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Abstract

This thesis is concerned with the analysis and design of higher-order sigma-
delta (Z-A) analog-to-digital (A/D) converters. An equivalent open-loop
system is derived for the analysis of the conventionnal multi-loop £-A con-
verters. This open-loop system is applied to the investigation of the spectral
characteristics of the corresponding third-order converter. Then, a new enu-
meration technique is presented for the design of low-order £-A converters.
An application to the design of first-order converters leads to the rediscovery
of the conventional £-A converter along with the discovery of a new LDI-
based converter. Finally, the design of higher-order bandpass £-A converters
is considered. A careful comparison of two known configurations leads to the
development of a new resonator-based converter which exhibits the best fea-

tures of both converters.
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Chapter 1

Introduction

1.1 Digital Signals and Systems

A signal (from the Latin word signum) is an object, a symbol, a sound, a
gesture, used to represent a piece of information. Signals have been used
since prehistory.

Electricity has only been used as a vehicle for information interchange
since the first half of the 19th Century. This is when Samuel Morse developed
the telegraph. Its use of a discrete set of symbols (dots and hyphens) make
the telegraph the first digital system in the history of electrical engineering.
The invention of the transistor (1948) and the microprocessor (1972) have
helped making the digital processing of data faster and cheaper than ever.
As a matter of fact, the computing power of digital machines is doubling
every 18 months. With the development, in the 1980s, of application specific
integrated-circuits (ASICs) and specialized processors, more and more people
tend to favor digital processing of signals as opposed to the corresponding
analog processing.

In electrical engineering, several classes of signals have been defined. The
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most important definitions relate to the notions of domain (region of support)
and range. A continuous-time signal is a signal which is defined at each
instant of time (continuous region of support). On the other hand, a discrete-
time signal is only defined at discrete instants of time. In a similar way,
signals with continuous and discrete range (or amplitude) can be defined.
Moreover, continuous-time continuous-range signals are commonly referred
to as analog signals and discrete-time discrete-amplitude signals are known

as digital signals. (see Table 1.1)

Continuous- Discrete-
time time
Continous . . e s
Amplitude Voice Daily Precipitations
Discrete . Closing price
Amplitude Traffic Lights on the Stock Market

Table 1.1: Examples of Different Classes of Signals.

One of the most important features of digital processors is their pro-
grammability. No modification of the hardware components is required to
modify the task of the processor. On the other hand, limitations on the
processing speed of digital systems may reduce the number of applications.

Because every real-life signal is analog (e.g. sound, image ), there must be
a device whose task is to convert the analog input signal into a digital signal
(Fig. 1.1). Such a device is called an analog-to-digital (A/D) converter. A

Analog AD | Digital Digital Digital D/A | Analog
Signal Converter | Signal Processor Signal Converter | Signal

Figure 1.1: A Generic Digital Processing System
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specific class of A/D converters known as Sigma-Delta (Z-A) converters is

the subject of the present thesis. In the following, the underlying principles

of A/D conversion with an emphasis on -A converters are explained.
Conversely, it is important to convert digital signals back to their analog

form. This is perfomed by digital-to-analog (D/A) converters.

1.2 An Introduction to Sigma-Delta A/D

Conversion

1.2.1 A/D Conversion

As seen in Section 1.1, A/D conversion is a critical operation. A very accurate
conversion is absolutely necessary in order to perform an accurate processing
of data. The task of an A/D converter is to map an analog input signal into
a binary number that represents the amplitude of the input signal at a given
instant of time, and at a given rate called sampling rate. If the input signal
amplitude falls within a given range of values, the A/D converter will issue

a codeword corresponding to the value of the input signal at that moment.

Example 1 Suppose the input signal u(t) is constrained between the values
0 and +V . Also, assume the A/D converter gives a 2-bit binary number as
output. Then, the output of the A/D converter will be as given in Table 1.2.

(00), if 0<u(t)<V/4
01), if V/4<u(t) <V/2
(10)2 if V/2 <u(t) <3V/4
(11); f 3V/a<u(t)<V

Table 1.2: Output of a 2-bit A/D Converter.
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This method of mapping a continuous signal into a binary codeword is com-
monly known as pulse code modulation (PCM) and is widely used in digital
signal processing.

There are two classes of A/D converters, namely, indirect converters and

direct converters.

Indirect Converters

Indirect converters use an intermediate quantity (frequency, time, etc.) to
convert the signal. For instance, some converters make use of a voltage
controlled oscillator along with a counter for the A/D conversion. Indirect
techniques yield high resolutions but have very low conversion speeds. They

are mainly used in instrumentation (e.g. digital multimeters).

Direct Converters

As opposed to the previous class of converters, the direct converters do not
make use of an intermediate quantity. In most cases, the value to be con-
verted is compared to a set of known levels and a decision is made based on
the result of the comparison. One can distinguish between five important
subclasses of direct converters : parallel converters (also known as flash con-
verters), successive approximation converters, hybrid converters, electrome-

chanical converters, and the important subclass of oversampled converters.

1. Parallel Converters (Flash Converters)

In this class of converters, the magnitude of the input signal is compared
to a set of predetermined reference values. The result of the comparison
is then encoded into a binary code. Because 2V — 1 comparators are

required for a N-bit binary code, this technique is usually limited to
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8-bit A/D conversion. The general structure of a 2-bit flash converter

is shown in Fig. 1.2.

Input signal
3v/a Digital
. Ouput
Logic S
v Encoder

v/4

Figure 1.2: Structure of a Flash A/D Converter

2. Successive Approzimation Converters

Converters belonging to this class successively try to approximate the
analog signal through the use of a D/A converter embedded in a feed-
back loop. This technique provides a high level of accuracy (up to 16

bits) but leads to a relatively low conversion speed.

3. Hybrid Converters

These converters combine the features of the flash converters and those
of the successive approximations converters in an attempt to obtain a

compromise between speed and precision.

4. FElectromechanical Converters

By the mean of successive opaque and transparent sections along with

photoelectric detectors, a mechanical position can be digitally encoded
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(see Fig. 1.3). Note that a more practical implementation would use a

Gray code.

Photosensitive
Transductors

sSsEEss

Figure 1.3: A 4-bit Linear Electromechanical Encoder

5. Quersampling Converters

Oversampling corresponds to the case when the sampling frequency
of the analog input signal takes place at a rate much higher than the
Nyquist rate. As shown in the subsequent sections, this technique very
efficiently increases the precision of the conversion. It is also very robust
in the sense that one-bit quantizers can be combined with low tolerance
components. On the other hand, the need for data postprocessing
(decimation) and high sampling rates reduces the number of potential
applications for this class of converters. Oversampling converters are

often found in compact-disc (CD) players.

1.2.2 Quantization

The quantization process is the core of analog-to-digital conversion. Its main
task is to compare the value to be converted to a set of reference values. The

device which performs this task, the quantizer, maps a continuous range of
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input values (usually a voltage) into a discrete set of values. The simplest
quantizer that can be thought of is a2 comparator (Fig. 1.4) whose output can
take on either the level +V or the level —V, depending whether the input
is positive or negative. As these two values, in turn, can be represented by
one bit, the comparator shown in Fig. 1.4 is often referred to as a single-bit

quantizer.

out

- -V

Figure 1.4: A Single-Bit Quantizer.

Obviously, multi-level quantizers can also be designed (see Fig. 1.5). The
number of quantization levels @ is chosen to be a positive integer power of
two, so as to be encoded into a binary number in the most efficient way.
Assuming the number of bits to be N, the number of quantization levels Q
is given by

Q=2". (1.1)

Since a quantizer is inherently a non-linear device, the analysis of a circuit
containing such a device cannot be performed using standard linear analy-
sis techniques. However, in 1948, Bennett [Ben48] showed that, under some
conditions, the quantization noise can be considered as additive white noise
(uniformly distributed). In particular, one of the conditions is that the quan-

tizer should have a large number of levels. This condition, along with other
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A
f \' out

+V4

Vin

(v

Figure 1.5: A 2-Bit Quantizer (N=2, Q=4)

ones, cannot usually be satisfied as most of the £-A modulators use single-
or two-bit quantizers.

Notwithstanding the above restrictions, it is often convenient to use the
white noise source model to predict the behaviour of an A/D converter. For
all practical purposes in the study of £-A converters, the results obtained
using this model are valid as a rough approximation for the first-order case
and are quite accurate for higher order cases (see Sections 1.2.5 and 1.2.8).
Therefore and unless mentioned otherwise, the white noise assumption will

be assumed to be valid throughout the present thesis.

1.2.3 Nyquist-rate PCM Modulation

In the field of signal processing, the fact that the spectrum of a sampled signal
is periodic is a well-known result. Nyquist’s sampling theorem [OS89)] dictates
that any signal with limited bandwidth must be sampled at a frequency at
least twice the highest frequency contained in that signal. In this way, the
sampled signal can be processed and converted back to the analog domain

without loss of information. Failure to sample a signal at a high enough rate
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will introduce a phenomenon known as aliasing.

Very often, bandlimited signals do not readily exist. It is however possible
to pass the analog signal to be sampled through a lowpass filter (also called
an antialiasing filter) which will remove the frequency components that are
above half the sampling frequency. The constraints on the antialiasing filter
can be very tight in the case of Nyquist-rate sampling as shown in Fig. 1.6.
In this case, the lowpass antialiasing filter must have a very narrow transition
band; a condition which is usually very difficult to satisfy.

Throughout the present thesis, it will be assumed that all the input signal
excitations used have had their high-frequency components removed by an

appropriate antialiasing filter.

1S
Antialiasing filter

/ Signal spectrum

Figure 1.6: Sampled Signal Spectrum.

The most important quality criterion for an A/D converter is the signal-
to-quantization-noise ratio (SQNR or SNR) which relates the power of the
input signal to the power of the quantization noise introduced by the quan-

tizer. Mathematically, the SQNR is defined as

a.2
SQNR = %, (1.2)

es

with o2 being the signal power and o2, being the quantization noise power at
z g gn es g
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the output of the converter. Obviously, more noise for a given signal implies

a reduced SQNR.

It has to be pointed out that, throughout the present thesis, powers are
normalized with respect to a 1 2 resistive load. In this way, the unit of power
is V2 instead of W. Moreover, power spectrum densities are normalized with
respect to a 1 Hz frequency band (i.e. the unit becomes V? instead of
W/Hz). In the case of multi-bit Nyquist-rate quantization, the quantization
noise can be assumed to be uniformly distributed. If A is defined to be the

quantization step, the power o2, of the quantization noise is given by [CT92]

AZ
ol = TR (1.3)

Also, the quantization step A and the number of bits N are related in
accordance with

2V 2V 2V

= ~—,N 1, 1.4
Q-1 -1 "> (14)

A=

where @ is the number of quantization levels. Replacing Eqn. (1.4) into
Eqn. 1.3 and using the definition given in Eqn. 1.2, it is possible to obtain
the SQNR (expressed in dB) of a Nyquist-rate quantizer with N bits as
follows.

o2

SQNR,p = 10log 777 +6.02N @4.77, (1.5)

where o2 is the input signal power.

The well-known result given by Eqn. (1.5) implies that doubling the num-
ber of quantization levels increases the SQNR by 6 dB. When comparing two
A /D converters, it is common to describe their performance in term of the

number of resolution bits. For example, if a converter has a SQNR which is
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9dB better than that of another converter, the former converter is said to

have a 1.5 bit higher resolution.

Example 2 From Egn. (1.5), the mazimum SQNR is obtained when the
input signal power o2 is as large as possible. In the case of a sinusoidal
signal, the largest sinusotd has amplitude V and power V2/2. In this case,
a 12-bit quantizer (N = 12) with the largest stnusoid possible at the input
yields a mazimum SQNR of 74 dB. Considering an audio signal of bandwidth
fB = 20 kHz, the sampling frequency must satisfy the condition f, > 40 kHz.
Typically, laser compact-disc signals are sampled at {4.1 kHz.

1.2.4 Oversampled PCM Modulation

Sampling a signal at the Nyquist rate is often inconvenient because of the
very tight constraints on the antialiasing filter. However, if the sampling
frequency f; is larger than twice the highest frequency fg contained in the
signal, the converter is said to be oversampled. The oversampling ratio (OSR))

quantifies the amount of oversampling and is defined as

__f
OSR = 5. (1.6)

In the case of Nyquist-rate sampling, OSR is unity (fg = f,/2).

Fig. 1.7 shows the spectrum of an oversampled signal, along with the
antialiasing filter constraints. One can observe that the transition band is
larger than in the case of Nyquist-rate sampling. Consequently, the con-
straints have been relaxed and the implementation of the antialiasing filter
is simplified.

The fact that too high a sampling frequency has been used implies that
the digital output signal has to be passed through a decimation filter (shown
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SO
Antialiasing filter

/ Sign<i spectrum

At |
£/2 £ £

Figure 1.7: Oversampled Signal Spectrum.

in Fig. 1.8) and downsampled. Even though the transition band of the dec-
imation filter is very narrow, the digital decimation filter is easier to imple-
ment than its analog counterpart. Oversampling also results in an increased

SQNR as shown in the following.

edeamannman

B

At~

Antisliasing filter Sampling Quantization Decimation .
N bits : Filter Downsampling
Analog . Digital

Figure 1.8: An Oversampled A /D Converter.

. - . . . . 2
Assuming a white quantization noise with power ¢2, = £, the power

spectral density (PSD) of the quantization noise is a constant given by

[ASS96] "
E(f)= m (L.7)
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Therefore, the higher the sampling frequency, the lower the quantization

noise in a given frequency band. Fig. 1.9 illustrates this phenomenon.

Nyquist-rate spectrum

Oversampled spectrum

/

Figure 1.9: Noise Spectra for Nyquist-rate and Oversampled PCM
A /D Converters.

Because the quantization noise power o2, is inversely proportional to the

sampling frequency, the doubling of f, improves the SQNR by 3dB. In this
way, oversampling can be considered as a trade-oft between speed and accu-
racy. This equivalently means that the number of quantization bits can be

reduced as the oversampling ratio is increased.

Example 3 Using a 6-bit quantizer for a 20 kHz band-limited signal, it is
possible to obtain a SQNR of 74 dB if the sampling frequency is 164 MH-.
This corresponds to an OSR of 4100.

1.2.5 Sigma-Delta A/D Conversion

In oversampled PCM A /D conversion, the spectrum of the quantization noise
is constant over the whole frequency range. In particular, the noise will be
present both inside the signal frequency band and outside. By the mean of

feedback loops and appropriate feedforward paths, it is possible to reduce the
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presence of quantization noise inside a given frequency band at the cost of
an increased quantization noise power outside that band. Developed in 1962
by Inose and Yasuda [IY63], Sigma-Delta (£-A) A/D conversion is the most
well-known representative of a class of converters known as noise-shaping
converters.

In its original configuration, a £-A A/D converter contains a one-bit
quantizer and an integrator, both of which are embedded in a feedback loop
as shown in Fig. 1.10, where u.(¢) is a continuous-time continuous-amplitude
input signal and ¢(n) is a discrete-time discrete-amplitude output signal.

The task of the quantizer shown in Fig. 1.10 is two-fold. Firstly, it acts as a

Clock (f 5)

Figure 1.10: Single-Loop £-A Converter.

conventional quantizer; mapping a continuous set of values to a discrete set.
Secondly, it performs this task at a given rate referred to as sampling rate
(Often called sampling frequency and denoted f;).

The behaviour of a ¥£-A modulator can be described using an equiva-
lent discrete-time model as shown in Fig. 1.11, with T = 1/f,, u(n) being
a sampled version of u.(t) in accordance with u(n) = u.(nT), and e(n) be-
ing the quantization-noise introduced by the quantization process and being

modelled as an additive input.
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Figure 1.11: Equivalent Discrete-Time Single-Loop £-A Converter.

It can be shown [CT92, Eqn.(7)] that the output signal ¢(n) is given by

g(n)=u(n—1) +e(n) —e(n—1). (1.8)

Eqn. (1.8) shows that the output signal is composed of both the input signal
delayed by one sampling period and a term which depends on the quantiza-

tion noise.

Assuming the quantization noise to be white, the converter shown in
Fig. 1.11 can then be modeled as a linear circuit. Consequently, conven-
tional analysis tools such as the Z-transform can be used. Introducing U(z),
E(Z) and Q(z) to be the Z-transforms of u(n), e(n) and q(n), respectively,
Eqn. (1.8) becomes

Q(z) = 27U (=) + (1 — 271 E(2). (1.9)

From Eqn. (1.9), the signal transfer function STF(z) and the noise transfer
function NTF(z) can be defined. The signal transfer function, is defined as

STF(z) = 38 (1.10)
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Similarly, the noise transfer function is defined

Q(z)
TF(z) = =—. .
NTF(z) ) (1.11)
In the case of the £-A converter shown in Fig. 1.11 and described by
Eqn. (1.9), STF(z) and NTF(z) are

STF(z) = =z! (1.12)
NTF(z) = (1-2z7Y). (1.13)

The transfer functions STF(z) and NTF(z) can be considered as shaping
functions which modify the spectrum of the input signal and the quantization
noise, respectively. Through inspection of Eqns. (1.12) and (1.13), it can be
seen that both STF(z) and NTF(z) are polynomials in z~! of order one.
Therefore, the ¥-A converter shown in Fig. 1.11 is said to be a first-order -
A converter. Moreover, z = 1 is a zero of NTF(z). Equivalently, NTF(z) =0
around DC. This feature implies that the quantization noise is low at low

frequencies (Fig. 1.12).

INTF(e J®)!
2L
N ISTF(e 1 @)
[O)]
0 ‘ >
2n

Figure 1.12: Signal and Noise Transfer Function of the First-Order
2-A Converter.
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By constraining the input signal spectrum to the low frequency part of
the spectrum, it is possible to separate the signal and the quantization noise.
Still using the white noise assumption, the overall spectral density Es(f) of

the shaped quantization noise is given by [CT92, Eqn.(9)]

Es(f) = A\/;iftsin (Z’}f) (1.14)

If the signal frequency band is defined to be in the range

0< f< fa, (1.15)
the noise power in the signal band is given by
2 Iz 2
of = [ IEs(f)’df. (1.16)
=JB

By replacing Es(t) in Eqn. (1.16) by its value given by Eqn. (1.14) and

assuming f; > fg, 02, can be approximated as

A2z2 [ fg\°
2 TN s e — i
Tes = T3 3 (2fs) s fs > fB. (1.17)

Using the oversampling ratio defined in Eqn. (1.6), the SQNR can be

found to be

0.2

SQNR 5 = 10log V’; — 0.4 + 30log OSR. (1.18)

In a first-order £-A converter, each doubling of the oversampling ratio im-

proves the SQNR by 9 dB or 1.5 bit.

Example 4 For the same case a for Ezample 2, a 7{dB resolution can be
attained by a single-bit first-order ¥£-A converter with an OSR of 380. For
a 20 kHz bandwidth, this results in a sampling frequency of f; = 15 MHz,
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about ten times less than that in Ezample 3.

1.2.6 Advantages of ¥-A Conversion

The first advantage of £-A conversion is that very coarse quantizers can be
used. In the example presented above, a one-bit quantizer (comparator) was
used.

Sigma-Delta converters are also very tolerant of non-linearities and other
imperfections. Simulations and calculations have shown that leaky integra-

tors do not influence significantly the behaviour of £-A converters [CT92].

1.2.7 Limitations of ¥-A Conversion

The converter shown in Fig. 1.11 can be equivalently represented by the

converter in Fig. 1.13.

i Dela
Integrator <+—— Modulator le(n)

u(n) T v(n) 3‘}\ l_ qm)

Figure 1.13: Equivalent Representation of the First-Order -A Con-
verter in Fig. 1.11.

This equivalent representation (see e.g. [Fon83, p.236]) exemplifies the
behaviour of a £-A converter. The input signal is first integrated (¥) and
then passed through a conventional A modulator.

Delta modulation is limited by a phenomenon known as slope saturation

[Fon83, p.230]. Because a ©-A converter inherently contains a A modula-
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tor, a similar limitation exists. In the converter shown in Fig. 1.13, if v(n)
exhibits too large a slope, then the A modulator will saturate. Moreover,
because v(n) is an accumulation (integral) of the input signal u(n), a high
amplitude of u(r) will cause saturation of the £-A converter configuration
under consideration. In 1995, Borsodi [Bor95, p.42] showed that the bound

U, on the input signal for a single-loop converter is given by

A

50 (1.19)

Ui <(@-1)

with @ being the number of quantization levels.

A saturated ¥-A converter is said to be unstable. It is a well-known
result that configurations other than the first-order structure presented in

this section are prone to instabilities.

1.2.8 Beyond First-Order $-A Conversion

Multi-Loop Configurations

High resolution in a first-order ¥-A converter often implies an impractically
high sampling frequency (because of the required high OSR). In 1985, Candy
[Can85] proposed an extension of the conventional single-loop £-A converter.
Instead of integrating the input signal once, he suggested that the signal could
be integrated twice (Fig. 1.14).

The corresponding relationship describing the behaviour of the double-

loop £-A converter is

g(n) =u(n — 1)+ e(n) — 2e(n —1) + e(n — 2). (1.20)
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e(n)
u(n) + + - q(n)
. .|

Figure 1.14: Double-Loop X-A Converter.

In the Z-domain, the relationship becomes,
QR(z) =z"WU(2) + (1 — z71)2E(2). (1.21)
Also, the transfer functions STF(z) and NTF(z) can be found to be
STF(z) = z71, (1.22)

and
NTF(z) = (1 — z71)2. (1.23)

The difference with the first-order structure is that NTF(z) exhibits a double-
zero at the point z = 1 as opposed to a single zero. This structure is often
called a second-order structure, due to the nature of NTF(z). Consequently,
the quantization noise is even more reduced at low frequencies that in the

first-order case. The maximum SQNR can be found to be

for a sinusoidal input. In this case, each doubling of the OSR increases the

SQNR by 15 dB.
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Example 5 In accordance with Eqn. (1.24), a SQNR of 74 dB for a 20kHz
signal requires and oversampling ratio of 50. Therefore, the sampling fre-

quency is f, = 2MHz which can easily be obtained by using conventional

VLSI technologies.

Similar multi-loop configurations can be devised. In the most general
case, the SQNR is shown to increase by 3(2M + 1) dB for each doubling
of the oversampling ratio, with M being the number of integrations (See

Section 2.2).

Multistage Configurations

Other configurations include multistage (cascaded) configurations in which
the quantization error from one converter is extracted and used as the input
to another converter. The outputs of both converters are then combined in an
attempt to reduce the quantization noise from the first stage. The simplest

case is the so-called 1-1 cascade converter [ASS96] shown in Fig. 1.15

e (n)
u(n) ,_1 ql )
T *1 T
- $+
e (n) -)E
1 + e (@
_3 q2(n) . + q(n)

Figure 1.15: 1-1 Cascade £-A Converter.

By inspection of Fig. 1.15 and with the help of Eqn. (1.9), the Z2-

transforms Q,(z) and @Q2(z) of ¢1(n) and ¢2(n), respectively, can be obtained
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Qi(z) = z7'U(z) + (1 — 21 Ex(2), (1.25)

and

Q2(z) = 2z7'Ei(2) + (1 — z71) Ex(2). (1.26)

The output signal Q(z) is given by

Q(z) = z71Qi(2) = (1 — 271)Q2(2)- (1.27)
Substituting for @1(z) and Q2(z), Eqn. (1.27) becomes

Q(z) = 272U (2) — (1 — z~1)2Ey(2). (1.28)

In this way, the task of the second Z-A converter is to cancel the quanti-
zation noise introduced by the first quantizer and to replace it with the quan-
tization noise of the second quantizer shaped by a second-order function. As
a matter of fact, this converter behaves the same way as the second-order
converter shown in Fig. 1.14.

The advantage of cascaded structures is that they give higher order trans-
fer functions while using low-order converters, thus avoiding the instability
problem. The disadvantage is an increased circuit complexity. Also, due to
the multi-bit nature of the output signal, the hardware for the subsequent

decimation filter will be significantly complicated.

Bandpass Converters

Only structures with a noise transfer function having single or multiple zeros
at the zero frequency (DC) have been studied so far. Due to their operation

in the lower part of the spectrum, these converters have been named lowpass
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converters. It has also been pointed out that an increased resolution implies a
higher oversampling ratio, or, equivalently, an increased sampling frequency.
Technology limitations often prevent a design to be implemented because of

the requirements on the sampling frequency.

So far, the oversampling ratio has been defined as the ratio between half
the sampling frequency, f;, and the highest frequency in the input signal, fg.
However, in the case of a bandpass signal constrained between the frequencies
ft and fr, with f; < fh, there is no need to have a reduced noise level
below f;. In other words, the frequency band [0, fi] can be used by the
quantization noise spectrum. This also means that the zeros of the noise
transfer function can be moved on the unit circle away from DC (z = 1) to
a set of points corresponding to the signal frequency band (Figs. 1.16 and

1.17). At frequencies near the zeros of NTF(z), the quantization noise will

Unit Zeros of
Unit Circle ® NTK(z)
x2 /Cn'dc \ w2 h /
Zeros of g
" \
z [} X 0
n2 In2
Figure 1.16: Lowpass Noise Figure 1.17: Bandpass Noise
Transfer Function. Transfer Function.

be reduced, thus allowing the signal to be separated from the quantization
noise. Several structures for bandpass conversion have been proposed [LS87,

JSF93, BN97] and will be discussed in greater detail in Chapter 4.
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1.3 Open Problems In Sigma-Delta Conver-

sion

1.3.1 Analysis and Characterization

The presence of a non-linear device precludes the use of conventional anal-
ysis tools to describe the quantization noise and the characteristics of £-A
converters. Very often, the assumption of a white uncorrelated uniformly dis-
tributed quantization noise is made as an attempt to model the behaviour of
3-A converters. It has been shown, however, that this assumption does not
hold true for first- and second-order structures [CWG89]. Therefore, other
tools have to be developed in order to predict the composition of the quantiza-
tion noise. The works of Candy and Benjamin [CB81], Gray [Gra89, Gra90],
Gray, Chou, and Wong [GCW89], He, Kuhlman, and Buzo [HKB90], Rangan
and Leung [RL92], and Botteron and Nowrouzian [BN96] can be viewed as
an attempt to solve that problem.

All the above approaches were only concerned with specific structures in
mind. In 1995, Borsodi [Bor95] developed a technique based on a state-space
approach to describe the quantization noise for a general class of converters
having integer multiplier coefficients and a single quantizer. Since then, no
attempt, to the author’s knowledge, has been made to generalize this tech-

nique to structures containing non-integer multipliers or several quantizers.

1.3.2 Design

Due to the present lack of analysis tools, the design of £-A converters, es-
pecially in the bandpass case, is a challenging task. The method currently

used is to employ known structures to implement a set of signal- and noise-
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transfer functions. The establishment of a rigorous method still remains an

open problem.

1.4 Overview Of The Thesis

The purpose of the present thesis is three-fold.

Firstly, an analysis of the quantization-noise in triple- and multi-loop X-
A converters is presented in Chapter 2. The proposed approach makes use of
the periodicity of the quantization noise function in an attempt to derive a
closed-form solution for the quantization noise in a multi-loop £-A converter
configuration. Then, the results are applied to a third-order structure and
an analysis of the quantization noise spectral characteristics is given.

Secondly, Chapter 3 introduces the basic principles for the deterministic
design of ¥-A converters. The critical building components are isolated and
interconnected to each other. Enumeration of the possible interconnections
enables one to generate all the possible structures meeting a specific set of
criteria.

Thirdly, bandpass £-A A/D conversion is considered in Chapter 4. Anal-
ysis of two existing structures leads to the establishment of comparison cri-
teria. These criterias are then used to discuss the performance of a new
resonator-based ¥-A converter configuration.

Finally, Chapter 5 concludes the thesis by a review of the material pre-
sented in the previous chapters. It also reports on the parts of the thesis that
are believed to be original contributions. Then, some ideas for future work
are proposed. The chapter is then closed by concluding remarks of a more

general nature.



Chapter 2

Quantization Noise in

Multi-Loop >-A Converters

2.1 Introduction

One of the most important problems in the analysis of £-A converters is
the absence of analytic analysis tools. Very often, computer simulations are
carried out in order to obtain an estimation of the performance of the £-A
converter configuration under consideration. The presence of the constituent
(non-linear) coarse quantizer makes the analysis complicated, even in the case
of simple converter configurations. Recently, Borsodi and Nowrouzian [BN93]
developed an analytical technique for the analysis and characterization of a
general class of £-A converter configurations. This technique is based on
replacing the ¥-A converter by an equivalent open-loop system which cir-
cumvents the problems that normally arise as a result of the coarse quantizer
being embedded in a feedback loop. The resulting equivalent open-loop sys-
tem was subsequently applied to the determination of the shaped signal and

the shaped quantization noise for the spectral analysis of £-A converters.
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Some time ago, Rangan and Leung [RL92] developed a mathematical
technique for the determination of the quantization error for a double-loop
3-A converter. Their method is based on representing the internal quantiza-
tion error by a corresponding Fourier series expansion. This technique was
successfully applied to the spectral analysis of the output signal produced in
response to a sinusoidal input excitation.

The present Chapter extends the results in [RL92] to higher-order (triple-
loop, etc.) ¥-A converter configurations. In particular, Section 2.2 is con-
cerned with the derivation of an open-loop equivalent for multi-loop £-A
converters. This is achieved by taking advantage of the fact that the quanti-
zation error function is a periodic function of the input signal of the quantizer.

In Section 2.3, the results obtained in Section 2.2 are applied to the case
of a triple-loop X-A converter configuration. In Subsection 2.3.3, the result
is subsequently applied to sinusoidal input signal excitations. This procedure
is facilitated by using the Fourier series expansion of the internal quantiza-
tion error in conjunction with the Jacobi-Anger formula. A computational
investigation and verification is undertaken in Subsection 2.3.4. Finally, Sub-
section 2.3.5 discusses the spectral characteristics of the quantization noise

with a special emphasis on the white noise assumption made in Section 1.2.2.

2.2 Quantization Noise in Multi-Loop X-A

Converters

2.2.1 Introduction

This section is concerned with the derivation of the open-loop equivalent of

multi-loop £-A converters. The main reason for using third- and higher-order
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E-A converters is that these structures yield better noise shaping perfor-
mances for the same OSR when compared to lower-order converters. There
is a cost however, namely, an increase in the order of the quantizer implies

more sensitivity to parameter changes and decreased stability.

2.2.2 Closed-form Solution for the Internal Quantiza-
tion Error
Introduction

This section is concerned with the derivation of the closed-form solution of
the internal quantization error produced by a conventionnal multi-loop ¥ -A

converter in response to general input signal excitations.

Derivation of the Input-to-Output Relationship and of the Noise

Transfer Function

u(n) Yy ¥ n.£n) Yy (n) ¥y y(n)

+ -

qfn)

+ - + +

Figure 2.1: A Conventional Multi-Loop £-A Modulator.

The schematic diagram shown in Fig. 2.1 shows the multi-loop £-A
converter under consideration of order N, where u(n) represents the input
signal sequence and ¢(n) denotes the output signal sequence. The signals
y1(n),y2(n), - -, yn-1(n), and yn(n) represent internal signals. Q(.) repre-
sents a quantizer (single or multi-bit).

Assuming that the quantizer operates in its overload-free region [BN95],
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the output ¢(n) can be expressed as
q(n) = Q(w1(n)) = 2[xn1(n)/2] + 1, (2.1)

where |.] represents the floor operator (the largest integer less than or equal
to the argument of the operator). It should be pointed out that the assump-
tion of an overload-free quantizer operation implies that the £-A converter
is free from the potential instability problems.

The internal quantization error e(n) is defined in accordance with
e(n) = e(y1(n)) = ¢(n) — y1(n) (2.2)

Then, by invoking Eqn. (2.1) into Eqn. (2.2), e(n) becomes

e(n) = e(pa(n)) = [y‘( )J+1—yl(n) (2.3)
- 1—2<£le)> (2.4)

where < . > represents the fractional part operator in accordance with
z = |z|+ < z >. Assuming overload-free quantizer operation, e(yi1(n)) is

therefore a periodic function of y;(n) with a period of 2 as shown in Fig. 2.2.

e(y@)

NN
NN\, N N

Figure 2.2: The Internal Quantization Error Function.
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Lemma 1 The input-to-output relationship of a conventional multi-loop Z-

A converter of order N shown in Fig. 2.1 is given by
g(n) = u(n — 1) + DVe(n), (2.5)

where D(.) is the discrete differentiation operator defined in accordance with
Df(n) = f(r) — f(n — 1). D(.) is a linear operator and can be applied
several times to the same sequence in order to obtain the successive discrete
derivatives for this signal.

Proof :  The proof follows an inductive argument similar to the one
presented in [HKB92] as given in the following.

The lemma holds true for ¥ =1 [CT92}, N = 2 [Can85] and for N =3
[BN96]. It is therefore sufficient to prove that if the lemma holds true for
N = M, then it is also valid for ¥V = M + 1.

u(n) Yy, D) Y, @ q(0)
v M M Border —
converter

P1---T 711

Figure 2.3: A Conventional Multi-Loop £-A Modulator of order M +
1.

A (M + 1)-order £-A converter can be represented as shown in Fig. 2.3.

By assumption,
q(n) = ym4r(n — 1) + DMe(n) (2.6)
holds true. Moreover, by inspection one obtains

ym+1(n) = ym41(n — 1) + u(n) — q(n) (2.7)
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or, equivalently,
yaar(n — 1) = yarer(n — 2) +u(n — 1) — g(n — 1). (2.8)

Using the definition of the discrete differentiation equation, Eqn. (2.8) be-

comes

Dymsi(n—1) =u(n—-1) —g(n —1). (2.9)

Taking the discrete derivative of Eqn. (2.6) yields
Dg(n) = Dysr41(n — 1) + DDMe(n). (2.10)
Using Eqn. (2.9), the result becomes,

r)—q(n—1) = u(n—1)—g(n~1)+DM*e(n)  (211)
g(n) = u(n-—1)+ DM*le(n). (2.12)

This completes the proof of the lemma. g.e.d.

Lemma 1 can be used to gain a better understanding of the behaviour of
multiloop £-A converters. It has been shown that the higher the order of the
converter, the closer the quantization noise to white noise. For a second-order
converter, the quantization noise is already white for a DC input signal and
almost white with an AC input signal, in the latter case provided that the
oversampling ratio is large enough [WG90]. For higher-order converters, the
internal quantization noise has been shown to be white in all cases [HKB92].

Taking the Z-transform of Eqn.(2.5) yields

Q(z) =U(z)z ' + E(z)(1 — z~Y)V. (2.13)
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Eqn. (2.13) shows that the output signal spectrum Q(z) is composed of the
input signal spectrum U(z) shaped by z~! and of the internal quantization
noise pectrum E(z) shaped by (1 —z~!)". In the Fourier domain (i.e. along

the unit circle of the z-domain), Eqn. (2.13) becomes
Q(e) = U(e¥)e™™ + E(e“)(1 — e~ ™)V, (2.14)
where w is the normalized frequency defined in accordance with
z=ev. (2.15)

In the same way as in Section 1.2.5, the signal transfer function and the

noise transfer function can be introduced in accordance with
STF (&™) = ™7, (2.16)

and
NTF (&) = (1—e7)" . (2.17)

The magnitude of STF(e’™) is
[STF(e’)| = |e=| = 1, (2.18)

and the magnitude of NTF(¢’) can be found to be

INTF(e™)| = [1—e"
2sin et N

- (2.19)
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The noise transfer functions for the cases of N = 1,2,3 are drawn in
Fig. 2.4. Also, an enlarged version of the low-frequency part of the spectrum

is provided in Fig. 2.5.
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Figure 2.4: Comparison of Noise-Transfer Functions of Order 1, 2,
and 3.

It is observed that as the order of the structure increases, the noise trans-
fer function becomes flatter and attenuates more efficiently the low-frequency
components of the quantization noise. Because the zeros of the noise transfer
function are all located at the zero frequency, the converters are sometimes

referred to as having Butterworth noise transfer functions.

Estimation of the SQNR

The noise power in the signal frequency band due to the quantization process

can be expressed as

o= [ Nree™ Lo, (2.20)
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Figure 2.5: Comparison of Noise-Transfer Functions of Order 1, 2,
and 3 (Close-up of the Low-Frequency Range).

with fp being the bandwidth of the input signal and N being the order of the

converter. Because of the symmetry of the spectrum, o2, can be rewritten

2 rf .
o2 =22 *INTEE)|™ oF. (2.21)

es 12 Jo

Moreover, the frequencies w and f are related one with each other in accor-

dance with
wf
W= — 2.22
2 (2.22)
Substituting Eqns. (2.19) and (2.22) into Eqn. (2.21), o2, becomes
A2 iz 7 f PN
== [ |[2sin— 2.2
L= [ |esin A (2.23)
Provided that
<1, (2.24)
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which is the case when f; is large (large OSR), Eqn. (2.23) can be simplified

as
2N

f df. (2.25)

fs

After solving for the integral and rearranging the terms, o2, finally becomes

es

2A2 I8
2 92N /
7 12 0

2 Az ,er
(3

2T —(2N+1)
&~ TN Ok . (2.26)

As shown in Example 2, the peak SQNR under a sinusoidal input is
obtained when the input sinusoid has amplitude V and power o2 = V?2/2.
Moreover, assuming a single-bit quantizer, A and V are related to each other

in accordance with A = 2V (From Eqn. (1.4)). In this way, the SQNR is

given by

0.2
SQNRJB = 10 log Z

2
Tes

3 &
—(2N +1) + 102N + 1)log OSR.  (2.27)

2%

= 10log

Eqn. (2.27) dictates that the SQNR increases by 3(2/V + 1)dB for each dou-

bling of the oversampling ratio, a well-known result.

2.2.3 Closed-Form Solution for the Quantization-

Noise in a Multi-Loop ¥-A Converter

The purpose of this section is to prove the following theorem.

Theorem 1 If the quantizer in the multi-loop £-A converter of order N
shown in Fig. 2.1 operates in its overload-free region [BN95], then the closed-
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form solution of the quantization error e(n) is given by

e(n) = e(yi(n))

N na4k—
e(y2(0)+zyk(0)( +k 3)+
k=1 k

k=1 N -1 N

The proof is based on the following lemma.
Lemma 2

SIS 9D IR o] IR

IN=1llny_ =1 =1 =1 k=1

a !
( ; ) = - (230)

Proof : See Appendix A.l g.e.d.

> > ( N-1+m-1)-k ) u(k), (2.29)

where

holds.

Proof : Theorem 1 can be established by mathematical induction. By

making use of Lemma 2, e(n) can be rewritten

e(n) = e(yz(0)+£yk(0)(n+k_3 ) +

k=1

n—1 {3 128 n—
g5 zzum-( ;*N)). 0.1

=1ly_1=1 L=1l=1
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Let us consider the case of N = 2. Then, Eqn. (2.31) becomes

e(n) = e(yz(0)+y1(0)(n;2 ) + y2(0) ( n:l ) +

giu(h)—(n:l)). (2.32)

la=15L=1

After performing binomial expansion, Eqn. (2.32) becomes

n—-1 s nin
e(n)=e (yl(O) +ny2(0) + > D u(ly) - —(;”—1)) : (2.33)

la=11l=1 =

The validity of the latter equation has been established in [HKB90, Theorem
1]. Therefore, the theorem holds true for N = 2.

In this way, it is sufficient to show that if the theorem holds true for
N = M, then it is also valid for N = M + 1.

By inspection of Fig. 2.3, the relationship
ym+1(n) = ym41(n — 1) + u(n) — yi(n) (2.34)
holds. Solving for yar4+1(n) recursively, Eqn. (2.34) becomes
shea() = a0 + S ulk) - 3 aln) (2.35)

Finally, taking the quantizer into consideration, yar+1(n) becomes

ym+1(n) = ym+1(0) + i u(k) — Zn: (2 [%TL)J + 1) . (2.36)

k=1 k=1
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Also, by assumption,

M n+ k-3
e(n) = e(yz(0)+zyk(0)( : )+

k=1

-1

> > '"iZzyMH(h)—(n_;:M)) (2.37)

IM lM—l=l lg=1 l|_=1

holds. Replacing for yar+1(n) into Eqn. (2.37) gives

M n+k-—-3
e(n) = e(y2(0)+zyk(0)( * )+

k=1 e~
n—-1 Im s Iz

20 2 2 X umwa(0)+
I=1ip1=1 la=1 ;=1

n-1 Ip i & 4L

2 2 2 u(k)-

Ipg=11lpp1=1 =1 4L=1 k=1

nf 5’.‘: ‘Ilii@[y—‘éﬂJH)—

Iag=11pe =1 lo=11l=1 k=1

(n—1+M)). (2.38)
M

Using the fact that |.| is an integer and that e(.) is periodic with period 2
(Fig. 2.2), along with changing the indices on the summations, Eqn. (2.38)

becomes

M n+k—-3
e(n) = e(yz(0)+2yk(0)( ¥ )+

=1 —

n—-1 — n— -k n—1 a4 {3 10y
Z(M bl )yM+1(0)+ o2 > o ulh)

k=1 M-1 Iaer1=1{pr=1 y=11;=1
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I M+(n—-1)—k -1+ M
-3 (n—1) . . (2.39)
k=1 M M
Rewritting the fourth summation in Eqn. (2.39) and using the identity [Spi68,
Eqn. 3.9]
B [ A+k A+B+1
) = , (2.40)
k=0 A A+1

e(n) becomes

_ Iamppr1=11p=1 l=14=1

(M+n—1)_(M+n—1)) (2.41)
M+1 M

Finally, using the identity [Spi68, Eqn. 3.6]

() (n)-(0) e
b b+1 b+1

the quantization error becomes

M+1 n+k—3 n—=1 x4 i I3
e(n) = e(yz(0)+ kZ_: yk(O)( . )+ 202 > Y ull)-

k=1 IM.“-l IM=1 =14=1

) e

establishing the validity of the theorem for N = M + 1. This completes the

M+1 n+k—3 n=1 a4 1
e(n) = e|y2(0)+ D_ y(0) . + > > - ZZU(h)—

proof of the theorem.

g.e.d.
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2.3 Quantization Noise Spectrum in a Triple-

Loop X-A Converter With Sinusoidal Ex-

citations

2.3.1 Introduction

The presence of the constituent (non-linear) coarse quantizer makes the anal-
ysis of £-A converters complicated even in the case of simple converter con-
figurations and simple input signal excitations. Some time ago, Rangan and
Leung [RL92] developed a mathematical technique for the determination
of the quantization error for a double-loop ¥£-A converter. Their method
is based on representing the internal quantization error by a corresponding
Fourier series expansion. This technique was successfully applied to the spec-
tral analysis of the output signal produced in response to a sinusoidal input

excitation.

The present section extends the results in [RL92] to the determination of
the closed-form solution of the internal quantization error for a conventional
triple-loop ¥-A converter configuration under overload-free quantizer opera-
tion. The closed-form solution of the internal quantization error for a general
input signal is derived in Section 2.3.2. In Section 2.3.3, this solution is spe-
cialized for the important case of sinusoidal input signal excitations. This is
facilitated by using the Fourier series expansion of the internal quantization

error in conjunction with the Jacobi-Anger formula.
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2.3.2 Derivation of an Open-Loop Equivalent for the

Internal Quantization Error

This section is concerned with the derivation of the closed-form solution of
the internal quantization error produced by a conventional triple-loop ©-A

converter configuration in response to general input signal excitations.

u(n) . y3(n) - - yz(n) - - y 1(n) q(n)

T

Figure 2.6: A Conventional Triple-Loop X-A Modulator.

The schematic diagram shown in Fig. 2.6 shows the triple-loop £-A con-
verter configuration under consideration, where u(n) represents the input
signal excitation, and ¢(n) represents the output response signal. The sig-
nals y3(n), y2(n), and y1(n) represent internal signals. Moreover, Q(y1(n))
represents a coarse quantizer (single-bit or multi-bit).

By inspection, one can observe that

n(n) = wnln—1)+y(n—-1)-qn-1) (2.44)
y2(n) = y2n —1) +ya(n) — q(n) (2.45)
ya(rn) = ys(n—1) +u(n) —q(n) (2.46)

Lemma 3 The output signal q(n) in the triple-loop ¥ - A converter shown
in Fig. 2.6 is related to the input signal u(n) via the internal quantization

error e(n) in accordance with

q(n) = u(n — 1) + D3e(n). (2.47)
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Proof : By applying Lemma 1 with N = 3. An alternate proof can be
found in [BN96]. g.e.d.
Based on Lemma 3, the closed-form solution for e(y:(n)) can be deter-

mined in accordance with the following theorem.

Theorem 2 [BN96] If the coarse quantizer in the triple-loop ¥ - A converter
shown in Fig.2.6 operates in its overload-free region [BN95], then the closed-

form solution of the internal quantization error e(n) is given by

e(n) = e(n(n))

= (50 +r0) + E 0
’fz:; ; ; u(k) — "("“g("”)) (2.48)

where y:1(0), y2(0), and y3(0) are the initial values of the internal variables

vi(n), yz(n), and ya(n), respectively.
Proof : Use Theorem 1 with N = 3. An alternate proof can be found

in [BN96].
q.e.d.

2.3.3 Quantization Error for Sinusoidal Excitations

The result of Theorem 2 can be applied to the specific case of sinusoidal exci-
tations. The final result will be obtained through a Fourier series expansion
of the function e(y;(n)) and by the use of the Jacobi-Anger formula.

Let us assume that the input signal is given by

u(n) = A;sin(wn + ¢;), (2.49)
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with A; being its amplitude and ¢; being its phase. By invoking Eqn. (2.49)

into Eqn. (2.48), the internal quantization error becomes

e(n) = (yl(O) + ny2(0) + (n— ) ——y3(0) + n}_:l Zz: Z A; sin(wk + ¢;)

=1 j=1 k=1

_n(n+16)(n+2)) (2.50)

It can be shown that the triple summation in Eqn. (2.50) can be reduced to

n-1 1

Z Z Z A;sin(wk + ¢;) = Aosin(wn + ¢o) + Bon? + Con + Do (2.51)

=1 j=1 k=1

By solving the difference equation in Eqn. (2.51), the coefficients Ag, Bo, Co

and Dy and the phase angle ¢y can be determined as

A;
Ssin3(w/2)’
w 37

¢0 = ¢1+3_T’

- o

2By = Aisin(2w + ¢;) + Aisin(w + ¢;) —
Apsin(3w + ¢o) + 2A0sin(2w + ¢o) —

Ao=

Agsin(w + o),

Co = A;sin(w+ ¢;) + Agsin(w + ¢o) —
Aosin(2w + ¢o) — 3By,

Do = —Agsin(w+ ¢o) — Bo — Co.

Furthermore, by taking into account the fact that e(y,(n)) is a periodic
function of y,(n) with period 2, the term 1(1""—16)("—*'2-1 in Eqn. (2.50) can be
equivalently replaced by
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v(r) = (2.52)

0 for n={0,2,3} mod4
1 for n = 1 mod 4.

In this way, the internal quantization error e(n) becomes

e(rn) = e (Ao sin(wn + ¢o) + (Bo + y3§0)) 2,

(Co +y2(0) — y3(0)) n+ Do + y1(0) + 'y(n)) . (2.53)

In order to proceed further, the internal quantization error e(y;(n)) is

represented by its Fourier series expansion in accordance with (see Fig. 2.2)

(= -]

e(n(n)) = > me”"“‘“’ (2.54)

= -0

10
By substituting Eqn. (2.54) into Eqn. (2.53), e(n) becomes

201
e(n) Z o = _ITi(Ae sin(wn+¢g }4+Bn2+Cn+D+v(n)) (255)

{==co

i#0

where

0
B:Bo+y3§ ), C=Co+y2(0)—-!"—3§i),and D= Do+y1(0).

By invoking the Jacobi-Anger formula

ejAsin(z) — z Jm(A)eJm:: (2.56)

m=-—-0oQ

in Eqn. (2.55), the internal quantization error can be rewritten in the form

e(n) =
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oo ixl(Bn24+Cn+D+v(n)) oo .
¢ 3 Jm(Aoml)eimemioo), (2.57)

M==—00

=—00 j?l’l

1#0

where Ji,(.) represents the m-th order Bessel function of the first kind.

Before being able to take the Fourier transform of Eqn. (2.57) for comput-
ing the spectral characteristics of e(n), one needs to explicitly determine the
term e/™(™)_ In accordance with Eqn. (2.52), ¢*“"(®) takes on the following

value if [ is even

™) = 1.¥n (2.58)
and
i) _ 1 for y(n)=0 n=1{0,2,3} mod 4 (2.59)
-1 for x(n)=1 n =1 mod 4,

if [ is odd. The case of [ even is easy to handle. In the case of [ odd, the
following equality holds

, ™ .7
™) = ¢os? 50 —sinzn. (2.60)

L4 -~

Eqn. (2.57) thus becomes

+00 ejn-l(Cn+D)

. +00 .
e(n) = e/mB (cos2 Tn —sin zn) 3" Jm(Aoml)efmwmtéo)

=, jul 2 2°) =
{ odd
o oiml(Cn+D) 2 P .

+ 3 B 3 Jn(Aoml)emnteo) (2.61)

=—o0 J ﬂ-l m=—00
{ even
{#£0

Eqn. (2.61) is the final form for the internal quantization error for a triple-

loop £-A converter with sinusoidal excitations.
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2.3.4 Computational Investigation

At this stage, it is useful to perform a computational investigation to check
the validity of the results obtained so far. A corresponding verification
through comparison to the results obtained by a direct simulation of the

operation of the ¥-A converter is presented in this section.
Let us choose the input signal excitation to be arbitrarily fixed as

u(n) = 0.0501738174367 sin(0.528764321n + 0.633435). (2.62)

Moreover, let us select the initial conditions as

Vo = 0.2 y3(0) = —0.45 y2(0) =0.8

Then, one can use Eqns. (2.44), (2.45), (2.46) and (2.1) to evaluate the in-
ternal quantization error e(n) as shown in Fig. 2.7. Similarly, one can use
Eqn. (2.61), to obtain e(n) as shown in Fig. 2.8. Clearly, the results shown
in Fig. 2.8 are in agreement with those in Fig. 2.7. Any discrepancy can
be attributed to the fact that the infinite summations in Eqn. (2.61) must
be approximated by finite summations for numerical calculations. Having
confirmed the validity of e(n) in Eqn. (2.57), one can investigate the spectral
characteristics of e(n). According to Rangan and Leung [RL92], it appears
that one should expect a continuous spectrum whereas lower-order £-A con-
verters (first-order and second-order) exhibit discrete spectral components.
Once the spectral characteristics of e(n) are known, the next step will be to
derive the power spectral density of the overall quantization error defined as

e(n) = D3e(n).
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0.4}

0.2]
0

Figure 2.7: Direct Simulation of the Internal Error.
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Figure 2.8: Calculated Internal Error Using Eqn. (2.57).
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2.3.5 Spectral Characteristics of the Quantization
Noise

Based on Eqn. (2.61), the next step is to evaluate the spectral characteristics
of the quantization error e(n). The presence of the term e/*5** in Eqn. (2.61)
precludes the straightforward calculation of the Fourier transform of e(n).

However, e(n) can be seen as a linear combination of terms of the form

e(n) = e’ +anta) (2.63)

Weyl’s theorem (see e.g. [WG90] ) states that if ¢(t) = (ag+ ait +---
-4 a,,t") is the fractional part of a polynomial with real coefficients and if
among a;, asz,- - -, ak, at least one coefficient is irrational, then the sequence
¢(n),n =1,2,--- is uniformly distributed in the semi-open domain [0, 1).

Making use of Weyl’s theorem on Eqn. (2.63), it can be shown that the
set of terms {¢(n),n = 1,2,---} is uniformly distributed on the unit circle.
Estimating the autocorrelation of ¢(n), it can also be shown that ¢(n) is a
white sequence [WG90).

To summarize, provided that either B or C in Eqn.(2.61) is irrational,
the quantization error e(n) is a white uniformly distributed sequence, thus
justifying the assumption made in Chapter 1. This is further illustrated by

the following example.

Example 6 Let ¢(n) denote the sequence
o(n) = 2%, (2.64)

with Q being a real number which is not a rational multiple of . Eqn. (2.64)
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can be rewritten as

¢(n) = @M = gulnin (2.65)

where wi(n) = @Qn represents a local frequency. As n increases, so does wi(n).
In this way, wi(n) takes on values spreading between 0 and +o0o, when @Q is

positive. Also,

gJur(nin _ gi(wi(n) mod 2mn_ (2.66)

Consequently, a(n) will have an infinite number of frequency components
comprised between 0 and 2w. Moreover, because @ is an irrational multiple
of w, these components will tend to be uniformly distributed on the unit circle.

Fig. 2.9 shows the distribution of the first 16384 points of the sequence
eI (2.67)

with Q arbitrarly chosen to be Q = 1.31926541786.

Fig. 2.10 also shows the power spectral density of the same sequence.

In conclusion, the assumption of a white uniformly distributed quantiza-
tion noise is justified for triple-loop and higher-order converters. This fact

has been confirmed by the works of Chou, Wong and Gray [CWGS89].

2.4 Conclusions

The present Chapter has been concerned with the extension of the results
in [RL92] to higher-order £-A converter configurations. In particular, Sec-
tion 2.2 has dealt with the derivation of an open-loop equivalent for multi-
loop Z-A converters. This was achieved by taking advantage of the fact that

the quantization error function is a periodic function of the signal at the
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Figure 2.9: Angular Distribution of the Sequence Given By
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Figure 2.10: Spectral Composition of the Sequence Given By
Eqgn. 2.67.
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input of the quantizer.

In Section 2.3, the results obtained in Section 2.2 has been applied to the
case of a triple-loop £-A converter configuration. In Subsection 2.3.3, the
result have been subsequently applied to sinusoidal input signal excitations.
This procedure was facilitated by using the Fourier series expansion of the
internal quantization error in conjunction with the Jacobi-Anger formula. A
computational investigation and verification has been given in Section 2.3.4.
Then, Section 2.3.5 has discussed the spectral characteristics of the quanti-

zation noise with a special emphasis on the white noise assumption made in

Section 1.2.2.



Chapter 3

Design of >-A Converters

3.1 Introduction

The most important problem in electrical engineering, in general, is to de-
velop a circuit, a system, or a device in such a manner that specific constraints

are met. In the case of £-A converters, the design conditions usually include
¢ Sampling frequency, f;

e Signal characteristics (i.e. Bandwidth for lowpass signals or bandwidth
and center frequency for bandpass signals);

e Desired resolution.

The knowledge of these specifications influence directly the order of the struc-
ture choosen. Intuitively, it appears that the lower the OSR for a given res-
olution, the higher the order of the structure. Otherwise, unless using the
uniformly distributed white quantization noise assumption, the selection of
the structure order can only be based on a trial-and-error procedure. Simi-
larly, once the order of the structure is known, the topology still needs to be

found.
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The present chapter attempts to develop the bases for a procedure that

would produce all the possible structures meeting specific criteria.

3.2 Design Methodology

3.2.1 Introduction

The proposed method using enumeration allows finding all the structures
which meet a given set of criteria. The principle is to extract the important
components of a ©-A converter and to connect them together by external
connections. Then, all the possibilities are analyzed and the realizable struc-

tures are then retained as valid structures.

3.2.2 Building Elements

The first step is to identify and extract the critical elements. These include
input path, connection paths, quantizers, unit delays, multipliers, and adders
as follows:

1. Input Path

The input path, as one of the most obvious components, is shown in

Fig. 3.1.

u(n)

Figure 3.1: Input Path.

2. Connection Path
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Such a path connects together the output of an element to the input
of the next element. To each path is assigned a weight or multipling
coefficient. For the present method, the weight of a path can be 1,
0, or -1 depending whether there is a connection, no connection or an

inverting connection, respectively. (See Fig. 3.2)

1

= —Q@—

!

-1

. S E—-‘®—"

Figure 3.2: Three Possible Connections.

3. Quantizer

The most important component in a £-A converter, namely the quan-

tizer, will be represented as shown in Fig. 3.3.

e(n)
— q(n)

Figure 3.3: Representation of the Quantizer.

This representation allows the quantizer to include the feedback path.
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4. Unit delay

A unit delay is shown in Fig. 3.4.

—{ I

Figure 3.4: Representation of a Unit Delay.

5. Multipliers

Figure 3.5 shows a constant coefficient multiplier.

k

Y

Figure 3.5: Representation of a Multiplier of Multiplying Coefficient
k.

6. Adders

Adders are considered but will not be represented explicitly. Note that

two converging paths will imply an adder (see Fig. 3.6) .
Figure 3.6: Implicit Adder.

The above elements are then connected together by the means of connec-

tion paths. Each node is numbered and the connection paths are defined.
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By convention, a path connecting node a to node b will have a weight £,;,
where t,;, can take on the values —1,0, or 1.
In the simplest case, a £-A converter contains one unit delay, one quan-

tizer, and no multiplier. The resulting configuration is represented in Fig. 3.7.

-1

al L= T @

ty fa3 l e(n)
u(n) 2ty q(n)
x —+
m B g |'s3

B

Figure 3.7: Connections for the First-Order £-A Converter.

Overall, 20 (= 2(4 +3 + 2 + 1)) distinct connection paths can be found.
Assuming each path can take three different values {—1,0,1}, the circuit in
Fig. 3.7 has around 3.5 billion different transfer function sets. (3%° =~ 3.5-10°).

In the most general case, the number of different transfer functions is
given by

3(rn=Lnn (3.1)

with n, being the number of nodes in the circuit under consideration. More-

over, the number of nodes is given by
Ny, =3+ 2(ng +nm), (3.2)

where ng is the number of unit delays and n,, the number of multipliers in

the structure under study.
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In this way, a circuit having 2 unit delays and 2 multiplier coefficients
will exhibit 11 nodes and the number of possible circuits amounts to 3!1° =
30 - 10°1. Obviously, it is impossible to enumerate every single solution.
Therefore, some additional design constraints have to be used in order to

reduce the size of the search space.

3.3 Design Constraints

The reduction of the number of possible circuits can be obtained by intro-
ducing additional design constraints. Three different classes of constraints

can be distinguished.

o Realizability

Even though this is not a requirement for analog circuitry, the cir-
cuit will be designed in such a manner that no delay-free loop exists.
This constraint becomes mandatory when considering a D/A converter
where all the processing before the analog interface is done digitally.
Practically, this condition implies that the connection ts4 in Fig. 3.7
does not exist. Also, this condition implies that if an arbitrary path
has a non-zero weight (i.e. t5, € {—1;1}), the reciprocal path ¢, has
to be have a zero weight. Also, trianguler paths should be avoided.
(i.e. if t;p = %1, then either ¢, = 0 or t, = 0 must hold so as to avoid

the situation shown in Fig. 3.8).

o Stability

The Bounded-Input Bounded-Output (BIBO) stability of the linear
model of the ¥-A converter does not guarantee the stability of the

non-linear converter. But, it is reasonable to assume that the X-A
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[2] = 5]

[cb

Figure 3.8: Example of a Triangular Connection.

converter under consideration is less likely to be unstable if its linear
model is BIBO stable. BIBO stability, in the Z-domain, is ensured if

the poles of the transfer functions are located inside the unit circle.

® Transfer Function Related Conditions

As will be discussed in Chapter 4, it is often convenient to have design
constraints on the noise and signal transfer functions. More specifically,
the number of possible circuits is reduced if these transfer functions are
related to each other. The most important case is when the transfer

functions are complementary in accordance with [Vai93]
NTF(z) + STF(z) = cz™™, (3.3)
where ng is a positive integer and c¢ is a real constant.
Other constraints or assumptions, as well as some common sense can

further reduce the size of the search space.

3.4 Design of First-Order Converters

In this Section, the above design procedure is applied to the following ex-

ample. The converter under consideration will contain one unit delay and
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no multiplier coefficients. The corresponding configuration has already been
shown in Fig. 3.7. As discussed in Section 3.2, the enumeration of all pos-
sible structures is practically impossible to perform. Therefore, additional

constraints have to be given.

The first set of constraints is concerned with delay-free loops. This con-

dition implies that
t54 =0. (3.4)

Also, most X-A converters include integrators implemented by the means of

connecting the output of a unit delay to its input. Consequently,
tzo=1 , t3=0. (3.3)
Moreover, node 2 needs to have at least one input signal. Therefore,

t12 =+l ] t52 = :{:11

g =0 , t5=0,

Because t); # 0 and ts2 # 0, {15 must be zero to avoid a triangular path.

Simila.rly, ts; = 0.

In order to simplify matters, it is assumed that there is no connection

leaving nodes 2 and 4. Consequently,
tar =0,k =1,3,4,5 (3.6)

and
t4; =0,7=1,2,3,5. (3.7)

Hence, the structure shown in Fig. 3.7 reduces to that shown in Fig. 3.9.
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With the proposed constraints, there are only 8 remaining paths. Therefore,

-1
zZ

@ T @ 1 e(n)

um) - (4] — q(m)

" o \'s ¥ —

Figure 3.9: The Simplifed Set of Connections for First-Order Exam-
ple.

the number of all possible circuits is reduced to
3% = 6561; (3.8)

which indicates a dramatic change from the 3.5 billion different possibilities
obtained before.

In order to avoid delay-free loops, the coefficients must satisfy the condi-

tastsza =0
{ o

t34t53 = 0.

tions

Moreover, further triangular paths are avoided if the condition
tasts; = 0 (3.10)

is satisfied.
The next step consists in running a symbolic analysis program written
by Arthur Fuller, a member of Dr. Nowrouzian’s research group at the Uni-

versity of Alberta, to obtain the transfer functions realized by the structure.
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These can be found to be

STF(z) = — L= 22 (3.11)
1 + (—ta2 — tagts2)z™1’

and
(t13taq + t1a) + (t12t3q — t14)27?
1 + (—taz — taqlsz)z~!

NTF(z) = , (3.12)

At this point, it can be observed that STF(z) and NTF(z) share the same

denominator.

The second design constraint dictates that the poles of NTF(z) must lie
inside the unit circle. From Eqn. (3.11) it appears that the real unique pole
of NTF(z) is located at the point

z2= —l3p — t34t52. (313)
In order for the zeros of D(z) to lie inside the unit circle, the condition
It32 + t34t52l <1 (314)

must be satisfied. Because the coefficients t33, fa4, and t5; are restricted to

integer values, the equality
t3z + tagtse = 0, (3.13)

is the only one which satisfies Eqn. (3.14).

Using Eqn. (3.15) in Eqns. (3.11) and (3.12) gives

STF(z) = (tistas + tia) + (tratas — t14)z 7", (3.16)
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and

NTF(Z) =1- t322-1. (3.17)

The third design constraint is concerned with the relationship between
STF(z) and NTF(z). Combining Eqns. (3.16) and (3.17) into Eqn. (3.3)
yields

1-— tsgz—l + (t13t34 + t14) -+ (t12t34 - th)z'l = cz'""._ (318)

where ng € {0,1}.

At his point, two cases can be distinguished: ng = 0 and no = 1. In the
present thesis, the study will be limited to the case of ng = 0. In this case,
Eqn. (3.18) yields the conditions

1+ (tistas +t1a) = ¢ (3.19)
(3.20)

Il
=

—t32 + (t12t34 — t14)

where c is an arbitray real constant.

From Eqns. (3.19) and (3.20), two particular cases arise.

3.4.1 Case-l:c=1

The special case where ¢ = 1 is of particular interest. The case ¢ = 1 along

with Eqn. (3.19) imply that

tislzq = —t14. (3.21)
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Also, Eqn. (3.20) imply that at least one of the three terms t3,, t;2t34, and
t14 has to be zero. By choosing t;4 = 0, Eqn. (3.20) yields

From Eqn. (3.20) : 3 = tota, (3.22)
From Eqn. (3.21) : t)3t34 = 0. (3.23)

Moreover, choosing
t32 = 1, (3-24)

Eqn. (3.22) implies that
t12t34 =1. (3.25)

Also, combining Eqns. (3.23) and (3.25) implies that

t13 =0. (3‘26)

Moreover, choosing
tzq =1 (3.27)

and using Eqn. (3.25) implies that

tia = 1. (3.28)

Combining Eqns. (3.15), (3.24), and (3.27) gives

tsy = —1. (3.29)

Combining Eqn. (3.9) and (3.27) gives ¢ts3 = 0. Finally, replacing ts; in
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Eqn. (3.10) by its value given in Eqn. (3.29) implies

tas = 0. (3.30)

To summarize, the coefficients given in Table 3.1 are found to satisfy the

conditions given by Eqns. (3.19) and (3.20).

tiz2=1 t31 =0 t52=-1
tia=0 t3=1 ts3=0
t14=0 t34=1

t35 =0

Table 3.1: Value of the Coefficients for the case ¢ = 1.

The configuration given by Table 3.1 corresponds to the conventional first-

order £-A converter shown in Fig. 3.10. Combining the transfer functions

:
u() / ‘ ‘ — q(n)

Figure 3.10: Conventional First-Order X-A Converter Obtained
Through Design.

given by Eqns. (3.11) and (3.12) and the results given in Table 3.1 give

STF(z) =0+ z, (3.31)
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and
NTF(z) =1 —2"1. (3.32)

3.4.2 Case-2: c=2

In this case, Equation (3.19) implies that
listag + s = 1. (3.33)

Using similar assumptions as before, the coefficients in Table 3.2 can be found

to satisfy the design constraints.

ti2=1 t33 =0 t50=-1
tis=1 tz=1 ts3=0
t14=0 t34=].

t3s =0

Table 3.2: Value of the Coeflicients for the case ¢ = 2.

e(n)
. 1 l" [ q(n)
_

Figure 3.11: £-A Converter Configuration (With ¢ = 2).

te)_|

The corresponding circuit is shown in Fig. 3.11. The transfer functions

are found to be
STF(z) =1+ 271, (3.34)

and
NTF(z)=1-2"1. (3.35)
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and are shown in Fig. 3.12. In this case, the signal transfer function is not

Transfer Functions for the Case c=2

N

1.8 ~.
1.6+ ..
1.4f 4

1.2} — NTF(2) \

Amplitude
-

0.8 N
osf .
0.41 N

0.2

[¢] 0.5 1 1.5 2 25 3 35
Frequency [rad]

Figure 3.12: Transfer Functions for the £-A Converter Configuration
(With ¢ =2).

of an allpass nature as it is in the conventional £-A converter presented
in Section 1.2.5. However, at the point where NTF(z) = 0 (i.e. at low
frequencies), |STF(z)| = 2 and its derivative with respect to the frequency
is close to zero. Because high oversampling ratios are usually used, STF(z)
can be considered as constant in the input signal frequency band.

An analysis of the structure shows that its performanceis identical to that
of the conventional first-order structure. A plot of the SQNR as a function of
the input signal amplitude shows an identical maximum SQNR. Simulation
results shown in Fig. 3.13 are compared with the expected SQNR estimated
using the linear model approximation and with the model proposed by Candy
and Benjamin [CB81)]. The 0dB level is defined to be the level that saturates
the £-A converter (see Section 1.2.7).

From Fig. 3.11, it can be observed that the new I-A converter configu-
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Comparison between traditional and new Sigma-Deita converters

70 ™
Conventional Converter . P
60+ Expected value, white noise : - - J
Expected valve, Candy 1981 : -+ - Pl
so- Simulated value : -—- = 4
New converter ,:e"
Simulated value :  —— o
4or 1
o 30f 4
2
g
w 20 h
10 b
or :
~-10F ]
-m . S b L s Nl L
-50 -40 ~-30 -20 -10 0 10 20

Input Signal Amplitude

Figure 3.13: Performance Comparison of the Conventional and the
2-A Converter in Fig. 3.11.

ration only differs from the conventional first-order configuration by the way
the integrator is implemented. Conventional £-A converters use the so-called

Euler integrator (Fig. 3.14) having for transfer function

z—l

HEuler(z) = —-—1 — 1 (336)

4

The proposed new X-A converter, on the other hand, uses a modified version
of the bilinear-LDI! integrator shown in Fig. 3.15. The transfer function

associated with the integrator shown in Fig. 3.15 is

1+2z71
Hypi(2) = —= (3.37)

L1,DI stands for lossless discrete integrator.
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—*-—?—d z -1 —
+

Figure 3.14: First-Order Euler Integrator.

iE , -1 _:(g.__.
T+ +

Figure 3.15: First-Order Bilinear-LDI Integrator.

Bilinear-LDI integrators are commonly used in ladder filters and are at-
tractive as they preserve the low sensitivity features of such filters. However,
the bilinear-LDI based £-A converter configuration has not shown any sub-
stantial improvement over the conventional ¥-A converter (which uses the

Euler integrator).

3.5 Highpass ¥-A Converters

Using the technique proposed in Section 3.2, highpass ¥-A converter config-
urations can also be designed. It must be pointed out that such converters
are not very attractive because of the increase in cost associated with the
corresponding antialiasing and decimation.

Selecting the multiplier coeflicient values in the converter configuration
shown in Fig. 3.11 as given in Table 3.3, generates a highpass £-A converter.
The resulting converter configuration is shown in Fig. 3.16. A spectral
analysis of the output signal @(z) under a sinusoidal excitation proves that
the noise power spectral density of this converter is indeed of lowpass nature,

being zero at the frequency w = = (see Fig. 3.17).
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to=—1 t31=0 is2=1
ti3=0 tz2=-1 ts3=0

t14=0 t34=1
t3s = 0

Table 3.3: Value of the High-pass First-Order £-A Converter.

J_ q(n)

Figure 3.16: First-Order Highpass £-A Converter.
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Figure 3.17: Power Spectral Density of the First-Order Highpass

¥-A Converter.
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3.6 Conclusions

This chapter was concerned with the development of 2 new design technique
for X-A converters. This technique is based on enumeration. However, the
number of possible solutions grows exponentially with the number of compo-
nents in the structure under consideration. As such, a first-order converter
requires close to 6.5 billion iterations to generate all possible solutions. There-
fore, additional design constraints have to be devised in order to reduce the

complexity of the search space. These constraints are of three different cat-

egories.
e Realizability constraints,
e Stability constraints, and
e Transfer function related constraints.

Moreover, some common sense and personal preferences can be considered
to further decrease the size of the set of possible solutions.

Such considerations have successfully been applied to the design of first-
order converters. Using this new technique, the conventional first-order -
A converter configuration has been rediscovered. As well, a new structure
based on bilinear-LDI integrators instead of bilinear integrators has been
discovered. Finally, the concept of highpass ¥-A converter has briefly been
introduced.

The proposed new design technique may prove more useful when applied
to higher order £-A converters. However, the complexity of the related trans-
fer functions and the number of possible solutions may reduce the practicality

of the proposed technique.



Chapter 4

Bandpass Sigma-Delta

Conversion

4.1 Introduction

Conventionally, X-A converters are designed such that the quantization noise
transfer function, NTF(z), has a highpass characteristic while the signal
transfer function, STF(z), has a lowpass characteristic. The main draw-
back of lowpass X-A converters is that any increase in the performance, as
measured by the SQNR for a given structure requires an increase in the sam-
pling frequency. However, such an increase is not always possible due to the
technology limitations.

In 1989, Schreier and Snelgrove [SS89] developed a new methodology
for ¥-A converter design, where the converter (called bandpass £-A con-
verter) is designed such that its quantization noise is small around a mid-
band frequency, away from DC. This is achieved by moving the zeros of
the quantization-noise transfer function away from DC to locations close to

the desired mid-band frequency on the unit circle. The resulting bandpass
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2-A converters give rise to low quantization noise around the mid-band fre-
quency. Schreier and Snelgrove also showed that the oversampling ratio is a
function of the passband width instead of the signal frequency, thus relaxing
the constraints on the sampling frequency.

This chapter reviews the existing design techniques for bandpass Z-A
A/D conversion and presents a set of comparison criteria. A new %-A con-
verter configuration based on existing structures is presented along with its
corresponding design procedure.

Section 4.2 introduces some definitions and general considerations related
to the transfer functions. Some special cases are discussed and the important
notion of transfer function complementarity is introduced.

Section 4.3 reviews the design specifications relating to the noise transfer
functions. The general form of the noise transfer function is then derived.
This is followed by the discussion of issues such as the order of both the
noise and signal transfer functions. A formula for the estimation of the
performance of the converter based on its noise transfer function concludes
this section.

Section 4.4 applies the results of Section 4.3 to the design of transfer
functions satisfying a set of design specifications as an example.

The resulting transfer functions are applied to the design of a cascade-of-
integrators £-A converter configuration in Section 4.5. The resulting design
is then investigated and a switched-capacitor implementation of the design
is discussed.

In Section 4.6, the design (based on the results of Section 4.4) of a cas-
cade-of-resonators is investigated. The procedure parallels the procedure
used in Section 4.5.

Section 4.7 presents a comparative discussion of the structures synthesized
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in Sections 4.5 and 4.6.
Finally, Section 4.8 introduces a new X-A converter configuration which
combines the best features of the structures synthesized in Sections 4.5 and

4.6. Its switched-capacitor implementation is also considered.

4.2 General Considerations

Generally, a single quantizer £-A A/D converter configuration can be rep-
resented as shown in Fig. 4.1, where U(z) represents the input signal, E(z)
represents the quantization error and @(z) represents the quantized output

signal. Also, G(z) and H(z) are two rational transfer functions in =z.

l E(z)
UG | 6e) | H() [ A2
- _

Figure 4.1: A Generic Z-A A/D Converter.

By inspection of Fig. 4.1, the relationship between the signals U(z) and
E(z), and the output signal Q(z) can be found to be

Q) = G(z)l__ng_z)U(z) + T g B (4.1)

The signal and the noise transfer functions therefore correspond to

G(2)H(z)

- H(z) (4.2)

STF(z) =
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and
1

NTF(Z) = -i—-_—H_—(z—),

(4.3)

respectively.

The transfer function H(z) is a rational function in z and can be written

Ng(z)
H(z) = =222 4.4
(2) DFI( Z) ( )
where Ng(z) and Dg(z) are two polynomials in z which represent the nu-
merator and the denominator of H(z), respectively. In this way, Eqns. (4.2)

and (4.3) can be rewritten

Ny (z)

Dn(z) — Na(2)’ (4.3)

STF(z) = G(z)

and

_ Dg(z)
NTF(z) = =T (4.6)

At this point, two special cases can be distinguished.

Firstly, if the denominator of G(z) is unity (i.e. if G(z) itself is a polyno-
mial instead of being a rational transfer function in z), then it follows from
Eqns. (4.5) and (4.6) that STF(z) and NTF(z) share the same denomina-
tor. In this case, the polynomials N(z), S(z) and D(z) are introduced in

accordance with

N(z) _ Dr(z)

NTF(z) = 55 = 5oy (4.7)
and
STF(z) = S(2) G(z) Na(z) (4.8)
"~ D(z) "' Dy(z) — Nu(z)’ '

Secondly, if G(z) = 1, then STF(z) and NTF(z) are related to each other
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in accordance with

STF(z) = NTF(z) — 1. (4.9)

Two transfer functions respecting Eqn. (4.9) will be said to be complemen-

tary.

Also, from Eqns (4.7) and (4.8), the relationships

S(z) = Ng(z), (4.10)
N(z) = Dg(z), (4.11)

and
D(z) = Du(z) — Nu(z) (4.12)

hold.

Equivalently, H(z) can be represented as

HG) = e (413)
provided that
G(z) =1. (4.14)

Eqn. (4.9) implies that in the vicinity of the zeros of NTF(z), the magni-
tude of STF(z) is approximately unity. Therefore, a £-A converter such as
the one shown in Fig. 4.1 ensures that the signal transfer function will have a
minimal effect on the input signal in the region where the quantization noise
is minimized. Eqn. (4.9) also means that there is only a need to design an

acceptable noise transfer function, the signal transfer function being fixed by

Eqn. (4.9).
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4.3 Transfer Function Design

4.3.1 Design Specifications

In the design of bandpass X-A A/D converters, the design specifications

usually include the specifications given in Table 4.1. These specifications are

Center frequency f
of the signal ¢
Bandwidth BW
Sampling Frequency fs
SQNR to achieve
(usually in dB) SQNR.5

Table 4.1: General Design Specifications for a Bandpass £-A Con-
verter

also shown in Fig. 4.2.

Input Signal
Spectrum

Figure 4.2: Graphical Representation of the Specifications in Ta-
ble 4.1.

In the case of bandpass ¥-A conversion, it has been shown [SS89] that

the oversampling ratio (OSR) becomes

_ s
OSR = === (4.15)
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The advantage is that a higher OSR can be achieved by a bandpass £-A

converter when compared to lowpass converters.

4.3.2 Optimization Constraints

Because there is no readily available technique for the transfer function de-
sign, these have to be obtained by optimization. As shown in Section 4.2, if
a suitable structure is chosen, STF(z) and NTF(z) will be complementary in
accordance with Eqn. (4.9). Consequently, only the problem of the design of
NTF(z) will be considered.

According to Jantzi et al. [JOS94], the noise transfer function must satisfy
three design constraints. Firstly, the inband attenuation must be as large as

possible, i.e.

INTF(z)] = 0. (4.16)

Secondly, the X-A converter must be BIBO stable. It has been found
empirically that a £-A converter is less likely to become unstable if the out-
of-band gain of NTF(z) is less than 2 (6dB) [Lee87]. In order to keep a

security margin, NTF(z) will be constrained to
INTF(z)] < 1.6 (4dB). (4.17)

Thirdly, in order to have a realizable circuit, NTF(z) should not exhibit
a delay free path. Equivalently, the first sample of the impulse response of
NTF(z) should be unity. Therefore, the relationship

lim NTF(z) =1, (4.18)

must hold true.
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If these constraints are satisfied, the designed noise transfer function

should exhibit a reasonable margin against instability.

4.3.3 Structure of the Noise Transfer Function

Because the zeros of NTF(z) are not supposed to be at z = 1 (DC), it becomes
obvious that they will appear in complex conjugate pairs!. Therefore, the
order of N(z) (the numerator of NTF(z)) has to be even. Also, in order to
ensure a maximal attenuation of the quantization noise, the zeros of N(z)
have to be located on the unit circle. Denoting by wqr the frequency of the

the k-th zero of N(z) and by 2N its order, N(z) can be expressed as
N
Ni)=T1] (1 —2cosworz™ ! + z‘z) . (4.19)
k=1

The poles of NTF(z), on the other hand, are constrained to remain inside
the unit circle in order to ensure the BIBO stability of the converter. More-
over, in order to achieve a feasible noise transfer function, the order of the
denominator of NTF(z) has to be less than or equal to the order of N(z).
Also, to ensure a successful design, the largest possible number of degrees of
freedom is desired. Therefore, the order of the polynomial D(z) will be set
to the largest possible value, 2N. Denoting by wyi the frequency of the k-th
zero of D(z) and by p: the distance between the k-th zero of D(z) and the
point z = 0 + 70, D(z) can be written

N

D(z) =] (1 — 2p; cos wprz™t +p§z'2) . (4.20)
k=1

IWith the notable exception of z = ~1 which corresponds to the case of a highpass
3-A converter
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Combining Eqns. (4.19) and (4.20) into Eqn. (4.7) gives the desired form
of NTF(z),

N _ s} -2
NTF(z) = —*=k (1 —2coswok — +2 )_2 . (4.21)
[Ti=: (1 — 2px coswypkz™! + piz=?)

At this point, the following lemma can be given.

Lemma 4 The transfer function

I, (1 —2cosworz™! +272)
T (1 — 2pe coswpez™" + piz~?%)

NTF(z) = (4.22)

where 2N denotes the order of the transfer function, wq, represents the fre-
quency of the k-th zero of NTF(z), wpr is the frequency of the k-th pole
of NTF(z) and p. represents the distance between this pole and the point

z =0 + 50, satisfies the realizability condition
Lim NTF(z) = 1. (4.23)

Proof : By working out the limit

[N, (1 — 2 coswoez™" + z72)

iz [T, (1 — 2px coswprz™! + p22=2)’ (4.24)
Assuming that the condition z # 0 holds, the substitution
z=2z"! (4.25)
can be done. In this way, Eqn. (4.24) becomes
lim IV, (1 — 2coswoez + z2) (4.26)

z=0 [T (1 — 2pk coswpr T + piz?)’
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If z =0 is not a pole of NTF(z), the limit exists and the relationship

lim [TY, (1 — 2cosworz + z2)

=1. 4.27
z=0 [TV (1 — 2pk coswpiz + p2z?) (4.27)

holds true. This completes the proof of the lemma. g.e.d.
A direct consequence of Lemma 4 is that selecting a noise transfer func-
tion of the form given by Eqn. (4.21) ensures that the corresponding £-A

converter is realizable.

4.3.4 Order of the Signal and Noise Transfer Functions

The selection of the order of the signal and noise transfer functions cannot
be perfomed in a deterministic manner. However, analysis of a linear model
[SS89] suggests that the SQNR increases by 3(2NV + 3)dB per each doubling
of OSR, with 2N being the order of the transfer function of the £-A con-
verter configuration under consideration. Non-linear simulations of several
bandpass ¥-A converter configurations confirmed this expectation [JSS91].
Consequently, the order of the noise transfer function must be chosen based

on previous knowledge of similar situations.

4.3.5 Optimization of the Noise Transfer Function

At this point, the optimization of NTF(z) can be performed using com-
mercially available software such as MATLAB, the optimization constraints
being given by Eqns. (4.16) and (4.17).

If the transfer functions STF(z) and NTF(z) are chosen in accordance
with Eqn. (4.9) (i.e. they are complementary), there is no need to perform

the optimization of STF(z).
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4.3.6 Estimation of the Performance of the Optimized

Noise Transfer Function

This method was proposed by Jantzi [Jan92] and is based on a linear model.
In the case of a sinusoidal input signal, the final form of the SQNR can
be found to be [JSF93, Eqn.(8)]

2 2 —_—
SQNR,p = 10log 2= = 20log 22 + 4.77 — 20log NTE(J) + 10 log OSR,
B o? A

es
(4.28)
where A being the amplitude of the input sinusoid and where NTF(f) is the

average attenuation of the noise transfer function defined as

1
fo—fi

—_— fn
NTEF(/) = f, " INTE(S)ldf. (4.29)

Also, f; and fi correspond to the lowest and the highest frequency in the

signal frequency band, respectively and are defined in accordance with
fi=f-—1/2BW (4.30)

and
fa = fe+1/2BW (4.31)

4.4 Synthesis of the Noise Transfer Function

4.4.1 Introduction

A number of ¥-A converter configurations have been published. Among
them, two are of particular interest: the cascade-of-integrators [LS87] and

the cascade-of-integrators (see e.g. [JSF93]). This section uses these two
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structures for the design of a bandpass £-A converter respecting a set of

given design constraints as an example.

4.4.2 A Practical Example

Two different structures will be designed to implement the specifications

given in Table 4.2.

Sampling frequency | f, = 15 MHz
Center frequency fe =380 kHz
Bandwidth BW =100 kHz
SQNR to achieve SQNR,z = 70 dB

Table 4.2: Specifications for the Design of a Bandpass Sigma-Delta
Converter.

Based on Table 4.2 and after using Eqn. (4.15), the oversampling ratio

can be found to be

o fs . 5
OSR = =2t = 75. (4.32)

Note that if a lowpass £-A converter were to be used in this situation. the
OSR would be approximately 16.
Using Eqn. (4.28) and with an input signal having for amplitude A = A/2,

the average inband attenuation of NTF(z) must satisfy the constraint

NTF(z) < —47dB. (4.33)

After some iterations, it appears that the order of NTF(f) must be at least

4. The optimization process gave for the noise transfer function

N(z)  1—3.95192"' 45.9043z~2 — 3.95192~3 + 2~

D(z) 1—3.0492z' +3.5971z-% — 1.92402-3 + 0.3901 24
(4.34)

NTF(z) =
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and for the corresponding complementary signal transfer function

S(z) _ 0-—0.9026z"" + 2.3072z72 — 2.0279z° + 0.6099z*

D(s) =~ 1—3.0492z-! 4+ 3.5971z2 — 1.9240z—3 + 0.3901z—4"
(4.35)

In the present case, the zeros of NTF(z) can be found to be located at the

STF(z) =

frequencies fo; and foz given by

woy = 0.14419 (fo; = 344.24kHz) (4.36)
wor = 0.16567 (for = 395.51kHz). (4.37)

Throughout this chapter, the polynomial N(z) will be represented in its

most general form as
N(z)=14n2" 4 npz72 4o 4 ngnz™ 2N, (4.38)

with 2V being the order of the transfer function. Also, Eqn. (4.38) can be

written in the matricial format as

N(z) = 21 o811 N2N 410, (4.39)
where
Z= [ 20 7t 272 ... 2N ] ) (4.40)
and i )
1
n
N=1| n, |. (4.41)

| 2N
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Similarly, S(z) can be represented as

R
S
Siz) = [zn z7b 272 ... z‘zN] S2 (4.42)
=] 82N -
= Z.5. (4.43)
Finally, D(z) can be represented as
T
d
D(z) = [zo e e z—zN] d; : (4.44)
=3 d2N -
= Z-D. (4.45)

Fig. 4.3 shows the magnitude/frequency response of the signal- and noise-
transfer function over the whole spectrum (f € [0; f;/2]) and Fig. 4.4 shows
a close-up of the magnitude frequency response of STF(z) and NTF(z) in
the vicinity of the signal frequency band.

4.4.3 Estimated Performance of the Designed Conver-
ter
An analysis of NTF(z) shows that the average in-band attenuation defined

by Eqn. (4.29) is
NTF(z) = —60.9dB. (4.46)
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Fourth-Order Signal and Noise Transfer Function
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Figure 4.3: Magnitude/Frequency Response of NTF(z) and STF(z)
given by Eqns. (4.34) and (4.35).
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Figure 4.4: Close-up of the Magnitude/Frequency Response of

NTF(z) and STF(z) given by Eqns. (4.34) and (4.35) in the Sig-

nal Frequency Band.
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Using Eqn. (4.28), the estimated SQNR with an input sinusoid of ampli-
tude A=A/4is
SQNR,z = 78.5dB. (4.47)

Therefore, the proposed transfer functions should result in a £-A converter

configuration that fulfills the design specifications given in Table 4.2.

4.5 Synthesis of the Cascade-of-Integrators

3-A Converter Configuration

4.5.1 The Structure

The cascade-of-integrators £-A converter configuration has first been pro-
posed by Lee and Sodini in 1987 [LS87] in an attempt to improve the noise
shaping characteristics of lowpass £-A converters.

The fourth-order configuration of the cascade-of-integrators structure is

given in Fig. 4.5

Figure 4.5: The Fourth-Order Cascade-of-Integrators £-A Converter
Configuration.

Symbolic analysis of the £-A converter configuration in Fig. 4.5 shows
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the polynomials N(z), S(z), and D(z) to be

N(z) = 14 (~4—By)z"'+ (6 +3B, — B2)z 2 +

(—4 =3B, +2B; — B3)z"3 +

(1+ Bl — B2+ B3 — B4)z™* (4.48)
S(z) = 0+ A1z7t + (=34, + Ax)z7 2 +

(BA1 — 242 + A3)z ™3 + (—A1 + Az — Az + Ag)z™* (4.49)
D(z) = N(z)-S$(z). (4.50)

4.5.2 Determination of the Polynomial N(z)

The polynomial N(z) in Eqn. (4.48) can be rewritten in the product form

N(z)=Z -Cy-B, (4.51)
with

zZ = 29 71 =2 -8 z-"], (4.52)
(1 0 0o o0 0|
-4 -1 0 0 0

Cn = 6 3 -1 0 0 |, (4.53)
-4 -3 2 -1 0
1 1 -1 1 -1
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and
C ]

B,
B=| B, |- (4.54)
B3
B, |

Combining Eqns. (4.39) and (4.51) and solving for B results in
B=CjN. (4.55)

In this way, if the polynomial N(z) or, equivalently, the matrix A is known,

the coefficients By, £ = 1,2,3,4 can be determined.

Applying this method to the polynomial N(z) in Eqn. (4.34) and solving

for the matrix B gives
1

—0.048140
B=| —0.048709 |- (4.56)
—0.001137
—0.000568 |

4.5.3 Determination of the Polynomial S(z)

Eqn. (4.49) can be rewritten as

S(z)=2-Cs- A,

~~

4.57)
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with

and

= O O O o

(4.58)

(4.59)

where the first row and the first column of the matrix Cs as well as the first

element of the vector A have been introduced in order to remain consistent

with the definitions related to the noise transfer function.

Combining Eqns. (4.43) and (4.57) results in

A=Cp'S.

(4.60)

In a similar way as before, if the polynomial S(z) is known, the coefficients

Ak, k =1,2,3,4 can be uniquely determined. Applying this method to the

polynomial S(z) in Eqn. (4.35) gives

0
—0.902637
—0.400702
—0.121368

—0.013428

(4.61)
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4.5.4 Comments on the Polynomial D(z)

Eqn. (4.50) simply represents the fact that STF(z) and NTF(z) are comple-

mentary, in accordance with Eqn. (4.9).

4.5.5 Summary of the Synthesis of the Multiplier Co-

efficients

In this way, all the coefficients Ax and B, (k = 1,2,3,4) can be synthesized
so as to satisfy a given set of transfer functions. Moreover, this procedure
can easily be extended to higher order £-A converter configurations.

To summarize, the coefficients that implement the transfer functions given

by Eqns. (4.34) and (4.34) are given in Table 4.3.

A = —0.902637 A, = —0.400702 Az = —0.121368 A, = —0.013428
B, = —0.048140 B, = —0.048709 B; = —0.001137 B; = —0.000568

Table 4.3: Multiplier Coefficients for a Bandpass Cascade-of-
Integrators Sigma-Delta Converter.

4.5.6 Computer Investigation of the Cascade-of-Int-

egrators ¥-A Converter

The results given in Table 4.3 have been used to simulate the discrete-time
behaviour of the ¥-A converter designed in Section 4.5.

The variation of the SQNR as a function of the input signal amplitude
is investigated first. The input signal is chosen to be a sinusoidal signal of
frequency f = 375.2484 kHz, close to the center frequency f. = 380kHz of
the signal frequency band. The amplitude varies from A = A/2, defined as
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the 0dB level, to -90 dB, by increments of 1dB in the range —20dB < A <
0dB and by increments of 5dB elsewhere. The resulting graph is plotted in
Fig. 4.6.

Next, the variation of the SQNR as a function of the input signal fre-
quency is investigated. In this experiment, the amplitude of the input signal
is kept constant at -10 dB. The frequency of the input signal varies from 335
kHz to 425 kHz in 10 kHz increments. If the converter behaves in a2 manner
close to the linear model, the SQNR should remain approximately constant,

a fact which is confirmed by analysis of the results plotted in Fig. 4.7.

In an actual implementation using analog components, it is very unlikely
that the multiplier coefficients A; and By (with & = 1,2,3,4) will be im-
plemented with their exact optimized values. For example, in a switched-
capacitor (SC) implementation, exact ratios of capacitor values cannot be
obtained. Therefore, it is useful to study the behaviour of the cascade-of-
integrators £-A converter under random variation of the multiplier coeffi-
cients. As no analytical tool is available for this purpose, a Monte-Carlo

simulation has been employed.

It has to be pointed out that, in the present thesis, only variations of
multiplier coefficients have been considered, even though it would be more

realistic to consider capacitor variations in the actual SC implementation.

One thousand different circuits have been simulated and compared with
respect to their SQNR. For each circuit, the ideal value of each multiplier

coefficient is disturbed in accordance with
C'=C(1 +¢), (4.62)

where C is the optimized value of a given multiplier coefficient, ¢ is a random
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SONR of the Cascade-of-integrators
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Figure 4.6: SQNR vs. Input Signal Amplitude.
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Figure 4.7: SQNR vs. Input Signal Frequency.
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perturbation, and C’ is the resulting value of the coefficient. In the present
Monte-Carlo simulations, the perturbation has been chosen to be a white
Gaussian distributed variable with the standard deviation o = 0.0333. Thus,
the perturbation is guaranteed to be within 10% of the optimized value in
99.7% of the cases [Pis87, p.533].

The histogram in Fig. 4.8 shows the distribution of the SQNR after 1000
Monte-Carlo simulations. The main results are summarized in Table 4.4.

Histogram of SONR for 4th-Order Cascade—of-integrators
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Figure 4.8: Histogram of SQNR for the 4-th Order Cascade-of-
Integrators.

4.5.7 Switched-Capacitor Implementation of the Ca-
scade-of-Integrators ¥-A Converter
One of the most commonly used technologies for the implementation of -A

converters is the SC technology. The cascade-of-integrators L-A converter is

implemented in SC technology.
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[ SQNR with Optimal Coefficients 75.1 dB

Average SQNR 71.4 dB
Minimum SQNR 59.6 dB
Maximum SQNR 78.2 dB

Median SQNR 71.8 dB

Standard Deviation of the SQNR 3.9 dB
Percentage of circuits 99.1 %

above ideal SQNR

Table 4.4: Statistical Datas Related to the Monte-Carlo Simulation
of the 4th-Order Cascade-of-Integrators.

The SC schematic diagram corresponding to the converter in Fig. 4.5 is
presented in Fig. 4.9.

Each multiplier coefficient A; and By (with £ = 1,2,3,4) is implemented
by means of a capacitor ratio. Table 4.5 gives the capacitor ratios corre-

sponding to the multiplier coefficients.

B, CBI/CF1
B, CB2/CF1
B; CB3/CF1
B, CB4/CF1
A, CAl/CF5
A, CA2/CF5
As CA3/CF5
A; CA4/CF5

Table 4.5: Relationship Between Multiplier Coefficients and Capac-
itor Ratios.

In the first design stage, the capacitors C X1, CX2, CX3, CX4, CF1,
CF2,CF3,CF4, CF5, and CFG are set to unity. Consequently, the other
capacitor values are constrained to take the values given in Table 4.6. In an

actual implementation, negative capacitor values are taken care of by imple-
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menting the SC circuit with a fully differential structure. Also, it should be
pointed out that the capacitor values given in this chapter are dimensionless.
This is due to the fact that the multiplier coefficients are fixed by capac-
itor ratios. Therefore, dimensionless capacitors can be used. In an actual

implementation, a "unit” capacitor would be defined 2.

CX1 1 CF1 1
CX2 1 CF2 1
CX3 1 CF3 1
CX4 1 CF4 1
CFG 1 CF5 1

CAl -0.902637 | CB1 -0.048140
CA2 -0.400702 { CB2 -0.048709
CA3 -0.121368 | CB3 -0.001137
CA4 -0.013428 | CB4 -0.000568

Table 4.6: Initial Capacitor Value For the SC Implementation of the
Cascade-of-Integrators.

In order to optimize the performance of the SC $-A converter, the ca-
pacitors can be scaled in order to allow for a better dynamic range and a
reduced overall chip area [GT86, p.338]. For the purpose of scaling, the SC
Y-A converter under consideration will be assumed to be linear (i.e. The
quantization noise is assumed to be an additive white noise).

The capacitor scaling process proceeds in two phases. Firstly, the scaling
of the capacitors connected to the node A, B, C, and D will be performed
in order to guarantee the maximum of the magnitude/frequency response of
the signal transfer function to be unity at each of the nodes. The capacitor
values after the first scaling are given in Table 4.7.

The second scaling, also called scaling for unity minimum capacitor, is

2This value is usually in the pF range
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CX1 1 CF1 1.3989
cXx2 1.3989 CF2  4.6745
CX3 4.6745 CF3 17.038
CX4 17.038 CF4 77.748
CFG 1 CF5 1
CAl -1.262699 | CB1 -0.067343
CA2 -1.8730815 | CB2 -0.22769
CA3 -2.0733295 | CB3 -0.0194234
CA4 -1.044000 | CB4 -0.0441609

Table 4.7: Capacitor Values For
Cascade-of-Integrators After the First Scaling.

useful to reduce the total capacitance®, and, consequently to reduce the total

chip area. The procedure is explained in detail in [GT86, p.345]. The final

the SC Implementation of the

set of capacitor values is given in Table 4.8.

CX1 5148429 | CF1 72.02138
CcX2 1 CF2 3.341554
CX3 1 CF3 3.644881
CX4 1 CF4 4.563211
CFG 5148429 | CF5 1
CAl -1.262699 | CB1 -3.467107
CA2 -1.8730815 | CB2 -11.722458
CA3 -2.0733295 | CB3 -1
CA4 -1.044000 | CB4 -2.273593

Table 4.8: Final Capacitor Values For the SC Implementation of the
Cascade-of-Integrators.

This concludes the design of the cascade-of-integrators £-A converter

configuration.

3Defined as the sum of all the capacitor values on the circuit
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4.6 Synthesis of the Cascade-of-Resonators
2-A Converter Configuration

4.6.1 Presentation of the Structure

The cascade-of-resonators ¥-A converter configuration has first been pro-
posed and used by Adams et al. [AJG191] for a lowpass X-A converter.
This structure has been successfully used by Jantzi et al. in 1993 [JSF93]
and applied to bandpass conversion.

The schematic diagram for the fourth-order cascade-of-resonators struc-

ture is represented in Fig. 4.10. By symbolic analysis, the transfer functions

U@ -— -

Figure 4.10: The Fourth-Order Cascade-of-Resonators £-A Con-
verter Configuration.

STF(z) and NTF(z) can be found to be

N(E) = (14+(-2—-R)z '+ 21+ (-2—Ry)z" ' +2z7%)  (4.63)
S(z) = Aiz7'+ (A —3A1— A 1R)z"% +

(A3 —2A2 + AR, + 3A, + A\Ry)z7% +

(As—As+ Az — Ay)z™* (4.64)
D(z) = 1+(-4—B,— R, — Ry)z' +

(6 — By + 3B + RiB1 + 2R, + RiRy + 2R;)="% +

(-4 —B3+2B,+ B;R, — 3B, — BiR, - R, — R;)z"% +
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(1 — By + B3 — By + By)z~*. (4.65)

In the case of the cascade-of-resonators X-A converter configuration, the
complementarity of signal- and noise transfer functions is no longer ensured

by the structure itself.

4.6.2 Determination of the Polynomial N(z)

A comparative analysis of Eqns. (4.63) and (4.19) shows that the zeros of
N(z) are constrained to be on the unit circle. Moreover, the relationship
between the frequency for ({ = 1,2) at which the l-th zero of N(z) occurs
and the corresponding multiplier coefficient R;, is given by

Ry = 2cos (21.'%) -2, (4.66)

s

with f; being the sample frequency of the system.
Applying Eqn. (4.66) to the frequencies given by Eqns. (4.36) and (4.37),
gives for R; and R; :

R, = -0.020756
R, = —0.0273841. (4.67)

4.6.3 Determination of the Polynomial S(z)

In a similar way as in Section 4.5, the polynomial S(z) in Eqn. (4.64) can be

recast In the matricial form

S(z) = Z-Rs- A, (4.68)
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with
Z = | 20 z71 z72 -3 ] , (4.69)
(1 0 0 0 0]
0 1 0 0 0
Rs = 0 -3—-R 1 0 01, (4.70)
0 3+4R, —2—-R, 1 O
0 -1 1 -1 1]
and A
0
A,
A= 4, (4.71)
Asz
- ‘44 -

Combining Eqns. (4.43) and (4.68) and solving for A yields

A=R3'S. (4.72)

Replacing R; and R, by their numerical value given in Eqn. (4.67) in Rs
and filling S with the coefficients obtained through optimization gives for A

0
—0.902637
A= -0.381967 | . (4.73)
—0.094705
—0.005500
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4.6.4 Determination of the Polynomial D(z)

Finally, D(z) can be rewritten

D(z)= Z -Rp- B,

with
zZ = [ 29 z7l 272 -3 4 ] s
[ 1 0
—4— R, — Ry -1
Rp = 6+2R, + RiR; +2R, 3+ R
—-4—-R,—R; - =3-R;
i 1 +1
and ) _
0
Ap
A=| A,
Az
| As |

1
2+Rl
-1

Solving for B from Eqns. (4.45) and (4.74) gives

B =Rp'D.

-1

(4.74)

(4.75)

(4.76)

(4.77)

(4.78)
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A numerical application gives

1
—0.902637
B=| -0.381967 | - (4.79)
—0.094705
—0.005500

L J

4.6.5 Summary of the Synthesis of the Multiplier Co-

efficients

To summarize, the multiplier coefficients of a fourth-order cascade-of-resona-
tors £-A converter configuration implementing the transfer functions given

by Eqns. (4.34) and (4.35) are given in Table 4.9

R, = —0.020756 R, = —0.0273841
A; = —0.902637 A, = —0.381967 A; = —0.094705 A, = —0.005500
B; = —0.902637 B, = —0.381967 B; = —0.094705 B, = —0.005500

Table 4.9: Multiplier Coefficients for a Bandpass Cascade-of-
Resonators Sigma-Delta Converter.

4.6.6 Computer Investigation of the Cascade-of-Reso-

nators ¥-A Converter

The results of the design of the multiplier coefficients given in Table 4.9 are
used to simulate the discrete-time behaviour of the corresponding fourth-
order cascade-of-resonators ¥-A converter. The conditions of the simulations
are the same as the conditions given in Subsection 4.5.6.

For the investigation of the SQNR as a function of the signal amplitude,
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the frequency of the input sinusoidal signal is chosen to be f = 375.2485
kHz. The 0dB reference correéponds to a sinusoid of amplitude A = A/2.
The amplitude then varies from 0 dB to -80 dB. The resulting SQNR. plot
can be found in Fig. 4.11.

Next, the variation of the SQNR as a function of the input signal fre-
quency is investigated. In this experiment, the amplitude of the input signal
is kept constant at -10 dB. The frequency of the input signal varies from 335
kHz to 425 kHz in 10 kHz increments. If the converter behaves in a manner
close to the linear model, the SQNR should remain approximately constant,
a fact which is confirmed by analysis of the results plotted in Fig. 4.12.

For the same reasons as in Subsection 4.5.6, its is very unlikely that the
coefficients Ry, Ry, A1, A2, A3, A4, B1, B2, B3, and B4 may be implemented
with their optimized value. In order to investigate the influence of multiplier
coefficient variations on the SQNR, Monte-Carlo simulations are performed.
Each multiplier coefficient will undergo a perturbation of the form given by
Equation (4.62).

The histogram in Fig. 4.13 shows the distribution of the SQNR for 1000

different circuits. The main results are given in Table 4.10.

SQNR with Optimal Coefficients 75.1 dB

Average SQNR 76.2 dB
Minimum SQNR 70.4 dB
Maximum SQNR 78.8 dB

Median SQNR 76.3 dB

Standard Deviation of the SQNR 1.3 dB
Percentage of circuits 80.5 %
above ideal SQNR 270

Table 4.10: Statistical Datas Related to the Monte-Carlo Simulation
of the 4th-Order Cascade-of-Resonators.
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Figure 4.11: SQNR vs. Input Signal Amplitude.
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Figure 4.12: SQNR vs. Input Signal Frequency.
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Histogram of SONR for 4th-Order Cascade-of-Resonators
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Figure 4.13: Histogram of SQNR for the 4-th Order Cascade-of-
Resonators.

4.6.7 Switched-Capacitor Implementation of the Ca-

scade-of-Resonators ¥-A Converter

The SC schematic diagram of the converter in Fig. 4.10 is represented in

Fig. 4.14 and has been taken from [JSF93].

The multiplier coefficients are implemented by the means of the capaci-
tor ratios given in Table 4.11. Following the procedure outlined in Subsec-
tion 4.5.7, the capacitor values obtained after scaling for dynamic range and

for unity capacitance are given in Table 4.12.
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Figure 4.14: Switched-Capacitor Implementation of the 4-th Order
Cascade-of-Resonators.
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B, CBIJCFI1
B, CB2/CF?2
B; CB3/CF3
B, CB4/CF4
A, CAl/CF1
A, CA2/CF?2
A;s CA3/CF3
A; CA4/CF4
R, —CR1/CF2
R, —CR2/CF4

Table 4.11: Relationship Between Multiplier Coefficients and Ca-
pacitor Ratios.

4.7 Comparative Discussion of the Two Syn-

thesized Structures

4.7.1 Introduction

The two circuits designed in Sections 4.5 and 4.6 can be compared together

in the light of three different situations.
e Sensitivity of the structure
e Structure of the transfer functions

o Feasibility of the SC implementation

4.7.2 Sensitivity of the Structure

A practical SC implementation takes into account capacitor mismatches,
causing deviations in the transfer functions realized by of the converter, and,
consequently, degrading the SQNR. Therefore, the sensitivity of the structure

to parameter variations is one of the most important criteria. Naturally, if a
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CX1 1 CF1 22594785
CX2 54933513 | CF2 21.3229909
CX3 1 CF3 10.365451

CF4  3.5230439
CAl  -2.039489 CBl1 -2.039489
CA2 -18.40272695 { C B2 -18.4027269
CA3  -8.609546 CB3 -8.609546
CA4  -1.761522 CB4 -1.761522
CR1 1 CR2 1

Table 4.12: Final Capacitor Values For the SC Implementation of
the Cascade-of-Resonators.

structure is less sensitive to random perturbations than another, then it will

be more suitable for a practical SC implementation.

Throughout this chapter, the main performance criterion is the signal-
to-quantization noise ratio, providing a good basis for the comparison of
the above two bandpass £-A converter configurations. Because there is no
readily available analytical tool to study the sensitivity of the cascade-of-
integrators and the cascade-of-resonators ¥-A converter configurations, the
only alternative to provide an insight into the sensitivity of these structures
is to perform a detailed Monte-Carlo analysis. This has been performed
successfully for both structures and its main results are given in Tables 4.4
and 4.10. It can be observed that the cascade-of-resonators X-A converter
configuration has a better behaviour than the cascade-of-integrators. The
statistical data shows, notably, that, in average, the SQNR of the cascade-
of-resonators structure is almost 5dB better than the SQNR of the cascade-
of-integrators. The main reason is due to the structure itself and is discussed

in the next section.
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4.7.3 Influence of the Topology of the Converter on

the Transfer Functions

The topology of each X-A converter configuration directly influences the com-
position of the transfer functions. For example, Eqn. (4.50) indicates that the
noise transfer function and the signal transfer function are complementary.

The main feature of the cascade-of-resonators is the presence of resonators
which constrain the zeros of the noise transfer function on the unit circle. Any
perturbation of the parameter R; ({ = 1,2,---, N, with 2N being the order
of the structure) will only affect the frequency at which the zeros occurs but
will not move any zero away from the unit circle. In this way, the degradation
of the effectiveness of the noise transfer function is minimized.

The sensitivity Sg' of the frequency wor = 27 for/ fs with respect to the

coefficient R, is defined as

Suog — _‘_R_!_du"ol
Re = o dRy”

(4.80)

Replacing R; by wo = 27 foi/ fs from Eqn. (4.66) into Eqn. (4.80) gives

—1/2R;

arccos (5'212-) \/1 - (&5'-"3)2.

ol
Sg =

(4.81)

Fig. 4.15 plots the sensitivity Sg>* as a function of the multiplier coefficient
R;, in the range —4 < R; £ 0. As it can be observed, the magnitude
of the sensitivity is less than unity in the range —3.4 < R; < 0 (i.e. a
1% variation of R) implies 2 1 % or less variation of the frequency wu).
Therefore, it can be concluded from the analysis of the cascade-of-resonators
2-A converter configuration that such a structure has a low sensitivity to

parameter changes.
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Figure 4.15: Sensitivity of the Frequency wy as a Function of R;.

4.7.4 Feasibility of the SC implementation

In order to reduce the cost of a SC implementation, it is important to ensure
that the chip area is small. Moreover, the chip area is in direct proportion
with the size of the capacitors as they are the ones that require the most area
(the transistors and the switches being of a much smaller size). Therefore,
it s important that the total capacitance is minimized. In much the same
way, wide capacitor spreads are very difficult to obtain. Typically, the ratio
between the smallest capacitor and the largest one must remain less than
50. Comparing the results of the SC implementation given in Tables 4.8
and 4.12 show that the cascade-of-resonators gives the best results in terms

of capacitor spread as well as in terms of total capacitance (see Table 4.13).
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4.7.5 Summary of the Comparison Criteria

From Table 4.13, it can be seen that in most aspects, the cascade-of-re-
sonators ¥-A converter configuration appears to be more suitable for SC
implementation. Of particular interest are the low sensitivity of the structure
to parameter variations and the low capacitor spread. However, the cascade-
of-resonators structure does not exhibit the important feature of transfer

function complementarity.

Criterion Cascade-of Cascade-of
Integrators Resonators
Total Capacitance 164.7 108.6
Capacitance spread 72.02 21.32
SQNR Std. Deviation
(from Monte-Carlo Simulations) 3.9.dB 1.3dB
Complementary Transfer Functions Yes No
Zeros of NTF(z) on Unit Circle No Yes

Table 4.13: Comparison Between the Cascade-of-Integrators and the
Cascade-of-Resonators £-A Converters.

4.8 A New Resonator Based Structure for
Bandpass ¥-A A/D Conversion

4.8.1 Introduction

In Section 4.7.5, it has been seen that the cascade-of-resonators is a very
useful structure. Its low sensitivity to parameter changes makes this structure
very interesting for a SC implementation. The cascade-of-integrators, on the
other hand, proves to be more sensitive to parameters perturbations but

exhibits the important feature of complementary transfer functions. This
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section introduces a new structure which combines the best features of the

above two structures and gives a formal design procedure.

4.8.2 The Proposed New Structure

The schematic diagram in Fig. 4.16 shows the general form of the proposed
E-A converter configuration. This configuration is composed of a single-bit

quantizer and NV second-order resonators, leading to a structure of order 2N.

Y(z)

Figure 4.16: The New Cascade-of-Resonators.
At this point, it is useful to give the following lemma.
Lemma 5 The schematic diagram of order 2N shown in Fig. {.17 has the

transfer function

Zfev=1 (Ha(z, k)) z~ %2 H{ik-n (1+(-2-R)z"1+ 2‘2)

A+ (-2-R)e +57) » (482

Hn(z) =

where
HA(Z, k) = Agk_lz-l + (—Azk_l + Agk) 2—2. (483)

Proof : By mathematical induction. For N = 1, Fig. 4.17 reduces to
the circuit shown in Fig. 4.18. Symbolic analysis shows the transfer function

to be

H1 (Z) _ Y(Z) _ Alz‘l + (—Al <+ Az) z—2

T X(@)  I+—(-2-R)z'+422 (4.84)
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(@A

Figure 4.17: Structure for Lemma 5.
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Y(2)

Figure 4.18: Structure for N = 1.

Substituting NV = 1 in Eqn. (4.82) proves the validity of the lemmafor N = 1.
Therefore, it is sufficient to show that if the lemma holds true fr N = M,
then it also holds true for N = M + 1.

In order to calculate the transfer function of the structure when N =
M +1, let the building block shown in Fig. 4.19 be introduced. Two transfer

)f( (z)

Figure 4.19: Building Block.

functions can be defined. The first one denoted by Hyvw, (2) relates the signal
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Vk(z) to the ouput Wi(z) and is given by

Wi(z) z=2
= = . 4.85
Hyw,(2) Vi(z) 14+(-2—Re)z"' + 272 ( )
Similarly, Hy x, (2) relates Vi(z) to Xi(z) in accordance with
-1 _ -2
Hyx(2) = Xi(z)  Agp—yz7' 4+ (—Agk—1 + A2i) 2 . (4.86)

T Yi(z) 14+(—-2— Re)z~t + 22

The structure shown in Fig. 4.17 when N = M + 1 can be represented as

shown in Fig. 4.20.

Y@ Structure of
] Order M

Xl(z) Xz(z) I X3 (zi X M(z)

Figure 4.20: Structure of order M + 1.

Y(@)

At the final adder, the equality
M
Y(z) =) Xe(z) + Xpaa(2) (4.87)
k=1

holds. But the term "M, X, (z) corresponds to the output of the structure

of order M. In this way, the sum can be replaced by

M
S Xe(z) = Va(2) Hie(2)- (4.88)
k=1
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Also, using Eqn. (4.86), Xar+1(z) becomes

Axmyny—1271 + (—Az(M+1)—1 + A2(M+1)2_2)

=V . .
Xm1(z) M+1 1+ (=2 — Ragpiz—' + 2-2) (4.89)
Replacing Eqns. (4.88) and (4.89) into Eqn. (4.87) yields
Y(z) = Vi(z)Hum(2) +
Ao(mr41)—1271 + ("’A2(M+l)—]. + Az(M+1)Z-2)
Vat4 - — = - (4.90)
1+(—2—RM+12 l-i-z 2)
Using Eqn. (4.85), it becomes evident that
VMmir(z) = Wa(z) (4.91)
-2
4
= Vu(2) T iy e 2 (4.92)
Applying iteratively Eqn. (4.85) to Eqn. (4.92) yields
M 5=2
Vamsi(z) = Vi(2) - H (4.93)

o L+ (=2 = Re)z=t + 272

Replacing Var41(2) in Eqn. (4.90) by its expression in Eqn. (4.93) gives for
Y(z)

Axmay—127H + (—Az(M+1)-1 + Az(M+1)Z'2)
1+ (—2 - RM.H_Z-I + 2-2)

Y(z) = W(z)Hu(z)+Vi(2)

M -2
. I::E[l 1+ (=2—Rg)z"t 4272 (4.94)

Dividing Eqn. (4.94) by V;(z) and reordering the terms in the quotient yields

Y(z)

Vi@ " Hp(2) = Hu(2) +
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M+1 1

M ~2M |
(Ha(z,M +1)) 2 k]';]; 1+ (=2—R)z71+ 272

. (4.95)

But, by assumption, Eqn. (4.82) holds true. In this way, Hs(2) in Eqn. (4.95)

can be replaced in accordance with

Zk-l. (Ha(z,k)) z=(2-2) Hl s (1 + (-2 - Ri)z7' + 2—2)

[Tis; (14 (=2 — Re)z~* + 272)
M+1 1

Ha(z, M +1))z72M. -
(Ha(z, M +1)) 2 kI-:-I1 14+ (-2~ Rg)z71 4272

HM+1(Z) =

(4.96)

Multiplying the first ratio by (1 + (—2 — Rpr41)z~! + 272) and re-grouping
yields

Hya(z) =
Tt (Ha(z, k) z" DML (1 + (=2~ R)z7' +272)
M (1 4 (=2 — Rz~ + 272)

- (4.97)

establishing the validity of the lemma for N = M + 1. g.e.d.
The polynomials N(z), S(z), and D(z) as defined in accordance with

Section 4.2 are given by the following theorem.

Theorem 3 The polynomials N(z), S(z), and D(z) describing the proposed
new cascade-of-resonators £-A converter configuration shown in Fig. 4.16

are given by

N
N(z) = JI[1+(-2~ Rz +277, (4.98)
k_
N
S(Z) = Z [A2! 12 —(2-1) +( Azl-l + Ag[)z—ﬂ] 2-2
i=1
N
II f+(2-R)z"+277, (4.99)
k=il+1

D(z) = N(z)- S(2). (4.100)
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Proof: By making use of Eqn. (4.13), the proof of the theorem reduces

to the proof of lemma 5. q.e.d.

4.8.3 Design Procedure

From Eqn. (4.98), it can be shown that all the zeros of N(z) lie on the unit

circle, provided that
—4 < R. <0, Vk. (4.101)

Also, in a similar manner as for the cascade-of-resonators (Section 4.6), the
relationship between the frequency for at which the k-th zero of N(z) occurs

and the corresponding parameter Ry, is given by

Ry = 2cos (27r%) -2, (4.102)

with f; being the sampling frequency of the system.

In the synthesis process, the polynomial N(z) is known. In this way, the
frequencies for are known. Eqn. (4.102) can then be applied in order to find

the value for the coeflicients Ry.

The polynomial S(z) in Eqn. (4.99) can be rewritten
S(z) = 2128 - Ranan - Aan, (4.103)

with
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1 0 0 0
Ta21 1 0 0
R = r31 3,2 1 0 L}

| TaNg TNz Tanvg ccc 1
- ;
A

Az

| Az |

By inspection of Eqn. (4.99), it can be shown that the matrix R is lower

triangular. Also, its principal diagonal is composed of unity elements.

Because of the complementarity of the transfer functions, the polynomial
S(z) can easily be determined by using Eqn. (4.100). Also, S(z) can be

written (in its most general form) as

S(Z) = 512-1 -+ -522—2 +---+ S2Nz-2N1 (4104)
or, equivalently,
- -
S1
S2
S(z) = [ 2=l -2 z—2N ] (4.105)
| san |
= Z128SN- (4.106)

Therefore, combining Eqn. (4.106) and Eqn. (4.103) and solving for A, results
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A=R'.S. (4.107)

4.8.4 Design Example
Synthesis of the Multiplier Coefficients

In this Section, the fourth-order transfer functions in Eqns. (4.34) and (4.35)
are applied to the new structure of order 4. The schematic diagram of the

converter configuration of order 4 (N = 2) is shown in Fig. 4.21.

_—@7 lE(z)

Y@

|

&ZDEES»

Figure 4.21: New Resonator-based Structure of Order 4.

Using Theorem 3 with N = 2, the polynomials N(z), S(z), and D(z) of

the new structure become

N(z) = (1+(=2= Rzt +272) (14 (=2 — Ro)z™" + 272) (4.108)
S(z) = [Aiz'+(—A1+ A)z7 (1+(=2—Ry)z +272) +
[Asz™! + (—As + Ag)z™?| 272 (4.109)
= Aiz7' +(—RpA; —3A, + Ay)z7 2 +
(3A; + RaA; — 245 — Ry Ay + A3)z"% +
(—Ar1+ A2 — Az + Ag)z74, (4.110)

and
D(z) = N(z) — 5(=). (4.111)



4.8 A New Resonator Based Structure

121

Applying Eqns. (4.36) and (4.37) to Eqn. (4.102), the multiplier coeffi-

cients R; and R, are given by

R, = —-0.020756,and (4.112)
R, = -0.0273841. (4.113)

The procedure for the synthesis of the coefficients Ag, £ = 1,2, 3,4 is the
same as the procedure described in Section 4.5.3. The resulting multiplier

coefficients are

(4, ] [ —0.902637
A, —0.381967
A= = . (4.114)
As ~0.094705
| A, | | —0.005500 |

Computer Investigation of the New Cascade-of-Resonators I-A

Converter

As in Sections 4.5.6 and 4.6.6, a computational investigation of the new
cascade-of-resonators X-A converter configuration can be carried out. The
first investigation is concerned with the variation of the SQNR as a function
of the input signal amplitude. The input signal sinusoid is chosen to be
f = 375.2485 kHz. The 0dB reference corresponds to a sinusoid of amplitude
A = A/2. The amplitude then varies from 0 dB to -80 dB. The resulting
SQNR plot is shown in Fig. 4.22.

The variation of the SQNR as a function of the input signal frequency
is not performed as the previous investigations were sufficient to prove the
validity of the white quantization noise assumption.

A set of one thousand Monte-Carlo simuations is carried out. Each multi-

plier coefficient will undergo a perturbation of the form given by Eqn. (4.62).
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The histogram shown in Fig. 4.13 shows the distribution of the SQNR. for
1000 different circuits. The results are given in Table 4.14.

SQNR with Optimal Coefficients 75.1 dB

Average SQNR 76.3 dB
Minimum SQNR -37.11 dB
Maximum SQNR 79.0 dB

Median SQNR 76.9 dB

Standard Deviation of the SQNR 6.6 dB
Percentage of circuits
above ideal SQNR 88.5 %

Table 4.14: Statistical Datas Related to the Monte-Carlo Simulation
of the 4th-Order New Cascade-of-Resonators.

As expected, the new cascade-of-resonators exhibits SQNR characteristics
that are as good as the characteristics of the conventional cascade-of-resona-
tors designed in Section 4.6. The only drawback is that in some circumstances
during the Monte-Carlo simulations, the converter under consideration be-
came unstable. No explanation could be found to explain the instabilities.
By not taking the unstable circuits into account, the minimum SQNR is
72.0dB and the standard deviation is 1.3 dB. These values are comparable

to the performance of the cascade-of-resonators investigated in Section 4.6.6.

Switched-Capacitor Implementation of the New Cascade-of-Reso-

nators

The proposed new cascade-of-resonators structure can be implemented using
SC technology. The corresponding schematic diagram is shown in Fig. 4.24.

The multiplier coefficients are implemented by pairs of capacitors as given
in Table 4.15.

After scaling for dynamic range and for unity capacitor, as explained in
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SONR of the Cascade-of-Resonators
80 Y T T -r T T

SONR (¢8)
3

201

_40 A 3. A A A £ 1 - -
-90 -80 =70 =60 -50 -40 =30 -20 -10 o)
Input Signal Amplitude (dB}

Figure 4.22: SQNR vs. Input Signal Amplitude.
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Figure 4.23: Histogram of SQNR for the 4-th Order New Cascade-
of-Resonators.
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Figure 4.24: Switched-Capacitor Implementation of the 4-th Order

New Cascade-of-Resonators.
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A, CAL/CF5
A, CA2/CF5
A; CA3/CF5
A, CA4/CF5
R, —-CRI1/CF3
R, ~CR2/CF1

Table 4.15: Relationship Between Multiplier Coefficients and Ca-
pacitor Ratios.

Section 4.5.7, the final capacitor values are given in Table 4.16.

CX1 14.1432513 | CF1 16.0059175
CX2 1 CF2 3.0813820
CX3 19122152 | CF3 9.5660113
CX4 1 CF4 3.8174262
CFG 14.1432513 | CF5 2.7302077
CAl -2.7889462 | CR1 1
CA2 -3.6366238 | CR2 1
CA3 -4.5106545

C A4 -1

Table 4.16: Final Capacitor Values For the SC Implementation of
the New Cascade-of-Resonators.

The total capacitance is 81.34 and the capacitor value spread is 16.01.

4.8.5 Comments of the Performance of the New Struc-

ture

The cases where the converter becomes unstable discarded, the Monte-Carlo
analysis of the new X-A converter configuration proves the structure to be-
have as expected. Its main characteristics include the zeros of the noise

transfer function on the unit circle, a very efficient way of minimizing the
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effect of non-ideal component values, and complementary transfer functions
ensuring a minimal signal distortion in the low-noise frequency band.

The switched-capacitor implementation also shows a reduced capacitor
spread as compared to the cascade-of-integrators (16.0 vs. 72.02) as well
as a total capacitance reduced by half. All these considerations lead to the
conclusion that the proposed resonator-based £-A converter configuration is

a suitable candidate for A/D £-A conversion.

4.9 Conclusions

This chapter has reviewed the existing design techniques for bandpass %-
A A/D conversion and presented a set of comparison criteria. A new X-A
converter configuration based on existing structures has been presented along
with its corresponding design procedure.

Section 4.2 has introduced some definitions and general considerations
related to the transfer functions. Some special cases have been discussed
and the important notion of transfer function complementarity has been
introduced.

Section 4.3 has reviewed the design specifications relating to the noise
transfer function. The general form of the noise transfer function has then
been derived. This has been followed by the discussion of issues such as
the order of the transfer functions. A formula for the estimation of the
performance of the converter based on its noise transfer function concluded
the section.

Section 4.4 has applied the results of Section 4.3 to the design of transfer
functions satisfying a set of design specifications as an example. The resulting

transfer functions have been applied to the design of a cascade-of-integrators
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Y-A converter configuration in Section 4.5. The resulting design has then
been investigated and a switched-capacitor implementation of the design has
been discussed.

In Section 4.6, the design (based on the results of Section 4.4) of a cascade-
of-resonators has been investigated. The procedure paralleled the procedure
used in Section 4.5.

Section 4.7 presented a comparative discussion of the structures synthe-
sized in Sections 4.5 and 4.6. Comparison criteria have been established as
well.

Finally, Section 4.8 has introduced a new £-A converter configuration
which combines the best features of the structures synthesized in Sections 4.5

and 4.6. Its switched-capacitor implementation has been considered.



Chapter 5

Conclusions

5.1 Review of Material Presented

This thesis has been concerned with the analysis and design of higher-order
(third-order or more) £-A converters.

Chapter 1 presented an overview of the basic principles of A/D conversion,
leading to ¥-A conversion as introduced in 1962 by Inose and Yasuda [IY63].
A more specific attention to multi-loop, multi-stage and bandpass configura-
tions has been given in this chapter.

Chapter 2 was concerned with the analysis of the quantization noise in
multi-loop £-A converter configurations. The resulting mathematical deriva-
tions have than been applied to the case of triple-loop converters under sinu-
soidal input signal excitations. The results have been facilitated by the fact
that the quantization error function is a periodic function of the input signal
to the quantizer. A computer investigation confirmed the validity of the re-
sults. Finally, a discussion of the spectral characteristics of the quantization
noise has justified the validity of the white noise assumption as a model for

the quantizer.
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In Chapter 3, a new approach to the design of £-A converters has been
proposed. The leading idea was to enumerate all the possible connections
between the elements that compose the ¥-A converter configuration. This
method has then been applied to the design of first-order structures. A new
structure for lowpass ¥-A conversion based on bilinear-LDI integrators has
been introduced along with the idea of highpass X-A conversion.

Chapter 4 has discussed the design of bandpass £-A converters. The
design criteria for the transfer functions have been discussed and a set of
transfer functions have been successfully designed to meet specific design
specifications. Two known structures have then been designed and compared.
Comparison criteria were derived from a practical point of view. Of particular
interest is the use of the notion of complementary transfer function. Finally,
a new resonator-based structure has been proposed. A design and a subse-
quent comparison with the existing structures has been presented. Through
the discussion, it appeared that the proposed new structure exhibits the best
features of both known structures as it exhibits complementary transfer func-
tions and has a low sensitivity to parameter variations. This new structure

seems to be well suited for switched-capacitor implementation.

5.2 Original Contributions

To the best of the author’s knowledge, the following contributions are be-

lieved to be original.

5.2.1 Chapter 2

e The open-loop equivalent for multi-loop £-A converter configurations

(Section 2.1).
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@ The closed-form solution for the triple-loop £-A converter configura-

tion with sinusoidal input signal excitations (Section 2.2).

5.2.2 Chapter 3

® The new approach to the design of £-A converter configurations.
@ The new LDI-integrator based lowpass X-A converter (Section 3.4.2).

e The notion of highpass £-A conversion (Section 3.5).

5.2.3 Chapter 4

e The exploitation of the concept of transfer function complementarity

(Section 4.2).
e The general form for the noise transfer function (Section 4.3).

@ The use of matrices for the design of £-A converters (Sections 4.4, 4.5,

and 4.6).
e The comparison criteria in Section 4.7.

® The new structure in Section 4.8.

5.3 Proposed Areas for Future Work

This thesis has presented several design techniques for the synthesis of -
A converters. In particular, the technique developed in Chapter 3 can be
useful for the discovery of new ¥-A converters. In spite of the complexity

of the search space, this technique can be applied to second or higher-order
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structures in an attempt to discover new configurations. A more formal
description of the proposed technique should also be investigated.

The comparison criteria proposed in Section 4.7 could be applied to other
new structures. The analysis of a lattice-based structure such as the one in
Fig. A.l in Appendix A.2 or other structures should be attempted as well as

their switched-capacitor implementation.

5.4 Concluding Remarks

From a more personal point-of-view, I admit I regret to have to wrap up
the research work after just two years. As I am now well acquainted with
the field of £-A conversion, every day brings a new idea or a new concept
to explore. Eighteenth-Century French playwright Beaumarchais once wrote
in his masterpiece "The Barber of Seville” : ” La difficulté d’aboutir ne fait
qu’ajouter a la nécessité d’entreprendre”. A sentence that can be translated
as "Obstacles to success only add to the necessity to undertake”. If research
is indeed difficult to undertake as this quotation may imply, the rewards
associated with success make it worthwhile to be considered. I am very proud
to have been part of a research group and to have helped, in a modest way,
to further the understanding of the world that surrounds us, even though the

present work is only a small brick in the wall of Knowledge.
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Appendix

A.1 Proof of Lemma 2

The proof of Lemma 2 will be given by mathematical induction.

The lemma holds true for N = 1. In this case, Eqn. (2.29) becomes

n-1 il l-14(n-1)—k
S ull) =Y ( ) u(k). (A1)
L=1 k=1 1-1
Expanding the binomial coefficient yields
n—1 n—1 n—1-— k
Yout) = Y ( ) u(k) (A.2)
L=1 k=1 0
n—1
= Y u(k). (A.3)
=1

Therefore, it is sufficient to prove that if the lemma holds true for NV = M,

then it is also true for N = M + 1.

When N = M + 1, the left-hand part of the equality in Eqn. (2.29)
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becomes
n-1 Iae1 Uy I3 b
2 2 >3 Y ull) (A4)
L=l I lagy la=1l;=1

Equivalently, Eqn (A.4) can be rewritten

n=1  fUrp1+1)-1 Iy s b
i (S 2 D) (A9
IMy1=1 Iq=1 lyg—=1 la=14L4=1

But Lemma 2 is assumed to hold true for N = M. Therefore, Eqn. (A.5)

nol e fOM 1 gy —k
DD ( M )u(k). (A.6)

Igs1=1 k=1 M-1

becomes

Expanding the summations in Eqn. (A.6) yields

IMﬂ=l
M-1+41-1
u(l)+
M-1
IM.':=2
M-1+2-1 M-1+2-2
u(l) + u(2)+---
M-1 M-1
IM_an—l
M-14+(n-1)—-1 M~-1+4+(n—-1)-2
+ =D+ ) PO S
M-1 M-1
lM.an—l
M-1+n-1)-(n—-1
( (=1)=(m ))u(n—l). (A.7)
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After regrouping the terms u(-) with similar arguments, Eqn. (A.7) becomes

fiﬁ(M—1+k)u(1)+n§(M—1+k)u(2)+___
k=0

k=0 M-1 M-1
o[ M-1+k

DD u(n —1). (A.8)
k=0 M-1

Using the identity [Spi68, Eqn. 3.9]

i(n+k)=(n+m+l)’ (A.9)
k=0 n n+1

Eqn. (A.8) becomes

( n—1)— - e

M+ (n—1) 1)u(1)+(M+(" Y °)u(2)+---+
\ M M
(M+(n-1)=(n—1) )u(n_l). (A.10)
\ M

Regrouping the terms gives

i M+ (n—-1)—k

T ( (n=1) ) u(k). (A.11)
Using N = M + 1, Eqn. (A.11) becomes

(A.12)

> N-1

k=1

"-‘(N—-l+(n—1)—k)

establishing the proof of the Lemma for N =M + 1. Q.E.D.
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A.2 Lattice-based X-A Converter Configura-
tion

Fig. A.1 presents the schematic diagram for a lattice-based £-A converter

configuration.

I $as S iu [ Lo

= \EH: = P % A==

Figure A.1: Lattice-based ¥-A Converter Configuration.
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