) or labour reallocation Giroud and Mueller (2016). I make

identifying the within and between firm comovement itself the primary goal, and discover

the components of those comovements.

To tackle this problem, I use data from the Annual Survey of Manufacturers, which is

a defacto Census of manufacturing activity in Canada.1 There are approximately 100,000

total plants in the sample, with around 30,000 alive per year. I focus on the period 1973-

1999 to take advantage of consistent surveys and industry classifications. The ASM includes

1The data are available from CDER at Statistics Canada; see http://www.statcan.gc.ca/eng/cder/

data.
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establishment sales, value added, labour and intermediates, as well as the firms that own

the establishments. One difference between this and other firm studies is that I study all

the correlations of all establishments under a common parent, which is slightly different

than a headquarter vs. affiliate analysis. Headquarters often house very different economic

activities than their affiliates, such as mangerial and financial activities versus production in

the establishments. Here, I test whether the production activities in establishments comove,

rather than asking how managerial and production activities are correlated.

There are several advantages of using the ASM over other administrative data typically

used in firm volatility studies. The main advantage is the long period of the sample required

to efficiently estimate covariances between plants.2 In addition, the ASM has detailed and

consistent information on firm ownership, as well as product-level input and output by estab-

lishment to differentiate between possible vertical linkages and firm shocks, and also between

industry shocks and product-level shocks. Note that industry level input-output measures

and industry shocks may not correctly capture the relationships between establishments, due

to the substantial diversity of plant input and output within industries.

This paper makes a significant contribution to the estimation of within-firm comovement

by establishing it and decomposing it into its input components. The key to identifying

within-firm comovement is applying a comprehensive econometric methodology to a long

panel of detailed establishment level data. The strategy I employ is to first calculate corre-

lations between the growth of total sales of each establishment pair in the data. To get a

sense of the magnitude of the problem: tens of thousands of establishments mean hundreds

of millions of establishment-pair correlations. Next, once I have a picture of the dependence

within the economy, I decompose the firm component of shocks into capital and profit, labour

and inputs.

Here, I delve deeper into the mechanisms and theory behind comovement. There is a

2A rule of thumb to judge significant correlations: using the Fisher transformation, the standard error is
approximately (T − 3)−1/2. With only 9 or 17 periods (in some samples), the variability in the correlation
estimates is substantial.
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considerable amount of research around the relationships between parent firms, their sub-

sidiaries and their operating establishments. Shocks may be transmitted through multiple

mechanisms, including technology transfer, operating decisions, legal issues, intermediate

contracts, vertical linkages, labour movement within the firm, other types of reallocation,

or generic firm demand or productivity shocks. In addition, there are regional and industry

shocks that may be attributed to firms, because firms are likely to own establishments with

common characteristics.

As a first stab at the problem, one needs to remove industry and regional shocks at

least and then ask whether establishments that belong to the same firm move together. To

test for vertical linkages within firms, I include establishment level input-output measures.

Furthermore, I decompose sales shocks into profit, labour input and intermediate input

shocks to expose the sources of the within-firm correlation. The results show within-firm

comovement is significantly higher than between-firm comovement, even after accounting for

region and industry shocks, distance between establishments, vertical linkages, and common

product-level inputs and outputs.

I find an establishment has a correlation 0.0477 higher with an establishment within

the same firm relative to an establishment in a different firm. Approximately 49% of the

within-firm effect is due to covarying intermediate input costs.

The rest of the paper is organized like so: Section 2.3 describes the framework I use to

analyze the data and the data itself. Section 2.4 describes the econometric approaches to

analyze the problems and the results, and Section 2.5 concludes. The Appendix follows in

Section 2.6.

2.3 Empirical framework and data

Here, I outline the framework with which to examine establishment correlations. I’ll start

with an overview of the sales growth process for each establishment. There are two important
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ways to think of a sales growth rate: as a combination of industry, province, and idiosyncratic

shocks, and also as a combination of the shocks of the components of sales, like payroll, profit

and intermediate inputs. Once the different parts of the sales growth process are outlined, I

can calculate comovement between establishments after accounting for different parts of the

process.

To account for the possible industry and geographic sources of sales shocks, the estab-

lishment sales growth process, at a first approximation, follows

gsit = θsit + µspt + νsi + usit (2.1)

Where gsit = ∆ log sit, the log-difference growth rate of sales of establishment i at time t, θsit

is an industry-time shock, µspt is a province-time shock, νsi is a time-invariant establishment

effect. usit ≡ λsft + esit is a shock composed of two parts: a firm shock and idiosyncratic

establishment shock. The questions: are gsits are correlated across establishments within a

firm? Are usit?s

Of course, gsit may be correlated within firms because firms tend to own establishments

within specific industries and provinces, and so are subject to common shocks. Removing

those and examining usit, are there common firm shocks that induce correlation within firms?

In addition, sales growth is composed of several components—how do these contribute to

within firm correlation? I do so by recognizing that sales can be thought of as a combination

of profit, payroll and intermediate inputs:

sit = πit + payit + inputit, (2.2)

where sit is sales, πit is profit and capital services, payit is total payroll, inputit is total value

of intermediate inputs. The growth rate gsit can then be decomposed into the weighted sum

of the growth of those components

gsit = wπt−1g
π
it + wpayt−1g

pay
it + winputt−1 ginputit (2.3)
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In turn, each one could be driven by industry, region, firm or other types of shocks. For

instance, a strike in the auto industry could result in a negative labour shock across all

establishments in that industry. Or a carbon tax in BC could affect the price of intermediates

for all establishments in BC. In that case, we should also be interested in the residual growth

of any variable x ∈ V = {π, pay, input},

gxit = θxit + µxpt + νxi + λxft + exit︸ ︷︷ ︸
uxit

(2.4)

A natural question to ask is then, if usit is correlated within firms, does it run through shocks

to employment or something else? For instance, Giroud and Mueller (2016) shows firms

respond to local shocks by reallocating labour across establishments within the firm (here,

that would show up as a negative correlation between payrolls within the firm).

cov(gsit, g
s
jt) =

∑
x∈V

∑
y∈V

cov(wxit−1g
x
it, w

y
jt−1g

y
jt) (2.5)

What is the relationship between each component and common firm ownership?

2.3.1 Data

The data come from the Annual Survey of Manufacturers. The ASM is a long annual panel

of manufacturing establishments in Canada, a defacto census of manufacturing activity from

1961-2011 (although I focus on 1973-1999 to get a more consistent sample with respect to

establishment and firm identifiers, as well as industry classifications). I have observations on

sales, value added, labour (wages and employment), intermediate inputs, and most impor-

tantly, firm ownership information. Industries are classified according to 4-digit SIC (1980).

In addition, I construct establishment-level input-output linkages using the commodity sur-

vey that is included in the ASM for large establishments.

Table 3.1 shows relevant descriptive statistics for the manufacturing sector. Like many

firm or establishment datasets, the distribution of sales and value-added are skewed to the

right, with a relatively small number of establishments making the majority of sales in the
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Table 2.1: Summary statistics.

All estab. Multi-estab. Growth, gxit

(1) (2) (3) (4) (5) (6)
Mean SD Mean SD Mean SD

Sales 37.3 101.4 96.3 324.6 0.075 0.192
Payroll 5.5 15.1 13.7 46.3 0.067 0.240
Profit & capital 9.7 26.4 28.6 85.8 0.071 0.742
Input cost 22.1 60.2 67.5 212.5 0.074 0.282

N. obs. 4885 1797 125008

Notes: The ASM data is at an annual frequency. ‘Multi-establishment’ is the subsample of establishments that are part of
multi-establishment firms for at least one year. There are 76,857 plants in the full sample, and 11,092 in the multi-establishment
sample. Both samples are restricted to establishments that are alive for at least 5 years in order to calculate reasonably accurate
covariances. The static statistics shown [Columns (1–4)] are given for 1990, and are in millions of Canadian dollars. The growth
(gxit) measure is for the multi-establishment subsample only, and calculated over 1974-1999. Profit & capital is everything left
over after removing payroll and input cost from total sales. This includes capital costs.

economy. Before we get started on details, the most important question is whether within-

firm comovements matter—is there enough within-firm “mass” for these shocks to matter

in the aggregate? Yes; the total value added of multi-establishment firms averages around

90% of total manufacturing value added per year. The most important statistics for this

paper are the annual sales growth rates gsit, with a mean of 7.5% and standard deviation

of 19.2%. As a first look at within-firm versus between-firm correlations in sales growth

rates, consider Figure 2.1, the distribution of correlations of within-firms (solid blue line) is

pushed significantly to the right of the distribution of the between-firm correlations (dashed

black line). The mean within-firm correlation is 0.019, which is significantly higher than

the mean between-firm correlation, 0.0037. Establishments are more correlated with other

establishments owned by the same firm. Establishments in the same 4-digit industry are

only twice as correlated than ones in different industries (0.0064 vs. 0.0037) and ones in the

same province are only slight more correlated than ones in different provinces (0.0039 vs.

0.0037). Of course, firmly establishing the importance of within-firm correlations requires

addressing the econometric issues raised earlier.
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Figure 2.1: Density of establishment-establishment correlations, within-firm (solid blue line)
and across firm (dotted black line).

2.4 Econometrics and Results

The economic goal is to understand within versus between firm comovement. The econo-

metric strategy that achieves the economic goal requires the proper analysis of the growth

processes in {gst}Tt=0 = {(gs1t, . . . , gsNt)}Tt=0. I proceed in two steps. First, remove the effects

of industries and regions and recover the residual growth estimates usit = λsft + εsit. Next,

calculate the matrix of correlations of the residual growth rates and compare within-firm

establishment pairs to between-firm pairs. Then decompose the sales growth rates and see

which elements drive the within-firm correlation.

I write the sample correlation of sales growth between two establishments as rij (dropping

the superscript s unless otherwise needed), and use the Fisher transformation to change the

sample correlation to a normally distributed variable,

zij =
1

2
ln

(
1 + rij
1− rij

)
. (2.6)
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Note the standard error of each zij is (T − 3)−1/2 depends only on the number of periods

T . In addition, since contemporaneous correlations are symmetric (and rii = 1) means we

only get N(N − 1)/2 unique correlations. The typical approach to solving inference issues

in these cases are to use multi-way clustering, which I apply at the establishment-pair level.

In order to perform the decomposition, I define

cx,yij ≡ cov(wxit−1u
x
it, w

y
jt−1u

y
jt), (2.7)

where wxit−1 = xit−1/sit−1. Note that wsit−1 = 1, and Equation (2.5) can be rewritten as

cs,sij =
∑

x

∑
y c

x,y
ij .

Next, consider the economic purpose of this paper. The main effect we want to understand

is whether zij is higher or lower if i, j are both owned by a common firm f . To that end,

I define firmij as an indicator for common ownership. Similarly, industryij and regionij are

indicators of common industries and provinces. In addition, I use commodity input and

output information at the establishment level to examine the effects of vertical integration

and other IO measures on correlations. The relevant measures, outlined in Appendix 2.6,

are outputij, inputij, and ioij.

The first thing to do is estimate via OLS the equations

zxij = Xijβ + βxffirmij + exij (2.8)

cx,yij = Xijβ + βx,yf firmij + ex,yij (2.9)

where X is a vector of controls that include common industry and region dummies. The

common industry and region dummies in these regressions serve to check whether industry

and region shocks were removed correctly after estimating Equation (2.1).

To perform the decomposition, recover βx,yf for each component x, y ∈ {s, π, pay, input}

after estimating Equation (2.9). Then the total firm effect on sales comovement can be

decomposed into the firm effects on each component,

β̂s,sf =
∑
x

∑
y

β̂x,yf (2.10)
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Table 2.2: Firm correlation and covariance, usit

Balanced panel Full sample
Cov. Corr. Cov. Corr.

Firm 0.00130∗∗∗ 0.0839∗∗∗ 0.00142∗∗∗ 0.0477∗∗∗

(0.00021) (0.0130) (0.00010) (0.0030)

Industry 4.92×10−5 0.00758 −9.97×10−5∗∗ 8.15×10−5

(9.93×10−5) (0.00517) (3.87×10−5) (0.00114)

Province 8.16×10−5∗∗ 0.00416∗∗ 2.30×10−5∗∗ 0.00100∗∗∗

(3.47×10−5) (0.00176) (1.10×10−5) (0.00031)

Constant 0.000148∗∗∗ 0.00828∗∗∗ −2.19×10−7 0.000636∗∗∗

(2.37×10−5) (0.00126) (7.85×10−6) (0.000207)

Observations 245,520 245,520 56,029,880 53,517,864
R-squared 0.000 0.000 0.000 0.000

Notes: Standard errors calculated using multi-way clustering at the establishment level (i and j). ∗∗∗ and ∗∗ denote significance
at the 1% and 5% level, respectively.

In other words, the average increase in covariance resulting from a pair of plants being owned

by a common firm can be decomposed into the firm effect on each component. Dividing both

sides by β̂s,sf shows the contribution of each component to the total firm effect on comovement.

2.4.1 Results

The results, shown in Table 2.2, show within-firm correlations are positive and significant.

An establishment has on average a correlation coefficient that is 0.0477 higher with estab-

lishments owned by the same firm than with other establishments. In other words, after

accounting for industry and region shocks, residual growth rates are correlated within firms.

This evidence lends support for the firm comovement theory. The results are stronger for

the balanced panel, suggesting longer-lived plants are more likely than short-lived plants to

covary within firms.

Next, I decompose the covariance coefficients into the within-firm effects of sales (s),

profit and capital (π), total payroll (pay), and total intermediate input costs (input). The

majority of sales covariances come from input cost comovement, which accounts for 49% of

the total effect. The covariances of profit and capital within firms matters slightly more than
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Table 2.3: Firm covariance decomposition, usit, u
π
it, u

pay
it , uinputit

β̂x,xf β̂x,xf /β̂s,sf
Corr. Cov. S.D. Corr. Cov. S.D.

Sales 0.081 0.0013 0.036 1.000 1.000 1.000
Profit & capital 0.013 0.0001 0.009 0.160 0.070 0.264
Payroll 0.066 0.0000 0.007 0.810 0.034 0.185
Input cost 0.085 0.0006 0.025 1.047 0.490 0.700

Notes: The remainder of the decomposition comes from covariance of the components with input cost (especially profit &
capital, less so payroll). Profit and capital is everything left over after removing payroll and input cost from total sales. This
includes capital costs. The relative correlation term is only to get a sense of relative magnitudes, it does not actually decompose
(its components do not need to add to 1).

payroll covariances, but both are much lower than input costs. In fact, the majority of the

leftover within-firm effect comes from the covariance of input costs with payroll and profit

(i.e., the off-diagonal terms in the decomposition like β̂input,πf ).

Think of the effect of each component on overall volatility in two parts: size and individual

volatility. The effect on overall establishment volatility will be greater if the component

is a large share of sales, and will be greater if the component is more volatile. In this

view, the decomposition results are consistent with the typical view of establishment inputs:

labour and capital are tough to adjust in response to shocks, so they have low volatility

and contribute less to overall establishment comovement. However, intermediate inputs

vary a lot, and have a large share of sales for most plants, so they make up a lot of the

overall firm comovement effect. Although recent studies have suggesting firms may reallocate

labour across plants within the firm after suffering local shocks (which would induce negative

comovement of payroll within firms), this suggests that overall, labour positively comoves.

This may be because common firm shocks dominate local labour market shocks, either in

magnitude or frequency, or both. This is bolstered by the fact that leaving in firm and

regional shocks gives much higher coefficients on the comovement effect (see Figure 2.1).
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2.5 Conclusion

In this note, I’ve shown that growth rates of establishments within firms are significantly

more positive correlated than establishments that are not owned by the same firm. This

comovement survives, but is reduced, after accounting for the fact that firms are likely to

own establishments in the same industries and same geographic regions. On another note,

about 49% of the covariance in growth rates within firms is due to covarying input costs,

and not labour or profit and capital movements. This is consistent with the fact that labour

and capital are tough to adjust in response to shocks, while intermediate inputs are more

volatile.

This result is significant for the measurement of establishment and firm growth, and the

application of those measures to understanding how volatility is transferred across borders

within firms. Although this study uses domestic plants, it is suggestive that similar mech-

anisms operate across international borders, and contributes to the understanding of how

MNCs contribute to global economic fluctuations.

2.6 Appendix

2.6.1 Data

Data available from CDER in Statistics Canada. The data need some processing in order to

be analyzed in this paper. First, there are two choices for the meaning of “firm”, either the

“parent” or the “ultimate parent”. An establishment may be owned and directly controlled

by firm A (the parent), which is in turn owned by a firm, which is owned by a firm, which is

owned by a much larger firm B (the ultimate parent). I use the ultimate parent to be faithful

to work on MNCs, although an argument could be made that direct parents have much more

control and are more likely to transmit shocks among their establishments, both more often

and more strongly. In that sense, the results may be viewed as an lower bound. On the
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other hand, there would be fewer establishment pairs that have common ownership, which

would reduce the overall effect. In any case, the definition of firm in this case does not seem

to affect the results. In addition, firm identifiers may change over time for reasons unrelated

to business activities. The firm may undergo an organizational change that results in a new

statistical identifier; suppose firm A owns three establishments in the sample, and then all

three establishments have a new firm identifier B at some year t; it’s likely the firm identifier

has changed, or a new firm acquired all of the former direct parent’s establishments—in

any case, the effect is likely to attenuate the effect of firm ownership if anything, but the

proportion of these establishments is very low.

Growth rates have always their own issues with outliers. To deal with this, I experiment

with winsorizing or trimming the log growth rates at different percentiles by year, (0.05,0.95),

(0.025,0.975), (0.01,0.99), and (0.001,0.999). The results do not change. However, the pay-

roll, profit and intermediate numbers are less reliable than sales, and so calculating the

growth rates for the decomposition can result in a smaller sample size. For this reason, I use

the balanced panel sample for the decomposition. I find little difference if I trim the growth

rates to a greater degree (0.1,0.9) and run the decomposition on the full sample.

The input-output measures are defined in a similar way to industry IO measures, but

using establishment commodity data instead of industry commodity data. The relevant

measures are outputij, inputij, and ioij. Output (outputij) is a measure of how similar two

establishments commodity outputs are,

outputij =

∑
c sciscj√∑

c s
2
ci

√∑
c s

2
cj

, (2.11)

where sci is sales of commodity c by establishment i. This measure is called “cosine similar-
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ity”. The Input and IO measures are defined as

inputij =

∑
c inpciinpcj√∑

c inp
2
ci

√∑
c s

2
inpj

, (2.12)

ioij =
1

2

 ∑
c inpciscj√∑

c inp
2
ci

√∑
c s

2
cj

+

∑
c sciinpcj√∑

c s
2
ci

√∑
c inp

2
cj

 . (2.13)

(2.14)

2.6.2 Robustness

To check the robustness of the conclusions to different specifications, I perform the following

checks. In all checks, I continue the practice of using both a balanced panel and the much

larger unbalanced panel. First, I include measures of vertical integration and input and

output competition to see if the intra-firm correlation is due to similar input-output struc-

tures that are not accounted for by industry specific effects. The results are shown in Table

2.4. Although some of the input-output measures are significant, the intafirm correlation

coefficient does not change much, suggesting the product-level measures of establishment

relationships are not causing the observed intra-firm comovement coefficient. In addition,

there is no consistent finding of vertical linkages within firms associated with comovement.

However, in the one case it is significant (covariances in the full sample), it is of the same

magnitude of the within-firm effect itself. The balanced and full sample panels cannot reject

the null of no within-firm vertical linkage effect.

Next, I calculate use a different growth rate measure for each sample to see if the log

growth rate approximation is affecting the true relationship. The Davis-Haltiwanger-Schuh

(DHS, Davis and Haltiwanger, 1992) growth rates are defined,

gsit =
1

2

(
sit − sit−1

sit + sit−1

)
(2.15)

the results are similar for both measures, in both the overall relationship and the decompo-

sition.
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Table 2.4: Firm correlation and covariance, usit, including extra covariates

Balanced panel Full sample
Cov. Corr. Cov. Corr.

Firm 0.00135∗∗∗ 0.0797∗∗∗ 0.00134∗∗∗ 0.0456∗∗∗

(0.00023) (0.0137) (0.00010) (0.0031)

Industry 0.000184 0.00765 −0.000199∗∗∗ −0.00428∗∗∗

(0.000131) (0.00638) (3.96×10−5) (0.00107)

Province 8.16×10−5∗∗ 0.00417∗∗ 2.32×10−5∗∗ 0.00101∗∗∗

(3.48×10−5) (0.00177) (1.10×10−5) (0.00031)

Output −3.24×10−5 0.0132 0.000629∗∗∗ 0.0268∗∗∗

(0.000213) (0.0127) (0.000141) (0.0046)

Input −0.000432∗∗ −0.0185∗ 0.000311∗∗∗ 0.0136∗∗∗

(0.000183) (0.0097) (9.65×10−5) (0.0032)

IO 1.27×10−5 0.00372 −2.75×10−5 0.000247
(6.95×10−5) (0.00400) (3.93×10−5) (0.001310)

IO × Firm 3.78×10−5 0.0396 0.00108∗∗ 0.0167∗

(0.000473) (0.0382) (0.00045) (0.0101)

Constant 0.000149∗∗∗ 0.00829∗∗∗ −6.51×10−7 0.000613∗∗∗

(2.38×10−5) (0.00127) (7.87×10−6) (0.000207)

Observations 245,520 245,520 56,029,880 53,517,864
R-squared 0.000 0.000 0.000 0.000

Notes: Standard errors calculated using multi-way clustering at the establishment level (i and j). ∗∗∗ and ∗∗ denotes significance
at the 1% and 5% level, respectively.

Table 2.5: DHS growth rates; firm correlation and covariance, usit

Balanced panel Full sample
Cov. Corr. Cov. Corr.

Firm 7.91×10−5∗∗∗ 0.0659∗∗∗ 9.91×10−5∗∗∗ 0.0452∗∗∗

(1.13×10−5) (0.0087) (7.11×10−6) (0.0027)

Industry 2.11×10−5∗∗∗ 0.0161∗∗∗ −1.39×10−6 0.00149
(7.87×10−6) (0.0049) (2.58×10−6) (0.00107)

Province 8.98×10−6∗∗∗ 0.00734∗∗∗ 1.54×10−6∗∗ 0.00122∗∗∗

(2.11×10−6) (0.00161) (7.17×10−7) (0.00031)

Constant 1.41×10−5∗∗∗ 0.0111∗∗∗ 9.38×10−7 0.000898∗∗∗

(1.58×10−6) (0.0012) (5.57×10−7) (0.000215)

Observations 624,890 624,890 63,024,530 60,777,540
R-squared 0.000 0.001 0.000 0.000

Notes: Standard errors calculated using multi-way clustering at the establishment level (i and j). ∗∗∗ and ∗∗ denotes significance
at the 1% and 5% level, respectively.

56



Table 2.6: DHS growth rates; firm correlation and covariance, usit, including extra covariates

Balanced panel Full sample
Cov. Corr. Cov. Corr.

Firm 7.78×10−5∗∗∗ 0.0646∗∗∗ 9.42×10−5∗∗∗ 0.0433∗∗∗

(1.22×10−5) (0.0093) (7.11×10−6) (0.0028)

Industry 2.34×10−6 0.00329 −7.25×10−6∗∗∗ −0.00192
(6.54×10−6) (0.00450) (2.60×10−6) (0.00103)

Province 8.98×10−6∗∗∗ 0.00734∗∗∗ 1.55×10−6∗∗ 0.00123∗∗∗

(2.11×10−6) (0.00161) (7.17×10−7) (0.00031)

Output 2.97×10−5 0.0201 3.22×10−5∗∗∗ 0.0216∗∗∗

(1.65×10−5) (0.0107) (8.38×10−6) (0.0041)

Input 1.94×10−5 0.0126 2.52×10−5∗∗∗ 0.0117∗∗∗

(1.13×10−5) (0.0074) (6.20×10−6) (0.0028)

IO 5.00×10−6 0.00598∗∗ −1.71×10−6 0.000243
(3.75×10−6) (0.00289) (2.60×10−6) (0.001241)

IO × Firm −2.96×10−5 −0.0161 7.90×10−5∗∗ 0.0183
(2.78×10−5) (0.0223) (3.19×10−5) (0.0099)

Constant 1.39×10−5∗∗∗ 0.0110∗∗∗ 9.07×10−7 0.000879∗∗∗

(1.58×10−6) (0.0012) (5.58×10−7) (0.000216)

Observations 624,890 624,890 63,024,530 60,777,540
R-squared 0.001 0.001 0.000 0.000

Notes: Standard errors calculated using multi-way clustering at the establishment level (i and j). ∗∗∗ and ∗∗ denotes significance
at the 1% and 5% level, respectively.
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Chapter 3

Looking for power-laws in all the wrong places:

estimating firm size distribution tails across countries

and datasets

3.1 Abstract

Power-law distributions feature heavily in research that relies on heterogeneous firms. This

paper applies recent developments in power law estimation (“Power-Law distributions in

empirical data”, Clauset, A., C. Shalizi, and M. Newman (2009), SIAM Review 51(4), 661–

703) to reject or fail to reject the null hypothesis that the firm size distribution is best fit with

a power law. I use data from Compustat and OSIRIS on several countries, and confidential

microdata on Canadian establishments and firms. I fit power-law, log-normal and power-law

with exponential cutoff distributions to each dataset, and test the following two hypotheses:

does the data reject the power-law fit? If not, does the data reject a power law fit in favour

of an alternative distribution (specifically, one with thinner tails). I find that a power law

distribution fits the U.S. firm size distribution for most years, but France and Germany

confidently reject the null hypothesis that their firm size distributions are best fit with

power laws. Canadian firms, both public and private, reject the power-law null hypothesis,

but Canadian establishments do not. As an application, I use the estimated power laws to

calculate firm size herfindahls to estimate the implied contribution of idiosyncratic shocks

to aggregate volatility in different countries. That the power law distributions produce

herfindahl results that run strongly counter to the data is a consequence of a seemingly

well-fit distribution failing exactly where it matters in economics—in the top 10 or 20 firms.
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3.2 Introduction

We are always looking for simple laws to explain economic behaviour. The power law is

a perfect example; the upper tail of distributions of several economic phenomena seem to

obey a scale-free law relating the size and rank of individuals (Gabaix, 2009). The firm

size distribution is an especially important application of this law; a scale-free firm size

distribution has dramatic consequences for several fields of economics, including studies on

gains from trade (Di Giovanni et al., 2011; Di Giovanni and Levchenko, 2012, 2013; Nigai,

2017), as well as idiosyncratic volatility (Gabaix, 2011). However, the empirical evidence
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Figure 3.1: Difference in curvature on rank-size plot for the US and Canada.

Notes: Canadian firm data from OSIRIS, US firm data from Compustat. Petroleum and Financial firms have
been removed. Note also the trouble with public company sales data: George Weston Ltd. has a controlling
interest in Loblaw Companies Ltd. and reports Loblaw Co. Ltd.’s sales as its own (see, e.g., page 9 of
the George Weston Ltd. Annual report (http://www.weston.ca/en/pdf_en/gwl_2016ar_en.pdf), which
means Loblaw’s $40B sales are reported twice. This double counting skews the relationship a bit; to correct
this, I also look at confidential survey and administrative data that does not suffer from this issue.

supporting power law distributions is weak. In many applications, the methodology is: (1)

eyeball the upper tail of the distribution on a log-log plot of rank vs. size and guess where

it starts to look linear; (2) estimate via OLS the slope of the line (on the data above the

eyeballed cutoff); (3) claim a high R2 means a power law fits the data well. The estimated
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slope is used as the scale exponent for the power-law. For instance, in Figure 3.1, the shapes

of the distributions are clearly very different, but an OLS fit to each plot will give a reasonable

scale exponent and a high R2. One should not conclude that both of these distributions are

best fit with a power-law.

Despite the obvious drawbacks noted (even in the papers that use it), this methodology

is used to justify many empirical power laws. The OLS methodology is so easy to use,

and power laws are so simple and enticing to use in theory, that we do not apply the same

statistical rigour that instrumental variables, for instance, would attract. In this paper, I

apply recent developments in power law estimation (Clauset et al., 2009; Broido and Clauset,

2018) to reject or fail to reject the null hypothesis that the firm size distribution is best fit

with a power law.

I use several sources of firm microdata: Compustat, OSIRIS and confidential microdata

sources on Canadian establishments and firms. In each dataset, and each year, I estimate the

upper tail cutoff xmin, the power law scale exponent α, as well as alternative distributions

with thinner tails (the log-normal, and the power law with exponential cutoff). I calculate

p-values for each important hypothesis: does the data reject the power law fit? If not, does

the data reject a power law fit in favour of an alternative distribution (specifically, one with

thinner tails). The conclusions matter for our understanding of firm heterogeneity—how

skewed are our firm distributions?

This work contributes to two main strands of literature. First, the estimation of fat tailed

distributions. Several methods have been proposed and refined, although all revolve around

a rule-of-thumb for finding the cutoff of the upper tail. For distributions that are not truly

power laws, the estimated scale exponent changes non-trivially with the cutoff, which means

a researcher can easily draw the conclusions they’d like by varying the cutoff, and justify their

choice with the resulting high R2 given by the OLS estimate. Here, I adopt the much stricter

methodology proposed by Clauset et al. (2009); Broido and Clauset (2018) that are used to
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estimate power laws in scale-free networks. A few estimation studies have changed track from

estimating the upper tail to estimating the whole distribution. However, the conclusions of

these papers still rely on a power law fitting the best on the upper tail, and then arguing for

or against other distributions in the middle and lower tail of the distributions. If the upper

tail is not truly a power law, these methods also have room to improve.

Secondly, this work is important for the application of power laws to economics. For an

overall review of power laws in economics, see Gabaix (2009). Some of the proposed power

laws are more robust than others. The city size distribution, for instance, seems robust to

different specifications, as long as one adopts a sprawling definition of city: e.g., the US

Census Bureau created ‘combined statistical areas’ (CSAs) to better represent the size of

cities that sprawl over several municipal areas, and power law estimations of this type of city

size distributions are more robust to estimation methods (see, e.g., the evolving research on

Zipf’s law for city sizes, including Gabaix (1999); Eeckhout (2004); Rozenfeld et al. (2011)).

However, research on power laws for firm sizes has not received the same attention.

Theory suggests that trade increases the skew of the power law tail as size increases, because

the most productive firms get access to more and more markets, which further increases

their sizes. The data do not seem to support this. Since gains from trade in some models

depends on the shape of the firm size distribution (Nigai, 2017; Head et al., 2014; Feenstra,

2018), correctly estimating the upper tail of the distribution is very important. An even

stronger motivation comes from research on the microfoundations of aggregate volatility.

The argument is that if the firm size distribution is skewed enough, the biggest firms are so

big that idiosyncratic shocks to them are not washed out by random shocks to other firms

in the economy (Gabaix, 2011; Acemoglu et al., 2012; Di Giovanni and Levchenko, 2012).

Without a power law tail, the argument for idiosyncratic shocks causing aggregate volatility

falls apart. Here, the estimation of the power law passes from important to strictly necessary.

However, even if the data reject a power law for a specific application, it does not mean
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that the power law is not a useful tool; for instance, it considerably reduces complexity in

firm heterogeneity models like Melitz (2003), or models of preferential attachment in social

networks (Jackson, 2010). However, the existence and importance and results of models of

firm heterogeneity, for example, do not depend on the specific shape of the upper tail of the

distribution; the power law just makes the algebra easier.

I find results that are in line with expectations (that a power law distribution fits the U.S.

firm size distribution for many years), and some new results. Depending on the specification

(e.g., including or excluding petroleum companies), France and Germany confidently reject

the null hypothesis that their firm size distributions are best fit with power laws. Canadian

datasets for firms reject power law distributions across the board, but when the unit of

observation is an establishment, Canadian size distributions do not reject the power-law

hypothesis.

As an application, I use the estimated power laws to estimate the implied contribution of

idiosyncratic shocks to aggregate volatility in different countries. The crucial element is the

herfindahl of the size distribution; I use the power law to calculate the implied herfindahl

and the resulting aggregate volatility, and compare it to the empirical herfindahl and the

herfindahl of the alternative tail distributions. As the tail of a dataset deviates farther from

a power law, the power law herfindahl deviates much farther from the empirical herfindahl,

vastly overstating the contribution to idiosyncratic shocks to aggregate volatility. That the

power law distributions produce results that run strongly counter to the data is a consequence

of a seemingly well-fit distribution failing exactly where it matters in economics—in the top

10 or 20 firms.

The paper proceeds as follows: Section 3.3 describes the methodology, Section 3.4 outlines

the datasets used, and Section 3.5 gives results. Section 3.6 gives an application of how the

estimates can affect economic phenomena, and Section 3.7 concludes. More estimation and

dataset details can be found in Appendices 3.8 and 3.9.
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3.3 Methodology

The methodology consists of two parts: (1) for each dataset, estimate each alternative distri-

bution; (2) perform statistical tests to differentiate between possible hypotheses regarding the

existence of power-laws. There are three distributions I consider: the power-law, log-normal,

and power-law with exponential cutoff. The log-normal is a commonly proposed alternative

to the power-law, and the power-law with exponential cutoff is an alternative proposed for

degree sequences in social networks. Both have thinner tails compared to power-laws.

3.3.1 Upper-tail distribution estimation

Given a dataset of firm sizes X = {xi : i ∈ 1, . . . , N}, we need to estimate where the upper-

tail xmin begins, and the shape of the distribution above it. We start with estimating the

cutoff and scale exponent of the power-law, and then apply that same cutoff to the other

distributions to ensure a fair and accurate comparison.

Power-law

A power-law distribution in the upper-tail follows the following density function

f(x) = Cx−α, α > 1, x ≥ xmin > 0, (3.1)

where α is the scale exponent and C is a constant, and xmin is the value that defines the

upper tail. For details on the sources of power-laws in the world of economics, see Gabaix

(2009). For our purposes, a power-law means a linear relationship between the size of an

individual and the empirical counter-cdf (one minus the empirical cdf) on a log-log plot,

everywhere in the upper tail. If the top 5 or 10 firms in the data diverge from the linear

relationship, then the firm size distribution is not truly a power-law, in the sense that the

important implications of power-law distributions do not hold (e.g., the granular hypothesis

of aggregate volatility no longer applies).

Given xmin, I use the MLE α̂(xmin) as the estimate of the scale exponent. Then the
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estimate x̂min is the value of xmin that minimizes the Kolmogorov-Smirnov statistic D, the

maximum distance between the cdf of the power-law fit and the ecdf, E(x).

D = max
x≥xmin

|E(x)− F (x|α̂)| (3.2)

We use x̂min = minxmin
D as the cutoff for all distributions, and α̂ = α̂(x̂min) as the estimated

power-law scale exponent. For more details, see Appendix 3.9.

Log-normal

The log-normal distribution is a common alternative to the power-law due to its skewness

and association with Gibrat’s law. The log-normal density is defined as:

f(x) =
1√

2πσx
e−

(log x−µ)2

2σ2 , x > 0 (3.3)

To compare it directly to the power-law distribution, I truncate the distribution at xmin.

Write the truncated distribution as:

h(x) =
f(x)

1− F (xmin)
(3.4)

so that the log-normal distribution is only defined in the upper tail and sums to 1 on the

interval [xmin,∞). MLE estimation of the parameters, after using x̂min from the power-law

estimation to compare it fairly to the estimated power-law distribution.

Power-law with exponential cutoff

The power-law with exponential cutoff has a power-law-like tail up to a point, then has a

exponential-like tail after that. The power-law is a special case of the power-law with expo-

nential cutoff, which means it, by definition, cannot fit worse than a power-law. Nevertheless,

except in that special case, it is not scale-free, and thus does not display the same economic

properties as a true power-law. Its density is

f(x) = Cx−αe−λx, (3.5)

64



where the constant C = [e−xminλΦ(e−λ, α, xmin)], and Φ(z, s, a) =
∑∞

i=0
zi

a+i

s
is the Lerch Phi

function. Again, it takes x̂min as given from the power-law KS statistic minimization.

When a distribution looks like a power-law everywhere but curves down at the end, one

usually sees the justification “the distribution is a power-law but for finite-size effects” or “the

power-law may hold only over a bounded range”, meaning the very tip of the distribution

does not extend to the very largest firms. These distributions are more likely to be power-

law with exponential cutoffs than true power-laws, and since we care most about the very

biggest firms, we would like to be able to statistically differentiate between the two types of

distributions.

3.3.2 Tests

I start with the null hypothesis that the upper tail of the firm size distribution is a power-

law, consistent with the literature. If the tests reject that hypothesis for a certain dataset,

then that informs our understanding of the firm size distributions across countries or dataset

types. There are two relevant tests: first, does the data directly reject the power-law?

Second, does the data reject the power-law in favour of an alternative distribution?

Null hypothesis Hd
0 (direct): the upper tail is a power-law

Clauset et al. (2009) proposes a semi-parametric bootstrap test to generate p-values for the

power-law null hypothesis Hd
0 . The idea is to simulate the data as if it were really a power-

law, run the estimation procedure again. Simulating this 1000 times gives a null distribution

of KS-statistics Pr(D). If D∗ is the KS-statistic for the best fitting power-law distribution,

then the p-value for this model is defined as the probability of observing, under the null

distribution, a KS-statistic at least as extreme as D∗. So p = Pr(D ≥ D∗) is the fraction of

simulated datasets with KS statistics larger than that of the empirical dataset.
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Null hypothesis Ha
0 (alternative): the upper tail is fit equally well by a power-law and the

alternative distribution

A set of likelihood-ratio tests can distinguish between the power-law and alternative dis-

tributions. Given the log-likelihoods of the power-law (Lpl) and an alternative distribution

(Lalt), the test likelihood-ratio test statistic is

R = Lpl − Lalt, (3.6)

where the sign of R, if deemed significantly different from 0, gives evidence for or against

the null hypothesis Ha
0 , that the data are fit equally well by a power-law and the alternative

distribution.

3.4 Data

I use data on firm sizes from several sources. First, Bureau van Dijk’s OSIRIS database

contains sales and identifying information on globally listed public companies, including

34,000 listed, 3,500 unlisted and 7800 delisted companies between 1900–2100. Second, the

Fundamentals Annual section of the Compustat North America database. Both datasets

come from Wharton Research Data Services (WRDS, 2018). I also investigate datasets with

public and private firms in Canada. These are the Annual Survey of Manufactures, and

the T2-LEAP administrative tax and employment dataset. For each, I use gross sales as a

measure of size to be consistent with the other datasets.

Table 3.1 shows the summary statistics for each country. The US Compustat data is

labelled “USA (Compustat)”, while every other country is OSIRIS. OSIRIS data typically

covers the period 1984–2016, with some exceptions (China’s data starts in 1992 and Taiwan

in 1995), while the Compustat data starts in 1961. Each country dataset is normalized by

the median firm within each year, so the median for each dataset is 1. The data are clearly

skewed right, with means up to 20 times higher than medians for some countries, and even

4 times higher than the 75th percentiles of the distributions.
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Table 3.1: Summary statistics of firm sizes by country and dataset

Country Period N obs. Mean 3rd Qu. Max

Australia 2000–2016 510 35.5 19.9 1541.0
Bermuda 2001–2016 313 8.0 7.3 130.9
Canada 1996–2016 610 42.3 26.4 1043.9
Canada (ASM) 1973–1999 32622 9.0 4.0 11728.8
Canada (ASM) 2000–2011 52937 10.0 3.5 16518.5
Canada (ASM, firms) 1973–1999 28057 14.8 3.5 24122.6
Canada (ASM, firms) 2000–2011 47566 12.8 3.1 26131.9
Canada (T2, firms) 2001–2009 1412787 10.8 3.3 14035.5
Cayman Islands 2006–2016 452 7.6 7.5 152.4
China 2000–2016 1351 13.8 7.1 2861.8
France 1998–2016 363 58.4 25.4 2699.7
Germany 1998–2016 340 49.7 21.1 1674.5
Great Britain 1987–2016 685 44.7 18.2 6270.1
India 2000–2016 1288 29.9 14.7 3876.3
Japan 1996–2016 1159 10.6 7.0 567.2
Korea 2008–2016 288 19.5 5.6 2899.7
Malaysia 1996–2016 445 9.9 6.1 1047.3
Taiwan 2007–2016 297 16.0 7.7 762.3
USA 1984–2017 2544 26.3 18.2 3096.1
USA (Compustat) 1961–2014 2974 20.2 13.8 1675.8

Notes: the statistics are averages of all available years. E.g., ‘N obs.’ is the average number of observations
per year. Each dataset is normalized within years by the median firm. Sources of datasets other than
OSIRIS are indicated in parentheses. Non-OSIRIS Canadian datasets are confidential microdata. ASM is
the Annual Survey of Manufactures (all manufacturing establishments with more than $30,000 in sales).
The samples are divided into 1973–1999 and 2000–2011 because of a survey changes. If labelled ‘firms’, the
establishment data are aggregated up to the ultimate parent (firm) level, to better compare with the public
firm data sources. T2 is data from all firms in Canada derived from administrative tax records. The T2
sample is much larger and not restricted to manufacturing.

Later, I test robustness of the results to removing financial and petroleum firms from the

datasets.

3.5 Results

In this section, I present the results of the power-law estimations, the alternative distribution

estimations, and the tests that distinguish between them.
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3.5.1 Power-law estimations

For a power-law to exhibit scale-free behaviour, the estimated scale exponent must satisfy

2 ≤ α̂ < 3. A scale parameter less than 2 is not consistent with a stable distribution, but

variations in the data can result in estimating a scale exponent less than 2. Therefore, for

each country, one must consider all possible estimates across years to analyze the behaviour

of a single country; Broido and Clauset (2018) use a similar approach to analyze separate

components of a single network dataset.

Figure 3.4 plot the densities of scale exponents for each country. In this figure, I only

plot estimated exponents that later are not rejected by the statistical tests. The Zipf law’s

exponent of 2 is denoted with a vertical red line in each plot. In the left panel, all indus-

tries are included in the dataset, and in the right panel, finance, insurance, real estate and

petroleum-related industries are removed. The results are striking—across countries, for all

All industries Excl. some industries

1.6 2.0 2.4 2.8 3.2 1.6 2.0 2.4 2.8 3.2
US (C)
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Figure 3.2: Exponent distributions

Notes: the left panel includes all non-bank firms in all industries. The right panel drops all firms in Finance,
Insurance, Real estate and petroleum (NAICS 211, 52 and 53). The ‘Zipf’ power law exponent of 2 is denoted
with a red vertical line in each plot. Estimated scale exponents are only shown for distributions that are not
rejected in favour of an alternative distribution.

distributions that are not rejected in favour of alternative distributions, the mean estimated
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Figure 3.3: Exponents vs. number of observations

Notes: estimated scale exponents are shown for all datasets, whether or not they are rejected in favour of
alternative distributions. There is a clear negative relationship between the number of observations in the
tail (which depends on the estimated x̂min and the estimated scale exponent α̂.

scale exponent is around 2, with the U.S. coming in slightly higher at a little less than 2.5.

For power-law estimations that are not rejected by the data, the results bolster theories that

require scale-free firm size distributions.

However, there seems to be significant variation in the estimated exponents, and a closer

look suggests there is a relationship between the estimated exponent and the number of

observations in the tail of the distribution. In Figure 3.3, I plot the estimated scale exponents

vs. the number of observations in the tail of the distribution (which depend on the estimated

x̂min). For smaller countries (or a strict xmin, the scale exponent tends to be a bit larger,

while larger countries (and countries with a smaller, less restrictive xmin) tend to be closer to

satisfying Zipf’s law. This contradicts some ideas about the effect of trade on the firm size

distribution—theory predicts that smaller countries would have as large or larger power-law

exponents for their firm size distributions, because the most productive firms get access to

markets much larger than other domestic firms, which skews the firm size distribution more
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Figure 3.4: Estimated and empirical distributions

Notes: these figures for the year 2005. CA is Canada, FR is France, US is USA, US (C) is USA data from
Compustat. The data are plotted as points, and each estimated distribution is plotted as a line.

than it otherwise would (Di Giovanni et al., 2011; Di Giovanni and Levchenko, 2012, 2013).

Conditional on not rejecting the power-law fit, coutnries that satisfy Zipf’s law tend to be

larger than others.

3.5.2 What do the estimated distributions look like?

To get a feel for the shape of each possible distribution, I present visual representations of the

differences between the alternatives (including the empirical cdf). For a few examples, I plot

the estimated power-law, log-normal and power-law with exponential cutoff distributions,

along with the empirical cdf. Firm size (log-scale) is on the x-axis, and the counter cdf

is on the y-axis (1 − F (Size)). The power-law with exponential cutoff typically fits the

data very well. For the US, however, the dataset with more observations (OSIRIS, with

881 observations in the tail) is a power-law with exponential cutoff, while the other dataset

(Compustat, with 78 observations in the tail) looks like a power-law. If one restricted the

OSIRIS US dataset to a similarly high xmin, one might succeed in fitting a power-law equally
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well as the power-law with exponential cutoff (or log-normal). However, the xmin was chosen

to fit a power-law as well as possible; the only problem is there’s a lot more data in the lower

part of the upper-tail (i.e., closer to xmin than to the maximum size x), and that part of the

distribution acts more like a power-law (a linear relationship in Figure 3.4) than the upper

part of the upper tail. Keep in mind that x̂min is chosen to match the empirical cdf E(x),

not the relationship between E(x) and x.

To assess the fits statistically (instead of visually), I now move to the hypothesis tests.

3.5.3 Direct and alternative hypothesis tests

The results of the tests, shown in Table 3.2, seem to strongly separate countries into those

with power-law firm size distributions and those that reject power-law firm size distributions.

Looking at the direct tests first, the null hypothesis Hd
0 is rejected by the median p-value

in Canada, Germany, France, Japan, and the USA (OSIRIS dataset). Canadian microdata

(as opposed to data on public firms only) give a slightly different answer: when the unit

of observation is a firm, the results are consistent with using data on public firms only.

However, when the unit of observation is an establishment, the size distributions do not

reject the power-law directly or in favour of any alternative distribution I tested. For a more

detailed look at Canadian microdata results, see Figure 3.5.

All other countries do not reject the null hypothesis that the upper tail of the data

is generated by a power-law. However, this does not answer whether or not there’s an

alternative distribution that fits the data better. For that, we turn to the p-values for H log-n
0

and Hpexp
0 . The alternative distribution tests show similar results: the same countries reject

power-laws for alternative distributions. A few more countries come closer to rejecting power-

law distributions for alternatives, but p-values less than 0.1 (e.g., Australia, Bermuda, Great

Britain, Cayman Islands, and the USA (Compustat)). The other countries still do not reject

the null hypothesis that the power-law fits the data as well as the alternative distributions.

To make an overall conclusion, I take into account the proportion of years a country rejects
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Table 3.2: Summary of p-values for different tests, by country and dataset.

Median p-value for: % rejecting:

Country HD
a H log-n

a Hpexp
a HD

a H log-n
a Hpexp

a

Australia 0.28 0.16 0.08 33 13 40
Bermuda 0.28 0.17 0.06 14 7 43
Canada 0.00 0.01 0.00 100 84 100
Canada (ASM 73–99) 0.46 0.19 0 26
Canada (ASM 00–11) 0.86 0.40 0 0
Canada (ASM 73–99, firms) 0.18 0.00 0 100
Canada (ASM 00–11, firms) 0.19 0.00 0 100
Canada (T2, firms) 0.00 0.00 100 100
China 0.14 0.20 0.19 33 0 40
Germany 0.00 0.02 0.00 94 94 100
France 0.01 0.01 0.00 100 94 100
Great Britain 0.20 0.16 0.07 46 39 43
India 0.54 0.38 0.29 20 0 13
Japan 0.03 0.02 0.00 74 63 84
Korea 0.34 0.70 1.00 14 0 0
Cayman Islands 0.13 0.18 0.07 44 33 44
Malaysia 0.18 0.18 0.14 21 5 21
Taiwan 0.51 0.41 0.46 0 0 0
USA 0.01 0.01 0.00 58 55 61
USA (Compustat) 0.38 0.37 0.42 29 29 39

Notes: HD
a is the alternative hypothesis that the data are not well fit by a power-law; H log-n

a is the alternative
hypothesis that the data are better fit with a log-normal; Hpexp

a is the alternative hypothesis that the data
are better fit with a power-law with exponential cutoff. Sources of datasets other than OSIRIS are indicated
in parentheses. Non-OSIRIS Canadian datasets are confidential microdata. ASM is the Annual Survey of
Manufactures (all manufacturing establishments with more than $30,000 in sales). The samples are divided
into 1973–1999 and 2000–2011 because of a survey changes. If labelled ‘firms’, the establishment data are
aggregated up to the ultimate parent (firm) level, to better compare with the public firm data sources. T2
is data from all firms in Canada derived from administrative tax records. The T2 sample is much larger and
not restricted to manufacturing.

each null hypothesis. If 70% or more of the tests reject the null hypothesis, I classify the

country as rejecting the power-law distribution. These countries are: Canada, Germany,

France, and Japan. Most other countries reject the alternative distribution hypothesis less

than 40% of the time, with less rejecting the direct null hypothesis HD
0 . The USA is the only

one more difficult to classify. The Compustat dataset rejects the direct hypothesis only 26%

of the time, while the OSIRIS dataset rejects it 58% of the time. The proportion rejecting

in favour of the power-law with exponential cutoff distribution are closer at 55 and 61%;

however, this is not conclusive evidence, especially with the existing literature supporting
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the power-law firm size distribution of the USA. One wonders whether a test incorporating

the panel nature of the data could help differentiate the alternatives: for instance, can a

power-law distribution suffer a few negative shocks at the very tip of the distribution to

temporarily thin out the tail?

3.6 Application

The contribution of idiosyncratic shocks to aggregate volatility depend on the herfindahl of

firm sizes in the economy (Gabaix, 2011; Di Giovanni and Levchenko, 2013; Di Giovanni

et al., 2014),

h =

√√√√ N∑
i

w2
i , (3.7)

where wi is the weight of firm i in the economy. The bigger the herfindahl, the bigger the

contribution that idiosyncratic shocks make to aggregate volatility. The bigger the biggest

firms are, the bigger the herfindahl, and finally, a power-law exponent between 2 and 3 is

required for the biggest firms to be big in an economy with a lot of firms. I focus on the last

point. If we claim the firm size distribution is best fit by a power-law, the estimated power-law

distribution should imply a herfindahl close to the data. If not, the power-law distribution

does not agree with the main statistic that governs the existence of the microfoundations of

aggregate fluctuations.

Therefore, I use each estimated power-law and power-law with exponential cutoff dis-

tributions to simulate 1000 datasets for each country and year, and calculate the implied

herfindahls, and take the mean across all the simulated datasets. The results are in Ta-

ble 3.3. The empirical herfindahls are listed in the first column; the simulated herfindahls of

the fitted power-law distributions are in the second column (labelled ‘Power’), and the simu-

lated herfindahls of the fitted power-law with exponential cutoff distributions are in the third

column ‘P-exp’. The p-exp distributions are much closer to the empirical herfindahls, with

most being less than 10% different than the data, whereas the implied power-law herfind-
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Figure 3.5: Boxplot of p-values of the test of null hypothesis Hpexp
0 for each Canadian micro-

dataset. Each dot represents a p-value for one year of a dataset.

Notes: These are boxplots of the p-values from the test of power-law versus the alternative hypothesis that
the distribution is better fit by a power-law with exponential cutoff (Hpexp

a ). The three datasets on the
left use firms as the units of observation, and definitively reject the null hypothesis for all years. The two
datasets on the right use establishments as the units of observation, and do not reject the null hypothesis
that the data is fit well by a power-law.
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Table 3.3: Herfindahls for each predicted distribution and their differences from the data,
by country

% difference
Herfindahls from data

Country Data Power P-exp Power P-exp

Australia 0.196 0.399 0.200 103.1 2.0
Bermuda 0.162 0.276 0.162 70.4 0.1
Canada 0.124 0.464 0.132 275.5 6.9
Canada (ASM 73–99) 0.100 0.156 0.092 55.9 -8.2
Canada (ASM 00–11) 0.087 0.167 0.100 92.2 15.8
Canada (ASM 73–99, firms) 0.102 0.381 0.094 274.8 -7.9
Canada (ASM 00–11, firms) 0.089 0.343 0.093 284.1 4.3
Canada (T2, firms) 0.019 0.176 0.023 820.6 20.1
Cayman Islands 0.138 0.288 0.137 107.9 −1.1
China 0.210 0.309 0.164 47.5 −21.7
France 0.176 0.643 0.182 265.4 3.6
Germany 0.181 0.635 0.199 250.4 9.7
Great Britain 0.271 0.434 0.210 60.3 −22.4
India 0.198 0.335 0.205 69.0 3.4
Japan 0.110 0.363 0.117 231.3 6.4
Korea 0.549 0.321 0.321 −41.5 −41.4
Malaysia 0.242 0.344 0.183 42.0 −24.3
Taiwan 0.274 0.391 0.285 42.7 3.7
USA 0.120 0.282 0.112 134.4 −7.3
USA (Compustat) 0.112 0.216 0.116 92.5 3.5

Notes: The first three columns are the herfindahls given by the distributions: data, the estimated power-law
distribution, and the estimated power-law with exponential cutoff. The last two columns are the percentage
differences between the estimated distribution’s herfindahl and the data’s herfindahl.

ahls can be almost 3 times higher than the herfindahls of the data. The Power and P-exp

herfindahls are equally bad in some countries that did not reject the previous hypothesis

tests, like Great Britain and China.

In Canadian microdatasets, the power-law with exponential cutoff distributions produce

herfindahls much closer to the data than a power-law alone, even though the tests do not

reject the fact that the data is represented by a power-law. For example, in Canadian

establishment data from 2000–2011, of which all tests do not reject the hypothesis that a

power-law generated the data, power-law herfindahls are 92.2% higher than the data on

average, and the power-law with exponential cutoff generates herfindahls only 15.8% higher

than the data. The results from Canadian microdatasets when the unit of observation is
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a firm are consistent with other public firm data, with power-law distributions generated

herfindahls two to three times higher than the data on average, versus herfindahls of less

than 10% in absolute value from power-law with exponential cutoff.

This highlights the importance of estimating distributions rigourously if one is to use

the estimated distribution in crucial model calculations later. One should not rely solely on

an OLS estimate of a power-law exponent as a justification for and basis of statistics that

generate counterfactuals for economic effects and policies.

3.7 Conclusion

This paper applies recent developments in power law estimation (Clauset et al., 2009; Broido

and Clauset, 2018) to reject or fail to reject the null hypothesis that the firm size distribution

is best fit with a power law. I use several sources of firm microdata: Compustat, OSIRIS

and confidential microdata sources on Canadian establishments and firms. In each dataset,

and each year, I estimate the upper tail cutoff xmin, the power law scale exponent α, as

well as alternative distributions with thinner tails (the log-normal, and the power law with

exponential cutoff). I calculate p-values for each important hypothesis: does the data reject

the power law fit? If not, does the data reject a power law fit in favour of an alternative

distribution (specifically, one with thinner tails).

I find that a power law distribution fits the U.S. firm size distribution for most years,

but France, Germany, and Canada confidently reject the null hypothesis that their firm size

distributions are best fit with power laws. Results from confidential Canadian microdata

support these results: when the unit of observation is a firm, Canadian size distributions

consistently reject the hypothesis that the data are generated by a power-law distribution;

on the other hand, when the unit of observation is an establishment, the Canadian size

distributions cannot reject the power-law null hypothesis.

As an application, I use the estimated power laws to estimate the implied contribution of
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idiosyncratic shocks to aggregate volatility in different countries. The crucial element is the

herfindahl of the size distribution; I use the power law to calculate the implied herfindahl

and the resulting aggregate volatility, and compare it to the empirical herfindahl and the

herfindahl of the alternative tail distributions. As the tail of a dataset deviates farther from

a power law, the power law herfindahl deviates much farther from the empirical herfindahl,

vastly overstating the contribution to idiosyncratic shocks to aggregate volatility. That the

power law distributions produce results that run strongly counter to the data is a consequence

of a seemingly well-fit distribution failing exactly where it matters in economics—in the top

10 or 20 firms.

3.8 Appendix–Robustness

To test robustness of the results to different specifications, I estimate and test all distributions

again after removing petroleum and FIRE industries (fire, insurance and real estate). The

results are very consistent with the results in the text, suggesting the shape of the firm size

distribution does not depend on excluding certain types of firms.

3.8.1 The truncated Pareto distribution

The truncated Pareto distribution is a common alternative proposed to limit the upper tail

of the size distribution.

f(x) = Cx−α, α > 1,∞ ≥ xmax ≥ x ≥ xmin > 0, (3.8)

However, I did not find this distribution to fit all that well. Figure 3.6 reproduces Figure 3.4

with an estimated truncated Pareto distribution. The truncated Pareto distribution does

poorly compared to the power-law with exponential cutoff, especially when the data are

closer to a power-law (e.g., in the US).
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Table 3.4: Summary of p-values for different tests, by country and dataset.

Median p-value for: % rejecting:

Country HD
a H log-n

a Hpexp
a HD

a H log-n
a Hpexp

a

Australia 0.33 0.25 0.19 20 7 33
Bermuda 0.37 0.21 0.08 0 0 27
Canada 0.00 0.02 0.00 94 78 100
China 0.10 0.13 0.09 47 7 47
Germany 0.00 0.02 0.00 94 94 100
France 0.00 0.01 0.00 94 94 94
Great Britain 0.29 0.30 0.48 39 25 29
India 0.36 0.34 0.27 13 0 7
Japan 0.04 0.03 0.00 68 63 84
Korea 0.30 0.64 1.00 0 0 0
Cayman Islands 0.07 0.08 0.02 50 38 75
Malaysia 0.23 0.19 0.17 19 0 6
Taiwan 0.58 0.45 0.53 0 0 0
USA 0.01 0.02 0.00 65 55 68
USA (Compustat) 0.24 0.39 0.47 32 29 39

Notes: HD
a is the alternative hypothesis that the data are not well fit by a power-law; H log-n

a is the alternative
hypothesis that the data are better fit with a log-normal; Hpexp

a is the alternative hypothesis that the data
are better fit with a power-law with exponential cutoff. Sources of datasets other than OSIRIS are indicated
in parentheses.

3.9 Appendix—Theory

This appendix describes the empirical methodology in more detail. Much of this is also

described in detail for a different application in Clauset et al. (2009) and Broido and Clauset

(2018).

3.9.1 Distributions

Power-law distribution

A power-law of firm sizes above xmin follows this distribution:

f(x) = Cx−α, α > 1, x ≥ xmin > 0, (3.9)

where α is the scale exponent and C is a constant, and xmin is the value that defines the

upper tail. On a log-log scale, this has the form

log f(x) = logC − α log x (3.10)
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Figure 3.6: Estimated and empirical distributions, with truncated Pareto

Notes: these figures for the year 2005. CA is Canada, FR is France, US is USA, US (C) is USA data
from Compustat. The data are plotted as points, and each estimated distribution is plotted as a line. The
truncated Pareto distribution is estimated MLE as described in Aban et al. (2006).

which leads one to suggest OLS as an appropriate method to estimate α, after guessing an

appropriate xmin.

Log-normal distribution

The log-normal distribution is another alternative distribution that can have heavy tails that

also happens to be consistent with Gibrat’s law:

f(k) =
1√

2πσx
e−

(log x−µ)2

2σ2 , x > 0 (3.11)

Then write the distribution truncated below at xmin as

h(x) =
f(x)

1− F (xmin)
(3.12)

so that the log-normal distribution is only defined in the upper tail and sums to 1 on the

interval [xmin,∞). MLE estimation of the parameters, after using xmin estimated as if it

were a power-law distribution, to compare it correctly.
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Power-law with exponential cutoff

f(x) = [e−xminλΦ(e−λ, α, xmin)]x−αe−λx, (3.13)

where Φ(z, s, a) =
∑∞

i=0
zi

a+i

s
is the Lerch Phi function.

3.9.2 Fitting the model, estimating xmin and α

Given xmin, one can estimate the scale exponent α via maximum likelihood. A typical

method to pick xmin is to plot rank-size on a log-log plot, and eyeball where the upper tail of

the distribution “starts to look linear”. In contrast, we use the Kolmogorov-Smirnov (KS)

minimization method described in Clauset et al. (2009) and Broido and Clauset (2018).

The KS method selects the xmin that minimizes the maximum difference in absolute value

between the empirical cumulative distribution (ecdf) E(x) on the observed tail x ≥ xmin and

the cdf of the best fitting power-law F (x|α̂) on those same observations. The α̂ is estimated

via MLE as described above, given the xmin of the current step of the KS method. The KS

statistic is defined as

D = max
x≥xmin

|E(x)− F (x|α̂)| (3.14)

x̂min is the value that minimizes D, and α̂ is the corresponding MLE estimate given x̂min.

Testing goodness-of-fit

The power-law-fitting method will estimate (x̂min, α̂) for any distribution, whether or not

the data is from a power-law. To assess the fit, I estimate the p-value with a standard

semi-parametric bootstrap approach (Clauset et al., 2009; Broido and Clauset, 2018).

Given firm size data, of which ntail are x ≥ x̂min, with MLE α̂, I generate a synthetic

dataset as follows. For each of n synthetic values, with probability ntail/n I draw a random

number from the fitted power-law model, with parameters x̂min and α̂. Otherwise, I choose

a value uniformly at random from the empirical distribution below the upper tail, x < x̂min.

After n draws, this produces a synthetic dataset that closely follows the empirical distribution

below x̂min and follows the fitted power-law model at and above x̂min.
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Then applying the previously defined power-law fitting procedure yields the null distribu-

tion of KS-statistics Pr(D). Let D∗ denote the value of the KS-statistic for the best fitting

power-law model for the empirical distribution. The p-value for this model is defined as

the probability of observing, under the null (power-law) distribution, a KS-statistic at least

as extreme as D∗. Hence, p = Pr(D ≥ D∗) is the fraction of synthetic datasets with KS

statistic larger than that of the empirical dataset. Following standard practice, if p < 0.1,

I reject the power-law as a plausible model of the distribution, and if p ≥ 0.1, then I fail

to reject the model. Failing to reject does not imply the model is correct, only that it is a

plausible data generating process.

3.9.3 Likelihood-ratio tests

Given two candidate distributions that fit the data, I use likelihood-ratio tests to differentiate

between them. Let LF be the log-likelihood of the fit of distribution F , where F could

be pl (power-law), log-n (log-normal), or p-exp (power-law with exponential cutoff). The

likelihood-ratio statistic (LRT) is given by the difference between the log-likelihood of the

power-law and the log-likelihood of the alternative distribution, R = Lpl − Lalt.

When R > 0, the power-law is a better fit to the data, and when R < 0, the alternative

is a better fit to the data. When R = 0, the data cannot distinguish between the two

models. From here, I calculate a p-value against the null model of R = 0, and reject the

null hypothesis if p < 0.05 and interpret the sign of R as evidence for one distribution over

another. A p-value of 0.05 is slightly more strict than the p-value of 0.1 used in Broido and

Clauset (2018), but is more consistent with existing economics research on power-laws, and

more conservative at the same time.
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Chapter 4

Going the Distance: Estimating the Effect of

Provincial Borders on Trade when Geography (and

Everything Else) Matters

4.1 Abstract

In the presence of often-cited provincial non-tariff trade barriers, one should observe provin-

cial border effects in Canada. However, using provincial trade data leads to upward biased

estimates of the border effect, because intra-provincial trade is skewed towards short dis-

tance flows that are poorly estimated by gravity models. We overcome this bias by using

sub-provincial trade flows generated from a transaction-level transportation dataset. The

results show that border effects fall as geographies are more fine-grained and uniform. In

contrast to the U.S., where state border effects were eliminated using similar approaches,

provincial border effects remain, with an implied 6.9% tariff equivalent.

4.2 Introduction

It is well known that for some goods (e.g., dairy products and alcoholic beverages) there

are significant (non-tariff) barriers to inter-provincial goods trade. Less well understood is

the degree to which these barriers are reflected in the level of inter-provincial trade—that is,

whether there are provincial border effects. The first and obvious objective of this paper is

to assess the presence and magnitude of provincial border effects. To date, the estimation

of these effects has been hampered by a lack of data with sufficient geographic detail. This
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paper overcomes the problem by using a dataset of transaction-level truck and rail shipments

to develop estimates of intra- and inter-provincial trade. These fine-grained data permit the

estimation of a rich set of models that account for many of the biases endemic to gravity

model-based border effect estimates. Therefore, the second and subtler objective of this

paper is to illustrate how these detailed data can be used to develop more accurate border

effect estimates. The underlying motivation for this requires some context.

Building on McCallum’s (1995) initial work, a large literature has developed to measure

border effects, be they national or sub-national. While much of the empirical literature has

focussed on measuring national border effects, these same methods have also been applied to

trade between sub-national regions. The arc of the sub-national border effects literature has

been one where the application of more refined methods reduces estimated border effects.

But, unlike the international literature,1 this has led in some instances to the elimination

of border effects altogether. In the United States, initially high estimates of inter-state

border effects (Wolf, 2000) were reduced by developing more accurate measures of distance

(Hillberry and Hummels, 2003; Head and Mayer, 2009; Crafts and Klein, 2015), restricting

trade flows to shipments from manufacturers (Hillberry and Hummels, 2003), using a panel

specification and controlling for internal migration (Millimet and Osang, 2007), and the

use of more fine-grained geographies to define the sub-national trading units (Hillberry and

Hummels, 2008, see also Coughlin and Novy, 2016).

Of particular importance are the effects of measured distance (Head and Mayer, 2009)

and especially geography (Hillberry and Hummels, 2003, 2008) on border effect estimates.

Head and Mayer (2009) show that the inaccurate estimate of distance substantially biases

upwards estimates of the border effect, because intra-regional distances tend to be overesti-

mated relative to inter-regional distances. Hillberry and Hummels (2008) demonstrate that

1At the national level, estimated border effects have been reduced as McCallum’s initial specification was
modified to take into account the effects of market access and competition on trade (see Anderson and van
Wincoop, 2003; Anderson, 2011), estimates of distance have been refined (see Head and Mayer, 2009) and
as new estimators have been applied (see Head and Mayer, 2014). Still, a consistent finding has been that
trade is stronger within countries than between them.
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estimated state border effects fall to zero as the size of the geographic unit of analysis is

reduced, because short distance, large value flows are better estimated. State border effects

are an artefact of the geographic scale at which the estimates are made. The sensitivity of

border effect estimates to the scale of geographic unit chosen (Coughlin and Novy, 2016) is

an instance of the modifiable areal unit problem (MAUP), which can only be addressed by

developing a large set of estimates across a broad spectrum of geographies using units that

are preferably of uniform shape and size (Arbia, 1989).

To be precise, the methodology requires data on trade between a fine-grained set of sub-

provincial regions. The dataset developed here consists of shipments, where each shipment is

characterised by its value, transportation cost, distance travelled, and origin and destination.

Because origins and destinations have names, addresses and are geo-coded with a latitude

and longitude, an almost limitless set of geographies can be applied, making it possible

to test the sensitivity of border effect estimates to the geography chosen. The distance

shipped is measured along the highway/railway network, eliminating the need to estimate

the distance goods travel within and between geographic areas. Finally, because the cost to

shippers (revenue to carriers) is measured, as well as the value of the shipment, transportation

costs can be directly measured and used to estimate the ad valorem tariff equivalent of

provincial border effects (see Head and Mayer, 2014). The main contribution of this paper,

therefore, is the development of a transaction-level trade dataset that allows an arbitrary

number of traditional trade datasets and a wide set of model specifications that address these

econometric issues. It is after simultaneously addressing these problems the magnitude and

significance of provincial border effects can be more confidently established.2

The analysis demonstrates that smaller geographic units typically result in lower border

effects, but the adoption of uniform geographic units (hexagons) reduces border effects even

2Another strategy, complementary to this one, is to further refine the now standard estimators in order
to mitigate issues of measurement error and missing variable bias. This is the approach taken by Agnosteva
et al. (2014), who take advantage of the panel nature of current measures of intra- and inter-provincial trade
to develop estimates of provincial border effects.
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more. Their use helps to mitigate the effects of MAUP on the estimates, while also providing

a means to test their sensitivity to the geography and model specification chosen. This is

accomplished in the spirt of Briant et al. (2010) by randomly shifting and populating the

hexagonal lattice and re-estimating the model each time. These simulations demonstrate the

placement of the lattice matters more than size, with the variance of the estimates reduced

by using smaller units. The obvious lesson is that border effect estimates are more reliable

the smaller and more uniform the unit chosen.

Keeping this in mind, the analysis shows that intra-provincial trade is consistently

stronger than inter-provincial trade after taking into account the distance between the trad-

ing regions, and the ability of the trading units to generate and absorb trade flows. When

sub-provincial areas are used instead of provinces, the border effect tariff equivalent is almost

halved, falling from 13.6% to 6.9%. The latter represents the estimate that held after apply-

ing an extensive set of checks to mitigating the (typically) upward biasing effects of model

misspecification (e.g., non-linear effects of distance) and geography (i.e., the size and shape

of the geographic units) on border effects. It stands in sharp contrast to the finding from

the United States (Hillberry and Hummels, 2008), where state border effects are eliminated

when similar approaches are applied.

The remainder of the paper is organized as follows. Section 4.3 (Data development)

reviews the method used to estimate trade between sub-provincial geographic units. Partic-

ular attention is paid to explaining how these estimates are benchmarked to known intra-

and inter-provincial trade totals and more broadly to the underlying validity of these esti-

mates. Section 4.4 (Model and estimation strategy) outlines the structure of the trade model

and the identification of an appropriate estimator. Section 4.5 (Model estimates) presents

the estimates, starting from standard inter- and intra-provincial trade estimates, continuing

through trade based on sub-provincial geographic units, finishing with a set of robustness

checks that test for biases associated with misspecification and the Modifiable Areal Unit
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Problem. Section 4.6 (Tariff equivalent of border effects) estimates the tariff-equivalent bar-

riers to inter-provincial trade. Section 4.7 (Conclusions) finishes the paper with a summary

of the results and their implications.

4.3 Data development

To date, analysis of Canada’s internal trade has been limited to the provincial level, relying

on trade tables from the provincial input-output accounts or from reported provincial trade

patterns from the Annual Survey of Manufacturers (see Brown, 2003 for the latter). This

paper develops a very flexible transaction-level point-to-point dataset. As such, it permits

the measurement of trade flows between an almost limitless set of sub-provincial geographic

units, providing a means to address many of the econometric issues raised in the borders

and trade literature. Since this database is new, however, it is useful to begin by outlining

how it was constructed and describing some of its basic characteristics before moving on to

discuss the econometric strategy and results.

The data are derived from the Trucking Commodity Origin Destination Survey (TCOD)

and railway waybills from 2002 to 2012, with the analysis limited to the 2004 to 2012 pe-

riod.3 As these data cover the two primary surface modes, the file is termed the Surface

Transportation File (STF). The STF measures the movement of goods from the point where

they are picked up to the point where they are dropped off. It is in essence a ‘logistics file.’

As such, these points do not necessarily represent locations where goods are made or where

they are used. However, the analysis requires a database that captures the level of trade

between sub-provincial regions, which is embedded as a concept in the gravity-based trade

model applied here.

In order to transform the STF from a logistics file to a trade file, provincial trade flows

from the input-output accounts are used to benchmark intra- and inter-provincial flows

3The discussion focuses on data from 2004 onward because 2002 and 2003 had more limited geographic
detail, among other factors that affect comparability across years.
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by commodity. That is, each transaction in the STF file is given a weight such that the

aggregate adds to the total for the corresponding intra-/inter-provincial flow from the input-

output tables. In formal terms, the nominal value of trade between sub-provincial regions

(hereafter regions) i and j, Xij, is the sum of the survey weighted value of shipment x indexed

by l between origin region i and destination region j,4 multiplied by the benchmark weight

for shipment l, wbl :

Xij =
∑
l

wblxlij, where wbl = wl × wb. (4.1)

The shipment benchmark weight is the shipment-based survey weight, wl, multiplied by the

province pair benchmark weight wb for the commodity being shipped, with notation for the

province pair and commodity suppressed in order to simplify the exposition. The benchmark

weight is set such that trade between a given province pair (or within the same province)

add to known totals from the provincial trade accounts by detailed commodity and year.

The proof of this proposition and a more detailed discussion of the benchmarking procedure

is developed in Appendix .1.3.

Conceptually, Figure 4.1 illustrates the benchmarking procedure. Consider the example

of flows of vehicles made in various locations in Ontario and ultimately used at various

locations in Manitoba and Saskatchewan. They may be first shipped to a distribution centre

in Manitoba, with a portion of the shipment sent on to Saskatchewan, which is represented

by the unbenchmarked flows in the upper left-hand quadrant of the figure. From a logistics

perspective this is a correct representation of the flows, but from a trade perspective the

flow from where the vehicles are made in Ontario to where they are used in Saskatchewan is

underestimated and the flow from Manitoba to Saskatchewan is overestimated. As presented

in Figure 4.1b, benchmarking to the input-output tables weights up at a micro-level the

flow from Ontario to Saskatchewan and weights down (to zero) the flow from Manitoba to

4Shipments are geocoded by latitude and longitude. For shipments by truck, the latitude and longitude
are derived from the postal code of the origin and destination, while for rail shipments is based on the latitude
and longitude, and the Standard Point Location Code of the station (yard or siding) where shipments are
picked up or dropped off.
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Figure 4.1: Transformation of logistic to trade flows, full and broken sets.

Notes: Example flows for provinces Ontario (ON), Manitoba (MB) and Saskatchewan (SK).

Saskatchewan.

The weighting strategy relies crucially on there being a flow on the STF file between each

province pair. If there is not, there is nothing to weight up (or down): wb = 0. The result

is no flow between the province pairs (see Figures 4.1c and 4.1d). The risk is that if these

’broken links’ are too common and/or correlated with the distance between the province

pairs, the benchmarking exercise will result in biased estimates. One source of bias is simply

replaced by another.

Table 4.1 presents the ratio of the benchmarked STF inter-/intra-provincial flows to the

actual flows from the input-output tables. Because the Atlantic Provinces were found to have

a larger number of broken links, particularly with western Canada, they were aggregated

together for benchmarking purposes. After doing so, there are relatively few pairs where

there was a serious loss of trade. The overall proportion is 99%. There is a tendency for

intra-provincial flows to have less of a loss, but this is small. Otherwise, there does not
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Table 4.1: Benchmarked intra-/inter-provincial trade flows as a percentage of actual flows.

Destination
Origin A.C. Que. Ont. Man. Sask. Alta. B.C. Total

Atlantic Canada 99 99 89 94 77 94 89 95
Quebec 99 99 100 98 94 98 98 99
Ontario 100 100 100 99 98 100 100 100
Manitoba 93 97 95 96 95 97 95 96
Saskatchewan 87 96 96 95 98 97 97 97
Alberta 89 97 98 97 99 100 100 99
British Columbia 96 82 99 97 96 99 98 97
Total 98 99 99 97 98 99 98 99

Notes: A.C. stands for Atlantic Canada. Cells display the benchmarked trade value as a percentage
of the total trade value given by the Interprovincial Trade Flow (IPTF) database.

appear to be large losses with distance. For instance, the loss for Atlantic Canada’s exports

to Alberta or B.C. is about the same as Ontario. The effect of these broken links are tested

further below by estimating the gravity model with the input-output derived provincial flows

and the benchmarked flows, with both sets of data providing qualitatively similar results (see

Section 4.5).

While benchmarking adequately accounts for the level of intra- and inter-provincial trade,

the pattern of trade especially within provinces may be affected by the functioning of the

transport/distribution system—that is, shorter distance logistics driven flows may be more

prevalent. This has important implications because, when pooled with inter-provincial flows,

these shorter distance, intra-provincial flows may be underestimated, biasing upwards the

estimated inter-provincial border effect.

The effect of benchmarking should be to stretch-out inter-provincial trade as short dis-

tance flows to/from distributions centres or wholesalers are weighted down and longer dis-

tance flows from points where goods are produced to where they are used are weighted

up. This can be seen in Figure 4.2, which reports the shipment distance kernel densities

with survey weights wl and benchmark weights wbl , with shipment distances divided be-

tween intra- and intra-provincial flows. For inter-provincial shipments, as expected, bench-

marking tends to reduce the importance of shorter distance flows (less than 1,000km) and
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increase the importance of longer distance flows, particularly those above 3,000km. For

intra-provincial trade, after benchmarking short distance flows are reduced as imported

commodities (e.g., shoes and apparel) that are distributed locally are weighted downwards.

Still within provinces short distance logistics driven flows may be more prevalent. This

effect can be tested more formally by observing whether distance has a stronger effect on

intra- relative to inter-provincial trade. The results indicate that this is not the case (see

Appendix .2.1 for a detailed discussion). As an additional check, in Section 4.5.3, we use

name and address information to identify and remove shipments to and from wholesalers and

transportation/logistics firms; the empirical results are similar, suggesting the benchmark

procedure is effective at reducing the importance of wholesale and logistics flows)

4.4 Model and estimation strategy

The estimation of provincial border effects relies on the development of data of sufficient

quality and richness to generate defendable estimates and a model and an estimator that is

appropriate for the data at hand. This section addresses the latter concern.

4.4.1 Trade model

As is now standard in the literature (see Head and Mayer, 2014),5 trade between regions i

and j is treated as a multiplicative function of the capacity of i to serve export markets (Si),

the absorptive capacity of the export market in j (Mj), and a measure that captures the

effect of trade costs between i and j (φij):

Xij = GSiMjφij; 0 < φij < 1, (4.2)

where G is a constant term. The export capacity can be defined by Si ≡ Xi/Ωi, where

Xi ≡
∑

j Xij is the value of output in i and is the sum of exports across all trading partners

(including itself). The absorbtive capacity can be defined by Mi ≡ Xj/Φj, where Xj ≡
5This basic exposition is borrowed from Head and Mayer (2014), albeit in a modified form.
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Figure 4.2: Intra- and inter-provincial distance shipped, benchmark and survey weights.

Notes: Distances are trimmed at 5000km for inter-provincial shipments to avoid the long right tail
and focus on more-meaningful distance patterns. Epanechnikov kernel is computed in R using the
levels of distance (in km), and then converted to a log-scale.

∑
iXij is the value of consumption in j and is the sum of imports across all trading partners

(including itself). The terms Ωi and Φj are multilateral resistance terms (Anderson and van

Wincoop, 2003), where

Ωi =
∑
k

φik
Φk

and φj =
∑
k

φkj
Ωk

. (4.3)

Ωi is a measure of market access for exporting region i and Φj measures the level of compe-

tition in market j. Trade costs (φij) are accounted for by the distance between i and j (dij),

the effect of trading within-provinces (δp) and trading within sub-provincial regions (δr).
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4.4.2 Estimator

Equation (4.2) can be estimated with OLS by adding a multiplicative error term, taking the

natural logarithm of both sides:

lnXij = lnG+ lnSi + lnMj + β ln dij + δp + δr︸ ︷︷ ︸
lnφij

+ ln εij, (4.4)

with a set of origin and destination fixed effects to estimate lnSi and lnMi, respectively.

While this estimation strategy results in a loss of information regarding the underlying

theoretically derived structure of the gravity model (Anderson and Yotov, 2010), it has

become the standard means to estimate the gravity model6 (see Anderson and Yotov, 2012),

in part because of ease of estimation, but also because the fixed effects may pick up origin- and

destination-specific unobservables that can bias full information-based estimates (Anderson

and Yotov, 2010; Head and Mayer, 2014).

Missing variable bias is particularly important in the context of this work. While every

effort is made to assign trade flows to where goods are made and used, there may be cases

where a destination is acting as a distribution centre, inflating its level of exports and imports.

In a similar vein, some provinces may have stronger ties with world markets than other

provinces (e.g., British Columbia) reducing their role as a domestic trading partner. In both

instances, the fixed effects should take into account these unobservables that affect the level

of trade in and out of a region (Head and Mayer, 2014).

The standard approach to estimating Equation (4.4) is to use ordinary least squares

(OLS), but it introduces two potential sources of bias. First, starting with Santos Silva and

Tenreyro (2006), it has been recognized that OLS estimates of a log-linearized multiplicative

model are biased in the presence of heteroscedastic errors. Second, OLS estimates are biased

in instances with a larger number of zero flows, which are dropped when the gravity model

6This functional form is, in fact, a very well-known variant of a family of gravity models (for reviews see
Sen and Smith, 1995 and Fotheringham and O’Kelly, 1989). These constrained gravity models recognize
that origin-destination flows often depend not only on the sizes of each origin and destination, but also their
relative locations. The economics literature (see Anderson and van Wincoop, 2003), however, provides a
firm micro behavioral foundation for the model, particularly within the trade setting.
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is estimated using OLS (see Head and Mayer, 2014). The latter is particularly important in

this instance, because the models are estimated using flows between sub-provincial regions,

resulting in many instances with zero flows between actively trading region pairs.

To address these problems, the first step is to assess whether the error term is het-

eroscedastic. To do so, the Manning and Mullahy (2001) test is applied using the following

specification:

ln ε̂2ij = α + λl̂nX ij, (4.5)

where l̂nXij is the predicted log-level of trade from the OLS estimation of (4.4) and ε̂ij =

Xij − exp(l̂nXij) is the difference in levels between the data and the fitted values from

the same estimator. Without zero flows, Head and Mayer (2014) find λ ≈ 2 when the data

generating process produces log normal errors, but λ ≈ 1.6 when the data generating process

produces (Poisson) heteroscedastic errors. In Table 4.2, the estimates of λ are presented for

estimates by province, economic region (ER) and census division (CD), where each is a

subunit of the other, respectively.

For provincial trade, the point estimate for λ is 2.11, suggesting log-normal errors. How-

ever, when the model is estimated by ER and CD the point estimates for λ are about 1.7.

For ERs, where the number of zero flows is about 8%, the estimate is about what would be

expected based on Monte Carlo simulations (see Figure 4 in Head and Mayer, 2014). For

the CD estimates, where almost half of the pairs have zero flows, the expected value of λ is

1.6, with the actual estimate coming in again at about 1.7. However, this estimate is near

what Head and Mayer (2014) obtain when they estimate λ from real data. The upshot is

that in both instances the estimate for λ is significantly different from 2, suggesting the OLS

estimator is inappropriate.

The second step is to assess the potential estimator in the presence of zero flows and

heteroscedastic errors. Based on Monte Carlo simulation results, Head and Mayer (2014)

find the Poisson Pseudo-Maximum-Likelihood estimator (Poisson-PML) of an appropriately

93



Table 4.2: Manning and Mullahy (2001) test by province, economic region and census divi-
sion.

Geography λ 95% c.i. N

Province 2.11 (1.92, 2.30) 100
Economic Region 1.71 (1.68, 1.74) 5,069
Census Division 1.68 (1.67, 1.69) 47,156

Notes: λ is estimated using Equation (4.5) for Provinces, Economic Regions, and Census Divisions.
When λ is significantly different from 2, the test can be interpreted as indicating ordinary least
squares is not the appropriate estimator.

transformed version of Equation (4.4) tends to produce the least bias. Therefore, it is our

preferred estimator, especially when estimates are based on flows between sub-provincial

regions. It is also generally preferred because it perfectly replicates the Anderson and van

Wincoop (2003) structural equation estimates (see Fally, 2015).

4.4.3 Geography and estimation

The analysis is based ultimately on the aggregation of point data into a set of geographic units

of which the Standard Geographic Classification (hereafter standard geography) based units

(e.g., ERs and CDs) are but one of an almost limitless number of geographies. As demon-

strated by Hillberry and Hummels (2008), estimates of barriers to trade can be strongly

influenced by the geography chosen. Hence, the sensitivity of the results to geography can-

not be easily swept aside.

As noted above, Hillberry and Hummels’ (2008) findings are an instance of the well-known

and quite frankly terrifying Modifiable Areal Unit Problem (MAUP). MAUP is defined as

“...the sensitivity of analytical results to the definition of units for which real data are

collected” (Fotheringham and Wong, 1991, pg. 1025). MAUP is characterized by both a

scale and zoning effect. That is, analytical results depend on the spatial resolution (scale

effect) and the morphology (zoning effect) of the geography used to aggregate the data (Páez

and Scott, 2004).

As has been shown elsewhere, these problems apply to multivariate statistics, including
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spatial interaction models like the gravity model (see Fotheringham and Wong, 1991; Am-

rhein and Flowerdew, 1992; Briant et al., 2010). In particular, Briant et al. (2010) show

gravity model results are more sensitive to scale and to a lesser degree to zoning effects,

but these are of secondary importance when compared to model specification problems (e.g.,

missing variable bias). Still, as Amrhein (1995) demonstrates, MAUP can emerge as a

problem even when we abstract from model specification issues.

The effects of geographic aggregation need to be taken into account. This is accomplished

by applying different geographies to the data. Here, two strategies are followed. The first

is to see how sensitive the results are to the application of standard geographies, namely

defining trading regions on the basis of Provinces, ERs, and CDs. The second strategy is

to take advantage of the guidance provided by Arbia (1989) who shows analytically that

biases resulting from the scale and zoning of the geography can be minimized by ensuring

the geographic units are identical and spatially independent. Hence, a hexagonal lattice7 is

overlaid on the geocoded origin and destination points, creating an identical and spatially

independent geography (see Figure 4.3). Hexagons that cross provincial borders are split

and treated as discrete geographic units.

Of course, the use of a hexagonal geography, while perhaps minimizing the bias generated

by aggregating data, does not eliminate it. Issues of scale and zoning remain. As there is

no theoretically predetermined scale for the hexagons, the sensitivity of the results to size

requires testing. For instance, compare the geographic coverage of the 75km and 225km per

side hexagons in Figures 4.3a and 4.3b, respectively. The smaller hexagons cover portions

of metropolitan areas, while the larger can envelop several. Similarly, while the hexagons

do not change in shape, zoning still matters because they are arbitrarily positioned over

the origin and destination points. For instance, in Figure 4.3a Toronto is split across two

hexagons, while in Figure 4.3c it is split across three. Scaling and zoning effects will be

7Other geometries could have been used, such as squares or triangles, but hexagons are used because they
would form trade market areas in an idealized world.
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tested by running the model across different scales and zonings.

Toronto

(a) 75km per side hexagons, overlay 1

Toronto

(b) 225km per side hexagons, overlay 1

Toronto

(c) 75km per side hexagons, overlay 2

Toronto

(d) 225km per side hexagons, overlay 2

Figure 4.3: Size and placement of hexagonal lattices.

Notes: Figures 4.3a and 4.3c present two different overlays of hexagons with 75km sides on southern
Ontario and Quebec, while Figures 4.3b and 4.3d do the same for hexagons with 225km sides.
Hexagons must respect provincial boundaries and are split across provinces. Each ‘point’ in these
maps is a 4km-sided (42km2) hexagon with one or more origins/destinations (postal codes or
railway terminals). The gradation in colour from blue to green to yellow denotes a greater number
of origins/destinations. The 4km-sided hexagons are only for demonstration purposes, they are not
used to determine which points fall into which hexagons in the econometric models.

4.5 Model estimates

The presentation of the estimates proceeds first by estimating border effects using province-

level estimates of trade flows and therein providing a base case. The exposition then shifts

to the estimation of border effects using sub-provincial geographies, which forms the core of
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the analysis. The remainder of the discussion focuses on a set of robustness checks, with par-

ticular attention paid to the sensitivity of the estimates to MAUP, alternative specifications

of the model, or combinations thereof.

4.5.1 Standard province-based estimates

To begin, inter-provincial barriers to trade are measured by comparing intra- and inter-

provincial aggregate trade levels. This serves several purposes. First, by comparing the

actual level of inter-provincial trade to the benchmarked estimates the sensitivity of the

results to the loss of trade from the benchmarking can be identified. Second, the OLS,

Poisson-PML and Gamma-PML estimates can be compared absent zero flows. Based on

their first-order conditions, the Poisson estimator puts more emphasis on the absolute devi-

ation between the actual and predicted flows, while the OLS and Gamma-PML place more

emphasis on the percentage deviation and as such are expected to give similar results (Head

and Mayer, 2014). Third, the provincial results form a baseline to compare the estimated

barriers to inter-provincial trade using trade between sub-provincial regions.

Table 4.3 (Panel A) presents the estimated effects of distance and own province on provin-

cial trade using the input-output-based flows and those derived after benchmarking. The

model is estimated using an appropriately transformed version of Equation (4.4) with the

mean level of provincial trade from 2004 to 2012 as the dependent variable. There are several

points to be drawn from the table. First, estimates based on the input-output and bench-

marked flows are similar. There is a tendency for the own province estimates to be lower

when using the benchmarked estimates, but this effect is relatively small, particularly when

the Poisson estimator is used. There is relatively little loss of generality resulting from the

benchmarking and so the remainder of the discussion will focus on these estimates.

Second, there is evidence of a border effect, regardless of estimator used. The one ex-

ception is the OLS estimator, which is not significant for the benchmarked flows. Using

the input-output benchmarked estimates, the border effect ranges from 1.61 (OLS) to 2.26
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Table 4.3: Provincial border effect estimates based on provincial average flows (2004 to
2012).

Input-output Benchmarked
OLS Poisson Gamma OLS Poisson Gamma

Panel A: Network distance

Distance −1.025∗∗∗ −0.661∗∗∗ −0.999∗∗∗ −1.077∗∗∗ −0.686∗∗∗ −1.078∗∗∗

(0.0458) (0.0496) (0.0453) (0.0576) (0.0522) (0.0537)

Own province 0.607∗∗∗ 0.865∗∗∗ 0.775∗∗∗ 0.479 0.816∗∗∗ 0.634∗∗

(0.223) (0.0807) (0.190) (0.289) (0.0827) (0.254)

Constant 12.31∗∗∗ 9.916∗∗∗ 12.42∗∗∗ 11.70∗∗∗ 9.515∗∗∗ 12.08∗∗∗

(0.410) (0.559) (0.373) (0.630) (0.877) (0.535)

Border effect 1.83 2.38 2.17 1.61 2.26 1.89
N 100 100 100 100 100 100

Panel B: Great-circle distance

Distance −1.058∗∗∗ −0.778∗∗∗ −1.037∗∗∗ −1.100∗∗∗ −0.806∗∗∗ −1.106∗∗∗

(0.0462) (0.0571) (0.0436) (0.0613) (0.0591) (0.0564)

Own province 0.747∗∗∗ 0.780∗∗∗ 0.840∗∗∗ 0.653∗∗ 0.728∗∗∗ 0.743∗∗∗

(0.194) (0.0907) (0.171) (0.274) (0.0882) (0.249)

Constant 12.01∗∗∗ 10.49∗∗∗ 12.17∗∗∗ 11.29∗∗∗ 10.12∗∗∗ 11.70∗∗∗

(0.405) (0.547) (0.360) (0.644) (0.848) (0.535)

Border effect 2.11 2.18 2.32 1.92 2.07 2.10
N 100 100 100 100 100 100

Notes: Models include fixed effects for origins and destinations. ∗∗∗, ∗∗, and ∗ indicate significance
at the 0.01, 0.05 and 0.10 levels, respectively. Robust standard errors are in parentheses. The
border effect is given by exp(own province).

(Poisson)—that is, within province trade is between 61 and 126% higher than inter-provincial

trade after taking into account distance and multi-lateral resistance.

One of the benefits of building the trade estimates up from shipment data is that it is

possible to obtain a more accurate measure of the distance goods travel within and between

provinces. The sensitivity of the results to the distance measure can be tested by comparing

estimates based on the network distance to the great-circle distance typically used in the

literature (see Appendix .1.4). In a nutshell, how distance is measured matters. On average,

great-circle distances are 66% of the actual distance shipped. As a result of the compression
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of distance, the parameter on distance should be more negative for the great-circle distance-

based estimates, which is true regardless of the estimator. It is also the case that the great-

circle within-province distances are, in relative terms, over-estimated (see Appendix .1.4

Table .7). This over-estimation will have the effect of biasing upwards the own province

effect. The OLS and Gamma estimators show this effect, but not the Poisson where the bias

appears to be captured by the coefficient on distance.

4.5.2 Estimates by sub-provincial geography

Estimates of provincial border effects based on the comparison of intra-provincial to inter-

provincial trade flows may still suffer from bias, if these units do not effectively capture

the pattern of trade. As shown by Hillberry and Hummels (2008), if short distance flows

predominate and these are not properly captured by the internal distance measure, the

estimated border effect may be upward biased.

To further establish the presence and strength of provincial barriers to trade, intra- and

inter-provincial trade flows are measured using sub-provincial geographies of different sizes

and morphologies. Since trade can be both within and between sub-provincial geographic

units, a binary variable is included for within unit trade (own region). It should capture

non-linearities with respect to the effect of distance for these shorter distance flows and/or

differences in the nature of own unit versus between region trade. Within region trade is

more likely to include short distance flows between manufactures and distribution centres,

between distribution centres and retail stores (Hillberry and Hummels, 2003) or between

upstream suppliers and downstream users of intermediate inputs (Hillberry and Hummels,

2008).

Moving from the provinces down to the scale of sub-provincial units introduces the prob-

lem of zero flows between trading units. The set of trading units is defined as those units

that either make or use the good. Excluded are units that do not engage in goods trade,

either within themselves or with other units. This may result from no measurable goods
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production in the unit or because of sampling variability. Since the estimates are based

on the average value of trade over 9 years, the effect of sampling variability is likely to be

low. Of course, those units included in the trading set do not trade with all potential units,

resulting in zero flows. Zero flows may be due to random chance (again sampling variability)

or they may be structural (producers incur costs above the trading threshold). To permit

the presence of zeros, the Poisson estimator is used. For zero flows, the distance between

regions is measured using the out-of-sample predicted values of a regression of the network

distance on the great-circle distance.

As noted above, there are five geographic units used for the analysis. Three are based

on standard geographies, ERs, CDs and FSAs. The other geographic units are two hexagon

lattices with sizes of 75km and 225km per side. Choosing hexagons with areas larger than

225km per side results in some smaller provinces having very few hexagons. On the other

hand, using hexagons smaller than 75km per side results in such a large number of fixed

effects that the estimation often fails to reliably converge, which is problematic for the

simulations to follow.

Focussing first on ERs as the trading unit, the distance parameter tends to be less negative

than the province-based estimates, with own region likely picking up the non-linear effect of

short distance flows (see Table 4.4). More to the point, the own province estimate is smaller,

resulting in an estimated border effect of 2.10. Using CDs—a fundamental building block of

ERs—the number of potential trading pairs rise from 5,329 to 77,274. For this much larger

set of smaller trading units, the border effect falls slightly to 1.97.

For both the small and large hexagons, the own region effects were not statistically sig-

nificant, while the own province effect remained significant but notably smaller in magnitude

than standard geographies. The result is an estimated border effect that falls in a narrow

range from 1.60 (large hexagons) to 1.62 (small hexagons) (see Table 4.4).

On the surface, these results stand in contrast to Hillberry and Hummels (2008), who find
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Table 4.4: Provincial border effect estimates based on flows between large and small hexagons
(2004 to 2012).

Geography
Standard Hexagon

FSA
Economic Census

225km 75km
Region Division

Distance −0.551∗∗∗ −0.573∗∗∗ −0.820∗∗∗ −0.742∗∗∗ −0.426∗∗∗

(0.0461) (0.0278) (0.062) (0.0357) (0.0146)

Own region 0.408∗∗∗ 0.467∗∗∗ −0.101 −0.0215 1.052∗∗∗

(0.138) (0.121) (0.127) (0.117) (0.0966)

Own province 0.743∗∗∗ 0.679∗∗∗ 0.472∗∗∗ 0.483∗∗∗ 0.909∗∗∗

(0.0951) (0.0633) (0.0872) (0.0783) (0.0421)

Constant 6.981∗∗∗ 7.094∗∗∗ 3.142∗∗∗ 2.540∗∗∗ 2.015∗∗∗

(0.490) (0.359) (0.776) (0.477) (0.383)

Border effect 2.10 1.97 1.60 1.62 2.48
N 5,329 77,274 8,619 132,862 2,574,640

Notes: All models utilize a Poisson-PML estimator and include fixed effects for origins and destina-
tions. ∗∗∗, ∗∗, ∗ indicate significance at the 0.01, 0.05 and 0.1 levels, respectively. Robust standard
errors are presented in parentheses. Large hexagons are 225km per side while small hexagons are
75km per side. Own region refers to flows within the geographic unit of analysis: Economic Re-
gion, Census Division, hexagon or Forward Sortation Area (FSA). The border effect is given by
exp(own province).

state border effects are an artefact of the geography used to measure internal trade. How-

ever, they found border effects only disappeared when using an even finer grained geography

than applied here, namely 5-digit ZIP codes. To account for this, the model was re-run using

Forward Sortation Areas (FSAs), which are the closest Canadian analogue to ZIP codes.8

Importantly, the point estimates for own province remains positive and significant (see Ta-

ble 4.4). Provincial border effects remain even with a very fine-grained geography, a finding,

as will become apparent, that is robust to a wide set of specifications (see Section 4.5.3).

8FSAs are defined by the first three alphanumeric characters of a postal code. While the mean area
of FSAs is much greater than ZIP code areas (5,894km2 versus 229km2), this is due to a few extremely
large FSAs in Canada. In fact, the median FSA area is smaller than the median ZIP code area (41km2

versus 96km2) and FSAs remain smaller up to the 70th percentile. Given that these smaller FSAs are in
dense metropolitan areas, they should be capturing the non-linear effect of distance on trade for these short
distance flows.
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The obvious conclusion to be drawn from the provincial- and sub-provincial-based es-

timates of the border effect is that the geography chosen matters, but at this point there

is still insufficient information to draw strong conclusions. Two issues in particular need

to be addressed. The first is the question of how sensitive the results are to the MAUP,

namely scaling and zoning effects (i.e., the size and placement of the hexagons). It is un-

known whether the variation in provincial border effects across hexagons of different sizes

(or lack thereof) is outstripped by variability resulting from the placement of the hexagonal

lattices. The second is whether there is a still unaccounted for non-linear effect of distance

on trade that may, in turn, influence estimates of provincial border effects. The elasticity

on distance varies considerably across geographies and estimators and, as Head and Mayer

(2014) note, variation on the distance term between the Poisson and Gamma estimators may

be an indication of model misspecification, which is observed in Table 4.3. The necessary

next step, therefore, is to more rigorously assess how the geography and model specification,

particularly non-linear effects of distance, influence estimated border effects.

4.5.3 Sub-provincial estimates robustness checks

To test the robustness of the estimates, the analysis proceeds in four steps. The first tests

how sensitive the results are to the MAUP. The second step tests whether there is a non-

linear effect of distance on trade that may, in turn, influence estimates of provincial border

effects. The third combines the first two by asking how sensitive the results are to taking

into account both MAUP and the non-linear effect of distance, and the fourth and final step

returns to Hillberry and Hummels’ (2008) results and asks whether provincial border effects

remain using FSAs as trading units after applying their specification and estimator, as well

as our fully-specified model.
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Modifiable areal unit problem

The sensitivity of the results to the MAUP is tested by re-running the models on randomly

shifted hexagonal lattices of varying sizes. Mechanically, the process is as follows. For a

given size of hexagon, the lattice is superimposed on Canada’s landmass, with each origin

and destination point coded to their respective province and hexagon. The lattice is then

perturbed by shifting the centroid of each hexagon to any random point within a circle

circumscribed by its borders. The set of points is limited to the circumscribed circle, because

shifting over more than one unit simply repeats the pattern. The origin and destination

points are recoded to their province and hexagon. The lattice is randomly shifted 100

times,9 resulting in a set of parameters that describes how sensitive the estimates are to the

placement of the lattice (i.e., the MAUP zoning effect) for a given size of hexagon. This

is repeated for seven sizes of hexagons increasing in 25km per side increments from 75km

to 225km. This accounts for how sensitive the results are to the size of hexagons (i.e., the

MAUP scaling effect).

To represent the distribution of coefficients resulting from the simulations for the main

variables—own province, own region (hexagon) and distance—Figure 4.4 presents box plots

by size of hexagon. The boxes represent the inter quartile range, with the line intersecting

the box being the median coefficient value. The ends of the whiskers—the upper and lower

adjacent values—represent the ranked coefficient value that is nearest to but not above

(below) 1.5 times the inter-quartile range from above (below). The dots signify extreme

values.

Regarding own province, the median coefficient values range from 0.50 for the smallest

hexagons to 0.45 for the largest (scaling effect), with the coefficients converging towards the

lower median value as the size of hexagons increase. This is consistent with Coughlin and

Novy’s (2016) analytical finding that if trade is particularly strong within small units as the

9It would have been preferable to randomly shift the lattices more than 100 times and increase the number
of size categories used, but this is a computationally burdensome process, both in terms of geo-coding the
flows to a given lattice and with respect to the Poisson PML estimations.
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size of the unit expands, the border effect will tend to fall. The placement of the hexagonal

lattice (zoning effect) has a larger effect on the estimates, with the difference between the

box plot lower and upper adjacent values being greater than the difference in the medians

across the size of hexagons, which contrasts with Briant et al. (2010) who find the scaling

effect is more important. More broadly, the lesson to be drawn is that shifting to a uniform

geography has a qualitative effect on estimated border effects, and this result holds after

taking into account the effect of the size and placement of the hexagons on the estimates.

Non-linear effects of distance

Variation in the results across hexagons of varying sizes may stem from a non-linear effect of

distance on trade, a telltale sign of which is the negative association between hexagon size

and the distance coefficient (see Figure 4.4). As the hexagons become smaller the average

distance shipped falls. If these more prevalent shorter distance flows are underestimated,

the provincial border effect will be overestimated, because intra-provincial trade occurs over

shorter distances more than inter-provincial trade (see Figure 4.2). This appears to be the

case as there is a positive association between the own province and the distance coefficients

(see Figure 4.4).

There are at least two reasons why the effect of distance on trade is expected to vary with

itself. First, prices charged by trucking firms, for instance, include fixed and variable (line-

haul) cost components. Since fixed costs per shipment are around $200 and line-haul costs

increase at about $0.80 per km (see Brown, 2015), prices inclusive of transport costs will be

(effectively) uniform over short distances. Second, the endogenous clustering of upstream

suppliers and downstream firms10 and hub and spoke distribution networks11 (Hillberry and

10As shown in Behrens et al. (2015), plants tend to cluster geographically and this is negatively associated
with distance from upstream suppliers and downstream intermediate goods users.

11If short distance trips from manufactures to distribution centres or from distribution centres to retail
stores are captured by the data, which may still be the case despite the steps taken to adjust for these effects,
the same pattern of trade will be observed as resulting from clustering. We address this in Section 4.5.3
by using the names and addresses of shippers and receivers to identify and remove shipments to and from
wholesalers and transportation/logistics firms. The results are similar.
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Hummels, 2008) may result in a large volume of trade over short distances with a steep drop

as distance shipped moves beyond these ‘just down the street’ shipments. Uniform prices

over short distances combined with clustering/distribution effects results in a complicated

set of expectations. For very short distance flows, the effect of distance on trade may be

very negative (or at least after a short plateau), but the negative effect of distance on trade

beyond these very short distance flows is expected to be initially weak, but increasing as

variable costs outstrip the effect of fixed costs on transportation rates. This pattern in the

data requires moving beyond the standard quadratic form to account for non-linearities.

To account for these non-linear effects of distance, the model is re-estimated using a

spline with knots at 25km, 100km and 500km (see Table 4.5) employing the same hexagonal

lattices used for the estimates presented in Table 4.4.12 Focussing on the smaller hexagon

results, the distance elasticities are consistent with a steep drop in shipments over very short

distances (reflecting the co-location of input-output linked plants, for instance), while the

insignificant effect of distance for 25 to 100km distance flows is consistent with a relatively

constant transportation rate charged by firms over short distances. Importantly, accounting

for the non-linear effect of distance causes the coefficient on own province to become more

similar across hexagon size classes. Still, given the sensitivity of the result to the placement

of the hexagonal lattices, it remains unclear from this one set of point estimates how truly

similar the border effect estimates are between the large and small hexagons.

Finally, as is standard in the literature, a binary variable is added for hexagons that

share a border (contiguous regions). The expectation is that the contiguity measure will

account for short distance flows across boundaries. For both the large and small hexagons,

the contiguous region coefficients is insignificant, and the own province coefficient falls while

remaining significant.

12These particular hexagonal lattices are used to maintain comparability across the models.
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Non-linear effects of distance and the modifiable areal unit problem

This next check assesses whether accounting for the non-linear effects of distance reduces

the degree of variation in results across different sizes and placement of hexagons. This is

again accomplished by randomly perturbing the hexagonal lattices for the largest (225km

per side) and smallest (75km per side) hexagons, but also across model specifications. The

‘base’ model estimates replicate those presented in Figure 4.5 (which use the specification

presented in Table 4.4), while Model 1 and Model 2 match those in Table 4.5.

Taking into account the non-linear effect of distance reduces the median coefficient of the

small hexagons, but increases that of the large hexagons (see Figure 4.5), effectively reversing

the pattern in Figure 4.4. The addition of contiguity to the model (Model 2) produces large

and small hexagon-based provincial border effects that are statistically indistinguishable.

The coefficients on own hexagons also converge, but this only occurs when contiguity is

taken into account. While the central tendencies of the small and large hexagon coefficient

distributions are the same, their variances are not, with the large hexagons having more

than double the inter-quartile range of the small hexagons. Hence, on this basis, the small

hexagon border effects are the most reliable.

Provincial border effects based on Forward Sortation Areas

As a last robustness check, the analysis revisits Hillberry and Hummels’ (2008) finding that

state border effects are eliminated when trade is measured using 5-digit ZIP codes. This

entails initially using the same estimator (OLS) and model specification (quadratic term

on distance) used in their analysis and then applying the preferred estimator (Poisson) and

model used above (distance effects estimated using a spline).

While the model and estimators can be equated, it should also be kept in mind results

may vary because of differences in the underlying data. The benchmarking procedure weights

the STF data towards longer distance flows, which, combined with Canada’s geography, in-

creases the average distance shipped relative to Hillberry and Hummels’ (2008) Commodity
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Flow Survey (CFS). The average distance shipped between FSAs being 1,679km (1049 miles),

while the average distance between ZIP codes is 837km (523 miles) (see Hillberry and Hum-

mels 2008). Since the distance elasticity increases (in absolute terms) with distance shipped,

the expectation is that the effect of distance is likely to be stronger here. The CFS data

are shipper-based, which allow Hillberry and Hummels (2008) to focus on manufacturing

shipments only—wholesale and distribution shipments are not included in the data. While

our data is carrier-based, we have the names and addresses of the shippers and receivers,

allowing us to identify and remove shipments to and from wholesale and distribution centres,

as well as transportation logistics firms.

Table 4.6 shows the estimates, with the first three columns of results based on the equiv-

alent model used in Hillberry and Hummels (2008, Table 2). The first column presents the

OLS-based estimates, while the second and third columns present the Poisson-based esti-

mates with and without zeros included. Evaluating the effect of distance using the CFS mean

distance of 837km (523 miles) the elasticity is −0.42, more than double the ZIP code-based

estimate of −0.19. Also found is a much higher point estimate for own region (FSA). These

results are in line with our expectations given the differences between the underlying data.

Notably, the own province effect is positive and significant using the same estimator, model

and equivalent geography as Hillberry and Hummels (2008), and estimates using the PPML

estimator are in line with our other results.

The application of the Poisson estimator reduces the effect of distance, because larger,

(typically) short distance flows are weighted more heavily. Evaluated at 837km, the elasticity

on distance is −0.25, and only slightly lower when zero flows are added. The Poisson estima-

tor also produces smaller but still significant own region and province effects. The inclusion

of zero flows, results in a positive coefficient on distance up to 5km, and then a declining

point estimate thereafter. The effect of adding zeros also raises the point estimates on own

region and province. The highly non-linear effect of distance when the Poisson estimator
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is applied suggests the influence of distance on trade has to be treated in a very flexible

manner. This is accomplished, as above, by estimating a spline on distance.

Model 2 uses the same structure as Model 1 in Table 4.5, with knots at 25km, 100km and

500km. The estimated provincial border effect is lower than when the quadratic is used on

distance, but remains significant. Unlike when hexagons are used, there is no strong negative

effect on distance between 0 and 25km. The effect of short distance flows is captured by

the own region term instead, with a strong positive coefficient, because the vast majority

of FSAs are small and located in metropolitan areas. Hexagons, whose size distribution

by construction is not associated with the density of short distance flows, have a weaker

relationship. The estimated provincial border effect is unchanged with these modifications

to the specification. In short, unlike Hillberry and Hummels (2008), the adoption of very

small trading units does not eliminate border effects. Therefore, provincial border effects,

while sensitive to the specification of the model and geography, are never eliminated. The

remaining question is whether they are economically meaningful.

4.6 Tariff equivalent of provincial border effects

To estimate the tariff equivalent of the provincial border effect the approach described in

Head and Mayer (2014, pgs. 32–34) is applied. δp denotes the provincial border effect

coefficient, which reflects the reduction in trade costs between sub-provincial regions by

simply being part of the same province. Given that δp = η(ln ρinter − ln ρintra), where ρinter

and ρintra are inter-provincial and intra-provincial trade costs, respectively, and η is the

trade elasticity with respect to transportation costs, if t is the tariff that must be removed

to equate the cost of moving goods within and between provinces, then the inter-provincial

trade tariff equivalent is

t = (1 + ν) [exp(δp/η)− 1] , (4.6)
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where ν is the tariff equivalent of within-province barriers to trade, which are assumed to be

zero. Hence the only missing information, is the trade cost elasticity of trade:

lnXij = φi + ξj + η ln τij + µij, (4.7)

where τij is 1 plus the ad valorem transportation costs, φi and ξj are respectively origin

and destination fixed effects and µij is the error term. Ad valorem transportation costs are

derived from the STF, which reports both the price charged to shippers and the estimated

value of each shipment. The estimated13 price elasticity based on (4.7) is −6.40, which is

between the median (−5.03) and average (−6.74) price elasticities identified in Head and

Mayer’s (2014) meta-analysis.

For the median provincial border effect coefficient on the 75km per side hexagon (see

Figure 4.5, Model 2), t = exp(0.426/6.40)−1 = 0.069, or 6.9%. To provide some perspective,

using a very different methodology, Agnosteva et al. (2014) arrive at a lower, but statistically

indistinguishable,14 estimate of 5.6%.

The tariff equivalent of the border effect across the standard and hexagonal geographies

are presented in Figure 4.6 and illustrate the impact of the trading unit chosen on the

border effect. The hexagons use the median point estimates from the simulations presented

in Figures 4.4 and 4.5. The provincial estimates are the highest at 13.6% followed closely

by the ER- and CD-based tariff equivalents of 12.3% and 11.2%, respectively. It is the

imposition of a uniform hexagonal geography that causes the most notable drop in the tariff

rate. As the hexagons become larger, the point estimates converge to tariff equivalent of

7.3%. The tariff equivalent for the 75km and 225km per side hexagons that takes into

account the non-linear effect of distance and contiguity (see Figure 4.5, Model 2) provides

the lowest estimates that are essentially indistinguishable.

Therefore, in the fully specified model the size of hexagon chosen is of little consequence.

13Equation (4.7) is estimated using ordinary least squares. ERs are used as the trading unit because of
the lack of zero flows that can bias the estimates.

14For instance, the 5.6% point estimate falls within the 90% confidence interval using the point estimates
from Model 2 in Table 4.5 using the 75km per side hexagons.
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At 6.9%, the 75km per side hexagons provide the preferred estimate, because of the smaller

inter-quartile range relative to the 225km per side hexagons. Compared to this estimate,

relying on provincial trade would increase border effect estimates by 6.7 percentage points.

This difference is non-trivial. To put it into some perspective, this value is about the same

as Canada’s mean tariff rate (4.9%)15 and larger than ad valorem transportation costs on

internal trade (2.5%)16.

4.7 Conclusions

Intra-national border effects have proven difficult to measure because of a lack of geograph-

ically detailed data on trade within and across provinces. Using a very flexible transaction-

level transportation data file to generate regional trade flows within and across provincial

borders, the analysis show that regardless of the model or geography chosen provincial bor-

der effects are always significant, with an implied ad valorem tariff equivalent of 6.9%. This

stands in contrast to the U.S.-based estimates, where state border effects are eliminated when

similar approaches—i.e., same model and geography—are applied (Hillberry and Hummels,

2008).

Beyond this substantive contribution, the paper’s other contributions are methodological.

The development of geocoded transaction-level data made it possible to test the effects of

geography and model specification simultaneously through a set of simulations. From this

several points can be drawn. First, while the results are sensitive to the size of geographic unit

chosen (i.e., provinces, economic regions, census divisions and hexagons) there is no simple

linear relationship between (average) size and border effects. In fact, choosing a uniform

shape (à la hexagons) is more important than size, which speaks to Arbia’s (1989) analytical

finding that biases resulting from the scale and zoning of the geography are minimized when

15The estimate is based on the unweighted mean MFN tariff rate for the period 2004 to 2008. Source:
http://data.worldbank.org/indicator/TM.TAX.MRCH.SM.FN.ZS (accessed: July 14, 2015).

16This is the average ad valorem transportation cost across 2-digit SCTG commodities for internal Cana-
dian trade.
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using identical units.

Second, after taking into account the non-linear effects of distance, the median smallest

and largest hexagon’s parameters converge. In other words, with a correctly specified model,

the geographic scale of the unit does not matter. Finally, considerable variation in the

estimates result from the simple shifting of the hexagonal lattice, even after applying the

full model. These effects are, perhaps unsurprisingly, minimized by using smaller geographic

units. In total, the most precise estimates come from a model that carefully accounts for

the effect of distance on flows between small, uniform geographic units.

There is, of course, more work that needs to be done. Identifying the effect of provincial

non-tariff barriers on estimated border effects will require direct information on the extent

of these barriers, and other factors that influence inter-provincial trade (e.g., firm linkages

and migratory flows across provincial borders). Furthermore, while this work is able to

estimate provincial border effects and their tariff equivalents, there remains the question of

the overall welfare implications if they were eliminated, which as Albrecht and Tombe (2016)

demonstrate can be substantial.
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.1 Data Appendix

.1.1 Valuing shipments

The waybills on which the Surface Transportation File (STF) is based describe the com-

modity and tonnage for each shipment, but not its value. To generate an estimate of value,

required is a measure of the value per tonne. This is derived from an experimental transac-

tion level trade file that measures the value and tonnage of goods by detailed HS commodity

in 2008. Since the trade file identifies the mode used for each shipment, the value per tonne

for each commodity also varies by the mode used. Export prices indices are used to project

the value per tonne estimates through time (see Brown, 2015 for a more detailed discussion).

.1.2 Geocoding shipment origins and destinations

Using postal code data from the Trucking Commodity Origin Destination (TCOD) survey

and Standard Point Location Codes (SPLC) from the rail waybill file, each shipment is

geocoded (given a latitude and longitude for the origin and destination) from 2004 to 2012.

These are then used to give the file a 2006 Standard Geographic Classification. As a result,

each origin and destination is coded to its ER and CD. Prior to 2004, the TCOD did not use

postal codes to identify origins and destinations. For these years the flows are only coded to

ERs and CDs. Note that because origins and destinations are given latitudes and longitudes

other non-standard geographies can also be applied, such as the hexagonal lattices used here.

.1.3 Benchmark weights

When constructing the file, one of the primary goals is to ensure that the value of trade

on a shipment basis in the STF adds to known trade totals by commodity from the inter-

provincial trade flow file. To do so there are two problems that need to be overcome as the

files represent different trade concepts and use different commodity classifications.

In the interprovincial trade flow file, a source represents the point of production, while
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a destination represents a point of consumption. However, in the STF, a source represents

the point at which the shipment is picked up, while the destination is the point at which

the shipment is dropped off, including warehouses that act as transportation waypoints. A

commodity that is produced in Quebec and consumed in BC would be recorded as a flow from

Quebec to BC in the inter-provincial trade flow database, but that flow may have multiple

sources and destinations in the STF if it stops at warehouses in different provinces along the

way. For instance, a Quebec to BC trade flow might be counted as flows from Quebec to

Ontario and then from Ontario to BC in the STF. This results in the STF overestimating

the flows between close provinces and underestimating the flows between provinces that

are farther away from each other, potentially biasing upwards border effect estimates. The

benchmarking is an attempt to re-weight the surface transportation shipments to reflect the

inter-provincial trade flow concept.

In addition to representing different concepts, the two files use related, but in practice,

different commodity classification systems. Although both commodity classifications are

built from the commodity-based Harmonized System (HS), the resulting aggregate classifi-

cations used are so different as to eliminate any possible one-to-one matching between them.

The STF uses the Standard Classification of Transported Goods (SCTG 1996),17 while the

inter-provincial trade flow file uses the Input-Output Commodity Code system (IOCC). At

every level of aggregation, there are SCTG codes that map to multiple IOCC codes, and

vice versa. Since the number of multiple matches is large, no attempt is made to force a

single IOCC code to any SCTG code. Instead, the goal is to benchmark the transportation

file so that it represents the same values as the interprovincial flow file without taking a

stand on which transported commodities represent which input-output commodities. That

is, instead of forcing a one-to-one concordance between the files, we employ a strategy where

the benchmark weights are set such that flows add total commodity flows generated by the

17http://www.statcan.gc.ca/subjects-sujets/standard-norme/sctg-ctbt/

sctgmenu-ctbtmenu-eng.htm.
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input-output system. The process for doing so is set out in a series of steps.

In the first step each file is aggregated to include values of flows by year, origin province,

destination province and commodity (SCTG for the surface transportation file and IOCC

for the inter-provincial flow file). This generates two vectors of the value of trade for IOCC

commodity flows and SCTG commodity flows: XI and XS, respectively.

The second step builds a concordance between SCTG and IOCC by province pair and

year. This is done through one-to-many mappings from SCTG to HS and from IOCC to HS,

which combine to form a many-to-many map from SCTG to IOCC forming a concordance

matrix C used in the third and final step.

In the final step the benchmark weights are calculated. To do so, for each year and origin

and destination province pair, the two commodity vectors, XI and XS, are combined with

the concordance matrix C, of which all values are either 0 or 1 (depending on whether a

given SCTG commodity maps to a given IOCC commodity). Defining the number of IOCC

commodities as M and the number of SCTG commodities as N , then XI has length M , XS

has length N , and C is an M ×N matrix. Then the benchmarking problem can be written:

(B ◦ C)XS = XI , (.8)

where B is the M×N matrix of benchmark values, and ◦ is the element-wise matrix product

(Hadamard product). Any B that solves this system of equations will benchmark XS to XI .

The problem is to find a solution to M equations given M×N unknowns. A typical solution

is to force C to be one-to-one such that if cmn = 1, then cmo = 0 for all o 6= n and con = 0

for all o 6= m, where i and j index elements of C. In that way, the matrix B ◦C has only M

non-zero values and the benchmark weight is bmn = VIm/VSn . In this case, the concordance

would be static. There would be no need to undertake a concordance by year let alone

province pair. However, this approach throws away considerable amounts of information

regarding the underlying trading relationships between provinces as the commodity profile
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of trade varies across province pairs. For instance, the commodity in a forced pairing may

not be found in the trade between the two provinces. Hence, the benchmarking concordance

should reflect and indeed take advantage of those differences.

In order to preserve information in the face of a particularly severe many-to-many con-

cordance problem in C, each element of B is separated into two parts, bmn = bmb̂mn, where

b̂mn =

(
XSn∑
o cmoXSo

)(
XIm∑
o conXIo

)
. (.9)

Equation (.9) is simply the product of the trade shares of the concorded SCTG- and IOCC-

based flows. It is assumed that the SCTG- and IOCC-based flows are an accurate repre-

sentation of the patterns of trade and therein provide appropriate splits against which to

benchmark. bm is the value that solves the equation

bm
∑
n

b̂mncmnXSn = XIm , (.10)

for each equation in the system, with the convention that bm = 0 if XIm = 0 or the sum on

the left-hand-side of Equation (.10) is zero. The only remaining issue is to calculate a single

benchmark value for one SCTG code given by

wbn =
∑
m

bmncmn, (.11)

which is considered the benchmark weight for all shipments of SCTG commodity m in that

year and province origin-destination pair. In other words, wbn is the sum of the values of

column n of B ◦ C.

Again, any B that solves this equation will be a benchmark, but the choice is made

to maximize the information available. Specifically, b̂mn is picked to use the value of an

SCTG commodity flow relative to the total SCTG flows that point to the same IOCC code

m, and also the value of the flow of that IOCC code relative to all of the IOCC codes

that are pointed at by SCTG commodity n. In addition, although we cannot compare two

commodities directly, we know the total value of benchmarked trade is that same as the
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total value of inter-provincial trade (for each year-province-province observation), because∑
n

wbnXSn =
∑
m

XIm . (.12)

Hence, the procedure achieves the ultimate goal of ensuring trade flows add to know totals

from the provincial accounts. Unfortunately, in some cases the sample of shipments will

not cover all of the SCTG commodities between two provinces in a year (see Figure 4.1

in Section 4.3). In this case, for some IOCC commodity m, the i-th element of the vector

(B◦C)XS is zero because XSn = 0 for all the possible commodities that map to Im (i.e., those

for which cmn = 1). In this case, the element XIm is included in the total interprovincial

trade, but the corresponding XSn is zero on the right-hand-side, which means the total trade

the STF is less than the total trade in the interprovincial flows,∑
n

wbnXSn <
∑
m

XIm . (.13)

Finally, in the main body of the text the subscript n is supressed such that the benchmark

weight is wb.

.1.4 Comparing network and great-circle intra- and inter-provincial distances

The analysis relies on the network distance between geocoded origins and destinations, which

is the average of transaction-level intra- and inter-provincial distances. Traditionally, intra-

and inter-provincial distances are measured using the origin-destination population-weighted

great-circle distance (hereafter great-circle distance) between sub-provincial units (see, for

example, Brown and Anderson, 2002). This is calculated for the set of sub-provincial units

(census divisions) within each province for intra-provincial trade and between the sets of

sub-provincial units for each province pair:

dop =
∑
i∈o

∑
j∈p

(
popipopj∑

i′∈o
∑

j′∈p popi′popj′

)
dij, (.14)

where o and p index provinces, i and j index census divisions, pop is the population of the

census division and d is the great-circle distance between the centroids of census divisions.
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For intra-provincial trade (o = p), within census division distance is the radius of a circle of

an area equal to that of the census division: dii =
√
areai/π.

It might reasonably be assumed that network distance is always longer than great-circle

distance. However, because the actual (network) distance travelled is skewed towards short

distance trips, when short distance trips are more prevalent (e.g., for intra-provincial trade or

trade between contiguous provinces), the measured network distance may be shorter. That

is, for the great-circle distance, holding population constant, the distance between nearer

census division pairs is weighted the same as between the more distant census division pairs.

The network distance estimates, because they are derived from actual trips, will weigh more

highly closer census division pairs.

This pattern in the data is evident in Table .7, which presents the network and great-

circle distance within and between provinces. On average, network distance is 33% greater

than the great-circle distance. However, there is a tendency for intra-provincial distances

and distances between contiguous provinces to be closer to (or even less than) the network

distance. For intra-provincial, contiguous province, and non-contiguous provinces network

distance is 9%, 25% and 38% greater than great-circle distance, respectively. The excep-

tions are the Atlantic provinces, which form a de facto archipelago whose internal network

distances quite naturally outstrip great-circle distances by a wide margin (see Table .7).

There are two implications that follow from these distance patterns for the economet-

ric analysis. First, because great-circle distance is less than network distance, the elastic-

ity on distance will be less when network distance is used. Second, the relatively shorter

intra-provincial great-circle distances will tend to inflate the intra-provincial trade coefficient

(border effect), because the underestimated intra-provincial trade given the actual distance

travelled. Both effects are seen in the estimates.
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.2 Additional Robustness checks

.2.1 Testing for the differential effect on distance on intra- and inter-provincial trade

If intra-provincial trade is populated with a large set of logistics-truncated flows, the distance

parameter on intra-provincial flows should be more negative than inter-provincial flows,

whose pattern results from benchmarking to the flows from the provincial input-output

accounts. To test for this effect, a modified version Equation (4.4) is estimated,

Xij = exp
[
lnSintrai + lnSinteri + lnM intra

j + lnM inter
j + (β + θp) ln dij

]
εij, (.15)

with the distance parameter permitted to vary across intra- and inter-provincial flows us-

ing an indicator variable for intra-provincial flows (θp).
18 If the truncation effect predomi-

nates, the distance parameter on intra-provincial trade should be more negative than inter-

provincial trade. To isolate this effect, the model is estimated with separate origin and

destination fixed effects for intra- and inter-provincial trade, where p indicates the set of

intra-provincial regions. Intra-region flows are excluded.19 When estimated for ERs, the

distance parameter was −0.769 for inter-provincial trade, but significantly less negative for

intra-provincial trade −0.579 (θ̂p = 0.190;P > |z| = 0.037). Using CDs, a subunit of ERs,

the estimate was also positive but insignificant (θ̂p = 0.058;P > |z| = 0.235). To the extent

that it is present, the truncation of intra-provincial flows does not appear to be sufficient to

bias the estimates.

18If there are significant barriers to inter-provincial trade, the dampening effect of distance on trade would
be expected to be less, as the lower level of competition would raise the cost cut-off (see Melitz and Ottaviano,
2008; Baldwin and Gu, 2009) at which firms would engage in trade across sub-provincial units. While this
effect may be accounted for by multilateral resistance terms, the distance parameter may also be affected and,
therefore, when both the effects of the transportation system and provincial barriers to trade are present,
they will have confounding effects on the distance parameter.

19These flows are excluded in order to have a comparable set of inter-regional flows. Trade between region
i and j within the same province can be compared to trade between i and k across provinces.
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.2.2 Estimates by year

The estimates are presented for trade averaged across the 9-year study period stretching

from 2004 to 2012. This is a long enough period to potentially observe changes in provincial

border effects, such as from changes in policy or shifts in the macro-economy. To account

for these effects, the baseline model was estimated with all of the variables interacted with

time fixed effects, with 2004 being the excluded year. Whether the model is estimated

using provinces, ERs, or CDs, as the trading units, there is no significant difference in the

coefficients across years. Hence the average trade level-based estimates reported in the main

body of the paper provide a reasonable picture of provincial border effects over the entire

period.

.2.3 Differential border effect estimates for Quebec

To test for the effect of Quebec on internal trade, own province is interacted with an indicator

variable for internal Quebec trade flows. While the point estimate on the interaction term

is positive, it is not significantly different than zero (see Table .9).
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Figure 4.4: Coefficient estimates for Own Province (4.4a), Own Region (4.4b), and
log(distance) (4.4c), by size (km per side) and placement of hexagons.

Notes: The boxes represent the inter quartile range, with the line intersecting the box being the
median coefficient value. The ends of the whiskers—the upper and lower adjacent values—represent
the ranked coefficient value that is nearest to but not above (below) 1.5 times the inter-quartile
range from above (below). The dots signify extreme values.
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Table 4.5: Robustness of provincial border effect estimates to non-linear effects of distance
and contiguity.

Hexagons
225km per side 75km per side

Model 1 Model 2 Model 1 Model 2

Distance
0 to 25km −1.356∗∗∗ −1.338∗∗∗ −0.932∗∗∗ −0.923∗∗∗

(0.284) (0.281) (0.122) (0.122)

25 to 100km −0.544 −0.561 −0.268 −0.276
(0.471) (0.469) (0.227) (0.227)

100 to 500km −0.836∗∗∗ −0.720∗∗∗ −0.711∗∗∗ −0.801∗∗∗

(0.119) (0.120) (0.0598) (0.0915)

greater than 500km −0.818∗∗∗ −0.772∗∗∗ −0.862∗∗∗ −0.858∗∗∗

(0.0854) (0.109) (0.0684) (0.0689)

Own region −0.0608 0.233 0.312∗ 0.179
(0.173) (0.237) (0.161) (0.199)

Own province 0.458∗∗∗ 0.412∗∗∗ 0.431∗∗∗ 0.418∗∗∗

(0.0839) (0.0755) (0.0713) (0.0709)

Contiguous regions 0.195 −0.132
(0.138) (0.0972)

Constant 4.513∗∗∗ 4.184∗∗∗ 2.638∗∗∗ 2.746∗∗∗

(0.807) (0.833) (0.494) (0.501)

Border effect 1.58 1.51 1.54 1.52
Observations 8,619 8,619 132,862 132,862

Notes: All models utilize a Poisson-PML estimator and include fixed effects for origins and des-
tinations. ∗∗∗, ∗∗, ∗ indicate significance at the 0.01, 0.05 and 0.1 levels, respectively. Robust
standard errors are presented in parentheses. For the 75km per side hexagons (Model 4), origins
and destinations with very few flows were dropped in order to estimate the standard errors. The
point estimates remain qualitatively unchanged compared to the full-sample results. The border
effect is given by exp(own province).

121



75 225

●

0.40

0.45

0.50

0.55

B
as

e
M

od
el

 1
M

od
el

 2

B
as

e
M

od
el

 1
M

od
el

 2

O
w

n 
pr

ov
in

ce

(a)

75 225

●
●

−0.5

0.0

0.5

1.0

B
as

e
M

od
el

 1
M

od
el

 2

B
as

e
M

od
el

 1
M

od
el

 2

O
w

n 
re

gi
on

(b)

Figure 4.5: Coefficient estimates for Own Province (4.5a) and Own Region (4.5b) by model,
hexagon size (km per side) and placement.

Notes: The ‘base’ model estimates replicate those presented in Figure 4.4 (which use the specifi-
cation presented in Table 4.4), while Model 1 and Model 2 match those in Table 4.5. The boxes
represent the inter quartile range, with the line intersecting the box being the median coefficient
value. The ends of the whiskers—the upper and lower adjacent values—represent the ranked coef-
ficient value that is nearest to but not above (below) 1.5 times the inter-quartile range from above
(below). The dots signify extreme values.
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Table 4.6: Provincial border effect estimates for Forward Sortation Areas (FSA).

OLS Poisson

Model 1 Model 1 Model 2 Model 3 Model 4

Distance (log) −0.500∗∗∗ 0.00374 0.232∗∗∗

(0.0223) (0.0536) (0.0586)
Distance (log)2 0.0120∗∗∗ −0.0361∗∗∗ −0.0676∗∗∗

(0.00180) (0.00459) (0.00492)
Distance

0 to 25km −0.0359
(0.0608)

0 to 10km 0.323∗∗∗

(0.111)
0 to 5km 0.613∗∗

(0.253)
5 to 10km −0.0219

(0.362)
10 to 25km −0.426∗∗∗ −0.341∗∗

(0.122) (0.138)
25 to 100km −0.310∗∗∗ −0.213∗∗∗ −0.222∗∗∗

(0.0697) (0.0700) (0.0697)
100 to 500km −0.497∗∗∗ −0.507∗∗∗ −0.505∗∗∗

(0.0381) (0.0378) (0.0379)
500km to ∞ −0.770∗∗∗ −0.767∗∗∗ −0.767∗∗∗

(0.0245) (0.0244) (0.0244)
Own region 2.322∗∗∗ 1.331∗∗∗ 1.522∗∗∗ 1.507∗∗∗ 1.591∗∗∗ 1.583∗∗∗

(0.106) (0.105) (0.104) (0.107) (0.102) (0.102)
Own province 1.202∗∗∗ 0.468∗∗∗ 0.624∗∗∗ 0.601∗∗∗ 0.601∗∗∗ 0.602∗∗∗

(0.0156) (0.0372) (0.0400) (0.0407) (0.0407) (0.0407)
Constant −3.140∗∗∗ 1.634∗∗∗ 1.166∗∗∗ 1.405∗∗∗ 0.807∗ 0.514

(0.218) (0.406) (0.418) (0.425) (0.449) (0.481)

Observations 633,835 633,835 2,574,492 2,574,492 2,574,492 2,574,492
Border effect 3.33 1.60 1.87 1.82 1.82 1.83
Dist. elasticity, 832km −0.42 −0.25 −0.23
Includes zero flows No No Yes Yes Yes Yes

Notes: All models utilize a Poisson-PML estimator and include fixed effects for origins and desti-
nations. ∗∗∗, ∗∗, ∗ indicate significance at the 0.01, 0.05 and 0.1 levels, respectively and are based
on robust standard errors. The border effect is given by exp(own province).
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Figure 4.6: Ad valorem tariff equivalent by standard and hexagonal geographies.

Notes: All tariff equivalents are estimated using a price elasticity on transportation costs of −6.40.
The standard geography ad valorem tariff equivalents are based on the provincial border effect
estimates from Table 4.3 (Poisson estimate of the benchmarked flows using the network measure
of distance) and Table 4.4. The hexagon-based tariff equivalents are based on the median point
estimate from Figure 4.4, while the hexagon with spline-based tariff equivalents use the median
point estimate from Figure 4.5 based on Model 2 from Table 4.5.
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Table .7: Network and great-circle distance.

N.L. P.E.I. N.S. N.B. Que. Ont. Man. Sask. Alta B.C.
Panel A: Network distance (km)

Newfoundland & Labrador 386 1,364 1,226 1,344 1,567 2,789 4,650 5,223 6,074 6,902
Prince Edward Island 1,412 61 333 272 1,115 1,706 3,584 4,209 4,810 5,696
Nova Scotia 1,326 324 136 389 1,173 1,815 3,616 4,308 4,977 5,802
New Brunswick 1,359 240 396 153 692 1,357 3,293 3,946 4,588 5,307
Quebec 1,478 1,095 1,222 728 280 584 2,459 3,114 3,734 4,607
Ontario 2,818 1,730 1,819 1,456 599 191 2,026 2,798 3,429 4,320
Manitoba 4,573 3,526 3,627 3,236 2,410 1,707 213 654 1,340 2,207
Saskatchewan 5,249 4,127 4,322 3,929 3,118 2,692 621 221 683 1,570
Alberta 5,806 4,907 4,908 4,578 3,720 3,248 1,316 660 219 905
British Columbia 6,873 5,750 5,872 5,476 4,640 4,283 2,244 1,631 1,010 204

Panel B: Great-circle distance (km)

Newfoundland & Labrador 261 715 762 894 1,407 1,987 3,056 3,539 4,056 4,717
Prince Edward Island 715 39 193 211 756 1,322 2,547 3,071 3,621 4,274
Nova Scotia 762 193 143 290 805 1,344 2,635 3,167 3,723 4,374
New Brunswick 894 211 290 140 578 1,134 2,377 2,909 3,464 4,115
Quebec 1,407 756 805 578 208 615 1,893 2,442 3,010 3,648
Ontario 1,987 1,322 1,344 1,134 615 226 1,541 2,107 2,688 3,292
Manitoba 3,056 2,547 2,635 2,377 1,893 1,541 145 604 1,173 1,780
Saskatchewan 3,539 3,071 3,167 2,909 2,442 2,107 604 234 628 1,233
Alberta 4,056 3,621 3,723 3,464 3,010 2,688 1,173 628 221 709
British Columbia 4,717 4,274 4,374 4,115 3,648 3,292 1,780 1,233 709 213

Panel C: Difference between network to great-circle distance (percent)

Newfoundland & Labrador 48 91 61 50 11 40 52 48 50 46
Prince Edward Island 98 59 72 29 47 29 41 37 33 33
Nova Scotia 74 67 -5 34 46 35 37 36 34 33
New Brunswick 52 14 37 9 20 20 39 36 32 29
Quebec 5 45 52 26 34 -5 30 28 24 26
Ontario 42 31 35 28 -3 -15 31 33 28 31
Manitoba 50 38 38 36 27 11 47 8 14 24
Saskatchewan 48 34 36 35 28 28 3 -6 9 27
Alberta 43 36 32 32 24 21 12 5 -1 28
British Columbia 46 35 34 33 27 30 26 32 43 -5
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Table .8: Provincial border effect estimates based on flows between province, economic
regions and census division allowing coefficients to vary across time (2004 to 2012), selected
variables.

Geography

Economic Census
Province Region Division

Own province 0.756∗∗∗ 0.752∗∗∗ 0.747∗∗∗

(0.113) (0.128) (0.093)

2005 −0.021 0.0273 0.0716
(0.149) (0.194) (0.150)

2006 −0.0449 0.0256 0.0595
(0.143) (0.180) (0.134)

2007 0.0548 0.117 0.117
(0.144) (0.189) (0.128)

2008 0.028 0.128 0.146
(0.151) (0.187) (0.145)

2009 −0.0173 −0.031 −0.0495
(0.158) (0.173) (0.131)

2010 0.0663 0.147 0.0619
(0.180) (0.196) (0.134)

2011 0.0192 −0.0619 −0.142
(0.174) (0.190) (0.132)

2012 0.263 −0.0598 −0.103
(0.248) (0.171) (0.127)

N 900 47,961 713,480

Notes: All models utilize a Poisson-PML estimator and include distance, fixed effects for origins
and destinations, own region (when applicable) own province, and year. All variables are interacted
with the year fixed effects, with the excluded year being 2004. ∗∗∗, ∗∗, ∗ indicate significance at the
0.01, 0.05 and 0.1 levels, respectively and are based on robust standard errors. Own region refers
to flows within the geograhic unit of anlaysis (Economic Region and Census Division).
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Table .9: Test of the effect of Quebec on provincial border effects.

Hexagons

225km per side 75km per side
Model 1 Model 2 Model 3 Model 4

Distance
0 to 25km −1.329∗∗∗ −1.315∗∗∗ −0.939∗∗∗ −0.931∗∗∗

(0.282) (0.280) (0.122) (0.122)

25 to 100km −0.596 −0.605 −0.265 −0.273
(0.468) (0.466) (0.225) (0.225)

100 to 500km −0.833∗∗∗ −0.723∗∗∗ −0.707∗∗∗ −0.803∗∗∗

(0.120) (0.121) (0.0602) (0.0916)

greater than 500km −0.835∗∗∗ −0.788∗∗∗ −0.880∗∗∗ −0.877∗∗∗

(0.0795) (0.103) (0.0657) (0.0661)

Own region −0.0718 0.209 0.316∗∗ 0.176
(0.176) (0.237) (0.160) (0.198)

Own province 0.396∗∗∗ 0.361∗∗∗ 0.362∗∗∗ 0.346∗∗∗

(0.0947) (0.0919) (0.0832) (0.0844)

Quebec × Own province 0.195 0.169 0.216 0.224
(0.222) (0.221) (0.208) (0.209)

Contiguous regions 0.185 −0.139
(0.137) (0.0973)

Constant 4.543∗∗∗ 4.224∗∗∗ 2.702∗∗∗ 2.819∗∗∗

(0.812) (0.835) (0.494) (0.503)

Observations 8,619 8,619 132,862 132,862

Notes: All models use a Poisson-PML estimator and include fixed effects for origins and destina-
tions. ∗∗∗, ∗∗, ∗ indicate significance at the 0.01, 0.05 and 0.1 levels, respectively and are based on
robust standard errors. The border effect is given by exp(own province).
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