
THE UNIVERSITY OF CALGARY 

Interpolation On Contours 

by 

Arunas G. Salkauskas 

A THESIS 

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE 

DEGREE OF MASTER OF SCIENCE 

DEPARTMENT OF MATHEMATICS AND STATISTICS 

CALGARY, ALBERTA 

DECEMBER, 1994 

© ArUnas G. Salkauskas 1994 



THE UNIVERSITY OF CALGARY 

FACULTY OF GRADUATE STUDIES 

The undersigned certify that they have read, and recommend to the Faculty of Grad-

uate Studies for acceptance, a thesis entitled "Interpolation On Contours" submitted 

by Arünas G. a1kauskas in partial fulfillment of the requirements for the degree of 

Master of Science. 

I 

Supervisor, L. P. Bos 
Department of Mathematics and 
Statistics 

Department of Geomatics Engineing 

J. R.Parker 
Department of Computer Science 

D. R. Westbrook 
Department of Mathematics and 
Statistics 



Abstract 

In this thesis we consider the problem of finding an optimal interpolant based on 

contour data in the Euclidean plane. The problem is viewed as a natural extension 

of a similar univariate problem. We begin with an introduction to the theory of 

Sobolev spaces. We then give a brief discussion of univariate polynomial splines. 

The subsequent chapters are devoted to extending the linear and cubic splines to a 

bivariate setting. We follow with some graphical examples. 
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Chapter 1 

Introduction 

The goal of this manuscript is to extend some common and well understood theory 

of univariate interpolants to the bivariate case. A common interpolation problem in 

one real variable is to find a function f(x) subject to optimality constraints, with 

the additional property that f(x) = y, i = 0,. . . , n , where {x} and {y} are 

specified sets of real numbers. There are two natural ways of generalizing this sort 

of problem to higher dimensions. One common generalization is to simply increase 

the number of variables, while still working with isolated points. Another is to view 

the abscissae from the univariate problem as manifolds of dimension 0, and when 

working in n dimensional space to consider data given on k dimensional manifolds, 

where 0 < k < n. 

In the first case, there are many bivariate interpolation schemes that are based 

on a finite number of isolated points in the plane. For example, the thin-plate spline 

discussed by Meinguet in [22] minimizes a certain functional related to bending 

energy, while interpolating specified values at isolated points. While this procedure 

seems natural enough, and the resulting interpolants are generally well behaved, the 

defining equations are unstable, and as we shall see in Chapter 7, numerical problems 

tend to develop when the thin-plate spline is used with large numbers of data. 

Whether bivariate point-based interpolation methods encounter numerical diffi-

culties or not, they all have one short-coming in common. They generally make no 

attempt to be faithful to data given along curves. Although some schemes, like the 
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one developed by J. Grabenstetter in his thesis [15] makes a point of making it easier 

for the interpolant to be faithful to the data. 

In the second case, we encounter a lack of algorithms and theoretical results. The 

problem of finding a reasonably smooth, minimal energy interpolant to data given 

on contours is essentially unsolved. 

Motivation for a solution to this sort of problem stems from the methods by 

which one might acquire topographical data. Often, maps are digitally sampled so 

that one has a very high density of data along contour lines. The fact that the 

terrain is constant along these curves is ignored by any method based on isolated 

points. The only way of ensuring that a point-based interpolant will be faithful to the 

contours is to maintain this high density information. The result can be disastrous - 

global interpolation schemes will be overloaded by data, and local ones may develop 

instabilities due to the locally almost collinear data. 

We consider the theoretical problem, proving the existence of certain optimal 

interpolants. These interpolants preserve the continuum of information stored in 

contour data, and hopefully pave the road to overcoming some of the numerical 

difficulties posed by otherwise large data sets. The dense information should no 

longer be necessary, since what we really need are curves. Contours can, in most 

cases, be accurately reproduced by a univariate interpolation scheme, and only in 

the case of very convoluted curves would a large amount of data need to be stored. 

The second chapter contains introductory material needed for a discussion of 

splines. This includes some definitions, and a basis for an introduction, in Chapter 

3, to the theory of Sobolev spaces. 

Chapter 4 contains an introduction to univariate splines. While the subject is 
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not exhausted, we treat, in detail, the univariate problem that we hope to extend to 

the bivariate case. 

In the fifth we develop a. theory for extending the linear splines introduced in 

Chapter 4 from piecewise linear functions to piecewise harmonic functions. This 

involves making the connection between minimizing the functional 

(f + i:) dxdy 

over some domain and associated class of functions subject to boundary conditions, 

and finding a harmonic function subject to the same boundary conditions. The 

equivalence of the solutions of these two problems, often refered to as Dirichiet's 

principle has a long and remarkable history. Perhaps most amazing is that the prin-

ciple was believed to be true by such notable mathematicians as Gauss, Riemann 

and Dirichiet as early as 1857, but it took 13 years before Weierstrass pointed out 

some flaws. One of his major objections to the equivalence was, in fact, its depen-

dence on the existence of a solution to the minimization problem. Without too much 

difficulty, it is possible to construct an example where, for an appropriate class of 

functions, (1.1) can be brought arbitrarily close to zero, without the existence of a 

function in that class for which (1.1) is zero. We consider the following example. 

Let 0 be the unit disk 

f(X, Y) 1 V (X2 + y2) ≤ i}. 

We shall look for a minimizer of (1.1) in the space of continuous functions which 
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attain the value of 1 at (0,0) and the value 0 for {(x, y) I J(x2 + y2) = i}. While at 

first glance the problem seems easy enough, we introduce the following sequence of 

continuous functions. Let 

un(x,y) — ln(n2r2+1)  + 1, where r = a/(x2 + y2), for n  
- ln(n2+1) 

We notice that for each fl Un (0,0) = 1, and u, (x, y) = 0 if r = 1. A brief calculation 

shows that 

('%. '+) dxdy-0asn—oo. 
ôxJ OyJ 

The sequence {u}, however, fails to converge to a continuous function. In fact, 

there is no continuous function that both satisfies the given boundary conditions 

and minimizes (1.1). 

This example brings forth the fact that the minimization problem does not always 

have a solution. One of the earliest references to such an example where the boundary 

of the domain contains an isolated point dates back to Zaremba (see page 35 in Monna 

[23]) in 1911. An example due to Hadamard (see for example page 9 in Courant [8]), 

forces the point home by showing that there are cases where the problem of finding 

a harmonic function has a solution while the variational problem of minimizing (1.1) 

does not. 

By the time Weierstrass voiced his concerns, Riemann had already spawned a 

great number of works which involved arguments inspired by this principle. Unfor-

tunately, Riemann was no longer around to assist in the justification of Dirichiet's 

principle. It was not until 1900 that Hilbert was able to specify sufficient conditions 
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for the solutions to both problems to exist and be equivalent. 

In the sixth chapter we offer a proof of the existence of a solution extending the 

notion of cubic splines to piecewise biharmonic functions in the plane. Here we make 

use of Hilbert space theory, specifically the Riesz Representation Theorem. The ex-

plicit evaluation of such interpolants is unfortunately limited to one straightforward 

example. Slightly more complex configurations of the contours already make the 

calculation of an optimal interpolant considerably more difficult. 

This extension is analogous to the thin-plate spline mentioned earlier. There are, 

however, two important differences. To begin with, the thin-plate spline is designed 

for interpolating scattered data in the plane, not contours. As well, the thin-plate 

minimizes the energy over all of R2, whereas the piecewise biharmonic splines only 

minimize the energy in a bounded domain. 

The idea of finding an energy minimizing function on a closed domain with some 

boundary conditions is not a new one. This work, however, gives what we believe to 

be the first unified treatment of the existence and uniqueness of an extension of the 

notion of a cubic spline to an interpolant based on contours. Specifically, the charac-

terization of piecewise biharmonic splines as globally C1 functions with continuous 

second order normal derivatives across the contours is a new and interesting result. 

In the seventh chapter we actually compute some examples and display the re-

sults graphically. Using the limited example developed at the end of Chapter 6, 

we compare the results of thin-plate spline interpolants with the two schemes we 

discussed in Chapters 5 and 6. 

This thesis does not, fortunately, answer all of the questions that it raises, there 

is room yet for work on the problem of computing optimal interpolants for contours. 



Chapter 2 

Introductory Material 

2.1 Notation 

2.1.1 Multi-index Notation 

For convenience and conciseness, we use multi-index notation when working 

in higher dimensions. A multi-index is a vector of non-negative integers a = 

(a1, a2) .. . , a,). The absolute value of a multi-index a is lal = E a. We 

have convenient notation for exponentiation and factorial for multi-indices: if x = 

(xl,x2,...,x)ER" and a=(aj,a2,..., an) EN'then 

X a— _ x al x 2 • 12 • x , 

and 

a! = a1!a2! ... 

When differentiating, we write 

all - _ 

=iYf 
8a2Xl&2x2 ... OanX - 8x 

provided f is a sufficiently smooth, real-valued function on R', and a E N'2 with 

(a( = 1. At times it is convenient to address only one index in a given multi-index. 

6 
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To this end, we let e= (0, ... , 0, 1, 0, ...  
--- --

2.2 Some Sets in R' 

In what follows we have to place some restrictions on the subsets of Rn which we use. 

We call a subset ci of Rn a domain if ci is open and connected. Due to the nature 

of the problem we address here, we also assume that a domain ci is bounded, unless 

otherwise specified. The problems we would like to solve involve finding functions f 

that satisfy conditions given on the boundary ôci of ci. This means that we have to 

impose some conditions on ci so that its boundary is 'nice enough'. 

A domain ci is said to have a locally Lipschitz boundary if each point x on 

the boundary of ci has a neighbourhood U such that an fl u., is the graph of a 

Lipschitz continuous function fo, (ci,.. . , en-l) in some Cartesian coordinate system 

(ti,. . . , Moreover, we insist that ci fl U, is determined by 

Un { € RJ1 

This last condition merely stipulates that ci should (locally) lie on only one side of 

its boundary. 

2.2.1 Curves in R2 

The boundary of a bounded domain ci is called piecewise smooth if it is comprised 

of a finite number of smooth arcs. A smooth arc or curve 'y is one for which a well-

defined unit-length tangent vector 'y' exists and is continuous at each point x E y, 
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that is 

  and 1imy'(y)='y'(x) 
yE1 lix I/li 

At times we expect to parametrize curves, so that a curve r is the image of 

a piecewise C' mapping o : R - R2. In general, the fact that o is . C1 is not 

sufficient for F to be C'. As an example, consider the cycloid generated by a (t) = 

(t - sin (t), 1 - cos (t)). o is C', but the tangent vector as defined above fails to 

exist whenever t = 2kii-, k E Z. Because we generally have some control over these 

curves and their descriptions, it is not unreasonable to insist that o does not describe 

the same point of F more than once, so whenever we discuss parametrizations we 

assume that o (t) is one-to-one. This restriction also implies that r is simple, that 

is, r does not cross itself. In addition, for the sake of brevity, we assume that the 

parametrization of the curve is done with respect to arc-length. The result of this is 

that the derivative of the mapping will be identical to the unit tangent vector of the 

curve. In this case, the symbol used to denote the curve is also used to denote the 

mapping which generates it. 

At times it is necessary to work with curves that have a higher order of smooth-

ness, for example, we could insist that .y' (.7(t)) be C', as a mapping from R to 

R2. We can generalize and say that a curve is of class C, or rn-smooth if the 

arc-length parametrization .7(t) is of class Cm. 

2.2.2 Contour Maps 

The title of this thesis is 'Interpolation on Contours', and so it seems only fitting to 

define what we mean by contours, and to indicate how complicated we are willing 
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to let them be. 

If F is the piecewise rn-smooth and locally Lipschitz boundary of a simply con-

nected bounded domain, we call r a rn—contour. We omit the m if the degree of 

smoothness is clear from context, or if the statement applies for all m. We say that 

a pair of contours is nested if the closure of the region interior to one is contained 

within the region interior to the other. We note that this means that the two curves 

do not intersect. If F1 and r2 are two nested contours such that the region interior 

to r, is a subset of the region interior to r2, then we say that 171 is inside F2. 

If a set of non-intersecting contours {F} has associated with each member a real 

number C, we call the set M = {(r, C)} a contour map. We relax the condition 

that the contours not intersect provided that if ri and F1 intersect for some i and j, 

then Ci = C1, and the intersection does not result in any zero angles, i.e. ri and F1 

are not tangent in any way at the point of intersection. 

2.3 Generalized Functions 

Generalized or singular functions have long been used by physicists, although 

they do not fit well with classical function theory. For example, one commonly 

used generalized function is the Dirac delta 'function' 6(x). The standard physicist's 

00 definition for 6(x) is that for x 0, 8(x) = 0, 6(0) = oo, and f 6(x)dx = 1. This is 
-•00 

clearly inconsistent with the classical definition of a function. Others might describe 

the univariate delta 'function' by merely stating that 

00 

Jö(x - xo)(x)dx = (2.1) 
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for any sufficiently nice function 0. We begin by describing what we mean by a 'suffi-

ciently nice function', and then we look at a more rigorous description of generalized 

functions. 

2.3.1 Test Functions 

The set of 'sufficiently nice' functions which we consider is the set C0°°(IZ) of real-

valued functions with compact support on a domain fl CRn and possessing deriva-

tives of all orders. We call C°(1) the space of test functions, and since any finite 

linear combination of test functions is still a test function, C0() is a linear space. 

We also require some notion of convergence in Co— (il). We say that a sequence of 

functions fh (x) in Co- (cl) converges to zero if the functions along with all their deriva-

tives converge uniformly to zero, and provided that there exists a single bounded 

region containing the supports of all the fk(x). This leads us to a definition for 

convergence in general - we say that the sequence fk(x) converges to the function 

f(s) provided that f(s) - fk(x) converges to zero. 

2.3.2 Linear Functionals 

If for every element q in a linear topological space L there is a corresponding number 

we say that l(q) is a functional on L. Linear functionals are those blessed 

with the additional property of distributivity: 

1(a41 + b42) = al(01) + bl(q 2) (2.2) 
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for any pair of real constants a and b, and any 4), 4)2 E L. A linear functional 1(4)) is 

continuous if whenever 4)k -f 4) as k - oo then l(4)k) -+ 1(4)) for {4)k} C L. If L is 

a normed space, then we can also refer to bounded linear functionals. By bounded 

we mean that there exists a constant such that for any 4) E L, 

l(4)I ≤ "4114)11 

It is not hard to see that continuity and boundedness are equivalent for linear func-

tionals on a normed space. 

Now, if f is any locally integrable function, we can define a functional on 

by 

1(4)) = (f, 4)) := If (x)o(x)dx.  (2.3) 

That this functional is linear follows directly from the linearity of the integral, while 

its continuity follows from our definition of convergence in C8°(IZ),In fact, suppose 

{4)j}i C Co°°(I) and that 4) -9 0 as i - oo. This convergence is uniform, so I4)(x)I 

is uniformly bounded by some constant M for all x. The supports of the Oi are all 

contained within a single bounded closed region. If we let C be this bounded region, 

then 

lim (f, 4)) = im J f(x)4)(x)dx = f f(x) lim 4)(x)dx = 
2-400 2-400 2-400 

C C 

by Lebesgue's Dominated Convergence Theorem. This proves continuity of the func-

tional at 4) 0 and continuity in general follows from this and linearity. 

Not all continuous linear functionals on C0(1) can be represented as in (2.3). 
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Take, for example, the delta functional 

1 () = c(0), q E C000()). (2.4) 

This functional is linear since if , b E C°(1) and a, b E R then 

1 (a4 + bb) = a4(0) + b(0) = al (4') + bi (&), 

and continuous since if 4'j - 0 in Co- (Q) then l(4') = 4'(0) - 0. 

Let us suppose, for the sake of a contradiction, that there is a locally integrable 

function f such that 

1(4') = (f, 4') = J f(x)4'(x)dx. (2.5) 

This rule has to hold for all possible functions in Co-(fl). In particular, consider the 

family of test functions 

exp 
= \a2 _lxJ 2) X(x,a) { —a2  

0 

If we look at (f, x), we find that 

for xJ <a, 

for lxi ≥ a. 

(f,x) = J f(x)x(x;a)dx = x(O;a) = e'. 

(2.6) 

Now, as a —+ 0, the support of x shrinks while Jx(x; a)l is bounded by e, so the 

integral tends to zero, giving us a contradiction and thus ruling out the existence of 

1. 
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Since some of these functionals are in fact representable by true functions, this 

whole set of continuous linear functionals on C003 (cz) is referred to as the space of 

generalized functions. The functionals which can be written as in (2.3) are referred 

to as regular, and the others as singular. Since we would like to view generalized 

functions as extensions of classical functions we extend the notation as well, so that 

if f is any generalized function then we write 

(f, 4) = J f(x)4(x)dx for all q E CO(0), 

even though the integration may be merely symbolic. Thus we might represent the 

functional (2.4) by 

(8, 0) = f S(x)(x)dx. 

2.3.3 Generalized Derivatives 

Some functions with which we deal are clearly not differentiable in the classical sense. 

For example, the Heavyside step-function 

0 
H(x)= 

1 

for x < 0, 

for x≥0, 
(2.7) 

has no derivative at the origin. We can, however, extend the notion of differentiablity 

of such functions if we allow the derivatives to be generalized functions. 

00 Consider the integral f f'(x)q5(x)dx where f is a smooth function with deriva-
-00 

tives of all orders, and 0 is any test function. Applying integration by parts, and 
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noting that q has bounded support, we find that 

00 00 

J f'(x)c(x)dx = _J f(x)'(x)dx. 

Using this rule, we can write 

00 00 00 

Jf(1)(x)(x)dx = -J f(' 1)(x)'(x)dx =• = (_i)'J f(x) ('(x)dx. 

Following this example, we define, using multi-index notation, the a th generalized 

derivative of a generalized function f by 

(Daf, çb) = (_i)1 (f, D) 

or, 

JD0rf(x)b(x)dx = (_1)1Jf( r)Dc q(x)dx, for a E Nz and al = 1. 

As an example, consider the function H defined in (2.7). Since H is locally 

integrable, we can think of it as a generalized function and for any 0 in COW (R), we 

apply integration by parts to get 

00 00 00 00 JH'(x)(x)dx = -J H(x)'(x)dx = _J '(x)dx = (0) =J ö(x)(x)dx. 

We extend the standard notation for differentiation and write H'(x) = 5(x) or 

dH 

Some of the standard rules for differentiation apply to distributional derivatives. 
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For example, for any pair of (generalized) functions f and g, 

(D (f+g) , q') = - (f + g,Dc q) = - (f,D'çb) - (g, D4) = (Df, qf) + (Dg,q5), 

so that Dc (f + g) = Df + Dog. As well, when the generalized functiois are true 

functions, with some additional restrictions, the product rule applies, as does Green's 

theorem. We discuss these in the next section. 

Generalized functions are often refered to as distributions, and there are also 

different notations for the sets of test functions and distributions. For example, in 

his treatise on distributions [30], Schwartz uses the symbol V to denote Co— (Il), 

while V' is used to represent the dual space of distributions. Similarly, generalized 

derivatives are often referred to as distributional derivatives. 

Because we encounter, in later chapters, functions with discontinuities along 

curves, we introduce the two-dimensional step function 

0 x<O 
S(x,y)= 

1 x≥0 

which we define for all points (x, y) in the rectangle Q = (—a, a) x (—b, b), for some 

pair of positive numbers a and b. 

Suppose f E C1 (Q). Of interest to us is the generalized partial derivative of f  
ô(fS) i i in the horizontal direction - we claim that s not, n general, a function. If 

the distributional derivative of f  is to be a function, then the functional 

/a(fs)  
\ ax 
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must be representable by a classical function for any test function q. In particular, 

for 0 with support strictly within Q we compute 

/a(fS) \ fs, 00 \ ax Ox ) 

= - f_b i: fSdxdy = - 1—b! f - dxd = - f—b [(ft) I - f dx} dy 

11b [f (0, Y) 0 (0, Y) +f; , dx] dy = b '' fbfOOX 

= ( b f (0, y) 0 (0, y) dy + ( Of S, (2.8) 

The second part of (2.8) can clearly be represented by a classical function, but we 

claim that if f is not identically zero on the vertical axis, then the first part cannot 

be represented in such a way. 
b 

Suppose there is a function p (x, y) such that (g, q) = f 1(0, y) q (0, y) dy. Then 
—b 

1—a 
a 

f(O,y)q(0,y)dy=J b  g(x,y)q(x,y)dxdy 
—b —  

(2.9) 

for any test function 0 with support in Q, and in particular, for the function 

where x is the function defined in (2.6), for some positive c < b and 6 < a and some 

d in R. 



17 

Equation (2.9) then becomes 

1 c+d c+d 

; L+ f (0, y) x (Y; c) dy = f C+d L g (x, y) &(X) y) dxdy. (2.10) 

At this point we place some restrictions on c and d. By assumption, we can pick a 

value for d such that f (0, d) 5A 0, and since f is assumed to be continuous, for some 

sufficiently small c, f does not change sign on the interval from —c + d to c + d. If 

we now let 6 tend to zero, the left-hand side of (2.10) remains constant while the 

right-hand side clearly tends to zero. This contradiction rules out the existence of g. 

2.4 Function Spaces 

2.4.1 Spaces of Continuous Functions 

Along with the space C000(f) of test functions, we use a number of other spaces of 

continuous functions. Let Q be any domain in R. We let Cm(f) be the space of 

functions defined on 9 and having continuous partial derivatives of all orders < m. 

We denote the subspace of C- (fl) of functions with compact support in Q by C(1). 

Now, supposing 1 is bounded, if q e C°(f) is uniformly continuous then 0 has a 

unique continuous extension to fl, the closure of Q. If 4 and its partial derivatives 

of order < in are uniformly continuous on Il we will say that 0 E C-(&). With the 

norm 

IIIIcm( = max sup IDc'O(x) I 
' IcrI≤m xEO 

Cm(z) is a Banach space. To see that Cm() is complete, suppose {} C Cm() 

is a Cauchy sequence. Then 110i - iIICm() -+ 0 as i,j - p oo, which means that for 
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all x E fl, and some M, ID&1(x) -  Oj  (x))l <M - 0, for lal ≤ rn. So Do' (q5(x)) 

tends uniformly to some continuous function &(x) for each lc rn. ba (a') is 

in fact uniformly continuous, since it is the uniform limit of uniformly continuous 

functions on a compact set. What we need to show now is that (a') = D'(1.'o(x)) 

for Jai < rn. We use induction on a. We have equality for lal = 0, so we proceed 

with the induction step. 

Supposing (a') = D( o(x)) holds for lal < m, let /3 = a + ej for some 

j = 1,. .. , n. D,6 0i converges uniformly to &p, and D00i = DJ (DO). Let a' be in 

1, then by the Fundamental Theorem of Calculus, 

Jo 
D19q5(x+te3)dt = D(x+he5)—D(x) 

for sufficiently small h 0 0. Dividing this equation by h, we get 

1 jh D19çb (a' + tei) dt = D4 (a' + hey) - Dçb (a')  

h 

which, as i -4 oo, becomes 

Ih 'ba(X+hj)/'a (X) = D&o(s+he3)—D&o(x)  
h Ii 

Convergence of the integral on the left is guaranteed by the uniform convergence of 

the integrand. By the Mean Value Theorem for Integrals it follows that 

D/ 0 (a' + he3) - D"ib0 (a') 
bp(x+hiej)= h 
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for some h1 between h and 0. Letting h tend to zero, h1 - p 0 as well, so that 

0,6 (x) = DC) (D&0 (x)) = Dt'0 (x), 

which is exactly what we wanted to show. Cm () is, therefore, complete. 

2.4.2 L Spaces 

Given a bounded domain 1 C RTh, and 1 ≤ p < oo we denote by L(f1) the linear 

space of measurable real-valued functions f on n for which the Lebesgue integral 

J If (x) IP dx <00. 

We define a norm on L() by 

1 

lif lip = If If(x)IP dxj. 
0 

This satisfies all the properties of a norm except that if Ill -  gll  = 0 for a pair of 

functions f,g E L(), it does not necessarily follow that f(x) = g(x) for all x E Q. 

For this reason, we make no distinction between functions that differ only on a set 

of measure zero. 

At times it is desirable to talk about spaces of functions defined on a manifold 

S of dimension k, 1 ≤ k < n. In this case, we define L (5) to be the space of 
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measurable real-valued functions on S for which the norm 

IIfIILp(s) = ijIf(x)II1dy  
S 

is bounded. Here it is the k-dimensional Lebesgue measure. 

An important result which make these spaces particularly attractive is that L 

spaces are complete (Riesz-Fischer). 

The space L2(1) is somewhat special - for any pair of functions f and g in L2(l), 

we define their inner-product by 

(1,9) = Jf(x)g(x)dx, 

which makes L2(l) a Hubert space. 

An useful inequality in L spaces is the H1der inequality. Suppose p ≥ 1 and 

q ≥ 1 are such that + = 1. If I E L (a), and g E L q (1) then not only is 

19 E L1 (91), but 

IIfII1 ≤ IIfIIp IIghIq 

as well. This inequality delivers some elegant results, for example, if we assume 9 is 

bounded, 1 ≤ p < q < 00, and let f 1, and g E Lq (1k) then 

2 
'1 

I IIIlL = IIIgIfIl { Jlgr 1_2 dx} {i f I q dx} 
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1-2 

= {i I9 dx} {J ldx} = (vo1)'. 

Thus g is in L, and :5 11911q (vo1fl)(* ). For generality, we note that this 

last inequality is obviously also true and reduces to equality whenever p = q. 

2.4.3 Mollifiers 

Before we continue to describe additional function spaces, we pause and introduce 

a method for approximating LP functions with smooth functions. The technique 

involves replacing the value of a function at any point with a weighted average of all 

values in a neighbourhood of that point. While there are a number of ways of doing 

this, we chose the following approach. 

Let If. be a function in Co- (Rn) with support inside the ball of radius a centered 

at the origin, andJ Ka(x)dX = 1. For example, let Ka(X) = kx(x; a), where x (x; a) 
Rn 

is the function introduced in (2.6), and k =  1  Functions of this sort Jx(x; a)dx 
Rn 

are called mollifiers or mollifying kernels, because the function (when it makes 

sense) 

fa (x) = J Ka(X - y)f(y)dy 
Rn 

is often much nicer to work with than the original function f. The function fa has 

a number of convenient properties, which result in its being called a mollification 

or regularization of f. 

Lemma 2.1 If f is defined on Rn with f E L (1), 1 < p < oo, with fl bounded, 

and f 0 outside of Il, then 
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1. faEC0O(Rfl), 

2. fa E L (cl), 

3. llfallp If 11P and IIfa — fII —+ 0 as a —+ 0. 

Proof. Consider, for some h E R, and 1 ≤ k ≤ n, the quotient 

Qh =  h 
fa(X + hek) — ía (x) 

Ka( + hek — y) — Ka(X -  f(y)dy. 
h 

The limiting value of Qh as h —+ 0, if it exists, would be D (fe). If we assume h < 1, 

then applying the Mean Value Theorem and Holder's inequality, the difference 

Qh — J (DKa (x — y)) f(y)dy 
Rn 

I (Ka(x + hek — Y) — Ka(X — Y) DCkKa (X_y) )fd 
h 

Rn 

J(D ek K (x — y + hlek) — DekKa (x — y)) f (y) dy 
Rn 

( DKa (s — y + hiek) — DekKa (x -  f(y)dy 
hi 

J h1 (D2CkKa (X - y + h2ek)) I 
Rn 

(IhlIM )dY)W (Iii (yd --+ 0' 
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as h —+ 0, where h1 is some number between h and 0, and similarly h2 is between h1 

and 0, M ≥ max ID2 Ka (x)I, and + = 1. So 
xER q p 

afa = j (D ek Ka (x — y)) f(y)dy. 
Rn 

Since the preceding argument required neither the positivity of Ka nor the fact 

that JRn KadX = 1, a simple induction step wherein Ka is replaced by its partial 

derivatives proves (1). 

Statement (2) follows trivially from (1) since il is bounded. For the proof of (3), 

see Adams [1] p. 30. 0 

Usually, we don't specify exactly which mollifier to apply to a function, but in 

general we use the symbol f to denote the mollification of f generated by a mollifier 

with support contained in the ball of radius a. 



Chapter 3 

Sobolev Spaces 

The term 'Sobolev Space' is used to describe a variety of spaces. Most of these spaces 

qualify as generalizations of the spaces of continuous functions described in the pre-

vious chapter. Instead of classical differentiation, however, we use distributional 

differentiation. Membership in a Sobolev space then implies the integrability of dis-

tributional derivatives of various orders. Many of the Banach spaces now associated 

with the name of the famous Soviet mathematician S. L. Sobolev were actually well 

known before his major work in the subject, and as a result we still find references 

to Beppo Levi spaces and others in the literature, even though these all fall under 

the umbrella of Sobolev spaces. For the sake of brevity, we only introduce a small 

subset of these spaces, although we keep notation which hints at a broader class of 

functions. 

3.1 The Sobolev Spaces W1 2 () 

We denote by W(1Z) the linear space of functions on a bounded domain Q C R 

which, along with their generalized derivatives of order less than or equal to 1, are 

members of L2(fl). 

We define a norm on W(1) by 

IIII1,2 = L J (D)2 dx 
IaI≤lo 

24 
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The spaces W(1) are complete provided functions which agree almost everywhere 

are considered identical. Normally, although the integrals are based on the domain 

we will see later that 0 E W() can be extended in a meaningful way to Ô1 

or beyond, provided 90 is sufficiently smooth. For some calculations, however, it is 

convenient to assume that q! 0 outside of h. 

At times it is advantageous to regularize functions in W2' () so that the gener-

alized derivatives are true derivatives. Suppose CY C fl, and let a < dist (a', ), if 

1' E W(C) then 

D [ba1 = [DO]. 

on '. In addition, &a & in W21(1') (see Adams [1] p. 52). From this follows 

the fact that the space C°° (il) fl W (ft) is dense in (ft). As well, with some 

restrictions on the boundary of n, for example if f? has a piecewise smooth locally 

Lipschitz boundary, the smaller class of functions Co-(R') is also dense in W21(11). 

We introduce a semi-norm on W(f), which resembles the above norm, but in-

volves only the 1th order derivatives: 

kbl1 = ( J(D- V))2  dx)2 , 

IcI=1Q 

and an associated semi-inner product 

(1', 0), = J (D-V)) (Db)dx. (3.1) 

The semi-norm vanishes when and only when 0 is a polynomial of total degree 
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less than 1 (or differs from one on a set of measure zero). The first case is clear, since 

if & is a polynomial of degree less than 1, then Dc?,b 0 for Jal = 1. On the other 

hand, suppose 1,01, = 0. This means that Db = 0 (almost everywhere) for IaI = 1, 

which implies that the regularized derivatives (DJ')a a > 0, are also zero on the 

subset Q,, = {x E 1 I dist (1 a, ô) <a} . If a is small enough, then fZa is connected, 

in which case &a is a polynomial of degree less than 1. 

To see this, suppose B C 1Z is an open ball centered at X E fZa and y is any 

other point in B. By Taylor's theorem 

Ls a! 
IcI<1 

= T,(y) + R:(u, 2) 

where the remainder term R1 (y, x) =  D?I)a (x*), and x is some point 

on the line segment joining x and y. Of course, R1 (y, x) = 0 by the hypotheses, 

SO '/'a is a polynomial of degree not exceeding 1 - 1 on B. Since x is essentially 

arbitrary, it follows that 0a is a polynomial of order less than 1 on each open ball 

contained in fZa. The question now is whether T(z) = T (z) for any x, y, z E fZa - 

we need to know whether these polynomials are all the same. Suppose B and B 

have a non-empty intersection A. Then T and T are the same polynomials since 

they agree on an open set. Suppose, on the other hand, B fl B is empty. Since 

a is connected and open, there is a piecewise smooth curve F connecting x to y. 

Every point z on such a path has a neighbourhood B C IZa, and since the curve is 

compact, we only need a finite number N of these neighbourhoods to cover F. Let 
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{B, } denote this set, indexed so that B, fl is non-empty. By the preceding 

argument, T, and T1+1 are the same polynomials, so the same is true for T, and 

for any 1 < i, j ≤ N. B and B each intersect at least one hence T is 

the same polynomial as T. Thus ba is a polynomial on 1a• Now, around any point 

x in 91 there is a neighbourhood N such that N C f. For all a <dist (Nm, 9), 

Oa is a polynomial on N of degree less that 1. Since ?/'a - on N, and the set of 

polynomials of degree less that 1 is a finite dimensional, and hence closed, subspace 

of L2 (ft), ' is a polynomial on N. It follows then that & is a polynomial of degree 

<1, or at least differs from one only on a set of measure zero. 

3.2 Imbedding Theorems 

Some questions that arise when one deals with Sobolev spaces and generalized deriva-

tives of functions are not easily answered. For example, we might wonder how bad a 

function must be in order that its generalized derivative not be an integrable func-

tion. Also of concern is the boundary behaviour of any such function - what does it 

mean to say that a function in a Sobolev space interpolates data given on a contour? 

Is it meaningful to refer to the restriction of a function to some curve? To answer 

some of these questions, we now introduce some theorems regarding imbeddings of 

Sobolev spaces into other, perhaps more natural, spaces. 

Before we proceed, we should say a few things about imbeddings. Given two 

normed spaces X and Y we say that X is imbedded in Y if X is a subspace of 

Y, and the identity mapping I : X - Y defined by Ix = x is continuous. If X is 

imbedded in Y, then we write X - Y. The continuity of the imbedding operator is 



28 

essentially a statement about the relationship between the two norms in X and Y. 

More precisely, since I is linear, there exists a constant M, such that 

IIxlk M  IIxx, for all x E X. 

There are times, as we shall see, when we would like to relax the condition that X 

be a subspace of Y. Specifically, we might attempt to define a linear transformation 

L : W (ft) - L2 (ô)), by Lf = fIea. If there exists an M such that 

IILfIIL2(ao) ≤ M 11f 112,2 

for all f E W (ft), then the transformation is well defined, and we can feel comfort-

able about considering the restrictions of functions in Sobolev spaces to the bound-

aries of their domains. If a linear transformation has the property that it maps every 

bounded set in its domain onto a precompact set in its range, then we say that the 

transformation is compact. A precompact set is one whose closure is compact. If 

the linear transformation that induces an imbedding is compact, then we say that the 

imbedding is compact. For one accustomed to working in finite dimensional spaces, 

the definition of a compact linear transformation may seem somewhat vacuous. We 

note however, that in an infinite dimensional Banach space, the closed unit sphere 

is bounded but not compact. 

If a bounded domain S2 has a locally Lipschitz boundary then it follows that n also 

has the cone property. For bounded domains, the cone property is the requirement 

that each point x on the boundary should be the vertex of a finite and non-degenerate 
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cone C contained in fl . If 1> ., and < in ≤ 1, then by the Rellich-Kondraov 

theorem (see Adams [1] P. 144), the imbedding W2(1) -4 Cl_m() exists and is 

compact. In general, the existence of an imbedding means that the first space be 

a subspace of the second. In this case, however, W(fl) consists of equivalence 

classes of functions, while Ct_m() consists of functions, so such a containment is 

not meaningful. Instead, the imbedding actually guarantees that in each equivalence 

class in W(f) there is a function which is in Clm((). In other words, any function 

for which 11111,2 is bounded can be modified on a set of measure zero to be in Clm(Z). 

The imbedding is a continuous, linear operator, so there is a constant M such that for 

all I E W(1), llflIcz-m() ≤ M 11f 111,2. The compactness of the imbedding means 
that a bounded set A in W() corresponds to a precompact set B in CI_m(f). 

If on the other hand, 1 ≤ -, then the imbedding is not quite as strong. By 

Sobolev's Imbedding Theorem, Theorem 4.26 in Adams [1], we have, if (1C is the 

intersection of Q with a hyperplane of dimension ic with n - 21 < k ≤ n, 

W (ft) -4 Lq(). 

Here q is allowed to take on any value from 2 to 21c/(n - 21), the upper bound being 

increased to oo in the event that 1 

The meaning of this embedding is somewhat opaque without further justification. 

In general, the restrictions of two functions in an equivalence class of W2' (ft) to 

some hyperplanar section will not correspond in Lq (fl'), since the points of 

for k < n constitute a set of zero measure in R'. We could therefore modify 0 E 

W2' () to be almost anything in nk without changing 110 111,2 but drastically changing 
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IIIILq(1'c) We remedy this by recalling that C°° (9) is dense in W (ft). Suppose 

that {f} C C°° (Il) converges in W (1k) to a function q. The imbedding tells us 

that the restrictions fjc = fjlok, which are in C°° (i1c) , converge in Lq (i) to some 

function (independent of the choice of sequence), and that there exists a constant 

K, independent of 4 such that 

IMO <K - 11 0 111,2 

This imbedding can be used to show that, under certain conditions on 

W (ft) Lq(0) provided of course that 1, q, and ii satisfy the appropriate in-

equalities. Here we first introduce the concept of an extension operator. For our 

purposes, an extension operator E is a linear operator mapping W' () into W (R'), 

with the properties that IIEqI1,2,fl K WHO,, for some K (independent of q), and 

Eçb = 4 almost everywhere in Q, for every 4 E W (1k). For general domains f 

(bounded or unbounded) the existence of such an operator depends heavily on the 

nature of the boundary. In Chapter 3 of Stein [32] we find a fairly extensive treat-

ment of extension operators for a variety of spaces. In particular, Section 3 contains 

a constructive proof of the existence of an operator of exactly the type we require. 

This existence requires that the boundary of Q is minimally smooth. By this we 

mean that there exists an e > 0, an M > 0 and a sequence {U} 1of open sets such 

that 

1. for each x E ô1, the ball of radius € centred at x is contained in at least one 

set U, 
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2. {U1} is a locally finite cover of an, that is, fl1 ui = 0, but U1 Ui D an, 

and 

3. within each U, there exists a Cartesian coordinate system within which an 

is the graph of a Lipschitz continuous function f (i ..., n-1) for which the 

Lipschitz constant does not exceed M. Moreover, Q should lie on only one side 

of its boundary, that is, for each j, U fl f = { C E RIe <12 (.. . , 

It is clear that for a bounded domain 11 the insistence that an is locally Lipschitz 

and piecewise 1-smooth implies that an is minimally smooth. Thus armed with an 

extension operator B and an associated constant K, we proceed to sketch the proof 

of the imbedding of W (1) into L. (Oft) which we give specifically for n C R2 with 

a locally Lipschitz, piecewise i-smooth boundary. 

Let {V} be a finite collection of open balls which almost cover O1. Specifically, 

let them be chosen so that the only points of afl not covered are those at which 

the tangent fails to exist. In addition, we insist that each V is small enough that 

vi  an is connected. There exists a constant M such that for each V there exists a 

i—diffeomorphism Ti mapping V to a neighbourhood Ni of the origin such that 

1. T (V fl ô) = Nj fl {x I x = (0, x2) E R2} = {0} x (ai, b), for appropriate a 

and b, 

2. T1(V2flf) = N2fl{xlxi> 0}, and 

3. the partial derivatives up to order l of the components of Ti and its inverse are 

bounded in absolute value by M. 
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The construction of such diffeomorphisms is performed for 1 = 1 in the proofs of 

Lemmas (5.4) and (5.5). An analogous construction yields the result for 1> 1. 

The boundary of each ball V1  is smooth, so the boundary of its image under T1 

will be at least i-smooth, which allows us to use the imbedding theorem as stated 

above for lines intersecting N. 

We rely on the extension operator E to give us values for 5 on R2 We can write, 

J E(x) 11 do, J E(x)dci. 

Letting y = T1 (x) = (yi, y2), for x E V, and y' = T (x) = (0, y2) for x E vi fl an, we 

obtain 

P Pb' f EO(X)l do, ≤ J I.E (_1(1)). 

a 

(Oxi Thr2 

'OY2 0 1/2 
dy2. 

Since the partial derivatives up to order 1 of the components of the transformations 

are bounded by M, 

JIEc do,M > J Eçb (i (y')) jq dy2 M >' ° 11Lq(aj,bj) 
an i=1 ai 

Using the embedding of W (Ni) into L (ai, b2) for 2 < q ≤ 2k/(n - 21) and the 

bounds on the partial derivatives of Ti, there exist constants K1 and K2 such that 

for i = 1,. .. , F, 

JJEOoT.111 Lq(ai,bs) ≤ K1 (11 1'2,Nj)'1 ≤ K2 (IIEI 2 I1,2,) 
' II  
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Now, since I ≥ 1, 

2 

2 2 <K(IjE 2 J IEc (x) dcr ≤ K2 E (IIEII1,2, 1) 
80 

I 

<— K2 ( IIEII 2,Rn)2 ≤ K IIEcII,2,o. 

We note that the corners of 811 constitute a set of zero measure in the integral 

over 811, so the fact that we exclude them does not disturb the process. This proof 

is a modification of the proof of Theorem 5.22 in Adams [1]. The main difference 

being a relaxation of the requirements on 811. 

3.3 Other Results in Sobolev Spaces 

A brief search through the literature concerning Sobolev spaces turns up a wide 

variety of notations and definitions. For example, in texts about the theory of finite 

elements such as Ciarlet [7] and Oden and Reddy [25], the space W (11) is usually 

denoted by H1 (11). On the other hand, in [21], Maz'ja uses the symbol W, (Il) to 

denote the space of functions in L whose generalized derivatives of exactly order 1 

are also in L. Even for p = 2, this is not necessarily equivalent to our space W2(")' 

since in general the integrability of higher order generalized derivatives does not 

necessarily imply the integrability of lower order ones (see Example 2, Section 1.5.1 

in Sobolev [31]). We wish to use some of the results presented in Maz'ja [21], so we 

introduce the notation used therein, except that whenever symbols do not coincide in 

definition with those we have already defined, we use a calligraphic symbol instead. 

By L'2 (11) we denote the space of distributions on 11 whose derivatives of order 
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1 are members of L2 (1). Some authors refer to this space as a 'Beppo-Levi space'. 

We also define a subspace of L (1), namely W (1) L'2 (1k) fl L2 (ft) and equip it 

with the norm 

IIIIWl(c2) = 1011 + 11 0 112 

If El is bounded and has the cone property, then the three spaces L'2 (1k), W (1), 

and W (Il) coincide. That is, they consist of exactly the same functions. This 

correspondence is taken without regard to the equivalence classes generated by the 

norms. This follows from the Generalized Poincaré Inequality (Maz'ja [21] pp. 22), 

which is stated as follows. 

Lemma 3.1 Let 11 be a bounded domain with the cone property, and let w be an 

arbitrary open subset with closure contained in f. Then for any u E L (1), there 

exists a polynomial 

fl(x)= E(u,cb,)x, 
IaI<1 

such that 
1-i 

IU_11Ik≤Clull 
k=O 

Here, q are fixed test functions with support restricted to w, and C is a constant 

independent of u. The inner product (.,.) is the standard inner product in £2 (w). 

Proof. For a proof, see Maz'ja [21]. 0 

The inclusions W () 9 W () 9 L'2 (a), are already clear from the definitions 

of the spaces. Thus to show that these spaces coincide, it suffices to show that 

L'2 (1k) ç W (a). Suppose u E L'2 (1k), then not only is lull finite, but by the 

Lemma, so are each of Iu - '11k' for 0 < k < 1. Since S1 is bounded, II E L (1), so 
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IUlk = IU - + 11I - 111k + j1Ik < 00, and thus IlUIIW(c1) <00. We conclude 

therefore that u E W (1k). 

In addition, we note that W (1k) is complete (Theorem 1.1.12 Maz'ja [21]) 

We recall that any two functions differing by a polynomial of degree less than 

1 will not be distinguishable by the semi-norm 1.11. Consider, therefore, the factor 

space 4 () = L'2 (1) /Pi-1, where is the space of polynomials of degree less 

that 1. On this new space, the elements of which are equivalence classes of the form 

u = {u + 111  u E L'2 (1), and 11 e 1_1}, 1-11 is a norm. By Theorem 1.1.13 in Maz'ja 

[21] 4 () with the norm • is complete. This leads us to a theorem on equivalent 

norms on Sobolev spaces. 

Theorem 3.2 Let S1 be a bounded domain with the cone property, and .F a contin-

uous functional on W (ft) with the following properties 

1. F does not vanish for any non-zero polynomials of degree less than 1, 

2. for any constant a, and any q E W (a), F (aq) = aF (0), and 

3. for any qbE W21  0)1 :5 IF(q)I+IF()I 

The norm generated by 

I I, + 

is equivalent to the standard norm in W (s)). 

The statement of this proof is essentially identical to that of Theorem 1.1.15 in 

Maz'ja, with a few technical clarifications. 

(3.2) 
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Proof. Let B (ft) denote the completion of W (1k) with respect to the new 

norm (3.2). Now, suppose {u}.0 is a Cauchy sequence in B (fl). This means 

that Jui - uj 1+ I.(u - uj)I - 0 as i,j - oo, which implies that Ju - u71 -+ 0. 

Since 4 (1) is complete, u converges to some element u in an equivalence class of 

4 (1k), that is, u € 4 (a). Since the domain has the cone property,we already 

know that if u E W (1) then u e 4 (a), so B 4 (1) = W (a). We conclude 

that W () is complete with respect to the new norm. The Identity .mapping I 

(w (i), II•IIw21 )) - p (w () I 112,1 + ii) is therefore a linear bijection between 

Banach spaces. By the continuity of the functional F, 

IuIi +"' (U)' ≤ C JIUIlWZ() 

for all u E W (1), and some constant C > 0, so I is also continuous. We apply 

the Open Mapping Theorem (cf. Zeidler [34] page 777), to conclude that the inverse 

mapping I is also continuous, so that there exists a D > 0 such that 

llUIIW(o) ≤ D (IuI + IF(u)D. 

The two norms are therefore equivalent. 0 

Since the two spaces W () and W (1k) are, in fact, the same space with the 

same norm, we conclude that any norm of the form (3.2) is equivalent to the standard 

norm on W2' (9) as well. We will make good use of this equivalence in subsequent 

chapters. 
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3.4 Equivalent Spaces 

In some cases, problems posed in terms of Sobolev spaces can be approached by an 

indirect method, more specifically through a density argument of some sort. In such 

a case we might show that a property holds for a class of smooth functions, show 

that this space is dense in the Sobolev space in question, and conclude from this 

that the property holds in the latter as well. To this end we introduce some spaces 

which are equivalent to certain Sobolev spaces. In the following, we assume that Q 

satisfies the cone condition. 

Let H () denote the completion of Ctm (1)flW (1) in W. Clearly H (IZ) 

W (i)) by virtue of the completeness of W (1). The reverse containment follows 

from the density of C00° (R2) in W (ft), and the density of Ctm () in C (R') with 

respect to the norm IHIm,p We have, therefore, ff (ft) = W (a). 

One might wonder whether it is reasonable, for any I E W (1), to expect the 

existence of a sequence of functions say 4j e C°° () all having the same boundary 
values on o9il as f that converges to f. While this might at first appear obvious, we 

hasten to point out that the density of the subspace of smooth functions says nothing 

about what boundary values an approximating sequence must have. Luckily, some 

conclusions can be drawn in this regard. 

We denote by W0m,2 (1) the completion of C° (ft) fl W (ft) with respect to the 

norm IHI,2• We shall let W0 (el) = If € W () I I lea = O}, remembering that by 

f lea = 0 we mean that f (x) = 0 for almost all x E O1. We have the following 

theorem which is found in Kufner et al. [13], Section 6.6. 

Theorem 3.3 For a domain Q having a locally Lipschitz boundary, the spaces Wo (Il) 
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and Wd'2 (1k) are equivalent. 

Proof. We first show that W'2 (1) C Wo (ft). By virtue of the definition of the 
space, there exists, for any 0 E W'2 () and any C> 0, a function b E CQ°°, such 

that &Ia = 0, and 

II/'II1,2 < C. 

This, along with the imbedding of W'2 (Q) -* L2 (49f) gives us 

III8( - '/IaQIIL2(acz) = II4'IacIIL2(8) ≤ ' IIc - /II1,2 <Ke, 

for some positive constant K. The arbitrariness of € allows us to conclude that q5 

vanishes almost everywhere on Ôf, so q E W0 (1). 

We sketch the reverse containment Wo () WJ'2 (1) which can be shown 

through an argument that takes advantage of the properties of the boundary. We first 

pick any particular & E Wo (1k). Given that we can find a finite number of bounded 

regions U3 covering O1, each with the property that U3 fl 9f can be described by 

a Lipschitz continuous function in a local coordinate system, we consider the less 

formidable task of finding, for each (13, a sequence of functions in qji E WJ'2 (fl) 

such that supp Oji C U3 fl fl . Using a partition of unity {u,} subordinate to the sets 

U, we can combine these sequences to obtain another function 

q'i = 

which converges to &. For the detailed proof, see Kufner et al. [13], p. 326. 0 
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3.5 Rules of Differentiation 

As mentioned in Section (2.3.3) the product rule applies to generalized derivatives. 

We must proceed with caution, because even if we do not restrict ourselves to con-

sidering regular distributions, the product of two distributions is not, in general, a 

distribution. However, if f, g E W (ft) and 1 > 0, then any first order generalized 

derivative of their product is in W' (a), moreover 

D (fg) = Cel Dg, for lal ≤ I. 
19+y=a 

To see this, consider the mollifications of f 

suppose Icel = 1. Recalling that f — p f and 

' C 1, we notice that for any q E 0o00 (ft), 

all of its partial derivatives, by 1, 

(fy - fg) D°çbdx 

and g, namely f and g for e> 0, and 

—+ g in L2 (a'), where ff is such that 

bounded in absolute value, along with 

≤ fg — fgEldx 
J.UPPM 

= J.UPPMIf (g — g) + g (1— f)I dx 

≤ JuPP(") lfI.Ig_Idx+J.UPPM IgEl.lf—fldx 

≤ IIfllL2(8()) . Il - fl6llL2(supp(q,)) 

+ ll9llL2(supp()) Ill - fellL2(supp()) 
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which tends to 0 as 0+. Since, for Ic ≤ 1, Daf, and Dg are also in L2 (ft), a 

similar result holds. In general, if 10 + ≤ 1, then as € - i 0' 

JD (fe) D1 (g6) 4dx - J 4D'3f. 

Applying the classical product rule, we obtain, 

at Da(f6.g)= E _DP(f).D(g), 

so that 

OD' (f,  E L1DP(f).LP(g)dx. I ç 

Letting e - 0, we get 

OD' (f g)dx /3!.y!Df D1ydx. J  

In the following, we make use of integrals around the boundary of the domain f. 

So that these make sense, we shall insist that Yfl is piecewise 1-smooth and locally 

Lipschitz. 

For any f,y E W2' (1k), the integration by parts formula 

I 'f gdx = I fgnido, — f 'Uog dx, 
ax1 

12 812 11 

where ni are the components of ñ, the outward facing normal vector to Ol, is valid. 

This follows readily from the Divergence Theorem (see, for example [20]). Similarly, 
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if f E W22 (fl), then 

fOg1 '2f —gdx = J Lgnjdcr - J o--dx, 
30 12 

so that, summing over i = 1,. , n, we obtain one of Green's fundamental formulae, 

Jgzfdx =JgVf.ndcr_-JVg.Vfdx. 

Here A symbolizes the differential operator 

n 2 

i=1 , 2 

In the same way it can be shown that if f E W () and g E W (fl) then 

Jg2fdx = J (g (V (sf)) - HfVg) dcr 

i (02f 02g +2 82f  02g + 82f 02g d 
+ \,Ox? Dx? 0x10x2 0xi0x2 Dx 8x X• 

Here, Hf is the Hessian matrix of 1, that is, 

02f 82f  

He'— Ox? 0x10x2 
02f 02f 

0x20x1 Dx 



Chapter 4 

Univariate Splines 

The first question that arises is 'What is a spline?'. The answer is two-fold. The 

original splines were thin elastic rods used in drafting. If a draftsman wished to trace 

out a curve, he would simply lay down some weights in appropriate places, and use 

them to hold a spline in place while he traced along it. This system intimates some 

notion of the drawn curve having minimal bending energy. As mathematical objects, 

cubic splines are models of the original mechanical spline, minimizing a linearized 

form of the true bending energy. The linearization is based on the assumption that 

the deflections are 'small'. The resulting functional is the square of the semi-norm 

H2. In general, splines of different orders are functions which minimize functionals 

that resemble this 'energy' functional. 

In the univariate case, the resulting curves are, perhaps surprisingly, the graphs 

of piecewise-polynomial functions, subject to some constraints. The constraints 

come in a variety of forms, but here the splines we consider are interpolants of 

supplied data, subject to continuity, smoothness, and end conditions. 

4.1 Polynomial splines 

We use the following definitions. Given a sequence of real abscissae {x} 0, where 

for convenience we assume xi <x3 whenever i <j, we say that any function that is 

a polynomial of degree m on each interval (xi, x+1), i = 0,. . . , n - 1 is piecewise-

42 
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polynomial of degree m. 

Definition 4.1 An interpolating polynomial spline of degree m is a piecewise-

p01 ynomial function S of degree m with the additional properties that S is continuous 

with its derivatives up to order in - 1 on (x0, xe ), and that for some specified real 

values {y}.0, S(x) = y, i = 0,. . . , n. 

Where it causes no confusion, interpolating polynomial splines of degree 1 are 

called linear splines, splines of degree 3 are called cubic splines, etc. It turns out 

that the optimality conditions which we impose exclude the splines of even degree, 

and so we focus our attention on those of odd degree. It should be noted that while 

the even degree splines do not fit in with the theory presented here, they do play a 

part in the theory of weighted splines [6]. 

Having defined splines, we should verify their existence and, with some additional 

constraints, uniqueness. 

The existence of interpolating polynomial splines is guaranteed by the following 

theorem. 

Theorem 4.2 Given a set of abscissae {x} 0 with xi <x3 whenever i <j, and a 

set of ordinates {y}0 there always exists a polynomial spline S(x) of degree m that 

satisfies S(x) = y, i = 0,.. . , i-i. 

Proof. Associate with each interval [xi, x+,], i = 0,.. . , n - 1, the Taylor poly-

nomial 
m 

p1(x) = E a3 (x - 

j=o 
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defined on the real line, where =  . If we specify the values of the deriva-

tives p(x;), j = 0,... ,m - 1, and pj(Xj1) = Yi+i, this uniquely determines pi, 

since 
rn-i 

 (x+1 - 

p'(x) = M. 
j! 

(x+1 - Xi)-

For the moment, let us assign arbitrary values to p01-1 (x0), j = 1,.. . , m - 1. These, 

along with the values yo and Yi uniquely determine P1, and hence p(x1)7 j = 

1,. .. , rn - 1, are uniquely determined. Using these derivatives and pi (X2) = Y2, we 

can construct pi, and so on all the way to Pn-i. We can now define our spline to be 

S(x)=pj(x),ifxj≤x<xj+i,i=0,...,n—land 

S(x) = y,. 

0 

The arbitrariness of our choice for the derivatives at the left-hand end of the spline 

clearly rules out uniqueness unless we impose more conditions. In the mechanical 

spline, we might expect that the free ends which are no longer constrained by ducks 

should in fact be straight, that is, they should have zero curvature. This, for the 

cubic spline, translates into S"(x) = 0, for x (x0, x). This leads us to the natural 

end-conditions. 

Definition 4.3 A polynomial spline of degree 2k - 1 satisfying the natural end-

conditions 

S() (xo) = S'M(x) = 0, j = k,.. . ,2k - 2 
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is called a natural spline. 

Once again, we encounter the question of existence. Fortunately, natural splines 

do exist, and they are unique provided that the data satisfy certain conditions. 

4.2 Optimality and Existence of Natural Splines 

We begin by showing that the natural splines, provided they exist and are of ap-

propriate degree, are optimal in that they minimize the semi-norm Ik over a sub-

space of W(xo, x). The particular subspace is the set of functions in W(xo, x) 

which satisfy the given set of interpolation conditions. It is at this point useful 

to note that the rather opaque definition of the space W (1k) can be simplified 

considerably when n C R. The Rellich—Kondraov embedding theorem guarantees 

that if f E W (so, x,) then f differs on a set of measure zero from a function in 

0k1 [x0, x,]. In addition, as is pointed out by Sobolev on page 32 of [31], for the 

generalized derivative of a function 0 on a subset S) of R to be in L2 (a), q must be 

absolutely continuous. This leads us to the alternate definition 

W k (x0, x) = {f If E C 1 [x0, x], f('l) is absolutely continuous, and f(k) E L2}. 

This is exactly the space which has been associated with splines since their invention, 

although the symbols used are often different. For example, in [2], Ahlberg et. al. 

use the symbol K (x0, x) to denote this class of functions. 

The following lemma will prove useful in showing the optimality of splines. 
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Lemma 4.4 Given the abscissae {x} 0 with xi < xj whenever i < j, and ordi-

nates {yi}t 0, if S(x) is a natural spline of degree 2k - 1 satisfying the interpolation 

conditions 

S(x1)=y, for i=O,...,n, 

then if z E W(xo, x) and z is an interpolant of zero data, i.e. z(x) = 0, 

i = 0,. . . , n, then the semi-inner product 

Xn 

(S,z)k -_J (s(k)(x)z(k)(x)) dx (4.1) 

vanishes. 

Proof. We first verify that 8(x) E W(xo, x). Since 8(x) is a spline of degree 

2k - 1, S(x) E C22 [x0, x] C' [xo,x,] if k > 2, and if k = 1, then S' (x) is 

piecewise constant. Thus 8(x) € W(xo, x). 

With regards to the semi-inner product, we apply integration by parts k - 1 

times. In the first application, we see 

Xn 

(S,z)k = J(S(k)(x)z(k)(x)) dx (4.2) 

Xn 

= S((x)z(1)(x)I Zn - J (SV+1)(x)z _1)(x)) dx (4.3) 
ZO 

Xn 

= - J (S( 1)(x)z 1)(x )) dx. (4.4) 

This integration by parts is justified since g(c) (x) is differentiable, and Z(C) (x) is 

locally integrable. The left-hand portion of (4.3) vanishes since it involves the k 1 
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initial and terminal derivatives of 8, which were assumed to be zero. This pattern 

repeats itself so that after integrating by parts Ic - 1 times, (4.2) reduces to 

J(s(k) (x)z(')(x)) dx = (_i)k J (s(2k_i) (x)z'(x)) dx 
XO xo 

n-i Xj+1 

= (i)' E S(211 )I J ( 
i=O Si 

n-i 

= (l)' E S(2 ')(x) (z(x))' = 0 

z'(x))dx 

i=O 

(4.5) 

since S(2/)(x) is piecewise constant (x E (xi, x+1)) and z(x) = 0, i = 0, . . . , n. 

0 

Theorem 4.5 Given the abscissae {x} 0 with x1 < xj whenever i <j, and ordi-

nates {yj}0, if 1 < k < n+1, then the natural spline S(x) of degree 2k—i satisfying 

the interpolation conditions 

S(x)=y1, for i=O,...,n 

exists, is unique, and is optimal in that it minimizes the semi-norm I. I. over the 

subspace of W(xo, xn) of functions which satisfy the interpolation conditions. 

Proof. Perhaps the most natural way to show the existence and uniqueness of 

natural splines is to write down a system of defining equations, and show that the 

system has a unique solution. We are searching, as before, for a set of n polynomials 

pj(X), which we hope to join together in a smooth fashion. We begin by writing 



48 

down the n + 1 interpolation conditions 

p1(x)=y, for i_—O,...,n. 

The remaining equations arise from the (2k - 1)(n - 1) smoothness conditions 

=O,...,2k-2, 1+1 

and the 2k - 2 natural end-conditions 

S() (xo) = S'  (x) = 0, j = k,. . . ,2k - 2. 

This gives us a total of 2kn equations, and since we want n polynomials, each of 

degree 2k - 1, we wish to determine 2kn coefficients. 

Now we have a square system of linear equations which we could write as 

Ax=b. 

Where the vector x consists of the coefficients ajj of the polynomials pi (x), the matrix 

A depends only on the abscissae x, and only the vector b depends on the ordinates 

y. Solving the associated homogeneous system Ax = 0 is therefore equivalent to 

finding a natural spline which interpolates zero data at the given abscissae. This 

system clearly has a solution, namely the trivial one with associated spline S(x) 0. 

Now for a contradiction, suppose it has other solutions. Let Z(x) be the spline 

associated with any one of those solutions. Then since Z is a polynomial spline and 
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an interpolant of zero data, Lemma (4.4) tells us that IZJ - (Z, Z) A: = 0. This 

means that Z is itself a polynomial of degree less than k. Since there are n + 1 ≥ k 

abscissae at which Z is zero, Z must be identically zero. This is the contradiction 

we seek, proving the existence and uniqueness of the solution of the system Ax '-- 0, 

and hence that of Ax = b. 

Suppose f is any other function in W(xo, x) that satisfies the interpolation 

conditions. Then if 12 
= (f, A =  (f - S + S, f - S + S)k = (f - S, f - 5 )k + 

2 (f - S, S)k + (S, S)k Since f - S is an interpolant of zero data, (f - 5, S)k = 0, 

and so (f, f)k = (f - S, f - S)k + (S, S)k. This leads us to the conclusion that 

IfL ≥ 15 1k 

so S is optimal. 0 



Chapter 5 

Piecewise Harmonic Splines 

We propose to generalize the univariate linear splines to the bivariate case. In this 

generalization, we view the interpolation conditions established in the preceding 

chapter as constraints on level curves. This extends nicely to the bivariate case 

where the notion of curves in the plane is much more natural. The increase in 

dimension also increases the complexity of the problem of finding an interpolant, 

and questions of existence and optimality are no longer as easily answered. 

The problem we seek to solve is as follows. Given a contour map 

and a bounded domain ci E R2, is there a function q E W(fl), such that 

4(x) = Ci whenever x E ri n n, (5.1) 

and such that ≤ 101, for any other 0 E W21(Q) that satisfies the interpolation 

conditions (5.1)? 

In the univariate case, we were able to work with fairly basic tools to show that the 

function which minimized I•Ik existed and was merely piecewise polynomial. The one 

property of polynomials that carries over to the higher dimensional problem is that 

if S(x) is a polynomial spline of degree 2k - 1, then S(21) (x) = 0 for x E (xi, x1+1 ), 

50 



51 

i = 0,... ,n - 1. In the bivariate case, when k = 1, this property is known as 

harmonicity, and instead of - the differential operator is the Laplacian: 
dx2 

02 02 

Ox1 Ox2 

5.1 Dirichiet's Principle 

In its original form, according to Courant in [[8]], 'Dirichlet's Principle' quite simply 

states that the variational problem of minimizing 1. 1, over the subspace of functions 

having finite potential energy in CO (il) with values on &I prescribed by a continuous 

function & is equivalent to solving the differential equation 

AO = 0, subject to 

Unfortunately, this equivalence comes with several caveats. It turns out that 

in general, existence of a solution to either of the above problems is not enough to 

guarantee existence of a solution to the other. Moreover, the problem of minimization 

does not always have a solution. 

These difficulties are overcome by the insistence that there exists at least one 

function which satisfies the boundary conditions. 

A more precise statement of Dirichiet's Principle is as follows. 

Theorem 5.1 Given a bounded domain Q in R2 with a piecewise smooth and locally 

Lipschitz boundary Oil, and a real-valued, measurable function b on Oil, the problem 

of finding a function 0 E W21(Q) for which 101,attains a minimum value d and 
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lao = '/, has a unique solution provided that there exists at least one function 

u E W(fZ) with the property that ulao = ib. Moreover, this solution is harmonic 

in 92, i.e., zq = 0 on 

Proof. 

1. Existence of a solution 

Let W denote the set of functions in W (1) that have the boundary value b. 

By the hypotheses this set is not empty, and since each 0 E W is in W (ft), 

0 ≤ lcL <oo. Let d = inf Ew lcb. From the set W let {4j} 0 be any sequence 

such that 

1ix 441 = d. 

We claim that this sequence converges in W2' (a). To show this, we first 

construct a norm, equivalent to the usual norm on W (1k), and then we 

show that {4j} converges with respect to this new norm. Define a projector 

1TE1 : W (Il) - Po (SI), where Po (1k) is the space of zero degree polynomials 

(constants) on SI, by 

H= J 0 do-. an 1 80 

This integral makes sense because of the imbedding of W (1) into L2 (ô), 

and since 1,9n I < o, L2 (ft) C L1 (OS1). Here we use 1.1 to denote the length 

of &I or the surface area of SI, respectively. ll is clearly a projector since if 

1110 = K, a constant, then 

ll(lli ) = 1_  80 JKdo, = K. 
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The functional (K)0 = I&II jKj is a norm on Po (a), and so it follows that 

(()) = (lliq)0 + kI1 = 

is a norm on W (ft). It remains to be shown that this norm is equivalent to 

the standard norm. 

The imbedding W (IZ) - L2 (t91) holds, so there exists a constant C such 

that 

By the Holder inequality 

IIIILz(8o) ≤ C IIq5II1,2. 

IIcIL,(ac2) ≤ II1'IIL(ac2) 

Absorbing the length of the boundary into the constant, we get 

≤ C 110111,2 

Thus Ion bdcr is a continuous functional on W (fZ). By Theorem (3.2), it 

follows that ((•)) 1 is equivalent to IIIIl,2 on W (Z). 

Now, since any pair of functions qj, Oj E W were chosen to agree on ô1 , we 

have 
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From the definition of W, we already have, for any € > 0, an N> 0 such that 

10,12 <d2 + €, whenever i > N. 

Now, for i,j > N, 

()2 ()2 ()2 (0)2 
dx 

≤2(d2+6+d2+6) =4d2+4e. 

Since EW, 
2 

≥ d2, so that 
1 

≤ 4d + 4€ - 4d2 

- 4€, 

from which we conclude that ((qj - -+ 0 as i,j -* oo. Since W (0) is 

complete, the sequence 4j converges to some function qo E W (1). We also 

require that qo E W. From the imbedding again, and the equivalence of norms, 

it follows that there exists a constant K, depending only on SI, such that 

2 qf0)2 do, <K((çb - 

80 
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This means that 11 0i - coIIL2(a) -p 0. Since Oijan = ', it follows from the 

completeness of L2 (911) that Man so 4o E W. 

2. Smoothness and Harmonicity of the Solution 

The underlying principle of this proof is reminiscent of the method we used to 

prove that cubic splines are optimal. First we claim that if E W (1k) with 

= 0 then 

(00101 = 0. 

We notice that for e E R, çb + e E W, so 

0 ≤ + eI - d2 = 62 lI +26(ci,) 1 + - d2. 

The discriminant of this quadratic in e is 

4 (qj, —4 ii (ii _ d2 

which is non-positive since the quadratic itself is non-negative. Thus, 

≤ i'i (ii - d2) —+0, as i —+ 00 

(5.2) 

proving our claim. 

We now construct a particular function such that the Laplacian of 6 can be 

written as the sum of two mollifiers, each dependent on a different parameter. 

The idea is to apply integration by parts, and using (5.2) we show that when 

the two mollifiers are applied to co the results are equal, independent of the 
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choice of the parameters. The conclusion of course, is that qo is equal to its 

mollifications, and is therefore in C°° (Il). 

Now, let b E C°° [0, oo) be a monotone function such that (x) = 1 for 0 <— 

X < 1 , & (x) = 0 for x ≥ 1. Fix S > 0, and pick h1 and h2 such that 

0< h1 <h2 <6. We now set, for yE 116 = jxjx Ell and dist(x,1) > b} and 

x E R2, 
I [V ) ( r 

•(x, y) = In — — ) ( r 
r hi W2 

Here r = Is - yll. Figure (5.1) shows an example of a pair of functions b and 

, h1 = land h2 = 2. Since C (x, y) = 0 whenever  < hi or r> !, we have 

e (x, y) E C0°° () for each y. This of course means that for each y, (5.2) holds, 
and so 

(5(.),(.,y)) = 0. 

Since the partial derivatives in x, and x2 of are still in CO' () for each y, 
the definition of the generalized derivative of qo gives us 

0 = (qo(x),(x,y))1 = _J4dx. (5.3) 
1 

Here we emphasize that the Laplacian of C is taken with y fixed, and thus write 

/ instead of L. Let us examine this Laplacian in more detail. 

1 1r  In 1\ 

hr, In r) ( h2, rj 

f\ 
= - 1n__( r _}lnhi) 

r hi 
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0.1 

0 

-0.2 

0. 

1.2 1.4 

is 2 

Figure 5.1: A monotone function V' and associated function 
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(t) in - r ) in h2 r h2 ). 

Setting w(r,h) = A.,(& () 1n!_ (r) In h) we get L = w(r)hi) - 

w (r, h2). We now quantify the smoothness of w. Since b () is constant for 
either r < or r> h, and 

- 1 8 (rP-inr' =0, 
Or ) 

w (r, h) = 0 when 0 < r < or r> h. If we define w (0, h) = 0, we see that w 

has continuous derivatives of all orders, and has compact support in f26. Now 

by (5.3), 

Jq5 (r, h1) dx = J q,w (r, h2) dx. (5.4) 

A straightforward calculation shows that j w (r, h) dx = 2ir so we divide (5.4) 
by 2ir to get 

--. f qw (r, h1) dx = -- J q0w (r, h2) dx. (5.5) 
27r 27r 

Recalling the properties of mollifiers from section (2.4.3), we note that for each 

y and h, '' ") is of class C00 with compact support and 

fw(r,h) d 
I 2ir 
0 

Each side of (5.5) can therefore be considered to be a mollification of 00 on 

Since the mollification is evidently independent of the choice of h1 and h2, we 
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conclude that 4o is identical to either of the mollifications, and is therefore of 

class C°° in Q6. Reducing 6 to include more of IZ in f16 does not change any 

of the above constructions, so we conclude that Oo E C°° (a). 

If we now let be any test function, (5.2) and a simple integration by parts 

give us 

(o, = J /çbodx = 0. 
Which means at least that L40 = 0 in the distributional sense, but since 4° is 

differentiable in the ordinary sense, it is truly harmonic. 

3. Uniqueness of the Solution 

qo is the unique (up to a set of measure zero) minimizer of 1.11 in W. If 

?/)o E W, is such that kl'oli = d, then we could construct a minimizing sequence 

by alternating q5o and çt'o. This is contrary to the previously verified convergence 

of a minimizing sequence. 

We now assert the uniqueness of the solution to Laplace's equation, AO = 0, 

in W. 

Suppose that there exists some other function b0 E W such that AOo = 0, 

possibly in only the distributional sense. It is clear that II'oIi > d, since 

equality would bring into question the optimality of qf0. Letting e be any test 
function on Q we have 

/o2',b0 ( ' 2 0 Ox jt 

\ + ôx ') 
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/ôi;bo ô\ (!ô00 o;;i ;';) = 

Suppose instead that E W (cl) and that 'a = 0, by Theorem (3.3), 6 E 

W'2 (1k). Therefore, there exists a sequence of test functions 6i converging to 

e in W (1), and we conclude that 

0 = urn = (00, 01 
i-.00 

This leads us to consider the squared semi-norm 

h&o +  2 16 12 = ItPoI + 2 + II = IboI + 

Since 00 and Oo are both elements of W, their difference o = Oo - ?&o satisfies 

olan = 0. We therefore have 

(bo,o) 1 = 0) 

so that 

d2 < IPo+oI = IoI 

This contradicts the underlying assumption that I4oI = d, so q'o is the only 

harmonic function in W. 

The framework for this proof comes mostly from Sobolev [31]. 

We now have a very smooth function 4o, defined on 1, which minimizes and 
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is also harmonic. Unfortunately, q5o is presently extended to Oci only in the sense 

of L2 (O1). We desire a little more, namely, we would like 00 to be in Co (h). 

At this point we would like to rely on more traditional solutions of the boundary 

value problem, /4 = 0 in R2, for example the one given in Axler et al. [5], where a 

continuous harmonic function is shown to exist on the closure of the domain provided 

that the data supplied on the boundary is continuous, and the boundary satisfies an 

external cone condition. This condition requires that each point on the boundary 

be the vertex of a fixed non-degenerate cone contained in the exterior of the domain. 

Our assumption that i9il is locally Lipschitz and piecewise smooth guarantees that 

l satisfies such an external cone condition. Unfortunately, the bounds on the first 

order partial derivatives are not sufficient to guarantee that this solution lies in the 

space W2' (1). 

In proving Theorem (5.1), we used an argument which assumed very little about 

the space of functions wherein we base our search for a solution. We have, accord-

ingly, arrived at a solution about which we know very little. In [8], Courant proves 

Dirichlet's Principle without the generality of Sobolev spaces. In fact, his proof is 

based on the space of functions, continuous on 11, piecewise smooth on ) and for 

which is finite. He finds a solution, let us call it u, which is harmonic, and con-

tinuous up to and including the boundary. Such a solution is clearly in the subspace 

W in which we sought an optimal function. This means that u qualifies as a solution 

to our problem. By the uniqueness of our solution, however, this means that u = 4o, 

so we can safely conclude that 00 is continuous on fl. We do not include a sketch 

of Courant's proof of the principle, since he supplies several, one of which follows 

essentially the same lines as ours. 
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The problem we encounter when applying Dirichiet's principle is determining 

whether a given set of boundary conditions is satisfied by at least one function in 

the space. In the next section we deal with this question in the context of contour 

data. 

5.2 Existence and Optimality 

Suppose we are given a contour map, M = {(Fj, C1) Ii = 1,. .. , N}, in which each 

pair of contours is nested. For example, the level curves of f(x, y) = x2 + y2, given 

by f(x, y) = ii, n = 1,.. . , N, form such a contour map. For simplicity of indexing 

let us assume that if i < j, then F, is inside F2. Let U1 be the region interior to 

171, and in general, let Ui be the region bounded by I' and 1'1, i = 2,..., N. If 

the bounded domain fl j U U1 has a locally Lipschitz boundary, then we have the 
following theorem. 

Theorem 5.2 If each ri is piecewise smooth and locally Lipschitz, there exists a 

function 0 E W(11) fl co () satisfying 0 Iri = C1, i = 1,.. .,N, for which 10 1, ≤ 

'& for any other interpolating function 0 W(), moreover, this function q' is 

harmonic in each region U1, i = 1,. .. , N. We call 0 a piecewise harmonic spline. 

The proof of Theorem (5.2) relies on Dirichiet's principle, so we supply a general 

theorem indicating the permissibility of our boundary conditions. 

Theorem 5.3 Suppose {'y}ii=1 is a set of 1-smooth arcs in a bounded domain in R2 

with only pair-wise intersections, and that defined on each -yj there is a C1 function 

i/'i. If {71}.i and {&} are such that if yj and 'yj intersect for some i,j :5N, 
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i j at a point p, then Oi (p) = /.'j (p) and is not parallel to at p, then there 

exists a function u E C'(R2) such that u 1 = ?/'j, i = 1,. . . , N. 

Before we prove Theorem (5.3) we supply a few technical details, all pertaining 

to functions defined on 1-smooth arcs. 

Lemma 5.4 Suppose Y1, Y2 C R2 are smooth arcs intersecting at a point p and 

and 'y are not parallel at p. If the functions 01 defined on 'yl and 0 2 defined on 72 

are C1 and 01 (p) = 2 (p), then there exists, on a neighbourhood N of p, a function 

C(N,) such that 'T!(q) = O(q) whenever q E N fl j, i = 1, 2. 

Proof. Let us assume that -11 and 72 are parametrized by arc-length such that 

71 (0) = y2 (0) = p, and that neither curve ends at p. This does not result in a loss of 

generality for if either of the curves ends at p, they can be extended in a C' fashion 

with a straight line, as can the values of the functions defined on them. 

Let T(u,v) := 71(u)+72(v) —p, for all values of u and v for which the evaluation 

makes sense. We note that T is C' and that T (u, 0) = 'y, (u), and T (0, v) = 72 (v). 

The Jacobian 

/ , T , 
JT(u,v)=det(,(71(u)) 1(72(V))) 

is non-zero provided the two tangent vectors are not parallel. This condition is 

guaranteed by the hypotheses when u = v = 0, so JT (0,0) 0 0. Thus, by the Inverse 

Function Theorem there exist neighbourhoods M of (0,0) and N of p = T (0,0) such 

that T has a C1 inverse T 1 : N - M. 

Now, let C (u, v) := 01 (T (u, 0))+'2(T (0, v))—&, (p) = &, (' (u))+&2 (72 (v))— 

l'i (p). This function has several desirable properties: G (u, 0) = b, (71 (u)), G (0, v) = 

/2 (72 (v)), and C E C' (M). 
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We now let W (x, y) := G (T' (x, y)) for (x, y) € N. As a composition of two 

C1 functions, W is also C', and satisfies the required interpolation conditions. 0 

Lemma 5.5 If 'y is a smooth arc, and & is a C1 function defined on 'y, then for 

each point p of i' there exists, on a neighbourhood N of p, a function 1' € C1(N) 

such that '11(q) = b(q) whenever q E N fl y. 

Proof. Let 'yi = 'y and set -y2 (t) = p + til(p), where i (p) is a unit normal to y at 

p. In addition, let &i = 0 and &2 = (p). Apply Lemma (5.4). 0 

We can now proceed with the proof of Theorem (5.3) 

Proof. At each point p on i = 1,. . . , N, that is not on some other curve 

we apply Lemma (5.5) and construct a function F (x, y) which is C1 in some 

neighbourhood N of p, and satisfies the interpolation conditions. At any point p 

that is the result of an intersection, we apply Lemma (5.4), to similarly obtain a 

C' function F (x, y) defined on some neighbourhood N of p. Since we assume no 

tangency at points of intersection, we can ensure that N fl {y,} 1 is connected for 

each p. 

We now have an uncountable number of neighbourhoods covering {'yj }. Since 

{ is closed and bounded, it is compact and we therefore need only a finite 

number M of these neighbourhoods to cover the boundary. Let us denote these 

neighbourhoods by C, and the functions associated with them by F1, i = 1,. . . , M. 

If we add the set Co = R2 \ to the collection {C1} then we can construct 

a partition of unity C C00(R2) with supp Oi C C, for i = 0,.. . , M, such 
M 

that Ec5 1 (for a proof of this, see Gel'fand and Shilov, vol. 1 p. 142 [14]). 
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M 

The function u = b1F1 is in C'(R2), and takes on the values of Oi on each 'yj, 
1=1 

i=1,...,N. 0 

We now have the necessary tools for the proof of Theorem (5.2). 

Proof. On each of the regions U1, i = 1,. .. , N, Theorem (5.3) guarantees us 

the existence of a function u1 which satisfies the boundary conditions u2r'1 = C1 and 

ujIr_1 = C1...1 and is in C1 (U1). This of course means that the first order partial 

derivatives are bounded and thus each function ui is in W (U1). By Dirichiet's prin-

ciple, there exists a unique function qj E C00 (U1), harmonic in U1, which minimizes 

over all interpolating functions in the space W(U1). 

By the remarks following Theorem (5.1) each çb1 E Co (U1). If we let 

ifxEU1, i=1,...,N, 

if  El', i=1,...,N, 

otherwise, 

then 4 E Co (), and we claim that II4lII,2 = EiL Il4lli,2,U < oo, so that q E 

W (fl). This is essentially Theorem (2.1.1) of Ciarlet [7]. For the equality, it is 

sufficient to show that DJ cbIu = Dej çb1, since each qj is an element of W (U1). Let 

be any test function on Q. For i = 1,. .. , N, and j = 1,2 we have 

eDej4idx = j0&jda  - J çb1ndci - J ç1Ddidx. 
Ui r1_1 
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For ff, the portion of fl not covered by the Ui we have 

o = eDejCNdx = J CNnJdcY - J qCNndcY - j CNDdZ 
FN  

Summing over all of the subregions and rearranging the integrals, we get 

J Ui = N Jr (i+1 - çi)ndcT - N  

which, accounting for the fact that q E CO (Il), is 

Jo çbDdx = i=1 Ui 

By the definition of the generalized partial derivative, it follows then that DdiI Uj = 

Dci4, whereby 0 E W(f). 

Now, of course, the fact that q is optimal on each region Uj is not obviously 

sufficient to guarantee that q' will be the optimal function on 1. To show that it is 

optimal, we resort to a sequence of arguments similar to those we used to prove the 

optimality of the univariate splines. 

Recalling (5.2), we claim that if & E W21(Q) is an interpolant of zero data (i.e. 

'Ir1 = 0) i = 1, ... ,N), then (q5,'&)1=O. In fact, 

----dx (&) = + ôô 
0 

E j •—O •—O dx + 0. 
i 1 U. ox1 Oxi Ox2 Ox2 

(5.6) 

(5.7) 
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Now, suppose 0 € W2' (Il) satisfies the same interpolation conditions as q. Then 

(1 ,011)2 = (1', 1') = ( + ( - , 4 + (& - 

= (qf, 0), +2 (0, ,0 - + &, - , .& - 

+ 0 + (I& - Ii)2 ≥ (1 0 11)2 . 

So q is optimal. 0 

5.3 A More Realistic Case 

The problem posed and solved above assumed more of the contour map than can 

be expected from an actual topographical map. We propose a way of extending 

the preceding methods to real maps. For example, a typical topographical map is 

bounded by a rectangle, with contours crossing that boundary. Unfortunately, there 

is usually little or no information available regarding what happens outside of the 

rectangular region, and so we have to base our search for an interpolant solely upon 

pieces of contours. 

Suppose now, that we are given a contour map, M = {(I'j, C1)Ii = 1,. . . , N}, 

and a closed rectangular region Q. Let us denote by MQ the collection of n curves 

'yj and associated constants C, generated by F2 fl Q, i = 1,.. . , N. Note that in 

general, N 0 n. The n curves yj divide Q into regions Uj, j = 1, . . . , P for some 

F> 0. Since there is no guarantee that any of the curves are nested contours, there 
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is no longer any convenient correspondence between the number of curves and the 

number of regions. 

At this point we recall that most of the main theorems so far have required 

that the regions involved have locally Lipschitz boundaries. This presents us with a 

restriction on our contour map. If 'yj meets the curve OQ at a point x0, we assume 

that the tangents of the two curves are not parallel at x0. If they were, then one of 

the Uj for which x0 € OLT3 will not have a locally Lipschitz boundary (if it does have 

a locally Lipschitz boundary, then the neighbouring region sharing x0 will not). In 

addition, we insist that the only intersections that occur are pairwise - this means 

that points in r1 at which there is no tangent vector should not lie on OQ. 

For any Uj, not necessarily all of OLT1 consists of pieces of contours - there are 

likely to be portions of OU which are part of OQ. If this is the case, then there 

are no boundary values specified on some portions of OLT5. This leaves us with 

several options. We could look for solutions to the minimization problem leaving 

those portions with free boundary conditions, or we could specify values and use 

Dirichlet's principle as stated in (5.1). 

In the second case, we notice that if we extend the boundary conditions along 

ÔQ so that the specified values result in a C1 function being associated with all of 

OU, then the proof of Theorem (5.2) applies, and there exists an optimal function 

satisfying those new boundary conditions. The optimality of the function is limited 

in that it is not likely to be optimal when compared to all other functions which only 

satisfy the interpolation conditions on the contours. 



Chapter 6 

Piecewise Biharmonic Splines 

In the previous chapter we discussed a sort of 'linear spline' for contour data in the 

plane. This interpolant has some of the same problems that linear splines for data 

on the line have. For one thing, the resulting surface is not, in general, C1. This of 

course means that for contour data, the spline will have visible creases. The linear 

spline is also not a model of a physical spline: it doesn't minimize bending energy 

- it minimizes potential energy. If we assume that the data values on the contours 

describe a distribution of charges, then the resulting piecewise harmonic function 

describes the potential in the interior of each region. 

We now propose to construct an interpolant which does minimize the bending 

energy. As in the univariate case, we linearize the true bending energy by assuming 

that deflections are 'small'. The result is that we aim to minimize 

IfI2. 

This leads us to look for minimizers in a Sobolev space, particularly f € W (ci). 

We begin with by applying some Hubert space theory, thereby showing the exis-

tence and uniqueness of a solution to the problem, and then we characterize some of 

its properties. In particular, the solution will be biharmonic on subregions delimited 

by contours, that is 

z2f = 0, 

69 
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of class C' (), and it will have continuous second order normal derivatives across 
each contour. We compare this with the cubic splines, for which the same properties 

hold, the normal derivatives, of course, reduce to the second order derivatives, so the 

univariate spline is in fact C2. 

6.1 A Subspace of W.' (1) 

Suppose M = {(C, F)} 1is a contour map with N > 1, and that for each i < N, 

I'j C l, and rN = Ô1. Unless we specify otherwise, we assume in this chapter that 

each ri is 2-smooth. Since we are concerned primarily with searching for a function 

for which the ri are level curves, we consider the space 

XM={EW()IrN =0 and q5IrIis constant for i=1,...,N_1}. 

We notice that 112 is a norm on XM provided that the contours are not all parallel 

straight lines. By the same reasoning, (.'.)2 is a true inner-product on XM. We 

claim that XM, with the norm 112' is complete. To show this, we apply Theorem 

(3.2), with the functional F = which vanishes on XM. We notice that F 

has all of the properties required so that 112 +.F is a norm equivalent to 111122 on 

W (1). Because F vanishes on XM, 112 and 11112,2 are therefore equivalent on XM. 

We combine this equivalence with the following lemma to obtain the completeness. 

Lemma 6.1 XM is a Hubert space with the norm Il1l2,2 

Proof. Suppose {qj} C XM is a Cauchy sequence. By the completeness of 

WI (a), q'j - e WI (1k). In addition, Sobolev's imbedding theorem gives us 
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W () -+ C° (), so for all i& E W (fl) there exists some constant K> 0 such that 

IkbIlco() K 110112,2 - 

From this we conclude that 

SUP 10i - = IIi - IIao(c) ≤ K 110j - 0 112,2 
xECZ 

and particularly, for any r3 

sup 10i -  01  -4 0, 
xEr3 

so qf E XM. Therefore XM is a complete inner-product space. 0 

We now introduce a collection of linear functionals on XM. For any q E XM and 

for each r1, let 

Lb = 41r. 

These functionals are clearly linear, and they are, in fact, bounded. 

Lemma 6.2 The evaluation functionals Lçb = q5Ir, i = 1,. .. , N are bounded on 
XM. 

Proof. For some constants K and If, we have, for any q € XM, 

ILI = I q5Ir I ≤ SUP I ≤ ' 110 112,2 ≤ K1 1012XEQ  

The second inequality follows from the imbedding theorem, and the last inequality 

holds because of the equivalence of the two norms. 0 
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Because of the boundedness, the Riesz representation theorem guarantees the 

existence of representers fi E X, i = 1,. . . , N, such that for any & E XM 

Lb = (A'02 - 

The first N - 1 of these functions are linearly independent, since if E aif: = 0, 

then 
IN-i \ N-i N-i 

0 = (> aifi) = E a(f,)2 = a 1)r1, for all b E XM. 
2 1=1 i=1 

From the arbitrariness of b, it follows that ai = 0, for i = 2,. . . , N. 

We now consider the function 

N-i 

4'=CN+ Ebf. 
j=1 

where the b's are determined by solving the system 

IN -i 

(>b1fif1) =C1—CN,i=1,...,N—1, 
i=1 2 

which, in matrix form, is 

(fi,fi)2 (12,fi)2 • . UN- 1,fl)2 / bi \ / Cl - CN 

\ (fi,fN-i)2 

• (fN-1, fN-2)2 

• (fN-1)fN-i)2 / \ bN.....1 / \ CN1-CN / 
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Compressing the notation, we write this as 

Fb=c. 

The matrix F is positive definite since for any vector a E RN -11 

/ 

aTFa = a  

a (ft, f')2 

a (ft)  fN-i)2 

N-i( N-1 

>afi>aifi) ≥O, 
j=i 2 

with equality only if ai = 0 for all i. The system therefore has a unique solution, 

and the function 4 is well defined. Moreover, 4 satisfies the interpolation conditions 

= C, i = 1, . . . , N. It should be noted that since 0 does not necessarily vanish 

on TN, 0 is not likely to be in XM, but 0 - CN is in XM. We can now sample the 

fruits of our labours in the form of the following theorem. 

Theorem 6.3 The function 0 described above is optimal in that if & E XM is 

any other function such that 0 + CN satisfies the interpolation conditions then 

Icf - CN 12 < 4 is, moreover, the unique optimal function. 

Proof. We begin by assuming that b differs from 0 - CN on a set of positive 

measure so that the norm 

kb—+CNI2>0. 

We consider the inner-product 

N-i N-i 

(q - CN, qi - CN - 1)2 = b (fi, q - CN - ')2 = b1 ( - CN - b) Ir1 = 0, 
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and find that the function 0 is orthogonal to all interpolants of zero data. We take 

advantage of this to show 

= ( - C4)2 +0+ (Iv' - q + CNI2)2 > (14' - CNI2)2. 

So that kt'I2> 14' - CNI2, whence we conclude that 4' is optimal and unique. 0 

We now hypothesize about the order of continuity of 4'. Recalling our previous 

notation, we assume that the contour map divides 9 into regions U1, j = 1,. . . , N, 

such that O(J = F1 U F1_1, where, for convenience, we set F0 = 0. For other reasons, 

which will become clear as we progress, we also assume from now on that the contours 

are all at least 6-smooth. 

Theorem 6.4 If we denote by q'j the restriction of 4' to U1, then 4' is optimal if 

and only if z24' = 0 on U1, 4' E C1 (a), 4' has continuous second order normal 
derivatives on F1 for i = 1, . . . , N - 1, and the second order normal derivative of 4' 

vanishes on TN. 

Before we continue with the proof of this theorem, we have to address some 

technical details. For example, since we only know that the generalized derivatives 

up to order 2 of 4' are locally integrable functions, we will find it inconvenient to 

work with the fourth order differential operator L2. We deal with this problem first. 
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Suppose for the moment that fl is a bounded domain with an rn-smooth bound-

ary, and that u E C4 () and f E L1 (1). Then the differential equation 

&u=f (6.1) 

makes sense whether it has a solution or not. Let us assume that it does have a 

solution on 0. If we let 0 be any function in Co- (a), then we can multiply both 

sides of (6.1) by b, and integrate over fl to get 

jOA2UdX = I of dx. (6.2) 

Applying integration by parts to the left-hand side of (6.2) we obtain 

(02U 020 + 2 92u  O2 + 82) 
&r10x28x18x2 O2 dx=Jbfdx. (6.3) 

The boundary terms from the integration by parts drop out since & has compact 

support. If u E W (fl) is a solution of (6.3) then we say that u is a strong solution 

of L2u = f. Now, let g E C4 () be any function that is constant on 8f. We could 
now consider solving the equation 

(O2uO2b 2  82 & J + dx = J &(—&g) dx (6.4) axlOX2 axj'9x2 2 2) a 

for u E W'2 (Il). If u is smooth enough, then v = u + g will be biharmonic, and 

satisfy vlaa = glaa and Vvl00 = Vg6. 
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We will show in the proof of Theorem (6.4) that on U1, qj qualifies as a candidate 

for v as defined above with f = /2g. So we now state a result which applies to 

solutions to problems in the form of (6.3). 

The second part of Theorem 17.2 in Friedman [12] tells us the following. If oil is 

(4+ 1)-smooth for 1 ≥ 0, and f E W (R) then if u E W'2 (Il) is a strong solution of 

I2u = f, then u E W' (Il). This, together with some of the imbedding theorems 

of Chapter 3 tells us some useful things about the behaviour of u on Oil. We will 

discuss these further in the proof of Theorem (6.4). 

We now have the necessary tools to procede with the proof of Theorem (6.4). 

Proof. First, let us assume that q' is optimal. To show that q5j is biharmonic on 

U1, we recall from the proof of Theorem (6.3) that if 0 E Co- (U1), then 

(j,&)2 = (')2 = 0. 

Now, since each r, is 6-smooth, there exists a function gj E C6 () such that gji', = 
Ci and glr_1 = C_1. If we let vi = cf.j - gi then 

(vi, ')2 = (ti, 02 - (gi, 702 = (gi, 02 

Applying integration by parts, we obtain 

(gi, v')2 = j (492g a2o  +2 Og,  O/' 02gj o2&\ laxOX2i 0x10x2 0x10x2 + dx 
UI  jX2 X2 

= j OA2gi dx 
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Thus, 

(v1b)2 = ( dx 

Ui 

2v '2p O2v  92,0 92v O2 , 

Ox1 Ox1 0X10X2 0x10x2 OX2 0x2 

= _J2gidx. 

Ui 

The function vi is, therefore, a strong solution of (6.1) with f = A 2 gi E C2 (LI1). 

Since çb1 E W (LI1), v E W'2 (U1). From our previous remarks, vi E W 2 (U1). 

Since g E C (fl), it follows that 4j E W (U1). By the Rellich-Kondraov Theorem 

W (U1) -+ C4 (U1), so L2v = - &gj, and 2v = Z2g. Thus, L2qj = 0. This 

argument applies for i = 1,. . . , N, thus proving the first property of q. 

To show the second property, we again make use of the imbedding theorems 

from Chapter 3. Since qf' E W (ft) we already have 0 E Co (). We now verify 
that the gradient must be continuous. On rN, 0 clearly has a unique C extension, 

specifically that of ON, so we consider the case when i is less than N. Since 0 is in 

XM, both qj and qii are constant on r1, from this we conclude that the tangential 

derivatives coincide. We therefore concentrate on the normal derivatives. 

0c61 O i+1 Since -- and are continuous functions on r1, their difference is also con-
On On 

tinuous. If the two derivatives are not equal at some point p of r•, then there is, in 
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this derivative (taken of course in the distributional sense) is not even a function in 

the classical sense. 

If we set fi = f for x <0 and f2 = f for x > 0, then on their respective domains, 

fi and 12 are both of class (at least) C2, with bounded second order partials. They 

therefore have C2 extensions f and f2 to the entire rectangle. Recalling the two-

dimensional step function S (x, y) from Section (2.3.3), let 

- _lo 
- 

f2 - fi 

Since 12-fl is C2, 
,92 

(f) is not a classical 

02 - 

-j(fi) is not in L2 (Q)- aX  

This contradicts our assumption that q E W (Cl), therefore 0 E C1 (i). 

Finally, we consider the second order normal derivatives of 0 on each r•. We now 
assume b € C2 (a), with 01,j = 0, for i = 1,. .. , N, and apply integration by parts 

to (0102. Doing so we obtain 

f) is C', and 

function. From 

X <0, 
= (f2—!1) s. 

x>0 

so the results of Section (2.3.3) apply, and 

(f)=-(f)+ ax 
02 

this it follows that - 

0x2 

1J dx 
Ui 

N' 
= i=2  HqV) . n- dci 

ci 

- J (& (V ()) - HV—). dci 

+ + j (820, 02b 2  021, O2qj d 
0x 0x OX1OX2 0x10x2 + 0x 0x • 

(6.5) 

Since each q5 has bounded third order derivatives up to 0U, the product V (iq5) makes 
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sense on ri and Fi_i and in fact vanishes there. By virtue of the fact that for each 

i, A20, = 0, the left side of (6.5) vanishes. Since b is an interpolant of zero data, so 

does the last integral on the right-hand side. As a result, (6.5) reduces to 

f(HOj - H +1) 7dcr = 0. 
ri 

(6.6) 

If we restrict b further so that its support lies within u1uu +1ur, for some particular 

i, then 

J(Hqf1 - Hq5 1) V&. do' =0. (6.7) 
ri 

Since & is constant on F, it follows that VV; is a vector parallel to ff, that is, for 

some real valued function j defined on r•, V& = jjn. Using this, (6.7) becomes 

J TT - n ii Q5i+lfl) j do' = 0. 
ri 

From the arbitrariness of 7k, and hence of j, we conclude that 

(?TH.ft - ilTH. = 0 

almost everywhere on I'. This is the result we seek, indicating that the second order 

normal derivatives of q5j and 4'j coincide on r, for i = 1,. .. , N - 1. Finally, we 

consider FN. Suppose 0 is a zero-interpolant of class C2 (), with support strictly 
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within UN U "N. Now (6.6) becomes 

-4T -. which tells us that n HcbNn = 0 on N. 

The converse of this theorem is trivial. If each patch qj is biharmonic, and 0 E 

C1 (), with continuous second order normal derivatives on each F, i = 1,. . . , N—i, 

and --- = 0, we obtain, for 0 E XM any rnterpolant of zero data, 
0n2 

rN 

N (•2-0"927P' 2 O42 a2b O2 O21,\(' u/')2  11I + OxOx 0x1ôx2 + aX2 dx 
UI 

N 
= ((Hq1 - Hq5j_i) Vib - i,& (V (i) - V (z4...i))) . i do, E1=2 J  

ri 

+ Fli=, f V)A2 Oi dx 
UI 

=0. 

Applying, what is by now, a familiar argument, we obtain the result that if 0 is any 

other function in XM, such that b + CN satisfies the interpolation conditions, then 

II2 II2 ° 

The requirement that 00 be at least 6-smooth is by no means guaranteed to be 

a strict bound. It is due to the nature of the theorems quoted that we are forced 

to use such a high degree of smoothness. It is quite possible that given the simple 

nature of the differential operator A2 some of the conditions of these theorems could 

be relaxed. 
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6.2 Some Examples 

At this point a reasonable question to ask is whether it is possible to explicitly 

compute a piecewise biharmonic spline. Given representers, the problem is trivial, 

but finding the representers is not a trivial task. Following is an example wherein 

it is possible, and not extraordinarily difficult, to compute the interpolating spline. 

We make no effort, however, to find representers. 

In our first example, we consider a contour map M comprised of concentric circles 

Siwith radii R, and associated data values Ci for i = 1, . . . , N. In this case, we would 

expect the resulting interpolant to be radially symmetric and piecewise biharmonic. 

We suppose that all the contours in M are in fact centered at the origin. 

The first step in looking for an interpolant is finding a general solution to the 

biharmonic equation L\2u = 0. Since we are looking for a solution which will be 

radially symmetric, we can change variables to polar coordinates, and discount any 

derivatives taken with respect to angle. In polar coordinates, therefore, we have 

L2u = Urrrr + 2 Urrr - 1 r2 r3+ = 0. 
r r 

It is easily verified that the general solution to this differential equation is 

u(r)=ar21nr+blnr+cr2+d, 

for any constants a, b, c, and d. On each region Uj delimitted by the contours Siand 

S_1, i = 2,... N, we consider the patches u1 (r) = ar2lnr + blnr + Cj r2 + d. On 

nj we require that u (r) = a1 r2 In r + b1 in r + c1 r2 + d1 be of class at least C2. This 
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implies that special attention is required at the origin. Our first concern is that u1 

should be continuous at the origin, so bi = 0, and since lim,.. o+ r21nr = 0, we can 

safely set uj (0) = d1. Next, we require that 

au1 
- =ai(2r1nr+r)+2cir 
or 

be continuous at the origin. Since this is already the case, we proceed to 

02u1 
,9r2 a1 (21nr + 3) + 2c1, 

which is unbounded as r --40+.  We therefore conclude that a1 = 0 so that u1 (r) = 

c1r2 + d1. 

Our goal is to find coefficients a,. .. , d, for i = 1, . . . , N such that the function 

comprised of these patches interpolates the given values on each Si, is of class C2 on 

, and such that 02 UN 

are 

= 0. The equations for interpolation and continuity 
rRN 

u=u+i,on Si, i1,...,N—1 

Ui = C1 on Si, i = 

which reduce to 

(a i - a) R in R1 + (b1+1 - b1) in R1 + (c +1 - c) R + (d11 - d) = 0, 

for i=1,...,N-1,and 

a1R in R + b in R1 + c1R + d1 = C1, for i 1,. . . , N. 

(6.8) 
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The equations governing first-order differentiability are 

(a i - a) (2RjlnR + R)+(b1+i - b) - c) 2R; = 0, for i = 1,.. 

and those for second-order differentiability are 

(a +i —ad) (2lnR1+3) - (b1—b1)+(c1+1 — e) 2= 0, for  = 1,...,N— 1. 

02u 
The last equation comes from the 'natural' boundary condition 

more explicitly, 

= 0, or 
?RN 

aN(2lnRN+3)—bN -- +2cN=O. 

This gives us 4N - 2 equations, and since a1 and c1 are already determined 

to be zero, we have only 4N - 2 unknown values. To see that this system has 

a unique solution, we start by considering the homogeneous system. This system 

clearly has solutions, since solving the homogeneous system corresponds to finding an 

optimal interpolant of zero-data, which is trivial. Any solution of the homogeneous 

system is optimal by Lemma (6.4), and by Theorem (6.3) it is also unique. The 

non-homogeneous system of equations therefore has a unique solution, and we may, 

without excessive computation, find an interpolating piecewise biharmonic spline for 

the contour map M. We present some graphical examples of this spline in the next 

chapter. 

Any attempt at a more general example turns out to be thwarted quite early 

in the game. Suppose, for example, that we wished to find an interpolant on some 

more arbitrary domains. While it would be difficult enough to find a solution if 
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we actually knew all of the boundary conditions for each biharmonic 'patch', the 

problem at hand is a little more devious. We have to leave the normal derivatives 

on the contours of each patch as unknowns. This could work in two ways. 

A method which is often applied to cubic splines is to write down a system of 

equations which determines the required slopes in terms of the necessarily matching 

curvatures of neighbouring segments. We could attempt the same here, seeking 

to find the first-order normal derivatives which would make the second-order ones 

continuous. The difficulty which arises is that general solutions to the biharmonic 

problem usually involve computing the Fourier series of the boundary values. This is 

easy enough for the zero-order conditions, but for the unknown first order conditions, 

we encounter a problem with far more unknowns than we would like. Perhaps some 

sort of iteration wherein an initial guess is made could be applied here. Despite 

the lack of a slick algorithm, such an approach may actually be quite feasible. An 

advantage would be that at each step of such an iteration, the interpolant would 

already be C'. This means that for reasonable contours one could easily concoct an 

ad hoc scheme for 'guessing' the gradients along the contours, and already have a 

very well behaved interpolant. Some future work on an iteration scheme could bring 

this interpolant closer and closer to an optimal one. We should note that relying on 

local information to generate slopes has been used by many people in the context of 

piecewise cubic interpolants. For a reasonably broad description of such techniques 

see Chapter 3 of Lancaster and Salka.uskas [19]. 

Another approach may be to consider the opposite problem. Instead of looking 

for the first-order derivatives, we could look for the second order derivatives. Our 

search criteria would be that the first-order normal derivatives should be continuous 
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across each contour. This could lead us to solving a pair of differential equations 

as follows. On a given domain Q with sufficiently smooth boundary, we know that 

there exists a solution to the problem 

Lg=O, 

subject to 

1118c2 = h 

for some sufficiently smooth function h defined on OIL Similarly, it can be shown 

that there exists a solution to the problem 

Lçb=g 

subject to 

for some sufficiently smooth function f on OIL The function 0 would therefore have 

the properties 

= 0, 

cIaci = f, and 

h. 
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If we could describe patches qj on neighbouring regions Ui by 

A'Oi = 0, 

Odri = i+iIr, and 

then perhaps it could be shown that such an interpolant is optimal whenever 

0çb1 
( 

on 
r 

oi 

ri 
for i=1,...,N-1, 

with some appropriate value given for We hasten to stress that the existence 

of such a solution, while appearing likely, is still hypothetical. This could be a subject 

for further research. 



Chapter 7 

Some Graphical Examples 

While the technical descriptions and proofs of the previous chapters are necessary 

to ensure that we don't try to evaluate a non-existent interpolant, we must keep in 

mind that such descriptions tend not to give one an accurate impression of what 

the resultant interpolant will look like. The interpolants we described are 'optimal' 

in a mathematical sense, which gives a mathematician great comfort. In the end, 

however, the appearance of the interpolant, the time required for calculation and the 

ease of calculation are often much more important than whether a mathematician 

says "It's an optimal interpolant" or not. 

The piecewise harmonic spline developed in Chapter 5 serves mainly as an ex-

ample - the resulting surface will have creases at almost every contour line. This 

may not, in every case, be a bad thing. For someone wishing to get a reasonable 

approximation to a surface, while remaining faithful to contour data, such a spline 

would do the job. There are a few notable quirks of course, for example if a contour 

does not enclose other contours, then the harmonic patch inside that contour will 

necessarily be constant. 

The piecewise biharmonic spline discussed in Chapter 6 should have wider appli-

cations than the harmonic spline. It is intended as an alternative to the thin-plate 

spline. The thin-plate spline is a fairly effective interpolant provided one does not 

attempt to interpolate at too many points. As mentioned in the introduction, this 

causes problems when one attempts to enforce contour data. One major advantage 

87 
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Radius Height 
1.0 0.0 
2.0 1.0 
3.0 2.0 
4.0 3.0 
5.0 4.0 
6.0 5.0 

Table 7.1: Data Set 1 

of the thin-plate spline is that the further the point of evaluation is from data, the 

lower the curvature of the surface at that point. The spline conveniently produces 

a plane when given planar data (unlike some other methods), and is very smooth 

except at the data points where the second order derivatives fail to exist. Generally, 

while a thin-plate spline, being a global interpolant, is difficult to compute, it gives 

reasonable results. Lacking a variety of examples for the piecewise biharmonic spline, 

we can not make any widespread claims about it giving reasonable results. We can 

however give some examples of how well it does work with the simple example we 

constructed in the previous chapter. 

7.1 The Sample Data 

We begin by introducing our test data. We have, so far, only explicitly computed the 

piecewise biharmonic splines for contours which are concentric circles. By varying 

the configuration of these, we can get an impression of how well all three techniques 

mentioned above compare. 

Our first data set is quite straight forward. We essentially sample a cone on 

uniformly spaced radii (see Table (7.1)). 
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Radius Height 
1.0 0.0 
2.0 1.0 
3.0 2.0 
4.0 3.0 
5.0 4.0 
6.0 0.0 

Table 7.2: Data Set 2 

Our second data set is a bit more demanding. We modify the first data set by 

setting the value on the outer contour to zero, as a test to see what effect a rapid 

variation has on the surface. 

7.2 The Results 

For the first data set, the results are fairly competitive. If we sample each contour 

at 10 points, the thin-plate spline is well-behaved, and is almost conical as Figure 

(7.1) shows. 

The piecewise biharmonic spline in Figure (7.2) is already guaranteed to have 

circular contours, so this is not a concern. 

Figure (7.3) shows a cross-section where we see how well the spline recovers from 

the ninety degree corner at the origin. 

The piecewise harmonic spline in Figure (7.4) already shows its creases even 

with such a simple data set. A brief calculation shows that all radially symmetric 

harmonic functions are of the form a + b In(r) for some real constants a and b. This 

fact is evident when one looks at the cross-section in Figure (7.5). 

For the second data set, the differences between the thin-plate spline and the 
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6 6 

Figure 7.1: A Thin-plate Spline on Data Set 1 - 10 Points per Contour 

Figure 7.2: A Piecewise Biharnionic Splil!e on I)a.ta. Set 1 
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-6 -4 -2 Im  

Figure 7.3: A Cross-section of the Spline in Fig. 7.2 

66 

2 

4 

6 

-4 

Figure 7.4: A Piecewise Harmonic Spline oii Data. Set 1 
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4 

1 

- -4 -2 2 4 6 

Figure 7.5: A Cross-section of the Spline in Fig. 7.4 

l)ece'se hiharmonic spline in Figures (7.6) and (7.7) are already more noticeable. 

The change in curvature of the da.ta pulls the thin-plate spline down in between 

each pair of data points on the 5th contour as we can see in Figure (7.6). The 

piecewise biharmonic spline displayed in Figure (7.7) naturally has no such problems, 

and looking at the cross-section in Figure (7.8), we can see that it is not highly 

oscillatory. 

If we try to correct the sagging in the thin-plate spline by sampling each contour 

at more points, the sagging is less pronounced, but eventually, we are unable to 

compute the surface accurately. Already at 40 points per contour, evaluation of the 

spline in Figure (7.9) requires solving 240 equations witli 240 unknowns. Souiie small 

oscillations visible in the surface point to trouble ahead. If many more data. j)OilltS 

are added the systein will become ill-conditioned. 

In fact, to emphasize the instability of the problem. we consider two more exam-
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66 

Figure 7.6: A Thin-plate Spline on Data Set 2 - 10 Points per Contour 

66 

Figure 7.7: A Piecewise Biharmonic Spline on Data Set 2 
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Figure 7.8: A Cross-section of the Spline in Fig. 7.7 

66 

Figure 7.9: A Thin-plate Spline on Data. Set 2 -- 40 Points per Contour 
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-6 6 

Figure 7.10: A Thin-plate Spline on Data Set 2 - 10 Points per contour, 5 Digits of 

Precision 

pies, where we carry only 5 digits of precision for all calculations. For the thin-plate 

spline in Figure (7.10), we again sample at. 10 uniformly spaces points per contour. 

The result is reasonable with the high-precision example in Figure (7.6), but when 

we reduce the precision in Figure (7.10), the surface bears no resemblance to the 

data. 

When we reduce the precision for the piecewise biharmonic spline in Figure (7.11), 

we notice only that the surface is not as smooth as it should be. This roughness is 

to he expected given the low precision. 

These limited figures indicate that it may be worth-while to search for algorithms 

for computing the piecewise biliarmonic splines on more general domains. 
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Figure 7.11: A Piecewise Biharmonic Spline on Data. Set 2 - 5 Digits of Precision 
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