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Abstract

Models with crossed random effects are common in reader-based diagnostic studies, where

the same group of readers evaluate patients for certain diseases; an example is diabetic

retinopathy study in Alberta, Canada. Although generalized linear mixed models (GLMMs)

are well developed for non-Gaussian responses (e.g., binary outcomes) with crossed ran-

dom effects, evaluation of the marginal likelihood is still technically and computationally

demanding and can become prohibitive in applications, since the data cannot be grouped

into independent blocks. The available estimation methods are also not free from problems.

A recent approach involves application of data cloning (DC) to obtain maximum likelihood

(ML) estimates using a Bayesian framework. Their approach is proved to be superior over

the other two alternatives they considered in terms of providing relatively unbiased and

efficient parameter estimates. However, this approach is based on a multivariate latent

Gaussian description of the multiple correlated binary outcomes. In this thesis, we relax this

assumption by allowing for disparate non-Gaussian latent variables for the binary responses,

and propose a joint modeling via the Gaussian copula mixed model (GCMM). We applied

maximum pairwise likelihood (PL) estimation instead of doing full ML analysis to reduce

computational complexities. We conducted simulation studies with a setting analogous to

the diabetic retinopathy data to see the performance of PL estimators for GCMM with

crossed random effects. Simulation results suggest that although the estimation of regres-

sion coefficients and correlation parameter exhibit no problem, a much bigger sample size

is required for the other scale parameters to provide reasonably accurate approximate re-

sults. We also analyzed the retinopathy data with the proposed approach considering three

different conditional margins.
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Chapter 1

Introduction

This thesis is motivated by the diabetic retinopathy study (De Leon et al., 2007; de Leon

et al., 2009) introduced by Rudnisky et al. (2002), where patient- and reader-specific effects

are crossed rather than nested. In an experiment, if every level of one effect co-occurs with

every level of the other effect, then the two effects are considered crossed rather than nested.

Nested effects are common, for example, in repeated measures data, where we make multi-

ple observations on an individual, so that an individual’s measurements are nested within

the individual. Models with crossed random effects are common in psycholinguistic studies,

where the experimenter presents multiple test items to multiple participants, and a partic-

ular sample of participants responds to the same test items. The same scenario is obtained

in reader-based diagnostic studies, where the same group of readers evaluate patients for

certain diseases. For several decades, it has been common practice to analyze such data by

means of 2 analyses of variance (ANOVAs). In each ANOVA, one factor is considered as

random and the solution is based on 2 F -statistics. The null hypothesis is rejected if both

analyses showed significant F -values. However, these F -statistics are biased when the two

factors are sampled randomly (Raaijmakers et al., 1999; Baayen et al., 2008). Clark (1973)

discussed this issue and proposed a minimum-F statistic derived from separate F -statistics.

However, this procedure can be too conservative (Raaijmakers et al., 1999). With the rela-
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tively recent development of software for implementing mixed-effects models in applications,

solving these types of problems became quite straightforward. Furthermore, the problem in

the Gaussian setting becomes even more straightforward, as the responses marginally follows

the multivariate Gaussian distribution. However, although generalized linear mixed mod-

els (GLMMs) are well developed for non-Gaussian responses (e.g., binary outcomes) with

crossed random effects (see Section 1.1), evaluation of the marginal likelihood is still techni-

cally and computationally demanding and can become prohibitive in applications, since the

data cannot be grouped into independent blocks. This has led various authors to propose

a host of alternative estimation methods rather than carrying out full maximum likelihood

(ML) analysis.

In the context of continuous outcomes, Verbeke et al. (2001) used conditional linear

mixed models to estimate parameters as well as to calculate precision estimates in crossed

random effects models. The major advantage of their approach is that, by appropriate

conditioning, the original model maps into two hierarchical ones for which conventional and

hence, computationally efficient and fast techniques can be used. Perhaps, the main weakness

of the approach is that no cross-sectional effects can be estimated. Nevertheless, the method

is applicable when within-cluster effects and variance components are of interest. Tibaldi

et al. (2007) extended Verbeke’s method (Verbeke et al., 2001) to binary data combining

ideas from conditional logistic regression with composite likelihood estimation.

A well-known data set for correlated binary data with crossed random effects is the sala-

mander mating data introduced by McCullagh and Nelder (1989). To obtain ML estimates,

Chan and Kuk (1997) applied a Monte Carlo EM (expectation-maximization) algorithm,

with the M-step greatly simplified under the assumption of a probit link and its E-step

made feasible by Gibbs sampling. Booth and Hobert (1999) likewise applied a Monte Carlo

EM algorithm, which used importance sampling to construct the Monte Carlo approxima-

tions at the E-step, with sample generation based on the exact distribution of the random

effects given the data. However, as with other computationally intensive approaches, these
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methods require significantly more computational time than conventional ones, and are likely

to be beset with convergence problems. Jiang (1998) and Sutradhar and Rao (2003) pro-

posed methods based on suitable estimating equations, which provide consistent estimates

for the fixed parameters and variance components in GLMMs. However, these estimates

generally suffer from some efficiency loss relative to ML estimates; in addition, these esti-

mating equations are non-linear and generally yield multiple roots. Breslow and Clayton

(1993) used penalized quasi-likelihood (PQL) approach, but their approach has been shown

to yield inconsistent estimates with non-negligible bias, especially for binary data. Torabi

(2012) adapted Lele et al.’s (Lele et al., 2007, 2010) data cloning (DC) approach — a method

that provides ML estimates under a Bayesian framework — to a correlated two-factor model.

Withanage et al. (2015) applied the DC approach to the diabetic retinopathy data consid-

ering a GLMM, more specifically, a multivariate probit model. Their approach proved to be

superior over the other two alternatives (Laplace approximation and PQL) they considered

in terms of providing relatively unbiased and efficient parameter estimates.

Bellio and Varin’s (Bellio and Varin, 2005) pairwise likelihood approach provided another

alternative approach to full ML estimation for the multivariate probit model with crossed

random effects. Pairwise likelihood estimation has been shown to result in minimal efficiency

loss (Renard et al., 2004). Wu and de Leon (2014) introduced the Gaussian copula mixed

model (GCMM), a general mixed model for clustered data, where, in particular, the random

effects are nested within clusters. In this thesis, we adapted the GCMM methodology to

the setting of the diabetic retinopathy data and useed Bellio and Varin’s (Bellio and Varin,

2005) pairwise likelihood approach instead of doing the full ML estimation.

1.1 Mixed models with crossed random effects

Conventional linear mixed models (LMMs) and generalized linear mixed models (GLMMs)

for Gaussian and non-Gaussian responses can be viewed as special cases of GCMMs. We
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discuss them in the sequel.

1.1.1 LMM

Let Yijk be the clustered continuous outcome for reader k = 1, . . . , K and eye j = 1, 2 in

cluster (subject) i = 1, · · · , N . We consider a model with two crossed random effects. The

conventional LMM set-up assumes (see e.g. Verbeke et al. (2001))

Yijk = µijk(B1i, B2k) + εijk = x>ijkβ +B1i +B2k + εijk, (1.1)

where xijk is known vector of covariates, β is the vector of regression coefficients, B1i is the

cluster-specific random effect, B2k is the reader-specific random effect that occur in every

cluster, and εijk is residual error, usually assumed independent of B1i and B2k. Letting

Bi = (B1i, B21, . . . , B2K)> be a (K + 1)-dimensional vector and εεεij = (εij1, . . . , εijK)>, the

conventional LMM for Yijk assumes

Bi ∼ NK+1

(
0,Σ(B)

)
, (1.2)

εεεij ∼ NK

(
0,Σ(ε)

)
, (1.3)

so that the respective conditional (on Bi) and marginal distributions of Yij = (Yij1, . . . , YijK)>

are

Yij|Bi ∼ NK




µij1(B1i, B21)

...

µij2(B1i, B2K)

 ,Σ(ε)

 , (1.4)

Yij ∼ NK




x>ij1β

...

x>ijKβ

 ,Σ(B) + Σ(ε)

 . (1.5)
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The above model is called the Gaussian LMM (or normal-normal LMM). Note that Yijk’s are

conditionally independent (given Bi) if and only if εijk’s are independent, i.e. the off-diagonal

elements of Σ(ε) are all zero.

1.1.2 GLMM

Now we consider Yijk’s are non-Gaussian responses. Unlike in (1.1), suppose Yijk’s are not

suitable to be modeled via LMMs; for example, they may be positive continuous responses

(e.g., time-to-event outcomes) or binary/categorical endpoints. As in Bellio and Varin (2005)

we assume the following GLMM for Yijk:

E(Yijk|B1i, B2k) = µijk(B1i, B2k) = ~−1
k (x>ijkβ +B1i +B2k), (1.6)

where ~k(·)’s are suitable link functions (e.g., logit for binary, log-link for time-to-event),

with xijk and β as defined in (1.1).

Conventional GLMMs conveniently assume that Yijk’s are conditionally independent,

given Bi = (B1i, B21, . . . , B2K)>, in the absence of a viable and flexible (conditional) joint

distribution for disparate non-Gaussian outcomes. An exception is correlated probit model

for correlated binary outcomes (Gueorguieva and Agresti, 2001; Najita et al., 2009), where

Gaussian latent variables are used to describe the binary data. The formulation is exactly

the same as in the Gaussian LMM except that the Gaussian “responses” are latent. Such

a latent formulation is statistically convenient since common binary regression models have

equivalent formulations in terms of latent variables. For example, a Gaussian latent variable

for a binary outcome results in a probit model for the latter; a logistic latent variable

corresponds to a logistic model. However, due to the same limitations of Gaussian LMMs

discussed previously, Gueorguieva and Agresti’s (Gueorguieva and Agresti, 2001) approach

is limited to a Gaussian latent model for the binary data.
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1.2 Diabetic retinopathy study

This is a reader-based diagnostic study in Alberta, Canada, in which at least two readers

were used to diagnose the presence or absence of certain pathologies, e.g., clinically significant

macular edema (CSME), microaneurysms, intra-retinal haemorrhage (IRH), hard exudates

(HEX), that are indicative of retinal thickening among diabetic patients, who suffer from

treatable diabetic retinopathy. In Canada, where a disproportionate share of diabetic pa-

tients are Aboriginal Canadians living in reserves in far-flung rural areas, sending retinal

specialists on remote clinics can be costly and inefficient. Due to advances in digital imaging

in recent years, a possible alternative is distance evaluation wherein patients undergo stereo-

scopic digital photography using a high-resolution digital camera. In this approach, digital

images of patients’ eyes are read by at least two specialists and patients are diagnosed as

either positive (i.e., disease is present) or negative (i.e., disease is absent) for the patholo-

gies. This cost-effective tele-ophthalmologic technique has the potential to increase rural

accessibility to specialist eye care (Maberley et al., 2003), allowing for early detection and

treatment of diabetic retinopathy. Only patients who need treatments would have to travel

to a specialist; the transportation cost is thus also reduced. However, before wide implemen-

tation of any potential new diagnostic methodology, its accuracy must first be examined.

The purpose of the study was thus to determine whether diabetic retinopathy can be iden-

tified with high-resolution stereoscopic digital photography and whether this identification

correlates well with the accepted gold standard of clinical examination.

The data set-up for the case of V ≥ 1 pathologies with K ≥ 1 readers is presented in Table

1, where YiLkv and YiRkv represent the binary test results for the left and right eyes of patient

i = 1, · · · , N , respectively, as graded by reader k = 1, · · · , K, for pathology v = 1, · · · , V .

For K = V = 2, the design can be considered as a full paired-patient-paired-reader design,

whereby all digital images of a patient’s left and right eyes undergo grading by every reader.

Note the complex correlation structure in the data: in addition to the fellow-eye correlation

induced by the binocular nature of the data, two other sources of correlation are present.
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Since readers rely on the same image of the eye, their diagnoses are potentially correlated.

Moreover, because the pathologies are all related to retinopathy, it is very likely that the

presence or absence of one influences the presence or absence of another. Thus, diagnoses

for pathologies are correlated as well.

Table 1.1: Data set-up for V ≥ 1 pathologies and K ≥ 1 readers.

Patient
Reader 1 · · · Reader K

Left eye Right eye Left eye Right eye

1
Y1L11 Y1R11 Y1LK1 Y1RK1

...
... · · · ...

...
Y1L1V Y1R1V Y1LKV Y1RKV

2
Y2L11 Y2R11 Y2LK1 Y2RK1

...
... · · · ...

...
Y2L1V Y2R1V Y2LKV Y2RKV

...
...

...
...

...

N
YNL11 YNR11 YNLK1 YNRK1

...
... · · · ...

...
YNL1V YNR1V YNLKV YNRKV

The accuracy of a medical test for diagnosing the presence or absence of a disease can be

described by several measures, the most common of which are given by the test’s sensitivity

and specificity with respect to the true disease status as determined by a traditionally used

and accepted test regarded as a ‘gold standard’. Given binary variables Y and D denoting,

respectively, the test’s result and the disease status as determined by the gold standard,

with 0 and 1 indicating negative and positive outcomes, respectively, the test’s sensitivity

and specificity are then given by Sen = P (Y = 1|D = 1) and Spc = P (Y = 0|D = 0),

respectively. Other frequently used measures of diagnostic accuracy are the so-called post-

test probabilities given by the test’s positive predictive and negative predictive values. The

former is defined as the probability PPV = P (D = 1|Y = 1) of presence of disease given a

positive test result while the latter is the probability NPV = P (D = 0|Y = 0) of absence

of disease given a negative test result. Positive and negative predictive values describe how

7



well a test predicts a patient’s disease status, while sensitivity and specificity describe how

well the test discriminates between positive disease status and negative disease status. Note

that a diagnostic test’s sensitivity and specificity are measures of the test’s intrinsic accuracy

and as such, unlike the predictive values, do not provide information on the accuracy of the

diagnoses.

1.3 Objective of the thesis

For the diabetic retinopathy data, each patient yields two readings by a reader corresponding

to the patient’s left and right eyes, and consequently, patients are considered the clusters.

A full likelihood analysis of the data was implemented in Withanage et al. (2015) using the

data cloning (DC) approach. However, the analysis in Withanage et al. (2015) was based on

a multivariate probit model based on a multivariate latent Gaussian description of the mul-

tiple correlated binary outcomes. In this thesis, our objective is to propose a joint modeling

of clustered binary data with crossed random effects by relaxing this assumption by allowing

for disparate non-Gaussian latent variables for the binary responses, and to analyze the dia-

betic retinopathy data applying GCMM. By accommodating a mixture of different Gaussian

and non-Gaussian latent distributions (e.g., some Gaussian latent variables while others are

logistic), a more flexible and realistic model can be constructed. A general approach entails

assuming non-central t-latent distributions for binary responses, thus subsuming both probit

and logit models while at the same time rendering the model robust to contamination and

outliers.

Before analyzing the diabetic retinopathy data with GCMM, our objective is to see the

performance of the estimators via a simulation study involving data with similar setup as the

real data set. Instead of the full likelihood estimation, we adopted an alternative based on

the idea of composite likelihood (Lindsay, 1988; Cox and Reid, 2004), specifically pairwise

likelihood approach. The pairwise likelihood estimation resolves the computational complex-
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ity involved in high-dimensional random effects models (Fieuws and Verbeke, 2006; Bellio

and Varin, 2005; Renard et al., 2002). Estimation based on suitable composite likelihoods is

generally consistent, and the efficiency loss with respect to ML estimation has been empiri-

cally shown to be insubstantial in many cases. In practice, efficiency losses are less important

than the inability to directly and computationally efficiently fit the full multivariate model.

1.4 Outline

Chapter 2 discusses the GCMMs for clustered binary data with crossed random effects.

Details of likelihood estimation procedure and inference for the model are also discussed

in Chapter 2. Chapter 3 reports the results from simulation study on the finite-sample

properties of the estimates. Results of our analysis of the diabetic retinopathy data for the

pathology CSME are presented in Chapter 4. Chapter 5 concludes the thesis with a brief

discussion.
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Chapter 2

Gaussian copula mixed models

(GCMMs) with crossed random

effects

In this chapter, we briefly review how copula model works in Section 2.1, and discuss the

Gaussian copula mixed model (GCMM) in Section 2.2. The likelihood estimation procedure

and the variance calculation for the estimators are discussed in Section 2.3. Calculation of

marginal associations is shown in Section 2.4.

2.1 Brief review of copulas

Copulas are not new in biomedical studies and recent references include Genest et al. (2013),

de Leon and Wu (2011), Song et al. (2009), and Zimmer and Trivedi (2006), among many

others.

Copula is a function that binds marginal distributions of a set of random variables (RVs)

to form their multivariate distribution. To see this, consider P (possibly dependent) RVs

Y1, · · · , YP , with corresponding CDFs FY1(·), · · · , FYP (·). It is well-known that the prob-

ability integral transformations (PITs) U1 = FY1(Y1), · · · , UP = FYP (YP ) are identically

10



distributed as uniform[0, 1], i.e., Uj ∼ uniform[0, 1], for all j = 1, · · · , P . Hence, the joint

CDF FY1,··· ,YP (·) of Y1, · · · , YP can be written as

FY1,··· ,YP (y1, · · · , yP ) = P (U1 ≤ u1, · · · , UP ≤ uP ) = C(u1, · · · , uP ), (2.1)

where u1 = FY1(y1), · · · , uP = FYP (yP ) are the realizations of the PITs U1, · · · , UP , with

C(·) ≡ FU1,··· ,UP
(·) the joint CDF of U1, · · · , UP . The function C(·) is called a P -dimensional

copula (or P -copula) and it is the unique copula associated with the CDF FY1,··· ,YP (·). Specif-

ically, C(·) : [0, 1]P → [0, 1] and has the following properties:

1. C(1, · · · , 1, uj, 1, · · · , 1) = uj for every j ≤ P and for all uj ∈ [0, 1];

2. C(u1, · · · , uP ) = 0 if uj = 0 for every j ≤ P ;

3. C(u1, · · · , uP ) is P -increasing.

Hence, the joint CDF FY1,··· ,YP (·) of Y1, · · · , YP is equivalent to the joint CDF C(·) of the

marginally uniform (possibly dependent) RVs U1 = FY1(Y1), · · · , UP = FYP (YP ). The copula

approach is thus a useful method for constructing a joint distribution when the marginal dis-

tributions are known or can be easily specified. It enables the construction of non-Gaussian

multivariate/joint models suitable to applications involving non-Gaussian variables.

The corresponding joint density fY1,··· ,YP (·) of Y1, · · · , YP can be obtained by taking the

P th mixed-partial derivative of (2.1). This yields

fY1,··· ,YP (y1, · · · , yP ) =
∂PFY1,··· ,YP (y1, · · · , yP )

∂y1 · · · ∂yP
= c(u1, · · · , uP )

P∏
j=1

fYj(yj), (2.2)

where c(u1, · · · , uP ) = ∂PC(u1, · · · , uP )/∂u1 · · · ∂uP is the so-called copula density for copula

C(·).

Sklar’s Theorem (Sklar, 1959) states that the copula representation of FY1,··· ,YP (·) in (2.1)

is unique if and only if all the margins are continuous (i.e., Y1, · · · , YP are continuous RVs);
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otherwise, for discrete margins, uniqueness property only holds in the product range of the

margins (Song et al., 2007, see, e.g.,).

The suitability of copulas in applications depends on how well they are able to capture

the unique dependencies in the data. A large number of copula families that can capture

the different dependence features of the data have been studied in the literature. Examples

include the product copula, Farlie-Gumbel-Morgenstern copula, the Frank copula, the Clay-

ton copula, and the Student’s t-copula, among others. Zimmer and Trivedi (2006) and Joe

(1997) give comprehensive surveys of many of these families and their properties.

The Gaussian copula family has been widely used in applications because of its convenient

marginalization and conditionalization properties. In addition, the Gaussian copula can

model positive and negative dependence in the data. The P -dimensional Gaussian copula is

given by

CΦ(u1, · · · , uP ; R̃) = ΦP (Φ−1(u1), · · · ,Φ−1(uP ); R̃), (2.3)

where ΦP (·; R̃) is the P -dimensional standard Gaussian CDF (i.e., zero means and unit

variances) with correlation matrix R̃. For continuous RVs Y1 ∼ FY1(·), · · · , YP ∼ FYP (·)

whose joint CDF FY1,··· ,YP (·) is determined by Gaussian copula (2.3), we have

FY1,··· ,YP (y1, · · · , yP ) = ΦP (Φ−1(u1), · · · ,Φ−1(uP ); R̃), (2.4)

where u1, · · · , uP are respective realizations of the PITs U1 = FY1(Y1) ∼ uniform[0, 1], · · · ,

UP = FYP (YP ) ∼ uniform[0, 1], with R̃ containing the normal correlations ρ̃jj′ , which are

the correlations between the so-called normal scores Φ−1(Uj) and Φ−1(Uj′) given by

ρ̃jj′ = corr(Φ−1(Uj),Φ
−1(Uj′)). (2.5)
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The corresponding density fY1,··· ,YP (·) obtained from (2.2) is given by

fY1,··· ,YP (y1, · · · , yP ) =
φP (Φ−1(u1), · · · ,Φ−1(uP ); R̃)∏P

j=1 φ(Φ−1(uj))

P∏
j=1

fYj(yj), (2.6)

where φP (·; R̃) is the P -dimensional standard Gaussian density and φ(·) ≡ φ1(·) (i.e., the

standard normal density).

Note that the correlation matrix R̃ is “margin-free” in the sense that Φ−1(FYj(Yj)) ∼

N(0, 1), for any continuous margin FYj(·), for all j = 1, · · · , P . To see this, we have

P (Φ−1(Uj) ≤ y) = P (Φ−1(FYj(Yj)) ≤ y) = P (FYj(Yj) ≤ Φ(y)) = Φ(y),

for all real y, and for all j. Although the normal correlations ρ̃jj′ do not directly model the de-

pendence among Y1, · · · , YP , they can be used to bound the correlations ρjj′ = corr(Yj, Yj′),

since ρjj′ ≤ |ρ̃jj′ | (Klaassen and Wellner, 1997). Alternatively, a piecewise linear approxima-

tion may be used to recover ρjj′ from ρ̃jj′ (Kugiumtzis and Bora-Senta, 2010).

Since rank-based association measures, such as Kendall’s tau, are invariant to mono-

tonic transformations, copula models generally rely on them to evaluate the strength of

dependence between variables. For example, the normal scores Φ−1(Uj) = Φ−1(FYj(Yj)) in

(2.4) are monotonic transformations of the original variables Yj, so that the Kendall’s tau

τ̃jj′ = τ(Φ−1(Uj),Φ
−1(Uj′)) between a pair of normal scores is the same as the correspond-

ing Kendall’s tau τjj′ = τ(Yj, Yj′) between the original variables. Using the well-known

relationship between τ̃jj′ and ρ̃jj′ , we get

τ̃jj′ =
2

π
sin−1 (ρ̃jj′) = τjj′ . (2.7)
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2.2 GCMM with crossed random effects

Direct application of copula to binary data with the use of discrete margins — in contrast to

the latent variable approach adopted in Withanage et al. (2015) and Wu and de Leon (2014),

among others — is not new (Nikoloulopoulos and Karlis, 2008, 2009a,b; Song et al., 2009;

Zimmer and Trivedi, 2006). As discussed in Wu and de Leon (2014), for example, Sklar’s

Thorem(Sklar, 1959) no longer holds when discrete margins are used in a copula, and as

a consequence, the copula is unique only on the product range of the discrete margins,

thus failing to completely uniquely determine the joint distribution of the discrete variables.

However, the resulting copula model is still a proper and valid distribution, which explains

the proliferation of copula models for discrete data. A recent reference is Genest et al. (2013),

where meta-elliptical copulas are used to directly model correlated binary data.

The main issue about such copula models is more practical than theoretical, and con-

cerns the interpretability of the dependence parameters. In particular, common rank-based

association measures like Kendall’s tau and Spearman’s rho (Goodman and Kruskal, 1954),

which are margin-free in traditional copula applications to continuous variables, may now de-

pend on the margins (Nešlehová, 2007; Mesfioui and Tajar, 2005). In addition, their ranges

may now be substantially restricted, so that re-scaled versions of them become necessary

for proper interpretation (Genest et al., 2013). To avoid these complications, we adopt a

latent variable formulation of the binary data as in Withanage et al. (2015) and Wu and

de Leon (2014), and construct the copula model at the latent level. The joint model for the

binary data is then constructed indirectly from the copula model. This is exactly the same

approach developed in Withanage et al. (2014, 2015) except that we now accommodate a

more flexible, possibly non-Gaussian, latent model; specifically, we adapt the GCMM to the

binary data setting with crossed effects as in the diabetic retinopathy study. Dependence

among the binary outcomes is measured by the normal correlations between the underly-

ing latent variables; these normal correlations are akin to so-called tetrachoric correlations,

which are quite commonplace as measures of association between discrete variables in psy-

14



chometrics. Note that the normal correlations in this case are margin-free, from which the

tetrachoric correlations can be calculated via piecewise linear approximations (Kugiumtzis

and Bora-Senta, 2010). We outline the methodology in what follows.

Let Yijk be the assessment of reader k = 1, · · · , K, of eye j = L,R, of patient i =

1, · · · , N . We assume that Yijk is observed by dichotomizing a continuous latent variable

Y ∗ijk, where Yijk = I{Y ∗ijk > 0}, for all i, j, k, where I{·} is the indicator function. Suppose

Y ∗ijk|B1i, B2k ∼ FY ∗ijk|B1i,B2k
(·|·), with conditional mean modeled as

µ∗ijk(B1i, B2k) = E(Y ∗ijk|B1i, B2k) = x>ijβ +B1i +B2k, (2.8)

where xij is a known vector of covariates with corresponding vector β of unknown regression

coefficients, with B1i the subject-specific random effect indicating heterogeneity between

subjects, and B2k the random effect representing heterogeneity between readers. We assume

that B1i
iid∼ fB1i

(·) independently of B2k
iid∼ fB2k

(·); further, given B1i, a patient’s left and

right eyes are assumed independent, and in addition, we assume patients are independent,

given B21, · · · , B2K . The choice of the (conditional) margin FY ∗ijk|B1i,B2k
(·|·) dictates the

link function ~ijk(·) such that µijk(B1i, B2k) = E(Yijk|B1i, B2k) = P (Yijk = 1|B1i, B2k) =

~−1
ijk(x

>
ijβ +B1i +B2k). For example, if Y ∗ijk|B1i, B2k ∼ N(µ∗ijk, 1), then we get

µijk(B1i, B2k) = P (Y ∗ijk > 0|B1i, B2k) = Φ(µ∗ijk(B1i, B2k)), (2.9)

so that ~ijk(·) is the probit link. For model identifiability, we assumed that var(Y ∗ijk|B1i, B2k) =

1 in (2.9). In general, if var(Y ∗ijk|B1i, B2k) depends on a scale parameter ξ for FY ∗ijk|B1i,B2k
(·|·)

(e.g., logistic latent distribution), then we assume that ξ is known; in any case, we assume

that var(Y ∗ijk|B1i, B2k) > 0 is known if the scale parameter is the variance (Gueorguieva and

Agresti, 2001). For a similar reason, we also assume a zero cutpoint for the threshold model

linking Yijk to Y ∗ijk, so that β includes an intercept coefficient (Catalano and Ryan, 1992).

With conditional independence of Yijk, for all j, k, model (2.8) leads to an exchangeable
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correlation structure for readers’ assessments for the same eye or for fellow eyes of a patient.

However, this is not true in many reader-based diagnostic studies, as assessments by different

readers for the same eye are much more alike than their assessments for different eyes.

Withanage et al. (2015) adopted a multivariate Gaussian latent distribution, so that each

latent variable Y ∗ijk is Gaussian, for all j, k, and they included a third random effect to

delineate these correlations. The additional computational burden a likelihood analysis

of such model required was obviated by the use of DC, which involves neither numerical

integration nor optimization of the likelihood function. In this paper, we alternatively adopt

the GCMM, a copula-based approach (de Leon and Wu, 2011; Wu et al., 2013) to account

for the different associations between readers’ assessments for the same eye and for fellow

eyes of a patient, without the addition of another random effect.

Let Yij = (Yij1, · · · , YijK)>, Y∗ij = (Y ∗ij1, · · · , Y ∗ijK)>, and B2 = (B21, · · · , B2K)>. Given

the (conditional) margins FY ∗ij1|B1i,B21(·|·), · · · , FY ∗ijK |B1i,B2K
(·|·), let the (conditional) cumula-

tive distribution function (CDF) FY∗ij |B1i,B2(·|·) of Y∗ij, given B1i and B2, be determined by

a Gaussian copula as follows:

FY∗ij |B1i,B2(y
∗
ij|b1i,b2) = ΦK(Φ−1{u∗ij1(b1i, b21)}, · · · ,Φ−1{u∗ijK(b1i, b2K)}; R̃∗), (2.10)

where u∗ijk(b1i, b2k) = FY ∗ijk|B1i,B2k
(y∗ijk|b1i, b2k) is the realization of the latent (conditional)

probability integral transform (PIT) U∗ijk(B1i, B2k) = FY ∗ijk|B1i,B2k
(Y ∗ijk|B1i, B2k), and R̃∗ is

the matrix of (conditional) normal correlations

ρ̃∗kk′ = corr{Φ−1(U∗ijk(B1i, B2k)),Φ
−1(U∗ijk′(B1i, B2k′))} (2.11)

between the latent variables. These normal correlations measure the conditional association

between assessments by different readers of the same eye j of patient i. In practice, readers’

assessments are generally consistent due to their similar training. It is thus reasonable to

assume an exchangeable structure for R̃∗, so that ρ̃∗kk′ = ρ̃∗, for all k 6= k′. Nevertheless,

16



if there are significant differences among the assessments by different readers, it may be

worthwhile to assume an unstructured R̃∗.

The corresponding model for Yij is then

P (Yij = yij|B1i = b1i,B2 = b2) =

∫
Aij1×···×AijK

fY∗ij |B1i,B2(y
∗
ij|b1i,b2)dy∗ij, (2.12)

where fY∗ij |B1i,B2(·|·) is the (conditional) density of Y∗ij corresponding to CDF (2.10), and the

intervals Aijk are either (−∞, 0] or (0,+∞) according to whether yijk = 0 or 1. Note that

(2.12) involves the computation of multivariate Gaussian orthant probabilities, for which a

general expression can be found in Song et al. (2009) and Genest et al. (2013).

Model (2.12) is a GCMM, and as such inherits all the nice properties of GCMMs. For

example, the latent distributions can be flexibly chosen and need not come from the same

parametric family. It is possible to consider Gaussian latent variables for some binary out-

comes, logistic for others, and t for still others. This contrasts with Gueorguieva and Agresti

(2001) correlated probit model based on a multivariate Gaussian latent distribution. More-

over, our use of the continuous latent vector Y∗ij in (2.12) to describe the binary vector

Yij and to build the joint model for Yij from the GCMM for Y∗ij allows us to sidestep the

complications of using discrete margins in the Gaussian copula. The CDF (2.10) is uniquely

determined by the Gaussian copula; hence, the joint model in (2.12) is likewise unique. The

normal correlation matrix R̃∗ is also margin-free, so that the dependence model for Yij, as

captured by R̃∗, is independent of its marginal specification.

A potential drawback is that the dependence in Yij is measured by the dependence in

Y∗ij (i.e., association among Yij1, · · · , YijK is gauged at the latent level). However, we view

this as an advantage rather than a disadvantage. For one, the use of latent-level correla-

tions, such as polychoric correlations between discrete variables (or tetrachoric correlations

in the case of binary variables) is standard practice in many disciplines. For another, such

correlations are not artificially constrained by the marginal probabilities of the discrete vari-
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ables (unlike Pearson’s correlations) and their number does not increase with the number of

levels/categories of ordinal/categorical variables (unlike odds ratios).

2.3 Likelihood estimation

Let Θ be the vector containing all parameters of (2.12). The conditional likelihood contri-

bution Lij(Θ|b1i,b2) of eye j of patient i is

Lij(Θ|b1i,b2) = P (Yij = yij|B1i = b1i,B2 = b2).

The conditional independence of Y∗iL and Y∗iR, given B1i, for all i, and of Y∗ij and Y∗i′j′ , given

B2, for all i 6= i′ and j 6= j′, gives the marginal likelihood function L(Θ) as

L(Θ) =

∫
RK+N

∏
i,j

Lij(Θ|b1i,b2)fB1i
(b1i)fB21(b21) · · · fB2K

(b2K)db1idb21 · · · db2K , (2.13)

For convenience, let B1i
iid∼ N(0, σ2

1) be independent of B2k
iid∼ N(0, σ2

2), so that Θ =

(β>, σ1, σ2, ρ̃
∗)>; note that non-Gaussian choices for the random effects distributions are

also possible; for example, Lin et al. (2010) used a bridge-distributed random effect to facili-

tate marginal interpretability in logistic regressions. Marginal likelihood function L(Θ) now

becomes

L(Θ) =
1

σN1 σ
K
2

∫
RK+N

∏
i,j

Lij(Θ|b1i,b2)φ

(
b1i

σ1

)
φ

(
b21

σ2

)
· · ·φ

(
b2K

σ2

)
db1idb21 · · · db2K ,

(2.14)

where φ(·) is the standard normal density. The integration involved in (2.14) suffers from

the curse of dimensionality, as the number of integrals in (2.14) increases with the number

of patients and readers. This necessitates the use of some numerical, stochastic or ana-

lytical approximation. Gaussian-Hermite quadrature (Evans and Swartz, 2000; Lesaffre and

18



Spiessens, 2001) is the preferred method in GLMMs when a few random factors are involved.

The likelihood function (2.13) involves N+K integrals and evaluation via Gausssian-Hermite

quadrature is not feasible. In addition, no simple and effective error bounds are available for

high-dimensional integrals approximated by quadrature methods (Renard et al., 2004).

Alternatively, Monte Carlo-based methods, such as the Monte Carlo EM (McCulloch,

1997; Booth and Hobert, 1999) and Monte Carlo Newton-Raphson (McCulloch, 1994, 1997)

algorithms, are widely used when the dimension of the random effects is high. However,

these methods are generally quite computationally intensive.

Rather than undertake a full likelihood analysis in this case, we adopt instead the pair-

wise likelihood (PL) approach. Bellio and Varin (2005) showed that the inferential and

computational gain provided by the PL approach is remarkable in models for binary data

with crossed random effects.

2.3.1 Pairwise likelihood estimation

The PL function PL(Θ) is obtained by the product of the bivariate probabilities for all

possible pairs. However, we choose to include only those pairs that share at least one

common random effect, as in Bellio and Varin (2005). Hence, we get

PL(Θ) =

∏
i

∏
k<k′

j, j′

P (Yijk = yijk, Yij′k′ = yij′k′)


∏
i<i′

∏
k

j, j′

P (Yijk = yijk, Yi′j′k = yi′j′k)



×

∏
i

∏
k

j 6=j′

P (Yijk = yijk, Yij′k = yij′k)

 , (2.15)
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with

P (Yijk = yijk, Yij′k′ = yij′k′) =



P (Y ∗ijk > 0, Y ∗ij′k′ > 0) , if yijk = yij′k′ = 1

P (Y ∗ijk > 0, Y ∗ij′k′ ≤ 0) , if yijk = 1, yij′k′ = 0

P (Y ∗ijk ≤ 0, Y ∗ij′k′ > 0) , if yijk = 0, yij′k′ = 1

P (Y ∗ijk ≤ 0, Y ∗ij′k′ ≤ 0) , if yijk = yij′k′ = 0

.

From (2.15), the number of random effects included in a pair varies from two to three —

refer to (2.16) and (2.19) to see why — and thus, Gaussian-Hermite quadrature may be used.

The different pairs in (2.15) reflect the following association types:

1. association between Yijk and Yijk′ , the assessments by different readers of a patient’s eye;

2. association between YiLk and YiRk′ , the assessments by different readers, one reading the

left and the other the right;

3. association between YiLk and YiRk, the assessments by the same reader of a patient’s fellow

eyes; and

4. association between Yijk and Yi′j′k , the assessments by the same reader of matching or

non-matching eyes of different patients.
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Each of these pairwise contributions can then be written in terms of univariate or bivariate

probabilities as follows:

P (Yijk = yijk, Yijk′ = yijk′) =
1

σ1σ2
2

∫
R3

Φ2(Φ−1{uijk(b1i, b2k)},Φ−1{uijk′(b1i, b2k′)}; ρ̃∗)

× φ
(
b1i

σ1

)
φ

(
b2k

σ2

)
φ

(
b2k′

σ2

)
db1idb2kdb2k′ , (2.16)

P (YiLk = yiLk, YiRk′ = yiRk′) =
1

σ1σ2
2

∫
R3

P (YiLk = yiLk|b1i, b2k)P (YiRk′ = yiRk′|b1i, b2k′)

× φ
(
b1i

σ1

)
φ

(
b2k

σ2

)
φ

(
b2k′

σ2

)
db1idb2kdb2k′ , (2.17)

P (YiLk = yiLk, YiRk = yiRk) =
1

σ1σ2

∫
R2

P (YiLk = yiLk|b1i, b2k)P (YiRk = yiRk|b1i, b2k)

× φ
(
b1i

σ1

)
φ

(
b2k

σ2

)
db1idb2k, (2.18)

P (Yijk = yijk, Yi′j′k = yi′j′k) =
1

σ2
1σ2

∫
R3

P (Yijk = yijk|b1i, b2k)P (Yi′j′k = yi′j′k|b1i′ , b2k)

× φ
(
b1i

σ1

)
φ

(
b1i′

σ1

)
φ

(
b2k

σ2

)
db1idb1i′db2k, (2.19)

for j, j′ = L,R. The PL estimate Θ̂ of Θ = (β>, σ1, σ2, ρ̃
∗)> is then obtained by solving

the pairwise score equations Up`(Θ) = ∂ logPL/∂Θ = 0. These estimates we refer to as

pairwise-maximum-likelihood estimates (PMLEs) as they are obtained my maximizing the

pairwise likelihood function.

2.3.2 Variance of the PMLEs

The standard errors (SEs) of the PMLEs can be obtained from the inverse of the Godambe

information G(Θ) = H(Θ)J(Θ)−1H(Θ), where H(Θ) = E[−∂Up`(Θ)/∂Θ] and J(Θ) =

E[Up`(Θ)Up`(Θ)>]. The matrix H(Θ) can be estimated by

Ĥ(Θ) = H(Θ̂) = − ∂

∂Θ
Up`(Θ)

∣∣∣∣
Θ=Θ̂

. (2.20)
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However, the estimate of J(Θ) is possible only if independent or pseudo-independent repli-

cates of the data are available. Similarly, the jackknife estimate (Zhao and Joe, 2005;

Lipsitz et al., 1994) of J(Θ) is possible provided that the data may be decomposed into

pseudo-independent subunits. Both methods fail for models with crossed random effects

because of the non-decaying correlation pattern, as in model (2.8). Following Bellio and

Varin (2005), we thus estimate J(Θ) by pure Monte Carlo computation. Specifically, given

Θ̂ = (β̂>, σ̂1, σ̂2, ̂̃ρ∗)>, Monte Carlo samples were generated based on the following algorithm:

1. Generate B2k from a N(0, σ̂2
2), for k = 1, . . . , K.

2. Generate B1i from a N(0, σ̂2
1).

3. Jointly generate y∗ij1, . . . , y
∗
ijK from FY∗ij |B1i,B2(.|.) with the conditional mean µ̂∗ijk(B1i, B2k) =

x>ijβ̂ +B1i +B2k.

4. Dichotomize y∗ijk as yijk = I{y∗ijk > 0} to obtain y
(b)
ijk.

5. Repeat Steps 2 to 4 for N times.

After completing the above algorithm we have the bth data set. Generate B such data sets,

where B is the number of Monte Carlo samples, repeating the above algorithm B times and

the Monte Carlo estimate of J(Θ) is given by

Ĵ(Θ) =
1

B

B∑
b=1

U
(b)
p` (Θ̂)U

(b)>
p` (Θ̂), (2.21)

where U
(b)
p` (Θ̂) is the score vector evaluated at Θ̂ for the bth Monte Carlo sample. For the

simulation study in Chapter 3 and data analysis in Chapter 4, we have used the fdHess

function of nlme package in R to calculate these score vectors.
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2.4 Marginal associations

The marginal associations between the binary responses are measured via the marginal corre-

lations at the latent level. The marginal correlations can be calculated from the conditional

correlations using the total covariance formula. Since E[Y ∗ijk|b1i, b2k] = x>ijβ + b1i + b2k,

E[Y ∗ijk′ |b1i, b2k′ ] = x>ijβ + b1i + b2k′ , and var(Y ∗ijk|b1i, b2k) = var(Y ∗ijk′|b1i, b2k′) = 1, using the

total covariance formula we have

cov(Y ∗ijk, Y
∗
ijk′) = E[cov(Y ∗ijk, Y

∗
ijk′ |b1i, b2k, b2k′)] + cov(E[Y ∗ijk|b1i, b2k], E[Y ∗ijk′ |b1i, b2k′ ])

= E[corr(Y ∗ijk, Y
∗
ijk′ |b1i, b2k, b2k′)

√
var(Y ∗ijk|b1i, b2k) var(Y ∗ijk′|b1i, b2k′)]

+ cov(E[Y ∗ijk|b1i, b2k], E[Y ∗ijk′ |b1i, b2k′ ])

= E[ρ
√

1× 1] + cov(x>ijβ + b1i + b2k,x
>
ijβ + b1i + b2k′)

= ρ+ σ2
1,

var(Y ∗ijk) = var(E[Y ∗ijk|b1i, b2k]) + E[var(Y ∗ijk|b1i, b2k)]

= var(x>ijβ + b1i + b2k) + E[1]

= σ2
1 + σ2

2 + 1

and similarly, var(Y ∗ijk′) = σ2
1 + σ2

2 + 1. So the marginal correlation between Y ∗ijk and Y ∗ijk′

becomes

corr(Y ∗ijk, Y
∗
ijk′) =

cov(Y ∗ijk, Y
∗
ijk′)√

var(Y ∗ijk) var(Y
∗
ijk′)

=
ρ+ σ2

1

1 + σ2
1 + σ2

2

.
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Using the similar approach we have

cov(Y ∗ijk, Y
∗
ij′k) = 0 + cov(x>ijβ + b1i + b2k,x

>
ij′β + b1i + b2k) = σ2

1 + σ2
2,

cov(Y ∗ijk, Y
∗
ij′k′) = 0 + cov(x>ijβ + b1i + b2k,x

>
ij′β + b1i + b2k′) = σ2

1,

cov(Y ∗ijk, Y
∗
i′j′k) = 0 + cov(x>ijβ + b1i + b2k,x

>
i′j′β + b1i′ + b2k) = σ2

2,

leading to the following marginal correlations

corr(Y ∗ijk, Y
∗
ij′k) =

σ2
1 + σ2

2

1 + σ2
1 + σ2

2

,

corr(Y ∗ijk, Y
∗
ij′k′) =

σ2
1

1 + σ2
1 + σ2

2

,

corr(Y ∗ijk, Y
∗
i′j′k) =

σ2
2

1 + σ2
1 + σ2

2

.

Note that in the above calculation we have used the fact that the pairs {Y ∗ijk, Y ∗ij′k}, {Y ∗ijk, Y ∗ij′k′}

and {Y ∗ijk, Y ∗i′j′k} are independent conditional on the random effects. Also note that the cor-

relation corr(Y ∗ijk, Y
∗
ijk′) depends on the (conditional) tetrachoric correlation

ρ = corr(Y ∗ij1, Y
∗
ij2|b1i, b2k, b2k′),

which can be obtained from ρ̃∗ by piecewise linear approximation (Kugiumtzis and Bora-

Senta, 2010).
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Chapter 3

Simulation Study

In this chapter, a simulation study is carried out to study the finite-sample behaviors of the

estimates obtained via pairwise likelihood method for the GCMM fitted to clustered binary

data with crossed random effects. The data were generated using the package copula in

R and the models were fitted using self written R codes that utilize the optim function for

pairwise likelihood estimation. The simulations design and the results are discussed in the

following sections.

3.1 Simulation design

A design analogous to the diabetic retinopathy data was adopted for the simulation study.

In particular, we considered one pathology (V = 1) and two readers (K = 2). We assumed

that the assessment Yijk on this single pathology by reader k for eye j of patient i, has an

underlying continuous latent variable Y ∗ijk, such that Yijk = I{Y ∗ijk > 0} and Y ∗ijk|B1i, B2k ∼

logistic(µ∗ijk(B1i, B2k), 1) (i.e., the logistic distribution with unit scale). So the conditional

density fY ∗ijk|B1i,B2k
(·|·) of Y ∗ijk, given B1i and B2k, which is the conditional margin to be
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considered for the GCMM in (2.12), is

fY ∗ijk|B1i,B2k
(y∗ijk|b1i, b2k) =

e−{y
∗
ijk−µ

∗
ijk(b1i,b2k)}[

1 + e−{y
∗
ijk−µ

∗
ijk(b1i,b2k)}]2 ,

where i = 1, . . . , N , j = L,R, k = 1, . . . , K. The conditional mean using which data were

simulated is

µ∗ijk(B1i, B2k) = β0 + β1Dij +B1i +B2k, (3.1)

where Dij is the true disease status for eye j of patient i, B1i
iid∼ N(0, σ2

1), and B2k
iid∼

N(0, σ2
2). The (conditional) cumulative distribution function of the bivariate Gaussian copula

distribution for Y∗ij = (Y ∗ij1, Y
∗
ij2)>, given B1i and B2 = (B21, B22)>, is

FY∗ij |B1i,B2(y
∗
ij|b1i,b2) = Φ2(Φ−1{u∗ij1(b1i, b21)},Φ−1{u∗ij2(b1i, b22)}; ρ̃∗),

where u∗ijk(b1i, b2k) = FY ∗ijk|B1i,B2k
(y∗ijk|b1i, b2k) and

ρ̃∗ = corr{Φ−1(u∗ij1(b1i, b21)),Φ−1(u∗ij1(b1i, b22))}.

For simulations we generated data using the following two different true parameter settings:

Scenario I : β0 = −3, β1 = 5, σ1 = 1, σ2 = 0.1 and ρ̃∗ = 0.6

Scenario II : β0 = −3, β1 = 5, σ1 = 1, σ2 = 0.2 and ρ̃∗ = 0.4.

We kept the value of the variance component σ2 smaller than the component σ1, because it is

expected that the variation of the assessments on same eye by different readers should not be

big as they receive similar training. After specifying the parameters Θ = (β0, β1, σ1, σ2, ρ̃
∗)>

the clustered binary responses were generated using the following algorithm:

1. Generate B2k independently from N(0, σ2
2), for k = 1, 2.
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2. Independently generate the true disease statuses DiL and DiR, for patient i from the

Bernoulli distribution with success probability 0.5.

3. Independently generate B1i ∼ N(0, σ2
1).

4. Use package copula (Yan, 2007) to jointly generate y∗ij1 and y∗ij2 using the logistic margins

logistic(β0 + β1Dij +B1i +B2k, 1) for k = 1, 2.

5. Dichotomize y∗ijk as yijk = I{y∗ijk > 0} to obtain yijk, k = 1, 2.

6. Repeat Steps 2 to 5 for N times.

The univariate and bivariate probabilities for constructing the pairwise likelihood in (2.15)

are computed as follows:

P (Yijk = 0|b1i, b2k) = FL(−µ∗ijk(b1i, b2k)),

P (Yijk = 1|b1i, b2k) = FL(µ∗ijk(b1i, b2k)),

P (Yij1 = Yij2 = 0|b1i, b21, b22) = Φ2

 Φ−1{FL(−µ∗ij1(b1i, b21))},

Φ−1{FL(−µ∗ij2(b1i, b22))}
; ρ̃∗

 ,

P (Yij1 = 1, Yij2 = 0|b1i, b21, b22) = FL(−µ∗ij2(b1i, b22))

− Φ2

 Φ−1{FL(−µ∗ij1(b1i, b21))},

Φ−1{FL(−µij2(b1i, b22))}
; ρ̃∗

 ,

P (Yij1 = 0, Yij2 = 1|b1i, b21, b22) = FL(−µ∗ij1(b1i, b21))

− Φ2

 Φ−1{FL(−µ∗ij1(b1i, b21))},

Φ−1{FL(−µ∗ij2(b1i, b22))}
; ρ̃∗

 ,

P (Yij1 = Yij2 = 1|b1i, b21, b22) = 1 + Φ2

 Φ−1{FL(−µ∗ij1(b1i, b21))},

Φ−1{FL(−µ∗ij2(b1i, b22))}
; ρ̃∗


− FL(−µ∗ij1(b1i, b21))− FL(−µ∗ij2(b1i, b22)),
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where FL(.) is the CDF of the logistic-distribution. The above probabilities were computed

using the functions pmvnorm, qnorm, and plogis in R. The maximum pairwise likelihood

estimate (MPLE) for Θ was obtained using the optim function in R.

Sensitivities, specificities, and their standard errors were calculated for each simulation

runs. Expressions for sensitivities and specificities were obtained analogously as in With-

anage et al. (2015) as follows:

Sen =
1

σ̂1σ̂2

∫
R2

FL(β̂0 + β̂1 + b1i + b2k)φ

(
b1i

σ̂1

)
φ

(
b2k

σ̂2

)
db1idb2k,

Spc = 1− 1

σ̂1σ̂2

∫
R2

FL(β̂0 + b1i + b2k)φ

(
b1i

σ̂1

)
φ

(
b2k

σ̂2

)
db1idb2k, (3.2)

where FL(.) is the CDF of logistic distribution with unit scale. The variances for the estimates

of these accuracy measures were obtained using the delta method as follows:

var(Ŝen) =
( ∂

∂Θ
Sen
)
G(Θ)−1

( ∂

∂Θ
Sen
)>∣∣∣

Θ=Θ̂
,

var(Ŝpc) =
( ∂

∂Θ
Spc
)
G(Θ)−1

( ∂

∂Θ
Spc
)>∣∣∣

Θ=Θ̂
,

where G(Θ̂) is the estimated Godambe information matrix. Standard errors were calcu-

lated by taking square root of these variances. The derivatives in the above variances were

calculated using the fdHess function of nlme package in R.

3.2 Simulation results

We conducted simulation study to see the performance of the parameter estimates obtained

via pairwise likelihood estimation under Gaussian copula mixed model approach for clustered

binary data with crossed random effects. For each of the parameter settings (Scenario I and

II), as defined in Section 3.1, simulation studies were conducted for two different sample

sizes, N = 100 and 500. The results are presented in Tables 3.1, 3.2, 3.3 and 3.4. Tables
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3.1 and 3.2 display the results for Scenario I with sample sizes 100 and 500, respectively.

Whereas Tables 3.3 and 3.4 display the results for Scenario II for the two sample sizes. The

performance of the estimates were evaluated based on the following:

Relative bias = 100× Average estimate− True parameter value

True parameter value
,

Relative efficiency =
Average SE

Empirical SD
,

where SE and SD are standard error and standard deviation, respectively, and the coverage

probability (with true level 95%). The coverage probability was calculated as the proportion

of times out of 100 repeated samples, the 95% confidence intervals contained the true param-

eter value. Sensitivities and specificities (averaged over the repeated samples), their relative

biases, average standard errors, empirical standard deviations and relative efficiencies are

also presented in the tables.

In Table 3.1, we see that the relative biases are very small for the location parameters

(β0 and β1), as well as for the normal correlation (ρ̃∗); ranging from one to five percent.

But the variance components, specially the component (σ2) associated with the reader-

specific random effects exhibits a high downward relative bias. Same behavior is observed

in case of relative efficiency and empirical coverage probability. Relative efficiencies are

close to one for all the parameters except for σ2. The coverage probabilities are close to

the true level 0.95 for β0, β1 and ρ̃∗, but a bit far from the true level for σ1. For σ2 the

coverage probability is far less than the true level, which is definitely the result of high bias

in estimation. Since sensitivity and specificity involve the variance components, the biases

and inefficiencies in those estimates caused a high bias in sensitivity estimate. The numbers

for relative efficiencies are also very big for the sensitivity and specificity estimates.

However, the interesting thing was observed in simulation results when we increased the

sample size from 100 to 500 keeping the parameter values same (results are shown in Table

3.2). The absolute relative bias decreased from 14.8% to 3.4% for variance component σ1,
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while for σ2 a huge improvement was observed; absolute bias decreased from 52.7% to 12%.

We can see similar improvement in coverage probabilities for these variance components.

The coverage probability increased from 0.79 to 0.89 for σ1 and from 0.48 to 0.92 for σ2 (a

notable improvement indeed!). Improvements in the estimation of the variance components

have largely improved the estimation of sensitivity and specificity as reflected by the relative

biases, which are close to zero, and the relative efficiencies, which are close to one.

Table 3.1: Estimates from pairwise likelihood estimation under Gaussian copula mixed model
for Scenario I, with 100 repeated samples, K = 2 readers, V = 1 pathology, N = 100 patients.

Parameter
Average Relative Average Empirical Relative Coverage
estimate bias (%) SE SD efficiency probability

β0 = −3 –3.0718 2.3947 0.5357 0.6411 0.8356 0.9100
β1 = 5 5.0505 1.0100 0.7953 0.8742 0.9098 0.8700
σ1 = 1 0.8517 –14.8317 0.5479 0.6042 0.9067 0.7900
σ2 = 0.1 0.0473 –52.6556 0.0441 0.0567 0.7772 0.4800
ρ̃∗ = 0.6 0.5731 –4.4880 0.1596 0.1747 0.9132 0.9100

Sen = 0.8442 0.6483 –23.2068 153.8060 0.3305 465.3523
Spc = 0.9305 0.9463 1.7007 15.1639 0.0337 449.7245

Table 3.2: Estimates from pairwise likelihood estimation under Gaussian copula mixed model
for Scenario I, with 100 repeated samples, K = 2 readers, V = 1 pathology, N = 500 patients.

Parameter
Average Relative Average Empirical Relative Coverage
estimate bias (%) SE SD efficiency probability

β0 = −3 –3.0781 2.6033 0.3365 0.2805 1.1996 0.9000
β1 = 5 5.1246 2.4924 0.5072 0.3776 1.3433 0.9000
σ1 = 1 1.0340 3.4027 0.3559 0.3139 1.1340 0.8900
σ2 = 0.1 0.1120 12.0393 0.0668 0.0437 1.5294 0.9200
ρ̃∗ = 0.6 0.5820 –3.0063 0.1017 0.0896 1.1350 0.8800

Sen = 0.8442 0.8447 0.0562 0.0168 0.0165 1.0219
Spc = 0.9305 0.9309 0.0528 0.0107 0.0112 0.9550

For the second setting of parameters, where we slightly increased the value of σ2 and de-

creased the value of ρ̃∗ than those in setting one, we observed better relative efficiencies for
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all parameter estimates for both sample sizes (see Tables 3.3 and 3.4). The estimates of re-

gression coefficients exhibit negligible biases even for sample size 100 like previous scenario.

As before the scale parameter estimates exhibit high bias for smaller sample size and the

bias decreases with increase in sample size. With increasing sample size efficiencies get closer

to one, also the coverage fractions for the variance components, specially for σ1, get closer

to the nominal level 0.95.

Table 3.3: Estimates from pairwise likelihood estimation under Gaussian copula mixed model
for Scenario II, with 100 repeated samples, K = 2 readers, V = 1 pathology, N = 100
patients.

Parameter
Average Relative Average Empirical Relative Coverage
estimate bias (%) SE SD efficiency probability

β0 = −3 –3.0596 1.9870 0.5825 0.5872 0.9919 0.9300
β1 = 5 5.0789 1.5785 0.8793 0.8346 1.0536 0.9300
σ1 = 1 0.8891 –11.0888 0.6428 0.5518 1.1649 0.8300
σ2 = 0.2 0.0814 –59.3012 0.1241 0.0961 1.2923 0.5100
ρ̃∗ = 0.4 0.3661 –8.4709 0.2303 0.2047 1.1248 0.9400

Sen = 0.8433 0.7014 –16.8200 0.0259 0.2811 0.0920
Spc = 0.9298 0.9426 1.3836 0.0175 0.0306 0.5716

Table 3.4: Estimates from pairwise likelihood estimation under Gaussian copula mixed model
for Scenario II, with 100 repeated samples, K = 2 readers, V = 1 pathology, N = 500
patients.

Parameter
Average Relative Average Empirical Relative Coverage
estimate bias (%) SE SD efficiency probability

β0 = −3 –3.0303 1.0095 0.2539 0.2556 0.9933 0.8700
β1 = 5 5.0733 1.4660 0.3543 0.3563 0.9944 0.8700
σ1 = 1 1.0369 3.6853 0.2352 0.2630 0.8942 0.9200
σ2 = 0.2 0.1307 –34.6501 0.0729 0.0690 1.0566 0.7400
ρ̃∗ = 0.4 0.3690 –7.7519 0.0974 0.0996 0.9774 0.9400

Sen = 0.8433 0.8438 0.0618 0.0178 0.0204 0.8672
Spc = 0.9298 0.9282 –0.1724 0.0110 0.0141 0.7771
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3.3 Summary

In this chapter, we carried out simulation studies to investigate the finite-sample properties

of PMLES obtained from GCMM approach to clustered binary data with crossed random

effects. Simulation results reveal that the estimation of the variance components is really

problematic when we have smaller sample size (like 100), although the estimation of the

regression coefficients and the normal correlation is okay. The estimates of regression co-

efficients and the normal correlation exhibit negligible biases, efficiencies close to one and

coverage fractions close to the nominal level (0.95) even for smaller sample size. The es-

timates of variance components (σ1 and σ2), specially the component σ2 associated with

the reader-specific random effects, exhibit high biases, efficiencies far from one and coverage

fractions far from 0.95 for smaller sample size. But with increase in the sample size from 100

to 500, the bias decreases and the efficiency gets closer to one. Also, the coverage fraction

tends to be closer to the nominal level with larger sample size.
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Chapter 4

Analysis of diabetic retinopathy data

In this chapter, we first describe the diabetic retinopathy data in Section 4.1, and then

discuss the models in Section 4.2, which we have considered for analyzing the data. Section

4.3 presents the analysis results followed by a brief summary in the end of this chapter.

4.1 Diabetic retinopathy data

The diabetic retinopathy study was conducted in Edmonton, Canada, between February

1, 2000, and June 1, 2000. All new diabetic patients referred to a comprehensive retina

practice were eligible for inclusion in the study irrespective of the reason for the referral.

Patients underwent clinical examination (i.e., ‘gold standard’) of the retina after pupillary

dilatation using 1 drop of diophenyl T in each eye. At this time, the presence or absence of

CSME, microaneurysms, intraretinal hemorrhage, hard exudate, and other disease of note,

were recorded as present or absent (i.e., ‘true disease status’). Patients then underwent

stereoscopic digital fundus photography by a trained ophthalmic photographer using a high-

resolution digital camera. Digital photographs were taken on the same day as the clinical

examination. Two retinal specialists (i.e., ‘readers’) enrolled all study patients, and a min-

imum of 2 months between clinical examination and photographic grading was allowed to

minimize reader recall. The readers were masked to the clinical grading of each eye. Digital
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photographs of the left eye were reviewed in random order, with a minimum of 2 months

before review of right eyes. Images were viewed on a computer monitor through liquid crys-

tal diode shutter goggles using a three-dimensional viewing software. The number of images

viewed per eye was at the discretion of the reader, with the sharpest images used for the

final grading. The reader had the option of zooming into view the image at the maximum

pixel resolution. During the enrollment period, there were 139 new patients with diabetes

mellitus. Twenty three patients (32 eyes) were not eligible for enrollment: 6 patients (12

eyes) were physically unable to sit at the fundus camera because of fatigue, prior stroke,

incontinence, illness, or 9 physical size, 10 patients (16 eyes) had media opacities preventing

adequate clinical evaluation, 6 patients (3 eyes) were unwilling to be photographed on the

same day as the clinical examination, and 1 patient (1 eye) had retinal disease preventing

differentiation of diabetic retinopathy. A total of 116 patients were examined clinically and

received same-day high resolution stereoscopic digital fundus photography, of which 11 pa-

tients (19 eyes) were excluded after enrollment because the digital image files were lost, and

the photos could therefore not be graded, and 5 patients who had data on only 1 eye (3 right

eyes and 2 left eyes) were eventually dropped from the analysis. In total, 200 eyes of 100

patients were included in the final analysis. Power calculations were performed to verify that

the sample size was adequate to evaluate the extent of agreement between the diagnostic

methods. Finally, there were N = 94 patients with complete data. More information about

the study can be found in Rudnisky et al. (2002).

4.2 Fitted models

In this section, we illustrate our methodology on the diabetic retinopathy data for pathology

CSME. Let Yijk be the assessment on eye j of patient i by reader k, where i = 1, . . . , N = 94,

j = L,R, and k = 1, 2. The GCMM we considered for modeling the binary 2-dimensional
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response vector Yij = (Yij1, Yij2)> is

P (Yij = yij|B1i = b1i,B2 = b2) =

∫
Aij1×Aij2

fY∗ij |B1i,B2(y
∗
ij|b1i,b2)dy∗ij, (4.1)

where Y∗ij = (Y ∗ij1, Y
∗
ij2)> is the underlying latent response vector, b2 = (b21, b22)>, B1i

iid∼

N(0, σ2
1), B2k

iid∼ N(0, σ2
2), the intervals Aijk are either (−∞, 0] or (0,+∞) according as

whether yijk = 0 or 1, and fY∗ij |B1i,B2(·|·) is the (conditional) density of Y∗ij corresponding to

CDF

FY∗ij |B1i,B2(y
∗
ij|b1i,b2) = Φ2(Φ−1{u∗ij1(b1i, b21)},Φ−1{u∗ij2(b1i, b22)}; ρ̃∗),

where ρ̃∗ is the normal correlation and u∗ijk(b1i, b2k) = FY ∗ijk|B1i,B2k
(y∗ijk|b1i, b2k) is the re-

alization of the latent (conditional) probability integral transform (PIT) U∗ijk(B1i, B2k) =

FY ∗ijk|B1i,B2k
(Y ∗ijk|B1i, B2k). For the analysis of diabetic retinopathy data, we considered

GCMM with three different conditional margins; t-t, logistic-logistic, and Gaussian-Gaussian

margins. Following are the conditional densities used as margins in the GCMM (4.1):

t-density : fY ∗ijk|B1i,B2k
(yijk|b1i, b2k) =

Γ
(
ν+1

2

)
√
πνΓ

(
ν
2

) (1 +
1

ν
{y∗ijk − µ∗ijk(b1i, b2k)}2

)−(ν+1)/2

,

logistic-density : fY ∗ijk|B1i,B2k
(yijk|b1i, b2k) =

e−
(
y∗ijk−µ

∗
ijk(b1i,b2k)

)
[
1 + e−

(
y∗ijk−µ

∗
ijk(b1i,b2k)

)]2 ,

Gaussian-density : fY ∗ijk|B1i,B2k
(yijk|b1i, b2k) =

1√
2π
e
−

1

2

(
y∗ijk−µ

∗
ijk(b1i,b2k)

)2
,

where ν is the parameter (degrees of freedom) of the t distribution, and the scale parameters

of the logistic and Gaussian distributions are considered as unity. The conditional mean is

expressed as

µ∗ijk(b1i, b2k) = β0 + β1Dij + b1i + b2k,

where Dij is the true disease status for eye j of patient i.
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The use of t-latent distributions is equivalent to the so-called robit regression, a general-

ization of and more robust alternative to both logistic and probit regression (de Leon and Wu,

2011). To estimate the degrees of freedom ν, we used the method of profile likelihood (Song

et al., 2007) adopted in de Leon and Wu (2011) and Wu and de Leon (2014). The likelihood

attained its maximum at ν = ν̂ = 2.5, so that the PL estimate Θ̂ was obtained at ν̂ = 2.5.

For all three margins SEs of Θ̂ were computed based on Monte Carlo simulation as outlined

in Section 2.3.2. For simulations we used package copula to jointly generate y∗ij1 and y∗ij2

with location parameter µ∗ijk(B1i, B2k) under the three different margins. Since copula only

supports central tν-distributions (i.e., with zero means), we first generated y†ij1 and y†ij2 jointly

using the central tν-margins and used the transformations y∗ij1 = y†ij1 + β̂0 + β̂1Dij +B1i+B21

and y∗ij2 = y†ij2 + β̂0 + β̂1Dij + B1i + B22, for j = L,R. According to the properties of

t-distribution (Kotz and Nadarajah, 2004, p. 15) this is equivalent to jointly generating y∗ij1

and y∗ij2 from a bivariate Gaussian copula with normal correlation ̂̃ρ∗, and respective margins

tν(β̂0 + β̂1Dij +B1i +B21, 1) and tν(β̂0 + β̂1Dij +B1i +B22, 1).

4.3 Analysis results

Table 4.1 compares the PL estimates for CSME for the GCMM under three different mar-

gins we considered. The estimates of regression coefficients and the variance components,

and their SEs are similar under t-t and logistic-logistic margins, but for Gaussian margins

these estimates are quite different. The SEs obtained under Gaussian margins are notably

smaller than those obtained under the other two margins. This suggests that more careful

investigation is needed before concluding which margin better fits the diabetic retinopathy

data for pathology CSME. However, the estimates of normal correlation ρ̃∗ and its SEs are

similar under all three margins. Interestingly, estimates of sensitivities and specificities for

CSME under all three margins are almost same. Furthermore, compared with the results in

Withanage et al. (2015) obtained under DC, the estimated sensitivities and specificities are
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slightly higher in the present case.

Table 4.1: PL estimates of the GCMM, with their SEs, for pathology CSME along with the
corresponding estimates of sensitivities and specificities under different margins.

Parameter
t− t logistic-logistic Gaussian-Gaussian

Est SE Est SE Est SE

β0 –2.7919 0.6692 –3.1712 0.5677 -1.7598 0.2775
β1 4.5071 1.0717 5.1824 0.8595 2.8979 0.4564
σ1 1.2163 0.5622 1.3001 0.5254 0.6929 0.3202
σ2 0.1497 0.3692 0.1382 0.3837 0.0573 0.3762
ρ̃∗ 0.5554 0.1998 0.5697 0.1832 0.5716 0.1670
ρ 0.4381 — 0.5511 — 0.5572 —

Sen 0.8249 0.0484 0.8249 0.0458 0.8250 0.0492
Spc 0.9258 0.0220 0.9258 0.0225 0.9257 0.0218

The piecewise linear approximation of Kugiumtzis and Bora-Senta (2010) was used to

estimate the (conditional) tetrachoric correlation ρ = corr(Y ∗ij1, Y
∗
ij2|b1i, b21, b22) between as-

sessments by the two readers of a patient’s eye. The marginal correlations assessing different

associations between the readers’ assessments are shown in Table 4.2. As we expected, the

highest correlation is reported for those assessments by different readers of the same eye of

a patient. Comparing the correlations with those reported in Withanage et al. (2015), the

ones based on the GCMM with t-t margins are much lower than those from the DC method.

One reason might be the underlying latent distribution adopted, which is a t2.5-distribution.

As such, var(Yijk|B1i, B2k) = 5 > 1 is considerably higher than the unit variance of the

standard Gaussian latent distribution in Withanage et al. (2015).

4.4 Summary

In this chapter, we analyzed the diabetic retinopathy data, which arose from a reader-based

diagnostic study in Alberata, Canada, where two retinal specialists (readers) diagnosed the

presence or absence of particular pathologies in the fellow eyes of several diabetic patients.
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Table 4.2: Estimated marginal tetrachoric correlations under different margins for the dia-
betic retinopathy data for pathology CSME. No SE is given for corr(Yij1, Yij2), as it involves
ρ, for which no SE was available.

Correlation
t− t logistic-logistic Gaussian-Gaussian

Est SE Est SE Est SE

corr(Y ∗iLk, Y
∗
iRk) 0.2310 0.1608 0.6309 0.1863 0.3259 0.2043

corr(Y ∗iL1, Y
∗
iR2) 0.2275 0.1630 0.6239 0.1918 0.3237 0.2018

corr(Y ∗iLk, Y
∗
i′Rk) 0.0034 0.0170 0.0070 0.0391 0.0022 0.0290

corr(Y ∗ij1, Y
∗
ij2) 0.5646 — 0.8273 — 0.7090 —

We considered the diagnosis of pathology CSME (clinically significant macular edema) for

the analysis purpose. Since there are four observations from the same patients, we have

binary data with clustered nature. Also the readers have received similar training, so their

assessments of the same eye of a patient are likely to be correlated. Since the goal was

to estimate the sensitivity and specificity with respect to true disease status and there are

two random sources of variation in the data (patients and readers), it is reasonable to fit a

mixed effects model to this data. We applied the Gaussian copula mixed model (GCMM), as

considered in the simulation study, where the normal correlation of the bivariate Gaussian

copula distribution accounts for the between reader correlation for the same eye of a patient.

We fitted the GCMM to this data using three different conditional margins. The pairwise

likelihood estimation was used to obtain the estimates of regression coefficients, the vari-

ance components associated with the random effects and the conditional correlation. The

estimates for sensitivity and specificity were almost same under all three margins, although

there was slight variation in the estimates and their SEs for the rest of the parameters. The

estimated sensitivity and specificity were 82.5% and 92.5% (irrespective of the margins), re-

spectively, which are slightly higher than those obtained for the same data under multivariate

probit model with full likelihood estimation using data cloning approach in Withanage et al.

(2015).
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Chapter 5

Discussion

Motivated by the data from a diabetic retinopathy study, where several readers (retinal

specialists or opthalmologists) assessed the presence or absence of certain pathologies in

a diabetic patient’s left and right eyes, we proposed a regression approach for correlated

binocular binary diagnostic data based on a GCMM. There is a complex correlation structure

present in the data: in addition to the fellow-eye correlation induced by the binocular nature

of the data, two other sources of correlation are present. Since readers rely on the same image

of the eye, their diagnoses are potentially correlated. Moreover, because the pathologies are

all related to retinopathy, it is very likely that the presence or absence of one influences

the presence or absence of another. Thus, diagnoses for pathologies are correlated as well.

Since we considered a single pathology CSME for our analysis, cross-correlation between

pathologies was not a problem for our case. The correlations between the assessments on

fellow eyes of a patient by the same or different readers, were handled by adding two random

effects in the model. The correlation between the assessments on the same eye by different

readers was introduced in the model through the normal correlation of a bivariate Gaussian

copula distribution (since there were two readers only). A pairwise maximum likelihood

estimation was used instead of full ML estimation to reduce the computational complexity

duo to presence of a large number of integrals in the likelihood function. Before analyzing
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the data under GCMM with PL estimation, we conducted a simulation study to see the

performance of PMLEs using a simulation setup analogous to the diabetic retinopathy data.

The simulation studies were carried out for two different parameter settings each with two

different sample sizes (N = 100, 500). Although the estimation of the regression coefficients

and the normal correlation did not seem to be problematic, the estimation of the variance

components was greatly affected by the smaller sample size. The estimates of regression

coefficients and the normal correlation exhibit negligible biases, efficiencies close to one and

coverage fractions close to the true nominal level (0.95); irrespective of different parameter

settings and even for the smaller sample size. The estimates of variance components (σ1 and

σ2), specially the component (σ2) associated with the reader-specific random effects, exhibit

high biases, efficiencies far from one and coverage fractions far from 0.95 for the smaller

sample size. But for these estimates, the bias decreases and the efficiency gets closer to one

with increase in sample size. Also, the coverage fractions tend to be closer to the nominal

level with larger sample size. However, N = 500 seems to be (still!) not sufficiently large

for asymptotic normality to kick in for the estimate of σ2 as reflected by the performance

measures.In most settings, N = 500 may be large enough for MLEs to exhibit reasonably

good approximate normality, but: (1) we used PMLE, not MLE, and the PMLE is less

efficient than the MLEs (so that a sample size larger than N is necessary to attain the same

efficiency of the MLE at sample size N), and (2) we had crossed random effects, indicating

that that the data were not really independent, unlike in other mixed models with nested

random effects, and this again has implications on efficiency. Overall, our simulation results

so far suggest that it will take a much bigger sample size for the normal approximation (to

the exact (sampling) distribution of PMLEs for the scale parameters) to provide reasonably

accurate approximate results.

We analyzed the diabetic retinopathy data with GCMM under three different conditional

margins. The estimates of sensitivities and specificities were almost same under all three

margins, although the model parameter estimates and SEs varied slightly. The estimated
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marginal associations were found as what we had expected. The assessments on same eyes of

a patients by different readers had much larger correlation than the other pairs of assessments.

Also, the between subject marginal correlations were close to zero, which is common in almost

all study. Since the sample size for this data was 94 and as we noted in the simulation study

that small sample size may lead to really bad PMLEs for scale parameters, one should be

careful while analyzing such small data set with GCMM under PL estimation.

Due to time constraint we conducted the simulation study with only 100 independent

repeated samples and a small number of Monte Carlo samples (only 20 per replication!) for

variance estimation of the PMLEs. This small numbers may also have effect on calculation

of relative biases, efficiencies and coverage fractions. Further simulation studies can be done

increasing these numbers, say for example, 500 repeated samples with 1000 Monte Carlo

samples per replication, keeping rest of the simulation setting same to see if the performance

measures improve. Also, as PMLEs have shown to perform better with increasing sample

size, further detail investigation is needed for the finite sample properties of PMLEs with a

bigger sample size than 500.
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