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Abstract 

This thesis is concerned with the d y s i s  and design of higher-order sigma- 

delta ( C A )  analog-tedigital (A/D) converters. An equivalent open-loop 

systern is derived for the analysis of the conventionnal multi-loop S A  con- 

verters. This open-loop system is applied to the investigation of the spectral 

characteristics of the corresponding third-order converter. Then, a new enu- 

meration technique is presented for the design of low-order C A  converters. 

An application to the design of first-order converters leads to the rediscovery 

of the conventional C A  converter dong with the discovery of a new LDI- 

based converter. Finally, the design of higher-order bandpass C A  converters 

is considered. A careful cornparison of two known configurations leads to the 

development of a new resonator-based converter which exhibits the best fea- 

tues of both converters. 
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Chapter 1 

Introduction 

1.1 Digital Signals and Systems 

A signal (fiom the Latin word signum) is an object, a symbol, a sound, a 

gesture, used to represent a piece of information. Signals have been used 

since prehistory. 

Electricity has only been used as a vehicle for information interchange 

since the first half of the 19th Century. This is when Samuel Morse developed 

the telegraph. Its use of a discrete set of symbols (dots and hyphens) make 

the telegraph the first digitd system in the history of electrical engineering. 

The invention of the transistor (1948) and the microprocessor (1972) have 

helped making the digital processing of data faster and cheaper than ever. 

As a matter of fact, the computing power of digital madiines is doubling 

every 18 rnonths. With the development, in the 19SOs, of application specific 

integrated-circuits ( ASICs) and specidized processors, more and more people 

tend to favor digital processing of signds as opposed to the corresponding 

analog processing. 

In electrical engineering, several classes of signals have been defined. The 
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most important definitions relate to the notions of domain (region of support) 

and range. A continuous-the signal is a signal which is defined at each 

instant of time (continuous region of support). On the other hand, a disnete-  

tirne signal is only defined at discrete instants of time. In a similar way, 

signals with continuous and discrete range (or amplitude) can be defined. 

Moreover, continuous-time continuous-range signals are commonly referred 

to as analog s i g ~ d s  and discretetime discrete-amplitude signals are known 

as digital signals. (see Table 1.1) 

1 Continuous- 1 Discrete- 

Table 1.1: Examples of Different Classes of Signals. 

Continous 
Amplitude 

Discrete 
Amplitude 

One of the most important features of digital processors is their pro- 

grammability. No modification of the hardware components is required to 

modify the task of the processor. On the other hand, limitations on the 

processing speed of digital systems may reduce the number of applications. 

Because every real-life signal is analog (e.g. sound, image ), there must be 

a device whose task is to convert the analog input signal into a digital signal 

(Fig. 1.1). Such a device is called an analog-to-digital (A/D) converter. A 

tirne 

Voice 

Lights 

Figure 1.1: A Generic Digital Processing System 

tirne 

Daily Precipit ôtions 

Closing price 
on the Stock Market 

A D  
Convara 

Digitai 
Signai ' 

Digital Digital 
Ramer 

* DIA Analog 
Convena ' Signal * 
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specific class of A/D converters known as Sigma-Delta (CA) converters is 

the subject of the present thesis. In the following, the underlying principles 

of A/D conversion with an emphasis on S A  converters are explained. 

Conversely, it is important to convert digitd signals back to their analog 

form. This is perfomed by digital-tcxualog (D /A) converters. 

1.2 An Introduction to Sigma-Delta A/D 

Conversion 

1.2.1 A/D Conversion 

As seen in Section 1.1, AID conversion is a critical operation. A very accurate 

conversion is absolutely necessary in order to perform an accurate processing 

of data. The task of an A/D converter is to map an ânalog input signal into 

a binary number that represents the amplitude of the input signal at a given 

instant of time, and at a given rate called sampling rate. If the input signal 

amplitude f d s  within a given range of values, the AID converter will issue 

a codeword corresponding to the value of the input signd at that moment. 

Example 1 Suppose the input signal u( t )  is constrained between the ualues 

O and +V.  Also, assume the A /D  converter gives a %bit binary number as 

output. Then, the output of the A /D  converter will be as given in Table 1.2. 

Table 1.2: Output of a 2-bit A/D Converter. 
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This rnethod of mapping a continuous signal into a binary codeword is corn- 

monly known as pulse code modulation (PCM) and is widely used in digital 

signal processing. 

There are two classes of A/D converters, namely, indirect converters and 

direct convert ers. 

Indirect Converters 

Indirect converters use an intermediate quanti ty (frequency, t ime, etc. ) to 

convert the signal. For instance; some converters make use of a voltage 

controlled oscillâtor along with a counter for the A/D conversion. Indirect 

techniques yield high resolutions but have very low conversion speeds. They 

aze mainly used in instrumentation (e.9. digit al multimeters) . 

Direct Converters 

As opposed to the previous class of converters, the direct converters do not 

make use of an intermediate quantity. In most cases, the value to be con- 

verted is compared to a set of known levels and a decision is made based on 

the result of the comparison. One can distinguish between five important 

subclasses of direct converters : pardel  converten (also known as flash con- 

verters), successive approximation converters, hybrid conver ters, electrome- 

chanicd converters, and the important subdass of oversampled converters. 

1. Pa~ullel Converters (Flash Convert ers) 

In this class of converters, the magnitude of the input signal is compared 

to a set of predetemiined reference values. The result of the comparison 

is then encoded into a binary code. Because P - 1 cornparators are 

required for a N-bit binary code, this technique is usually Limited to 
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&bit A/D conversion. The general structure of a 2-bit flash converter 

is shown in Fig. 1.2. 

Input signal I 

Figure 1.2: Structure of a Flash A/D Converter 

2. Successive Approximation Converters 

Converters belonging to this class successively try to approximate the 

analog signal through the use of a D/A converter embedded in a feed- 

back loop. This technique provides a high level of accuracy (up to 16 

bits) but leads to a relatively low conversion speed. 

3. Hybrid Converters 

These converters combine the features of the flash con lverters and those 

of the successive approximations converters in an attempt to obtain a 

compromise between speed and precision. 

4. Electromechanical Converters 

By the mean of successive opaque and transparent sections dong with 

photoelectric det ectors, a mechanical position can be digit d y  encoded 
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(see Fig. 1.3). Note that a more practical implementation would use a 

Gray code. 

Figure 1.3: A Pbit Linear Electromechanical Encoder 

5. Oversampling Converters 

Oversampling corresponds to the case when the sampling frequency 

of the analog input signal takes place at a rate much higher than the 

Nyquist rate. As shown in the subsequent sections, this technique very 

efficiently increases the precision of the conversion. It is âlso very robust 

in the sense that one-bit quantizers c m  be combined with low tolerance 

components. On the other hand, the need for data postprocessing 

(decimation) and high sampling rates reduces the number of potential 

applications for this class of converters. Oversampling converters are 

often found in compact-disc (CD) players. 

1.2.2 Quantization 

The quantization process is the core of analog-tedigital conversion. Its main 

task is to compare the value to be converted to a set of reference values. The 

device which performs this ta&, the quantizer, maps a continuous range of 
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input values (usually a voltage) into a discrete set of values. The simplest 

quantizer that c m  be thought of is a comparator (Fig. 1.4) whose output can 

take on either the level +V or the level -V, depending whether the input 

is positive or negative. As these two values, in tum, can be represented by 

one bit, the comparator shown in Fig. 1.4 is often referred to as a singlebit 

quant izer. 

Figure 1.4: A Single-Bit Quantizer. 

Obviously, multi-level quantizers can also be designed (see Fig. 1.5). The 

number of quantization levels Q is chosen to be a positive integer power of 

two, so as to be encoded into a b i n q  number in the most efficient way. 

Assuming the number of bits to be N, the number of quantization levels Q 

is given by 

Q = P. (W 

Since a quantizer is inherently a non-linear device, the ânalysis of a circuit 

containing such a device cannot be performed using standard linear analy- 

sis techniques. However, in 1948, Bennett [Ben481 showed that, under some 

conditions, the quantization noise can be considered as additive white noise 

(uniformly distributed). In particular, one of the conditions is that the qua-  

tizer should have a large number of levels. This condition, dong with other 
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Figure 1.5: A 2-Bit Quantizer (N=2, Q=4) 

ones, cannot usudy be satisfied as most of the C A  modulators use single- 

or two-bit quantizers. 

Notwithstânding the above restrictions, i t is often convenient to use the 

white noise source model to predict the behaviour of an A/D converter. For 

ail practical purposes in the study of C A  converters, the resdts obtained 

using this model are valid as a rough approximation for the first-order case 

and are quite accurate for higher order cases (see Sections 1.2.5 and 1.3.8). 

Therefore asd unless ment ioned otherwise, the white noise assumpt ion will 

be assumed to be valid throughout the present thesis. 

1.2.3 Nyquist-rate PCM Modulation 

ln the field of signal processing, the fact that the spectrum of a sampled signal 

is periodic is a well-known result. Nyquist's sampling theorem [OS891 d* ictates 

that any signal with limited bandwidth must be sampled at a frequency at 

least twice the highest frequency contained in that signal. In this way, the 

sampled signal can be processed and converted back to the analog domain 

without loss of information. Failure to sample a signd at a high enough rate 
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WU introduce a phenornenon known as aliasing. 

Very often, bandlimited signals do not readily exist. It is however possible 

to p a s  the andog signal to be sampled through a lowpass filter (also called 

an antialiasing filter) which will remove the frequency components that are 

above half the sampling frequency. The constraints on the antialiasing flter 

can be very tight in the case of Nyquist-rate sampling as shown in Fig. 1.6. 

In this case, the lowpass antialiasing filter must have a very narrow transition 

band; a condition which is usually very difficult to satisfy. 

Throughout the present thesis, it will be assumed that all the input signal 

excitations used have had their high-fiequency components removed by an 

appropriate antialiasing filter. 

Figure 1.6: Sampled Signal Spectrum. 

The most important quality criterion for an A/D converter is the signal- 

tequantization-noise ratio (SQNR or SNR) which relates the power of the 

input signal to the power of the quantization noise introduced by the quan- 

tizer. Mathematicdy, the SQNR is defined as 

4 SQNR = - 
4:s ' 

with 02 being the signal power and ozs being the quantization noise power at 
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the output of the converter. Obviously, more noise for a given signal implies 

a reduced SQNR 

It has to be pointed out that, throughout the present thesis, powers are 

normalized with respect to a 1 f2 resistive load. In this way, the unit of power 

is V2 instead of W. Moreover, power spectrum densities are normalized with 

respect to a 1 Hz frequency band ( L e .  the unit becomes V2 instead of 

W/ Hz). In the case of multi-bi t Nyquist-rate quantization, the quantization 

noise can be 

quantization 

assumed to be u n i f o d y  distributed. If A is defined to be the 

step, the power ozs of the quastizat ion noise is given by [CT92] 

Also, the quantization step A and the number of bits iV are related in 

accordance with 

where Q is the number of quantization levels. Replacing Eqn. (1.4) into 

Eqn. 1.3 and using the definition given in Eqn. 1.2, i t  is possible to obtain 

the SQNR (expressed in dB) of a Nyquist-rate quantizer with N bits as 

follows. 
2 

SQNRdB 10 log 5 + 6.02N 4.77, v2 
where u: is the input signal power. 

The well-known result given by Eqn. (1.5) impiies that doubling the num- 

ber of quantization levels increases the SQNR by 6 dB. When comparing two 

A/D converters, it is common to describe their performance in term of the 

number of resolution bits. For example, if a converter has a SQNR which is 
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9dB better than that of another converter, the former converter is said to 

have a 1.5 bit higher resolution. 

Example 2 From Eqn. (1.5), the mazimum SQNR is oétained when the 

input signal power o: is as large as possible. In the case of a sinusoidal 

signal, the Zargest sinusoid hm amplitude V and power V2 /2 .  In this case, 

a l B b i t  quantizer (N = 12) with the largest sinusoid possible at the input 

yields a maximum SQNR of 74 dB. Considering an audio signal of bandtuidth 

fB = 20 kHz, the sampling frequency n u s t  satisfy the condition fs > 40 kHz. 

Typically, laser compact-disc signak are sampled at 44.1 kHz. 

1.2.4 Oversampled PCM Modulation 

Sampling a signal at the Nyquist rate is often inconvenient because of the 

very tight constraints on the antialiasing filter. However, if the sampling 

frequency f, is larger than twice the highest frequency fB contained in the 

signal, the converter is said to be oversampled. The oversampling ratio (OSR) 

quantifies the amount of oversampling and is defined as 

f s  OSR = - 
2 f ~  - 

In the case of Nyquist-rate sampling, OSR is unity (fB = f s / 2 ) .  

Fig. 1.7 shows the spectrum of an oversarnpled signai, along with the 

antioliasing filter constraints. One can observe that the transition band is 

larger than in the case of Nyquist-rate sampling. Consequently, the con- 

straints have been relaxed and the implementation of the antidiasing filter 

is simplified. 

The fact that too hi& a sampling frequency has been used implies that 

the digital output signal has to be passed through a decimation filter (shown 
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I / Signal spectrum 
\ 

Figure 1.7: Oversampled Signal Spectrum. 

in Fig. 1.8) and downsarnpled. Even though the transition band of the dec- 

imation filter is very narrow, the digital decimation filter is easier to imple- 

ment than its analog counterpart. Oveaampiing d s o  results in an increased 

SQNR as shown in the following. 

Figure 1.8: An Oversampled A/D Converter. 

Assuming a white quantization noise with power ozs = - the power 
12 ' 

spectral density (PSD) of the quantization noise is a constant given by 

[ASS96] 
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Therefore, the higher the sampling frequency, the lower the quantization 

noise in a given frequency band. Fig. 1.9 illustrates this phenornenon. 

OversampIed spectrum 

Figure 1.9: Noise Spectra for Nyquist-rate and Oversampled PCM 
A/D Converters. 

Because the quantization noise power 02 is inversely proportional to the 

sampling frequency, the doubling of f, improves the SQNR by 3dB. In this 

way, oversampling can be considered as a trade-off between speed and accu- 

racy. This equivalently means that the number of quantization bits c m  be 

reduced as the oversampling ratio is increased. 

Example 3 Using a 6-bit quanttler for a 20 kHz band-limited signal, it zs 

possible to obtain a SQNR of 74 dB if the sampling frequency 2s 164 MHz. 

This corresponds to an OSR of 4100. 

1.2.5 Sigma-Delta A/D Conversion 

In oversampled PCM A/D conversion, the spectrum of the quontization noise 

is constant over the whole frequency range. In particular, the noise will be 

present both inside the signal frequency band and outside. By the mean of 

feedbadc loops and appropriate feedforward paths: it is possible to reduce the 
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presence of quantization noise inside a given frequency band at the cost of 

an increased quantization noise power outside that band. Developed in 1962 

by Inose and Yasuda [IY63], Sigma-Delta (CA)  A/D conversion is the most 

well-known representative of a class of converters known as noise-shaping 

convert ers. 

In its onginal configuration, a C A  A/D converter contains a one-bit 

quantizer and an integrator, both of which are embedded in a feedback loop 

as shown in Fig. 1.10, where u&) is a continuous-time continuous-amplitude 

input signal and q(n) is a discrete-time discrete-amplitude output signal. 

The task of the quôntizer shown in Fig. 1.10 is two-fold. Firstly, it acts as a 

Figure 1.10: Single-Loop C - 4  Converter. 

conventional quantizer; mapping a continuous set of d u e s  to a discrete set. 

Secondly, it performs this task at a given rate referred to as sampling rate 

(Often called sampling frequency and denoted f,). 

The behaviour of a C A  modulator c m  be described using an equiva- 

lent discrete-time model as shown in Fig. 1.11, with T = 11 f,, u(n) being 

a sampled version of u,(t) in accordance with u(n) = u,(nT), and e ( n )  be- 

ing the quantization-noise introduced by the quantization process and being 

rnodelled as an additive input. 
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Figure 1.1 1: Equivalent Discrete-Time Single-Loop S A  Converter. 

It ciui be shown [CT92, Eqn.(7)] that the output signal q(n) is given by 

Eqn. (1.8) shows that the output signal is composed of both the input signal 

delayed by one sarnpling period and a term which depends on the quant iza- 

tion noise. 

Assuming the quantization noise to be white, the converter shown in 

Fig. 1.11 can then be modeled as a linear circuit. Consequently, conven- 

tional analysis tools such as the 2-transform can be used. Introducing u ( ~ ) ,  
E ( Z )  and Q(z)  to be the Z-trmsforms of u(n), e(n)  and q(n) ,  respectively, 

Eqn. (1 -8) becomes 

From Eqn. (1.9), the signal transfer function STF(z) and the noise transfer 

function NTF(r) can be defined. The signal transfer function, is defined as 
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Similady, the noise transfer function is defined 

In the case of the C A  converter shown in Fig. 1.11 and described by 

Eqn. (1.9), STF(z) and NTF(r) are 

The transfer functions STF(z) and NTF(z) can be considered as shaping 

functions which rnodiS. the spectrum of the input signal and the quantization 

noise, respectively. Through inspection of Eqns. (1.12) and (1.13): it can be 

seen that both STF(z) and NTF(z) are polynomids in z-' of order one. 

Therefore, the C A  converter shown in Fig. 1.11 is said to be a fist-order C- 

A converter. Moreover, r = L is a zero of NTF(z). Equivalently, NTF(z) = O 

around DC. This feature implies that the quantization noise is low at low 

frequencies (Fig. 1.12). 

Figure 1.12: Signal and Noise Transfer F'unction of the First-Order 
S A  Converter. 
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By constraining the input signal spectrum to the low fiequency part of 

the spectnun, it is possible to sepaate the signal and the quantization noise. 

Still using the white noise assumption, the overd spectral density Es( f )  of 

the shaped quantization noise is given by [CT92, Eqn.(9)] 

If the signal frequency band is defined to be in the range 

the noise power in the signa band is given by 

By replacing Es@) in Eqn. (1.16) by its value given by Eqn. (1.14) and 

assuming f, > fB, a:; can be approximated as 

Using the oversampling ratio defined in Eqn. (1.6), the SQNR can be 

found to be 

In a first-order C-A converter, each doubling of the oversampling ratio im- 

proves the SQNR by 9 dB or 1.5 bit. 

Example 4 For the same case a for Ezample 2, a 74dB resolution can be 

attained b y  a single-bit first-order C-A converter with an OSR of 380. For 

a 20 kHz bandwidth, this results in a sampling frequency off, = 15 MHz) 
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about ten times less than that in Ezample 9. 

1.2.6 Advantages of C-A Conversion 

The h s t  advantoge of C-A conversion is that very coarse quontizers can be 

used. In the example presented above, a one-bit quantizer (compôrator) was 

used. 

Sigma-Delta converters are also very tolerant of non-linearities asd other 

imperfections. Simulations and cdculations have shown that leaky integra- 

tors do not influence significantly the behaviour of C A  converters [CT92]. 

1.2.7 Limitations of C-A Conversion 

The converter shown in Fig. 1.11 can be equivalently represented by the 

converter in Fig. 1.13. 

1 

Figure 1.13: Equivalent Representation of the First-Order C-A Con- 
verter in Fig. 1.11. 

This equivalent representation (see e.g. [Fonsd, p.2361) exemplifies the 

behaviour of a C A  converter. The input signal is first integrated (C) and 

then passed t hrough a conventional A modulator . 

Delta modulation is limited by a phenornenon known as dope saturation 

[Fon83, p.2301. Because a C A  converter inherently contains a A modula- 
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tor, a similar limitation exists. In the converter shown in Fig. 1.13, if v ( n )  

exhibits too large a slope, then the 4 modulator will saturate. Moreover, 

because v(n) is an accumulation (integral) of the input signal u(n), a high 

amplitude of u(n) will cause saturation of the C-A converter configuration 

under consideration. In 1995, Borsodi [Bor95, p.421 showed that the bound 

Ui on the input signal for a single-loop converter is given by 

with Q being the number of quantization levels. 

A saturated C-A converter is said to be unstable. It is a well-known 

result that configurations other than the first-order structure presented in 

this section are prone to instabilities. 

1.2.8 Beyond First-Order C-A Conversion 

Multi-Loop Configurations 

High resolution in a fist-order S A  converter often implies an impracticdy 

high sampling frequency (because of the required high OSR). In 1985, Candy 

[Can85] proposed an extension of the conventional single-loop C-A converter. 

Instead of integrating the input signal once, he suggested that the signal could 

be integrated twice (Fig. 1.14). 

The corresponding relationship dexribing the behaviour of the double- 

bop E-A converter is 
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Figure 1.14: Double-Loop C A  Converter. 

In the 2-domain, the relationship becomes, 

Also, the transfer fimctions STF(z) and NTF(z) can be found to be 

and 

The difference with the first-order stmcture is that NTF(z) exhibits a double- 

zero at the point z = 1 as opposed to a single zero. This structure is often 

called a second-order structure, due to the nature of NTF(z). Consequently, 

the quantization noise is even more reduced at low frequencies that in the 

first-order case. The maximum SQNR can be found to be 

SQNR,, = -11.1 + 50 log OSR (1.24) 

for a sinusoidal input. In this case, each doubling of the OSR increases the 

SQNR by 15 dB. 
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Example 5 In accordance with Eqn. (l.24), a SQNR of 74 dB for a 2OkHz 

signa2 repuires and oversampling ratio of 50. There fore, the sanpling fre- 

puency is f, = 2MHz which can easily be obtained by using conventional 

VLSI technologies. 

Similar multi-loop configurations can be devised. In the most general 

case, the SQNR is shown to increase by 3(2M i 1) dB for each doubling 

of the oversampling ratio, with M being the number of integrations ( S e  

Section 2.2). 

Multistage Configurations 

Other configurations include mdtistage (cascaded) configurations in which 

the quantization error from one converter is extracted and used as the input 

to another converter. The outputs of both converters are then combined in an 

attempt to reduce the quantization noise from the first stage. The simplest 

case is the secalled 1-1 cascade converter [ASS96] shown in Fig. 1.15 

Figure 1.15: 1-1 Cascade C A  Converter. 

By inspection of Fig. 1.15 and with the help of Eqn. (1.9), the 2- 

transforms Ql(z) and Q2(z)  of pl(n) and q2(n), respectively, c m  be obtained 
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and 

Q2(4 = z - ' E ~ ( z )  + (1 - z-')E~(z). (1.26) 

The output signal Q ( z )  is given by 

Substituting for QI (2) and Q2(z) ,  Eqn. (1.27) becomes 

In this way, the task of the second C A  converter is to cancel the quanti- 

zation noise introduced by the first quantizer and to replace it with the quan- 

tization noise of the second quantizer shaped by a second-order function. As 

a matter of fact, this converter behaves the same way as the second-order 

converter shown in Fig. 1 .M. 

The advantage of cascaded structures is that they give higher order trans- 

fer functions while using low-order converters, thus avoiding the inst ability 

problem. The disadvantage is an increased circuit complexity. Also, due to 

the multi-bit nature of the output signal, the hardware for the subsequent 

decimation filter will be significantly complicated. 

Bandpass Converters 

Only structures with a noise transfer function having single or multiple zeros 

at the zero frequency (DC) have b e n  studied so far. Due to their operation 

in the lower port of the spectrum, these converters have been narned lowpass 
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converters. It has dso been pointed out that an increased resolution implies a 

higher oversampling ratio, or, equivalently, an increased sampling frequency. 

Technology limitations often prevent a design to be implemented because of 

the requirements on the sampling frequency. 

So far, the oversampling ratio has been defined as the ratio between half 

the sampling frequency, f,, and the highest frequency in the input signal, fB. 

However, in the case of a bandpass signal constrained between the fiequencies 

fi and fhi with fi < fh, there is no need to have a reduced noise level 

below fi. In other words, the frequency band [O, fl] can be used by the 

quantization noise spectnun. This also means that the zeros of the noise 

transfer b c t i o n  can be moved on the unit circle away from DC (z = 1) to 

a set of points corresponding to the signal frequency band (Figs. 1.16 and 

1.17). At frequencies near the zeros of NTF(z), the quantization noise will 

Figure 1.16: Lowpass Noise Figure 1.17: Bandpass Noise 
Transfer Function. Transfer Function. 

be reduced, thus allowing the signal to be separated from the quantization 

noise. Severd structures for bandpass conversion have been proposed [LS87, 

JSF93, BNW] and will be discussed in geater detail in Chapter 4. 
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1.3 Open Problems In Sigma-Delta Conver- 

sion 

1.3.1 Analysis and C haract erizat ion 

The presence of a non-Linear device predudes the use of conventional anal- 

ysis tools to describe the quantization noise and the characteristics of C A  

converters. Very often, the assumption of a white uncorrelated uniforrnly dis- 

tributed quantization noise is made as an attempt to mode1 the behaviour of 

C A  converters. It has b e n  shown, however, that this assumption does not 

hold true for first- and second-order structures [CWGSS]. Therefore, other 

tools have to be developed in order to predict the composition of the quantiza- 

tion noise. The works of Candy and Benjamin [CB81], Gray [Gr&9, GraSO], 

Gray, Chou, and Wong [GCW89], He, Kuhlman, and Buzo [HKBSO], Rangan 

and Leung [RL92], and Botteron and Nowrouzian [BN96] can be viewed as 

an attempt to solve that problem. 

All the above approaches were only concerned with specific structures in 

mind. In 1995, Borsodi [Bor951 developed a technique based on a state-space 

approach to describe the quantization noise for a general class of converters 

having integer multiplier coefficients and a single quantizer. Since then, no 

attempt, to the author's knowledge, has been made to generalize this tech- 

nique to structures containing non-integer multipliers or several quantizers. 

1.3.2 Design 

Due to the present lack of analysis tools, the design of C-A converters, es- 

pecially in the bandpass case, is a chdenging task. The method currently 

used is to employ known structures to implement a set of signal- and noise- 
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transfer functions. The establishment of a rigorous method still remains an 

open problem. 

1.4 Overview Of The Thesis 

The purpose of the present thesis is three-fold. 

Fiatly, an analysis of the quantization-noise in triple- and multi-loop C 

A converters is presented in Chapter 2. The proposed approach makes use of 

the periodicity of the quantization noise function in an attempt to derive a 

closed-form solution for the quantization noise in a multi-loop G A  converter 

configuration. Then, the results are applied to a third-order structure and 

an ânalysis of the quantization noise spectral characteristics is given. 

Secondly, Chapter 3 introduces the basic principles for the deterministic 

design of C A  converters. The criticd building components are isolated and 

intercomected to each ot her. Enurneration of the possible interconnections 

enables one to generate all the possible structures meeting a specific set of 

criteria. 

Thirdly, bandpass S A  A/D conversion is considered in Chapter 4. Anal- 

ysis of two existing structures leads to the establishment of cornparison cri- 

teria. These criterias are then used to discuss the performance of a new 

resonator-based S A  converter configuration. 

Finally, Chapter 5 concludes the thesis by a review of the material pre- 

sented in the previous chapters. It also reports on the parts of the thesis that 

are believed to be original contributions. Then, some ideas for future work 

are proposed. The chapter is then closed by concluding remarks of a more 

generd nature. 



Chapter 2 

Quantization Noise in 

Multi-Loop C-A Converters 

Introduction 

One of the most important problems in the analysis of C-A converters is 

the absence of aalytic ândysis tools. Very often, computer simulations are 

carried out in order to obtain an estimation of the performance of the C-4  

converter configuration under consideration. The presence of the constituent 

(non-linear) coarse quantizer makes the ândysis complicated, even in the case 

of simple converter configurations. Recently, Borsodi and Nowrouzian [BN95] 

developed an analytical technique for the ânalysis and characterization of a 

general class of C-A converter configurations. This technique is based on 

replacing the C A  converter by an equ iden t  open-Ioop system which cir- 

cumvents the problems that normdly arise as a result of the coarse quantizer 

being embedded in a feedbadr loop. The resulting equivalent open-loop sys- 

tem was subsequently applied to the determination of the shaped signal and 

the shaped quântization noise for the spectral analysis of C - 4  converters. 
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Some time ago, Rangan and Leung [RL92] developed a mathematical 

technique for the determination of the quantization enor for a double-loop 

C A  converter. Their method is based on representing the internal quantiza- 

tion error by a corresponding Fourier series expansion. This technique was 

successfdly applied to the spectral analysis of the output signal produced in 

response to a sinusoidal input excitation. 

The present Chapter extends the results in [RL92] to higher-order (triple 

loop, etc.) C-A converter configurations. In particular, Section 2.2 is con- 

cerned with the derivation of an open-loop equivalent for multi-loop C A  

converters. This is achieved by taking advantage of the fact that the quanti- 

zation error function is a periodic function of the input signal of the quantizer. 

h Section 2.3, the results obtained in Section 2.2 axe applied to the case 

of a triple-hop C A  converter configuration. In Subsection 2.3.3, the result 

is subsequently applied to sinusoidal input signal excitations. This procedure 

is facilitated by using the Fourier series expansion of the internal quantiza- 

tion error in conjunction with the JucobGAnger formula. A computational 

investigation and verification is undertaken in Subsection 2.3.4. Finally, Sub- 

section 2.3.5 discusses the spectral characteristics of the quantization noise 

with a specid emphasis on the white noise assumption made in Section 1.2.2. 

2.2 Quantization Noise in Multi-Loop C-A 

Converters 

2.2.1 Introduction 

This section is concemed with the derivation of the open-loop equivalent of 

multi-loop C A  converters. The main reason for using third- and higher-order 
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C A  converters is that these structures yield better noise shaping perfor- 

mances for the same OSR when compared to lower-order converters. There 

is a cost however, namely, an increase in the order of the quantizer implies 

more sensitivity to parameter changes and decreased stability. 

2.2.2 Closed-form Solution for the Interna1 Quantiza- 

tion Error 

Introduction 

This section is concerned with the derivation of the closed-form solution of 

the internal quantization error produced by a c o n v e n t i o ~ d  multi-loop C -A 

converter in response to general input signal excitations. 

Derivation of the Input-to-Output Relationship and of the Noise 

Transfer Function 

Figure 2.1: A Conventional Multi-Loop C - 4  Modulator. 

The schematic diagrarn shown in Fig. 2.1 shows the multi-loop Z-A 

converter under consideration of order N :  where u(n) represents the input 

signal sequence ând q(n)  denotes the output signal sequence. The signals 

yi (n), yz(n), - -, yNei (n), and yN(n) represent internal signals. Q(.) repre- 

sents a quantizer (single or multi-bit ). 

Assuming that the quantizer operates in its overload-free region [BN95], 
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the output q(n) can be expressed as 

where 1.J represents the floor operator (the largest integer less than or equal 

to the argument of the operator). It should be pointed out that the assump 

tion of an overload-free quantizer operation impiies that the C-A converter 

is fkee from the potentid instability problems. 

The interna1 quantkation error e(n) is dehed in accordance with 

Then, by invoking Eqn. (2.1) into Eqn. (2.2), e ( n )  becornes 

where < . > represents the fractional part operator in accordance with 

x = L z ~ +  < x >. Assuming overload-free quantizer operation, e(yl(n)) is 

therefore a periodic function of y&z) with a period of 2 as shown in Fig. 2.2. 

Figure 2.2: The Internal Quantization Error Function. 
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Lemma 1 The input-to-output reiationship of a conventional multi-loop C -  

A converter of order N s h o m  in Fig. 2.1 is given by  

where D(.) is the discrete differentiation operator defined in accordance with 

D f(n) = f (n) - f (n - 1). LI(.) is a linear operator and can be applied 

seueml times to the same sequence in order to obtain the successive dtscrete 

derivatives for th& signal. 

Proof : The proof follows an inductive argument similar to the one 

presented in [HKB92] as given in the following. 

The lemma holds true for N = 1 [CT92], N = 2 [Ca11851 and for N = 3 

[BN96]. It is therefore sficient to prove that if the lemma holds true for 

N = M, then it is also valid for N = M + 1. 

Figure 2.3: A Conventional Multi-Loop C-A Modulator  o f  order M +  
1. 

A (M + 1)-order C A  converter can be represented as shown in Fig. 2.3. 

By assumption, 

holds tme. Moreover, by inspection one obtains 
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or, equivalently, 

Using the definition of the discrete differentiation equation, Eqn. (2.8) be- 

cornes 

DYM+I (n - 1) = u(n- 1) -q(n - 1). 

Taking the disnete derivative of Eqn. (2.6) yields 

Dq(n) = D Y M + ~ ( ~  - 1) + ~ ~ ~ e ( n ) .  

Using Eqn. (2.9), the result becomes, 

( n )  - ( - 1) = u(n - 1) - q(n - 1) + D~~ ' e ( n )  

q(n) = u(n - 1) + LIMf1e(n). 

This completes the proof of the lemma. q.e.d. 

Lemma 1 can be used to gain a better understanding of the behaviour of 

multiloop S A  converters. It has been shown that the higher the order of the 

converter, the closer the quantization noise to white noise. For a second-order 

converter, the quantization noise is already white for a DC input signal and 

almost white with an AC input signal, in the latter case provided that the 

oversampling ratio is large enough [WGgO]. For higher-order converters, the 

intemal quantization noise has been shown to be white in al1 cases [HKB92]. 

Taking the 2-transform of Eqn. (2.5) yields 
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Eqn. (2.13) shows that the output signal spectrum Q(z )  is composed of the 

input signal spectrum U ( z )  shaped by z-' and of the interna1 quantization 

noise pectnun E ( z )  shaped by (1 - z - ' ) ~ .  In the Fourier domain (Le. dong 

the unit circle of the z-domain), Eqn. (2.13) becomes 

where w is the normalized fiequency defined in accordance with 

In the srune way as in Section 1.2.5, the signal transfer function and the 

noise transfer function can be introduced in accordance with 

STF (du) =,e-jw, 

and 

NTF (8") = (1 - e - j ~ ) ~ .  

The magnitude of STF(dW) is 

and the magnitude of NTF(ejw)  can be found to be 
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The noise transfer functions for the cases of N = 1,2,3 are drawn in 

Fig. 2.4. Also, aa enlarged version of the low-frequency part of the spectrum 

is provided in Fig. 2.5. 

Figure 2.4: Cornparison of Noise-Transfer Functions of Order 1, 2, 
and 3. 

It is observed that as the order of the structure increases, the noise tram- 

fer function becornes flatter and attenuates more efficiently the low-frequency 

components of the quantization noise. Because the zeros of the noise trânsfer 

function are dl located at the zero frequency, the converters are sometimes 

referred to as having Butterworth noise transfer functions. 

Estimation of the SQNR 

The noise power in the signal frequency band due to the quantization process 

can be expressed as 
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Figure 2.5: Cornparison of Noise-Transfer finctions of Order 1, 2, 
and 3 (Close-up of the Low-F'requency Range). 

with fB being the bandwidth of the input signal and N being the order of the 

converter. Because of the symmetry of the spectmm, ozs c m  be rewritten 

Moreover, the frequencies w and f axe related one with each other in accor- 

dance with 

Substituting Eqns. (2.19) and (2.22) into Eqn. (2.21), ozs becomes 

Provided that 
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which is the case when fs is large (large OSR), Eqn. (2.23) can be simplified 

After solving for the integrd and remanging the terms, a& hally  becornes 

As shown in Example 2, the peak SQNR under a sinusoidal input is 

obtained when the input sinusoid has amplitude V and power u$ = V 2 / 2 .  

Moreover, assuming a single-bit quantizer, A and V are related to each other 

in accordance with A = 2V (From Eqn. (1.4)). In this way, the SQNR is 

1) log OSR. (2. 

Eqn. (2.27) dictates that the SQNR increases by 3(2N + l)dB for each dou- 

bling of the oversampling ratio, a well-known result. 

2.2.3 Closed-Form Solution for the Quantizat ion- 

Noise in a Multi-Loop X - 4  Converter 

The purpose of this section is to prove the following theorem. 

Theorem 1 If the quantizer in the rnulti-loop C-A converter of order N 

shown in Fig. 2.1 operates in its overload-free region [BN95], then the closed- 
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f o m  solution of the quantization e m r  e(n) is given by 

The proof is based on the following lemma. 

where 

- a! - 
b!(a - b)!  ' 

Proof : See Appendix A.1 q.e.d. 

Proof : Theorem 1 c m  be established by mathematid induction. By 

making use of Lemrna 2, e(n)  can be rewritten 
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Let us consider the case of N = 2. Then, Eqn. (2.31) becomes 

After performing binomial expansion, Eqn. (2.33) becomes 

The d i d i t y  of the latter equation h a  been estabiished in [HKBSO, Theorem 

11. Therefore, the theorern holds true for N = 2. 

In this way, it is sufficient to show that if the theorem holds tnie for 

N = M, then it is also valid for Ar = M + 1. 

By inspection of Fig. 2.3, the relationship 

Y M + L ( ~ )  = Y M + I ( ~  - 1) + u ( n )  - Y&) 

holds. Solving for yM+l (n) recursively, Eqn. (2.34) becomes 

Findy, taking the quantizer into consideration, yM+,(n) becomes 
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Also, by assumption, 

hdds. Replacing for ~ ~ + ~ ( n )  into Eqn. (2.37) gives 

Using the fact that 1.J is an integer and that e(.) is periodic with period 2 

(Fig. 2 4 ,  dong with changing the indices on the summations, Eqn. (2.38) 

becomes 
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Rewritting the fourth summation in Eqn. (2.39) and using the identity [Spi68, 

Eqn. 3.91 

e(n) becomes 

Findy, using the identity [Spi68, Eqn. 3.61 

the quantization error becomes 

establishing the validity of the theorem for N = M + 1. This completes the 
proof of the theorem. 
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2.3 Quantization Noise Spectrum in a Triple- 

Loop S A  Converter With Sinusoidal Ex- 

citations 

2.3.1 Introduction 

The presence of the constituent (non-linear) coarse quantizer makes the anal- 

ysis of S A  converters complicated even in the case of simple converter con- 

figurations and simple input signal excitations. Some time ago, Rangan and 

Leung [RL92] developed a mathematical technique for the determination 

of the quantization error for a double-loop C A  converter. Their method 

is based on representing the intemal quantization error by a corresponding 

Fourier series expansion. This technique was successfully applied to the spec- 

tral andysis of the output signal produced in response to a sinusoidal input 

excitation. 

The present section extends the results in [RL92] to the determination of 

the closed-form solution of the internal quantization error for a conventional 

tripldoop C-A converter configuration under overload-free quantizer opera- 

tion. The closed-form solution of the internal quantization error for a general 

input signal is derived in Section 2.3.2. In Section 2.3.3, this solution is spe- 

cialized for the important case of sinusoidal input signd excitations. This is 

facilitated by using the Fourier series expansion of the internal quantization 

error in conjunction with the JacobGAnger formula. 
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2.3.2 Derivation of an Open-Loop Equivalent for the 

Interna1 Quantization Error 

This section is concerned with the derivation of the closed-form solution of 

the interna1 quantization error produced by a conventional triple-loop C A  

converter configuration in response to generd input signal excitations. 

Figure 2.6: A Conventional Ttiple-Loop C - 4  Modulator. 

The schematic diagram shown in Fig. 2.6 shows the triple-loop C-A con- 

verter configuration under consideration, where u(n) represents the input 

signal excitation, and q(n) represents the output response signal. The sig- 

nais y3(n), yz (n), and y, (n) represent intemal signds. Moreover, Q(yl(n)) 

represents a coarse quantizer (single-bit or multi-bit). 

By inspection, one c m  observe that 

Lemma 3 The output signal q(n) in the triple-loop C - A converter shown 

in Fig. 2.6 is related to the input signal u(n) via the intemal quantization 

error e(n) in accordance with 
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Proof : By applying Lemma 1 with N = 3. An alternate proof can be 

found in [BN96]. 9.e.d. 

Based on Lemma 3, the closed-form solution for e (yl(n)) can be deter- 

mined in accordance with the fouowing theorem. 

Theorem 2 [BN96] If the coarse quantizeî in the triple-loop C - A converter 

shown in Fig.2.6 operates in its overload-free region [BN95], then the closed- 

fonn solution of the intemal quantization error e(n) is giuen b y 

w h e ~ e  y,(O), y2(0), and y3(0) are the initial valves of the interna1 vanables 

YI (4, Y&), and y&), respectiuely. 

Proof : Use Theorem 1 with N = 3. An alternate proof can be found 

in [BN96]. 

2.3.3 Quantization Error for Sinusoidal Excitations 

The result of Theorem 2 can be applied to the specific case of sinusoidal exci- 

tations. The final result will be obtained through a Fourier series expansion 

of the function e(yl(n)) and by the use of the JacobGAnger formula. 

Let us assume that the input signal is given by 
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with Ai being its amplitude and being its phase. By invoking Eqn. (2.49) 

into Eqn. (2.48), the intemal quantkation error becomes 

It can be shown that the triple summation in Eqn. (2.50) can be reduced to 

By solving the difference equation in Eqn. (2.51), the coefficients A*, Bo, C o  

and Do and the phase angle & can be determined as 

Furthemore, by taking into account the fact that e(yz(n)) is a periodic 

function of y+) with period 2, the te- n(n+1:(n+2) in Eqn. (2.50) c m  be 

equidently replaced by 
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[ O for n = {0,2,3) rnod 4 
r(4 = 

( 1 for n = 1 mod 4. 

In this way, the internal quantization error e(n)  becomes 

In order to proceed futher, the internd quantization error e(y,(n)) is 

represented by its Fourier series expansion in accordance with (see Fig. 2.2) 

By substituting Eqn. (2.54) into Eqn. (2.53), e ( n )  becomes 

where 

B=Bo+-  y3(0) C = C,,+TJ~(O) - - 
2 

'"(O), and D = Do + yl(0). 
2 

By invoking the Jacobi-Anger formula 

in Eqn. (2.53), the internal quantization error can be rewritten in the form 



2.3 Ouantization Noise S~ectrum in Triple-Loop C-A Converters 45 

where J.(.) represents the m-th order Bessel function of the first kind. 

Before being able to take the Fourier transfom of Eqn. (2.57) for comput- 

ing the spectral characteristics of e(n), one needs to explicitly determine the 

term ej""("). In accordance with Eqn. (2.52), dWh(") takes on the following 

value if 1 is even 

e ' - w n )  = 1 for T ( ~ ) = O  n = { 0 , 2 , 3 ) m o d 4  

-1 for ~ ( n )  = 1 n = 1 mod 4, 

if 1 is odd. The case of 1 even is easy to hândle. In the case of 1 odd, the 

following equality holds 

Eqn. (2.57) t hus becornes 

4-00 jnl(Cn+D) +oo 

44 = C 'm(-+h - sin En) Jm (Aad)e '  
- j*E 2 m=-bO 
1 odd 

Eqn. (2.61) is the final form for the internd quantization error for a triple- 

loop C A  converter wi th sinusoidal excitations. 



2.3 Quantization Noise Spectrum in Triple-Loop C A  Converters 46 

2.3.4 Computational Investigation 

At this stage, it is usefui to perform a computational investigation to check 

the validity of the results obtained so far. A corresponding verification 

through cornparison to the results obtained by a direct simulation of the 

operation of the Ch converter is presented in this section. 

Let us choose the input signal excitation to be arbitrarily fixed as 

Moreover, let us select the initial conditions as 

Then, one c m  use Eqns. (2.44), (2.45), (2.46) and (2.1) to evaluate the in- 

ternal quantization error e ( n )  as shown in Fig. 2.7. Similady, one can use 

Eqn. (2.61), to obtain e(n) as shown in Fig. 2.8. Clearly, the results shown 

in Fig. 2.8 are in agreement with those in Fig. 2.7. Any discrepancy can 

be attributed to the fact that the infinite summations in Eqn. (2.61) must 

be approximated by finite summations for numerical calculations. Having 

confirmed the validity of e(n)  in Eqn. (2.57), one can investigate the spectral 

characteristics of e(n). According to Rangan a d  Leung [RL92], it appears 

that one should expect a continuous spectrum whereas lower-order C-A con- 

verters (first-order and second-order) exhibit discrete spectral components. 

Once the spectral characteristics of e(n)  are known, the next step will be to 

derive the power spectral density of the overall quantization error defined as 

e(n)  = D3e(n). 
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n 

Figure 2.7: Direct Simulation of the Internd Error. 

Figure 2.8: Calculated Internd Error Using Eqn. (2.57). 
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2.3.5 Spectral Characteristics of the Quantization 

Noise 

Based on Eqn. (2.61), the next step is to evaluate the spectral chasacteristics 

of the quantization error e(n).  The presence of the term eJ"'Bn2 in Eqn. (2.61) 

precludes the straightforward calculation of the Fourier transform of e(n). 

However, e(n)  can be seen as a linear combination of terms of the form 

Weyl's theorem (see e.g. [WG9O] ) states that if c ( t )  = (ao + ait + - - - 
- - + attk) is the fractional part of a polynomial with r d  coefficients and if 

among al, az, - - , a&, at least one coeficient is irrationd, then the sequence 

c(n),  n = 1,2, - - - is uniformly distributed in the semi-open domain [O, 1). 

Making use of Weyl's theorern on Eqn. (2.63), it can be shown that the 

set of terms {c(n) ,  n = 1,2, -) is uniformly distributed on the unit circle. 

Estimating the autocorrelation of c(n),  it can dso be shown that c(n)  is a 

white sequence [WGgO]. 

To summarize, provided that either B or C in Eqn.(2.61) is irrationd, 

the quantization error e(n)  is a white uniformly distributed sequence, thus 

justifying the assumption made in Chapter 1. This is further illustrated by 

the folIowing example. 

Example 6 Let c(n)  denote the sequence 

(2.64) 

with Q being a real number tahich is not a rational multiple of .ii. Eqn. (2.64) 
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where wr(n)  = Qn represents a local frequency. A s  n increases, so dues wi(n) .  

I n  this way, wr(n)  takes on values spreuding between O and +w, when Q i;? 

Consequently, a(n) imfZ have an infinite ntlrnber of frequency components 

comprised between O und 2x.  Moreover, because Q is an irrational multiple 

of T, these components will tend to be unifonnly distn'buted on the unit circle. 

Fig. 2.9 shows the distribution of the first 16384 points of the sequence 

with Q arbitrarly chosen to be Q = 1.31926541786. 

Fig. 2.10 ais0 shows the power spectral density of the same sequence. 

In conclusion, the assurnption of a white uniformly distributed quantiza- 

tion noise is justified for triple-loop and higher-order converters. This fact 

has been confirmed by the works of Chou, Wong and Gray [CWGSS]. 

2.4 Conclusions 

The present Chapter has been concerned with the extension of the results 

in [RL92] to higher-order C-A converter configurations. In particular, Sec- 

tion 2.2 has dealt with the derivation of an open-loop equivalent for multi- 

loop S A  converters. This was achieved by taking advantage of the fact that 

the quantization error function is a periodic function of the signal at the 
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Figure 2.9: Angular Distribution of the Sequence Given By 
Eqn. 2.67. 

Figure 2.10: Spectral Composition of the Sequence Given By 
Eqn. 2.67. 
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input of the quantizer. 

In Section 2.3, the results obtained in Section 2.2 has been applied to the 

case of a triple-loop C-A converter configuration. In Subsection 2.3.3, the 

result have b e n  subsequently applied to sinusoidd input signal excitations. 

This procedure was facilitated by using the Fourier series expansion of the 

interna1 quantization error in conjunction wit h the Jacobi- Anger formula. A 

computational investigation and verification has been given in Section 2.3.4. 

Then, Section 2.3.5 has discussed the spectral characteristics of the quanti- 

zation noise with a special emphasis on the white noise assumption made in 

Section 1.2.2. 



Chapter 3 

Design of C-A Converters 

Introduction 

The most important problem in electrical engineering, in general, is to de- 

velop a circuit, a system, or a device in such a manner that specific constraints 

are met. In the case of E4 converters, the design conditions usudy include 

Sampling frequency, f,; 

Signal characteristics (Le .  Bandwidth for lowpass signals or bandwidth 

and center frequency for bandpass signals); 

0 Desired resolution. 

The knowledge of these specificâtions iduence directly the order of the struc- 

ture choosen. Intuitively, it appears that the lower the OSR for a given res- 

olution, the higher the order of the stmcture. Otherwise, unless using the 

uniformly distributed white quantization noise assumption, the selection of 

the structure order can only be based on a trial-and-emr procedure. Simi- 

larly, once the order of the structure is known, the topology still needs to be 

found. 
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The present chapter attempts to develop the bases for a procedure that 

would produce aJl the possible structures meeting specific criteria. 

3.2 Design Methodology 

3.2.1 Introduction 

The proposed method using enurneration allows finding al1 the structures 

which meet a given set of criteria. The principle is to extract the important 

components of a C A  converter and to connect them together by externa 

connections. Then, aU the possibilities are andyzed and the realizable struc- 

tures are then retained as valid structures. 

3.2.2 Building Element s 

The first step is to identify and extract the critical elements. These include 

input pat h, connection paths, quantizers, unit delays, multipliers, and adders 

as follows: 

1. Input Path 

The input path, as one of the most obvious components, is shown in 

Fig. 3.1. 

Figure 3.1: Input Path. 

2. Connection Path 
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Such a path connects together the output of an element to the input 

of the next element. To each path is assigned a weight or multipling 

coefficient. For the present method, the weight of a path can be 1, 

O, or -1 depending whether there is a connection, no connection or an 

inverting connection, respectively. (See Fig. 3.2) 

Figure 3.2: Three Possible Connections. 

3. Quantizer 

The most important component in a C - 4  converter, narnely the quân- 

tizer, will be represented as shown in Fig. 3.3. 

Figure 3.3: Representation of the Quantizer. 

This representation allows the quantizer to include the feedback path. 
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4. Unit delay 

A unit delay is shown in Fig. 3.4. 

Figure 3.4: Representation of a Unit Delay. 

5- Multipliers 

Figure 3.5 shows a constant coefficient multiplier. 

Figure 3.5: Representation of a Multiplier of Multiplying Coefficient 
k* 

6 .  Adders 

Adders are considered but will not be represented explicitly. Note that 

two converging paths will imply an adder (see Fig. 3.6) . 

Figure 3.6: Implicit Adder. 

The above elements are then connected together by the means of connec- 

tion paths. Each node is numbered and the connection paths are defined. 
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By convention, a path connecting node a to node b wiU have a weight tar, 

where t a b  can takeon thedues  -1,0, or 1. 

In the simplest case, a C-A converter contains one unit delay, one quan- 

tizer, and no multiplier. The resulting configuration is represented in Fig. 3.7. 

Figure 3.7: Connections for the First-Order S A  Converter. 

Overall, 20 (= 2(1+ 3 + 2 + 1)) distinct connection paths can be found. 

Assuming each path can take three different d u e s  {-1,0,1), the circuit in 

Fig. 3.7 has around 3.5 billion different tramfer function sets. (320 - 3.5- 10'). 

In the most general case, the number of different transfer functions is 

given by 

with n, being the number of nodes in the circuit under consideration. More- 

over, the nurnber of nodes is given by 

where nd is the number of unit delays and n, the number of rnultipliers in 

the structure under study. 
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In this way, a circuit having 2 unit delays and 2 multiplier coefficients 

will exhibit il nodes and the number of possible circuits amounts to 311* = 

30 - l O S 1 .  Obviously, it is impossible to enurnerate every single solution. 

Therefore, some additional design constraints have to be used in order to 

reduce the size of the search space. 

3.3 Design Constraints 

The reduction of the number of possible circuits can be obtained by intro- 

ducing additional design constraints. Tkee different classes of constraints 

can be distinguished. 

Even though this is not a requirement for analog circuitry, the cir- 

cuit will be designed in such a manner that no delay-free bop exists. 

This constritint becomes mandatory when considering a D /A converter 

where all the processing before the analog interface is done digitally. 

Practically, this condition implies that the c o ~ e c t i o n  ts4 in Fig. 3.7 

does not exist. Also, this condition implies that if an arbitrary path 

has a non-zero weight ( i .e.  ta, E (-1; l)), the reciprocal path tb, has 

to be have a zero weight. A~SO, triangular paths should be avoided. 

( i - e .  if t,b = f 1, then either ta, = O or td> = O must hold so as to avoid 

the situation shown in Fig. 3.8). 

The Bounded-Input Bounded-Output (BIBO) stability of the linear 

mode1 of the C-A converter does not guarantee the stability of the 

non-linear converter. But, i t  is reasonable to assume that the C A  
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1CI 
Figure 3.8: Example of a 'lkiangular Connection. 

converter under consideration is less likely to be unstable if its linear 

mode1 is BIBO stable. BIBO stability, in the 2-domain, is ensured if 

the poles of the transfer functions are located inside the unit circle. 

Transfer Function Related Conditions 

As wilI be discussed in Chapter 4, it is often convenient to have design 

constraints on the noise and signal transfer functions. More specifically, 

the number of possible circuits is reduced if these transfer functions axe 

related to each other. The most important case is when the transfer 

funct ions are complementary in accordance wi t h [Vai93] 

where no is a positive integer and c is a real constant. 

Other constraints or assumptions, as well as some common sense can 

further reduce the size of the search space. 

3.4 Design of First-Order Converters 

In this Section, the above design procedure is applied to the following ex- 

ample. The converter under consideration will contain one unit delay and 
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no multiplier coefficients. The correspondhg configuration has already been 

shown in Fig. 3.7. As discussed in Section 3.2, the enumeration of alI pos- 

sible stmctures is practically impossible to perform. Therefore, additionai 

constraints have to be given. 

The h t  set of constraints is concerned with delay-free loops. This con- 

dition implies that 

tS4 = 0. (3.4 

Also, rnost C A  converters include integrators imptemented by the means of 

connecting the output of a unit delay to its input. Consequently, 

Moreover, node 2 needs to have at least one input signal. Therefore, 

Because t l z  # O and t 52  # O, t rs  must be zero to avoid a triangular path. 

Similarly, tol = 0. 

In order to simplify rnatters, it is assumed that there is no connection 

leaving nodes 2 and 4. Consequently, 

and 

t 4 j  = O, j = 1,2,3,5. (3.7) 

Hence, the structure shown in Fig. 3.7 reduces to that shown in Fig. 3.9. 
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With the proposed constraints, there are only 8 remaining pathç. 

u@) q(n) a 

Therefore , 

Figure 3.9: The Simplifed Set of Connections for First-Order Exam- 
ple. 

the number of all possible circuits is reduced to 

which indicates a dramatic change from the 3.5 billion different possibiiities 

obtained before. 

In order to avoid delay-free loops, the coefficients must satisfy the condi- 

tions 

Moreover, further triangular paths are avoided if the condition 

is satisfied. 

The next step consists in running a symbolic asalysis program written 

by Arthur Fuller, a member of Dr. Nowrouzian's research group at the Uni- 

versity of Alberta, to obtain the transfer functions redized by the structure. 
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These can be found to be 

and 

At this point, i t  can be observed that STF(z) and NTF(z) share the same 

denominator. 

The second design constraint dictates that the poles of NTF(r) must Lie 

inside the unit circle. From Eqn. (3.11) it appeazs that the r ed  unique pole 

of NTF(r) is located at the point 

In order for the zeros of D ( z )  to lie inside the unit circle, the condition 

must be satisfied. Because the coefficients t32y tyl, and fS2 are restricted to 

integer values, the equality 

t32 + t34t52 = 0. 

is the only one which satisfies Eqn. (3.14). 

Using Eqn. (3.15) in Eqns. (3.11) and (3.12) gives 
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The third design constraint is concemed wit h the relationship between 

STF(z) and NTF(z). Combining Eqns. (3.16) and (3.17) into Eqn. (3.3) 

yields 

where no E {O, 1). 

At his point, two cases can be distinguished: no = O and no = 1. In the 

present thesis, the study will be limited to the case of no = O. In this case, 

Eqn. (3.15) yields the conditions 

where c is an arbitray real constant. 

From Eqns. (3.19) and (3.20), two particular cases arise. 

The specid case where c = 1 is of particular interest. The case c = 1 along 

with Eqn. (3.19) imply that 
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A~so, Eqn. (3.20) impIy that at least one of the three tems t32 ,  t12tmr aad 

t14 has to be zero. By choosing t1 .4 = O, Eqn. (3.20) yields 

Eqn. (3.22) implies that 

From Eqn. (3.20) : t 32  = tlZt3.( 

From Eqn. (3.21) : tI3tyl = 0. 

Moreover, choosing 

t12t34 = 1- 

Also, combining Eqns. (3.23) and (3.25) implies that 

Moreover, choosing 

ta = 1 

and using Eqn. (3.25) implies that 

Combining Eqns. (3.15), (3.24), and (3.27) gives 

tS2 = -1. (3.29) 

Combining Eqn. (3.9) and (3.27) gives tS3 = O. Finally, replacing tS2 in 



3.4 Design of First-Order Converters 64 

Eqn. (3.10) by its value given in Eqn. (3.29) implies 

To summiuize, the coefficients given in Table 3.1 are found to satisfy the 

conditions given by Eqns. (3.19) and (3.20). 

t I 2 = 1  t a l = O  t 5 2 = - l  

t35 = O 

Table 3.1: Value of the Coefficients for the case c = 1. 

The configuration given by Table 3.1 corresponds to the conventional first- 

order C A  converter shown in Fig. 3.10. Combining the transfer functions 

Figure 3.10: Conventional First-Order C-A Converter Obtained 
Through Design. 

given by Eqns. (3.11) and (3.12) and the results given in Table 3.1 give 

(3.31) 
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and 

3.4.2 Case-2: c = 2 

In this case, Equation (3.19) implies that 

Using similar assumptions as before, the coefficients in Table 3.2 c m  be found 

to satisfy the design constrâints. 

Table 3.2: Value of the Coefficients for the case c = 2. 

Figure 3.11: S A  Converter Configuration (With c = 2). 

The corresponding circuit is shown in Fig. 3.11. The transfer functions 

are found to be 

STF(t) = 1 + r-', (3.34) 

and 



3.4 Design of First-Order Convert ers 66 

and are shown in Fig. 3.12. In this case, the signal transfer function is not 

Figure 3.12: Transfer F'unctions for the C-A Converter Configuration 
(With c = 2). 

of an allpass nature as it is in the conventional C A  converter presented 

in Section 1.2.5. However, at the point where NTF(z) = O ( L e .  at  low 

frequencies), ISTF(z)l R 2 md its derivative with respect to the frequency 

is close to zero. Because high oversampling ratios are usually used, STF(z) 

c m  be considered as constant in the input signal frequency band. 

An andysis of the structure shows that its performance is identical to that 

of the conventional first-order structure. A plot of the SQNR as a function of 

the input signal amplitude shows an identical maximum SQNR. Simulation 

results shown in Fig. 3.13 are compared with the expected SQNR estimated 

using the linear model approximation and with the model proposed by Candy 

and Benjamin [CBSl]. The OdB level is defined to be the level that saturates 

the C A  converter (see Section 1.2.7). 

From Fig. 3.11, it can be observed that the new C-A converter configu- 
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Figure 3.13: Performance Cornparison of the Conventional and the 
S A  Converter in Fig. 3.11. 

ration only differs fiom the conventiond first-order configuration by the way 

the integrator is implemented. Conventional C-A converters use the so-called 

Euler integrator (Fig. 3.14) having for transfer function 

The proposed new C-4 converter, on the other hand, uses a rnodified version 

of the bilinear-LDI1 integrator shown in Fig. 3.15. The transfer function 

associated with the integrator shown in Fig. 3.15 is 

- - -  ' LDI stands for ~Ales dixrete integrator. 
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Figure 3.14: First-Order Euler Integrator. 

Figure 3.15: First-Order Bilinear-LDI Integrator. 

Bilinear-LDI integrators are commonly used in ladder filters and are at- 

tractive as they preserve the low sensitivity features of such filters. However, 

the bilinear-LDI based C-A converter configuration has not shown any sub- 

stantial improvement over the conventional C A  converter (which uses the 

Euler integrator) . 

3.5 Highpass C-A Converters 

Iising the technique proposed in Section 3.2, highpass C-A converter config- 

urations can also be designed. It must be pointed out that such converters 

are not very attractive because of the increase in cost associated with the 

corresponding antialiasing and decimation. 

Selecting the multiplier coefficient values in the converter configuration 

shown in Fig. 3.11 as given in Table 3.3, generates a highpass C - 4  converter. 

The resulting converter configuration is shown in Fig. 3.16. A spectral 

analysis of the output signal Q ( z )  under a sinusoidd excitation proves that 

the noise power spectral density of this converter is indeed of lowpass nature, 

being zero at the frequency w = R (see Fig. 3.17). 
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t12 = -1 t31 = O tS2 = 
t 1 3 = 0  t 3 * = - 1  t S 3 = 0  

t3!j = O 

Table 3.3: Value of the High-pass First-Order C-A Converter. 

Figure 3.16: First-Order Highpass C-A Converter. 

Power Specûal Density of the Output of the First-ôrder Highpass Converter 
40 I 1 I 1 I 

Figure 3-17: Power Spectral Density of the First-Order Highpass 
C-A Converter. 
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Conclusions 

This chapter was concerned with the development of a new design technique 

for %A converters. This technique is based on enurneration. However, the 

number of possible solutions grows exponentially with the number of compo- 

nents in the structure under consideration. As such, a first-order converter 

requires close to 6.5 billion iterations to generate ail possible solutions. There- 

fore, additional design constraints have to be devised in order to reduce the 

complexity of the search space. These constraints are of three different cat- 

0 Realizability constraints, 

Stability constraints, and 

Transfer function related constraints. 

Moreover, some common sense and personal preferences can be considered 

to further decrease the size of the set of possible solutions. 

Such considerations have successfully been applied to the design of iîrst- 

order converters. Using this new technique, the conventional fist-order C- 

A converter configuration has been rediscovered. As well, a new structure 

based on bilinear-LDI integrators instead of bilinear integrators has been 

discovered. Finally, the concept of highpass C-A converter has briefly been 

introduced. 

The proposed new design technique may prove more useful when applied 

to higher order C-A converters. However, the complexity of the related tram- 

fer functions and the number of possible solutions may reduce the practicality 

of the proposed technique. 



Chapter 4 

Bandpass Sigma-Delta 

Conversion 

4.1 Introduction 

Conventionally, C A  converters axe designed such that the quantization noise 

trânsfer function, NTF(z) ? has a highpass characteristic while the signal 

transfer function, STF(z), has a lowpass chasacteristic. The main draw- 

back of lowpass C A  converten is that any increase in the performance, as 

measured by the SQNR for a given structure requires an increase in the sam- 

pling frequency. However, such an increase is not always possible due to the 

technology limitations. 

In 1989, Schreier and Snelgrove [SS89] developed a new methodology 

for E A  converter design, where the converter (cded  bandpass C-A con- 

verter) is designed such that its quantization noise is smdl âround a mid- 

band frequency, away from DC. This is achieved by moving the zeros of 

the quantization-noise transfer function away from DC to locations close to 

the desired mid-baad frequency on the unit circle. The resulting bandpass 
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Eh converters give rise to low quantization noise around the mid-band fre- 

quency. Schreier and Snelgrove also showed that the oversampling ratio is a 

function of the passband width instead of the signal frequency, thus relaxing 

the constraints on the sampling frequency. 

This chapter reviews the existing design techniques for bandpass C A  

A/D conversion aad presents a set of comparison criteria. A new C-A con- 

verter configuration based on existing structures is presented almg with its 

corresponding design procedure. 

Section 4.2 introduces some definitions and general considerations related 

to the transfer functions. Some specid cases are discussed and the important 

notion of transfer function complementarity is introduced. 

Section 4.3 reviews the design specifications relating to the noise transfer 

functions. The general form of the noise transfer function is then derived. 

This is followed by the discussion of issues such as the order of both the 

noise and signal transfer functions. A formula for the estimation of the 

performance of the converter based on its noise transfer function concludes 

t his section. 

Section 1.4 applies the results of Section 4.3 to the design of trknsfer 

functions satisfying a set of design specifications as an example. 

The resulting transfer functions are applied to the design of a cascade-of- 

integrators S A  converter configuration in Section 4.5. The resulting design 

is t hen investigated and a switched-capacitor imphmentation of the design 

is discussed. 

In Section 4.6, the design (based on the results of Section 4.4) of a cas- 

cadeof-resonators is investigated. The procedure pardels the procedure 

used in Section 4.5. 

Section 4.7 presents a comparative discussion of the structures synt hesized 
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in Sections 4.5 and 4.6. 

Findy, Section 4.8 introduces a new C A  converter configuration which 

combines the best features of the structures synthesized in Sections 4.5 and 

4.6. Its switched-capacitor implementation is dso considered. 

4.2 General Considerat ions 

Generally, a single quantizer C A  A/D converter configuration c m  be rep- 

resented as shown in Fig. 4.1, where U ( z )  represents the input signal, E ( z )  

represents the quant ization error and Q(z )  represents the quantized output 

signal. Also, G(z) and H ( z )  are two rationd transfer functions in z. 

- 

Figure 4.1: A Generic C-A A/D Converter. 

By inspection of Fig. 4.1, the relationship between the signals U(r )  and 

E(z ) ,  and the output signal Q(z) can be found to be 

The signal and the noise transfer functions therefore correspond to 



4.2 General Considerations 74 

and 

respect ively. 

The transfer function H ( z )  is a rational function in z and can be written 

where NH(z) and & ( z )  are two polynomials in z which represent the nu- 

merator and the denominator of H ( r ) ,  respectively. In this way, Eqns. (4.2) 

and (4.3) c m  be rewritten 

At this point, two special cases can be distinguished. 

Firstly, if the denominator of G(z) is unity (ie. if G ( r )  itself is a polyno- 

mial instead of being a rational transfer function in z), then i t  follows from 

Eqns. (4.5) and (4.6) that STF(z) and NTF(z) share the same denomina- 

tor. In this case, the polynomials N(z), S(z)  and D ( t )  are introduced in 

accordance with 

and 

Secondly, if G ( z )  = 1, then STF(z) and NTF(z) are related to each other 
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in accordance with 

Two transfer fimctions respecting Eqn. (4.9) will be said to be complemen- 

t ary. 

Also, fiom Eqns (4.7) and (4.8), the relationships 

hold- 

Equivalently, H ( z )  c m  be represented as 

provided that 

Eqn. (4.9) implies that in the vicinity of the zeros of NTF(z), the magni- 

tude of STF(z) is approximately unity. Therefore, a S A  converter such as 

the one shown in Fig. 4.1 ensures that the signal transfer function will have a 

minimal effect on the input signal in the region where the quantization noise 

is minimized. Eqn. (4.9) also means that there is only a need to design an 

acceptable noise transfer function, the signal transfer function being fixed by 

Eqn. (4.9). 



4.3 'Itansfer F'unction Design 76 

4.3 Transfer Funct ion Design 

4.3.1 Design Specifications 

In the design of bandpass C-4 A/D converters, the design specifications 

usually include the specifications given in Table 4.1. These specifications are 

Table 4.1: General Design Specifications for a Bandpass C-A Con- 

also shown in Fig. 4.2. 

Figure 4.2: Graphical Representation of the Specifications in Ta- 
ble 4.1. 

In the case of bandpass E A  conversion, it has been shown [SS$9] that 

the oversampling ratio (OSR) becomes 

f i  OSR = - 
2BW' 
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The advantage is that a higher OSR can be achieved by a bandpass C A  

converter when compared to lowpass converters. 

Because there is no readily amilable technique for the t r a d e r  function de- 

sign, these have to be obtained by optimization. As shown in Section 4.2, if 

a suitable structure is chosen, STF(z) and NTF(z) will be complementary in 

accordance with Eqn. (4.9). Consequently, only the problem of the design of 

NTF(z) will be considered. 

According to Jantzi et al. [JOS94], the noise transfer function must satisfy 

three design constraints. Firstly, the inband attenuation must be as large as 

possible, i. e. 

Secondly, the C - 4  converter must be BIBO stable. It has been found 

empiricdy that a C-A converter is less likely to become unstable if the out- 

of-baad gain of NTF(z) is less than 2 (6dB) [Leesil. In order to keep a 

security margin, WTF(z) wiU be constrained to 

Thirdy, in order to have a realizable circuit, NTF(r) should not exhibit 

a delay free path. Equidently: the first sample of the impulse response of 

NTF(z) should be unity. Therefore, the relationship 

must hold true. 
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If these constraints are satisfied, the designed noise transfer function 

should exhibit a reasonable margin against instability. 

4.3.3 Structure of the Noise Dansfer Function 

Because the zeros of NTF(a) are not supposed to be at z = 1 (DC), it becomes 

obvious that they wiU appear in complex conjugate pairs'. Therefore, the 

order of N ( z )  (the numerator of NTF(z)) has to be even. Also, in order to 

ensure a maximal attenuation of the quantization noise, the zeros of N ( z )  

have to be located on the unit circle. Denoting by W O ~  the frequency of the 

the k-th zero of N ( z )  and by 2N its order, N ( z )  can be expressed as 

The poles of NTF(r), on the other hônd, are constrained to remoin inside 

the unit circle in order to ensure the BIBO stability of the converter. More- 

over, in order to achieve a feasible noise transfer function, the order of the 

denominator of NTF(z) has to be less than or equal to the order of N ( z ) .  

Also, to ensure a successfid design, the largest possible number of degrees of 

freedorn is desired. Therefore, the order of the polynornial D ( t )  will be  set 

to the kgest  possible value, 2N. Denoting by w,k the frequency of the k-th 

zero of D ( z )  and by ph the distance between the k-th zero of D ( z )  and the 

point z = O + jO, D ( z )  can be written 

'With the notable exception of z 
E A  converter 

- 2pk COS wPkz-' + . 

= -1 which corresponds to the case of a highpass 
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Combining Eqns. (4.19) and (4.20) into Eqn. (4.7) gives the desired form 

of NTF(z), 

nN,, (1 - 2 cos + z - ~ )  
NTF(z) = nLl (1 - 2pk C O S W ~ ~ Z - ~  + P ~ Z - ~ )  ' 

At this point, the following lemma can be given. 

Lemma 4 The transfer finction 

where 2N denotes the order of the transfer function, woi represents the fre- 

quency of the k-th zero of N T F ( z ) ,  w,k is the frequency of the k-th pole 

of NTF(z)  and pk represents the distance between this pole and the point 

z = O + j O ,  satisjks the realizability condition 

lim NTF(z)  = 1. 
z +O0 

Proof : By working out the limit 

nb, (1 - 2 COS woçz-l + 2-*) 
lim 

z+m nk,, (1 - 2pt COS wpkz-l + p ; r 2 )  ' 

Assuming that the condition z # O holds, the substitution 

can be done. In this way, Eqn. (4.24) becomes 

rgi (1 - 2 cos wotz + x 2 )  
lim nhl (1 - 2pk cos wpix + pi=*) ' 
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. .. - 

4.3.6 Esthnation of the Performance of the Optimized 

Noise Dansfer Function 

This method was proposed by Jantzi [Jan921 and is based on a linear model. 

In the case of a sinusoidal input signal, the final f o m  of the SQNR can 

be found to be [JSF93, Eqn.(B)] 

2 
0, 2A SQNRdB = 10 log - = 20 log - + 4.77 - 20 log NTF( f )  + 10 log OSR, 
0:; A 

where A being the amplitude of the input sinusoid and where NTF( f )  is the 

average attenuation of the noise trônsfer function dehed as 

Also, fi and fh correspond to the lowest and the highest frequency in the 

signal frequency band, respectively and are defbed in accordance with 

and 

4.4 Synthesis of the Noise Transfer Function 

4.4.1 Introduction 

A number of Eh converter configurations have been published. Arnong 

them, two are of particular interest: the cascade-of-integrators [LSSi] and 

the cascade-of-integrators (see e-g. [JSF93]). This section uses these two 
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structures for the design of a bandpass S A  converter respecting a set of 

given design constraints as an example. 

4.4.2 A Practicd Example 

Two different structures will be designed to implement the specifications 

given in Table 4.2. 

Bandwidth BW = 100 kHz 

Table 4.2: Specifications for the Design of a Bandpass Sigma-Delta 
Converter. 

Based on Table 4.2 and after using Eqn. (4.15), the oversarnpling ratio 

can be found to be 
+- 

J s  OSR = - = 75. 
2B W 

Note that if a lowpass C A  converter were to be used in this situation. the 

OSR would be approximately 16. 

Using Eqn. (4.28) and with an input signal having for amplitude A = A/2, 

the average inband attenuation of NTF(z) must satisQ the constraint 

After some iterations, i t  appears that the order of NTF( f )  must be at least 

4. The optimization process gave for the noise transfer fimction 
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and for the corresponding complementaq signal transfer function 

In the present case, the zeros of NTF(z) can be found to be located at the 

frequencies fol and fo2 given by 

Throughout this chapter, the polynomial N ( z )  will be represented in its 

most general form as 

with 2N being the order of the transfer function. Also, Eqn. (4.38) can be 

written in the matricial format as 

where 

and 
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Similady, S(z) can be represented as 

= 2 - S .  

Finally, D ( z )  can be represented as 

Fig. 4.3 shows the magnitude/frequency response of the signal- and noise- 

transfer function over the whole spectrum (f E [O; f s / 2 ] )  and Fig. 4.4 shows 

a close-up of the magnitude frequency response of STF(z) and NTF(z) in 

the vicinity of the signal frequency band. 

4.4.3 Est imated Performance of the Designed Conver- 

ter 

An analysis of NTF(z) shows that the average in-band attenuation defined 

by Eqn. (4.29) is 

NTF(z) = -60.9dB. (4.46) 
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Fourdi-Order Signal and Wise Transfer Funaion 
a . 

Figure 4.3: Magnitude/Frequency Response of NTF(z) and STF(z) 
given by Eqns. (4.34) and (4.35). 

Fwmi--Oider Signal and Noise Tmnsfer Function 
I 1 1 1 I 1 1 1 

Figure 4.4: Close-up of the Magnitude/Frequency Response of 
NTF(z) and STF(z) given by Eqns. (4.34) and (4.35) in the Sig- 
nal Fkequency Band. 
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Using Eqn. (4.28), the estimated SQNR with an input sinusoid of ampli- 

tude A = A/4 is 

SQNR, = 78.5dB. (4.47) 

Therefore, the proposed t rader  functions should result in a C A  converter 

configuration that f e  the design specifications given in Table 4.2. 

4.5 Synt hesis of the Cascade-of-Integrators 

L A  Converter Configuration 

4.5.1 The Structure 

The cascade-of-integrators C-A converter configuration has first been p r e  

posed by Lee and Sodini in 1987 [LS87] in an attempt to irnprove the noise 

shaping characteristics of lowpass C-A converters. 

The fourth-order configuration of the cascade-of-integrators structure is 

given in Fig. 4.5 

Figure 4.5: The Fourth-Order Cascade-of-Integrators C-A Converter 
Configuration. 

Symbolic analysis of the C A  converter configuration in Fig. 4.5 shows 
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the polynomials N ( z ) ,  S(z), and D ( z )  to be 

4.5.2 Determination of the Polynomial N ( z )  

The polynomial N ( z )  in Eqn. (4.48) fan be rewritten in the product form 

N ( z )  = Z - CN - 8, (4.5 1) 

with 



4.5 Synthesis of the Cascade-of-Integrators 88 

Combining Eqns. (4.39) and (4.51) and solving for B results in 

In this way, if the poly~ornial N ( z )  or, equivalently, the matrix N is known, 

the coefficients Bk, k = 1,2,3,4 can be determined. 

Applying this method to the polynomial N(z) in Eqn. (4.34) ând solving 

for the matrix U gives 

4.5.3 Determination of the Polynomial S ( z )  

Eqn. (4.49) can be rewritten as 

S(Z) = 2 -Cs -A ,  
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with 

and 

where the f i s t  row and the f ist  column of the matrix Cs as well as the h t  

element of the vector A have been introduced in order to remain consistent 

with the definitions related to the noise transfer hnction. 

Combining Eqns. (4.43) and (4.57) results in 

In a similar way as before, if the polynomid S(z) is known, the coefficients 

Ac, k = 1,2,3,4 can be uniquely determined. AppIying this method to the 

polynomial S(z) in Eqn. (4.35) gives 
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4.5.4 Comments on the Polynomial D ( z )  

Eqn. (4.50) simply represents the fact that STF(r) and NTF(z) are comple- 

mentary, in accordance with Eqn. (4.9). 

4.5.5 Summary of the Synthesis of the Multiplier Co- 

efficients 

In this way, all the coefficients Ak and Bk, (k = 1,2,3,4) can be synthesized 

so as to satisfy a given set of transfer functions. Moreover, this procedure 

can easily be extended to higher order C A  converter configurations. 

To summarize, the coefficients that implement the transfer functions given 

by Eqns. (4.34) and (4.34) are given in Table 4.3. 

Table 4.3: Multiplier Coefficients for a Bandpass Cascade-of- 
Integrators Sigma-Delta Converter. 

4.5.6 Computer Investigation of the Cascade-of-Int- 

egrators C-A Converter 

The results given in Table 4.3 have been used to simulate the discrete-time 

behaviour of the C A  converter designed in Section 4.5. 

The variation of the SQNR as a function of the input signal amplitude 

is investigated first. The input signal is chosen to be a sinusoidal signd of 

frequency f = 375.2484 kHz, close to the center frequency f, = 380kHz of 

the signal frequency band. The amplitude m i e s  from A = A/2, defined as 
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the OdB level, to -90 dB, by increments of IdB in the range -20dB < A < 

OdB and by increments of SdB elsewhere. The resulting graph is plotted in 

Fig. 4.6. 

Next, the variation of the SQNR as a function of the input signal fre- 

quency is investigated. In this experiment, the amplitude of the input signal 

is kept constant at -10 dB. The frequency of the input signal varies from 335 

kHz to 425 kHz in 10 kHz increments. If the converter behaves in a mamer 

close to the linear model, the SQNR should remain approximately constant, 

a fact which is confirmed by analysis of the results plotted in Fig. 4.7. 

In an actual implementation using andog components, it is very unlikely 

that the multiplier coeficients Aç and Bk (with k = 1,2,3,4) will be im- 

plemented with their exact optimized values. For example, in a switched- 

capacitor (SC) implementation, exact ratios of capacitor values cannot be 

obtained. Therefore, it is useful to study the behaviour of the cascade-of- 

integrators C A  converter under random variation of the multiplier coeffi- 

cients. As no analytical tool is available for this purpose, a Monte-Carlo 

simulation has been employed. 

It has to be pointed out that, in the present thesis, only variations of 

multiplier coefficients have been considered, even though it would be more 

realistic to consider capacitor variations in the actual SC implementation. 

One thousand different circuits have been simulated and compared with 

respect to their SQNR. For each circuit, the ideal value of each multiplier 

coefficient is disturbed in accordance with 

where C is the optimized value of a given multiplier coefficient, e is a random 
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401 I 1 , 1 , 1 
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Figure 4.6: SQNR vs. Input Signal Amplitude. 

SQNR of the Casoimf-MtegraOon 

Figure 4.7: SQNR vs. Input Signal Frequency. 
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perturbation, and C' is the resulting value of the coefficient. In the present 

Monte-Carlo simulations, the perturbation has been chosen to be a white 

Gaussian distributed variable with the standard deviation CT = 0.0333. Thus, 

the perturbation is guaranteed to be within 10% of the optimized value in 

99.7% of the cases [Pis87, p.5331. 

The histogram in Fig. 4.8 shows the distribution of the SQNR after 1000 

Monte-Carlo simulations. The main results are summarized in Table 4.4. 

Hisiogtam of W N R  for 4th-Order Cascade-of-lmegrarors 

Figure 4.8: Histograrn of SQNR for the 4 t h  Order Cascade-of- 
Int egrators. 

4.5.7 Switched-Capacitor Implementation of the Ca- 

scade-of-Int egrators C A  Converter 

One of the most comrnonly used technologies for the implementation of C A  

converters is the SC technology. The cascade-of-inteptors C-A converter is 

implemented in SC technology. 
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-- 

SQNRwith OptimdCoefficients 73.1 dB 
Average SQNR 71.4 dB 

Minimum SQNR 59.6 dB 
Maximum SQNR 78.2 dB 

Median SQNR 71.8 dB 
Standard Deviation of the SQNR 3.9 dB 

Percentage of circuits 
above ideal SQNR 22.1 % 

Table 4.4: Statistical Datas Related to the Monte-Carlo Simulation 
of the 4th-Order Cascade-of-Integrators. 

The SC schematic diagram corresponding to the converter in Fig. 4.5 is 

presented in Fig. 4.9. 

Each multiplier coefficient Ak and Bk (with k = 1,2,3,4)  is implemented 

by means of a capacitor ratio. Table 4.5 gives the capacitor ratios corre- 

sponding to the multiplier coefficients. 

Table 4.5: Relationship Between Multiplier Coefficients and Capac- 
itor Ratios. 

In the Çst design stage, the capacitors CXI, C X 2 ,  CX3, C X 4 ,  CF1, 

CF2, CF3,  CF4, CF5,  and CFG are set to unity. Consequently, the other 

capacitor values are constrained to take the values given in Table 4.6. In an 

actual implementation, negative capacitor values âre taken care of by imple- 
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Figure 4.9: Switched-Capacitor Implementation of the 4 t h  Order 
Cascade-of-Int egrators. 
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menting the SC circuit with a f d y  differentid stmcture. Also, it should be 

pointed out that the capacitor values given in this chapter are dimensionless. 

This is due to the fact that the multiplier coeEcients are h e d  by capac- 

itor ratios. Therefore, dimensionless capacitors can be used. In an actual 

implementation, a "unit" capacitor would be defined 2. 

Table 4.6: Initiai Capacitor Value For the SC Implementation of the 
Cascade-of-Integrators. 

CX1 1 
CX2 1 
C X 3  1 
CX4 1 
CFG 1 
CA1 -0.903637 
CA2 -0.400702 
CA3 -0.121368 
CA4 -0.013428 

In order to optimize the performance of the SC C-A converter, the Ca- 

CF1 1 
CF2 1 
CF3 1 
C F4 I 
CF5 1 
C BI -0.048140 
C B2 -0.048709 
CB3 -0.001137 
CB4 -0.000568 

pacitors c m  be scded in order to allow for a better dynamic range and a 

reduced overd  chip area [GTSG. p.3381. For the purpose of scaling, the SC 

C A  converter under consideration will be assumed to be linear (i. e. The 

quantization noise is asçumed to be an additive white noise). 

The capacitor scaling process proceeds in two phases. Firstly, the scaling 

of the capacitors connected to the node A, B, C, and D will be performed 

in order to guaantee the maximum of the magnitude/frequency response of 

the signal transfer function to be unity at each of the nodes. The capacitor 

values af'ter the first scaling are given in Table 4.7. 

The second scaling, also called scaling for unity minimum capacitor, is 

2This value is usually in the pi? range 
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pi- 
CX2 
CX3 
CX4 
CFG 
CA1 
CA2 
CA3 
CA4 

Table 4.7: Capacitor Values For 

-- 

the SC Implementation of the 
Cascade-of-Integrators After the First Scaling. 

useful to reduce the total capacitmce3, and, consequently to reduce the total 

chip area. The procedure is explained in detail in [GTSG, p.3451. The final 

set of capacitor values is given in Table 4.8. 

CXl 
CX2 
CX3 
CX4 
CFG 
CA1 
CA2 
CA3 
CA4 

Table 4.8: Final Capacitor Values For the SC Implementation of the 
Cascade-of-Int egrat ors. 

This concludes the design of the cascade-of-integrators C-A converter 

configuration. 

- - 

3Defined as the sum of dl the capacitor values on the circuit 
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4.6 Synthesis of the Cascade-of-Resonators 

&A Converter Configuration 

4.6.1 Presentation of the Structure 

The cascade-of-resonators C A  converter configuration has fist been pro- 

posed and used by Adams et al. [AJG+91] for a lowpass C A  converter. 

This structure has been successfully used by Jantzi et al. in 1993 [JSF93] 

and applied to bandpass conversion. 

The schematic diagram for the fourth-order cascade-of-resonators struc- 

ture is represented in Fig. 4.10. By symbolic analysis, the transfer functions 

Figure 4.10: The Fourth-Order Cascade-of-Resonators C-A Con- 
verter Configuration. 

STF(z) and NTF(r) can be found to be 
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In the case of the cascade-of-resonators C A  converter configuration, the 

complementarity of signal- and noise transfer functions is no longer ensured 

by the structure itself. 

4.6.2 Determination of the Polynomial N ( t )  

A comparative analysis of Eqns. (4.63) and (4.19) shows that the zeros of 

N ( z )  are constrained to be on the unit circle. Moreover, the relationship 

between the fiequency for (1  = 1,2) at which the 1-th zero of N ( r )  occurs 

and the corresponding multiplier coefticient Ri, is given by 

with f, being the sample frequency of the system. 

Applying Eqn. (4.66) to the frequencies given by Eqns. (4.36) and (4.37), 

gives for RI and R2 : 

4.6.3 Determination of the Polynomial S ( z )  

In a similar way as in Section 4.5, the polynomial S(z) in Eqn. (4.64) can be 

recast in the matricial form 
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with 

and 

Combining Eqns. (4.43) and (4.68) and solving for A yields 

A = n+s. (4.72) 

Replacing Rl and R2 by their numerical value given in Eqn. (4.67) in Rs 

and filling S with the coefficients obtained through optimization gives for A 
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4.6.4 Determination of the Polynomial D ( z )  

Finally, D ( z )  can be rewritten 

D ( z )  = 2 RD - B, 

with 

RD = 

and 

Solving for B from Eqns. (4.45) and (4.74) gives 

t3 = REID.  
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A numerical application gives 

4.6.5 Summary of the Synthesis of the Multiplier Co- 

efficient s 

To summarize, the multiplier coefficients of a fourth-order cascade-of-resona- 

tors C-A converter configuration implementing the transfer functions given 

by Eqns. (4.34) and (4.35) are given in Table 4.9 

Table 4.9: Multiplier Coefficients for a Bandpass Cascade-of- 
Resonators Sigma-Delta Converter. 

4.6.6 Computer Investigation of the Cascade-of-Reso- 

nators C-A Converter 

The results of the design of the multiplier coefficients given in Table 4.9 are 

used to simulate the discrete-time behaviour of the corresponding fourth- 

order cascade-of-resonators C-A convert er. The conditions of the simulations 

are the same as the conditions given in Subsection 4.5.6. 

For the investigation of the SQNR as a function of the signai amplitude, 
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the fkequency of the input sinusoidal signal is chosen to be f = 375.2485 

kHz. The OdB reference corresponds to a sinusoid of amplitude A = A/2. 

The amplitude then varies from O dB to -80 dB. The resulting SQNR plot 

can be found in Fig. 4.11. 

Next, the variation of the SQNR as a function of the input signal fre- 

quency is investigated. In this experiment, the amplitude of the input signal 

is kept constant at -10 dB. The frequency of the input signal varies fiom 335 

kHz to 425 kHz in 10 kHz increments. If the converter behaves in a rnanner 

dose to the linear model, the SQNR should remain approximately constant, 

a fact which is c o n h e d  by analysis of the results plotted in Fig. 4.12. 

For the same reasons as in Subsection 4.5.6, its is very unlikely that the 

coefficients RI, R2, Ai, A2, A3, &, Bi, Bz, B3, and B4 may be implemented 

with their optimized value. In order to investigate the influence of multiplier 

coefficient variations on the SQNR, Monte-Carlo simulations are perforrned. 

Each multiplier coefficient will undergo a perturbation of the form given by 

Equation (4.62). 

The histogram in Fig. 4.13 shows the distribution of the SQNR for 1000 

different circuits. The main results are given in Table 4.10. 

SQNRwith OptimalCoefficients 75.1 dB 
Average SQNR 76.2 dB 

Minimum SQNR 70.4 dB 
Maximum SQNR 78.8 dB 

Median SQNR 76.3 dB 
Standard DeviationoftheSQNR 1.3 dB 

Percentage of circuits 
above ideal SQNR 

Table 4.10: Statistical Datas Related t o  the Monte-Carlo Simulation 
of the 4th-Order Cascade-of-Resonators. 
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Figure 4.11: SQNR vs. Input Signal Amplitude. 

Figure 4.12: SQNR vs. Input Signal Frequency. 
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SNR [dB] 

Figure 4.13: Histogram of SQNR for the 4-th Order Cascade-of- 
Resonators. 

4.6.7 Switched-Capacitor Implementation of the Ca- 

scade-of-Resonators C A  Convert er 

The SC schematic diagram of the converter in Fig. 4.10 is represented in 

Fig. 4.14 and has been taken from [JSF93]. 

The multiplier coefficients are implemented by the means of the capaci- 

tor ratios given in Table 4.11. Following the procedure outlined in Subsec- 

tion 4.5.7, the capacitor values obtained &ter scaling for dynamic range and 

for unity capacitance are given in Table 4.12. 
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Figure 4.14: Switched-Capacitor Implementation of the 4 t h  Order 
Cascade-of-Resonat ors. 
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Table 4.11: Relationship 
pacitor Ratios. 

Between Multiplier Coefficients and Ca- 

4.7 Comparative Discussion of the Two Syn- 

thesized Structures 

4.7.1 Introduction 

The two circuits designed in Sections 4.5 and 4.6 can be compared together 

in the light of three different situations. 

a Sensitivity of the structure 

a Structure of the transfer functions 

a Feasibility of the SC implementation 

4.7.2 Sensitivity of the Structure 

A practical SC implementation takes into account capacitor mismatches, 

causing deviations in the transfer functions realized by of the converter, and, 

consequently, degrading the SQNR. Therefore, the sensitivity of the structure 

to parameter variations is one of the most important criteria. Naturally, if a 
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Table 4.12: Final Capacitor Values For the SC Implementation of 
the Cascade-of-Resonators. 

structure is less sensitive to random perturbations than another, then i t  will 

be more suitable for a practical SC implementation. 

Throughout this chapter, the main performance criterion is the signal- 

tequantization noise ratio, providing a good basis for the cornparison of 

the above two bandpass C A  converter configurations. Because there is no 

readily available analyticd tool to study the sensitivi ty of the cascade-of- 

integrators and the cascade-of-resonators C A  converter configurations, the 

only alternative to provide on insight into the sensitivity of these structures 

is to perform a detailed Monte-Carlo andysis. This has been performed 

successfdly for both structures and its main results are given in Tables 4.4 

and 4.10. It can be observed that the cascade-of-resonators C-A converter 

configuration has a better behaviour than the cascade-of-integrators. The 

statistical data shows, notably, that, in average, the SQNR of the cascade 

of-resonators stmcture is almost 5dB better than the SQNR of the cascade- 

of-integrators. The main reason is due to the structure itself and is discussed 

in the next section. 



4.7 Comparative Discussion 109 

4.7.3 Influence of the Topology of the Converter on 

the Transfer Funct ions 

The topology of each C A  converter configuration directly iduences the corn- 

position of the transfer functions. For example, Eqn. (4.50) indicates that the 

noise transfer function and the signal tramfer function are complementary. 

The main feature of the cascade-of-resonators is the presence of resonators 

which constrain the zeros of the noise transfer function on the unit circle. Any 

perturbation of the parameter Ri (1 = 1,2, - - - , N, with 2 N  being the order 

of the structure) will only affect the frequency at which the zeros occurs but 

will not move any zero away from the unit circle. In this way, the degradation 

of the  effectiveness of the noise transfer function is minimized. 

The sensitivity SRI1 of the frequency wol = 2?rfoi/fs  with respect to the 

coefficient RI is defined as 

Replacing Ri by wol = 2* foi/ f. from Eqn. (4.66) into Eqn. (4.80) gives 

Fig. 4.15 plots the sensitivity S;ZIL as a function of the multiplier coefficient 

Ri, in the range -4 5 Ri 5 O. As it can be observed, the magnitude 

of the sensitivity is less than unity in the range -3.4 5 RI 5 O ( i - e .  a 

1% variation of Ri implies a 1 % or less variation of the frequency woi). 

Therefore, it can be concluded from the analysis of the cascade-of-resonators 

C A  converter configuration that such a structure has a low sensitivity to 

parameter changes. 
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Figure 4.15: Sensitivity of the Frequency wor as a Function of Rl. 

4.7.4 FeasibiIity of the SC implementation 

In order to reduce the cost of a SC implementation, it is important to ensure 

that the chip area is s m d .  Moreover, the chip ôrea is in direct proportion 

with the size of the capacitors as they are the ones that require the most area 

(the transistors and the switches being of a much smaller size). Therefore, 

it is important that the total capacitance is minimized. IR mu& the same 

way, wide capacitor spreads are very dificult to obtain. Typically, the ratio 

between the smallest capacitor and the largest one must remain less than 

50. Comporing the resuits of the SC implementation given in Tables 4.8 

and 4.12 show that the cascade-of-resonators gives the best results in terms 

of capacitor spread as well as in terms of total capacitance (see Table 4.13). 
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4.7.5 Summary of the Comparison Criteria 

From Table 4.13, it cas be seen that in most aspects, the caçcade-of-re- 

sonators C A  converter configuration appears to be more suitable for SC 

implementation. Of particular interest are the low sensitivity of the structure 

to parameter variations and the low capacitor spread. However, the cascade- 

of-resonators structure does not exhibit the important feature of transfer 

b c t i o n  complementarity. 

Criterion 

SQNR Std. Deviation 
(from Monte-Carlo Simulations) 1 3.9 dB 

Cascade-of Cascade-of 
I n t e p t o r s  Resonators 

Total Capacitance 164.7 108.6 

Complementivy Transfer Functions Yes No 1 Zeros of NTF(z) on Unit Cirde Yes 

Capacitânce spread 

Table 4.13: Comparison Between the Cascade-of-Integrators and the 
Cascade-of-Resonators C-A Converters. 

72.02 21.32 

4.8 A New Resonator Based Structure for 

Bandpass C-A A/D Conversion 

4.8.1 Introduction 

In Section 4.7.5, it has been seen that the cascade-of-resonators is a very 

useful structure. Its low sensitivity to parameter changes rnakes this structure 

very interesting for a SC implementation. The cascade-of-integrators, on the 

other hand, proves to be more sensitive to parameters perturbations but 

exhibits the important feature of complementary transfer functions. This 
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section introduces a new structure which combines the best features of the 

above two structures and gives a forma1 design procedure. 

4.8.2 The Proposed New Structure 

The schematic diagram in Fig. 4.16 shows the generd form of the proposed 

C A  converter configuration. This configuration is composed of a single-bit 

quantizer and N second-order resonators, leading to a structure of order 2N. 

Figure 4.16: The N e w  Cascade-~~Resonators. 

At this point, it is usefd to give the following lemma. 

Lemma 5 The schematic diagram of order 2N s h o m  in Fig. 4 .17 has the 

transfer function 

Proof : By mathematical induction. For N = 1, Fig. 4.17 reduces to 

the circuit shown in Fig. 4.18. Symbolic ânalysis shows the transfer function 
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Figure 4.1 7: Structure for Lemma 5. 
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Figure 4.18: Structure for N = 1. 

Substituting N = 1 in Eqn- (4.82) proves the validity of the lemma for N = 1. 

Therefore, it is sacient  to show that if the lemma holds true fr N = M ,  

then it also holds true for N = M + I. 
In order to calculate the transfer function of the structure when N = 

M + 1, let the building block shown in Fig. 4.19 be introduced. Two transfer 

Figure 4.19: Building Block. 

functions can be defined. The first one denoted by Hvwk (2) relates the signal 
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Vi(z) to the ouput WL(z) and is given by 

Similarly, Hvxk (2) relates K(z )  to Xk(z) in accordance with 

The structure shown in Fig. 4.17 when N = M + 1 can be represented as 

shown in Fig. 4.20. 

Figure 4.20: Structure of order M + 1. 

At the final adder, the equality 

holds. But the term xK1 X&) corresponds to the output of the structure 

of order M. In this way, the sum can be replaced by 
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Also, using Eqn. (4.86), XM+1 ( z )  becornes 

Replacing Eqns. (4.88) and (4.89) into Eqn. (4.87) yields 

Using Eqn. (4.85), it  becomes evident that 

Applying iteratively Eqn. (4.85) to Eqn. (4.92) yields 

Replacing VM&) in Eqn. (4.90) by its expression in Eqn. (4.93) gives for 

W )  

M 
l-r 

Dividing Eqn. (4.94) by I/i(z) and reordering the terms in the quotient yields 

H M ( ~ )  + 
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But, by assurnption, Eqn. (4.82) holds tme. h this way, H M ( z )  in Eqn. (4.95) 

can be replaced in accordance with 

zhl (HA(*, k)) n&+l (1 + ( -2  - R~)Z- '  + z - ~ )  
HM+&) = + n t l  (1 + (-2 - R&)z-' + z - ~ )  

Multiplying the first ratio by (1 + (-2 - R~+l)z-' + z-*) and re-grouping 

yields 

establishing the validity of the lemma for N = M + 1. q. e. d. 

The polynomials N ( z ) ,  S(z),  and D ( z )  as defined in accordance 

Section 4.2 are given by the following theorem. 

Theorem 3 The polynomials N ( z ) ,  S(4, and D ( z )  descn'bing 

new cascade-O f-resonators C - A  converter configuration shown 

are given by 

with 

the proposed 

in Fig. 4.16 
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Proof : By making use of Eqn. (4.13), the proof of the theorem reduces 

to the proof of lemma 5. 9.e.d. 

4.8.3 Design Procedure 

From Eqn. (4.98), it c m  be shown that al1 the zeros of N ( z )  lie on the unit 

circle, provided that 

Also, in a similm manner as  for the cascade-of-resonators (Section 4.6), the 

relationship between the frequency fok at which the k-th zero of N ( r )  occurs 

and the corresponding parameter Rk, is given by 

with f, being the sampling fiequency of the system. 

In the synthesis process, the polynomial N ( z )  is known. In this way, the 

frequencies f i k  are known. Eqn. (4.102) can then be applied in order to find 

the value for the coefficients Rk. 

The polynomial S(z) in Eqn. (4.99) can be rewritten 

with 
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By inspection of Eqn. (4.99), it can be shown that the matrix 72 is lower 

trianguiar. Also, its principal diagonal is composed of unity elements. 

Because of the complernentarity of the transfer functions, the polynomid 

S(z) can easily be determined by using Eqn. (4.100). A~so,  S(z )  cân be 

written (in its most generd form) as 

or, equivalently, 

Therefore, combining Eqn. (4.106) and Eqn. (4.103) and solving for A, results 
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4.8.4 Design Example 

Synthesis of the Multiplier Coefficients 

In this Section, the fourth-order transfer functions in Eqns. (4.34) and (4.35) 

are applied to the new structure of order 4. The schematic diagram of the 

converter configuration of order 4 (N = 2) is shown in Fig. 1.21. 

Figure 4.21: New Resonator-based Structure of Order 4. 

Using Theorem 3 with N = 2, the polynomids N ( z ) ,  S(Z) ,  and D ( z )  of 

the new structure become 

and 



4.8 A New Resonator Based Structure 121 

Applying Eqns. (4.36) and (4.37) to Eqn. (4.102), the multiplier coeffi- 

cients RI and R2 are given by 

The procedure for the synthesis of the coefficients Ak, k = 1,2,3,4 is the 

same as the procedure described in Section 4.5.3. The resulting multiplier 

coefficients are 

Computer Investigation of the New Cascade-of-Resonators C-A 

Convert er 

As in Sections 4.5.6 and 4.6.6, a computational investigation of the new 

cascade-of-resonators S A  converter configuration can be carried out. The 

first investigation is concemed with the variation of the SQNR as a function 

of the input signal amplitude. The input signal sinusoid is chosen to be 

f = 375.2485 kHz. The OdB reference corresponds to a sinusoid of amplitude 

A = A/2. The amplitude then varies from O dB to -80 dB. The resulting 

SQNR plot is shown in Fig. 4.22. 

The variation of the SQNR as a function of the input signal frequency 

is not performed as the previous investigations were sufficient to prove the 

validity of the white quantkation noise assumption. 

A set of one thousand Monte-Carlo simuations is carried out. Each multi- 

plier coefficient will undergo a perturbation of the form given by Eqn. (4.62). 
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The histogram shown in Fig. 4.13 shows the distribution of the SQNR for 

1000 different circuits. The results are given in Table 4.14. 

SQNR with Optimal Coefficients 75.1 dB 
Average SQNR 76.3 dB 

Minimum SQNR -37.11 dB 
Maximum SQNR 79.0 dB 

Median SQNR 76.9 dB 
Standard Deviation of the SQNR 6.6 dB 

Percent age of circuits 
above ideal SQNR 

Table 4.14: Statistical Datas Related to the  monte-Carlo Simulation 
of the 4th-Order New Cascade-of-Resonators. 

As expected, the new cascade-of-resonators exhibits SQNR characteristics 

that are as good as the chazacteristics of the conventional cascade-of-resona- 

tors designed in Section 4.6. The only drawback is that in some circumstances 

during the Monte-Carlo simulations, the converter under consideration be- 

came unstable. No explmation could be found to explain the instabilities. 

By not taking the unstable circuits into account, the minimum SQNR is 

72.0dB and the standard deviation is 1.3 dB. These d u e s  are comparable 

to the performance of the cascade-of-resonators investigated in Section 4.6.6. 

Switched-Capacitor Implementation of the New Cascade-of-Reso- 

nators 

The proposed new cascade-of-resonatoa structure can be implemented using 

SC technology. The corresponding schematic diagram is shown in Fig. 4.24. 

The multiplier coefficients are implemented by pairs of capacitors as given 

in Table 4.15. 

After scaling for dynamic range and for unity capacitor, as explained in 
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Figure 4.22: SQNR vs. Input Signal Amplitude. 

Hisicigram of SQNR for 4th- New Cascade-otResonaaM 

Figure 4.23: Histogram of SQNR for the 4 t h  Order New Cascade- 
of-Resonators. 
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Figure 4.24: Switched-Capacitor Implementation of the 4 t h  Order 
New Cascade-of-Resonators. 
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Table 4.15: Relationship Between Multiplier Coefficients and Ca- 
pacitor Ratios. 

Section 4.5.7, the final capacitor values are given in Table 4.16. 

CXI 
CX2 
CX3 
CX4 
CFG 
CA1 
CA2 
CA3 
C A4 

Table 4.16: Final Capacitor Values For the SC Implementation of 
the New Cascade-of-Resonators. 

The total capacitance is 81.34 and the capacitor value spread is 16.01. 

4.8.5 Comments of the Performance of the New Struc- 

t ure 

The cases where the converter becomes unstable discarded, the Monte-Carlo 

ânalysis of the new C-A converter configuration proves the structure to be- 

have a s  expected. Its main characteristics include the zeros of the noise 

transfer function on the unit circle, a very efficient way of rninimizing the 
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effect of non-ideal component values, and complementary transfer functions 

ensuring a minimal signd distortion in the low-noise frequency band. 

The switched-capacitor implementation also shows a reduced capacitor 

spread as compared to the cascade-of-integraton (16.0 vs. 72.02) as well 

as a total capacitance reduced by hait Alt these considerations lead to the 

conclusion that the proposed resonator-based C A  converter configuration is 

a suitable candidate for A/D C A  conversion. 

4.9 Conclusions 

This chapter has reviewed the existing design techniques for bandpass C 

A A/D conversion and presented a set of cornparison criteria. A new C-A 

converter configuration based on existing structures has been presented along 

with its corresponding design procedure. 

Section 4.2 has introduced sorne definitions and general considerations 

related to the t r a d e r  functions. Some special cases have been discussed 

and the important notion of transfer fûnction complementarity has been 

introduced. 

Section 4.3 has reviewed the design specificâtions relating to the noise 

transfer function. The general form of the noise transfer function has then 

been derived. This has b e n  followed by the discussion of issues such as 

the order of the transfer functions. A formula for the estimation of the 

performance of the converter based on its noise transfer function concluded 

the section. 

Section 4.4 has applied the results of Section 4.3 to the design of transfer 

functions satisfying a set of design specifications as  an example. The resulting 

transfer functions have b e n  applied to the design of a cascade-of-integrators 
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C A  converter configuration in Section 4.5. The resulting design has then 

been investigated and a switched-capacitor implementation of the design has 

b e n  discussed. 

In Section 4.6, the design (based on the results of Section 4.4) of a cascade- 

of-resonators has been investigated. The procedure pardeled the procedure 

used in Section 4.5. 

Section 4.7 presented a comparative discussion of the structures synthe- 

sized in Sections 4.5 and 4.6. Cornparison criteria have been established as 

well. 

Finally, Section 4.8 has introduced a new C A  converter configuration 

which combines the best features of the structures synthesized in Sections 4.5 

and 4.6. Its switched-capacitor implementation has been considered. 



Chapter 5 

Conclusions 

5.1 Review of Material Presented 

This thesis has been concerned with the analysis and design of higher-order 

( t hird-order or more) C- A converters. 

Chapter 1 presented an ovewiew of the basic principles of A/D conversion, 

leading to C A  conversion as introduced in 1962 by Inose and Yasuda [IY63]. 

-4 more specific attention to multi-loop, multi-stage and bandpass configura- 

tions has been given in this chapter. 

Chapter 2 was concerned with the ândysis of the quantization noise in 

multi-loop S A  converter configurations. The resulting mathematical deriva- 

tions have than been applied to the case of triple-loop converters under sinu- 

soidal input signal excitations. The results have been facilitated by the fact 

that the quantization error function is a periodic function of the input signal 

to the quantizer. A computer investigation c o n h e d  the validity of the re- 

sults. Finally, a discussion of the spectral chôracteristics of the quantization 

noise has justified the validity of the white noise assumption as a mode1 for 

the quantizer. 
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In Chapter 3, a new approach to the design of C A  converters has been 

proposed. The leading idea was to  enumerôte al1 the possible connections 

between the elements that compose the C A  converter configuration. This 

method has then been applied to the design of first-order structures. A new 

structure for lowpass C A  conversion based on bilinear-LDI integrators has 

been introduced dong with the idea of highpass C A  conversion. 

Chapter 4 has discussed the design of bandpass C A  converters. The 

design criteria for the transfer functions have been discussed and a set of 

transfer functions have been successfully designed to meet specific design 

specifications. Two known structures have then been designed and compared. 

Cornparison aiteria were derived from a practicd point of view. Of particular 

interest is the use of the notion of complementary transfer function. Findy, 

a new resonator-based structure has been proposed. A design and a subse- 

quent cornparison with the existing structures has been presented. Through 

the discussion, it appeared that the proposed new structure exhibits the best 

features of both known structures as it exhibits complementary transfer func- 

tions and has a low sensitivity to parameter variations. This new stmcture 

seems to be welI suited for switched-capacitor implementation. 

5.2 Original Contribut ions 

To the best of the author's knowledge, the following contributions are be- 

lieved to be original. 

5.2.1 Chapter 2 

The open-loop equivdent for multi-loop C-A converter configurations 

(Section 2.1). 
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The closed-form soiution for the tripldoop C A  converter configura- 

tion with sinusoidal input signal excitations (Section 2.2). 

5.2.2 Chapter 3 

The new approach to the design of C A  converter configurations. 

The new LDI-integrator based lowpass C A  converter (Section 3.4.2). 

0 The notion of highpass C A  conversion (Section 3.5). 

5.2.3 Chapter 4 

0 The exploitation of the concept of transfer function cornplementarity 

(Section 4.2). 

0 The general form for the noise transfer function (Section 4.3). 

The use of matrices for the design of C-A converters (Sections 4.4, 4.5, 

and 4.6). 

0 The cornparison criteria in Section 4.7. 

The new structure in Section 4.8. 

5.3 Proposed Areas for Future Work 

This thesis has presented several design techniques for the synthesis of C 

A converters. In particular, the technique developed in Chapter 3 can be 

useful for the discovery of new C A  converters. In spite of the complexity 

of the search space, this technique can be applied to second or higher-order 
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structures in an attempt to discover new configurations. A more formal 

description of the proposed technique should &O be investigated. 

The cornparison criteria proposed in Section 4.7 could be applied to other 

new structures. The analysis of a lattice-based structure such as the one in 

Fig. A.1 in Appendix A 2  or other structures should be attempted as well as 

t heir swit ched-capaci t or implement ation. 

5.4 Concluding Remarks 

From a more personal point-of-view, 1 admit I regret to have to wrap up 

the research work after just two years. As I am now well acquainted with 

the field of S A  conversion, every day brings a new idea or a new concept 

to explore. Eighteenth-Century French playwright Beaumarchais once wrote 

in his masterpiece "The Barber of Seville" : " La dificulté d 'aboutzr ne fuit 

qu 'ajouter à la nécessité d 'entreprendren. A sentence that can be translated 

as "Obstacles to success only add to the necessity to undertaken. If research 

is indeed difficult to undertake as  this quotation may imply, the rewards 

associated with success make it worthwhile to be considered. I a m  very proud 

to have been part of a research group and to have helped, in a rnodest way, 

to further the understanding of the world that surrounds us, even though the 

present work is only a small brick in the w d  of Knowledge. 
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Appendix A 

Appendix 

A.1 Proof of Lemma 2 

The proof of Lemma 2 will be given by mathematical induction. 

The lemma holds true for N = 1. In this case, Eqn. (2.29) becomes 

Expanding the binomial coefficient yields 

n-i 

11=1 k I  

Therefore, it is sufficient to prove thât if the lemma holds true for hi = M 1  

then it is also true for N = M + 1. 
When N = M + 1, the left-hand part of the equdity in Eqn. (2.29) 



A.1 Proof of Lemrna 2 138 

becomes 

Equivalently, Eqn (A.4) can be rewritten 

But Lemma 2 is assumed to hold true for N = M. Therefore, Eqn. (A.5) 

becomes 
*-I k + 1  M - l + l ~ + l - k  

u(k). 
M - I  

Expanding the summations in Eqn. (A.6) yields 
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After regrouping the terms u(-) with similm arguments, Eqn. (A.7) becomes 

Using the identity [Spi68, Eqn. 3-91 

Eqn. (A.8) becomes 

Regrouping the tems gives 

Using N = M + 1, Eqn. (A.11) becomes 

establishing the proof of the Lemma for N = M + 1. Q.E.D. 
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A.2 Lattice-based C-A Converter Configura- 

tion 

Fig. -4.1 presentç the schematic diagram for a lattice-based C-A converter 

configuration. 

Figure A.1: Lattice-based C-A Converter Configuration. 
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