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Abstract 

The Process Coordination problem, also called concurrency control, is one of the 

classic problems in distributed computing. 

This thesis has two major contributions. It reviews some significant research 

results on the Process Coordination problems with the contribution of unifying dif-

ferent kinds of problems. Two common frameworks are devised to describe different 

problems and solutions, so that the similarities and differences among them can be 

highlighted. The Dining Philosophers problem is demonstrated to be a fundamental 

representative of the set of Process Coordination problems. 

The second contribution is to develop a robust algorithm for the Dining Philoso-

phers problem that can withstand transient system failures. Self-stabilization is a 

strong model that handles transient faults in distributed systems. A randomized 

self-stabilizing mechanism that assigns distinct labels up to distance 3 in a network 

is presented. This mechanism, when generalized to assign distinct labels up to dis-

tance k, for any positive integer k, can solve the self-stabilizing Dining Philosophers 

problem, and it may have other independent applications. Construction and proof 

of this mechanism rely upon a new tool for combining randomized self-stabilizing 

algorithms even when they both update common variables. 
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CHAPTER 1 

Introduction 

A distributed system [24, 11 is a collection of individual computing devices that can 

communicate with each other. Many kinds of systems belong to the distributed set-

ting, such as communication networks, multiprocessor computers, and a multitasking 

single computer. All these systems have similar fundamental coordination require-

ments among the communicating entities, whether they are computers, processors, 

or processes. Here we use the term process to indicate any computing device. 

1.1 Process Coordination problem 

In this thesis we study a classic problem in distributed settings, the Process Coordi-

nation problem. The Process Coordination problem (also called concurrency control) 

consists of a set of processes communicating with each other to execute some coor-

dination activities, which normally happen as a result of agreements. 

Usually Process Coordination problems need to deal with mutual exclusion and 

synchronization. Mutual exclusion requires that two concurrent activities do not 

:1-
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access shared data at the same time. Synchronization provides a condition to coor-

dinate the actions of concurrent activities. 

Difficulty arises in symmetric and asynchronous systems, where processes are all 

identical and no assumption is made on relative process speeds or the number of 

processes. One undesirable situation occurs when two activities are waiting for each 

other and neither can proceed. This sort of circular waiting is called a deadlock. For 

example, suppose processes A and B each need two resources to continue, but only 

one resource has been assigned to each of them. If the system has only two such 

resources, neither process can ever proceed. This situation can also be generalized to 

a sequence of processes,. P1, ...,p, where pi is waiting for Pi+i for i = 1, ..., n - 1 and 

Pn is waiting for Pi None of these processes can make progress. Another situation 

related to the Process Coordination problem is starvation, which occurs when a 

blocked activity is consistently passed over and not allowed to run. For example, 

consider two cpu bound jobs, one running at a higher priority than the other. The 

lower priority process could never be allowed to execute. 

Various problems arise based on different properties of the system, requirements 

on mutual exclusion and synchronization, and ability to prevent deadlock and starva-

tion. Processes in some problems are tightly or centrally controlled by other entities. 

Other problems allow individual processes to make independent decisions and be 

notified of changes. Some problems require that at least one process in the system 

does not starve, while others require that every process cannot starve. 

In this thesis six typical problems that belong to the set of Process Coordination 

problems are considered: the Dining Philosophers problem, the Drinking Philoso-

phers problem, the Resource Allocation problem, the Committee Coordination prob-
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lem, the Multiway Rendezvous problem, and the Multiparty Interactions problem. 

Based on the problem specification and the way to solve them, these problems can 

be divided into two classes: 

General Resource Allocation problems: including Dining Philosophers, Drink-

ing Philosophers, and Resource Allocation problems. 

Process Synchronization problems: including Committee Coordination, Multi-

way Rendezvous, and Multiparty Interaction problems. 

Understanding the differences among these distinct problems will help one make an 

appropriate choice to solve specific issues. Also understanding the similarities among 

these problems will help one implement one problem in terms of another. 

One of the objectives of our research is to study different Process Coordination 

problems by giving a literature survey of some significant results. 

Most problem descriptions existing in the literature are informal, ambiguous, 

or even self-contradictory. Another objective is to overcome these difficulties by 

devising two uniform frameworks for specifying problems, the Object Oriented model 

and the Graph model. First each problem is introduced by paraphrasing its informal 

description and requirements. Then the ambiguities or contradictions are pointed 

out. Finally the problem and its solution are recast using the Object Oriented 

model and Graph model. The more formal descriptions provide the unambiguous 

specifications often missing in the general literature. This also makes it possible to 

highlight the similarities and differences among various problems. 

The Dining Philosophers problem has been considered as a classic Resource Al-

location problem since presented and solved by Dijkstra in 1965. In this thesis the 
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Dining Philosophers problem is demonstrated to be a fundamental problem of the set 

of Process Coordination problems, because other Process Coordination problems can 

either be mapped directly onto the Dining Philosophers problem or can be solved by 

using its solution as a subroutine. A robust and fault-tolerant solution to the Dining 

Philosophers problem is one way to provide a robust and fault-tolerant tool to solve 

each of the other Process Coordination problems. 

The last contribution of this thesis is to design a particular kind of fault-tolerant 

solution (a self-stabilizing solution) to the Dining Philosophers problem in fully dis-

tributed and completely symmetric systems. In fully distributed systems, no central 

memory or central process is used. In completely symmetric systems, all processes 

are identical and have the same initial state. In particular, they do not have distinct 

identifiers. 

1.2 Modeling Distributed Systems 

Because there are so many assumptions, issues, and alternatives in distributed sys-

tems, an abstract representation of the distributed system, in which different Process 

Coordination problems are described, should be given. These representations are of-

ten called models. 

When modeling a distributed system, several components needs to be described 

to capture the variants of distributed systems caused by different process behaviors 

and communication behaviors. In this section, some common alternative choices for 

several different such components are given. 
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1.2.1 Communication 

The communication model describes the mechanisms, through which processes ex-

change information with each other. Typically two models are used: the message 

passing model and the shared memory model. For each of these general classifica-

tions, the model must also specify which of several other possible variants is being 

assumed. 

In the message passing model, processes communicate by exchanging messages 

through unidirectional or bidirectional communication channels. Normally each corn-

rnunicatibn channel is modeled as a queue. A process sends a message by adding it to 

the appropriate outgoing channel(s), and receives a message by removing it from one 

of its incoming channel. A channel may have bounded or unbounded size. A process 

may send one message to a specified neighbor in one step, broadcast a message to a 

subset of neighbors in one step, or even send different messages to a set of neighbors 

in a single step. A communication channel may deliver messages in the same order 

as they were added (a FIFO queue), or deliver them in an arbitrary order. 

In the shared memory model, processes communicate by accessing one or more 

shared objects. Frequently, these objects are atomic variables. An atomic variable 

can be either read or written in one single step. If a variable can be written by 

one process but read by several processes, it is called a single-writer multi-reader 

variable. A variable can also be multi-writer multi-reader or even single-writer single-

reader. Sometimes stronger objects are used, such as test-and-set, or fetch-and-add, 

or other read-modify-write objects such as queues and stacks. With some reasonable 

additional assumptions, algorithms designed for shared memory settings can usually 
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be transformed into algorithms for message passing settings. 

A variant of the shared memory model is called the link register model. Commu-

nication between two processes p and q is modeled by two single-writer single-reader 

registers RPq and R. Register RPq is written by p and read by q. Similarly, register R 

is written by q and read by p. The link register model is commonly used in the self-

stabilizing setting, which will be introduced in Section 1.2.9. In this thesis, a slightly 

modified link register model is used. Each register is assumed to have a single writer 

but two readers. The extra reader is the process that also writes to it. Thus in the 

above example both.proess p and q can read R.,q and R. This modified model is no 

more powerful than the standard link register model, because one can always assume 

that every process keeps a local copy of everything it wrote to its shared registers. 

A process can simulate the reading operation on its shared registers by reading the 

corresponding local copies. Normally, a message passing model can be simulated by 

a link register model with certain restrictions. 

1.2.2 Communication Topology 

For any distributed system, construct the underlying communication graph (also 

called the network of the system) as follows: assign a vertex to every process, and 

put an edge between two processes if they can communicate with each other directly. 

Two processes are called neighboring processes, if there is an edge between their cor-

responding vertices. Another variant models communication with a directed graph 

(see page 22), when a message passing system has unidirectional channels. 

Some problems are only defined in networks with restricted topologies such as 

rings, trees, or complete graphs. Other problems may have constraints on processes' 



7 

knowledge of the whole network. For example, there may be a restriction on the num-

ber of vertices or the maximum degree of any vertex in the system. As a consequence, 

some solutions are only designed and correct in systems with special topologies. The 

topology of the communication graph can be fixed. It can also be dynamic, which 

means the addition or deletion of nodes or communication channels are allowed as 

the application executes. 

1.2.3 Network Labels 

Some applications require that the processes of the network have labels. Different 

problems may have different assumptions about how the vertices are labeled. For 

example, the neighboring processes may require distinct labels, or any two processes 

within distance k may require distinct labels. Sometimes there is one special process 

(often called the leader), whose label is distinct from all the other processes, which 

may all have the same label. If none of the vertices are labeled, then the system is 

called anonymous. Solving problems in a labeled setting' is typically easier than in 

an anonymous setting. Normally, problems become more general (and interesting) 

in anonymous systems. 

Edges in a network could also have labels to reflect some properties. For example, 

the weight of an edge could represent the cost of communication on the corresponding 

link. 

Even in the anonymous setting, every process usually has some way to distinguish 

between its neighbors. This is accomplished by providing a process with a local name 

'Here we assume that not all labels are identical; if they were, then the system cannot be 
distinguished from an anonymous system. 



8 

for every communication channel or every shared register it uses to communicate with 

each of its neighbors. Systems with this feature are locally oriented. 

1.2.4 Timing 

Two basic models of timing in distributed systems are the synchronous model and 

the asynchronous model. 

In the synchronous model, processes take steps simultaneously. The execution 

proceeds in synchronous rounds. Typically this is achieved by using a global clock 

pulse, which triggers the next step of each process. The synchronous model is the 

simplest model to describe, to program and to analyze. Even though this model is not 

very realistic, understanding how to solve a problem under the synchronous setting 

is often helpful for developing solutions for more complex and realistic settings. 

In the asynchronous model, processes take steps at arbitrary speeds. Both the 

absolute speed of each process and the relative speed between processes may vary 

arbitrarily during the computation. Asynchrony makes it hard to predict the state 

of the system at any particular time. The asynchronous model is more general and 

practical. However it is harder to solve problems without timing constraints. 

1.2.5 Scheduler 

In an asynchronous system, the scheduler (also called the daemon) manages the ac-

tivities of processes. At each step a scheduler determines which processes execute the 

next operation of their program. Two common schedulers are the central scheduler 

and the distributed scheduler. A central scheduler activates only one process at a 

time. The distributed scheduler selects a nonempty set of processes and activates 
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them all simultaneously. Some algorithms work correctly under a central scheduler 

but not under a distributed scheduler. The requirement of a central scheduler is 

usually considered an unreasonable assumption for a truly distributed system. This 

is because the central scheduler is implemented by either using global information, 

which is unrealistic, or using a mutual exclusion technique, which defeats the poten-

tial concurrency of the system. 

A scheduler produces a computation of the system by interleaving operations of 

all processes. The fairness assumption on a scheduler captures the behaviors of this 

interleaving. There are many different strengths of fairness. A weakly fair scheduler 

ensures that each process takes an infinite number of steps in any infinite execution. 

A k-fair scheduler ensures that in any interval where a process takes k+1 steps, every 

other processes takes at least one step. A round robin scheduler activates processes 

in a fixed order under a 1-fairness assumption. 

1.2.6 Algorithm Type 

An algorithm can be deterministic or randomized. A deterministic algorithm provides 

a transition function for each process. When a process is selected by the scheduler, 

its next state is determined by this function. A randomized algorithm provide a 

probability space for the next state for each current state of every process. When a 

process is selected, its state is randomly chosen from the probability space. 

A deterministic algorithm solves a problem P under a set S of schedulers, if 

all possible computations produced by any element of S satisfy the specification of 

problem P. 

Two kinds of randomized algorithms are often considered: Las Vegas randomized 
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algorithms and Monte Carlo randomized algorithms. An algorithm is called a Las 

Vegas randomized algorithm for problem P under a set S of schedulers, if with 

probability 1, all possible computations produced by any element of S satisfy the 

specification of P. An algorithm is called a Monte Carlo randomized algorithm for 

problem P under a set S of schedulers, if with probability at least p, any computation 

produced by an element of S satisfies the specification of P, where 0 < p < 1. 

Randomization is often exploited by an algorithm in order to break symmetry in an 

anonymous setting. 

1.2.7 Atomicity 

An atomic step is the computation performed by a process as one indivisible action. 

There are two typical kinds of atomicity: composite atomicity and read/write atom-

icity, which differ in the size of the atomic step. In composite atomicity, an atomic 

step consists of several operations of a process. For example, a process can read the 

state of all its neighbors and change its own state in one atomic step. In read/write 

atomicity, an atomic step is only a single read or a single write operation. 

Clearly algorithms designed under read/write atomicity still work correctly in 

any systems with composite atomicity, but not vice versa. Furthermore, solving 

a problem and proving the correctness of a solution are typically much easier by 

assuming composite atomicity than read/write atomicity. 

In randomized algorithms, random choices, such as coin flips, are often made. If 

the random choice is not separated from the following read or write operation, the 

model is called coarse atomicity. In the fine atomicity model, however, an atomic 

step contains only a single random choice, a single read operation or a single write 
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operation. 

1.2.8 Fault Models 

Real systems consist of many varied components arranged in complex interconnec-

tions. Even when individual components are very reliable, a failure somewhere in the 

system is likely simply because of number of components and the complexity of their 

interconnections. A realistic system model (such as the asynchronous, distributed 

scheduler model) should capture most kinds of process and communication failures 

that might happen. Commonly considered failures include: 

. Process failures: 

- Stop failures: Any process might stop executing its program forever after 

a certain point in the execution. 

- Transient faults: Any process may stop executing its program for a while 

and then recover from the fault later. 

- Byzantine failures: Any process can act arbitrarily and maliciously with-

out being identified as faulty by the rest of the system. 

• Message passing communication failures: The message might be lost, 

duplicated, reordered, or even corrupted. 

• Shared memory communication failures: The shared data can be cor-

rupted. 

In the following section, a technique used to handle transient faults is introduced. 
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1.2.9 Self-Stabilization 

Many of the distributed algorithms discovered so far have a shortcoming: they are 

correct only under unrealistic simplifying assumptions about the distributed system, 

where no transient faults happen. Normally when errors occur in distributed systems, 

they tend to be "bursty" since errors tend to create more errors. A distributed 

algorithm is more useful when it is fault-tolerant. A strong fault-tolerant model to 

handle transient faults is the self-stabilizing distributed system. 

When something goes wrong, a self-stabilizing distributed system can automati-

cally return to an error-free configuration without being manually reset, or shut down 

and rebooted. Also a self-stabilizing distributed system can start in any arbitrary 

configuration and after some bounded amount of computation reach a predefined 

legitimate configuration. If the arbitrary configuration includes arbitrary topolo-

gies, then the self-stabilizing protocol can be used for dynamic systems. Once a 

self-stabilizing system reaches a legitimate configuration, it stays in a legitimate 

configuration during any fault-free computation. 

Since 1974, when Dijkstra [10] introduced the idea of self-stabilization, and more 

intensely, since 1983, after Lamport [20] highlighted its importance, there has been 

substantial research on self-stabilizing distributed algorithms. Self-stabilization is 

an elegant feature for distributed systems, because the manageability and stability 

of distributed systems decrease rapidly with the increase of the number of com-

ponents or the complexity of the interconnection among components. Distributed 

systems also present challenging research topics for self-stabilization due to their 

heterogeneous computing environments, mismatching computing power of system 
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components, and various computing constraints. 

1.3 Overview of Thesis 

In this thesis, we study six different Processes Coordination problems, demonstrate 

the fundamental role of the Dining Philosophers problem in this set of problems, 

and design a self-stabilizing solution to the Dining Philosophers problem. Chapters 

2 and 3 review several significant papers on the set of General Resource Allocation 

problems and the set of Process Synchronization problems, respectively, and unify 

different problems using two common frameworks that are introduced at the be-

ginning of Chapter 2. Chapter 4 compares the similarities and differences between 

the General Resource Allocation problem and the Proèess Synchronization problem 

by comparing two representatives from each class, the Dining Philosophers problem 

and the Committee Coordination problem. Chapter 5 gives the formal definitions of 

self-stabilization and a new enriched fair composition technique that can be used to 

design and prove correct complex self-stabilizing algorithm. This technique is used 

in Chapter 6 together with other ideas to devise a self-stabilizing solution to the 

Dining Philosophers problem. In Chapter 7, we summarize the contributions of this 

thesis, discuss further comments and describe the future work. 



CHAPTER 2 

General Resource Allocation Problems' 

A General Resource Allocation problem consists of a set of resources and a set of 

potential users of these resources. From time to time every user may require a set 

of resources. Upon being granted all the requested resources, the user will do some 

work with the resources and relinquish them eventually. The problem is to devise a 

protocol that satisfies the following two requirements: 

Exclusion: no resource can be used by more than one user simultaneously. 

Lockout-Freedom: every requesting user will eventually acquire all the resources 

she needs. 

If each user uses a fixed set of resources, then the problem is a Static Resource 

Allocation problem. Otherwise, if a user requires different sets of resources each time, 

then the problem is a Dynamic Resource Allocation problem. The Dining Philoso-

phers problem and the Drinking Philosophers problem are fundamental versions of 

the Static Resource Allocation problem and the Dynamic Resource Allocation prob-

14 
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1cm, respectively, where the philosophers represent users and forks or beverages rep-

resent resources. 

In this chapter, we discuss some previous work on the Dining Philosophers prob-

lem and the Drinking Philosophers problem. Most problem descriptions existing in 

the literature are informal, and unclear. First we paraphrase the original descriptions 

and requirements, then we recast both problems and their solutions using two frame-

works, the Object Oriented model and Graph model. This makes it easy to clarify 

the ambiguities and to illustrate the similarities and differences between these two 

problems. 

2.1 Two Frameworks for Modeling Distributed Systems 

In this section, two models are introduced, which will be used to define the distributed 

systems used in this thesis: the Object-Oriented Model and the Graph Model. We 

will use the Dining Philosophers problem as a running example while describing both 

models. Here is an informal description of the Dining Philosophers problem. 

The Dining Philosophers problem, which is first defined by Dijkstra [9] and later 

generalized by several authors, consists of a set of philosophers sharing a set of forks. 

Each philosopher goes indefinitely through a cycle: thinking, hungry, and eating. 

When a philosopher thinks, she does not interact with others. From time to time, 

she may get hungry and want to eat. To eat she needs a fixed set of forks. A 

philosopher may only pick up one fork at a time and she cannot pick up a fork that 

is already in the hand of another philosopher. 

The exclusion property is that no two philosophers eat simultaneously if they 
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use a common fork. Deadlock-freedom is the property that if any philosopher is 

hungry, then eventually there is a philosopher that eats. Lockout-freedom is the 

property that if a philosopher is hungry, then eventually that philosopher will eat. 

The Dining Philosophers problem requires exclusion and one of two progress prop-

erties. Either the progress is deadlock-freedom or the progress is lockout-freedom 

under the assumption that every eating philosopher will eventually finish and release 

all her forks. 

2.1.1 Object Oriented Model of a Distributed System 

In a distributed system that communicates through shared memory, the computing 

devises can be represented as processes that communicate via shared objects. In this 

thesis such a distributed system is modeled by a set of processes P operating on a 

set of objects J and is denoted by (P, J). We will specify both components, and give 

the meaning of an implementation of a distributed system. 

Objects 

Every object supports a nonempty set of operation(s) applicable to it. To define an 

object, one can describe a collection of states and a collection of operations, and for 

a pair of operation and state, give a resulting state. This specifies the precondition 

and effect of each operation, and gives rise to a collection of allowable sequence of 

operations on the object. Lynch used this way to describe algorithms in her book 

"Distributed Algorithms" [24]. 

Equivalently, Herlihy and Wing [17] introduced another way to define an object 

by giving a set of allowable sequences of operations on it. An arbitrary sequence of 
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operations applied to an object x is valid if and only if it is in the specification of x. 

An arbitrary sequence of operations on a collection of objects X is valid, if and only 

if for each object x E X, the subsequence of operations applied only to x is valid. 

In this thesis, an operation by process p is denoted by (operation name (I)):O, 

where I is the input parameter of the operation and 0 is the output parameter. 

When the process's name is not required or obvious from context, the subscript, p, 

is omitted. 

For example, in the Dining Philosophers system, the object is a set of forks 

= {fi, f2, ..., fk} that supports two operations, (grab(F)) and (release(F)), where 

F C J. Informally any interleaving of (grab(')) and (release(.)) operations on F 

is valid if and only if: 1) for every (grab(F)), all forks in F are available before 

the operation and will become unavailable after the operation; and 2) for every 

(release(F)), all forks in F are not available before the operation and will become 

available after the operation. 

More formally, let S = 0 1, 0, ... be any sequence of (grab(.)) and (release(.)) 

operations on F. To give the validity condition on S we define another variable C.F 

inductively by: 

1) CF0=F 

2) C.Fi = C.Fj_1 U F if oi = (release(F)) 

C.F_1\F if oi = (grab(F)) 

Then S is valid provided 

1) if oi = (release(F)) for F C .F, then F fl CFj1 = 0, and 

2) if oi = (grab(F)) for F C F, then F C CJ_. 



18 

The following three sequences contain operations on .'F, where F1 = {fi, f2, f}, 

F2 = {f, f}, and F3 = {f, f}. It is easy to see that S is valid, but 82 and 83 are 

not because property 1) and 2) are violated, respectively. 

Si (grab(F1)), (grab(F2)), (release(F1)), (grab (F3)), (release(F3)), (release(F2)) 

82 : (release(F2)), (grab(F1)), (release(F1)), (grab(F3)), (release(F3)) 

83 : (grab (F1)), (grab (F3)), (release(F3)), (release(Fi)) 

Processes 

A process in a distributed system is just program of operations applicable to objects 

in the system. The order in which the operations of a process are invoked by the 

program is called program order. 

Processes in the Dining Philosophers problem are the set of philosophers 

= {pi, P2, ..., p}. Associated with each pi E P is an nonempty and static set of 

forks F(i) C F, which indicates the set of forks used by philosopher pi. The program 

for each pi E 7 is: 

Do Forever: 

(think) 

(grab (F (i))) 

(eat) 

(release (F (i))) 

End Do 

The (think) and (eat) are arbitrary operations that do not act on F. 
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Computations 

Each process's individual computation is a sequence of operations executed by the 

process, such that the order of the operations agrees with the program order. A 

computation of a distributed system is some valid interleaving of the operations of 

each process as determined by the scheduler. More formally, a computation of a 

distributed system (P, J) is a total order of the operations of all processes in P that 

extends program order and is valid. 

The computation of the Dining Philosophers system is an interleaving of opera-

tions of each process's program that extends program order and satisfies the validity 

conditions for (grab(.)) and (release(.)). For example, suppose P1, P2, and p3 are 

philosophers and use a set of forks F1 = {fi, f2, f}, F2 = {f, f}, and F3 = {f, f6}, 

respectively. Then 54 is a computation of the Dining Philosophers system, but S5 is 

not because even though it preserves program order, it does not satisfy the validity 

conditions. 

84: (think) 1, (grab (Fi) ) ,(think) 2 , (eat)p, (think) 3, (grab (F2) )P2 , (eat) 2, 

release(Fi) (grab(F3) ) , (eat),3, (release (F3))P31 (release (F2) )P2 

85: (think) 2 ,(eat) 2, (release (F2) )P2 , (think)p1, (think) 3, (grab (F1) )Pi) (grab (F3) )p, 

(eat)p.,, (release (F3)) , (eat), (release(F1) )P1 

Implementation of a Distributed System 

A distributed problem requires that a specified system (P, J) be implemented using 

a different set of objects, J. For example, the objects in the specification level Din-

ing Philosophers system are sets of forks. When implemented in a shared memory 

setting, objects are usually atomic read/write variables and test-and-set objects. In 
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message passing settings, objects are messages or tokens. Figure 2.1 illustrates the 

relation between a specification level system (P, J) and the corresponding implemen-

tation level system (P, 3). 

implementation 

P, J 

P,J 

interleaving of operations 

interleaving of operations 

computations 

interpretation 

computations 

Figure 2.1: Specification Level System vs. Implementation Level Systems 

For each operation on each object in J at the specification level, an implemen-

tation provides a procedure call containing operations on the lower level objects in 

3. Each such procedure invocation must return a response of the same type as the 

specification level operation that it implements. For example, an implementation of 

the Dining Philosophers system must provide programs for (grab(.)) and (release(.)) 

that eventually return successfully. 
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The processes P of the implementation level are constructed by replacing each 

operation of each process in P by the procedure that implements that operation. 

The system (P, i) so constructed has a set of computations as well. Each com-

putation is just a valid sequence formed by some interleaving of the operations of 

the implementation level processes, P. Any such implementation level computation 

can be interpreted as a computation of the specified system (P, J) by assuming that 

each high level operation occurred atomically at some point between the invocation 

and the response of its implementing procedure. 

For the implementation to be correct, we require that every possible computation 

of (P, 3) must have an interpretation that is valid for the specified system'. 

2.1.2 Graph Model of a Distributed System 

A distributed system can also be presented in graph theoretical terms. In this sec-

tion, we first give some basic concepts in graph theory, which can be found in most 

introductory graph theory texts (for example [4]). Then we show how to represent 

a distributed system by a graph. 

Graph Theory Preliminaries 

A graph C = {V, E} consists of a nonempty set of vertices (or nodes) denoted by 

V and a set of edges denoted by B. An edge is an unordered pair of vertices in V. 

If there is an edge (vo, v,) between vertices v0 and v1, then v0 and v1 are adjacent 

vertices. If two edges are incident to the same vertex, then they are adjacent edges. 

An edge with identical ends is a loop. If two or more edges are incident with the 

'This is equivalent to the correctness condition called linearizability introduced by Herlihy and 
Wing [17]. 
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same pair of vertices, then they are multiple edges. A graph is simple if it does not 

contain loops or multiple edges. A graph is complete if there is an edge between 

every pair of distinct vertices. 

A (simple) path from a vertex v0 to vertex Vk in graph G is a sequence (vo, ..., Vk) 

of vertices such that (vi, vi+i) E B for i = 0, ..., k - 1 and v0, ..., Vk are distinct. A 

cycle is formed by a path (vo, ..., Vk) and (vo, Vk) E B. The length of a path or a cycle 

is the number of edges in it. The distance between two vertices v0, v1 E V in a graph, 

denoted d(vo, vi), is the length of the shortest path between the v0 and v1. For the 

sake of completeness, d(vo, vo) is defined as 0. The diameter of a graph, denoted D 

is, 

D = max{d(vo, v1) I v0, v1 E V}. 

A graph is connected if there exists a path between every pair of vertices in the 

graph. The neighborhood of a vertex v E V in a graph, denoted N(v), is the set of 

nodes adjacent to v. Formally 

N(v) ={x E VI(v,x) E E}. 

The degree of a vertex v, denoted 8(v), is the size of v's neighborhood, IN(v)1. The 

maximum degree of a graph, denoted L, is 

= max{6(v)jv € V}. 

A graph G = (V1, V2, B) is bipartite if its vertex set can be partitioned into two 

sets V1 and V2, such that every edge (x, y) E E is incident to one vertex x in V1 and 

another vertex y in V2. 

A directed graph (or a digraph for short) G consists of a set of vertices V and a 

set of edges B, where an edge is a ordered pair of vertices (vi, v) for v, vj € V. In a 
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digraph an edge is not only incident on a vertex, but is also incident out of a vertex 

or incident into a vertex. An edge, which is incident out of a vertex v, is called an 

outgoing edge of v. An edge, which is incident into a vertex v, is called an incoming 

edge of v. 

A (simple) directed path from a vertex v0 to vertex Vk in digraph G is a sequence 

(vo, ..., Vk) of vertices such that (vi, v+1)E E for i = 0, ... , k - 1 and VO',.--, Vk are 

distinct. A directed cycle is formed by a directed path (v0, ..., Vk) and (Vk, vo)E E. 

Modeling a Distributed System as a Labeled Graph 

The graph model we use in this thesis is a labeled graph, where the 'vertices of the 

graph represent the components of the system and edges represent a relation among 

the components. 

Each individual component of the system is a state machine, which changes state 

based on its current state and the state of one or more of its neighbors. The state 

transition function of a component is defined by the program of the state machine. 

In the graph model of a distributed system, each node is labeled with the current 

state of the corresponding system component. The global configuration of the graph 

is the combination of labels of all vertices. For example, in a graph that contains 

n vertices {v1, ..., v} where the set of possible labels for vertex vi is L, the global 

configuration of such a graph is an n-tuple in L1 >< L2 >< ... x L. 

In cases where the relationship between components is dynamic, this model is 

generalized to allow labels on edges. In this case the global configuration includes 

the labels on edges as well. 

There are two possible ways to model the Dining Philosophers problem as a 
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graph. 

Bipartite Graph Model When modeled by a node-labeled bipartite graph G = 

(P, F, E), where vertices sets P and F represent a collection of philosophers and forks, 

respectively. An edge (p, f) is in E, if and only if p e F, f E F and philosopher p 

uses fork f. 

Every philosopher has a dynamic label called state. The state of a philosopher 

p E F, denoted by state(p), is in {thinking, hungry, eating}. The only state tran-

sitions are thinking -+ hungry -+ eating -+ thinking. Transitions from thinking to 

hungry and eating to thinking are spontaneous. 

The global configuration of the graph is required to satisfy the following exclusion 

property all the time: 

• Exclusion: In any configuration, Vp € P if state(p)=eating, then q p € P 

such that state(q)=eating and (p, f) € E and (q, f) € E for some f € F. 

Under the assumption that any philosopher with state eating will change her state 

to thinking later on, the global configuration of the graph is required to satisfy one 

of the following progress properties: 

• Deadlock-Freedom: In any configuration, if state(p)=hungry, for p e F, then 

there exists a subsequent configuration, in which state(q)=eating, for q € P. 

• Lockout-Freedom: In any configuration, if state(p)=hungry, for p E F, then 

there exists a subsequent configuration, in which state(p)=eating. 
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General Graph Model When a fork is shared by k philosophers 2, where k ≥ 2, 

we can use k(k_-1) virtual forks shared between every pair of these philosophers to 

represent the real fork. To acquire the real fork a philosopher has to obtain the 

k - 1 virtual forks incident to her. If a fork is shared by exactly 2 philosophers, then 

the real fork is the same as the virtual fork. To modl this with a graph, consider 

philosophers as nodes, and make a clique among a set of nodes if the corresponding 

philosophers share the same fork. The edges denote virtual forks. It is easy to 

see that every virtual fork is shared by exactly two philosophers. Therefore any 

Dining Philosophers problem can be characterized by a node-labeled general graph 

G = (F, VF), where the vertex set P represents a collection of philosophers and the 

edge set VP represents a collection of virtual forks. 

In this graph model every philosopher has the same set of states and the same 

transition function as in the Bipartite Graph Model. The progress requirement 

(deadlock-freedom or lockout-freedom) remains unchanged. The definition of the 

exclusion changes as follows: 

• Exclusion: In any configuration, if there exists an edge between p and q, then 

-, (state(p) =eating A state(q) =eating) 

2.2 Dining Philosophers Problem 

The Dining Philosophers problem is to implement the Dining Philosophers system 

such that no two philosophers eat simultaneously if they use a common fork and one 

2 W are not interested in the case where k = 1, which implies the fork is used by only one 
philosopher, since no conflict needs to be solved in this case. Therefore we exclude such forks in 
our model. 
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of the progress requirements is satisfied. 

The Dining Philosophers system consists a set of philosophers operating on a set 

of forks. Both components are defined in Section 2.1.1. We also gave the graph 

theoretical description of the Dining Philosophers problem in Section 2.1.2. In the 

object oriented specification, the validity condition only captures the exclusion prop-

erty, which guarantees that no two philosophers can use the same fork simultaneously. 

Normally a progress property is also required under the assumption that any philoso-

pher's (eat) operation always terminates. Deadlock-freedom is guaranteed, if for any 

(grab(F(i))) operation by philosopher pi E 1', there ,exists a subsequent operation 

(eat) by a philosopher pj E P. Similarly, lockout-freedom is guaranteed, if for any 

(grab(F(i))) operation by philosopher Pi E 7, there exists a subsequent operation 

(eat) by the same philosopher p. 

In the rest of this section, we present some typical variants of the Dining Philoso-

phers problem based on different assumptions on system models. Then we give some 

previous research results for each variant. 

2.2.1 Variants of Dining Philosophers problem 

The Dining Philosophers problem was first presented by Dijkstra [9] in 1971. His 

classic problem consists of 5 philosophers sitting around a table, with a fork placed 

between each neighboring philosopher. The problem has been solved for several 

extensions that specify how many forks each philosopher requires and how the forks 

are shared. There are three natural generalizations: 

Restricted - Sharing Dining Philosophers System is a Dining Philosophers 

System, where Vfi E .F there exist exactly two distinct philosophers Pj and p, 
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such that fj E F(j) and f, E F(l). This corresponds to a system that permits 

each philosopher to use several forks, but each fork is shared by exactly two 

philosophers. It can also be modeled by an arbitrary connected graph with 

vertices as philosophers and edges as forks. 

Restricted - Forks Dining Philosophers System is a Dining Philosophers Sys-

tem where Vpi E P, F(i)j = 2. This system permits each fork to be shared by 

several philosophers, but each philosopher use exactly two forks. It can also 

be modeled by an arbitrary connected graph with edges as philosophers and 

vertices as forks. 

General Dining Philosophers System is the most general version of the Dining 

Philosophers System, where no restriction is applied to the number of forks 

used by each philosopher and number of philosophers that can share a single 

fork. This can be modeled by an arbitrary bipartite graph with philosophers 

and forks represented by nodes, and edges as sharing relations. 

As shown in the previous section, no matter how the forks are shared, the problem 

can always be modeled by a connected general graph with edges as virtual forks, 

where each virtual fork is shared by only two philosophers. Therefore both the 

Restricted - Forks Dining Philosophers problem and the General Dining Philosophers 

problem can be reduced to Restricted - Sharing Dining Philosophers problem. 
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2.2.2 Previous Work on the Dining Philosophers Problem 

Lehmann and Rabin's Work [21] 

The specification assumed by Lehmann and Rabin is a ring, where vertices are con-

sidered as philosophers and edges as forks or vice versa. Lehmann and Rabin gener-

alized Dijkstra's model [9] to a ring with n nodes. The implementation required is in 

shared memory systems, where adjacent philosophers have access to shared objects 

representing forks. The authors assume that neighboring philosophers never access 

a shared object exactly at the same time. Furthermore, they also assume that a 

philosopher may check that a fork is free and pick it up in one atomic step without 

being interrupted by a neighbor. Philosophers also have a consistent local orienta-

tion on their forks (left or right). As in all variants, no philosopher eats forever. 

Lehmann and Rabin implemented the fork objects with read/write variables in fully 

distributed and completely symmetric (see page 4) systems. They presented two Las 

Vegas randomized algorithms. One is deadlock-free and the other is lockout-free. 

Algorithm Description: In the deadlock-free solution, they implemented (grab(.)) 

by letting a hungry philosopher choose a fork (left or right) uniformly and randomly, 

and then wait until she manages to pick it up. After that she checks the other fork, 

if it is free, she acquires it and starts (eat). Otherwise she drops the fork that she 

is holding, and starts again by choosing a random fork. After eating, a philosopher 

executes (release(.)) by dropping both forks one at a time in an arbitrary order. 

The scheduler can arrange moves among philosophers, so that some philosopher 

will keep trying to eat but never succeed, because a neighbor grabs her second fork 

just before she is about to pick it up. For example, let philosopher r and s be the 
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neighbors of philosopher p and fp and f, be the forks that p shares with r and s 

respectively. Suppose p is hungry, randomly chooses fp as her first choice, and picks 

it up successfully. Before p is about to get f,, s becomes hungry, and picks up f. 

Since philosopher p failed to acquire her second fork, then she drops fp and tries 

again. The scheduler can repeat this strategy indefinitely. Therefore p will never get 

both forks and eat. 

To avoid such starvation, the authors introduced a Courteous Philosopher's Algo-

rithm that provides lockout-freedom. The algorithm only modifies how a philosopher 

acquires her first fork. A trying philosopher randomly chooses a fork. When the fork 

is free she will not pick it up until she has higher priority than her neighbor sharing 

the fork. A philosopher has higher priority on a fork if one of the following conditions 

is true, otherwise she has lower priority on it. 

1. The neighbor sharing the fork with her is not trying. 

2. Nobody has used the fork before. 

3. The last use of the fork was by her neighbor. 

Thus while a philosopher p is continuously trying, each of her neighbors can get 

the fork shared with her once. After that when either becomes hungry again, with 

probability a half it will choose the fork she shares with p as her first choice. In that 

case none of the above conditions is true, thus she cannot preempt p by holding the 

fork shared with p again. Therefore with probability 1 every trying philosopher will 

eat and nobody starves. 

Complexity: There is no complexity analysis in this paper. 

In shared memory settings, the most interesting criterion to measure the per-
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formance of solutions to the Dining Philosophers problem is waiting time, which 

indicates how long it takes a hungry philosopher to eat. Since philosophers in the 

first algorithm may starve, there is no upper bound on the waiting time of this algo-

rithm. In the Courteous Philosopher's Algorithm, it is possible that all philosophers 

except one have higher priority on their left forks and lower priority on their right 

forks and everyone chooses her right fork as the first choice. Thus all philosophers 

except one line up in the waiting relations, allowing only one philosopher to eat at a 

time. Therefore the waiting time of the worst case in this algorithm is e(n), where 

n is the total number of philosophers on t.hexing. 

Further Discussion: Lehmann and Rabin pointed out and proved that there is 

no deterministic, deadlock-free solution to the Dining Philosophers problem in fully 

distributed and completely symmetric systems. 

Their algorithm does not explicitly indicate that any object stronger than atomic 

read/write variables are used. However, a philosopher must be able to check that a 

fork is free and pick it up in one atomic step. Otherwise some neighbor may pick 

up the fork in between, and eventually both the neighboring philosophers hold the 

shared fork at the same time. This required composite action can be achieved by 

implementing each fork as a test-and-set object. The test-and-set operation can 

simulate the check and pick up operations provided by the atomic variables. The 

reset operation implements the release operation of the atomic variables. 

Chandy and Misra's Work [61 

The specification assumed by Chandy and Misra is the Restricted - Sharing Dining 

Philosophers problem, in which a philosopher needs several forks but each fork is 



31 

shared by exactly two philosophers. They assumed the underlying communication 

graph is a static, finite, simple, undirected and connected graph. The implementation 

required is in message passing systems, where philosophers communicate with each 

other by exchanging messages. Chandy and Misra implemented the fork objects 

with tokens in fully distributed systems. They devised a deterministic algorithm 

that provides lockout-freedom. 

Algorithm Description: For each pair of neighbors, there exists two tokens, fork 

and request-token, which normally reside at different philosophers. They imple-

mented (grab(.)) by letting a hungry philosopher send the request-tokens correspond-

ing to all her missing forks. To ensure that every hungry philosopher eats eventually, 

priority on a fork is maintained among all philosophers who use it. After sending a 

request-token, either 1) the philosopher receives the fork, or 2) her neighbor is hun-

gry and has higher priority on the fork, or 3) her neighbor is eating. After eating, a 

philosopher becomes lower priority on all the forks shared with her neighbors. Thus 

a hungry philosopher will either get all her forks or her priority on some fork rises 

after the neighbor using that fork ate. The hungry philosopher with higher priority 

on all forks will acquire all of them and start eating. As will be discussed shortly, 

given an appropriate initial configuration, this situation always happens. 

To implement the priority idea, each fork is associated with a state, clean or dirty. 

If a philosopher holds a dirty fork, then she has low priority on that fork. Otherwise 

she has high priority on it. An eating philosopher makes all her forks dirty. Forks 

only get clean when they are transferred from one philosopher to another. Upon 

receiving a request-token, a philosopher will send the fork to her neighbor if the 
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fork is dirty and she is not eating. A hungry philosopher eats if she holds all her 

shared forks, and each fork is either clean, or she does not hold the corresponding 

request-token for it. 

Since each fork is represented by a token, and it has to reside in one of the two 

philosophers that use it, the way to implement the (release(.)) operation is different 

from Lehmann,. and Rabin's. Instead of setting the fork free, the philosopher still 

keeps the fork token, but makes it dirty. Therefore upon receiving a request-token 

from a neighbor, she will release the fork to the neighbor if she is not eating. 

The whole system works properly, if initially the high priority relation does not 

form a cycle. Therefore a special initial configuration needs to be set up as fol-

lows. All philosophers are thinking, and all forks are dirty. Philosophers are labeled 

with indices. For each pair of neighbors, the one with lower order holds the shared 

fork, and the other one holds the corresponding request-token. Any way to label 

philosophers such that the high priority relation does not forms a cycle is sufficient 

in the initial setting. For convenience, the authors suggested a total order among 

the philosophers. 

Complexity: There is no complexity analysis in this paper. 

Since the solution is developed for message passing systems, we are interested 

primarily in the message complexity, which characterizes the number of messages 

sent and received by a hungry philosopher before she can eat. Because a hungry 

philosopher exchanges a constant number of messages between each of her neighbor 

before eating, the message complexity is bounded above by 0(6), where 6 is maxi-

mum number of forks that a philosopher uses. For time complexity, the worst case, 
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similar to the one in Lehmann and Rabin's second algorithm, can also happen here. 

Therefore the waiting time of the worst case is 8(n), where n is the total number of 

philosophers. 

Further Discussion: Fairness is provided by maintaining priorities on forks among 

all philosophers. This is similar to the technique used in the second algorithm, of 

Lehmann and Rabin. 

It is important to prevent the high priority relation from forming a cycle, which 

can cause deadlock in the system. For example, consider a ring, where initially each 

philosopher has one dirty fork. If all of them are hungry, then each can get the 

other fork from her neighbor because that fork is dirty, implying that her neighbor's 

priority on it is low. However she has to give up the fork she holds for the same 

reason. Eventually every philosopher holds a clean fork and will not give it up. 

Therefore, nobody can acquire both forks and eat. 

For convenience the authors proposed a total order among all philosophers in the 

initial state, , which is equivalent to every philosopher having a distinct identifier. In 

this case the system is not completely symmetric. In fact, assigning locally distinct 

numbers to philosophers is sufficient. Consider any existing cycle in the communica-

tion graph. Because the numbers of philosophers in a cycle cannot keep increasing, 

there must exist a philosopher that has an identifier less than both neighbors on the 

cycle. That philosopher will have both dirty forks shared with neighbors on the cy-

cle, which implies this philosopher does not have high priority on either forks. Thus 

high priority cannot form cycles. 

To prove that progress is achieved, construct the directed graph G = (P, A), 
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where P is the set of all philosophers who are hungry, and directed edge (p, q) E A 

if and only if q has higher priority on the forks shared with p. G is acyclic, hence 

contains at least one sink (that is node with no outgoing edges), say r. Philosopher 

r has high priority on all forks shared with her hungry neighbors. Thus r will either 

acquire all her forks or another neighbor of r becomes hungry, joins G, and stops r 

because she has higher priority than r. Since there are a finite number of philosophers 

in the system, eventually there are no more philosophers that become hungry without 

exiting the graph. But any philosopher that exits the graph has just executed (eat). 

Herescu and Palamidessi's Work [16, page 82] 

The specification assumed by Herescu and Palamidessi is the Restricted - Forks Din-

ing Philosophers problem, in which every philosopher uses exactly two forks but 

a fork can be shared by several philosophers. They assumed the underlying com-

munication graph is a static, finite, undirected and connected graph. The graph 

allows multiple edges. The implementation required is in shared memory systems. 

Philosophers have a consistent local orientation on their forks (left or right). Herescu 

and Palamidessi implemented the fork objects with test-and-set objects in fully dis-

tributed and completely symmetric systems. They presented two Las Vegas ran-

domized algorithms. One is deadlock-free and the other intends to provide lockout-

freedom but fails to do so. 

Algorithm Description: The first algorithm provides deadlock-freedom. The 

implementation of (grab(.)) and (release(.)) is similar with Lehmann and Rabin's 

first one. However acquiring a fork is achieved by a test-and-set operation, and 

releasing a fork is achieved by a reset operation. Another difference is that every 
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fork has a variable, which contains an integer in range [0, m], where m is no less than 

the total number of forks in the system. Instead of randomly choosing a fork from 

left or right as the first choice, a philosophers always tries to pick up her fork with 

bigger value first. If both forks have the same value, the philosopher will choose the 

right one. To ensure the values of both forks are eventually different, a philosopher 

changes the value of the fork she is holding, if it happens to have the same value as 

her other fork. 

The authors also gave another randomized algorithm that was supposed to pro-

vide lockout-freedom, but it failed to do so. We discuss the problem and fix the 

algorithm and present it in the "Further Discussion" paragraph. 

Complexity: The authors did not give complexity analysis in their paper. We will 

give the upper bound on waiting time of the repaired lockout-free solution. 

Further Discussion: Herescu and Palamidessi pointed out that both algorithms 

of Lehmann and Rabin failed in a more general case, where each fork is shared by an 

arbitrary number of philosophers. Both of their algorithms are variants of Lehmann 

and Rabin's. They required a bound on the size of the network (number of nodes), 

in order to bound the size of a integer set from which every fork is assigned a label. 

Since the values of forks are used to break symmetry, it is enough for every fork to 

have a locally distinct value. Therefore only local information, such as maximum 

degree, needs to be known, and the bound could be made independent of the size of 

the whole system. 

Since in Herescu and Palamidessi's model, forks are shared by an arbitrary num-

ber of philosophers (possibly more than two), the priority on a fork is among several 
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philosophers, and there may also be several philosophers that try to get the same 

fork at a time. Now 'low' and 'high' are not enough to denote philosophers' priorities 

on forks, and philosophers need to monitor the actions of more neighbors. Therefore 

in their second algorithm, each fork maintains two more data structures, one is a set 

of philosophers who are trying to get the fork, the other one is a list, which keeps 

track, in time order, of the philosophers who have used the fork. In the execution 

of (grab(.)), every hungry philosopher chooses the fork with bigger value as her first 

choice. She waits until the fork is free and one of the priority checks is true: 

1. The philosopher has not eaten before. 

2. All the trying neighbors used the fork after her last meal. 

This algorithm [16, 25] fails to provide fairness even for the simple topology of a 

line. For example, consider the system G = (F, F), where vertex set, F = If,, f2, f}, 

represents set of forks. Edge set, P = {Pi , p2}, represents set of philosophers. And 

F(1) = {fl, f2}, F(2) = {f2, f3}. That is, philosopher p1 uses fork f, and f2, 

philosopher P2 uses fork f2 and fa. Let fork f2 have a smaller value than both f and 

so it will always be the second choice of each philosopher. Thus either of them 

holding her first choice can pick up f2 as long as it is free. Then Pi can stop P2 from 

eating by grabbing f2 whenever p2 is about to pick it up. For example, suppose p 

and P2 are both hungry and holding their first choices. Let Pi get f2 and eat later on. 

After eating, pi releases both f and f2, becomes hungry right away, and acquires 

fl. This configuration is the same with the initial state. The scheduler can always 

let p, picks up 12, and make the above situation happens forever. Philosopher P2 

will never get 12, and therefore never eat. 

To fix this problem, every philosopher has to do the priority checks on the second 
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fork as well. Each philosopher still only waits for her first choice, which means if 

the second choice is not free or both priority checks fail, then the philosopher will 

drop her first fork and start from scratch. Now in the above example, if p, ate and 

became hungry again,while P2 is continuously hungry, both Pi's priority checks on 

f2 are false. Thus Pi cannot pick it up again before P2 eats. 

The worst case that could happen in this fixed algorithm is similar to that in 

Lehmann and Rabin's second algorithm, where the whole system is a ring and all 

philosophers except one line up in a waiting relation. Therefore the waiting time of 

the worst case in this algorithm is 0(n), where n is the size of the network. 

Nancy Lynch's Work [23] 

The specification assumed by Lynch is a Static Resource Allocation problem. She 

first gave a formal definition [23, page 256] for the problem as follows: 

A resource problem P is a quadruple (R(P), U(P), 'R..(P), U(P)), where 

R(P) and U(P) are disjoint, possibly infinite sets (of resources and users, 

respectively), where R(P) is a mapping from U(P) to the set of finite 

nonempty subsets of R(P) (indicating the resources required by each 

user), where U(P) is a mapping from R(P) to finite nonempty subsets of 

U(P) (indicating the users for each resource), and where r E R.(P) (u) if 

and only if u E U(P)(r). 

Then she modeled the problem as a graph, in which the vertices represent re-

sources. Put an edge between two nodes, if the corresponding resources have a 

common user. Both users and resources are processes. The implementation required 
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is in systems with a reliable communication setting (shared registers or messages 

exchanges system) through which processes exchange information. 

As indicated at the beginning of this chapter, the Dining Philosophers problem is 

a fundamental version of the Static Resource Allocation problem. Lynch's model can 

be directly mapped onto a General Dining Philosophers problem3. In this section, 

we present Lynch's algorithm in the form of the Dining Philosophers setting by 

considering users as philosophers and resources as forks. 

Lynch assumed a coloring algorithm was applied to the system initially, so that if 

two forks are used by a common philosopher, then they have distinct colors. There 

is a total order among all colors. Lynch presented a deterministic algorithm that 

provided lockout-freedom in a fully distributed system with the above assumption. 

Algorithm Description: Lynch implemented the (grab(.)) operation as follows. 

A hungry philosopher puts herself in the queue of her fork that has the smallest 

color. She remains in the queue until she becomes the head of it, which implies she 

can get the corresponding fork. That fork will put the philosopher into the queue 

of the next fork that she uses in the coloring order if it exists. Eventually when the 

philosopher has become the head of the queues of all her forks, she has obtained all 

her forks and starts (eat). 

In the execution of (release(.)), a philosopher who has eaten leaves the front 

position of the queues of each of her forks. This permits some hungry neighbors to 

'Lynch assumes that the resources also execute programs. This is slightly different from our 
object oriented model of the Dining Philosophers problem, in which only philosophers are active 
processes. However we will show in the 'Algorithm Description' that this does not violate our model 
by demonstrating that the operations by users together with the operations by resources implement 
(grab(.)) and (release(.)) on the fork object. 
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grab the fork shared with her. 

Complexity: Assume that a is an upper bound on process step time, ii is an upper 

bound on the time for a user to return a granted resource, y is an upper bound on 

message collection time, and 5 is an upper bound on message delivery time. Let 

contention(P) denote the maximum number of users of any resource, and let Icl 

denote the number of colors. Then the time from when a user starts to require its 

resources until the user gets all of them is bounded above by 

(contention (P)kl - 1)v+O(IcI contention (P)IdI((7 + + 5)) 

Further Discussion: The performance of the algorithm depends on a good col-

oring algorithm. The upper bound of waiting time does not depend on the size of 

the whole system, but a function of local parameters only (such as the maximum 

number of users of each resource and maximum number of resources for each user). 

Choy and Singh's Work [8] 

The specification assumed by Choy and Singh is a special Static Resource Allocation 

problem, where each resources is shared by only two processes. They claimed that 

their solution to this special case can easily be extended to the general case where 

a resource is shared by several processes. They also pointed out that the Dining 

Philosophers problem is a graph-theoretic formalization of the Resource Allocation 

problem. They only present lockout-free solutions to the Dining Philosophers prob-

lem. 

They used the arbitrary graph model in [22], where vertices represent philosophers 

and each edge represents a fork shared by the end vertices. This setting is the same 



40 

as the Restricted - Sharing Dining Philosophers problem. They assumed that a node 

coloring mechanism had been applied to the system initially, so that each node has 

a locally distinct label in the range 0 to 6, where 6 is the maximum number of forks 

used by a philosopher4. 

Choy and Singh implemented the fork objects with tokens in fully distributed 

message passing systems. Their deterministic algorithms provide robustness when 

stop failures happen. 

Algorithm Description: Similarly to other solutions in the message passing sys-

tems, every pair of neighboring philosophers carries a fork token and a request-token. 

To collect missing forks, a philosopher simply sends the corresponding request-tokens 

to its neighbors. The policy here to resolve conflicts is to give higher priority to the 

process with smaller label. To avoid the situation where a process with smaller label 

always preempts its neighbors by holding forks shared with them, they introduced a 

mechanism called a doorway. Only the processes inside the doorway are allowed to 

gather forks, and the process will exit from the doorway after eating. They divided 

the execution of (grab(.)) into two major actions: a hungry process first tries to enter 

the doorway, then starts to collect missing forks. A philosopher inside the doorway 

can acquire the fork if either 1) the corresponding neighbor has bigger label and is not 

eating, or 2) the corresponding neighbor is outside the doorway. Like other solutions 

in the message passing settings, a philosopher still keeps all the fork tokens after 

eating, and just looses priority on all of them. Therefore in operation (release(.)) a 

philosopher exits from the doorway. A process cannot enter the doorway twice if a 

4There exists a greedy node-coloring algorithm that color nodes with A + 1 colors, where A is 
the degree of the graph. 
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neighbor continuously stays inside the doorway. Thus a process cannot preempt a 

neighbor with higher label more than once before that neighbor eats. 

The authors first described an asynchronous doorway. To enter the asynchronous 

doorway, a process p checks the states of its neighbors one by one. For any neighbor 

inside the doorway, p waits until the first time that neighbor exits. After observing 

a neighbor is outside the doorway, p will not check it anymore. When p finishes 

checking all neighbors, it enters the doorway. Once p is inside the doorway, its 

neighbors can be in the doorway at most once, because that neighbor will notice 

that p is in the doorway, and will wait until p exits. Consider the subgraph, G, of 

the communication graph of the system that is induced by the nodes that are inside 

the doorway. At some point, G will not grow anymore, and after that, the process 

with local minimum label will successfully grab all its forks, and leave the subgraph. 

Eventually p will either become a local minimum or all neighbors of p will leave. 

Thus p will eat. Therefore every process inside the doorway will eventually eat and 

come out, implying that every hungry process outside the doorway has a chance 

to enter. However, in an algorithm using the asynchronous doorway, the following 

scenario is possible. A process with label 6 enters the doorway. While it is collecting 

forks, all its neighbors with label 6 - 1 enter the doorway one at a time to preempt 

it. This can happen recursively for every such neighbor. Therefore the algorithm 

has exponential response time. 

To improve the response time, the authors introduced another doorway called 

a synchronous doorway. To enter the synchronous doorway, a process waits until 

all its neighbors are simultaneously outside the doorway. The synchronous doorway 

separates the processes into two groups, early-arriving and late-arriving. The early-
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arriving processes enter the doorway, and cannot be interrupted by the late-arriving 

processes before using the forks. However a process waiting outside the doorway 

could be prevented from entering the doorway forever if its neighbors take turns 

entering the doorway. For example, a process p has two neighbors q and r. Initially 

p and q are outside the doorway and both are hungry, and r is inside the doorway. 

Process p and q have to wait until r finishes eating. When r exits from the doorway 

q enters immediately. Suppose r becomes hungry again. Now p and r have to wait 

for q to finish, which is symmetric to the initial state. The scheduler can make 

this happen forever, and process p never enters the synchronous doorway.. Therefore 

process p starves. 

To prevent this case, an asynchronous doorway is placed in front of the syn-

chronous doorway. A hungry process will try to enter the asynchronous doorway 

first and then the synchronous doorway. A process inside the synchronous doorway 

is considered to be outside the asynchronous doorway. Only processes inside the 

synchronous doorway can collect forks. The process exiting from the synchronous 

doorway will be blocked outside the asynchronous doorway until all its neighbors 

exit the asynchronous doorway, meaning that they enter the synchronous doorway. 

In the above example, when r comes out of the synchronous doorway, it will stay 

outside the asynchronous doorway until p enters the synchronous doorway. Therefore 

r will not stop p from entering the synchronous doorway again. 

The combination of the asynchronous doorway and synchronous doorway is called 

a double doorway. The double doorway attains the advantages from both the asyn-

chronous doorway and synchronous doorway. It prevents starvation and provides 

good response time. The authors gave two optimizations to remove unnecessary 
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waiting at the doorways. 

1) Since the synchronous doorway is to prevent a process from preempting a 

neighbor with higher label, a process needs only to wait for all the neighbors with 

higher labels to exit. 

2) The asynchronous doorway is to prevent a process from blocking a neighbor 

from entering the synchronous doorway by continuously entering it. And a process 

only waits for neighbors with higher labels before entering the synchronous doorway. 

Therefore a process that tries to enter the asynchronous doorway only waits for all 

the neighbors with lower label :to exit. 

At the end of the paper, the author introduced failure locality to measure the 

robustness of an algorithm in the presence of stop failures. First define a waiting 

chain to be a directed path (p1, ...p), where pi and Pi+i are neighboring philosophers, 

and pi is waiting for a fork held by Pji for i = {1, ..., k - 1}. The length of a waiting 

chain is the length of the corresponding directed path. If a process p stops executing 

its code, all the processes along any waiting chain and behind p will not make progress 

anymore. Therefore the failure locality is measured by the length of waiting chains. 

To improve the failure locality, the authors limited the length of any possible waiting 

chains by using an improved policy, called fault-tolerant fork collection, to solve the 

conflict. Define a fork to be a high fork to a process, if the process has higher priority 

on it than its neighbor, otherwise it is a low fork. A process always tries to get its 

missing low forks first, and it starts requesting its missing high forks only when it 

holds all its low forks. While a process is waiting for a low fork, it releases any high 

fork that it has upon request. Thus a process waiting for low forks will not stop any 

neighbors from collecting forks. A process that is holding all its forks is ready to eat, 
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and will not give up any forks before eating. It is possible to show that the length 

of any waiting chain is at most 2 by using the 'fault-tolerant fork collection' scheme. 

Consider a process p who sent a request to its neighbor q for fork fpq, and q does not 

release the fork. There are three possible cases: 

1) process q has failed, or 

2) process q is eating or ready to eat, or 

3) process q has higher priority on fork fpq, has collected all its low forks, and is 

waiting for a high fork from another neighbor r. 

In case 1) and 2), q is not waiting for anyone, so one end of the waiting chain is 

q. If fork fpq is a low fork for process p, then the waiting chain ends at process p and 

has length 1. Otherwise p must have all its low forks and is collecting high forks, 

which implies that p might stop a neighbor s from eating by holding one of S's low 

forks. In this case the waiting chain ends at s and has length 1. In case 3) process p 

is waiting for a low fork, therefore the waiting chain stops growing from p. Process 

r can hold the low fork shared with q, only if it is failed or eating or ready to eat, 

which implies the other end of the waiting chain is s. Thus the waiting chain has 

length 2. 

Clearly, by exploiting the 'fault-tolerant fork collection' scheme, the length of any 

possible waiting chain among the processes in the collecting forks stage is limited to 

2. Each doorway added to the algorithm increases the waiting chain by 1. Thus, 

in the algorithm using double doorway, the length of any waiting chain among all 

hungry processes is no more than 4. 
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Complexity: Let A be maximum number of forks used by a philosopher. The 

response time in the worst case of the algorithm using the asynchronous doorway 

and the double doorway is e(2) and e(2), respectively. The failure locality in 

the worst case of the algorithm using the original fork collection policy is G(A ). In 

the algorithms using the improved policy, the failure locality reduces to a constant. 

The one using the asynchronous doorway is 3, and the one using the double doorway 

is 4. 

Further Discussion: The coloring algorithm the authors used is not a distributed 

algorithm, so we assume the coloring is part of the initial state of the system. There-

fore the algorithm requires locally distinct identifier rather than working for a com-

pletely symmetric system. 

2.3 Drinking Philosophers Problem 

The Drinking Philosophers Problem is a generalization of the Dining Philosophers 

Problem. An informal and imprecise but common description of the Drinking Philoso-

phers problem in the literature is given as follows. The Drinking Philosophers prob-

lem consists of a set of philosophers sharing a set of beverages. Each philosopher has 

an unchanged neighborhood. Philosophers indefinitely cycle through three states: 

tranquil, thirsty, and drinking. When a philosopher is tranquil, she does not interact 

with others. From time to time, she may get thirsty and want to drink. To drink 

she acquires a set of dynamically determined beverages. A philosopher may need a 

different set of beverages each time she becomes thirsty. Every drinking philosopher 

will eventually finish and release all the beverages. The problem is to devise a sys-
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tern, in which no two neighboring philosophers drink simultaneously if they need a 

common beverage, and every thirsty philosopher will drink eventually. 

In the above description, the conflicts between philosophers are not clearly char-

acterized. Also, it allows two non-neighboring philosophers to drink a common bev-

erage simultaneously, but it does not mention how they do so. To clarify these 

ambiguities, we model the possible conflicts by the neighboring relations among 

philosophers, and we make multiple copies of a beverage if, in the original descrip-

tion, it is shared by several non-neighboring philosophers. 

In this section, we first use the object oriented model and the graph model to 

more precisely specify the Drinking Philosophers problem. Then we briefly compare 

the Drinking Philosophers problem with the Dining Philosophers problem. After 

that we present Chandy and Misra's result, which uses the solution to the Dining 

Philosophers problem as a subroutine, and Welch and Lynch's modular interpretation 

of Chandy and Misra's work. At the end some solutions that do not use the algorithm 

of the Dining Philosophers problem are presented. 

2.3.1 Object Oriented Specification 

A Drinking Philosophers system (7',B) consists of a set of philosophers (processes) 

P = {pl,p2, ...,p,}, and a set of beverages (objects) 5 = {b1, b2,..., bk}. Associated 

with each pi P is an nonempty and static set of beverages B(i) ç B. 

The set of beverages 5 supports two operations: (grab(B)) and (release(B)), 

where B C B. 

Let S = 01, 0 2, ... be any sequence of operations on B. To give the validity 

condition on 5, we define another variable CBi inductively by: 
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1) C130=8 

2) CBi - 

fC5_1 U Bi if oi = 

CBi-,\Bi if oi = (grab(B)) 

Then S is valid provided 

a) if o = (release(B)) for  c 23, then B fl C13_1 = 0. .11 

b) if oi = (grab(B)) for B C B, then B C C23_1. 

The program for any philosopher pi E P is: 

Do Forever: 

(thirsty):B //.where B C B(i) is the output of an arbitrary local choice 

(grab(B)) 

(drink) 

(release (B)) 

End Do 

The (thirsty) :B and (drink) are arbitrary operations that do not act on B. 

The validity condition only captures the exclusion property, which requires that 

no two philosophers can drink simultaneously if they need a common beverage. Nor-

mally lockout-freedom is also required under the assumption that for any philoso-

pher's (drink), there exists a subsequent (release(.)) by the same philosopher. Lockout-

freedom is a property that for any (grab(B)) operation by philosopher pi E 7', there 

exists a subsequent operation (drink) by the same philosopher. 
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2.3.2 Graph Model 

The Drinking Philosophers problem can be modeled by a labeled bipartite graph 

G = (77, B, E), where vertices sets, P and B, represent a collection of philosophers 

and beverages, respectively. An edge (p, b) is in B, if and only if p E 77, b E B and 

philosopher p may drink beverage b. 

Every philosopher has a dynamic labelcalled state. The state of a philosopher p E 

77, denoted as state(p), is in {tranquil, thirsty, drinking}. The only state transitions 

for philosophers are tranquil —+ thirsty -+ drinking - tranquil. Transitions from 

tranquil to thirsty and drinking to tranquil are spontaneous. Every edge is also 

associated with a state, red or green. The only state transitions for edges are red -p 

green - red. An edge (p, b) E B is green implies that either St ate(p) = thirsty and p 

wants to drink b or state(p)= drinking and p is drinking from b. Otherwise it is red. 

The global configuration always satisfies the following property: 

• Local Consistency: In any configuration, if .state(p)=tranquil, then Ve E B, 

such that e = (p, b) where b E B, e is red. Let c be a configuration where. 

state(p)=thirsty and e = (p, b) E B is red (or green). Let ô be the first 

subsequent configuration where .state(p)=tranquil. In all configurations from c 

to a, e remains in red (or green, respectively). 

• Exclusion: In any configuration, if state(p)=drinking, then /iq =A p E P such 

that state(q)=drinking and edges (p, b) and (q, b) are both green for a beverage 

bEB. 

Under the assumption that any philosopher with state drinking will change her 

state to tranquil later on, the global configuration of the graph is required to satisfy 
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the strong progress property: 

• Lockout-Freedom: In any configuration, if state(p)=thirsty, then there exists a 

subsequent configuration, in which state(p)=drinking. 

2.3.3 Drinking Philosophers Problem vs. Dining Philosophers Problem 

From the object oriented specification, we can see that the Drinking Philosophers 

problem is a parameterized Dining Philosophers problem. In the Dining Philoso-

phers problem, a hungry philosopher acquires all the forks adjacent to her, while in 

the Drinking Philosophers problem, a thirsty philosopher acquires a subset of the 

beverages adjacent to her. Thus in the Drinking Philosophers problem, all actions 

except (drink) are associated with a variable B, which indicates the set of beverages 

the philosopher currently needs. 

In the graph model G = (P, B, E) of the Drinking Philosophers problem, for any 

configuration c build a general graph G = (P0, E) where P = P. If state(p)=thirsty, 

.state(q)=thirsty in c, and there exists a beverage b B such that both (p, b) and 

(q, b) are in E and both are green, then place an edge (p, q) in E. Now the Drinking 

Philosophers problem reduces to the Dining Philosophers problem, since philosophers 

always compete with all their neighbors. However a philosopher in the Drinking 

Philosophers problem may choose a different set of beverages each time she be-

comes thirsty, which implies the exclusion re1ationhip between neighboring philoso-

phers changes from time to time. The edges of G are not static, but the vertices 

(philosophers) never disappear or emerge. Therefore the graph model of the Drink-

ing Philosophers problem is the graph model of the Dining Philosophers problem 

with dynamic edges. 
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2.3.4 Previous Work on the Drinking Philosophers Problem 

Chandy and Misra's Work [6] 

In Chandy and Misra's specification, philosophers and their neighboring relations 

are modeled as a static, finite, undirected and connected graph, in which the vertices 

represent philosophers and edges represent the neighboring relation between philoso-

pher. They presented a deterministic algorithm in fully distributed systems, where 

beverage objects are implemented by tokens. 

Algorithm Description: The authors pointed out that applying the strategy in 

the solution to the Dining Philosophers problem directly might result in deadlock. 

For example, let neighboring philosophers p and q share two beverages b1 and b2, 

where p is drinking b, and q is drinking b2. Suppose they both become tranquil 

and then become thirsty for both b1 and b2. Therefore p will yield on b1 and q 

will yield on b2. Chandy and Misra provided a solution that resolves conflicts in 

the above symmetric situation by using their Dining Philosophers' solution as a 

subroutine. Every philosopher runs both the Dining Philosophers' and the Drinking 

Philosophers' algorithm. The state of every philosopher is a combination of the 

dining region (thinking, hungry, and eating) and drinking region (tranquil, thirsty, 

and drinking). However state (hungry, tranquil) and (eating, tranquil) are never 

reached. 

For each pair of neighbors, there exist a token called bottle for each shared bever-

age and a corresponding request-token. When a philosopher, say p, gets thirsty, she 

decides to drink a set of beverages and becomes hungry in the dining region. In the 

execution of (grab(.)), a philosopher tries to acquire the bottles for all beverages that 
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she chose. To collect a missing bottle, she sends the corresponding request-token to 

her neighbor. Upon receiving the request-token, the neighbor, say q, will satisfy the 

request, if either 1) q does not need the bottle or 2) q is not drinking and p is eating in 

the dining region. Their Dining Philosophers solution guarantees that every hungry 

philosopher eats. Therefore p will get all missing beverages from her neighbors and 

start (drinking) eventually. 

After drinking a philosopher does not need the priority on all beverages given 

by the eating region of the Dining Philosophers problem. Therefore in (release(.)) a 

philosopher exits from the (eating) operation of the Dining Philosophers solution. 

Complexity: The author did not give the complexity analysis. The waiting time 

of the Drinking Philosophers' solution is bounded by the waiting time of the Dining 

Philosophers' solution being used, because the additional overhead is small. Chandy 

and Misra's Drinking Philosophers' solution has waiting time e(n), since they used 

their own solution to the Dining Philosophers' problem, which has the same com-

plexity. 

Further Discussion: Chandy and Misra's algorithm does not work under com-

pletely symmetric systems. This is because the Dining Philosophers subroutine used 

in their algorithm starts from a special initial configuration, where every philosopher 

has a locally distinct identifier. 

In Chandy and Misra's graph model, the vertices represent philosophers and 

edges represent the neighboring relations rather than the possible conflicts among 

philosophers. They described an extra set to denote the set of beverages accessible 

to philosophers. Their exclusion property requires that neighboring philosophers 
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cannot drink the same beverage, while philosophers not adjacent to each other can 

do so. This description can be modified to an equivalent one by making lv copies 

for each beverage, if there are k pairs of neighboring philosophers that potentially 

need it. Then place an edge between these pairs of philosophers for each copy. Now 

two philosophers are neighbors only if they might acquire the same beverage. This 

modified model is equivalent to our graph model introduced in Section 2.3.2. 

Welch and Lynch's Work [26] 

Welch and Lynch exploited the same idea as Chandy and Misra's. One contribution 

of their paper is to give a modular description of the Drinking Philosophers problem 

by modeling it within an I/O automaton model. This allows one to plug in an 

arbitrary lockout-free solution to the Dining Philosophers problem. Their problem 

description can be converted to our object oriented description and is presented in 

Appendix A. 

Algorithm Description: The authors implemented the (grab(.)) operation as 

follows. As soon as a philosopher p enters her drinking thirsty region, she enters 

the dining hungry region in the subroutine. She tries to collect the beverages that 

she needs but lacks. If her neighbors do not need those beverages, they satisfy p's 

requests. Otherwise they defer the requests. A philosopher in the dining eating region 

has higher priority on all her shared beverages than the corresponding neighbors. 

When p enters the dining eating region, she sends demand messages for the missing 

beverages. Upon receiving a demand, a philosopher will always give the beverage 

to the sender (if she is using the beverage, she will wait until she finishes using it.) 

Eventually p will get all the beverages, and will enter the drinking region by executing 
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(drink(.)). Just as in Chandy and Misra's solution, in the (release(.)) operation, a 

philosopher exits from the dining eating region. 

Complexity: The authors showed that in a system of n philosophers the maximum 

waiting time for a Drinking Philosopher to enter her critical region is dominated by 

the maximum waiting time for a Dining Philosopher to enter her critical region in the 

subroutine. By replacing the 0(n) time subroutine in Chandy and Misra's solution 

with an 0(1) time subroutine, they claimed that their algorithms have 0(1) worse 

case waiting time. 

Further Discussion: By claiming that the Dining Philosophers algorithm of [23] 

has waiting time 0(1), they mean the time complexity is independent of the size of 

the network. But it does depend on some local parameters, such as the number of 

forks needed by one philosopher and the number of philosophers sharing one fork. 

Since they present the problem with an I/O automaton model, the validity conditions 

of the system are given by making constraints on the transitions of the automaton. 

This idea is essentially the same as our object oriented description, which gives 

validity conditions on the computations of the system. 

Gmat, Shankar, and Agrawala's Work [13] 

The authors present a basic problem description and two generalizations. They 

gave deterministic solutions to the basic problem and the first generalization in fully 

distributed message passing systems, where beverage objects are implemented with 

tokens. In their algorithms, each philosopher is assumed to have a locally distinct 

label, so the solutions are not completely symmetric. 
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Basic Drinking Philosophers problem: The authors modeled the problem as 

an undirected simple graph, where nodes represent philosophers, and neighboring 

philosophers share only one bottle. A bottle is associated with every edge, implying 

that every bottle is shared by exactly two philosophers. When a philosopher becomes 

thirsty, she needs a nonempty subset of the bottles associated with her incident edges. 

Two philosophers are called neighbors if there is an edge between them. 

Algorithm Description: Each philosopher p maintains two nondecreasing inte-

gers: s_nump and max rec. Integer s_num refers to p's session number, which is 

p's last drinking session number if p is tranquil, p's upcoming drinking session if p is 

thirsty, and p's current drinking session if p is drinking. Integer max_rec indicates 

the biggest session number received by p from her neighbors so far. An extended 

session number is a combination of a philosopher's session number and her identifier, 

(s_num,id). A philosopher p has higher priority on the beverage shared with q, if p 

has a smaller extended session number than q, where (s_num,idp) <(s_numq,idq), 

if and only if (s_nump<s_numq) or (s_nump=s_numq and id <idq). For every 

beverage shared between two philosophers, there exist a token called bottle and a 

corresponding request token. 

In the execution of (grab(.)), a thirsty philosopher p sets s_num to a value bigger 

than max_rec, and sends the corresponding request token, including her session 

number and her label, to the neighbor who is holding a bottle that she needs. Upon 

receiving a request token from a neighbor, a philosopher will update her max_rec 

value and will release the bottle if she does not need it or her neighbor has higher 

priority on it. If a philosopher is drinking when she receives a request token, she will 
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release the corresponding bottle after drinking. Once a philosopher releases a bottle, 

she cannot get it back again before her neighbor uses it. The reason is that when 

p received the request token from q, p update her max_recp to a value at least as 

big as q's current session number. When p becomes thirsty again, she set her session 

number bigger than max_rec, which is bigger than q's current session number. Also 

a philosopher will not change her session number when she is thirsty. Therefore p 

does not have higher priority on the bottle shared with q. This ensures a philosopher 

looses the priority on all beverages after drinking. Thus in (release(.)) a philosopher 

can still keep the beverage tokens as in some other algorithms for message passing 

systems. 

The algorithm works correctly if the initial configuration satisfies the following 

properties: 1) Every philosopher has a locally distinct label. 2) Every philosopher p 

is tranquil and s_num=max_rec 0. 3) For every beverage shared between a pair 

of neighbors, one has the bottle, the other has the corresponding request token. 

The Multiple-instance Extension of the Drinking Philosophers Problem: 

The authors extended the basic problem to a more general one, where two neighbors 

share n instances of the bottle, and a philosopher may need any number up to n of 

these bottles each time. 

Algorithm Description: This algorithm is similar to the one solving the basic 

case. To save messages, a philosopher sends one request token including the total 

number of instances she needs, her session number and her identifier. Upon receiving 

a request token, a philosopher updates her max_rec value, and releases the additional 

number of instances her neighbor needs in a single message if the sum of the numbers 
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that they each need is less than the total number shared by them or her neighbor 

has higher priority. 

The Multiple-type Extension of the Drinking Philosophers Problem: The 

authors also mentioned a still more general extension, where two neighboring philoso-

phers may share several types of bottles, and every bottle type has several instances. 

They did not give the algorithm for this case, but they pointed out that the 'algo-

rithm is based on the one solving the multiple-instance extension. The difference is 

that the bottle type is now included in the request token. A philosopher will notify 

her neighbor of the total number of instances she needs for each type of bottle. 

Complexity: They only discussed the message complexity. If a philosopher uses k 

bottles, then the number of messages exchanged with her neighbors before she starts 

drinking is at most 2k. 

Further Discussion: The authors solved the Drinking Philosophers problem with-

out using a Dining Philosophers' solution as a subroutine. Therefore, the message 

complexity is reduced by saving the communications in the subroutine. The draw-

backs are that the algorithms use unbounded session numbers, and work only under 

some initial configurations, where every philosopher has a locally distinct identifier 

and every fork resides in a special place. In all algorithms, an atomic step contains 

several single actions. In fact the algorithms still work, if the atomic step is reduced 

to a single action. 



CHAPTER 3 

Process Synchronization Problems 

In the previous chapter, we introduced the Resource Allocation problem, in which the 

resources (or forks, beverages) are passively collected by their users (or philosophers). 

In contrast, the concurrent entities in the Process Synchronization problems are 

active or partially active, and they can decide whether to interact with others or not. 

While trying to synchronize with others, they either coordinate among themselves 

or they are controlled by some distributed or centralized coordinators. Different 

problems may require a different number of synchronization points. 

In the following sections, we present three typical Process Synchronization prob-

lems: Committee Coordination, Multiway Rendezvous, and Multiparty Interaction. 

3.1 Committee Coordination Problem 

The Committee Coordination problem is informally defined to consist of a set of 

professors organized into committees. Each committee has a static membership. A 

professor can be available or unavailable. An available professor can attend a meeting 
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held by any committee of which she is a member. An unavailable professor will not 

attend any meeting. The restrictions on meetings are as follows: 

Synchronization: a committee meeting may be started only if all members of that 

committee are available. 

Exclusion: no two committees may meet simultaneously if they have a common 

member. 

All meetings are assumed to terminate in finite time. The problem is to devise a 

protocol that satisfies the above restrictions, and also guarantees that if all members 

of a committee are available, then at least one of them will attend some meeting. 

3.1.1 Object Oriented Specification 

A Committee Coordination system (C U R., P) consists of two sets of processes, a 

collection of committee coordinators (abbreviated as committees) C = {c1, c2, ..., c} 

and a collection of professor controllers R = {r1, r2, ..., rk}. The set of objects 

P = {pi, P2, ..., Pk} represents a collection of professors. Associated with each Cj E C 

is a nonempty and static set of professors P(i) C P. 

The set of professors P supports four operations: (grab(P)), (release(P)), for 

some P C 7', and (become_available(p)), (go_on_holiday(p)), for some p E P. 

Let S = 01, 02, ... be any sequence of operations on P. To give the validity 

condition on S we define another variable CPi inductively by: 
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1) CP0 = P, where P C P is arbitrary. 

2) CPi = 

C'P_1 U P if Oi = (release(P)) 

CPi-I\Pi if o (grab(P)) 

CP_1 U {p} if oi = (become available (p)) 

CP_1\{p} if oi = (go_on_holiday(p)) 

Then S is valid provided 

1) if o (release (P)) for P C 7', then P fl CP_1 = 0. 

2) if oi = (grab(P)) for P C 7', then P C C'p_1. 

3) if oi = (become_available(p)) for p E 7', then p CP_1. 

4) if oi = (go_on_holiday(p)) for p e 7', then p E CP-I. 

The program for any committee ci E P is: 

Do Forever: 

(grab (P (i))) 

(meet) 

(release (P (i))) 

(adjourn) 

End Do 

The (adjourn) and (meet) are arbitrary operations that do not act on P. 

The program for any professor controller rj E 7?. is: 
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Do Forever: 

(become_ available(p)) 

(go_on_holiday(p)) 

End Do 

The validity condition captures: 1) the exclusion property, which guarantees that 

no two committees can meet simultaneously if they have a common member, and 

2) the synchronization property; which guarantees that a committee may meet only 

when all its members are available. Normally deadlock-freedom is also required under 

the assumption that every meeting terminates. Deadlock-freedom is the property 

that after any operation o, such that there exists a j such that P(j) 9 CP, either 

there is a subsequent operation (meet) by a committee Ck E C and P(k) fl P(j) o 0, 

or there is a subsequent operation (go_on_holiday(p1)) for Pt E P(j). 

3.1.2 Graph Model 

In a bipartite graph C = (C, P, E), vertex sets C and P represent a collection of 

committees and professors respectively. An edge (c, p) is in E, if and only if c E C, 

p E P and professor p is a member of committee c. 

Every professor has a dynamic label called state. The state of a professor p e 

denoted as state(p), is in {holiday, available, meeting(c)}. The label transitions are 

holiday -* available, available -+ meeting(c), available -+ holiday, and meeting(c) 

- holiday . The transitions from holiday to available and meeting(c) to holiday 

are spontaneous. The global configuration of the graph is required to satisfy the 

following properties: 

. Exclusion: In any configuration, if state(p) =meeting (c), then 4q such that 
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(q, c) E E and state(q)= meeting(c), where j =A i. 

• Synchronization: In any configuration, if Vp E P such that (p, Ci) E B, 

state(p) =meeting (c), then there exists a previous configuration, in which Vp E 

P such that (p, c) E B, state(p)=available. In all the intermediate configura-

tions, for all such p, state(p)=available or meeting(c). 

Under the assumption that any professor with label meeting(.) will change his 

label to holiday later on, the global configuration of the graph is required to satisfy 

the following property: 

• Deadlock-Freedom: In any configuration, if Vp E P such that (p, c) E B, 

8tate(p)=available, then there exists a subsequent configuration, in which p € 

P such that (p, Ci) € E and state(p) =meeting (c), where cj € C. 

3.1.3 Previous Work on the Committee Coordination Problem 

Chandy and Misra's Work [6, page 334] 

The specification of Ohandy and Misra assumes the following: 

1) A committee ci starts executing (grab(P)) if and only if the last operation 

applied to any professor p E P is (become_available(p)), which implies whenever 

every member is available a committee tries to convene a meeting. 

2) After an operation (release(P)), the next operation applied to any professor 

p € P is (go_on_holiday(p)), which implies that a professor becomes unavailable 

right after she leaves a meeting. 

3) An available professor will remain available unless some committee, of which 

she is a member, convenes a meeting. 



62 

The implementation required is in message passing systems. 

Algorithm Description: The authors first gave a trivial solution, where a com-

mittee starts a meeting if all members are available and no neighboring committee' 

is meeting. The solution is correct if there exists an extra process that collects the 

state information from all professors and centralizes all decisions about committee 

meetings. 

They then introduced a solution in distributed settings, where both committees 

and professors are processes. The exclusion requirement is solved by mapping the 

Committee Coordintion problem onto the Dining Philosophers problem by consider-

ing professors as forks and committees as philosophers. Thus neighboring committees 

corresponds to neighboring philosophers. 

In the operation (grab(P(i))) by a committee c, it first executes (grab(F(i))) of a 

lockout-free solution to the Dining Philosophers problem, which guarantees operation 

(eat) will eventually happen. A committee can convene a meeting if and only if it is 

executing (eat) and all its members are available. 

It is important to check whether every member is still available before an eating 

committee executes (meet). It is possible that the neighboring committees, say C 

and D, become hungry, and C eats and subsequently meets. After C's eating, the 

committee D can eat. However some of its members that are also in C may no longer 

be available. So D cannot meet without checking the state of all its members. If an 

eating committee notices that not all of its members are available, then it becomes 

thinking right away. 

'Two committees are called neighbors if they have a common member. 
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The states of the professors are communicated asynchronously. Therefore care is 

required to ensure that every available member is still available when the collection 

is done. The authors claimed that it was safe for a committee c to collect states 

of its members after it started eating. At this point, none of its neighbors can be 

eating, implying none of its neighbors will convene a meeting. No member of c will 

participate in a meeting during the collection of c. Thus every available member 

remains available. The authors gave two alternative ways for a committee to collect 

information from its members. In the first one, a committee polls every member to 

determine whether they are available. In the second one, a professor will actively 

report its state to all the committees of which she is a member. 

Checking the states of all members is also required in the thinking to hungry 

transition of a committee. However no extra work needs to be done, because even if 

a committee becomes hungry based on a wrong decision, and subsequently eats, it 

will check the states of all its members again before meeting. The above argument 

ensures that the committee will not start a meeting if some members are unavailable. 

An available professor stays available until she attends a meeting and becomes 

unavailable right after she leaves a meeting. To implement this, in the execution of 

(release(P)) the committee calls the operation (go_on_holiday(p)) for every p E P. 

The program of a professor p only contains the single operation (become_available(p)). 

Complexity: The author did not give the complexity analysis. But it is easy to see 

that the response time is bounded by the response time of the Dining Philosophers' 

solution used, because there is only a constant amount of overhead before the call 

to the Dining Philosophers subroutine. 
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Further Discussion: The original problem description is quite general. It does 

not specify when a professor changes state from available to unavailable. So it is 

possible that a professor remains available even after a committee of which she is a 

member convened and then adjourned a meeting. Also no assumption is made about 

when a professor joins and leaves a meeting. A professor may attend a meeting, 

leave the meeting, and then rejoin the same meeting again. The authors claimed 

the reason for giving a very general specification is to include a variety of situations. 

However in the implementation, where the synchronization is solved by the second 

alternative, the professors become unavailable only after they attend a meeting and 

the meeting ends. Therefore there is no reentry allowed in this case. 

The author also mentioned a generalization of the Committee Coordination prob-

lem. An available professor waits for a subset of the committees of which she is a 

member; the subset may be different each time she becomes available. This gener-

alization is comparable to the extension of the Dining Philosophers problem to the 

Drinking Philosophers problem. The author pointed out that the solution to this 

generalization can be obtained by minor modifications to the original solution. 

3.2 Multiway Rendezvous Problem 

The Multiway Rendezvous problem is essentially the same as the Committee Coor-

dination problem as pointed out by many people, such as Choy and Singh [8], or 

IBagrodia [2]. It has the same object oriented and graph theoretical specifications as 

the Committee Coordination. Instead of having professors come together to attend 

a meeting held by a committee, in the Multiway Rendezvous problem, processes get 
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together to execute some event. In this section we will introduce Bagrodia's results 

by first paraphrasing his informal problem description and solutions, then fixing the 

flaws in his problem description. 

3.2.1 Previous Work on the Multiway Rendezvous Problem 

Bagrodia's Work [21 

In a message passing system, let P = {pl,p2, ...,p} be a set of processes, and 

E = {e1, e2, ..., em } be a set of events. A process pi participates in a set of events 

Ej C E. An event ek involves a set of processes Pk 9 P. Sets E and P are both 

static sets. 

A process is either idle or active. Every process satisfies the following conditions: 

. An idle process remains idle until it commits to some event. 

• A process commits to an event ek only when it determines that all other pro-

cesses in Pk will also do so. 

• An idle process can commit to at most one event at any time. 

• An idle process becomes active if it commits to some event. 

• An active process autonomously makes the transition to become idle. 

An event is either enabled or disabled. An event ek is enabled if and only if all 

processes in Pk are idle. Otherwise it is disabled. An event ek is executed if and only 

if each process that is in Pk has committed to ek. 

The problem is to devise an algorithm that allows an idle process to commit to 

an enabled event such that the following properties are satisfied [2, page 1054]: 
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1) Safety: 

a) Exclusion: If a process pi commits to an event ek, then Vp 

Pj cannot commit to another event. In other words, conflicting 

events cannot be executed simultaneously. 

b) An active process cannot commit to any event. 

2) Liveness: 

a) Synchronization: If process pi commits to event ek, then all 

processes that belong to Pk will eventually commit to ek. 

b) Progress: If all processes that belong to the process-set Pk of 

some event ek are idle, then eventually some Pi that belongs to 

Pk must become active. This property ensures that if an event 

is enabled, it is eventually disabled. 

The author designed centralized, partial distributed and fully distributed deter-

ministic algorithms in message passing systems. 

Algorithm Description: Bagrodia's algorithms used message counts to solve syn-

chronization. The total number of times a process has become idle or active is called 

idle-count or active-count, respectively. There are some special processes called event 

managers. An event manager M may control a set of events E(M) ç E. Event 

manager M maintains the idle-counts and active-counts for all the processes in .Pk 

if ek E E(M). All counters are initialized to zero. When a process pi in the system 

becomes idle, it sends a ready message to all the managers that control an event 

in E. On receiving a ready message from a process, the manager increments the 
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idle-count of the process by 1. If the manager find that there exists an event ek, such 

that Vpi E Pk, j'5 idle-count is greater than its active-count by 1, then the manager 

may inform each pi to commit to ek, and increment the active-count for pi by 1. 

The event manager plays the role of committee coordinator, and the above actions 

correspond to the (grab(.)) operation in the Committee Coordination problem. 

The author first built a centralized algorithm where there is only one event man-

ager that manages all the events in E. The exclusion is easily satisfied in the algo-

rithm. 

Then he designed a partially decentralized algorithm, where there exist several 

managers. In order to ensure exclusion, they used a token circulating among the 

managers. Only the one holding the token can schedule its events. 

Finally he presented a modified algorithm that is decentralized. This algorithm 

used the message counts to solve the synchronization problem as above, and the 

selection technique of the Chandy and Misra's committee coordination algorithm 

to solve exclusion problem. Specifically, the exclusion is solved by mapping the 

Multiway Rendezvous problem onto the Dining (or Drinking) Philosophers problem. 

The event manager corresponds to the philosopher in the Dining Philosophers (or 

Drinking Philosophers) problem. Event managers Mi and Mj are neighbors if there 

exists event e/ E E(M) and e1 E E(M), such that Pk fl P1 0 0. An event manager 

may schedule an event only when the corresponding philosopher is eating. 

Complexity: The author did a simulation study to compare the performance of the 

three algorithms. The response time for each algorithm is measured from the instant 

that an event becomes enabled to the instant that it is selected for execution. Two 
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components determine the total response time for multiway rendezvous algorithms: 

1) Synchronization Time: Time taken by the algorithm to ascertain that a given 

event is enabled. 

2) Selection Time: Time taken by an algorithm to select an event for execution. 

They showed how variations in model parameters affects one or the other component 

and consequently the response time. The parameters include the network topology, 

the average time to transmit a message between processes, and the synchronization 

pattern among processes in the system. 

Further Discussion: In the algorithms, processes can start and end an event at 

different times. There may not exist a synchronous point where everyone is executing 

the event, but there is a synchronous point where every process is idle and ready to 

commit to an event. 

The synchronization property described in the problem description is very vague. 

There is no precise condition for a process to commit to an event. A process will 

commit to an event if it somehow knows all the other processes that belongs to the 

same event will also do so. Also the synchronization requirement does not avoid 

multi-entry. The algorithms do not allow this by using the message counts. 

Their definition of enable is not correct. Once a process commits to an enabled 

event ek, Cfr becomes disabled. This prevents all the other processes in Pk from 

committing to ek. We correct this definition as follows: an event is enabled if all the 

processes that belong to it either are idle or committed to it. 
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3.3 Multiparty Interaction Problem 

In both the Committee Coordination problem and the Multiway Rendezvous prob-

lem, there is a coordinator or manager associated with each committee or event 

respectively. These coordinators or managers make decisions on when the corre-

sponding committees start meeting or the corresponding events can be executed. 

They are responsible for guaranteeing the computation of the whole system satisfies 

the exclusion, synchronization, and progress properties. If they do not exist, pro-

fessors or the processes need to be totally active, and coordinate among themselves. 

This lack of the coordinators and managers distinguishes the Multiparty Interaction 

problem from the Committee Coordination problem and the Multiway Rendezvous 

problem. Another difference is that the Multiparty Interaction problem requires two 

synchronization points, while the Committee Coordination problem and the Multi-

way Rendezvous problem require only one. 

In this section we first give the object oriented specification and graph theoretical 

description of the Multiparty Interaction problem. Then we present Yuh-Jzer Joung's 

solution to this problem. 

3.3.1 Object Oriented Specification 

A Multiparty Interaction system (P, I) consists of a set of processes P = {pi, P2, ..., p}, 

and a set of objects I = {i1, i2, ..., ik} called interactions. Each process Pk E P par-

ticipates in a fixed set of interactions 1(k) C I. Each interaction i1 is associated with 

a fixed set P(l) = {Pk E Plil E I(k)J. 

The set of interactions I supports three operations: (become_ ready (I)) for 
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I C I, and (start — interaction (i)), (end — interaction (i)) for i e I. 

Let S = 0i, 02, ... be any sequence of operations on I. To give the validity 

conditions on 5, first recall that (operation— name) denotes the operation executed 

by process p. Then S is valid provided: 

1) if in the interval between oi =(start — interaction (u))pr and the following 

oj = (end — interaction (u))pr, there exists an operation (start — interaction (v)) 3, 

where u 54 v and Ps E 1(u), then there exists a previous operation 

(end_ interaction (u)) 8 after operation o. and 

2) if oi =(start_ interaction (u))pr, then Vp3 E P(u) EJj < i, such that 

oj =(become_ ready (I(s))) 8, and there exists at most one operation executed 

by p3 between 03 and o, it can only be (start _interaction(u)) 3. and 

3) for every i, such that oi =(end interaction(u)), there exists distinct previous 

operations (start_ interaction (u)) 8 by all ps E 1(u). 

The program for any process Pk E P is: 

Do Forever: 

(become ready (I(k))) 

(start_ interaction (i)) for i E 1(k) 

(end interaction W) 

(local computation) 

End Do 

The (local computation) is an arbitrary operation that does not act on I. 
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The validity conditions only capture: 1) the exclusion property, which guar-

antees that no philosopher can participate in two interactions at the same time, 

and 2) the synchronization property, which guarantees that an interaction may only 

start when all processes that participate in it becomes ready, and a process can-

not finish an interaction until all the other processes that participate in the same 

interaction have started. A strong progress property, lockout-freedom, which de-

livers fairness, is also required under the assumption that every interaction termi-

nates. An interaction it is enabled if and only if for every pj E P(t), Pj'S most 

recent action is (become _ready (I(j))). Lockout-freedom is the property that for 

any interaction it that is enabled infinitely often, there exist infinite occurrences of 

(start — interaction (t)) 5 Vpj E P(t). 

3.3.2 Graph Model 

In a bipartite graph G = (F, I, E), vertex sets P and I represent a collection of 

processes and interactions respectively. An edge (p, i) E E if and only if process p 

participates in interaction i. 

Every process has a dynamic label called state. The state of a process p E F, 

denoted as state(p), is in {idle, ready, execute(i)j. The state transitions are idle -+ 

ready -+ execute(i) -+ idle. The transitions from idle to ready and execute(i) to idle 

are spontaneous. 

Let C = c1, c2, ... be a sequence of global configurations. Any ci E C satisfies the 

following properties: 

• Exclusion: If .state(p)=execute(r) in ci and state(q) =execute (s), such that 

r 0 s and (q, r) E E, then there exists a previous configuration c, where 
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state(p)=execute(r) and state(q) =execute (r), and in all the intermediate con-

figurations state(p) =execute (r). 

• Synchronization: Suppose statc(p) =execute (r) in c. Let Cj be a previous con-

figuration of c, such that .state(p)=execute(r) in c, state(p)=ready in c_1, 

and state(p)=execute(r) in all intermediate configuration between cj and c. 

Let Ck be a subsequent configuration of c, such that state(p)=execute(r) in Ck, 

state(p)=idle in ck+, and state(p)=execute(r) in all intermediate configuration 

between ci and ck. 

1. There exists a configuration c.. before c, in which Vq E P such that 

(q, r) € E, state(q)=ready, and in all the configurations between cm and 

c, the state of q is either ready or execute(r). 

2. There exists a configuration c between Cj and Ck, in which \lq E P such 

that (q,r) E E, state(q) =execute (r). 

An interaction r is enabled in a configuration if Vp E P such that (p, r) E B, 

.state(p)=ready. This definition is equivalent the one on page 71. An interaction r 

is executed in a configuration if Vp E P such that (p, r) E B, state(p) =execute (r). 

Under the assumption that any process with state execute(.) will change its state to 

idle later on, any sequence of global configurations C is required to satisfy the strong 

progress property: 

• Lockout-Freedom: If a configuration where r is enabled appears infinitely often, 

then a configuration where r is executed will occur infinitely often. 
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3.3.3 Previous Work on the Multiparty Interaction Problem 

Joung's Work [19] 

Joung gave a problem specification as follows: [19, page 311] 

We assume a fixed set of sequential processes Pi, ...,pn which interact 

by engaging in multiparty interactions X1, ..., Xm. Each multiparty inter-

action Xi involves a fixed set of processes P(X). Initially, each process 

in the system is in its local computing phase which does not involve any 

interaction with other processes. From time to time, a process becomes 

ready for a set of potential interactions of which it is a member. After 

executing any one of the potential interactions the process returns to its 

local computing phase. 

Assume that a process starting an interaction will not complete the 

interaction until all other participants have started the interaction. As-

sume further that a process will eventually complete an interaction if all 

other participants have started the interaction. 

The problem is to devise an algorithm to schedule interactions satisfying the following 

requirements: 

1. Exclusion: No two interactions can be in execution simultaneously if they have 

a common member. (An interaction is in execution if all its members have 

stared it.) 

2. Synchronization: If a process p starts X, then all other processes in P(X) will 

eventually start X. 
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3. Strong Interaction Fairness (SIF): If an interaction is enabled infinitely often, 

then it will be executed infinitely often. (An interaction is enabled if its par-

ticipants are all ready, and becomes disabled when some of them starts an 

interaction.) 

Algorithm Description: They provided two randomized algorithms, one for mes-

sage passing systems and the other for shared memory systems. For the shared 

memory algorithm, only single-writer multiple-reader variables are used. Their algo-

rithms are completely decentralized, meaning that there is no coordinating process, 

and also symmetric in the sense that all processes are anonymous and execute the 

same code. Both algorithms guarantee SIF with probability 1 under the following 

two assumptions: (Al) processes do not stop executing their programs, and (A2) a 

process's transition to a state ready for interactions does not depend on the random 

choices performed by other processes. 

When a process p becomes ready for interaction, it randomly chooses one inter-

action X from the set of interactions it is willing to execute. It informs (by sending 

messages or by writing information to shared variables) other processes in P(X) of 

its interest in executing X, and waits for A time, where A is a parameter of the algo-

rithm. When A time elapses, p collects the information from all the other processes 

in P(X). If all of them are ready to execute X, then p will set a flag indicating the 

successful establishment of X, and start executing X. If p notices the flag was set 

by another process, it also starts X. If neither of the above cases is true, p will give 

up X, and start from the beginning again. 

A process p is monitoring an interaction X, if p has chosen X and is waiting 
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for its Li-interval to expire. Interval A is called the monitoring time. If p does not 

monitor X long enough, then it may not see others' choices when it completes its 

monitoring phase. Thus possibly no interaction is established even if the random 

choices of all processes in P(X) coincide. If the monitoring time of all the process 

in .P(X) overlap, then some process will notice the agreement, and establish X. In 

the algorithms A is chosen to be the sum of the, previous non-monitoring time of all 

processes in P(X). The appropriate choice of t gives the fairness property. 

Complexity: Joung claimed the following [19, page 329]: 

Assume that a process may be ready for k potential interactions at a 

time, and each interaction involves m participants. 

Suppose that the time to execute a local action is negligible compared 

to the communication time for delivering a message. 

If the message transmission time is c, then the time complexity is 

dominated by 

4c•m•km 

In the above, since m messages are sent in parallel in each interval c, 

the expected number of messages needed to establish an interaction per 

process is no greater than 

4m 2 .km 

Further Discussion: In the problem description, the author failed to point out 

that a process cannot re-start an interaction X while other processes are still exe-

cuting X. Both algorithms avoid this case. 
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In Joung's problem description, two synchronization points are required: all pro-

cesses are ready and all of them are executing an interaction. However this does not 

make the Multiparty Interaction problem more difficult than other Process Synchro-

nization problems, because by repeatedly using a technique to achieve synchroniza-

tion, one can achieve any number of synchronization points desired. 



CHAPTER 4 

Comparison and Analysis of Different 

Process Coordination Problems 

In Chapter 2 and 3, we studied the six different kinds of Process Coordination 

problems listed in Figure 4.1. Every problem consists of two different components. 

A synchronization property is required on the components in the third column. As 

a result of synchronization, a coordination activity executed by the components in 

the second column is triggered. For example, in the Dining Philosophers problem 

when all forks needed by a philosopher are gathered together, that philosopher starts 

eating. Also an exclusion property is required on the behaviors of the components 

in the second column. For example, in the Dining Philosophers problem no two 

philosophers can eat simultaneously if they use a common fork. Different Process 

Coordination problems have different assumptions on which component is active 

and which is passive. As shown in Figure 4.1, all the red components are active 

and all the blue ones are passive. In the first three problems the forks, beverages, 

and resources are passively collected by their users to achieve the synchronization 

77 



78 

point. Whereas in the latter three problems the professors and the processes are 

actively participating in the synchronization procedure. Therefore we call the first 

three problems the General Resource Allocation problem and the last three ones the 

Process Synchronization problem. 

Exclusion 

Dining Philosophers Philosophers Forks 

Drinking Philosophers Philosophers Beverages 

Resource Allocation Users Resources 

Committee Coordination Committees Professors 

Multiway Rendezvous Events Processes 

Multiparty Interaction Interactions Processes 

Synchronization 

Figure 4.1: Process Coordination Problems 

In the set of General Resource Allocation problems, the Dining Philosophers 

problem corresponds to a graph-theoretic formalization of the set of Static Resource 

Allocation problems, and can also be used to solve the Dynamic Resource Allocation 

problem. In the set of Process Synchronization problems, the Committee Coordina-

tion problem has the most general problem description and the loosest requirements, 

which makes it representative of this class. Therefore the Dining Philosophers prob-

lem and the Committee Coordination problem are considered as representatives for 

the Resource Allocation problem and the Process Synchronization problem, respec-
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the Resource Allocation problem and the Process Synchronization problem, respec-

tively. 

In this chapter we first compare the similarity and difference between the two 

classes of the Process Coordination problem by comparing the Dining Philosophers 

problem and the Committee Coordination problem. Using the uniform problem 

specifications in the previous two chapters makes the comparison much easier and 

clearer. Then we further discuss the relations between the Dining Philosophers 

problem and the Multiparty Inthraction problem, which are dual problems with 

respect to the role of the active and passive components of the system. At the end, 

we give some comments on the atomicity requirements in the Resource Allocation 

problem. 

4.1 Dining Philosophers vs. Committee Coordination 

Assume professors in the Committee Coordination problem play the role of forks 

in the Dining Philosophers problem, and committees play the role of philosophers. 

These two problems differ in two aspects: 

Difference-1 : In the Committee Coordination problem, professors could be ready 

to attend meetings or be idle. A committee cannot meet if one of its members 

is idle. In the Dining Philosophers problem, forks that are not being used are 

always available for philosophers. 

Difference-IT : Every committee is always trying to meet as long as all its members 

are ready, whereas if a philosopher is not hungry, she does not try to eat even 

if all forks are available. 
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To eliminate the differences, we can modify either the Dining Philosophers problem 

or the Committee Coordination problem. 

4.1.1 Modified Dining Philosophers Problem 

To address Difference-I, assign a state clean or dirty to each fork. A dirty fork is not 

available (i.e. in dishwasher). A philosopher can only pick up a clean fork. Therefore 

a philosopher cannot eat if one of its forks is dirty. 

To address Difference-II, let philosophers become hungry whenever all their forks 

are clean. With this modification, the exclusion, synchronization, and progress re-

quirements in the modified Dining Philosophers problem are similar to the require-

ments in the Committee Coordination problem. The only difference is that the latter 

one requires only deadlock-freedom as opposed to lockout-freedom. Table 4.1 com-

pares these two problems in the object oriented framework. The object oriented 

specification for the Committee Coordination problem described in Table 4.1 is not 

the same as the one given in Section 3.1.1. It is easy to see however that these two 

descriptions both capture the behaviors and requirements of the Committee Coordi-

nation problem and are equivalent. We use this description because it highlights the 

similarity between the modified Dining Philosophers problem and the Committee 

Coordination problem. 

4.1.2 Modified Committee Coordination Problem 

Based on the graph model G = (P, C, E) of the Committee Coordination prob-

lem described in Section 3.1.2, we model the modified problem with a graph C' 

(P', C', E') built from C, such that F' = P and C' = C U {o}. We create a special 
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Modified Dining Philosophers Committee Coordination 
Objects set of forks F set of professors P 

Local Fields C = O,U = .F, initially A = 0, I = 7', initially 
Public 
Methods 

(get_forks(F)) F ç F 
precondition: F C C 
effect: U - U\F C +- C\F 

(get_profs(P)) P ç P 
precondition: P C A 
effect: I - I\P A — A\P 

*lease _forks(F)) 
effect:U+— UUF 

(release_ profs (P)) 
effect:If- IUP 

Local 
Methods 

(become_clean(f)) Vf E.F 
precondition: f E U 
effect: C - Cu{f} 

(become — available (p)) Vp EP 
precondition: p E I 
effect: A+-AU{p} 

Processes set of philosophers {pi ... pn} set of committees {ci ... c} 
Program Vpi 3Fi E 

(get_forks(F)) 
(eat) 
(release_ forks (F)) 
(think) 

Vcj 2P E P 
(get_profs(P)) 
(meet) 
(release_ profs (P)) 
(adjourn) 

Restriction No philosopher eats forever, 
no fork remains dirty. 

No committee meets 
forever, no professor 
remains unavailable. 

Synchro- 
nization 

A philosopher may eat 
only if all her forks are clean, 

A committee may start 
meeting only if all its 
members are available. 

Exclusion No two philosophers can 
eat simultaneously, if 
they use a common fork. 

No two committees can 
meet simultaneously, if 
they have a common member. 

deadlock- 
freedom 

If some philosophers want to eat, 
some philosopher will eat. 

If some committees want 
to meet, some committee 
will meet. 

lockout- 
freedom 

If a philosopher wants to eat, 
she will eat eventually. 

Not applicable 

Table 4.1: Modified Dining Philosophers vs. Committee Coordination 
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committee ô, which has dynamic membership and meets all the time. TO eliminate 

Difference-I, we simulate the occasional idle time of a professor p by generating an 

edge (6, p). With this adjustment, professors that are not attending any meeting 

(including a) are always available. 

To deal with Difference-II, the decision about when a committee tries to meet 

is made by the committee instead of depending on the states of all members of the 

committee. Also a trying committee can actively gather all its members in order 

to meet. This modified Committee Coordination problem is no different from the 

original Dining Philosophers problem. 

4.2 Further Discussion on the Dining Philosophers problem 

and the Multiparty Interactions problem 

In the Multiparty Interactions problem only processes are active, and in the Dining 

Philosophers problem only philosophers are active. It is easy to se that these two 

problems are dual to each other by exchanging the active and passive roles of the 

concurrent entities, which are the processes and forks. In this section we will further 

discuss the relations between these two problems. 

There are two natural ways to map the Dining Philosophers problem onto the 

Multiparty Interactions problem. 

First, consider the processes as forks and interactions as philosophers. Then forks 

are active and try to get together for a certain philosopher. This does not quite fit 

the meaning of the Dining Philosophers problem. 

We can also think of both forks and philosophers as processes. An interaction 
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consists of a philosopher and all the forks she uses. Each interaction involves two 

kind of processes: an active process which is the philosopher who tries to execute the 

interaction and several passive processes which are the forks that only give responses. 

Every active process participates in only one interaction. 

4.3 Atomicity in the Resource Allocation problem 

In the set of Resource Allocation problems, the exclusion property requires that for 

every resource, only one user can have it at a time. Effort needs to be made in 

order to guarantee this. There are different ways to do that under different system 

settings. 

In message passing systems, a resource can be denoted as a single token circulating 

among its users. Because the token cannot be duplicated, only one user at a time can 

have the resource by holding the corresponding token. The exclusion requirement is 

easy to achieve in this setting. 

In the shared memory model, using only atomic read/write variables is not suf-

ficient. Normally, acquiring a resource involves two operations: 1) read the current 

state of the resource to check whether it is free; 2) update the state of the resource 

to complete its collection. An atomic step of the operations provided by read/write 

variables is either read or write (also called update). Thus if two neighboring users 

both finished the first operation and found that a shared resource is free, then they 

could proceed to the second step and both get the resource. To avoid this, one way 

is to make operation 1 and 2 a composite atomic step so that nobody can be inter-

rupted before it picks up a resource. Another way is to use stronger objects instead 
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of read/write variables to protect the resources. For example the test-and-set oper-

ation provided by test-and-set objects can finish acquiring a resource in one atomic 

step. 

In both settings, if the resources are active, which means they can respond to 

requests from users, then the exclusion property can be accomplished by allowing a 

resource to respond to only one request at a time. 



CHAPTER 5 

Self-Stabilization 

In Chapter 2 we demonstrated the representative role of the Dining Philosophers 

problem in the set of Resource Allocation problems. And as described in Chapter 4, 

with slight modifications, solutions to the Dining Philosophers problem can also be 

used to solve the Committee Coordination problem, which is a fundamental version 

of Process Synchronization. Every Process Coordination problem can be solved by 

either using solutions to the Dining Philosophers problem directly, or calling solutions 

to the Dining Philosophers problem as a subroutine, or using modified solutions to 

the Dining Philosophers problem. This is because the Dining Philosopher's solution 

can always be used to build the exclusion and progress requirements. Therefore an 

efficient and robust solution to the Dining Philosophers problem is very useful. Since 

self-stabilization is a strong fault tolerant model in distributed systems, the goal of 

the remainder of this thesis is to design a self-stabilizing solution to the Dining 

Philosophers problem. 

In this chapter, we introduce formal definitions of self-stabilization, and review a 
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useful design and proof technique, fair composition. Then we enrich the fair compo-

sition for more general use. This enhanced version is only applicable to randomized 

algorithms and provides one of the techniques needed in Chapter 6. 

5.1 Self-Stabilization Preliminaries 

In a distributed system, the global configuration of the system is a combination 

of the local states of all system components. Let S be a distributed system and 

C be all possible global configurations of S. Let L be a subset of C. System 

S converges to L if it is guaranteed to arrive at a configuration in L in a finite 

number of steps, regardless of its initial configuration. This behavior is also called 

Convergence. System S is closed under L if starting from any configuration in L, 

all subsequent configurations of the system are in L. This behavior is also called 

Closure. System S is self-stabilizing for L if it converges for L and is closed under 

L. A self-stabilizing system does not need to be initialized, because it can start 

from an arbitrary configuration and, by convergence, eventually reach a legitimate 

configuration. Also a self-stabilizing system can recover automatically after system 

failures, because one can always assume that the configuration after any failure is the 

arbitrary initial configuration. Normally L is called a set of legitimate configurations 

and is defined by giving a predicate P over C, such that a configuration is legitimate 

if it satisfies P. Figure 5.1 shows the intuition of self-stabilization. 

In an asynchronous distributed system, the activities of the components are as-

sumed to be arranged by a scheduler. An execution is produced by a scheduler that 

determines, for each partial execution, what subset of components will take a step 
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Figure 5.1: Self-Stabilization 

oftheir program to extend the execution to the next configuration. The following 

definition formalizes Dolev's description in his book [11, page 9,23]. 

Definition 5.1.1. Let P and Q be predicates over configurations. A system running 

algorithm A is self-stabilizing for Q given P under a set S of schedulers, if the 

following conditions are true: 

Convergence: Starting from any configuration satisfying P and for any scheduler 

in 8, in a finite number of steps algorithm A, the system will converge to a 

configuration satisfying Q. 

Closure: For any configuration satisfying Q, all subsequent configurations of the 

system satisfy Q. 

Definition 5.1.1 is only applicable to deterministic algorithms. The following def-

inition is the natural extension to randomized algorithms. The certainty conditions 

are replaced by probabilistic conditions. 
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Definition 5.1.2. Let P and Q be predicates over configurations. A system running 

algorithm A is randomized self-stabilizing for Q given P under a set S of schedulers, 

if the following conditions are true: 

Convergence: Starting from any configuration satisfying P and for any scheduler 

in 8, with probability 1 in a finite number of steps algorithm A, the system will 

converge to a configuration satisfying Q. 

Closure: For any configuration satisfying Q, all subsequent configurations of the 

system satisfy Q. 

In this thesis we consider S to be the set of weakly fair distributed schedulers 

(see page 9) and omit explicit reference to S when there is no ambiguity. 

5.2 Original Fair Composition 

Fair composition is a technique introduced by Dolev, Israeli and Moran[11, 12] 

for designing, analyzing, and proving the correctness of complex self-stabilizing 

algorithms. To tolerate transient faults, self-stabilizing algorithms never termi-

nate. In our application, non-terminating algorithms are expressed as a loop in 

the forni: 

Do Forever: 

(block of operations) 

End Do 

Define an iteration of an execution of such a non-terminating algorithm to be the 

execution of one pass through the loop. The term round of an execution is usually 
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used to denote enough steps, so that every process has done at least one step of its 

algorithm. More formally, it can be defined inductively by: 

1) The first round of an execution is the shortest prefix of the execution that 

contains at least one step of every process. 

2) The ith round of an execution is the shortest prefix of the suffix of the execution 

after round i - 1 that contains at least one step of every process. 

Correspondingly, define a super round inductively by: 

1) The first super round of an execution is the shortest prefix of the execution 

that contains at least one iteration of every process. 

2) The ith super round of an execution is the shortest prefix of the suffix of the 

execution after round i - 1 that contains at least one iteration of every process. 

We now give the definition of fair composition. 

Definition 5.2.1. The algorithm constructed from algorithms A and B by alternat-

ing steps of A and B in any way that guarantees that in any execution, steps of A 

and steps of B are both executed infinitely often, is a fair composition of algorithms 

A and B and is denoted as A o B. 

Based on Definition 5.2.1, notation B o A is equivalent to A o B. 

A super round of a fair composition A o B is a partial execution that contains 

enough steps so that every process finishes an iteration of both A and B. 

The idea of fair composition is to compose two algorithms together to obtain 

stronger results. Let P, Q and R be predicates over configurations, algorithm A 

be (randomized) self-stabilizing for Q given P, and algorithm B be (randomized) 

self-stabilizing for R given Q. We would like algorithm A o B to be (randomized) 
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self-stabilizing for R given P (see Figure 5.2). To achieve this, algorithms A and B 

need to ensure some conditions that allow the composition to behave like A until P 

becomes true and like B after that. 

Figure 5.2: Fair Composition of algorithms A and B 

Dolev [11, page 22-24] gave the precise restrictions on algorithms A and B to 

guarantee the behavior of the composition. Informally the conditions are1: 

1. Algorithm B does not modify any variables used by A. This ensures that 

algorithm A will behave in the composition in the same way as it does alone. 

Thus algorithm A o B will achieve a configuration satisfying Q given P. 

2. In any configuration satisfying P, algorithm A does not obstruct B. This 

ensures that in any configuration satisfying P, algorithm B acts in the same 

way as if A did not exist, which implies that A o B will converge to and then 

remain in a configuration satisfying R. 

'We omit repeating the precise conditions because in the next section we will describe more 
general ones. 
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Dolev's conditions guarantee the convergence of A o B by preventing the system 

from moving "backwards" once the goal of algorithm A is achieved. 

5.3 Enriched Fair Composition 

If the second algorithm modifies the variables used by the first one, Dolev's condi-

tions are not satisfied. It is still possible to establish convergence of the composed 

algorithms, provided the algorithms meet some different required properties. In the 

situation considered here the second algorithm can destroy the progress achieved 

by the first one (see the dashed line in FigureS 5.3). If the algorithm is randomized 

and this happens only with low probability, and once it does happen, the resulting 

configuration is one that permits the first one to "try again", then eventually, the 

composition will achieve the combined goal and remain there. 

Figure 5.3: Enriched Fair Composition 

In this section, we relax the requirements on the two algorithms that are being 

composed so that both can randomly modify a set of common variables. All algo-

rithms discussed in this section are assumed to be randomized. Since the issues in 
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the randomized setting are very subtle, we will introduce a lot of notation. 

Definition 5.3.1. Let P, Q and R be predicates over configurations. An algorithm 

A is random(p, k) self-stabilizing for predicate R else P given Q, if the following 

conditions are true: 

Probabilistic Convergence: For any configuration satisfying Q and for any dis-

tributed scheduler, after at most k super rounds of algorithm A a configuration 

c is reached, and 

i) c satisfies either R or P. 

ii) with probability at least p, c satisfies R. 

Closure: For any configuration satisfying R, all subsequent configurations of the 

algorithm A satisfy R. 

In the rest of this thesis, we use Figure 5.4 to illustrate that algorithm A is 

random(p, k) self-stabilizing for predicate R else P given Q. 

A: 0 : 1—p, k @  p, k 

Figure 5.4: random(p, k) self-stabilizing for predicate R else P given Q 

If P = Q, then algorithm A is as shown in Figure 5.5. 

1—p, k 

p A: ,Ic 

Figure 5.5: random(p, k) self-stabilizing for predicate .R else Q given Q 
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Lemma 5.3.1. Let Q and R be predicates over configurations. If an algorithm A 

is random(p, k) self-stabilizing for predicate R else Q given Q, and p> 0, then A is 

randomized self-stabilizing for R given Q. 

Proof. For any configuration satisfying predicate Q and for any distributed scheduler, 

after k super rounds of algorithm A, a configuration c is reached. With probability 

at least p, c satisfies R, otherwise it satisfies Q. The probability that after i/c super 

rounds of algorithm A the system remains in a configuration satisfying Q is at most 

(1 - p)1. Because p> 0, lim (1 - p)' = 0. Thus starting from any configuration sat-
1+00 

isfying Q, with probability 1 algorithm A will converge to a configuration satisfying 

R. Based on the closure property of A, any subsequent configuration will also satisfy 

R. Therefore algorithm A is random self-stabilizing for predicate R given Q. El 

Corollary 5.3.2. Let Q and R be predicates over configurations and let A be 

random(p, Ic) self-stabilizing for R else Q given Q. Then starting from any configu-

ration satisfying Q, the expected number of super rounds for algorithm A to converge 

to a configuration satisfying R is at most 

Proof. From any configuration satisfying Q, after Ic super rounds of algorithm A, 

with probability at least p the new configuration satisfies R, otherwise the system 

remains in a configuration satisfying Q. Hence the expected number of super rounds 

for A to converge to a configuration satisfying R from an arbitrary configuration 

satisfying R, denoted as E[Q,R], is: 

E[Q,R] <k+(1—p)E[Q,R] 

implying 
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.E[Q,R]—(1—p)E[Q,R]<k 

pE[Q,R] < k 

E[Q,R] ≤ 
p 

D 

When two algorithms share some variables, different ways to compose algorithms 

may cause different behaviors of the composition. In a super round of a composition, 

the ratio of the number of steps taken from the two algorithms may affect the con-

vergence property of A o B. For example, if one does not have a chance to interfere 

with the other very often, then the composition may converge faster. However, if 

one algorithm takes too many steps in each super round, and keeps interfering with 

the other, then the composition may never converge. Therefore, when we describe 

the property of fair composition of algorithm A and B in a randomized setting, we 

assume a particular fixed composition. In the rest of this paper, we use A ED B to 

represent a fixed composition of A and B, and A o B to denote any possible fair 

composition of A and B. Note that A B and B A are different fair composi-

tions. For example, let A B be a fair composition in which steps of A are executed 

more frequently than steps of B. In composition B A, since algorithm B is in the 

position of A, it will be executed more often. 

Definition 5.3.2. Let algorithm A be random(p, k) self-stabilizing for predicate R 

else P given Q. Algorithm B is (Q, r) right non-interfering with A via A B, where 

0 < r < 1, if for any configuration satisfying Q and for any distributed scheduler, 
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after at most k super rounds of algorithm A ED B, a configuration c is reached, such 

that 

.1. c satisfies either R or P. 

2. with probability at least p r, c satisfies R. 

Similarly, we introduce a dual definition: 

Definition 5.3.3. Let algorithm A be random(p, k) self-stabilizing for predicate. R 

else P given Q. Algorithm B is (Q, r) left non-interfering with A via B ED A, where 

o ≤ r ≤ 1, if for any configuration satisfying Q and for any distributed scheduler, 

after at most k super rounds of algorithm B ED A, a configuration c is reached, such 

that 

.1. c satisfies either R or P. 

2. with probability at least p r, c satisfies R. 

Note that algorithm A B (or B ED A) is not necessarily random(p r, k) self-

stabilizing for predicate R else P given Q, because the closure property is not guar-

anteed. 

Definition 5.3.4. Let Cl,..., Ck be a sequence of sets of configurations, such that 

Ci C C_1 for i = 2, ..., k. Define the predicate Si over configurations by S(c) if and 

only if c E C,. The sets C1 to Ck are called nested sets, and the predicates S to 8k 

are called nested predicates. We use the same notation to denote nested predicates, 

SçS_1 ç ... çS1. 
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Clearly if R C Q in Definitions 5.3.2 and 5.3.3, then algorithm B is also  

right (left) non-interfering with A. 

Now we are ready to introduce the main theorem for enriched fair composition. 

Theorem 5.3.3. Let S, S, 82, and 83 be nested predicates over configurations, 

and A B be a fixed fair composition of algorithms A and B. Given the following 

four conditions: 

1. Algorithm A is random(pA, kA) self-stabilizing for predicate 82 else So given Si. 

. Algorithm B is random(p, kB) self-stabilizing for predicate 83 else S0 given 

S2-

3. Algorithm A is (82, 1) left non-interfering with B via A $ B. 

4. Algorithm B is (Si, r) right non-interfering with A via A B. 

Then algorithm AB is random(pApBr, kA + kB) self-stabilizing for predicate 83 else 

So given S. 

Proof. We have algorithm A is random(pA, kA) self-stabilizing for predicate 82 else 

So given S. 

A: 
1 PA, kA PA, kA  

Algorithm B is (Si, r) right non-interfering with A via A B. Thus, by Definition 

5.3.2, for any configuration satisfying S and for any distributed scheduler, after at 

most kA super rounds, algorithm A ED B converges to a configuration satisfying 82 

with probability at least PA - r, otherwise the system goes to a configuration satisfying 

So. 
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A ED B: 
i- PAr, k PA -r, k 

Figure 5.6: A B's behavior in configuration satisfying S1 

Algorithm A is (82, 1) non-interfering with B via A ED B and 83 C 82. Therefore 

algorithm A ED B has the, same behavior as B from any configuration satisfying 82 

and 53. And algorithm A B is random(p, k11) self-stabilizing for predicate 83 else 

So given S2. 

Figure 5.7: A $ B's behavior in configuration satisfying S2 

Combining the behaviors given in Figures 5.6 and 5.7, algorithm A B yields 

the behavior shown in Figure 5.8: 

A ED B: 
1- PA -r, kA PA-r, kA 

i- PB, kE 

Figure 5.8: Algorithm A ED B 

Thus, algorithm A ED B is random(pApBr, kA + kB) self-stabilizing for predicate 

83 else 8o given Si. D 

The next corollary says that the composition of algorithms that satisfy the con-

ditions of Theorem 5.3.3 produce a random self-stabilizing algorithm for predicate 

S3 given S if So = S. The proof is similar to Lemma 5.3.1. 



98 

Corollary 5.3.4. Let Si, 82, and S3 be nested predicates over configurations, and 

A ED B be a fixed fair composition of algorithms A and B. Given the following four 

conditions: 

1. Algorithm A is random(pA, kA) self-stabilizing for predicate S2 else S given S. 

. Algorithm B is random(pB, k2) self-stabilizing for predicate S3 else S1 given 

S2-

3. Algorithm A is (82, 1) left non-interfering with B via A B. 

4. Algorithm B is (Si, r) right non-interfering with A via A ED B. 

Then algorithm A E) B is randomized self-stabilizing for predicate 83 given S1. 

The following corollary gives the expected number of super rounds for A ED B to 

converge. 

Corollary 5.3.5. Let S, 82, and 83 be nested predicates over configurations, and 

A B be a fixed fair composition of algorithms A and B. Given the following four 

conditions: 

1. Algorithm A is random(pA, kA) self-stabilizing for predicate 82 else S given Si. 

. Algorithm B is random(pB, kE) self-stabilizing for predicate S3 else S given 

S2-

3. Algorithm A is (82, 1) left non-interfering with B via A ED B. 

4. Algorithm B is (Si, r) right non-interfering with A via A B. 

Then starting from any configuration satisfying S and for any distributed schedulers, 

the expected number of super rounds for algorithm AB to converge to a configuration 

satisfying 83 is at most kBpAr±kA  
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Proof. Let E[X, Y] denote the expected number of super rounds for AB to converge 

to a configuration satisfying Y from an arbitrary configuration satisfying X. By 

linearity of expectation, E[S1, 83] is the sum of E[S1, 82] and E[82, 83]. 

From any configuration satisfying S, after kA super rounds of algorithm A @ B, 

with probability at least pAr the new configuration satisfies 82, and with probability 

no more than 1 - PA r the system remains in a configuration satisfying S1. Hence 

E[S1,S2] is: 

E[81, 82] ≤ k + (1 - PAr)E[Sl, 82] 

therefore: 

E[51,82] - (1 — pAr)E[S1, 821 ≤ kA 

implying 

pATE[Sl, 82] ≤ kA 

E[81,82] ≤ kA 
--

PAT 
(1) 

From any configuration satisfying 82, after kE super rounds of algorithm A ED B, 

with probability at least PB the new configuration satisfies 83, and with probability 

no more than 1 - PB the system goes back to a configuration satisfying S. Hence 

B[82,83] is: 

Therefore: 

E[82,83] ≤ kB+ (1pB) (E[81,82] +E[82,83]) 

≤ kB+(1 — PB) (- kA —+E[82,Ss]) (by (1)). 
PAT 

E[82,83] —(1 PB)E[82, 83] kB + (1— PB) —kA --, 
PAT 
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implying: 

PBE[8 2, 83] < kB + (1 - PB) kA 
PAr 

kB +(1 PB) kA 
PAr  

E[82, 83]≤ 
PB 

(2) 

Thus the expected number of super rounds for algorithm A B to converge to a 

configuration satisfying 83 from an arbitrary configuration that satisfies S is: 

E[S1,83] = E[81,82]+E[82,83] 

≤ 
PAr PB 

= kAPB  + kBPAr + (1 - PB)kA 

PATPB PArPB 

kAPB +kBPAr+kA PBkA  

PArPB 

kBPAr + kA  

PArPB 

(by (1) and (2)) 

0 

Generally, we can repeatedly compose a set of algorithms, which have desired 

properties, to build a composition that achieves the strongest of a nested sequence 

of predicates. 
k 

First we define a fair composition A, of a sequence of algorithms {A1, A2, ...} 

inductively by: 

2 

1) A=A1(BA2 
i=1. 

k k-i 

2) EJA=31AEEAk 
i=1 

Because denotes an arbitrary but fixed fair composition of two algorithms, 

also represents an arbitrary but fixed fair composition of a sequence of algorithms. 
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Theorem 5.3.6. Let So,..., 5m be a set of nested predicates over configurations. Let 

algorithms A,, -, An have the following properties: 

1. Algorithm Ai is random(p, k) self-stabilizing for predicate Si else So given 

S._i, for i=1, ... ,m. 

. Algorithm Ai is (Si, 1) left non-interfering with Aj via any fair composition 

AoA, for i=1,...,m-1 and j=i+1,...,m. 

i-i 

3. Algorithm Ai is (Si, r) right non-interfering with A_1 = A1 via .4 
1=1 

for i = 2, ..., m. 

In 
Then the particular fair composition of algorithm A1 to Am, A = A, is random-

ized self-stabilizing for predicate Sm given So. 

Proof. By induction on the total number of algorithms m: 

Basis: m = 2, the result is true by Corollary 5.3.4. 

Induction steps: Suppose the theorem is true for m = I, -, n - 1. And we show 

that the theorem still holds for m = n. Let algorithms A,, -, An have properties 1, 2, 
n-i /'n-i,n-i n-i 

and 3. By the induction hypothesis, algorithm A is random ( fJ 
i=i \i=1,j=2 1=1 

self-stabilizing for predicate S,_i given (So, So). Because for i = 1, ..., n—i, algorithm 

Ai is (Sn, 1) left non-interfering with An via any fair composition Ai o A, the fair 
n-i 

composition of A1 to A_1, A, is (Sn, 1) left non-interfering with An via any fair 
i=1 

n-i 

composition Therefore by Corollary 5.3.4, a fair composition of algorithm 
i=i 

n-i n 
ED Aj and An, denoted as 3 A , is random self-stabilizing for predicate Sm given 
i=1 i=1 

So. 0 
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Corollary 5.3.7. Starting from any configuration satisfying predicate So and for 

any distributed schedulers, algorithm A converges to a configuration satisfying 8m 
Ekz 

after an expected number  of super rounds. 
fl pjrj 

i=1,j=2 



CHAPTER 6 

Self-stabilizing Dining Philosophers 

6.1 Motivation 

In Chapter 2 we described several previous papers on the Dining Philosophers prob-

lem with different assumptions on system models. In these papers, only Choy and 

Singh's solutions are fault tolerant. Their algorithms limit the damage caused by 

a process's stop failure into a fixed range around that process. However Choy and 

Singh's algorithms are not self-stabilizing. Their algorithms must start from a special 

initial configuration, where every philosopher has a locally distinct label. Also the 

algorithms do not provide the mechanism to recover automatically from deadlocks 

caused by arbitrary initial configuration or failures of communication channels. 

Gouda [14] presented a self-stabilizing solution to the Dining Philosophers prob-

lem in a ring model. In his algorithm, symmetry is broken by letting one of the 

philosophers behave differently from the others. Therefore the system is not com-

pletely symmetric. 

Inspired by Gouda's work, Hoover and Poole [18] designed a self-stabilizing solu-

103 
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tion in the same topology. In their algorithm, every philosopher executes the same 

program. Symmetry is broken by using a token circling on the ring of philosophers. 

Only the philosopher holding the token is enabled and only enabled philosophers 

can execute the next operations of their programs. Thus their algorithm depends on 

a self-stabilizing token system, and it unnecessarily prevents concurrency between 

neighboring philosophers. 

Both Gouda's algorithm and Hoover and Poole's algorithm solve a restricted ver-

sion of the Dining Philosophers problem in systems with undesirable constraints. In 

this chapter, we solve a related problem and show how this problem when generalized 

can solve the general self-stabilizing Dining Philosophers problem in fully distributed 

and completely symmetric systems. The generalization of the related problem is not 

provided in details in this thesis. But the primary idea will be discussed in Section 

7.2. 

As indicated on page 25, any general Dining Philosophers problem can be reduced 

to the Restricted - Sharing Dining Philosophers problem. Beauquier, Datta, Grad-

inariu, and Magniette [3] presented a self-stabilizing solution for the Local Mutual 

Exclusion problem, which is similar to the Restricted - Sharing Dining Philosophers 

problem. Their algorithm, designed for fully distributed and completely symmetric 

systems, requires unbounded registers. In the paper they also gave an algorithm with 

bounded registers, but it apparently has flaws [5]. Even though the Local Mutual 

Exclusion problem has similar exclusion and progress requirements to the Dining 

Philosophers problem's, as shown later, algorithms for the Local Mutual Exclusion 

problem cannot efficiently solve the Dining Philosophers problem. 

In the following sections, we first give the graph model of the Local Mutual 
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Exclusion problem, then compare it with the Dining Philosophers problem under 

the same model. 

6.1.1 Local Mutual Exclusion 

In a simple graph G = (F, E), vertex set P represents a collection of processes. An 

edge (p, q) is in E if and only if p, q E P and processes p and q can communicate 

with each other. 

Every process has a dynamic label called state. The state of a process p E F, 

denoted as st ate(p) , is in {entry, critical section, exit} and the only state. transitions 

are entry -+ critical section -+ exit -+ entry. Transition from critical section to exit 

is spontaneous. 

The global configuration is required to satisfy exclusion, which is a property 

that for any configuration, no two neighboring processes can be in the state "critical 

section" simultaneously. 

Under the assumption that any process in the state "critical section" will change 

its state to "exit" later on, the global configuration is required to satisfy lockout-

freedom, which is a property that for any configuration where state(p)=entry, there 

exists a subsequent configuration where state(p)=critical section. 

6.1.2 Local Mutual Exclusion vs. Dining Philosophers 

Comparing the general descriptions of these - two problems, their similarities are re-

vealed by both the exclusion and the lockout-freedom properties. In the Local Mu-

tual Exclusion problem, no neighboring processes can be in the critical section at 

the same time, which is equivalent to no neighboring philosophers eating simulta-
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neously. Also, the requirement that every process in the Local Mutual Exclusion 

problem gets a chance to enter the critical section is equivalent to the requirement 

that every hungry philosopher in the Dining Philosophers problem eats eventually. 

In the Dining Philosophers problem, the transition from state thinking to hungry 

is spontaneous. A philosopher only interacts with her neighboring philosophers if she 

is hungry. She does not participate in the shared protocol while she is thinking. In 

contrast, the Local Mutual Exclusion problem requires that every process interacts 

with its neighbors whether or not it wants to access to the critical section. Therefore 

the Local Mutual Exclusion is essentially the same as a Dining Philosophers problem 

without the thinking state. 

One intuition is to use a solution to the Local Mutual Exclusion problem as a 

subroutine to solve the Dining Philosophers problem. Every philosopher executes 

the solution to the Local Mutual Exclusion problem, which guarantees that the 

philosopher will enter the critical section. Whenever she does, if she is hungry, then 

she grabs all her forks and eats, otherwise she is thinking, so she exits from the critical 

section immediately. Thus using Beauquier and Datta's self-stabilizing algorithm, we 

can design a self-stabilizing solution to the Dining Philosophers problem. However 

algorithms constructed this way are not efficient, because a hungry philosopher may 

have to wait until all her neighbors enter their critical sections even if they are all 

thinking before she herself can eat. 

In the following section, we present the techniques to build a self-stabilizing 

Dining Philosophers' solution in fully distributed and completely symmetric systems. 
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6.2 Self-Stabilizing Solution to the Dining Philosophers Prob-

lem 

To build a self-stabilizing solution to the Dining Philosophers problem, we must have 

self-stabilizing techniques to accomplish both exclusion and lockout-freedom. 

In shared memory settings, exclusion is usually ensured by using test-and-set 

objects or read/write variables with composite atomicity. In message passing set-

tings, exclusion is ensured by assigning a single token to every fork so that only one 

philosopher can hold the token at a time. Because objects and variables themselves 

are correct and self-stabilizing token circulating is a solved problem, exclusion is easy 

to achieve in a self-stabilizing system. 

In most of the papers we studied, lockout-freedom is ensured by applying priorities 

to philosophers that share one common fork. A philosopher p has higher priority than 

q on the fork shared between them is usually captured by a directed edge from q to p. 

The solutions provide a technique to ensure lockout-freedom as long as priorities do 

not form cycles. Therefore a cycle-free initial configuration is required. In the self-

stabilizing setting, no assumption can be made on the initial configuration, priorities 

may form cycles at the beginning or after transient faults during the execution of 

the algorithms. As a result deadlock happens. 

Suppose a cycle detection mechanism can detect and eliminate any cycles formed 

by priorities. Then combined with this extra mechanism, most solutions provide 

lockout-freedom in a self-stabilizing setting. In such solutions, the length of chains 

formed by priorities depends on either the size of the whole network, such as in 

Chandy and Misra's solution, or some local parameters, such as in Lynch's solution. 
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Therefore the self-stabilizing cycle detection protocol should be able to find cycles 

of any length up to the size of the network. 

Choy and Singh [8] solved lockout-freedom in a different way. In their solutions, 

a synchronous doorway, a asynchronous doorway, and a fault-tolerant fork collection 

scheme are used. To make their solutions self-stabilizing, one needs to implement 

both kinds of doorways in a self-stabilizing way. 

In the rest of this thesis, we choose the first course and design a self-stabilizing 

cycle detection algorithm that can find cycles of any length in a network. 

6.2.1 Cycle Detection 

Finding cycles of any length in a network becomes easy if every process has a glob-

ally distinct identifier. For simplicity, we assume that identifiers are just integers. 

Suppose each process p carries a local set W, which contains the identifiers of all 

the processes that can be reached through a directed path from p. Also p has a 

local variable called id, which is the identifier of p. A self-stabilizing cycle detection 

algorithm for a process p is shown in Figure 6.1. 

Because in a completely symmetric system, all processes are identical and do not 

have distinct identifiers, our original goal to design a self-stabilizing solution to the 

Dining Philosophers problem reduces to assigning a globally distinct identifier to 

every process in a self-stabilizing manner. Figure 6.2 sketches the idea to construct a 

self-stabilizing Dining Philosophers system. In this figure, nodes represent goals and 

a node's children are the subgoals required to achieve the parent goal. Note that all 

leaves are solved problems except the self-stabilizing distinct identifiers generation. 
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1: Do Forever: 
2: for every neighbor q such that there is a directed edge from p to q do 
3: send the set W U {id} to q 
4: end for 
5: for every set S received from a neighbor do 
6: if idESthen 
7: FOUND A CYCLE 
8: else 
9: W—WUS 
10: end if 
11: end for 
12: End Do 

Figure 6.1: Cycle Detection Based on Globally Distinct IDs 

6.2.2 Assigning Distinct Labels up to Distance k 

Self-stabilizing distinct identifier generation can be achieved by designing a self-

stabilizing algorithm that assigns distinct labels up to distance k to processes in a 

network. When k equals the diameter of the network, every process has a different 

label from all the others. 

Currently, there exist several such algorithms for k = 1 or 2. The idea of these 

algorithms is simple. When k = 1, every process keeps checking whether it has a 

distinct label from all its neighbors. If not, it randomly chooses a new label from 

a big range. For k = 2, every process keeps checking whether two of its neighbors 

have the same label. Because a process can distinguish one neighbor from another, 

two different neighbors must be at distance 1 or 2. If they have the same label, one 

of them should be notified to randomly choose a new label. 

Assigning distinct labels up to distance 3 is much more difficult. Suppose a 

process x finds out that one of its neighbors, say y, has a neighbor labeled z, which 
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Self-stabilizing Dining Philosophers 

Self-stabilizing Exclusion Self-stabilizing Lockout-freedom 

Self-stabilizing Cycle Detection 

Self-stabilizing Cycle Detection given Distinct Ids 

Priorities 

Self-stabilizing Distinct Ids Generation 

Figure 6.2: Self-stabilizing Dining Philosophers for Anonymous Networks 

is the same label as another of x's neighbors (see Figure 6.3). Then there exist two 

possible cases: 

1) Process x and y shares a common neighbor labeled z as shown in Figure 6.4. 

2) Process x's neighbor labeled z and y's neighbor labeled the same are different 

processes as shown in Figure 6.5. 

It is easy to see that case 1 is legal but case 2 should be eliminated because these 

two processes labeled z are at distance at most 3 and have the same label. But 

process x cannot tell which case really exists based on the information it collects. 

Similar situations may occur when k ≥ 4. Therefore the major task is to develop a 
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Figure 6.3: Distinct Labels up to Distance 3 

technique to distinguish the above two cases. No previous research has been done 

on this in the self-stabilizing setting: 

In the following section, we present a self-stabilizing algorithm for k = 3. Similar 

techniques but more involved can be applied to implement other cases where k > 4. 

This is further discussed in Section 7.2. 

6.3 Assigning Distinct Labels up to Distance 3 

The problem is to assign labels to every process in the system such that every pair 

of processes within distance 3 have distinct labels. 

The system is modeled by an arbitrary graph G = (P, E), where vertices represent 



112 

Figure 6.4: Case 1 

Figure 6.5: Case 2 

processes. Neighboring processes communicate with each other through shared link 

registers. The system works under read/write atomicity and is fully distributed and 

completely symmetric. 

6.3.1 Solution Strategy 

The strategy is to build a sequence of algorithms LDj for i = 1, 2, 3, such that LD 

is randomized self-stabilizing for configurations where labels of processes are distinct 

up to distance i, given any configuration where labels of processes are distinct up 

to distance i - 1. Using Theorem 5.3.6 introduced in Chapter 5, we fairly compose 

LD1, LD2, and LD3 together to obtain a randomized algorithm self-stabilizing for 

configurations where labels of processes are distinct up to distance 3. Algorithm 

LD1 is easy to construct. Algorithm LD2 is also quite straightforward. In fact, algo-

rithms already exist in the literature [7, 15] that are randomized self-stabilizing for 



113 

configurations where each pair of processes within distance 2 has distinct labels given 

an arbitrary initial configuration. Call the algorithm presented by Chattopadhyay, 

Higham and Seyffarth [7] Label—D2- Our strategy is to design an algorithm LD3, 

which can be composed with Label—D2 to obtain the objective algorithm Label—D3. 

Using Corollary 5.3.4, we then prove given an arbitrary configuration, algorithm 

Label_D3 is self-stabilizing for configurations where every pair of processes within 

distance 3 have distinct labels. 

One possibility to build LD3 would be to have every process compares its own 

label with the labels of others at distance 3. To do so a process collects information 

of all neighbors up to distance 3. To reduce the amount of information, another 

possibility is to let every process use knowledge of neighbors within distance 2. It 

compares the labels of its immediate neighbors and neighbors at distance 2. If a 

process x finds that its information is consistent with the case in Figure 6.3, it has 

to distinguish between cases in Figure 6.4 and 6.5. If the real situation is the case in 

Figure 6.5, then x alarms its neighbor labeled z. When a process receives an alarm, 

it randomly chooses a new label from a large range. The following sections give the 

data structure, algorithm, and proof of algorithm LD3. 

6.3.2 Data Structures 

Each process has access to two kinds of variables, local variables and shared link 

registers: A local variable is only accessible to its owner. As described in Section 

1.2.1, a link register is read and written by its owner and read by a neighbor. Since 

an anonymous system is usually assumed to be locally oriented (see page 8), every 

process in the system has a local name for each of the link registers shared with its 
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neighbors. Suppose a process x has Jx neighbors and names every link from 1 to 

6. It refers to the two link registers shared with a neighbor through link i as OUT 

and IN, where OUT is the register written by x and IN is the one written by the 

neighbor of x across link i. Notice that the neighbor of x through link i likely has 

different local names for these two registers. Tables 6.1 and 6.2 show the variables 

accessed by process x. 

x.label label of process x 
x.N a set containing labels of all x's neighbors 
x.M a set containing messages 
x.alarm a dangerous label of one of x's neighbor 
x.counter_yz' counter for cycle ((x, y, z)) consistency check 
x.f a random coin flip 

Table 6.1: Local Variable of Process x 

OUT,.1abel label of process x 
OUT.N a set of labels of all x's neighbors 
OUT,.M a set of messages for cycle consistency check 
OUT,.a1arm the neighbor's dangerous label 

Table 6.2: Shared Link Register OUTi. 

Correspondingly, register IN has the same fields as listed for OUT in Table 6.2. 

Assume x has a function, link(y), which returns its index of its link to a neighbor 

labeled y. If the link does not exist, then the operation, in which this function is 

invoked, will be skipped. 

'x.counter_yz is an atomic read/write variable associated with different pair of labels y and z. 
It is dynamically created and destroyed during the execution of the algorithm. There might exist 
any number of this type of variables in the system at a time. 
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6.3.3., Algorithm LD3 

The algorithm LD3 is a fair composition of the main algorithm and the validity 

check, where each step of the main algorithm and the validity check is executed 

alternatively. 

Algorithm LD3: (main algorithm) A 

ED (validity check) B 

In the main algorithm, every process's responsibility is to detect and report dan-

gerous labels of its immediate neighbors. Inthe validity check, every process needs 

to respond to the alarms it received and makes sure its information about its neigh-

borhood is up-to-date and the information it wrote to every neighbor agrees with its 

neighborhood. 

Even though the algorithm is designed in a link register model, sometimes it is 

more intuitive to present the algorithm using a message passing terminology. In the 

following sections, we describe the communications as processes sending information 

to their neighbors. 

A: Main Algorithm 

The main algorithm, itself, is a fair composition of (Check - 3 Cycle Consistent) 

and (Participate - 3 Cycle Consistent), where the steps of both parts are executed 

equivalently often. 

Main Algorithm: (Check - 3 Cycle Consistent) A.1 

(Participate - 3 Cycle Consistent) A.2 
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The purpose of (Check - 3 Cycle Consistent) is to detect the situation shown in 

Figure 6.3, and when it occurs to distinguish case 1 and case 2 shown in Figure 6.4 and 

6.5, respectively. The purpose of (Participate —3 Cycle Consistent) is to assist (Check 

- 3 Cycle Consistent) by forwarding information initiated by a different process 

during the execution of (Check - 3 Cycle Consistent). Whenever an interruption is 

received from the validity check, the (Check - 3 Cycle Consistent) is interrupted and 

starts from scratch. 

A.1: (Check - 3 Cycle Consistent) 

In the procedure (Check - 3 Cycle Consistent) (shown in Figure 6.6), a process x 

collects information from its direct neighbors and neighbors at distance 2. When it 

finds that a label z appears in both its direct neighborhood and one of its neighbors', 

say y's, neighborhood (see line 2), it tries to identify whether its neighbor labeled 

z and y's neighbor labeled the same are different processes or not. First x invokes 

a function (symmetry)(A.1.1) (see line 3), which returns false if it found evidence 

showing that these two processes are different. Therefore, when the function returns 

false, x informs its neighbor labeled z to randomly choose a new label (see line 4). If 

(symmetry) returns true, then it cannot immediately distinguish the two processes 

labeled z. In this case another function (mini_cycle_consistency) (A.1.2) is initiated 

by the process with the smallest label in {x, y, z} (see line 5 and 6). Function 

(mini_ cycle _consistency) uses randomization to distinguish x's neighbor z and y's 

neighbor labeled z. When (mini_cycle_consistency) returns false, x alarms one of 

its neighbors (see line 7). 



117 

1: for i+-1,2 .... 6,do 
2: for all z E x.Nfl IN.N do 
3: if - 1 symmetry(z, IN.1abe1) then 

4: OUT'. alarm •— z 
5: else if x.label< min{z, IN,.label} then 
6: if -' mini_cycle_ consistency (min{z, INJabel}, max{z, IN.1abel}) 

then 
link(x.alarm) 7: OUTX .alarm +— x.alarm 

8: end if 
9: end if 

10: end for 
11: end for 

Figure 6.6: Procedure (Check - 3 Cycle Consistent) 

A.1.1: (symmetry) 

The function (symmetry) (shown in Figure 6.7) checks whether x's neighbor labeled 

z has a neighbor labeled y. If it does not, then the function returns false, which 

indicates x's and y's neighbor labeled z must be different processes, because they 

have different neighborhoods. 

link(z) 1: symmetry(z, y) y E IN .N 

Figure 6.7: Function (symmetry(z, y)) 

When (symmetry) returns true, either x and y have a common neighbor z (as 

shown in Figure 6.4), or one of the following cases is true. 

Case 1: there exists a long path with repeated occurrence of labels x, y, and z 

(shown in Figure 6.8). 

Case 2: there exists a multiple cycle with repeated occurrence of labels x, y, and 

z (shown in Figure 6.9). 

If the real situation is case 1, then (symmetry) when invoked by the processes 
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... 

Figure 6.8: long path with x, y, z 

next to both ends of the path will return false. As a result, these two processes 

will send alarms to their neighbors, which are the two ends of the path. With high 

probability, they will choose a label other than x, y, or z, and therefore leave the 

path. Similar things will happen on the shortened path, and if every process chooses 

well, the path eventually will disappear. 

If the real situation is case 2, then no process on the multiple cycle can deter-

ministicly distinguish this from the minimum cycle shown in Figure 6.4. In this 

case randomization is employed in the function (mini_ cycle— consistency). To avoid 

every process on the multiple cycle initiate the (mini_ cycle— consistency), only the 

one with minimum label does so. 

A.1.2: (mini cycle consistency) 

This function (shown in Figure 6.10) returns a boolean variable but also modifies a 

local variable x.alarm. 

The major task of (mini_ cycle— consistency) is to distinguish Figure 6.9 and 

6.4. When process x invokes function (min_ cycle — consistency (y, z)), it increases its 

counter by one and randomly flips a coin (see line 1 and 2), then it sends a message 

containing its updated counter and coin flip to its neighbor y. 

As will be discussed soon, every process executing (Participate - 3 Cycle Consistent) 
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S.. 

Figure 6.9: multiple cycle with x, y, z 

forwards such messages initiated by a different process. If the minimum cycle shown 

in Figure 6.4 exists, then the message will be 'eventually delivered back to x. If the 

multiple cycle shown in Figure 6.9 exists, then x sends its message to the next x 

along the cycle. With probability a half, x generated a different coin flip from the 

proceeding process labeled x on this cycle. 

Because the system is asynchronous, the counter helps x distinguish the mes-

sages of the current invocation of (mini_ cycle— consistency) from the messages of 

the previous invocation. If the counter in the incoming message is 1 less than x's 

local counter, x will consider it as an old message from the last consistency check 

and will wait for it to be updated. 

If x receives a message from its neighbor z, which contains the same counter and 
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1: (increment _counter (y, z)) A.1.2.1 
2: x.f +- random coin flip 
3: Let condl(M) ( (c,A,B,C,f) E M) A (A = z) A (B = x.label) A (C y) 
A (c 0 x.counteryz-1) 

4: cond2 symmetry_check (z, y) 
5: cond3 symmetry_ check (y, z) 
6: repeat 
7: OUT''.M +- OUTk.M(x.counter_yz, x.label, y, z, x.f) 

8: x.M +- IN ".M 
9: until (-icondl(x.M)) V (-,cond2) V (-icond3) 

10: if condl(x.M) then 

11: for all (c,A,B,C,f) E M A A =IN'.label A B = x.label A 

C =IN '.1abel do 
lin12: OUT''.M +- OUT'.M\(c) B, C, A, f) 

13: if C = x.counter_yz A f = x.f then 
14: return true 
15: else 
16: x.alarm f- z 
17: return false 
18: end if 
19: end for 
20: else if cond2 then 
21: x.alarm — z 
22: free x.counter_yz 
23: return false 
24: else 
25: x.alarm *- y 
26: free x.counter_yz 
27: return false 
28: end if 

Figure 6.10: Function (mini cycle_ consistency (y, z)) 
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the same coin flip as its own local variables (see line 13), x considers this message to 

be the one initiated by itself. Process x's information is consistent with the case in 

Figure 6.4. Therefore function (mini_ cycle_ consistency) returns true (see line 14). 

If the counter of the incoming message from z coincides with x's local counter but 

the coin flip does not, or the counter does not equal to x's local variable and is not one 

smaller than x's local variable, then x knows this is a message from another process 

with the same label. Therefore x has the evidence of the existence of a multiple cycle 

(or it is embedded in a long path). Function (mini_ cycle_ consistency) sets x's local 

alarm (x.alarm) to z and returns false (see line 16 and 17). 

While x is waiting for the message from z, it keeps invoking (symmetry(z, y)) 

and (symmetry(y, z)). If one of them returns false, then x knows the symmetry case 

has disappeared. It sets its local alarm (x.alarm) to the dangerous label (see line 21 

and 25) and destroy the local variable x.counter_yz (see line 22 and 26). Function 

(mini_ cycle— consistency) also returns false (see line 23 and 27). 

All messages traveling among processes have the following format: (c, A, B, C, f), 

where A, B, and C are the labels of the sender, the receiver, and the process to which 

this message will be forwarded, respectively. Variables c and f are the local counter 

and coin flip of the sender. The message is initiated by the process with label 

min{ A, B, C}. 

We introduce a send-overwrite operation denoted as W, which is used whenever 

a process x writes a message to some neighbor. Operation OUT.M +- OUT.M 

(counter,r,s,t,flip) is defined in Figure 6.11. 

This operation will overwrite any message in the destination set with the same 

middle three fields but different counter or coin flip. 
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1: for all (c,A,B,C,f) E OUT.M do 
2: if (A = r) A (B = s) A (C = t) A (c Ocounter V f flip) then 
3: OUT.M +- OUT.M\ (c, r, s, t, f) 
4: end if 
5: end for 
6: OUT.M +- OUT.Mu (counter,r,s,t,flip) 

Figure 6.11: Operation OUT.M - OUT.MW (counter,r,s,t,ffip) 

A.1.2.1: (increment counter(y, z)) 

Process x has a variable x.counter_yz that counts how many times x invokes the 

function (mini_ cycle_ consistency) to detect a particular cycle (x, y, z). This counter 

helps x to distinguish between an old message from a previous invocation and an 

updated message from the current invocation. 

When x invokes (mini_ cycle_ consistency) for cycle (x, y, z), if the corresponding 

counter does not exist, then x creates one (see line 2). Otherwise x increases the 

counter by one then modulo by n, which is the size of the network (see line 4). 

As will be discussed later, this local counter will be destroyed in the validity check 

when x has an evidence showing that cycle (x, y, z) does not exist. 

1: if x.counter_yz does not exist then 
2: new x.counter_yz 
3: else 
4: x.counter_yz +- (x.counter_yz + 1)mod(n) 
5: end if 

Figure 6.12: Function (increment_ counter (y, z)) 

A.2: (Participate 3 Cycle Consistent) 

In (Participate - 3 Cycle Consistent) (shown in Figure 6.13), a process forwards 

all the messages initiated by (Check - 3 Cycle Consistent) by a different process. 
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For every incoming message, if the middle three fields are consistent with x's local 

information and x is not the minimum label (see line 3), then x treats it as a valid 

message from another process and forwards it to the targeted neighbor (see line 4). 

1: for i •— 1, 2,.. . , J. do 
2: for all (c, A, B, C, f) E IN.M do 
3: if A =IN.label A B = x.label A C E x.N A B > min{ A, C} then 

lin4: OUT'.M •- OUT k(V)MEJ (C) B, C, A, f) 
5: end if 
6: end for 
7: end for 

Figure 6.13: Procedure (Participate - 3 Cycle Consistent) 

B: Validity Check 

In validity check, a process x invokes four functions: (Check for Alarm), (Collect and 

Update Neighbors' Labels), (Message Consistency Check), and (Counter Consistency 

Check). The program of validity check is as follows: 

1: Do Forever: 

2: (Check for Alarm) B.1 

3: (Collect and Update Neighbors' Labels) B.2 

4: (Message Consistency Check) B.3 

5: (Counter Consistency Check) B.4 

6: End Do 

B.1 (Check for Alarm) 

In function (Check for Alarm) (shown in Figure 6.14), a process x checks whether 

it received any alarm that contains the same value as x's own label (see line 2). If 

so, the alarm is called a valid alarm and x randomly chooses a new label from a 
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large range { 1, ..., R} (line 3), erases all the messages it wrote to its neighbors (line 

5 and 6), and send an interruption to the main algorithm (line 7). We assume R is 

at least as big as 2L6 (3/.2 + 1) where Li is the maximum degree of any process in 

the network. 

i: for i-1,2,...,8do 
2: if IN.alarm = x.label then 
3: x.label +- random number from 1 to R ≥ 2A6 (3A2 + 1) 
4: for i+-1,2,...,8do 
5: OUT.label +- x.label 
6: OUT.M—Ø 
7: send interruption to main algorithm 
8: end for 
9: end if 

10: end for 

Figure 6.14: Function (Check for Alarm) 

B.2 (Collect and Update Neighbors' Labels) 

In (Collect and Update Neighbors' Labels) (shown in Figure 6.15), a process x collects 

labels from all its neighbors (see line 1), and update the information it sends to every 

neighbor (see line 3 and 4). 

1: x.N - U1<<5 IN.label 
2: for i +- i,,T. Jx do 
3: OUT.label - x.label 
4: OUT,.N +- x.N 
5: end for 

Figure 6.15: Function (Collect and Update Neighbors' Labels) 
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B.3 (Message Consistency Check) 

In this function (shown in Figure 6.16), a process x checks every message (c, A, B, C, f) 

it wrote to its neighbor. If one of the following conditions is true (see line 3), then x 

erases the message (see line 4) and sends an interruption to the main algorithm (see 

line 5): 

• The neighbor to which 'x wrote this message has a label different from B 

• x does not have a neighbor with label C 

• x's label is the minimum among the three labels, and c or f does not coincide 

with x's local counter and coin flip. 

• x's label is not the minimum among the three labels, and there is no corre-

sponding source from neighbor labeled with C 

1: for i-1,2,...,5do 
2: for all (c, A, B, C, f) OUT,.M do 
3: if (IN.1abe1 B) V (C 0 x.N) V (A < min{B, C} A (c x.counter v 

f / x.f)) V (A> min{B, C} A (c, C, A, B, f) IN ° .M) then 
4: OUT'. +- OUT.M\(r,A,B,C,f) 
5: send interruption to main algorithm 
6: end if 
7: end for 
8: end for 

Figure 6.16: Function (Message Consistency Check) 

B.4 (Counter Consistency Check) 

The purpose of a local variable x.counter_yz is to count how many times that x 

invoked function (mini_ cycle_ consistency) to detect the existence of a particular 
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cycle (x, y, z). When x does not has a neighbor y or z (see line 2) anymore, it 

is straightforward that such a cycle does not exist. In this case x will not invoke 

function (mini_ cycle_ consistency (y, z)). Therefore the local variable x.counter_yz 

should be destroyed (see line 3). 

1: for all x.counter_yz do 
2: if y x.N V z x.N then 
3: free x.counter_yz 
4: end if 
5: end for 

Figure 6.17: Function (Counter Consistency Check) 

6.3.4 Proof Outline 

First define i-local-secure and i-local-insecure for some positive integer i. 

Definition 6.3.1. A process is i-local-secure if and only if its label is distinct from 

all others within distance i and is also distinct from all labels in shared link regis-

ters or local variables of processes within distance i. Otherwise the process is called 

i-local-insecure. 

Then define a predicate i-secure for some integer i over configurations as follows: 

Definition 6.3.2. Let c be a configuration. i-secure(c) every process in the system 

is i-local-secure in configuration c 

Predicate 0-secure means there is no restriction on the label of each process. It 

is easy to see that a sequence of such predicates 1-secure, 2-secure,... are nested. 

The self-stabilizing algorithm Label_D2 [71 assigns to every process a label such 

that processes within distance 2 have distinct labels. This algorithm is random-
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ized self-stabilizing for 2-secure given 0-secure. By using the technique presented in 

Chapter 5, we will show that starting from any arbitrary configuration, given any 

configuration satisfying 0-secure, a fair composition of Label_D2 and LD3 is random 

self-stabilizing for 3-secure, which implies that every pair of processes within distance 

3 have distinct labels. Based on Corollary 5.3.4, we need to establish that there exists 

a particular fair composition Label_D2EILD3, also called Label_D3, that satisfies 

the following three requirements. 

1. Algorithm LD3 is random(p, k) self-stabilizing for predicate 3-secure else 0-secure 

given 2-secure. 

2. Algorithm LD3 is (0-secure, r) right non-interfering with Label_D2 via Label—D3. 

3. Algorithm Label_D2 is (2-secure, 1) left non-interfering with algorithm LD3 

via Label_D3. 

Algorithm Label_D2 does not change labels of any processes at all in any configura-

tion satisfying 2-secure. Thus the requirement 3 is satisfied for any fair composition 

of Label_D2 and LD3. The next two sections establish the first two requirments 

respectively. 

6.3.5 Self-stabilization of LD3 

To demonstrate that algorithm LD3 is random(p, k) self-stabilizing for predicate 

3-secure else 0-secure given 2-secure, for 0 < p ≤ 1 and a positive integer k, we 

need to prove the probabilistic convergence property and closure property. Because 

the algorithm has read/write atomicity, a process A may delay arbitrarily between 

reading a shared register from one neighbor B and writing to a shared link register 
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of another neighbor C, even when these are consecutive steps in A's algorithm. Thus 

process A may convey out-of-date information to C. This could, for example, cause 

process C to send an alarm unnecessarily. One of the subtleties of the proof is to show 

that such phenomena do not cause serious problems. The notion of 3-local-secure 

and 3-local-insecure processes is used for the proofs of both convergence and closure. 

Closure Property 

Closure can be proved by establishing that once predicate 3-secure holds, no process 

will receive an alarm. 

Theorem 6.3.1. Starting from any configuration satisfying 3-secure, for any dis-

tributed scheduler, all subsequent configurations of algorithm LD3 satisfies 3-secure. 

Proof. In any configuration satisfying 3-secure, if a process x found that its neighbor 

y has a neighbor labeled the same as one of x's other neighbor z, then process x, y, 

and z form a cycle. Without loss of generality, assume x.label < y.label < z.label, 

then x will invoke ( mini_ cycle_ consistency (y. label, z.label)). Both y and z will 

execute (Participate - 3 Cycle Consistent). The message initiated by x will be 

copied back to it eventually with the same counter and coin flip. Therefore based on 

line 13 of Figure 6.10, ( mini_ cycle— consistency (y. lab el, z.label)) will return true. 

Process x will not set an alarm. El 

Probabilistic Convergence Property 

Convergence is more difficult to prove. We prove it by showing that starting from a 

configuration satisfying 2-secure but not 3-secure, after a bounded number of super 

rounds of algorithm LD3, either 3-secure becomes true, or some 3-local-insecure 
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process chooses a new label. If every 3-local-insecure process is lucky enough to 

become 3-local-secure after choosing a new label, then a configuration satisfying 

3-secure is reached. Otherwise a 3-local-insecure process may choose a label of some 

neighbor within distance 3. It may even choose a label within distance 2, thus 

falsifying 2-secure. However 0-secure is always maintained. Our proof contains the 

following two steps: 

1) Choices Happen, in which we show that if the system stays in configurations 

satisfying 2-secure but not 3-secure for a bounded time, then some process chooses 

a new label. 

2) Convergence Happens, in which we model algorithm LD3 with a Markov pro-

cess, and show that with probability 1 the system converges to 3-secure. 

Choices Happen We will establish the following: if the current configuration c 

satisfies 2-secure but not 3-secure, then let algorithm LD3 run for a finite number of 

super rounds. Either some process chooses a new label within these super rounds, or 

predicate 3-secure becomes true, or starting from the new configuration some process 

will choose a new label shortly. 

First we introduce some useful definitions. 

Definition 6.3.3. All registers accessed by process x match with reality, if: 

1. x.N = U y.label. 
YEN(s) 

2. O UT, label =x. label for i=1,...,6 

3. OUI.N = x.N 

4. Vi E [1, ö] and V(c, A, B, C, f)e OUI.M, the following three conditions hold: 
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(a) A = x.label, B =II\.label, and C E x.N 

(b) if A < min{B,C} then c= x. counter and f = x.f 

(c) if A> min{ B, C} then (r, C, A, B, f) 

Conditions 1, 2, and 3 ensure that x has up-to-date knowledge of all neighbors' 

labels and broadcasts up-to-date information to all its neighbors. Condition 4 ensures 

all messages written by x have correct information of the real system.: Condition 

4(a) ensures that the middle three components are consistent with the sender, the 

receiver and one of the sender's neighbor, respectively. Condition 4(b) ensures that 

if x initiated the message, then the counter and coin flip are consistent with x's local 

values. Condition 4(c) ensures that if x is only passing the message, then there exists 

a source from which x received the information. 

Define a predicate LC over configurations as follows: 

Definition 6.3.4. Predicate LC the values in all shared link registers or local 

variables match with reality. 

Definition 6.3.5. A multiple cycle with repeated pattern (x, y, z) is a cycle (pi, ...,p), 

such that n ≥ 6 and is a multiple of 3 and the labels of p1 to pn can be represented 

by the following regular expression: 

(xyz) 

Definition 6.3.6. A long path with repeated pattern (x, y, z) is a sequence of pro-

cesses (pt) ...,p), such that n ≥ 4 and the labels of pi to Pn can be represented by 

the following regular expression: 

(6 U z U yz) . (xyz). (x U xy U 6) 
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Lemma 6.3.2. Within 3 super rounds of algorithm LD3, if no process chooses new 

label, then predicate LC becomes true. 

Proof. In the first super round, every process will broadcast its own label to its 

direct neighbors, which implies Vx E P, OUT= x.label for i = {1, ..., 5}. In the 

second super round, every, process collects the updated label of its direct neighbors 

and broadcast this updated information, which implies Vx E P, x.N and OUT.N 

contain the real labels of x's direct neighbors for i = {1, ..., 8}. Based on these 

correct registers, in the third super round, every process x will clear up old messages 

in OUT.M for i = {i, ..., J.J. Therefore after three super rounds of algorithm LD3, 

if no process chooses a new label, then the values in all shared link register and local 

variables of every process in the system match with reality, which implies predicate 

LC is true. 0 

In any configuration where 2-secure A LC A (-i 3-secure) holds, if a process with 

label x notices that its neighbors labeled y and z each has a neighbor labeled z and y 

respectively, and x <y < z, it will initiate a (mini_ cycle— consistency (y, z)). There 

are three possible situations: 

1. The process and its neighbor labeled y and z form a cycle of length 3. 

2. There exists a long path with repeated pattern (x, y) z) 

3. There exists a multiple cycle with repeated pattern (x, y, z) 

Case 1 is legal, and it is easy to check from the algorithm that nobody changes 

its label in this case. Case 2 and 3 need to be eliminated. Lemmas 6.3.3 and 6.3.4 

show how the elimination is achieved. 
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Lemma 6.3.3. In any configuration satisfying 2-secure A LC, if there exists a long 

path with repeated pattern (x, y, z), then within two super rounds, the processes at 

each end of the path will choose a new label. 

Proof. Let (p1, . -,Pm) be a maximal length path containing the repeated pattern 

(x, y, z). Process P2 will notice that its neighbor p3 has a neighbor p4 labeled the 

same as Pi, while pi does not have a neighbor labeled the same as p3. Therefore 

symmetry) of process P2 returns false, and P2 informs p, to choose a new label. 

Process Pm-i is in the similar situation, and will also alarm its neighbor p. Processes 

Pi and p will receive the alarm in the execution of (Check for Alarm) in the next 

super round, and will randomly choose a new label. 0 

Lemma 6.3.4. In any configuration satisfying 2-secure A EC, if there exists a mul-

tiple cycle with repeated pattern (x, y, z), then the expected number of super rounds 

of algorithm ED3 before at least one process on the cycle chooses a new label is at 

most 3. 

Proof. Without loss of generality, suppose x <y <z. If a process with label x has 

the same counter as its successor, then with probability a half, they will generate 

different coin flips. The (mini_ cycle _consistency) of its successor will return false 

(see line 17 of Figure 6.10) in 2 expected number of super rounds. 

If a process with label x has a counter that is not the same as or that is 

not one smaller than its successor's counter, then within one super round, the 

(mini_ cycle— consistency) of its successor will return false. 

The only remaining case is that a process with label x has a counter that is 

one smaller than its successor. In this case its successor will consider its incoming 
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message as an out-of-date message from itself, and will wait for an updated message. 

Because the counter is incremented modulo a number, which is bigger than one third 

the net work size, it is impossible for all processes with label x on the cycle to have 

a counter one bigger modulo the number than their predecessor. Therefore at least 

one process will receive a message with a counter that is not equal to or one smaller 

than its local value. One of the previous two cases apply to this process. 

As a result, within expected 2 super rounds of ED3, at least one process in with 

label x sets an alarm to one of its neighbor. That neighbor will receive the alarm in 

the next execution of validity check, and will randomly choose a new label. El 

Corollary 6.3.5 follows immediately from Lemmas 6.3.3 and 6.3.4 and correctness 

of (symmetry). 

Corollary 6.3.5. In any configuration satisfying 2-secure A LC A (—' 3-secure), 

within an expected 3 super rounds of algorithm ED3 at least one process will choose 

a new label. 

Theorem 6.3.6. In any configuration satisfying 2-secure, if there exists some 

3-local-insecure processes, within expected 6 super rounds of algorithm ED3, either 

all processes become 3-local-secure or at least one process chooses a new label. 

Proof. From any configuration where some processes are 3-local-insecure, after 3 

super rounds of algorithm ED3, either some process chooses a new label or none 

of them do. If nobody chooses a new label, by Lemma 6.3.2 predicate LC is true. 

Now either all processes are secure or there still exists a 3-local-insecure process. If 

the latter case is true, then by Corollary 6.3.5, at least one piocess chooses a new 

label. El 
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Convergence Happens 

We first introduce some useful definitions. 

Define the neighborhood of a process up to distance i as follows: 

Definition 6.3.7. For a process x define: Ni (x) {y E P11 <d(x, y) ≤ i}. 

The set N(x) contains all x's neighbors within distance i. Clearly, Ni(x) (nor-

mally abbreviated as N(x)) represents the set of immediate neighbors of process 

X. 

Definition 6.3.8. For a process x define: ô = maximum degree of any process 

yEN(x) 

Clearly, 6 (normally abbreviated as 5) is the degree of process x. Let A x be 6, 

which is the maximum degree among x and its neighbors within distance 2. 

Definition 6.3.9. For a process x define: 

L(x) y.label U U y.N U U y.alarm U 
yEN(x) yEN(x) YEN(X) 

JX 

UIN.alarm U U IN' .label 
j=1 k,1€N(x) and kEN(1) 

The set Li(x) consists of all the possible labels existing in the shared link registers 

or local variables of x's neighbors within distance i. By assuming there exists an edge 

between every pair of processes in Ni(x), we can give an upper bound on the size of 

L (x). In this algorithm we are only concerned with L2 (x) and L3 (x), whose sizes are 

bounded by 2(6) and 2(ö)6, respectively when ö, J•2 > 2, which is overestimated 

again by 2() and 2(z)6, respectively. 
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When a process x chooses a new label from the integer set from 1 to M, with 

probability at least 1. I')I, x's new label is distinct from all neighbors within dis-

tance 2, which implies predicate 2-secure is maintained, otherwise 2-secure becomes 

false. 

In this section we prove the convergence behavior of algorithm LD3 and make a 

conditional analysis under the following assumption. 

Assumption 6.3.7. Whenever a process x E P chooses a new label, it never chooses 

a label in L2(x). 

Assumption 6.3.7 indicates that whenever a process chooses a new label, it always 

stays 2-local-secure. Although this assumption is not always true, it happens with 

high probability. We will remove the conditioning on this assumption later. 

If an 3-local-insecure process chooses a new label, then with probability 1 - 

ILx)I, x becomes 3-local-secure. Otherwise under Assumption 6.3.7 it may stay 

3-local-insecure and possibly make some 3-local-secure neighbors 3-local-insecure by 

choosing their labels. Because a 3-local-secure process has a label different from all 

existing information of its neighbors within distance 3, a process will not choose a 

new label while it is 3-local-secure. 

Lemma 6.3.8. If an 3-local-insecure process x chooses a label and is still 

3-local-insecure, it causes at most ()2 3-local-secure processes to become 

3-local-insecure. 

Proof. Let N(x) = {yi,. . . , Ym} for some process x. If z E N2 (y) is a 3-local-secure 

process, then there can be at most J1 3-local-secure processes with the same label as z 

in N2(y). Hence there can be at most 6•6 ≤ (X)2 3-local-secure processes in N3(x) 
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all having the same label. If process x is 3-local-insecure and chooses the label z, then 

it remains 3-local-insecure and makes at most ()2 processes 3-local-insecure. 0 

Lemma 6.3.9. The probability that a 3-local-insecure process x chooses a label and 

it is still 3-local-insecure is at most 1  3()2+1 . 

Proof. A process x chooses a new label uniformly from the set {1, ..., R}. Since 

R ≥ 2(.)6(3(z)2 + 1), the probability that process x chooses a label in L3(x) and 

stays insecure is less than 

L3 (X) 2(&) 

M - 2(L)6(3(L)2+1) 
1 

= 3() 2 +1 

D 

Therefore the probability for any 3-local-insecure process to stay 3-local-insecure 

after choosing a new label is at most  

To prove the convergence of algorithm LD3, we model it as a Markov Process. 

The expected number of steps is shown to be overestimated by a biased random 

walk, which, in turn, is shown to use only 2n expected steps. 

Define the following Markov process: 

d-Penalty(pN) Walk: The states are {so,. . . , s} such that the probability Pr[s, Si] 

of moving from state si to sj at any step is given by: 

VU ≤ i <n,Pr[sj,sj+i] =PN 

VU < i < d,Pr[s,so] = q 
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Vd < i <n, Pr{s, Si—dl = qN 

Pr[s, Sn] = 1 

where PN + qN = 1. 

Observation 6.3.10. Let si denote a configuration where i processes in the sys-

tem are 3-local-secure. Algorithm LD3 's convergence behavior can be simulated by 

a d-Penalty(pN) Walk, where d = L2 and PN = 1 1  
3 2+1 . This Markov process 

underestimated the convergence speed of algorithm LD3 by assuming that every time 

a 3-local-insecure process chooses a label and is still 3-local-insecure, it drags A.2 

neighbors from 3-local-secure to 3-local-insecure. 

Define a second Markov process as follows: 

Biased(p) Random Walk: The states are {so,. . . , s,-} such that the probability 

Pr[si, s] of moving from state si to sj at any step is given by: 

VU < i <n, Pr[s, s+,] = PR 

VU <i <n,Pr[s,s_1] = qR 

Pr[so, 50] = qR, Pr[s, sn] = 1 

where pR+qR = 1. Notice that a Biased(pR) Random Walk is just a 1-Penalty(PR) 

Walk. 

Let ER[s, s] denote the expected number of steps for a Biased Random Walk 

to go from state si to state Si. The following three lemmas compute the value of 

ER [SO, Sn]. 
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Lemma 6.3.11. ER[so, s1] and Vi ≤ i ≤ n—i, ER[s, si] = -+ER[s_i, sj] 
PR PR PR 

Proof. From state s0, after 1 step, with probability pp, the next state is s and with 

probability qR = 1 PR the system remains in s0. Hence, ER[so, 81] = i+qRER[So, s1] 

implying ER[so, s1] = 
PR 

For i ≥ 1, from state s, after 1 step, with probability PR the next state is 

and with probability qR = 1 - PR the next state is Hence: 

ER[s, Si+1] = 1 + q ER[s_1, si] = 1 + (ER[sj_l, s] + ER[Si, s+]). 

Therefore: 

PR ER[sj, Si+1] = 1 + q ER[S....1, Si] 

implying 

ER[sj, s1] = 1 - + q :ER[S_1, Si]. 
PR PR 

0 

Lemma 6.3.12. For any probability PR and VU <i < n, ER[sj_1, s4 ≤ ER[S, s+1]. 

Proof. The proof proceeds by induction on the state index i. For the base case let 

i=1. 

From Lemma 6.3.11, ER[S1, s2] = + ER[SO, si] ≥ = ER[so, si]. 
PR PR PR 

For the inductive step, assume that for all 1 ≤ i < k, ER[s_1, s] ≤ ER[s, 

ER[sk, Sk+1] = i qR - + —ER[sk_1, Sk] by Lemma 6.3.11 
PR PR 

> + qR E R[sk_2, Sk_1] 
PR PR 

by the induction hypothesis 

= ER[sk_1, Ski by Lemma 6.3.11 

0 
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Lemma 6.3.13. If PR > q, then ER[so, s] <   
pR— qR 

Proof. ER[so, so] = 0 and for n ≥ 1 

ER[so, s,-] = ER[so, s1] + ER[sj, s+] 
1≤i≤n-1 

1 1 q 
= - + - + —ER[s_1, Si] I (by Lemma 6.3.11) 

PR 1<i<n-1 (PR PR / 
n q 

= - + ER[so, en-11 
PR PR 

Solving this recurrence yields: 

ER[so, Sn] 

< 

< 

n — i qR 

O<i<n-1 PR PR 

n L MY 

PR O<i<n-1 PR 
n 

PR - qR 
(provided qR <PR) 

0 

Associate to each d-Penalty(pN) walk the comparable Biased(PR) Random walk 

by setting PR -  PN  (and hence, 1 - PR = qR = dgN 
pN+dqN pN+dqN)• -  

Let EN[sj, s] denote the expected number of steps for a d-Penalty(pN) walk 

to go from state si to state s. The following lemma shows that EN[S, s] will 

be overestimated by ER[s, s] for the comparable Biased(pR) Random walk defined 

above. 
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Proof. The proof proceeds by induction on the state index i. For the base case let 

i=0. 

(by Lemma 6.3.11) 
PR 

pN+qNd 
(by value of PR) 

PN 
pN+qN  

PN 
(because d ≥ 1) 

1 
- =EN ISO, sj]. 
PN 

For the inductive step assume that VO ≤ i < 1 - 1, EN [Si, S4] ≤ FIR [Si, If 

0 <1 ≤ d, 

EN[81, 81+1] = 1+qN.EN[so, 81+1] = 1--qN.(EN[so, s1I+...+EN[SI_1, s1])+qN.EN[s, 81+1] 

Therefore, 

FIN [81, 8i+i] = + qN (E[80, S] + ... + EN[sj_1, 81]) 
PN PN 

1 + q 
- —(ER [so, s1] + ... + ER[si_1, Si]) (by the induction hypothesis) 
PN PN 

+ ER(SI_, Si) (by Lemma 6.3.12). 
PN PN 

In a similar way, if d < 1 <n, 

EN[S1, Si+i] = 1 + q (EN{sl_d, S1d+i] + ... + EN[si_1, s1]) + q EN[si, Si+i]. 

Therefore, 

EN[SI, 81+1] 
1 + q 

= - —(EN[si_d, i—d-I-i] + ... + EN [s1_i, Si]) 
PN PN 

PN PN 
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So, in either case, 

EN[SI, s11] + d81 SI] 

PN PN 

<   (because pN+qN.d≥1) 
- PN PN 

1 q-11 
= - + - JIRISI_1, SI 

PR PR 

= ER[SI, Si+i] (by Lemma 6.3.11) 

(by definition of PN) 

ITI 

Corollary 6.3.15. The expected number of steps for a d-Penalty(pN) walk to termi-

nate in state sn from any initial state is at most n(pN+dqN) pNdqN 

Proof. The expectation is maximized for initial state so. Let ER denote the expected 

number of steps for the comparable Biased(PR) Random Walk. 

EN[so, s] = EN[so, s1] + EN[sl, S2] + ... + EN[Sfl_1, Sn] 

≤ ER[so, s1] + ER[sl, 82] + ... + ER[sfl_l, s] (by Lemma 6.3.14) 

= ER[sO,Sfl] 

  (by Lemma 6.3.13) 
PR - qR 

=  PN dqN (by Def. of comparable Biased(PR) Random Walk) 
pN+dqN pN+dqN 

- n(pN+dqN) 

- pN— dqN 
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Therefore based on Observation 6.3.10, the expected number of super rounds for 

ED3 to converge to a configuration satisfying 3-secure is   where p-dq p =   

q = l—p, and d= 2• 

Theorem 6.3.16. Starting from any configuration satisfying 2-secure, for any dis-

tributed scheduler, under Assumption 6.3.7, algorithm ED3 will converge to a con-

figuration satisfying 3-secure after an expected number of 2n choosing operations. 

Proof. Based on Observation 6.3.10, the d-Penalty(pN) walk where d = z.2 and 

PN 1   overestimates the expected number of super rounds f for algorithm 

ED3 to converge to 3-secure. Therefore 

E ≤ EN[so,sfl] 

n(py + dqN) (by Corollary 6.3.15) 
- pN— dqN 

n( 32 + __ ____ 

- 3 2+1  
- 32 1 

3 2+1 3 2+1 

m(3z 2 + 2) 

= 32_2 

n41. 2 

2L 2 

=2n 

D 

Removing Assumption 6.3.7: If, in the course of choosing new labels, no process 

ever chooses a label that is the same as any of its neighbors within distance 2, then 

3-secure holds after an expected 2n choices. The probability for a process x to choose 

labels not in L2(x) is: 

1 L2 (X) >  + - 1 
M - 3L+L 
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Therefore the probability for any process in the system not to make such a choice 

M +z 2 1 
is bounded from below by 33M+2 

Theorem 6.3.17. Starting from any configuration satisfying 2-secure, and for any 

distributed scheduler, after expected 12n super rounds of algorithm LD3, a configura-

tion c is reached. With probability at least (st;l)2 c satisfies 3-secure, otherwise 

it satisfies 0-secure. 

Proof. By Theorem 6.3.16 if a process never choose a label the same as any neigh-

bors within distance 2, after expected 2n choices, algorithm LD3 will converge to a 

configuration satisfying 3-secure. By Theorem 6.3.6, 2n choosing operations happen 

within at most 12n super rounds of algorithm LD3. The probability that no process 

chooses a label within distance 2 in 2n choosing operations is at least (3 t;1)2'. 

Even if some process chooses a label within distance 2, predicate 0-secure is always 

true. 0 

4+ 2_ 1 
Corollary 6.3.18. Algorithm LD3 is random(( 3 342 ) 2n , 12n) self-stabilizing to 

3-secure else 0-secure given 2-secure. 

6.3.6 Non-interference of LD3 

As indicated in Section 6.3.4, we need to show that there exists a particular fair 

composition of Label_D2 and LD3, such that algorithm LD3 is (0-secure, r) right 

non-interfering with algorithm Label_D2 via the composition. It is easy to see that 

algorithm LD3 does not obstruct Label_D2, if every process never chooses a label 

within distance 2. Starting from any configuration satisfying 0-secure, algorithm 

Label_D2 converges to a configuration satisfying 2-secure within a finite number of 
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steps, in which processes will make a finite number of choices in algorithm LD3, say 

c. Since the probability that any process does not choose a label within distance 2 

3L 4+2 2-1\c is at 3,4+.2 most 342_1 (see page 143), the value of r is bounded above by (  3M+2 ) 

Different ways to construct the composition may result in different values for c. 

A standard way to compose Label_D2 and LD3 would be to have each process 

execute the steps of the two algorithms alternatively. The value of c depends on the 

convergence speed of the Label_D2. 

Another way is to make a conditional composition, where each process's program 

is sketched as follows: 

1: run an iteration of Label_D2 

.2: if no shared link registers or local variables has been changed then 

3: run an iteration of algorithm LD3 

4: end if 

With this composition, algorithm LD3 interferes much less with the Label_D2 

before a configuration satisfying 2-secure is reached. Therefore the value of r in this 

composition is much bigger than with the standard composition. 

Observation 6.3.19. There exists a fair composition of Label D2 and LD3 that is 

random self-stabilizing for 3-secure given 0-secure. 

6.4 Further Discussion 

As indicated in Section 6.2.1, assigning distinct labels up to distance 2 is easy, be-

cause it is easy to distinguish one neighbor from another. Randomization is used 

to choose new labels; discovering that labels are not distinct at distance 2 is done 
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deterministically. 

In our algorithm randomization is also used to discover the illegitimate case. For 

example, consider a multiple cycle with repeated pattern (x, y, z), where x < y < z. 

If all processes on the cycle with label x have the same counter, then with probability 

one half, each such process generates a different coin flip from its successor. Thus 

the error will be discovered by its successor. 

The counter in the message also plays a very important role, because a process 

needs to determine whether an incoming message is out-of-date or not. For example, 

in a minimum cycle (z, y, z), where x < y < z, the process with label x will keep 

calling the function (mini_ cycle_ consistency (y, z)), because both (symmetry(z, y)) 

and (symmetry(y, z)) always return true. With probability one half, this process may 

generate different coin flips within two successive invocations. If there is no counters, 

then in the second invocation, the process label x may read the old message from the 

first invocation before its new message has been delivered. Then the process with 

label x will falsely send an alarm to one of its neighbors. 

Also a process has to distinguish an old message from itself and a message from 

its predecessor. For example, in the above multiple cycle situation, if every process 

with label x has a counter one smaller than its successor, then every such process will 

consider the incoming message as an old message from itself, and waits for a updated 

message, which will never arrive. To avoid this, the counter is incremented modulo 

k where k is bigger than one third the network size. Then it is impossible for all 

processes in the cycle to have a counter one bigger modulo k than their predecessor. 

Another issue is that the expected number of super rounds for algorithm LD3 to 

converge is hugely overestimated in Corollary 6.3.18 by assuming that in every three 
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super rounds only one 3-local-insecure process chooses a new label. Most of the time, 

with high probability within two super rounds at least half of the 3-local-insecure 

processes choose a new label. For example, consider a long path or a multiple cycle 

with repeated pattern (x, y, z), where x < y < z, if all counters are the same, then 

with probability a half, each of the processes with label x generate a coin flip different 

from its successor's. Therefore we expect half of the processes with label x will send 

an alarm. If the counters are not all the same and every process with label x does 

not generate a counter that is one smaller than its successor's, then all the x labeled 

processes will send an alarm. Otherwise, if processes do have a counter one smaller 

than their successors', as shown in Lemma 6.3.4, this can only happen in a long path. 

Based on Lemma 6.3.3 processes at both end will receive an alarm and choose new 

labels, with high probability they become 3-local-secure and leave the path. At this 

point, all the intermediate processes have not finished their current iteration of the 

algorithm yet, because they are all waiting for updated messages. Thus the super 

round is not ended. And eventually all processes except the middle 2 or 3 processes 

will choose a new label within one super round. 



CHAPTER 7 

Conclusions 

7.1 Summary of Contributions 

This thesis contains two major parts: a literature survey including a unification of 

different kinds of Process Coordination problems, and a self-stabilizing solution to 

the Dining Philosophers problem. 

We studied six different Process Coordination problems including Dining Philoso-

phers, Drinking Philosophers, Resource Allocation, Committee Coordination, Mul-

tiway Rendezvous, and Multiparty Interaction. All of these problems have similar 

exclusion and synchronization requirements. To reveal the similarities and differ-

ences among all these problems, we devise two uniform frameworks to model them, 

the object oriented model and the graph model. These two models capture the be-

haviors of distributed systems by characterizing the executions and configurations, 

respectively. We reviewed some significant papers on different problems by para-

phrasing the original problem descriptions and solutions. We also repair flaws in 

some solutions and clarify some misleading problem descriptions. 
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In the second part, we begin to investigate the robustness of distributed systems 

under failures. We focus on one of the strongest models, self-stabilizing distributed 

systems, which handles transient faults. We review a classic fair composition tech-

nique for designing and analyzing self-stabilizing algorithms. Then we enriched the 

fair composition tool for more general use. At the end, we present a technique that 

can be used to make most existing solutions to the Dining Philosophers problem 

self-stabilizing. This technique includes a new mechanism that labels processes in a 

network such that every pair of processes within distance 3 have distinct labels. 

7.2 Comments and Future Work 

In this thesis, we present a technique that assigns distinct labels up to distance 3 by 

using an algorithm (Label_D2) that achieves distinct labels up to distance 2. We 

design an algorithm LD3 that can distinguish cases shown in Figure 6.4 and 6.5 in 

any configuration where processes within distance 2 have distinct labels. The most 

general technique should be to assign distinct labels up to distance k based on an 

algorithm that assigns distinct labels up to distance k - 1. where k > 3. To achieve 

this, one should design an algorithm LDk that can distinguish the case, which is a 

long path of length k with the same label at both ends and distinct labels in between, 

and the case, which is a multiple cycle of length Ic - 1 with distinct labels. Although 

it appears that no new ideas and techniques are required, this general tool is likely 

much more complicated and involved because every process may collect and handle 

more information (for example, labels of neighbors up to distance k - 1). 

Self-stabilizing algorithms may not tolerate other system failures. For example, 
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Beauquier, Datta, Gradinariu, and Magniette's solution [3] to the Local Mutual 

Exclusion problem is self-stabilizing but does not tolerate stop failures. A stop 

process could cause a local deadlock among its neighborhood, which will be spread 

over the rest of the network. Another open research direction is to find the Dining 

Philosophers' solution which can tolerate more kinds of system failures. Choy and 

Singh's solutions tolerate .stop failure to some extent. It would be desirable if one 

can make their solutions also self-stabilizing. 
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APPENDIX A 

Welch and Lynch's I/O Automaton Model 

for the Drinkers Problem 

Let R be a finite non-empty set of resources, and P be a set of users. For any user 

pi E F, pi uses a non-empty set of resource R C R. Each resource is shared by at 

most two users. A user pi is in one of the following state at a time: 

trying region: User pi is trying to get all its resources. 

critical region: Once all the resources in R are obtained, pi enters its region. 

exit region: After using all the resources, pi enters exit region to do some cleaning 

up activities, such as return all the resources in R. 

remainder region: If pi is in none of the regions above, pi is in its remainder 

region. 

In drinking philosophers problem, resources are considered as beverages, and 

users as philosophers. The corresponding regions are represented by T (B), C (B), 

E(B), and R(B). Every philosopher cycles through these four regions. Each 

philosopher may request a different set of beverages, B, at each time it enters its 
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trying region. 

The author described the system using the input-output automaton model as 

follows [26]. 

An automaton is a state machine whose state transitions is labeled 

with actions. Actions are partitioned into input actions, output actions, 

and internal actions. The input and output actions model communica-

tion with the outside world. An execution of an automaton is an alternat-

ing sequence of states and actions. An execution is fair if the automaton 

eventually gets to perform a pending output or internal action. 

Each system component is modeled by an automaton, and the whole system is also 

modeled by an automaton, which resulting from the composition of the components. 

An automaton solves a drinking philosophers problem if it satisfies the following 

requirements: 

1. Its input actions are {T(B), E(B) : 1 < i < n,B C B,B 0 O} 

2. Its output actions are {C(B), R- (B) : 1 ≤ i < n, B C B, B O} 

3. An execution is drinking-well-formed if Vpj the subsequence of the execution 

restricted to the following pattern: T(B), C(B), E(B), R, (B), T(B'), C(BI), 

E (B'), R (B').... The automaton preserves drinking-well-formedness, which 

means for all execution e' and e where e is the result of extending e' by one 

output action, if e' is drinking-well-formed, then e is drinking-well-formed. 

4. In any drinking-well-formed execution, Vi, j, B, B' with i =A j and B fl B' =A 0, 

if an occurrence of C(B) precedes an occurrence of C(B'), then E(B) occurs 
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between the C(B) and C(B'). 

5. In any fair drinking-well-formed execution, if Vi, B every occurrence of C(B) 

is followed by an occurrence of E(B), then Vi, B every occurrence of T(B) is 

followed by an occurrence of R(B). In other words, if nobody ever stuck in 

its critical region, then all the philosophers who are in their trying region will 

eventually enter their critical region. 

6. Given i, B and an occurrence of T(B) in a drinking-well-formed execution, 

the occurrence of T(B) is non-overlapping if for all j i and all B' that 

intersect B, every preceding occurrence of Tj(B') is followed by an E(B') 

that also precedes the T(B), and every following occurrence of T(B') follows 

a C (B) that also follows the T (B). We say an occurrence of T (B) is non-

overlapping, if nobody occupies or needs beverages in B before the occurrence 

of the following C (B). In any fair drinking-well-formed execution, for all i, B 

and all occurrences of T(B), if the occurrence of T(B) is non-overlapping, 

then the T(B) is followed by an occurrence of C(B) 


