
THE UNIVERSITY OF CALGARY

Dining Philosophers and Other Process

Coordination Problems: Algorithms, Tools and

Stabilization

by

Lixiao Wang

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

August, 2003

© Lixiao Wang 2003

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of

Graduate Studies for acceptance, a thesis entitled "Dining Philosophers and Other

Process Coordination Problems: Algorithms, Tools and Stabilization" submitted by

Lixiao Wang in partial fulfillment of the requirements for the degree of MASTER

OF SCIENCE.

Oo Z A" 7 e•

Date

11

.,c-.4.

Supervisor, Dr. Lisa Higham
Department of Computer Science

*ud

Dr. Christiane Lemieux
Department of Computer Science
and of Mathematics and Statistics

Dr. Michael Lamoureux
Department of Mathematics and
Statistics

Abstract

The Process Coordination problem, also called concurrency control, is one of the

classic problems in distributed computing.

This thesis has two major contributions. It reviews some significant research

results on the Process Coordination problems with the contribution of unifying dif-

ferent kinds of problems. Two common frameworks are devised to describe different

problems and solutions, so that the similarities and differences among them can be

highlighted. The Dining Philosophers problem is demonstrated to be a fundamental

representative of the set of Process Coordination problems.

The second contribution is to develop a robust algorithm for the Dining Philoso-

phers problem that can withstand transient system failures. Self-stabilization is a

strong model that handles transient faults in distributed systems. A randomized

self-stabilizing mechanism that assigns distinct labels up to distance 3 in a network

is presented. This mechanism, when generalized to assign distinct labels up to dis-

tance k, for any positive integer k, can solve the self-stabilizing Dining Philosophers

problem, and it may have other independent applications. Construction and proof

of this mechanism rely upon a new tool for combining randomized self-stabilizing

algorithms even when they both update common variables.

111

Acknowledgments

First of all, I would like to thank my supervisor, Dr. Lisa Higham, for her guidance,

support, and encouragement.

I would also like to thank Dr. Christiane Lemieux and Dr. Michael Lamoureux

for their valuable comments and corrections.

Finally, I would like to thank my family, my mother Qinglan Xu, my father

Bingheng Wang, and my sister Liwei Wang. They have always been very supportive

of my pursuit of advanced education.

iv

Table of Contents

Approval Page

Abstract

Acknowledgments iv

Table of Contents v

1 Introduction 1
1.1 Process Coordination problem 1
1.2 Modeling Distributed Systems 4

1.2.1 Communication 5
1.2.2 Communication Topology 6
1.2.3 Network Labels 7
1.2.4 Timing 8
1.2.5 Scheduler 8
1.2.6 Algorithm Type 9
1.2.7 Atomicity 10
1.2.8 Fault Models 11
1.2.9 Self-Stabilization 12

1.3 Overview of Thesis 13

2 General Resource Allocation Problems 14
2.1 Two Frameworks for Modeling Distributed Systems 15

2.1.1 Object Oriented Model of a Distributed System 16

2.1.2 Graph Model of a Distributed System 21
2.2 Dining Philosophers Problem 25

2.2.1 Variants of Dining Philosophers problem 26
2.2.2 Previous Work on the Dining Philosophers Problem 28

v

2.3 Drinking Philosophers Problem 45
2.3.1 Object Oriented Specification 46
2.3.2 Graph Model 48
2.3.3 Drinking Philosophers Problem vs. Dining Philosophers Problem 49
2.3.4 Previous Work on the Drinking Philosophers Problem 50

3 Process Synchronization Problems 57
3.1 Committee Coordination Problem 57

3.1.1 Object Oriented Specification 58
3.1.2 Graph Model 60
3.1.3 Previous Work on the Committee Coordination Problem 61

3.2 Multiway Rendezvous Problem 64
3.2.1 Previous Work on the Multiway Rendezvous Problem 65

3.3 Multiparty Interaction Problem 69
3.3.1 Object Oriented Specification 69
3.3.2 Graph Model 71
3.3.3 Previous Work on the Multiparty Interaction Problem 73

4 Comparison and Analysis of Different Process Coordination Prob-
lems 77

4.1 Dining Philosophers vs. Committee Coordination 79
4.1.1 Modified Dining Philosophers Problem 80
4.1.2 Modified Committee Coordination Problem 80

4.2 Further Discussion on the Dining Philosophers problem and the Mul-
tiparty Interactions problem 82

4.3 Atomicity in the Resource Allocation problem 83

5 Self-Stabilization 85
5.1 Self-Stabilization Preliminaries 86
5.2 Original Fair Composition 88
5.3 Enriched Fair Composition 91

6 Self-stabilizing Dining Philosophers 103
6.1 Motivation 103

6.1.1 Local Mutual Exclusion 105
6.1.2 Local Mutual Exclusion vs. Dining Philosophers 105

6.2 Self-Stabilizing Solution to the Dining Philosophers Problem 107
6.2.1 Cycle Detection 108
6.2.2 Assigning Distinct Labels up to Distance k 109

6.3 Assigning Distinct Labels up to Distance 3 111
6.3.1 Solution Strategy 112

vi

6.3.2 Data Structures 113
6.3.3 Algorithm LD3 115
6.3.4 Proof Outline 126
6.3.5 Self-stabilization of LD3 127
6.3.6 Non-interference of LD3 143

6.4 Further Discussion 144

7 Conclusions 147
7.1 Summary of Contributions 147
7.2 Comments and Future Work 148

Bibliography 150

A Welch and Lynch's I/O Automaton Model for the Drinkers Prob-
lem 154

vii

List of Tables

4.1 Modified Dining Philosophers vs. Committee Coordination 81

6.1 Local Variable of Process x 114
6.2 Shared Link Register OUT 114

viii

List of Figures

2.1 Specification Level System vs. Implementation Level Systems . 20

4.1 Process Coordination Problems 78

5.1 Self-Stabilization 87
5.2 Fair Composition of algorithms A and B 90
5.3 Enriched Fair Composition 91
5.4 random(p, k) self-stabilizing for predicate R else P given Q 92
5.5 random(p, k) self-stabilizing for predicate R else Q given Q 92
5.6 A e B's behavior in configuration satisfying S 97
5.7 A ED B's behavior in configuration satisfying 82 97
5.8 Algorithm A e B 97

6.1 Cycle Detection Based on Globally Distinct IDs 109
6.2 Self-stabilizing Dining Philosophers for Anonymous Networks 110
6.3 Distinct Labels up to Distance 3 111
6.4 Case 1 . 112
6.5 Case 2 112
6.6 Procedure (Check - 3 Cycle Consistent) 117

6.7 Function (symmetry(z, y)) 117
6.8 long path with x, y, z 118
6.9 multiple cycle with x, y, z 119
6.10 Function (mini_ cycle_ consistency (y, z)) 120
6.11 Operation OUT.M +- OUT.MW (counter,r,s,t,flip) 122
6.12 Function (increment —counter (y, z)) 122
6.13 Procedure (Participate - 3 Cycle Consistent) 123
6.14 Function (Check for Alarm) 124
6.15 Function (Collect and Update Neighbors' Labels) 124
6.16 Function (Message Consistency Check) 125
6.17 Function (Counter Consistency Check) 126

ix

CHAPTER 1

Introduction

A distributed system [24, 11 is a collection of individual computing devices that can

communicate with each other. Many kinds of systems belong to the distributed set-

ting, such as communication networks, multiprocessor computers, and a multitasking

single computer. All these systems have similar fundamental coordination require-

ments among the communicating entities, whether they are computers, processors,

or processes. Here we use the term process to indicate any computing device.

1.1 Process Coordination problem

In this thesis we study a classic problem in distributed settings, the Process Coordi-

nation problem. The Process Coordination problem (also called concurrency control)

consists of a set of processes communicating with each other to execute some coor-

dination activities, which normally happen as a result of agreements.

Usually Process Coordination problems need to deal with mutual exclusion and

synchronization. Mutual exclusion requires that two concurrent activities do not

:1-

2

access shared data at the same time. Synchronization provides a condition to coor-

dinate the actions of concurrent activities.

Difficulty arises in symmetric and asynchronous systems, where processes are all

identical and no assumption is made on relative process speeds or the number of

processes. One undesirable situation occurs when two activities are waiting for each

other and neither can proceed. This sort of circular waiting is called a deadlock. For

example, suppose processes A and B each need two resources to continue, but only

one resource has been assigned to each of them. If the system has only two such

resources, neither process can ever proceed. This situation can also be generalized to

a sequence of processes,. P1, ...,p, where pi is waiting for Pi+i for i = 1, ..., n - 1 and

Pn is waiting for Pi None of these processes can make progress. Another situation

related to the Process Coordination problem is starvation, which occurs when a

blocked activity is consistently passed over and not allowed to run. For example,

consider two cpu bound jobs, one running at a higher priority than the other. The

lower priority process could never be allowed to execute.

Various problems arise based on different properties of the system, requirements

on mutual exclusion and synchronization, and ability to prevent deadlock and starva-

tion. Processes in some problems are tightly or centrally controlled by other entities.

Other problems allow individual processes to make independent decisions and be

notified of changes. Some problems require that at least one process in the system

does not starve, while others require that every process cannot starve.

In this thesis six typical problems that belong to the set of Process Coordination

problems are considered: the Dining Philosophers problem, the Drinking Philoso-

phers problem, the Resource Allocation problem, the Committee Coordination prob-

3

lem, the Multiway Rendezvous problem, and the Multiparty Interactions problem.

Based on the problem specification and the way to solve them, these problems can

be divided into two classes:

General Resource Allocation problems: including Dining Philosophers, Drink-

ing Philosophers, and Resource Allocation problems.

Process Synchronization problems: including Committee Coordination, Multi-

way Rendezvous, and Multiparty Interaction problems.

Understanding the differences among these distinct problems will help one make an

appropriate choice to solve specific issues. Also understanding the similarities among

these problems will help one implement one problem in terms of another.

One of the objectives of our research is to study different Process Coordination

problems by giving a literature survey of some significant results.

Most problem descriptions existing in the literature are informal, ambiguous,

or even self-contradictory. Another objective is to overcome these difficulties by

devising two uniform frameworks for specifying problems, the Object Oriented model

and the Graph model. First each problem is introduced by paraphrasing its informal

description and requirements. Then the ambiguities or contradictions are pointed

out. Finally the problem and its solution are recast using the Object Oriented

model and Graph model. The more formal descriptions provide the unambiguous

specifications often missing in the general literature. This also makes it possible to

highlight the similarities and differences among various problems.

The Dining Philosophers problem has been considered as a classic Resource Al-

location problem since presented and solved by Dijkstra in 1965. In this thesis the

4

Dining Philosophers problem is demonstrated to be a fundamental problem of the set

of Process Coordination problems, because other Process Coordination problems can

either be mapped directly onto the Dining Philosophers problem or can be solved by

using its solution as a subroutine. A robust and fault-tolerant solution to the Dining

Philosophers problem is one way to provide a robust and fault-tolerant tool to solve

each of the other Process Coordination problems.

The last contribution of this thesis is to design a particular kind of fault-tolerant

solution (a self-stabilizing solution) to the Dining Philosophers problem in fully dis-

tributed and completely symmetric systems. In fully distributed systems, no central

memory or central process is used. In completely symmetric systems, all processes

are identical and have the same initial state. In particular, they do not have distinct

identifiers.

1.2 Modeling Distributed Systems

Because there are so many assumptions, issues, and alternatives in distributed sys-

tems, an abstract representation of the distributed system, in which different Process

Coordination problems are described, should be given. These representations are of-

ten called models.

When modeling a distributed system, several components needs to be described

to capture the variants of distributed systems caused by different process behaviors

and communication behaviors. In this section, some common alternative choices for

several different such components are given.

5

1.2.1 Communication

The communication model describes the mechanisms, through which processes ex-

change information with each other. Typically two models are used: the message

passing model and the shared memory model. For each of these general classifica-

tions, the model must also specify which of several other possible variants is being

assumed.

In the message passing model, processes communicate by exchanging messages

through unidirectional or bidirectional communication channels. Normally each corn-

rnunicatibn channel is modeled as a queue. A process sends a message by adding it to

the appropriate outgoing channel(s), and receives a message by removing it from one

of its incoming channel. A channel may have bounded or unbounded size. A process

may send one message to a specified neighbor in one step, broadcast a message to a

subset of neighbors in one step, or even send different messages to a set of neighbors

in a single step. A communication channel may deliver messages in the same order

as they were added (a FIFO queue), or deliver them in an arbitrary order.

In the shared memory model, processes communicate by accessing one or more

shared objects. Frequently, these objects are atomic variables. An atomic variable

can be either read or written in one single step. If a variable can be written by

one process but read by several processes, it is called a single-writer multi-reader

variable. A variable can also be multi-writer multi-reader or even single-writer single-

reader. Sometimes stronger objects are used, such as test-and-set, or fetch-and-add,

or other read-modify-write objects such as queues and stacks. With some reasonable

additional assumptions, algorithms designed for shared memory settings can usually

6

be transformed into algorithms for message passing settings.

A variant of the shared memory model is called the link register model. Commu-

nication between two processes p and q is modeled by two single-writer single-reader

registers RPq and R. Register RPq is written by p and read by q. Similarly, register R

is written by q and read by p. The link register model is commonly used in the self-

stabilizing setting, which will be introduced in Section 1.2.9. In this thesis, a slightly

modified link register model is used. Each register is assumed to have a single writer

but two readers. The extra reader is the process that also writes to it. Thus in the

above example both.proess p and q can read R.,q and R. This modified model is no

more powerful than the standard link register model, because one can always assume

that every process keeps a local copy of everything it wrote to its shared registers.

A process can simulate the reading operation on its shared registers by reading the

corresponding local copies. Normally, a message passing model can be simulated by

a link register model with certain restrictions.

1.2.2 Communication Topology

For any distributed system, construct the underlying communication graph (also

called the network of the system) as follows: assign a vertex to every process, and

put an edge between two processes if they can communicate with each other directly.

Two processes are called neighboring processes, if there is an edge between their cor-

responding vertices. Another variant models communication with a directed graph

(see page 22), when a message passing system has unidirectional channels.

Some problems are only defined in networks with restricted topologies such as

rings, trees, or complete graphs. Other problems may have constraints on processes'

7

knowledge of the whole network. For example, there may be a restriction on the num-

ber of vertices or the maximum degree of any vertex in the system. As a consequence,

some solutions are only designed and correct in systems with special topologies. The

topology of the communication graph can be fixed. It can also be dynamic, which

means the addition or deletion of nodes or communication channels are allowed as

the application executes.

1.2.3 Network Labels

Some applications require that the processes of the network have labels. Different

problems may have different assumptions about how the vertices are labeled. For

example, the neighboring processes may require distinct labels, or any two processes

within distance k may require distinct labels. Sometimes there is one special process

(often called the leader), whose label is distinct from all the other processes, which

may all have the same label. If none of the vertices are labeled, then the system is

called anonymous. Solving problems in a labeled setting' is typically easier than in

an anonymous setting. Normally, problems become more general (and interesting)

in anonymous systems.

Edges in a network could also have labels to reflect some properties. For example,

the weight of an edge could represent the cost of communication on the corresponding

link.

Even in the anonymous setting, every process usually has some way to distinguish

between its neighbors. This is accomplished by providing a process with a local name

'Here we assume that not all labels are identical; if they were, then the system cannot be
distinguished from an anonymous system.

8

for every communication channel or every shared register it uses to communicate with

each of its neighbors. Systems with this feature are locally oriented.

1.2.4 Timing

Two basic models of timing in distributed systems are the synchronous model and

the asynchronous model.

In the synchronous model, processes take steps simultaneously. The execution

proceeds in synchronous rounds. Typically this is achieved by using a global clock

pulse, which triggers the next step of each process. The synchronous model is the

simplest model to describe, to program and to analyze. Even though this model is not

very realistic, understanding how to solve a problem under the synchronous setting

is often helpful for developing solutions for more complex and realistic settings.

In the asynchronous model, processes take steps at arbitrary speeds. Both the

absolute speed of each process and the relative speed between processes may vary

arbitrarily during the computation. Asynchrony makes it hard to predict the state

of the system at any particular time. The asynchronous model is more general and

practical. However it is harder to solve problems without timing constraints.

1.2.5 Scheduler

In an asynchronous system, the scheduler (also called the daemon) manages the ac-

tivities of processes. At each step a scheduler determines which processes execute the

next operation of their program. Two common schedulers are the central scheduler

and the distributed scheduler. A central scheduler activates only one process at a

time. The distributed scheduler selects a nonempty set of processes and activates

9

them all simultaneously. Some algorithms work correctly under a central scheduler

but not under a distributed scheduler. The requirement of a central scheduler is

usually considered an unreasonable assumption for a truly distributed system. This

is because the central scheduler is implemented by either using global information,

which is unrealistic, or using a mutual exclusion technique, which defeats the poten-

tial concurrency of the system.

A scheduler produces a computation of the system by interleaving operations of

all processes. The fairness assumption on a scheduler captures the behaviors of this

interleaving. There are many different strengths of fairness. A weakly fair scheduler

ensures that each process takes an infinite number of steps in any infinite execution.

A k-fair scheduler ensures that in any interval where a process takes k+1 steps, every

other processes takes at least one step. A round robin scheduler activates processes

in a fixed order under a 1-fairness assumption.

1.2.6 Algorithm Type

An algorithm can be deterministic or randomized. A deterministic algorithm provides

a transition function for each process. When a process is selected by the scheduler,

its next state is determined by this function. A randomized algorithm provide a

probability space for the next state for each current state of every process. When a

process is selected, its state is randomly chosen from the probability space.

A deterministic algorithm solves a problem P under a set S of schedulers, if

all possible computations produced by any element of S satisfy the specification of

problem P.

Two kinds of randomized algorithms are often considered: Las Vegas randomized

10

algorithms and Monte Carlo randomized algorithms. An algorithm is called a Las

Vegas randomized algorithm for problem P under a set S of schedulers, if with

probability 1, all possible computations produced by any element of S satisfy the

specification of P. An algorithm is called a Monte Carlo randomized algorithm for

problem P under a set S of schedulers, if with probability at least p, any computation

produced by an element of S satisfies the specification of P, where 0 < p < 1.

Randomization is often exploited by an algorithm in order to break symmetry in an

anonymous setting.

1.2.7 Atomicity

An atomic step is the computation performed by a process as one indivisible action.

There are two typical kinds of atomicity: composite atomicity and read/write atom-

icity, which differ in the size of the atomic step. In composite atomicity, an atomic

step consists of several operations of a process. For example, a process can read the

state of all its neighbors and change its own state in one atomic step. In read/write

atomicity, an atomic step is only a single read or a single write operation.

Clearly algorithms designed under read/write atomicity still work correctly in

any systems with composite atomicity, but not vice versa. Furthermore, solving

a problem and proving the correctness of a solution are typically much easier by

assuming composite atomicity than read/write atomicity.

In randomized algorithms, random choices, such as coin flips, are often made. If

the random choice is not separated from the following read or write operation, the

model is called coarse atomicity. In the fine atomicity model, however, an atomic

step contains only a single random choice, a single read operation or a single write

11

operation.

1.2.8 Fault Models

Real systems consist of many varied components arranged in complex interconnec-

tions. Even when individual components are very reliable, a failure somewhere in the

system is likely simply because of number of components and the complexity of their

interconnections. A realistic system model (such as the asynchronous, distributed

scheduler model) should capture most kinds of process and communication failures

that might happen. Commonly considered failures include:

. Process failures:

- Stop failures: Any process might stop executing its program forever after

a certain point in the execution.

- Transient faults: Any process may stop executing its program for a while

and then recover from the fault later.

- Byzantine failures: Any process can act arbitrarily and maliciously with-

out being identified as faulty by the rest of the system.

• Message passing communication failures: The message might be lost,

duplicated, reordered, or even corrupted.

• Shared memory communication failures: The shared data can be cor-

rupted.

In the following section, a technique used to handle transient faults is introduced.

12

1.2.9 Self-Stabilization

Many of the distributed algorithms discovered so far have a shortcoming: they are

correct only under unrealistic simplifying assumptions about the distributed system,

where no transient faults happen. Normally when errors occur in distributed systems,

they tend to be "bursty" since errors tend to create more errors. A distributed

algorithm is more useful when it is fault-tolerant. A strong fault-tolerant model to

handle transient faults is the self-stabilizing distributed system.

When something goes wrong, a self-stabilizing distributed system can automati-

cally return to an error-free configuration without being manually reset, or shut down

and rebooted. Also a self-stabilizing distributed system can start in any arbitrary

configuration and after some bounded amount of computation reach a predefined

legitimate configuration. If the arbitrary configuration includes arbitrary topolo-

gies, then the self-stabilizing protocol can be used for dynamic systems. Once a

self-stabilizing system reaches a legitimate configuration, it stays in a legitimate

configuration during any fault-free computation.

Since 1974, when Dijkstra [10] introduced the idea of self-stabilization, and more

intensely, since 1983, after Lamport [20] highlighted its importance, there has been

substantial research on self-stabilizing distributed algorithms. Self-stabilization is

an elegant feature for distributed systems, because the manageability and stability

of distributed systems decrease rapidly with the increase of the number of com-

ponents or the complexity of the interconnection among components. Distributed

systems also present challenging research topics for self-stabilization due to their

heterogeneous computing environments, mismatching computing power of system

13

components, and various computing constraints.

1.3 Overview of Thesis

In this thesis, we study six different Processes Coordination problems, demonstrate

the fundamental role of the Dining Philosophers problem in this set of problems,

and design a self-stabilizing solution to the Dining Philosophers problem. Chapters

2 and 3 review several significant papers on the set of General Resource Allocation

problems and the set of Process Synchronization problems, respectively, and unify

different problems using two common frameworks that are introduced at the be-

ginning of Chapter 2. Chapter 4 compares the similarities and differences between

the General Resource Allocation problem and the Proèess Synchronization problem

by comparing two representatives from each class, the Dining Philosophers problem

and the Committee Coordination problem. Chapter 5 gives the formal definitions of

self-stabilization and a new enriched fair composition technique that can be used to

design and prove correct complex self-stabilizing algorithm. This technique is used

in Chapter 6 together with other ideas to devise a self-stabilizing solution to the

Dining Philosophers problem. In Chapter 7, we summarize the contributions of this

thesis, discuss further comments and describe the future work.

CHAPTER 2

General Resource Allocation Problems'

A General Resource Allocation problem consists of a set of resources and a set of

potential users of these resources. From time to time every user may require a set

of resources. Upon being granted all the requested resources, the user will do some

work with the resources and relinquish them eventually. The problem is to devise a

protocol that satisfies the following two requirements:

Exclusion: no resource can be used by more than one user simultaneously.

Lockout-Freedom: every requesting user will eventually acquire all the resources

she needs.

If each user uses a fixed set of resources, then the problem is a Static Resource

Allocation problem. Otherwise, if a user requires different sets of resources each time,

then the problem is a Dynamic Resource Allocation problem. The Dining Philoso-

phers problem and the Drinking Philosophers problem are fundamental versions of

the Static Resource Allocation problem and the Dynamic Resource Allocation prob-

14

15

1cm, respectively, where the philosophers represent users and forks or beverages rep-

resent resources.

In this chapter, we discuss some previous work on the Dining Philosophers prob-

lem and the Drinking Philosophers problem. Most problem descriptions existing in

the literature are informal, and unclear. First we paraphrase the original descriptions

and requirements, then we recast both problems and their solutions using two frame-

works, the Object Oriented model and Graph model. This makes it easy to clarify

the ambiguities and to illustrate the similarities and differences between these two

problems.

2.1 Two Frameworks for Modeling Distributed Systems

In this section, two models are introduced, which will be used to define the distributed

systems used in this thesis: the Object-Oriented Model and the Graph Model. We

will use the Dining Philosophers problem as a running example while describing both

models. Here is an informal description of the Dining Philosophers problem.

The Dining Philosophers problem, which is first defined by Dijkstra [9] and later

generalized by several authors, consists of a set of philosophers sharing a set of forks.

Each philosopher goes indefinitely through a cycle: thinking, hungry, and eating.

When a philosopher thinks, she does not interact with others. From time to time,

she may get hungry and want to eat. To eat she needs a fixed set of forks. A

philosopher may only pick up one fork at a time and she cannot pick up a fork that

is already in the hand of another philosopher.

The exclusion property is that no two philosophers eat simultaneously if they

16

use a common fork. Deadlock-freedom is the property that if any philosopher is

hungry, then eventually there is a philosopher that eats. Lockout-freedom is the

property that if a philosopher is hungry, then eventually that philosopher will eat.

The Dining Philosophers problem requires exclusion and one of two progress prop-

erties. Either the progress is deadlock-freedom or the progress is lockout-freedom

under the assumption that every eating philosopher will eventually finish and release

all her forks.

2.1.1 Object Oriented Model of a Distributed System

In a distributed system that communicates through shared memory, the computing

devises can be represented as processes that communicate via shared objects. In this

thesis such a distributed system is modeled by a set of processes P operating on a

set of objects J and is denoted by (P, J). We will specify both components, and give

the meaning of an implementation of a distributed system.

Objects

Every object supports a nonempty set of operation(s) applicable to it. To define an

object, one can describe a collection of states and a collection of operations, and for

a pair of operation and state, give a resulting state. This specifies the precondition

and effect of each operation, and gives rise to a collection of allowable sequence of

operations on the object. Lynch used this way to describe algorithms in her book

"Distributed Algorithms" [24].

Equivalently, Herlihy and Wing [17] introduced another way to define an object

by giving a set of allowable sequences of operations on it. An arbitrary sequence of

17

operations applied to an object x is valid if and only if it is in the specification of x.

An arbitrary sequence of operations on a collection of objects X is valid, if and only

if for each object x E X, the subsequence of operations applied only to x is valid.

In this thesis, an operation by process p is denoted by (operation name (I)):O,

where I is the input parameter of the operation and 0 is the output parameter.

When the process's name is not required or obvious from context, the subscript, p,

is omitted.

For example, in the Dining Philosophers system, the object is a set of forks

= {fi, f2, ..., fk} that supports two operations, (grab(F)) and (release(F)), where

F C J. Informally any interleaving of (grab(')) and (release(.)) operations on F

is valid if and only if: 1) for every (grab(F)), all forks in F are available before

the operation and will become unavailable after the operation; and 2) for every

(release(F)), all forks in F are not available before the operation and will become

available after the operation.

More formally, let S = 0 1, 0, ... be any sequence of (grab(.)) and (release(.))

operations on F. To give the validity condition on S we define another variable C.F

inductively by:

1) CF0=F

2) C.Fi = C.Fj_1 U F if oi = (release(F))

C.F_1\F if oi = (grab(F))

Then S is valid provided

1) if oi = (release(F)) for F C .F, then F fl CFj1 = 0, and

2) if oi = (grab(F)) for F C F, then F C CJ_.

18

The following three sequences contain operations on .'F, where F1 = {fi, f2, f},

F2 = {f, f}, and F3 = {f, f}. It is easy to see that S is valid, but 82 and 83 are

not because property 1) and 2) are violated, respectively.

Si (grab(F1)), (grab(F2)), (release(F1)), (grab (F3)), (release(F3)), (release(F2))

82 : (release(F2)), (grab(F1)), (release(F1)), (grab(F3)), (release(F3))

83 : (grab (F1)), (grab (F3)), (release(F3)), (release(Fi))

Processes

A process in a distributed system is just program of operations applicable to objects

in the system. The order in which the operations of a process are invoked by the

program is called program order.

Processes in the Dining Philosophers problem are the set of philosophers

= {pi, P2, ..., p}. Associated with each pi E P is an nonempty and static set of

forks F(i) C F, which indicates the set of forks used by philosopher pi. The program

for each pi E 7 is:

Do Forever:

(think)

(grab (F (i)))

(eat)

(release (F (i)))

End Do

The (think) and (eat) are arbitrary operations that do not act on F.

19

Computations

Each process's individual computation is a sequence of operations executed by the

process, such that the order of the operations agrees with the program order. A

computation of a distributed system is some valid interleaving of the operations of

each process as determined by the scheduler. More formally, a computation of a

distributed system (P, J) is a total order of the operations of all processes in P that

extends program order and is valid.

The computation of the Dining Philosophers system is an interleaving of opera-

tions of each process's program that extends program order and satisfies the validity

conditions for (grab(.)) and (release(.)). For example, suppose P1, P2, and p3 are

philosophers and use a set of forks F1 = {fi, f2, f}, F2 = {f, f}, and F3 = {f, f6},

respectively. Then 54 is a computation of the Dining Philosophers system, but S5 is

not because even though it preserves program order, it does not satisfy the validity

conditions.

84: (think) 1, (grab (Fi)) ,(think) 2 , (eat)p, (think) 3, (grab (F2))P2 , (eat) 2,

release(Fi) (grab(F3)) , (eat),3, (release (F3))P31 (release (F2))P2

85: (think) 2 ,(eat) 2, (release (F2))P2 , (think)p1, (think) 3, (grab (F1))Pi) (grab (F3))p,

(eat)p.,, (release (F3)) , (eat), (release(F1))P1

Implementation of a Distributed System

A distributed problem requires that a specified system (P, J) be implemented using

a different set of objects, J. For example, the objects in the specification level Din-

ing Philosophers system are sets of forks. When implemented in a shared memory

setting, objects are usually atomic read/write variables and test-and-set objects. In

20

message passing settings, objects are messages or tokens. Figure 2.1 illustrates the

relation between a specification level system (P, J) and the corresponding implemen-

tation level system (P, 3).

implementation

P, J

P,J

interleaving of operations

interleaving of operations

computations

interpretation

computations

Figure 2.1: Specification Level System vs. Implementation Level Systems

For each operation on each object in J at the specification level, an implemen-

tation provides a procedure call containing operations on the lower level objects in

3. Each such procedure invocation must return a response of the same type as the

specification level operation that it implements. For example, an implementation of

the Dining Philosophers system must provide programs for (grab(.)) and (release(.))

that eventually return successfully.

21

The processes P of the implementation level are constructed by replacing each

operation of each process in P by the procedure that implements that operation.

The system (P, i) so constructed has a set of computations as well. Each com-

putation is just a valid sequence formed by some interleaving of the operations of

the implementation level processes, P. Any such implementation level computation

can be interpreted as a computation of the specified system (P, J) by assuming that

each high level operation occurred atomically at some point between the invocation

and the response of its implementing procedure.

For the implementation to be correct, we require that every possible computation

of (P, 3) must have an interpretation that is valid for the specified system'.

2.1.2 Graph Model of a Distributed System

A distributed system can also be presented in graph theoretical terms. In this sec-

tion, we first give some basic concepts in graph theory, which can be found in most

introductory graph theory texts (for example [4]). Then we show how to represent

a distributed system by a graph.

Graph Theory Preliminaries

A graph C = {V, E} consists of a nonempty set of vertices (or nodes) denoted by

V and a set of edges denoted by B. An edge is an unordered pair of vertices in V.

If there is an edge (vo, v,) between vertices v0 and v1, then v0 and v1 are adjacent

vertices. If two edges are incident to the same vertex, then they are adjacent edges.

An edge with identical ends is a loop. If two or more edges are incident with the

'This is equivalent to the correctness condition called linearizability introduced by Herlihy and
Wing [17].

22

same pair of vertices, then they are multiple edges. A graph is simple if it does not

contain loops or multiple edges. A graph is complete if there is an edge between

every pair of distinct vertices.

A (simple) path from a vertex v0 to vertex Vk in graph G is a sequence (vo, ..., Vk)

of vertices such that (vi, vi+i) E B for i = 0, ..., k - 1 and v0, ..., Vk are distinct. A

cycle is formed by a path (vo, ..., Vk) and (vo, Vk) E B. The length of a path or a cycle

is the number of edges in it. The distance between two vertices v0, v1 E V in a graph,

denoted d(vo, vi), is the length of the shortest path between the v0 and v1. For the

sake of completeness, d(vo, vo) is defined as 0. The diameter of a graph, denoted D

is,

D = max{d(vo, v1) I v0, v1 E V}.

A graph is connected if there exists a path between every pair of vertices in the

graph. The neighborhood of a vertex v E V in a graph, denoted N(v), is the set of

nodes adjacent to v. Formally

N(v) ={x E VI(v,x) E E}.

The degree of a vertex v, denoted 8(v), is the size of v's neighborhood, IN(v)1. The

maximum degree of a graph, denoted L, is

= max{6(v)jv € V}.

A graph G = (V1, V2, B) is bipartite if its vertex set can be partitioned into two

sets V1 and V2, such that every edge (x, y) E E is incident to one vertex x in V1 and

another vertex y in V2.

A directed graph (or a digraph for short) G consists of a set of vertices V and a

set of edges B, where an edge is a ordered pair of vertices (vi, v) for v, vj € V. In a

23

digraph an edge is not only incident on a vertex, but is also incident out of a vertex

or incident into a vertex. An edge, which is incident out of a vertex v, is called an

outgoing edge of v. An edge, which is incident into a vertex v, is called an incoming

edge of v.

A (simple) directed path from a vertex v0 to vertex Vk in digraph G is a sequence

(vo, ..., Vk) of vertices such that (vi, v+1)E E for i = 0, ... , k - 1 and VO',.--, Vk are

distinct. A directed cycle is formed by a directed path (v0, ..., Vk) and (Vk, vo)E E.

Modeling a Distributed System as a Labeled Graph

The graph model we use in this thesis is a labeled graph, where the 'vertices of the

graph represent the components of the system and edges represent a relation among

the components.

Each individual component of the system is a state machine, which changes state

based on its current state and the state of one or more of its neighbors. The state

transition function of a component is defined by the program of the state machine.

In the graph model of a distributed system, each node is labeled with the current

state of the corresponding system component. The global configuration of the graph

is the combination of labels of all vertices. For example, in a graph that contains

n vertices {v1, ..., v} where the set of possible labels for vertex vi is L, the global

configuration of such a graph is an n-tuple in L1 >< L2 >< ... x L.

In cases where the relationship between components is dynamic, this model is

generalized to allow labels on edges. In this case the global configuration includes

the labels on edges as well.

There are two possible ways to model the Dining Philosophers problem as a

24

graph.

Bipartite Graph Model When modeled by a node-labeled bipartite graph G =

(P, F, E), where vertices sets P and F represent a collection of philosophers and forks,

respectively. An edge (p, f) is in E, if and only if p e F, f E F and philosopher p

uses fork f.

Every philosopher has a dynamic label called state. The state of a philosopher

p E F, denoted by state(p), is in {thinking, hungry, eating}. The only state tran-

sitions are thinking -+ hungry -+ eating -+ thinking. Transitions from thinking to

hungry and eating to thinking are spontaneous.

The global configuration of the graph is required to satisfy the following exclusion

property all the time:

• Exclusion: In any configuration, Vp € P if state(p)=eating, then q p € P

such that state(q)=eating and (p, f) € E and (q, f) € E for some f € F.

Under the assumption that any philosopher with state eating will change her state

to thinking later on, the global configuration of the graph is required to satisfy one

of the following progress properties:

• Deadlock-Freedom: In any configuration, if state(p)=hungry, for p e F, then

there exists a subsequent configuration, in which state(q)=eating, for q € P.

• Lockout-Freedom: In any configuration, if state(p)=hungry, for p E F, then

there exists a subsequent configuration, in which state(p)=eating.

25

General Graph Model When a fork is shared by k philosophers 2, where k ≥ 2,

we can use k(k_-1) virtual forks shared between every pair of these philosophers to

represent the real fork. To acquire the real fork a philosopher has to obtain the

k - 1 virtual forks incident to her. If a fork is shared by exactly 2 philosophers, then

the real fork is the same as the virtual fork. To modl this with a graph, consider

philosophers as nodes, and make a clique among a set of nodes if the corresponding

philosophers share the same fork. The edges denote virtual forks. It is easy to

see that every virtual fork is shared by exactly two philosophers. Therefore any

Dining Philosophers problem can be characterized by a node-labeled general graph

G = (F, VF), where the vertex set P represents a collection of philosophers and the

edge set VP represents a collection of virtual forks.

In this graph model every philosopher has the same set of states and the same

transition function as in the Bipartite Graph Model. The progress requirement

(deadlock-freedom or lockout-freedom) remains unchanged. The definition of the

exclusion changes as follows:

• Exclusion: In any configuration, if there exists an edge between p and q, then

-, (state(p) =eating A state(q) =eating)

2.2 Dining Philosophers Problem

The Dining Philosophers problem is to implement the Dining Philosophers system

such that no two philosophers eat simultaneously if they use a common fork and one

2 W are not interested in the case where k = 1, which implies the fork is used by only one
philosopher, since no conflict needs to be solved in this case. Therefore we exclude such forks in
our model.

26

of the progress requirements is satisfied.

The Dining Philosophers system consists a set of philosophers operating on a set

of forks. Both components are defined in Section 2.1.1. We also gave the graph

theoretical description of the Dining Philosophers problem in Section 2.1.2. In the

object oriented specification, the validity condition only captures the exclusion prop-

erty, which guarantees that no two philosophers can use the same fork simultaneously.

Normally a progress property is also required under the assumption that any philoso-

pher's (eat) operation always terminates. Deadlock-freedom is guaranteed, if for any

(grab(F(i))) operation by philosopher pi E 1', there ,exists a subsequent operation

(eat) by a philosopher pj E P. Similarly, lockout-freedom is guaranteed, if for any

(grab(F(i))) operation by philosopher Pi E 7, there exists a subsequent operation

(eat) by the same philosopher p.

In the rest of this section, we present some typical variants of the Dining Philoso-

phers problem based on different assumptions on system models. Then we give some

previous research results for each variant.

2.2.1 Variants of Dining Philosophers problem

The Dining Philosophers problem was first presented by Dijkstra [9] in 1971. His

classic problem consists of 5 philosophers sitting around a table, with a fork placed

between each neighboring philosopher. The problem has been solved for several

extensions that specify how many forks each philosopher requires and how the forks

are shared. There are three natural generalizations:

Restricted - Sharing Dining Philosophers System is a Dining Philosophers

System, where Vfi E .F there exist exactly two distinct philosophers Pj and p,

27

such that fj E F(j) and f, E F(l). This corresponds to a system that permits

each philosopher to use several forks, but each fork is shared by exactly two

philosophers. It can also be modeled by an arbitrary connected graph with

vertices as philosophers and edges as forks.

Restricted - Forks Dining Philosophers System is a Dining Philosophers Sys-

tem where Vpi E P, F(i)j = 2. This system permits each fork to be shared by

several philosophers, but each philosopher use exactly two forks. It can also

be modeled by an arbitrary connected graph with edges as philosophers and

vertices as forks.

General Dining Philosophers System is the most general version of the Dining

Philosophers System, where no restriction is applied to the number of forks

used by each philosopher and number of philosophers that can share a single

fork. This can be modeled by an arbitrary bipartite graph with philosophers

and forks represented by nodes, and edges as sharing relations.

As shown in the previous section, no matter how the forks are shared, the problem

can always be modeled by a connected general graph with edges as virtual forks,

where each virtual fork is shared by only two philosophers. Therefore both the

Restricted - Forks Dining Philosophers problem and the General Dining Philosophers

problem can be reduced to Restricted - Sharing Dining Philosophers problem.

28

2.2.2 Previous Work on the Dining Philosophers Problem

Lehmann and Rabin's Work [21]

The specification assumed by Lehmann and Rabin is a ring, where vertices are con-

sidered as philosophers and edges as forks or vice versa. Lehmann and Rabin gener-

alized Dijkstra's model [9] to a ring with n nodes. The implementation required is in

shared memory systems, where adjacent philosophers have access to shared objects

representing forks. The authors assume that neighboring philosophers never access

a shared object exactly at the same time. Furthermore, they also assume that a

philosopher may check that a fork is free and pick it up in one atomic step without

being interrupted by a neighbor. Philosophers also have a consistent local orienta-

tion on their forks (left or right). As in all variants, no philosopher eats forever.

Lehmann and Rabin implemented the fork objects with read/write variables in fully

distributed and completely symmetric (see page 4) systems. They presented two Las

Vegas randomized algorithms. One is deadlock-free and the other is lockout-free.

Algorithm Description: In the deadlock-free solution, they implemented (grab(.))

by letting a hungry philosopher choose a fork (left or right) uniformly and randomly,

and then wait until she manages to pick it up. After that she checks the other fork,

if it is free, she acquires it and starts (eat). Otherwise she drops the fork that she

is holding, and starts again by choosing a random fork. After eating, a philosopher

executes (release(.)) by dropping both forks one at a time in an arbitrary order.

The scheduler can arrange moves among philosophers, so that some philosopher

will keep trying to eat but never succeed, because a neighbor grabs her second fork

just before she is about to pick it up. For example, let philosopher r and s be the

29

neighbors of philosopher p and fp and f, be the forks that p shares with r and s

respectively. Suppose p is hungry, randomly chooses fp as her first choice, and picks

it up successfully. Before p is about to get f,, s becomes hungry, and picks up f.

Since philosopher p failed to acquire her second fork, then she drops fp and tries

again. The scheduler can repeat this strategy indefinitely. Therefore p will never get

both forks and eat.

To avoid such starvation, the authors introduced a Courteous Philosopher's Algo-

rithm that provides lockout-freedom. The algorithm only modifies how a philosopher

acquires her first fork. A trying philosopher randomly chooses a fork. When the fork

is free she will not pick it up until she has higher priority than her neighbor sharing

the fork. A philosopher has higher priority on a fork if one of the following conditions

is true, otherwise she has lower priority on it.

1. The neighbor sharing the fork with her is not trying.

2. Nobody has used the fork before.

3. The last use of the fork was by her neighbor.

Thus while a philosopher p is continuously trying, each of her neighbors can get

the fork shared with her once. After that when either becomes hungry again, with

probability a half it will choose the fork she shares with p as her first choice. In that

case none of the above conditions is true, thus she cannot preempt p by holding the

fork shared with p again. Therefore with probability 1 every trying philosopher will

eat and nobody starves.

Complexity: There is no complexity analysis in this paper.

In shared memory settings, the most interesting criterion to measure the per-

30

formance of solutions to the Dining Philosophers problem is waiting time, which

indicates how long it takes a hungry philosopher to eat. Since philosophers in the

first algorithm may starve, there is no upper bound on the waiting time of this algo-

rithm. In the Courteous Philosopher's Algorithm, it is possible that all philosophers

except one have higher priority on their left forks and lower priority on their right

forks and everyone chooses her right fork as the first choice. Thus all philosophers

except one line up in the waiting relations, allowing only one philosopher to eat at a

time. Therefore the waiting time of the worst case in this algorithm is e(n), where

n is the total number of philosophers on t.hexing.

Further Discussion: Lehmann and Rabin pointed out and proved that there is

no deterministic, deadlock-free solution to the Dining Philosophers problem in fully

distributed and completely symmetric systems.

Their algorithm does not explicitly indicate that any object stronger than atomic

read/write variables are used. However, a philosopher must be able to check that a

fork is free and pick it up in one atomic step. Otherwise some neighbor may pick

up the fork in between, and eventually both the neighboring philosophers hold the

shared fork at the same time. This required composite action can be achieved by

implementing each fork as a test-and-set object. The test-and-set operation can

simulate the check and pick up operations provided by the atomic variables. The

reset operation implements the release operation of the atomic variables.

Chandy and Misra's Work [61

The specification assumed by Chandy and Misra is the Restricted - Sharing Dining

Philosophers problem, in which a philosopher needs several forks but each fork is

31

shared by exactly two philosophers. They assumed the underlying communication

graph is a static, finite, simple, undirected and connected graph. The implementation

required is in message passing systems, where philosophers communicate with each

other by exchanging messages. Chandy and Misra implemented the fork objects

with tokens in fully distributed systems. They devised a deterministic algorithm

that provides lockout-freedom.

Algorithm Description: For each pair of neighbors, there exists two tokens, fork

and request-token, which normally reside at different philosophers. They imple-

mented (grab(.)) by letting a hungry philosopher send the request-tokens correspond-

ing to all her missing forks. To ensure that every hungry philosopher eats eventually,

priority on a fork is maintained among all philosophers who use it. After sending a

request-token, either 1) the philosopher receives the fork, or 2) her neighbor is hun-

gry and has higher priority on the fork, or 3) her neighbor is eating. After eating, a

philosopher becomes lower priority on all the forks shared with her neighbors. Thus

a hungry philosopher will either get all her forks or her priority on some fork rises

after the neighbor using that fork ate. The hungry philosopher with higher priority

on all forks will acquire all of them and start eating. As will be discussed shortly,

given an appropriate initial configuration, this situation always happens.

To implement the priority idea, each fork is associated with a state, clean or dirty.

If a philosopher holds a dirty fork, then she has low priority on that fork. Otherwise

she has high priority on it. An eating philosopher makes all her forks dirty. Forks

only get clean when they are transferred from one philosopher to another. Upon

receiving a request-token, a philosopher will send the fork to her neighbor if the

32

fork is dirty and she is not eating. A hungry philosopher eats if she holds all her

shared forks, and each fork is either clean, or she does not hold the corresponding

request-token for it.

Since each fork is represented by a token, and it has to reside in one of the two

philosophers that use it, the way to implement the (release(.)) operation is different

from Lehmann,. and Rabin's. Instead of setting the fork free, the philosopher still

keeps the fork token, but makes it dirty. Therefore upon receiving a request-token

from a neighbor, she will release the fork to the neighbor if she is not eating.

The whole system works properly, if initially the high priority relation does not

form a cycle. Therefore a special initial configuration needs to be set up as fol-

lows. All philosophers are thinking, and all forks are dirty. Philosophers are labeled

with indices. For each pair of neighbors, the one with lower order holds the shared

fork, and the other one holds the corresponding request-token. Any way to label

philosophers such that the high priority relation does not forms a cycle is sufficient

in the initial setting. For convenience, the authors suggested a total order among

the philosophers.

Complexity: There is no complexity analysis in this paper.

Since the solution is developed for message passing systems, we are interested

primarily in the message complexity, which characterizes the number of messages

sent and received by a hungry philosopher before she can eat. Because a hungry

philosopher exchanges a constant number of messages between each of her neighbor

before eating, the message complexity is bounded above by 0(6), where 6 is maxi-

mum number of forks that a philosopher uses. For time complexity, the worst case,

33

similar to the one in Lehmann and Rabin's second algorithm, can also happen here.

Therefore the waiting time of the worst case is 8(n), where n is the total number of

philosophers.

Further Discussion: Fairness is provided by maintaining priorities on forks among

all philosophers. This is similar to the technique used in the second algorithm, of

Lehmann and Rabin.

It is important to prevent the high priority relation from forming a cycle, which

can cause deadlock in the system. For example, consider a ring, where initially each

philosopher has one dirty fork. If all of them are hungry, then each can get the

other fork from her neighbor because that fork is dirty, implying that her neighbor's

priority on it is low. However she has to give up the fork she holds for the same

reason. Eventually every philosopher holds a clean fork and will not give it up.

Therefore, nobody can acquire both forks and eat.

For convenience the authors proposed a total order among all philosophers in the

initial state, , which is equivalent to every philosopher having a distinct identifier. In

this case the system is not completely symmetric. In fact, assigning locally distinct

numbers to philosophers is sufficient. Consider any existing cycle in the communica-

tion graph. Because the numbers of philosophers in a cycle cannot keep increasing,

there must exist a philosopher that has an identifier less than both neighbors on the

cycle. That philosopher will have both dirty forks shared with neighbors on the cy-

cle, which implies this philosopher does not have high priority on either forks. Thus

high priority cannot form cycles.

To prove that progress is achieved, construct the directed graph G = (P, A),

34

where P is the set of all philosophers who are hungry, and directed edge (p, q) E A

if and only if q has higher priority on the forks shared with p. G is acyclic, hence

contains at least one sink (that is node with no outgoing edges), say r. Philosopher

r has high priority on all forks shared with her hungry neighbors. Thus r will either

acquire all her forks or another neighbor of r becomes hungry, joins G, and stops r

because she has higher priority than r. Since there are a finite number of philosophers

in the system, eventually there are no more philosophers that become hungry without

exiting the graph. But any philosopher that exits the graph has just executed (eat).

Herescu and Palamidessi's Work [16, page 82]

The specification assumed by Herescu and Palamidessi is the Restricted - Forks Din-

ing Philosophers problem, in which every philosopher uses exactly two forks but

a fork can be shared by several philosophers. They assumed the underlying com-

munication graph is a static, finite, undirected and connected graph. The graph

allows multiple edges. The implementation required is in shared memory systems.

Philosophers have a consistent local orientation on their forks (left or right). Herescu

and Palamidessi implemented the fork objects with test-and-set objects in fully dis-

tributed and completely symmetric systems. They presented two Las Vegas ran-

domized algorithms. One is deadlock-free and the other intends to provide lockout-

freedom but fails to do so.

Algorithm Description: The first algorithm provides deadlock-freedom. The

implementation of (grab(.)) and (release(.)) is similar with Lehmann and Rabin's

first one. However acquiring a fork is achieved by a test-and-set operation, and

releasing a fork is achieved by a reset operation. Another difference is that every

35

fork has a variable, which contains an integer in range [0, m], where m is no less than

the total number of forks in the system. Instead of randomly choosing a fork from

left or right as the first choice, a philosophers always tries to pick up her fork with

bigger value first. If both forks have the same value, the philosopher will choose the

right one. To ensure the values of both forks are eventually different, a philosopher

changes the value of the fork she is holding, if it happens to have the same value as

her other fork.

The authors also gave another randomized algorithm that was supposed to pro-

vide lockout-freedom, but it failed to do so. We discuss the problem and fix the

algorithm and present it in the "Further Discussion" paragraph.

Complexity: The authors did not give complexity analysis in their paper. We will

give the upper bound on waiting time of the repaired lockout-free solution.

Further Discussion: Herescu and Palamidessi pointed out that both algorithms

of Lehmann and Rabin failed in a more general case, where each fork is shared by an

arbitrary number of philosophers. Both of their algorithms are variants of Lehmann

and Rabin's. They required a bound on the size of the network (number of nodes),

in order to bound the size of a integer set from which every fork is assigned a label.

Since the values of forks are used to break symmetry, it is enough for every fork to

have a locally distinct value. Therefore only local information, such as maximum

degree, needs to be known, and the bound could be made independent of the size of

the whole system.

Since in Herescu and Palamidessi's model, forks are shared by an arbitrary num-

ber of philosophers (possibly more than two), the priority on a fork is among several

36

philosophers, and there may also be several philosophers that try to get the same

fork at a time. Now 'low' and 'high' are not enough to denote philosophers' priorities

on forks, and philosophers need to monitor the actions of more neighbors. Therefore

in their second algorithm, each fork maintains two more data structures, one is a set

of philosophers who are trying to get the fork, the other one is a list, which keeps

track, in time order, of the philosophers who have used the fork. In the execution

of (grab(.)), every hungry philosopher chooses the fork with bigger value as her first

choice. She waits until the fork is free and one of the priority checks is true:

1. The philosopher has not eaten before.

2. All the trying neighbors used the fork after her last meal.

This algorithm [16, 25] fails to provide fairness even for the simple topology of a

line. For example, consider the system G = (F, F), where vertex set, F = If,, f2, f},

represents set of forks. Edge set, P = {Pi , p2}, represents set of philosophers. And

F(1) = {fl, f2}, F(2) = {f2, f3}. That is, philosopher p1 uses fork f, and f2,

philosopher P2 uses fork f2 and fa. Let fork f2 have a smaller value than both f and

so it will always be the second choice of each philosopher. Thus either of them

holding her first choice can pick up f2 as long as it is free. Then Pi can stop P2 from

eating by grabbing f2 whenever p2 is about to pick it up. For example, suppose p

and P2 are both hungry and holding their first choices. Let Pi get f2 and eat later on.

After eating, pi releases both f and f2, becomes hungry right away, and acquires

fl. This configuration is the same with the initial state. The scheduler can always

let p, picks up 12, and make the above situation happens forever. Philosopher P2

will never get 12, and therefore never eat.

To fix this problem, every philosopher has to do the priority checks on the second

37

fork as well. Each philosopher still only waits for her first choice, which means if

the second choice is not free or both priority checks fail, then the philosopher will

drop her first fork and start from scratch. Now in the above example, if p, ate and

became hungry again,while P2 is continuously hungry, both Pi's priority checks on

f2 are false. Thus Pi cannot pick it up again before P2 eats.

The worst case that could happen in this fixed algorithm is similar to that in

Lehmann and Rabin's second algorithm, where the whole system is a ring and all

philosophers except one line up in a waiting relation. Therefore the waiting time of

the worst case in this algorithm is 0(n), where n is the size of the network.

Nancy Lynch's Work [23]

The specification assumed by Lynch is a Static Resource Allocation problem. She

first gave a formal definition [23, page 256] for the problem as follows:

A resource problem P is a quadruple (R(P), U(P), 'R..(P), U(P)), where

R(P) and U(P) are disjoint, possibly infinite sets (of resources and users,

respectively), where R(P) is a mapping from U(P) to the set of finite

nonempty subsets of R(P) (indicating the resources required by each

user), where U(P) is a mapping from R(P) to finite nonempty subsets of

U(P) (indicating the users for each resource), and where r E R.(P) (u) if

and only if u E U(P)(r).

Then she modeled the problem as a graph, in which the vertices represent re-

sources. Put an edge between two nodes, if the corresponding resources have a

common user. Both users and resources are processes. The implementation required

38

is in systems with a reliable communication setting (shared registers or messages

exchanges system) through which processes exchange information.

As indicated at the beginning of this chapter, the Dining Philosophers problem is

a fundamental version of the Static Resource Allocation problem. Lynch's model can

be directly mapped onto a General Dining Philosophers problem3. In this section,

we present Lynch's algorithm in the form of the Dining Philosophers setting by

considering users as philosophers and resources as forks.

Lynch assumed a coloring algorithm was applied to the system initially, so that if

two forks are used by a common philosopher, then they have distinct colors. There

is a total order among all colors. Lynch presented a deterministic algorithm that

provided lockout-freedom in a fully distributed system with the above assumption.

Algorithm Description: Lynch implemented the (grab(.)) operation as follows.

A hungry philosopher puts herself in the queue of her fork that has the smallest

color. She remains in the queue until she becomes the head of it, which implies she

can get the corresponding fork. That fork will put the philosopher into the queue

of the next fork that she uses in the coloring order if it exists. Eventually when the

philosopher has become the head of the queues of all her forks, she has obtained all

her forks and starts (eat).

In the execution of (release(.)), a philosopher who has eaten leaves the front

position of the queues of each of her forks. This permits some hungry neighbors to

'Lynch assumes that the resources also execute programs. This is slightly different from our
object oriented model of the Dining Philosophers problem, in which only philosophers are active
processes. However we will show in the 'Algorithm Description' that this does not violate our model
by demonstrating that the operations by users together with the operations by resources implement
(grab(.)) and (release(.)) on the fork object.

39

grab the fork shared with her.

Complexity: Assume that a is an upper bound on process step time, ii is an upper

bound on the time for a user to return a granted resource, y is an upper bound on

message collection time, and 5 is an upper bound on message delivery time. Let

contention(P) denote the maximum number of users of any resource, and let Icl

denote the number of colors. Then the time from when a user starts to require its

resources until the user gets all of them is bounded above by

(contention (P)kl - 1)v+O(IcI contention (P)IdI((7 + + 5))

Further Discussion: The performance of the algorithm depends on a good col-

oring algorithm. The upper bound of waiting time does not depend on the size of

the whole system, but a function of local parameters only (such as the maximum

number of users of each resource and maximum number of resources for each user).

Choy and Singh's Work [8]

The specification assumed by Choy and Singh is a special Static Resource Allocation

problem, where each resources is shared by only two processes. They claimed that

their solution to this special case can easily be extended to the general case where

a resource is shared by several processes. They also pointed out that the Dining

Philosophers problem is a graph-theoretic formalization of the Resource Allocation

problem. They only present lockout-free solutions to the Dining Philosophers prob-

lem.

They used the arbitrary graph model in [22], where vertices represent philosophers

and each edge represents a fork shared by the end vertices. This setting is the same

40

as the Restricted - Sharing Dining Philosophers problem. They assumed that a node

coloring mechanism had been applied to the system initially, so that each node has

a locally distinct label in the range 0 to 6, where 6 is the maximum number of forks

used by a philosopher4.

Choy and Singh implemented the fork objects with tokens in fully distributed

message passing systems. Their deterministic algorithms provide robustness when

stop failures happen.

Algorithm Description: Similarly to other solutions in the message passing sys-

tems, every pair of neighboring philosophers carries a fork token and a request-token.

To collect missing forks, a philosopher simply sends the corresponding request-tokens

to its neighbors. The policy here to resolve conflicts is to give higher priority to the

process with smaller label. To avoid the situation where a process with smaller label

always preempts its neighbors by holding forks shared with them, they introduced a

mechanism called a doorway. Only the processes inside the doorway are allowed to

gather forks, and the process will exit from the doorway after eating. They divided

the execution of (grab(.)) into two major actions: a hungry process first tries to enter

the doorway, then starts to collect missing forks. A philosopher inside the doorway

can acquire the fork if either 1) the corresponding neighbor has bigger label and is not

eating, or 2) the corresponding neighbor is outside the doorway. Like other solutions

in the message passing settings, a philosopher still keeps all the fork tokens after

eating, and just looses priority on all of them. Therefore in operation (release(.)) a

philosopher exits from the doorway. A process cannot enter the doorway twice if a

4There exists a greedy node-coloring algorithm that color nodes with A + 1 colors, where A is
the degree of the graph.

41

neighbor continuously stays inside the doorway. Thus a process cannot preempt a

neighbor with higher label more than once before that neighbor eats.

The authors first described an asynchronous doorway. To enter the asynchronous

doorway, a process p checks the states of its neighbors one by one. For any neighbor

inside the doorway, p waits until the first time that neighbor exits. After observing

a neighbor is outside the doorway, p will not check it anymore. When p finishes

checking all neighbors, it enters the doorway. Once p is inside the doorway, its

neighbors can be in the doorway at most once, because that neighbor will notice

that p is in the doorway, and will wait until p exits. Consider the subgraph, G, of

the communication graph of the system that is induced by the nodes that are inside

the doorway. At some point, G will not grow anymore, and after that, the process

with local minimum label will successfully grab all its forks, and leave the subgraph.

Eventually p will either become a local minimum or all neighbors of p will leave.

Thus p will eat. Therefore every process inside the doorway will eventually eat and

come out, implying that every hungry process outside the doorway has a chance

to enter. However, in an algorithm using the asynchronous doorway, the following

scenario is possible. A process with label 6 enters the doorway. While it is collecting

forks, all its neighbors with label 6 - 1 enter the doorway one at a time to preempt

it. This can happen recursively for every such neighbor. Therefore the algorithm

has exponential response time.

To improve the response time, the authors introduced another doorway called

a synchronous doorway. To enter the synchronous doorway, a process waits until

all its neighbors are simultaneously outside the doorway. The synchronous doorway

separates the processes into two groups, early-arriving and late-arriving. The early-

42

arriving processes enter the doorway, and cannot be interrupted by the late-arriving

processes before using the forks. However a process waiting outside the doorway

could be prevented from entering the doorway forever if its neighbors take turns

entering the doorway. For example, a process p has two neighbors q and r. Initially

p and q are outside the doorway and both are hungry, and r is inside the doorway.

Process p and q have to wait until r finishes eating. When r exits from the doorway

q enters immediately. Suppose r becomes hungry again. Now p and r have to wait

for q to finish, which is symmetric to the initial state. The scheduler can make

this happen forever, and process p never enters the synchronous doorway.. Therefore

process p starves.

To prevent this case, an asynchronous doorway is placed in front of the syn-

chronous doorway. A hungry process will try to enter the asynchronous doorway

first and then the synchronous doorway. A process inside the synchronous doorway

is considered to be outside the asynchronous doorway. Only processes inside the

synchronous doorway can collect forks. The process exiting from the synchronous

doorway will be blocked outside the asynchronous doorway until all its neighbors

exit the asynchronous doorway, meaning that they enter the synchronous doorway.

In the above example, when r comes out of the synchronous doorway, it will stay

outside the asynchronous doorway until p enters the synchronous doorway. Therefore

r will not stop p from entering the synchronous doorway again.

The combination of the asynchronous doorway and synchronous doorway is called

a double doorway. The double doorway attains the advantages from both the asyn-

chronous doorway and synchronous doorway. It prevents starvation and provides

good response time. The authors gave two optimizations to remove unnecessary

43

waiting at the doorways.

1) Since the synchronous doorway is to prevent a process from preempting a

neighbor with higher label, a process needs only to wait for all the neighbors with

higher labels to exit.

2) The asynchronous doorway is to prevent a process from blocking a neighbor

from entering the synchronous doorway by continuously entering it. And a process

only waits for neighbors with higher labels before entering the synchronous doorway.

Therefore a process that tries to enter the asynchronous doorway only waits for all

the neighbors with lower label :to exit.

At the end of the paper, the author introduced failure locality to measure the

robustness of an algorithm in the presence of stop failures. First define a waiting

chain to be a directed path (p1, ...p), where pi and Pi+i are neighboring philosophers,

and pi is waiting for a fork held by Pji for i = {1, ..., k - 1}. The length of a waiting

chain is the length of the corresponding directed path. If a process p stops executing

its code, all the processes along any waiting chain and behind p will not make progress

anymore. Therefore the failure locality is measured by the length of waiting chains.

To improve the failure locality, the authors limited the length of any possible waiting

chains by using an improved policy, called fault-tolerant fork collection, to solve the

conflict. Define a fork to be a high fork to a process, if the process has higher priority

on it than its neighbor, otherwise it is a low fork. A process always tries to get its

missing low forks first, and it starts requesting its missing high forks only when it

holds all its low forks. While a process is waiting for a low fork, it releases any high

fork that it has upon request. Thus a process waiting for low forks will not stop any

neighbors from collecting forks. A process that is holding all its forks is ready to eat,

44

and will not give up any forks before eating. It is possible to show that the length

of any waiting chain is at most 2 by using the 'fault-tolerant fork collection' scheme.

Consider a process p who sent a request to its neighbor q for fork fpq, and q does not

release the fork. There are three possible cases:

1) process q has failed, or

2) process q is eating or ready to eat, or

3) process q has higher priority on fork fpq, has collected all its low forks, and is

waiting for a high fork from another neighbor r.

In case 1) and 2), q is not waiting for anyone, so one end of the waiting chain is

q. If fork fpq is a low fork for process p, then the waiting chain ends at process p and

has length 1. Otherwise p must have all its low forks and is collecting high forks,

which implies that p might stop a neighbor s from eating by holding one of S's low

forks. In this case the waiting chain ends at s and has length 1. In case 3) process p

is waiting for a low fork, therefore the waiting chain stops growing from p. Process

r can hold the low fork shared with q, only if it is failed or eating or ready to eat,

which implies the other end of the waiting chain is s. Thus the waiting chain has

length 2.

Clearly, by exploiting the 'fault-tolerant fork collection' scheme, the length of any

possible waiting chain among the processes in the collecting forks stage is limited to

2. Each doorway added to the algorithm increases the waiting chain by 1. Thus,

in the algorithm using double doorway, the length of any waiting chain among all

hungry processes is no more than 4.

45

Complexity: Let A be maximum number of forks used by a philosopher. The

response time in the worst case of the algorithm using the asynchronous doorway

and the double doorway is e(2) and e(2), respectively. The failure locality in

the worst case of the algorithm using the original fork collection policy is G(A). In

the algorithms using the improved policy, the failure locality reduces to a constant.

The one using the asynchronous doorway is 3, and the one using the double doorway

is 4.

Further Discussion: The coloring algorithm the authors used is not a distributed

algorithm, so we assume the coloring is part of the initial state of the system. There-

fore the algorithm requires locally distinct identifier rather than working for a com-

pletely symmetric system.

2.3 Drinking Philosophers Problem

The Drinking Philosophers Problem is a generalization of the Dining Philosophers

Problem. An informal and imprecise but common description of the Drinking Philoso-

phers problem in the literature is given as follows. The Drinking Philosophers prob-

lem consists of a set of philosophers sharing a set of beverages. Each philosopher has

an unchanged neighborhood. Philosophers indefinitely cycle through three states:

tranquil, thirsty, and drinking. When a philosopher is tranquil, she does not interact

with others. From time to time, she may get thirsty and want to drink. To drink

she acquires a set of dynamically determined beverages. A philosopher may need a

different set of beverages each time she becomes thirsty. Every drinking philosopher

will eventually finish and release all the beverages. The problem is to devise a sys-

46

tern, in which no two neighboring philosophers drink simultaneously if they need a

common beverage, and every thirsty philosopher will drink eventually.

In the above description, the conflicts between philosophers are not clearly char-

acterized. Also, it allows two non-neighboring philosophers to drink a common bev-

erage simultaneously, but it does not mention how they do so. To clarify these

ambiguities, we model the possible conflicts by the neighboring relations among

philosophers, and we make multiple copies of a beverage if, in the original descrip-

tion, it is shared by several non-neighboring philosophers.

In this section, we first use the object oriented model and the graph model to

more precisely specify the Drinking Philosophers problem. Then we briefly compare

the Drinking Philosophers problem with the Dining Philosophers problem. After

that we present Chandy and Misra's result, which uses the solution to the Dining

Philosophers problem as a subroutine, and Welch and Lynch's modular interpretation

of Chandy and Misra's work. At the end some solutions that do not use the algorithm

of the Dining Philosophers problem are presented.

2.3.1 Object Oriented Specification

A Drinking Philosophers system (7',B) consists of a set of philosophers (processes)

P = {pl,p2, ...,p,}, and a set of beverages (objects) 5 = {b1, b2,..., bk}. Associated

with each pi P is an nonempty and static set of beverages B(i) ç B.

The set of beverages 5 supports two operations: (grab(B)) and (release(B)),

where B C B.

Let S = 01, 0 2, ... be any sequence of operations on B. To give the validity

condition on 5, we define another variable CBi inductively by:

47

1) C130=8

2) CBi -

fC5_1 U Bi if oi =

CBi-,\Bi if oi = (grab(B))

Then S is valid provided

a) if o = (release(B)) for c 23, then B fl C13_1 = 0. .11

b) if oi = (grab(B)) for B C B, then B C C23_1.

The program for any philosopher pi E P is:

Do Forever:

(thirsty):B //.where B C B(i) is the output of an arbitrary local choice

(grab(B))

(drink)

(release (B))

End Do

The (thirsty) :B and (drink) are arbitrary operations that do not act on B.

The validity condition only captures the exclusion property, which requires that

no two philosophers can drink simultaneously if they need a common beverage. Nor-

mally lockout-freedom is also required under the assumption that for any philoso-

pher's (drink), there exists a subsequent (release(.)) by the same philosopher. Lockout-

freedom is a property that for any (grab(B)) operation by philosopher pi E 7', there

exists a subsequent operation (drink) by the same philosopher.

48

2.3.2 Graph Model

The Drinking Philosophers problem can be modeled by a labeled bipartite graph

G = (77, B, E), where vertices sets, P and B, represent a collection of philosophers

and beverages, respectively. An edge (p, b) is in B, if and only if p E 77, b E B and

philosopher p may drink beverage b.

Every philosopher has a dynamic labelcalled state. The state of a philosopher p E

77, denoted as state(p), is in {tranquil, thirsty, drinking}. The only state transitions

for philosophers are tranquil —+ thirsty -+ drinking - tranquil. Transitions from

tranquil to thirsty and drinking to tranquil are spontaneous. Every edge is also

associated with a state, red or green. The only state transitions for edges are red -p

green - red. An edge (p, b) E B is green implies that either St ate(p) = thirsty and p

wants to drink b or state(p)= drinking and p is drinking from b. Otherwise it is red.

The global configuration always satisfies the following property:

• Local Consistency: In any configuration, if .state(p)=tranquil, then Ve E B,

such that e = (p, b) where b E B, e is red. Let c be a configuration where.

state(p)=thirsty and e = (p, b) E B is red (or green). Let ô be the first

subsequent configuration where .state(p)=tranquil. In all configurations from c

to a, e remains in red (or green, respectively).

• Exclusion: In any configuration, if state(p)=drinking, then /iq =A p E P such

that state(q)=drinking and edges (p, b) and (q, b) are both green for a beverage

bEB.

Under the assumption that any philosopher with state drinking will change her

state to tranquil later on, the global configuration of the graph is required to satisfy

49

the strong progress property:

• Lockout-Freedom: In any configuration, if state(p)=thirsty, then there exists a

subsequent configuration, in which state(p)=drinking.

2.3.3 Drinking Philosophers Problem vs. Dining Philosophers Problem

From the object oriented specification, we can see that the Drinking Philosophers

problem is a parameterized Dining Philosophers problem. In the Dining Philoso-

phers problem, a hungry philosopher acquires all the forks adjacent to her, while in

the Drinking Philosophers problem, a thirsty philosopher acquires a subset of the

beverages adjacent to her. Thus in the Drinking Philosophers problem, all actions

except (drink) are associated with a variable B, which indicates the set of beverages

the philosopher currently needs.

In the graph model G = (P, B, E) of the Drinking Philosophers problem, for any

configuration c build a general graph G = (P0, E) where P = P. If state(p)=thirsty,

.state(q)=thirsty in c, and there exists a beverage b B such that both (p, b) and

(q, b) are in E and both are green, then place an edge (p, q) in E. Now the Drinking

Philosophers problem reduces to the Dining Philosophers problem, since philosophers

always compete with all their neighbors. However a philosopher in the Drinking

Philosophers problem may choose a different set of beverages each time she be-

comes thirsty, which implies the exclusion re1ationhip between neighboring philoso-

phers changes from time to time. The edges of G are not static, but the vertices

(philosophers) never disappear or emerge. Therefore the graph model of the Drink-

ing Philosophers problem is the graph model of the Dining Philosophers problem

with dynamic edges.

50

2.3.4 Previous Work on the Drinking Philosophers Problem

Chandy and Misra's Work [6]

In Chandy and Misra's specification, philosophers and their neighboring relations

are modeled as a static, finite, undirected and connected graph, in which the vertices

represent philosophers and edges represent the neighboring relation between philoso-

pher. They presented a deterministic algorithm in fully distributed systems, where

beverage objects are implemented by tokens.

Algorithm Description: The authors pointed out that applying the strategy in

the solution to the Dining Philosophers problem directly might result in deadlock.

For example, let neighboring philosophers p and q share two beverages b1 and b2,

where p is drinking b, and q is drinking b2. Suppose they both become tranquil

and then become thirsty for both b1 and b2. Therefore p will yield on b1 and q

will yield on b2. Chandy and Misra provided a solution that resolves conflicts in

the above symmetric situation by using their Dining Philosophers' solution as a

subroutine. Every philosopher runs both the Dining Philosophers' and the Drinking

Philosophers' algorithm. The state of every philosopher is a combination of the

dining region (thinking, hungry, and eating) and drinking region (tranquil, thirsty,

and drinking). However state (hungry, tranquil) and (eating, tranquil) are never

reached.

For each pair of neighbors, there exist a token called bottle for each shared bever-

age and a corresponding request-token. When a philosopher, say p, gets thirsty, she

decides to drink a set of beverages and becomes hungry in the dining region. In the

execution of (grab(.)), a philosopher tries to acquire the bottles for all beverages that

51

she chose. To collect a missing bottle, she sends the corresponding request-token to

her neighbor. Upon receiving the request-token, the neighbor, say q, will satisfy the

request, if either 1) q does not need the bottle or 2) q is not drinking and p is eating in

the dining region. Their Dining Philosophers solution guarantees that every hungry

philosopher eats. Therefore p will get all missing beverages from her neighbors and

start (drinking) eventually.

After drinking a philosopher does not need the priority on all beverages given

by the eating region of the Dining Philosophers problem. Therefore in (release(.)) a

philosopher exits from the (eating) operation of the Dining Philosophers solution.

Complexity: The author did not give the complexity analysis. The waiting time

of the Drinking Philosophers' solution is bounded by the waiting time of the Dining

Philosophers' solution being used, because the additional overhead is small. Chandy

and Misra's Drinking Philosophers' solution has waiting time e(n), since they used

their own solution to the Dining Philosophers' problem, which has the same com-

plexity.

Further Discussion: Chandy and Misra's algorithm does not work under com-

pletely symmetric systems. This is because the Dining Philosophers subroutine used

in their algorithm starts from a special initial configuration, where every philosopher

has a locally distinct identifier.

In Chandy and Misra's graph model, the vertices represent philosophers and

edges represent the neighboring relations rather than the possible conflicts among

philosophers. They described an extra set to denote the set of beverages accessible

to philosophers. Their exclusion property requires that neighboring philosophers

52

cannot drink the same beverage, while philosophers not adjacent to each other can

do so. This description can be modified to an equivalent one by making lv copies

for each beverage, if there are k pairs of neighboring philosophers that potentially

need it. Then place an edge between these pairs of philosophers for each copy. Now

two philosophers are neighbors only if they might acquire the same beverage. This

modified model is equivalent to our graph model introduced in Section 2.3.2.

Welch and Lynch's Work [26]

Welch and Lynch exploited the same idea as Chandy and Misra's. One contribution

of their paper is to give a modular description of the Drinking Philosophers problem

by modeling it within an I/O automaton model. This allows one to plug in an

arbitrary lockout-free solution to the Dining Philosophers problem. Their problem

description can be converted to our object oriented description and is presented in

Appendix A.

Algorithm Description: The authors implemented the (grab(.)) operation as

follows. As soon as a philosopher p enters her drinking thirsty region, she enters

the dining hungry region in the subroutine. She tries to collect the beverages that

she needs but lacks. If her neighbors do not need those beverages, they satisfy p's

requests. Otherwise they defer the requests. A philosopher in the dining eating region

has higher priority on all her shared beverages than the corresponding neighbors.

When p enters the dining eating region, she sends demand messages for the missing

beverages. Upon receiving a demand, a philosopher will always give the beverage

to the sender (if she is using the beverage, she will wait until she finishes using it.)

Eventually p will get all the beverages, and will enter the drinking region by executing

53

(drink(.)). Just as in Chandy and Misra's solution, in the (release(.)) operation, a

philosopher exits from the dining eating region.

Complexity: The authors showed that in a system of n philosophers the maximum

waiting time for a Drinking Philosopher to enter her critical region is dominated by

the maximum waiting time for a Dining Philosopher to enter her critical region in the

subroutine. By replacing the 0(n) time subroutine in Chandy and Misra's solution

with an 0(1) time subroutine, they claimed that their algorithms have 0(1) worse

case waiting time.

Further Discussion: By claiming that the Dining Philosophers algorithm of [23]

has waiting time 0(1), they mean the time complexity is independent of the size of

the network. But it does depend on some local parameters, such as the number of

forks needed by one philosopher and the number of philosophers sharing one fork.

Since they present the problem with an I/O automaton model, the validity conditions

of the system are given by making constraints on the transitions of the automaton.

This idea is essentially the same as our object oriented description, which gives

validity conditions on the computations of the system.

Gmat, Shankar, and Agrawala's Work [13]

The authors present a basic problem description and two generalizations. They

gave deterministic solutions to the basic problem and the first generalization in fully

distributed message passing systems, where beverage objects are implemented with

tokens. In their algorithms, each philosopher is assumed to have a locally distinct

label, so the solutions are not completely symmetric.

54

Basic Drinking Philosophers problem: The authors modeled the problem as

an undirected simple graph, where nodes represent philosophers, and neighboring

philosophers share only one bottle. A bottle is associated with every edge, implying

that every bottle is shared by exactly two philosophers. When a philosopher becomes

thirsty, she needs a nonempty subset of the bottles associated with her incident edges.

Two philosophers are called neighbors if there is an edge between them.

Algorithm Description: Each philosopher p maintains two nondecreasing inte-

gers: s_nump and max rec. Integer s_num refers to p's session number, which is

p's last drinking session number if p is tranquil, p's upcoming drinking session if p is

thirsty, and p's current drinking session if p is drinking. Integer max_rec indicates

the biggest session number received by p from her neighbors so far. An extended

session number is a combination of a philosopher's session number and her identifier,

(s_num,id). A philosopher p has higher priority on the beverage shared with q, if p

has a smaller extended session number than q, where (s_num,idp) <(s_numq,idq),

if and only if (s_nump<s_numq) or (s_nump=s_numq and id <idq). For every

beverage shared between two philosophers, there exist a token called bottle and a

corresponding request token.

In the execution of (grab(.)), a thirsty philosopher p sets s_num to a value bigger

than max_rec, and sends the corresponding request token, including her session

number and her label, to the neighbor who is holding a bottle that she needs. Upon

receiving a request token from a neighbor, a philosopher will update her max_rec

value and will release the bottle if she does not need it or her neighbor has higher

priority on it. If a philosopher is drinking when she receives a request token, she will

55

release the corresponding bottle after drinking. Once a philosopher releases a bottle,

she cannot get it back again before her neighbor uses it. The reason is that when

p received the request token from q, p update her max_recp to a value at least as

big as q's current session number. When p becomes thirsty again, she set her session

number bigger than max_rec, which is bigger than q's current session number. Also

a philosopher will not change her session number when she is thirsty. Therefore p

does not have higher priority on the bottle shared with q. This ensures a philosopher

looses the priority on all beverages after drinking. Thus in (release(.)) a philosopher

can still keep the beverage tokens as in some other algorithms for message passing

systems.

The algorithm works correctly if the initial configuration satisfies the following

properties: 1) Every philosopher has a locally distinct label. 2) Every philosopher p

is tranquil and s_num=max_rec 0. 3) For every beverage shared between a pair

of neighbors, one has the bottle, the other has the corresponding request token.

The Multiple-instance Extension of the Drinking Philosophers Problem:

The authors extended the basic problem to a more general one, where two neighbors

share n instances of the bottle, and a philosopher may need any number up to n of

these bottles each time.

Algorithm Description: This algorithm is similar to the one solving the basic

case. To save messages, a philosopher sends one request token including the total

number of instances she needs, her session number and her identifier. Upon receiving

a request token, a philosopher updates her max_rec value, and releases the additional

number of instances her neighbor needs in a single message if the sum of the numbers

56

that they each need is less than the total number shared by them or her neighbor

has higher priority.

The Multiple-type Extension of the Drinking Philosophers Problem: The

authors also mentioned a still more general extension, where two neighboring philoso-

phers may share several types of bottles, and every bottle type has several instances.

They did not give the algorithm for this case, but they pointed out that the 'algo-

rithm is based on the one solving the multiple-instance extension. The difference is

that the bottle type is now included in the request token. A philosopher will notify

her neighbor of the total number of instances she needs for each type of bottle.

Complexity: They only discussed the message complexity. If a philosopher uses k

bottles, then the number of messages exchanged with her neighbors before she starts

drinking is at most 2k.

Further Discussion: The authors solved the Drinking Philosophers problem with-

out using a Dining Philosophers' solution as a subroutine. Therefore, the message

complexity is reduced by saving the communications in the subroutine. The draw-

backs are that the algorithms use unbounded session numbers, and work only under

some initial configurations, where every philosopher has a locally distinct identifier

and every fork resides in a special place. In all algorithms, an atomic step contains

several single actions. In fact the algorithms still work, if the atomic step is reduced

to a single action.

CHAPTER 3

Process Synchronization Problems

In the previous chapter, we introduced the Resource Allocation problem, in which the

resources (or forks, beverages) are passively collected by their users (or philosophers).

In contrast, the concurrent entities in the Process Synchronization problems are

active or partially active, and they can decide whether to interact with others or not.

While trying to synchronize with others, they either coordinate among themselves

or they are controlled by some distributed or centralized coordinators. Different

problems may require a different number of synchronization points.

In the following sections, we present three typical Process Synchronization prob-

lems: Committee Coordination, Multiway Rendezvous, and Multiparty Interaction.

3.1 Committee Coordination Problem

The Committee Coordination problem is informally defined to consist of a set of

professors organized into committees. Each committee has a static membership. A

professor can be available or unavailable. An available professor can attend a meeting

57

58

held by any committee of which she is a member. An unavailable professor will not

attend any meeting. The restrictions on meetings are as follows:

Synchronization: a committee meeting may be started only if all members of that

committee are available.

Exclusion: no two committees may meet simultaneously if they have a common

member.

All meetings are assumed to terminate in finite time. The problem is to devise a

protocol that satisfies the above restrictions, and also guarantees that if all members

of a committee are available, then at least one of them will attend some meeting.

3.1.1 Object Oriented Specification

A Committee Coordination system (C U R., P) consists of two sets of processes, a

collection of committee coordinators (abbreviated as committees) C = {c1, c2, ..., c}

and a collection of professor controllers R = {r1, r2, ..., rk}. The set of objects

P = {pi, P2, ..., Pk} represents a collection of professors. Associated with each Cj E C

is a nonempty and static set of professors P(i) C P.

The set of professors P supports four operations: (grab(P)), (release(P)), for

some P C 7', and (become_available(p)), (go_on_holiday(p)), for some p E P.

Let S = 01, 02, ... be any sequence of operations on P. To give the validity

condition on S we define another variable CPi inductively by:

59

1) CP0 = P, where P C P is arbitrary.

2) CPi =

C'P_1 U P if Oi = (release(P))

CPi-I\Pi if o (grab(P))

CP_1 U {p} if oi = (become available (p))

CP_1\{p} if oi = (go_on_holiday(p))

Then S is valid provided

1) if o (release (P)) for P C 7', then P fl CP_1 = 0.

2) if oi = (grab(P)) for P C 7', then P C C'p_1.

3) if oi = (become_available(p)) for p E 7', then p CP_1.

4) if oi = (go_on_holiday(p)) for p e 7', then p E CP-I.

The program for any committee ci E P is:

Do Forever:

(grab (P (i)))

(meet)

(release (P (i)))

(adjourn)

End Do

The (adjourn) and (meet) are arbitrary operations that do not act on P.

The program for any professor controller rj E 7?. is:

60

Do Forever:

(become_ available(p))

(go_on_holiday(p))

End Do

The validity condition captures: 1) the exclusion property, which guarantees that

no two committees can meet simultaneously if they have a common member, and

2) the synchronization property; which guarantees that a committee may meet only

when all its members are available. Normally deadlock-freedom is also required under

the assumption that every meeting terminates. Deadlock-freedom is the property

that after any operation o, such that there exists a j such that P(j) 9 CP, either

there is a subsequent operation (meet) by a committee Ck E C and P(k) fl P(j) o 0,

or there is a subsequent operation (go_on_holiday(p1)) for Pt E P(j).

3.1.2 Graph Model

In a bipartite graph C = (C, P, E), vertex sets C and P represent a collection of

committees and professors respectively. An edge (c, p) is in E, if and only if c E C,

p E P and professor p is a member of committee c.

Every professor has a dynamic label called state. The state of a professor p e

denoted as state(p), is in {holiday, available, meeting(c)}. The label transitions are

holiday -* available, available -+ meeting(c), available -+ holiday, and meeting(c)

- holiday . The transitions from holiday to available and meeting(c) to holiday

are spontaneous. The global configuration of the graph is required to satisfy the

following properties:

. Exclusion: In any configuration, if state(p) =meeting (c), then 4q such that

61

(q, c) E E and state(q)= meeting(c), where j =A i.

• Synchronization: In any configuration, if Vp E P such that (p, Ci) E B,

state(p) =meeting (c), then there exists a previous configuration, in which Vp E

P such that (p, c) E B, state(p)=available. In all the intermediate configura-

tions, for all such p, state(p)=available or meeting(c).

Under the assumption that any professor with label meeting(.) will change his

label to holiday later on, the global configuration of the graph is required to satisfy

the following property:

• Deadlock-Freedom: In any configuration, if Vp E P such that (p, c) E B,

8tate(p)=available, then there exists a subsequent configuration, in which p €

P such that (p, Ci) € E and state(p) =meeting (c), where cj € C.

3.1.3 Previous Work on the Committee Coordination Problem

Chandy and Misra's Work [6, page 334]

The specification of Ohandy and Misra assumes the following:

1) A committee ci starts executing (grab(P)) if and only if the last operation

applied to any professor p E P is (become_available(p)), which implies whenever

every member is available a committee tries to convene a meeting.

2) After an operation (release(P)), the next operation applied to any professor

p € P is (go_on_holiday(p)), which implies that a professor becomes unavailable

right after she leaves a meeting.

3) An available professor will remain available unless some committee, of which

she is a member, convenes a meeting.

62

The implementation required is in message passing systems.

Algorithm Description: The authors first gave a trivial solution, where a com-

mittee starts a meeting if all members are available and no neighboring committee'

is meeting. The solution is correct if there exists an extra process that collects the

state information from all professors and centralizes all decisions about committee

meetings.

They then introduced a solution in distributed settings, where both committees

and professors are processes. The exclusion requirement is solved by mapping the

Committee Coordintion problem onto the Dining Philosophers problem by consider-

ing professors as forks and committees as philosophers. Thus neighboring committees

corresponds to neighboring philosophers.

In the operation (grab(P(i))) by a committee c, it first executes (grab(F(i))) of a

lockout-free solution to the Dining Philosophers problem, which guarantees operation

(eat) will eventually happen. A committee can convene a meeting if and only if it is

executing (eat) and all its members are available.

It is important to check whether every member is still available before an eating

committee executes (meet). It is possible that the neighboring committees, say C

and D, become hungry, and C eats and subsequently meets. After C's eating, the

committee D can eat. However some of its members that are also in C may no longer

be available. So D cannot meet without checking the state of all its members. If an

eating committee notices that not all of its members are available, then it becomes

thinking right away.

'Two committees are called neighbors if they have a common member.

63

The states of the professors are communicated asynchronously. Therefore care is

required to ensure that every available member is still available when the collection

is done. The authors claimed that it was safe for a committee c to collect states

of its members after it started eating. At this point, none of its neighbors can be

eating, implying none of its neighbors will convene a meeting. No member of c will

participate in a meeting during the collection of c. Thus every available member

remains available. The authors gave two alternative ways for a committee to collect

information from its members. In the first one, a committee polls every member to

determine whether they are available. In the second one, a professor will actively

report its state to all the committees of which she is a member.

Checking the states of all members is also required in the thinking to hungry

transition of a committee. However no extra work needs to be done, because even if

a committee becomes hungry based on a wrong decision, and subsequently eats, it

will check the states of all its members again before meeting. The above argument

ensures that the committee will not start a meeting if some members are unavailable.

An available professor stays available until she attends a meeting and becomes

unavailable right after she leaves a meeting. To implement this, in the execution of

(release(P)) the committee calls the operation (go_on_holiday(p)) for every p E P.

The program of a professor p only contains the single operation (become_available(p)).

Complexity: The author did not give the complexity analysis. But it is easy to see

that the response time is bounded by the response time of the Dining Philosophers'

solution used, because there is only a constant amount of overhead before the call

to the Dining Philosophers subroutine.

64

Further Discussion: The original problem description is quite general. It does

not specify when a professor changes state from available to unavailable. So it is

possible that a professor remains available even after a committee of which she is a

member convened and then adjourned a meeting. Also no assumption is made about

when a professor joins and leaves a meeting. A professor may attend a meeting,

leave the meeting, and then rejoin the same meeting again. The authors claimed

the reason for giving a very general specification is to include a variety of situations.

However in the implementation, where the synchronization is solved by the second

alternative, the professors become unavailable only after they attend a meeting and

the meeting ends. Therefore there is no reentry allowed in this case.

The author also mentioned a generalization of the Committee Coordination prob-

lem. An available professor waits for a subset of the committees of which she is a

member; the subset may be different each time she becomes available. This gener-

alization is comparable to the extension of the Dining Philosophers problem to the

Drinking Philosophers problem. The author pointed out that the solution to this

generalization can be obtained by minor modifications to the original solution.

3.2 Multiway Rendezvous Problem

The Multiway Rendezvous problem is essentially the same as the Committee Coor-

dination problem as pointed out by many people, such as Choy and Singh [8], or

IBagrodia [2]. It has the same object oriented and graph theoretical specifications as

the Committee Coordination. Instead of having professors come together to attend

a meeting held by a committee, in the Multiway Rendezvous problem, processes get

65

together to execute some event. In this section we will introduce Bagrodia's results

by first paraphrasing his informal problem description and solutions, then fixing the

flaws in his problem description.

3.2.1 Previous Work on the Multiway Rendezvous Problem

Bagrodia's Work [21

In a message passing system, let P = {pl,p2, ...,p} be a set of processes, and

E = {e1, e2, ..., em } be a set of events. A process pi participates in a set of events

Ej C E. An event ek involves a set of processes Pk 9 P. Sets E and P are both

static sets.

A process is either idle or active. Every process satisfies the following conditions:

. An idle process remains idle until it commits to some event.

• A process commits to an event ek only when it determines that all other pro-

cesses in Pk will also do so.

• An idle process can commit to at most one event at any time.

• An idle process becomes active if it commits to some event.

• An active process autonomously makes the transition to become idle.

An event is either enabled or disabled. An event ek is enabled if and only if all

processes in Pk are idle. Otherwise it is disabled. An event ek is executed if and only

if each process that is in Pk has committed to ek.

The problem is to devise an algorithm that allows an idle process to commit to

an enabled event such that the following properties are satisfied [2, page 1054]:

66

1) Safety:

a) Exclusion: If a process pi commits to an event ek, then Vp

Pj cannot commit to another event. In other words, conflicting

events cannot be executed simultaneously.

b) An active process cannot commit to any event.

2) Liveness:

a) Synchronization: If process pi commits to event ek, then all

processes that belong to Pk will eventually commit to ek.

b) Progress: If all processes that belong to the process-set Pk of

some event ek are idle, then eventually some Pi that belongs to

Pk must become active. This property ensures that if an event

is enabled, it is eventually disabled.

The author designed centralized, partial distributed and fully distributed deter-

ministic algorithms in message passing systems.

Algorithm Description: Bagrodia's algorithms used message counts to solve syn-

chronization. The total number of times a process has become idle or active is called

idle-count or active-count, respectively. There are some special processes called event

managers. An event manager M may control a set of events E(M) ç E. Event

manager M maintains the idle-counts and active-counts for all the processes in .Pk

if ek E E(M). All counters are initialized to zero. When a process pi in the system

becomes idle, it sends a ready message to all the managers that control an event

in E. On receiving a ready message from a process, the manager increments the

67

idle-count of the process by 1. If the manager find that there exists an event ek, such

that Vpi E Pk, j'5 idle-count is greater than its active-count by 1, then the manager

may inform each pi to commit to ek, and increment the active-count for pi by 1.

The event manager plays the role of committee coordinator, and the above actions

correspond to the (grab(.)) operation in the Committee Coordination problem.

The author first built a centralized algorithm where there is only one event man-

ager that manages all the events in E. The exclusion is easily satisfied in the algo-

rithm.

Then he designed a partially decentralized algorithm, where there exist several

managers. In order to ensure exclusion, they used a token circulating among the

managers. Only the one holding the token can schedule its events.

Finally he presented a modified algorithm that is decentralized. This algorithm

used the message counts to solve the synchronization problem as above, and the

selection technique of the Chandy and Misra's committee coordination algorithm

to solve exclusion problem. Specifically, the exclusion is solved by mapping the

Multiway Rendezvous problem onto the Dining (or Drinking) Philosophers problem.

The event manager corresponds to the philosopher in the Dining Philosophers (or

Drinking Philosophers) problem. Event managers Mi and Mj are neighbors if there

exists event e/ E E(M) and e1 E E(M), such that Pk fl P1 0 0. An event manager

may schedule an event only when the corresponding philosopher is eating.

Complexity: The author did a simulation study to compare the performance of the

three algorithms. The response time for each algorithm is measured from the instant

that an event becomes enabled to the instant that it is selected for execution. Two

68

components determine the total response time for multiway rendezvous algorithms:

1) Synchronization Time: Time taken by the algorithm to ascertain that a given

event is enabled.

2) Selection Time: Time taken by an algorithm to select an event for execution.

They showed how variations in model parameters affects one or the other component

and consequently the response time. The parameters include the network topology,

the average time to transmit a message between processes, and the synchronization

pattern among processes in the system.

Further Discussion: In the algorithms, processes can start and end an event at

different times. There may not exist a synchronous point where everyone is executing

the event, but there is a synchronous point where every process is idle and ready to

commit to an event.

The synchronization property described in the problem description is very vague.

There is no precise condition for a process to commit to an event. A process will

commit to an event if it somehow knows all the other processes that belongs to the

same event will also do so. Also the synchronization requirement does not avoid

multi-entry. The algorithms do not allow this by using the message counts.

Their definition of enable is not correct. Once a process commits to an enabled

event ek, Cfr becomes disabled. This prevents all the other processes in Pk from

committing to ek. We correct this definition as follows: an event is enabled if all the

processes that belong to it either are idle or committed to it.

69

3.3 Multiparty Interaction Problem

In both the Committee Coordination problem and the Multiway Rendezvous prob-

lem, there is a coordinator or manager associated with each committee or event

respectively. These coordinators or managers make decisions on when the corre-

sponding committees start meeting or the corresponding events can be executed.

They are responsible for guaranteeing the computation of the whole system satisfies

the exclusion, synchronization, and progress properties. If they do not exist, pro-

fessors or the processes need to be totally active, and coordinate among themselves.

This lack of the coordinators and managers distinguishes the Multiparty Interaction

problem from the Committee Coordination problem and the Multiway Rendezvous

problem. Another difference is that the Multiparty Interaction problem requires two

synchronization points, while the Committee Coordination problem and the Multi-

way Rendezvous problem require only one.

In this section we first give the object oriented specification and graph theoretical

description of the Multiparty Interaction problem. Then we present Yuh-Jzer Joung's

solution to this problem.

3.3.1 Object Oriented Specification

A Multiparty Interaction system (P, I) consists of a set of processes P = {pi, P2, ..., p},

and a set of objects I = {i1, i2, ..., ik} called interactions. Each process Pk E P par-

ticipates in a fixed set of interactions 1(k) C I. Each interaction i1 is associated with

a fixed set P(l) = {Pk E Plil E I(k)J.

The set of interactions I supports three operations: (become_ ready (I)) for

70

I C I, and (start — interaction (i)), (end — interaction (i)) for i e I.

Let S = 0i, 02, ... be any sequence of operations on I. To give the validity

conditions on 5, first recall that (operation— name) denotes the operation executed

by process p. Then S is valid provided:

1) if in the interval between oi =(start — interaction (u))pr and the following

oj = (end — interaction (u))pr, there exists an operation (start — interaction (v)) 3,

where u 54 v and Ps E 1(u), then there exists a previous operation

(end_ interaction (u)) 8 after operation o. and

2) if oi =(start_ interaction (u))pr, then Vp3 E P(u) EJj < i, such that

oj =(become_ ready (I(s))) 8, and there exists at most one operation executed

by p3 between 03 and o, it can only be (start _interaction(u)) 3. and

3) for every i, such that oi =(end interaction(u)), there exists distinct previous

operations (start_ interaction (u)) 8 by all ps E 1(u).

The program for any process Pk E P is:

Do Forever:

(become ready (I(k)))

(start_ interaction (i)) for i E 1(k)

(end interaction W)

(local computation)

End Do

The (local computation) is an arbitrary operation that does not act on I.

71

The validity conditions only capture: 1) the exclusion property, which guar-

antees that no philosopher can participate in two interactions at the same time,

and 2) the synchronization property, which guarantees that an interaction may only

start when all processes that participate in it becomes ready, and a process can-

not finish an interaction until all the other processes that participate in the same

interaction have started. A strong progress property, lockout-freedom, which de-

livers fairness, is also required under the assumption that every interaction termi-

nates. An interaction it is enabled if and only if for every pj E P(t), Pj'S most

recent action is (become _ready (I(j))). Lockout-freedom is the property that for

any interaction it that is enabled infinitely often, there exist infinite occurrences of

(start — interaction (t)) 5 Vpj E P(t).

3.3.2 Graph Model

In a bipartite graph G = (F, I, E), vertex sets P and I represent a collection of

processes and interactions respectively. An edge (p, i) E E if and only if process p

participates in interaction i.

Every process has a dynamic label called state. The state of a process p E F,

denoted as state(p), is in {idle, ready, execute(i)j. The state transitions are idle -+

ready -+ execute(i) -+ idle. The transitions from idle to ready and execute(i) to idle

are spontaneous.

Let C = c1, c2, ... be a sequence of global configurations. Any ci E C satisfies the

following properties:

• Exclusion: If .state(p)=execute(r) in ci and state(q) =execute (s), such that

r 0 s and (q, r) E E, then there exists a previous configuration c, where

72

state(p)=execute(r) and state(q) =execute (r), and in all the intermediate con-

figurations state(p) =execute (r).

• Synchronization: Suppose statc(p) =execute (r) in c. Let Cj be a previous con-

figuration of c, such that .state(p)=execute(r) in c, state(p)=ready in c_1,

and state(p)=execute(r) in all intermediate configuration between cj and c.

Let Ck be a subsequent configuration of c, such that state(p)=execute(r) in Ck,

state(p)=idle in ck+, and state(p)=execute(r) in all intermediate configuration

between ci and ck.

1. There exists a configuration c.. before c, in which Vq E P such that

(q, r) € E, state(q)=ready, and in all the configurations between cm and

c, the state of q is either ready or execute(r).

2. There exists a configuration c between Cj and Ck, in which \lq E P such

that (q,r) E E, state(q) =execute (r).

An interaction r is enabled in a configuration if Vp E P such that (p, r) E B,

.state(p)=ready. This definition is equivalent the one on page 71. An interaction r

is executed in a configuration if Vp E P such that (p, r) E B, state(p) =execute (r).

Under the assumption that any process with state execute(.) will change its state to

idle later on, any sequence of global configurations C is required to satisfy the strong

progress property:

• Lockout-Freedom: If a configuration where r is enabled appears infinitely often,

then a configuration where r is executed will occur infinitely often.

73

3.3.3 Previous Work on the Multiparty Interaction Problem

Joung's Work [19]

Joung gave a problem specification as follows: [19, page 311]

We assume a fixed set of sequential processes Pi, ...,pn which interact

by engaging in multiparty interactions X1, ..., Xm. Each multiparty inter-

action Xi involves a fixed set of processes P(X). Initially, each process

in the system is in its local computing phase which does not involve any

interaction with other processes. From time to time, a process becomes

ready for a set of potential interactions of which it is a member. After

executing any one of the potential interactions the process returns to its

local computing phase.

Assume that a process starting an interaction will not complete the

interaction until all other participants have started the interaction. As-

sume further that a process will eventually complete an interaction if all

other participants have started the interaction.

The problem is to devise an algorithm to schedule interactions satisfying the following

requirements:

1. Exclusion: No two interactions can be in execution simultaneously if they have

a common member. (An interaction is in execution if all its members have

stared it.)

2. Synchronization: If a process p starts X, then all other processes in P(X) will

eventually start X.

74

3. Strong Interaction Fairness (SIF): If an interaction is enabled infinitely often,

then it will be executed infinitely often. (An interaction is enabled if its par-

ticipants are all ready, and becomes disabled when some of them starts an

interaction.)

Algorithm Description: They provided two randomized algorithms, one for mes-

sage passing systems and the other for shared memory systems. For the shared

memory algorithm, only single-writer multiple-reader variables are used. Their algo-

rithms are completely decentralized, meaning that there is no coordinating process,

and also symmetric in the sense that all processes are anonymous and execute the

same code. Both algorithms guarantee SIF with probability 1 under the following

two assumptions: (Al) processes do not stop executing their programs, and (A2) a

process's transition to a state ready for interactions does not depend on the random

choices performed by other processes.

When a process p becomes ready for interaction, it randomly chooses one inter-

action X from the set of interactions it is willing to execute. It informs (by sending

messages or by writing information to shared variables) other processes in P(X) of

its interest in executing X, and waits for A time, where A is a parameter of the algo-

rithm. When A time elapses, p collects the information from all the other processes

in P(X). If all of them are ready to execute X, then p will set a flag indicating the

successful establishment of X, and start executing X. If p notices the flag was set

by another process, it also starts X. If neither of the above cases is true, p will give

up X, and start from the beginning again.

A process p is monitoring an interaction X, if p has chosen X and is waiting

75

for its Li-interval to expire. Interval A is called the monitoring time. If p does not

monitor X long enough, then it may not see others' choices when it completes its

monitoring phase. Thus possibly no interaction is established even if the random

choices of all processes in P(X) coincide. If the monitoring time of all the process

in .P(X) overlap, then some process will notice the agreement, and establish X. In

the algorithms A is chosen to be the sum of the, previous non-monitoring time of all

processes in P(X). The appropriate choice of t gives the fairness property.

Complexity: Joung claimed the following [19, page 329]:

Assume that a process may be ready for k potential interactions at a

time, and each interaction involves m participants.

Suppose that the time to execute a local action is negligible compared

to the communication time for delivering a message.

If the message transmission time is c, then the time complexity is

dominated by

4c•m•km

In the above, since m messages are sent in parallel in each interval c,

the expected number of messages needed to establish an interaction per

process is no greater than

4m 2 .km

Further Discussion: In the problem description, the author failed to point out

that a process cannot re-start an interaction X while other processes are still exe-

cuting X. Both algorithms avoid this case.

76

In Joung's problem description, two synchronization points are required: all pro-

cesses are ready and all of them are executing an interaction. However this does not

make the Multiparty Interaction problem more difficult than other Process Synchro-

nization problems, because by repeatedly using a technique to achieve synchroniza-

tion, one can achieve any number of synchronization points desired.

CHAPTER 4

Comparison and Analysis of Different

Process Coordination Problems

In Chapter 2 and 3, we studied the six different kinds of Process Coordination

problems listed in Figure 4.1. Every problem consists of two different components.

A synchronization property is required on the components in the third column. As

a result of synchronization, a coordination activity executed by the components in

the second column is triggered. For example, in the Dining Philosophers problem

when all forks needed by a philosopher are gathered together, that philosopher starts

eating. Also an exclusion property is required on the behaviors of the components

in the second column. For example, in the Dining Philosophers problem no two

philosophers can eat simultaneously if they use a common fork. Different Process

Coordination problems have different assumptions on which component is active

and which is passive. As shown in Figure 4.1, all the red components are active

and all the blue ones are passive. In the first three problems the forks, beverages,

and resources are passively collected by their users to achieve the synchronization

77

78

point. Whereas in the latter three problems the professors and the processes are

actively participating in the synchronization procedure. Therefore we call the first

three problems the General Resource Allocation problem and the last three ones the

Process Synchronization problem.

Exclusion

Dining Philosophers Philosophers Forks

Drinking Philosophers Philosophers Beverages

Resource Allocation Users Resources

Committee Coordination Committees Professors

Multiway Rendezvous Events Processes

Multiparty Interaction Interactions Processes

Synchronization

Figure 4.1: Process Coordination Problems

In the set of General Resource Allocation problems, the Dining Philosophers

problem corresponds to a graph-theoretic formalization of the set of Static Resource

Allocation problems, and can also be used to solve the Dynamic Resource Allocation

problem. In the set of Process Synchronization problems, the Committee Coordina-

tion problem has the most general problem description and the loosest requirements,

which makes it representative of this class. Therefore the Dining Philosophers prob-

lem and the Committee Coordination problem are considered as representatives for

the Resource Allocation problem and the Process Synchronization problem, respec-

79

the Resource Allocation problem and the Process Synchronization problem, respec-

tively.

In this chapter we first compare the similarity and difference between the two

classes of the Process Coordination problem by comparing the Dining Philosophers

problem and the Committee Coordination problem. Using the uniform problem

specifications in the previous two chapters makes the comparison much easier and

clearer. Then we further discuss the relations between the Dining Philosophers

problem and the Multiparty Inthraction problem, which are dual problems with

respect to the role of the active and passive components of the system. At the end,

we give some comments on the atomicity requirements in the Resource Allocation

problem.

4.1 Dining Philosophers vs. Committee Coordination

Assume professors in the Committee Coordination problem play the role of forks

in the Dining Philosophers problem, and committees play the role of philosophers.

These two problems differ in two aspects:

Difference-1 : In the Committee Coordination problem, professors could be ready

to attend meetings or be idle. A committee cannot meet if one of its members

is idle. In the Dining Philosophers problem, forks that are not being used are

always available for philosophers.

Difference-IT : Every committee is always trying to meet as long as all its members

are ready, whereas if a philosopher is not hungry, she does not try to eat even

if all forks are available.

80

To eliminate the differences, we can modify either the Dining Philosophers problem

or the Committee Coordination problem.

4.1.1 Modified Dining Philosophers Problem

To address Difference-I, assign a state clean or dirty to each fork. A dirty fork is not

available (i.e. in dishwasher). A philosopher can only pick up a clean fork. Therefore

a philosopher cannot eat if one of its forks is dirty.

To address Difference-II, let philosophers become hungry whenever all their forks

are clean. With this modification, the exclusion, synchronization, and progress re-

quirements in the modified Dining Philosophers problem are similar to the require-

ments in the Committee Coordination problem. The only difference is that the latter

one requires only deadlock-freedom as opposed to lockout-freedom. Table 4.1 com-

pares these two problems in the object oriented framework. The object oriented

specification for the Committee Coordination problem described in Table 4.1 is not

the same as the one given in Section 3.1.1. It is easy to see however that these two

descriptions both capture the behaviors and requirements of the Committee Coordi-

nation problem and are equivalent. We use this description because it highlights the

similarity between the modified Dining Philosophers problem and the Committee

Coordination problem.

4.1.2 Modified Committee Coordination Problem

Based on the graph model G = (P, C, E) of the Committee Coordination prob-

lem described in Section 3.1.2, we model the modified problem with a graph C'

(P', C', E') built from C, such that F' = P and C' = C U {o}. We create a special

81

Modified Dining Philosophers Committee Coordination
Objects set of forks F set of professors P

Local Fields C = O,U = .F, initially A = 0, I = 7', initially
Public
Methods

(get_forks(F)) F ç F
precondition: F C C
effect: U - U\F C +- C\F

(get_profs(P)) P ç P
precondition: P C A
effect: I - I\P A — A\P

*lease _forks(F))
effect:U+— UUF

(release_ profs (P))
effect:If- IUP

Local
Methods

(become_clean(f)) Vf E.F
precondition: f E U
effect: C - Cu{f}

(become — available (p)) Vp EP
precondition: p E I
effect: A+-AU{p}

Processes set of philosophers {pi ... pn} set of committees {ci ... c}
Program Vpi 3Fi E

(get_forks(F))
(eat)
(release_ forks (F))
(think)

Vcj 2P E P
(get_profs(P))
(meet)
(release_ profs (P))
(adjourn)

Restriction No philosopher eats forever,
no fork remains dirty.

No committee meets
forever, no professor
remains unavailable.

Synchro-
nization

A philosopher may eat
only if all her forks are clean,

A committee may start
meeting only if all its
members are available.

Exclusion No two philosophers can
eat simultaneously, if
they use a common fork.

No two committees can
meet simultaneously, if
they have a common member.

deadlock-
freedom

If some philosophers want to eat,
some philosopher will eat.

If some committees want
to meet, some committee
will meet.

lockout-
freedom

If a philosopher wants to eat,
she will eat eventually.

Not applicable

Table 4.1: Modified Dining Philosophers vs. Committee Coordination

82

committee ô, which has dynamic membership and meets all the time. TO eliminate

Difference-I, we simulate the occasional idle time of a professor p by generating an

edge (6, p). With this adjustment, professors that are not attending any meeting

(including a) are always available.

To deal with Difference-II, the decision about when a committee tries to meet

is made by the committee instead of depending on the states of all members of the

committee. Also a trying committee can actively gather all its members in order

to meet. This modified Committee Coordination problem is no different from the

original Dining Philosophers problem.

4.2 Further Discussion on the Dining Philosophers problem

and the Multiparty Interactions problem

In the Multiparty Interactions problem only processes are active, and in the Dining

Philosophers problem only philosophers are active. It is easy to se that these two

problems are dual to each other by exchanging the active and passive roles of the

concurrent entities, which are the processes and forks. In this section we will further

discuss the relations between these two problems.

There are two natural ways to map the Dining Philosophers problem onto the

Multiparty Interactions problem.

First, consider the processes as forks and interactions as philosophers. Then forks

are active and try to get together for a certain philosopher. This does not quite fit

the meaning of the Dining Philosophers problem.

We can also think of both forks and philosophers as processes. An interaction

83

consists of a philosopher and all the forks she uses. Each interaction involves two

kind of processes: an active process which is the philosopher who tries to execute the

interaction and several passive processes which are the forks that only give responses.

Every active process participates in only one interaction.

4.3 Atomicity in the Resource Allocation problem

In the set of Resource Allocation problems, the exclusion property requires that for

every resource, only one user can have it at a time. Effort needs to be made in

order to guarantee this. There are different ways to do that under different system

settings.

In message passing systems, a resource can be denoted as a single token circulating

among its users. Because the token cannot be duplicated, only one user at a time can

have the resource by holding the corresponding token. The exclusion requirement is

easy to achieve in this setting.

In the shared memory model, using only atomic read/write variables is not suf-

ficient. Normally, acquiring a resource involves two operations: 1) read the current

state of the resource to check whether it is free; 2) update the state of the resource

to complete its collection. An atomic step of the operations provided by read/write

variables is either read or write (also called update). Thus if two neighboring users

both finished the first operation and found that a shared resource is free, then they

could proceed to the second step and both get the resource. To avoid this, one way

is to make operation 1 and 2 a composite atomic step so that nobody can be inter-

rupted before it picks up a resource. Another way is to use stronger objects instead

84

of read/write variables to protect the resources. For example the test-and-set oper-

ation provided by test-and-set objects can finish acquiring a resource in one atomic

step.

In both settings, if the resources are active, which means they can respond to

requests from users, then the exclusion property can be accomplished by allowing a

resource to respond to only one request at a time.

CHAPTER 5

Self-Stabilization

In Chapter 2 we demonstrated the representative role of the Dining Philosophers

problem in the set of Resource Allocation problems. And as described in Chapter 4,

with slight modifications, solutions to the Dining Philosophers problem can also be

used to solve the Committee Coordination problem, which is a fundamental version

of Process Synchronization. Every Process Coordination problem can be solved by

either using solutions to the Dining Philosophers problem directly, or calling solutions

to the Dining Philosophers problem as a subroutine, or using modified solutions to

the Dining Philosophers problem. This is because the Dining Philosopher's solution

can always be used to build the exclusion and progress requirements. Therefore an

efficient and robust solution to the Dining Philosophers problem is very useful. Since

self-stabilization is a strong fault tolerant model in distributed systems, the goal of

the remainder of this thesis is to design a self-stabilizing solution to the Dining

Philosophers problem.

In this chapter, we introduce formal definitions of self-stabilization, and review a

85

86

useful design and proof technique, fair composition. Then we enrich the fair compo-

sition for more general use. This enhanced version is only applicable to randomized

algorithms and provides one of the techniques needed in Chapter 6.

5.1 Self-Stabilization Preliminaries

In a distributed system, the global configuration of the system is a combination

of the local states of all system components. Let S be a distributed system and

C be all possible global configurations of S. Let L be a subset of C. System

S converges to L if it is guaranteed to arrive at a configuration in L in a finite

number of steps, regardless of its initial configuration. This behavior is also called

Convergence. System S is closed under L if starting from any configuration in L,

all subsequent configurations of the system are in L. This behavior is also called

Closure. System S is self-stabilizing for L if it converges for L and is closed under

L. A self-stabilizing system does not need to be initialized, because it can start

from an arbitrary configuration and, by convergence, eventually reach a legitimate

configuration. Also a self-stabilizing system can recover automatically after system

failures, because one can always assume that the configuration after any failure is the

arbitrary initial configuration. Normally L is called a set of legitimate configurations

and is defined by giving a predicate P over C, such that a configuration is legitimate

if it satisfies P. Figure 5.1 shows the intuition of self-stabilization.

In an asynchronous distributed system, the activities of the components are as-

sumed to be arranged by a scheduler. An execution is produced by a scheduler that

determines, for each partial execution, what subset of components will take a step

87

Figure 5.1: Self-Stabilization

oftheir program to extend the execution to the next configuration. The following

definition formalizes Dolev's description in his book [11, page 9,23].

Definition 5.1.1. Let P and Q be predicates over configurations. A system running

algorithm A is self-stabilizing for Q given P under a set S of schedulers, if the

following conditions are true:

Convergence: Starting from any configuration satisfying P and for any scheduler

in 8, in a finite number of steps algorithm A, the system will converge to a

configuration satisfying Q.

Closure: For any configuration satisfying Q, all subsequent configurations of the

system satisfy Q.

Definition 5.1.1 is only applicable to deterministic algorithms. The following def-

inition is the natural extension to randomized algorithms. The certainty conditions

are replaced by probabilistic conditions.

88

Definition 5.1.2. Let P and Q be predicates over configurations. A system running

algorithm A is randomized self-stabilizing for Q given P under a set S of schedulers,

if the following conditions are true:

Convergence: Starting from any configuration satisfying P and for any scheduler

in 8, with probability 1 in a finite number of steps algorithm A, the system will

converge to a configuration satisfying Q.

Closure: For any configuration satisfying Q, all subsequent configurations of the

system satisfy Q.

In this thesis we consider S to be the set of weakly fair distributed schedulers

(see page 9) and omit explicit reference to S when there is no ambiguity.

5.2 Original Fair Composition

Fair composition is a technique introduced by Dolev, Israeli and Moran[11, 12]

for designing, analyzing, and proving the correctness of complex self-stabilizing

algorithms. To tolerate transient faults, self-stabilizing algorithms never termi-

nate. In our application, non-terminating algorithms are expressed as a loop in

the forni:

Do Forever:

(block of operations)

End Do

Define an iteration of an execution of such a non-terminating algorithm to be the

execution of one pass through the loop. The term round of an execution is usually

89

used to denote enough steps, so that every process has done at least one step of its

algorithm. More formally, it can be defined inductively by:

1) The first round of an execution is the shortest prefix of the execution that

contains at least one step of every process.

2) The ith round of an execution is the shortest prefix of the suffix of the execution

after round i - 1 that contains at least one step of every process.

Correspondingly, define a super round inductively by:

1) The first super round of an execution is the shortest prefix of the execution

that contains at least one iteration of every process.

2) The ith super round of an execution is the shortest prefix of the suffix of the

execution after round i - 1 that contains at least one iteration of every process.

We now give the definition of fair composition.

Definition 5.2.1. The algorithm constructed from algorithms A and B by alternat-

ing steps of A and B in any way that guarantees that in any execution, steps of A

and steps of B are both executed infinitely often, is a fair composition of algorithms

A and B and is denoted as A o B.

Based on Definition 5.2.1, notation B o A is equivalent to A o B.

A super round of a fair composition A o B is a partial execution that contains

enough steps so that every process finishes an iteration of both A and B.

The idea of fair composition is to compose two algorithms together to obtain

stronger results. Let P, Q and R be predicates over configurations, algorithm A

be (randomized) self-stabilizing for Q given P, and algorithm B be (randomized)

self-stabilizing for R given Q. We would like algorithm A o B to be (randomized)

90

self-stabilizing for R given P (see Figure 5.2). To achieve this, algorithms A and B

need to ensure some conditions that allow the composition to behave like A until P

becomes true and like B after that.

Figure 5.2: Fair Composition of algorithms A and B

Dolev [11, page 22-24] gave the precise restrictions on algorithms A and B to

guarantee the behavior of the composition. Informally the conditions are1:

1. Algorithm B does not modify any variables used by A. This ensures that

algorithm A will behave in the composition in the same way as it does alone.

Thus algorithm A o B will achieve a configuration satisfying Q given P.

2. In any configuration satisfying P, algorithm A does not obstruct B. This

ensures that in any configuration satisfying P, algorithm B acts in the same

way as if A did not exist, which implies that A o B will converge to and then

remain in a configuration satisfying R.

'We omit repeating the precise conditions because in the next section we will describe more
general ones.

91

Dolev's conditions guarantee the convergence of A o B by preventing the system

from moving "backwards" once the goal of algorithm A is achieved.

5.3 Enriched Fair Composition

If the second algorithm modifies the variables used by the first one, Dolev's condi-

tions are not satisfied. It is still possible to establish convergence of the composed

algorithms, provided the algorithms meet some different required properties. In the

situation considered here the second algorithm can destroy the progress achieved

by the first one (see the dashed line in FigureS 5.3). If the algorithm is randomized

and this happens only with low probability, and once it does happen, the resulting

configuration is one that permits the first one to "try again", then eventually, the

composition will achieve the combined goal and remain there.

Figure 5.3: Enriched Fair Composition

In this section, we relax the requirements on the two algorithms that are being

composed so that both can randomly modify a set of common variables. All algo-

rithms discussed in this section are assumed to be randomized. Since the issues in

92

the randomized setting are very subtle, we will introduce a lot of notation.

Definition 5.3.1. Let P, Q and R be predicates over configurations. An algorithm

A is random(p, k) self-stabilizing for predicate R else P given Q, if the following

conditions are true:

Probabilistic Convergence: For any configuration satisfying Q and for any dis-

tributed scheduler, after at most k super rounds of algorithm A a configuration

c is reached, and

i) c satisfies either R or P.

ii) with probability at least p, c satisfies R.

Closure: For any configuration satisfying R, all subsequent configurations of the

algorithm A satisfy R.

In the rest of this thesis, we use Figure 5.4 to illustrate that algorithm A is

random(p, k) self-stabilizing for predicate R else P given Q.

A: 0 : 1—p, k @ p, k

Figure 5.4: random(p, k) self-stabilizing for predicate R else P given Q

If P = Q, then algorithm A is as shown in Figure 5.5.

1—p, k

p A: ,Ic

Figure 5.5: random(p, k) self-stabilizing for predicate .R else Q given Q

93

Lemma 5.3.1. Let Q and R be predicates over configurations. If an algorithm A

is random(p, k) self-stabilizing for predicate R else Q given Q, and p> 0, then A is

randomized self-stabilizing for R given Q.

Proof. For any configuration satisfying predicate Q and for any distributed scheduler,

after k super rounds of algorithm A, a configuration c is reached. With probability

at least p, c satisfies R, otherwise it satisfies Q. The probability that after i/c super

rounds of algorithm A the system remains in a configuration satisfying Q is at most

(1 - p)1. Because p> 0, lim (1 - p)' = 0. Thus starting from any configuration sat-
1+00

isfying Q, with probability 1 algorithm A will converge to a configuration satisfying

R. Based on the closure property of A, any subsequent configuration will also satisfy

R. Therefore algorithm A is random self-stabilizing for predicate R given Q. El

Corollary 5.3.2. Let Q and R be predicates over configurations and let A be

random(p, Ic) self-stabilizing for R else Q given Q. Then starting from any configu-

ration satisfying Q, the expected number of super rounds for algorithm A to converge

to a configuration satisfying R is at most

Proof. From any configuration satisfying Q, after Ic super rounds of algorithm A,

with probability at least p the new configuration satisfies R, otherwise the system

remains in a configuration satisfying Q. Hence the expected number of super rounds

for A to converge to a configuration satisfying R from an arbitrary configuration

satisfying R, denoted as E[Q,R], is:

E[Q,R] <k+(1—p)E[Q,R]

implying

94

.E[Q,R]—(1—p)E[Q,R]<k

pE[Q,R] < k

E[Q,R] ≤
p

D

When two algorithms share some variables, different ways to compose algorithms

may cause different behaviors of the composition. In a super round of a composition,

the ratio of the number of steps taken from the two algorithms may affect the con-

vergence property of A o B. For example, if one does not have a chance to interfere

with the other very often, then the composition may converge faster. However, if

one algorithm takes too many steps in each super round, and keeps interfering with

the other, then the composition may never converge. Therefore, when we describe

the property of fair composition of algorithm A and B in a randomized setting, we

assume a particular fixed composition. In the rest of this paper, we use A ED B to

represent a fixed composition of A and B, and A o B to denote any possible fair

composition of A and B. Note that A B and B A are different fair composi-

tions. For example, let A B be a fair composition in which steps of A are executed

more frequently than steps of B. In composition B A, since algorithm B is in the

position of A, it will be executed more often.

Definition 5.3.2. Let algorithm A be random(p, k) self-stabilizing for predicate R

else P given Q. Algorithm B is (Q, r) right non-interfering with A via A B, where

0 < r < 1, if for any configuration satisfying Q and for any distributed scheduler,

95

after at most k super rounds of algorithm A ED B, a configuration c is reached, such

that

.1. c satisfies either R or P.

2. with probability at least p r, c satisfies R.

Similarly, we introduce a dual definition:

Definition 5.3.3. Let algorithm A be random(p, k) self-stabilizing for predicate. R

else P given Q. Algorithm B is (Q, r) left non-interfering with A via B ED A, where

o ≤ r ≤ 1, if for any configuration satisfying Q and for any distributed scheduler,

after at most k super rounds of algorithm B ED A, a configuration c is reached, such

that

.1. c satisfies either R or P.

2. with probability at least p r, c satisfies R.

Note that algorithm A B (or B ED A) is not necessarily random(p r, k) self-

stabilizing for predicate R else P given Q, because the closure property is not guar-

anteed.

Definition 5.3.4. Let Cl,..., Ck be a sequence of sets of configurations, such that

Ci C C_1 for i = 2, ..., k. Define the predicate Si over configurations by S(c) if and

only if c E C,. The sets C1 to Ck are called nested sets, and the predicates S to 8k

are called nested predicates. We use the same notation to denote nested predicates,

SçS_1 ç ... çS1.

96

Clearly if R C Q in Definitions 5.3.2 and 5.3.3, then algorithm B is also

right (left) non-interfering with A.

Now we are ready to introduce the main theorem for enriched fair composition.

Theorem 5.3.3. Let S, S, 82, and 83 be nested predicates over configurations,

and A B be a fixed fair composition of algorithms A and B. Given the following

four conditions:

1. Algorithm A is random(pA, kA) self-stabilizing for predicate 82 else So given Si.

. Algorithm B is random(p, kB) self-stabilizing for predicate 83 else S0 given

S2-

3. Algorithm A is (82, 1) left non-interfering with B via A $ B.

4. Algorithm B is (Si, r) right non-interfering with A via A B.

Then algorithm AB is random(pApBr, kA + kB) self-stabilizing for predicate 83 else

So given S.

Proof. We have algorithm A is random(pA, kA) self-stabilizing for predicate 82 else

So given S.

A:
1 PA, kA PA, kA

Algorithm B is (Si, r) right non-interfering with A via A B. Thus, by Definition

5.3.2, for any configuration satisfying S and for any distributed scheduler, after at

most kA super rounds, algorithm A ED B converges to a configuration satisfying 82

with probability at least PA - r, otherwise the system goes to a configuration satisfying

So.

97

A ED B:
i- PAr, k PA -r, k

Figure 5.6: A B's behavior in configuration satisfying S1

Algorithm A is (82, 1) non-interfering with B via A ED B and 83 C 82. Therefore

algorithm A ED B has the, same behavior as B from any configuration satisfying 82

and 53. And algorithm A B is random(p, k11) self-stabilizing for predicate 83 else

So given S2.

Figure 5.7: A $ B's behavior in configuration satisfying S2

Combining the behaviors given in Figures 5.6 and 5.7, algorithm A B yields

the behavior shown in Figure 5.8:

A ED B:
1- PA -r, kA PA-r, kA

i- PB, kE

Figure 5.8: Algorithm A ED B

Thus, algorithm A ED B is random(pApBr, kA + kB) self-stabilizing for predicate

83 else 8o given Si. D

The next corollary says that the composition of algorithms that satisfy the con-

ditions of Theorem 5.3.3 produce a random self-stabilizing algorithm for predicate

S3 given S if So = S. The proof is similar to Lemma 5.3.1.

98

Corollary 5.3.4. Let Si, 82, and S3 be nested predicates over configurations, and

A ED B be a fixed fair composition of algorithms A and B. Given the following four

conditions:

1. Algorithm A is random(pA, kA) self-stabilizing for predicate S2 else S given S.

. Algorithm B is random(pB, k2) self-stabilizing for predicate S3 else S1 given

S2-

3. Algorithm A is (82, 1) left non-interfering with B via A B.

4. Algorithm B is (Si, r) right non-interfering with A via A ED B.

Then algorithm A E) B is randomized self-stabilizing for predicate 83 given S1.

The following corollary gives the expected number of super rounds for A ED B to

converge.

Corollary 5.3.5. Let S, 82, and 83 be nested predicates over configurations, and

A B be a fixed fair composition of algorithms A and B. Given the following four

conditions:

1. Algorithm A is random(pA, kA) self-stabilizing for predicate 82 else S given Si.

. Algorithm B is random(pB, kE) self-stabilizing for predicate S3 else S given

S2-

3. Algorithm A is (82, 1) left non-interfering with B via A ED B.

4. Algorithm B is (Si, r) right non-interfering with A via A B.

Then starting from any configuration satisfying S and for any distributed schedulers,

the expected number of super rounds for algorithm AB to converge to a configuration

satisfying 83 is at most kBpAr±kA

99

Proof. Let E[X, Y] denote the expected number of super rounds for AB to converge

to a configuration satisfying Y from an arbitrary configuration satisfying X. By

linearity of expectation, E[S1, 83] is the sum of E[S1, 82] and E[82, 83].

From any configuration satisfying S, after kA super rounds of algorithm A @ B,

with probability at least pAr the new configuration satisfies 82, and with probability

no more than 1 - PA r the system remains in a configuration satisfying S1. Hence

E[S1,S2] is:

E[81, 82] ≤ k + (1 - PAr)E[Sl, 82]

therefore:

E[51,82] - (1 — pAr)E[S1, 821 ≤ kA

implying

pATE[Sl, 82] ≤ kA

E[81,82] ≤ kA
--

PAT
(1)

From any configuration satisfying 82, after kE super rounds of algorithm A ED B,

with probability at least PB the new configuration satisfies 83, and with probability

no more than 1 - PB the system goes back to a configuration satisfying S. Hence

B[82,83] is:

Therefore:

E[82,83] ≤ kB+ (1pB) (E[81,82] +E[82,83])

≤ kB+(1 — PB) (- kA —+E[82,Ss]) (by (1)).
PAT

E[82,83] —(1 PB)E[82, 83] kB + (1— PB) —kA --,
PAT

100

implying:

PBE[8 2, 83] < kB + (1 - PB) kA
PAr

kB +(1 PB) kA
PAr

E[82, 83]≤
PB

(2)

Thus the expected number of super rounds for algorithm A B to converge to a

configuration satisfying 83 from an arbitrary configuration that satisfies S is:

E[S1,83] = E[81,82]+E[82,83]

≤
PAr PB

= kAPB + kBPAr + (1 - PB)kA

PATPB PArPB

kAPB +kBPAr+kA PBkA

PArPB

kBPAr + kA

PArPB

(by (1) and (2))

0

Generally, we can repeatedly compose a set of algorithms, which have desired

properties, to build a composition that achieves the strongest of a nested sequence

of predicates.
k

First we define a fair composition A, of a sequence of algorithms {A1, A2, ...}

inductively by:

2

1) A=A1(BA2
i=1.

k k-i

2) EJA=31AEEAk
i=1

Because denotes an arbitrary but fixed fair composition of two algorithms,

also represents an arbitrary but fixed fair composition of a sequence of algorithms.

101

Theorem 5.3.6. Let So,..., 5m be a set of nested predicates over configurations. Let

algorithms A,, -, An have the following properties:

1. Algorithm Ai is random(p, k) self-stabilizing for predicate Si else So given

S._i, for i=1, ... ,m.

. Algorithm Ai is (Si, 1) left non-interfering with Aj via any fair composition

AoA, for i=1,...,m-1 and j=i+1,...,m.

i-i

3. Algorithm Ai is (Si, r) right non-interfering with A_1 = A1 via .4
1=1

for i = 2, ..., m.

In
Then the particular fair composition of algorithm A1 to Am, A = A, is random-

ized self-stabilizing for predicate Sm given So.

Proof. By induction on the total number of algorithms m:

Basis: m = 2, the result is true by Corollary 5.3.4.

Induction steps: Suppose the theorem is true for m = I, -, n - 1. And we show

that the theorem still holds for m = n. Let algorithms A,, -, An have properties 1, 2,
n-i /'n-i,n-i n-i

and 3. By the induction hypothesis, algorithm A is random (fJ
i=i \i=1,j=2 1=1

self-stabilizing for predicate S,_i given (So, So). Because for i = 1, ..., n—i, algorithm

Ai is (Sn, 1) left non-interfering with An via any fair composition Ai o A, the fair
n-i

composition of A1 to A_1, A, is (Sn, 1) left non-interfering with An via any fair
i=1

n-i

composition Therefore by Corollary 5.3.4, a fair composition of algorithm
i=i

n-i n
ED Aj and An, denoted as 3 A , is random self-stabilizing for predicate Sm given
i=1 i=1

So. 0

102

Corollary 5.3.7. Starting from any configuration satisfying predicate So and for

any distributed schedulers, algorithm A converges to a configuration satisfying 8m
Ekz

after an expected number of super rounds.
fl pjrj

i=1,j=2

CHAPTER 6

Self-stabilizing Dining Philosophers

6.1 Motivation

In Chapter 2 we described several previous papers on the Dining Philosophers prob-

lem with different assumptions on system models. In these papers, only Choy and

Singh's solutions are fault tolerant. Their algorithms limit the damage caused by

a process's stop failure into a fixed range around that process. However Choy and

Singh's algorithms are not self-stabilizing. Their algorithms must start from a special

initial configuration, where every philosopher has a locally distinct label. Also the

algorithms do not provide the mechanism to recover automatically from deadlocks

caused by arbitrary initial configuration or failures of communication channels.

Gouda [14] presented a self-stabilizing solution to the Dining Philosophers prob-

lem in a ring model. In his algorithm, symmetry is broken by letting one of the

philosophers behave differently from the others. Therefore the system is not com-

pletely symmetric.

Inspired by Gouda's work, Hoover and Poole [18] designed a self-stabilizing solu-

103

104

tion in the same topology. In their algorithm, every philosopher executes the same

program. Symmetry is broken by using a token circling on the ring of philosophers.

Only the philosopher holding the token is enabled and only enabled philosophers

can execute the next operations of their programs. Thus their algorithm depends on

a self-stabilizing token system, and it unnecessarily prevents concurrency between

neighboring philosophers.

Both Gouda's algorithm and Hoover and Poole's algorithm solve a restricted ver-

sion of the Dining Philosophers problem in systems with undesirable constraints. In

this chapter, we solve a related problem and show how this problem when generalized

can solve the general self-stabilizing Dining Philosophers problem in fully distributed

and completely symmetric systems. The generalization of the related problem is not

provided in details in this thesis. But the primary idea will be discussed in Section

7.2.

As indicated on page 25, any general Dining Philosophers problem can be reduced

to the Restricted - Sharing Dining Philosophers problem. Beauquier, Datta, Grad-

inariu, and Magniette [3] presented a self-stabilizing solution for the Local Mutual

Exclusion problem, which is similar to the Restricted - Sharing Dining Philosophers

problem. Their algorithm, designed for fully distributed and completely symmetric

systems, requires unbounded registers. In the paper they also gave an algorithm with

bounded registers, but it apparently has flaws [5]. Even though the Local Mutual

Exclusion problem has similar exclusion and progress requirements to the Dining

Philosophers problem's, as shown later, algorithms for the Local Mutual Exclusion

problem cannot efficiently solve the Dining Philosophers problem.

In the following sections, we first give the graph model of the Local Mutual

105

Exclusion problem, then compare it with the Dining Philosophers problem under

the same model.

6.1.1 Local Mutual Exclusion

In a simple graph G = (F, E), vertex set P represents a collection of processes. An

edge (p, q) is in E if and only if p, q E P and processes p and q can communicate

with each other.

Every process has a dynamic label called state. The state of a process p E F,

denoted as st ate(p) , is in {entry, critical section, exit} and the only state. transitions

are entry -+ critical section -+ exit -+ entry. Transition from critical section to exit

is spontaneous.

The global configuration is required to satisfy exclusion, which is a property

that for any configuration, no two neighboring processes can be in the state "critical

section" simultaneously.

Under the assumption that any process in the state "critical section" will change

its state to "exit" later on, the global configuration is required to satisfy lockout-

freedom, which is a property that for any configuration where state(p)=entry, there

exists a subsequent configuration where state(p)=critical section.

6.1.2 Local Mutual Exclusion vs. Dining Philosophers

Comparing the general descriptions of these - two problems, their similarities are re-

vealed by both the exclusion and the lockout-freedom properties. In the Local Mu-

tual Exclusion problem, no neighboring processes can be in the critical section at

the same time, which is equivalent to no neighboring philosophers eating simulta-

106

neously. Also, the requirement that every process in the Local Mutual Exclusion

problem gets a chance to enter the critical section is equivalent to the requirement

that every hungry philosopher in the Dining Philosophers problem eats eventually.

In the Dining Philosophers problem, the transition from state thinking to hungry

is spontaneous. A philosopher only interacts with her neighboring philosophers if she

is hungry. She does not participate in the shared protocol while she is thinking. In

contrast, the Local Mutual Exclusion problem requires that every process interacts

with its neighbors whether or not it wants to access to the critical section. Therefore

the Local Mutual Exclusion is essentially the same as a Dining Philosophers problem

without the thinking state.

One intuition is to use a solution to the Local Mutual Exclusion problem as a

subroutine to solve the Dining Philosophers problem. Every philosopher executes

the solution to the Local Mutual Exclusion problem, which guarantees that the

philosopher will enter the critical section. Whenever she does, if she is hungry, then

she grabs all her forks and eats, otherwise she is thinking, so she exits from the critical

section immediately. Thus using Beauquier and Datta's self-stabilizing algorithm, we

can design a self-stabilizing solution to the Dining Philosophers problem. However

algorithms constructed this way are not efficient, because a hungry philosopher may

have to wait until all her neighbors enter their critical sections even if they are all

thinking before she herself can eat.

In the following section, we present the techniques to build a self-stabilizing

Dining Philosophers' solution in fully distributed and completely symmetric systems.

107

6.2 Self-Stabilizing Solution to the Dining Philosophers Prob-

lem

To build a self-stabilizing solution to the Dining Philosophers problem, we must have

self-stabilizing techniques to accomplish both exclusion and lockout-freedom.

In shared memory settings, exclusion is usually ensured by using test-and-set

objects or read/write variables with composite atomicity. In message passing set-

tings, exclusion is ensured by assigning a single token to every fork so that only one

philosopher can hold the token at a time. Because objects and variables themselves

are correct and self-stabilizing token circulating is a solved problem, exclusion is easy

to achieve in a self-stabilizing system.

In most of the papers we studied, lockout-freedom is ensured by applying priorities

to philosophers that share one common fork. A philosopher p has higher priority than

q on the fork shared between them is usually captured by a directed edge from q to p.

The solutions provide a technique to ensure lockout-freedom as long as priorities do

not form cycles. Therefore a cycle-free initial configuration is required. In the self-

stabilizing setting, no assumption can be made on the initial configuration, priorities

may form cycles at the beginning or after transient faults during the execution of

the algorithms. As a result deadlock happens.

Suppose a cycle detection mechanism can detect and eliminate any cycles formed

by priorities. Then combined with this extra mechanism, most solutions provide

lockout-freedom in a self-stabilizing setting. In such solutions, the length of chains

formed by priorities depends on either the size of the whole network, such as in

Chandy and Misra's solution, or some local parameters, such as in Lynch's solution.

108

Therefore the self-stabilizing cycle detection protocol should be able to find cycles

of any length up to the size of the network.

Choy and Singh [8] solved lockout-freedom in a different way. In their solutions,

a synchronous doorway, a asynchronous doorway, and a fault-tolerant fork collection

scheme are used. To make their solutions self-stabilizing, one needs to implement

both kinds of doorways in a self-stabilizing way.

In the rest of this thesis, we choose the first course and design a self-stabilizing

cycle detection algorithm that can find cycles of any length in a network.

6.2.1 Cycle Detection

Finding cycles of any length in a network becomes easy if every process has a glob-

ally distinct identifier. For simplicity, we assume that identifiers are just integers.

Suppose each process p carries a local set W, which contains the identifiers of all

the processes that can be reached through a directed path from p. Also p has a

local variable called id, which is the identifier of p. A self-stabilizing cycle detection

algorithm for a process p is shown in Figure 6.1.

Because in a completely symmetric system, all processes are identical and do not

have distinct identifiers, our original goal to design a self-stabilizing solution to the

Dining Philosophers problem reduces to assigning a globally distinct identifier to

every process in a self-stabilizing manner. Figure 6.2 sketches the idea to construct a

self-stabilizing Dining Philosophers system. In this figure, nodes represent goals and

a node's children are the subgoals required to achieve the parent goal. Note that all

leaves are solved problems except the self-stabilizing distinct identifiers generation.

109

1: Do Forever:
2: for every neighbor q such that there is a directed edge from p to q do
3: send the set W U {id} to q
4: end for
5: for every set S received from a neighbor do
6: if idESthen
7: FOUND A CYCLE
8: else
9: W—WUS
10: end if
11: end for
12: End Do

Figure 6.1: Cycle Detection Based on Globally Distinct IDs

6.2.2 Assigning Distinct Labels up to Distance k

Self-stabilizing distinct identifier generation can be achieved by designing a self-

stabilizing algorithm that assigns distinct labels up to distance k to processes in a

network. When k equals the diameter of the network, every process has a different

label from all the others.

Currently, there exist several such algorithms for k = 1 or 2. The idea of these

algorithms is simple. When k = 1, every process keeps checking whether it has a

distinct label from all its neighbors. If not, it randomly chooses a new label from

a big range. For k = 2, every process keeps checking whether two of its neighbors

have the same label. Because a process can distinguish one neighbor from another,

two different neighbors must be at distance 1 or 2. If they have the same label, one

of them should be notified to randomly choose a new label.

Assigning distinct labels up to distance 3 is much more difficult. Suppose a

process x finds out that one of its neighbors, say y, has a neighbor labeled z, which

110

Self-stabilizing Dining Philosophers

Self-stabilizing Exclusion Self-stabilizing Lockout-freedom

Self-stabilizing Cycle Detection

Self-stabilizing Cycle Detection given Distinct Ids

Priorities

Self-stabilizing Distinct Ids Generation

Figure 6.2: Self-stabilizing Dining Philosophers for Anonymous Networks

is the same label as another of x's neighbors (see Figure 6.3). Then there exist two

possible cases:

1) Process x and y shares a common neighbor labeled z as shown in Figure 6.4.

2) Process x's neighbor labeled z and y's neighbor labeled the same are different

processes as shown in Figure 6.5.

It is easy to see that case 1 is legal but case 2 should be eliminated because these

two processes labeled z are at distance at most 3 and have the same label. But

process x cannot tell which case really exists based on the information it collects.

Similar situations may occur when k ≥ 4. Therefore the major task is to develop a

III

Figure 6.3: Distinct Labels up to Distance 3

technique to distinguish the above two cases. No previous research has been done

on this in the self-stabilizing setting:

In the following section, we present a self-stabilizing algorithm for k = 3. Similar

techniques but more involved can be applied to implement other cases where k > 4.

This is further discussed in Section 7.2.

6.3 Assigning Distinct Labels up to Distance 3

The problem is to assign labels to every process in the system such that every pair

of processes within distance 3 have distinct labels.

The system is modeled by an arbitrary graph G = (P, E), where vertices represent

112

Figure 6.4: Case 1

Figure 6.5: Case 2

processes. Neighboring processes communicate with each other through shared link

registers. The system works under read/write atomicity and is fully distributed and

completely symmetric.

6.3.1 Solution Strategy

The strategy is to build a sequence of algorithms LDj for i = 1, 2, 3, such that LD

is randomized self-stabilizing for configurations where labels of processes are distinct

up to distance i, given any configuration where labels of processes are distinct up

to distance i - 1. Using Theorem 5.3.6 introduced in Chapter 5, we fairly compose

LD1, LD2, and LD3 together to obtain a randomized algorithm self-stabilizing for

configurations where labels of processes are distinct up to distance 3. Algorithm

LD1 is easy to construct. Algorithm LD2 is also quite straightforward. In fact, algo-

rithms already exist in the literature [7, 15] that are randomized self-stabilizing for

113

configurations where each pair of processes within distance 2 has distinct labels given

an arbitrary initial configuration. Call the algorithm presented by Chattopadhyay,

Higham and Seyffarth [7] Label—D2- Our strategy is to design an algorithm LD3,

which can be composed with Label—D2 to obtain the objective algorithm Label—D3.

Using Corollary 5.3.4, we then prove given an arbitrary configuration, algorithm

Label_D3 is self-stabilizing for configurations where every pair of processes within

distance 3 have distinct labels.

One possibility to build LD3 would be to have every process compares its own

label with the labels of others at distance 3. To do so a process collects information

of all neighbors up to distance 3. To reduce the amount of information, another

possibility is to let every process use knowledge of neighbors within distance 2. It

compares the labels of its immediate neighbors and neighbors at distance 2. If a

process x finds that its information is consistent with the case in Figure 6.3, it has

to distinguish between cases in Figure 6.4 and 6.5. If the real situation is the case in

Figure 6.5, then x alarms its neighbor labeled z. When a process receives an alarm,

it randomly chooses a new label from a large range. The following sections give the

data structure, algorithm, and proof of algorithm LD3.

6.3.2 Data Structures

Each process has access to two kinds of variables, local variables and shared link

registers: A local variable is only accessible to its owner. As described in Section

1.2.1, a link register is read and written by its owner and read by a neighbor. Since

an anonymous system is usually assumed to be locally oriented (see page 8), every

process in the system has a local name for each of the link registers shared with its

114

neighbors. Suppose a process x has Jx neighbors and names every link from 1 to

6. It refers to the two link registers shared with a neighbor through link i as OUT

and IN, where OUT is the register written by x and IN is the one written by the

neighbor of x across link i. Notice that the neighbor of x through link i likely has

different local names for these two registers. Tables 6.1 and 6.2 show the variables

accessed by process x.

x.label label of process x
x.N a set containing labels of all x's neighbors
x.M a set containing messages
x.alarm a dangerous label of one of x's neighbor
x.counter_yz' counter for cycle ((x, y, z)) consistency check
x.f a random coin flip

Table 6.1: Local Variable of Process x

OUT,.1abel label of process x
OUT.N a set of labels of all x's neighbors
OUT,.M a set of messages for cycle consistency check
OUT,.a1arm the neighbor's dangerous label

Table 6.2: Shared Link Register OUTi.

Correspondingly, register IN has the same fields as listed for OUT in Table 6.2.

Assume x has a function, link(y), which returns its index of its link to a neighbor

labeled y. If the link does not exist, then the operation, in which this function is

invoked, will be skipped.

'x.counter_yz is an atomic read/write variable associated with different pair of labels y and z.
It is dynamically created and destroyed during the execution of the algorithm. There might exist
any number of this type of variables in the system at a time.

115

6.3.3., Algorithm LD3

The algorithm LD3 is a fair composition of the main algorithm and the validity

check, where each step of the main algorithm and the validity check is executed

alternatively.

Algorithm LD3: (main algorithm) A

ED (validity check) B

In the main algorithm, every process's responsibility is to detect and report dan-

gerous labels of its immediate neighbors. Inthe validity check, every process needs

to respond to the alarms it received and makes sure its information about its neigh-

borhood is up-to-date and the information it wrote to every neighbor agrees with its

neighborhood.

Even though the algorithm is designed in a link register model, sometimes it is

more intuitive to present the algorithm using a message passing terminology. In the

following sections, we describe the communications as processes sending information

to their neighbors.

A: Main Algorithm

The main algorithm, itself, is a fair composition of (Check - 3 Cycle Consistent)

and (Participate - 3 Cycle Consistent), where the steps of both parts are executed

equivalently often.

Main Algorithm: (Check - 3 Cycle Consistent) A.1

(Participate - 3 Cycle Consistent) A.2

116

The purpose of (Check - 3 Cycle Consistent) is to detect the situation shown in

Figure 6.3, and when it occurs to distinguish case 1 and case 2 shown in Figure 6.4 and

6.5, respectively. The purpose of (Participate —3 Cycle Consistent) is to assist (Check

- 3 Cycle Consistent) by forwarding information initiated by a different process

during the execution of (Check - 3 Cycle Consistent). Whenever an interruption is

received from the validity check, the (Check - 3 Cycle Consistent) is interrupted and

starts from scratch.

A.1: (Check - 3 Cycle Consistent)

In the procedure (Check - 3 Cycle Consistent) (shown in Figure 6.6), a process x

collects information from its direct neighbors and neighbors at distance 2. When it

finds that a label z appears in both its direct neighborhood and one of its neighbors',

say y's, neighborhood (see line 2), it tries to identify whether its neighbor labeled

z and y's neighbor labeled the same are different processes or not. First x invokes

a function (symmetry)(A.1.1) (see line 3), which returns false if it found evidence

showing that these two processes are different. Therefore, when the function returns

false, x informs its neighbor labeled z to randomly choose a new label (see line 4). If

(symmetry) returns true, then it cannot immediately distinguish the two processes

labeled z. In this case another function (mini_cycle_consistency) (A.1.2) is initiated

by the process with the smallest label in {x, y, z} (see line 5 and 6). Function

(mini_ cycle _consistency) uses randomization to distinguish x's neighbor z and y's

neighbor labeled z. When (mini_cycle_consistency) returns false, x alarms one of

its neighbors (see line 7).

117

1: for i+-1,2 6,do
2: for all z E x.Nfl IN.N do
3: if - 1 symmetry(z, IN.1abe1) then

4: OUT'. alarm •— z
5: else if x.label< min{z, IN,.label} then
6: if -' mini_cycle_ consistency (min{z, INJabel}, max{z, IN.1abel})

then
link(x.alarm) 7: OUTX .alarm +— x.alarm

8: end if
9: end if

10: end for
11: end for

Figure 6.6: Procedure (Check - 3 Cycle Consistent)

A.1.1: (symmetry)

The function (symmetry) (shown in Figure 6.7) checks whether x's neighbor labeled

z has a neighbor labeled y. If it does not, then the function returns false, which

indicates x's and y's neighbor labeled z must be different processes, because they

have different neighborhoods.

link(z) 1: symmetry(z, y) y E IN .N

Figure 6.7: Function (symmetry(z, y))

When (symmetry) returns true, either x and y have a common neighbor z (as

shown in Figure 6.4), or one of the following cases is true.

Case 1: there exists a long path with repeated occurrence of labels x, y, and z

(shown in Figure 6.8).

Case 2: there exists a multiple cycle with repeated occurrence of labels x, y, and

z (shown in Figure 6.9).

If the real situation is case 1, then (symmetry) when invoked by the processes

118

...

Figure 6.8: long path with x, y, z

next to both ends of the path will return false. As a result, these two processes

will send alarms to their neighbors, which are the two ends of the path. With high

probability, they will choose a label other than x, y, or z, and therefore leave the

path. Similar things will happen on the shortened path, and if every process chooses

well, the path eventually will disappear.

If the real situation is case 2, then no process on the multiple cycle can deter-

ministicly distinguish this from the minimum cycle shown in Figure 6.4. In this

case randomization is employed in the function (mini_ cycle— consistency). To avoid

every process on the multiple cycle initiate the (mini_ cycle— consistency), only the

one with minimum label does so.

A.1.2: (mini cycle consistency)

This function (shown in Figure 6.10) returns a boolean variable but also modifies a

local variable x.alarm.

The major task of (mini_ cycle— consistency) is to distinguish Figure 6.9 and

6.4. When process x invokes function (min_ cycle — consistency (y, z)), it increases its

counter by one and randomly flips a coin (see line 1 and 2), then it sends a message

containing its updated counter and coin flip to its neighbor y.

As will be discussed soon, every process executing (Participate - 3 Cycle Consistent)

119

S..

Figure 6.9: multiple cycle with x, y, z

forwards such messages initiated by a different process. If the minimum cycle shown

in Figure 6.4 exists, then the message will be 'eventually delivered back to x. If the

multiple cycle shown in Figure 6.9 exists, then x sends its message to the next x

along the cycle. With probability a half, x generated a different coin flip from the

proceeding process labeled x on this cycle.

Because the system is asynchronous, the counter helps x distinguish the mes-

sages of the current invocation of (mini_ cycle— consistency) from the messages of

the previous invocation. If the counter in the incoming message is 1 less than x's

local counter, x will consider it as an old message from the last consistency check

and will wait for it to be updated.

If x receives a message from its neighbor z, which contains the same counter and

120

1: (increment _counter (y, z)) A.1.2.1
2: x.f +- random coin flip
3: Let condl(M) ((c,A,B,C,f) E M) A (A = z) A (B = x.label) A (C y)
A (c 0 x.counteryz-1)

4: cond2 symmetry_check (z, y)
5: cond3 symmetry_ check (y, z)
6: repeat
7: OUT''.M +- OUTk.M(x.counter_yz, x.label, y, z, x.f)

8: x.M +- IN ".M
9: until (-icondl(x.M)) V (-,cond2) V (-icond3)

10: if condl(x.M) then

11: for all (c,A,B,C,f) E M A A =IN'.label A B = x.label A

C =IN '.1abel do
lin12: OUT''.M +- OUT'.M\(c) B, C, A, f)

13: if C = x.counter_yz A f = x.f then
14: return true
15: else
16: x.alarm f- z
17: return false
18: end if
19: end for
20: else if cond2 then
21: x.alarm — z
22: free x.counter_yz
23: return false
24: else
25: x.alarm *- y
26: free x.counter_yz
27: return false
28: end if

Figure 6.10: Function (mini cycle_ consistency (y, z))

121

the same coin flip as its own local variables (see line 13), x considers this message to

be the one initiated by itself. Process x's information is consistent with the case in

Figure 6.4. Therefore function (mini_ cycle_ consistency) returns true (see line 14).

If the counter of the incoming message from z coincides with x's local counter but

the coin flip does not, or the counter does not equal to x's local variable and is not one

smaller than x's local variable, then x knows this is a message from another process

with the same label. Therefore x has the evidence of the existence of a multiple cycle

(or it is embedded in a long path). Function (mini_ cycle_ consistency) sets x's local

alarm (x.alarm) to z and returns false (see line 16 and 17).

While x is waiting for the message from z, it keeps invoking (symmetry(z, y))

and (symmetry(y, z)). If one of them returns false, then x knows the symmetry case

has disappeared. It sets its local alarm (x.alarm) to the dangerous label (see line 21

and 25) and destroy the local variable x.counter_yz (see line 22 and 26). Function

(mini_ cycle— consistency) also returns false (see line 23 and 27).

All messages traveling among processes have the following format: (c, A, B, C, f),

where A, B, and C are the labels of the sender, the receiver, and the process to which

this message will be forwarded, respectively. Variables c and f are the local counter

and coin flip of the sender. The message is initiated by the process with label

min{ A, B, C}.

We introduce a send-overwrite operation denoted as W, which is used whenever

a process x writes a message to some neighbor. Operation OUT.M +- OUT.M

(counter,r,s,t,flip) is defined in Figure 6.11.

This operation will overwrite any message in the destination set with the same

middle three fields but different counter or coin flip.

122

1: for all (c,A,B,C,f) E OUT.M do
2: if (A = r) A (B = s) A (C = t) A (c Ocounter V f flip) then
3: OUT.M +- OUT.M\ (c, r, s, t, f)
4: end if
5: end for
6: OUT.M +- OUT.Mu (counter,r,s,t,flip)

Figure 6.11: Operation OUT.M - OUT.MW (counter,r,s,t,ffip)

A.1.2.1: (increment counter(y, z))

Process x has a variable x.counter_yz that counts how many times x invokes the

function (mini_ cycle_ consistency) to detect a particular cycle (x, y, z). This counter

helps x to distinguish between an old message from a previous invocation and an

updated message from the current invocation.

When x invokes (mini_ cycle_ consistency) for cycle (x, y, z), if the corresponding

counter does not exist, then x creates one (see line 2). Otherwise x increases the

counter by one then modulo by n, which is the size of the network (see line 4).

As will be discussed later, this local counter will be destroyed in the validity check

when x has an evidence showing that cycle (x, y, z) does not exist.

1: if x.counter_yz does not exist then
2: new x.counter_yz
3: else
4: x.counter_yz +- (x.counter_yz + 1)mod(n)
5: end if

Figure 6.12: Function (increment_ counter (y, z))

A.2: (Participate 3 Cycle Consistent)

In (Participate - 3 Cycle Consistent) (shown in Figure 6.13), a process forwards

all the messages initiated by (Check - 3 Cycle Consistent) by a different process.

123

For every incoming message, if the middle three fields are consistent with x's local

information and x is not the minimum label (see line 3), then x treats it as a valid

message from another process and forwards it to the targeted neighbor (see line 4).

1: for i •— 1, 2,.. . , J. do
2: for all (c, A, B, C, f) E IN.M do
3: if A =IN.label A B = x.label A C E x.N A B > min{ A, C} then

lin4: OUT'.M •- OUT k(V)MEJ (C) B, C, A, f)
5: end if
6: end for
7: end for

Figure 6.13: Procedure (Participate - 3 Cycle Consistent)

B: Validity Check

In validity check, a process x invokes four functions: (Check for Alarm), (Collect and

Update Neighbors' Labels), (Message Consistency Check), and (Counter Consistency

Check). The program of validity check is as follows:

1: Do Forever:

2: (Check for Alarm) B.1

3: (Collect and Update Neighbors' Labels) B.2

4: (Message Consistency Check) B.3

5: (Counter Consistency Check) B.4

6: End Do

B.1 (Check for Alarm)

In function (Check for Alarm) (shown in Figure 6.14), a process x checks whether

it received any alarm that contains the same value as x's own label (see line 2). If

so, the alarm is called a valid alarm and x randomly chooses a new label from a

124

large range { 1, ..., R} (line 3), erases all the messages it wrote to its neighbors (line

5 and 6), and send an interruption to the main algorithm (line 7). We assume R is

at least as big as 2L6 (3/.2 + 1) where Li is the maximum degree of any process in

the network.

i: for i-1,2,...,8do
2: if IN.alarm = x.label then
3: x.label +- random number from 1 to R ≥ 2A6 (3A2 + 1)
4: for i+-1,2,...,8do
5: OUT.label +- x.label
6: OUT.M—Ø
7: send interruption to main algorithm
8: end for
9: end if

10: end for

Figure 6.14: Function (Check for Alarm)

B.2 (Collect and Update Neighbors' Labels)

In (Collect and Update Neighbors' Labels) (shown in Figure 6.15), a process x collects

labels from all its neighbors (see line 1), and update the information it sends to every

neighbor (see line 3 and 4).

1: x.N - U1<<5 IN.label
2: for i +- i,,T. Jx do
3: OUT.label - x.label
4: OUT,.N +- x.N
5: end for

Figure 6.15: Function (Collect and Update Neighbors' Labels)

125

B.3 (Message Consistency Check)

In this function (shown in Figure 6.16), a process x checks every message (c, A, B, C, f)

it wrote to its neighbor. If one of the following conditions is true (see line 3), then x

erases the message (see line 4) and sends an interruption to the main algorithm (see

line 5):

• The neighbor to which 'x wrote this message has a label different from B

• x does not have a neighbor with label C

• x's label is the minimum among the three labels, and c or f does not coincide

with x's local counter and coin flip.

• x's label is not the minimum among the three labels, and there is no corre-

sponding source from neighbor labeled with C

1: for i-1,2,...,5do
2: for all (c, A, B, C, f) OUT,.M do
3: if (IN.1abe1 B) V (C 0 x.N) V (A < min{B, C} A (c x.counter v

f / x.f)) V (A> min{B, C} A (c, C, A, B, f) IN ° .M) then
4: OUT'. +- OUT.M\(r,A,B,C,f)
5: send interruption to main algorithm
6: end if
7: end for
8: end for

Figure 6.16: Function (Message Consistency Check)

B.4 (Counter Consistency Check)

The purpose of a local variable x.counter_yz is to count how many times that x

invoked function (mini_ cycle_ consistency) to detect the existence of a particular

126

cycle (x, y, z). When x does not has a neighbor y or z (see line 2) anymore, it

is straightforward that such a cycle does not exist. In this case x will not invoke

function (mini_ cycle_ consistency (y, z)). Therefore the local variable x.counter_yz

should be destroyed (see line 3).

1: for all x.counter_yz do
2: if y x.N V z x.N then
3: free x.counter_yz
4: end if
5: end for

Figure 6.17: Function (Counter Consistency Check)

6.3.4 Proof Outline

First define i-local-secure and i-local-insecure for some positive integer i.

Definition 6.3.1. A process is i-local-secure if and only if its label is distinct from

all others within distance i and is also distinct from all labels in shared link regis-

ters or local variables of processes within distance i. Otherwise the process is called

i-local-insecure.

Then define a predicate i-secure for some integer i over configurations as follows:

Definition 6.3.2. Let c be a configuration. i-secure(c) every process in the system

is i-local-secure in configuration c

Predicate 0-secure means there is no restriction on the label of each process. It

is easy to see that a sequence of such predicates 1-secure, 2-secure,... are nested.

The self-stabilizing algorithm Label_D2 [71 assigns to every process a label such

that processes within distance 2 have distinct labels. This algorithm is random-

127

ized self-stabilizing for 2-secure given 0-secure. By using the technique presented in

Chapter 5, we will show that starting from any arbitrary configuration, given any

configuration satisfying 0-secure, a fair composition of Label_D2 and LD3 is random

self-stabilizing for 3-secure, which implies that every pair of processes within distance

3 have distinct labels. Based on Corollary 5.3.4, we need to establish that there exists

a particular fair composition Label_D2EILD3, also called Label_D3, that satisfies

the following three requirements.

1. Algorithm LD3 is random(p, k) self-stabilizing for predicate 3-secure else 0-secure

given 2-secure.

2. Algorithm LD3 is (0-secure, r) right non-interfering with Label_D2 via Label—D3.

3. Algorithm Label_D2 is (2-secure, 1) left non-interfering with algorithm LD3

via Label_D3.

Algorithm Label_D2 does not change labels of any processes at all in any configura-

tion satisfying 2-secure. Thus the requirement 3 is satisfied for any fair composition

of Label_D2 and LD3. The next two sections establish the first two requirments

respectively.

6.3.5 Self-stabilization of LD3

To demonstrate that algorithm LD3 is random(p, k) self-stabilizing for predicate

3-secure else 0-secure given 2-secure, for 0 < p ≤ 1 and a positive integer k, we

need to prove the probabilistic convergence property and closure property. Because

the algorithm has read/write atomicity, a process A may delay arbitrarily between

reading a shared register from one neighbor B and writing to a shared link register

128

of another neighbor C, even when these are consecutive steps in A's algorithm. Thus

process A may convey out-of-date information to C. This could, for example, cause

process C to send an alarm unnecessarily. One of the subtleties of the proof is to show

that such phenomena do not cause serious problems. The notion of 3-local-secure

and 3-local-insecure processes is used for the proofs of both convergence and closure.

Closure Property

Closure can be proved by establishing that once predicate 3-secure holds, no process

will receive an alarm.

Theorem 6.3.1. Starting from any configuration satisfying 3-secure, for any dis-

tributed scheduler, all subsequent configurations of algorithm LD3 satisfies 3-secure.

Proof. In any configuration satisfying 3-secure, if a process x found that its neighbor

y has a neighbor labeled the same as one of x's other neighbor z, then process x, y,

and z form a cycle. Without loss of generality, assume x.label < y.label < z.label,

then x will invoke (mini_ cycle_ consistency (y. label, z.label)). Both y and z will

execute (Participate - 3 Cycle Consistent). The message initiated by x will be

copied back to it eventually with the same counter and coin flip. Therefore based on

line 13 of Figure 6.10, (mini_ cycle— consistency (y. lab el, z.label)) will return true.

Process x will not set an alarm. El

Probabilistic Convergence Property

Convergence is more difficult to prove. We prove it by showing that starting from a

configuration satisfying 2-secure but not 3-secure, after a bounded number of super

rounds of algorithm LD3, either 3-secure becomes true, or some 3-local-insecure

129

process chooses a new label. If every 3-local-insecure process is lucky enough to

become 3-local-secure after choosing a new label, then a configuration satisfying

3-secure is reached. Otherwise a 3-local-insecure process may choose a label of some

neighbor within distance 3. It may even choose a label within distance 2, thus

falsifying 2-secure. However 0-secure is always maintained. Our proof contains the

following two steps:

1) Choices Happen, in which we show that if the system stays in configurations

satisfying 2-secure but not 3-secure for a bounded time, then some process chooses

a new label.

2) Convergence Happens, in which we model algorithm LD3 with a Markov pro-

cess, and show that with probability 1 the system converges to 3-secure.

Choices Happen We will establish the following: if the current configuration c

satisfies 2-secure but not 3-secure, then let algorithm LD3 run for a finite number of

super rounds. Either some process chooses a new label within these super rounds, or

predicate 3-secure becomes true, or starting from the new configuration some process

will choose a new label shortly.

First we introduce some useful definitions.

Definition 6.3.3. All registers accessed by process x match with reality, if:

1. x.N = U y.label.
YEN(s)

2. O UT, label =x. label for i=1,...,6

3. OUI.N = x.N

4. Vi E [1, ö] and V(c, A, B, C, f)e OUI.M, the following three conditions hold:

130

(a) A = x.label, B =II\.label, and C E x.N

(b) if A < min{B,C} then c= x. counter and f = x.f

(c) if A> min{ B, C} then (r, C, A, B, f)

Conditions 1, 2, and 3 ensure that x has up-to-date knowledge of all neighbors'

labels and broadcasts up-to-date information to all its neighbors. Condition 4 ensures

all messages written by x have correct information of the real system.: Condition

4(a) ensures that the middle three components are consistent with the sender, the

receiver and one of the sender's neighbor, respectively. Condition 4(b) ensures that

if x initiated the message, then the counter and coin flip are consistent with x's local

values. Condition 4(c) ensures that if x is only passing the message, then there exists

a source from which x received the information.

Define a predicate LC over configurations as follows:

Definition 6.3.4. Predicate LC the values in all shared link registers or local

variables match with reality.

Definition 6.3.5. A multiple cycle with repeated pattern (x, y, z) is a cycle (pi, ...,p),

such that n ≥ 6 and is a multiple of 3 and the labels of p1 to pn can be represented

by the following regular expression:

(xyz)

Definition 6.3.6. A long path with repeated pattern (x, y, z) is a sequence of pro-

cesses (pt) ...,p), such that n ≥ 4 and the labels of pi to Pn can be represented by

the following regular expression:

(6 U z U yz) . (xyz). (x U xy U 6)

131

Lemma 6.3.2. Within 3 super rounds of algorithm LD3, if no process chooses new

label, then predicate LC becomes true.

Proof. In the first super round, every process will broadcast its own label to its

direct neighbors, which implies Vx E P, OUT= x.label for i = {1, ..., 5}. In the

second super round, every, process collects the updated label of its direct neighbors

and broadcast this updated information, which implies Vx E P, x.N and OUT.N

contain the real labels of x's direct neighbors for i = {1, ..., 8}. Based on these

correct registers, in the third super round, every process x will clear up old messages

in OUT.M for i = {i, ..., J.J. Therefore after three super rounds of algorithm LD3,

if no process chooses a new label, then the values in all shared link register and local

variables of every process in the system match with reality, which implies predicate

LC is true. 0

In any configuration where 2-secure A LC A (-i 3-secure) holds, if a process with

label x notices that its neighbors labeled y and z each has a neighbor labeled z and y

respectively, and x <y < z, it will initiate a (mini_ cycle— consistency (y, z)). There

are three possible situations:

1. The process and its neighbor labeled y and z form a cycle of length 3.

2. There exists a long path with repeated pattern (x, y) z)

3. There exists a multiple cycle with repeated pattern (x, y, z)

Case 1 is legal, and it is easy to check from the algorithm that nobody changes

its label in this case. Case 2 and 3 need to be eliminated. Lemmas 6.3.3 and 6.3.4

show how the elimination is achieved.

132

Lemma 6.3.3. In any configuration satisfying 2-secure A LC, if there exists a long

path with repeated pattern (x, y, z), then within two super rounds, the processes at

each end of the path will choose a new label.

Proof. Let (p1, . -,Pm) be a maximal length path containing the repeated pattern

(x, y, z). Process P2 will notice that its neighbor p3 has a neighbor p4 labeled the

same as Pi, while pi does not have a neighbor labeled the same as p3. Therefore

symmetry) of process P2 returns false, and P2 informs p, to choose a new label.

Process Pm-i is in the similar situation, and will also alarm its neighbor p. Processes

Pi and p will receive the alarm in the execution of (Check for Alarm) in the next

super round, and will randomly choose a new label. 0

Lemma 6.3.4. In any configuration satisfying 2-secure A EC, if there exists a mul-

tiple cycle with repeated pattern (x, y, z), then the expected number of super rounds

of algorithm ED3 before at least one process on the cycle chooses a new label is at

most 3.

Proof. Without loss of generality, suppose x <y <z. If a process with label x has

the same counter as its successor, then with probability a half, they will generate

different coin flips. The (mini_ cycle _consistency) of its successor will return false

(see line 17 of Figure 6.10) in 2 expected number of super rounds.

If a process with label x has a counter that is not the same as or that is

not one smaller than its successor's counter, then within one super round, the

(mini_ cycle— consistency) of its successor will return false.

The only remaining case is that a process with label x has a counter that is

one smaller than its successor. In this case its successor will consider its incoming

133

message as an out-of-date message from itself, and will wait for an updated message.

Because the counter is incremented modulo a number, which is bigger than one third

the net work size, it is impossible for all processes with label x on the cycle to have

a counter one bigger modulo the number than their predecessor. Therefore at least

one process will receive a message with a counter that is not equal to or one smaller

than its local value. One of the previous two cases apply to this process.

As a result, within expected 2 super rounds of ED3, at least one process in with

label x sets an alarm to one of its neighbor. That neighbor will receive the alarm in

the next execution of validity check, and will randomly choose a new label. El

Corollary 6.3.5 follows immediately from Lemmas 6.3.3 and 6.3.4 and correctness

of (symmetry).

Corollary 6.3.5. In any configuration satisfying 2-secure A LC A (—' 3-secure),

within an expected 3 super rounds of algorithm ED3 at least one process will choose

a new label.

Theorem 6.3.6. In any configuration satisfying 2-secure, if there exists some

3-local-insecure processes, within expected 6 super rounds of algorithm ED3, either

all processes become 3-local-secure or at least one process chooses a new label.

Proof. From any configuration where some processes are 3-local-insecure, after 3

super rounds of algorithm ED3, either some process chooses a new label or none

of them do. If nobody chooses a new label, by Lemma 6.3.2 predicate LC is true.

Now either all processes are secure or there still exists a 3-local-insecure process. If

the latter case is true, then by Corollary 6.3.5, at least one piocess chooses a new

label. El

134

Convergence Happens

We first introduce some useful definitions.

Define the neighborhood of a process up to distance i as follows:

Definition 6.3.7. For a process x define: Ni (x) {y E P11 <d(x, y) ≤ i}.

The set N(x) contains all x's neighbors within distance i. Clearly, Ni(x) (nor-

mally abbreviated as N(x)) represents the set of immediate neighbors of process

X.

Definition 6.3.8. For a process x define: ô = maximum degree of any process

yEN(x)

Clearly, 6 (normally abbreviated as 5) is the degree of process x. Let A x be 6,

which is the maximum degree among x and its neighbors within distance 2.

Definition 6.3.9. For a process x define:

L(x) y.label U U y.N U U y.alarm U
yEN(x) yEN(x) YEN(X)

JX

UIN.alarm U U IN' .label
j=1 k,1€N(x) and kEN(1)

The set Li(x) consists of all the possible labels existing in the shared link registers

or local variables of x's neighbors within distance i. By assuming there exists an edge

between every pair of processes in Ni(x), we can give an upper bound on the size of

L (x). In this algorithm we are only concerned with L2 (x) and L3 (x), whose sizes are

bounded by 2(6) and 2(ö)6, respectively when ö, J•2 > 2, which is overestimated

again by 2() and 2(z)6, respectively.

135

When a process x chooses a new label from the integer set from 1 to M, with

probability at least 1. I')I, x's new label is distinct from all neighbors within dis-

tance 2, which implies predicate 2-secure is maintained, otherwise 2-secure becomes

false.

In this section we prove the convergence behavior of algorithm LD3 and make a

conditional analysis under the following assumption.

Assumption 6.3.7. Whenever a process x E P chooses a new label, it never chooses

a label in L2(x).

Assumption 6.3.7 indicates that whenever a process chooses a new label, it always

stays 2-local-secure. Although this assumption is not always true, it happens with

high probability. We will remove the conditioning on this assumption later.

If an 3-local-insecure process chooses a new label, then with probability 1 -

ILx)I, x becomes 3-local-secure. Otherwise under Assumption 6.3.7 it may stay

3-local-insecure and possibly make some 3-local-secure neighbors 3-local-insecure by

choosing their labels. Because a 3-local-secure process has a label different from all

existing information of its neighbors within distance 3, a process will not choose a

new label while it is 3-local-secure.

Lemma 6.3.8. If an 3-local-insecure process x chooses a label and is still

3-local-insecure, it causes at most ()2 3-local-secure processes to become

3-local-insecure.

Proof. Let N(x) = {yi,. . . , Ym} for some process x. If z E N2 (y) is a 3-local-secure

process, then there can be at most J1 3-local-secure processes with the same label as z

in N2(y). Hence there can be at most 6•6 ≤ (X)2 3-local-secure processes in N3(x)

136

all having the same label. If process x is 3-local-insecure and chooses the label z, then

it remains 3-local-insecure and makes at most ()2 processes 3-local-insecure. 0

Lemma 6.3.9. The probability that a 3-local-insecure process x chooses a label and

it is still 3-local-insecure is at most 1 3()2+1 .

Proof. A process x chooses a new label uniformly from the set {1, ..., R}. Since

R ≥ 2(.)6(3(z)2 + 1), the probability that process x chooses a label in L3(x) and

stays insecure is less than

L3 (X) 2(&)

M - 2(L)6(3(L)2+1)
1

= 3() 2 +1

D

Therefore the probability for any 3-local-insecure process to stay 3-local-insecure

after choosing a new label is at most

To prove the convergence of algorithm LD3, we model it as a Markov Process.

The expected number of steps is shown to be overestimated by a biased random

walk, which, in turn, is shown to use only 2n expected steps.

Define the following Markov process:

d-Penalty(pN) Walk: The states are {so,. . . , s} such that the probability Pr[s, Si]

of moving from state si to sj at any step is given by:

VU ≤ i <n,Pr[sj,sj+i] =PN

VU < i < d,Pr[s,so] = q

137

Vd < i <n, Pr{s, Si—dl = qN

Pr[s, Sn] = 1

where PN + qN = 1.

Observation 6.3.10. Let si denote a configuration where i processes in the sys-

tem are 3-local-secure. Algorithm LD3 's convergence behavior can be simulated by

a d-Penalty(pN) Walk, where d = L2 and PN = 1 1
3 2+1 . This Markov process

underestimated the convergence speed of algorithm LD3 by assuming that every time

a 3-local-insecure process chooses a label and is still 3-local-insecure, it drags A.2

neighbors from 3-local-secure to 3-local-insecure.

Define a second Markov process as follows:

Biased(p) Random Walk: The states are {so,. . . , s,-} such that the probability

Pr[si, s] of moving from state si to sj at any step is given by:

VU < i <n, Pr[s, s+,] = PR

VU <i <n,Pr[s,s_1] = qR

Pr[so, 50] = qR, Pr[s, sn] = 1

where pR+qR = 1. Notice that a Biased(pR) Random Walk is just a 1-Penalty(PR)

Walk.

Let ER[s, s] denote the expected number of steps for a Biased Random Walk

to go from state si to state Si. The following three lemmas compute the value of

ER [SO, Sn].

138

Lemma 6.3.11. ER[so, s1] and Vi ≤ i ≤ n—i, ER[s, si] = -+ER[s_i, sj]
PR PR PR

Proof. From state s0, after 1 step, with probability pp, the next state is s and with

probability qR = 1 PR the system remains in s0. Hence, ER[so, 81] = i+qRER[So, s1]

implying ER[so, s1] =
PR

For i ≥ 1, from state s, after 1 step, with probability PR the next state is

and with probability qR = 1 - PR the next state is Hence:

ER[s, Si+1] = 1 + q ER[s_1, si] = 1 + (ER[sj_l, s] + ER[Si, s+]).

Therefore:

PR ER[sj, Si+1] = 1 + q ER[S....1, Si]

implying

ER[sj, s1] = 1 - + q :ER[S_1, Si].
PR PR

0

Lemma 6.3.12. For any probability PR and VU <i < n, ER[sj_1, s4 ≤ ER[S, s+1].

Proof. The proof proceeds by induction on the state index i. For the base case let

i=1.

From Lemma 6.3.11, ER[S1, s2] = + ER[SO, si] ≥ = ER[so, si].
PR PR PR

For the inductive step, assume that for all 1 ≤ i < k, ER[s_1, s] ≤ ER[s,

ER[sk, Sk+1] = i qR - + —ER[sk_1, Sk] by Lemma 6.3.11
PR PR

> + qR E R[sk_2, Sk_1]
PR PR

by the induction hypothesis

= ER[sk_1, Ski by Lemma 6.3.11

0

139

Lemma 6.3.13. If PR > q, then ER[so, s] <
pR— qR

Proof. ER[so, so] = 0 and for n ≥ 1

ER[so, s,-] = ER[so, s1] + ER[sj, s+]
1≤i≤n-1

1 1 q
= - + - + —ER[s_1, Si] I (by Lemma 6.3.11)

PR 1<i<n-1 (PR PR /
n q

= - + ER[so, en-11
PR PR

Solving this recurrence yields:

ER[so, Sn]

<

<

n — i qR

O<i<n-1 PR PR

n L MY

PR O<i<n-1 PR
n

PR - qR
(provided qR <PR)

0

Associate to each d-Penalty(pN) walk the comparable Biased(PR) Random walk

by setting PR - PN (and hence, 1 - PR = qR = dgN
pN+dqN pN+dqN)• -

Let EN[sj, s] denote the expected number of steps for a d-Penalty(pN) walk

to go from state si to state s. The following lemma shows that EN[S, s] will

be overestimated by ER[s, s] for the comparable Biased(pR) Random walk defined

above.

140

Proof. The proof proceeds by induction on the state index i. For the base case let

i=0.

(by Lemma 6.3.11)
PR

pN+qNd
(by value of PR)

PN
pN+qN

PN
(because d ≥ 1)

1
- =EN ISO, sj].
PN

For the inductive step assume that VO ≤ i < 1 - 1, EN [Si, S4] ≤ FIR [Si, If

0 <1 ≤ d,

EN[81, 81+1] = 1+qN.EN[so, 81+1] = 1--qN.(EN[so, s1I+...+EN[SI_1, s1])+qN.EN[s, 81+1]

Therefore,

FIN [81, 8i+i] = + qN (E[80, S] + ... + EN[sj_1, 81])
PN PN

1 + q
- —(ER [so, s1] + ... + ER[si_1, Si]) (by the induction hypothesis)
PN PN

+ ER(SI_, Si) (by Lemma 6.3.12).
PN PN

In a similar way, if d < 1 <n,

EN[S1, Si+i] = 1 + q (EN{sl_d, S1d+i] + ... + EN[si_1, s1]) + q EN[si, Si+i].

Therefore,

EN[SI, 81+1]
1 + q

= - —(EN[si_d, i—d-I-i] + ... + EN [s1_i, Si])
PN PN

PN PN

141

So, in either case,

EN[SI, s11] + d81 SI]

PN PN

< (because pN+qN.d≥1)
- PN PN

1 q-11
= - + - JIRISI_1, SI

PR PR

= ER[SI, Si+i] (by Lemma 6.3.11)

(by definition of PN)

ITI

Corollary 6.3.15. The expected number of steps for a d-Penalty(pN) walk to termi-

nate in state sn from any initial state is at most n(pN+dqN) pNdqN

Proof. The expectation is maximized for initial state so. Let ER denote the expected

number of steps for the comparable Biased(PR) Random Walk.

EN[so, s] = EN[so, s1] + EN[sl, S2] + ... + EN[Sfl_1, Sn]

≤ ER[so, s1] + ER[sl, 82] + ... + ER[sfl_l, s] (by Lemma 6.3.14)

= ER[sO,Sfl]

 (by Lemma 6.3.13)
PR - qR

= PN dqN (by Def. of comparable Biased(PR) Random Walk)
pN+dqN pN+dqN

- n(pN+dqN)

- pN— dqN

142

Therefore based on Observation 6.3.10, the expected number of super rounds for

ED3 to converge to a configuration satisfying 3-secure is where p-dq p =

q = l—p, and d= 2•

Theorem 6.3.16. Starting from any configuration satisfying 2-secure, for any dis-

tributed scheduler, under Assumption 6.3.7, algorithm ED3 will converge to a con-

figuration satisfying 3-secure after an expected number of 2n choosing operations.

Proof. Based on Observation 6.3.10, the d-Penalty(pN) walk where d = z.2 and

PN 1 overestimates the expected number of super rounds f for algorithm

ED3 to converge to 3-secure. Therefore

E ≤ EN[so,sfl]

n(py + dqN) (by Corollary 6.3.15)
- pN— dqN

n(32 + __ ____

- 3 2+1
- 32 1

3 2+1 3 2+1

m(3z 2 + 2)

= 32_2

n41. 2

2L 2

=2n

D

Removing Assumption 6.3.7: If, in the course of choosing new labels, no process

ever chooses a label that is the same as any of its neighbors within distance 2, then

3-secure holds after an expected 2n choices. The probability for a process x to choose

labels not in L2(x) is:

1 L2 (X) > + - 1
M - 3L+L

143

Therefore the probability for any process in the system not to make such a choice

M +z 2 1
is bounded from below by 33M+2

Theorem 6.3.17. Starting from any configuration satisfying 2-secure, and for any

distributed scheduler, after expected 12n super rounds of algorithm LD3, a configura-

tion c is reached. With probability at least (st;l)2 c satisfies 3-secure, otherwise

it satisfies 0-secure.

Proof. By Theorem 6.3.16 if a process never choose a label the same as any neigh-

bors within distance 2, after expected 2n choices, algorithm LD3 will converge to a

configuration satisfying 3-secure. By Theorem 6.3.6, 2n choosing operations happen

within at most 12n super rounds of algorithm LD3. The probability that no process

chooses a label within distance 2 in 2n choosing operations is at least (3 t;1)2'.

Even if some process chooses a label within distance 2, predicate 0-secure is always

true. 0

4+ 2_ 1
Corollary 6.3.18. Algorithm LD3 is random((3 342) 2n , 12n) self-stabilizing to

3-secure else 0-secure given 2-secure.

6.3.6 Non-interference of LD3

As indicated in Section 6.3.4, we need to show that there exists a particular fair

composition of Label_D2 and LD3, such that algorithm LD3 is (0-secure, r) right

non-interfering with algorithm Label_D2 via the composition. It is easy to see that

algorithm LD3 does not obstruct Label_D2, if every process never chooses a label

within distance 2. Starting from any configuration satisfying 0-secure, algorithm

Label_D2 converges to a configuration satisfying 2-secure within a finite number of

144

steps, in which processes will make a finite number of choices in algorithm LD3, say

c. Since the probability that any process does not choose a label within distance 2

3L 4+2 2-1\c is at 3,4+.2 most 342_1 (see page 143), the value of r is bounded above by (3M+2)

Different ways to construct the composition may result in different values for c.

A standard way to compose Label_D2 and LD3 would be to have each process

execute the steps of the two algorithms alternatively. The value of c depends on the

convergence speed of the Label_D2.

Another way is to make a conditional composition, where each process's program

is sketched as follows:

1: run an iteration of Label_D2

.2: if no shared link registers or local variables has been changed then

3: run an iteration of algorithm LD3

4: end if

With this composition, algorithm LD3 interferes much less with the Label_D2

before a configuration satisfying 2-secure is reached. Therefore the value of r in this

composition is much bigger than with the standard composition.

Observation 6.3.19. There exists a fair composition of Label D2 and LD3 that is

random self-stabilizing for 3-secure given 0-secure.

6.4 Further Discussion

As indicated in Section 6.2.1, assigning distinct labels up to distance 2 is easy, be-

cause it is easy to distinguish one neighbor from another. Randomization is used

to choose new labels; discovering that labels are not distinct at distance 2 is done

145

deterministically.

In our algorithm randomization is also used to discover the illegitimate case. For

example, consider a multiple cycle with repeated pattern (x, y, z), where x < y < z.

If all processes on the cycle with label x have the same counter, then with probability

one half, each such process generates a different coin flip from its successor. Thus

the error will be discovered by its successor.

The counter in the message also plays a very important role, because a process

needs to determine whether an incoming message is out-of-date or not. For example,

in a minimum cycle (z, y, z), where x < y < z, the process with label x will keep

calling the function (mini_ cycle_ consistency (y, z)), because both (symmetry(z, y))

and (symmetry(y, z)) always return true. With probability one half, this process may

generate different coin flips within two successive invocations. If there is no counters,

then in the second invocation, the process label x may read the old message from the

first invocation before its new message has been delivered. Then the process with

label x will falsely send an alarm to one of its neighbors.

Also a process has to distinguish an old message from itself and a message from

its predecessor. For example, in the above multiple cycle situation, if every process

with label x has a counter one smaller than its successor, then every such process will

consider the incoming message as an old message from itself, and waits for a updated

message, which will never arrive. To avoid this, the counter is incremented modulo

k where k is bigger than one third the network size. Then it is impossible for all

processes in the cycle to have a counter one bigger modulo k than their predecessor.

Another issue is that the expected number of super rounds for algorithm LD3 to

converge is hugely overestimated in Corollary 6.3.18 by assuming that in every three

146

super rounds only one 3-local-insecure process chooses a new label. Most of the time,

with high probability within two super rounds at least half of the 3-local-insecure

processes choose a new label. For example, consider a long path or a multiple cycle

with repeated pattern (x, y, z), where x < y < z, if all counters are the same, then

with probability a half, each of the processes with label x generate a coin flip different

from its successor's. Therefore we expect half of the processes with label x will send

an alarm. If the counters are not all the same and every process with label x does

not generate a counter that is one smaller than its successor's, then all the x labeled

processes will send an alarm. Otherwise, if processes do have a counter one smaller

than their successors', as shown in Lemma 6.3.4, this can only happen in a long path.

Based on Lemma 6.3.3 processes at both end will receive an alarm and choose new

labels, with high probability they become 3-local-secure and leave the path. At this

point, all the intermediate processes have not finished their current iteration of the

algorithm yet, because they are all waiting for updated messages. Thus the super

round is not ended. And eventually all processes except the middle 2 or 3 processes

will choose a new label within one super round.

CHAPTER 7

Conclusions

7.1 Summary of Contributions

This thesis contains two major parts: a literature survey including a unification of

different kinds of Process Coordination problems, and a self-stabilizing solution to

the Dining Philosophers problem.

We studied six different Process Coordination problems including Dining Philoso-

phers, Drinking Philosophers, Resource Allocation, Committee Coordination, Mul-

tiway Rendezvous, and Multiparty Interaction. All of these problems have similar

exclusion and synchronization requirements. To reveal the similarities and differ-

ences among all these problems, we devise two uniform frameworks to model them,

the object oriented model and the graph model. These two models capture the be-

haviors of distributed systems by characterizing the executions and configurations,

respectively. We reviewed some significant papers on different problems by para-

phrasing the original problem descriptions and solutions. We also repair flaws in

some solutions and clarify some misleading problem descriptions.

147

148

In the second part, we begin to investigate the robustness of distributed systems

under failures. We focus on one of the strongest models, self-stabilizing distributed

systems, which handles transient faults. We review a classic fair composition tech-

nique for designing and analyzing self-stabilizing algorithms. Then we enriched the

fair composition tool for more general use. At the end, we present a technique that

can be used to make most existing solutions to the Dining Philosophers problem

self-stabilizing. This technique includes a new mechanism that labels processes in a

network such that every pair of processes within distance 3 have distinct labels.

7.2 Comments and Future Work

In this thesis, we present a technique that assigns distinct labels up to distance 3 by

using an algorithm (Label_D2) that achieves distinct labels up to distance 2. We

design an algorithm LD3 that can distinguish cases shown in Figure 6.4 and 6.5 in

any configuration where processes within distance 2 have distinct labels. The most

general technique should be to assign distinct labels up to distance k based on an

algorithm that assigns distinct labels up to distance k - 1. where k > 3. To achieve

this, one should design an algorithm LDk that can distinguish the case, which is a

long path of length k with the same label at both ends and distinct labels in between,

and the case, which is a multiple cycle of length Ic - 1 with distinct labels. Although

it appears that no new ideas and techniques are required, this general tool is likely

much more complicated and involved because every process may collect and handle

more information (for example, labels of neighbors up to distance k - 1).

Self-stabilizing algorithms may not tolerate other system failures. For example,

149

Beauquier, Datta, Gradinariu, and Magniette's solution [3] to the Local Mutual

Exclusion problem is self-stabilizing but does not tolerate stop failures. A stop

process could cause a local deadlock among its neighborhood, which will be spread

over the rest of the network. Another open research direction is to find the Dining

Philosophers' solution which can tolerate more kinds of system failures. Choy and

Singh's solutions tolerate .stop failure to some extent. It would be desirable if one

can make their solutions also self-stabilizing.

Bibliography

[1] H. Attiya and J.L. Welch. Distributed computing: fundamentals, simulations

and advanced topics. The Mc-Graw Hill Companies, 1998.

[2] R. Bagrodia. Process synchronization: Design and performance evaluation of

distributed algorithms. IEEE Transactions on Software Engineering, 15(9),

1989.

[3] J. Beauquier, A.K. Datta, M. Gradinariu, and F. Magniette. Self-stabilizing

local mutual exclusion and daemon refinement, In International Symposium on

Distributed Computing, pages 223-237, 2000.

[4] J.A. Bondy and U.S.R. Murty. Graph Theory with Applications. Elsevier North

Holland, Inc., 1980.

[5] C. Boulinier, S. Cantarell, F. Petit, and V. Villain. A note on a bounded self-

stabilizing local mutual exclusion algorithm. Technical report, Technical Report

LaRIA-2003-02, 2003.

[6] K.M. Chandy and J. Misra. Parallel Program Design, A Foundation. Addison-

Wesley Publishing Company, 1988.

[7] S. Chattopadhyay, L. Higham, and K. Seyfl'arth. Dynamic and self-stabilizing

distributed matching. In Proceedings of the 21th Annual Symposium on Princi-

ples of Distributed Computing, pages 290-297, 2002.

150

151

[8] M. Choy and A:K. Singh. Efficient fault tolerant algorithms for resource alloca-

tion in distributed systems. In Proceedings of the 24th Annual ACM Symposium

on the Theory of Computing, pages 593-602, 1992.

[9] E.W. Dijkstra. Hierarchical ordering of sequential processes. Acta Informatica

1, 1971.

[10] E.W. Dijkstra. Self stabilizing systems in spite of distributed control. In Com-

munications of the Association of the Computing Machinery, volume 17, pages

643-644,1974.

[11] S. Dolev. Self-Stabilization. The MIT Press, 2000.

[121 S. Dolev, A. Israeli, and S. Moran. Self-stabilization of dynamic systems. In

Proceedings of the MCC Workshop on Self-Stabilizing Systems, MCC Technical

Report No. STP-379-89, 1989.

[13] D. Gmat, A.U. Shankar, and A.K. Agrawala. An efficient solution to the drink-

ing philosophers problem and its extensions. In Proceedings of the 3rd Interna-

tional Workshop on Distributed Algorithms, pages 83-93, 1989.

[14] M.G. Gouda. The stabilizing philosopher: asymmetry by memory and by action.

Technical Report TR-87-12, University of Texas at Austin, 1987.

[15] M. Gradinariu and C. Johnen. Self-stabilizing neighborhood unique naming

under unfair schedular. In European Conference on Parallel Processing, volume

2150, pages 458 - 465, 2001.

152

[16] O.M. Herescu and C. Palamidessi. On the generalized dining philosophers prob-

lem. In Proceedings of the 20th ACM Symposium on Principles of Distributed

Computing, pages 81-89, 2001.

[17] M. Herlihy and J.M. Wing. Linearizability: A correctness condition for con-

current objects. ACM Transactions on Programming Languages and Systems,

12(3):463-492, July 1990.

[18] D. Hoover and J. Poole. A distributed self-stabilizing solution to the dining

philosophers problem. In Information Processing letters, volume 41, pages 209-

213,1992.

[19] Y.J. Joung. Two decentralized algorithms for strong interaction fairness for sys-

tems with unbounded speed variability. Theoretical Computer Science, 243(1-2),

2000.

[20] L. Lamport. Solved problems, unsolved problems and non-problems in concur-

rency, invited address. In Proceedings of the Srd Annual ACM Symposium on

Principles of Distributed Computing, pages 63-67, 1984.

[21] D. Lehmann and M.O. Rabin. On the advantages of free choice: A symmetric

and fully distributed solution to the dining philosophers problem. In Proceedings

of 8th Annual ACM Symposium on Principles of Programming Languages, pages

133-138,1981.

[22] N.A. Lynch. Fast allocation of nearby resources in a distributed system. In

Proceedings of the 12th Annual ACM Symposium on Theory of Computing, pages

70-81, 1980.

153

[23] N.A. Lynch. Upper bounds for static resource allocation in a distributed system.

Journal of Computer and System Sciences, 23(2), 1981.

[24] N.A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, Inc., 1996.

[25] C. Palamidessi. Re: a question on one of your papers. Private Communication,

2001.

[26] J.L. Welch and N.A. Lynch. A modular drinking philosophers algorithm. Dis-

tributed Computing, 6(4), 1993.

APPENDIX A

Welch and Lynch's I/O Automaton Model

for the Drinkers Problem

Let R be a finite non-empty set of resources, and P be a set of users. For any user

pi E F, pi uses a non-empty set of resource R C R. Each resource is shared by at

most two users. A user pi is in one of the following state at a time:

trying region: User pi is trying to get all its resources.

critical region: Once all the resources in R are obtained, pi enters its region.

exit region: After using all the resources, pi enters exit region to do some cleaning

up activities, such as return all the resources in R.

remainder region: If pi is in none of the regions above, pi is in its remainder

region.

In drinking philosophers problem, resources are considered as beverages, and

users as philosophers. The corresponding regions are represented by T (B), C (B),

E(B), and R(B). Every philosopher cycles through these four regions. Each

philosopher may request a different set of beverages, B, at each time it enters its

154

155

trying region.

The author described the system using the input-output automaton model as

follows [26].

An automaton is a state machine whose state transitions is labeled

with actions. Actions are partitioned into input actions, output actions,

and internal actions. The input and output actions model communica-

tion with the outside world. An execution of an automaton is an alternat-

ing sequence of states and actions. An execution is fair if the automaton

eventually gets to perform a pending output or internal action.

Each system component is modeled by an automaton, and the whole system is also

modeled by an automaton, which resulting from the composition of the components.

An automaton solves a drinking philosophers problem if it satisfies the following

requirements:

1. Its input actions are {T(B), E(B) : 1 < i < n,B C B,B 0 O}

2. Its output actions are {C(B), R- (B) : 1 ≤ i < n, B C B, B O}

3. An execution is drinking-well-formed if Vpj the subsequence of the execution

restricted to the following pattern: T(B), C(B), E(B), R, (B), T(B'), C(BI),

E (B'), R (B').... The automaton preserves drinking-well-formedness, which

means for all execution e' and e where e is the result of extending e' by one

output action, if e' is drinking-well-formed, then e is drinking-well-formed.

4. In any drinking-well-formed execution, Vi, j, B, B' with i =A j and B fl B' =A 0,

if an occurrence of C(B) precedes an occurrence of C(B'), then E(B) occurs

156

between the C(B) and C(B').

5. In any fair drinking-well-formed execution, if Vi, B every occurrence of C(B)

is followed by an occurrence of E(B), then Vi, B every occurrence of T(B) is

followed by an occurrence of R(B). In other words, if nobody ever stuck in

its critical region, then all the philosophers who are in their trying region will

eventually enter their critical region.

6. Given i, B and an occurrence of T(B) in a drinking-well-formed execution,

the occurrence of T(B) is non-overlapping if for all j i and all B' that

intersect B, every preceding occurrence of Tj(B') is followed by an E(B')

that also precedes the T(B), and every following occurrence of T(B') follows

a C (B) that also follows the T (B). We say an occurrence of T (B) is non-

overlapping, if nobody occupies or needs beverages in B before the occurrence

of the following C (B). In any fair drinking-well-formed execution, for all i, B

and all occurrences of T(B), if the occurrence of T(B) is non-overlapping,

then the T(B) is followed by an occurrence of C(B)

