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ABSTRACT 

During the last three decades, the statistical literature was 

enriched by many of the generalized families and classes of discrete 

distributions, which proved to have many important applications in a 

wide variety of disciplines, such as biological and medical sciences, 

social sciences, physical sciences, engineering, operations research, 

and so on. The problem of estimation and the study of the structural 

properties of many of the generalized forms of discrete distributions, 

attracted the attention of many statisticians and research workers. 

In this present thesis, we discuss the problem of simultaneous 

estimation of the parameters of two of the recently generalized 

families that have many applications specially in the theory of 

queues, and we introduce a new class of bivariate generalized 

discrete distributions. 

A presentation for some of the important classes of discrete 

probability distributions will be given in Chapter I, where we 

exhibit the scope of work constituting the subsequent chapters of 

this thesis. Chapter II deals with the simultaneous estimation of 

the two parameters of the generalized Poisson distribution. We study 

the asymptotic properties of the moment estimators as far as terms 

of order and in the biases, variances, and the covariance. 

Also, we give expressions for the first order terms in the moments 

of the maximum likelihood estimators, and compare the 
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performances of the two types of estimators with reference to the 

first order terms in the biases. 

In Chapter III, we study the maximum likelihood and the moment 

estimators for two parameters of the generalized negative binomial 

distribution, which has three parameters. We derive the biases and 

variances of these estimators. Higher order terms in the biases, 

variances, and the covariance of the moment estimators will be given, 

and we determine the sample size required to ensure some stability in 

the behaviour of the moments of these estimators. 

In Chapter IV, we introduce the bivariate generalization of the 

class of modified power series distributions, discussed by Gupta (21), 

under the title of "Bivariate Modified Power Series Distribution". 

In this chapter we give the recurrence relations among the moments, 

some examples of the generalized bivariate distributions, which 

belong in this class, and discuss some of their properties, 

applications, marginal and conditional distributions. 

The problem of estimation of the parameters in the Bivariate 

Modified Power Series Distribution is taken up in Chapter V, where we 

discuss the maximum likelihood estimation. Moreover, we develop a 

theorem proving the necessary and sufficient conditions for the 

existence of a minimum variance unbiased estimator for a real valued 

parametric function of the parameters of the mentioned class. 



ACKNOWLEDGEMENTS 

I wish to express my deep and sincere gratitude to my supervisor, 

professor P.C. Consul, for introducing me, in the first place, to the 

subject of Discrete Distributions and for his close supervision of my 

graduate program. In particular, I am greatly indebted to him for his 

perpetual guidance and the valuable suggestions in the course of 

preparation of this thesis. 

I would also like to thank the examiners for their detailed 

suggestions which have substantially improved the thesis. 

I would like to extend my thanks to Mrs. Betty Teare, for her 

careful typing of the final manuscript and for making the revisions and 

corrections. 



TABLE OF CONTENTS 

Page 

ABSTRACT iii 

ACKNOWLEDGEMENTS v 

CHAPTER I SYSTEMS OF DISCRETE PROBABILITY DISTRIBUTIONS ----- 1 

1.0 Introduction i 

1.1 Some Systems Defined by Difference Equations ---- 2 

1.2 Systems Associated with Series Expansions   4 

1.2.1 The General Dirichiet Series Distribution 4 

1.2.2 Power Series Distributions (PSD's) 5 

1.2.3 Modified Power Series Distribution (MPSD) 6 

1.2.4 Lagrange Series Distributions   6 

1.2.5 Multivariate Power Series Distributions   8 

1.3 Taylor's Expansion   10 

1.4 Regularity Conditions for Some Asymptotic Results 11 

1.5 Newton-Raphson Method of Iteration   12 

CHAPTER II ESTIMATION OF PARAMETERS FOR THE GENERALIZED 

POISSON DISTRIBUTION 13 

2.1 Introduction   13 

2.2 Momemt Estimators for the Parameters of the GPD - 18 

2.2.1 Lemma on Taylor's expansion of moment 

estimators   19 

2.2.2 Biases of Moment Estimators   26 

2.2.3 Asymptotic Variances and Covariance of 

Moment Estimators 30 

2.3 Maximum Likelihood Estimation for the GPD from a 

Complete Sample   35 

- vi - 



Page 

2.3.1 Asymptotic Variances and Covariance of the 

M.L. Estimators 39 

2.3.2 Biases of the M.L. Estimators --------- 40 

2.4 Joint Asymptotic Efficiency of Moment Estimators 50 

2.5 Maximum Likelihood Estimation from Truncated 

Samples   54 

2.6 Sampling Properties of the M.L. and the Moment 

Estimators of the GPD   60 

2.7 Concluding Remarks 64 

CHAPTER III ESTIMATION OF PARAMETERS FOR THE GENERALIZED 

NEGATIVE BINOMIAL DISTRIBUTION   67 

3.1 Introduction   67 

3.2 Maximum Likelihood Estimation for the GNBD   70 

3.2.1 Asymptotic Biases of the M.L. Estimators 

(if they exist)   72 

3.2.2 Asymptotic Covariances of the M.L. 

Estimators   84 

3.3 The Moment Estimation Problem   86 

3.3.1 Asymptotic Biases of Moment Estimators   88 

3.3.2 Asymptotic Variances and Covariance of 

Moment Estimators    95 

3.4 Sampling Properties of M.L. and Moment Estimators 96 

3.5 Concluding Remarks   105 

CHAPTER IV A BIVARIATE GENERALIZATION OF A CLASS OF POWER SERIES 

DISTRIBUTIONS "THE BIVARIATE MODIFIED POWER SERIES 

DISTRIBUTION"   113 



4.1 Introduction 

4.2 Notations 

Page 

113 

115 

4.3 Moments and Cumulants of BMPSD   116 

4.4 Some Properties of BMPSD   119 

4.4.1 Convolution Property of BMPSD   119 

4.4.2 Two Characterization Theorems   120 

4.5 Some Particular Families of BMPSD   123 

4.5.1 The Generalized Double Poisson Distribution 

(GDPD)   123 

4.5.2 The Generalized Bivariate Negative Binomial 

Distribution (GBNBD)   124 

4.5.3 The Generalized Bivariate Logarithmic 

Series Distribution (GBLSD)   125 

4.5.4 The Bivariate Borel-Tanner Distribution 

(BBTD)   126 

4.5.5 The Bivariate Binomial Delta Distribution 

(BBDD)   127 

4.6 Properties and Applications of Some BNPSD 

Families   128 

4.6.1 Some Properties and Applications of the 

GBNBD   128 

4.6.2 Some Properties and Applications of the 

GDPD   131 



Page 

4.6.3 Goodness of Fit of the GDPD   

CHAPTER V ESTIMATION OF THE PARAMETERS OF THE BIVARIATE 

MODIFIED POWER SERIES DISTRIBUTION   

5.1 Introduction 

5.2 Notations 

135 

139 

139 

141 

5.3 Maximum Likelihood Estimation for BNPSD ------- 142 

5.3.1 Approximation to the Biases and Covariances 

of the Maximum Likelihood Estimators   144 

5.3.2 M.L. Estimation of the DPD   146 

5.4 Minimum Variance Unbiased Estimation for a BNPSD 150 

5.5 Minimum Variance Unbiased Estimation for Some 

BNPSD --  154 

5.5.1 Minimum Variance Unbiased Estimation 

for the GDPD   154 

5.5.2 Minimum Variance Unbiased Estimation for 

the GBNBD   156 

APPENDIX I     158 

APPENDIX II   161 

REFERENCES   170 



CHAPTER I 

SYSTEMS OF DISCRETE PROBABILITY DISTRIBUTIONS 

1.0 Introduction. 

The statistical distributions arose initially in connection 

with some specific situations, and once their relevance was 

established, there was little further interest in the theoretical 

analysis of these distributions, as they were mainly used for 

descriptive purposes. During the last quarter of the 19th century 

and the first quarter of the 20th century, the determination of 

sampling distributions of statistics based on random variables, and 

the study of various systems of distributions, with special reference 

to their use in model construction, had received a great deal of 

attention from theoretical as well as applied statisticians. This 

area deals with a large number of discrete probability distributions 

which may be classified as compound, mixed, modified, contagious, 

and generalized distributions. Trying to keep track of such a 

wide-ranging and rapidly expanding literature is rather a difficult 

task. Some account of these distributions can be found in the 

works of Gurland (23), Haight (26), Patil and Joshi (61), 

Krishnamoorthy (43), Neyman (53), Consul and Shenton (12), and the 

books by Johnson and Kotz (35), Mardia (49), and Ord (56). 
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There are many ways according to which statisticians 

classified systems of non-negative lattice distributions, and in 

the following sections, we shall view two such classifications. The 

first classification is based upon the existence of a recursive 

scheme among the successive probabilities where 

= P(X=j), and in this respect, we present systems defined by 

difference equations. The other classification is based directly 

on the form of f. as a function of j, and in this respect, we 

introduce the power series. distributions. 

1.1 Some Systems Defined by Difference Equations. 

Pearson (63) noted that the successive probabilities for a 

hypergeotnetric probability distribution, denoted by f and 

satisfy the ratio (f+1-f)1(f+1+f) = linear function of i/quadratic 

function of j. He used this as a base for obtaining (by a limiting 

process) the differential equation defining the Pearson system of 

continuous distribution functions. It may also be used as a basis 

for defining a system of discrete distributions. Moreover, it was 

realized by Guldberg (19) that if 

X(j-a1) ... (jar)  

f+1 = (i-b1) ... (j-b5) f 

then one can establish a recurrence relation among the moments. For 

the special case r = 1, s = 2, Ord (57) employed the difference 

equation 
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(a-j)f. 
(1.2) f. 

- b0+b 1j+b2j(j-l) 

to define a class of discrete distributions, based on a lattice of 

unit width. He noticed that the form of the density function will 

depend on the roots of the denominator in equation (1.2), and he 

used the values of the constant k = (b 1-b2-l) 2 /(4b2 (b2+2)) as a 

criterion to distinguish between the distributions of this class. 

He also provided tables to summarize the distributions devised by 

using this technique and graphs for the corresponding regions of the 

plane. 

Katz (38) devoted his dissertation entirely to the investigation 

of the properties and sampling characteristics of the class of 

discrete probability distributions defined by the difference 

equation, 

(1.3) 
f+1 = 

j+l j= 0,1,2..... 

The probability generating function (p.g.f.) of this class is 

given by 

and hence we have the special cases 

(i) Lim g(t) = et_1), which is the p.g.f. of a Poisson 

distribution with mean c. 

(ii) If < 0, = n (n is a positive integer) and = F, 

' 
then g(t) = (l-p+pt), which is the p.g.f. of a binomial distribution. 
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(iii) If 0 < < 1, = n, and P, then g(t) = (l+P-Pt), 

which is the p.g.f. of a negative binomial distribution. 

1.2 Systems Associated with Series Expansions. 

The fact that any power series of the form 

(1.4) 
00 
z atn 

n=0 

is the probability generating function of a discrete probability 

distribution, provided that a 0, n = 0,1,2,..., and that they sum 

to unity, attracted the attention of many authors to the usefulness 

of series representation of classes of probability distributions. 

In this section we present some of the most important classes of 

discrete probability distributions associated with series expansions. 

1.2.1 The General Dirichiet Series Distribution. 

Using the general Dirichiet series defined as 

Co 

(1.5) f(e) = I a exp(-X e) 
x1 X X 

where 0, 0 > 0 and {X} is a sequence of real positive increasing 

numbers whose limit is infinity, Siromoney (35) defined the general 

Dirichiet series distribution with parameter 0 by the probability 

function 

(1.6) P(Xx) = a exp (—Ao) 
f(o) x = 1,2,... 
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1.2.2 Power Series Distributions (PSD's). 

The first form of a PSD was introduced by Tweedie (82) in 1947, 

where he was concerned about the Laplace transform of a more general 

form of a probability distribution defined as 

(1.7) 

where 

(1.8) 

P(X=x) = a(x) e If (0) 

f(e)I a(x) 
X 

In an attempt to characterize the Poisson distribution by the 

equality of the mean and the variance, Kosambi (42) visualized the 

PSDTS as a class of discrete probability distributions. 

The PSD was formally introduced by Noack (54) in 1950, as a 

mathematical model. A random variable X is said to have a PSD if it 

takes non-negative integral values with probability density function 

(1.9) P(X=x) = a(x) ea/f(e) x ET 

and zero otherwise, where T is the entire set of non-negative integers. 

Patil (59) defined the generalized power series distribution (GPSD) 

in the form as in (1.9), except that the random variable X is 

permitted to take values on a subset of the set T. Roy and Mitra (68) 

derived the minimum variance unbiased (NyU) estimator for the parametric 

function e of the PSD from a complete sample or a left truncated sample, 

with known truncation points. The MVU estimators for the parameters 

of the PSD were studied extensively by Charalainbides (7), when the 
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sample is truncated on the left with unknown truncation points. The 

problem of deriving MVU estimators for doubly truncated samples have 

been considered by Joshi and Park (36). 

1.2.3 Modified Power Series Distribution (NPSD). 

A more general form of PSD's was given by Gupta (1974; (21)), 

by the name of MPSD, defined by a discrete random variable X with 

the probability distribution 

(1.10) P(X=x) = a(x)(g(e)) '/f(e) x E S £T 

where g(e) and f(0) are positive, finite, and differentiable functions 

of 0 and such that f(o) = , a(r)(g(e))X. Obviously, when g(e) = 

gives a unique value for f(e) as a function of , the MPSD is 

reduced to a GPSD. The maximum likelihood (M.L.) estimator for 0 

and the first order terms in its bias and variance were given by 

Gupta (22). Kumar and Consul (44), evaluated the recurrence relations 

among the inverse moments of an MPSD, and used their results to find 

the exact bias of the M.L. estimator for 0, in some particular 

families of this class. Kumar (45) further extended his study and 

developed a theorem proving the necessary and sufficient conditions 

for the existence of an MVIJ estimator for a real valued parametric 

function of 0. 

1.2.4 Lagrange Series Distributions. 

Consul and Shenton (12) have introduced a new class of univariate 
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discrete distributions under the title of Lagrangian distributions, 

on account of their relationship with the Lagrange's expansion of an 

inverse function. If g(t) and f(t) are two probability generating 

functions, then under the transformation 

t = u.g(t) 

and within the circle of convergence, f(t) can be expanded in powers 

of u, by Lagrange's expansion as 

CO j • aj 
(1.12) f(t) =f(o) +  I (gt) 7  af(t)1 

j-1 at J t=o 
Since, for t = 1, u = 1, then a probability distribution defined on 

a subset of non-negative integers will be given by 

(1.13) P(X=k) = - 

at 

1 a 1 [ (g(t))1< ftI 
I 

at j 
The authors have further studied some interesting properties of the 

Lagrange distributions. The univariate families of Lagrange distri-

butions include a large number of important discrete distributions 

such as the Borel-Tanner distribution (BTD), the generalized negative 

binomial distribution (GNBD) and the generalized Poisson distribution 

(GPD). Many of the Lagrange distributions belong to the NPSD class. 

After the development of satisfactory systems, for use in the 

univariate case, it was only natural to extend them to bivariate and 

multivariate systems. The multivariate generalizations of important 

discrete distributions, their applications and some of their 

properties have been discussed by a number of scientists which include 
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Bhat and Kulkarni (3 ), Olkin and Sobel (55), Consul and Shenton (14), 

and many others. 

1.2.5 Multivariate Power Series Distribution. 

The multivariate generalization of the class of PSD was first 

introduced by Khatri ((1959; (40)). The n-dimensional random vector 

E = (x 1 ,x2 ,... ,x ) is said to have a multivariate PSD if its 

probability distribution function is given by 

n 
(1.14) P(X1=x1,...,X=x) = a(x1 ,...,x ) ne/f(o 1,...,o), x E T 

n. - n 

and zero otherwise, where, T is the n-dimensional subspace of non-

negative integers. He discussed the moments relations, and some 

characterization problems for this class. The estimation by the M.L. 

method and the problem of existence of an MV1J was discussed by 

Patil (60). 

Another sub-class of the multivariate PSD was discussed by 

Patil (62), with the name of sum-symmetric PSD's. He realized that 

some of the most important multivariate discrete models such as the 

multinomial, the negative multinomial, the multiple Poisson, and the 

multivariate logarithmic series distributions, have a common 

mathematical property in that they can be written as multivariate 

PSD's with sum-symmetric series functions. Patil defined the 

multivariate PSD with series function f(0 1,02,. .. ,Q) to be symmetric 

if f(O1,O2,.. •Oin) =  On ) for every permutation 

(i 1,i 2 ,. . ,i) of (1,2,...,n). Further, he called the n-dimensional 
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distribution (1.14) sum-symmetric if the series function is sum-

symmetric, in that f(0 1,...,e) = u(0 1+02+...+O) for some u(•). 

Thus, for the sum-symmetric PSD, we have the series function 

Co 

f(e1,e2,...,o fl 1 2 fl ) = u(O +8 +...+8 ) = 
z=O 

00 fl 

(1.15) = a(z) IF x.)bebe1...oXfl 
1- 

z=O x -f 1r2+...+x =Z j=l 

= • ..+x )8 x1 8 x2 •• •0x 
X1 X2 r n 1 2 . fl 12 fl 

and therefore the probability function of the sum-symmetric PSD is 

of the form 

(x +x +.. .+x )! 8x 18x2 en 
12 n  

(1.16) P(x1,...,x) - 1... fl a(x1 1 2 n +x +...+x 1 2 fl  

1 2 +8 +...+8 ) 

For this class of models, Patil discussed the moment recursions, 

partial sums and relative conditionals, marginals, conditional and 

regression properties, characterization by regression and other 

characteristic properties, multiple correlation coefficient, M.L. 

estimation and NVU estimation. 

Our investigation in the present thesis is chiefly in two 

directions: 

(i) We would like to extend the work done by different authors, 

in estimating one parameter of the GNBD and the GPD, to a more 

practical situation, where we consider the problem of simultaneous 

estimation for the two parameters of these families. 
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(ii) We introduce a bivariate generalization for the class 

of univariate MPSD defined in (1.10), under the name of a bivariate 

modified power series distribution (BMPSD). We study a number of 

properties of these distributions and obtain the MVU estimators of 

some functions of the parameters. This new class includes many of 

the well-known classical bivariate discrete distributions as well 

as some of the newly introduced bivariate statistical probability 

distributions. Many of the BMPSD families are related to the bivariate 

Lagrange distributions discussed by Shenton and Consul (74). 

Before proceeding with the problem of estimation for the GPD and 

the GNBD, and to avoid repetition, we state a number of well known 

results as they are required for the derivation of many results. 

1.3 Taylor's Expansion. 

Widder (82) defines C as the class of those bivariate functions 

f(x,y) such that all the partial derivatives of order k are 

continuous and gives the Taylor expansion for bivariate functions as 

follows: 

. . . 

Theorem (1.1): If f(x,y) E Ck+i and (a,b) 1,6 any i nterior point in the 

domain of x and y, then for any non-negative integer 1< 

{ 
k 1 al 

(1.17) f) = jO (c-a.) a + (,-b) f(a,b) + Rk 



where 

T+l 
(1.18) Rk = (k+l) {(x_a) + (y-b) f(r,$) 

r ,s being replaced by r = a + 0 (c-a) , s = b + 0 (y-b) , and 

o < e < 1 after differentiation. 

As particular cases of the above theorem one gets the famous law 

of the mean for functions of two variables when k=O and the following 

result when k=i 

f(c,y) = f(c,b) + ctf1(,b) + f2 (a,b) + {a2 f11(a+Oa, b+0) + 

+ af3 fl, (a+0c , b+0) + 2f22(a+0a , 

where a = x-a , = y-b and 0 < 0 < 1 

The expansion (1.17) is extensively used for approximations of 

different orders by showing that the contribution made by the remainder 

term is of that order. 

1.4 Regularity Conditions for Some Asymptotic Results. 

Shenton and Bowman (75) have assumed the following four regularity 

conditions for the validity of the expressions for the asymptotic 

variances, covariances, and asymptotic biases of the maximum likelihood 

estimators derived by them for large samples. 
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1. the population consists of a denumerable set of classes, 

2. the log likelihood function, log L E C5 , where C5 

is as defined in the previous section, 

3. the partial derivatives of the first and second order 

of log L are bounded, 

4. the random variable I has a range independent of the 

parameters to be estimated. 

Other regularity conditions that are required to prove the 

efficiency, consistency and asymptotic normality of those estimators 

can be found in Cramer (16), and Rao (67). These regularity condi-

tions are not listed as we are not seeking such optimum properties 

for our estimators. 

1.5 Newton-Raphson Method of Iteration. 

Let x = f(x) be an equation where f(r) satisfies the conditions 

(1) f(x) is continuous on I = fa,b] 

(ii) f() E I for all x E I 

(iii) If(x1) - f(x2) I L - I where E is a constant < 1 

The condition (iii) is called the Lipschitz condition. It is proved 

in Henrici (32) that if the above conditions are satisfied the equation 

x = f(r) has a unique solution which can be reached by an iterative 

algorithm. The proof of the following theorem for a function F(r) 

of the form F() = x - f(x) is outlined in (32). 
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Theorem (1.2): Let the function F(s), defined as above on a closed 

interval [a,b], be twice differentiable and satisfy the following 

conditions: 

(1) F(a)F(b) < 0 

(ii) F'(s) , 0, x E [a,b] 

(iii) F"(x) 0 or fi 0 for all x E [a,b] 

(iv) F" (x) exists and is continuous, 

then for any choice of s E [a,b], the sequence determined from 

the recurrence relation 

F( Sn) 

5n+l - 5n - F, (X 
n 

converges to the unique solution s of F(s) = 0. 

n = 0,1,2,... 



CHAPTER II 

ESTIMATION OF PARAMETERS FOR 

THE GENERALIZED POISSON DISTRIBUTION 

2.1 Introduction. 

The generalized Poisson distribution (GPD), is defined by the 

probability function 

(2.1) P x i (x '2 P(X=o) = 

{A 1(X12x) 1(x!) 1exp -(X 1+A 2 ) , 

0 elsewhere 

where, A > 0 and 0 - < 1. 

Consul and Shenton (13) obtained the distribution by expanding 

the p.g.f. f(t) = eX1(t_1), using (1.12), under the transformation 

1 x (t-) 
t = ue 2 Thus one can show that 

eA1(t 1) ° a; 
- ( +A )Xl -(A1+A2x) 

1 1 2 x=O  

since u = 1, whenever t = 1 we get 
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CO X 
1 = X -4 (x1+x2x)X_l -(X1+A2x) 

a,. 
x=0 

which proves that the probabilities given by (2.1) sum to unity. 

The distribution was formally introduced by Consul and Jam (10), 

with the conditions IX21 < 1 and P(A 1 ,A 2) = 0 for all x m when 

X1+A2m < 0, and they had shown that the GPD provided a very close 

fit to many different types of data. Consul and Shenton (13) changed 

the condition I I < 1 to 0 < A2 < 1, and it was pointed out by 

Nelson (52) that the conditions, given by Consul and Jam, would not 

make the probabilities (2.1), in general, sum up to unity as 

Pa,(X 1 ,X2) = 0 for all x m when A1+A 2m < 0. 

In their paper about the properties and applications of the 

generalized Lagrange distribution, Consul and Shenton (13), have 

proved that in a single server queue, with constant service time, if 

the number of customers initiating the queue is a Poisson variate 

with probability generating function f(t) = exp[A 1 (t -l)] , and if the 

input is Poissonian with probability generating function 

g(t) = exp[A2 (t -l)] , where the customers are served in the order of 

their arrival, then the probability distribution of the number of 

customers served before the queue first vanishes is given by (2.1). 

They have also shown that for the GPD, the cumulants satisfy the 

recurrence relation 
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(2. 1. a) (1-X 2 r+i )E =A 2 2 (Lr )+A h a 1 (Er), r = 1,2,... 

where Er is the rth cumulant, 3. = -a--, (s = 1,2) and = (i-X2Y'. 

The first six central moments of the GPD are 

(2.1.b) i4 = 3X(l-A2Y 6 + A(l+8A+6X2)(1X) 7 

= lOX(1+2X2)(l_A2)_8 + X1(1+22A2+58A+24A)(1-A2 2 2Y 9 

11 = 15A(1-A2Y 9 + 5X(5+32A2+26A)(1-X2)' 0 

+ A1(1+52A2+328x+444x+12OA)(1_x2)_h1 
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The problem of estimation of the GPD has been studied by many 

researchers, by considering the following two different forms: 

(i) By writing A1 = cO, A2 = a20, the two parameters A1 and 

A2 become linear functions of a common parameter 0 and the probability 

function (2.1) becomes 

(2.2) P(X=x) 

(0e 2°)°  

x. ea 16 

0 otherwise. 

= 0,1,2,... 

Charalambides (8 ) considered 0 as the only unknown parameter to be 

estimated, and he derived the distribution of the sufficient statistic 

for 0, and hence its minimum variance unbiased estimator. Gupta 

(22), derived the M.L. estimator for 0, and found the first order 

terms in the bias and the variance of that estimator. 

(ii) Kumar and Consul (44), took A1 = 0 and A2 = a0, so that 

the number of parameters did not increase, but the parameter A2 

became a linear function of the other parameter. They assumed a to 

be a known constant, and derived the exact amount of the bias and 

the variance of the M.L. estimator of 0, by using the negative 

moments of the GPD. Kumar (45), further derived the first order 

terms in the biases and covariances of the moment estimators of 

the parameters a and 0, and measured the asymptotic efficiency of 

the minimum chi-square method of estimation relative to the method 

of moments. 
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For the probability distribution given in (2.1) we discuss the 

simultaneous estimation of A1 and A2 by two methods. 

We exclude the case. A, = 0 from our study in (2.1) because this 

boundary gives the Poisson distribution for which the results are very 

simple. Thus our subsequent study will be for 0 < A2 < 1. 

In section 2, we shall give the moment estimators of A1 and 

A2 , their biases, variances and covariances, correct to terms of 

order and n 2. 

In section 3, we consider the M.L. estimators for the parameters 

and A2, and shall give the expressions for the biases and covari-

ances of these estimators up to terms of order n 1. In section 4 

we study the accuracy of the M.L. estimators from a decapitated and 

double truncated sample of size n, compared to a complete sample 

of the same size. 

In section 5 we shall measure the asymptotic efficiency of the 

moment estimators relative to the M.L. estimators, and then give a 

numerical comparison between the performance of the two sets of 

estimators for some selected values of the parameters A. and A2. 

2.2 Moment Estimators for the Parameters of the GPD. 

Based upon a random sample of size n taken from the probability 

distribution given by (2.1), the moment estimators of A1 and A2 are 

defined as the estimators which satisfy the equations obtained by 

equating the sample mean and sample variance with the population 

mean and variance respectively. The two equations are 
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= ln 

and 

n 

)-I = m2 = n-1 (x—m) 2 
1=1 

where ml is the sample mean, and in2 is the sample variance. On 

solving for X and X2 , the moment estimators of A1 and A2 were given by 

Consul and Jam (10), as 

= r?/2. V2 in2 

(2.3) 

= 1 - (m Im2 )'I2 
2 

2.2.1 Lemma on Taylor's expansion of moment estimators. 

Since the moment estimators can be considered as functions f(m 17 ,rn2 ) 

of the first two sample moments ml and in2 and it can be easily shown 

that f(m{,m2 ) belongs to the class C5 as defined in 1.3, the bivariate 

Taylor's expansion of f(m 1',m2 ) becomes 

(2.4) f(p 2 ) = f( '2 + j  [h( + k f(m ,m2 )] + R 
M2 1 

where R =  {h + k f(r,$) 

h and k represent the increments (m -p) and (m2-p2) respectively, and 

the bar over the partial derivatives means that the values of these 

derivatives are to be evaluated at in k' = and m  = P2  and r, s being 

replaced by r = s = p2+Ok, 0 < < 1 after differentiation. 

The first five terms of the expansion (2.4) are 
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f(rn ,in2) = f( 2) + (M— P + (7n2 -ij2 )B 

+j- [(m-p) 2C + 2(m-p)(m2p- + (m2-i2)2E] 

(2.5) 

+ (m2—p2)31] +j- [(m—ii)J + 4(in—i) 3 (m2—p2 )K 

+ 6(m—p) 2 (m2 —ii2)2L+ 4(in—i.i)(m2—p 2)3M + 

+ (m2 -.i2 )'Z] + 

where 

(2.6.a) 

_-f  
—Bam l 9M2  

=H 

52f  D 
am aM2 - 

Pf -F 3f = 
am3 ' 

m{Sm2 - 

4f  
mfrn  - M , - z 10 

Thus, to obtain the particular terms for the expected value which 

give an accuracy of the order n 2, one has to calculate expectations 

of the forms 
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(2. 6.b) 1.trs = (mi_1Pr (m2 i-i2)6 1 r,s = 0,1,2,3,4 and 1 r-1-s 4. 

Their values are as follows: 

(2.7. a) 

= E[(m-p)] = 0 

P01 = E[(m2-p2)] n 
P2 

112 
1120 = E{(m{-p{) 2] = 

P02 = E{(m2-p2)2] = (ii -v) + - (5p-2p) + 
n n2 

=  - 
Pu =E[(?n{-P)(m2-P )] P3 —+ 2 n n2 

ii 

(.L) 1130 = 3} = n 

1 
P21 = E[(m-p)2(m2-p2)} = ;- (-44) + o(- ) 

1 1 
P12 = E[(m -p)(m2 --p2) 21 = -- (P5-8p 2-P3)+ o(--) 

P03 = E[(m2 -p2)3] = - (v 6-6p2p-6+5i4) + 

3112 

P4  = E[(m -p)] — -;* o(-) 
1 

s'-' 
Pg i = E[(m-p)3(m2-p2)] =   + 
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22 = E[(1n-11 17 2 (m2-P2)2] (112114_4+24) + o(--) 

3 = 1 
1113 = E[(m -p{) (m2 -ii2) ;- (3u31L1-3i4u3) + o(--) 

if 1 
P O4 = E[(m2 -ii2) :i = (3ii-6P if14+314) + 

The accuracy of the above expressions for expectations was checked 

carefully either by the Shenton-Myer's (71) "orthogonal" statistics 

technique or by the method of symmetric functions given by Kendall 

and Stuart (39) as shown below. 

It can be easily proved that V rs as defined in (2.6.b) is 

independent of the location parameter p. Thus, without any loss of 

generality, we can assume pl = 0. The expectations up to order 

are given by Cramer (16) as 

E(m{ 2) = 112 /fl 

E(in{ 3) = 11 3 /fl2 

E(m{t') = 3j4/n2 + 

and 

E(m{!') = o(--) r?: 5 

To derive P33 13' p22' and P04 1we shall make use of the 

following Shenton-Myer's method (71) of orthogonal statistics. The 

authors have defined the rth orthogonal statistic Q in a general 
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form and have used their moment generating function to provide tables 

of expectations of powers and products of these statistics correct 

up to order n 5. Since we need the first two orthogonal statistics 

and Q., we quote the corresponding results 

n 
(X) = 1fl - 

ct=l 

n 11 3 n 
- 

2 = a=l (x') 2 a=l 

113 
= fl?2 + Q1 - - p2 

112 

and 

E(Q 1Q2) = 0 

2 

E(QQ2) = n 2 (p1 - i4) + 
112 (n 

ii ____ 

E(Q 1Q) = n 2 (p5 + - - 2 3) + o() 
P2 n 

- 4 - + o() E(Q) = fl1(PL, P2 3 

i4 
E(Q2jQ) = ;:j•: (P 14 -  P2 112 - + 

1 
= - + -   + 31 214 3  3p 11 + 3p) +112 112  

3 11  
E(Q) = ;:j - (1114 - - p2)2 + o(- ) 

E(Q1jQ) = (i,j > 2). 
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By using the relations (2.7.a) and the above expectations, we 

have 

1.131 = E[m{ 3(m2-i2)] 

(2.7.b) 

= E[Q(Q2-FQ 1 - Q)} = 2113 /fl2 + oç) 

E[in 2 (rn2-p2)2] 

(2.7.c) 

Similarly, 

(2.7.d) 

Finally, 

(2. 7. e) 

1.1 

= E[Q(Q2+Q1 112 1 - Q) 2] 

1 
(v2 -'4+214) + o() 

L3 I 
13 = E[Q 1(Q21 - Q) 3] 

112 

1.1 3 113 3 
- E(Q1Q) + (—) E(Q4) + - E(QQ) 

1.12 

= 3 (31.1 3v-314v 3) + 

11 
PO4 =  E[(Q2+Q1 - Q )L] 

P2 1 

p43 6p2 
= 1 _4_ 2)2 
;- [3(ii, 2 2 - 2 +   - 6pp] + o(1) 

n3 
112 112 

_l - T2 (3i-614P1.f+3) + o(-4) 

On taking the expectations on both sides of (2.5), using the 

notations in (2.6.a) and the expectations (2.7.a), we have for 

arbitrary function f(m,m2), of the sample moments m and in2, 



'9 

'H(t8_t).. = SIL 
I 

= 17 1L 

-t 

'a8rt- = I  

+ art + oZri4 + = 

alTam uro auo TIU2 uT 'snqj, 

u 13O oq dn smael oq logaaoo 

[Z (ZrtC+ Zrji7rjq _i7 rjC ) ZU -ç + N( -rtrtç) f + 

7(Z+t_rtZrt) Z + f(EjZ1j) - + r —1 -Z + 

rtg 

[I(rtc4rt9rtZrt9_9rt) -j + H(£rtZrt8_Srt) f + (z) 

ZU U U ZU 
- —) + o —] 

rt Crt 

- cz - 

- (ZrtIrt)f = 
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IT = 1 Ov -311 2113 ' 10 T 3P4 2 

2.2.2 Biases of Moment Estimators. 

1 r 43114) Z 11 = 

Considering the expression for the moment estimator X, of the 

parameter X1, which is given in (2.3), by 

as the function f(n{,m2) taking the derivatives partially w.r.t. 

-1 3 
in 1 and in2 and putting in 1 = = (1-X2) , and in2 = = X1 (l-x2)-) 

we get the values of the constants in (2.6.a) as 

A = (3/2) (1-A2) 

C = 3(l-X2)2/4X1, 

(2.9) II = 9(1-X2)7 /8X, 

B = -(1-X2)3/2, V = -3(l-X2)I4A 1, 

E = 3(1-A2)6/4A1, G = -3(l-X 2)5/8X, 

F = -3(1-X2)3/8X, I = -l5(1-X 2)9/8X, 

J = 9(l-X2)/16X, K = 3( 1-X 9(1-X L = 9(l-A 2)8/l6A ) 

M = -45(l-A2)10 /l6A, and Z = 1O5(l-A2)'2 /l6X 

Now by using the expansion (2.5) for A, taking the expectations 

on both sides and by using the values in (2.9) and the relations 

(2.7.a-e), and by substituting the values of (r = 2,3,4,5,6) 

given in (2.l.b), we get the bias b1(X) = E[A-A 1I as 
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II 
(2.10) b](A) = A1 + A2 (2+3A2) (1 A2) } + . + o(-4) 

j=l 

where 

•TI 

- 3(l+2A2) - 13A 1 3(1+8X +6A2) 

1 - 4(1-A2)' 2 - 8 +  4(1-A2) 

- (1+2A2) 3  3(1+8X +6X2) 

= 16A 1 1_A2)2' '+ = 16(1-A2) 16A1(1-A2)2 

9(1+2A2) 9(1+22A2+58A+24A) 

=  8(1-A2)  +  31 
16A 1(1-A 2)2 

(51A 5(13+88A2+70A) 5(1+52X2+328X+444A+120X 

-  16(1-A2)  +  16A 1(l-X2)2 1 51 

9 3(l+2A 2) 

7r 7 = ' - 32X 1 (1-A2)2 128A 1(1-A2)2 

10 = 16(1-A2) 32A 11 

1 (1-A2)2 

9(3+16A2+14A) 
9  

+   
- 32(1-A2) 64A 1 (1-A2)2 

145(l+2A ) 45(1+2A )(1+8A +6x2) 
2  

105A 1 105 (1+8X2+6A) 105(1+8?, 2+6A) 2 
+   

11 =  32  +  32(1-A2) 128A 1(l-A2)2 

To give an indication of the work involved in evaluating the above 

expressions, we give below the derivation of it6. 
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ir6 1 

= *[l5(l_A2)9+5x(5+32x2+26x)(l_x2)_b0+xi(l+52x2+328x+444x+ 

+4X) (l-x22)9] I 
8X 

= 

1-15(1-A2)91 

-15(1-A2)9 
+ Ai(1+52A2+328X+444X+12O4)(l_A2)_hh][ 8A 

Thus 

rsxi 5(13+88A2+7OX) 5(1+52A2+328A+444X+12OA) 

= [8+ 16(1-A2)  +  16x 1(1-x2)2 

Denoting the moment estimator A by f*(rn{,m2) and its partial 

derivatives with respect to m, m2 calculated at = and m2 = 112 , 

by A*,B*,... etc. as given in (2.6.a), the expectation 

E(f*(m1r,1n2))_ "1"P2 

will be the same as in (2.8.b), but with the difference that the 

values of the constants k1, A,B,C,... etc. will be different. Let 

11 
E(f*(m,m2)) - f* (ii 1 ,u2 ) = kr/n + fl 2 + 

i=l fl 

where 
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(2. 11. a) 

r2 (i = 1,... ,11) 

= - 2B + + P3D* + 2 4-112 

are those expressions for irj given in (2.8.e), 

when A,B,C,... are replaced by A*,B*,C* .... Thus, for 
M? ½ 
[i-] , the values of the required partial f* (m1',m2) =  

derivatives are given as 

A* = -(1-X2)2/2A, B* = (1-X2)/2X1, D* = (J-x2)5/4X, 

= (1-X2)3/4A, = -3(l-X2)7I4X, G* = -(i-X2)6/8X, 

(2.12) H* = -3(1-X2)8 /8X ', F* = -3(1-X2)I8X, 1* = l5(1-X 2)10 /8X, 

= l5(1-X 2)5/16X, X = 3(1-X 2)7 /16X L* = 3(l-X 2)9/l6X, 

= 15(1-X 2)'1 /l6X, Z = -lO5(1-X2)' 8/l6A, 

Now by using the expansion (2.5) for X and taking the 

expectations on both sides and using the values in (2.12) with the 

relations (2.7.a) and by substituting the values of P., (r = 2,3,4,5,6) 

given in (2.1.b) we get the bias b2 (X*) = E[>,*-X 2] as 2 2 

U  

1 r_5 x2 - 7T(2.13) b2 (X2) = - [-- (1-X 2) - - (1O+9X)] + fl 2 + 
i=l 

and the corresponding values of become 
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-(1-i-2x ) 3(1-A2) 3(1+8X2 +6 

= 4A 1 ' 7r =  8  +  4A 1 

-(1+2x2) 1 (1+8X +6X2) 
11* 

- - 16A(1-A2) 16A1 16A(1-A2) 

(2.14) r(1+2X2) 3(1+22X +58A+24A3- 8A1  + 16A(1-A2) ] 

* 5(1-A2) 5(13+88A2+70A) 5(1+52A 2+328A+444X+120x) 

-  8  +  16A 1 +  16X(1-X2) 

* -  15 3(1+2A2) 

- 128A(1-A2) 8 = 32X(1-A2) 

Tr 3 
3(3+16X2+14A) 

* 

- 32A1 +  64A(1-A2) 10 
- 

and 

31 

15(1+2A2) 15(1+2X2) (1+8x2+6x) 

16A 1 32A(1-X2) 

1105(1-A2) 105(1+8x2+6x) 105(1+8A2+6X) 21 

11  32  +  32X 1 +  128A(1-X2) 

2.2.3 Asymptotic Variances and Covariance of Moment Estimators. 

Now 

Var(f(m,m2)) Var(f(m,m2) - 

= E[(f(m,m2) -f(1ii2)) 2]- [E(f(m,rn2)-f(ii{,u2))]2. 
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Subtracting f(i.i ,112) from both sides of (2.5), squaring and taking 

expectations, one can show that 

E[ (f (m' ,m2)-f(ii{ ,112) )2] 

1.12 (1.13 n n I• 1131 (1n 
= A2 + 21— - AB + I— (P- 11 ) + 4 (511_211 )]B2 
n 1,.  

11 3 
+ -- AC + -- (ii1-4i4) (2AD-I-BC) + - (11 5-8 11211 3) (2BD+AE) 
n n 

34 (,!L2 AF'(2.15) + -4 ( 6-61.12p-61.1+5p)BE + --  + --J 

+ 4 (3112 11 3) (AG + + DC) + 4 (112u-M+21.1) (D2+BC?+AH+ 

+ -4 (3113i11-311 2 Al 113) (DE + + BE) + -4 (3ii-6iiii+3p) [c + + 

Collecting terms in (2.15) for the coefficients of and 

one can show that, the asymptotic expansion of the variance of 

f(m,m2) can be written in the form 

(2.16. a) 

where, in general 

(2.16.b) 

and 

12 
Var(f(m,m2)) = vim + n 2 + 

j=1 

V1 = 112  + 211 3AB + (1_p)B2 
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a1 = -2p 3AB, a2 = (5-2)B2, a3 = p3AC, 

aLf = (liLf-414) (24D+BC), a5 = (j 5-8p2u3) (2BD+AE), 

21C2 AF) (2.16.c) a6 = (116-6p2p,.-6p+5p)BE, a7 = + 

a8 = 3p2 .i 3(AG++DC), CE 
a9 = (2-$+2i) (D2+BG-1-AH+ -i-), 

a10 = (3113P4-3112 11 3) (DE+ +BH), 

a12 = -[-P2 B+ -- + 

all = (3p-6p4-34 41 p) [E2 -- + BI 

Thus the asymptotic expansion of the variance of A = f(m11,m2) given 

in (2.16.a) will be 

12 
(2.17) Var(X) [i +  1 (2-2X +3X 2) + + o() LT 2(1-A2) n2 a.  

where a (i = 1,2,...,12) can be evaluated by substituting the values 

of P (r = 2,...,6) and A,B,... etc., in (2.16.c). 

Denoting the moment estimator A of the parameter A2 by 

the asymptotic variance of is similarly-given by 

Var(A) = + 2P3A*B*+ (u,._)B*2 ] + 

(2.18) 

r(l-A2) 12 1 
+ 1 * 

= n L 2A1  (A 1_A 1A2+2x2+3x2)] i=1 a. + o(--) 
71 

where a2 have the same expression (2.16.c) when A,B,C,... are replaced 
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by A* ,B*,C*,... given in (2.12). 

To find the covariance of f*(m1?,m2) and f(m{,m2) we shall use 

the bivariate-Taylor expansion of both functions. 

Now 

Cov(f,f*) = 

(2.19.a) 

-E[f(m ,m2)-f(p 2' .E[f*(m ,m2) f*1 

But 

[f(m I'm '2 

= (m_p)2AA* + (m_pj7(m2_p2)(A*B+B*A) + (m2_p2)2BB* 

+ [ (m -11 (J1C*+CA*) + (m{-{) 2 (m2-p2) (2AD*+BC*+B*C+2A*D) 

+ (m 2 -)(m2-p2) + (m2_12)3 (8E*+B*E)} 

(2.19.b) 

+ [(m {_li)7(2A*F+2AF*+3CC*) + (m-p)3(1n2-p2) (6AG*+2BF* 
12 

+ 6CD*+2B*F+6C*D+6A*G) + (m- 37 2 (m2-p2)2 (6AH*±6BG*+6A*H 

+ 6B*G+3CE*+12DD*+3C*E) + (M1'-P1') (M2-]'2) (6BH*+2A1*+6B*H 

+ 2A*I+6D*E+6DE*) + (in2_p2 )'(2BI*+2B*I+3EE*)J 

Taking the expectation on both sides of (2.19.b), and substituting 
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together with (2.7.a) in (2.19.a) we have 

(2.19.c) Cov(f,f*) i[Au2A* 3(A*B+B*A)+B(p_)B*J + 2 n2 . Wi 

where 

= (5 !22_2p4 )BB* - 

11 3 

U)2 = -- (AC*+CA*), 

if 2 
= 2'2 (2AD*+BC*+B*C+2A*D), (A)i = +(1i5_8112113) (AE*+2BD*+A*E+2B*D), 

= (p6_6112 -6p+5p) (BE*+B*E) U)3 2 6 = 

(2.19. d) w = 12(3112113) (6AG*+2BP*+6cD*+6c*D+2B*F+6A*G), 

U) 8 = (6AH*+6BG*+3cE*+12DD*+6A*Hd6B*G+3c*E),12 

U)9 = 1 3l1311Lf3141t3) (6BH*+2A1*+6B*H+2A*I+6D*E+6DE*), 

= (3ii-6uii+3i4) (231*+2B*I+3EE*), 

112c (11  p1* ( _112)E* 
= -[-p2B+ 2 + 2 +P 3D] [_112B*+ + 22  +P3D*} 

Thus, the covariance between the moment estimators of 

f = f(m,m) = and f* = f*(mtm) = of the parameters X1 and 

is 

result 

(2.20) 

obtained by using (2.2.b), (2.12) and (2.9) in (2.19.c) with the 

Cov(X,X) 
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and Wj  (j = 1,2,...,11) are obtained from (2.19.d). 

2.3 Maximum Likelihood Estimation for the GPD from a Complete Sample. 

The following recurrence relations for the probabilities of the 

GPD given in (2.1) are of chief importance in deriving the M.L. 

estimators and their asymptotic biases and covariances. 

Consul and Jam (11), have shown that the probabilities (2.1) 

Satisfy the recurrence relations 

(2.21.a) P (X ,A ) = P (x x-1 1 +, IX ) - P (A1 ,A2) X 1 2 1 2 

i-A Al 

(2.21.b) 2P(A1x2) =   x PX (X l ,A2) - - P1(A1+x2,A) 

A ' 1 2  
(2.21.c) xP(x,A) = A1-I-A2 -1)p - (x +A ,A ) - x (x +x ) 

xl 1 2 2 1x-1 1 2 2 

where P X 1 (A ,A2) is defined in (2.1). 

For the sake of convenience and brevity we shall denote the 

probabilities P (A 1 ,A2), P 1 (A 1+A2 ,A2), and P 2 (A 1+2A2 ,A2) by P, 

P X1 X-2' , P respectively. 

Let a sample of size n be taken from the GPD (2.1) which gives 

the frequencies 
7< 

let j. The log-likelihood function 
x=O 

log L 

x' X = 0,1,2,. ..,k, 

x0 

= JO 

for the different classes, and 

n[-x1_xx2+(x_l)1og(A1+xx2)+logx1_logx] 
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where P is the probability of observation x, n is the frequency of the 

observation x and k is the largest of the observations. 

On differentiating log £ partially with respect to A we have 

logL - 71+r!+ k (x-l)  
A xA+Xx 
1 x=O 1 2 

2logL -r k (x-l)  

DX I +n x=O X (X1+A2x) 
2] 

Now, the ML equation logE = 0 for A1 can be written in the form 
axi 

(2.22) 
k n x(A 1+A2) 

= 

x=O X1+XX2 

where the function of A1 on the right, is continuous and is more than 1 

and less than if A2 > 0 and satisfies the Lipschitz condition given 

in (1.5). Thus the ML equation in A1 must have a unique solution, 

corresponding to each value of A2, which must maximize the likelihood 

function because the second partial derivative is always negative. 

It should be noted that in the case the probability mass is 

concentrated at Zero, where the probability of the sample becomes 

71 I -nA 1 
P fl x. = 0 = 

i=1 

the K.L. estimator is X, = 0. For that particular case equation 

(2.22) will not hold. 
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Similarly, on differentiating log I partially with respect to 

we get 

logL k 
- + x(x-l)  

xI A 2 =O 1+ 2j 

2logL - 

3X 2 x=O 

Again, the ML equation DlogL - 0 for A2 can be written in the form 

(2.23) A2 = - n 'r (X +X ) X 
1 x=0 n A1+xX2 

For simultaneous ML estimation of the two parameters we eliminate 

between (2.22) and (2.23) and get 

k n {m'(l-A)+A 2}x 
X  2  

2 
1 

(2.24) A = 1 - —i-
1 x=0 n m{(l-A 2)+xA 2 

as the ML estimating equation in one variable A2. The equation (2.24) 

is of the same form as (2.23), with the difference that A1 is replaced 

by m(l-A 2) 

It has been shown in Appendix I that the matrix of the second 

partial derivatives of the log likelihood function is negative definite. 

Accordingly, if the ML equation (2.24) has a solution it must be the 

unique M.L. estimator. 
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We now define 

k n {m'(l-A 2)+A}x 

(2.25) H(A 2) = 1 - n x  1 jm'(l-A2)+xA2}m' A2 

The function H(A 2) is the sum of a finite number of expressions 

n 
1 

in A2. Obviously, H(0) = 0, and H(l) - -r (1 ). Thus to 

apply Newton-Raphson method of iteration one should find an interval 

(a,b) C (0,1), where neither a, nor b depend upon the sample values, 

and for some value of A2 E [a,h] the function H(A 2) is positive and 

its first order partial derivative w.r.t. A2 does not vanish. We 

could not find such an interval, and the graph of the function 

H(A 2) does not seem to satisfy the condition H(a) . H(b) < 0. This 

means the Newton-Raphson method of iteration fails as a tool to 

detect the unique root of H(X2) = 0. Hence other methods of 

iteration should be tried to find the unique root of the equation 

H(X 2) = 0. 

In the following section we derive the asymptotic biases, 

variances and covariance of the N.L. estimators, based upon the 

work by Shenton and Bowman (1975). 
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2.3.1 Asymptotic Variances and Covariances of the ML Estimators. 

Assuming the four regularity conditions given in (1.4), Shenton 

and Bowman (72), (75) have proved that the first order terms of the 

variances and covariance of the ML estimators for two parameters, are 

given by 

(2.26.a) 

where 

(2.26.b) 

Var( 1) P22InIII +o(1/n) 

Cov(X,5 12 ) = -P 12 1n111 +o(l/n) 

Var(2) = P11 /nIII + o(l/n) 

p11 = (p2(p)2) 

P 12 

P22 = E(P 2 (92P) 2) 

where p is the probability defined in (2.1), and 

(226c) III =P P -P2 1122 12 

Since the four regularity conditions given by (1.4) are satisfied 

by the GPD defined in (2.1), the above results will hold for the ML 

estimators and 

By using (2.21.a), (2.21.b), and (2.21.c), we shall now evaluate 

the expressions for P. . (i,j = 1,2). 

CO P 
x-1 - 

x1 X  

2 

Co - xl X1 x s-i (x_1)} - Co + 
(2.27) = - 1 x1   P -1 = +  p -1 

1 x=2 A1+2A2 s-2 

- 1 - X1+2x 2-x 1x2 

- 5:-;- - X1+2x2 A1(X 1+2x 2) 

Similarly, 



(2.28) 

(2+A 1) 

(1—A2) (A 1+2A2) 

and 
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- (Tl  J = Ef[ 2 P22 - 

)2 - 2A 1(1—x) A2 2 

ax 2 2 2 1  x-1  
A 2 X A 2P2 

2 x•-

[1_A (1—A ) A P - 

(T2 D X 2 -i 2 1 x-1  

12 = E - E A P - A + P 
2 L 2 X 2 2 j X2 2 

(2.29) 

= A1+2X 

Fisher's information determinant Ill, given by (2.26.c) becomes 

(2.30) Ill = 2 [(l-A2)(X 1+2A2)] 1 

Thus 

(2.31) 

(2.32) 

A1 (2+X 1  )+ 
Var(1) = 2n nJ 

Var(A2) = 
(A 1+2x2-A 1A2) (1-A2) + 

2A 1n n) 

- 

(2.33) Cov(1,52) = (1—A 2) +  2n (nT] 

2.3.2 Asymptotic Biases of the ML Estimators. 

As we have already shown, explicit forms for the ML estimators 

cannot be obtained, and consequently, terms in the biases cannot be 
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easily expressed as functions of the parameters X1 and Under 

the same regularity conditions given in section (1.4), Shenton and 

Bowman (75), Shenton and Wallington (70) have proved that the first 

order approximations to the biases of the I'lL estimators of two 

parameters satisfy the following two equations - 

b1(51)P11 •b2(52)P12 = /2111 

(2.34.a) 

b1 (5 1)P21 +b2Ø2)P22 = -L2 /2111 

where 

= P22P1,fl - 2P12P112 + P 11 P 1P22 

(2.34.b) 

= p22P2,11 - 2P12P2 12 + P fl2,ZZ 

and 

2 9P 2P1 [p-2 P  2P ] P1,11 = E  P1,12 = E l2 

2Pi (p-2 P ('2.35) P122 = EP2 P_ P DX 1 211 = E 2 1j 

+-2  P P2,lZ 2p= E(P2 2 p2,22 =  X2X) 

The formal deriyation of b3(X1) and b22) will be given in Appendix (;IT). 

We shall now calculate the values of P jj (c,i,j = 1,2) given in (2.35 ). 

Using the recurrence relations given in (2.21.a), (2.21.b) and 

(2.21.c), we have 
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- + 
oo p p oo 

x-1  
(2.36.a) P111 =   2 L + 1 

x=O x x=O r 

Let 
- + 

v  CO p x-lx-2  
'12 L p 

x0 a; 

Since 

- (A 1+X2)x 
(2.36.b) p -  P 

X-1 X1( 1+X2x) a; 

and 

(2.36.c) a; 2 xi (x-2) 
X1+Ax - X1+2X2 + (A1+2X2)(A1+X2a;) 

then 

(x-2)  
2 a; X-2 - A1+2X2 + X +2X x+x 1 2 x=2 X1+X2x x=2 1 

(2.36.d) 

x (X 1+2X2)(X 1+X2x) 3((x-2)!) 1exp[-(X 1+X2x)1 

Thus, from (2.36.b), (2.36.c) and (2.36.d), 

(2.36.e) 

Hence 

(2.36.f) 

Since 

2(X 1+X2) (x 1+x2) 

C12 = X1(X1+2X2) + X1+3X2 

- 2X 1X-2X 1X2-6X 

p1,11 - x1(x1+2x2)(x1+3x2) 
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ap P [i-x 2 A i ri-A2 - 1A A 
_J 

2 A1A2 L A2 X A2 x_i x-.1 j[ A2 -  XP - A2 x A2 X-2 

(2.37.a) 

 P 
A2 x  

then 

1-A 2 A1(i-A2) 1-A 2 

P2,12   r 
- ( 2] x 2 - 2 L P X-1 ( A2 2 } A2 x-i A2 x 

A1(1-A2) - XP A1 (1-X 2) + 
(2.37.b) +  2 a; X- + 2 A C12 

A 2 2A2 

(1-A 1) 2) - A1cL-A 1) p2 
  XP +  '  X1 

A2 X1 A2 2. 
2 2 x 

Moreover 

A +X (A 1+A2)2 2(A 
(2.37.c) =  1' 2 +   + 1+A2) 

x-1 (i-A2)3 (i-A2)2 i-A2 

and 

r x-1 ' 

(2.37.d) ) x - (x-1)   + (P +1). 
x 

+1 

On substituting in (2.37.b), and after simplification, one can show 

that 

5AA2+13x 1A2-2A 

(2.37.e) P212 = A2(1-A2)(A1+2A2)(A1+3A2) 

Since 
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(2.38.a) 

then 

(2.38.b) 

P a2p A XP I - - 

-. x 2  

- ?L2 x A X--12 

x-1 x 

[ x1 x1 

A 1-A 1 1 1 2 x- 1  

= A 2 A1 2,11 ax 

i-A P 
C _X _l -P) 

A2 + P ' 1 x 1 X2 x _ 

Since the P function, given by (2.1), satisfies the regularity 

conditions with respect to X and X and the operations of summation 

and differentiation can be interchanged, accordingly, 

(2.38.c) 

(1-A2) 1 A1 A1 

P2,11 = A2 [l-A2} - C12 + 2 (P11 + 1) 

i-A2 

A2  112] A2 

Substituting the values of P11 and C12 given respectively in (2.27) 

and (2.36.e), we get 

-2(A 1+A2) A1(A 1+A2) A 2 2A 1 

(2.38.d) P2,11 A2(A1+2A2) - A2(A1+3A2) + + - X2 (A 1+2A2) 

which, upon simplification, can be written as 

(2.38.e) 
(2A2A -2A2-4A A +4X A2+6A2) 

1 2 1 1 2 1 2 2  
P2,11 = A2(A1+2A2)(A1+3A2) 
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p X @2p - F X -A 
  = (p -p ) 2 J2 A1(1-A2) - 

DX •X2 s_i [ + (1 A2   XP s-i 

(2.39.a) 
A x1(1-A 2) - + 

+ -- is-i -   (s-1)P + s-i X2 p5-2) 

Multiplying both sides of (2.39.a) by P 2, and taking expectations, 

we have 

1 - 1 
+_ 

1,22 A2 5-i A 5 

(2.39.b) 

or 

2 
(1-A2)2 

A1(l-A2) 2 x1(l-A2) - A p2 
5-1   xp s-i 

- A2 P + A s-i 
2 S 2 s 

A1 - A1(1-X2) 2 X1(1-A 2) 

(s-l)   + A2  

A A + 

12 5-2 

52p 
5 

(s-1)P 1 

-(1+A 1) A1 (1-A2)2 r 2 X1-I-A2 (A 1-I-A2)2 2(A1+A2)P 1,22   ] 
= ) + A(1-A) +  A [1_A3 + (lA) 2 2 + (1-A) + 
A(1-A2 2 1 

(2.39.c) 
(1-A2)2 r A1 A 1 A1(1-A 2) (A +A )2 2 

- A L(1_A2)3 + (1A) 2j A A1 (X1+2A2 + 
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+ 1_A2] + (P 11+l) + A1(1-A2) rl+A i A1 A1 
(PX2 X 11+1) - 

A1(1-x2) (A1-f-x2)2 1 2 1 - A1(1-A2) (X 1+A2 

(2.39.c) A1+2A + ]•A2J +  A 1A2 

r 2(A 1+A2) A1+A2 1 
+ Lx.1+22) + A+3AJ •5-

The last expression can be shown to be equal to 

3-A 2-5A 1 +3A 1A-6A 

(2.39.d) P1,22 - (A 1+2A2)(A 1+3A2) 

p 92p - 1-A 1-A A + 1-A 
x  

=(P -nl 2 - 2  
1 '12 xl x A2 X1 A2 XP X A2 P  X-2 - A2 x-iJ 

1 1-A 1-A 
(2.40.a) =  •A2 -  2 XP 2 - 1A 2 XP P + 

A2 X P;-i A2 x-1 A2 xc-i A2 

A - + A + 1-A 1-A - 

P +-!pp - +  
A S-i 5-2 A2 S 5-2 A2 s-i A2 x x-1 

Thus, dividing both sides by P2 and taking the expectations, we get 

- + 
1-A P2 1-A 1-A A A1 P P 2-' s-i ___ 

1 = A P -2 A2 - si x 2 X XP +   A 5- 15- 2 
,12 2 x 2 2 P 

(2.40.b) 

p2 1-A A + 1-A 1 
+ P   2.   A2 5-2 A2 A2 s-i 
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To derive a closed form for xP1/P we proceed as follows: 

On multiplying both sides of (2.21.c) by P 1/A2 , we get 

Al A 
_L XP P   (x-l)P2 + 
A2 x x-1 = A1+X2 x-1 x-1 

from which 

xlP x-1 i+x 1 

(X- 1) = x2(1-x2) ç (P1+l) 

or 

____ (A 1-I-X2)(l+X 1) A1 -A2 

- P (x 1) 
- A x2 (1-x2)   (P+1) 

x 1 

- H-X 2 

[1+2 +  

Hence 

- f - -  (A 1+x2)2 2  
- + 1_A2] + (P 11+1) 

x 1 (X 1 +2x 2 

Substituting (2.40.c) and (2.36.e) in (2.40.b), we have 

1-A2 2  

P 1,12 =  A2 A1 (A1+2x2 +   1-X 2] 

1 2(1-A ) 
+ (P11+l)I - A 2  

2 

1-A 2 ( A1 A1 r 2(X 1+A2) A1+A2 A 1-A 1 1-A 1 

+ A2 i_x2J [A 1 A1+2A 2 + Ai+3A2J + A2  A2  (p11 +l) + A 
2 

which, after some simplifications, will give 
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(2.40.d) 

- (A+A+3xA2-A-2X 1A2) 

P1,12 A2 (X i +2A2) 1+3X2) 

Finally, 

2 

p X D2p  A ç-rcP + (1-X2L Ii - (1-X2 A2 x2 x-ij  X2 
2 2 

(2.41.a) 
x1(1-x2) - A A ! - 1(1-A 2) 
 XP +  -   (x-l)P 

- X-1 4 X- 4 x_1 

A2 + 
+ 

4 2) 

Multiplying the brackets in (2.41.a) and dividing both sides by P2 , 

and then taking expectations, one can write 

-(1-A2) A 1-A2 1 1'  
  x2p +—xP +1 P2,22 = x A X-1 A2 ] x2P X 

(2.41.b) 

- 2X 1(l-X2)2 - X2 (1-X ) 
  a2P + 1 2 x-1 

x-1 )'3 P 
2 x 

A2 X (1-X ) P2 A1 (1-A 2)2 - 

+  12 -1 - A x-1   x(x-1)P 

2 

- + 

+  p2 ?L2 (1-?, + A3 P P 
1 2 + x-1   1 x-1 x-2  

L (x-1) A XP X-2 - P 
2 X 

On substituting the computed values for 
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- + 

P 
r'  x-1 x-2 X  v'  x-1  2. , X and 2 P 31 

x S S 

in (2.41.b), we get 

- (1 . -X 2  

= 2,22 0 

+ 

(2.41.c) 

Al X2 A1 1+X 1 1A2 

(1-A2)3 + (1-x2)2 + J 1-A2 + X2 (1-A2)5 

3X1 r X A 2A 1 2X 1(l-A2)2 - Al+A2 

1-A2 (1-A2)3 + (J-x2 )2 (l_A2)3j - A (1-X2 )3 

(A+A) 2 2(A 1+A2) 1 
(1-A2)2 +  lA2 + +   [11+ + (A 1+A2)2 
1 2  

[T-X2 
+ 1A21] + A1(1-A2) 

- A 

A1+A2 (A 1+A2)2 

+ (1-A2)3 + (1-A2)2 + 

+ A(1-A2) rx 1+2A 2 

[ 1_A2 +2] 

1 
[1 1+1] 

-A2 

r(A +x  2 )2 
1  

L A1 [A1+2A2 +   

A I 2(A+A) (A 1+A2) 

A3 IAii+2A2) + A1+3A2 
2L 

The last expression can be simplified and written as -38X2X3+66X2X4-43X2X5+lOX2X6+18X x3-42x X4+72X x5-48X ?,6 P222 = 

(2.41.d) 

+12A1 x71. 

Thus, on solving (2.34.a) for b1() and b2(A2), we have 



(2.42) 
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b10 1) = (L2P12 -L1P22 )/2111 2 + Q(z(.2) 

b2(2) = (11P12 -L2P11 )/2111 2 + 0(1 ( 2) 

where Li and £2, which are defined in (2.34.b) can be explicitly 

obtained on using the calculated values of (P..), (a,i,j = 1,2). 

2.4 Joint Asymptotic Efficiency of Moment Estimators. 

We shall determine the asymptotic relative efficiency of the 

moment estimators relative to the M.L. estimators. The variance 

covariance determinant of the moment estimators up to the second 

order accuracy is given by 

(2.43) 

Var(A) Cov (X* A*\ 
1' 2' 

Cov(X,A) Var(X) 

where v I I v, C] 2' 

and (2.20), respectively. 

2 i + 211 c .  W. 

i=l i=1 

11 v* 11 
(0. ._L+n_2 

i=1 

are explicitly stated in (2.16.b), (2.18), 

To make a realistic comparison between the two types of estimators 

it is necessary that the values of the covariance matrices of both 

types of estimators, be computed up to the same degree of accuracy. 

Since the determination of the second order terms of the variances 

and covariance of the M.L. estimators is laborious and include huge 

numbers of terms, we shall confine ourselves to the first order 

accuracy, and obtain the first order asymptotic efficiency. 

Fisher's measure of efficiency is given by 
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1 
eff - n2!II IDI 

where Iii is given by (2.30), and ID! is the generalized variance 

of the moment estimators computed up to the first order accuracy. 

Katti (37), has shown that 

(2.45) 

where 

(2.46) 

and 

(2.47) 

Thus 

= 

Var(m) Cov(m ,m2) 

Cov(m5m) Var(m2) 

2X 1 
= 2 2 ;;- 2'3'2 = n2(l-X2)10 (x1+2x2+x-x1A2) 

kTI = 2x 1/(1-x 2)5 

IDI = •i. (A1+2X2+-1x2) 

and one can show that the asymptotic efficiency is given as 
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(2.48) 

or 

eff 
-  (l-x2)+2 (l-x2) 

>0 
X1(1-A2)+2A2+X 

(2.49) eff = 1 
3X 

 ,< 1. 
x](1-x2)+2x2+4 

Solving (2.49) for A] one gets 

(2.50) 
A1 = (1-A2) (l-eff) - 

3A2 
2 2A 2 (1+x2) 

(1-A2) 

Equation (2.50) is very helpful in constructing the contours of 

efficiencies (see Fig. 1). From equation (2.49), it can be easily 

realized that eff is always less than one, and it is a monotonic 

increasing function of A1 if A2 is held constant. Moreover, for 

constant A1 eff is a monotonic decreasing function of A2 . 

Table (2.1) gives tabulations for the efficiencies for some 

selected values of the parameter space of (x1,A2). 
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Figure 1 

Contours of the Asymptotic Efficiency of the Method of Moments 

Relative to the M.L. Method. 
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Table (2.1) 

Asymptotic Efficiency of the Moment Estimators 

Relative to M.L. Estimators 

.1 .2 .3 .4 .5 .6 .7 .8 

.5 .956 .857 .740 .619 .500 .386 .379 .179 

1 .973 .903 .806 .692 .571 .449 .329 .213 

2 .985 .941 .871 .778 .667 .542 .410 .273 

4 .992 .967 .923 .857 .769 .658 .524 .368 

4.5 .993 .970 .930 .869 .786 .679 .546 .388 

6 .995 .977 .945 .895 .824 .727 .602 .442 

8 .996 .983 .957 .917 .857 .773 .657 .500 

10 .997 .986 .965 .931 .880 .806 .699 .547 

Table (2.1) reveals the regions of poor and high efficiencies. For 

small values of A and large values of A2 (e.g. X < 4 and A2 .3), 

the efficiency is poor and decreases when A2 gets larger. On the 

other hand, for large values of A1 and small values of A2 (A2 < .3), 

efficiency is appreciable. 

2.5 Maximum Likelihood Estimation From Truncated Samples. 

In section 2.3, we investigated the M.L. estimators of A1 and 

A2 when the sample observation is permitted over the full range of 

the complete distribution. When the sample observations are truncated, 

as for example, when the number of zero observations is unknown, or 

when the observations of higher counts are pooled, the estimation 
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problem increases in complexity. 

In what follows, we present an investigation into the precision 

of the samples in the estimation of the parameters in the case of 

decapitated and double truncated samples of size n relative to a 

complete sample of the same size. It should be realized that the 

precision of a truncated sample of size n relative to a complete 

sample of the same size depends on the form of the frequency 

function, the parameters to be estimated, and the points of 

truncation. 

The probability function of a GPD truncated on the left at 

= c and on the right at . = d, (c and d are non-negative integers, 

and c < d), may be written as 

0 

(2.51) P x x l = P (X ,X2) Cl ,A2)Qd+ll ,x2 l 

where 

(2.52) 

0 

CO 

= I P x (A l ,A2) 

,A 2) 

The truncated distribution (2.51) is thus normalized so that 

(2.53) CO d X = P 0 x =l. 
x= =c 

c$xd 

x>d 

A measure of the accuracy of M.L. estimators from a truncated sample 

of size n relative to the M.L. estimators obtained from a complete 

sample of the same size, was given by Swamy (77) and is defined by 
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(2.54) 

where I" 

eff = 11*1/Ill 

is defined in (2.26.c), and 11*1 is the amount of informatin 

supplied by a single observation obtained from the truncated distri-

bution (2.51), and is defined as 

(2.55) 

where 

11*1 =P* P * - (P 
11 22 r )2 2 

i = E(P* 2I p*Vl 
i 

2- 3 
(i,j = 1,2) 

and P are the probabilities given in (2.51). To calculate the 

elements P., we differentiate (2.51) partially w.r.t. A.. Thus 

the partial derivative of P w.r.t. A. can be written as 
1-

P/aA. 3Q - /A. -  

(2.56) 2. —  C 2-  
P 

where Qa (AiA2) is written as for abbreviation. Thus, using 

(2.56), along with the recurrence relations given in (2.21.a) and 

(2.21.b), we have 

(2.57.a) 
11 (QC 

(2.57.b) 

= + - 

- 

P 2 = P11 + (aQ  /ax 2 - Q 1IA2)2 

- 
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(2.57.c) 

and 

+ (aQ  /ax 1 -  aQd+l/a 2)QC /ax2 - Qd+ ltA 2) 
12 = P 12 

+ 
[aQC/DX2 11  - d+1'2] 

QC -  
2 

(2.57.d) - 2p12 OQ  {C1 - d+1/laQ/2 - aQ /a x 

- 

aQ  fQ0Iax1 - /ax 2 

P22 [ c - Qd+l I 
By the definition of given in (2.54), we have 

(2.58) 

where 

(2.59. a) 

(!Q 
11( eff (L2 2 

1 + Var( 2 + covx 1' 2) iIT 

+ Var( 1)(_L} = 1 + 

= cd+i = P(A 1 ,A2) - 

d 

= x (X i ,A2) 

2 
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d 1 ,A2) 
* 

= T [-d+l = x1 xc 

(2.59.b) 

/1* 

9X2 

(2.59.c) 

d 
L EP x _1 (A 1 +x2 ,A2) - P(X1,A2)] 

x=c 

d 
= P x-1 (x1+x 2)A2) - Q 

x=c 

d DP (x 1 ,A2) x  
= 

x=c 

d 
XP (x ,A 2) 

A2 x 1 
x=c 

Ad 
P 1(X 1+X 2 ,X 2) 

2 rc 

The investigation of the behaviour of the function T(A 1 ,X2) 

seems to be difficult, since Cov(5 1 ,5 2) is always negative as can 

be seen from (2.33). Thus, the gain or the loss in the efficiency 

will depend upon the sign of -r(A 1 ,A2 ), whose value, in turn, will 

depend upon the values of the parameters A1, A2, and the points of 

truncation. However, we shall show that in the case of decapitated 

samples, there is a certain gain in the efficiency. 

For c = 1 and d = , i.e. in the case where the distribution 

is truncated at zero, we have 
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00 

(2.60.a) Q = = 1 - P0 (A 1 ,A2) = 1 - 

CO 

(2.60.b) 

and 

= , P 1 (Ai+A2 ,x2) - Q = e 
x1 

(1-A) 0° A CO 
* 2 1 

= "12 ) - r-1 r- L 1 +A 22X2) 
2 x=1 2 x=1 

1A2 (X 1 ) Al 

= A2 -x 2) x2 

Thus 

and from (2.23) 

(2.61) 

- Var(A 1) 

eff_ 1 + (eAhl)2 

* 

eff=l+A 2 

which approaches unity, for sufficiently large values of 
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We conclude then, from (2.61), that there is a definite gain 

in the efficiency of M.L. estimators if the parent population is 

left truncated at the origin. 

2.6. SamplingProperties of the M.L. and the Moment Estimators of the  

GPD. 

In this section we compare the performance of the M.L. and the 

moment estimator, through numerical tabulations for first order terms 

of the biases only, because we have not derived higher order terms 

in the biases of the M.L. estimators. However, we shall show by 

some numerical examples that the second order terms of the moment 

estimators are of negligible importance for relatively large samples, 

and the appropriately chosen subregion of the parameter space. 

Table 22. 

In this table we give the biases of the M.L. (2.42) and the moment 

estimator (2.10) of the parameter A]. The first entry of each cell is 

the coefficient of in the bias of the M.L. estimator, and the 

second entry is the coefficient of n 1 in the bias of the moment 

estimator. The selected parameter values are 
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= 0.1, 0.2, 0.4, 0.6, 0.8 

= 0.5, 1.5, 3.0, 6.0, 10.0. 

(Table 2.2) 

Biases of M.L. and Moment Estimators of 

.1 .2 .4 .6 .8 

0.5 
16.41 

.82 

4.37 

1.11 

1.50 

2.23 

0.93 

4.90 

0.68 

13.83 

1.5 
55.41 

2.07 

14.77 

2.36 

4.77 

3.48 

2.81 

6.15 

2.01 

15.08 

3.0 
225.18 

3.94 

80.62 

4.24 

28.82 

5.35 

14.12 

8.03 

7.06 

16.95 

6.0 
2777.31 

7.69 

1189.99 

7.99 

439.09 

9.10 

195.52 

11.78 

75.65 

20.70 

10.0 
21691.21 

12.69 

9526.74 

12.99 

3530.45 

14.10 

1555.95 

16.78 

581.76 

25.70 

For all the selected values of X and A2, the biases of the 

moment estimator of X increase monotonically by increasing X and 

A2. But for the M.L. estimator, the bias increases by increasing 

xi only, and decreases by increasing A2. Over the interval X < .4 

and .5 5 A1 5 1.5, the moment estimator is less biased than the M.L. 

estimator, but for A2 .4 and the same interval of X 1., the moment 

estimator is more biased than that of the N.L. For A 3 and all 

the tabulated values of A2, the moment estimator is less biased than 

the M.L. estimator. In fact, the region A2 < .4 and A1 A .0, where 
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the moment estimator is less biased than the M.L. estimator, is the 

region where the moment estimators are highly efficient as can be 

seen from Table (2.1). 

Table 2.3. 

The first order bias of A2 on a per observation basis, calculated 

from (2.42) are shown in Table (2.3). The selected values of the 

parameters are exactly the same as in Table (2.2). 

(Table 2.3) 

Biases of N.L. and Moment Estimators of A2 

A2 
.1 .2 .4 .6 .8 

0.5 
-39.79 

-1.67 

-11.53 

-2.18 

-4.11 

-3.47 

-2.69 

-5.12 

-2.24 

-7.13 

1.5 
-32.27 

-1.31 

-7.65 

-1.39 

-2.18 

-1.66 

-1.23 

-2.04 

-.84 

-2.54 

3.0 
-43.85 

-1.22 

-12.03 

-1.20 

-3.25 

-1.20 

-1.30 

-1.27 

-.54 

-1.40 

6.0 
-294.7 

-1.17 

-111.00 

-1.10 

-30.70 

-.98 

-9.20 

-.89 

-1.84 

-.82 

10 
-1588.59 

-1.15 

-619.38 

-1.06 

-172.15 

-.89 

-50.59 

-.73 

-9.46 

-.59 

As can be seen, the biases of both kind of estimators are negative 

throughout the tabulated region. However, we shall compare the 

absolute values of the biases of these estimators. For A2 < .4 and 
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all the tabulated values of A] the bias of the moment estimator of 

A2 is less than that of the N.L. estimator. In fact, the M.L. 

estimator of A2 is less biased than that of the moment estimator in 

a relatively small subregion, which is described in the table by 

the rectangle .5 5 A1 1.5 and .6 5 A2 5 .8. 

We shall give now some of the values of the second order term 

in the biases of moment estimators. 

(i) For the parameter A1, suppose that (2.10) is written as 

B-
bias(A) K, /n + + 

i=l 

Thus,when A1 = .5, A2 = .2, 

11 
= -.01 

i=l 

When A1 =3, '2 = 

11 
2 -r ff = +.14 
i=l 

And when A1 = 10, A2 = .8, 

2 11 
n = +.82. 

i=1 

(ii) Similarly, if we write (2.13) in the form 

il 
bias(A) 4 X/n + + 

i=1 

Then, for A1 .5, A2 = .2, 
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When A1 = 3, A2 = .4 

11 
2 = .01. 

i=l 

And when A1 = 10, X 2 = .8, 

11 
n2 = .02. 

i=l 

2.7 Concluding Remarks. 

In this chapter we have studied two types of estimators for the 

parameters A1 and A2 of the GPD family. The M.L. equations do not 

give an explicit solution, and the calculation of the M.L. estimators 

will be obtained as approximate values, by using the Newton-Raphson 

iteration technique. The derivation of the first order biases and 

variances of the M.L. estimator was very tedious and we have presented 

the calculations for ready reference and to show the amount of work 

involved in the calculations. As we can see from the tables of biases 

of the M.L. estimators, there are some large values for the biases 

of X1 and A2. For example, from Tables (2.2) and (2.3) 

nb 1(1) = 21691.21 when A1 = 10, A2 = .1 

flb2 (A2) -1588.59 when A1 = 10, A2 .1 

which means a very large sample size is needed to reduce the effect 

of these inflated values. From truncated samples, the derivation 

of the M.L. estimators and their biases and variances is exactly 
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similar to the derivation in the case of complete samples of the 

same size, so we have not derived such quantities. The accuracy 

of these estimators is measured in the sense of their relative 

efficiency with respect to the H.L. method of estimation from a 

complete sample of the same size, by using the definition of 

accuracy given by Swatny. 

zero class in many cases, 

contains large amounts of 

As was realized by Cohen (9 ), the 

and specially for the Poisson distribution, 

recording errors. We have confirmed that 

such a class should be removed when we start estimating by the 

method of M.L. depending upon the claim given by Swamy (77). 

The problem of estimation using the sample moments is also a 

difficult one. We presented the general form of the Taylor expansion 

of a function of the two sample moments and we derived its asymptotic 

bias, variance and its covariance with another function of the same 

sample moments that has the same general form of the Taylor expansion. 

The results were given asymptotically and accurate up to order 

and we specialized these results for the moment estimators of 

the parameters X and A2. We have also given some comparisons between the 

asymptotic biases of the M.L. estimators and those of the moment 

estimators up to order n 1, where we have given few numerical examples 

to show that higher order terms in the asymptotic biases of moment 

estimators are of negligible importance for moderately large samples. 

The information obtained from the moment estimators, which is 

represented by its joint asymptotic efficiency, relative to the M.L. 

estimators, seems to be reliable for smaller values of A2 (i.e. 
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when the GPD is very close to the Poisson distribution) and for large 

values of A (i.e. when we are close to normality). It was also 

realized that regions of high biases of the M.L. estimators are those 

of high efficiency for the moment estimators. 



CHAPTER III 

ESTIMATION OF PARAMETERS FOR THE GENERALIZED 

NEGATIVE BINOMIAL DISTRIBUTION 

3.1 Introduction. 

The generalized negative binomial distribution (GNBD) is 

defined by the probability function 

(3.1) P(X=x) = 

• nr(n+x)  Ø .X(10)fl+XX 

x r (n+-x+l) 
X = 0,1,2,... 

0 otherwise 

where 0 5 0 5 1, n > 0 and = 0 or 1 5 < 0. 

The distribution was first introduced by Jain and Consul (34), 

with the conditions Jul < 1 and P(X=x) = 0 for all x m if 

n+In < 0. Consul and Shenton (13), gave the probability generating 

functions for the CNBD as a particular case of the Lagrangian class 

of discrete probability distributions, deleted the conditions given 

by Jain and Consul (34), and took 0. Subsequently, Nelson (52) 

pointed out a negative value of does not give a true probability 

distribution as the sum of the probabilities over the domain of x 

is less than unity. Consul and Gupta (15), have recently 
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shown that the value of must either be zero or 1 for the 

existence of a true probability distribution. 

The distribution has its applications in the theory of queues. 

Mohanty ((50), (51)) has shown that, in a queue initiated with n 

customers, where the arrivals are assumed to be Poissonian, and each 

customer is served exponentially, according to first come, first 

served, A is the traffic intensity and the customers arrive in 

batches of r, then the probability that exactly rr-fn customers will 

be served before the queue first vanishes is 

  In+ (r+1) 
P(X=x) = n+ (r+1) • x J (1)n+rx 

where 

A 

which is a GNBD with = r+1 and e 

Rewriting the probability distribution (3.1) in the form 

(3.2) P(X-x) nr(n+x)  
x!r(n+x-x+i) (i-e) 31 

it can be treated as a particular family of the MPSD class defined in 

(1.10). Gupta (21), has shown that the moments of an MPSD satisfy 

the recurrence relation 

(3.3.a) p 
= q(e) g'(o) de de + r r-1] 

-  g(0) in f 
(3.3.b) - g'(e) H 

where g(0) = O(i_O)_1, and f = (l-O). 

r = 1,2,... 
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Thus, for the GNBD, the first six central moments are 

(3.3.c) Mean = =n o/(1-80) 

(3.3.d) Variance = = 

(3.3.e) 113 = flO(l-O)(l-O) 5 [l-2Q+O(2-Q)] 

= ne(l—o) (l— o) -7 [3ze(l-6)(l—e)+l-6e+6e 2 

(3.3.f) 

+2e (4-90+0 2 )-i-B2e2 (6_60+0 2)] 

(3.3.g) 

= ne(l—e) (l-.o) -9 [1one(l—e) (l—o){l-2e-i-e(2-e)} 

+ l_140+3682_240 (22-930-I-100e 2-19s 3-8e) 

+ 2e2 (l848e+35e 2..6e 3)+ 3e3 (2436o+l4e 2 e3)] 

P6 no(l_o)( 1_e) —h' [15n2o2 (l_o) 2(1_e) 2 

+ 5n8(1—O) (l-e) {5-26e+26o 2+2e(16-37e+l6e 2) 

+ $2e2(26-266+5e2)}+1-306(1-6)(1-2e) 2 

(3.3.h) + O(52_51OO+l36OO2_l3500 3+444&f)+ 2O2 (328_l65OB 

+ 265OO 2_16500 3+328O+)+ 3O3(444_l35OO+l26OO 2 

- 5l003+52O'f)+&+(l2924Oo+l5OO23003+e)] 
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Assuming the parameters n and a to be known constants, the 

problem of estimation of the parameter 0 of the GNBD and the 

estimators of functions of 0, has been studied by many authors. 

Charalambides ( 8), considered the problem of finding the NVU 

estimator for the parametric function 8M . He derived the distribu-

tion of the sufficient statistic for 0 in the case of left trun-

cated sample with known and unknown truncation points. Gupta (22) 

obtained the N.L. estimator of the parameter 0 of the NPSD, and 

derived the first order approximation for its bias and variance. 

Kumar and Consul (44) derived a recurrence formula for the higher 

order negative moments of an NPSD, and used the negative moments 

of the GNBD to establish bounds for the bias of the N.L. estimator 

of the parameter 0. 

Our main interest is the simultaneous estimation of the 

parameters n and 0, when is known, of the probability distribution 

defined in (3.1), by using the methods of moments and maximum 

likelihood and to study some of the asymptotic properties of these 

estimators. We shall exclude the boundary points 0=0, 0=1, as the 

distribution becomes degenerate at those points. 

3.2 Maximum Likelihood Estimation for the GNBD. 

Let X1,X2,. .. ,4 be a random sample of size N, taken from the 

GNBD (3.1). The likelihood function is 

(3.4) = N N (n+x.-l) ... (n+x-x.+l)1 0Nc(10) 
i=l nN+(-l)Nx 

1 
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Taking the logarithm of both sides of (3.4), we get 

log L = N log n + Nx log 0 + [nN+(8-l)Nx] log (1-0) 

(3.5) 
X. -1 

N 1.. N N 

+ I I log (n+x-j) - log x.! - log (n+x.) 
i-i j=l j=l i=l 21 

where log (n+) = 0 for x. = 0, i = l,2,...,N. On differentiating 
j=l 11 

in £ partially w.r.t. 0 and n, and equating to zero, we get 

(3.6.a) 

(3.6.b) 

ioL Nx Nn f (B-l)zv  
0 1-0 -O 

. -1 
71 

D109 E N +N lVg (1-0) + 

- n - i1 j=l + - 

The last two equations can be simplified to give 

(3.7) A A  --1 
0 = X(n+X) 

0 
=0 

N X. -1 
- 

(3.8)-[log (l-) + N 1 . A  + - 

i=l 1 n 

where 6 and are the M.L. estimators of 0 and n respectively, provided 

that the matrix of the second order partial derivatives of the log 

likelihood function is negative definite. Since the above two equations 

are rather complicated in structure, it isdifficult to give explicit 

algebraic expressions for 0 and i. 

Equation (3.8) can be written in the form 
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N x-1 
A lv -.  

exp . + 11 L_ il jl I'i+x-a 

and by using (3.7), it gives 

N x-1 
(3.9) = 1 - exp[_[- + 1 1 • -j i 

The last equation can be rewritten as 

N x.-1 1 'ii 
+ (I+X) expL_ (n N  + 

i=1 j=l xi 

which is of the same form as n = f(n), considered by Henrici (32), 

and so the Newton-Raphson iterative technique may be tried to 

solve equation (3.9). 

3.2.1 Asymptotic Biases of the M.L. Estimators. 

Since the regularity conditions given by Shenton and Bowman which 

are stated in section (1.4) are satisfied for the GNBD, the first order 

terms in the biases, variances and covariance of the M.L. estimators 

can be obtained by using the formulae given in (2.34.a) and (2.26.a) 
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respectively. 

We shall now give a computational procedure to obtain the first 

order terms in the biases of the M.L. estimators. The method of 

obtaining these for simultaneous estimation of several parameters 

was given by Shenton and Wallington (70). Using their notation, we 

denote the biases of Ae and n̂ beb 1() and h2() respectively. These 

biases' can be obtained by solving the equations 

+ b2()P12 = -A 112M 

(3.10) 

( A bi + b2 (i)P22 = -A2 12AR7 

where 

= P 11 P 22 1'U1'22 - (1' 2)2 

A1 - P22 P -2? P +1" P 
12 1,12 1]. 1,22 

A =1' P -2P P +P P 
2 22 2,11 12 2,12 11 2,22 

and 

P 2p'1 (_2 P  2PPill = E(p-2 ao  P1,12 =-E enJ' 

= E (3.11) 
2 3? 32p'1 (p_2 3? 32p' 

1,22 = E  Tn (P J, P211  

P = E1P2 p 32p '1 [ 2 31' 32P" 
2,12 -;;• 303nJ ' 1'222 E P 
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From Kendall and Stuart (39), we know that 

(P P11 =E(P 2(]] 2 
, P12 21 =E[PPfl 

(3.12) 

P22 (_2 (3p) 2) P r3nj 

We shall now express the values given in (3.11) and (3.12) in terms 

of the parameters n, , 0. 

Since 

J O 2 
NP 11 = E[ log L) 1 _Er log E] 

J- L ao2 

by differentiating equation (3.6.a) w.r.t. 0, we get 

2 log Is NX Nn +  

H 2 - - 02 (1_o) 2 

Thus 

(2 log £'I -nN  nN(l-O) + nN0(-l)  

o2 J - e(1-e) (1-0) 2 (1-se) 

and 

(3.13) 

= -Nn Pin 

P11  
n 

Also, differentiating equation (3.6.a) w.r.t. n, we have 

2 log  -1 
oan 

which gives the value 
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(3.14) P12 = (1-.o) 

Similarly, by differentiating equation (3.6.b) w.r.t. n, and taking 

expectations, we get 

(3.15) P22 —E (B2 lo  L] = 1 + 00 [[X_1  1 .2] 1 
X =2 i=l (n+ X ej) 

Since the probabilities P on the tail (for large x) become very 

small, the function P22 can be robustly computed by ignoring the 

tail-end probabilities P less than a pre-assigned small value say 

1010, for given values of n, and 0. However, we shall use the 

orthogonal polynomial approximation to the function -, for computing 22• 

It can be easily seen that the probability distribution given 

in (3.1) satisfies the recurrence relation 

(3.16) 

By differentiating (3.16) w.r.t. 0, 

(1-0)  
P 

(3.17) (_r)2 (l_O)2 + 1 —e 20...02_1 n  
Ø2 - - 02 (l_0) 2 02(l)2 (x—u) e(l—o)(l_o)j P 

and, the product 

E. 2p (l—O) 10 2 (i-e) 2 
2o.o 2.l (1—so)  

ae a02 - (-uP 3 03(i—&)3 P2+  0(1-0) (x—{)2 

(l—o) n 1 
0(1-0) 0(1-0) (i—o)j 

-2 ap 2P 
Now, by taking the expectation of P -- ---
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p 2p 02 ' (i-0) (1_0)(20__1) 
(3.18.a) P1,11 = E[P - 3 03(1-0)3 + 03(1-0) 

Thus 

(3.18.b) 2n  
P1,11 = 0(1_0)(1_O) 2 

On differentiating (3.16) w.r.t. n, we have 

32p - (1-0) i u{ p1 
M L P + (-p) ..-j 

-P + (1-$0) P 
= (x-p 31) 

and thus 

, 

ap - a2i (1_0)2 P (1-se)  
0 en - (x-i{) 2 02 (1-e) 2 - (X-P ,) e(1_e)2 

Therefore, 

(3.19) EI -2 Dp 32p I (1_0) 2 m (x 2 DP 
TO aonJ - 02(1_0)2 

x=O 

By using the relation 

0, 

(3.20) (x-p 1) O - - + n ____ n 
x= 

and for 1 = 2, (3.19) becomes 

1,12 

Also, by equation (3.17) 
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ç p  2p) (l_0)2  
EP 2J (1-0) 2 (x-p00  (x-')2 + (20_0 2_1)  

00 an e 02 n 02 (1_0)2 ) 
x=0 x=0  an 

(3.21) 

and on using (3.20), we have 

31 

(3.22) P2,11 = 1  2O_O 2_1  
O(1-0)(1-O) + 0(1_0)2(1_0) 

Since (3.16) gives 

(3.23.a) E 

However 

which gives 

(3.23.b) 

p 32p (1-se) 2P 

Do - -'P 0(1-0) P 

2 P (1-so) 2P 
P Te  - o(1-o) 

-- [(x-7P] = -  an j— •P + (x-P1') -j 

@11 ap uJ 3' P 
P - —  --— + (x-') 

= n n n n 1 fl2 

1j' ap 
  -[(x-p1 2 )P} + — .P+2-----1 — 
n n2  an an 

Since the function P given by (3.1) is such that the range of X 

is independent of the parameters, the operations of summation 

and differentiation can be interchanged and @2 i/n2 = 0, accordingly, 

on taking the summation over x in (3.23.b), we have 
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(3.23.c) 

Thus 

(3.23. d) 

Co 2p 32 co 
—11 p •;-- - (x-)P = 0 

X=0 x=0 

P1,22 =0 

The determination of the exact values of p and p seems 
2,12 2,22 

to be intractable. So we shall have to use the asymptotic expansion 

for PDP/Dn in the form of orthogonal polynomials. As stated 

in Cramer (16) , if P(x) is a distribution function with finite 

moments i.i of all orders, then the point x is a point of increase 

for P(x), if P(x0+h) > P(x0-h) for every h > 0. If the function P 

has at least r points of increase, Cramr has proved that there 

exists a sequence of Polynomials G (x) (x),... uniquely determined 

by the following conditions 

a) G(x) is of degree n, and the coefficient of x' in 0(x) is 

positive; 

b) G(x) satisfy the orthogonality conditions 
co 

G(x)G (x)P(x) = E(G(x)) if r = S 
x0 

= 0 r s (r,s = 0,1,2,...). 

stated the formal Fourier expansion of a continuous 

function h(x) in terms of the set of orthogonal polynomials as 

(3.24) h(x) = a0G0 (x) +a101(x) +a2G2 (x) + 

In studying the efficiency of the moment estimators of the 
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Neyman-type A distribution, Shenton (69) has shown that, if we write 

1 x 
--- =a0G0 ) +a1G1 (x) +a2G2 () + 

where a0 ,a 1 ,a2 ,.. • are chosen so that 

CO 

(3.25) 1 P - (aG(x) + a1G1 (x) + . 
P an 

x=O 

is minimum, then 

- 1 11 3 ap 

a0 = 0, a1 -  , a2 = (x)) E(G(x)) I n 11 2 an 

where 

11 3 

G0 (x) = 1, G1() = x-i, G.  = (x-11 ]7 2 - (x-11 112 ]7 - 112 

are the orthogonal polynomials associated with the probability 

distribution P 
x 

Now, if we assume that, for the GNBD 

(326) - a0G0() + a1G1(x) + a2G2 () + ... 

2 
1 

(3.27) = [a2G2 (x) + a a G (c)G (x)]P 
r0 rr r#s rsr s 

Since 

then 

2p (1-so) ap 1 
3On = (x-i) 0(1-0) an 1-0 

p @2p (l-0) 1P') 2 1 P ap 
n 0n - (x-p{) 0(1-0) nJ J0 an 

, 
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and 

Co 2 
-2 P 2P • (1-so) (DPI 

(3.28.a) E[P oanJ - 0(1-0) 

Substituting (3.27) in (3.28.a) we get, on using the first three 

terms in the expansion (3.26), 

Co 

2,12 = 0(1-0) - )(aG(x) + aG(x) + 2cz1a2G1(x)G(x))P 
x=0 

  F-2 
Co 

(3.28.b) (i ) G (x) P + (x-p ) G (xj) P 
- 0(1-0) x0 x=0 

00 

+ 2a a2 (x-)Gi(o)G2 (o)P] 
X 0  

( 3J 21 (1-se)  1   + 2a1a2 "4 p - P2JJ 
= 0(1-0) [a v3 + a22 (p5• - 112 2 

since 

and 

then 

no (1-0)  E(G' (x ) (( Xp)2) = -  (1-o) 3 

= - 3 P 2) 
- 

2 ( 4 2 2 

@P Van (1_O) 2 

a1 = E(G(x)) n(1-O) a2 = 

, 

(p2In - 3'2 i-'1,) 
2 2 

(11L - p3lji2 - 1.12) 



- 81 - 

Thus, substituting the values of a1 and a2 in (3.28.b), we can write 

where 

,12 = D + D2 + D3 

D1 = [1-2O+O(2-8)]/n(1-B)2 

(3.29) D2 2 3 1 [115 
- 113 - 2 J 

, 

32 —1 
+ 113/112 - 211 31.I,.1/112J 

D = 2(1_e)511 1.i2 
3 I 2 21l29n 113 an L O(1-O) 2] [-P 

To find P we assume that 

(3.30) 1 a 2  - - {bG(x) + b1G1(x) + b2G2 (x) +P @n2  ...} 

where b0 ,b 1,... are so determined that 

00 -. n 2 
1 
f - (b 0G (x) + b101 (x) + . . .) P 

x=O L 

is minimum. Multiplying both sides of (3.30) by Gk(x)P, and summing 

over all values of x, we get, on using the orthogonality condition 
CO 

{G(X)G(X)}P = 0, r s, that 
x=0 r s 

1  CO 32p 

= E(G(x)) x0 Gk (x) 

For k = 0,1,2, we get 

= 0, 
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00 

bi (xp: )a 
= E (G (x)) x=O - 0 

(from 3.23.c), and 

(3.31) 

Since 

(3.32.a) 

1  lx•= E(G(x)) O{(x-u]')2 

00 

1 (x p?)2 a2P 
= (G22 

- 

x=O 

ii a2P1 
- (x_p) - P2} 

a2 p' 2 
- [(c-p')2P] = 2(-] P + 2 an2 (x-p)P 

p' 
a 
1 a I 2 a2p 

Summing both sides of (3.32.a) over all values of x = 0,1,2..., we 

get 

or 

(3.32.b) 

a2 00 202 202  00 a2 
(x-p)2P (l 8)2 (l_0)2 + x=0 (x-p ) x=0 

JO 

(x- p)2 a 2P - 0 

On substituting (3.32.b) in (3.31), we get 

b2 = 0 

and hence 

(3.32.c) 
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Using (3.27) and the values of a0 , a1 , a2 , E(G(x)), and 

it can be similarly shown 

+ (p2/n - p3 /'p2 p) 2 

P e)22 n(l-o) 
(v - - p) 

Substituting the values of P. . and P . (c,i,j = 1,2) in 

equations (3.10), and solving for b]() and b2 (ñ), we get 

02(1_0)3(l_0)2  IP 22 2P212 
Nb 1() 2: 

2{n(l-0)P22 -O(l-0)] 2 L1_0 2 (1-0) 

2P 2nP2 
22 22  

+ 0(l-o)(1-o) 0(10) 2 

and 

Nb2 () e2 (1_o 2 (1_o)  [2nP22 

2[n(1-0)P22 - (l_o)]2 L°'° 

2 2nP nP 
-  + 2 22  

Tabulation for the biases of the M.L. estimators will be given 

in the last section of this chapter, for some selected values of 

the parameters n, , and 0, where we compare the performance of the 
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biases of the M.L. estimator with the corresponding biases of the 

moment estimators. 

However, it should be pointed out that the computed values for 

the biases may not be very reliable on account of the approximations 

used for the different equations in the above work. The results will 

be more reliable if the approximations are taken up to the third 

and fourth degree of approximation, but that task is so gigantic 

that it is outside the scope of the present work. Shenton and 

Bowman (75) have studied such terms for the particular case of = 1, 

and have shown that this task is a very difficult one. 

3.2.2. Asymptotic Covariances of the M.L. Estimators. 

In this section we shall derive the first order terms in the 

covariances of the M.L. estimators for the parameters 0 and n. The 

derivation of second order terms is rather laborious because their 

number is very large, and the expressions for the covariances are 

expected to be very complicated. Bowman and Shenton (6 ) have 

given the asymptotic expansions of the covariances of the M.L. estimators 

as follows: 
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Var(s) = t1/N +T1/N2 + 

(3.35) Cov(,) = t 121 + T12 1N + 

VarG) = t2 /N +T2 /N2 + 

where 

t2 = P11 /s, t12 = -P1/Li, ti = 

T1, T12, T2 are the coefficients of i(.2 in the expansion of Var 

A A A 

Coy (O,n), and Var (n) respectively, and 

= 1122 - 12 

n - 113/112 aii/n) 2 

2 2 
- 112) 

which can be shown to be strictly positive for all n, 0, and in the 

admissible parameter space. Thus, the asymptotic variances and 

covariance to order N 1, become 

02(l_0)2 

N.Var() ; 

(3.36) N•Var(n) 

(p2/n - 11 3 /112 ap/an) 2 

(ii - 113/112 - ii) 
  +   

is 2 (aii2/n - 11 3/V2 ap1/fl) n 

(11 - 113/ 2 112 - 2 

N•Cov(i,) ; 
- 3'Ij 2 1rL)2 
2 2 

fl()i 1f 2'2 - 112) 
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3.3 The Moment Estimation Problem. 

The moment estimators for the parameters 0, n and of the 

ThD, were initially given by Jain and Consul (34), by equating 

the mean, the variance and the third moment of the sample, about the 

mean, with the corresponding population values, but no study of the 

biases, variances and covariances of those estimators was made by 

them. The problem of evaluating the variance-covariance matrix is 

highly involved, specially when the moment estimators are complex 

in structure, and the derivation of exact expressions appears to be 

an impossible task. 

Since the domain of 0 is restricted by the values of , we 

assume a to be known. We shall use the bivariate Taylor expansion of 

a function f(m ,m2) of the sample moments as in Chapter II. 

Expressions for the biases and variances will be given in terms of 

the notations for the values of the partial derivatives of the moment 

estimator function. 

Based upon a random sample of size N, we define the moment 

estimator of 0 and n, assuming to be known, as the estimators 

which satisfy the equations obtained by equating the sample mean and 

variance with the corresponding population mean and variance. The 

two equations are therefore 

n0/(l-0) = ml 

and 

n0(l-0)/(l-0) 3 = m2 
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where ml is the sample mean, and m2 is the sample variance. 

Since Binet (4 ) has studied the moment estimation problem for 

the binomial distribution (0 = 0), and Katti and Gurland (37), and 

Anscombe (1) have studied the moment estimation problem for the 

negative binomial distribution 0 = 1), we shall consider the domain 

1 < < 01 only for the GNBD. 

By eliminating n between the last two equations 

(3.37. a) 
MI l-0 l-0 

Since 0 < 0 < 1, the expression on the right of the above 

equation is always greater than unity. Thus, if MI > m2, the above 

equation will give an absurd estimator for 0. Accordingly, the moment 

estimators for n and 0 will be inadmissible when m m2. 

Solving (3.37.a) for 0, we have 

(2 - m{/rn2) ± {(28 - m1/m2) 2 - 0 2 (1 - mIm2 1 )} 
(3.37.b) 0 - 

2 
2 

When ml < 1 it can be easily shown that the value 0, obtained 

by taking the positive sign in (3.37.b), does not satisfy the equation 

n = m1(1 - - 

for n, as it gives a negative value for n. Thus the positive sign in 

(3.37.b) becomes inadmissible. Hence the moment estimators for 0 and n 

become 
(2 - m{/m2) - {(rn/m2)2 + 4(-l)mn{/m2J14 

(3.38) 0* -   

22 
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(3.39) * n =m1(-W-) 

respectively. 

However, one should remember that there is a positive probability 

for to be greater than m2 even though 1 < < 01 and in such cases 

the moment estimators will be bad. 

3.3.1 Asymptotic Biases of Moment Estimators. 

In order to expand 0* and n in the form (2.5), we need the 

partial derivatives 3/3m3m, (r+s 4, r,s = 0,1,2,3,4) of 0*, 

and n, and to evaluate these derivatives at m1' li ]' m2 = 2 Thus, 

if we write 0* = f(m,m2) = f, the partial derivatives of f w.r.t. 

?fl ] and m2 calculated at m1 = and in2 2 (mi' = ini, 

a = 4(-1) and I = V2 + ai 1ix2 will be given as 

(3.40.a)   - A = (2 2 2)_1 1 - (2+a2)/422Y½ 
3m1 

(3.40.b) - B = • A 

2f 
(3.40.c) 3m2 - a2ii2 /8 2y3/2 

= 

(3.40.d) 12f = D = (22)' + (4p+6ap 1p)/8 2i4YV2 
3m 3m2 

(3.40.e) 2f = E = _i(24)1 - 

3m 

(3.40.f) 3m  - F = _3a2p2 (2p1fap2)/l62Y'2 

with 
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(3.40.g) 3fnm2 = = a2(2p_ap1p2)/l62y5/2 

(3.40.h) 

(3.40.i) 

(3.40.j) 

(3.40.k) 

- H = _(23)l 
am aM2 2 1 

- (16 +40ap4p+30a23J3jJ2+3a3J21J3) Il6 2ijy 

  = = 3( 2M1I) 1 
3M2 2 

+ (48 +l2Oap 5i+9Oa2 i2+l5a3.t3j3) /l6214Y5 

- J = 
am 1 

amain2 K = _3a2(4p_2a1jp2_a2p14)/322r7/2 

(3.40.1) 4f am2aM2 = L = _(12a3 _3a 1pi2)/32 2y7/ 

(3.40 . m) 

(3.40.z) 

m1arn  - M = 3(21) 1 

+ (96 +336aiij 2+42Oa2p4+2lOa3p 3+15a'p 3 ) /32214Y7/2 

+840a3 4+l05a'+p'+4) /3224Y7/2 

On the other hand, if we write n = f*(mt,m) = f*, the partial 

derivatives of f* w.r.t. m1, in2 calculated at m1 = p1 and m  = 112 3, 

with l-(2-1) /2 and W = p' + app2, will be given as 
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(3.41. a) 

(3.41.b) 

(3.41.c) 

(3.41.d) 

(3.41.e) 

 = A* = -11  
am  

+ (4J +3a,1211 1)/4 (-p2-11  2W'/2 

-* 

_2 f  = 3* = (P2-111 - 
am  

  - c* = 2l( 2_ 1) + [(8p+4a-a2 ) am1 

+ 4(12ai4+6a2 4) + 3a2 14]/8(p2_t 1)3W3/2 

am1arn 2 - D* = 

+ /8 (3.12_p l) 

Th 
 - E7* = 2l(p2-i1)3 

+ [(8+4a_a2)+(12ap2+6a2ji2)+3a2p4]/8(ii2-.p1)3w3/2 

  - F* 6l(p2-p 1)' + [14 °(484+24a_6a2i4) 

(3.41.f) + (120a +60a2p _3a3)+(9oa2f+27a314) 

+ 4(27a34)_3pa34I/16(p2_j1 )14w5/2 

-38a 11 -88ap2-16p (3.41. g) 

= -2l(4+2ui 1p2)(p2-p 1) + [ii'(4a2ij2-16aii2-32t2) amam2 - 

+ k0 (13a3p+80a24+40a4)118(33a3 4+3Oa2 

- }/16(p2_i.i1)W51'2 
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  - = 2lp1(2p2+p1)(p2_p1)+[p2(16+8_22) 

(3.41.h) + l (321 2+56ap+16a2p+a3p)+plO (8ap+7Oa2-z3p) 

+ (6Oa2i4+39a3ii)+p(9a 3i4)] J16(i2 -p 1 

  - 1* = 

)'W5' 

(3.41.i) + i4'(15a31i2_6Oa2p2_12Oap2)_45a2pO4(2+a) 

- 15a34] /16(p2-p 1)'W5' 

(3.41.j) 

  = 24l I12(p2_p iY 5+[(48+24al4_6a2p )(3a14 1j2 
an? 1 

+ 8115+5aij3  (3aiip+1Op 

+ 5a11p2_214p2)+p(9Oa2 4+27a34) (aii+124 

+ 7ai4v2-44 )+ii6 (243a4 -162a 3 p-i-378a 3 j5i.j5 

- 

+ 9a4p14)J/32 (p2_1J1)5W7'2 
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S 
  = = _12l(+i2)(p2_p1)+[p0(4a2U2_16ap2 tn1 m2 

- 32)12) (2P2i4+6P+7ai4-I-ai4u2 )-ii4 (a311 -38a2-p 2 -8&zp 

(3.41.k) 

(3.41.1) 

(3.41.n) 

- 16i4) (5a +8+34p2 )-iii (13a3u+8Oa2i4 

+ 40ai4) (30a2i4 

+ 33i4) (24 -12p -a i4-7ai4 2)+ii (i8a3i4$ 

- 42a3 i4+3a44-27a4i44)] /32O12_p1)5W712 

+ (64i4+928a4 

- az3 +72Oa2 i)+4 3 (224ap•1232a2+712a3 3 4+4a4) 

+ 

+ 9j1Oa14p6)}/3(1jjj)5W7I2 

  = = _12l 1(p 1+ 2)(p2_ 1) 5+[p 6 (_192_96a+24a2_12a3) 
m1am 

+ P15 (-192 p2_768ap 2_312a2p2+72a3p2+3a 2) 

+ 

- 840a 112-30a P2 , (-420a 2-300a 2 

+ p 1( 45a"i5)] /32(ii2-p 1) 5W71'2 
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94 =z 241 ( 2_ 1)5+[p 2 (6a2_3a 3_24a_48) (46p 
9m, 

- 13aM 1 -P2)+ l(l5a 3_6Oa2_l2Oa)(3aii2_6p 2_2p 

(3.41.z) 
- 11ap4)+p° (45a3+90a2) (4p 2.ap2+4p 1112 5 

+ 9aii4)+4 p (3Oa 3 p+15a'4+9OaS4p 

+ 1O5aii4)]/32(i2_p 1)5W7t'2 

Thus, by using the general form of the bias given in (2.8.b), the 

bias B1(0*) =E[0*_0] of the moment estimator 0* of the parameter 

0 in the GNBD can be written as 

(3.42. a) 
11 

B1(6*) = k1IN + N 2 ' if1. + O(N 3) 
.'. _  

where k and 7r  (i = 1,2,...,11) are given in (2.8.c) and (2.8.d) 

respectively with the difference, that the values of the partial 

derivatives (B,C,D,...,Z) are those given in (3.40.b - 3.40.z). 

Thus 

1 ii ii(2i+ap) a2 p2 

B1(o*) = N1 122p2 422(+a12)½ + l62(+a12)3/2 

113 p (4p+6app2+a2p1p) (pl+-p) [ i  
(3.4.b) +  2 2 +   

22 2 3/2 112 2 p2 8B p2(p l+ap lp2) 2 2 3 

J} 
(8 

+   11 
p+12app2+3a2pp) + 

7T i  
8 2 + (p+ap 1p2)3 i=l 
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On the other hand, if we replace A,B,C,D,...,Z by A*,B*,... ,Z, 

given in (3.41.a - 3.41.z) in formulae (2.8.c) and (2.8.d), the 

bias B2(n*) of the moment estimator n can be written as 

B2(n*) N1 
1p2p 

2 + P (a +2i4+at2) I4(i.i2p1)2 (-p 4 

+ ap2)'12 +   + [(8+4ap 3-a23) 

+ .i(l2a+6a2 )+3a2 )]/16(p2_p 1)3 (p1+ap 3p) 

(3.43) -   + ui3(a2ui 7 11 2_3a2 11 5 11 _6a2 11 6 11 _4ai 7ij2 
3 

Zp2 -112) 

- 12ap6 p-8 1 1  +   

+ (_p)[1J(8+4a_a2)+4(12at2+6a2p2) 

U 
+ 3az il6 11 2j Il6(P2-J1)3(i4-fap2 

j jl 

where ir' (j = 1,... ,ll) have the same form given in (2.8.d) with 

the difference that the values of the partial derivatives (B,C,D,...) 

are replaced by B*,C*,D*,..., given in (3.41.b - 3.41.z). 
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3.3.2 Asymptotic Variances and Covariance of Moment Estimators. 

If we write 0* = f(in,m2), the general formula for the 

asymptotic variance of the moment estimator, given in (2.16.a), 

will give, on using (2.16.b) 

Var(0*) N 1  1 (21J1+a1J2) 12[2 - 2i1p3 1J11Lf 

12•2p2 4 2p2 (p+ap2)'72 - 11 
(3.44) 

12 
+N 2 

i=l 

ai where (i  are as defined in (2.16.c), and A,B,C,...,Z 

are the values of the partial derivatives given in (3.40.a - 3.40.z). 

By the same argument, the asymptotic variance of n = f*(m r,m ) 

is given by 

Var(n*) N 121  +   

21 1)2( 11  * 

(3.45) 

2p   + [ 2 

4(2_pi)2(+ai.2)V211 

(czi+2p+ai3p) 1 r 1p 2 

+ 4(2_i)2( apM2)2J +1)2 2] 

+ ap+24+ap3ui 12 
+ N 2 

j1 0 
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and c (j = l,2,...,12) are obtained on replacing A,B,C, by 

A*,B*,C*,...,Z* in (2.16.c). 

Substituting the values of the partial derivatives given in 

(3.40.a - 3.40.n) and (3.41.a - 3.41.z) in (2.19.c), the covariance 

between the moment estimators O= f(m ,m2) and n = f*(mi ,m2) may 

be written as 

Cov(O*,n *) = 1 - (2p 1+a"2) 

(3.46) 

2 2p2 4 2p2(p+ap 13J2) 

l(2p1i.i2-i) + (4p2_2_2+3a1.j2i,j2) 

(21)2 1 1  ] 
p1(p - .i) '  1p (a4+2i'+api2) - 2+   

21 2 ½]] J 

11 
+N 2 3 +OQ() 

j=l a 

and w. (j = 1,2,...,11) are given in (2.19.d). 

3.4. Sampling Properties of M.L. and Moment Estimators. 

We shall now provide some tables to compare, at least numerically, 

between the performances of the two types of estimators. We shall 

confine our comparisons between first order terms of the biases for 

each of the estimated parameters e and vi. Although we have provided 

the expressions of the first and the second order terms in the biases, 



Table (3.1) 

Biases of 0 and O, ( = 2). 

0 .01 I .06 .11 .16 .21 .26 .31 .36 .41 .46 

.02 .12 .22 .32 .42 .52 .62 .72 .82 .92 

- .0103 - .0696 - .1429 - .2285 - .3212 - .4120 - .4893 - .5410 - .5581 - .5383 

-3.6886 -3.6066 -3.5131 -3.4079 -3.2910 -3.1623 -3.0216 -2.8687 -2.7035 -2.526 
.0031 .0087 - .0155 - .0826 - .1870 - .2945 - .3585 - .3559 - .3001 - .2238 

-1.8318 -1.7305 -1.6274 -1.5227 -1.4166 -1.3095 -1.2016 -1.0933 - .9849 - .87714 
.006 .0264 - .0043 - .1362 - .3504 - .5218 - .5500 - .4508 - .2990 - .1697 

-1.4604 -1.3552 -1.2502 -1.1456 -1.0417 - .9389 - .8376 - .7382 - .6412 - .5474 

15 
.0096 .0272 - .7398 -3.4282-17.9398 -12.2805 - .8607 - .2417 - .0835 -1.3943 

-1.0891 - .9800 - .8731 - .7686 - .6669 - .5684 - .4736 - .3831 - .2975 - .2176 

21 
.0106 - .0413 -2.6763 -36.8865 -3.0176 - .3157 - .1016 - .0427 .0075 .3087 

-1.0360 - .9264 - .8192 - .7147 - .6133 - .5154 - .4216 - .3324 - .2484 - .1705 

23 
.0109 - .086 -3.8398 -2341.08 -1.1547 - .1863 - .0718 - .032 .0106 .2386 

-1.0245 - .9148 - .8075 - .7030 - .6017 - .5039 - .4103 - .3213 - .2377 - .1602 

25 
.0112 - .1462 -5.4939 -46.633 - .5737 - .124 - .005 - .0254 .0123 .1984 

-1.0148 - .9050 - .7976 - .6932 - .5919 - .4944 - .4008 - .3121 - .2288 - .1516 

31 
.0120 - .454 -23.0089 -1.4989 - .1483 - .0562 - .0327 - .0155 .0140 .1384 

- .9932 - .8832 - .7758 - .6713 - .5701 - .4727 - .3796 - .2915 - .2088 - .1325 

35 
.0125 - .8052 -520.15 - .5094 - .0845 - .0407 - .0262 - .0122 .0140 .1174 

- .9829 - .8728 - .7653 - .6608 - .5597 - .4625 - .3696 - .2816 - .1993 - .1234 

39 
.0131 -1.3104 -26.5886 - .2343 - .0564 - .0323 - .0221 - .0099 .0137 .127 

- .9748 - .8646 - .7571 - .6526 - .5515 - .4544 - .3616 - .2738 - .1917 - .1161 
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variances and the covariance of the moment estimators, the investi-

gation of the behaviour of these functions can be achieved by using 

the computer facilities. 

(i) Tables of biases of ê and 0*. 

Table 3.1: Table giving the asymptotic biases of and 0* to order 

-1 'S 

N . The first entry in each cell is for 0 and the second 

for 0, ( = 2). 

For most of the selected values of the parameters, the bias 

of the M.L. estimator is negative. At some values of 0 and n the 

bias changes sign which means that if the first order term is a suffi-

cient approximation to the value of the bias, then, that bias 

reaches zero within some interval for the changing parameter. As 

an example, for 3 n 15 and .06 8 .11; for 21 n 39 and 

.36 0 .41, the bias of the M.L. estimator attains the value 

zero. 

For the moment estimator 8*, the bias is negative for all the 

selected values of the parameters. The bias of the M.L. estimator and 

that of the moment estimator for the parameter 0 increase as we 

increase the values of n and 0. In terms of absolute values, the 

bias of the moment estimator is higher than that of the M.L. estimator. 

Since the general term in the expansion of the function of bias of 

the M.L. estimator is difficult to determine analytically, the 

pattern of convergence of that series is not known to us. Although 



Table (3.2) 

Biases of & and O, 0 = 15). 

e .01 .015 .02 .025 .030 .035 .04 .045 .05 .055 

.150 .225 .300 .375 .450 .525 .600 .675 .750 .825 
n 

1 
- .1425 - .2152 - .2884 - .3618 - .4351 - .5078 - .5796 - .6502 - .7191 - .7862 

-2.9082 -3.0497 -3.1899 -3.3287 -3.4663 -3.6024 -3.7373 -3.8707 -4.0028 -4.1356 
- .0435 - .0675 - .0926 - .1185 - .1448 - .1711 - .1968 - .2216 - .2451 - .2671 

-1.0186 -1.0613 -1.1035 -1.1454 -1.1868 -1.2278 -1.2684 -1.3086 -1.3483 -1.3876 
- .0236 - .0380 - .0537 - .0704 - .0875 - .1047 - .1213 - .1369 - .1512 - .1638 

- .6407 - .6636 - .6863 - .7087 - .7309 - .7529 - .7746 - .7962 - .8174 - .8385 

15 
- .0037 - .0089 - .0165 - .0259 - .036 - .0457 - .0537 - .0594 - .0626 - .0637 

- .2627 - .2659 - .26897 - .27202 - .2750 - .2779 - .2809 - .2837 - .2865 - .2893 

21 
- .0008 - .0053 - .0130 - .0232 - .0341 - .0437 - .0505 - .0536 - .0535 - .0512 

- .2087 - .2091 - .2094 -2.096 - .2099 - .2101 - .2103 - .2105 - .2107 - .2108 

23 
- .0002 - .0047 - .0127 - .0234 - .0349 - .0447 - .0510 - .0533 - .0521 - .0468 

- .19701 - .1967 - .1964 - .1961 - .1957 - .1954 - .1950 - .1946 - .1942 - .1938 

25 
.0003 - .0042 - .0126 - .0241 -' .0362 - .0462 - .0521 - .0535 - .0512 - .0468 

- .18715 - .1863 - .1855 - .1847 - .1838 - .1830 - .1821 - .18i3 - .1804 - .1795 

31 
.0014 - .0036 - .014 - .0284 - .0429 - .0537 - .0581 - .0565 - .0507 - .0431 

- .1652 - .1632 - .1613 - .1593 - .1574 - .1554 - .1534 - .1515 - .1495 - .1476 

35 
.0019 - .0038 - .0160 - .0330 - .0496 - .0607 - .0639 - .0600 - .0516 - .0419 

- .1548 - .1523 - .1497 - .1473 - .1448 - .1423 - .1398 - .1373 - .1349 - .1324 

39 
.0022 - .0044 - .0189 - .0389 - .0578 - .0692 - .0709 - .0644 - .0533 - .0413 

- .1465 - .1435 - .1406 - .1377 - .1347 - .1318 - .1289 - .1261 - .1232 _ - .1203 
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the region of poor performance for the bias of the moment estimators 

seems to be wider than that of the N.L. estimator, there are some 

explosive values for the bias of the M.L. estimator, which can be 

explained as being due to some singularities. As an example, n = 23, 

0 = .16, 

b1() -2341.08/N 

We may also note, if we rely upon the first order approximation, 

we will get misleading asymptotics and this point will be discussed 

in the following section. 

Table 3.2: Table giving the asymptotic biases of M.L. and moment 

estimators for 0, (a = 15). 

It should be noticed that the chosen value for is relatively 

large. Most of the values of the bias of § are negative, and at 

some values the sign changes which also means if we accept the first 

order term of the bias as a sufficient approximation, the function 

of the bias attains zero within some interval for the changing 

parameter. As an example, for 25 5 n 5 39 and .01 5 0 5 .05, the 

bias reaches zero. 

For the moment estimator 8*, the bias is negative for all the 

selected values of n and 0. In terms of absolute values, and for 

most of the selected values of 0 and n, the bias of M.L. estimators 

is much smaller than that of the moment estimator. 

For all values of 0 and 1 5 n s 21, both biases decrease as we 

increase the values of 6 and n. When n 23, and .01 5 0 5 .045, 



Table (3.3) 

Biases of nA and n, ( 2). 

0 .06 .11 .16 .21 .26 .31 .36 .41 .46 

.12 .22 .32 .42 .52 .62 .72 .82 .92 

.1139 .2456 .4083 .5945 .7902 .9750 1.1235 1.2096 1.2130 

-882.85 -107.35 -17.66 3.34 10.51 14.24 17.87 24.25 45.57 
.5147 1.4385 2.8931 4.7074 6.3858 7.3341 7.2666 6.3451 4.0036 

-748.67 -64.96 3.44 16.14 19.17 20.53 22.39 27.97 48.54 
1.2675 4.4842 10.5100 17.9276 23.0030 23.5187 20.2548 15.0186 10.0051 

-614.5 -22.58 24.54 28.94 27.84 26.81 27.38 31.69 51.50 

15 
21.741 175.6763 525.1646 2289.4868 1422.0229 94.8669 25.8556 6.0046 513.2433 

-56.39 189.33 130.05 92.97 71.18 58.21 51.18 50.28 66.34 

21 
75.5.515 755.5711 7326.9374 477.85 40.4924 9.9817 1.3769 -11.1395 -193.6934 

468.92 316.49 193.35 131.38 97.19 77.05 65.46 61.44 75.23 

23 
109.7145 1154.5883 496632.9372 189.862 23.6719 6.4757 .0224 -12.1444 -165.904 

593.100 358.87 214.45 144.19 105.85 83.33 70.22 65.16 78.20 

25 
156.4794 1756.2975 10458.9239 96.5363 15.4105 4.5232 -.8025 -12.8732 -151.1613 

727.27 401.25 235.55 156.99 114.52 89.61 74.98 68.87 81.17 

31 
411.546 8663.8329 375.4026 25.0314 6.3540 2.0485 -2.0699 -14.3689 -132.2802 

1129.81 528.41 298.85 195.41 140.53 108.45 89.26 80.03 90.07 

35 
727.8247 213941.7223 131.7262 13.8438 4.3730 1.4010 -2.5291 -15.0608 -127.1374 

1398.16 613.17 341.05 221.02 157.87 121.01 98.77 87.47 96.00 

39 
1220.743416142.7974 60.9256 8.8942 3.3666 1.0248 -2.862 -15.6028 -124.228 

1666.52 697.94 383.26 246.63 175.20 133.57 108.29 94.91 101.93 
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the bias of the M.L. estimator decreases and starts to increase at 

8 .05. Also, for the moment estimator O, and for the values of 

n 23, and .01 s o .055, the bias increases monotonically. 

This table is strikingly different from table 3.1 in the 

sense that the explosive values that appeared in table 3.1 in the 

values of the bias of 8 disappeared when we chose a large value for 

0. A more detailed study to higher order terms is required so 

that one can establish an idea about how reliable the first order 

term is, and we shall discuss this point in the last section. 

(ii) Tables of Biases of n and n. 

Table 3.3: This table gives the asymptotic bias of M.L. and moment 

estimators. The two entries in a cell relate to order 

N 1 in the biases of n and n* respectively, ( = 2). 

For all values of 0, and for values of 1 n 5 15, the bias of 

i is positive, and for those values of n 21, that bias starts to 

change sign at different places in the table. As an example, for 

21 n 23, 36 s 0 41, and for 25 5 n 5 39 and .31 5 0 fi .36, the 

bias of n changes its sign from negative to positive, which means 

it reaches zero within some of the previously described intervals. 

On the other hand, and unlike the bias of i, the bias of n changes 

sign for all values of 0, and for n < 15. For those values of 

n 15 it is always positive. 

For n = 1 and all values of 0, the biases of h and n increase 

monotonically, and for all n 3, both biases reach a maximum and 

start to decline again. 
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We notice in this table and as in table (3.1), the bias of 

has an explosive value for e = .16 and n = 23, where 

b2(n) 496632.9372/N 

It is in fact, as in the other tables, difficult to determine the 

subregion of the parameter space, where one of the estimators is 

superior to the other estimator, because we need, in fact, some 

more information about the behaviour of second order terms. But we 

can see, in general, that the biases of n* are much higher than those 

of A, and we shall give further investigation to the moments of n 

at the end of this chapter. 

Table 3.4: Table giving the asymptotic biases of M.L. and moment 

estimators for the parameter n, ( = 15). 

We realize from this table that the bias of An is positive 

throughout the entire table, where the bias of n changes sign at 

some points of the selected values of the parameters. As an example; 

for 15 n 25, and .02 5 0 .025, the bias of n changes sign 

from negative to positive, which means that it reaches zero at some 

values within the prescribed subregion, which is the narrow interval 

(.02, .025) of the parameter 0. The minimum value of the bias of n 

is attained when n = 1, and 0 = .01, where its maximum value is 

reached at n = 39, and 0 = .055. On the other hand, the minimum 

value of the bias of An is also attained when n = 1, and 0 = .01, 

where it reaches its maximum for n = 39, and 0 = .03. 



Table (3.4) 

Biases of n and n, 0 = 15). 

o .01 .015 .02 .025 .030 .035 .04 .045 .05 .055 

\n 
.150 .225 . .300 .375 .400 .525 .600 .675 .750 .825 

1 
.1508 .2296 .3099 .3910 .4722 .5528 .6321 .7094 .7838 .8548 

-2824.22 -727.01 -222.23 -42.92 39.30 86.97 122.92 158.90 205.80 284.41 
.4840 .7557 1.0398 1.3295 1.6178 1.8971 2.1601 2.3996 2.6089 2.7825 

-2766.82 -699.33 -205.45 -35.41 47.83 93.63 128.31 163.39 209.62 287.73 
.8628 1.3805 1.9352 2.5065 3.0717 3.6070 4.0888 4.4958 4.8102 5.0188 

-2709.43 -671.66 -188.67 -19.90 56.36 100.28 133.70 167.88 j 291.05 

15 
3.5932 6.4602 9.8785 13.5513 17.0762 20.0252 22.0402 22.908 22.5891 21.2001 

-2422.46 -533.28 -104.77 37.66 98.99 133.55 160.66 190.35 307.63 

21 
6.0886 11.6896 18.7364 26.4310 33.6035 39.0553 41.9418 39.4369 41.9833 34.9192 

-2250.28 -450.25 -54.43 72.19 124.58 153.52 176.83 203.83 244.09 317.58 

23 
7.1001 13.9238 22.6495 32.2104 41.0130 -47-4-591 50.5041 46.1605 49.9133 40.14 

-2192.89 -422.57 -37.64 83.71 133.11 160.17 182.22 208.32 247.89 320.90 

25 
8.2134 16.4466 27.1386 38.8826 49.5467 57.0483 58.6853 60.1376. 53.4571 45.6840 

-2135.49 -394.89 -20.86 95.22 141.63 166.83 187.61 212.82 251.72 324.22 

31 
12.2452 26.0498 44.7368 65.2825 83.0247 93.8743 96.1018 78.9722 90.4183 64.3496 

-1963.31 -311.87 29.48 129.75 167.22 186.79 203.79 226.29 263.20 334.17 

35 
15.5996 34.4932 60.6810 89.338 113.1000 126.1063 126.6442 99.3125 116.5525 78.6669 

-1848.53 -256.52 63.04 152.77 184.27 200.10 214.57 235.28 270.86 340.80 

39 
19.5720 44.9421 80.8198 119.7300 150.5526 163.1959 165.436 147.2921 122.7895 94.7747 

-1733.74 -201.16 96.60 175.80 201.33 213.41 225.36 244.27 278.51 347.44 
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It should also be realized that, for all values of n 1, and 

.01 ::-: e 5 .055, the bias of n increases by increasing the values of 

both 0 and n, where, only for those values of 1 5 n :5 15, the bias 

of iI increases monotonically. For n 15, the bias of z is no 

longer monotonic, where we realize for such an interval, that bias 

increases by increasing 0, until it reaches a maximum and starts 

to decline again. 

We would like to point out the similarity of the behaviour of 

the function of the bias of given in this table and the behaviour 

of the function of the bias of 9 in table (3.2), in the sense that 

explosive values do not occur unlike tables (3.1) and (3.2), when 

we take $ = 2. One may conjecture that singularities in the biases 

of N.L. estimators for n and 0 are severe when is small. 

3.5 Concluding Remarks. 

In addition to the previous comments on the given tables, we 

would like to call attention to some characteristics of the sample 

estimators of the parameters 0 and n of the GNBD. 

(1) We have shown that joint sufficient statistics for the 

parameters n and 0 do not exist, which made the M.L. estimators, 

not only difficult to evaluate, but also that they may not exist. 

Consequently, we should not rely upon the first order terms for 

the biases, variances and the covariance of the M.L. estimators, 

and more effort should be made to derive the second order terms, 
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although the task seems to be extremely difficult. The unreliability 

of the first order terms of the moments of the M.L. estimators can be 

exhibited by the following values: 

(1) For = 2, e = .36, n = 11 

Var() .0254/N 

(2) For = 2, 0 = .36, n = 15 

Var() .0181/ N, 

(3) For 0 = 2, 0 = .46, n = 11 

Var(s) .0033/N 

(4) For a = 2, 0 = .46, n = 15 

Var() .0027/N 

The above values show that the variance of decreases by increasing 

O and n for constant a. 

On the other hand, the variance of nA has very large values at some 

points of the parameter space. For example, for 2, 0 = .11, n = 33 

Var(4) 20540.531/N, 

and for = 2, 0 = .11, n = 35 

Var() 22971.195/N, 

and the question about the largeness of the sample size which is required 

to reduce the effect of these inflated values can only be answered if 

at least the second order term in the variance of nA is known, as will be 

seen in the next point. 

(ii) From tables (3.1) and (3.2) in the previous section, we 

have seen that the values of the biases of the moment estimator 0* 

are reliable for certain regions in the parameter space, and on 

using the second order term of the bias of that estimator, one can 
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determine the sample size required to reduce the effect of that term. 

The idea was given by Shenton and Bowman (73) as follows. 

Let us write 

k 11 
B1(0*) =-t; - : Tr + o(-½) 

j=l 

then for 0 < a < 1, 

11 
N = ir/ak 1 

i=l 

is the required sample size to make the second order term in the 

bias of 0* a certain proportion of the first order term, which can 

be easily obtained on using the terms given in (3.42.b). On the 

other hand, one should expect a larger sample size for this purpose 

in the case of the moment estimator n 

Shenton and Bowman have indicated that (for 0 = 1), the 

potential instability in the moments of n* is due to the presence of 

singularities, which in turn are related to the probability of 

occurence of inadmissible parameter estimates. 

It should be realized that, for the GNBD, the moment estimator 

suffers from this unfortunate situation, where the stochastic 

difference (m2-m1), which was called "over dispersion", by Bliss (5 ), 

appears in the denominator of n* as given in (3.39). 

The biases of the moment estimator of the parameter n, as shown 

in tables (3.3) and (3.4) are very large, and the reason is due to 

the instability of that estimator. Shenton and Bowman (73), 

postulated that the quantity (m2-m]7, being in the denominator, 

will create singularity in n. Their suggested method for finding 
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a safe sample size will not depend upon the value of the second 

order term in the bias, but it will depend upon the size of the 

coefficient of variation of the stochastic difference (m2-m{). Thus, 

if we want the coefficient of variation v, where 

V = lVar (in2 -mi) IF] (in2 -mi) 

to be some value between zero and one, which means E(m2-in) should 

be large in comparison to {Var(m2_m{)]½, the required sample size 

will be given as 

(3.47.a) N = (-b + ½ 2_4ac)/2a 

where 

(3.47.b) 

(3.47. c) 

(3.47. d) 

a = v2 (p2-i) 2 

3-

b  = -l2v2i2(2-7+ii4-2ii3+p2-i4] 

C = v24 - (4i4+2p 3-2i.i4) 

This sample size should be large enough to obtain reliable asymptotes 

for 0 also. Some values of the sample sizes are given in tables 

(3.5) and (3.6). 
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Table (3.5) 

= 2, v = .2 

Estimated Sample Size N 

.01 .16 .26 .31 .41 .46 

1 237384 2221 1525 1522 2343 4833 

3 116459 907 579 561 818 1645 

7 81909 531 309 286 383 734 

15 68089 382 201 177 209 370 

Table (3.6) 

= 15, V = .2 

Estimated Sample Size N 

fl\ 
.01 .015 .03 .04 .05 .055 

1 38205 23403 14457 15480 21698 30000 

3 13194 8021 4890 5208 7270 10035 

7 6048 3627 2156 2273 3148 4331 

15 3190 1869 1063 1099 1500 2050 

One should note the impractical sample size which is needed at 

some values of the parameter space, to make the coefficient of 

variation of the overdispersion (0.2). 
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(iii) Finally, we shall provide some tables of the asymptotic 

relative efficiency. Using Fisher's definition of efficiency, 

1  
f N2LD 

where 

= Pu p22 - P 2 

(2.48. a) 

= [n(l-o)P22-O(l--O)]/O(l-O)2(l-O) 

and IDI is the generalized variance of the moment estimators defined 

in (2.45), where 

(2.48.b) IDI -  2(1-O)  [n(l-e)+28(l-e)+ 2e-1] 
N20 [l-(2-O) 

Hence 

(3.48.c) E  

Tables (3.7) will provide some values for the asymptotic efficiency 

of the moment estimators relative to the method of M.L. As can be 

seen for small values of 0 and constant , Ef approaches zero as 

n tends to infinity, and a good approximation to the efficiency is 

reached when is much larger than n, and when 0 is very close to 

.5. 
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Tables (3.7) 

Asymptotic Relative Efficiency of Moment Estimators 

Case I: = 2. Relative to M.L. Estimators 

.01 .02 .05 .07 .09 .10 

1 .7165 .8133 .9316 .9617 .9782 .9837 

4 .0354 .0584 .1268 .1693 .2080 .2258 

7 .0095 .0168 .0400 .0555 .0703 .077 

10 .0042 .0078 .0196 . 276 .0354 .0392 

Case II: = 9. 

\n' 
.01 .02 .05 .07 .09 .10 

1 .9862 .9957 .9999 .9981 .9891 .9362 

4 .4664 .6141 .7551 .7563 .6345 .2691 

7 .1968 .3052 .4379 .4219 .2769 .0737 

10 .1019 .1694 .2601 .2428 .1411 .0328 

Case III: = 15. 

.001 .003 .005 .008 .009 .01 

5 .2159 .34 .4372 .5364 .5581 .5796 

8 .0865 .1557 .2147 .2866 .3068 .3254 

11 .0445 .0847 .1213 .1690 .1831 .1963 

14 .0265 .0523 .0766 .1094 .1192 .1286 
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Case IV: = 25. 

\ 
001 .003 .005 .008 .009 .01 

5 .3839 .5705 .6678 .7466 .7636 .7777 

8 .1794 .3187 .4132 .5049 .5266 .5454 

11 .0986 .1911 .2624 .3392 .3587 .3756 

14 .0685 .1244 .1765 .2361 .2518 .2656 

In concluding, since the M.L. estimators may not exist, and 

further investigations to the second order terms of the moments of 

the N.L. estimators seem to be a very difficult task, we would 

recommend using the moment estimators given in (3.38) and (3.39) for 

fitting the GNBD to numerical data, as they can be calculated easily. 

Moreover, an investigation to higher order terms for the moments 

of the moment estimators has become very handy using the corres-

ponding expressions provided in this chapter, and hence one can 

determine the safe sample size and compromise between the required 

efficiency and the cost of sampling, if we are determined to use 

moment estimators. 



CHAPTER IV 

A BIVARIATE GENERALIZATION OF A CLASS OF POWER SERIES DISTRIBUTIONS 

"THE BIVARIATE MODIFIED POWER SERIES DISTRIBUTION" 

4.1 Introduction. 

The bivariate forms of many important discrete probability 

distributions have been studied by many statisticians. The trinomial, 

the double Poisson, the bivariate negative binomial, and the 

bivariate logarithmic series distributions are in fact the bivariate 

generalizations of the well-known univariate distributions. A 

systematic account of various families of distributions of bivariate 

discrete random variables have been given by Patil and Joshi (61), 

Johnson and Kotz (35), and Mardia (49) in their books. The class of 

bivariate Lagrange distribution (BLD), and the bivariate Borel-

Tanner distribution (BBTD) were introduced by Shenton and Consul (74). 

In this chapter we shall define a class of bivariate discrete 

distributions, under the title "Bivariate Modified Power Series 

Distribution", (BMPSD); and study some of its properties. 

Definition: A BMPSD is defined by a bivariate discrete random 

variable (X,Y) having the probability distribution function 
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(4.1) 1ay) (g(0 1 ,0 2))X(h(01,02 ))Y/f(61,62) 
P(X=x,Y=y) = 

0 otherwise 

where, S is a subset of the Cartesian product of the set of non-

negative integers with itself, a(x,y) > 0, 01,82 0, g(0 1 ,0 2 ), 

h(0 1 ,82) and f(61962) are finite, positive, and differential functions 

of 01 and 02 (01,02) E 2, (where 9 = {(0 1 ,0 2):t 1<0 1<t2, t3<e2<t, t,, 

are real numbers i = 1,...,4}). It is clear that 0 is a subset of the 

domain of convergence of the power series 

(4.2) f(0 1 ,8 2) ' a(x,y)j(ee)hY(ee) 
S 

It can be easily seen that the BMFSD class includes, among 

others, the trinomial distribution (Nardia; (49)) , the bivariate 

negative binomial (Lundberg; (48)), the double Poisson (PaUl and 

Joshi; (61)), the bivariate logarithmic series (Nardia; (49)), the 

BBTD, and the generalized negative binomial distribution GBNBD 

(Mohanty; (51)). Many important families of BMPSD can be generated 

by using Poincar6 generalization of the Lagrange expansion, as given 

in Goursat (17), either by the expansion of f(0 1 ,0 2) in powers of 

9(01,02) and h(8 1 ,0 2) under the transformations 81 = g'(0 1 ,0 2)x 1, 

02 = h(0 1 ,0 2) 2 , where X, and X2 are functions of 01 and 82 with the 

condition x(°°) 0 (i = 1,2), or by the Lagrange expansion of the 

probability generating function (pgf) t1 ,t2) in powers of u and v, 

under the transformations 
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t1 = u1(t 1,t2), t2 = v•k(t 1,t) 

where l(t 1,t2) and k(t 1 ,t2) are pgf's as suggested by Shenton and 

Consul (74). 

Section 2 of this chapter contains the notations that will be 

used generally in this and the following chapter. Moments, 

cumulants and related properties will be studied in section 3. In 

section 4 we give the convolution property and we characterize the 

double Poisson and the bivariate negative binomial distributions in 

the class of BMPSD. In the last two sections we give some particular 

families of BMPSD and discuss some of their properties. 

4.2 Notations. 

For the sake of brevity and convenience we shall use the 

following symbols. 

(i) The functions g(61.6 2 ), h(0 1 ,02) and f(e1 '°2 will be 

denoted by the letters g, h and f respectively. 

(ii) The differential operator ---- will be abbreviated by DV 

and the functions a 
. log g, a . log h, . log f by g, h and fi 

respectively. Similarly, g.. = aij log g and so on, where i, j = 1,2. 

(iii) Unless otherwise stated, I will stand for the two-fold 

summation over all points (x,y) E S, where S is as previously defined. 

(iv) A = g1h2-g'2hl, and for all non-negative integers r and s, 

(4.3) = E[f18], 11 = 
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4.3 Moments and Cumulants of BMPSD. 

Since P(X=x,Y=y) is always equal to unity, we have 

r  f = a(x,y)g X hy . On differentiating the above equation partially w.r.t. 01 and 02 

respectively, dividing by f and on summation, we get the equations 

f1 gi-i' +hp 
1 10 1 01 

= g2p10 + h21 

Solving for pl and p, we have 
10 

(4.4.a) = (f1h2-f2h1)It 

(4.4.b) 11 1 =01  (f2g1f1g2)1 

To obtain a recurrence relation among the higher non-central product 

moments, we write, 

rs 11 1 = x y a,x,y, gXhY/f 

On differentiating partially w.r.t. 01 and 02 respectively, and on 

simplification, we obtain 

=' +h ' - 

2'2,s 2'r+1,s 2r ,s+1 2'r,s 
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By solving the above two equations simultaneously for and 

+1 and on using the relations (4.4.a) and (4.4.b), we get the 

recurrence relations 

(4.5. a) 

(4.5.b) 

p1+l,8 = (h2•a 1 - h1• ii' )/L + i-i' lit2 r,s r  10 

i.i2,81 (g - gj.i' )Ii+' ii'. 
1 2 r,s 2 1 r,s r,s 01 

Similarly, by differentiating V rs partially w.r.t. 01 and 02 

respectively and on simplification one can get the following two 

recurrence relations between the central product moments, 

11r+1,s 1[(h —h )i + ru (h —h )u' 2 1 1 2 r,s r-1,s 2 1 1 2 10 

(4.6.a) 

and 

+ S11 (h —h 
r,s-1 2 1 

r,s+1 = S + rp r-1 

(4.6.b) + 8 11 (g -g) 1] 
r,s-1 12 21  

Thus, by a proper choice of the integers r and s 

can be easily manipulated to obtain the marginal 

coefficient of correlation between X and Y. The 

the above formulae 

moments and the 

recurrence relations 

among the factorial moments V = E[X[2J and = of the 

BNPSD can also be similarly obtained and are given by 
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(4.7.a) [r+l] = (h2 —h12) r] + (p0-r)p1 
ii 

(4.7.b) ij [s+1] = _l (g _g)j [SI + (11ci_s)l.IIS] 

[1] [1] 
where j = p10 and p p01 . 

The joint cumulants can be obtained from the joint moments by 

employing the symbolic operator as suggested on page 83 by Kendall 

and Stuart (39). The simplification given by Harvey (31) to that 

technique is rather elegant and more straightforward as will be shown 

in the sequel. Consider an operator D with the following rules. 

D(c) = 0, 

D(ck) = 

D(k) = rk'D(k) 

D(U+V) = D(U) + D(V) 

c is constant 

where k..2-3 is the ijth cumulant 

(U and V are polynomials in the joint 

D(UV) = UD(V) + VD(U) cumulants) 

D1(k) = 

D 2 3 2- (k..) = k. 

With D So defined, one operates on p'.., the ijth moment about an 

arbitrary origin, to obtain and L+1 as 

D (:•.) +k p. 
1 2-3 10 2-3 

D (pL) +k . 

i,j+l 2 i- 01 i,.j 

(with the initial condition V10 = 1). 

As an example: 

Ill  = D1 (1) + 1<10 = klo 
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P 10 = D1 (-P10 + 10 10 

= D1(k 10 ) + <2 
10 

= 7<20 + k 0 

11 10 = D1 (1120 + 10 20 

= D (7< 7<2 ) + k (k+7< 0) 
1 20 10 10 20  

= 7<30 + 3k 10k20 + k 0 

= D2 (p 0) + k01p 0 

= D2 (k 10 ) + k II I 
01 10 

= kil  + k01k10 

31 

11  =k +7< 7< +27< k +7<27< 
21 21 20 01 11 10 10 01 

and so on. 

4.4 Some Properties of BMPSD. 

4.4.1 Convolution Property of BMPSD. 

Let (xY.) i = 1,2,...,N be a random sample of size N taken 

from the BMPSD given by (4.1) and let Z, = X1+X2+. . .+XN and 

= Y1+Y+. . .+Y N - When the functions h and g are zeros at e 0 

and 02 = 0, due to the properties of the power series functions, the 
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joint probability function of (Z 1 ,Z2) can be easily written in the 

form 

(4.8) P(Z 1=z 1,Z2=z2) b(Z 1 ,Z2 ,N) gZ1hZ2/? 

N 
where b(Z1,Z2 ,N) = IT a(.,y.), and the summation extends over 

i=l 
all the ordered N-tuples {(x1,y)...,(xN,yN)} of non-negative 

integers of the set S under the conditions X +x 2 +.. .+x   N = Z and 
1 1 

y+y+.. .+yN = Z2. Though it seems to be a very difficult summation 

to find, in actual practice, the function h(Z,Z,N) can be easily 

,.lv i obtained as a coefficient of gz1 hz2 by expanding y n powers of 

g and h with the help of the bivariate Lagrange expansion (64), and 

equals 

(4.9) 

(Z 1 Z2 1 !)_' 1 Y 2 1 [x Z1 x Z2 2 
12 

+ x 1 1 (x 2 )(a2 ) x 2 (xZ1) (/1)] 

where X, = and X = 02h 1. 

4.4.2 Two Characterization Theorems. 

1=02=0 

Theorem 4.1. The means p110 and of a BMPSD with f(0,0) = 1 are 
01 

proportional to the parametric functions g and h respectively if and 

only if it is a double Poisson probability distribution. 

Proof: Let the means p and p0'1 be proportional to the functions 
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g, h, and let c1, c2 be the constants of proportionality. 

By equations (4.4.a) and (4.4.b) we obtain 

f1 h2 - f2h1 = 

f1g2 - f2g1 = -c2hL 

Solving for f and f 2 one gets 

(4.lO.a) f1 = c 1 1 2 gg + c 1 = c 1 1 2 + c ]. h 

(4.1O.b) f2 = c1gg2 + c2hh2 = c1 g + c282 7z 

the solution of equation (4.1O.a) is in f = c1g + C2  + A(02) and 

of (4.lO.b) is in f = c 1 + C2  + B(0 1), i.e. f = A 1(02)12h and 

f = B1(O1)e012h respectively. If the two relations are to hold 

in any domain of e and 6 2' then /11(02) and B1 (0 1) must be, not 

only independent of e  and 0 but also, must be equal. Since 

f(O,O) = 1, the function f must be of the form f = g12 where 

= c1{g-g(O,O)} and 2 = c2{h-h(O,O)} 

By the uniqueness of the series expansion, a(x,y) = (xy!) -' and the 

BMPSD becomes .a double Poisson. 

Conversely; let (X,Y) be a double poisson random vector, with 

probability function 

p(Xx,1y) = 
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Thus, on using (4.4.a) and (4.4.b) one can show that 

1.1 :o = 01 and = 02 

which establishes the required result. 

Theorem 4.2. The means p I 1 and of a BMPSD with f(O,O) = 1 are 

equal to cg(l-g-h)' and ch(l-g-h) 1 respectively, where c is any 

real number, and g, h are the parametric functions of the BMPSD, if 

and only if it is a bivariate negative binomial distribution. 

Proof: Let 

F - f1h2-f2h1 - cg(1-g-h)' 
p10 - g1h2-g2h1  

and 

f2g1 f1g2 
  - ch(l-g-h) -1 p01 g1h2-g2h1  

Solving the last two equations for f1 and f2 we get 

f1 = c(l-g-h) 1[1g+ 1h] 

f2 = c(l-g-h) 1[2g+ 2h] 

f = k1(02)(lgh) and f = k2(01)(l_g_h)_C 
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function f must be of the form f = (l-X1-X), where 

-  q-q(O,O)  
xl - l-g(O,O)-h(O,O) 

and h-h(O,O)  
x2 = l-g(O,O)-h(O,O) 

the converse of this theorem can be easily proved and one can show 

that for the bivariate negative binomial distribution, whose prob-

ability function is given as (x+y+c-1) !(xyc!) -1 &O(1_O 1_O 2)C, 

P 10 = c01(l-81.-02) 1 and 01 = cO2(l-ø 1- 2) 1. 

Corollary: By taking h(0 1,e 2) = 0 in the above two theorems, one 

gets the corresponding characterizations for the Poisson and the 

negative binomial distributions, respectively, [see (18)]. 

4.5 Some Particular Families of BMPSD. 

4.5.1 The Generalized Double Poisson Distribution (GDPD). 

The bivariate random vector (X,Y) has a GDPD with parameters 

(m1,m2 ,0 1,02) which we shall write as (X,Y) GDPD, if its 

probability distribution function is given by 

= (l+m 1.+m2y) 

P(Xx,Yy) Ty t exp{(0 1+0 2)(1+m 1x+in2y)} 

(4.11.a) 

x,y 0(1) 

O.,m. > 0 (i = 1,2) 
2-2-

0 < 0 1 m 1 + 0 2 m 2 < 1 

The distribution can be obtained by expanding the bivariate probability 

generating function t1 ,t2) = exp[0 1 (t 1-l)+e 2 (t2-l)] using the 
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bivariate Lagrange expansion formula (64 ), under the transformations 

tl = t2 = v•k(t 1,t2) 

in powers u and v, where 

l(t 1,t2) = exp{m101 (t 1-l) + m102 (t2-l)} 

k(t 1 ,t2) = exp{m201 (t 1-1) + m202 (t2-1) 

are two probability generating functions. 

The G]DPD is a BMPSD, where 

= oi exp[-m 101-m102] , = 02 exp[—m201-m202], 

(4.11.b) and f = exp[0 1+0 2] 

4.5.2 The Generalized Bivariate Negative Binomial Distribution (GBNBD). 

The bivariate random vector (X,1) has a GBNBD with parameters 

which we shall write (X,Y) GBNBD, if its probability 

distribution function is given by 

nr(n-l- x+ 
P(X x,1-y) = 1  x !y !r (n+ 12y-x-y+l) 0O (1-0 1_02)fl+ lX2Y_X_Y 

(4.12.a) 

x,y 0(1) 

0 < 01 ,02 < 1 

0 < 011+022 < 1 

The distribution can be obtained by expanding the bivariate probability 

n 
generating function 4(t 1 ,t2) = (l-01-02+01t1+e2t2) , using the same 
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bivariate Lagrange expansion formula, under the transformations 

ti = u•(t 1 ,t2), 

in powers of u and v, where 

l(t 1,t2) = (l_O1-O2+O1t1+O2-t2)1 

= v'7<(t 1 ,t2) 

k(t 1)t2) = (l_e1_o2+olt1+e2-t2)2 

are two probability generating functions. 

The GBNBD is a BNPSD, with parametric functions, 

g = e1 (l_o 1_o2) 1_1 , h = 

(4.12.b) and f = (1_01 _02) _fl 

4.5.3 The Generalized Bivariate Logarithmic Series Distribution (GBLSD). 

The bivariate random vector (X,!) has a GBLSD, with parameters 

which we shall write (X,!) ' GBLSD, if its probability 

distribution function is given by 

r( 1x-l- 2y) (-ln(l-0 1-e2)Y' 

P(Xx,Yy) - x !y !r ( 1x+ 2y-x-y+l) 

(4.13a) 

x,y 2 1(1) 

o < 01 ,02 < 1 

0 < 0181+022 < 1 

Also, the GBLSD can be obtained by expanding the bivariate probability 
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generating function (t1,t2) = ln(l-0 1t1-02t2)/ln(l- 1- 2), by using 

the bivariate Lagrange expansion formula, under the transformations 

tl = ul(t1,t2), t2 = v•k(t 1,t2) 

in powers of u and v, where 

l(t1 '2 

k(t 1 ,t2) 

are two probability generating functions. 

It is clear that the GBLSD is a BMPSD, where 

g = e1(l_e 1_o 2) 11 , h 02(10102), 

(4.13.b) and f -ln(l- 1- 2) 

4.5.4 The Bivariate Borel-Tanner Distribution (BBTD). 

The bivariate random vector (x,r) has a BBTD (see Shenton and 

Consul (74)) with parameters (n,m,0 1,02), which we shall write 

(X,Y) BBTD, if its probability distribution function is given by 

(m )(x+zj)m 1 
P(Xx,Yy) - - (x-m) (y-n)! 0 -m y-n exp{-(0 1+0 2) (x-1-y)} 

? MW 

y ? n(l) 

01,02 > 0, 

(4.14) m, n are positive integers. 
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The BBTD can be obtained by expanding the bivariate probability 

generating function t1 ,t2) = t1in t n21 on using the bivariate Lagrange 

expansion formula ( 64), under the transformations 

t1 = u1(t 1 ,t2), t = vk(t 1,t2), 

in powers of u and v, where 

k(t 1,t2) = l(t1 ,t2) = exp{0 1 (t 1-1)+0 2 (t2-l)} 

The BBTD is also a BMPSD with, 

g = h = 0 02 and f = 0in0n 

4.5.5 The Bivariate Binomial Delta Distribution (BBDD). 

The bivariate random vector (X,Y) is said to have a BBDD, with 

parameters (n,m,0 1 ,02 ), which we shall write (X,Y) " BBDD, if its 

probability distribution function is given by 

P(Xs,Yy) = 

(4.15.a) 

(rn 12 r ( rii y) 0x- 0y-n 

(s-m)! (y-n) !r( 1s+ 2y-s-y-lin-fn+l) 

0 < a 101202 

(1-e 102) 

<1 

This distribution can be generated by expanding the bivariate 

probability generating function t1 ,t2) = tTt, by using the same 

bivariate Lagrange expansion formula, under the transformations 
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t1 = u•l(t 1,t2), 

in powers of u and v, where 

l(t 1,t2) = 

t2 = v•k(t 1,t2) 

k(t 1,t2) = (l_O1_O2I-01t1+O2t2)2 

Clearly, the BBDD is a BHPSD with, 

(4.15.b) 

g = o(l_e 1-6 2) 01-1 )1 1 

and f = m n, 

h = 02(101-e 2 

4.6 Properties and Applications of Some BMPSD Families. 

In this section we shall discuss some of the properties, and 

applications of the GBNBD family and the GDPD family, as they possess 

many interesting properties, and they have a wide variety of 

applications. 

4.6.1 Some Properties and Applications of the GBNBD. 

The GBNBD was first introduced in 1972 by No.hanty (51) as a 

queueing model. He considered a queueing process initiated by n1 

customers of type I and n2 customers of type II. Let the customers 

of type i (i = 1,2) arrive in batches of size r. with Poisson mean 

rate c.. Assume that each customer is served exponentially with 

mean p. Then the probability that exactly n1+r1x customers of type I 

and n2+r2y customers of type II will be served before the queue first 
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vanishes is given by (4.12.a) with 

n . = 1+r., and 0. = 
2- 2- 2- 

r. 
2-

(-1 = 1,2). 

Since f, = f2 = n(l-0 1-02) 1, g2 = (1_ 1)(1_0 1_0 2)_ 1, h1 = (l_ 2)(l_e 1_e2)_ 1 

and 

and 

9, = (lo21e1)/e1(le1_e2) , = (1o1_2o2)/e2(1o1e2) 

= (1-1o1-2o2)/e1e2(1-o1-e2) 

the two means and the variances are given by the formulae (4.4.a), 

(4.4.b), (4.6.a) and (4.6.b) in the form 

(4.16) p 0 = ne 1(1- 1e1-. 2e2 Y ', p = ne 2 (l- 1e1- 2e2 1, 

(4.17) 

and 

= 

11 ne 2• e +•262+•26 6 Ml-• 0 )3 
02 

(where 0 < 101I$202 < 1). 

Property 4.1. If = = , the probability distribution of the 

random variable Z = X+.Y is a GNBD and is given by 

P(Z -  - z) -  nr(n+Z)  Z!r(n+z-Z-l) 0Z(10)n+Z-Z where 0 = 01+02 . 

Property 4.2. As n -- 0, the origin truncated GBNBD tends to the 

CBLSD given as (4.13.a) 
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Property 4.3. If (x,.Y.), i = 1,2,...,N is a random sample of size 
71 

N taken from the GBNBD, the probability distribution of the sums 

= X1+X2+.. .+X and Z = • .+Y is given as 

P(Z 1=z 1 ,Z2=z 2) 

(4.18) 

nNT(nN+ 1Z1+ 2Z2) 

- 12 
Z1 Z2 r(nN-I- 1z1+ 2z2-z 1-z2+l) 

which can be obtained directly by utilizing (4.8) and (4.9). 

Property 4.4. The joint probability distribution of the random 

variables X, Y, where 

N N 
and ?=+ y Y. 

1=1 j=l 

so that N = rn-I-n, is the BBDD given by (4.15.a) (the proof is straight-

forward). 

Property 4.5. The marginal probability distribution of X is a CNBD 

with parameters and so is 1' with parameters (n,,e), 

and the conditional distribution of y for given value of X is 

(Q(l_0_Ø)2 1)Y 

(4.19) P(r/) = (1 _0) fl2X 

which is in the form of an MPSD. 
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Property 4.6. The regression equation of Y for a given X is 

(4.20) r n02(10102) 

(1_02) (1_o l_ 2o2) 

E(YIx) 

 n02(1-01-02)  +  x (1-o 1 _e ') 

(1_02) (1_u 1202) (1-62)(1-61-6202) 

for x=0 

for x>0 

The proof of property (4.5) is similar to the case of the GDPD and 

will be given in the next section, and the proof of property (4.6) 

is obtained as the mean of an HPSD (3.3.b). 

4.6.2. Some Properties and Applications of the GDPD. 

Following Shenton and Consul (74), the GDPD represents the 

probability distribution of the number of customers of type I and 

type II served by a single server in busy periods and of no customers 

being in a queue, when the input is Poisson and the rate of arrival 

of customers of the ith type (i = 1,2) is m10. from channel I and is 

m20.from channel II, where 01 and 02 are the constant service rates 

of type I and type II respectively. Moreover, if (x,r) GBNBD, 

where 0 is very small and n, 0 . are very large (i = 1,2), so that 

(4.21) 

I 

then, the GBNBD with parameters (no 1 ,e 2) can be approximated 

by the GDPD with parameters (in1 ,rn2 ,a ,a2). For m l 
= M 2 

= 0 the 

GDPD is reduced to the double Poisson distribution. 
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For the GDPD given by (4.11.a), one can show that 

= (1-0 1m1--Om)/0 102 

(4.22) P ro = 01/(l-0 1m1-0 2m2) 0 < 01m1+0 2m2 < 1, 

01 [(l-02m2)2+0102m] 

1120 
(l-01m1-02m2) 3 

and the values of pl and p02 can be written down by symmetry. The 

coefficient of correlation between X and .Y is given by 

(4.23) p 
0102 [ni1 (l-82m2)+m2 (l-0 1m1)] 

0 m2"] 1 2 2' 

Property 4.7. If m1 = m2 = m, the probability distribution of the 

random variable Z = X+Y is GPD, and is given by 

(l+m1Z)Z_ 1 (Ge -Gm1) Z 
(4.24) P(Z-z) 0 where 0 = 01+02 

e 

Property 4.8. If (X,Y) GDPD, then X and Y are stochastically 

indepdendent if and only if m1 = m2 = 0. 

Proof: If we put m1 = m2 = 0 in (4.11), each of X and Y will be 

distributed independently as Poisson. On the other hand, the 

equality of (4.23) to zero is satisfied only when m1 = m2 = 0. 

Property 4.9. If (X,Y) GDPD, then X and .Y cannot be perfectly 

correlated. 
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Proof: The equality of p2 to unity will imply that (l-0 1m1-e 2,n2)2 = 0, 

which is not true unless 1n 101+ m202= 1, and this is a contradiction 

to the condition enforced by the strict inequality 0 < m101-fm202 < 1. 

Property 4.10. If (XY) i = l,2,...,N is a random sample taken 

from GDPD family, then the joint probability distribution of the 

sums Z1 = Xl+X2+...+XN and Z =Y 1 1'2 ..+Y is also a GDPD given 

by 

(4.25) 
za+z2-1 

- N(N+m1Z1+m2Z2)  ebe 2exp[_(e 1+e2)(N+m1z1+m2z2)] 

Property 4.11. The joint probability distribution of the random 

variables V, V, where 

N N 
V m*+ X., V= n*+ 7., 

so that n *+m *=N is the BBTD defined by (4.14). 

Property 4.12. The marginal distribution of X is a GPD with para-

meters (m1 ,0 1) and so is I with parameters (m2 ,0 2), and the regression 

equation of I on X is given by 

(4.26) 

E(Y/x) 

02 +  02m1 

(l-0 2m2)2 (l-0 2m2)2 

for x = 0 

for x > 0 



- 134 - 

Proof: Since P(X=x) = a(x,y)gXhY/f, then 

Y 

(4.27) f = gX a(x,y)h" 

a; y 

Using the univariate Lagrange expansion, to expand the function 

f = under the transformation 1(01,02) = 01/u, in powers of 

u, and 1(01,0 2) = eml(01+02) we get 

f = f(Ole) + Y. (0 -in1(0 1+02) a; , - 1 a;-1 ) (a;.) D0 [lX(O1,e2)e01+02]00 

Thus, 

= 62 + -4- (1-fm )X_102(H•flhlx) a; 

X=1 

00 (1+m1x)1 02(1+m1 a; 
(4.28) 1=   e f 

Comparing (4.27) with (4.28), and by the uniqueness of the power 

series exapnsion, we get 

Therefore 

(4.29) 

co 

Y. a(a;,y) 

y=o 

hy - (1-fin x-1 a;) e02(1 x) 

f 

P(Xx) = (0 -ml(01+02))x (1nx) 1 02(1n1x)X. eel+62 

- \X1 (O - Olml )x 
T (1+ mla;) 
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Therefore 

-M2 0 1+6 2))y 
(4.30) P(Y'=y/X=x)=4 (l-n1x+m2y) 1 (0 2e 

•(1+m1x) e 
X-1 02(l+m1x) 

which is in the form of an MPSD. On using the moment properties of an 

SD, one gets 

E(Y/x) = 
1-0 2m2 31 

02 (l+m1x) 

which is the required result. 

x = 0,1,2,... 

4.6.3. Goodness of Fit of the GDPD. 

It seems logical that the GDPD should give a reasonably good 

fit to some numerical data for which statisticians have suggested 

various forms. Accordingly, we shall consider the data regarding 

the number of accidents among 122 experienced shunters during the 

eleven years period (1937-1947) which is given in table (4.1). The 

data has been arranged according to the periods 0-6 years and 6-11 

years. Arbous and Kerrick (2), fitted the bivariate negative 

binomial distribution to the data based upon the compound Poisson 

and the contagious hypothesis. In order to test the goodness of fit 

of the GDPD we shall use the chi-square test. It is not known that 

the chi-square test is valid for this type of data or not, and 

although the validity or the accuracy of that test is an open problem 

and for lack of anything superior, we shall use the classical chi-

square test. Based upon the heuristic method of moments, and 

assuming that m1 = in2 = in, to avoid the complexity involved in the 



- 136 - 

calculations, the values of the sample estimators in terms of sample 

moments are given as 

(4.31) 

(4.32) 

* 
1.110 

01 

* " * * (4.33) in P01)11101.101 + 2m*p0p1 - = 0 

From equation (4.33), the admissible moment estimator form is 

(4.34) in* = o i )2 + (* +1)p* * * ½ * * 10 uMio 1.101 1 - lOpOl 

10+1.1* )u * * 01 10 01 

Hence 

(4.35) 

(4.36) 

*2 * 
plo ij ol 

- [( o$ 1)2 + 

*2 * 
* - 1.101 1.110 

02 _ * * 2 
10p01) + ( o+ 1) 1o1 1]½ 

where p 11 is the covariance between X and Y. 

From table (4.1) one can show that = 1.2705, = .9754, 

= •3755, = .2575, m* .1320, 0 = .7524 and 0 = .9800. 

Table (4.2) provides the expected frequencies, where the adjoining 

cells are pooled, if necessary, so that the expected frequency for 

the group of pooled cells is at least five, and at the end of the 

table we provide a summary of the numerical quantities. By a comparison 
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of the set of expected frequencies with the observed frequencies it 

is clear that the GDPD gives almost the same frequencies for this 

particular set of data. 

In concluding, it may be worth while to investigate in more 

details the GDPD in the light of any biological data that may be 

available and throw some light on the closeness of fit using other 

methods of estimations, some of which will be discussed in the next 

chapter. 

Table (4.1). 

1937-42 (6 years) 

0 1 2 3 4 5 6 TOTAL 

0 21 18 8 2 1 0 0 50 

1 13 14 10 1 4 1 0 43 

2 4 5 4 2 1 0 1 17 

3 2 1 3 2 0 1 0 9 

4 0 0 1 1 0 0 0 2 

5 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 

7 0 1 0 0 0 0 0 1 

TOTAL 40 39 26 8 6 2 1 122 
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Table (4.2). 

Observed Frequencies Expected Frequencies 

21.0 21.59 

18.0 16.84 

8.0 8.28 

3.0 4.98 

13.0 12.93 

14.0 14.95 

10.0 8.64 

5.0 5.72 

5.0 5.61 

5.0 6.64 

6.0 7.04 

5.0 5.71 

6.0 5.30 

3.0 2.99 

Total 122 Total 127.22 

* 

2 
X10 (c=.05) = 18.3 Calculated X = 2.06*. 

The value of x2' as calculated by Arbous and Kerrich for the distribution 

of the sum X+Y, assuming negative binomial is 2.82. 



CHAPTER V 

ESTIMATION OF THE PARA11ETERS OF THE 

BIVARIATE MODIFIED POWER SERIES DISTRIBUTION 

5.1 Introduction. 

In Chapter IV we have defined, in form, the class of BNPSD as a 

parametric family. The probability distribution given by (4.1) can 

be written as 

(5.1) P(X=xj=y) = exp[ t(e 1 o2)x.(xy) +C(x,y) +q(e 1 e2 )] 

where X1(xj) = X, X2 (XJ) = .1', r1(0 1,o2) = log g(0 1,02), 

= log h(e 1 ,e 2 ), c(x,i) = log a(X,Y), and q(0 1 ,02) = log f(e 1,o2), 

and thus, the BMPSD belongs to the exponential class. Let us assume 

the following regularity conditions: 

(i) the set 010 = {(x,y):x 0, y O} does not depend upon the 

parameters O, 02. 

(ii) T1 (0 1 ,0 2), and 'L2(o1,o2) are nontrivial, continuous functions 

of 0, 02 and are independent of each other. 
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(iii) K1 (X,.Y) and K2 (Xj) are continuous for all (X,Y) E 01 0, 

and are not linear homogeneous functions of each other. 

(iv) C(x,r) is a continuous function of X and Y. 

Koopman (41) has proved that, any probability distribution 

belonging to the exponential class like (5.1), shall have sufficient 

statistics for the parameters 01, 0, and based upon a random sample 

of size N, the joint sufficient statistics are K.(X.,Y.) , j = 1,2. 
N N 1-

Thus, for the BMPSD, Z, = X, Z2 Y. are jointly sufficient 
j=l i=l 

statistics for e 1 and a 2• The completeness of the sufficient statistics 

will follow from the following theorem which was proved by Lehmann (47). 

Theorem 5.1: Let X be a random vector with probability distribution 

dP0(x) = C(o) exp 1-j-1 eT(x)]du(x) 

and let P T be the family of distributions of T = (T1(x),T2(m),...,T7< (x)) 

as 0 ranges over the set . Then P T is complete provided c contains 

a 7<-dimensional rectangle. 

Now, we have assumed that the parameter space of the BMPSD contains 

a 2-dimensional rectangle, and since T1(0 1 ,02) and 'r 2 (0 1,0 2) are 

continuous by hypothesis, so the new parameter space does contain 

2-dimensional rectangles (see; Silvey (76)). Thus, it follows from 

the above theorem that (Z 1,Z2) is complete. 
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In this chapter, we shall derive the M.L. estimators for the 

parameters e 1 and 02, and the biases, variances and covariances of 

these estimators. We shall also discuss the necessary and sufficient 

conditions for the existence of a minimum variance unbiased (MVIJ) 

estimator for any real valued parametric function k(0 1 ,02), of the 

parameters 01 and 02• Applications of these results will be given 

to the GDPD and GBNBD families. 

5.2 Notations. 

For the sake of brevity and convenience, we shall use the following 

symbols. 

(i) The set of positive integers {(x,y):x r, y s} of a two-

dimensional space will be denoted by r's' where r and s are non-

negative integers. 

(ii) A subset UN of the set 010 is said to be the index set of the 

function 1 if 

= b(Z 1 ,Z2 )gZ1hZ2 , b(Z 1 ,Z2 ,N) > 0 for (Z 1 ,Z 2) E UN C 

and b(Z 1 ,Z2 ,N) is defined in (4.8). 

Clearly, the range of the BMPSD will be the index set U1. 
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(iii) A real valued parametric function Me  O2) is said to be MVU 

estimable if it possesses a MVU estimator based on a random sample of 

size N. Moreover, if for the sample size N we have 

(5.2) k(e1 ,02)? = C(Z 1 ,Z2 ,N)gZ1hZ2, 

where C(Z 1 Z2 0 for (Z 1 ,Z2) K c 010, then is the index 

set of the function k(01 ,02 )fN. 

(iv) X = Z1/N and Y = Z2/N are the sample means, calculated from a 

random sample of fixed size N. 

5.3 Maximum Likelihood Estimation for BME'SD. 

The logarithm of the likelihood function L is given by 

N N 
in I = constant + xi in g + yi in h - N in f 

j=l i=l 

On differentiating partially w.r.t. e and 02 and equating to 

zero, the M.L. equations become 

(5.3) 
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The solution of these equations for 01 and 02 is not straightforward 

because they are involved in the functions g1, g2, h1, h2, f1 and f2. 

However, one can easily solve them for X and Y to get 

(5.5) X = (f1h2-f2h1)I(g1h2-g2h1) 

(5.6) 
= (f2g1-f1g2)/(g1h2-g2h1) 

which are precisely the same as the values of pl and pl in (4.4.a) 
10 01 

and (4.4.b) respectively. 

It has been shown by Huzurbazar (33), that under the regularity 

conditions (i-iv) given in section (5.1), the likelihood equations 

log I. 
De. 

•1.. 

i = 1,2 

have a unique solution for every sample of any size, and that the 

solution does make the likelihood function a maximum. Moreover, under 

the same regularity conditions, and for a sufficiently large sample, 

the variance-covariance matrix of the M.L. estimators can be approximated 

by Fisher's information matrix. That is 

Cov(1,g2) = log £11 1 
II 

2- 7 
i,j = 1, 2. 

It is quite likely that the equations (5.5) and (5.6) may not 

give an explicit solution for 01 and 02 In such situations one 

has to use the iterative method given by Rao (67), to obtain a con-

vergent solution starting with some initial set of values '2O 
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An improved approximation is obtained by the relation 

01,n+1 = 01,n + °1,fl'°2,n 

(5.7) 

02,12+1 = 0 + 2, 1,n ((0 '°2fl 

where 

6(0 1,12 ,0 2,12 ) = (Ga 2F-F3 G) /N21 

(5.8) 

E(e 1,n ' e  2,n 1 1 ) = (Fa 0-Ga F) /I'121 

and 

F = a1(ln L), G = a2 (ln L) 

Ji E[ 0 I p)lp-2 I 'E[ (a2 )22 j - {E(P 2 (a 1F) (a2P) )}2 

P being the probability function given in (4.1). 

5.3.1. Approximation to the Biases and Covariances of the Maximum  

Likelihood Estimators. 

The variances and the covariances of the M.L. estimators for 

01 and 02 are the elements in the inverse of the matrix whose ijth 

element is given by 

P.. = E[P 2 (a.P)(a.P)], 

On using the recurrence relation 

(5.9) 
- (Xg.—Th.—f.)P 

2- 2-1. 
i 

i,j=l,2 

i = 1,2 
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one can easily show that 

Var( 1) (NI) 1(p20g+p02h+2p/p20 i02 g2h2+) + O(N 2) 

Var(02) = (NIY 1(p20g+ii02h+2pv'p20p02 g1h1+) + O(N 2) 

Cov( 1, 2) = _O1I)'(p20g1g2+p02h1h2+2pI20p02(g2h1+g1h2)+12)+o(1(1), 

where = + - and p is the coefficient of correlation 

between X and Y. 

To find the amount of bias b iOd and 2,2(02) in the M.L. estima-

tors, on following Haldane (29), Shenton and Wallington (70), we 

have in the simultaneous estimation, the equations 

F11 P12W b() 

51 

'-'21 P22_ b2( 2) 

where 

and 

L Pi,j 
0. 2 j, 

= 1.% 2) 

is the ijth element in the inverse of the matrix P. and 
i-a 

P = E [P 2 (3 0. P) ( .P)] 

Utilizing the recurrence relation (5.9), it can be shown that 
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= + u21(hjj+g(gjh.+h.g.)) 

+ P 12 (g hh .+h (gh.+h.g.)) + Po3hahih 

+ p20 

+ pv'p20p02( a i (gh.+h.g.) + h 
a 1-a a 1- 72-

+ g 

+ p ( h.h.+7j (h..+h..)+h h..) + 
02 a 2'J 71- a2-7 a 2-0 2-7 

where 

1-0 10 l-1 01 1-1 1-0 

Though it is very difficult to get the exact moments of the M.L. estimators 

in the general case of the BMPSD, and the work of getting the first order 

approximations is also quite awkward, one can obtain the exact biases, 

variances and covariances for some particular families. 

We shall now derive these values for the GDPD family. 

5.3.2 M.L. Estimation of the GDPD. 

If (x.,1.), i = 1,2,.. .,N is a random sample taken from the 

GDPD family defined by (4.11.a), then by (5.5) and (5.6), the N.L. 

estimators for e and 02 will be given by the relations 
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Z1/N = 01 (l-0 1m1-02m2) 1 

Z2 /N = 82 (l-0 1m1-0m) 1 

Solving for 81 and 6 21 the M.L. estimators are given explicitly as 

= Z1 (N-fm Z +m Z )1 
11 22 

(5.10) 

02 = 1 Z2 (N+,n1Z1+m2Z2) 

By property (4.10), the joint probability distribution of Z and 

Z2 is given by (4.25). Thus 

Z N(N-fm 1 1 -I Z n 2 2 Z )Zl+Z2-1 z1hz2  
= L N 1 n1Z1 in2Z2 Z!Z2 ! N(e 1+0 2) 

N (N+)fl1+m1U+fl?2Z2) 2 qU hZ2 

- N-m1 (N-m1)  UZ2 /(81+82) 

= NO1 _m( 01+02) 

(N+m1 ) N(0 1+02) 

(5.11. a) 

and by symmetry one can show that 

(5.11.b) 
- 

NO 
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Thus one can easily derive unbiased estimators for 01 and e 25-

which are given respectively as,, 

(N+m1)Z 1/N 

- N-f7n1Z1+,n2Z2 

(N-f-,n2)z2 /zv 

02 - N+m1Z1+m2Z2 

Consequently, the exact amount of the biases of 6̂1 and OA2 are 

= -m101 (N+m1)', b2( 2) = -m202 (N-fin2)', respectively. 

The exact variances and covariances of the M.L. estimators can 

be obtained very easily, once the following expectations are calculated. 

E(1 °2 = (Z 1-l)(z2-i) e16 1+02) 

N(1V1n1Z1n2Z2)Z12_3 qZ1hZ2 

= 1L7qh m1+m2) (01+02) 
x 

(N+m1+rn2)'8 1+02) 

(N+m1+m2) 
012.  (N+m1+m2+m1U1n2U2)U1+U2_l  g01 h02  

e (ZV+m1+m2) (01+02) 

(5.l3) NO 1 02  
N+m1+m2 

Since 

Cov( 1, 2) = E( 12) - E(01)E(02) 
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then from (S.11.a), (5.11.b) and (5.13) 

A A N0 102 N20102 

(5.14) Cov(01,02) = N-Fm1+m2 (N-Fm1)(N-in2) 

"2 

I(N+m 

Z (Z1-1)+zE(0 1) = E 11z1-i2z2) 
2] 

N(Nn1Z11n2Z2)Z12_2 qZ1hZ2 

(Z 1-2) !Z2 1 (N+in1Z1-fm2Z2) N(0 1+0 2) 

N(N-fm1Z1+rn2Z2)Z1+Z2 —2 qZihZ2 

(5.15) + Y. (Z 1-1)!z2 !(N-f,n1z1-Iin2z2) /(e 1+0 2) 

The first summation on the right hand side of (5.15) can be easily 

shown to be equal to Ne(N+2m1)'. Moreover, since 

N-I-in1  m1Z1 m2Z2 - 

N+m1-IIn1 12 Z2 

then 

(5.16) ELNZ 

N+m1+m1Z1+m2Z2 N+m1+n1Z1+in2Z2 

me me 
1 11 22 

N-Em1 N+2m1 N+m1+m2 

Now, using the identity (5.16), one can show that the second 

summation on the right hand side of (5.15) is equal to 

NO 1 me M  1  ii 22  
Nn 1 fN+m1 N+2m1 - Nn1 in2J 

Thus 
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NO N I 1 M 161 02m2 

(5.17) E() N-InjN-Hii1 N+2m1 N-Hn 1+m2 

and the exact value of the variance of 6 will be given as 

NO  N2m 02 JVm201O2 
A . 

(5.18) Var(0) = 2 
(Nn 1) - (Nn 1) 2 11 (N+2m1) (N4-M I) (Nn1 n2) 

Also, by symmetry, one can show that the exact variance of 02 is 

NO2 N2m 02 NmOO - 

(5.19) Var(6 2 = 2 22 1 1 2  

(N+m2) (N-t-n2)2(N+2m2) (N+m2) (N+m 1+m2) 

5.4 Minimum Variance Unbiased Estimation For a B1PSD. 

Theorem 5.2: The parametric functions g and h given in (4.1) are 

not MT/U estimable if U1 is bounded on the right. 

Proof: Let U1 be bounded on the right, and let us assume, if 

possible, that an MVU estimator for g exists. This means there 

exists a function M(Z 1,Z2), of the complete sufficient statistics 

and Z2, such that 

(5.20) 

or 

(5.21) 

E[M(Z 1,22)] = g 

Y. M(Z1,Z2)b(Z1,z2,N)gZ1hZ2/? = g 
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from which 

(5.22) M(z1,z2)b(z1,z2,N)gZ1hZ2 = 91  

But from (5.2), relation (5.22) can be written as 

(5.23) M(Z i ,z2)b(z 1 ,z2 ,N)gZ1hZ2 = b(Z 1,Z2,N)gZ1+lhZ2 

where the summations on both sides of (5.23) are taken over all 

(z 1,z2) E UN. 

Since M(Z 1,Z2) and b(z 1,z2 ,N) are independent of 01 and 02, 

the polynomials on the two sides of (5.23) cannot be equal for any 

function g. Accordingly, the function g cannot have an MVU estimator, 

and the assumption is not valid. 

Similarly, the function h cannot have an MVU estimator if U1 

is bounded. 

The following theorem provides the necessary and sufficient 

conditions for the existence of an MVU estimator of any real valued 

parametric function k(0 1,o2). 

Theorem 5.3: The necessary and sufficient conditions for k(o 1,o2) 

to be MVU estimable on the basis of a random sample of size N taken 

from the BZIPSD are that k(0 1,02).? is analytic at the origin, 

and that U1 c UN , where U and UN are the index sets of the functions 

k(e 1'62 )-fN and / respectively. Also, when k(o1,o2) is MVU 

estimable, its MVU estimator l(Z 1,Z2 ,N) is given by 
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1 (Z1 ,Z2 ,N) = 

C(Z1 ,Z2 ,N) 

2, (Z1 ,Z2 ,N) (Z1 ,Z2) E 

0 otherwise 

Proof: Condition is necessary. 

Let k(e 1,e2) be MVTJ estimable for some N, i.e. there exists a 

function l(Z1 ,Z2 ,N) of the complete and sufficient statistics (Z1 ,Z2) 

such that 

(5.24) E(l(Z 1)22 ,N)} = k(01 ,02) 

Thus 

(5.25) l(Z 1 ,Z2 ,Z.7)b(z 1)z2 ,N)gZ1hZ2 = 

UN 

and k(e 1,e 2). must possess an expansion in powers of g and z, i.e. 

it must be analytic at the origin. Let 

(5.26) k(e 1,e2). = Y. 1 C(z1,z2,N)gZ1hZ2 
N 

Equating (5.26) with the relation (5.25), we have 

(5.27) Z.(Z 1)Z ,N)b(Z 1 ,Z2 ,N)gZ1hZ2 = X C(Z 1 ,Z2 ,N)gZ1hZ2 
UN N 

where C(Z 1 ,Z2 ,N) 0 0 for (Z 1 ,Z2) E U. 

Now, for every (Z1,Z2) E U, b(Z 1 ,Z2 ,N) must be > 0, i.e. 

(Z1,Z2) E UN which implies that UcUN. 

To get the expression of the NV(J estimator l(Z 1 ,Z2 ,N) of k(o1,e2) 
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we equate the coefficients of gZ1hZ2 in both sides of (5.27) for all 

(Z1-'Z2) ( UN - Thus, the Will estimator for k(0 1 ,o2) becomes 

(5.28) l(Z 1 ,Z2 ,N) = 

c(Z 1,z 2 ,N) * 

b(Z 1,Z2 ,N) (Z 1,Z2) E UN 

0 otherwise 

Condition is sufficient. 

Let U C UN and let k(e 1 ,O 2).f be analytic at the origin. 

Expanding Me 1'62 )-fN in powers of g and h, we get 

k(01,02).? = C(z 1,z2,N)gZ1hZ2 

UN 

or 

C(Z ,Z,N) qZ1hZ2 

Me l le 1 2) - * b(Z,Z2,N) b(z1,z2,lv) fN 

= l(Z 1 ,Z2 ,N)•P(Z 1=z 1 ,Z2=z2) 

UN 

, 

which implies that l(Z 1 ,Z2 ,N) is an unbiased estimator for k(0 1 ,e 2). 

Since l(Z 1 ,Z2 ,N) is a function of the joint complete sufficient 

statistics (Z 1 ,Z2), it must be the MVII estimator for k(0 1 ,02 ). 

Corollary 5.1. The parametric function ga1ha2/3, where all a2 are 

any non-negative integers and a3 is a positive integer, is MT/U 

estimable for all sample sizes N a3 if and only if UN C U, and 
a3 

a, a 
in that case, the IvIVU estimator for g h /y is 
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b(Z 1-a1 ,Z2-a2 ,N-a3)/b(Z 1,Z2 ,N) for all (Z 1,Z 2) E 
N-a3 

Corollary 5.2. If r1 and r2 are non-negative integers, then from 

Corollary (5.1), the MT/U estimator for the probability p(x-r 1 ,y=r2) 
b(Z1-r 1,Z2-r2 ,N-l) 

is a(r1,r2)  b(Z 1,Z2 ,N) 

5.5 Minimum Variance Unbiased Estimation for Some BNPSD. 

5.5.1 Minimum Variance Unbiased Estimation for the GDPD. 

Let (x,Y), i = 1,2,...,N be a random sample taken from the 
11 

GDPD defined by (4.11.a). We have shown that the unbiased estimators 

for a and 02 derived by the method of M.L. are given by (S.11.c) 

and (5.11.d) as 

(5.29) 

(5.30) 

(N4m)Z/N 

1 - N+m1Z1-f,n2Z2 

(N-1in2)z/N 

02 - N-I-m1Z1+m2Z2 

In fact, these unbiased estimators are functions of the complete and 

sufficient statistics (Z 1 ,Z2 ), and, by the uniqueness theorem, they 

must be the Mvii estimators for 01 and 02 respectively. Moreover, 

the relations (5.14), (5.18) and (5.19) can be used trivially to 

derive the variances and the covariances of the MVU estimators 

and 

We shall now use theorem (5.2) to find MV[J estimator for the 

parametric function 
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a b c0 1+d0 2 
k(e 1 ,e 2) = 0102e 

51 

where a, b are non-negative integers, and c, d are any real numbers. 

From (5.28), the NVU estimator is given by 1 = C(Z 1 ,Z2 ,N)/b(Z 1 ,Z2 ,N), 

where b(Z 1,Z2 ,N) is defined by (4.9), and C(Z 1 ,Z2 ,N) is the 

coefficient of gZ1hZ2 in the bivariate Lagrange expansion of the 

function 

(5.31) a b 01(N+c)+02 (N-Fd) 
= k(0 1 ,0 2).f = 

which is given as 

(5.32) 

qZihZ2 zi_1z2-i [ z1 z2   
= 01 0 Lxi x2 96 1 H2 

+ x 1 01 (x 2) 0 W + X Z2• (X ZI)q (o] 

where x1 = 01g' and x2 = 

01=02=0 

and the functions g, h are the parametric functions of the GDPD and 

are given in (4.U.b). Thus, 

(Z 1-1)!(Z 2- 1) !(NfmlZl+m2Z2)z1_a_l(f+d+mlzi+m2z2)z2_1[ 

1= 
N(N+milin2Z2)Z12_l (Z 1_a_1) 1 (Z-h-1)! 

(5.33) 

+ m1Z1 2 2 (N+c) + mZ(N+d) + 
(Z 1-a) 

a(N+d+in 1Z1) (N+c+m 1Z1-Fm2Z2) 

b(N+c+inZ)(N+d+mZ+mZ) 

+ (Z2-b) + (Z1-a)(Z2-b) 
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5.5.2 Minimum Variance Unbiased Estimation for the GBNBD. 

Based upon a random sample of size N taken from the GBNBD, 

whose probability distribution function is given by (4.11.b), and on 

using equations (5.5) and (5.6), the M.L. estimators for 01 and 

are given respectively as 

A -1 
01 = Z1(nN+ 1Z1+ 2Z2) 

(5.34) 

§ 2 = Z 2 (nN+1Z1-l-2Z2)-' 

As can be seen, the M.L. estimators are functions of the complete 

and sufficient statistics (Z 1,Z2),, but they are not unbiased. The 

amount of biases are unobtainable by direct calculation, and instead 

we shall derive the MVTJ estimator for a real valued parametric 

function k(0 1,02) of the parameters 01 and 02 of the GBNBD, using 

theorem (5.2). 

Let k(01,02) = e'be12 , where and are non-negative integers. 

Again we shall use the bivariate Lagrange expansion formula (5.32) 

to expand the function 4 = k(0 1,02).f1" = 8101(l_O 1_O 2YV, under 

the transformations x1 = 01g 1 and X2 = 02h 1, where the functions 

g and h are the parametric functions of the GBNBD given in (4.12.b) 

Utilizing the formula 

Zl-1ZZ-1 [0a0b(100) -c ] (Z 1-1)!(Z 2-1)! (c+Z1+Z2-a-b-3) 

01 02, 01=02=0 (Z 1-a-l)(Z2-b-1) (c-l) 

one can show that the MVU estimator l(Z 1,Z2 ,N) for k(01,02) = e'bo2 
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is given as 

(5.35) 

l(Z 1 ,Z 2 ,N) = 

Z 1 :z 
nN(Z 1_Il) I (Z 2 y2) Ir(nN+ 1Z1+ 2Z2) 1i_ (-1) 

Z1 2: Y1, Z2 

0 otherwise 

As may be realized from the last section of this chapter, our 

search for an MVU estimator of a parametric function was limited to 

functions which are polynomials of 01 and °2' and these are in fact 

the simplest form of parametric functions. It is worth trying to 

characterize the class of MV[J estimable parametric functions, and 

different forms of k(0 1,0 2), rather than the polynomial case, should 

be considered, although we expect the expressions of the MVII 

estimators to be very complicated. 



APPENDIX I 

PROVING THE NEGATIVE DEFINITESS OF THE 

MATRICES OF SECOND ORDER PARTIAL DERIVATIVES 

OF THE LOG LIKELIHOOD FUNCTION FOR THE GPD AND THE GNBD 

(I-A). We shall prove that for the GPD the matrix 

2 log  92 log L 

DXJ x1x2 

is negative definite. 

Since 

and 

2 log £  

- x1x2 
log I.  
2 A1=1 

A2X2 

log  n+ n (-l)  
A1 = -n + 7< 5 x=O A1+X2x 

2 log L_ DXJ 1X1 
n 7< (x-l)  

2 2 +  
x=O (x1+x2x) 2J 

1 

lop, - nx[-x + x(x-l) 
- xO 

2 log £ k nx  = - x(x-1)   2 < 

x=O (X 1+x2x) 

2 log £ k = - PX  2(x-i) 1x=O  (Al+xA2)2i < 0 
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Thus 

k xl) 2(   Ff k 7< IAI =- V fl S S -  t + (s-i) 2) 1 n y2(y-l) 1 
A1 x° (1+2x) x=O (1±2x) Y=O ' 

( 1< 2 
I fl x(x-1)  ) 
i1 X .. 2 ' 
Lx=O (A1-i-A2x) ) 

fl 7< n 
Al 72-  A 2 

A1 x=O (A 1+A2s) 

+ [(^•I+^2X) _1 2 (y_i) n n  5s-l)y(y-l)  
A A 2A A 2j 

X7J (A1+A2x) (A1+A2y) 

By the Cauchy Schwartz inequality, the double fold summation is 

non-negative. Thus A is positive, and hence the matrix of the second 

order partial derivatives of the log likelihood function is negative 

definite. 

(1_B). In the case of the GNBD, we find 

2 log £  
a-

N nN+(-l)Nx = N(n+c) 
 <0 

0 (1-0) 2 0 (n+(-1)x) 

( 2 logE N N 1-

2 ?2 l*9 1  
n j i=1 j=1 (n+x-j) 

71 
2<0 
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[ 2 loL] - iv < 0, 
0n * —  

1-0 

Now 

where ( 

lvi = 

means ( 

n=n 

2 log L D2 log I [2 log L]21 
36 2 An 2 &0n 

- 0=0 

n=n 

2— —2 - - N 
=  N x(n+x) 1 -  x  + 

n202(n+(-1) n2 (n+(-1))(n+) N i=l j=l (n+x_j) 2 

One can easily see that lvi > 0 if x 1. We feel that 

I VI > 0 for all values of x, but are unable to prove it. We hope 

that someone will be able to establish this result for the uniqueness 

of the M.L. estimators 



APPENDIX II 

LEMMA ON THE ASYMPTOTIC BIASES AND COVARIANCES 

FOR THE M.L. ESTIMATORS 

We shall derive the first order terms in the biases and covariances 

of the M.L. estimators, when the parent population depends on two 

unknown parameters, to be estimated. The derivation of these asymptotic 

moments was given by Haldane (29), and was generalized to the multi-

parameter case by Shenton and Bowman (75). The expressions for the 

biases of the M.L. estimators derived by Haldane are similar to those 

obtained by Shenton and Wallington (70). 

Consider a sample of N observations falling in m > 3 classes and 

drawn from a population in which the probability of the rth class is 

where P = r1 ,x2) is a known function depending on two parameters 

A1 and A, to be estimated. 

Symbols: 

(1) Let 

h1 = and h2 =  X2 

where and A2 are the M.L. estimators for X and A2 respectively. 

We shall denote the biases of and A2 by b1() and b2 respectively. 

Thus 

b1(1) =E(A 1-A 1) 

= 

(2) Cik - 
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l,k = 0,1,2,... 
l+kO 
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We shall denote Pr by ar . 

(3) Let Zr = - ar , where is the frequency in the rth class. 

It is known that 

E(Z) = 0, E(Z) = N 'a(l_ar), and E(Z Z ) = -N- 'a a ° 
rs rs r  

Expanding P = P(1)2), by using the bivariate Taylor's expansion 

given in Chapter I, we have 

= ar + c10h1 + c01 h2 + + c11h1h2 + 2 02 h 2 3.+ 4 c30h+ 

Differentiating P partially w.r.t. and 2 respectively, we haveap 

(4) Let 

(*) 

1 2 
C10 +c20h1+c11h2 +c 30h1 + 

1 

r 1 2 
- coi +CO2h2 + c llh l + c03h + 

(p ., (p 
7-, - ii rç 2•' 

L p 
r .r •z, 

p 2p I rI  r  
p ,ij = X P 1 A 

r r c - 

U DP S   (:1 [ r'I 
1_a P u+sl A. 

r 1-
r 

so that p0 = 1, and p1 = P  Also, let 
ii ii S i, 

c,i,j = 1,2 

u,s = 0,1,2,... 
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Z jp S k 
u,s v  r  I r f r I  
T 
k,ii L u+s+k AJ AXJ 

k = 0,1,2,... . 

The necessary conditions for maximizing n r log Pr are 

1 DP r 
0 

("-3) 

aP 
1 r 

L c-0 
r r Pr 2 

The first of equations (11-3) may be written as 

1(1+a- 'z )(c 10+c20h1+c 11h2+½c 30h-i-. . 

("-4) 

+cola lh2+½ó2oha l+ciia lhih2+½co2a 1h+...) l = 0 

Since all the terms after the first term in the expression of Pr are 

numerically less than ar, the denominator in (11-4) can be expanded as 

follows: 

(l+c 10a 1h1+c01a 1h2+. 

1_(cloa lhl+cola; lh2+½c2oa 1h+clla 17jlh2+½co 2a;1h+...) 

+ (c 10a 'h i+c01a 1h2+.. )2 ... 

Thus substituting the last expression in equation (11-4) and collecting 

2 2 
the coefficients of h1, h2, h1, h1h2 and h2, we get 



- 64 - 

(1+a 1Z ) [cio_(c0al_c a_ 1_c )h 20 )h 1_(c 10c0111  

(II.5,a) 

+ (cOa2_cioc2oa;14c)h2+(2c230 1 10ca2_3cca1_cca_1+c 21 )hh 

-2 1 + (ci0ciar _ 10c20a;1_c01c11a 1fc12)7j+...] = 0 

By symmetry, one can write the second of equations (11-3) 

(l+a 1Z ) {c0 _(c ia;'_co2 )h2-(c01c10a 1_c 11 )h 1 
(II-5.b) r 1  

as 

3 -23 -ii 2 2 -2 -1 -1 
+ (coiar c01c02a -f1c03)h2+(2c01c10a _2c010 11ar _C iOCO2ar +c12)h1h2 

2 21 
+ F21 = 0 

Taking the summation over all classes in equations (II.5.a) and (II.5.b), 

and neglecting terms of order N 2 and of higher orders, we get 

1,0 1 'L [ 2,0 1,0 )h 
o,ii + 11h1•P 12h2) +er011 -t022 

(11.6. a) 

+ (T1'1 0,0  3 2+ (P 3'0- -P 11 )h - (p 11 l;2 
ii 2 1 

and 

+O(N - )=0 

- (2P 1-2P112-P211 )1 1h2 

- P222-P212)hJ 

-t 0,1 11 + - (P21h1+P22h2) •[(T:h_T 0 10 l)hl + 

- (P3- P2 ,22  - (2P 11 2-2P212-p122)hh 

- (Ph '- P111-P112)h] + Q(J(3/2) = Q 

respectively. 

Thus as a first approximation we have 
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+ P12h2 - T'1 •:H o(N 1) = 0 11 1 

P h + P h T 0,1 + 0(N 1) = 0 
21 1 22 2 0,11 

or 

1,0 0,1 
T011 22 - T011 12 + 0(N') 

- Ill 

0,1 1,0 
P11 - T0 11P12 

h2 0,11 Ill 

where Ill 

Since 

and similarly 

Thus 

and 

Moreover 

But 

0 D 2  
11L22 L12 

1,0 - ' 

- L3apr  r r 

E(t 1'0 ) N 1 I 8P —fl a 1E(Z ) = 0 
0,11 qX r r 

E(T °'1 ) = 0 
0,11 

E(h 1) = 0 + 

E(h2) = 0 + 0(N ') 

E(h) = JIj'[P 2 12 E(T 10 )2-2pp E(T1'0 o' 
0,11 22 0,11 0,11 

+ P2E(T°'1 )2} + o(N 2) 
0,11 
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1,0 2 r a1Z )2 
(T0,11) = I2. r rJ 

= 

r 

gp 2 (] az + 2 P P 
r S 

rL ZX DA  z r  

2 .P P 
1,0 2 f r 2a (1-a ) ,. r sl E(T011) N 1[ r r - L 

ap 2 2 

= N1[ [i5J an - [ •J ] 
= N 1P11 . 

And similarly, one can show that 

Finally 

= N 1P22 

T 
0,1 T 1,0 . N -1 

, = 
0,11 0,11 12 

E(h) -ff+O(i( 2) 

and one can easily show that 

("-7) 
E(h) P11 Nut +0(N2) 

12 
E(h 1h2) - NIIF 0(N-2) 

The expressions in (11-7) are well known and usually obtained as the 

elements in the inverse matrix of Fisher's determinant of information. 
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To find E(h 1) and E(h2) to order N 1 we shall use the approxima-

tions given in (11-7). Now, (11-6-a) may be written as 

1 
, 1,0 -P h +(P1'2-½P _P2,)h_( 1 T0 ,,1 1_T0 1 0 11 )h 2 o( 1 2 r 3/2) 0,11 2 11 2,22 12  

_(p3 o p )h -(2p2 -2P )h 2 o 1,0 11 11 2 1,11 1 11 2,11 1,12 2 011T022 
(11-8) 

k1 k2 

where 10 represents a term of order 1 , k1 and I terms of order N 2 and 

k2 a term of order N. Hence 

E(h 1) = P 2 [(P3'0- -P 11 ){E(h1t1'° )-P E(h 1h U 2)} 11 2 1 0,11 12 

(11-9) 

+ (2P2'1-P 2P ){E(h-r 1'0 )-P E(h)}-E(t2 '0 t1 '0 
11 2,11 1,12 0,11 12 0,11 03- 11 

+ E'('' 0 T ''° )-P P E(h )+p {E(h 'r')-E(hT' 2) 
0,11 0,22 12 11 2 12 2 1 2  

+ P11 ( 11 P 2 222_P212)E(h)_p11E(h2 Ir :1)+p11E(z2T00 )]+o(2(2) 
1,11 

Now the following expectations can be obtained after some mani-

pulation for the definitions given in (4). 

E(h 1'r' 0 ) = 1 
,11 

E(h T 1,0 = 

2 0,11 

2,0 T 1,0 . = N 1P3'0 
/ 0,11 0,11 11 

E(T 1 '° T1'0 ) = N 1P 
0,11 0,22 1,11 

E(h 2r2'0 ) = N_'111'(P11P1—P p3 11 O\ 
11 12 0,11 
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E(hT 1 ) = N 'I -TI 1 (P 11P2 2 o ,22 11 -P12p111 ) 

E(h2-r1'1 ) = N' III '(P P1 '2-.P P2'1) 
0)11 11 11 12 11 

E(hT0 0 = N 1 111 1 (P1 
2 1 ,1 1 1P2 ,l2121,12 

Substituting the above expressions in (11-9) we get 

P-1 
11 

p -P2 11E(h (P 1)-P12E(h2) = NT  IT P '11 'ii 22 12+P2) 

+ (2P2 '1-P 11 211-2P112)(P11P12-P11P12-P11P12) 

- P30 (PPP)+P 
11 11 22 12 l 

P -P2 ) 
1122 12 

+P P3 12(P _P ll?12 11 1l2 

+ p(p2_ p12.p p2'l' 
11 11 T 2 $22 2 112 11 11 11 12 11 

+P 11112 ,12 1'1 2 '1 + O(N 2) 

or P11E(h1) + P12E(h2) 

- 22 -2P12P1 12+P22P1 
fil 

Similarly, on using equation (11-6-b), we get the following 

expression for h2 . 

-0 '1 D i, LfD21 LT) ,1 0,0 111-P112)h -(t11- 1 ,11 )•O(N_312) 

From the last equation one can show that 

-1 
(11-11) P12E(h1)+F22E(h2) 2N111 [P11P222-2P12P212+P22P211] 
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Solving equations (11-10) and (11-11) simultaneously for E(h 1) 

and E(h2) we have 

E(h 1) = b1( 1) 
-I 

21lII2 [-P22(P22P111-2P12P112-i-P11P122) 

+ P12 (P22P2 11 -2P12P212+P11P222 )] + O(N 2) 

1  
E(h2) = b2 (A2) - III2 [P12(P22P111-2P12P112+P11p122) 

- P11 (P22P2 11 -2P12P2 12+P11P222 )] + O(N 2) 

which are the biases of the M.L. estimators obtained by Shenton and 

Wallington (70). 
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