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Abstract

A novel approach to hybrid modeling of an industrial Xylene distillation column
that uses physical and neural network based techniques is proposed in this thesis.

The physically based dynamic model is developed using a commercial simulator,
HYSYS™ (v.1.1). The development of the physical model involves rigorous
thermodynamics, and a first principle representation of the column’s equipment. An
iterative procedure is used to tune the dynamic model that is initialized using the steady-
state model and benchmarked using plant data. The physical model captures the column’s
dynamic changes and benchmarks and upper limit values, based on a performance index
(I.sim), are recommended to evaluate the accuracy of the physical model.

™ (v.3.2) are developed

Artificial neural network models using Process Insights
for the column. The optimum topologies for the ANN models are selected using an
iterative procedure that involves a number of quantitative selection criteria. The ANN
models are identified using transient plant data (ANN.t models), nominal data (ANN.n
models). Performance indices (Lann) that represent the prediction accuracy of an ANN
are developed independent of the Lsim values developed for the physical model.
Comparisons between the physical model and ANN models shows that the ANN.t models
predicted the plant dynamic changes more accurately than the physical model and ANN.n
models. The lack of excitation in the training data of the ANN.n models proves to be
significant in the model’s inability to predict the plant’s transient response. However,
using the benchmarked physical model the plant’s transient changes are simulated. A
hybrid approach is incorporated that involves re-training the ANN using both simulated

and nominal data (ANN.n+s models).

The ANN.n+s models prediction of plant transient data are compared to the
ANN.t and ANN.n models predictions and the result verifies that the hybrid strategy
proved to be a very accurate modeling strategy. The hybrid modeling technique is

applied successfully to the prediction of the column’s condenser level.
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Chapter 1

Introduction

In the chemical process industries, distillation is the most widely used separation
technique when high purity components are required. To comply with stringent quality
requirements, it is estimated that distillation columns consume 3 % of the total energy
usage in the US alone (Humphrey et al., 1991). Distillation control can be onerous
because of the following well-known process characteristics:

1. Inherent non-linearity of columns due to production of high purity products

2. Severe control loop interaction for dual composition control

3. Large upsets in feed flow rate and feed composition disturbances causing

variability in valued products

4. Infrequent measurement of product quality.

These attributes have sparked an increasing amount of interest in developing
suitable control methodologies. One of the most recently studied control strategies is the
use of model predictive control (MPC). Model predictive control is a technique, which
minimize future output deviations from the desired setpoint, while taking into account for
the sequence of control actions required to achieve a cost function objective. This
method may seem alluring, but there has not been an overwhelming acceptance by the
chemical process industry. The main concern is that its success depends substantially on
the quality of the process model used. Traditional approaches in developing a process
model assume a linear approximation approach such as step input résponse models.
Algorithms such as Dynamic Matrix Control (DMC), where a linear description of the
process is assumed, have shown major cost benefits on many industrial systems (Qin and

Bodgwell, 1997). However, for distillation where the non-linear behavior (changes in
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input variables do not produce proportional changes in the output variable) is an inherent
characteristic and a linear model based control algorithm can lead to unacceptable
performance. Obtaining a suitable non-lipear dynamic model is often the key part of the
effort necessary to implement MPC. Examples of non-linear models are models based on
engineering first principles or artificial neural networks (ANN).

First principle modeling is a mechanistic approach that involves representing the
physical behavior of an operating process by non-linear equations. Physical modeling
methods tend to be computationally demanding and require simplifying assumptions that
limit their accuracy. Furthermore, these models need to be validated with plant data,
which is not a trivial task. Some of these restrictions are limited to the use of physical
models to represent only steady-state behavior of chemical processes. However. recent
advances in software and computational speed make it possible to develop dynamic
models using the same knowledge base, the underlying thermodynamics and physics of
the steady-state process models. An example of a commercial simulator that combines
steady-state and dynamic simulation in an integrated environment is known as HYSYS™

from Hyprotech Ltd.

Dynamic simulators are applied to problems such as design, training, and
operations (Fisher et al, 1985; Marquardt, 1991; Longwell, 1993; Vogel, 1991 Tyreus and
Mahoney (1994) provide a good overview. In general, most research studies focus on
using dynamic simulators to facilitate a better understanding of process dynamic behavior
(Dolph, 1995). Other researchers employ dynamic simulations to obtain process data that
provide insight into the interaction between inputs and outputs of a process for other
empirical techniques (Ramchandran and Rhinehart, 1994). Dynamic simulators for
physical modeling of distillation columns employ a rigorous stage by stage model that
solve component mass and energy balances, liquid flow dynamics, and pressure
dynamics on each stage (Luyben, 1992). There are some disadvantages to developing
such process models. Physical models that try to account for certain phenomenological

details tend to become rigorous and computationally intensive. Hence, few dynamic
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simulations of distillation columns validated against industrial data are available in the
literature; which is an issue that is addressed in this thesis.

An alternative approach to physical modeling is the use of empirical (based on
experimental data) models, which rely on process data to develop a relationship between
process inputs and outputs. Artificial Neural Networks (ANN) show great promise for
such modeling tasks. In contrast to conventional statistical techniques, ANN’s use no
explicitly specified “knowledge” or procedure to analyze the process data. They are
simply “trained” from a representation set of data. In general ANN’s require less prior
knowledge of the process than physical modeling methods. ANN’s consist of
interconnected non-linear activation functions that learn by manipulating its internal
parameters to predict a set of outputs based on specified inputs. ANN’s have the
advantage of high accuracy and the ability to adapt to changing process conditions. The
fast execution times of these models make them ideal for real-time process optimization.
Their universal approximation capabilities (Hornik et. al., 1989) make ANN good
candidates for modeling nonlinear chemical process. The major limitation of these
models is their prediction accuracy is only as good as the data used to train the models
(Baratti et al., 1995). Therefore, a model developed with process data that do not span a

wide operating region may have limited utility.

Bhat et al. (1990) explains the use of ANN’s in the chemical process industry and
provide three case studies: a steady state reactor, a dynamic pH stirred tank, and
interpretation of biosensor data. MacMurray and Himmelblau ( 1995) provide an
industrial application of ANN modeling to a packed distillation tower. For a good
overview of applications and methodologies of ANN for process modeling and control of
chemical processes refer to Morris et al. (1994); Astrom and McAvoy (1992); Thibault
and Grandjean (1991). Bhat and McAvoy (1990) applied ANN’s to model the dynamic
response of pH in a CSTR. Willis et al. (1990) discusses the applicability of ANN’s in
process control of chemical processes, specifically, ANN’s are successfully applied to
distillation columns. ANN’s are applied to the identification of a packed distillation
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column where the ANN model is used in an MPC structure (MacMurray and
Himmelblau, 1995) and for on-line monitoring of industrial columns (Baratti et al.
(1995). ANN’s are also used to control a distillation column in a multivariable MPC
framework using a dynamic simulation model (Willis et al, 1990) and pilot plants
(MacMurray and Himmelblau, 1995). ANN model development of both high purity
industrial columns and pilot columns (e.g. Willis et al. 1992) is limited to the use of
steady state simulation for developing training data sets (Ramchandran and Rhinehart,
1995). However, recently there are cases where dynamic simulators are used (e.g.
Basualdo and Ceccatto (1995), Willis et al. (1990), Munsif (1997)). The motivation for
studying ANN models for distillation columns stems from the fact that most of the
research focuses on identifying models from steady state simulation case studies. There
has been little work on identification of dynamic ANN using actual plant operating data
of distillation columns; an issue which is addressed in this thesis. Furthermore, there are
many readily available software companies that are successfully commercializing the

ANN technique such as Process Insights from Pavilion Technologies Inc.

With the increasing number of ANN applications in chemical process industries,
engineers have been trying to create a suitable working environment for neural networks
and physical models. [nadvertently, the two modeling methods are indirectly competing
with one another in a very lucrative market. Therefore, an alternative approach to
modeling that combines neural networks and first principle modeling, known as hybrid
modeling, would indeed attract the attention of many potential users and vendors such as
Hyprotech and Pavilion Technologies. In the literature there are few reported uses of
hybrid modeling. For example, artificial neural nets are simply used to empirically
model a simulation or mechanistic model, to perform a data analysis to improve physical
models, or sometimes to put combinations of models (empirical models in series or in
parallel with physical models) together for optimization purposes (Martin and Bhat,
1997). Psichogios and Ungar (1991) use a hybrid model to examine a fed batch
bioreactor. Pulley et al. (1996) investigated using a neural network trained on process
measurements and data derived from a non-linear mechanistic mode] as inputs to predict
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polymer product quality. Pottemann and Seborg (1995) proposed a strategy for forcing
ANN models to agree with know steady-state relationships or data. However, these
examples are proprietary and there are very few publications of these types of hybrid
techniques. |

In general, there is a lack of published hybrid modeling case studies because
artificial neural networks and physical models are quite different. Physical models
represent engineering knowledge in the form of material and energy balance equations,
whereas ANN’s do not require @ priori knowledge of the system and are based on a
simple architecture that is able to “generalize” predictions if the ANN is well trained.
Hence, ANN’s do require knowledge in the form of voluminous excited data whereas
physical models are fitted to a design condition and are used to extrapolate beyond
regions they are intended to model because they capture the physics of the actual process.
However, ANN’s knowledge of the process is limited to data and cannot extrapolate to
regions beyond the range of data they were intended to model. Hence, the two
technologies are indeed different but are viewed as complementary because the physical
model can be used to provide knowledge in the form of training data to extrapolate the
ANN model beyond normal operating regions.

The published studies mentioned above have one or more of the following
limitations:

1. Very little published comparisons of dynamic simulation models to actual plant
data.

2. Most of the identification data to build a neural network model of a distillation
column is limited to industrial steady state or dynamic simulation data.

3. There are very few comparisons of artificial neural network and physxcal models
validated with actual plant operating data.

4. The reported examples of hybrid modeling approaches consist of using artificial
neural networks to make models of only computer simulation data (ANN models
of physical models). There is little application of physical modeling to provide
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additional stimulated data for the development of ANN models from industrial
data.

The focus of this research is to address these issues using an industrial case study
involving a distillation column, which is part of a refinery benzene-toluene-xylene (BTX)
fractionation train. The column is a Xxylene splitter that separates Cg from Cg.
components and is known as TW252. TW252 is located in the Japan Energy Corporation
Refinery in Mizushima, Japan. Operating data indicative of various operating periods are
collected from the distributed control system (DCS) for nominal, step response, and feed

composition disturbance conditions.

The research objectives are to:
1. Build and validate a first principle model of TW252 using plant step response
data.

[

Build and validate an artificial neural network model using plant step response

data and nominal operating data.

3. Compare the two modeling approaches using a performance index that determines
which technique is more accurate in predicting actual plant data.

4. Combine the simulated data that represents a wider range of operating conditions,

such as step response and disturbance data obtained from the physical model, with

nominal plant steady-state data to train ANN models to interpolate and

extrapolate with greater accuracy beyond normal operating regions.

The remainder of the thesis is organized such that each chapter addresses a
specific part of the objectives outlined above. Chapter 2 describes in detail the industrial
distillation column studied and actual process operating data collected. The development
of a physically based dynamic model based on first principles using a commercial
simulation package, HYSYS™, is described in Chapter 3. In Chapter 4, artificial neural
network models are developed for TW252 internal tray temperatures, distillate

compositions, levels, and the plant inverse from the actual plant operating data using a
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commercial ANN software package, Process Insights™, from Pavilion Technologies.
Furthermore a comparison is made to the HYSYS™ model predictions. The performance
of these two modeling techniques are compared and analyzed, setting the foundation for
the combined modeling strategy introduced in Chapter 5. An application of an integrated
model that uses HYSYS™ to generate supplemental simulated data to broaden the range
of applicability of a nominally trained ANN model using Process Insights™™ is presented
in Chapter 5. The thesis concludes with a summary and suggestions for future research in
Chapter 6.



Chapter 2

Process Description and Data Acquisition

A basic understanding of the industrial process is required in order to develop
reliable high fidelity physical and neural network models that are accurate representations
of the process. In particular, physically based models require the underlying knowledge
of the inherent dynamic characteristics, the actual equipment specifications and thermo-
physical properties to ensure that the chemistry and physics of the process are modeled
correctly. On the other hand, ANN’s require little understanding of the process but need
the information from the process in the form of “excited” data. Excited data usually
contains information on the dynamics of the process, therefore the amount of dynamic
information in the identification of an ANN is very important. In this chapter, the
industrial distillation column and the plant data acquired from various plant tests and

nominal operation are described in detail.

2.1 Xylene Splitter

The No. 2 xylene splitter (tower TW252 is the middle distillation column in the
benzene-toluene-xylene (BTX) fractionation unit at the Japan Energy Corporation’s
hdizush@;ga Oil Refinery. The feed to TW252 is the bottom product of an upstream tower
(TW251). Therefore, the operation of this column depends on the upstream conditions.
The TW252 feed enters as a saturated liquid at a design temperature of-around 160 °C
and contains four chemical components as indicated in Table A.l in Appendix A. The
xylene splitter essentially separates the feedstock made up of traces of ethyl benzene,
meta (m), para (p), ortho (o) xylene, and Cq+ components into a high purity m-p-o xylene
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distillate and a Cy+ component bottom product. An important product specification is a
Coy+ composition in the distillate of less than the specification of 1 wt %. Hence, the
column employs a one-point composition control strategy to monitor the distillate Co.
contaminant and maintain it below 1 wt. % The column, TW252, has a diameter of 3.25
m with 34 trays, a horizontal thermosiphon reboiler, and overall condenser that subcools
the reflux. Note, the trays are numbered from the bottom to the top. The equipment
specifications for the reboiler and condenser and total column volume were determined
from the internal material flows and are described in Chapter 3. The main process
variables and the nominal steady-state conditions for TW?252 are listed in Table 2.1. The
process flow diagram (PFD) is given in Figure 2.1.

Table 2.1 Key process variables for TW252
Nominal 1 Nominal 2 Nominal 3

Tag

Name Tag Description Units N.1 N.2 N.3

F284 Feed Flowrate m'/h 39.16 34.33 39.73
F256 Reflux Flow Rate m’/h 43.79 35.40 40.51
F267 Steam Flow Rate ton/h 11.37 9.87 10.98
F271 Bottoms Flow Rate m’/h 14.90 12.91 11.91
F257 Distillate Flow Rate (rotometer) m*/h 24.75 21.91 23.01
Y280 Feed Temperature °C 161.42 160.83 160.09
Y297 Tray 17 Temperature °C 136.09 139.47 140.81
Y255 Tray 27 Temperature °C 131.55 135.77 137.02
Y282 Top tray Temperature °C 128.65 133.57 134.71
Y256 Exit Condenser Temperature °C 49.48 40.03 45.53
Y257 Tray 1 Temperature °C 163.30 166.92 182.83
Y284 Bottoms Temperature °C 169.01 172.54 173.58
L253 Bottoms Level % 55.01 60.01 59.97
L254 Condenser Level % 58.03 55.00 54.98
P252 Condenser Pressure mmHg 550.55 629.99 650.00
A254 Cy: Concentration in Distillate wt. % 0.78 0.70 0.59
A255 Ethyl Benzene in Distillate wt. % 15.87 16.05 14.89
A256 M/P-Xylene in Distillate wt. % 58.75 57.67 58.01
A257 O-Xylene in Distillate wt. % 25.88 25.46 26.38
A264 Cy. Concentration in Feed wt. % 36.87 34.00 33.94
A265 Ethyl Benzene Concentration Feed wt. % 10.19 10.30 9.57
A266 M/P-Xylene Concentration Feed wt. % 38.84 37.87 38.16

A267 O-Xylene Concentration Feed wt. % 18.36 17.84 18.34
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2.2 Control Strategy
The column is controlled by several single input and single output (SISO)

temperature and pressure control loops as shown on the simplified process flow diagram
(PFD) in Figure 2.1.

Qcond- ' a l

P252

N2

L254

= F257

Figure 2.1: TW252 PFD

TW252 contains five degrees of freedom; therefore there are five manipulated

flow rates and five controlled variables as shown in Table 2.2:

Table 2.2: TW252 control loops

Loop1 Loop2 Loop3 Loop4 Loop$s
Manipulated F256 F267 F257 F271  VentN,
Controlled Y255 Y284 L254 L253 P252
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From the figure and table, the distillate holdup, manipulating the distillate flow
rate, F257, controls L254 (condenser liquid level). Similarly, the bottom liquid level,
L253, is controlled by manipulating the bottom production rate, F271. The column
pressure at the top of tower, P252, is contr;)lled by manipulating the condensate flow rate,
Vent, (no measurable tag name associated with this variable) and the low-pressure
nitrogen, N, flow rate to the condenser. Therefore, the column control scheme reduces
to a 2X2-composition control problem. Typically, tray temperatures are usually used as a
simple means to infer compositions. Hence, for TW252, the composition both the
distillate and bottoms are inferred from two tray temperatures, which are cascaded to the

reflux flow rate, F256 and steam flow rate, F267.

The current strategy is to control the temperature at stage 27, Y255, by
manipulating a slave reflux flow controller, F256. However, due to unsatisfactory
performance the loop is now open and the reflux controller is in the manual mode.
Adjusting the steam flowrate to the reboiler (F267) controls the bottoms temperature
(Y284). The controller settings are listed in Table A.2 of Appendix A.

2.3 Data Collection

Data collection is the most important step in the development of high fidelity
models. The variations in the input/output data and the regions of operation are
important factors in determining if the data is a good representation of process behavior
over a wide range of conditions. In other words, the data must be “rich” with
information. It is critical that the data collected from the process, either through a
Yokogawa DCS (Distributed Control System) or OSI Software Inc., PI data historian, be
accessed before the data is “compressed”. Compressed data or averaged data removes
important information about process behavior. Typically, process data must be collected
over a reasonably long time, which may extend from several weeks to months, in order to

provide information over a wide range of process operations.
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The TW252, process data were collected from data stored in an information
database known as the “Total System” at the Mizushima Oil Refinery. The Total System
acquires data directly from the DCS at three minute sampling intervals without any form
of data compression. Three types of p;:ocess datasets were collected: nominal, step
response tests, and disturbance data. A summary outline of the process data is listed in
Table 2.3.

The datasets are rich in dynamic information and represent both dynamic and
steady state operating conditions. Eight experimental “bump tests” (open and closed loop
tests) were performed on TW252; step changes up and down in the setpoints of Y255
(t.1), P252 (t.2), L254 (t.3 and t.7), F256 (t.4), F257 (t.5), Y284 (t.9), and F267 (t.10).
The input test signal used for all the open and closed loop experiments is shown in Figure
2.2. However, for some tests, only a step up or a step down is allowed because of

possible product specification violations.

Step Up

Step
Down

Figure 2.2: Example of a Test Signal

In Figure 2.1, controllers F256, F267, F257, F271 are slave controllers to
controllers Y255, Y284, 1254, and L253, respectively. Therefore from Table 2.3
datasets t.4, t.5, and t.10 were used to validate the prediction capability of the model
during open loop setpoint response behavior. Datasets t.1, t.2, t.3, t.7, t.8 and t.9 are
conducted for the purpose of evaluating the predication capability of a model during
closed loop setpoint response behavior. Furthermore, dataset t.6 is not included in any
model validation due to its lack of input excitation and was neglected. Incidentally, t.3
was repeated to test the new controller tuning parameters for L254 controller and this
dataset was t.7. The step response datasets (t.1, t.2, t.3, t.4, t.5, and t.9) were assembled
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and labeled as dataset L.t and are plotted in Figures E.1 (a) through (d) with the dataset
statistics tabulated in Table E.1, Appendix E.

2.3.1 Additional Data

In addition to the experimental “bump test” data, a feed composition disturbance
resulting from an upset condition in an upstream crude oil distillation unit was also
collected and labeled as dataset t.8. Dataset t.8 is plotted in Figures E.3 (a) through (d)
with dataset statistics tabulated in Table E.3, Appendix E. Furthermore, nominal datasets
were collected consisting of three very different normal operating conditions as shown in
Table 2.1. Nominal 1 (N.1) dataset consists of six consecutive days of nominal operating
conditions recorded during the month of July 1995. From 7/01/95-7/04/95, the column
was approximately at steady state. However, on 7/05/95, a large change in feed
temperature, Y280, occurred. Nominal 2 (N.2) and 3 (N.3) datasets were deemed to be at
steady state and are indicative of May and June operation, respectively. These nominal
datasets are assembled and labeled as dataset I.n and are plotted in Figures E.2 (a)
through (d) with the dataset statistics tabulated in Table E.2, Appendix E.

2.4 Process Knowledge

It should be noted that seasonal effects have a significant effect on the column’s
operation. The setpoints for temperature and level controllers stay approximately the
same during seasonal changes. However, flow setpoints do differ because lower cooling
water temperatures during winter months reduces reflux temperature (Y256). To keep
the top and bottom temperatures of the column at setpoint conditions, it is necessary to
decrease the reflux flow rate (F256). Furthermore, during winter months the demand for
products is lower, therefore, the feed flow rate (F284) is decreased as a direct result of

lower production rates from upstream units.
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2.5 Summary

In this chapter, an industrial distillation column, TW252, is described. Various
operating data, which included step responses, nominal and disturbance information were
collected from the Mizushima Oil Refinery and summarized.
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Chapter 3

Physical Dynamic Model Development

In order to investigate the predictive capabilities of a dynamic simulation model
for TW252 against plant data, a realistic physically based model is developed. The
model is validated using actual process data to ensure both the steady-state values and
transient responses are closely matched to the step response data collected from the plant

tests outlined in Chapter 2.

3.1 Introduction to HYSYS

Physical models based on first principles and model parameter estimation are the
traditional approaches to developing a physical model. In the past, physical modeling
was computationally demanding and required simplifying assumptions that limited its
fidelity. Furthermore, there were few attempts at rigorously validating the predictive

nature of simulation models.

For complex, multivariable control systems such as distillation, steady-state
techniques have been widely used to develop a physical model for distillation control
evaluation. Steady-state techniques, such as the Relative Gain Array (Bristol, 1966) and
steady-state sensitivity analysis (Tolliver and McCune, 1978), are very effective in
evaluating different control structures (Fruehauf and Mahoney, 1994). However, such
methodologies seem to be incomplete because they only screen out unworkable schemes
and do not provide the engineer an assessment of the control strategies chosen. The lack
of process understanding is one of the fundamental reasons why many industrial columns
still operate in manual mode with very ineffective controls. Hence, there is a need to

develop an engineering tool to improve the methodology for distillation control, design,
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and operability. Dynamic simulation was deemed to be the solution with the

advantages of control system modification, operator training, set-point optimization, and
controller reconfiguration, without actually introducing minor upsets to the process that
may have the potential for loss of profit. -

During the 1970’s steady-state process simulation was time consuming and
required experts to create meaningful simulations. With the increased computational
power and the advent of PC’s, by the mid 1980’s, formulating these simulations became a
less specialized and less time consuming problem. Furthermore, froin the 1980’s on,
simulators were interactive, graphically oriented and entire plants could be built on one
flowsheet in a CAD like environment. With these enhancements, the steady-state
simulation of chemical processes became a common everyday engineering task
(Lawrence, 1996).

In parallel to the steady-state simulation timeline, dynamic simulation modeling
was regarded as highly specialized form of modeling that was very labor intensive
requiring coding and solving differential equations that accurately represented the
dynamics of a process. As a result, this type of simulation was considered amongst the
engineering community as “sacred”. However, today, engineers are taking advantage of
the increased computational power of PC’s and workstations coupled with new and
powerful programming architectures such as Object-Oriented Programming to create
dynamic simulation packages (Fruehauf and Mahoney, 1994).

With today’s technology, dynamic physical models can be built on the same
knowledge base, underlying thermodynamics and physics of the process, as steady-state
models. An example of a commercial software package is HYSYS™ from Hyprotech
Ltd. (Calgary, Canada). HYSYS™ is a rigorous interactive simulator that integrates
steady-state and dynamic applications into one common model based on the same
thermodynamic property package. Figure 3.1 outlines the basic steps to creating a
HYSYS™ simulation model.
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T A T S S L P B P PR A I R
Thermodynamic Property Package

Step#2  Rigorous Dynamic Model

_r

Step #4 Sunulate plant performance m regions

bey 1 t ondition:,

Simulation Data

Figure 3.1: Modeling steps in simulation model development

3.2 Modeling of TW252

To develop a physically based process model of TW252 that realistically predicts
the plant dynamics, a dynamic distillation model is developed using HYSYS™. The
development of a HYSYS model is based both on engineering process knowledge and
judgement. A steady-state model is first developed that solves the differential mass and
energy balances in the simulation as algebraic equations and initializes the dynamic
model. Next, a dynamic model for TW252 is developed that includes the continuity
equations (Appendix C) for mass and energy are written for each tray in the column,

condenser, reboiler, and all integrating controllers.

3.2.1 Dynamic Distillation Stage Model

The dynamic model for a single distillation stage is developed and a schematic is
shown for the nth tray in Figure 3.2. Liquid enters the through the downcomer of the tray
above (Lp+;). Vapor enters the tray from the tray below (V). The i/apor and liquid
completely mix on the tray and the vapor (V,) leaves, in equilibrium with the tray liquid

compositions, and passes through to the tray above. The liquid (L,) flows over the outlet
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weir into the downcomer and to the tray below. The tray may also contain a feed (F),

depending on its location in the column.

Ln+l Vn
A

Vn-[ Ln
Figure 3.2 Distillation tray model

The dynamic model for a single tray contains N¢.; differential material balances,

where N is the number of components in the system:

de, M,

dt = zl.] F + xu»le-l + lel-l Vn-l —x:,n[‘n - y:,n Vn Equa[ion 3I
where: - M, = Material on the n™ tray
X, Vi = liquid and vapor mole fractions

zZi feed composition (mole fraction)

One overall material balance for the nth tray:

M,
dt

=F+L

wot FVaa =L, =V Equation 3.2

One overall energy balance for the nth tray:

L c s
oMy b, + BV, ~EL, R,  Equation3.3
dr
L
dh, ~0
dt
where: h = specific enthalpy (J/mol)
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The hydraulics are accounted for using the Francis Weir Equation:

L,=C;, WLWH" Equation 3.4
where: WL = Weir Length (m)
WH = Weir Height (m)
Co = Heat capacity (J/mol K)

The general vapor-liquid equilibrium equation is given by the following equation and the

generalized model is described in detail in Appendix C:

Equation 3.5

where: Ki = vapor-liquid equilibrium constant

The following assumptions are required in order to solve the dynamic stage model:
1. Single flow pass tray hydraulics
2. The change in specific enthalpy is very small compared to the total tray enthalpy.
Therefore the energy balance equation reduces to an algebraic expression.

Vapor mass is less than 30% of the total tray material. hence vapor holdup is

(93

negligible.
4. Stage pressure or tray pressure drop is constant and the pressure profile is

determined linearly from the condenser pressure.

Luyben (1992) has suggested that the above assumptions are “good enough” to
solve 95% of the industrial distillation problems. Given these assumptions and Equations
3.1 and 3.5 the following procedure is used to solve the stage model, which starts from

the bottom of the column and proceeds upward.

1. The condenser sets the pressure profile through the column
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2. Liquid compositions for each tray, X;n, throughout the column are linearly

initialized from the steady-state solution, which is based on a product
specification for the distillate.

3. The vapor compositions for each tray, yi ., are calculated using the VLE equation
and the temperature for each tray, Ty, is calculated using a bubble point iterative
flash calculation (see Appendix C for details).

4. The liquid and vapor enthalpies for each tray, h," and h," are calculated from the
EOS (see Appendix C for details).

5. The liquid internal flow rate leaving the tray, L, is calculated using the Francis
Wier Equation (Equation 3.4).

6. The vapor leaving each tray, V,, is calculated from the energy balance, which is
simply an algebraic expression from Equation 3.3.

7. The derivatives for the component and total mass balance, Equations 3.1 and 3.2.
are calculated.

8. The equations are then integrated using the Euler Method (which will be

described later).

3.2.2 Condenser

The energy dynamics of the condenser are fast relative to column composition
dynamics. For TW252, the condenser pressure is actually controlled by regulating a
nitrogen valve and vent flow valve as depicted in Figure 2.1. If the condenser pressure
increases above the setpoint, the vent valve is allowed to open, however if condenser
pressure is below the setpoint nitrogen is injected into the condenser. This control system
was deemed to be very complicated to emulate using HYSYS due to the way an inert is
modeled in HYSYS. The nitrogen inert would actually condense in the distillate at
steady-state causing very different steady-state conditions. In dynamics, nitrogen can be
specified as an inert, however it only leaves the liquid after the simulation starts causing
the condenser duty and top tray temperatures to change as nitrogen enters the columns
vapour phase (Chen, 1997). Therefore, it became impossible to achieve an appropriate
steady-state to initialize the dynamics of the column (Chen, 1997).
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‘The condenser is used to condense vapour from the stage model by removing its
latent heat with a coolant. The condenser, used in the development of the TW252
physical model, is a modified total condenser. In HYSYS a partial condenser partially
condenses a vapor feed into vapor and liquid product streams and the heat removed is
determined from utility fluid parameters. The amount of condensation determines the
condenser pressure. On the other hand, in a total condenser the entire vapor feed is
completely condensed and HYSYS determines the amount of heat required to condense
the overhead vapor to its bubble point temperature plus the sensible heat for any
subcooling. A modified total condenser is an un-vented (no vapor product) partial
condenser with varying pressure and the heat removed is calculated from the utility fluid
parameters. The condensate temperature of the liquid leaving the condenser, allowing for
subcooling is specified. From the data sets outlined in Chapter 2, four distinct subcooling
temperatures exist for TW252 based on the season of operation. For the summer months
the reflux temperature, Y256, is as high as 60 °C. However, in the winter Y256 is as low
as 30 °C. The utility fluid used to cool the overhead vapor stream is water. The
parameters for the cooling water are the heat capacity (Cp) and temperature approach
(condensed vapor temperature minus the water outlet temperature) which are defined as
20 kJ/kgmol °C and 10 °C, respectively. Using the condensation temperature and the
temperature approach (AT,pp) the outlet temperature of the water (Tw,) is calculated. The
inlet temperature of the water (Ty;) is defaulted in HYSYS to be 30 °C less than the
outlet. The enthalpy removed from the vapor feed (Qcond) is calculated from the

following formula:
Cooling Duty(Q__)=H, -H, ~H, Equation 3.6
where: H = enthalpy of vapor stream to condenser (J/mol)
Hx = enthalpy of reflux stream (J/mol)
Hh = enthalpy of distillate stream (J/mol)



The flow rate of the cooling water is then calculated as:

F= Qiona Equation 3.7
C,AT, :
where: AT, = temperature increase of water (30 °C default)

The product of the overall heat transfer coefficient and the heat transfer surface area (UA)
between the cooling water tubes and the vapor feed is then calculated from the following

expression:
QCD"
UA AT > Equation 3.8

3.2.3 Reboiler

For the reboiler, the duty is calculated by means of enthalpy balances around the
column. Again as with the condenser, instead of a direct duty, a “utility fluid” option
may be specified. The specified parameters for the utility fluid for the reboiler are: the
product of the overall heat transfer coefficient and heat exchange area (UA), holdup,
minimum and maximum flow rates, heat capacity, and inlet temperature. For TW252.
the utility fluid used to provide heat to the reboiler is steam. Furthermore, the minimum
and maximum flow rates, holdup, heat capacity (Cp) of steam, inlet temperature
(Tutil_in), were all specified. The reboiler duty (Q) is calculated from the steady-state

value. The initialization procedure for the reboiler is as follows:

Tt o =Ty + AT, Equation 3.9
UAd= Q Equation 3.10
Tulil _in + T:ml _out T

2 reb
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W = Q Equation 3.11
(T:llll _mn + I:ml _out )Cp

where: w = steam flow rate

Cp = steam heat capacity

Tuiin = steam inlet temperature

Tuil_ow = steam outlet temperature

ATy = temperature approach (10 °C by default)
Ty = reboiler temperature

Q = reboiler duty

In HYSYS, the steam flow rate, W, can only be calculated in units of kgmole/hr.
However, in this form the steam could not be used directly as the manipulated variable in
the Y284 cascade control configuration as seen in Figure 2.1, Chapter 2. Hence, it was
necessary to calculate the steam flow rate to match the plant data, using a spreadsheet in

HYSYS with the following conversion factors:

F267 = W XM eom Equation 3.12
1000

where Mgeam = Molar Mass of Steam

For validation of the HYSYS model, neither the Ty_in nor Tuu_ouw Were available
from the actual plant operating data for any of the step response tests. As a result,
matching the steady-state values of F267 to plant data required a great deal of tuning of

the parameter Tuit_in.

From Figure 3.1, before a steady-state or dynamic model is built, the
thermodynamic properties, physical dimensions of the process equipment, and modeling
assumptions must be specified.
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3.2.4 Thermodynamics

In order to define the process, the property package used to model both steady-
state and dynamics of TW252 must be specified. The feed to TW252 is considered to be
a relatively ideal mixture of Cs’s and Cy’s. The Cy’s are primarily characterized as 1 M?2-
E-Benzene, and traces of 1,3-E-Benzene and Naphthalene. The Peng-Robinson Equation
of State (EOS) is used to model the thermodynamics of TW252 for both steady-state and
dynamic operations (HYSYS Reference, 1995):

RT a

P= - Equation 3.13
V-b V¥ +b)+blV -b)

The above equation can be expressed in terms of compressibility (Z):

Z'-(1-B)Z* +(A-2B~3B*)Z —(Ab-B® -B*)=0

where

Z 3 ﬂ
RT

b= i x,b, Equation 3.14

=]

b= 0.077796%

(<}

a= Zn:ix,xl (aa,)(1-k,)

=] =l
al = aclal
a’’ =1+m,(1-T%)
m, =0.37646 +1.54226@, - 0.26992 *

2
a, =0.4572358%)"

<t

aP
RT?

_bP

" RT
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For dynamic modeling of TW252, the Peng Robinson Equation of State was
found to simulate TW252 faster than real time. When performing the dynamic
simulation, HYSYS permits a user selected thermodynamic calculation procedure. The

routines selected for TW252 are summarized in Table 3.1 and defined in Appendix C.

Table 3.1: Dynamic Property Model for TW252
Property to be Model Used

Calculated

K Values Local Model
Vapour Enthalpy EOS (PR)
Liquid Enthalpy EOS (PR)
Vapour Entropy Linear Model

Liquid Entropy Linear Model

Additionally, the allowable maximum and minimum temperature and maximum
pressure over which dynamic properties are calculated and is user defined in HYSYS.
For the HYSYS model the default values were selected. Usually the default minimum
and maximum temperatures are 10 °C below the lowest value and 10 °C above the
highest temperature value in the flowsheet, respectively. The maximum pressure was
selected to be 1 atm above the highest pressure in the flowsheet (HYSYS reference,
1995). Additional details of the dynamic model used in the simulation are given in
Appendix C.

3.2.5 Equipment Specifications

The HYSYS model is based on physical dimensions of the design specifications
received from the refinery. Physical dimensions for TW252 such as, tray sizes (weir
heights, weir lengths, and tray volume), tower volume and cooling volume can all be
inferred from TW252’s column diameter. Furthermore, for dynamic operations

controllers are implemented to mimic control strategy of the plant.



Tray Section

The tray section diameter is completely specified by choosing an appropriate
residence time, weir height, and internal liquid flow rate as shown in Equation 3.3 below.
From equipment specification sheets, TWZSZ had a column diameter of 3.25 m, therefore
the only unknown in Equation 3.15 is the weir height (WH).

p= |44 Equation 3.15
W.Hrx

The liquid volume flowrate, g, is taken as the maximum allowable reflux flow
rate (F256) (50 m*/h) into the column. The holdup time, t, on each tray is generally taken
to be 30 seconds (HYSYS Reference, 1995). Therefore the weir height for each tray,

WH, is determined to be 0.05 m. Furthermore the maximum liquid volume allowable on

each tray is determined to be 0.83 m’ using the following equation:

Tray Volume = % D*WH Equation 3.16

Based on the single tray volume the vapor space in the entire column (tower volume) is
assumed to be 10 times the single tray volume multiplied by the number of trays in the
column (30 theoretical trays). For TW252, the tower volume is 250 m’ and the cooling
volume (The volume around the condenser tubes), which is 10% of the tower volume, is
25 m’. It is very important that reasonable values for the tower volume and cooling
volume be specified because these parameters define the vapor traffic profile in the

column during dynamic simulation.

Vessels

The condenser and reboiler are sized based on a liquid holdup, with a holdup set
to between 5 to 15 minutes for both vessels. The condenser and reboiler volumes were
not available from the equipment specification sheets. Both the vessel volumes are

calculated using Equation 3.17.
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- tq Equation 3.17
Levels Setpoint %

100%

TW252’s condenser and reboiler are both sized using a holdup time, t, of 10 minutes
(HYSYS reference, 1995). For the condenser, the internal liquid flow rate, q, is
calculated from the maximum allowable reflux (F256) and distillate (F257) flow rates
and is determined to be 24 m>. However, the required cooling volume needed to vaporize
the overhead vapor was 25 m® as determined in the previous section. Hence the
condenser volume was increased to 30 m®. For the reboiler, the internal liquid flow rate,
q, is calculated from the steady-state simulation results of liquid fed to the reboiler and

the volume is determined to be 30 m°.

Controllers

In order to control TW252, normal PI controllers were required for level control
of the reboiler, condenser, as well as temperature, flow, and pressure controllers. All the
controller settings and process variable spans for the simulation of TW252’s controllers
were made available from the DCS at the Mizushima Oil Refinery and are shown in
Table A.2, Appendix A. The actual flow through the control valve is a function of the
controller output and valve flow characteristics, which are scaled to instrument ranges.
Therefore, the control valves were sized based on maintenance equipment specification
sheets, which include both the minimum and maximum flow rates and the percentage of

valve openings. The control law or characteristic equation for the PI controllers used to

control TW252 is given as:
K ! .
OP(t)=0P, + K, (P,()-S,(0) + -T—" j’ (P,()- S, (6))dt Equation 3.18
i 0
where: OP(t) = controller output at time t

OP = steady-state controller output
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K, = proportional gain of the controller

T = Integral (reset) time of the controller
Pyt) = process variable at time t

Spt) = setpoint at time t

3.2.6 Integration Methods

To solve the set of differential equations that are in the dynamic stage model,
integration is required. The integration procedure must be started with a set of initial
conditions for each state variable. In HYSYS the irﬁtial conditions used are the steady-
state solution, therefore the method of initialization is very stable (Luyben, 1995). There
are three different varying step size integration methods available in HYSYS; Euler,
Runge-Kutta-Merson and Richards-Lanning-Torrey. For modeling of TW252, the Euler
method was employed because it is the simplest form of an explicit method. Explicit in
the sense that no information is required at the next time step, ty+, the local integration
error is estimated and is used to change the integration step size. The Euler method is
known as a rectangular integration method. Graphically speaking, it uses a step size, h,
to measure a straight line with a slope = 0, from t, to t,+;. The area under the straight line
curve is estimated by a rectangle with the dimensions of h and height f,(Y,,U,) (HYSYS
Reference, 1995):

Y,.=Y +%Ar Equation 3.19

where: Y(t=0) = Yo

The Euler integration method works well for TW252 because the ordinary
differential equatio'n§ (ODE) used to model TW252 are not considered to be very stiff. A
stiff system of ODE’s occurs when the ratio of time constants in a set of differential
equations is large. For example, in the distillation column simulation the residence time

for the vapour is less than one second per tray, while the composition changes on trays
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can take several minutes. Therefore, if a large step size is used then the variables such

as vapour flow in the column with small constants can be inaccurately calculated
(Luyben, 1992). However, for the dynamic simulation of TW252 the vapor hydraulics
and pressure dynamics are not considered, therefore the system of differential equations
is not stiff.

3.3 Model Verification with Plant Data

The key to development of useful simulation models based on a first principle
model is the “validation” with real plant data. Before the dynamic simulation model is
representative of TW252 behavior, the model must be verified with plant operated data.
A good model must match the plant at both steady-state and accurately track the process
during dynamic upsets. A verification of the model includes a check of the overall
material balances, steady-state temperature profiles, product flows and a steady-state gain
analysis. Furthermore, the model must be able to track dynamic open loop disturbance
tests. Finally, good closed loop performance will guarantee that the model is accurate

and useable.

The HYSYS model developed for TW252 is validated using plant open and
closed loop step response disturbances and nominal plant data as described in Chapter 2.
The steady-state behavior of the column is first validated using nominal plant operating
data. A quantitative assessment of TW252’s non-linearity and interactive nature is
investigated using steady-state process gains and a relative gain array (RGA) analysis.
Also, a qualitative assessment of the physically based dynamic model’s ability to predict

transient conditions in the form of open and closed loop step responses, is conducted.
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3.3.1 Material Balance

Initially, the biggest difficulty in obtaining a reasonable steady-state prediction
arose in the initialization of TW252’s feed conditions, internal flow rates, temperatures
and compositions to match the nominal plant data. From the available nominal historical
data (N.1, N.2, and N.3 as outlined in Table 2.3) an overall mass balance is performed in
the following manner:

1. The temperature, mass compositions, and volumetric flow rate of the feed stream,
F284, the distillate stream, F257, and the bottoms, F271, of TW252 were retrieved
from the nominal historical process data.

2. Using HYSYS, the mass flow rate for the streams was determined. The mass flows

of the individual components were then calculated.

Note only distillate and feed compositions were available from the data historian.
Therefore, using the HYSYS model the bottom compositions are inferred based on the
actual distillate and feed compositions from the plant. This provides an indication of how
well the composition balances would have closed. The errors in the overall mass and
component balances for TW252 were calculated using Equation 3.20 and are tabulated in
Table 3.2.

Out - In

Error(E)= x100% Equation 3.20

From Table 3.2 the overall balance closure had a satisfactory error (<10%) of
closure for all three nominal conditions. Dataset N.3, was remarkable good for both the
overall and component balances with an error in the range of 1.5%. However, for
datasets N.1 and N.2 closure was not as good. The error in the overall mass balance may
be caused by unmeasured disturbances or the oscillating nature of the feed due to poorly

tuned level controllers upstream ori’ust simply sensor measurement error.
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Table 3.2: Material balance on TW252 (Units = kg/hr)
N.1 N.2 N3

In Out E In Out E In Out E
(%) : (%) (%)
Overall 29680 32032 8.0 25736 28305 10.0 }29608 30053 1.5
Co. 10943 11309 3.3 8750 10175 163 | 10049 10207 1.6
M/P- 11528 12256 6.3 9746 10773 105 |[11298 11424 1.1
Xylene

For example, from Table 3.2, the discrepancies in the component balances could
be caused by the inaccuracies of the on-line gas chromatograph composition
measurement. For N.1 and N.2 the measured mass fractions of each stream (distillate and
feed) did not add up to 1. Furthermore, on average there is insufficient Cy. and M/P
xylene entering the column to produce the products at the design purities. indicating that

some kind of data compression might have been performed prior to data storage.

3.3.2 Steady-state Verification

The steady-state behavior of TW252 was benchmarked against three possible
nominal operating regimes of TW252, datasets N.1, N.2 and N.3 (as outlined in Chapter
2). To test the reliability of the model for prediction of the steady-state operation. the
model was operated from one steady-state to another to determine the responses of all
variables in the model. The responses were then verified using plant data (N.1, N.2 and
N.3). Datasets N.1, N.2 and N.3 are steady-state output for TW252 at different operating
conditions, which contain changing pressure, feed temperatures, feed compositions and
internal flow rate distributions throughout the column. Steady-state comparisons of the
HYSYS model to plant data are shown in Tables 3.3 through 3.5. The reflux flowrate
(F256), bottoms temperature (Y284), feed flowrate (F284), feed temperature (Y280), and
feed compositions (A264, A265, A266, A267) were utilized as speciﬁéd parameters to
match the other simulated variables to plant data. From Tables 3.3 through 3.5 it can be
seen that the HYSYS model predictions of the plant at steady-state show good agreement.
There is no standard in the process control industry, but for the basis of this work an error



Table 3.3: Comparison of Actual and Simulated Nominal Conditions for Dataset N.1

Tag Name

F284
F256
F267
F271
F285
Y280
Y297
Y255
Y282
Y256
Y257
Y284
L253
L254
P252
A254
A255
A256
A257
A264
A265
A266
A267

Statistics for 480 Recorded 3 minute ACS Data Points

Min Max Sed Mean
37.41 41.13 0.706 39.16
43.39 44.17 0.140 43.79
11.22 11.54 0.066 11.37
13.08 17.10 0.684 14.90
23.76 26.30 0.399 24.75

160.70 162.30 0.329 161.42
135.70 136.80 0.208 139.09
131.30 132.00 0.120 131.55
128.30 129.20 0.161 128.65
46.90 52.70 1.506 49.48
162.20 164.70 0.557 163.30
168.40 169.90 0.299 169.01
53.50 56.40 0.444 55.01
56.00 59.70 0.569 58.03
547.60 556.60 1.632 550.55
0.65 0.96 0.074 0.78
15.00 16.39 0.328 15.87
58.20 59.10 0.227 58.75
25.27 26.83 0.419 25.88
35.10 39.89 1.268 36.87
9.52 10.62 0.285 10.19
37.65 39.57 0.411 38.84
17.78 18.65 0.188 18.36

HYSYS

40.37
43.75
11.39
13.80
26.57
161.70
139.40
130.33
128.30
51.05
165.80
168.82
55.00
58.00
550.00
0.76
14.99
56.91
27.38
34.96
9.80
37.26
17.98

Error (%)

3.10
-0.08
0.18
-7.43
7.37
0.17
0.22
-0.92
-0.27
3.17
1.53
-0.11
-0.02
-0.05
-0.10
-3.79
-5.54
-3.12
5.80
-5.17
-3.84
-4.08
-2.12

i3



Table 3.4: Comparison of Actual and Simulated Nominal Conditions for Dataset N.2

Tag Name

F284
F256
F267
F271
F285
Y280
Y297
Y255
Y282
Y256
Y257
Y284
L253
L254
P252
A254
A255
A256
A257
A264
A265
A266
A267

Statistics for 480 Recorded 3 minute ACS Data Points

Min Max Std Mean
33.50 36.15 0.401 34.33
34.62 3594 0.222 35.40
9.66 10.05 0.090 9.87
11.55 14.81 0.500 1291
20.81 22.78 0.338 21.91
160.30 161.40 0.212 160.83
139.10 139.80 0.148 142.47
135.60 136.00 0.074 135.77
133.20 133.80 0.126 133.57

36.70 42,90 0.808 40.03
165.00 168.00 0.554 166.92
171.50 173.20 0.321 172.54

57.30 64.70 1.068 60.01

54.20 55.70 0.234 55.00
628.40 631.30 0.422 629.99

0.58 0.83 0.050 0.70
15.60 16.47 0.238 16.05
57.00 58.50 0.303 57.67
24.62 26.24 0.335 25.46
33.15 35.36 0.475 34.00

9.98 10.66 0.209 10.30
36.90 38.34 0.304 37.87
17.70 18.04 0.081 17.84

HYSYS

34.57
35.40
9.93
11.65
22.93
160.70
143.23
135.00
133.38
40.87
169.37
172.25
60.00
55.00
630.00
0.71
15.67
56.88
26.74
34.12
10.36
36.65
17.87

Error (%)

0.71
-0.01
0.53
-9.73
4.65
-0.08
0.54
-0.57
-0.14
2.11
1.47
-0.17
-0.02
0.00
0.00
1.92
-2.41
-1.36
5.01
0.36
0.54
-3.22
0.17

34



Table 3.5: Comparison of Actual and Simulated Nominal Conditions for Dataset N.3

Tag Name

F284
F256
F267
F271
F285
Y280
Y297
Y255
Y282
Y256
Y257
Y284
L253
L254
P252
A254
A255
A256
A257
A264
A265
A266
A267

Statistics for 202 Recorded 3 minute ACS Data Points

Min

37.59
39.71
10.88
10.26
21.74
159.35
140.33
136.77
134.45
43.34
180.13
172.86
56.58
54.22
648.18
0.50
14.40
57.69
25.62
32.61
9.25
37.30
17.82

. Max

42.21
41.26
11.31
13.98
24.14
160.80
141.13
137.22
134.98
50.46
185.00
174.10
66.50
55.67
651.52
0.69
15.69
58.38
27.15
35.12
10.19
39.05
18.73

Sed

0.950 -

0.364
0.053
0.725
0.459
0.283
0.173
0.083
0.121
1.737
0.850
0.248
1.893
0.297
0.480
0.043
0.442
0.232
0.458
0.532
0.289
0.359
0.222

Mean

39.73
40.51
10.98
[1.91
23.01
160.09
143.81
137.02
134.71
45.53
182.83
173.58
59.97
54.98
650.00
0.59
14.89
58.01
26.38
33.94
9.57
38.16
18.34

HYSYS

40.56
40.80
11.00
14.15
26.41
160.00
143.77
136.07
134.24
46.05
168.15
171.80
60.00
55.00
650.90
0.62
14.63
58.05
26.70
33.93
9.51
38.07
18.49

Error (%)

2.10
0.71
0.23
18.78
14.76
-0.05
-0.03
-0.69
-0.35
1.14
-8.03
-1.03
0.06
0.04
0.00
4.56
-1.77
0.07
1.21
-0.02
-0.64
-0.24
0.81

35
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less than 10% is being taken as successful steady-state verification. The shaded areas in
Tables 3.3 through 3.5 require further explanations.

Distillate and Bottom Flow Rates

The distillate and bottom flowrates, F257 and F271 for TW252 exhibit a
significant discrepancy from the steady-state values in the nominal data sets. For N,
(Table 3.2), the error is primarily due the oscillatory nature of the feed flow rate F284.
Plots of the nominal data collected for selected TW252 variables are shown in Figures
3.2(a) through (d) in Appendix E. From Figure E.2 (b) and the statistics from Table E.2,
Appendix E, the oscillatory nature of F257 and F271 is evident. Furthermore, these large
fluctuations are mostly likely the direct result of poorly tuned level controllers (254 and
L253), that is investigated in Chapter 5.

Steady-state Temperature Profiles

From Tables 3.3 through 3.5, the top tray temperatures, Y255 and Y282 for
TW252 are offset from the steady-state value, on average, by 1 and 0.5 °C, respectively.
The offset is due to a combination of faulty sensor measurements and changing sensor
locations. To compensate for the offset a temperature correction factors of magnitudes 1
and 0.5 C are employed throughout the modeling and verification of the HYSYS model
in order to match the plant data more precisely. Figure 3.3 (a) through (c) compares the
corrected steady-state temperature profile computed using the HYSYS model with plant
data of datasets N.1, N.2 and N.3.
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Figure 3.3: TW252 steady-state temperature profile for datasets (a) N.1 (b) N.2 (¢) N.3
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3.3.3 Sensitivity Analysis
After the steady-state model was validated using various normal operating
conditions, the model is used to conduct a steady-state sensitivity analysis to assess
quantitatively the non-linearity and interactive nature of TW252. With the level and
pressure control loops regulated as shown in Figure 2.1 (Chapter 2), the control problem
reduced to a 2x2 composition control problem. To control distillate and bottom
compositions, internal tray temperatures are usually used because the frequency of
composition measurements is too low for practical control purposes, i.e composition
measurements, particularly when done with a GC introduce a significant dead time into

the composition control loop.

TW252 employs an L-V control strategy. The current L-V strategy for TW252 is
to control top temperature at stage 27, Y255, by manipulating a slave reflux flow
controller F256. However, due to unsatisfactory performance the loop is usually open
and the reflux flow controller manually controls the distillate purity. In practice, the
distillate purity involves control of the light key components (A256, A257), however, for
TW252 the reflux rate, F256, is used to control A254, the heavy key component, which is
the distillate contaminant. Hence, the focus of the sensitivity analysis will be on Cs.
components and not m-p-o Xylene components. Furthermore at the bottom of the
column, the steam flowrate to the reboiler (F267) controls the bottom temperature
(Y284). Hence, the L-V control strategy used for TW252 is known as one point
composition control, since only A254 is controlled. Skogestad (1992) concluded that the
L-V configuration control configuration is a good choice for one-point composition

control in most distillation applications.

Steady-State Gains

The steady-state gains were calculated by subtracting the base case temperatures
(or compositions) from the final steady-state value and then dividing by the change in the
manipulated variable. From the plant test data outlined in Table 2.3 and utilizing the
steady state HYSYS model a comparison is done that evaluates the steady-state gains for
TW252.  For the HYSYS model, step changes in the manipulated variables are
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implemented one at a time and the ultimate change in each of the process outputs
(controlled variables) are observed. From the plant data, datasets t.4 and t.10 are used to
verify the open loop steady-state gains obtained from the HYSYS model. The open loop
steady-state gain, k;j, between the ith control variable and jr2 manipulated variable are

calculated using the following equation:

k, = ac, Equation 3.21
Am,
where: G = controlled variable (Y255, Y284)

m;j = manipulated variable (F256, F267)

From Equation 3.21 the open loop steady-state gains for Y255. Y284 (indicative of an L-
V configuration) and A254 (one point composition control) can be determined for step
changes in F256 and F267 which are represented by the plant data (t.4 and t.10). A
comparison between the HYSYS model and plant open loop steady-state gains are shown
in Tables 3.6 and 3.7 for datasets t.4 and t.10. Table 3.6, shows the steady-state open
loop gains for Y255, Y284, and A254 for a +12% and —6% change in F256 from its
nominal value of 41.2 m*h as (dataset, t.4).

Table 3.6: Comparison of simulated and plant steady-state gains for Y255, Y284,
A254 for step changes in F256

+12% (41.2-46.2 m’/h) -6% (41.2-38.7 m°/h)
Plant Simulated E (%) Plant Simulated E (%)
Ky2ss, r256 -0.12 -0.14 -16.67 -0.40 -0.52 -30.00
Ky284,F256 -1.92 -1.98 3.13 -0.84 -0.64 -23.81
Kazsapass  -0.097 -0.118 21.65 -0.489 -0.701 -45.19

From Table 3.6, the signs of the tray temperatures and distillate cdmposition gains
are negative for reflux flow changes as would be expected. The open loop steady state
gain, Kyzss rass, expressed in the units of C/m>/h, exhibits a large non-linear behavior with
4 times more of a gain change for -6% cMge in F256 compared to a +12 % in the
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opposite direction. The same can be said for A254, where kazsq 256 (units of wt%/m>/h)
is about 5 times greater for F256 changes in the —-6% direction compared to +12% in the
opposite direction. However, the non-linear nature of Y284 is not evident from Kyags rass
(C/m’/h) using the same analogy as before. Therefore, the non-linearity of the column is
not as severe at the bottom as is the case at the top of the column. Furthermore, in
comparing the simulated open loop gains to the plant open loop gains there is a
significant error ((plant-simulated/plant) x 100%). However using the HYSYS model the
trends are the same when compared to the plant data. The non-linearity of the column at
the top is probably the primary reason the column currently operates using the one-point
composition control strategy. The strategy to employ conventional PI controllers to try
and regulate either A254 or Y255 with F256 is difficult because of this non-linear
relationship. Hence, the Y255 temperature controller operates in open loop and F256

controller is used to manually regulate A254.

Table 3.7 shows similar results for steady-state open loop gains for Y255, Y284,
and A254 for a + | % change in F267. The simulated values are compared to the plant
data of from t.10, in which + 0.1 ton/h step changes occurred in F267 from the nominal
value of 12.0 ton/h.

Table 3.7: Comparison of simulated and plant steady-state gains for Y255, Y284
and A254 for step changes in F267

+1% (11.9-12.0 ton/h) -1% (12.0-11.9ton/h)
Plant Simulated E (%) Plant Simulated E (%)
kyass,F267 3.2 2.2 31.25 -2.0 2.3 -15.00
Ky284,F267 -8.2 -7.6 7.32 9.2 -1.5 18.48
Ka2s4,r267 -1.03 -1.22 -18.45 -0.93 -0.75 19.35

From the Table 3.7 the Kyassze7 in the positive and negative manipulated variable
directions were reasonably consistent indicating that the relationship between Y255 and
F267 is fairly linear. The same can be said for the relationship between Y284 and F267,

where the gains in the opposite directions are similar. The non-linearity of the ka2ss,r267
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is not as severe as k azs¢;256.  The relationship between the Y255, Y284 and A254 to the
manipulated changes of F267 is not as non-linear as was seen with changes in F256.
Hence, Y284 can be regulated using F267 with fairly good success.

3.3.4 Relative Gain Array Analysis

Once the open loop steady-state gains are determined the degree of interaction for
the single loop L-V control configuration (Y255 & Y284 are controlled by manipulating
F256 and F267) can be evaluated using the relative gain array (RGA). The RGA can be
directly calculated from the steady-state gains. Each RGA element, A;; can be determined
by performing two experiments. The first experiment determines the open-loop steady-
state gain by measuring the response of y; to input m;, when all the other loops are
opened. In the second experiment, all the other loops are closed and the response of y; to
a change in input mj is re-determined. Using Equation 3.22, the ratio of these gains gives

the desired relative gain elements:

_ dn/ allloops _open_ _ | OPEN loop gain =£’... Equation 3.22
) jéi_ closed loop gain .
om | )aitioopsctosed

k .
Y
except forthem,

control variables, Y255 and Y284

where: Ci

my manipulated variables, F256, F267

The variable k,; represents the ith loop steady-state gain when all the other loops

except the one in question are closed. Whereas &, represents normal, open loop gain

that are calculated as shown in the previous section. Then the RGA can be calculated for
two inputs and two outputs from the following equation:
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1-
Ayass Fass Ayass.ras Equation 3.23

RGA= A~
1- lr 255,F256 'z'rzss.rzss

The results of the RGA analysis using the HYSYS model results for control
variables Y255, Y284 are shown in Tables 3.8 and 3.9 for +1% changes in manipulated
variables F256, F267. The simulation model was used to develop the relative gain array

elements instead of the plant data because the plant data did not contain any information

-
on kij .

able 38: Relative gain array for TW252

The calculated RGA values for Tables 3.8 and 3.9 indicate different degrees of
interaction and surprisingly different suggested controller pairings depending on the
direction of change of the manipulated variables. The suggested controller pairings for
various changes are circled in the tables. For negative changes in the manipulated
variables the RGA analysis suggests that Y255 (Tray 27" Temperature) should be paired
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with reflux flow rate and Y257 (Tray | Temperature) with reboiler duty. However for

positive changes, the correct pairing is the exact opposite.

Also, if both temperatures increase (maybe a feed composition disturbance)
causing a setpoint change in the reflux flow rate to increase and the reboiler duty setpoint
to decrease. Therefore, the RGA is calculated using the gains corresponding to changes
in opposing direction to the manipulated variables. The result Y255 should be paired
with F256 and Y284 with F267. Furthermore, if a disturbance were to occur there would
be sever interactions between the two control loops because A;; = 12.04. Note that
McAvoy (1983), indicated that large A; for the RGA matrix are typical for L-V
configuration schemes like TW252’s control strategy. A Aj> 1 indicates that the open
loop gain between y; and m; is larger than the closed loop gain. Therefore, the loops
interact, and the retaliatory effect from the other loops act in opposition to the main effect
of mj on y; (thus reducing the loop gain when the other loops are closed). However, the
main effect is still dominant, otherwise A;; will be negative. For large values of A;;, the
controller gain for loop i will have to be chosen to have a larger open loop gain than the
other loops because loop i/ could become unstable if the other loops are open. The
instability explains why Y255 is currently in open loop. One recommendation is not to
pair m; (F256) with y; (Y255) without a decoupler.

From the RGA analysis it can be concluded that the interaction effects between
Y255 and Y284 are significant and that other control techniques that involve decoupling
should be evaluated. One example may the use of a non-linear process model built using
neural networks that could be used to provide the necessary decoupling control action.
Furthermore McAvoy noted that dynamic interactions tend to be more important fora 2 x
2 process when A. > 1. Hence, the dynamic responses of TW252 will be the next focus.



3.4 Dynamic Model Validation

The steady-state model was refined to include the effect of dynamics on the actual
process. Using the steady-state results the dynamic simulation of TW252 was initialized
and then validated using plant setpoint response and disturbance tests, as indicated in
Table 2.2 (Chapter 2). The initial conditions of the dynamic model for all the step
response tests can be found in Tables D.1-D.7, Appendix D.

Three-minute historical data from the DCS as described in Chapter 2 for all the
process variables listed in Table 2.1 are used to verify the dynamic simulation model by
qualitatively comparing the dynamic response of actual plant data to the HYSYS model
predictions for the selected process variables. Figure 3.4 shows the process variables

(designated by a “*”) that must be verified by the HYSYS model.

Qcondﬁt @

*F257

& I ——e *F271

Figure 3.4: The selected process variables to be verified by the HYSYS model
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To verify the HYSYS model’s predictions of TW252 process variable, the first

step was to verify the predictions using open loop dynamic setpoint tests; Test 4 (t.4),
Test 5 (t.5), and Test 10 (t.10). The next test performed was to ensure the correctness of
the HYSYS model process response to closed loop conditions using setpoint response
data from Tests 1 (t.1), 2 (t.2), 3 (t.3), and 9 (t.9). The final test was to validate the

HYSYS model response for feed composition disturbances as shown in Test 8 (t.8).

The quality of the HYSYS model predictions is measured using a performance

index, I, shown below:

X

Z (Yk -S k )2
Lsim=%£————x100% Equation 3.23
X -1)
k=l
where: Yo = actual output at the k sample
Sk = predicted output at the k sample
Y =

mean of the output for all the patterns (K)

For the HYSYS model predictions of the plant data the extension “sim” is used to
distinguish between the performance indices utilized in the subsequent chapters. The
Lsim is simply the normalized sum of squared errors between the predicted HYSYS value
and the actual plant value for the entire dataset. The denominator in equation 3.23 is used
to act as a normalization factor to take into account the diverse variability of the datasets
used to validate the HYSYS model. Therefore, a relatively unbiased comparison of the
HYSYS model predictions of the various degrees of “excitable” plant data can be done.
In industry, there is no value that defines a good performance index. Since the index is
an “invented” statistical measure it has no definition of what is “good” or “bad”. The
index is merely used as a mechanism to compare the HYSYS model’s predictions of

various datasets.
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3.4.1 Open Loop Validation
The open loop setpoint response tests used to verify the HYSYS model are shown

below. For a detailed description of the tests, refer to Table 2.2 and for a visual
representation, see Figure E.1 (a) through (d), Appendix E.

1. Test #4 - Reflux flow rate (F256) setpoint changes - t.4
2. Test #5 - Distillate flow rate (F257) setpoint changes - t.5

The response behavior of the HYSYS model compared to the plant data, using
Lsim, is only shown for certain variables in dataset t.4 and t.5. For t.4, the responses of
selected TW252 process variables to a series of setpoint changes to the manipulated
variable, F256, are shown in Figure 3.5 (a) through (d) (+ 5.0 m’/h at sample number 2
and -2.5 m’/h at sample number 34 from the nominal value of 41.2 m*/h). The figures
show that the HYSYS model predictions match the response of most of TW252 variables
with very satisfactory results. However, for some process variables, certain response
characteristics could not be matched. These include oscillations in the feed, F284, the
feed compositions, A264 through A267 which are caused by upstream changes in crude
feedstock occurring at the made crude fractionator. Other variables that deserve special
attention are A254 (Co. hydrocarbons in the distillate), F284 (distillate flowrate), F271
(bottoms flowrate), L253 (reboiler level), and L254 (condenser level).

A254
In Figure 3.5 (c), the HYSYS model was able to predict A254 at the on-line

composition analyzer measurement points, which occurred every 50 minutes (16
samples), as indicated by the “-x-* except for one measurement at about the 73 sample
point. The low sampling frequency of the on-line analyzer measurement of the distillate
compositions seem to miss the true process dynamics between samples 56 and 76 for
A254. Note that the allowable A254 measurement range was only. 0-2 wt. % as
ascertained from DCS specification sheets. Hence, from the actual process data there is
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no accurate indication of A254 above 2 wt. % since the measurement limit is 2 wt %.

The HYSYS model predicted that the response of A254, to a F256 step change down,
clearly should be above the on-line analyzer limit of 2 wt. %. Hence, the on-line analyzer
low frequency sampling did not detect the apparent dynamic behavior of A254 in dataset
t.4.

F257 and F271

The response of variables F257 and F271 to the F256 step change was a little bit
aggressive as seen by the overshoot in Figure 3.5 (b). The discrepancies between plant
and simulated data for variables F257 and F271 were directly related to the allowable
holdup time used to model the reboiler and condenser. The holdup time in the condenser
and reboiler was modified from the default value of 10 to 11 minutes and the size of the
condenser was changed from 24 m® to 30 m® and that of the reboiler from 30 m’ to 34 m’.
A separate plant open loop test was used to model the response characteristics of F257.
L254, F271 and L253, known as t.5. Dataset t.5 consists of a series of setpoint changes
to the manipulated variable, F257 (+2.5 m>/h at sample number 4 and -2.5 m>/h at sample
number 24 from the nominal value of 25 m*/h). Figure 3.6 is a comparison of plant data
(dataset t.5) and HYSYS simulated response data for these variables. Using the new
vessel sizes, the HYSYS model was able to accurately predict the plant response in
dataset t.5 for variables F257, L254, F271 and L253 with very little steady-state error.
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3.4.2 Closed Loop Validation
The second validation step, for the HYSYS model, was to ensure that the

simulated process response matched the closed loop response. The validation of the
HYSYS model during closed loop setpoint changes was conducted using four plant tests.
For a detailed description of the tests refer to Table 2.2 and for a visual representation
consult Figure E.1 (a) through (d), Appendix E.

Test #1 - Stage 27 Temperature Setpoint Change (Y255) -t.1
Test #2 - Condenser Pressure Setpoint Change (P252) - t.2
Test #3 - Reflux Drum Level Setpoint Change (L254) - t.3
Test #9 - Bottoms Temperature Setpoint Change (Y284) - t.9

bl g s

To avoid redundancy, one example of the response behavior of the HYSYS model
compared to the plant data, using Lsim, is shown for selected variables for the above
tests. For Test 1 (t.1) the HYSYS model prediction of TW252 process variables to a
Y255 closed loop setpoint change of +0.5 C from the its nominal value of 131.2 C at
sample number 11 is shown in Figure 3.7(a) through (c). Note that the data shown is
only a snapshot of dataset t.1 consisting of 51 samples of the 480 samples in the dataset.
Furthermore, the setpoint step signal is plotted on the secondary Y-axis for all the figures.

The HYSYS model accurately predicts the response of most of TW252 variables
for dataset t.1. The same variable characteristics exist in dataset t.1, as was mentioned
earlier for dataset t.4. For example, A254 from Figure 3.7(c), the HYSYS model
predicted that a maximum occurred at 0.9 wt. % at approximately sample 30, which was
very close to violating the product specification (A254 must be below 1.0 wt. %). The
apparent near violation was not detected by the infrequent sampling of the on-line

analyzer for TW252, which is also evident in dataset t.4.
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The simulated closed loop response of TW252 variables F257, 254, F271 and

L253 are compared using plant data from Test 3 (t.3) and are shown in Figure 3.8. Figure
3.8 compares the HYSYS model prediction of F257, L254, F271 and L253 to a series of
setpoint changes in the controlled variable, L254 (+ 10 % at sample number 3 and — 5%
at sample number 42 from the nominal value of 50 %). Note that in the figure, the data
shown is only a snapshot of dataset t.3 consisting of 121 samples of the entire dataset of
480 samples. Furthermore, the setpoint step signal is plotted on the secondary Y-axis for
all the figures.

The HYSYS model predicted the closed loop setpoint changes in the controlled
variable L254 very accurately, Isim = 1.74 %. On the other hand, Lsim for L253 was
about 100%. Furthermore, the manipulated variables, F257 and F271, predicted response
was also fairly accurate, Lsim 26.53% and 120.70%, respectively. There was a slight
difference in the prediction of F257 and F271, which are directly related to the
inaccuracies of the material balances in the column as was previously discussed (section
3.3.1)

In comparing Lsim values for closed loop tests (t.1 and t.3) and open loop tests
(t.4 and t.5) for selected variables, on average, the HYSYS model predictions were able
to match the response of certain variables to the open loop test better than the closed loop
test. The results are summarized in Table 3.10. For example, the HYSYS model
predicted all the distillate compositions and internal temperatures, that were not involved
in any of the tests directly (i.e. they were not “perturbed” in any way), better for the open
loop tests than the closed loop tests. However, for Y255 and L254, the simulated
response was closer to the plant closed loop response than the plant open loop response
because these variables were directly “perturbed”. The opposite is true for F256 as
would be expected.
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Table 3.10: Comparison of HYSYS model predictions of closed loop and open loop
responses using Lsim for selected TW252 process variables.

Variable Closed Loop Open Loop

Lsim (%) Lsim (%)

Y282 53.93 32.16
Y255 22.12 51.27
Y297 40.91 22.60
Y257 15.84 5.04
Y284 20.47 13.48
A254 19.23 33.83
A256 36.15 29.30
A257 11.14 6.06
F256 26.53 0.88
F267 120.70 104.92
L254 1.74 7.91
L253 100.00 101.24

3.5 Performance Benchmarks

Using the validation results as a guideline, proposed benchmark values based on
the performance index, /sim, are suggested for the physically based HYSYS model for
TW252. The indices are developed for the four major categories, which represent the
entire column: internal tray temperatures, distillate compositions, internal flow rates and
levels. The reason for the categorization will become evident in the next chapter. The
proposed benchmark performance indices for the selected categories are based on the
open loop and closed loop verification results of the HYSYS model and are tabulated in
Table 3.11.
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Table 3.11: Proposed benchmark and recommended upper limit values for HYSYS
physical model prediction of plant data

Category TW252 Benchmark  Upper Limit
Variables

Lsim (%) Lsim (%)

Internal Tray Temperatures Y282
Y255
Y297 28 42
Y257
Y284

Distillate Compositions A254
A256 24 37
A257

Internal Flowrates F256 50 75
F267

Levels L254 52 78
L253

From Table 3.11, the optimum Lsim values for TW252 were chosen using a very
straightforward procedure. For example, for the measured internal tray temperatures
(Y282, Y255, Y297, Y257 and Y284), each individual variable’s /sim value for datasets
t.4 and t.1 are averaged. Then the five averaged Lsim values for each variable are again
averaged together to determine the benchmark value. The recommended upper limit
values are 1.5 times the benchmark values for each category, which is somewhat of an
arbitrary specification. The upper limit values for Lsim could be used to verify if the
HYSYS model prediction results are satisfactory. For example if the HYSYS model
predicted Y282 for a particular dataset with an Lsim value > 42%, then the prediction
results of the HYSYS model are deemed to be inaccurate for that particular category.
The procedure is repeated for the other categories and the results are shown in Table
3.11. Note that performance indices may be very different for various systems and that
the suggested benchmarks and limits are only recommended for the simulation modeling
of TW252.
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3.6 Other Closed Loop Validation Using Plant Data

The HYSYS model was further validated using plant data from Test 2 (t.2) and is
shown in Figure 3.9 (a) and (b) for selected TW252 variables. In verifying the HYSYS
model using the other datasets, the condenser pressure (P252) was assumed to be
constant. Test 2 was specifically performed on the column to verify the HYSYS model
ability to predict changing column pressure. Dataset t.2 consists of a series of setpoint
changes in the controlled variable, P252 (+10 mmHg at sample number 5 and ~10 mmHg
at sample number 20 from its nominal value of 555 mmHg). Note that in the figures, the
data shown are only a snapshot of dataset t.2 consisting of 81 samples of the entire
dataset of 480 samples. Furthermore, the P252 setpoint step signal is plotted on the
secondary Y-axis for all the figures. The distillate compositions and the internal tray
temperatures were plotted since these were the only measured variables that the test had
any effect on. The HYSYS model was able to match the plant data for some of the
variables quite well. Based on the performance benchmarks in Table 3.11, the only Lsim
values that met the criteria were for only the top tray temperatures (Y255 and Y282) and
the A254 distillate composition. Since the Lsim values for the other tray temperatures
were well above the upper limit of 42 %, the predictions are inaccurate. However, the
HYSYS model detected the general trend. Using the internal tray temperature
benchmark for P252, the Lsim value of 13.89% is less than 28%, hence indicates a good
prediction by the HYSYS model. Note that the responses of all the internal tray
temperatures took a similar shape to that of P252 because the pressure profile in the
column must first be specified and then the tray temperatures are calculated. The distillate
compositions do not follow the same shape as P252 because the composition dynamics
are much slower. Furthermore, from Figure 3.9 (b), the HYSYS model accurately
predicted the plant data at the on-line analyzer points (as indicated by the —x-) except for
at sample number 48 because there may have been a change in feed composition that was
not included in the model. However, the HYSYS model accurately predicted the general
shape of the distillate compositions.
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3.7 Disturbance Validation

The final test used to verify the HYSYS model is with a dynamic disturbance test
as seen in plant Test 8 (t.8). Dataset t.8 consists of a feed composition disturbance in
process variables A264, A266, and A267 at approximately sample number 25 as shown
in Figure 3.10 (b). During the disturbance, the operators made many manipulations to
compensate for these disturbances such as ramping P252 from 555 mmHg to 540 mmHg
as shown in Figure 3.10 (a). Note that in the figures, the data shown is only a snapshot of
dataset t.8 consisting of 106 samples of the entire dataset of 480 samples. The internal
tray temperatures and distillate compositions are greatly affected by the pressure profile
in the column and feed compositions entering the column. Dataset t.8 exhibits some
interesting disturbance dynamics that the HYSYS model can be used to predict. From
Figure 3.10 (a) and (b) the HYSYS model was able to predict the affect of the feed
composition disturbances for selected TW252’s process variables. The Isim values were
within the upper limits for variables Y282 and Y255; however, the prediction of Y257
and Y284 were not as good because the Lsim values violated the upper limit of 42 %.
The Isim values for A254 and A257 show that the HYSYS model was not able to predict

the distillate compositions within the upper limit of 37 % for dataset t.8.



65

560
580
idhao
a
530 N
Il.sim = 31.23 %
520
1 11 21 3 4 51 61 7 81 91 101
130 1
129
)
K2
>
127 -
|I.slm = 26.43 ?ﬂ
126
1 ' 21 n 41 51 61 7 81 91 101
132
w0131
[7e]
N
>130 s — - -
L.sim = 28.62 %
129
1 1 21 3 “ 51 61 7 81 91 101
166
AN e Y,
~165 ——— ]
w0
N
>164 i B
l/.SIm = 93.65 °ﬂ
163
1 11 21 a1 “ 51 61 7 81 91 101
171
<170
[- -]
N
> 169
[\-sim"=114.61 %]
168
1 1 21 1] “ 51 81 2 81 91 101
Sample Number .
l —e—Plant Data - - - Simulation Data i

Figure 3.10 (a): Dynamic verification of the HYSYS model for TW252 condenser pressure and femperat
using disturbance data as seen in dataset t.8



30
829
~N2s
<x
2
1 1 21 31 41 51 61 7 81 91 101
1.2
(1]
Qo7
<
10.2
1 1 21 31 “ 51 61 7 81 91 101
19.5
519
N
8.5
18
1 1 21 31 41 51 61 4l 81 91 101
1.2
-4
&Qor - = e - -
<
{l.sim =117.20 % |
0.2
1 1" 21 31 41 51 61 7 81 9 101
58.5
[Tt
N
<575 . L *‘d M—'“
|Lsim = 142.34 % |
57 .
1 1 21 31 M 51 61 14! 81 9 101

l.sim = 92.66%

1 1" 21 3 4 51 61 " 81 "9 101
Sample Number

—

L —eo—Plant Data - = = Simulation Data 3

Figure 3.10 (b): Dynamic verification of the HYSYS model for TW252 feed and distillate
compositions using plant disturbance data as seen in dataset t.8




67
3.8 Summary

In this chapter, a physically based model for TW252 is developed using HYSYS
for both the steady-state and dynamic behavior. The HYSYS model is validated at steady
state for various nominal conditions and used to quantitatively assess the non-linearity
and interaction effects of TW252 using a steady state gain and RGA analysis,
respectively. A dynamic validation of the HYSYS model is performed using plant step
response tests, which included open loop, closed loop and random disturbance data.
Discrepancies in the physically based model prediction of these tests were also discussed
in detail. The most interesting observation in this chapter is the apparent ability of the
physical model to capture dynamic changes in the distillate compositions not detected by
infrequent sampling of the GC-based overhead composition analyzer. Furthermore, from
the validation of the HYSYS model, benchmarks and upper limit values, based on the
performance index (Lsim), are recommended for the prediction of TW252 variables using
the developed HYSYS model.
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Chapter 4

Artificial Neural Network Model Development

This chapter introduces artificial neural network (ANN) modeling as a process-
modeling tool. In particular, its applications in the field of chemical process engineering
modeling and more specifically distillation column modeling are briefly reviewed. A
novel application of dynamic ANN modeling of an industrial distillation column is
presented. The ANN models were generated using a non-linear ANN model predictive
control tool known as Process Insights™ from Pavilion Technologies Inc. (Austin,

Texas) to predict the following TW252 variables:
e The Distillate Compositions
e The Internal Column Tray Temperatures
e The Condenser and Bottom Levels

® The Internal Flow Rates

4.1 Artificial Neural Networks

An alternative approach to physical modeling is to identify a model directly from
input/output data collected from a plant known as empirical modeling. Empirical
modeling techniques can be linear or non-linear depending on their structure. Linear
system identification has been extensively, and successfully, used in advanced control
systems. However, most physical systems are highly non-linear, therefore control

systems based on linear identification techniques may not provide the best results.

In recent years, researchers have focused their attention on the applicability of

ANN technology to a vast range of complex and demanding real-world problems. Much
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of the interest lies in the potential of ANN to solve problems that have been difficult, or
even impossible to solve with more traditional approaches. In particular, neural nets have
the ability to learn new relationships or patterns from various types of input/output data.
ANN models involve specifying intercoﬂnected non-linear basis functions to represent
the behavior of the system. The inputs and outputs can be quite general (e.g. patterns or
attributes, rather than physical variables). Some successful applications of ANN are
(Hunt et al, 1992):

Optical character recognition (e.g. handwriting, Chinese characters)
Speech recognition
Medical diagnosis

Analysis of sonar signals

A

Process Control

The key advantage of ANN is their ability to model any non-linear process by
non-linear regression. ANN learn to recognize relationships between inputs and outputs
by changing its internal structure of the net and its parameters. The internal structure is
simple allowing for fast computational performance at each time step. ANN are an ideal

complement or alternative to traditional first principle based process modeling,.

In industry, there has been a tremendous amount of interest and speculation about
applying ANN to advanced process control of chemical processes (Bhat and McAvoy,
1990). ANN’s are used in a variety of control structures and applications as process

models and/or controllers. ANN have been used to detect and diagnose faults (Hoskins
and Himmelblau, 1988; Ungar et al, 1990), for control system design (Birky and
McAvoy, 1989), to solve nonlinear optimization problems (Kennedy and Chua, 1988), to
perform statistical quality control, recognize and forecast disturbances (Ungar et al,
1995), and to validate sensors (Keeler, 1993). Furthermore, recent studies (Bhat et al,
1990; Willis et al, 1990; Psichogios and Ungar, 1991) have demonstrated the flexibility
of ANN technology for modeling chemical processes.
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The optimum ANN models are determined using an iterative procedure that

involve various steps as shown in Figure 4.1. The iterative algorithm presented in Figure

4.1 involves specifying the network topology or architecture, defining node (neuron)

characteristics and deciding on an adequate training or learning method (Lippman, 1987).

Next, the predictive capability of the model is evaluated on the identification and

verification datasets to determine if the specified architecture is valid. A sensitivity

analysis is performed to initially eliminate the unnecessary inputs that have no

relationship to the selected outputs in order to reduce the number of parameters in the
model. If the model is satisfactory, then the ANN model development is halted. If the

model is unsatisfactory, then the ANN model topology is redesigned and the procedure is

repeated. The redesigning step involves reducing or increasing the number of inputs to
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the model and specifying the correct number of past inputs and outputs. Before an ANN
model is trained and verified, adequate data that contains all relevant information about

the dynamics of the process being modeled, must be preprocessed.

4.1.1 Data Preprocessing and Classification

Raw process data typically needs to be “preprocessed” before it can be used for
modeling. Preprocessing involves the removal of outliers, elimination of data
corresponding to process down-time (or other unusual operations such as maintenance
periods, switch-over, etc.) or undesired outliers. Such manipulation of data may be done
graphically or using advanced DSP (Digital Signal Processing) methods (Sabharwal et al,
1997). Another important aspect of data preprocessing is obtaining the correct
distribution of data. Raw process data typically contains a large amount of data-points in
a few operating regimes and very few data points in other regions of operation. In order
to develop a good empirical process model that performs well over a wide range of

operating conditions, it is necessary to have uniformly distributed data.

Data classification involves subdividing the input and output (I/O) data for
identification and verification of a high fidelity ANN model. The identification process
or learning involves partitioning the dataset into training and testing data patterns. A data
pattern is a complete set of inputs and outputs. If there are time delays between the
variables, the data pattern will contain values gathered from different rows in the dataset.
During the training patterns, the ANN modifies the internal structure of its internal
parameters based on the error between the actual output value from the dataset and the
predicted output from the model (described in section 4.1.3). During the testing patterns,
the ANN does not learn and only compares its output to the target output. The training
and testing cycle is referred to as an epoch. A test set is randomly chosen to be 15 % of
the original identification dataset. Therefore, the mean and standard deviation of the
identification and test sets should be similar. Furthermore the test set must not contain
points that that are outside the range of the training data. In addition to the required sets
of testing and training patterns, a verification dataset is used for validation. The
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verification dataset are patterns that are completely independent of the identification
patterns. Note that, in general, the verification patterns usually do not contain points that
are outside the range of the identification patterns as ANN models do not extrapolate, in

general, at all!

4.1.2 ANN Topology Design

In an extensive literature review, Hecht-Neilson (1987b) reported that at least 50
different types of neural networks have been reviewed (Thibault and Grandjean, 1991).
Below is a list of some of the main architectures mentioned in his paper with the
appropriate references:

e Perceptron (Rosenblatt, 1958)

e Adaline (Widrow and Hoff, 1960)

¢ Hopfield Nets (Hopfield 1982, 1984)

e Feedforward or Backpropagation networks (Parker, 1982; Rummelhart et al.

1986; Werbos, 1974)

e Adaptative Resonance Theory (Carpenter and Grossberg, 1990)

e Counter-propagation networks (Hecht-Nielsen, 1987)

e Cognitron and Neowcognitron (Fukushima, 1990)

e Self Organizing Map (Kohonen, 1990)

In general, ANN consists of a large number of neurons arranged in layers. Each
node is connected to other neurons by means of connection links, each with an associated
weight. Neurons in the same layer behave in a similar manner. Within each layer a
typical neuron takes in a set of inputs, sums them together, applies it to a non-linear
function and passes the output signal forward through to another weighted connection to
other neurons in the next layer. The neuron is a function of a nonlinear combination of
predictor variables. The connection weights serve as adjustable parameters, which are
determined by the training method. The arrangement of these neurons into layers and the

connection patterns within the layers are known as the ANN topology. The neurons that
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represent the inputs to the neural network form the input layer. The neurons that
represent the outputs of the neural network form the output layer. The layers, which are
independent of the input/output dataset, are known as the hidden layers because they are
transparent to the user and problem speéiﬁc. The convention used to name an ANN
topology was developed by Bremmerman and Anderson (1989) that specify the number
of layers and the number of neurons used in each layer. For example, an ANN
architecture with three layers, representing; one input layer with three input neurons, one
hidden layer with five neurons and an output layer with two neurons is referred to a 3-5-2
network.

In the literature, many different architectures are used, typically with hundreds or
thousands of parameters (Ungar et al. 1990). The most widely used architectures are: the
multilayer feedforward network more commonly known as the backpropagation network
(Rummelhart et al, 1986) and external recurrent backpropagation networks. These two

architectures are the focus of this section.

Feedforward Artificial Neural Nets (FANN)
Feedforward artificial neural network (FANN) are static ANN because the outputs

of the network are not included as inputs to any of the networks nodes in the input layer.
Figure 4.2 shows a FANN topology, that consists of nodes organized in layers of neurons
(processing units) where neuron connections occur only between adjacent layers for a

multiple input multiple output (MIMO) case.
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input Hidden Output
i j k

Figure 4.2: Flow through a static three layer FANN

The squares represented in the input layer are non-processing neurons indicating
that each input is distributed to the neurons of the hidden layer by a connection weight
(Wj). The second and third layers of processing neurons (represented by circles) consist
of two parts, a weight summation element and a non-linear transfer function as seen in

Figure 4.3.
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Figure 4.3: Basic model 6f a typical neuron
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The processing neuron takes a weighted sum of all the inputs, then applies a

transfer function, f1 (described later) to this sum:

Ny
Hidden Layer: H =f I[Z w,U. +U,,] Equation 4.1
‘.’l
where: H; = the j hidden node in the hidden layer
Ui = the i input node in the input layer
U, = Oorl
w; = the weight associated with the i input in the input

layer connected to the j™ hidden node in the hidden

layer.
Nx = total number of inputs used in the topology
N = non-linear transfer function
Expanding, we get:
Wa Wy w, i | U
W W-n M W-7 U'I .
H=f"" "Z 2l +U, Equation 4.2
1 WI! WIZ WU Ul J

The function (f1) can be linear or non-linear (see section 4.1.3). The outputs of
the neurons in the hidden layer (Hj) are distributed to the neurons of the next layer
(output layer) by another weight (Wjx). The weighted outputs are summed and another
transfer function, 12, is applied:

Output Layer: S, = f2[NiWI,‘H ,] Equation 4.3

=t

where: Sk = the k™ predicted output
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Wi = the weight associated with the j™ hidden node in the
hidden layer connected to the k™ output in the
hidden layer.

Ny = the total hidden nodes used in the topology

y2 = non-linear transfer function

The values received by neurons Sy are different than H; because each signal is
scaled by its appropriate weight (Wj,). Figure 4.2 shows a single hidden layer but several
hidden layers can be used. A neural network with a single hidden layer is sufficient to
adequately represent the dynamics of a process (Cybenko, 1989; Hornik et al, 1989).
Furthermore, the number of neurons in the hidden layer is problem dependent and must

be determined in an iterative manner.

Dynamic vs. Static FANN

The backpropagation algorithm can be used to model dynamic systems by simply
presenting past outputs of the network as inputs. The dynamic FANN, originally
introduced by Rumelhart et al., (1986), is called “backpropagation in time” or known as
“external recurrent backpropagation” (Hecht-Neilson, 1984). Past values are important
because they include the transient nature of the data in the ANN topology. whereas a
static model is only concerned with steady state data. The process model for a single

input and single output (SISO) in its most general form is given as:

yk) = flyk-1), y(k-2),...,y(k - n), u(k-1-6), u(k-2-6),..., u(k-m-6)]

Equation 4.4
where: yk) = is the process output at the k™ sample pattern
ey = is the process input at k® sample pattern
m = is the number of past inputs '
n = is the number of past outputs
0 = is the sample time delay between y and u
f = specified functional relationship
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A simple example of backpropagation in time is shown in Figure 4.4 for a SISO

case. In this example, to predict the 6" sample in a dataset with n=3, m = 3,and 6 =2,

the above equation becomes:

¥(6) = fly(5), y(4), y(3), u(3), u(2), u(1)] Equation 4.5

Wij | @
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|
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i j k

Figure 4.4: Three-layer external recurrent ANN for SISO case

. Note that y(1), y(2), u(4), u(5) and u(6) are not used in the prediction of y(6). The
methodology of formulating the input vector is known as the moving window method
(Bhat et al., 1990). For more information on recurrent ANN the reader is referred to
Levin and Narendra (1995) and Delgado et al. (1995).
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Determining the ANN Topology Design Parameters
Once the system to be modeled is selected and the outputs determined the
following ANN topology design parameters must be evaluated in order to define the
optimum ANN model:

1. The optimum number of inputs used to accurately derive the output values is

determined from a Sensitivity Analysis (which is described later).

2. The optimum number of past values for each input (m) and output (n) is
determined using an iterative procedure that involves varying m and n and

comparing the predictive power of many different topologies.

3. The apparent time delay (8) between each input and output is determined from

communication with the operators of the plant and analyzing the data collected.

Initially, a static topology is chosen with as many inputs as possible that may describe the
system’s output(s). The ANN is trained and a sensitivity analysis is used to filter out the
unnecessary inputs. Then the optimum number of past inputs and outputs and apparent
time delay are included in the ANN topology and re-trained using the identification

dataset.

4.1.3 Training of ANN Parameters

From Figure 4.1, the next step in the building of an ANN model is the training or
calculation of the internal parameters. An ANN must be trained using successive
presentations of input-output data pairs. In essence, ANN is a parameter estimator that
can simply be viewed as a large dimensional regression model which can be used to
correlate a vector U of input variables to a vector Y of output target variables that can be
approximated by a vector S (Thibault and Grandjean, 1991). Given input-output vectors
U-Y (training data), the objective of ANN mapping is to obtain accurate values of the
weights that connect the layers of the ANN together, know as connectionist weights. The

connectionist weights represent the underlying non-linear relations between the U-Y pair.



79

Therefore, the backbone of ANN model is the learning or training process to obtain fitted

parameters or connectionist weights.

The number of model parameters or connectionist weights in a feedforward neural

network with one single hidden layer and a bias neuron, is given by:

N=NyN,+N,N,+N, Equation 4.6
where: Nx = number of inputs in the input layer
Ny = number of outputs in the output layer
Ny = number of hidden neurons in the hidden layer

Therefore to develop an ANN process model, the topology of the network must be
specified and the parameters must be evaluated and minimized for computational speed

requirements.

Back Propagation Algorithm

One of the most popular learning algorithms is back propagation (Rumelhart et
al., 1986). This algorithm is designed to minimize the squared error between the
calculated vector S and expected vector Y of the outputs of the network.

K
E =%2(Yk -5,) Equation 4.7

k=l

where: Yk actual output at k™ sample pattern

Sk = predicted output at k™ sample pattern
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The initial weight values are usually set to small random values between {-1, 1]
and the internal transfer functions are sometimes sinusoidal transfer functions. The
training inputs are mean centered to clear the effects of variable units in the input layer.
Then the inputs are propagated forward 'through the network and then the outputs are

computed and the sum of the square error (E) is calculated using Equation 4.7.

After the error is calculated the connectionist weights must be modified. Using
the same nomenclature as in Figure 4.1, the weights from the hidden to the output layer
are computed and updated using the following backpropagation equation:

Momentum Term
l Forces the change of weight to

proceed in the same direction as the
previous change

wo =W - 8”'[5(:5 } + 8" [W'I:'-l _WI'I:'*] Equation 4.8

/
Ik

t

Error Gradient Term (8)
Fraction of error gradient that is
backpropagated through the network

where: m = iteration counter

€ = Tuning parameter - provides the step size during
gradient descent (learning rate).

p" = Tuning parameter - controls the convergence of the

algorithm

Each output unit (Yi) receives a target pattern corresponding to the input training pattern
and computes its error gradient, §, by taking the derivative of Equation 4.7 with respect to
Wik and substituting Equation 4.3 for Si:

. ,
O =8, = f{iWﬁH}J(‘S& -Y)|H, Equation 4.9
0 W;k J=l

where: f = first derivative of the linear transfer function f1
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During training, each output unit computed, Sy, is compared to its target value Y
to determine the associated error for that pattern. Based on this error, the factor d is
computed using Equation 4.9. The calculation of the updated weights from the input to

the hidden layer is given as follows:

W = PVUm—l _ gm[%s’f_)_:l + " [Wu'"-' - n/”""z] Equation 4.10
y

where:
[a(E)} (VXW U:){Z {'VZ'W,‘_H,)(&_Y&)W’:,-.JUI

Equation 4.11

Ok is used to distribute the error at output unit S¢ back to all the units in the
previous layer (hidden layer). Hence, the name, “backpropagation method”. The above
expression is simplified in a similar manner as before with the factor §; and is computed

for each hidden unit:

(Z y ,)[25 W ,'2'-'] Equation 4.12

1=l k=1

Momentum is added to the back propagation learning by setting weight changes
that are functions of the last weight changed and new change suggested by the back
propagation rule. The magnitude of the effect that a last weight change is allowed to
have is given by B™. The momentum term accelerates the weight adjustments as long as
the corrections are in the same general direction for several iterations. A smaller learning
rate € is used at the same time to prevent a large response to the error from any one

training pattern. When momentum is used, the reduction in error proceeds in the
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direction that involves a combination of the current gradient and the previous direction of

weight corrections. Limiting cases are:

1. B™=-»0; weight change is solely based on the gradient

2. P™-1; weight change is heavily based on last weight change (momentum)

After all of the & factors have been determined, the weights for all layers are
adjusted simultaneously. The adjustment to the weight Wi (from hidden unit H; to
output unit Si) is based on the factor d, the activation function (which will be described
later) of the hidden unit H;j and the momentum term. The adjustment to the weight Wj;
(from input unit U; to hidden unit H;) is based on the factor §;, the activation function of

the input unit U;jand the momentum term again.

Activation Transfer functions

Activation transfer functions for a backpropagation nets are generaily non-linear
and must have several important characteristics: continuous; differentiable;
monotonically non-decreasing. Linear functions are sometimes used in combination with
non-linear transfer functions. The most common transfer function used in the ANN
topology is the multi-layer Perceptron (Lippmann 1987). Typically the hidden layer
consists non-linear transfer functions whereas the output layer uses linear transfer
functions. Often the transfer function of choice for the hidden layer is a sigmoid or an S-
shaped curve. Mathematically, this function is convenient because its derivatives are

easy to calculate as shown in Equation 4.13.

| SR T CU ) :
f(z)—He-:, f(z)-1+e-,\1 Tre— Equation 4.13
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4.1.4 Evaluation of ANN Performance

As described in the data classification in section 4.1.1, the data collected is
classified as identification and verification datasets. The verification data are not used
during the learning process. The identification data are used to identify the ANN model
using a training/testing cycle known as an epoch. During the training pass of the epoch,
the ANN modifies the internal parameters based on the error (Equation 4.7) between the
actual output value and predicted output. During the testing pass of the epoch, the ANN
is not allowed to learn but only compares its output (Yi) to the target output (Si).

Initially during training the discrepancy between the ANN model’s predicted
values and the datasets actual values is relatively high and the model can not derive
output values based on the inputs. As training progresses, the ANN modifies its internal
parameters minimizing the error (Equation 4.8) of the identification dataset for both the
training and testing cycle until the relative error reaches its lowest value. The Relative

Error (rel_err) for a single output in an entire dataset pattern is defined as:

Equation 4.14

where: k = is the sample index in the dataset pattern
= is the total number of patterns in the dataset
Pout = the standard deviation of the actual values of the
output from the total number of patterns in the

dataset

Note that Relative Error (rel_err) is not as commonly used as the statistical
measure, R%. R? is known as the correlation coefficient and its relationship to the relative

error is:
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R =(1—-rel _err?) Equation 4.15

In general, R? = 1 is considered to be optimal however there really is no definition
of what a reasonable R? value is, for a specific ANN topology. However,. As the
identification continues the ANN memorizes or “over-trains” the training data and the
Relative Error will continue to decrease but also reduces the model’s ability to generalize
new data. For example, the Relative Error for the test data will tend to increase if the
model tends to be over-trained. Hence, the highest R? values tend to be at the point
where the test Relative Error reaches a minimum. Once the highest R? is obtained for a
certain topology, the procedure is repeated for various ANN topology structures. The
optimum ANN model for a process, in compliance with the algorithm in Figure 4.1, is
determined by comparing R? values of the various topologies. The sclected ANN

topology for the model of the process is based on the following criterion:

e R%must be as close to 1.0 as possible, but no less than 0.850 by utilizing the

minimum number of internal parameters, N (Equation 4.6).

The success of training not only depends on minimizing the error (Equation 4.7)
of the training data set, but also on the validation of the ANN model with an independent

verification dataset. The criterion above is extended to include verification datasets.

Sensitivity versus Rank analysis calculates the sensitivity of output variables to
input variables (that is the effect or influence the inputs have on the outputs) over the
patterns in the Dataset, and, for each output ranks the inputs in order of sensitivity. The
sensitivity analysis is incorporated in the iterative procedure, shown in Figure 4.1, to
determine the least amount of inputs required to generalize the outputs. Sensitivity vs.
Rank analysis eliminates inputs that have negligible sensitivity from the fnodel. Hence,
the number of training parameters will decrease, the computational load will decrease and
increases in the predictive speed of the ANN model will be occur. The three types of

sensitivity measures used are:
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e Average Absolute Sensitivity - average sum of the absolute values of the partial

derivatives of the input-output pairs (Process Insights Reference Manual, 1996).

i aY,.
AverageAbsolute = -~ GPX,,'_, : Equation 4.16
where: P = the number of patterns in the Dataset
Yii = the i™ output for the k™ sample pattern
Xk i = the i* input for the k" sample pattern

e Average Sensitivity - actual average of the partial derivatives in Equation 4.16.
e Peak Sensitivity - the maximum of the partial derivatives over all the patterns in

the Dataset.

Another coefficient used to evaluate the performance of ANN model is known as
the performance index (which was introduced in Chapter 3), /, and is given by the

following equation:

,J

Z (Ylt.l - Sk.l ) 2
[=% x100% Equation 4.17
Y&, -1y
k=1
where: Yii = actual i output at k™ sample pattern
Ski = predicted i output at k™ sample pattern
?; = mean of the i output for all the patterns (P) in the

dataset
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There is no general minimum threshold used to determine if the performance
index (/) is satisfactory. [ is only used as a relative comparison to gauge the predicted
power of an ANN relative to other ANN’s and in particular to the HYSYS model
predictions in Chapter 3. However, based on the work by Bomberger and Seborg (1997),
who utilize the same performance index to evaluate radial basis function network models,

it is inferred that / values of less than 10% are good values.
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4.2 TW252 Application

In this section, the following ANN models are developed for TW252 with a
commercially available software package know as Process Insights™, from Pavilion

Technologies:

¢ Internal Tray Temperature Model (Temp Model)
¢ Distillate Composition Model (Comp Model)

¢ Internal Flow Model (Rev Model)

e Level Model (Lev Model)

Process [Insights™

, like many other commercially available applications,
incorporates a similar algorithm to the one introduced in section 4.1. which is

summarized in Figure 4.5.
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Figure 4.5: Process Insights ™ model building steps
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4.2.1 Data Classification for TW252

As shown in Chapter 2 the plant data collected for TW252 contained open loop,
closed loop setpoint tests and disturbance tests. To train an ANN, the training signal
should contain all relevant information about the dynamics of the controlled system;
however, no general specification is available in the literature for selecting an optimal
training signal. Furthermore, care must be taken with the type of data to be used for
identification and validation. The plant data collected in Chapter 2 and tabulated in Table

2.2 is classified using the following nomenclature, where:

t = All available setpoint datasets

tOL = Open loop setpoint datasets: Tests 4 (t.4), 5 (t.5), 10 (t.10)

tCL = Closed loop setpoint datasets: Tests 1 (t.1). 2 (t.2). 3 (t.3). 9
(t.9)

d = All disturbance datasets

d8 = Varying feed composition dataset: Test 8 (t.8)

n = Nominal process data (N.1, N.2 N.3)

Using these classifications (x) the data can be subcategorized into identification

(I.x) and validation (V .x) datasets.

4.2.2 Topology Design Parameters

Before the ANN technology can be used to model TW252, the topology of the
models must be defined. The design of the four distinct ANN topologies that represent
TW252 must minimize the number inputs needed to define a relationship to the outputs
of the models. In turn, optimizing the inputs used to define the models will decrease the
computational load of the ANN by minimizing the number of weights needed between
the inputs and the outputs. Furthermore, for dynamic modeling the numbér of past values
used in the recurrent ANN structure must be defined.
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Optimum number of inputs

To illustrate the method used to determine the optimum number of inputs,
consider the internal tray temperature model (Temp model). The objective is to predict
five outputs: Y282, Y255, Y297, Y257, and Y284. From the 23 measurable tags (Table
2.1) available for TW252, nine possible inputs that could be used to map a relationship to
the outputs were chosen to initialize the Temp model. These inputs are shown in Table
4.1 and consist of flowrates, feed compositions, and pressure tags. Using the iterative
procedure outlined in Figure 4.1, a sensitivity analysis was used to filter the inputs. The
Temp model was identified using the nominal dataset (I.n) and the average absolute
sensitivities of each output to a change input were evaluated and ranked and shown in
Table 4.1.
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Table 4.1: Sensitivity analysis ranking of the inputs based on the average absolute
sensitivity of each input to the outputs

Rank input Avg. Abs Avg Peak
Output: Y282

1 P252 : 0.144 0.144  0.289
2 Y280 0.050 0.05 0.097
3 F256 0.019 -0.019 0.052
4 F267 0.018 -0.018 0.051
5 F284 0.016 0.016 0.023
6 A266 0.010 -0.01 0.029
7 A264 0.008 -0.008 0.019
8 A265 0.002 0 0.006
9 A267 0 0 0.001
Output: Y255 }

1 P252 0.162 0.162 0.274
2 Y280 0.06 0.06 0.099
3 F284 0.021 0.021 0.027
4 F267 0.012 -0.011 0.031
5 F256 0.012 -0.011 0.03
6 A266 0.008 -0.008 0.021
7 A264 0.007 -0.007 0.014
8 A265 0.001 0 0.005
9 A267 0 0 0.002
Output: Y297

1 pP252 0.163 0.163 0.249
2 Y280 0.074 0.074 0.112
3 F284 0.03 0.03 0.043
4 F256 0.012 -0.006 0.016
5 A266 0.011 -0.011 0.02
6 F267 0.011 -0.004 0.019
7 A265 0.003 0.001 0.005
8 A264 0.002 0.002 0.005
9 A267 0.001 0.001 0.002
Output: Y257

1 P252 0.102 0.102 0.149
2 Y280 0.052 0.052 0.078
3 F267 0.045 0.045 0.116
4 F284 0.041 0.041 0.084
5 F256 0.034 0.034 0.11
6 A266 0.016 0.016 0.022
7 A265 0.01 -0.01 0.031
8 A267 0.004 0.003 0.008
9 A264 0.003 0.001 0.008
Output: Y284

1 P252 0.068 0.068 0.097
2 F256 0.042 -0.039 0.071
3 Y280 0.034 0.034 0.055
4 F267 0.026 -0.022 0.048
5 F284 0.019 0.019 0.028
6 A265 0.009 0.008 0.014
7 A264 0.003 -0.002 0.009
8 A266 0.002 0.001 0.007
9 A267 0.001 0 0.003
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The number of inputs used to represent the five outputs is evaluated according to how
many times the inputs are ranked in the top five. Based on the rankings the inputs effect
on each output are evaluated using a point system as follows:

e 10 points for each input ranked number |

e 7 points for each input ranked number 2

e 5 points for each input ranged number 3

e 3 points for each input ranked number 4

e | point for each input ranked number 5

Using the above system the inputs are eliminated and the top five variables used

to develop the Temp model for the internal tray temperatures as shown in Table 4.2.

Table 4.2: The inputs selected to predict the temp model outputs

Rank Variable Points
1 pP252 50

2 Y280 33
3 F267 20
4 F256 17
5 F284 15

The procedure to determine the optimum number of inputs is repeated for the
Comp, Rev and Lev models using dataset I.n. The selected inputs with the corresponding

outputs are summarized in Table 4.3.
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Table 4.3: Summary of the selected inputs and outputs for the ANN models

Model Possible Initial Selected Inputs Selected Selected
Inputs Based on Inputs Outputs
Sensitivity
Analysis

Temp  P252, Y280, F284. P252, Y280, P252, Y280,  y2g2, Y255,
F256, F267, A267,  F267,F256,F284  F267,F256, Y297 Y257,

A266, A265, A264, F284 Y284
Comp P252, Y282, Y255, P252, A266, P252, F256, A254, A256,
Y257, Y284, Y280, Y257, F267, F267, A264, A257
F284, F256, F267, A264, Y255, A265, A267
A264, A266, A267 F256
Rev F284, P252, Y282, Y257, Y284, Y284, Y255, F256, F267
Y297, Y255, F284, Y282, P252
Y257,Y284,A264, P252, Y255
A265. A267, L253,
L254
Lev P252,Y282, Y255, F271,F285,F284  F271, F285, L254, L253
Y257, Y284, Y280, F284
F284, F256, F267,
F271, F285, A264,
A266, A267

The Comp, Rev and Lev model sensitivity results are shown in Appendix B. Note
for the Comp and Rev models a different set of inputs were chosen then recommended by
the absolute sensitivity results from Process Insights®. For example, the Comp model the
inputs 27" and 1* tray temperatures (i.e. Y255 and Y257) are highly correlated with the
other selected inputs, reflux flow rate (F256) and steam flow rate (F267). Hence, to
avoid redundant inputs and to eliminate the temperature dependencies, it was decided that
only the manipulated variables (F256, F267), the feed compositions (A264, A266, and
A267) and the condenser pressure (P252) were chosen to represent the outputs (A254,
A256, and A257) of the Comp model. The Comp model’s topology is similar to other
published architectures (Rhinehart, 1997). For the Rev model, the five inputs selected by
Process Insights were further filtered to three inputs. The objective of the Rev model was
to build an inverse relationship between the controlled variables (i.e. the tray
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temperatures) and the two main manipulated variables (F267 and F256). Process Insights
selected four tray temperatures (Y282, Y255, Y257, and Y284) as inputs to the model.
Since, only two temperatures are used to control TW252’s temperature profile by
manipulating two variables (F256, F267), only two temperatures were selected. Y255
was the obvious choice for the top because it is the only temperature that was sometimes
controlled with F256 during normal operation. For the bottom of the column there were
two possible temperatures Y257 and Y284. It was decided that since Y284 was the
current controlled variable that is regulated by the steam flow rate and hence determines
the bottoms temperature profile, that only Y284 would be used in the model.

Furthermore, F284 was not used any of the models.

Optimum number of past values

In conjunction with determining the optimum number of inputs, the number of
past values used to represent the dynamic nature of the recurrent ANN was also
determined. Again to illustrate the procedure used to determine the number of optimum
past values, the Temp model is considered. To keep the iterative nature of this procedure
simple, the number of past values for both the inputs (m) and outputs (n) were kept the
same (m=n). Therefore, the number of past inputs and past outputs to be included as
additional inputs to the dynamic Temp model were evaluated using six case studies as
shown in Table 4.4.

Table 4.4: Various ANN topologies tested for ANN development of the Temp

model

Case Model m n Nh N 0 Topology
1 Static 0 0 5 5 -..-0 5-5-5

2 Dynamic 1 1 10 210 0 15-10-5
3 Dynamic 3 3 17 697 0 35-17-5
4 Dynamic 5 5 20 1220 0  55-20-5
5 Dynamic 7 7 22 1782 0 75-22-5
6 Dynamic 9 9 24 2424 0 95-24-5
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From Table 4.4, cases 2 to 6 are dynamic ANN architectures and case 1 is for the
static situation. For example, case 2, the input vector (U) contains one past value of the
process outputs (Y282, Y297.i, Y255ti, Y257.;, Y284,), manipulated variables
(F256,.;, F267,.,), feed disturbances (F284,.;, Y280,.,), controlled variable (P252,.;) and
the current value of all the input variables (P252,, Y280,, F267,, F256,, F284,) totaling 15
inputs to the neural network. The output vector (Y) of the Temp ANN model had five
outputs (Y282, Y255, Y297, Y257,, Y284;). From these input/output configurations,
the number of hidden nodes was internally determined using a Process Insights™
proprietary method, yielding 10 hidden nodes and a 15-10-5 network. Thus from
Equation 4.7 there were 210 adjustable parameters (weights) that were trained using the
back propagation method. The apparent time delays (6) allows the ANN to model a
process with significant time delays between the process variables. The time delay
adjusts the temporal relationship of the process variable with respect to the other
variables. A positive 0 advanced the variable in time; a negative 0 value moves it back in
time. One time delay unit represents the time interval between the rows in the dataset
(i.e. sampling period is three minutes for all the plant data collected for TW252). From
discussions with plant operators, the inputs and outputs chosen for the Temp model had
no significant time delays between the process variables as shown in Table 4.4 for all the
cases. The different topologies for the Temp model, represented by the cases, are
identified using a combination of Tests | and 4 (I.t1t4). Also, to aid in the selection, the
test cases are validated using other independent datasets. The results are tabulated in
Table 4.5.
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Table 4.5: Selection of the appropriate ANN topology based on the sum of the
squared errors for the identification dataset and for various validation datasets

Case Ltltd V.2 Vi3 V5 V.8
R? R? R? R? R’
0.545 0.382 0264 0.000 0.000
0.886 0.892 0910 0.889 0.833
0.890 0.891 0911 0887 0.854
0.894 0.887 0910 0.886 0.801
0.895 0.889 0910 0902 0.790
0.895 0.88 0909 0.885 0.775

A W Hh LN -

[n theory as the number of adjustable parameters increase the correlation
coefficients, R2, should also increase exponentially till a maximum is reached (Pavilion
Reference Manual, 1997). From Table 4.5, the maximum R? obtained for dataset L.tit4
was case 5, which corresponded to having 1782 calculated parameters as shown in Table
4.4. However, when the cases were tested with various validation datasets the
architecture with a R? value consistently above the 0.850 criteria only occurred for case 3,
with 697 adjustable parameters. For the subsequent cases, introducing more adjustable
parameters did not enhance the prediction capabilities of the Temp model on the
identification dataset drastically and for some of the cases the R? for the validation
datasets decreased. Hence, a dynamic ANN topology of m=3 and n=3 was selected as the
most appropriate ANN representation of the internal tray temperatures of TW252. In the
literature, the use of 3 past values is consistent with the work of Bhat et al. (1990) and
Cheng et al. (1995).

A similar analysis was done for the other ANN models and the selected

architectures are shown in Table 4.6.
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Table 4.6: The selected topologies for the other TW252 ANN models

Model Model m n N, Inputs 0 Outputs Topology

Temp Dynamic 3 3 17 P252 0 Y282 35-17-5
Y280 0 Y255
F256 0 Y297
F267 0 Y257
F284 0 Y284
Comp Dynamic 2 2 13 P252 20  A254 24-13-3

F256 -20 A256
F267 -20 A257
A264 -40
A265 -40
A266 -40
10 P252 0
Y255 0
Y284 0
Level Dynamic 3 3 10 F257 0 L254 18-10-2
0
0

w
w)

F256 18-10-2
F267

Rev Dynamic

F271 L253
F284

Note, that for the Comp Model in Table 4.6, the apparent time delays betwccn the inputs
and the three outputs were approximately 60 minutes or 20 sampling intervals for P252,
F256, F267 and 40 sampling intervals for the feed compositions. The large apparent time
delay is due to the sampling location of the composition analyzer. The same analyzer is
used to measure the feed and distillate compositions, hence the time delay associated
between the inputs and outputs incorporates both inherent and processing lags. For the
Rev and Lev models, the apparent time delay between the each of the inputs and all of the
outputs were considered to be negligible.
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4.2.3 Analyze

The optimum Temp, Comp, Rev and Lev ANN topologies of TW252 were
identified using dataset L.t (Temp.t, Comp.t, Rev.t and Lev.t) and validated using plant
setpoint step tests; V.tOL, V.tCL, (subsets of [.t), V.n, and V.t8. The results are
investigated using the correlation coefficient R? and tabulated in Table 4.7.

Table 4.7: Comparison of ANN models identified on setpoint response data using

the correlation coefficient

Model ANN Outp  Set Set Set Set  Set
Architectu  ut Lt VWOL VACL Van V.8
re

R? R? R R* R

Tempt 35.17-5 Y282 0910 0994 0976 0.891 0.951
Y255 0908 0997 0972 0.885 0.933

Y297 0915 0982 0969 0914 0.943

Y257 0994 0985 0990 0.932 0.989

Y284 0997 098 0985 0.923 0.985

Comp.t 24-13-3  A254 0955 0950 0913 0978 0.935
A256 0963 0944  0.873 0967 0.705

A257 0962 0941 0827 0972 0.819

Rev.t 18102 F256 0945 0991 0904 0231 0449
F267 0979 0958 0976 0.723 0.922

Levt 18102 L254 0992 0994 0965 - -
L253 0966 0975 0943 - -

From Table 4.7 the selected optimum topologies for the four ANN models were
able to predict the outputs quite accurately based on R?, for identification dataset Lt. The
ANN models trained on L.t will be generalized as ANN.t models (Temp.t, Comp.t, Rev.t,
Lev.t). A plot of dataset Lt for all the measured TW252 variables in the dataset along
with their statistics can be found in Figure E.1(a) through (d) and Table E.1, Appendix F.
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In general, the verification results of the ANN.t models validated using datasets,
V.tOL, V.tCL (subsets of L.t), V.n, and V.t8, were good for most of the models because
the correlation coefficients were well above our criterion of 0.850. The only noticeable
difficulty occurred for the Rev.t model where the R? values for the prediction of the
outputs (F256 and F267) were very low for validation dataset V.n. The low values
indicate that the Rev.t model was not able to represent the input/output relationship of
dataset V.n for those particular inputs and outputs. The result is similar for the Rev.t
model prediction of V.t8, where again the R? value is quite low for F256. On the other
hand the Rev.t model was able predict F267 quite well. In examining the Temp.t model
prediction behavior of the verification datasets, some generalizations can be made. First,
the Temp.t model was able to capture the input/output relationship of the verification
datasets quite accurately. For the validation dataset, V.tOL, the R? values of Table 4.7
show that the Temp.t model predicted the top tray temperatures (Y282, Y255) slightly
better than the bottom tray temperatures (Y297, Y257 and Y284). The R? values of
Table 4.7 for dataset V.tCL show that the Temp.t model accurately predicts the tray
temperatures near the bottom of the column, Y257 and Y294 this time around. However,
near the feed stage (Y297) and at the top of the column, Y282 and Y255, the accuracy of
the model diminishes slightly. The Temp.t model is expected to give better prediction of
dataset V.OL than V.CL for outputs Y282 and Y255 because the variances are larger due
to the larger gains in the open loop responses of dataset V.OL. The opposite can be said
for the bottom temperatures where the Temp.t model predicted better R? values due to the
closed loop gains for Y257 and Y284 are larger for V.CL than V.OL. For the Comp.t
model, the prediction of the independent verification datasets tended to decrease for

dataset V.n., however, the R? values for dataset V.t8 were very reasonable.
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4.3 Comparison of ANN and HYSYS Model Predictions

The ANN.t models and the HYSYS model prediction of plant open loop, closed
loop and disturbance data are compared using performance index, /. The performance
index of the HYSYS model is donated by /sim, whereas, the performance index of the
ANN.t models will be donated by Lann. In general, the performance indices represent a
model’s ability to predict a particular plant output. The index contains a normalization
factor so that a relative comparison can be made amongst all the predicted outputs.
However, the magnitude of an output variable’s deviation from the mean of the output in
the dataset is reflected in the nature of the index. The index may get excessively large if

the variance of the output variable from the mean of the dataset is small.

4.3.1 Comparison using Open Loop Plant Data

Figures 4.6 (a) and (b) show the comparison of the Temp.t, Comp.t, and Rev.t
models to the HYSYS model predictions of a snapshot of the 480 available samples of
plant dataset, t4. To recap, dataset t.4 has a series of manipulated variable setpoint
changes in F256 (+5.0 m*h and -2.5 m*/h) from its ncminal value of 41.2 m*/h. Both
Y255 and Y284 control loops were opened allowing for identification of the open loop
behavior of all the internal tray temperatures in TW252. From Figure 4.7 (a), the Lann
and Lsim values show that the Temp.t model predicted the internal tray temperatures of
the plant better than the HYSYS model for dataset t.4. However, the HYSYS model
predictions of the internal tray temperatures were well within the benchmark value of
35%. The HYSYS model prediction of Y255 was the only variable near the Lsim upper
limit value of 53% for the internal tray temperatures. In fact the HYSYS model
prediction of the temperatures near the bottom of the column (Y257 and Y284) were
similar to the Temp.t model predictions. A similar trend is shown in ‘Figure 4.6 (b),
where much lower performance indices (Lann) occurred for the Comp.t (1.07 — 1.43%)
and Rev.t models than the HYSYS model. Note, during the identification of the HYSYS
model, only a few initial design condition of dataset t.4 were used to initialize the model,
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hence, the HYSYS model actually predicted the response of t.4 without being identified
on the plant data. In general, Figures 4.6 (a) and (b) show that the HYSYS model
captured the dynamic response of TW252 for dataset t.4 quite effectively. Furthermore,
the basic “trends” of the plant data were predicted quite well based on the satisfactory
Lsim values for most of the variables, which were well within the recommended
benchmark and upper limit values in Chapter 3. In contrast, the ANN.t models were
identified using the step response plant data, therefore based on Lann values, the ANN.t
models should be able to predict dataset t.4 much more accurately than the HYSYS

model.

Based just on the performance indices (Lsim and Lann), “more accurately” or
“better”, sometimes does not guarantee that the prediction is right. In Chapter 3, it was
concluded that the on-line analyzer’s low frequency sampling rate did not capture the
dynamic behavior of the distillate compositions. Hence, the recorded plant data for
dataset t.4 did not record the distillate compositions actual dynamic response as was
shown in Chapter 3. From Figure 4.6 (b) the Comp.t model accurately predicted, for
example, A254 with an Lann=1.07 % in comparison to the HYSYS model prediction of
Lsim = 33.83% at the composition analyzer points. The accuracy of the ANN to predict
the plant data cannot be denied; however, the true nature of A254 has definitely been
neglected. The ANN is only as good as the data used to train it, therefore its limited
knowledge of the process (i.e. limitation of the DCS measurement device) restricts its
ability to extrapolate. Hence, the low frequency sampling of the data hinders the ability
of the ANN.t models to predict beyond regions that the model was intended to predict.
On the other hand, the HYSYS model accurately captured the true dynamic behavior of
A254 at a much higher frequency (i.e., in this case at the sampling interval of 3 minutes)
for dataset t.4. The Rev.t model predicted F256 very accurately with an Lann = 1.07%,
however, predicted F267 less accurately with an Lann = 48.42%. Furthermore, the Lsim
values for the HYSYS model were similar to the Lann values with values for F256,
which were well within the benchmark of 50 % (Lsim = 0.88%), but very poor for F267
(Isim = 104.92 %). The higher performance indices for F267 for both the Rev.t model
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and HYSYS model are due to the very small response of F267 to a series of reflux flow
rate step changes. The F267 deviation from its mean of dataset t.4 is small, hence, large
values for both /.sim and Lann are expected.

Figure 4.6 (c) shows the validation of the Lev.t model using dataset t.5. To
summarize, dataset t.5 contains a series of manipulated variable setpoint changes in the
distillate flow rate, F257, (£1.5 m*%h). The L254 control loop was opened allowing for
the open loop response to be identified by the Lev.t model. The performance indices, in
Figure 4.6 (c), show that the Lev.t model accuratély predicted the L254 open loop
response with Lann values of 1.55% for L254 and 14.03% for L253. Comparatively, the
HYSYS model predicted L254 with Lsim value = 7.91% which is well below the
benchmark value of 52% for the levels.
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Figure 4.6(c): Comparison of the Lev.t and the HYSYS model predictions of TW252
condenser and reboiler levels for open loop dataset, t.5.
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4.3.2 Comparison using Closed Loop Plant Data

Figures 4.7 (a) through (c) shows the ANN.t models predictions for a closed loop
setpoint change of +0.5 °C for Y255 from its nominal value of 131.2 °C compared to the
HYSYS model prediction from Chapter 3. For high purity columns, the temperature at
the top of the column is very sensitive, therefore, only minimal allowable setpoint
changes at the top of the column (i.e. Y255 setpoint change) can cause very large gains in
the temperatures at the bottom of the column. The Lann values of Figure 4.7 (a) show
that the Temp.t model accurately predicts the tray temperatures near the bottom of
TW252, Y257 and Y284. However, near the feed stage (Y297) and at the top of the
column (Y282 and Y255), the prediction accuracy tends to decrease because the Y255
setpoint changes had very small gains compared to temperatures at the bottom of the
column (Y257 and Y284). A similar prediction pattern for the Temp.t model at the
bottom of the column was also seen in the correlation coefficients (R?) values shown in
Table 4.7 for the same model validated on dataset V.tCL. In comparison, the
performance indices of the HYSYS model are larger than the Temp.t model indices
except for Y255 where the indices are similar because, for dataset t.1, the HYSYS model
was tuned to fit Y255. Furthermore, again, the Lsim values are well within the upper
limit values indicating that the HYSYS model captured the closed loop behavior of the

internal tray temperatures quite successfully as was concluded in Chapter 3.

From Figure 4.7 (b), the Lann values of 0.39 — 1.53% indicate that the Comp.t
model was very successful in capturing the variable gains of the distillate compositions
(A254, A256, and A257) for dataset t.1. In comparing the HYSYS model and Comp.t
model predictions of the distillate compositions, the diﬁ‘ere;nce between the performance
indices for the HYSYS model are much more greater than what we saw before with the
Temp.t model. For example, the Comp.t model accurately predicted the- A254 distillate
composition, with an Lann = 1.53 %. However the HYSYS model predicted an Isim =
19.23% which is well within the benchmark value of 24%. Hence the HYSYS model

was able to predict A254 at the on-line composition analyzer measurement points, as
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indicated by “-x-* on the Figure 4.7 (b), quite well. From Chapter 3, the low sampling
frequencies of the distillate composition on-line analyzer seem to miss the true A254
process dynamics and that the HYSYS tpodel representation is likely more accurate.
Hence, the Comp.t model identified on plant data was not able to capture the distillate
compositions true dynamics because of the ANN’s knowledge of the dynamic response

of the distillate compositions was limited to only the plant data.

Also, from Figure 4.7 (b), the Rev.t ANN model seemed to predict F256 and F267
fairly accurately. For F256 the standard deviation from the mean in the dataset is quite
large and little signal noise is present, therefore the Rev.t model was successful in
capturing the dynamic behavior of F256 to a step change in Y255. In comparison the
HYSYS model accurately predicted the F256 response with an lsim = 26.53%.
However, for output F267 the standard deviation of dataset t.1 is very small. Hence.
signal noise is very evident, hence. the performance index is as expected to be an order of

magnitudes higher for both the Rev.t and HYSYS model predictions.

Figure 4.7 (c) shows the closed loop response of the condenser level, L254, and
reboiler level, L253 to £10% L254 setpoint changes from its nominal process value of
50% of dataset t.3. From the Figure, the Lev.t model accurately predicted L254 with an
Lann = 1.74%, however was less accurate in predicting L.253, with an Lann = 52.32%.
The large Lann value is directly related to the lack of dynamic information as indicative
by the small standard deviation of L253 in the dataset. Hence, noise again becomes the
driving force behind the large Lann values.
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Figure 4.7(a): Comparison of the Temp.t and the HYSYS model predictions of TW252
internal temperatures for the closed loop dataset, t.1
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4.3.3 Performance Index Benchmarks for the ANN models
The ANN.t model prediction results from the open loop and closed loop plant data

presented in the previous sections are used as a guideline to determine benchmark and
upper limit values for the performance indices, Lann. The indices are developed for the
four basic ANN models, which represent the entire column; internal tray temperatures
(Temp), distillate compositions (Comp), internal flow rates (Rev) and levels (Lev) and
are intended to be used to benchmark any ANN model prediction independent of the
dataset the models are trained on. The benchmarks are tabulated in Table 4.8.

Table 4.8: Proposed benchmark and recommended upper limit values for ANN

models prediction of plant data

Category Output Benchmark Upper Limit
Lann (%) Lann (%)
Temp Y282
Y255
Y297 6.5 10
Y257
Y284
Comp A254
A256 1.1 1.6
A257
Rev F256 15 23
F267
Lev L254 17 25
L253

From Table 4.8, the optimum performance indices for the ANN models were
chosen using the same procedure as outlined in Chapter 3 for the Lsim values for the
HYSYS model. Furthermore the upper limit for l.ann can be used to determine the
accuracy of an ANN prediction of a certain dataset. For example, if the Temp.t model
predicted Y282 for a particular dataset with an Lann value > 10%, then the prediction
results of the Temp.t model are not accurate for a particular variable. Note that the
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benchmark and upper limit values for the Rev and Lev type models are quite a bit larger
that the Temp and Comp type models because of large L ann values for F267 and L253.

Using these benchmark values, Table 4.9, compares the prediction of datasets t.1
and t.4 for models Temp.t, Comp.t and Rev.t and for datasets t.3 and t.5 for model Lev.t
with the HYSYS model predictions. The prediction of the outputs that violated the
recommended upper limit values for both the Lsim and Lann values are highlighted in

grey in Table 4.9.

Table 4.9: A comparison of performance indices (I.sim and I.ann) values for the
ANN.t and HYSYS model prediction results

Model Output Closed Loop (t.1) Open Loop (t.4)
Lsim Lann. Lsim Lann
o) %) (%)
Temp, Y282 o8 10%% 32.16 6.49
Y255 22.12 ST 3.32
Y297 40.91 . 22.60 2.13
Y257 15.84 1.15 5.04 3.51
Y284 20.47 0.64 13.48 0.84
Comp, A254 19.23 1.53 33.83 1.07
A256 36.15 0.39 29.30 1.10
A257 11.14 0.68 6.06 1.43

Rev.t F256 2.55 0.88 1.11
F267 1045 HEg0> 40
Closed Loop (t.3) Open Loop (t.5)
Lev.t L254 1.74 1 .40 791 1.55
L253 e 1 14.03

The results show that for the closed loop datasets the HYSYS model violated the
recommended upper limit Lsim values the same number of times as the ANN.t models
did for Lann upper limit values. However for the open loop case the violations for the
HYSYS model comparatively were 3 to 1 compared to the ANN.t models. Furthermore,
the number of Lsim and Lann values above their respected benchmark values are

italicized and bolded in Table 4.9. These values show that for the HYSYS model
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predicted output values above the benchmark values but below the upper limit values
twice as many times compared to the ANN.t models for the closed loop dataset and three
times more for the open loop dataset.

4.4 Comparison Using Other Closed Loop Tests

The HYSYS and ANN.t model predictions are further compared using other
closed loop datasets t.2 and t.9. The performance indices for both the HYSYS model and
ANN.t models are tabulated in Table 4.10 for comparison.

Table 4.10: Performance indices of the HYSYS and ANN.t model predictions of

closed loop setpoint response datasets t.2 and t.9

Model Output t.2 t.9
ILsim lLann Lsim Lann
(%) (%) (%) (%)

Tempt Y282 27.74  9.88
Y255 21.36 5.99
Y297 ST S
Y257
Y284
Comp.t A254
A256
A257
Rev.t F256
F267

Examining the results from Table 4.10, it can be seen that in most instances both
the HYSYS model and Temp.t model had poor prediction accuracy for most of the
internal tray temperatures for datasets t.2 and t.9. The result is a bit surprising for dataset
t.2, however, it was expected for t.9 since there were undetected process disturbances and
a few faulty temperature sensors (especially Y297). The HYSYS and Rev.t models see a
similar pattern for the prediction of the internal flowrates. The HYSYS model and the
Comp.t model predictions of the distillate compositions showed that the ANN was able to
meet the upper limit values (< 1.6%) quite well for dataset t.9, and only for variable A254
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for dataset t.2. On the other hand, the HYSYS model prediction of dataset t.2 was
inaccurate (Isim > 37%) for all the output variables but within the benchmark value for
only variable A257 for dataset t.9.

4.5 Comparison Using Disturbance Plant Data

The HYSYS model and the ANN.t models were further compared using an
independent disturbance dataset, t.8. Dataset t.8 is an independent dataset because
neither model used the dataset during its identification process. In summary, dataset t.8
is comprised of a series of feed composition disturbances in A264, A266, and A267.
Using the recommended benchmarks and upper limits, the prediction accuracy of the

HYSYS and Temp.t and Comp.t models are compared and shown in Table 4.11.

Table 4.11: Comparison of the HYSYS model and ANN.t model prediction of
selected TW252 variables for the independent disturbance dataset, t.8

Model Output t.8

Temp.t Y282
Y255
Y257
Y284
Comp.t A254
A257

In examining the results of Table 4.11 it is evident that the Temp.t and Comp.t
models gave poor predictions for selected internal tray temperatures and distillate
compositions as indicated by the high performance indices that are well above the
recommended upper limit values. Similar prediction results occurred for the HYSYS
model prediction of Y257 and Y284, however adequate Isim values for Y255 (< 42%)
and within benchmark values for Y255 (< 28 %) were obtained. In general, the HYSYS
model Lsim values, relative to the Lann values, were diligent in comparison and the basic

trends of the variables were detected as concluded in Chapter 3. Hence, it can be
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concluded that the Temp.t and Comp.t models trained only on dataset Lt could not
capture the dynamic behavior of dataset t.8 and prediction results of the HYSYS model
were far from satisfactory, however, better than the ANN.

4.6 Comparison of ANN.t Model Predictions of Simulated and Plant
Data

The Temp.t, Comp.t, Rev.t, and Lev.t models were used to predict the generated
simulated response of the plant data as another check to determine if the ANN can predict
HYSYS model generated data that is similar to the plant data it was identified on. The
Lann values of the ANN.t models prediction of the simulation data should be similar to
the Lann values obtained for the ANN.t models prediction of the plant data and this will
assure that both models are correct. Table 4.12 shows the Temp.t, Comp.t and Rev.t
models prediction results using the performance index for the simulated data compared to
the prediction results of the plant data. The simulated data is given the suffix “sim”. For
example the simulated representation of plant dataset t.1 is labeled as t.1.sim. A similar

nomenclature is used to represent the other plant datasets.

Table 4.12: Comparison of the Temp.t, Comp.t and Rev.t model predictions of

simulated and plant data using performance index, Lann

Model Output Dataset Dataset Dataset  Dataset

t.1 t.1.sim t.4 t.4.sim
Lann (%) lLann (%) Lann (%) Lann (%)
Temp.t Y282 - 6.49 9.09
Y255 3.32 8.89
Y297 8. 93 3 5 1 2.13 225
Y257 .15 0.44 3.51 2.94
Y284 0.64 2.10 0.84 2.53
Comp.t A254 1.53 G0 FaR
A256 0.39 1.38
A257 0.68 1.45
Rev.t F256 255 2.36

F267 10.45 23.44
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From the Table 4.12, a comparison can be made between the ANN.t models
ability to predict plant data and simulated data. For example for dataset t.1 and t.1.sim,
the Temp.t model predicted both datasets with similar performance indices. The Lann
values for both datasets were similar for tray temperatures at the bottom of the column
(Y284, Y257, and Y297), however for both datasets the Temp.t model prediction of
Y255 and Y282 exceeded the upper limit of 10%. The Temp.t model had similar
performance indices for the prediction of datasets t.4 and t.4.sim; however, in this case,
all the predicted outputs had Lann values below the upper limit.

The Comp.t model’s performance indices for the prediction of the outputs (A254,
A256, A257) for both dataset t.1 and t.1.sim were within the upper limit of 1.6 % except
for the prediction of A254 in dataset t.1.sim. As stated in Chapter 3, the actual dynamic
response of A254 to the Y255 setpoint change was not available from the plant data due
to the low frequency sampling of the on-line analyzer. Furthermore, the HYSYS model
predicted the A254 response at the composition analyzer points quite accurately with
Lsim = 19.23 %, which was below the benchmark /sim value (24%) indicating that the
prediction was very accurate. The Comp.t model (which was identified using dataset I.t)
did not contain any information of A254 true dynamic nature during the identification
stage, hence, the model was not able to extrapolate to the dynamic conditions presented
in dataset t.1.sim for A254 and is reflected in the Lann value of 5.19%. The lack of the
ANN model’s ability to extrapolate is further recognized in the Comp.t models prediction
of the outputs for dataset t.4.sim, where not only was A254 Lann values well above the
upper limit, so was A256 and A257.

Table 4.12 also shows the Rev.t model gave similarly good Lann values for both
datasets t.1 and t.1.sim for outputs, F256 and F267. Moreover, accurate and resembling
Lann values are obtained for F256 for datasets t4 and t4.sim. The Rev.t model’s
prediction of F267 for both dataset t.4 and t.4.sim are equally unsatisfactory.
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The Lann values for the Lev.t model prediction of the simulation data and plant

data are compared in Table 4.13.

Table 4.13: Comparison of the Lev.t model predictions of simulated and plant data

using performance index,Lann

Model Output  Dataset t.3  Dataset  Dataset t.5  Dataset

t.3.sim t.S.sim
Lann (%) Lann (%) Lann (%) Lann (%)
Leve L[254 1.74 1.31 1.55 227

1a03 BN

L253 ]

Table 4.13 shows that the Lev.t model predicted both dataset t.3 and t.3.sim very
similarly with Lann values exceeding the upper limit (>25%) for L253 and within
benchmark values for L254 (<17%). For datasets t.5 and t.5.sim (open loop response) the
Lev.t model predicted L254 as indicated by the low Lann values. For L253 the Lev.t
model predicted Lann = 14.03% for dataset t.5, which is within the benchmark value.
however for t.5.sim the Lann values was 127.83%, which is well above the upper limit
value. The discrepancy between the plant data and the Lev.t model prediction of L253
for dataset t.5 is due to the excessive amount oscillation in the L253 signal in dataset t.5,
causing large Lann values. Whereas dataset t.5.sim contained little or no oscillations.

therefore, the Lev.t model easily predicted L253 within benchmark values.

4.7 Summary

Four dynamic ANN models (Temp Comp, Rev and Lev) were discussed and
developed for TW252 using plant step response data. The optimum ANN architectures
were chosen using a rigorous iterative procedure that involved various steps. The first
step was selecting the number of inputs to represent the selected outputs for each model
based on the correlation coefficients. Once the inputs and outputs are chosen the second

iterative procedure involved using the correlation coefficient again to optimize the
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number of past values (determines the dynamic nature of the models) and the number of
internal parameters. The optimum ANN architectures were identified using dataset L.t
and given the classification of ANN.t models (Temp.t Comp.t, Rev.t and Lev.t). The
ANN.t models were validated using various independent datasets and then the predictive
power of the models were compared to the HYSYS model predictions from Chapter 3
using a new performance index, Lann. From comparisons using datasets t.1 and t.4, it
was obvious that the performance benchmarks for the HYSYS model in Chapter 3 were
not applicable to the ANN.t models. Hence, benchmarks and upper limit values for /ann
values were developed so that the models could be cofnpared correctly. In general, based
on a comparison of performance indices, the ANN.t model predicted the plant data much
more accurately than the physical model as was expected because the ANN.t models
were directly identified from the compared data. However, for disturbance dataset t.8.
which was completely independent of the training data, the ANN.t models were inferior
to the HYSYS model indicating that the ANN.t models lacked the ability to extrapolate
beyond the data they were trained on. The inability to extrapolate was further exhibited
in the ANN.t model prediction of simulated data for the distillate compositions for
datasets t.1.sim and t.4.sim were the lack information from the trained data clearly did not

help the ANN.t model predict the true simulated response.
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Chapter 5

Integration of the First Principle and ANN Modeling Techniques

For industrial processes, data that is rich with dynamic information such as
setpoint step response data are often difficult to obtain. It is usually not feasible to
deliberately upset a column by introducing large setpoint or load changes. There are some
commercial applications such as DMCplus from Aspen Technology that are successful at
upsetting a process to obtain models that can be used for control of the process. The
modeling however requires many perturbations of all the manipulated variables to obtain
linear, dynamic step response models of the controlled variables response. Developing
these step response models and determining which variables to step is time consuming
and could involve at least two weeks of testing and then countless days of trying to re-

stabilize the unit after the testing.

Another alternative is to create models from available data to identify an ANN.
The data to build ANN models are present in a data historian. However, the data in a
historian is usually compressed or averaged and consists mostly of steady state
information (nominal conditions) with very little dynamic information. Therefore, an
ANN trained on this type of data may not represent the entire range of operation desired
to obtain a good model of the process. However, data generated from a physical model
can be used to simulate process information beyond normal operating regions, such as
changing large setpoint changes or feed composition disturbances. The data from the
physical model can be merged with historical plant nominal operating data to increase the
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range of data on which an ANN model is identified. In essence, the resulting ANN is
identified from hybrid data that represents the nominal plant data and simulated data

outside the nominal regions.

5.1 Recommended Integrated Modeling Strategy

The following is an overall strategy for the integration of the physical model and
the ANN models for TW252: '
1. Develop a physically-based dynamic model bench-marked with available plant
operating data.

(S5

Simulate transient response data such as known disturbances or setpoint changes
that may occur in the process using the physical model

Using the optimum ANN topologies, the ANN models (Temp, Comp. Rev. and

(W3]

Lev) are identified using historical plant data and validated using a collection of
the step response data.

4. The physical model is then used to provide process knowledge to the ANN
models in the form of data to extrapolate the intended prediction region of the
ANN models.

5. Then a comparison may be performed using the performance benchmarks and
upper limit values of Lann for the ANN models trained using plant nominal and
simulated process data (ANN.n+s models) to ANN models trained only on plant
nominal data (ANN.n models).

From the modeling strategy above, the development of the physical and ANN
models have been presented in Chapter 3 and 4, respectively. In this chapter using the
optimum ANN topologies selected in Chapter 4, the ANN models are identified using
nominal operating data, and then validated using the step response data. Furthermore, an
integrated model that combines simulated step response data and nominal operating data
to aid in the development of a robust Hybrid model for TW252 is investigated.
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5.2 ANN Models of TW252 Identified with Nominal Data

For most industrial applications such as TW252 the available data to identify an
ANN model is usually in the form of nominal data available from a data historian. In
most instances for an industrial application, step response data is a luxury. Hence, the
ANN model topologies selected in Chapter 4 are re-trained on nominal data and used to
predict step response or disturbance datasets.

The optimum ANN model (Temp, Comp, Rev and Lev) topologies are re-
identified using three regions of nominal historical data, which are labeled as dataset L.n.
The new identification dataset [.n and its statistics can be found in Table E.2 and plotted
in Figures E.2, Appendix E for selected TW252 variables. Dataset [.n contains 3860
sample data points for each of the measured TW252 variables and represented three
months of different steady-state operating regimes. From Appendix E, in comparing the
statistics of dataset I.t and L.n, dataset I.n is considered to represent closed loop and
nominal operation with most of the points near the three steady state operating regimes.
Whereas dataset L.t is completely made up of transient data representing a wide range of

open and closed loop operation.

Similar to the ANN models identified on dataset L.t (in Chapter 4), the ANN
models identified on dataset I.n are given an extension “n”. For example the Temp,
Comp, Rev and Lev models identified on nominal data are represented as Temp.n,
Comp.n, Rev.n, and Lev.n and are generalized as ANN.n models. Table 5.1 shows the
correlation coefficient results for the ANN.n model prediction of both identification
dataset I.n and various independent datasets; V.tOL, V.tCL (subsets of I.t), and V.t8
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Table 5.1: Correlation coefficient results for ANN models identified on nominal data
and validated using other closed loop datasets

Model ANN Output Set Set Set Set
Topology Imn_ VOL V.tCL V.18

r K r R
Temp.n 35-17-5 Y282 0997 0993 0992 0.997

Y255 0998 0994 0994 0.996
Y297 0992 0990 0960 0.993
Y257 0.994 0988 0988 0.996
Y284 0.995 0987 0991  0.995
Comp.n 24-13-3 A254 0971 - 0 0.776  0.978
A256 0990 0946 0945 0.996
A257 0.983 0.888 0.853  0.986

Rev.n 18-10-2 F256 0996 0983 0983 0.996
F267 0991 0978 0988 0.992

Lev.n 18-10-2 L254 0950 0.765 0.821 -
L253 0.990 0 0 -

From Table 5.1 the selected optimum topologies for the four ANN.n models were
able to predict the outputs very accurately, based on R? values for identification dataset
Ln. The very high R? values for the prediction of dataset Ln indicate that the output
variables data in dataset L.n consist mostly of groups of samples around a steady state
value. Therefore, it is easier for the ANN.n models to approximate dataset I.n than the
ANN.t models in approximating dataset IL.t, because the information in Ln only
represented a few regions of possible operation. This is in contrast to dataset L.t, which is

completely made up of transient data representing a wide range of operation.

In general, the verification results of the Temp.n and Rev.n models validated
using datasets, V.tOL, V.tCL (subsets of L.t), and V.t8, were notably good for most of the
models because the correlation coefficients were well above the criterion of 0.850. On
the other hand the Comp.n and Lev.n models had noticeable difficulty in’ predicting the
outputs for the validation detests. For example, for validation dataset V.tOL, the Comp.n
model predicted the output, A254, with an R? value = 0 and for dataset V.CL, R? < 0.850,
indicating that the inputs chosen were not able predict the output at all. However, for
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dataset V.t8 the results were much better. On the other hand, the Comp.n model
predicted A256 and A257 successfully for all the validation datasets. For the Lev.n
model the negligible R? value was also obtained for the prediction of L253 for dataset
V.tOL and V.tCL. Furthermore, correlation coefficients results for L.254 were also below
the 0.850 criterion for both datasets V.tOL and V.tCL. The low values indicate that the
Lev.t model was not able to represent the input/output relationship of datasets for those

particular outputs. The Lev.n model was not used to predict the outputs in dataset V.t8.

5.3 Comparison of ANN.t and ANN.n Model Predictions

The ANN.n models identified in the previous section will be used to predict both
open loop and closed loop data. As was clearly evident in Chapter 4. the most important
consideration in the reliability of a model is the ability of the model to predict
independent datasets. The ANN.n models (Temp.n, Comp.n, Rev.n, and Lev.n)
predictions are compared to the ANN.t models developed in Chapter 4.

5.3.1 Comparison using Open Loop Data

Figure 5.1 (a) and (b) shows the comparison of the Temp.n, Comp.n. and Rev.n
models and the Temp.t, Comp.t, and Rev.t predictions of dataset t.4. To review, dataset
t.4 consists of manipulated variable setpoint changes (5.0 m*/h step up and 2.5 m*/h step
down) in the reflux flow rate, F256, from the nominal value of 41.2 m*h. Both Y255
and Y284 control loops were in manual mode (a full description of Test 4 can be found in
Chapter 2). Figure 5.1 (a) is a display of all the internal tray temperature responses to this
open loop step test. The Temp.n model predicted the open loop behavior of the internal
tray temperatures less accurately (i.e. Y282, Lann = 224.10%) than the Temp.t model
(i.e. for Y282, Lann =6.49 %) indicated by the higher performance indices. For most of
the outputs (Y282, Y255, and Y257) the Temp.n model predicted dataset t.4 with Lann
values well above the upper limit value for the Temp model of 10% indicating that the
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Figure 5.1 (a): Comparison of the Temp.t and Temp.n models prediction of TW252 internal

temperatures for the open loop behavior of dataset, t.4.
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Temp.n model was not able to interpolate the dynamics of dataset t.4 for some of these
outputs. However for outputs, Y297 and Y284 Temp.n model prediction was very
accurate indicated by the very low Lann values that were within the benchmark value of

6.5 % for the Temp model.

Figure 5.1 (b) illustrates the ability of the Comp.n and Rev.n models identified
using dataset L.n to predict dataset t.4. The Comp.n model predicted A256, and A257
with an Lann = 4.70% and 6.67%, respectively. These performance indices were also
higher than the Comp.t model prediction of t.4 and are also well above the Lann upper
limit value for the Comp model of 1.6 % for Comp models. The Comp.n model predicts
the distillate composition. A254 of dataset V4, even less accurately with Lann = 52.53 %,
which is well above the upper limit value of 1.6%. On the other hand the Comp.t model
predicted the distillate compositions with indices well within the upper limit values. The
poor performance of the Comp.n model is directly related to the model’s inability to
extrapolate beyond the conditions in the nominal training data. Similarly the Rev.n
model greatly under estimated F267 (Lann = 357.42%). However, the model predicted
F256 very accurately with an L.ann = 5.43 %, which was well within the benchmark value
of 15% for the Rev model.

Figure 5.1 (c) shows a comparison of the Lev.t and Lev.n model predictions of
dataset t.5. It clearly demonstrates that the Lev.n model can not approximate the open
loop response of L254 based the nominal data used to train the model. The Lann value
was well above the upper limit of 25% for Lev models. The poor resuit of the Lev.n

model is further echoed in its prediction of L253 where Lann was 35%.

The most important observations that can be inferred from Figures 5.1(a) through
(c) is the ANN.n models were not able to capture the dynamic open loop nature of
datasets t.4 and t.5 very effectively. The ANN.n models trained on dataset I.n are not
reliable enough to be able to infer open loop conditions beyond the training dataset.
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5.3.2 Comparison using Closed Loop Data

Figures 5.2 (a) through (c) show the Temp.n, Comp.n, Rev.n, and Lev.n model
predictions of closed loop data. From Figure 5.2 (a), the Temp.n model had better
prediction results for closed loop dataset t.1 than the for the open loop dataset t.4. The
results are as expected because the closed loop test more closely mimics nominal
operation. However, the Temp.n model still predicted poor Lann values that were well
above the upper limit value of 10% for outputs Y282, Y255 and Y297, which again was
expected because Y255 rarely operates in closed loop (hence, the nominal data would not
have this information). On the other hand the Temp.n model predicted very low Lann
values for outputs Y257 and Y284 (bottom of the column), which is not surprising
considering that Y284 nominally operates in closed loop. The Temp.n model is expected
provide poorer prediction for dataset t.4 than t.1 because t.4 has more transient excitation
than t.1 Therefore the Temp.n model identified on nominal data (I.n) would be less

effective because the model lacks knowledge of the transient nature of dataset t.4.

Figure 5.2 (b) shows the Comp.n and Rev.n predictions of the closed loop dataset
t.3. The Lann values for the Comp.n are much higher than the Comp.t models. As was
evident for dataset t.4, the Comp.n model was not able predict the distillate compositions
with the performance index upper limit of 1.6% indicating that the Comp.n model again
has poor extrapolation characteristics. For the internal flowrates (F256 and F267) the
Rev.n model seemed to capture the trend of the dataset, however the Lann value
(27.08%) was above the allowable upper limit of 23%.

Figure 5.2 (c) shows a comparison of the Lev.n and Lev.t predictions of the
condenser level, L254, and reboiler level, L253, for a series of closed loop setpoint
changes as represented in dataset t.3. The Level model was also identified using dataset
I, (Level,) and validated using the dataset Vi3. Again, it is evident that the Lev.n model
identified on nominal operating data was not able to capture the dynamic nature of
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dataset t.3. The Lev.n model predicted L254 with L.ann = 65.12%, which was well above

the recommended upper limit value of 25%.

The most important observations that can be inferred from Figure 5.2 (a) through
(c) are that the ANN.n models were not able to capture the outputs as effectively as the
ANN.t models for dataset t.1.

5.4 Gaining Process Knowledge Using the Physical Model

In Chapter 3, the HYSYS model was benchmarked against plant data. The
prediction of the plant data for step response tests (t.1, t.2, t.3, t.4, and t.5) were deemed
to be accurate and the data were recorded in a new dataset labeled with the suffix “sim”.
From the integration strategy presented in section 5.1, it is suggested to employ the
HYSYS model to provide supplemental identification data to aid the ANN.n model
prediction of operating regions that represents operations beyond nominal conditions

such as the closed and open loop step response tests.

The HYSYS simulation of the step response tests as outlined in Chapter 2
provides an abundant source of transient data that contains extensive knowledge of the
column’s dynamics that can be used for the identification of robust ANN models. The
dynamic information may expose non-linear input/output relationships that were
transparent in the nominal operating data. Hence, the ANN.n models are re-initialized
with an augmented dataset labeled [.n+s. Dataset I.n+s represents simulations of Tests 1,
2,3,4,5,9, and 10 along with the three regions of historical nominal plant operating
data. The ANN models (Temp, Comp, Rev, and Lev) identified on dataset L.n+s are
given the extension “n+s" and are generalized as ANN.n+s models. A plot of dataset
Ln+s is included in Appendix E. Since the ANN.n+s models are trained partly on
simulation data. The ANN should be able to learn the partial derivatives of the inputs
with respect to the outputs; hence, an increase in the reliability of the ANN.n+s models to
predict the outputs for plant step response data should occur.
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5.4.1 Comparison of ANN.n+s and ANN.n Model Predictions of Open Loop Plant
Data ‘

The performance indices, Lann values, for ANN.t, ANN.n and ANN.n+s model
prediction of dataset t.4 are compared in Table 5.2. The table shows that the ANN.n+s
models had a much lower number of Lann violations of the upper limit values, as
indicated by the smaller amount of highlighted values, than the ANN.n models.

Table 5.2: Comparison of ANN models identified on Lt, I.n and Ln+s

predictions of dataset t.4 using Lann.

Category  Output Identification Dataset
Lt [n Ln+s
Lann (%) Lann (%) Lann (%)
Temp Y282 6.49 OSEIR LT
Y255 3.32
Y297 2.13
Y257 3.51
Y284 0.84
Comp A254 1.07
A256 1.10
A257 1.43
Rev F256 L1l
F267 | 4822

The Temp.n+s model predicted all the internal tray temperatures with relatively
better Lann values than Temp.n but not quite as accurate as the Temp.t model. The
Temp.n+s had Lann violations for outputs Y282 and Y255, however for Y257 the
Temp.n+s had a slightly better Lann value than the Temp.t model. The Temp.n model
greatly overestimates the open loop gain for variables Y282, Y255 and Y257. However,
with the inclusion of the simulation data the Temp.n+s model clearly eliminated the
overshoot as seen in Figure 5.3. Also, there was a definite improvement in the prediction

of the distillate compositions using the Comp.n+s model compared to the Comp.n for
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dataset t4. The Comp.n+s model outperformed the Comp.n model and was more
accurate in predicting A254 than the Comp.t model. The introduction of the simulated
data extended the range of the nominally trained model, which is evident in the
Comp.n+s model, prediction of A254, also seen in Figure 5.3. From Table 5.2 a similar
trend is apparent for F256, where in this case the Rev.n+s model provided better
predictions than the Rev.t model. The inclusion of simulated data for the Rev.n+s model
prediction of F267 did not achieve the same results as F256, however it did manage to

increase the performance considerably.

A similar comparison between Lev.t, Lev.n and Lev.n+s models prediction of
open loop dataset t.5 is shown in Table 5.3. The Lev.n+s model outperformed both Lev.n
considerably for the prediction L254 and moderately achieved better Lann values than
the Lev.t model. Furthermore. for L2353 the Lev.n+s was able to reduce the Lann value to
well below the benchmark value of 17% and again was moderately better than the Lev.t

prediction.

Table 5.3: Comparison of Lev models identified on Lt, I.n and L.n+s predictions of

dataset t.5 using lLann.

Category Output Identification Dataset
Lt Ln Ln+s

Lann (%) Lann (%) Lann (%)

Lev L254 1.55 0.50
L253 14.03 10.73
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5.4.2 Comparison using Closed Loop Plant Data

The prediction results of the ANN models (Temp, Comp, and Rev) trained on
[.n+s (ANN.n+s), I.n (ANN.n) and [.t (ANN.t) datasets, for closed loop dataset t.1 are
compared in Table 5.4. In general the ANN.n+s models again decreased the number of
Lann violations of the upper limit values, as indicated by the smaller amount of
highlighted values.

Table 5.4: Comparison of ANN models identified on Lt, I.n and Ln+s predictions of

dataset t.1 usinglLann.

Category Output Identification Dataset
Lt Ln Ln+s
Lann (%) lLann (%) Lann (%)
Temp Y282 G ROREES JPRELS
Y255 4l
Y297 .
Y257 1.15
Y284 0.64
Comp A254 1.53
A256 039
A257 0.68
Rev F256 2.55
F267 10.45

The Temp.n+s model had considerably better prediction results than the Temp.n
models. For outputs Y297, Y257 and Y284, the Temp.n+s predictions were as reliable as
Temp.t model; however, the Temp.n+s model appeared to underestimate Y255 and Y282
with Lann values greater than the Temp.n model. The reason for the wide discrepancy in
predicting the outputs is that the Temp.n+s model was trained on the simulated data,
which is an emulation of the plant data, hence the actual noise associated with signals
Y282 and Y255 are neglected causing the high Lann values. For the Comp.n+s model
prediction of dataset t.1, there is a definite improvement compared to Comp.n
predictions. For outputs A256 and A257, the introduction of simulated data to the
nominal data during the identification step reduced the Lann value well below the
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benchmark value of 1.0%. For A254 there was also a significant improvement in the
prediction, however, not quite enough to bring the Lann value within the upper value
limit of 1.6%. Furthermore, the prediction of the Comp.n+s model is comparable to even
to the Comp.t model prediction indicating the significance of adding simulation data to
the training step. The Rev.n+s model also experienced considerable improvement in the

prediction of variables F267 and F256 compared to the Rev.n model.

From Table 5.5 the prediction results of the Lev models, for closed loop dataset
t.3, are compared. Lev.n+s model outperformed both Lev.n and Lev.t models in
predicting dataset t.3 with better Lann values for both L254 and L253. For L254 the
introduction of the simulation of Test 3 to the training decreased the Lann value well

within the benchmark indicating that the model prediction is excellent.

Table 5.5: Comparison of Lev models, identified on datasets L.t, I.n and L.n+s,

predictions of dataset t.3 using lann.

Category Output Identification Dataset
Lt Ln Ln+ts

Lann (%) Lann (%) Lann (%)

Lev  L254 1.74 6512 1.36

L253 (0000000 o0 ) 3386

[n summary the ANN models identified on nominal plant data and simulated step
response data (ANN.n+s models) were able to capture the transient nature of the plant
closed loop step test, t.1, with approximately the same reliability as if they were actually
identified on t.1 (ANN.t models). Furthermore, there was a significant improvement in
the ANN.n+s models ability to predict t.1 compared to the ANN models that were trained
on nominal data only (ANN.n models).
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5.4.3 Comparison of the ANN Model Prediction of other Datasets

Using dataset t.2, the ANN.n+s miodels are compared to ANN.n and ANN.t in
Table 5.6. From the table, the Temp.n+s model provided very little improvement in
predicting most of the outputs compared to the Temp.n model. However, for output
Y255 a significant improvement in the Lann values occurred and comparable to the
Temp.t prediction of dataset t.2. Furthermore, the Comp.n+s model accurately predicted
the distillate compositions in dataset t.2 with Lann values below the benchmark for A254
and A256, which is a significant improvement from the Comp.t predictions. The Rev.n+s
model also predicted the outputs (F267 and F256) for dataset t.2 with better accuracy
than the other two models.

Table 5.6: Comparison of ANN models, identified on datasets I.t, I.n and L.n+s,

predictions of dataset t.2 using.ann.

Category Output Identification Dataset
Lt Ln Lo+s

Lann (%) Lann %) I.an (%)

oy

J‘
BN G

Temp Y282
Y255
Y297
Y257
Y284
Comp A254
A256
A257
Rev F256
F267
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5.4.4 Comparison of the ANN Models using Disturbance Data
In Chapter 4, it was concluded that the ANN.t model’s prediction of the

independent validation dataset t.8 was very poor. Hence, using the recommended
integrated modeling strategy; the Temp and Comp models were reinitialized and trained
using an augmented dataset (I.t+s) consisting of the plant step response tests (I.t) and a
simulation of t.8. These resulting models are labeled as Temp.t+s and Comp.t+s. The
predictions of t.8 using the Temp.t+s and Comp.t+s models for various TW252 variables
are shown in Table 5.7. Based on the Lann values there are significant improvements in
the prediction of the internal tray temperatures and distillate compositions. In fact, for
outputs Y255 and A254 the Temp.t+s and Comp.t+s models respectively, predicted
dataset t.8 within the Lann upper limit values indicating a reliable prediction. Due to

problems in the data acquisition of Test 8, Y297 and A256 could not be predicted.

Table 5.7: Comparison of ANN models, identified on datasets L.t and Lt+s,

predictions of dataset t.8 using Lann

Category Outputs Identification Dataset
Lt Lt+s

I.an (%) Lann (%)

Temp Y282 SR B
Y255
Y257
Y284

Comp A254

A257
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5.5 Application of the Recommended Modeling Strategy of TW252

While this research was underway, a problem was observed with the L254
controller. An analysis of the closed loop response of the reflux drum level, L254, to
+10% and —10% setpoint changes from the nominal steady state value indicated that the
control performance of the L254 (condenser liquid level) controller was poor. A study
was conducted using the HYSYS model and the developed Lev (Lev.t, Lev.n, Lev.n+s)
models to quantitatively assess the L254 control loop performance. The characteristics

used to evaluate the loop were as follows:

L. Stable operation with little oscillation

2 No steady state error

3. Fast and smooth setpoint responses

4 Little or no overshoot of setpoint changes

As was discussed in Chapter 3, the HYSYS model was able to emulate the plant
setpoint response data of Test 3 (dataset t.3) fairly accurately for variable L254. The
results of the HYSYS prediction are reexamined in Figure 5.4, which represents the
prediction of the closed loop response of dataset t.3 to only a +10% setpoint change in
L254.
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Figure 5.4: Comparison of the HYSYS model prediction of an actual setpoint response
for L254 using existing controller settings
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From the figure, it is evident that the HYSYS model successfully captured the
L254 response characteristics successfully. Furthermore, a control loop performance
assessment was performed (Swanda and Seborg 1997) and it was determined that the
response of L254 to a setpoint change exﬁibited an overshoot of 38%. In control theory,
a 38% overshoot indicates that the response is very aggressive and controiler tuning may

be the source of the problem.

Using the benchmarked HYSYS model a simulation was performed to determine
new “well tuned” controller settings. In collaboration with University of California,
Santa Barbara (UCSB), Anthony Swanda developed new PID controller settings for the
L254 controller. The effectiveness of the tuning parameters for L254 was first simulated
using the developed HYSYS model. A similar experiment to dataset t.3 was performed
using the HYSYS model, which consisted of a +10 % L254 setpoint change. The
response of L254 is plotted in Figure 5.5.
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Figure 5.5: Simulated vs. actual 254 setpoint step response using new control settings

From the figure, the response characteristics of the new PI controller for L254
setting simulated in HYSYS were very good. The overshoot was negligible. After
simulating the response using the HYSYS model the new tuning parameters were
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implemented on the L254 controller for TW252 at the Mizushima Oil Refinery. The
same +10% setpoint change in L254 was conducted on the actual column and the data
was collected and labeled as Test 7 (t.7) and also plotted on Figure 5.5. For a brief
description of Test 7, see Chapter 2. As shown on Figure 5.5, the HYSYS model
successfully predicted the response of L254 with an Lsim = 1.05 %, which is well within
the benchmark value.

For the sake of comparison, the ANN models (Lev.t, Lev.n, Lev.n+s) for the
prediction of output variable L254 identified in the previous sections were also tested for

their predictive powers on dataset t.7 and plotted in Figure 5.6.

l Lev.n+s: Lann = 2.50 %, Lev.t: Lannt = 2.92 [%y.n: lann = 101.90 %
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Figure 5.6: Comparison of Lev.t Lev.n and Lev.n+s model predictions of TW252
condenser level (L254) for dataset t.7.

The Lev.n model predicted L254 for dataset t.7 with an Lann = 101.90%. The
Lev.t model predicted L.254 with an Lann=2.92 %. The Lev.n+s model predicted L254
had an Lann =2.50 %.
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5.6 Summary

In this chapter, the concept of integrating a physical model with ANN models was
explored. ANN model topologies selected in Chapter 4 were re-identified using nominal
data for the internal temperatures (Temp.n), distillate compositions (Comp.n), internal
flow rates (Rev.n), and TW252 levels (Lev.n). The prediction accuracy of these models
were compared to the ANN.t models, identified on step response data, using a benchmark
and upper limit values developed in Chapter 4. In general, the ANN.n models did not
predict the excited nature of the step response datasets very accurately because the
ANN.n models were identified primarily on steady state operating data. Furthermore, the
ANN.n models violated the Lann upper limit boundaries more often than the ANN.t
models. On the other hand, once the ANN.n models were re-initialized using simulated
transient step response data in conjunction with the nominal data (an augmented dataset,
[.n+s). The resulting ANN.n+s models (Temp.n+s, Comp.n+s, Rev.n+s, and Lev.n+s)
had much better prediction results on the step response data. Furthermore, on average, the
ANN.n+s models were not only better than the ANN.n models, but in some
circumstances outperformed ANN.t models and the [.ann violations decreased
substantially. An explanation for this phenomenon is that networks trained on “perfect”
data (i.e. simulation data) essentially can learn the derivatives of the physical model. If a
neural network can learn the derivatives, it can simply look up the derivatives if

presented with data similar to the simulation data.

An industrial application of the recommended integrated modeling procedure, that
combined neural networks and HYSYS modeling, was shown for the condenser level,
L.254, where a control loop assessment was done. The HYSYS model was used to
predict the response using new tuning parameters for L254. The simulation data
generated from this test was augmented with nominal operating data and the Lev.n model
was retrained. The results indicated that not only was the HYSYS model able to capture
the true dynamic response of L254 to new tuning settings in dataset t.7, but the Lev.n+s
model, trained on the augmented dataset, was also able to predict dataset t.7 more
accurately than the Lev.t model.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

Using historical nominal and step response data collected from the Japan Energy
Corporation, Mizushima Oil Refinery in Japan, a physical model and an ANN model
were successfully developed for TW252 (No.2 Xylene splitter). The goal of this research
was to compare these two modeling techniques and to suggest and develop an integrated
hybrid modeling strategy for TW252.

The physical model was developed using a commercial dynamic and steady-state
simulator, HYSYS (v.1.1). A steady-state model was used to evaluate the column’s non-
linear behavior and the control loop interaction present in TW252’s current control
structure. The development of the column dynamic model involved using rigorous
thermodynamics, and first principle representations of TW252’s equipment. An iterative
procedure was used to tune the dynamic model. That is the dynamic model, initialized
using the steady-state model, was bench-marked using open loop, closed loop, and
disturbance data. Characteristics in modeling and the discrepancies in prediction of these
tests were discussed in detail. The ability of the HYSYS dynamic model to capture the
plant dynamic changes was evidenced by the prediction of the distillate compositions.
Furthermore, from the verification of the HYSYS model, benchmarks and upper limit
values, based on a performance index (/sim), are recommended for the prediction of
TW252 variables.
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Artificial neural network models using Process Insights™ were also developed
for TW252 for four distinct general ANN models; Temp, Comp, Rev and Lev. It was
shown that the designs of the ANN model topologies were very sensitive to the number
of inputs and the number of past values fncorporated. The optimum topologies for the
ANN models were selected using an iterative algorithm that involved varying the number
of inputs and then using the correlation coefficient (Rz) to evaluate the ANN models
predictive power using independent datasets. After the inputs were selected, the number
of past values were investigated using a similar a trial and error procedure that also
involved the R? coefficient. Using the optimum topologies, the ANN models were
identified using setpoint open and closed loop response data (ANN.t models). The
ANN.t models were used to predict various open and closed loop changes. Based on the
results, new performance indices (Lann) that represented the prediction accuracy of an
ANN model were developed independent of the Lsim values developed for the HYSYS
model. Comparisons between the HYSYS model and ANN.t models, using performance
indices Lsim and Lann, showed that the ANN.t models predicted the setpoint step

response data more accurately than the HYSYS model.

For cases where the collection of step response data that represents the dynamic
nature of the process is not possible, the predictive power of ANN models identified on
nominal process data were investigated (ANN.n models). The lack of excitation in the
training data of the ANN.n models proved to be fatal for prediction of setpoint step
responses. It was recommended that the benchmarked HYSYS model be used to aid in
the re-identification of the ANN.n models by supplying simulated data representing the
step response tests that the ANN.n models were trying to predict. Using an augmented
dataset that included nominal and simulated step response tests, the prediction accuracy
of the ANN.n+s models are compared to the ANN.t and ANN.n models. The ANN.n+s
models were found to enhance the predictive power of the ANN.n models and in some
cases made predictions that were comparable to the ANN.t model. Hence, the
recommended hybrid modeling strategy verifies that physical models are indeed
complimentary to neural network models. The technique of hybrid modeling was applied
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to a control loop assessment of TW252’s condenser level, L254. The results showed that
the Lev.n+s model identified on an augmented dataset extrapolated the model’s ability to
predict beyond the nominal operating dat;.

6.2 Future Work

The trust of this thesis was to determine an effective strategy to integrate physical
and artificial neural network techniques in modeling an industrial distillation column.
Physical models can now aid in the identification of ANN models to represent operating
regions beyond nominal conditions. These ANN models can be used to optimize process
inputs to obtain desirable outputs, or used to infer quality, or used in a non-linear model
predictive control strategy. In the past commercial model predictive control techniques
such as Aspen Technologies’ DMCplus have successfully applied linear based dynamic
models to control large scale multiple input and multiple output (MIMO) systems. With
the successful application of the hybrid methodology developed in this thesis, one may
infer that some linear models will one day be replaced with non-linear ANN models built
using plant and simulated data. Some potential applications and alternative control

strategies are considered and described below.

6.2.1 ANN Applications
Recently there has been concern in the petrochemical industry that the frequency

of on-line measurement of parameters and/or variables that quantify process behavior is
too low. For example, the frequency of sampling of the distillate compositions for
TW252 was too low for practical control purposes (the on-line sample rate was every 60
minutes). An alternative to such problems is to use an ANN model that can infer difficult
to measure product qualities from secondary process measurements. Hence, if an ANN
model could capture the relationship between quality measurements and on-line process
variables, the model could be used within a control scheme to infer quality variable(s) at
a higher frequency than conventional measurement methods. The concept of inferring a

quality variable from other variables is known as “virtual sensing” or “softsensors”. The
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models developed in this research can be applied as softsensors. For example, the
possibility of closed loop inferential control of the distillate quality may be realized if fast
and accurate estimates can be obtained from an ANN model. An inferential control
strategy uses the inferred estimates of the controlled output (y) from process
measurement (y) to be used directly for feedback control as depicted in Figure 6.1. An
interesting continuation of this project would be to evaluate the effectiveness of the ANN
models developed via an on-line implementation to predict the distillate quality at a

higher sampling frequency than conventional techniques.

Controller Plant ANN Estimator

Figure 6.1: An example of an inferential estimator used as a “virtual sensor”

An artificial neural network model could also be used to replace mechanistic or
ARMA (Autoregressive moving average with erogenous input) models with the same
strengths and weaknesses with very little modification of the control scheme. The
popular Internal Model Control (IMC) framework (Garcia and Morari, 1982) provides the
typical example of how an ANN model can be used for control purposes. Traditionally,
the IMC model of the plant is linear and is inverted to determine the control structure.
Psichogios and Ungar (1991) studied the use of an ANN as the controller for direct
control or as a plant model for indirect control. For indirect control Psichogios and
Ungar (1991) also studied the use of an ANN as the process model within the MPC
framework. In short the MPC architecture uses an optimizer to pick a sequence of
control actions, u, to minimize the difference between a target, y*®. and the actual value,
y, over the next N time steps. In this situation the ANN model could be trained to
minimize the multi-step ahead prediction error (N time steps ahead) rather than the one-
step ahead prediction error.
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6.2.2 Other Empirical Techniques
The use of other empirical methods such as Principle Component Analysis (PCA)

or Projection to Latent Structures (PLS) should also be studied as a comparison to ANN
modeling. PLS and PCA modeling is a multivariate statistical empirical method that
basically finds linear combination of variables that describes major trends in the data. In
general, there is a great deal of correlated or redundant information in laboratory and
process measurements. PLS and PCA methods extract this information by determining
how variables change with respect to one another, i.e. how they co-vary. The co-linearity
of the variables are captured into a number of smaller principal components that describe
the large portion of the variance in the data. There have been a number of studies on the
use of linear PCA models to describe chemical processes (Chen, 1997). For a good
overview of the use of these methods, consult papers by Kourti ef al (1996) and Wiseet
al (1995). Since TW252 contains a large number of process variables that may or may
not be dependent on the quality variable, the selection of the appropriate number of
inputs to represent the behavior of the output is purely arbitrary. In this thesis, a
sensitivity analysis that was proprietary to Process Insights™ was used to help select the
necessary input variables to represent the various ANN models developed for TW252.
However, using PCA/PLS methods, it may be possible to reduce the relationship between
the process variables and quality output variables to a few latent variables that could
adequately describe all the important variations and trends in the process. Since TW252
was proven to be a highly non-linear process, future studies could focus on the use of
reducing the process data (inputs and outputs) to a fewer latent variables that may be used
in the identification process. The reduction of inputs and outputs would eventually
exhibit a decrease in the time required to train the ANN.



148

References

Arkun Y., and Hernandez E., “Study of Control-Relevant Properties of BackPropagation
Neural Network Models of Nonlinear Dynamical Systems,” Comp. & Chem.
Engg, Vol. 16, pp. 227 (1992).

Astrom, K. J., and McAvoy, T. J., “Towards Intelligent PID Control,” Automatica, Vol.
28, pp. 1 (1992).

Baratti R., Vacca, G., and Servida, A., “Neural Network Modeling of Distillation
Columns”, in Hydrocarbon Processing, Vol. 74, pp. 6 (1995).

Basualdo, M. S., and Ceccatto, H. A., “Practical Control Methods For Distillation
Columns Using Neural Networks,” I/FAC Symposium on Dynamics and Control of
Chemical Reactors, Distillation Columns and Batch Processes (DYCORD'95),
(1995).

Bhat N. and McAvoy T. J., “Use of Neural Nets For Dynamic Modeling And Control of
Chemical Process Systems”, Comp. & Chem. Engg., Vol. 14, pp. 573 (1990).

Bhat N., Saint-Donat J., McAvoy T. J., “Neural Net Based Model Predictive Control,”
Int. J. Control, Vol. 54, pp. 1453 (1991).

Bhat, N., McAvoy, T. J., Minderman, P. A., and Wang, N. S., “Modeling Chemical
Process Systems via Neural Computation,” IEEE Control System Magazine, Vol.
1, No. 24 (1990).

Birky G. and McAvoy, T., “A neural net to learn the design of distillation controls,”
IFAC DYCORD Symp., Maastricht, Netherlands (1989).

Bomberger, J.D., and Seborg, D. E., “On-line Updating of Radial Basis Function
Network Models,” Proc. IFAC-NOLCOS ’95, Tahoe City, CA, 3-8 (June 1995).



149

Boozarjomehry, R. B., “Application of Artificial Intelligence In Feedback Linearization,”
Ph. D. Dissertation, University of Calgary, (1997).

Bremmermann, H. J. and Anderson, R. W., “An Altemnative to Backpropagation,”
Department of Mathematics, Univérsity of California, Berkeley, (1989).

Bristol, E. H., “On a New Measure of Interactions for Multivariable Process Control,”
IEEE Trans. Autom. Cont., AC-11, pp.133, (1966).

Chang C., Tsai C., “Dynamic Process Diagnosis via Integrated Neural Networks”,
Computers Chem. Eng. Vol.19, pp. 747 (1995).

Chen S., Billings S. A., and Grant P. M., “Non-linear System Identification Using Neural
Networks”, Int. J. Control, Vol. 51, pp. 1191 (1990).

Chen, C., “Process Monitoring of Two Industrial Distillation Columns Using a Physical
Mode! and Principal Component Analysis,” M.S. Thesis, University of California.
Santa Barbara (1997).
Chu S. R., and Shoureshi, R., “Neural-Based Identification of Continuous Nonlinear
Systems,” Proc. American Control Conference, San Francisco, CA (1993).
Costanza, V., et al., “An Adaptive Control Strategy for Nonlinear Processes,” Computers
Chem. Eng. Vol. 50, pp. 2041 (1995).

Cybenko, G., “Continuous Valued Networks with Two Hidden Layers are Sufficient,”
Math. Cont. Sign. Syst., Vol. 2, pp. 303 (1989).

Delgado A., “Dynamic Recurrent Neural Network for System Identification and
Control,” IEE Proc.-Control Theory Appl., Vol. 45, pp. 307 (1995).

Deshpande P. B., and Ramasamy S., “Consider Neural Networks for Process
Identification”, Hydrocarbon Processing, Vol. 1, pp. 59 (1995).

Dolph, G. A., “Dynamic Simulation for Emergency Control Strategies, " HTI Quarterly,
pp.51 (1995).

Fisher, W. R., and Douglas, J. M., “Analysis of Process Operability at the Preliminary
Design Stage,” Comp. Chem. Eng., Vol.9, No.5, pp. 499 (1985).

Fruehauf, P. S., and Mahoney, D. P., “Improve Distillation Column Control Design,”
Chemical Engineering Progress, Vol. 90, No. 3, pp. 73 (1994).



150

GoldFarb S., and Bradley T., “Process Modeling for Design, Commisioning and
Operational Analysis,” Comp. & Chem. Engg., Vol. 19, pp. 433 (1995).

Guimaaes P. R. B, and McGreavy C., “Flow of information Through An Artificial
Neural Network,” Comp. & Chem. Engg., Vol. 19, pp. 741 (1995).

Hajare R. P., and Paxton G. E., “Consider Neural Networks for Process Identification,”
Hydrocarbon Processing, Vol. 1, pp. 59 (1995).

Havener, J. and Terhune, K., “Implementation of a Software CEM™ for Nox Emissions
Monitoring,” AFRC International Symposium, Oct (1993).

Hecht-Nielson, R., “Conterpropagation Networks,” Proc. IEEE Int. Conf on Neural
Networks (1987b).

Hecht-Nielson, R. and Lambert, J., “Application of feedforward and recurrent neural
networks to chemical predictive modeling,” I&EC Research, Vol. 34, No. 4
(1997).

Helget A., Heiderpriem J., and Gariglio D., “Identification and Control of a Simulated
Distillation Plant Using Connectionist and Evolutionary Techniques,” Simulation,
Vol. 63, pp. 393, (1994).

Himmelblau, D. M. & MacMurray, J. C., “Modeling and Control of a Packed Distillation
Column using Artificial Neural Networks.” Computers Chem. Eng., Vol.19, pp.
1077 (1995).

Horik, K. J., Stinchcombe, D. and White, H., “Multilayer Feedforward Networks are
Universal Approximators,” Neural Networks, Vol. 2, pp. 359 (1989).

Hoskins, J. C. and Himmelblau, D. M, “Process Control Via Artificial Neural Network
and Reinforcement Learning,” Computers Chem. Eng. Vol. 16, pp. 241 (1992).

Hunt, K. J., and Sbarbaro, R., Zbikowski, R. and Gawthrop, P. J., “Neural networks for
Control Systems — A Survey,” Automatica, Vol.1, pp. 28 (1992).

HYSYS (vl.1) Reference Manual, Hyprotech Ltd., Calgary, Canada, (1995).

Ishida M., and Zhan J., “Neural network Control for a MIMO Process With Time Delay,”
Journal of Chem. Eng. of Japan, Vol. 26, pp. 337, (1993).



151

Kambhampati C., and Warwick K., “Dynamic Recurrent Neural Network for System
Identification and Control,” IEE Proc.-Control Theory Appl., Vol. 42, pp. 307,
(1995).

Keeler, J. D., “Prediction and Control .of Chaotic Chemical Reactions Via Neural
Network Models,” Artificial Intelligence in Petroleum Exploration and
Production, Plano, TX (1993).

Keeler, J. D., Hartman E. J., Martin G. D., “Process Modeling and Control Using Neural
networks,” Intelligent Control Systems, Snowmass, CA (1995).

Kourti, T., and MacGregor, J. F., “Multivariate SPC Methods and Process and Product
Monitoring,” Journal of Quality Technology, Vol. 28, pp. 409 (1996).

Kourti, T., Lee, J., and MacGregor, J. F., “Experiences with Industrial Applications of
Projection Methods for Multivariable Statistical Process Control,” Computers
Chem. Engg., Vol. 20, pp. S745 (1996).

Kukarni, S. A., Simulation and Control of a Binary Vacuum Distillation Column, M.S.
Thesis, Texas Tech University, (1995).

Lawrence, T., “Process Simulation for Operator Training,” M.S. Thesis, University of
Calgary, (1996).

Levin A. U., “Recursive Identification Using Feedforward Neural networks,” Inr J.
Control, Vol. 61, pp. 533 (1995).

Levin A. U., and Narendra K. S., “Identification Using FeedForward Networks, " Neural
Computation, Vol. 7, pp. 349 (1995).

Lippmann, R. P., “An Introduction to Computing with Neural Nets”, [EEE ASSP
Magazine, Vol. 1, No. 4, pp. 53 (1987).

Longwell, EJ., “Dynamic Modeling for Process Control and Operability,” Proceedings
of the 1993 ISA International Conference, ISA Research Triangle Park, NC
(1993).

Luyben, W. L., Practical Distillation Control, 1% Edition, Van Nostrand Reinhold, New
York (1992).

Luyben, W.L., Process Modeling, Simulation, and Control jor Chemical Engineers, 2nd
Edition, McGraw Hill (1990).



152

MacMurray J. C. and Himmelblau D. M., “Modeling and Control of a Packed Distillation
Column Using Artificial Neural networks,” Computers Chem. Eng., Vol. 19, pp.
1077 (1995). '

Marquardt, W., “Dynamic Process Simulation — Recent Progress and Future Challenges,”
Proceedings of CPCIV, AIChE, New York, pp. 131 (1991).

Martin G., and Bhat N., “How Hybrid Modeling Approaches Between Neural Networks
and Physical Models can Benefit Customers,” Hyprotech User Conference, San
Antonio, TX (1996).

McAvoy T. J.,, and Su. H. T., “Integration of Multilayer Perceptron Networks and Linear
Dynamic Models: A Hammerstein Modeling Approach,” Ind. Eng. Chem. Res.,
Vol. 32, pp. 1927 (1996).

McAvoy, T. J., “Interaction Analysis Theory and Application,” Instrum. Soc. of America.
Research Triangle Park, NC (1983).

McAvoy, T. J., and Qin, S. J., “Nonlinear PLS Modeling Using Neural Networks™.
Chem. Engng, Vol. 16, No. 4, pp. 379 (1992).

McGreavy, C., and Guimariaes, P.R.B., “Flow of Information Through an Artificial
Neural Network,” Computers Chem. Eng. Vol. 19, pp. s741 (1995).

Mogili P., Sunol B.O., Hall L.O., and Camurdan M.C., “Chemical Plant Fault Diagnosis
Through A Hybrid Symbolic Connectionist Approach and Comparison with
Neural Networks,” Comp. & Chem. Engng., Vol. 19, pp. 753 (1995).

Montague G. A., Massimo C. D., and Tham, M. T., “Artificial Neural Network Based
Predictive Control,” IFAC Conf on Adv. Control of Chem. Processes, Toulouse,
France (1991).

Morari, M., and Holcomb, T. R., “PLS/Neural Networks”, Computers Chem. Eng., Vol.
16, No. 4, pp.393 (1992).

Morris A. J., Willis M. J., and Montague G. A., “Artificial Neural Networks: Studies in
Process Modeling and Control,” Trans. IChemE , Part A, Vol. 72, No.3, pp. 1
(1994).



153

Morris A. J., Willis M. J., Tham M. T., Montague G. A., and Massimo C. Di, “Artificial
Neural Networks in Process Estimation and Control,” Automatica, Vol. 28, pp.
1181 (1992).

Morris A.J., Willis M. J., Montague G. 'A., “Artificial Neural Network Model Based
Control,” American Control Conference (ACC94), Baltimore, MA (1994).
Munsif, H. P., “Applications of Neural Networks for Distillation Control,” Ph.D.

Dissertation, Texas Tech University (1995).

Narrendra K. S., Levin A. U., “Control of Nonlinear Dynamical Systems Using Neural
Networks- Part II Observability, Identification, and Control,” /EEE Trans. on
Neural Networks, Vol. 7, No. 30 pp. 1 (1996).

Nguyen, D., and Widrow, B., “Improving the Learning Speed of Two-Layer Neural
Networks by Choosing Initial Values of the Adaptive Weights.” [nternational
Joint Conference on Neural Networks, San Diego, CA, (1990).

Park S., Song J. J., *“Neural Model Predictive Control For NonLinear Chemical
Processes,” Journal of Chem. Eng. of Japan, Vol. 26, pp. 347 (1993).

Parthasarathy K., Narendra K. S., “Neural networks and Dynamical systems.”
International Journal of Approximate Reasoning, Vol. 6, pp. 109 (1992).

Pollard J. F., “Process I[dentification Using Neural networks,” Computers Chem. Eng.,
Vol. 16, pp. 253 (1992).

Pottman, M. and Seborg, D. E., “A Radial Basis Function Control Strategy and Its
Application to a pH Neutralization Process,” presented at European Control
Conference (1993).

Pottman, M. And Seborg, D. E., “Identification of Non-linear Processes using Reciprocal
Multiquadric Functions,” J. Proc. Cont., Vol. 2, No.4, pp. 189 (1992).

Pottman, M., and Seborg, D. E., “Identification of Nonlinear Process Incorporating a
priori Knowledge,” presented at AICHE Annual Meeting, Miami, FL (1992).

Process Insights (v.3.2) Reference Manual, Pavilion Technologies Inc., Austin, TX
(1996).

Psichogios D. C., and Ungar L. H., *“Direct and Indirect Model Based Control Using
Artificial Neural Networks,” Ind. Eng. Chem. Res., Vol. 30, pp. 2564 (1991).



154

Pulley, R. A., Wainwright, C. E. A., Wilson, J. A. and Jones, S. R., “Combined Neural-
Network First Principle Model in Quality Control of Performance Chemicals,”
ICHEME Symposium Series, No. 133, pp. 399 (1996).

Ramasamy, S., Deshphande, P. B., Paxton, and G. E., Hajare, R. P., “Consider Neural
Networks for Process Identification” Hydrocarbon Processing, pp.59 (June
1995).

Ramchandran, S., and Rhinehart, R. R., “An Introduction to Computing with Neural
Nets,” Journal of Process Control, Vol. 5, No. 115 (1995).

Sabharwal A. “Empirical Modeling using Process Insights®: Optimization and Control of
a Xylene Distillation Unit,” Proc. at Pavilion International User's Meeting,
Tokyo, Japan (Nov 1995).

Sabharwal A. “Strategy to Integrate Empirical Modeling and Physical in an Oil Refinery
Application,” Proc. at SICE Meeting Okayama, Japan (Oct 1995).

Sabharwal A., “Dynamic Simulation Modeling and Performance Analysis Using
HYSYS: An Oil Refinery Application,” Proc. at Hyprotech User Conference, San
Antonio, TX, (Oct 1996).

Sabharwal A., “Dynamic Simulation Modeling of a Distillation Column Using HYSYS,”
Proc. at Hyprotech International User Conference, Tokyo, Japan (Dec. 1995).

Sabharwal A., Wada, T., and Bhat, N. “Benefits of Integrating Empirical Modeling and
Physical in an Oil Refinery Application,” Hydrocarbon Processing, pp. 105 (Oct
1997).

San K. Y., Broussard M. R., and Garrison D. B., “Process Identification Using Neural
networks,” Computers Chem. Eng., Vol. 16, pp. 253, (1992).

Seborg, D. E., Edgar, T. F. and Mellichamp, D. A., Process Dynamics and Control,
Wiley, New York (1989).

Sokgestad, S., “Dynamics and Control of Distillation Columns — A Critical Survey”,
IFAC Symposium on Dynamics and Control of Chemical Reactors, Distillation
Columns and Batch Processes, (DYCORD+), College Park, MA (1992).

Stevanovic J. 8., “Neural Networks for Process Analysis and Optimization: Modeling and
Applications,” Comp. & Chem. Engg., Vol. 18, pp. 1149 (1994).



155

Su, H., Bhat, N., Minderman, P. A., and McAvoy, T. J., “Integrating Neural Networks
with First Principle Models for Dynamic Modeling,” IFAC Symposium on
Dynamics and Control of Chemical Reactors, Distillation Columns and Batch
Processes, (DYCORD+), College Park, MA (1992).

Swada, A. and Seborg D., “Evaluation of PID-type Feedback Control Loop Performance
using Normalized Setpoint Response Characteristics”, I[IFAC ADCHEM 97
Symposium, Banff, Canada, (1997).

Thibault, J., and Grandjean, B. P. A., “Neural Networks in Process Control — A Survey,”
Advanced Control of Chemical Processes, I[FAC Symposium Series No. 8, pp. 251
(1992).

Thompson M. L. and Kramer M., “Modeling Chemical Process Using Prior Knowledge
and Neural networks,” AIChE J., Vol. 40, pp. 1328, (1994).

Tolliver, T. L., and McCune, L. C., “Distillation Column Control Design Based on
Steady State Simulation,” ISA Tran., Vol. 17, No. 3, pp.3 (1978).

Trotta A., Barolo M., “Nonlinear Model Based Control of a Binary Distillation Column,”
Comp. & Chem. Engng., Vol. 19, pp. 519 (1995).

Tsai C., and Chang C., “Dynamic Process Diagnosis Via Integrated Neural Networks,”
Comp. & Chem. Engng., Vol. 19, pp. 747 (1995).

Tyreus, B. D., and Mahoney, D. P., “Application of Dynamic Simulation,” Proceedings
of the Chemical Engineering Chemputers II Conference, (March 1994).

Ungar L. H., Powell B. A., and Kamens S. N., “Networks for Fault Diagnosis and
Process Control, Control,” Comp. & Chem. Engng., Vol. 14, pp. 561 (1990)

Vogel, E. F., “An Industrial Perspective on Dynamic Flowsheet Simulation,”
Proceedings of CPCIV, AIChE, New York, pp181 (1991).

Willis, M. J., Montague, G. A. Di Massimo, C., Tham, M. T., and Morris, A. J., “On the
Applicabilify of Neural Networks in Chemical Process Control, ” Paper Presented
at the AIChE Annual Meeting, Chicago, IL, Paper 16d (1990).

Willis, M. J., Montague, G. A. Di Massimo, C., Tham, M. T., and Morris, A. J.,
“Advanced Control of Chemical Processes, ” IFAC Symposium Series No. 8, pp.
261 (1992).



156

Wise, B. M., N. B. Gallagher, and MacGregor, J.F., “The Process Chemometrics
Approach to Process Monitoring and Fault Detection” IFAC Workshop On-Line
Fault Detection and Supervision in the Chemical Process Industries, June 12-13,
Newcastle-Upon Tyne, England (1995).

Xiujuan L., “The Model Validation of Neural networks Describing Non-Linear
Dynamical Systems,” 2nd Asia Pacific Conf on Control & Measurement, China
(1995).

Ye X., and Loh N. K., “Dynamic System Identification Using Recurrent Radial Basis
Function Network,” American Control Conference, San Francisco, CA (1993).



157

Appendix A

Column Specifications



158

Column Specifications

Table A.1: Design and Operating Conditions for TW252

Design Conditions TW252
No. of Stages 30
Feed Stage (from Reboiler) 16
Feed quality Saturated liquid at 160 °C
A264 (Cy+ Concentration in Feed) 29.50 wt%
A265 (Ethyl Benzene Concentration in Feed) 10.75 wt%
A266 (M/P-Xylene Concentration in Feed) 41.19 wt%
A267 (O-Xylene Concentration in Feed) 18.54 wt%
Internal Reflux Ratio 0.75
Condenser Pressure 550 mmHg
Distillate quality Less than 1 wt. % of A254
Murphree Stage Efficiency 88 %
Base Case Values used for Steady State Gain
Analysis
Y255 (Tray 27° Temperature) 131.90 °C
Y284 (Bottoms Temperature) 170.20 °C
F256 (Reflux Flowrate) 41.30m* h
F267 (Steam Flowrate) 10.90 t/h
Co+ in Bottoms (no tag) 98.89 wt%
A254(Cy. Concentration in the Distillate) 0.79 wt%

Table A.2: DCS Controller Settings for TW252
Controller CV MV MV - K. ti(min) Mode

span

L254_ LC L2254 F257 FC - 1.00 5.80 Auto
F257_ FC  F257 F257 0-35m*h 0.67 0.85 Cascade
L253_ LC L253 F271_FC - 1.00 5.80 Auto
F271_ FC  F271 F271 0-25m’h 0.67 0.85 Cascade
Y255_TC Y255 F256_FC - 1.00 5.80 off
F256 FC  F256 F256 0-50 m*h  0.50 0.25 Auto
Y284 TC Y284 F267_FC - 1.85 10.00 Auto
F267 FC  F267 F267 0-18vh 0.50 0.25 Cascade

P252 PC  P252 Qcond - 1.25 13.00 Auto
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Appendix B

Sensitivity Analysis Results

The following pages contain the sensitivity analysis results from Process

Insights™ for the Temp, Comp, Rev, and Lev models.
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Table B.1(a): Sensitivity Analysis Ranking for the Temp Modeis Table B.1(b): The Inputs Selectad
Based on the Average Absolute SGnsltlvl_tx of Each Ingut ‘ I_:z Process lmlghb for the 'l’omg Models
Rank Input Avg.Abs  Avg Peak Variable Points
Output: Y282 P252 50
1 pP252 0.144 0.144 0.289] Y280 33
2 Y280 0.05 0.05 0.087 F267 20
3 F256 0.019 -0.019 0.052 F256 17
4 F287 0.018 -0.018 0.051 F284 15
5 F284 0.018 0.016 0.023
6 A266 0.01 -0.01 0.029
7 A264 0.008 -0.008 0.019
8 A265 0.002 0 0.006
9 A267 0 0 0.001
Output: Y255
1 P252 0.162 0.162 0.274
2 Y280 0.06 0.06 0.088|
3 F284 0.021 0.021 0.027
4 F267 0.012 -0.011 0.031
5 F256 0.012 -0.011 0.03
6 A266 0.008 -0.008 0.021
7 A264 0.007 -0.007 0.014
8 A265 0.001 0 0.005
9 A267 0 0 0.002
Output: Y297
1 P252 0.163 0.163 0.249]
2 Y280 0.074 0.074 0.112
3 F284 0.03 0.03 0.043
4 F256 0.012 -0.006 0.016
5 A266 0.011 -0.011 0.02
16 F267 0.011 -0.004 0.019
7 A265 0.003 0.001 0.005,
8 A264 0.002 0.002 0.005
9 A267 0.001 0.001 0.002
Output: Y257
1 P252 0.102 0.102 0.149
2 Y280 0.052 0.052 0.078
3 F267 0.045 0.045 0.116
4 F284 0.041 0.041 0.084
5 F256 0.034 0.034 0.1
(5 A266 0.016 0.016 0.022
7 A265 0.01 -0.01 0.031
8 A267 0.004 0.003 0.008|
9 A264 0.003 0.001 0.008
Output: Y284
1 P252 0.068 0.068 0.097
.42 F256 0.042 -0.039 0.071
3 Y280 0.034 0.034 0.055
4 F267 0.026 -0.022 0.048
5 F284 0.019 0.019 0.028
16 A265 0.008 0.008 0.014
7 A264 0.003 -0.002 0.009
8 A266 0.002 0.001 0.007
19 A267 0.001 0 0.003




Table B.2(a): Sensitivity Analysis Ranking for the Comp Models
Based on the Average Absoiute Sensitivi

Rank

YL

ODONONDEWN

XL

Input
Output: A254
P252
Y255
F256
A266
Y257
Y284
F284
Y280
F267
Output: A256
A266

Avg. Abs

0.005

of Each Input
Avg Poak

-0.039 0.047
0.037 0.048
-0.035 0.046
-0.029 0.039
0.028 0.037
-0.028 0.035
0.017 0.024
0.016 0.021

0.01 0.017
-0.037 0.0561
-0.035 0.046
-0.033 0.054
-0.021 0.031
0.018 0.027
-0.01 0.013|
0.008 0.016
0.002 0.01
0.006 0.008
0.088 0.113]
-0.056 0.072
-0.031 0.043
-0.012 0.017
-0.012 0.022
-0.012 0.016
-0.011 0.02
-0.004 0.011
0.004 0.017|

Table B.2(b): The Inputs Selected
Process Insights for the Comp Models

Variable
P252
A266
Y257
F267
A264
Y255
F256
Y284

Points

20
13
1"
10
7
7
6
4

161
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Table B.3(a): Sensitivity Analysis Ranking for the Rev Models Table B.3(b): The Inputs Selected

Based on the Average Absolute Sensitivity of Each lgput by Process lnsigﬁhts for the Rev Models

ﬁank input Avg.Abs Avg Peak Variable Points
Output: F256 Y257 20

1 Y257 0.074 0.074 0.122 Y284 13

2 Y284 0.068 -0.068 0.106 F284 8

3 P252 0.061 -0.061 0.092 Y282 6

4 Y282 0.054 -0.054 0.083 P252 5

5 F284 0.054 0.054 0.091 Y255 1

3 A266 0.043 -0.043 0.069F
Qutput: F267

1 Y257 0.097 0.097 0.149

2 F284 0.085 0.085 0.136

3 Y284 0.077 -0.077 0.111

4 Y282 0.067 -0.067 0.095

5 Y255 0.056 -0.056 0.078

6 P252 0.055 -0.055 0.077




Table B.4(a): Sensitivity Analysis Ranking for the Lev Models

Based on the Average Absolute Sensitivity of Each_lnput

[Rank

DO DBDWN =

DOBWN =

Input - Avg. Abs

Output: L253
F271
F284
F257
Y280
A266
Y257
Output: L254
F285
F271
P252
F256
Y257
F284

0.393
0.136
0.102

0.06
0.016
0.027

0.367
0.0583
0.05
0.042
0.03
0.025

Avg Peak

0.393
0.136
-0.102
-0.06
0.016
-0.027

0.367
-0.053
-0.05
-0.042
-0.03
0.025

0.491
0.174
0.163
0.077
0.023
0.035

0.439
0.097

0.054
0.038
0.039

Table B.4(b): The Inputs Selected
by Process Insights for the Comp Model

Variable

F271
F285
F284
P252
F256

Points

17
15
7
5
3

163
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A!)_pendix C

Details of Distillation Dynamic Model Fundamentals
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Details of Distillation Dynamic Model Fundamentals

The formulation of dynamic models in HYSYS™ uses the “lumped” parameter
approach for all the unit operations. For TW252, HYSYS assumes that on a single tray
there are no gradients in temperature, pressure or composition for each phase. (HYSYS
Reference, 1995).

The following basic relation can summarize the general mass and energy balance
around a system:

Rate of Accumulation of Mass (Energy) = Mass (Energy) flow in — Mass
(Energy) Flow out + Mass (Energy) generated

The component balance for an individual tray is given as follows:

dx, M
dt

= z'mFm -xF + M,gcn —M,w" Equation C.1

Tt out

For TW252, no chemical components are generated or consumed therefore, M;&"

and M;*™" are zero.

The specific potential energy (PE), specific kinetic energy (KE) and pressure-
volume work (PV) are negligible, therefore the total energy is equivalent to the specific
enthalpy, H. Furthermore, heat can be added or removed in distillation from unit
operations such as reboiler and condensers, therefore, W = 0. Hence, the general energy

reduces to the following:

d(H™ M)

— = HinFm _HMF;WI +Q_W Equation Cz2
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Thermodynamic Models

It is essential to have an accurate model or correlation for the vapor-liquid
equilibrium (VLE) of all components in the TW252 model. There are many useful
sources for obtaining literature data and correlating equations to represent any system

(Walas, 1985). For some systems the phase equilibrium is essentially ideal and is

governed by Raoult’s law:
F .
y,=Kx, = > Equation C.3
where: Yi.Xi = vapor, liquid compositions (mole fractions)
P = total pressure (kPa)
P’ = vapor pressure (kPa)
K, = vapor-liquid composition ratio

For chemical systems that have significant non-idealities in the liquid phase a
more rigorous VLE model is required that involve fugacities. The fugacities of vapor and

liquid phases are equal at equilibrium and the expression above is written as follows:

fF=f > ¢'yP=¢'x Equation C.4
where: ﬁv, £t = vapor, liquid fugacity
tbiv, <[>iL = vapor, liquid fugacity coefficients

If an equation of state (EOS) such as the Peng-Robinson EOS is available that

accurately represents the vapor and liquid phases then the equation abovg: is used as the
VLE model.

For cases where the liquid phase cannot be modeled by an equation of state the

following VLE relationship is applied:
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¢,y P=y,xFP exp[wl) Equation C.5
RT
where: i = liquid activity coefficient
vi = specific critical volume (m*/kgmol)
R = gas constant (m® kPa/kgmol K)
T = temperature (K)

Equation C.5, includes a liquid phase activity coefficient, that models the non-
ideality of the liquid phase and the exponential term is known as the Poynting factor that

corrects the liquid fugacity for high pressure.

VLE used for TW252

For TW252 the method used to determine the K-value is different than the model
introduced above. The VLE model selected for TW252 is based on the local model.
which is an expression developed by Hyprotech Ltd. that sacrifices the details of the

above models for speed and is developed from the following equation:

L
kp=2rp=piy 2

; , Equation C.6
xl ¢I

The above equation C.6 is modified and expressed in logarithmic form:

P

¢

L
In(K,) =In(P®) +In(y,) +ln[%;,—)+ln(§l) Equation C.7



168
The following assumptions are made:

LA

¢S
' Equation C.8

In(£,) = c(In P)

" b
In(P*)=a+—
n(P’)=a T

In(y,) = d(1-x,)’

Using these approximations a Local Model, with four parameters. is formulated
(HYSYS reference, 1995) as:

In(K,)=a, +%’;+c, In(P)+d,(1-x,)* Equation C.9
The parameter’s a;, b;, ¢, and d; are regressed using vigorous VLE predictions.

The Local models, unlike any other models, perform a rigorous update every 600
simulated seconds or if the principle liquid composition changes by 0.05. the pressure
changes by more than 50 kPa or temperature changes by more than 5 °C. The model is
updated according to a Recursive Least Square Model (HYSYS Reference, 1995).

Enthalpy

The enthalpies of vapor and liquid streams are calculated as a function of
temperature, pressure, and composition. TW252’s enthalpies are modeled using the Peng-
Robinson EOS. In this model the vapour and liquid enthalpies are rigorously determined

from the equation of state using the following equation:
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f oP
AH=Pv-RT-II:P—T[§J}N Equation C.10

Substituting the Peng-Robinson equation of state (equation 3.13) the above equation

becomes:
H-H" =Z—1———1——|:a—T£]ln 7+Q2” +1p Equation C.11
RT 2bRT dt V+2% -Db
Entropy
For TW252, the liquid and vapor entropy is calculated dynamically using a linear
model:
For Vapour:

8" =yl +s/T)

,_o Equation C.12

For Liquid:
St =Y x(r" +s'T) Equation C.13
=0

Note, that the for the linear model, HYSYS fits the parameters such as r," and s;*
in the above equations to match data predicted by a rigorous VLE calculation that are
regressed at the beginning of each dynamic simulation.

Convergence Methods
Simulation of a distillation tower such as TW252 requires solving algebraic
equations. HYSYS employs many intuitive methods to solve implicit algebraic

expressions such as the Newton-Raphson method. This method requires that an objective
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function be written in the form of f(x) = 0. The first derivative of this function is

analytically determined which improves the rate of convergence.
X, =X ——- ' Equation C.14

The equation above requires an initial estimate of the solution (x,). An analytical
expression gives the derivative of the objective function at the estimate. The next
estimate is then computed. The Newton-Raphson is a very powerful method used for

thermodynamic calculations, such as the bubble points and dew points.
Equilibrium Bubble Point Calculation

To complete the development of the equilibrium stage model the calculation of
the vapor composition and temperature in equilibrium with a known liquid composition
and pressure must be performed. That is a bubble point calculation. The Newton-
Raphson method is used to converge temperature and compute the equilibrium

composition:

Tlu-l= T;r + f a
[Z 7:7) Equation C.15

The function (f) in the above expression is unity minus the sum of the calculated vapor

compositions:

f=1-Zy-‘ Equation C.16
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The derivative of this function with respect to temperature using a simplified form of

equation C.5 for y; that neglects the Poynting factor and assumes the vapor phase is ideal

(¢:'=1), can be given as:

Equation C.17

9_f.=_zi&__ r.x 08
oT —~ oT P oT

The Antoine equation is used to compute the vapor pressure (P;°):

C .
P = exp(Cu + (TTZC"_)] Equation C.18
3

The liquid activity coefficient in equation C.17 is a weak function of temperature and is
excluded from the analytical derivative. This method when used to compute the tray
bubble point temperature and equilibrium vapor composition has been shown to be very
fast and robust (HYSYS Reference, 1995).
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Appendix D

Initial Steady.State Conditions for Step Response Tests

Steady state initial conditions for all the step response tests outlined in Table 2.3
used to initiate the HYSYS model is summarized in this appendix. Furthermore, the

predicted steady state values of the HYSYS model for these step tests are also included.



Table D.1: Comparison of Actual and Simulated Initial Conditions for Dataset t.1

Tag Name

F284
K256
F267
F271
F285
Y280
Y281
Y297
Y255
Y282
Y256
Y257
Y284
L253
L254
P252
A254
A255
A256
A257
A264
A265
A266
A267

Statistics for 28 Recorded 3 minute ACS Data Points

Min

35.83
41.11
11.14
8.90
25.77
156.60
138.20
135.80
131.60
128.80
50.00
165.00
170.00
56.80
48.70
553.60
0.66
16.21
56.90
27.79
25.81
11.51
41.24
20.22

Max

37.35
41.59
11.44
13.29
27.74
157.50
138.80
136.40
131.90
129.20
53.20
167.00
171.30
62.20
50.80
556.30
0.75
16.27
57.10
27.81
26.95
11.89
41.98
20.38

Std

0.398
0.107
0.067
1.099
0.644
0.283
0.198
0.148
0.093
0.101
0.868
0.677
0.463
1.718
0.652
0.780
0.045
0.027
0.055
0.005
0.364
0.116
0.241
0.059

Mean

36.80
41.33
11.34
10.81
26.73
157.02
138.48
136.06
I31.74
129.03
51.24
166.36
170.74
59.73
49.86
555.09
0.71
16.24
57.03
27.80
26.53
11.61
41.45
20.30

HYSYS

36.89
41.33
11.35
10.56
26.71
157.00
138.50
136.05
131.80
129.00
51.10
166.70
170.70
60.00
49.80
554.90
0.71
16.24
57.00
27.80
26.53
11.55
41.28
20.31

Error (%)

0.23
-0.01
0.01
-2.34
-0.08
-0.01
0.0t
-0.01
0.05
-0.02
-0.28
0.20
-0.02
0.45
-0.12
-0.03
-0.06
0.00
-0.05
0.01
-0.02
-0.54
-0.41
0.06
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Table D.2: Comparison of Actual and Simulated Initial Conditions for Dataset t.2

Tag Name

F284
F256
F267
F271
F285
Y280
Y297
Y255
Y282
Y256
Y257
Y284
L253
L254
P252
A254
A255
A256
A257
A264
A265
A266
A267

Statistics for 51 Recorded 3 minute ACS Data Points

Min

35.72
42.11
1115
9.98
25.57
157.60
138.10
131.50
128.80
52.40
165.60
170.20
57.10
48.80
553.50
0.74
16.23
56.70
26.71
26.73
11.55
41.15
19.96

Max

38.22
42.66
11.39
12.29
26.58
158.10
138.60
131.90
129.20
55.40
166.60
170.90
64.50
50.80
556.80
0.86
16.71
56.80
27.54
2727
11.70
41.39
20.14

Std

0.668
0.117
0.051
0.615
0.259
0.114
0.127
0.092
0.103
0.622
0.282
0.161
1.808
0.460
0.822
0.039
0.137
0.048
0.285
0.073
0.060
0.096
0.033

Mean

36.89
42.40
11.25
11.16
26.13
157.86
138.37
131.68
129.05
53.92
166.17
170.63
60.00
49.99
555.03
0.82
16.43
56.77
27.36
2722
11.62
41.26
20.00

HYSYS Error

36.32
42.38
11.27
9.31
26.92
157.75
138.66
130.56
128.64
54.36
166.00
170.44
60.00
50.00
554.96
0.80
15.81
56.42
27.06
26.15
11.70
41.68
20.00

1

%

-1.54
-0.05
0.21
16.60
3.01
-0.07
0.21
-0.85
-0.32
0.82
-0.10
-0.11
0.00
0.03
-0.01
-2.28
-3.76
-0.61
-1.09
-3.94
0.68
1.03
0.00
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Table D.3: Comparison of Actual and Simulated Initial Conditions for Dataset t.3

Tag Name

F284
F256
F267
F271
F285
Y280
Y297
Y255
Y282
Y256
Y257
Y284
L253
L254
P252
A254
A255
A256
A257
A264
A265
A266
A267

Statistics for 26 Recorded 3 minute ACS Data Points
Sid

Min

38.97
42.05
11.05
13.67
22.53
159.40
138.60
132.00
129.10
53.10
163.80
169.70
59.10
49.30
559.10
0.68
16.15
58.10
25.89
30.00
10.53
38.96
18.55

Max

39.98
42.63
11.18
14.65
26.29
159.80
139.00
132.20
129.40
54.10
164.50
170.30
61.30
52.70
561.30
0.72
16.40
58.40
26.34
30.61
10.73
3931
18.68

0.278
0.122
0.033
0.265
0.866
0.137
0.099
0.070
0.070
0.238
0.208
0.158
0.528
0.696
0.530
0.016
0.102
0.117
0.184
0.298
0.094
0.171
0.061

Mean

39.46
42.30
11.10
14.06
25.74
159.60
138.75
132.14
129.26
53.74
164.20
170.05
59.94
50.19
560.13
0.69
16.32
5832
26.02
3035
10.62
39.11
18.60

HYSYS

38.90
42.30
11.08
11.79
27.12
159.73
138.92
130.90
129.11
53.70
166.06
170.16
60.00
50.00
560.00
0.69
15.63
56.31
27.36
30.05
10.87
39.20
19.21

Error (%)

'

-1.41
0.00
-0.17
16.15
5.36
0.08
0.12
-0.94
-0.11
-0.07
1.13
0.06
0.11
-0.38
-0.02
0.36
4.25
-3.44
5.15
-0.99
237
0.22
3.26

Page 1
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Table D.4: Comparison of Actual and Simulated Initial Conditions for Dataset t.4

Tag Name

F284
F256
F267
F271
F285
Y280
Y297
Y255
Y282
Y256
Y257
Y284
L253
L254
P252
A254
A25§
A256
A257
A264
A265
A266
A267

Statistics for 25 Recorded 3 minute ACS Data Points

Min Max Std Mean
36.81 42.10 0.864 39.25
40.86 41.63 0.117 41.29
10.87 11.06 0.040 10.96
10.39 16.04 0.939 13.41
25.54 27.17 0.354 26.27

159.00 159.90 0.162 159.44
135.50 136.60 0.167 136.26
131.80 132.30 0.091 132.06
128.90 129.60 0.113 129.24
52.30 57.50 1316 54.50
163.80 165.80 0.491 164.77
169.90 171.20 0.277 170.52
53.00 65.70 1.910 59.90
48.40 51.80 0.620 50.00
555.00 563.00 1.076 559.97
0.67 0.82 0.047 0.74
15.82 16.32 0.144 16.04
57.80 58.60 0.241 58.20
25.85 26.93 0.340 26.37
28.15 29.36 0.292 28.74
10.73 11.11 0.102 10.93
39.58 40.35 0212 40.01
18.60 18.86 0.075 18.72

HYSYS

39.24
41.30
11.00
13.05
26.20
157.80
138.20
130.80
128.90
54.60
165.00
168.30
60.00
50.00
560.00
0.75
15.37
57.70
26.30
29.05
10.90
41.01
19.02

Error

%

-0.03
0.0t
0.40

-2.70

-0.26

-1.03
1.43

-0.95

-0.26
0.19
0.14

-1.30
0.16

-0.01
0.01
1.78

-4.15

-0.85

-0.26
1.06

-0.24
2.50
1.58
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Table D.5: Comparison of Aciual and Simulated Initial Conditions for Dataset t.5

Tag Name

F284
F256
F267
F271
F285
Y280
Y297
Y255
Y282
Y256
Y257
Y284
L253
L254
P252
A254
A255
A256
A257
A264
A265
A266
A267

Statistics for 50 Recorded 3 minute ACS Data Points

Min Max Std Mean
37.13 39.14 0.496 38.31
43.21 43.88 0.153 43.50
10.86 11.06 0.047 10.95
11.97 14.73 0.630 13.65
24.09 26.04 0.496 24.95

160.40 161.00 0.153 160.72
136.10 136.90 0.230 136.51
132.00 132.50 0.102 132.20
129.00 129.60 0.151 129.33
57.50 62.60 1.000 60.26
163.90 166.70 0.960 165.56
169.60 171.10 0.437 170.46
57.40 62.50 1.219 60.07
47.00 51.70 0.862 49.85
554.40 563.90 1.924 560.16
0.82 1.01 0.070 0.95
15.66 15.95 0.109 15.73
57.10 57.70 0.215 57.31
26.94 27.66 0.271 27.47
30.66 3124 0.147 30.85
10.57 10.72 0.067 10.67
38.87 39.28 0.160 39.08
18.80 18.89 0.034 18.84

HYSYS

37.95
43.26
11.10
11.51
26.44
159.73
140.23
131.20
129.28
57.76
166.37
170.70
60.00
50.00
560.00
0.99
15.48
56.37
27.16
31.22
10.75
39.14
18.89

Error (%)

-0.94
-0.53
1.41
-15.64
5.99
-0.62
2.73
-0.75
-0.04
-4.14
0.49
0.14
-0.12
0.30
-0.03
4.79
-1.58
-1.64
-1.13
1.21
0.76
0.14
0.26
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Table D.6: Comparison of Actual and Simulated Initial Conditions for Dataset t.9

Tag Name

F284
F256
F267
F271
F285
Y280
Y297
Y255
Y282
Y256
Y257
Y284
L253
L254
P252
A254
A255
A256
A257
A264
A265
A266
A267

Statistics for 20 Recorded 3 minute ACS Data Points

Min Max Std Mean
- - 0.537 37.40
39.92 40.42 0.134 40.15
10.67 10.86 0.041 10.75
12.52 14.61 0.704 13.53
23.54 24.36 0.227 23.99
160.95 161.41 0.120 161.19
143.39 143.98 0.136 143.69
136.93 137.21 0.070 137.06
134.59 134.92 0.091 134.73
49.48 53.47 1.374 51.31
178.22 180.56 0.539 179.18
172.61 173.32 0.191 172.97
59.63 66.79 2.315 63.17
54.21 55.35 0.289 54.96
649.27 651.47 0.567 650.34
0.76 0.87 0.052 0.80
15.45 15.53 0.039 15.50
57.37 57.67 0.138 57.55
25.93 26.19 0.130 26.03
36.20 36.56 0.146 36.28
9.70 9.71 0.002 9.71
36.47 36.78 0.122 36.71

17.28 17.35 0.027 17.33

HYSYS

37.10
40.20
10.73
13.48
23.62
160.70
145.42
136.20
134.29
52.53
170.93
173.24
60.00
55.00
650.00
0.88
15.39
57.25
26.40
36.31
9.75
36.31
16.82

Error (%)

-0.80
0.13
-0.19
-0.39
-1.55
-0.31
1.21
-0.63
-0.33
238
-4.60
0.16
-5.02
0.08
-0.05
9.52
-0.69
-0.52
1.41
0.09
0.44
-1.09
-2.96
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Table D.7: Comparison of Actual and Simulated Initial Conditions for Dataset t.10

Tag Name

F284
F256
F267
F271
F285
Y280
Y297
Y255
Y282
Y256
Y257
Y284
L253
L254
P252
A254
A255
A256
A257
A264
A265
A266
A267

Statistics for 30 Recorded 3 minute ACS Data Points

Min

39.24
41.73
11.94
11.43
26.42
162.36
142.69
136.72
134.28
33.82
200.01
171.37
54.16
64.08
649.04
0.60
15.76
58.94
24.32
30.19
10.62
40.05
18.86

Max

39.82
42.19
12.16
12.18
27.19
162.90
143.13
136.86
134.71
35.84
202.53
171.81
55.75
65.85
651.47
0.64
15.88
59.00
24.50
30.36
10.73
40.18
18.93

Std

0.173
0.110
0.043
0.174
0.197
0.105
0.098
0.028
0.103
0.571
0.605
0.123
0.451
0417
0.575
0.017
0.042
0.019
0.065
0.080
0.052
0.060
0.034

Mean

39.50
42.00
12.07
11.85
26.74
162.58
142.90
136.78
134.47
34.67
201.19
171.58
54.94
64.98
649.94
0.62
15.81
58.99
24.42
30.27
10.68
40.13
18.89

HYSYS

38.85
42.00
12.08
11.61
27.24
163.73
143.84
136.02
134.57
35.52
170.75
174.35
55.80
64.75
650.00
0.58
14.85
56.76
27.80
31.23
10.11
38.73
19.23

Error (%)

-1.65
0.01
0.11

-2.06
1.87
0.71
0.66

-0.55
0.07
2.45

-15.13
1.61
1.57

-0.36
0.01

-5.98

-6.10

-3.78

13.85
.17

-5.35

-3.48
1.81
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Appendix E
TW252 Datasets Collected

For all of TW252 variables as listed in Table 2.1, the step response, nominal and
disturbance tests as described in Table 2.3 are plotted in this appendix. Furthermore, the
plots are arranged by identification data sets, Lt, In, Ln+s and Lt+s and their
corresponding statistics are also tabulated.
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Table E.1: TW252 Variable Statistics for Dataset I.t
Statistics for 2603 Recorded 3 minute ACS Data Points

Tag Name Min

F284
F256
F267
F271
F257
Y280
Y297
Y255
Y282
Y256
Y257
Y284
L253
L254
P252
A254
A255
A256
A257
A264
A265
A266
A267

34.45
38.54
10.61
7.21
18.52
156.60
135.00
131.20
128.20
131.20
153.00
161.10
42.20
38.80
544.40
0.28
14.76
55.70
20.47
25.57
9.39
36.14
17.23

Max

43.93
47.44
11.52
21.08
34.38
161.40
141.30
137.20
134.90
137.20
180.60
173.40
68.10
63.80
652.10
2.00
18.23
62.00
29.24
37.19
12.12
42.23
20.46

Mean

38.53
42.21
11.11
13.01
25.52
159.26
136.58
132.34
129.59
132.34
165.66
170.13
60.24
50.47
565.26
0.75
16.08
57.84
26.58
29.74
10.90
39.72
19.05

Std

1.59
1.14
0.14
1.66
1.27
1.15
1.30
1.36
1.48
1.36
3.92
1.49
1.81
2.52
24.81
0.19
0.48
0.91
1.27
2.65
0.62
1.40
0.82
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Table E.2: TW252 Variable Statistics for Dataset I.n
Statistics for 3858 Recorded 3 minute ACS Data Points
Max

Tag Name Min

F284
F256
F267
F271
F257
Y280
Y297
Y255
Y282
Y256
Y257
Y284
L253
L254
P252
A254
A255
A256
A257
A264
A265
A266
A267

33.50
34.62
9.66
10.26
20.60
138.60
135.50
130.90
128.30
36.70
155.90
163.60
51.00
53.10
537.50
0.45
14.40
56.60
20.94
28.30
8.79
33.08
16.16

45.43
46.41
12.40
24.07
27.88
163.70
141.60
137.40
135.10
57.80
189.20
174.60
67.10
63.00
658.00
1.00
18.46
61.20
27.20
42.82
11.81
40.19
36.96

Mean

39.30
42.54
11.29
15.08
24.08
157.92
137.26
132.92
130.17
47.29
165.73
169.61
57.23
57.24
§75.91
0.76
16.27
58.59
25.24
35.72
10.27
37.96
19.10

Std

2.28
3.21
0.61
2.39
1.34
7.94
1.77
2.07
2.34
3.52
7.23
227
2.72
1.46
37.93
0.11
0.68
1.00]
1.22
3.43
0.61
1.24
4.34
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Table E.3: TW252 Variable Statistics for Dataset l.n+s

Statistics for 4626 Recorded 3 minute ACS Data Points
Max

Tag Name Min

F284
F256
F267
F271
F257
Y280
Y297
Y255
Y282
Y256
Y257
Y284
L253
L254
P252
A254
A255
A256
A257
A264
A265
A266
A267

33.50
34.62
9.66
0.84
14.68
138.60
135.10
130.90
128.30
36.70
152.80
159.80
46.40
37.20
537.50
0.13
14.25
54.10
20.94
25.27
8.79
33.08
16.16

45.43
47.00
12.40
24.09
39.01
163.70
142.40
137.40
135.10
59.80
189.20
174.60
71.40
65.50
658.00
2.49
18.49
61.20
29.48
42.82
11.86
42.28
36.96

Mean

39.08
42.42
11.25
14.57
24.39
158.27
137.62
133.06
130.40
47.61
165.92
169.72
57.56
56.72
579.85
0.7
16.17
58.36
25.44
34.95
10.32
38.15
19.06

Sd

2.19|

3.02
0.59
2.66
1.82
7.32
1.96
222
246
3.86
6.78
233
275
3.29
40.13
0.19
0.73
1.17
1.37
3.86
0.64
1.41

3.98
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Table E.4: TW252 Variable Statistics for Dataset l.t+s

Tag Name Min

Fa284
F256
F267
F271
F285
Y280
Y297
Y255
Y282
Y256
Y257
Y284
L253
L254
P252
A254
A255
A256
A257
A264
A265
A266
A267

34.45
38.54
10.45
7.21
18.52
156.60
135.00
129.90
127.00
38.10
153.00
161.10
42.20
38.80
531.70
0.28
14.76
55.70
20.47
25.57
9.39
36.14
17.23

Max

43.93
47.44
11.69
21.08
34.38
161.40
141.30
137.20
134.90
62.60
180.60
173.40
68.10
63.80
652.10
2.00
18.23
62.00
29.24
37.19
12.12
42.23
20.46

38.33
42.21
1.1
12.79
25.52
189.25
136.79
132.26
129.50
53.27
165.63
170.15
60.22
50.43
564.07
0.75
16.01
57.84
26.56
29.74
10.89
39.83
19.03

Statistics for 2814 Recorded 3 minute ACS Data Points
Mean

Std
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