
University of Calgary

PRISM Repository https://prism.ucalgary.ca

The Vault Open Theses and Dissertations

2012-09-06

A Methodology for Analyzing Cost and

Cost-Drivers of Technical Software Documentation

Sun, Bo

Sun, B. (2012). A Methodology for Analyzing Cost and Cost-Drivers of Technical Software

Documentation (Master's thesis, University of Calgary, Calgary, Canada). Retrieved from

https://prism.ucalgary.ca. doi:10.11575/PRISM/24787

http://hdl.handle.net/11023/180

Downloaded from PRISM Repository, University of Calgary

UNIVERSITY OF CALGARY

A Methodology for Analyzing Cost and Cost-Drivers of Technical Software Documentation

by

Bo Sun

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

August 2012

© Bo Sun 2012

UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

Approval Page

The undersigned certify that they have read, and recommend to the Faculty of Graduate Studies

for acceptance, a thesis entitled "A Methodology for Analyzing Cost and Cost-Drivers of

Technical Software Documentation" submitted by Bo Sun in partial fulfilment of the

requirements for the degree of Master of Science.

Supervisor, Dr. Guenther Ruhe

Department of Computer Science &

Department of Electrical and Computer Engineering

Co-supervisor, Dr. Vahid Garousi

Department of Electrical and Computer Engineering

Dr. Frank Maurer

Department of Computer Science

Dr. Zongpeng Li

Department of Computer Science

Dr. Diwakar Krishnamurthy

Department of Electrical and Computer Engineering

Date

ii

Abstract

Software documentation is an important impact factor to achieve high software

maintainability, especially for those large-scale complex changing legacy systems. The question:

“how much documentation is enough”, is concerned by organizations who are turning their

software process to agile development that claims “just enough” documentation. It is therefore

important to be able to understand the cost of documentation activities, and what are the

underlying cost-drivers, in order to monitor, control and improve documentation practice.

However, there is a general lack of such studies dedicated for software documentation cost and

cost-drivers.

To address this need, a systematic methodology is proposed to analyze cost and cost-drivers

of technical software documentation. The methodology primarily consists of the definition of

documentation cost and cost-driver metrics, mining software repositories with tool support for

automatic measurements, and cost-driver analysis. The main contributions of this thesis are to

provide a practical way to understand documentation cost from the perspectives of single

document, one documentation type and each author, and to identify underlying cost-drivers

towards documentation process improvement. Results from an initial validation from an

industrial case study at NovAtel, a leading provider for a comprehensive line of Global

Navigation Satellite System (GNSS) products, are reported.

iii

Acknowledgements

First of all, I would like to thank my supervisors, Dr. Guenther Ruhe and Dr. Vahid Garousi,

for sharing their profound knowledge on scientific methods and software engineering research,

and for their continuous support, encouragement and guidance throughout this work. Their

suggestions and advices always made a lot of difference. Accomplishing this work would have

been impossible without their supervision and assistance.

I would also like to thank Dr. Diwakar Krishnamurthy, Dr. Frank Maurer, and Dr. Zongpeng

Li, my thesis committee members, for revising this work and providing useful help and

feedbacks.

I am also grateful to the support from the technical staff of NovAtel Inc. Special thanks to

Brian D. Smith, Eric Tong and other engineers for their commitment and providing the necessary

information for the case-study phase of this work.

iv

Table of Contents

Approval Page ... ii

Abstract ... ii

Acknowledgements .. iii

Table of Contents ... iv

List of Figures ... vii

List of Tables ... ix

List of Acronyms .. x

CHAPTER ONE - INTRODUCTION.. 1

1.1 Introduction and Motivation ... 1

1.2 Goal and Research Questions ... 3

1.3 Contributions of this Thesis .. 5

1.4 Thesis Organization .. 5

CHAPTER TWO - BACKGROUND INFORMATION .. 7

2.1 Mining Software Repository ... 7
2.1.1 MSR Data Sources ... 7

2.1.2 MSR Application Areas ... 8

2.1.3 MSR for Process Improvement and Software Evolution ... 10
2.1.4 In This Thesis ... 11

2.2 Software Documentation .. 12

2.2.1 Definition of Software Documentation .. 12
2.2.2 Documentation Usage across Software Development Lifecycle 12

2.2.3 Documentation Cost and Benefits ... 14
2.2.4 In This Thesis ... 15

2.3 Software Cost and Cost-Drivers ... 16
2.3.1 Software/Documentation Cost Estimation... 16

2.3.2 Cost-Driver Analysis ... 17

2.3.3 In This Thesis ... 18

2.4 Chapter Summary ... 19

CHAPTER THREE - A SYSTEMATIC MAPPING OF COST, BENEFIT AND QUALITY OF

TECHNICAL SOFTWARE DOCUMENTATION ... 20

3.1 Research Goal and Process of Systematic Mapping ... 20

3.2 Focus on Documentation Cost, Benefit and Quality .. 22

3.3 Software Documentation Cost Attributes ... 22

v

3.4 Conclusion .. 25

3.5 Chapter Summary ... 26

CHAPTER FOUR - RESEARCH METHODOLOGY .. 27

4.1 Overview ... 27

4.2 DCCDA: Description of the Process .. 28

4.3 Design of Measurement Model ... 32
4.3.1 Measurement of Documentation Effort and Cost .. 32
4.3.2 Measurement of Documentation Cost-Drivers .. 36

4.4 Generalized Linear Regression for Cost-Driver Analysis .. 42
4.4.1 Generalized Linear Model ... 43

4.4.2 Planned Evaluation and Validation .. 44

4.5 Applicability ... 45

4.6 Chapter Summary ... 46

CHAPTER FIVE - DCCDA TOOL SUPPORT ... 47

5.1 Requirements of Tool Support .. 47

5.2 Architecture... 48

5.3 Usage for Cost Measurement .. 51

5.4 Usage for Cost-Driver Measurement .. 52
5.4.1 Document Quality .. 53
5.4.2 Coupling ... 53

5.5 Chapter Summary ... 56

CHAPTER SIX - EVALUATION: AN INDUSTRIAL CASE STUDY 57

6.1 Case Study Design .. 57
6.1.1 Case Study Context .. 57
6.1.2 Case Process Selection ... 57

6.1.3 Objectives .. 58
6.1.4 Unit of Analysis ... 59

6.2 Collecting Data ... 60

6.3 Data Analysis Procedure ... 61
6.3.1 Documentation Cost Analysis ... 62
6.3.2 Documentation Cost-Driver Analysis .. 62

6.4 Chapter Summary ... 63

CHAPTER SEVEN – CASE STUDY RESULTS FROM DOCUMENTATION COST

ANALYSIS (RQ1).. 64

vi

7.1 Cost per Document (RQ1.1) ... 64

7.2 Cost per Documentation Type (RQ1.2) .. 68

7.3 Cost Distribution over Time (RQ1.3) ... 71

7.4 Cost by Person (RQ1.4) .. 74

7.5 Time-efficiency on Documentation (RQ1.5) .. 77

7.6 Threats to Validity .. 79

7.7 Chapter Summary ... 79

CHAPTER EIGHT – CASE STUDY RESULTS FROM DOCUMENTATION COST-DRIVER

ANALYSIS (RQ2).. 81

8.1 Document Lifecycle Cost-Drivers (RQ2.1) .. 81

8.1.1 Descriptive Statistics .. 81
8.1.2 Univariate Regression Analysis ... 83

8.1.3 Multivariate Regression Analysis .. 86
8.1.4 Summary of “Document Lifecycle Cost-Drivers” ... 87

8.2 Document Revision Cost-Drivers (RQ2.2) ... 88

8.2.1 Descriptive Statistics .. 90
8.2.2 Univariate Regression Analysis ... 91

8.2.3 Multivariate Regression Analysis .. 93
8.2.4 Summary of “Document Revision Cost-Drivers” ... 94

8.3 Model Evaluation and Validation ... 95

8.4 Joint Results and Discussions ... 97
8.4.1 Implications for the Project under Case Study .. 97

8.4.2 Implications for the Software Engineering Literature ... 99

8.5 Generalizability of the Case-Study Results .. 100

8.6 Threats to Validity .. 100
8.6.1 Construct Validity ... 101
8.6.2 Internal Validity ... 102

8.6.3 External Validity .. 102

8.7 Chapter Summary ... 103

CHAPTER NINE - CONCLUSIONS AND FUTURE WORK ... 105

9.1 Summary ... 105

9.2 Future Work Directions .. 106
9.2.1 For Research Methodology .. 106

9.2.2 For the CRD Project under Study .. 107

REFERENCES ... 108

LIST OF PUBLICATIONS .. 113

vii

List of Figures

Figure 1.1-Phases of the CRD project .. 4

Figure 2.1-Documentation usage model across software development lifecycle [27] 14

Figure 2.2-Documentation cost and benefit model ... 15

Figure 3.1- Research process of SM [27] ... 21

Figure 3.2-Focuses of software documentation studies [27] .. 22

Figure 3.3-Software documentation cost attributes [27]... 25

Figure 4.1-Process steps of DCCDA .. 29

Figure 4.2-Conceptual model for software documentation evolution .. 33

Figure 4.3-Conceptual evolution process for a multi-version document 34

Figure 4.4-An example of mined coupling/reference relationship among documentation

artifacts .. 41

Figure 5.1-A layered structure of tool support on DCCDA.. 49

Figure 5.2-Mechanism of concurrent processing on a large number of multi-version

documents ... 50

Figure 5.3-Snapshot of cost measurement results: an aggregated view 52

Figure 5.4-Snapshot of cost measurement results: a single document view................................. 52

Figure 5.5-Automatic mining and visualizing documentation coupling/reference relationship ... 54

Figure 5.6-GEXF file format for visualization ... 55

Figure 5.7-Reference visualization for single document .. 55

Figure 6.1-Volume history of documentation in DSTS .. 58

Figure 6.2-Volume of documentation over OEM products in DSTS ... 59

Figure 7.1-Visualization of version history of case study documents .. 65

Figure 7.2-Box-plot of the three documentation types by Time Expenditure 69

Figure 7.3-Box-plot of the three documentation types by Document Churn 69

viii

Figure 7.4-Box-plot of the three documentation types by Change Degree 70

Figure 7.5-Total documentation effort over timeline from case study ... 72

Figure 7.6-Effort distribution of document QA-30300003 over time ... 73

Figure 7.7-Document Churn measurements of QA-30300003 over time 74

Figure 8.1-Frequency distributions of cost-driver metrics and cost for “Document Lifecycle

Cost-Drivers” .. 82

Figure 8.2-Frequency distributions of cost-driver metrics and cost for “Document Revision

Cost-Drivers” .. 91

Figure 8.3-Fitted vs. actual effort of “Document Lifecycle Cost-Drivers” model 96

Figure 8.4-Fitted vs. actual effort of “Document Revision Cost-Drivers” model 96

ix

List of Tables

Table 2.1-Examples of software artifacts ... 8

Table 2.2-Summary of MSR studies for process improvement and software evolution 11

Table 3.1-Summary of related work ... 23

Table 4.1-Summary of candidate cost-drivers in documentation properties and corresponding

metrics ... 37

Table 6.1-Summary of collected data for case study .. 61

Table 6.2-Descriptive statistics for documentation effort (in hours) .. 63

Table 7.1-Measurement results of top 20 costly documents... 66

Table 7.2-Detailed measurement results on document “D11162” ... 67

Table 7.3-Top 10 people (“C1”) with most revision check-ins versus the top 10 people

(“C2”) spent most effort (in hours (man-months)) ... 75

Table 7.4-Top 15 people in both categories across documentation types 76

Table 7.5-Efficiency of top 15 people in terms of cost spending on documentation 78

Table 8.1-Results of univariate regression modeling for “Document Lifecycle Cost-Drivers” ... 84

Table 8.2-Results of multivariate regression modeling for “Document Lifecycle Cost-

Drivers” ... 86

Table 8.3-Summary of “Document Lifecycle Cost-Drivers” with their effect (positive or

negative) and significant level (indicated by p-value) .. 88

Table 8.4-Updated summary of candidate cost-drivers in documentation properties and

corresponding metrics ... 89

Table 8.5-Results of univariate regression modeling for “Document Revision Cost-Drivers” 92

Table 8.6- Results of multivariate regression modeling for “Document Revision Cost-

Drivers” ... 93

Table 8.7- Summary of “Document Revision Cost-Drivers” with their effect (positive or

negative) and significant level (indicated by p-value) .. 95

Table 8.8-Evaluation of multivariate regression models .. 97

x

List of Acronyms

GNSS Global Navigation Satellite System

XP Extreme Programming

RQ Research Question

MSR Mining Software Repository

CRD Collaborative Research and Development

CVS Concurrent Versions System

COCOMO Constructive Cost Model

SLOC Lines of Source Code

DLOC Lines of Source Code Documentation

SM Systematic Mapping

UML Unified Modeling Language

DCCDA Documentation Cost and Cost-Driver Analyzer

SDLC Software Development Lifecycle

GLM Generalized Linear Models

GQM

LCE

Goal-Question-Metric

Lifecycle Effort

LCC Lifecycle Cost

VIF Variance Inflation Factor

GEXF

MMRE

RMSE

Graph Exchange XML Format

Mean Magnitude of Relative Error

Root Mean Squared Error

1

Chapter One - Introduction

1.1 Introduction and Motivation

Legacy software organizations are constantly under pressure of modifying their software

because of introducing new hardware or changing business environment [1]. There is a general

agreement that evolving software is more difficult than developing software from scratch. It adds

continuously to the content, size and complexity of software product. Such maintenance activity

often requires patching (or fixing), enhancing, or extending the existing software portion of the

system. “Maintenance typically consumes 40 to 80 percent (average, 60 percent) of software

cost. Therefore, it is probably the most important lifecycle phase of software” Glass [2].

Software maintainability, defined as the ease or simplicity with which a software system can

be maintained [3], is therefore a key characteristic of successful software. Lientz et al [4]

classified maintenance tasks into four key types: corrective, perfective, adaptive and preventive

maintenance tasks. For legacy systems, software maintainers were often not involved in the

original design of the software system being changed, or they would probably have forgotten

some details. Therefore, software maintenance is often costly and error-prone for legacy systems.

Software development documentation, if correct, complete and consistent, is considered as a

memory of software evolution, assisting maintainers remain in intellectual control of complex

changing software systems [5]. Typical types of such documentation include requirements,

specifications, architectural (high-level) design, detailed design, as well as low level information

such as source code comments. They are supposed to help maintainers to comprehend the

program or system and accomplish subsequent manipulations or modifications.

The attitude against documentation is that documentation is always perceived as a costly

activity. Documentation is also difficult to maintain, under the typical time pressure which is

2

common for software industry [6]. Agile methods claim that the goal is to produce software and

documentation is only necessary if it helps to reach the goal. For example, Scott W. Ambler [7]

believed “Create documentation only when you need it at the appropriate point in the life cycle”

in agile development, and “Update documentation only when it hurts”. Maurer and Martel [8]

suggested that the focus of Extreme Programming (XP) for small teams should be “producing

executable code and automated test drivers” instead of “paper-based requirements and design

documentation” .

To find an appropriate level of documentation, it is important to investigate the cost spent on

documentation activities and to understand what the underlying cost-drivers are. This analysis

should be done in two levels, considering both documentation artifact lifecycle and each version

of it, so that the cost on each document could be further combined with its usage information to

determine whether the gained benefits justify the cost. This is particularly true for those

organizations that are turning their software process to agile development which claims “just

enough” documentation.

To address the above needs, the author has proposed a practical methodology with

accompanied tool support. Its main goal is to extract documentation artifacts from relevant

software repositories and assess the lifecycle cost of each single or multi-version document

based on defined cost metrics. The rationale behind mining software repositories for

documentation cost is considering that it is easy to implement in a real time-driven environment

and results are based on evidence in data repositories.

A subsequent cost-driver analysis process which utilizes the mined cost information is able to

reveal underlying cost-drivers within documentation properties. By combining the output of this

3

thesis with documentation usefulness information measured by other students, we aim to have a

comprehensive evaluation of documentation cost and benefits.

1.2 Goal and Research Questions

This study is part of a three-year Collaborative Research and Development (CRD) project

with an industrial partner NovAtel, “Tuning of Artifact and Process Parameters towards

Optimized Maintenance” [9]. The overall goal of this project is to lower the cost of software

development and maintenance meanwhile without making trade-off to product delivery and

quality.

Documentation is considered important for communication and collaborative development in

NovAtel. However, the question “how much documentation is enough?” is an issue. Figure 1.1

gives the overview of the planed phases of this CRD project. This thesis focuses on analyzing

documentation cost. By combing the results of documentation benefits analysis, other team

members plan to evaluate the cost and benefits of documentation and optimize documentation

process towards the overall project goal.

Under the umbrella of this CRD project, the goal of this study is to develop a practical

methodology to objectively evaluate the cost of documentation artifacts, and to identify what are

the underlying cost-drivers. Based on the above goal, the following research questions are raised.

To extract detailed information for each of the questions, each question is divided into sub-

questions.

4

Documentation
Process

Optimization

Documentation
Cost Analysis

Focus of
This Thesis

Dependency between
 Project Phases

Documentation
Benefit Analysis

Documentation
Cost-Benefit Analysis

Figure 1.1-Phases of the CRD project

 RQ1-Documentation cost: How does mining software repositories (MSR) help to move

subjective measurement of documentation cost to objective measurement?

This question focuses on objectively measuring documentation cost based on data

evidence in relevant repositories. Most related works from literature are focused on

subjective approaches, e.g., using questionnaires or manually recording.

o RQ1.1-Cost per document: What is the cost spent on each single or multi-

version documentation artifact?

o RQ1.2-Cost per documentation type: What does the cost spending vary across

different documentation types (e.g., conceptual designs, test plans)?

o RQ1.3-Cost distribution over time: How does the documentation cost distribute

over different time periods?

o RQ1.4-Cost by person: How does the documentation cost spending vary across

authors?

5

o RQ1.5-Time-efficiency on documentation: how time-efficient are people on

writing documentation?

 RQ2-Documentation Cost-Drivers: What are the most significant cost-drivers in

documentation properties that drive the cost of documentation over time?

This question aims to identify the causal relationship between documentation cost-drivers

and cost.

o RQ2.1-Document lifecycle cost-drivers: What are the main cost-drivers that

impact the lifecycle cost of a multi-version documentation artifact?

o RQ2.2-Document revision cost-drivers: What are the main cost-drivers across

different versions of a documentation artifact?

1.3 Contributions of this Thesis

The contributions of this work are five-fold: (1) to investigate how existing approaches deal

with documentation cost, (2) to propose a practical methodology for assessing documentation

cost and cost-drivers by mining software repositories, (3) to automate the fine-grained

measurement of cost and cost-driver metrics by providing tool support, (4) to evaluate the

feasibility of proposed method by conducting an industrial case study, (5) to contribute initial

insights to the body of knowledge in software engineering regarding software documentation

cost and cost-drivers.

1.4 Thesis Organization

The remainder of this thesis is structured as follows. Chapter Two introduces background

information and Chapter Three analyzes related work. Chapter Four proposes a systematic

methodology for how to investigate documentation cost and cost-drivers. 0 describes the tool

support for the proposed methodology to make it more practical in real context. In Chapter Six,

6

an industrial case study is designed to evaluate the feasibility of the methodology. The results

from this case study are analyzed in Chapter Seven and Chapter Eight for documentation cost

and cost-drivers, respectively. Finally, Chapter Nine concludes the whole thesis and points out

some directions for future work.

7

Chapter Two - Background Information

2.1 Mining Software Repository

2.1.1 MSR Data Sources

Mining Software Repositories (MSR) aims to analyze the rich data (artifacts) available in

software repositories to uncover interesting and actionable information about software systems

and projects [10]. Software repositories contain artifacts that are produced and archived during

software evolution, and several examples are listed in Table 2.1.

From a general perspective, they are summarized into three main categories [10, 11].

 Historical repositories which record information about the evolution and progress of a

project, such as source control repositories (e.g., CVS), bug repositories (e.g., Bugzilla or

JIRA), and communication archives (e.g., e-mail). Often these data exist for the entire

duration of a project and can represent thousands of versions with years of details about

the development.

 Run-time repositories contain information about the execution and the usage of an

application at a single or multiple deployment sites, such as deployment logs.

 Code repositories such as Sourceforge.net and Google Code contain the source code of

various applications developed by several developers.

Researchers mine data and metadata from above software repositories to extract pertinent

information and therefore guide decision processes in modern software projects. For instance,

historical repositories (version history of source code) were mined to capture the hidden

dependencies between classes caused by addition or modification of a particular class [12]. Some

researchers combined the information from CVS log file with “Bugzilla” to study the question

which change properties may lead to problems [13]. Run-time repositories could be used to

8

detect execution anomaly by identifying dominant execution or usage patterns across

deployment.

Table 2.1-Examples of software artifacts

Repository Artifacts Description

Archived

documentation

Requirement,

Conceptual/detail

designs, Test plans,

etc.

They document all the requirement

specifications, design, test procedures and

other standards that regulate a software

project.

Source control

repositories

Source code with

meta-data

They track all the changes to the source code

along with meta-data about each change, e.g.,

the developer who submitted the change, the

time the change was performed and a short

message describing the change.

Bug repositories Bug report,

Feature request

Bug repositories track the evolution history

of bug reports or feature requests that are

reported by users and developers of large

software projects, e.g., “Bugzilla” and

“JIRA”

Archived

communications

Mailing lists,

Emails,

Messages

These repositories track discussions about

various aspects of a software project

throughout its lifetime.

Deployment

repositories

Deployment logs These repositories record information about

the execution of a single deployment of a

software application or different deployments

of the same applications.

Code

repositories

Source code,

Code comments

These repositories archive the source code for

a large number of projects, such as

sourceforge.net and Google code.

2.1.2 MSR Application Areas

A comprehensive literature survey for MSR works prior to 2006 was presented by [14] via

four dimensions: the type of software repositories mined (what), the purpose or software

engineering task (why), the adopted/invented methodology used (how), and the evaluation

9

method (quality). Over 80 MSR studies were surveyed by following the four proposed

dimensions. Two high-level classes of MSR application areas were utilized in the survey.

 Market-Basket Question asks for a set of rules or guidelines describing situations of

trends or relationship. It is widely used in describing data mining problems. For example,

the occurrence of A likely would cause the subsequent occurrence of B.

 Prevalence Question includes quantitative metrics or boolean queries, such as “how

many lines of code are added/deleted/modified?” or “how many and which of functions

are reused?”

The methods to address above questions identified by [14] include:

 Metadata analysis uses the metadata stored in software repositories for a variety of

purposes, e.g., couplings, change patterns and etc.

 Static source code analysis extract facts and other information from versions of a

software system, e.g., function usage patterns, incomplete refactoring and etc.

 Source code differencing and analysis derives and expresses changes between versions

of source code in a more fine-grained manner, i.e., syntax and semantic.

 Software metrics quantitatively evaluate various aspects of software products, projects

and processes.

 Visualization methods utilize visual representation of data to support software

maintenance and evolution.

 Clone-detection methods detect tentative clones existing in source code.

 Frequent-pattern mining uncovers software entities which frequently co-change.

10

 Information-retrieval methods apply to textual data (e.g., CVS comments, bug reports

and emails) for various purposes, such as change prediction and new developer

assistance.

 Classification with supervised learning build classification or prediction models for

triage bug reports or other purposes.

 Social network analysis discovers developer roles, contributions and associations in

software development.

A more recent survey [15], dedicated on the “Purpose”, classified most MSR works after

2006 into the following application domains, which was claimed to represent the state-of-the-art

work in MSR.

 Identifying and Predicting Software Quality

 Identifier Analysis and Traceability

 Clone Detection

 Process Improvement and Software Evolution

 Social Aspects in Software Development

 Recommender Systems and Interactive Systems

2.1.3 MSR for Process Improvement and Software Evolution

Since the objective of this thesis is to study documentation cost issue during software

evolution and eventually serve for software (documentation) process improvement, the related

MSR work for process improvement and understanding software evolution in [15] is listed below

in Table 2.2, along with a specific MSR task in second column and mined artifacts in last

column.

11

Table 2.2-Summary of MSR studies for process improvement and software evolution

Ref.
MSR Tasks for Software Process

Improvement
Mined Artifacts

[16] Who should triage a bug Bug report

[17, 18] Identify the trends of code commits Source code and metadata

[19] How to file a good bug report
Surveys; Bug report and

metadata

[20] Predict locations of future refactoring Source code and metadata

Ref.
MSR Tasks for Understanding

Software Evolution
Mined Artifacts

[21]
Study the evolution of software

compilations
Source code

[22] Monitor software process compliance
Source code and metadata,

Mailing lists and Bug reports

[23] Evaluate software readability Source code

[24] Identify change couplings Source code and metadata

2.1.4 In This Thesis

In this thesis, Section 4.4 describes in detail the data mining techniques for modeling the

relationship between underlying cost-drivers and documentation cost, and Section 6.3 presents

the process of applying them in the case study context. Chapter Six describes the types of

documentation artifacts to be mined and date collection process.

To ease the burden of data mining and analysis process, 0 automates the data collection, pre-

processing and all needed measurements for analysis, which eliminates the measurement

overhead issue.

12

2.2 Software Documentation

2.2.1 Definition of Software Documentation

Software documentation is a mixed concept. In early work, software documentation refers to

end-user documentation, e.g., product manual. Barker defined software documentation as “The

design, planning, and implementation of any interface element, written and online, of a software

system to enhance the system’s usability” [25]. From this definition, documentation refers to

software product manuals that were written for guiding end-user for the usage of systems. It does

not concern with development documentation.

Andrew Forward defined software documentation as, “Documentation is an artifact whose

purpose is to communicate information about the software system to which it belongs. Common

examples of such documentation include requirement, specification, detailed design, and

architectural documents, as well as low level design information such as comments in the source

code” [6]. In this definition, software documentation is expressed for the usage of

communication among software engineers, and belongs to development documentation.

In this thesis, we only concerns with software development documentation, excluding the

non-relevant technical writing, such as software product manual.

2.2.2 Documentation Usage across Software Development Lifecycle

Software documentation can play a number of roles during the development and maintenance

of a software product. Parnas [26] recently summarized the various ways that documentation

may be used. For example, the typical usages of documentation are as follows:

 “Design through documentation”: writing documents to record and communicate design

decisions.

13

 “Documentation based design reviews”: reviewing design decisions based on design

documentation.

 “Documentation based code inspections”: inspecting the actual code based on a

document that specifies what the code should do.

 “Documentation based revisions”: relevant documentation aids program comprehension

for change tasks in order to reduce cost and delays in maintenance phase.

As part of a systematic mapping of software documentation related studies [27], we proposed

a conceptual model to summarize the usage of development documentation. Figure 2.1

summarizes the documentation usage across software development lifecycle (SDLC).

In this model, it is assumed that software engineer needs to perform development tasks.

These tasks are classified into two categories: pre-maintenance tasks and maintenance tasks. The

former category refers to the tasks performed prior to maintenance phase, including requirement

elicitation, system design, implementation and testing. Maintenance tasks are further categorized

using the classification proposed by Lientz et al [4]: corrective, perfective, adaptive and

preventive maintenance tasks. Each maintenance task consists of two steps, including

comprehending the program and subsequent manipulation or modification, and testing.

14

Figure 2.1-Documentation usage model across software development lifecycle [27]

While performing the tasks, Software Engineers need to access to existing artifacts.

Documents are modeled as a subclass of artifact. More specifically, important developmental

information can be documented in a document artifact. In terms of the format, documents can be

presented in pure textual or mixed with visual aid (e.g., graphs charts or in the form of code

comments).

2.2.3 Documentation Cost and Benefits

As recommended by value-based software engineering [28], it is necessary to assess software

documentation by considering the cost and benefits at the same time, so that we can judge

whether the gained benefits outweigh the cost spent on documentation.

 In Figure 2.2, a high-level conceptual model takes requirements and design documents for

example and demonstrates the cost-benefit aspects of documentation. Documentation cost

surrounds the activities in the left two columns, including Creating First Draft, Reviews and

Revisions. These iterations may generate multiple draft versions and approved versions of a

15

document at different time points. Once a version is approved, it can be used to help pre-

maintenance tasks or maintenance tasks, illustrated by the right two columns in Figure 2.2. The

benefits are measured very often by the reduction of effort (time).

SW Architect
(Requirements Engineer,

Business analyst…)

Reviews

Change the doc
and create the
Next Version

Draft

<<may lead to a
 change in the doc>>

Developer
(down the stream)

Approver
(Team lead, etc.)

For requirements and design documents

Revision

Creating 1st
Draft

First Draft

Activity

Artifact/
Document

Working
Draft

Approved
Version

Use doc to develop
artifact/product at hand
(e.g., design, code, etc.)

Maintainer
(debugger, developer)

Artifact at
hand

Next Version
Draft

Legend

Doc-related Activity
incurring costs

Activity using
documentation

(benefits)

0a

0b, 0c, ...

1a

2a

Program comprehension

Determine the change
location(s)

Change impact analysis

may provide support

Perform the change(s)

Understand required change

e.g. fix a bug, change
functionality, etc.

may provide

support

Figure 2.2-Documentation cost and benefit model

2.2.4 In This Thesis

This thesis focuses on studying software documentation cost and underlying cost-drivers. A

set of metrics on documentation cost and cost-drivers are defined in Section 4.3. Section 6.2

specifies the types of documentation to study and the process of data collection in case study.

16

Chapter Seven analyzes the results of mining documentation cost in the context of the case study

project.

2.3 Software Cost and Cost-Drivers

Software development is a costly process, and it is even the case for software maintenance.

Accurate estimation of software cost will assist decision-making on resource allocation and

project scheduling. On the other hand, it is important to know what are the cost-drivers that

impact maintenance activities in order to achieve a high degree of software maintainability.

2.3.1 Software/Documentation Cost Estimation

Software cost/effort estimation is the process of predicting the cost/effort required to develop

or maintain software. Cost estimates are used as input to project plans, iteration plans, budgets,

and investment analysis etc.

Software researchers have been long trying to estimate software cost. A systematic review

[29] on software cost estimation studies until 2007 identified 304 software cost estimation papers

in 76 journals. Most of them focused on building formal models to estimate software cost. A

high number of model building approaches have been applied, such as regression analysis, case-

based reasoning, classification, regression tree, neural network, Bayesian statistics and etc.

Perhaps the most common cost estimation method today is Constructive Cost Model

(COCOMO). The initial COCOMO model, Basic COCOMO, uses a basic regression formula

with program size and project characteristics. Its current version, COCOMO II [30], has been

updated and designed to estimate the software effort with the consideration of cost-drivers from

software requirements, design, implementation, and testing phases.

17

However, software documentation, which has gained significant importance and consumed a

large amount of cost in software development, was only considered in a few cost estimation

models as presented afterwards.

For early cost estimation models, documentation factor was not considered. As the

importance of documentation progressively increased, the effort to build documentation

increased as well as the total project effort. NASA reported that documentation might require at

least 11% of total project effort [31]. Then, NASA [32] proposed a lineal model to estimate

documentation size (Pages = 34.7*(KLOC)
0.93

).

In COCOMO II [30], the factor, software documentation, was presented to have an impacting

range of 1.52, which is greater than, for example, programming experience and development

tools. However, previous versions, Basic COCOMO and COCOMO 81 did not consider

documentation factor.

Rosado et al. [33] conducted an experiment with university students and recorded the actual

ratio between documentation effort and total development effort of a software project. Their

empirical evidence suggested that COCOMO II should extend and calibrate software

documentation variable to three ranges, Nominal (1.00), High (1.11) and Very High (1.23), in

order to accurately capture different levels of documentation intensity in reality.

2.3.2 Cost-Driver Analysis

Cost-driver analysis has been widely used in software engineering, to understand the factors

that influence the cost of software development, maintenance and evolution.

Briand and Wuest [34] investigated the cost-drivers within design properties that might

impact the development cost in Object-Oriented systems. They built a linear regression model

18

between class size, design metrics and the effort upon developing, testing and maintaining each

class. Those metrics that were significantly correlated with cost were concluded as cost-drivers.

Li et al. [35] analyzed 1,400 software defect reports from two software organizations. To

understand what led to high corrective maintenance cost, they also looked into defect

descriptions and recorded discussions between developers in the course of correcting defects.

Several cost-drivers have been identified by statistical methods, such as software size,

complexity, and maintainers’ experience etc. They also concluded that cost-drivers for corrective

maintenance might be different from company to company.

Nguyen et al. [36] conducted a controlled experiment with 23 graduate students to assess

effort distributions in three types of maintenance, enhancive, corrective and preventive. Their

study suggested three cost-drivers of software maintenance, metrics of SLOC added, modified,

and deleted.

To understand the cost-drivers of software evolution, Benestad et al. [37] analyzed 336

change tasks from two software companies. Their quantitative analysis found that “Dispersion of

changed code” and “Volatility of the requirements” were two major cost-drivers. In addition,

other underlying cost-drivers that were revealed by the analysis of the qualitative interviews

were “Difficulties in comprehending dispersed code” and “Difficulties in anticipating side

effects of changes”.

However, there is no dedicated work in the literature on studying software documentation

cost-drivers.

2.3.3 In This Thesis

In this thesis, we adapted previous cost-driver analyses of software (source code) evolution to

analyze the cost-drivers of documentation evolution. We use a similar cost-driver analysis

19

process as proposed by Briand and Wuest [5]. However, our analysis was applied to two

different levels in order to capture cost-drivers for both individual documentation artifact

lifecycle and each version of it (Section 6.3). Moreover, we referred to the cost-drivers used by

Benestad et al [37] for source code evolution, and adapted those that are applicable to

documentation artifacts (Section 4.3.1.3).

2.4 Chapter Summary

This chapter introduced the knowledge of the following software research domains, Mining

Software Repository, Software Documentation, and Software Cost and Cost-Drivers. In this

thesis, we intend to objectively analyze software documentation cost and cost-drivers through

mining relevant data repositories.

20

Chapter Three - A Systematic Mapping of Cost, Benefit and Quality of Technical Software

Documentation

We conducted a systematic mapping (SM) study [27] to synthesize the existing findings in

the literature about software documentation cost/benefit/quality aspects. In this chapter, we

briefly present the process of performing this SM study and the results specifically related to

documentation cost aspect.

Section 3.1 discusses briefly the research goal and process of performing this SM study. The

results regarding focuses of software documentation studies are presented in 3.2. In Section 3.3

we discuss in detail the documentation cost related studies. Section 3.4 concludes this SM study

and explains how this thesis helps to fill in the gap in the literature.

3.1 Research Goal and Process of Systematic Mapping

The goal of this SM study is to systematically review the state-of-the-art in analyzing

benefit/cost/quality of software documentation within development lifecycle, to identify the

weaknesses and strengths, and to find out the recent trends and directions in this field from the

view point of researchers and scientists in this area. Documentation artifacts are specifically

restricted to development documents, excluding other types of technical documents, e.g., user

manual.

This SM is carried out based on the guidelines provided by Petersen et al. [38], and

Kitchenham and Charters [39]. In designing the methodology for this SM, methods from several

other SMs such as [40-42] were also incorporated.

The process that lies at the basis of this SM is outlined in Figure 3.1. This process has four

phases, 1) Article selection, 2) Classification Schema/Map, 3) Systematic mapping, 4) Trends,

21

Bibliometrics and Demographics. For the details of each phase, please refer to the descriptions in

Sections 5-8 in the SM paper [27].

Initial

Attributes

Relevant articles found

in databases (120

studies)

Application of

inclusion criteria

Articles from

specific venues

Articles by browsing

personal web pages

Final selection

(69 studies)

Article selection (Section 4)

Attribute

Identification

Classification Scheme/Map (Section 5)

Attribute

Generalization and

Iterative Refinement

Final Map

Systematic mapping (Section 6)

Demographics of

the research space

Systematic

mapping

Systematic

Mapping results
RQ 1

RQ 2

IEEE

Xplore

ACM

Digital

Library

Google

Scholar

Microsoft

Academic

Search
CiteSeerX

Referenced

articles

Science

Direct

Application

of exclusion

criteria

Filtered set

(51 studies)

Bibliometrics and

Demographic

Analysis

Trends, Bibliometrics and Demographics (Section 7)

Bibliometrics of

the research space

RQ 2

Action Database Entity Multiple Entities

Legends

Figure 3.1- Research process of SM [27]

The final pool of selected publications has been published as an online repository using

Google Docs, and is accessible publically online at [43]. We plan to update the online repository

at least once each year and to add relevant material published in the future.

In this thesis, we only choose to present the findings regarding documentation cost from the

SM study.

22

3.2 Focus on Documentation Cost, Benefit and Quality

The histogram in Figure 3.2 shows the distribution of studies that discuss each

documentation aspect we are concerned with. 69 publications on documentation

cost/benefit/quality were found, and some of them concerned more than one aspect, e.g.,

documentation benefit and quality. From the chart we can see that 48 studies (71%) discuss

documentation quality, followed by 37 studies (54%) on usage/benefit. Surprisingly, only 12

studies (18%) in total are related to documentation cost.

From Figure 3.2, we can notice that only a very small proportion of research work conducted

on documentation cost. This is worth the attention of research community.

Figure 3.2-Focuses of software documentation studies [27]

3.3 Software Documentation Cost Attributes

One of the research question concerned by this SM study is “what are the cost-related

attributes of software documentation?”. This section presents the results of this SM study to this

question.

23

Table 3.1 shows the summary of the 12 works about software documentation cost from the

mapping study. The process of extracting data related to documentation cost was iterative. Two

rounds of reviews among the authors were conducted.

In Table 3.1, the motivation of each work and the documentation artifacts under study are

compared. Then documentation cost attributes, their corresponding metrics/measurements and

degree of evidence (evaluation) are compared. If the attribute is discussed in paper together with

quantitative evidence support (e.g., survey data, control experimental results, etc.), then the

attribute has a degree of two. In contrast, if that attribute is only mentioned or discussed in

qualitative manner without any quantitative validation or evaluation, then such attribute is

assigned one, which is lower than the degree of two.

Figure 3.3 summarizes the distribution of studies that discuss documentation cost related

attributes in terms of cost attributes and degree of evidence. Among our results, only five studies

(7%) discuss the development/production cost of software documentation. Four studies (6%)

concern documentation maintenance cost. From this statistics we can see that there are a very

limited number of researchers conducting studies on documentation cost. In other words,

documentation cost-related aspects seemed to be neglected by most researchers.

Table 3.1-Summary of related work

Ref. Motivation
Doc

Artifacts

Cost

Attributes

Metrics/

Measurement

Degree

of

Evidence

[7]

Strategies of

Agile/Lean

documentation

Requirement;

Design;

Process

Development

cost

 1

[44]

Evaluating

cost/benefits of

UML

Requirement

and Design

Maintenance

cost

Time

(manually

recording)

2

24

[45]

Identifying

factors

impacting the

size of code

comments

Code

comments

Document size Size of source

code

documentation

(DLOC)

2

[33]

Assessing

documentation

development

effort

Requirement;

Design;

Process

Development

cost;

Document size

Time

(manually

recording);

Number of

characters

2

[46]

Automating

documentation

quality

detection

Requirement;

Design;

Process

Maintenance

cost;

Document size

Effort

(qualitatively

questionnaire);

 Number of

words

2

[47]

Designing

documentation

to facilitate

development

Design;

Code

comments

Development

cost

 1

[48]

Measuring the

quality of code

comments

Code

comments

Document size Number of

words

2

[49]

Perceptions of

documentation

in Agile

Generic Development

cost

Time

(qualitatively

questionnaire)

2

[50]

Understanding

documentation

usage in

practice

Generic Maintenance

cost;

Document size

Time

(qualitatively

questionnaire)

2

[51]

Guidelines on

how to

document

Requirement;

Design;

Comments

Other 1

[52]

Guidelines on

how to

document

Generic Development

cost;

Other

 1

[5]

Impact of UML

on software

maintenance

Requirement

and Design

Maintenance

cost

Time

(manually

recording)

2

25

Figure 3.3-Software documentation cost attributes [27]

In terms of cost metrics, nine studies used time/effort to capture the cost. Meanwhile, five

studies used document size to measure the cost. Among the two studies that fall into "Other"

category, one discussed the "waste of time caused by unstructured docs or incorrect information"

and "security risk because of incomplete documentation".

3.4 Conclusion

The results from this SM study conclude that only a few empirical studies exist in the

literature to investigate the cost of documentation. Within a few these studies, most of them

measured documentation cost via a subjective manner, e.g., questionnaire or manually time

recording. Subjective approaches are often risky to introduce bias, and also cannot provide fine-

grained measurement on each documentation artifact due to large volume of documentation in a

real context. On the other hand, though documentation is realized as one of significant cost-

drivers during development process [31, 33], none of the work above further explores underlying

cost-drivers of documentation.

26

It is to the belief of the author that future research on software engineering is to concern with

more delicate cost control on development process. Documentation, as an integral part of

investment, might need better tuning to optimize the software development process. More

research on documentation cost can bring benefit to the industry and the knowledge of academic

community.

All of these motivate us to design a more practical method to assess documentation cost and

underlying cost-drivers. In this thesis, the proposed methodology objectively measures

documentation cost based on data evidence by automatically mining relevant repositories

(Chapter Four). This enables the whole process to be easily implemented in a real context, and

provides cost measurement on each documentation artifact over time. Based on the data evidence

mined from repositories, a subsequent cost-driver analysis helps to uncover cost-drivers in

documentation properties.

3.5 Chapter Summary

In this chapter, we presented the results from a systematic mapping study on

benefit/cost/quality aspects of software development documentation [27], more precisely, the

findings that are related to documentation cost. The works related to documentation cost were

further elaborated in Section 3.3, and the conclusions were made in Section 3.4.

27

Chapter Four - Research Methodology

4.1 Overview

A methodology, named DCCDA-“Documentation Cost and Cost-Driver Analyzer”, is

proposed to assess objectively the cost of documentation artifacts, and to uncover what are the

underlying cost-drivers.

DCCDA is aimed to help with understanding documentation process from cost perspectives.

Moreover, this methodology applies statistical and machine learning techniques to understand

impacting cost-drivers for software evolution and provide evidence-based decision-support [37,

53, 54]. The identified cost-drivers are considered to be a valuable input for documentation cost

control and process improvement.

DCCDA consists of three main phases, Phase 1: Design of measurement model, Phase 2:

Mining documentation cost, and Phase 3: Identification of documentation cost-drivers.

Phase 1: Design of measurement model

For DCCDA, the first phase includes the definition of a list of documentation cost metrics.

Their measurement depends on the availability of data in relevant repositories. For example,

three metrics for documentation cost are defined in Section 4.3.1, in order to capture

documentation cost from different perspectives.

In addition, a list of candidate cost-drivers and their metrics are defined in Section 4.3.1.3.

For different types of documentation, some metrics may need to be tailored. Overall they should

be generic and applicable to most textual software documentation, such as requirement

specifications, conceptual designs, test plans, etc. Section 4.3 presents the design of

measurement model of DCCDA.

Phase 2: Mining documentation cost

28

Based on defined metrics in Phase 1, this phase automatically mines documentation cost

from relevant repositories where documentation artifacts are stored, counting the cost spent on

each version. For each revision/version of a multi-version document, the cost and useful

metadata (e.g., check-out/check-in times, committer’s information, and etc.) for cost-driver

analysis should be extracted. The whole data collection and measurement process should be

supported by a tool as this process is nearly impossible to implement without automation. Such

fine-grained measurement of documentation cost enables to obtain objective answers to RQ1, as

well as measurement results of candidate cost-driver metrics for cost-driver analysis afterwards.

Phase 3: Identification of documentation cost-drivers

Taking the measurement results from Phase 2 as input, Phase 3 models documentation cost

as response variable with the candidate cost-driver metrics, to explore their relationship. It is

applied to two different granularity levels, investigating the cost-drivers for both individual

documentation revision/version (“Documentation revision cost-drivers”) and total lifecycle cost

of a document (“Documentation lifecycle cost-drivers”). Within each level, univariate regression

and multivariate regression are applied sequentially to model the relationship between cost-

drivers and cost. Univariate regression examines the relationship between each cost-driver metric

and cost separately, where multivariate regression examines the compound effect of cost-drivers.

The application of the two modeling techniques on different granularity levels enables the

identification of a comprehensive and relevant set of cost-drivers.

4.2 DCCDA: Description of the Process

This section provides an operational description of the underlying process of the DCCDA

method. The process is subdivided into nine steps. An overview of all steps and their

dependencies is shown in Figure 4.1. A description of the individual steps is given afterwards.

29

2. Definition of Doc
Cost Metrics

3. Definition of Doc
Cost-driver Metrics

4. Data Collection

7. Measurement of
Doc Cost-drivers

8. Univariate
Regression

Analysis

9. Multivariate
Regression

Analysis

5. Measurement of
Doc Effort&Cost

6. Documentation
Cost Analysis

1. Preparation

Automated
 Steps

Steps within
same phase

Phase
1

Phase
2

Phase
3

Dependency between
 Steps

Figure 4.1-Process steps of DCCDA

Step 1: Preparation

The first step is dedicated for the preparation of DCCDA. This step sets up the scope of the

study, including the selection of product/project for study and documentation types, the time

period to investigate, and the granted access to relevant data repositories. The selection of

documentation should consider data availability. To make this methodology work,

30

documentation artifacts need to be stored in repositories where all different versions of one

document can be traced. This step prepares for the actual data collection.

Step 2: Definition of Documentation Cost Metrics

This step defines a set of cost metrics which can be applied to the documentation artifacts

under study. Cost metrics are supposed to capture documentation cost from different

perspectives, e.g., effort/time or change size. Their measurement depends on data availability in

a real context. In this thesis, we propose three generic documentation cost metrics in Section

4.3.1, to capture documentation cost in terms of time spent, fine-grained change size (formulated

as Document Churn) and relative change degree.

Step 3: Definition of Documentation Cost-driver Metrics

This step will define a set of metrics for each quantifiable candidate cost-driver. These cost-

driver metrics should be generic and easily tailored to different documentation types. For

example, size metric may be number of words for textual design documents, but lines of code

comments for source code documentation.

DCCDA investigates eight candidate cost-drivers in documentation properties. The selection

of candidate cost-drivers refers to a similar study by Benestad et al [37], where applicable cost-

drivers for source code evolution are adapted to candidate documentation cost-drivers. 18

corresponding metrics are defined to capture these candidate cost-drivers (Section 4.3.1.3). The

selection of cost-drivers and metrics is open to be extended in different contexts.

Step 4: Data Collection

Based on defined metrics by Step 2 and Step 3, this step extracts documentation artifacts and

metadata from relevant data repositories. For each multi-version document, all its versions

should be collected and ordered by time. Meanwhile, metadata along with each documentation

31

revision/version check-in, e.g., check-out/check-out times and committer, needs to be collected

as well. This step is automated with tool support (described in 0), and its output is raw

documentation artifacts and metadata for measurement.

Step 5: Measurement of Documentation Effort and Cost

This step mines the effort spent on each document version, and the lifecycle effort of a

document counting for all its versions over time. The effort information should be associated

with committer and time stamp, so that we would able to convert the effort to real cost. Since this

step is computationally expensive and time-consuming, it is supported by a tool (described in 0).

The output of this step is fine-grained measurement of documentation cost.

Step 6: Documentation Cost Analysis

 Based on the results of Step 5, this step aggregates and analyzes documentation cost from the

perspectives of RQ1.1 to RQ1.5. Moreover, important findings and patterns regarding

documentation cost will be summarized, e.g., unstable documents, cost trend over time, time-

efficiency on writing documentation and etc. The output of this step provides answers to the

research questions, RQ1.1 to RQ1.5.

Step 7: Measurement of Documentation Cost-Drivers

Once candidate cost-drivers and their metrics are defined by Step 3, this step aims to conduct

automatic measurement of them. This step is highly computationally expensive and nearly

impossible to be manually implemented in reality. It is also eased with tool support (described in

0). The output of this step is measurement of candidate cost-drivers for cost-driver analysis

(Steps 8 and 9).

Step 8: Univariate Regression Analysis

32

This step takes the measurement of documentation cost and cost-drivers from Step 5 and Step

7 as input, and examines the relationship between each candidate cost-driver metric and cost

separately. This step will output what types of cost-driver metrics are significantly related to

documentation cost, and how they impact the cost. As previous cost-driver studies [34, 37],

Generalized Linear Models (GLM) [55] will be used for modeling the relationship between

documentation cost-drivers and cost. The output of this step is a set of identified cost-drivers and

their impacts on documentation cost.

Step 9: Multivariate Regression Analysis

This step also takes the output from Step 5 and Step 7 as input, but looks at the compound

effect of cost-driver metrics on documentation cost. It is a complementary of Step 8 as univariate

regression may neglect the couplings among cost-driver metrics. A combination of GLM and a

forward stepwise variable selection procedure [56] will be used to achieve high modeling

accuracy on cost. It outputs which cost-driver metrics play a more predominant role on

determining documentation cost.

4.3 Design of Measurement Model

This section provides for the details on the design of documentation cost metrics and cost-

driver metrics, which are Step 2 and Step 3 of DCCDA, respectively. The design of cost and

cost-driver metrics is following Goal-Question-Metric (GQM) paradigm [57].

4.3.1 Measurement of Documentation Effort and Cost

4.3.1.1 Model Definition

Based on the software evolution model proposed by [37], an adjusted model of

documentation evolution is given in Figure 4.2. The perspective of this study is that

documentation creation and evolution is originated from a Change Request. A Change Request

33

on documentation is manifested in a sequence of Revisions on one or several documents. Each

revision will create a new Version of a document (based on either a pre-existing version or it can

be the initial creation of a document), which belongs to a Documentation Type of the System.

Finally, only one version of a document will be released for usage after successfully going

through Review.

According to the conceptual model defined in Figure 4.2, an evolution process for a multi-

version document is depicted in Figure 4.3. It contains all draft versions and released versions of

a documentation artifact. Its cost is spent upon revisions (resulting in different versions),

including the effort on accomplishing changes and the effort on reviewing for approval.

Triggers *
Revision

Change
Request

Base
on

Create
new

0..1

Versions

Documentation
Type

Of
*

System

Review

Approved
version

Release

Triggers *

Editors

Create
*

Involve
in

Figure 4.2-Conceptual model for software documentation evolution

34

Reviews

Change the doc
and create the
Next Version

Draft

Revision

Creating 1st
Draft

First Draft

Working
Draft

Approved
Version

Next Version
Draft

0a

0b, 0c, ...

1

1a

Usage

<<may lead to change>>

Activity

Artifact/
Document

LegendLegend

Doc-related Activity
incurring costs

Creation CostCreation Cost

Maintenance CostMaintenance Cost

Figure 4.3-Conceptual evolution process for a multi-version document

4.3.1.2 Documentation Effort and Cost Metrics

The notation to describe documentation cost metrics is introduced as follows:

Notation 1: denotes the history of n versions of a given

document d as stored in data repository. In particular, d0 denotes the initial creation of this

document.

In order to capture cost from different perspectives, three metrics for the lifecycle effort

LCE(d) of a documentation artifact are proposed:

LCE(d) Metric 1: Time Expenditure

For a document, time expenditure measures: (1) the effort on editing the document, (2) the

effort on designing the artifacts besides editing the document (e.g., using another UML tool), and

(3) the effort on reviewing the document (e.g., peer review or normal meeting), defined by

35

 , and , respectively. It aims to capture the overall effort of all people

involved in the development of a multi-version document.

The time expenditure on documentation can be defined as follows.

Definition 1: denotes the time expenditure (in hours) of document d having a

history of n versions, and is defined as:

LCE(d) Metric 2: Document Churn

Code churn has been widely used to assess the overall change to a software system in terms

of accumulated source code change [58, 59]. Similarly, Document churn is proposed to measure

the overall change to a document through its evolution.

Document churn reflects the amount of accumulative changes, which is measured by

summing up the number of words changed (added and deleted) between each two consecutive

revisions (Note the movement of words is not counted). According to defined lifecycle cost

model, the word expenditure on documentation can be defined as follows.

Definition 2: denotes the document churn of document d having n

versions, and is defined as:

The function takes two versions of a given document and computes their absolute

difference, in terms of number of words added and deleted.

 LCE(d) Metric 3: Change Degree

36

 Change degree measures how much a given version document has evolved from previous

one. They apply on two consecutive versions of the same document. According to defined

lifecycle cost model, the total accumulative change degree on documentation can be defined as

follows.

Notation 2: denotes the number of words of di.

Definition 3: denotes the total change degree of document d having n versions,

and is defined as:

4.3.1.3 Converting Effort to Cost

Time expenditure measures the overall effort spending on a multi-version document, which

may involve the participation of multiple people. By dividing the overall effort with all involved

authors, we would be able to convert their effort (time expenditure) to the real money cost. The

lifecycle cost LCC(d) of document d is defined as:

Definition 4: Let be the time expenditure (effort) of person Pi spending on a

document d and
 for the average hourly wage of Pi. , which denotes the amount

of cost spending on d by the involved people set P (), is defined as:

4.3.2 Measurement of Documentation Cost-Drivers

Table 4.1 summarizes the documentation cost-drivers and their metrics. Since there is no

work in the literature regarding documentation cost-drivers, the selection of candidate cost-

drivers refers to the relevant cost-drivers studies on source code evolution in the literature.

37

In Table 4.1, all documentation cost-drivers are adapted from the literature [34-37], but the

metrics of each cost-driver are tailored for documentation artifacts. Each cost-driver is quantified

by one or several metrics, which will be used as explanatory variables in quantitative models to

investigate their impact on documentation cost.

Table 4.1-Summary of candidate cost-drivers in documentation properties and

corresponding metrics

Cost-Driver Metric Explanation of Metric

Document Type Type Type of documents in SDLC;

Document Size

InitialSize

FianlSize

AvgSize

Size after initial creation;

Size of current version;

Average size considering all versions;

Change Size ChangeWord

AddWord

DelWord

ChangeBlock

Number of words modified;

Number of words added;

Number of words deleted;

Number of changed word blocks [60];

Change Volatility StdevSize

StdevAdd

StdevDel

Standard deviation on the size of a multi-

version document;

Standard deviation on the number of added

words through all versions;

Standard deviation on the number of deleted

words through all versions;

Change

Frequency

MinorRevs

ReleaseRevs

Number of revisions resulting in non-released

versions;

Number of revisions resulting in released

versions;

Document

Quality

(Readability)

Readability_1

Readability_2

Measured by Flesch Reading Ease[61];

Measured by Flesch-Kincaid Grade[61];

Coupling InRefs

OutRefs

Number of references coming in a given

document;

Number of documents that a given document

refers to;

Editor NumEditors

AvgExp

Number of editors involved;

Weighted average previous check-ins by

editors;

38

4.3.2.1 Document Type

Document type refers to various types of documents generated during software development

lifecycle, such as requirement, design, test plan etc.

Notation 3: DocType denotes the type of documentation artifacts.

4.3.2.2 Document Size

The number of words is determined as the measurement unit of document size, because

others seem less convenient and reliable [33]:

1. The number of pages, paragraphs or lines directly depends on the specific presentation

format. And quite normal, different companies or contexts use different formats.

2. The number of sections or subsections cannot be relied because it is hardly to assess the

relative importance of different sections with in a document.

Since each document might have gone through a few revisions/versions, its size is measured

by:

Notation 4: InitialSize denotes the number of words after the first creation.

Notation 5: AvgSize denotes the average number of words through all versions.

Notation 6: FinalSize denotes the number of words of the latest version.

4.3.2.3 Change Size

The change size captures the differences between each two adjacent versions of a document.

Similar to source code change studies, which apply text difference algorithms [62] to measure

the number of SLOC added or deleted, but more fine-grained, the number of words added and

deleted, are computed at each version by comparing to previous version. The summation of these

two metrics equals to the Document Churn metric defined in Section 4.3.1.2.

39

In addition, a coarse-grained metric of number of change units (a block of adjacent words

that are changed together) is used as well as a change size measurement.

If a document has gone through a few revisions, the measurements should be summed up to

achieve the total change size.

Notation 7: AddWord denotes the accumulated number of word added through all versions.

Notation 8: DelWord denotes the accumulated number of word deleted through all versions.

Notation 9: ChangeWord denotes the summation of addWord and DelWord.

Notation 10: ChangeBlock denotes the accumulated number of change units (or blocks) [60]

through all versions.

4.3.2.4 Change Volatility

Change Volatility is proposed to capture how volatile a document is during its evolution,

which is similar to the concept of source code volatility [37]. It can be measured by the

movements of document size, and the number of words added and deleted at different versions.

Standard deviation is a statistical measurement of volatility, which captures the amount of

change dispersion around an average. The larger this dispersion is, the higher the standard

deviation and volatility.

Notation 11: StdevSize denotes the standard deviation on the size of a multi-version

document.

Notation 12: StdevAddWord denotes the standard deviation on the number of added words at

different revisions.

Notation 13: StdevDelWord denotes the standard deviation on the number of deleted words

at different revisions.

40

4.3.2.5 Change Frequency

The direct measurement of change frequency on a document is by simply counting the

number of revision/version check-ins during its lifecycle. To differentiate different versions

types, the metrics are defined as follows.

Notation 14: MinorRevs denotes the total number of non-release versions through its

lifecycle, the ones between each two consecutive released versions.

Notation 15: ReleaseRevs denotes the total number of released versions.

4.3.2.6 Quality of Documentation

Documentation quality is a complex issue and contains many aspects. Unfortunately, most of

them do not have established metrics.

Automated readability metrics are used to represent the quality of documentation. The most

widely used, tested and reliable formulas [61] for readability are “Flesch Reading Ease” and

“Flesch-Kincaid Grade”. They are named as Readability_1 and Readability_2, respectively in

this thesis. The automatic computations for them are given bellow:

Definition 5: Readability_1 denotes the “Flesch Reading Ease” for documentation

readability, and is defined as [61]:

Definition 6: Readability_2 denotes the “Flesch-Kincaid Grade” for documentation

readability, and is defined as [61]:

Where

 measures the average sentence length, and

 measures the average

number of syllables per word.

41

4.3.2.7 Coupling

Similar to the Object-Oriented principles cohesion and coupling for source code,

documentation artifacts also have couplings. One direct measurement on this point is the

reference relationship. The hypothesis is that the changes on one artifact probably will trigger

follow-up changes on other artifact(s) which directly refers to it. The reference mining idea is

illustrated in Figure 4.4.

 Reference InRefs and OutRefs are defined as how many references coming in or going out

from a given document. A tool to automate the two metrics has been implemented and will be

discussed in next chapter.

Notation 16: InRefs denotes the number of references coming in a given document.

Notation 17: OutRefs denotes the number of documents that a given document refers to.

Figure 4.4-An example of mined coupling/reference relationship among documentation

artifacts

42

As an example, document D56137 in Figure 4.4 is measured by InRefs and OutRefs with

values two and three respectively, indicated by the number of references coming in and going

out.

4.3.2.8 Editor

If one document has gone through a few versions over a long time period, multiple editors

might be involved. Even for single version, it might involve the effort of several people,

especially for those critical documents which require consensus from different stakeholders. One

direct measurement of human factor is to count how many editors have been involved.

Notation 18: NumEditors denotes the number of editors involved in evolving a given

document.

Empirical evidence [63] has shown that productivity between individual developers can be

very different. This conclusion also applies to people who write documentation. In order to

capture individual difference, change experience is introduced instead of directly assessing

individuals. Similar to measuring developer’s expertise [1, 37], the experience of all editors

involved in a multi-version document is measured by the average number of check-ins per editor.

If several people are involved in the evolution of a document, the average experience is

calculated by:

Definition 7: AvgExp denotes the average experience of involved editors, and is defined as:

4.4 Generalized Linear Regression for Cost-Driver Analysis

This section introduces the technique used by Step 8 and Step 9 of our methodology for cost-

driver analysis, Generalized Linear Model (GLM). The selection of GLM instead of ordinary

43

regression models is because the cost data is always positive and non-normally distributed (See

Section 6.3).

4.4.1 Generalized Linear Model

Regression models are widely used in software engineering for both cost estimation and cost-

driver analysis [33, 34, 37]. An ordinary linear regression model is built as:

Definition 8:

In this model, is a series of estimated cost variable Y, is a set

of candidate cost-driver variables, and is a set of parameters to be estimated.

Hence, variable has no influence on Y if and only if is zero. This ordinary regression model

is applicable based on the assumption that the response variable Y should have a normal

distribution [55].

If the distribution of Y is non-normal, which is often the case for cost prediction and cost-

driver analysis in software engineering [55], a generalized linear model (GLM) can be used as a

replacement. GLM is loose enough to encompass a wide class of models useful in statistical

practice, but tight enough to allow the development of a unified methodology of estimation and

inference, at least approximately.

Definition 9:

Here is the expected value of defined by probability theory, and is the link

function. The actual selection of link function and error distribution depends on the specific

application, as shown bellow. The rationale for each choice was thoroughly discussed in [55].

 Gaussian: a Gaussian (Normal) distribution

 Binomial: a binomial distribution for proportions

 Poisson: a Poisson distribution for counts

44

 Gamma: a gamma distribution for positive continuous data

 Inverse.Gaussian: an inverse Gaussian distribution for positive continuous data

For each candidate cost-driver metric, its p-value and coefficient are used to interpret its

impact on the models. The significance level (p-value) is often set to 0.05. This means that any

variable having p-value less than 0.05 is considered as a “significant” cost-driver metric.

4.4.2 Planned Evaluation and Validation

Mean Magnitude of Relative Error (MMRE) and Root Mean Squared Error (RMSE) are

widely used to assess cost estimation models [34, 37]. In this study, MMRE and RMSE are used

to evaluate our models, as they are independent of the modeling techniques and allowing for

straightforward comparisons between models [34].

For a testing data set having n documents, let yi be its actual measured cost for a document di

and for the estimated cost by a GLM. Then, MMRE and RMSE are defined as follows.

Definition 10: For a given model that is built by n documents, MMRE is calculated by:

Definition 11: For a given model that is built by n documents, RMSE is calculated by:

MMRE and RMSE are calculated by n-fold cross-validation. This procedure models a given

data set (n data points) with n iterations. In each iteration, one model fitted by the subset of n-1

data points will predict the last data point. The MMRE and RMSE are calculated on the results of

n-fold cross-validation.

45

It is difficult to interpret coefficients of candidate cost-driver metrics when high degree of

multicollinearity [64] exists between independent variables for a regression model. Variance

inflation factor (VIF) proposed by Fox and Monette [64] is used to check the degree of

multicollinearity. If VIF is or close to 1, there is no or negligible multicollinearity. A common

rule of thumb is that multicollinearity is high if VIF is greater than 5 as the threshold.

4.5 Applicability

The application of this methodology in another context is a practical process supported by

measurement automation and tool support, which will be introduced in 0. Qualitative approaches

to measure documentation cost (e.g., surveying people [49, 50] or recording effort [33, 44]) are

time-consuming and the results usually contain high risk of bias. The proposed methodology is

on the basis of data evidence in repositories, and the tool support makes it practical that the

measurement of documentation cost and the cost-drivers can be conducted at any point in time

during software evolution.

The conceptual cost model on software documentation evolution is proposed in Section

4.3.1. This model is generally defined in order to be applicable to another software development

context. The measurement completeness of defined metrics depends on the availability of data

from relevant repositories in different contexts. The more supports that the documentation

process is able to provide (e.g., documentation is organized by a centralized system which tracks

its evolution along with metadata), the more accurate results will be achieved. For certain cases

that the data might be not able to be directly collected from repositories, expert estimations

through carefully elicitation may be utilized as complementation.

In this study, the quantitative cost-driver analysis investigates the relationship between

underlying cost-drivers and documentation cost, with the purpose of understanding

46

documentation cost and improving documentation practice. A follow-up qualitative analysis can

also be introduced, aiming at further refining the quantitative results. For example, if this study

indicated that documentation cost had a high correlation with certain cost-driver, interviews

would be taken to explore the root-cause of this factor. This enables appropriate use of the study

results towards software process improvement.

4.6 Chapter Summary

This chapter overviewed the methodology DCCDA (Section 4.1), described its operational

process (Section 4.2), defined metrics for documentation cost and cost-drivers (Section 4.3),

introduced the technique applied to cost-driver analysis (Section 4.4), and finally discussed the

applicability of proposed methodology (Section 4.5).

The data collection and measurement process of DCCDA was automated with tool support

through mining relevant software repositories (described in 0). It enables this methodology a

practical process which can be easily replicated in another context.

47

Chapter Five - DCCDA Tool Support

This chapter discusses tool support for DCCDA. Steps 4, 5 and 7 of DCCDA (described in

Section 4.2) are automated as they are computationally expensive and time-consuming because

of the high volume of data in repositories.

5.1 Requirements of Tool Support

While relatively easy to compare two versions of a document by Unix/Linux diff or compare

feature in MS Word for fine-grained measurements of its evolution, analyzing a large amount of

documentation in which each one may have multiple versions, e.g., 500 documents * 10 versions

* 5000 words per version, is considerably time-consuming and nearly impossible to accomplish

without automation. For each document under study, accumulated cost over its multiple versions

at different time points needs to computed and summed up, as well as the measurements of

candidate cost-drivers.

Though lots of tools support for directory comparison to ease the burden, such as diff,

WinMerge [65], and WordDocDiff [66], none of them provides any convenient feature to work

with a large number of multi-version documents and conducts comparisons on each two adjacent

versions by chronological order. Moreover, candidate cost-drivers should also be automatically

measured to eliminate the measurement overhead issue.

To automate the measurement process (Steps 4, 5 and 7) of DCCDA, the functional

requirements of tool support are derived and listed as follows:

 Requirement 1 (derived from Step 4): Support for various formats of textual

documentation, including MS Word/Excel, PDF, Rich Text, Text, XML or HTML, and

cross-format comparison (e.g., a MS Word against a PDF document);

48

 Requirement 2 (derived from Step 5): Compare every two consecutive versions of a

given multiple-version document and compute the cost spent at each version based on

cost metrics in Section 4.3.1.2;

 Requirement 3 (derived from Step 7): Support for computing cost-driver metrics in

Section 4.3.1.3 for a given multi-version document or a single version;

 Requirement 4: Support for concurrent processing of a large number of documents in

which each may have multiple versions over time. It is important to notice that we are

dealing with large amount of documentation and requiring fine-grained measurements.

The computation process should be done within an acceptable time frame.

5.2 Architecture

The architecture of the tool support consists of two layers, called “Data Preparation” and

“Computation”. As illustrated in Figure 5.1, the “Data Preparation” layer provides support for

Step 4 of DCCDA on data collection and preprocessing. The “Computation” layer eases the

computational burden of Steps 5 and 7 of DCCDA.

49

DMS

Data
Collection

(Documentati
on versions &

Meta-data)

Wiki

Layer 1:
Data
Preparation

SW Repositories

...

Content
Parsing
(Unify

formats:
Doc, PDF, ...)

Cost
Measure

ments

Layer 2:
Computation

Version
Clustering

(Cluster
versions by
documents)

Concurrent Processing

Results
Aggregati

on

Cost-
driver

Measure
ments

Data Collection&Preprocessing

Doc Cost & Cost-Driver

Analysis

Figure 5.1-A layered structure of tool support on DCCDA

Layer 1: Data Preparation

 “Data Collection”. It aims to select the target documentation set for analysis. The data

access to target source, such as documentation management system, software repositories

or online Wiki, should grant retrieval of all versions of studied documents, as well as

useful metadata, such as authors’ information, check-in and check-out records etc.

 “Content Parsing”. The contents of collected documents may have different formats, all

of which need to be parsed into a unified format (textual information) for analysis.

50

 “Version Clustering”. All versions of the same document need to be grouped together by

a chronological order, with the purpose of enabling pair comparison of two adjacent

versions and concurrent processing on all documents (a set of multi-version documents).

Layer 2: Computation

Computation layer is where the actual measurement of documentation cost and cost-drivers

happens. It takes in the data prepared by Layer 1 and generates measurement results.

Parallel programming [67], a subset of the broader concept of multithreading, was applied to

speed up the intensive computation by making true parallelization taking place on multiple

processors. This process is illustrated in Figure 5.2, which demonstrates the internal mechanism

of “Computation” layer in Figure 5.1.

D1 D2 Dn

...

 V1 V2 … VxD1:

D2:
 V1 V2 … Vy

 V1 V2 … VzDn:

..
.

.AsParallel()

D1

Results

D2

Results

Dn

Results
...

Concurrent Processing

Source Multiple-
version Documents

Aggregated Results
for each Document

Thread 1

Thread 2

Thread n

Comparison

Figure 5.2-Mechanism of concurrent processing on a large number of multi-version

documents

In Figure 5.2, each cluster, a document having multiple versions, will be assigned to one

thread, so that all clusters can be processed in parallel. Within any cluster, the cost on each

51

version will be computed by comparing to its previous version, and the total cost is computed by

summing up the cost on each version. Similarly, the cost-driver metrics of each document can be

achieved by using the metadata upon every single version.

We tested the capability of the tool with case study data on an Intel Xeon CPU E5620 with

two processors and six GB RAM machine. The results indicates the application of this

mechanism enables the processing of 1,000+ documents (average size: 4,950 words) within 20

minutes, down from more than one hour (>67%).

5.3 Usage for Cost Measurement

To demonstrate the usage of tool support for documentation cost measurement, some sample

results based on case study data (described in Chapter Six) are reported in this section.

The cost metrics defined in Section 4.3.1 are automatically computed for each multi-version

document. Figure 5.3 illustrates an exemplary collection of cost measurement results on partial

documents from case study. In addition to the cost metrics, the tool also computes the number of

total revisions/versions, lifespan (from creation to last update) and number of authors involved.

A more detailed view on each version of a given document from case study is also presented,

as shown in Figure 5.4. Similarly, some metadata of each version, such as revision number,

committer, check-in/check-out times, and fine-grained change size metrics are also extracted

along with cost measurements.

52

Figure 5.3-Snapshot of cost measurement results: an aggregated view

Figure 5.4-Snapshot of cost measurement results: a single document view

5.4 Usage for Cost-Driver Measurement

Most of candidate cost-drivers are automatically measured while analyzing each version for

computing documentation cost, such as Document Size, Change Size, Change Volatility and

Editor. However, measuring documentation Quality (Readability) and Coupling is not

straightforward, and they have to be achieved with extra tool supports.

53

5.4.1 Document Quality

As aforementioned in Section 4.3.2.6, documentation quality is a multifaceted issue. In this

study documentation readability is selected as a representative, since readability has well-defined

metrics in literature [61].

To automate the measurements of documentation readability, the ReadabilityStatistics API of

MS Office 2010 [68] is used in the program to compute Flesch Reading Ease and Flesch-

Kincaid Grade Level. For those documents which are not stored in MS Word, their contents

would be extracted and transferred to MS Word files for readability measurements.

5.4.2 Coupling

An automatic reference mining tool was developed to capture the couplings/references

among documents. Some sample data from case study context (described in Chapter Six) was

used to demonstrate the capability of the tool. Given certain number of source documents as

input, the expected output is a directed graph visualizing input documents and their reference

relationship. The work flow is illustrated by Figure 5.5, including reference mining, graph data

preparation and visualization as the three main steps.

At the beginning, the documents to be analyzed are selected as input. In principle, they can

be any type of textual artifacts, requirement specifications, design documents or test procedures

etc. The reference lists will be transferred to a special data format for visualization. Finally, all

input documents and those detected references will be visualized in the framework (Gephi [69]).

54

Figure 5.5-Automatic mining and visualizing documentation coupling/reference

relationship

“Reference Mining” in Figure 5.5 needs to first parse documents written in different formats

and extract textual contents (Apache POI [70] for Microsoft Word/Excel, and Apache PDFBox

[71] for PDF), and then search for references (e.g., searching for terms “D*****” and

“QA********” which are the unique identifiers for documents in case study organization). A list

of references for each document will be generated.

“Graph Preparation” selects GEXF (Graph Exchange XML Format) for Gephi [69]

visualization because of its capability for elaborating complex network structures, and their

associated meta-data. It is an XML-based language, supporting for hierarchy structure. Figure

5.6 is a simple example for a minimal graph containing two nodes and one edge between them.

In this context, all documents are represented as nodes, and reference relationship is expressed

by an arrow pointing from source document to target document. In addition, InRefs and OutRefs

which measure the number of edges coming in and out are calculated. The width of each edge is

used to indicate the frequency of reference.

55

Figure 5.6-GEXF file format for visualization

“Visualization” utilizes the popular Gephi framework to demonstrate couplings among

documents. As an example, a single document view is able to provide a clear InRefs and OutRefs

perspective, as shown in Figure 5.7. From this view, we can easily find the values for metrics

InRefs and OutRefs.

Figure 5.7-Reference visualization for single document

56

5.5 Chapter Summary

This chapter discussed the requirements of measurement automation and tool support for

DCCDA (Steps 4, 5 and 7). A two-layer structure of automation framework was introduced, and

fine-grained computations on each revision/version, were applied to enable accurate

measurements of cost and cost-drivers. Various formats of documentation are supported, and the

usage of Parallel Computing by [67] speeds up the whole process (about 67%) in an acceptable

time frame. In addition, an implementation for capturing coupling/reference among

documentation was also demonstrated.

57

Chapter Six - Evaluation: An Industrial Case Study

This case study is conducted by following the structure and guidelines recommended by

Runeson and Höst [72]. This chapter discusses in detail the case study design, data collection and

data analysis procedure. The results of this case study are presented in Chapter Seven and

Chapter Eight.

6.1 Case Study Design

6.1.1 Case Study Context

NovAtel is a leading provider for a comprehensive line of Global Navigation Satellite

System (GNSS) products, and its OEM products heavily depend on embedded software. With

strong quality requirements in terms of accuracy, reliability and performance, software

development and evolution is a key success factor. At present, NovAtel is in the process to

introduce more flexible and lean development processes with shorter iterations and earlier

feedback cycles. The question at hand is how to tune the development process and artifact

parameters to achieve best results. Documentation has been considered important for

communication and collaborative development, and how much documentation is enough to

ensure “optimal” cost is an issue of concern for NovAtel.

6.1.2 Case Process Selection

The case in this study is the software documentation process in NovAtel, which will be

investigated from cost perspective. NovAtel has more than 20 years of legacy code and

documentation. Figure 6.1 summarizes the volume history of documentation in recent 10 years

from an in-house-made documentation management system, called DSTS. In DSTS,

documentation creation and revision are organized by check-ins, similar to version control

system for source code. In Figure 6.1, y-axis denotes the number of documentation

58

revision/version check-ins in DSTS. At NovAtel, DSTS stores most types of documentation

produced during software development (84,237 documents in total), such as requirement

specifications, conceptual/detail designs, test plans, test results, process regulations and etc.

As the volume of documentation increased at each year in general, the cost on documentation

is also considerably high. Documentation process, as an integral part of investment, needs better

cost control to optimize the software development process.

Figure 6.1-Volume history of documentation in DSTS

6.1.3 Objectives

The objective of the case study in NovAtel is to evaluate documentation cost and to

investigate underlying cost-drivers by applying the methodology DCCDA (described in Chapter

Four). It requires a careful analysis of real project data. Since there is no evidence in the

literature about the possible cost-drivers in documentation, it can only be tackled via empirical

studies. This case study aims to explore and provide initial answers to above questions.

59

By this case study, we first intend to reveal documentation cost from different perspectives

(i.e., RQ1.1 to RQ1.5), and then analyze the relationship between candidate cost-drivers and the

cost.

The overall business goal of this CRD project [9] is to improve software documentation cost-

effectiveness and maintenance efficiency in NovAtel. By combining the results from this study

with documentation usefulness information measured by other students, an evaluation of

documentation cost-effectiveness would be achieved. We believe such evidence is able to

provide decision support on documentation process improvement.

6.1.4 Unit of Analysis

NovAtel’s OEM product line has evolved from OEM1 to OEM6, while previous products are

either discontinued or less maintained. Figure 6.2 shows the volume of software documentation

over each product from DSTS. Each check-in denotes the creation or revision of one document.

Figure 6.2-Volume of documentation over OEM products in DSTS

60

The unit of analysis chosen by this case study is the recent product OEM6. It was launched

from 2007 and first released in 2010. OEM6 embedded software is a medium-size project (20

functional components and around 100,000 SLOC) with extensive change activities on both

source code and documentation.

For each document under study, the lifecycle cost should be summarized from all its

possessed versions. The cost spent on other aspects, for example the cost on storing or locating a

document, will not be taken into account, because they would be extremely difficult to obtain.

The relationship between cost-drivers and cost will be examined in two levels of granularity.

We will first look into the cost-drivers impacting the lifecycle cost of a document, and then

investigate the cost-drivers that determine the effort spent on each revision or version. By this

way, we intend to identify a more comprehensive and more reliable set of cost-drivers of

documentation.

6.2 Collecting Data

This section discusses in detail the data collection process. Three types of high-level

documentation of OEM6 (Conceptual Design, Test Plan, and Process Regulation documentation)

were first selected to study their cost. These three documentation types (named Design, Test and

Process for short) are available in DSTS, which keeps traces of all versions of a document and

the metadata of each revision check-in.

Table 6.1 provides a summary of collected documents (Note: Test Plan documents were

selected by the software manager in NovAtel with consideration of their representativeness and

availability.). Most documents have multiple revisions/versions over time. Due to the fact that

most Test documents of OEM6 are reused from previous products (as far as the former OEM2),

61

they have an extremely long history with a large number of revisions/versions over time. Design

documents are newly developed for OEM6, so that they have fewer revisions.

Table 6.1-Summary of collected data for case study

Type Design Test Process

#ofDocuments

(Total: 55)

20 15 20

#ofVersions

(Total: 1630)

140 1,036 454

#ofEditors

(Total: 125)

23 58 52

Period of

Collected data

Apr 2006 –

Dec 2011

Jul 1996 –

Nov 2011

Jun 1999 –

Apr 2012

Sample

Ratio

100% 5.7% (15 out of 262) 100%

Selection

Criterion

All conceptual

designs on OEM6

software

Test plans on OEM6

software

All process

regulations on

software

development and

evolution

Each documentation revision check-in needs to be classified into a group of previous

revisions owned a multiple-version document, where all its revisions/versions are ordered by

check-in sequence. In addition to collect documents, the metadata along with each check-in is

extracted as well, such as check-out and check-in times, committer and check-in number etc.

6.3 Data Analysis Procedure

This section discusses the data analysis procedure of this case study, which corresponds to

Steps 6, 8 and 9 of the methodology DCCDA. The results of data analysis are reported in

Chapter Seven and Chapter Eight.

At a high level, the data analysis of this case study will proceed as follows:

62

6.3.1 Documentation Cost Analysis

The effort (measured by Time Expenditure) of each document version is collected through

reading the built-in property “Total Editing Time
1
” of MS Word files with tool support, since

most of studied documents was written in MS Word (> 99.4%). This measurement captures the

effort on editing (or creating) a MS Word document, and the effort on designing or reviewing

whenever people were conducting these activities within the same Word file. Though alternative

measure of cost can be used, for example by counting the time interval between each

documentation revision check-out and check-in, we believe this measurement is more reliable for

capturing substantial cost on developing documentation.

In this case study, the effort measured by Time Expenditure, is used as response variable for

cost-driver analysis, because people’s wage information is considered as confidential.

By following Step 6 of DCCDA, we analyze the collected documents from the perspectives

of RQ1.1 to RQ1.5. A few findings based on evidence are summarized to assist the

understanding of documentation effort in NovAtel. The results of documentation effort analysis

are presented in Chapter Seven.

6.3.2 Documentation Cost-Driver Analysis

This analysis (described by Steps 8 and 9 of DCCDA in Chapter Four) is conducted from two

different granularity levels. At coarse-grained level, a document with single or multiple versions

is treated as one sample. Therefore, the identified cost-drivers are the ones that influence the

lifecycle effort of a documentation artifact. At fine-grained level, each individual

1

“When you open a Microsoft Word document, a behind-the-scenes timer starts. As long as your document is

open and its window is in front of all other windows, the timer continues, whether you're actively changing the

document, scrolling around, or just thinking. If you save your changes, the additional time is added to the

document's Total Editing Time. If you close without saving, the additional time is discarded.”, MS Office.

63

revision/version is considered as one sample, and the cost-drivers that determine the effort spent

on individual documentation revision can be identified.

Table 6.2 provides the descriptive statistics for document effort data (i.e., the response

variable Y in our GLM) at both levels. Based on Table 6.2, we notice the effort data is always

positive and right skewed (non-normal distribution). According to the recommendations

provided by Myers et al. [55], a GLM with a gamma response variable and a log link-function is

appropriate to apply between candidate cost-driver metrics and documentation effort. The results

of documentation cost-driver analysis are presented in Chapter Eight.

Table 6.2-Descriptive statistics for documentation effort (in hours)

Metric Document Lifecycle Effort Document Version Effort

Mean 261.4 22.8

StdDev 441.3 32.5

Min 1.0 1.7

25% Percentile 30.1 3.1

Median 165.7 7.0

75% Percentile 352.9 24.7

Max 2,207.3 166.4

6.4 Chapter Summary

In this chapter, we detailed the design of an industrial case study at NovAtel. The statistical

results from Section 6.1 have shown a burdensome documentation practice and the necessity for

cost control and cost-driver analysis. To this end, three types of documentation were selected for

cost analysis. Moreover, a two-tier analysis procedure was proposed to investigate the nature of

documentation cost-drivers on both individual artifact and each documentation revision. The

case study results are presented in Chapter Seven and Chapter Eight.

64

Chapter Seven – Case Study Results from Documentation Cost Analysis (RQ1)

This chapter presents the results from documentation cost analysis in this case study,

organized by RQ1.1 to RQ1.5, respectively.

7.1 Cost per Document (RQ1.1)

RQ1.1 concerns the lifecycle cost spent on each single or multi-version documentation

artifact. This section presents the lifecycle cost of each document from case study through

mining its evolution history.

The versions belonging to one document are grouped together and ordered by time as one

row, and each version is mapped onto a 2-D presentation as one dot, as shown in Figure 7.1.

Here, y-axis is a collection of case study documents, separated by documentation types, and x-

axis is the timeline for version check-ins.

For each document under study, all its versions (data points within the same column in

Figure 7.1) are computed for effort, so that the lifecycle effort (LCE) can be obtained by

summing up all of them. Due to space limitation, Table 7.1 summarizes the measurement results

of top 20 costly documents from case study, ranked in descending order by Time Expenditure. A

more detailed view on individual document is presented afterwards in Table 7.2.

65

D13736
D11291
D08219
D08147
D04787
D04596
D04432
D03707
D03330
D03248
D01282
D00736
D00399
D00165
D00045

QA -D11541
QA -D08050
QA -30600004
QA -30500033
QA -30500029
QA -30500028
QA -30500026
QA -30500019
QA -30500018
QA -30500017
QA -30500016
QA -30500014
QA -30500012
QA -30500005
QA -30500004
QA -30400002
QA -30400001
QA -30300008
QA -30300005
QA -30300003

D15673
D13850
D13680
D13613
D13612
D13212
D12974
D12810
D12694
D12224
D12218
D11562
D11551
D11471
D11452
D11376
D11308
D11162
D11064
D09633

20
12

20
11

20
10

20
09

20
08

20
07

20
06

20
05

20
04

20
03

20
02

20
01

20
00

19
99

19
98

19
97

Check-in Time

n

g

i

s

e

D

s

s

e

c

o

r

P

t

s

e

T

Figure 7.1-Visualization of version history of case study documents

66

Table 7.1-Measurement results of top 20 costly documents

Rank DocNo. DocType Time Expenditure

(hours(man-months))

Document

Churn

(words)

Change

Degree

1 D11376 Design 2,207 (9.2) 54,433 362%

2 D00736 Test 1,954 (8.1) 215,905 1,461%

3 D00165 Test 1,075 (4.5) 488,724 2,163%

4 D04787 Test 1,031 (4.3) 180,067 3,769%

5 D11551 Design 989 (4.1) 21,381 367%

6 D03330 Test 817 (3.4) 125,666 3,643%

7 D11562 Design 679 (2.8) 18,015 42%

8 D03248 Test 618 (2.6) 283,821 5,608%

9 D11162 Design 618 (2.6) 85,880 1,126%

10 QA-30400001 Process 496 (2.1) 41,043 1,209%

11 D13850 Design 493 (2.1) 6,060 151%

12 D04432 Test 463 (1.9) 137,656 2,825%

13 D00045 Test 434 (1.8) 196,865 5,669%

14 QA-11541 Process 377 (1.6) 6,540 50%

15 D03707 Test 372 (1.6) 51,930 1,127%

16 D11452 Design 353 (1.5) 37,393 922%

17 D12974 Design 351 (1.5) 10,552 196%

18 QA-08050 Process 326 (1.4) 29,779 606%

19 QA-30500004 Process 322 (1.3) 18,709 1,325%

20 D11376 Design 175 (0.7) 54,433 362%

Table 7.2 takes a multi-version document (D11162) from case study for example and

presents the detailed measurement results. This document has been through 12 revisions/versions

by two people after initial creation over a 554 day’s period. Eight consecutive revisions had

relatively large-scale changes happened (more than 65% measured by Change Degree metric). In

total, this document consumed about 618 hours (2.6 man-months, one man-month is considered

to have 30 days and each day has eight hours) through its evolution.

67

Table 7.2-Detailed measurement results on document “D11162”

Metrics Results

#Versions 12

#Editors 2

AvgSize 7,356 (words)

Lifespan 554 (days)

Document Churn 81,204 (words)

AddWord 43,424 (words)

DelWord 37,780 (words)

ChangeDegree

(at each version)

5.2%; 116.2%; 223.9%; 74.7%; 89.8%; 293.3%;

117.0%; 125.2%; 69.3%; 11.3%; 0.4%

ChangeDegree 1,126%

TimeExpenditure 618 hours (2.6 man-months)

In addition to the measurement results of each document, we observed a few interesting

findings based on documentation version history in Figure 7.1.

 Finding 1: Unstable documentation artifacts

Unstable documentation artifacts refer to documentation artifacts that have been

frequently changed during their lifecycle. They are indicated by a dense horizontal line in

Figure 7.1. For example, the document with the most revisions can be identified by the

amount of dots from rows, which is D000045 (the first row of Test documents) having

136 revision check-ins. By consulting the software manager in NovAtel, two main root-

causes for unstable artifacts are found: (1) poorly written documents which demand

frequent changes, and (2) the functionality contained therein is considered strategic and

needs to be updated from time to time.

 Finding 2: Life span of documentation artifacts

Long life span documentation artifacts refer to those documents which have long

evolution history and been reused many times since initial creation. For example, the

68

document with the longest time span (from initial creation to last update) is also

D000045, followed by D00165, by observing the length of each row (timeline).

 Finding 3: Revision frequency of different documentation types

The revision frequency of different documentation types is different. From Figure 7.1, we

can notice that Test documents were most frequently revised during evolution, followed

by Process and Design documents. Process documents, for example, were more discretely

changed than the other two. The root-cause is “Once software processes have been

practiced for a certain time period, they were supposed to be reviewed and modified for

improvement. Consequently, version history of Process documents discretely distributed

over timeline.”, as explained by the software manager in NovAtel.

7.2 Cost per Documentation Type (RQ1.2)

RQ1.2 helps to understand how cost spending across different documentation types varies

and to reveal what is the most costly documentation type that is worth our attention.

Hypothesis 1: The rankings between different documentation types from the same

organization are same based on three types of effort metrics (i.e., Time Expenditure, Document

Churn, and Change Degree).

To test this hypothesis, documents from case study were classified into three types, i.e.,

Design, Test and Process, in order to compare different documentation types by each effort

metric. All three documentation types were statistically summarized by each effort metric, as

shown by box-plots in Figure 7.2, Figure 7.3 and Figure 7.4. Each box-plot provides effort

distributions of three documentation types measured by a specific effort metrics, as well as the

mean value.

69

Figure 7.2-Box-plot of the three documentation types by Time Expenditure

Figure 7.3-Box-plot of the three documentation types by Document Churn

ProcessTestDesign

1,200

1,000

800

600

400

200

0

N
u

m
b

e
r

o
f

H
o

u
rs

138

377

298

138

377

298

ProcessTestDesign

500,000

400,000

300,000

200,000

100,000

0

N
u

m
b

e
r

o
f

W
o

rd
s

20,023

127,517

16,919

70

Figure 7.4-Box-plot of the three documentation types by Change Degree

Based on the mean value of each documentation type, the rankings by the three effort metrics

are shown below:

 Ranking by Time Expenditure (in hours):

 Ranking by Document Churn (in words):

 Ranking by Change Degree:

The results above reject the hypothesis, since the ranking varies when using different effort

metrics. This is caused by the fact that these three metrics are designed to capture effort from

different perspectives, and not necessarily equal with each other. For example, Figure 7.2 reveals

that the time spent on Design and Test documentation far outweighs Process documentation,

ProcessTestDesign

6000%

5000%

4000%

3000%

2000%

1000%

0%

C
h

a
n

g
e
 D

e
g

re
e
 P

e
rc

e
n

ta
g

e

533%

2179%

239%

71

while Figure 7.3 and Figure 7.4 tell that Test documentation far outweighs the other two in terms

of Document Churn and Change Degree.

7.3 Cost Distribution over Time (RQ1.3)

RQ1.3 concerns documentation effort distributions over different time periods. It helps to

compare development activities with documentation support. It is applicable to different levels of

granularity, single document, one documentation type or all documentation in general, assisting

to understand documentation behaviour on time basis. This section presents the documentation

effort distributions over time from case study.

First, the overall documentation effort over recent 11 years (from 2001 to 2011) is shown in

Figure 7.5. As we can notice, the effort on Design documentation originated from 2006 and

reached a peak at 2007. This is because that product OEM6 was launched around this time

period, when most of initial conceptual designs were accomplished. After 2007, the phenomenon

that certain amount of “Design” effort still exists indicates that the new product was going

through design changes. In addition, the new product also triggered the modifications on old test

plans to incorporate new features. This explains the increase of “Test” cost since 2007. The

“Process” effort overall shows a slightly increasing trend, which indicates that NovAtel has been

focusing on software process improvement. All above explanations were validated by the

software manager in NovAtel.

72

Figure 7.5-Total documentation effort over timeline from case study

As another example, the document QA-30300003 with total 30 revisions is illustrated in

Figure 7.6. For each revision check-in, its cost (time) is mapped into one point, where its x-axis

is the revision check-in time and y-axis denotes the amount of effort.

From Figure 7.6, we can observe that most of documenting activities were relatively

centralized within three time periods, separated by the gap from 2005 to 2007 and the gap from

2008 to late 2010. Most effort was introduced in the first period, including the extremely high

case, the initial creation. Overall, there were lots of revisions which did not consume much effort

(the dots locate closely to x-axis).

Year 20112010200920082007200620052004200320022001

4,000

3,000

2,000

1,000

0

T
im

e
 E

x
p

e
n

d
it

u
re

 (
in

 H
o

u
rs

)
Design

Process

Test

73

Figure 7.6-Effort distribution of document QA-30300003 over time

The explanation to those effortless revisions is that only minor modifications were made for

these revisions, such as changing only a few words. To verity this explanation, the fine-grained

measurements of each revision, in terms of number of words added, deleted and unchanged, are

shown in Figure 7.7. In Figure 7.7, x-axis is a time series of revision (denoted by version ID),

and y-axis denotes number of words.

Figure 7.7 shows that revisions ROA, ROC, ROD, R2A and R2B have relative higher change

size, in terms of word added and deleted, which is compatible with their corresponding cost

shown in Figure 7.6. In contrast, most of the other revisions only have small change size. All of

these indicate that documentation change size is highly correlated with effort, which will be

statistically tested in documentation cost-driver analysis (Chapter Eight).

01/01/201201/01/201001/01/200801/01/200601/01/2004

25

20

15

10

5

0

Revision Check-in Time

T
o

ta
lE

ff
o

rt
 (

h
o

u
rs

)

74

Figure 7.7-Document Churn measurements of QA-30300003 over time

7.4 Cost by Person (RQ1.4)

RQ1.4 focuses on associating documentation effort with each person, so that we can better

understand their participation and performance level on documentation.

Top 10 people who committed most revisions (named “C1”) versus who spent most effort

(named “C2”):

Table 7.3 compares the people with most documentation revision check-ins versus people

who spent most time, ranking by descending order. For confidential reason, each person is

represented by a capital letter. People who show up in both categories are in bold.

 -

 500

 1,000

 1,500

 2,000

 2,500

 3,000

 3,500

 4,000

R
0

A

R
0

B

R
0

C

R
0

D

R
0

E

R
0

F

R
0

G

R
0

H

R
0

I

R
0

J

R
0

K

R
1

R
1

A

R
1

B

R
1

C

R
2

R
2

A

R
2

B

R
2

C

R
3

R
3

A

R
3

B

R
3

C

R
4

R
4

A

R
5

R
5

A

R
5

B

R
5

C

R
6

N
u

m
O

fW
o

rd
s

Revision Check-ins

 #WordDeled

 #WordAdded

WordNoChange

75

Table 7.3-Top 10 people (“C1”) with most revision check-ins versus the top 10 people

(“C2”) spent most effort (in hours (man-months))

Rank

People within “C1” People within “C2”

Person #ofCheck-ins Person #ofCheck-ins Time Expenditure

1 A 124 K 6 1,328 (5.5)

2 B 76 D 61 1,226 (5.1)

3 C 64 L 26 916 (3.8)

4 D 61 M 19 809 (3.4)

5 E 58 N 18 780 (3.3)

6 F 56 O 37 701 (2.9)

7 G 55 P 39 580 (2.4)

8 H 46 C 64 540 (2.2)

9 I 44 H 46 531 (2.2)

10 J 42 Q 7 464 (1.9)

Top 15 people in “C1” and “C2” across each documentation type:

Since most people write only one type of documentation based on their roles, more detailed

views need to be obtained across different documentation types. This information assists to

understand people’s activities within each documentation type.

To this end, the top five people recognized by both categories across different documentation

types are listed in Table 7.4. Comparing to Table 7.3, eight additional people (#ofCheck-ins<42)

are recognized by “C1”, five from Design and three from Process. Similarly, “C2” has five such

cases from all categories.

Overall, time spending on documentation across authors varies from 22 minutes to 1,328

hours/5.5 man-months (standard deviation is 225 hours/0.9 man-month).

76

Table 7.4-Top 15 people in both categories across documentation types

DocType

People within “C1” People within “C2”

Person #ofCheck-ins Person Time Expenditure

(hours(man-months))

Design

I 39 K 1,328 (5.5)

M 19 M 809 (3.4)

R 15 N 706 (2.9)

S 9 Q 464 (1.9)

Q 7 I 418 (1.7)

Test

A 124 D 1,226 (5.1)

E 58 O 701 (2.9)

D 58 P 580 (2.4)

F 56 H 531 (2.2)

G 55 J 362 (1.5)

Process

B 76 L 915 (3.8)

C 64 C 540 (2.2)

T 37 W 198 (0.8)

U 31 U 141 (0.6)

V 28 X 140 (0.6)

In Table 7.3 and Table 7.4, there are people (in bold) existing in both categories, “C1” and

“C2”. It is interesting to know if #ofCheck-ins correlates to Time Expenditure.

Hypothesis 2: Higher number of documentation revision check-ins leads to more effort

spending by each person.

The Pearson correlation was applied between #ofCheck-ins and Time Expenditure for all 125

people from case study. The correlation coefficient is 0.27 with a p-value 0.004 (less than 0.05 is

considered as significant). It indicates that #ofCheck-ins and Time Expenditure have low-level

linear correlation. Other factors may also influence the actual time spending across authors.

77

7.5 Time-efficiency on Documentation (RQ1.5)

On the basis of results from RQ1.4, RQ1.5 aims to provide preliminary evaluation on the

variation of people’s time-efficiency on writing software documentation. This section introduces

our metric on defining documentation time-efficiency, presents the corresponding results from

case study, and discusses the limitation. In addition, an interesting hypothesis about

documentation time-efficiency is formulated and tested.

Programmer productivity in software engineering is often defined as the ratio between code

size and programming time [73]. Similarly, the productivity or efficiency of people on writing

documentation can be defined as follows:

Definition 12: denotes the time-efficiency of person X on writing textual

software documentation, and is defined as:

 denotes the number of changed words committed by X. Efficiency,

therefore, captures people’s productivity on writing textual software documentation (words) in a

time unit (hour). Of course this definition does not apply to all types of documentation, such as

visual documentation UML.

The top 15 people (out of 125) who spent most effort in Table 7.4 are tested by Efficiency, as

shown by the last column.

Finding 4: The overall results reveal the fact that people wrote documentation with highly

different Efficiency levels (variation from minimal 15.6 to maximal 2,592.6). This variation is

greater than coding variation that was originally found between 1 and 20 by Sackman et al. [74].

In general, the Efficiency on writing Design documents is the lowest (456.6), followed by Test

78

(1,194.6) and Process (1,417.2). This is caused by higher complexity of software design task

itself.

Table 7.5-Efficiency of top 15 people in terms of cost spending on documentation

DocType Person #Check-ins Document

Churn(#words)

Time

(#hours)

Efficiency

(#words/hour)

Design

K 6 56,148 1,328 42

M 19 101,304 809 125

N 7 19,560 706 28

Q 7 8,170 464 18

I 39 38,277 418 92

Test

D 58 165,662 1,226 135

O 37 34,405 701 49

P 39 135,044 580 233

H 46 49,206 531 93

J 42 86,836 362 240

Process

L 24 42,508 915 46

C 64 41,338 540 77

W 5 4,175 198 21

U 31 17,725 141 126

X 6 15,749 140 112

Limitation: Comparing to programming productivity which has been widely studied [73, 75,

76], the measurement of the time-efficiency on writing documentation is so far rarely studied.

The Efficiency metric defined in this context only captures the average speed of individual

writing documentation, regardless the quality of documentation.

It is possible that a person who writes documentation fast (high Efficiency) might neglect the

quality of documentation. Consequently, it results in more additional revisions to leverage the

quality later on. A hypothesis based on this assumption was formulated and tested.

79

Hypothesis 3: Higher Efficiency results in more documentation revisions committed by each

person.

To test this hypothesis, the Pearson correlation was applied between #ofCheck-ins and

Efficiency for all the people involved in case study. The correlation coefficient is 0.51 with a p-

value 0.06 (less than 0.05 is considered as significant). It indicates that revision numbers and

writing speed are not significantly correlated.

7.6 Threats to Validity

Construct Validity: One threat to construct validity is the Efficiency metric defined in

Section 7.5. It can only capture the speed of individuals on writing documentation. However,

time-efficiency on writing documentation has to be jointly considered with quality and

complexity of documentation. These two factors may influence individual’s time-efficiency on

writing documentation and are considered as threats to construct validity.

External Validity: Though we have selected all Design and Process documents of OEM6,

only 15 Test documents were selected by the software manager in NovAtel to represent overall

Test documentation. The selection of Test documents might introduce bias and is considered as a

threat to external validity.

7.7 Chapter Summary

The chapter summarized the documentation cost analysis results on RQ1.1 to RQ1.5 from the

case study. In addition, four findings were concluded and three hypotheses were tested.

A preliminary metric for the “Time-efficiency on writing software documentation” was

proposed and measured in the case study. Moreover, we tested a hypothesis whether there is a

positive correlation between high “Time-efficiency” and high number of revision check-ins,

80

considering people who wrote documentation fast may result in low quality documentation and

therefore more revisions. The results indicated that they are not significantly correlated.

81

Chapter Eight – Case Study Results from Documentation Cost-Driver Analysis (RQ2)

This chapter presents the cost-driver analysis results of the case study, organized by RQ2.1

and RQ2.2. The analysis has been done through two different levels of granularity. The coarse-

grained level relates to the cost-drivers on the lifecycle cost of a multi-version document (named

“Document Lifecycle Cost-Drivers”). The fine-grained level targets the cost-drivers that

influence each individual revision or version of a document (named “Document Revision Cost-

Drivers”). The analysis at each level has gone through the same procedure, as described by Step

8 and Step 9 of the methodology DCCDA (Figure 4.1).

In this chapter, the results for RQ2.1 and RQ2.2 are presented in Section 8.1 and Section 8.2,

respectively. The overall results are discussed in Section 8.3. Section 8.5 discusses possible

generalization of case study results, followed by discussing of the threats of validity.

8.1 Document Lifecycle Cost-Drivers (RQ2.1)

8.1.1 Descriptive Statistics

It is important to understand the characteristics of current system under study and explain

why results of future replications of this study could be same or different from this study. The

distributions statistics can tell whether the system under study is representative or has unusual

patterns, e.g., extremely long size, high revision numbers or many people involved in evolving

one document.

Figure 8.1 shows the distribution statistics of cost-driver metrics, where its y-axis denotes the

number of documents.

82

Figure 8.1-Frequency distributions of cost-driver metrics and cost for “Document Lifecycle

Cost-Drivers”

From Figure 8.1, we can observe a few characteristics on case study data.

 Most of documents size (84%) values are less than 8,000 words based on all three metrics

InitialSize, AvgSize and FinalSize. The distributions of these three metrics indicate that

documentation size is increasing over time, from InitialSize (average 2,551 words per

document) to FinalSize (average 5,705 words per document)..

Pr
oc
es
s

Te
st

De
sig
n

20

10

0

12
,0
00

9,
00
0

6,
00
0

3,
00
00

20

10

0

30
,0
00

24
,0
00

18
,0
00

12
,0
00

6,
00
00

30

15

0

32
,0
00

24
,0
00

16
,0
00

8,
00
00

20

10

0

8,
00
0

6,
00
0

4,
00
0

2,
00
00

30

15

0

48
0,
00
0

36
0,
00
0

24
0,
00
0

12
0,
00
00

40

20

0

24
0,
00
0

18
0,
00
0

12
0,
00
0

60
,0
000

30

15

0

20
0,
00
0

15
0,
00
0

10
0,
00
0

50
,0
000

40

20

0

16
,0
00

12
,0
00

8,
00
0

4,
00
00

30

15

0

80
00

60
00

40
00

20
000

20

10

0

80
00

60
00

40
00

20
000

20

10

0

806040200

20

10

0

403020100

20

10

0

60504030

10

5

0

18151296

16

8

0

9.
6

7.
2

4.
8

2.
4

0.
0

30

15

0

403020100

20

10

0

3024181260

16

8

0

9.
6

7.
2

4.
8

2.
4

20

10

0

1,
20
0

90
0

60
0

30
00

20

10

0

Type InitialSize AvgSize FinalSize ChangeBlock

ChangeWord AddWord DelWord StdevSize StdevAddWord

StdevDelWord MinorRevs ReleaseRevs Readability_1 Readability_2

InRefs OutRefs NumOfEditors ExpOfEditor TotalEditTime

83

 MinorRevs and ReleaseRevs indicate that most of documents have multiple versions, but

no patterns on this point have been observed.

 Most of documents under study involve multiple people. But the number of people and

their average experience varies, based on the distributions of NumOfEditors and

ExpOfEditor.

 For most of documents under study, the number of outgoing references outweighs the

number of incoming references.

In summary, all of these observations indicate that the organization has been practicing

intensive documentation with highly number of documentation revisions (average: 30

versions/document) and spent cost over time (average: 313.5 hours/document). This motivates us

to investigate the underlying cost-drivers of documentation.

8.1.2 Univariate Regression Analysis

The results of univariate analysis are provided in Table 8.1. Columns “Cost-Driver” and

“Metric” indicates the name of each candidate cost-driver and its metrics, and columns

“Coefficient”, “StdErr”, “T-Test” and “P(Coef.)” denote the estimated regression coefficient, its

standard error, t-test value and p-value. A p-value bellow than 0.05 (the chosen significance level

for regression analysis), 0.01 and 0.001 are marked with one, two and three asterisks,

respectively. All the tables in this chapter reporting GLM results will follow the same structure.

Based on the modeling results in Table 8.1, the ranking of significant cost-drivers

(“Document Type” is excluded as it is not continuous numeric data), from the highest to the

lowest, is given as follows. The ranking of each cost-driver is based the average coefficient

(absolute value) of its significant metrics (Note the measures of all cost-driver metrics in

84

different scales were normalized between 0 and 1 before regression). The explanation of each

cost-driver is given afterwards.

Table 8.1-Results of univariate regression modeling for “Document Lifecycle Cost-Drivers”

Cost-Driver Metric Coefficient StdErr T-Test P(Coef.)

Doc Type Type -0.9253 0.4139 -2.238 0.0294*

Doc Size

InitialSize 1.3409 0.2757 1.406 0.0166*

AvgSize 4.6875 0.8875 5.319 <0.0001***

FinalSize 4.6679 0.7769 6.002 <0.0001***

Change

Size

ChangeBlock 4.2310 1.1741 3.477 0.0010**

ChangeWord 3.9676 1.0632 3.732 0.0005***

AddWord 5.0427 0.9909 5.061 <0.0001***

DelWord 3.8526 1.2770 2.906 0.0053**

Change

Volatility

StdevSize 2.6621 1.0286 2.588 0.0124*

StdevAddWord 2.4523 0.9379 2.615 0.0116*

StdevDelWord 2.958 1.187 2.492 0.0159*

Change

Frequency

MinorRevs

ReleaseRevs

1.5069

1.2552

0.8791

0.7830

1.733

1.598

0.089

0.116

Doc Quality
Readability_1 0.7254 0.6673 0.845 0.402

Readability_2 -0.5810 1.2527 -1.667 0.645

Coupling
InRefs -1.1208 1.1932 -0.963 0.352

OutRefs -1.9833 0.9529 -2.102 0.0403*

Editor
NumEditors 0.0474 0.0289 1.641 0.107

AvgExp 0.0102 0.0881 0.115 0.909

 With respect to change size all its metrics are significant. Similar to previous change-

based studies on source code [37, 77, 78], which confirmed the correlation between

change size and cost, documentation change size also affects cost. However,

ChangeWord and AddWord metrics are more significant than DelWord and ChangeBlock

Our interpretation is that the two metrics capture more time-consuming activities,

85

comparing to the coarse-grained metric ChangeBlock and the DelWord metric for

relatively effortless deleting words. But we have no evidence to verify this assumption.

 For document size, the two metrics AvgSize and FinalSize indicate a strong positive

correlation with cost, while InitialSize is considered as moderate significant. One possible

explanation is that AvgSize and FinalSize are able to, to some extent, mirror the revision

effort spent after initial creation for a multi-version document. However, InitialSize is a

precise indictor of total cost, since an initially short document, for example, may grow to

become a very large document, thus consuming large amount of cost overall.

 Change volatility metrics are also identified as significant, which indicate that high

change volatility causes more cost on documentation. This may be explained by the

presence of redundant movements of words from one version to next version, including

both addition and deletion, which normally costs more effort than a document

undertaking smooth evolution. The underlying reason for high change volatility could be

multifaceted. For example, it could be caused by the fact that software system has gone

through significant changes from time to time. Therefore, the corresponding

documentation would need the same revisions to ensure consistency. However, in order

to reveal the root-cause, we recommend that further qualitative and quantitative studies

should be applied on this aspect.

 Coupling metric OutRefs is significant and indicates that having more references to other

documents reduce cost. This phenomenon can be explained by referring to the Object-

Oriented principles, cohesion and coupling. On one hand, redundant details are

eliminated by appropriately using reference. Consequently, the significant cost-driver,

documentation size, is able to be controlled, so as the cost. On the other, if we try to push

86

too far on reducing coupling/reference, we will end up with large size documents at

which point we lose the quality of cohesion. Therefore, there must be a trade-off for

documentation to achieve loose coupling and high cohesion.

 Other candidate cost-drivers, change frequency, documentation quality (measured by

readability) and editor, are not considered as significant factors. Change frequency,

measuring the number of revision check-ins, surprisingly doesn’t show significant

correlation with cost. The explanation is that most of revisions (89.8%) had only a few

changes and consumed the cost less than one hour, which means that number of versions

does not significantly determine the cost.

8.1.3 Multivariate Regression Analysis

Multivariate regression looks at the compound impact of the cost-driver metrics on

documentation cost. All cost-driver metrics are chosen to build the GLM model with a stepwise

variable selection process. The results of multivariate regression are shown in Table 8.2.

Table 8.2-Results of multivariate regression modeling for “Document Lifecycle Cost-

Drivers”

Cost-Driver Metric Coefficient StdErr T-Test P(Coef.)

Doc Size AvgSize 4.2995 0.7294 3.811 <0.0001***

Change Size ChangeWord 1.8552 0.7282 1.807 0.0146*

Change

Volatility

StdevSize 2.1220 0.7830 1.850 0.0081**

StdevDelWord 2.6337 1.2893 1.237 0.0461*

Coupling OutRefs -2.6610 0.8762 -1.902 0.0038**

The multivariate regression model in Table 8.2 shows:

 The ranking of documentation cost-drivers, from the highest to the lowest, is:

87

 Several cost-driver metrics that were previously identified by univariate analysis are not

considered as significant, such as InitialSize, FinalSize, ChangeBlock, AddWord and

DelWord. This is because that these metrics are to some extent coupled with the

identified ones, as they are capturing similar aspects of documentation (e.g., InialSize,

AvgSize and FinalSize are measuring the size of a document). Therefore, coupled metrics

(also called “Multicollinearity”) had gone through a step-wise selection process which

results in eliminating less important, duplicated metrics. This process generates a set of

less correlated and significant cost-driver metrics.

Based on the identified cost-drivers in Table 8.2, we can conclude that document size,

change size, change volatility and coupling play an important role on determining the lifecycle

cost. These cost-drivers have been dually confirmed by both univariate analysis and multivariate

analysis. Controlling these factors may achieve a higher chance to reduce documentation cost.

For example, coupling metric OutRefs has a negative significant correlation with cost. It

indicates empirically that high number of references of documentation saved the cost in the case

study context. But we cannot conclude how much references are suitable for each document or

each type of documentation, since there must be a trade-off between document’s cohesion and

coupling.

8.1.4 Summary of “Document Lifecycle Cost-Drivers”

Table 8.3 summarizes the significant cost-drivers and their metrics identified by both

univariate regression and multivariate regression in this section. Column “Effect” indicates the

impact direction of cost-drivers, “↑” for positive and “↓” for negative. Column “Significance”

88

denotes the influence power of each factor, where an p-value bellow than 0.05, 0.01 and 0.001

are marked with one, two and three asterisks respectively. If one metric has been identified

twice, its significance for both analyses is separated by a “/” mark.

Table 8.3-Summary of “Document Lifecycle Cost-Drivers” with their effect (positive or

negative) and significant level (indicated by p-value)

Cost-Drivers Univariate

Regression

Multivariate

Regression

Effect Significance

(by P-Value) Name Metric

DocType Type ↓ *

DocSize

InitialSize ↑ *

AvgSize ↑ ***/***

FinalSize ↑ ***

Change

Size

ChangeBlock ↑ **

ChangeWord ↑ ***/*

AddWord ↑ ***

DelWord ↑ **

Change

Volatility

StdevSize ↑ */**

StdevAddWord ↑ *

StdevDelWord ↑ */*

Coupling OutRefs ↓ */**

8.2 Document Revision Cost-Drivers (RQ2.2)

The cost-driver analysis follows the same procedure as Section 8.1. However, individual

revision/version, instead of the whole multi-version document, is considered as one sample. It is

89

aimed to investigate cost-drivers for each documentation revision (named “Document Revision

Cost-Drivers”).

Since the observation unit is each revision, some cost-drivers metrics that are previously

defined are not applicable, such as change volatility metrics which capture lifecycle behaviours

of a document. An adapted summary of investigated cost-driver metrics is listed in Table 8.4,

where new metric or metrics with new definitions are highlighted in bold. Another possible cost-

driver “Revision” is added in Table 8.4, to investigate the influence of revision type and number.

Table 8.4-Updated summary of candidate cost-drivers in documentation properties and

corresponding metrics

Cost-Driver Metric Explanation of Metric

Document Type Type Type of documents in SDLC;

Revision IsRelease

RevNum

Whether the revision result in a released

version or not;

How many revisions have been submitted,

including the current one;

Document Size FinalSize Size after current revision;

Change Size ChangeWord

AddWord

DelWord

ChangeBlock

Number of word modified;

Number of word added;

Number of word deleted;

Number of changed word blocks;

Document

Quality

Readability_1

Readability_2

Measured by Flesch Reading Ease[61];

Measured by Flesch-Kincaid Grade[61];

Coupling InRefs

OutRefs

Number of references coming in a given

document;

Number of documents that a given

document refers to;

Editor NumEditors

AvgExp

Number of editors involved in this revision;

Number of previous check-ins on the same

document submitted by the author(s);

90

8.2.1 Descriptive Statistics

The case study data (55 multi-version documents) has total 1,630 different revision/version

check-ins. Please note the focus here is to find out the cost-drivers that cause high cost on single

revision. Therefore, the revision check-ins with cost less than one hour are excluded, resulting in

366 revisions/versions as samples for the analysis.

The frequency distributions of cost-driver metrics on these 366 revisions are shown in Figure

8.2.

From their distributions in Figure 8.2, we can observe:

 Most of selected revisions are “non-release” revisions from “Test” documentation,

followed by “Process” and “Design” documentation.

 The distribution of RevNum indicates that the selected revisions nearly randomly locate,

and neither early revisions nor later revisions are predominant in terms of cost.

 Most of selected revisions are from documents under size 8,000 words.

 Most documents have less incoming references than outgoing references.

91

Figure 8.2-Frequency distributions of cost-driver metrics and cost for “Document Revision

Cost-Drivers”

8.2.2 Univariate Regression Analysis

The results from univariate regression modeling are provided in Table 8.5, which has the

same structure as previous tables demonstrating GLM modeling results.

Pr
oc
es
s

T
es
t

D
es
ig
n

200

100

0

Re
le
as
e

N
on
-R
el
ea
se

300

150

0

12
0

10
0806040200

50

25

0

48
,0
00

40
,0
00

32
,0
00

24
,0
00

16
,0
00

8,
00
00

100

50

0

60
0

50
0

40
0

30
0

20
0

10
00

100

50

0

10
5,
00
0

90
,0
00

75
,0
00

60
,0
00

45
,0
00

30
,0
00

15
,0
000

200

100

0

48
,0
00

40
,0
00

32
,0
00

24
,0
00

16
,0
00

8,
00
00

200

100

0

56
,0
00

48
,0
00

40
,0
00

32
,0
00

24
,0
00

16
,0
00

8,
00
00

300

150

0

66605448423630

50

25

0

2018161412108

80

40

0

1086420

200

100

0

363024181260

160

80

0

24201612840

100

50

0

15
0

12
09060300

160

80

0

Type IsRelease RevNum Size

ChangeBlock ChangeWord AddWord DelWord

Readability_1 Readability_2 InRefs OutRefs

ExpOfEditor TotalEditTime

92

Table 8.5-Results of univariate regression modeling for “Document Revision Cost-Drivers”

Cost-Driver Metric Coefficient StdErr T-Test P(Coef.)

DocType Type -0.7561 0.2727 -2.731 0.0059**

Revision IsRelease

RevNum

0.8634

-0.3245

0.2085

0.3135

3.748

-1.041

0.0002***

0.301

Doc Size FinalSize 0.0728 0.4664 0.156 0.876

Change

Size

ChangeBlock 1.4652 0.7096 2.0865 0.0397 *

ChangeWord 1.9408 1.0539 1.713 0.0664

AddWord 2.6545 0.9246 2.865 0.0043**

DelWord -0.0323 0.9608 -0.034 0.973

Doc Quality
Readability_1 -0.0630 0.0278 -0.227 0.821

Readability_2 -0.1171 0.3597 -0.325 0.745

Coupling
InRefs -0.4163 0.3889 -1.0071 0.285

OutRefs -0.9624 0.4066 -2.293 0.0224*

Editor AvgExp -1.0527 0.4071 -2.561 0.0108*

From Table 8.5, we find that cost-drivers “Document Type”, “Change Size” and “Coupling”

are consistent with coarse-grained analysis (Section 8.1), while “Revision” and “Editor” are

newly revealed by this analysis.

The ranking of documentation cost-drivers (“Document Type” is excluded as it is not

continuous numeric data), from the highest to the lowest, is:

 For change size, metrics ChangeBlock and AddWord are identified as significant, while

all change size metrics are significant in previous analysis (Section 8.1.2). We do not

have evidence to explain this variance. But for both analyses, metrics ChangeBlock and

AddWord are confirmed as significant cost-drivers on documentation.

 Editor (indicated by AvgExp) shows significant negative correlation with documentation

cost. It reveals that people who have prior revision experience on one document would

93

spend less effort on upcoming revisions. It suggests that having the same person maintain

the evolution of one document is a tangible way to control documentation cost.

 Coupling metric OutRefs is again significant and indicates that having more references to

other documents reduce cost for individual revision check-in. Therefore, it implies the

usage of appropriate reference among documentation helps to reduce the cost.

 Revision type also plays a significant role on determining documentation cost. The

metric, IsRelease, shows a strong positive correlation with cost, which indicates that, the

revision check-ins which result in a released version would cost more effort. One natural

explanation is that “release” revision often requires a relatively stable version for

directing downstream development or maintenance. Consequently, it would demand

more carefulness and effort from authors.

 Again, documentation quality (measured by readability) metrics are not considered

significant.

8.2.3 Multivariate Regression Analysis

The results of multivariate modeling for “Document Revision Cost-Drivers” are shown in

Table 8.6.

Table 8.6- Results of multivariate regression modeling for “Document Revision Cost-

Drivers”

Cost-Driver Metric Coefficient StdErr T-Test P(Coef.)

DocType Type -0.9084 0.3174 -2.547 0.0112*

Revision IsRelease 0.7725 0.2523 -2.062 0.0024**

Editor AvgExp -0.7060 0.011 -1.095 0.0098**

Coupling OutRefs -2.6277 0.7827 -2.357 0.0009***

94

Based on the identified cost-drivers in Table 8.6, we can conclude that document type,

revision type, coupling and editor’s experience are significantly related to the cost spent on

individual documentation revision.

The multivariate regression model in Table 8.6 shows:

 The ranking of documentation cost-drivers, from the highest to the lowest, is:

 Document size, change size, document quality are not identified as significant cost-

drivers.

8.2.4 Summary of “Document Revision Cost-Drivers”

Table 8.7 summarizes the significant cost-drivers and their metrics identified by the analysis

in this section. Again, column “Effect” indicates the impact direction of cost factors, “↑” for

positive and “↓” for negative. Column “Significance” denotes the influence power of each cost-

driver, where an p-value bellow than 0.05, 0.01 and 0.001 are marked with one, two and three

asterisks respectively. If one metric has been identified twice, its significances for both analyses

are separated by a “/” mark.

95

Table 8.7- Summary of “Document Revision Cost-Drivers” with their effect (positive or

negative) and significant level (indicated by p-value)

Cost-Drivers Univariate

Regression

Multivariate

Regression

Effect Significance

(by P-Value) Name Metric

DocType Type ↓ **/*

Revision IsRelease ↑ ***/**

Change

Size

ChangeBlock ↑ *

AddWord ↑ **

Coupling OutRefs ↓ */***

Editor AvgExp ↓ */**

8.3 Model Evaluation and Validation

Plots of actual versus fitted effort of the two multivariate regression models are provides in

Figure 8.3 and Figure 8.4, respectively. Table 8.8 provides the performance (evaluated by

MMRE and RMSE) of the two GLMs, and the maximal variance inflation factors (VIF) for

detecting multicollinearity issue. In Table 8.8, the two GLMs are also compared to ordinary

linear regression models (LRs) in terms of MMRE and RMSE.

96

Figure 8.3-Fitted vs. actual effort of “Document Lifecycle Cost-Drivers” model

Figure 8.4-Fitted vs. actual effort of “Document Revision Cost-Drivers” model

97

Table 8.8-Evaluation of multivariate regression models

Metric

Document Lifecycle Cost-Drivers Document Revision Cost-Drivers

LR GLM LR GLM

MMRE 3.21 1.37 3.75 1.83

RMSE 19.73 10.27 10.65 5.25

Max.VIF 1.37 1.58

From Table 8.8, we notice that our GLMs perform better than ordinary linear models. By

comparing the LR and GLM on modeling “Document Lifecycle Cost-Drivers”, for instance,

MMRE and RMSE decreased from 3.21 and 19.73 to 1.37 and 10.27, respectively. It shows that

GLMs are more capable of capturing documentation cost-drivers. However, Conte et al. [79]

suggest for accepting a model as “good” for effort estimation. Judged by this

standard, the performance of both GLMs is relatively poor. This is probably caused by the issue

of data quality and quantity. As future work, we should aim at improving the data quality by

investigating more and better predictor variables (cost-drivers). Meanwhile, we should pay more

attention to gather more and better data to improve data quantity.

For both GLMs, the maximal variance inflation factors (VIF) are 1.37 and 1.58, respectively.

They are both less than the threshold 5, which indicates multicollinearity issue is not a threat.

Hence, the interpretation of correlation coefficients of cost-drivers is valid for both models.

8.4 Joint Results and Discussions

8.4.1 Implications for the Project under Case Study

The organization under study has spent a substantial amount of cost as indicated by results

from Chapter Seven. Most of documentation artifacts have gone through multiple revisions

(1630 versions/55 documents≈30 versions/document) over time, which is common for legacy

98

systems. It is necessary to pay more attention to documentation cost control and process

improvement.

We do not plan to give concrete instructions on how to improve documentation process

solely based on the evidence from documentation cost, as this issue has to be jointly considered

with documentation usefulness and quality. But on the basis of our results, we are able to provide

the following recommendations:

 Change Volatility (refer to Section 4.3.2.4 for detailed definition) on documentation

artifacts should be controlled to reduce the cost. Actions should be taken to investigate

the root-cause of high change volatility. For example, it could be caused by the

misconceptions between business and software domains, so that software and software

documentation have to been frequently changed to capture business needs. Or it might be,

as pointed out by the software manager in NovAtel, people did not follow documentation

process regulation since documents in DSTS are supposed to be updated only if major

changes exist.

 Appropriate usage of references can reduce documentation cost. Evidence shows that

documentation artifacts with more references consumed less lifecycle cost. Reasonable

references are considered as good “coupling” and able to reduce documentation

redundancy and subsequent maintenance cost.

 Having more experienced people evolving single document may reduce documentation

cost. Our results show that the person who has prior experience editing on one document

usually spent less effort on upcoming revisions. Though sometimes it is difficult to do so

for legacy systems because of employee turnover, we can still try to maintain the same

person or group of people in charge of evolving one document.

99

 Not surprisingly, documentation size shows a significant positive correlation with the

cost based on evidence. It recommends that writing concise documentation may reduce

documentation cost. Of course we have to find a trade-off between level of details and the

cost, and it can only be achieved by combining the results of documentation usage/benefit

analysis.

 Our results confirmed that there is strong positive correlations between change size and

documentation cost. This is consistent with most change-based studies that tried to

identify cost-drivers for source code evolution [36, 37]. Therefore, controlling

documentation change size seems to have a higher change to reduce the cost if

applicable.

8.4.2 Implications for the Software Engineering Literature

Our systematic mapping of software documentation related studies (Chapter Three) has

revealed that documentation cost-related aspects seemed to be neglected by most works. Within

the limited number of cost-related studies (12 out of 69), none of them are dedicated to give a

practical solution to objectively evaluate documentation cost and investigate underlying cost-

drivers. This is the first exploratory case study on this topic.

An important contribution of this study is that it proposed an objective way (by mining

software repositories) to understand documentation cost and identify cost-drivers. The results of

this study contribute initial insights to the body of knowledge in software engineering regarding

documentation cost and cost-drivers.

 The results confirmed a group of cost-drivers on documentation evolution that are

consistent with common sense, i.e. Document Type, Document Size, Change Size and

Editor’s experience.

100

 On the other hand, a set of implicit cost-drivers, e.g., Change Volatility and

Documentation Coupling (Reference), also had a large effect on documentation cost.

Though we are not aiming to generalize our results across different contexts, the proposed

methodology (Chapter Four) with clearly defined processes and metrics can be easily replicated

in other contexts. To further assess the generalizability of the approach and results, more case

studies across different contexts need to be conducted.

8.5 Generalizability of the Case-Study Results

Stemming from just one case study, the particular models built for documentation cost-

drivers do not intend to have any general validity outside of this case study context. The results

of this case study are inevitably influenced by context factors pertaining to the development

organizations, as the data comes from one system to assess its documentation practice. In

addition, additional factors, e.g., application domain or stability of development process, would

have likely influence the results we have found here.

However, it is important to notice that our goal is to evaluate the feasibility and applicability

of the proposed methodology DCCDA in a real industrial context for assessing documentation

cost and cost-drivers. Since no prior work in the literature has provided to identify

documentation cost-drivers, the application of the proposed methodology on this case study

allows us to provide initial answers to these questions.

8.6 Threats to Validity

This section discusses the threats to validity which are important to in assessing the strengths

and limitations of this study.

101

8.6.1 Construct Validity

The construct validity issue in this case study is related to what extent the selected cost-driver

metrics really represent what we intended to measure. Since all quantitative metrics were based

on the data automatically mined from a documentation management system, the metrics may not

perfectly capture the factors to be investigated. We attempted to mitigate this threat by proposing

multiple measures for each cost factor.

One threat to construct validity was the potential bias introduced by the measurement of

documentation effort, Step 5 of DCCDA. In the case study, most documents were written in MS

Word (>99.4%). The effort upon each version was extracted through reading the API “Total Edit

Time” of a MS Word file. This effort would cover most of effort spent on editing and self

reviewing a document, but it cannot capture the effort on designing the document beyond the

Word file, and the review cost in forms of peer review or formal meeting if any. To include the

cost of these effort, further qualitative approached could be applied, such as expert estimations

via questionnaire. But we believe that the measured effort in the case study already constituted a

substantial amount of overall documentation effort, and the missing of measurement on a relative

small portion of effort would not be a serious threat to conclusion validity.

Documentation quality contains many aspects and cannot be fully measured by one or a few

metrics, such as readability, consistency, accuracy, up-to-date etc. Therefore it is hardly to judge

whether a document has “higher quality” than another without specific criteria. To make sure

documentation quality comparison in a meaningful and repeatable manner, “readability” with

well defined metrics in literature was selected, as the measurements of other aspects are

extremely expensive. This was an obvious construct validity threat to measure documentation

quality.

102

Another threat to construct validity is the measurement of human factors, editors. Two

simplified metrics NumOfEditors and AvgExp were defined to capture people’s impact on

documentation cost. The number of previous revision check-ins on the same document was used

to measure editor’s experience. It did not capture the experience working on similar documents

or overall documenting experience. But AvgExp was still identified as a significant cost factor. In

addition, we did not consider their roles as different role players may have different efficiency on

writing documentation. All these threats might impact construct validity on measuring human

factors.

8.6.2 Internal Validity

The internal validity concerns the degree to which the causal relationship between cost-

drivers and cost can be claimed, especially when analysis units cannot be controlled in groups.

One issue to internal validity is the possibility of multicollinearity problem between cost-

driver metrics. All identified cost-driver metrics were used in multivariate regression analysis,

and some of them may capture similar behaviors of a document. This increased the possibility

that significant metrics were identified by chance but not the true underlying effect. To measure

the severity of this threat, the variance inflation factor (VIF) was computed for each multivariate

regression model. The results show that the VIF for multicollinearity was very low and would

not be a serious threat to internal validity.

8.6.3 External Validity

The issue of external validity concerns whether the results of case study can be generalized

beyond this specific study context. Three issues limit the generalization of the results from this

cause study.

103

The first issue is the representativeness of the system under study. This case study was

conducted on a legacy embedded software system, which has been practicing intensive

documentation over time. It is hardly to guarantee the results from this system would be

applicable to another context, such as open-source systems. More software systems should be

examined in future studies in order to determine the replicability of the findings in this context.

The second threat to external validity is the subject (documentation types) representativeness

of this case study. In this case study three high-level documentation types were selected to study

documentation cost and cost-drivers. More documentation types, for example requirements or

code comments, should also be considered in the future. The extended selection of

documentation types enables the comparisons across different types of documentation, to be able

to achieve a more comprehensive analysis of documentation in general.

The third issue is the number of documentation artifacts under study, as only limited number

of documentation artifacts (Conceptual Design, Test Plan and Process Regulation) exist for the

system under study (OEM6). However, the analysis was performed in two different levels of

granularity, where in the more fine-grained level (1,630 versions) each version was treated as

one sample to eliminate the threat from sample size.

8.7 Chapter Summary

In this chapter, we presented the case study results on documentation cost-driver analysis.

Cost-driver analysis was conducted through two different levels, coarse-grained level to capture

the cost-drivers on the lifecycle cost of a documentation artifact (Section8.1), and fine-grained

level to investigate the cost-drivers for individual documentation revision (Section 8.2). The

identified cost-drivers from both analyses were jointly discussed, from the perspectives of

implications for the project and the implications for software engineering (Section 8.3). The

104

potential threats to the validity of this case study were discussed, in terms of Conclusion

Validity, Construct Validity, Internal Validity and External Validity (Section 8.6).

The results of cost-driver analysis pointed out the underlying cost-drivers that are worth the

attention of the organization for documentation cost control. In addition, they brought initial

answers to the body of knowledge in software engineering regarding documentation cost-drivers,

though we are not aiming to generalize these results across different contexts.

105

Chapter Nine - Conclusions and Future Work

9.1 Summary

Software documentation is considered as an important factor on maintainability for legacy

systems, but meanwhile is an expensive activity to practice. Documentation practices can be

improved if we can better understand documentation cost and identify cost-drivers that have

been shown empirically to affect the cost. Due to the lack of such study in the literature, this

thesis presented a systematic methodology DCCDA to do so.

DCCDA provided an objective way to evaluate documentation cost with defined metrics and

identify underlying cost-drivers via mining relevant repositories (Chapter Four). Regression

models were built to identify cost-drivers in documentation properties that correlated with the

cost. To make the method more practical and operational, the data preparation and measurement

process of DCCDA were automated with tool support (0). It was applied to an industrial case

study to help assess documentation cost and identify underlying cost-drivers, and prepare us to

improve documentation process cost-effectiveness (Chapter Six). Two central results from the

case study are:

 Documentation effort from various perspectives (Chapter Seven), i.e., single document,

one documentation type, individual person and over timeline. These distributions help to

understand documentation cost from different aspects and granularities. For example, the

results help to reveal which documentation artifact has gone through most revisions

versus consumed most effort, and who committed most revisions or spent most time on

documentation, etc.

 Documentation cost-drivers (Chapter Eight). The results, on one hand, confirmed the

cost-drivers that are consistent with common sense, i.e., Document Type, Document Size,

106

Change Size and Editor’s Experience. On the other hand, a set of context-specific cost-

drivers, for example Change Volatility and Coupling/Reference, also had a large and

consistent effect on documentation cost. These factors should be paid enough attention to

control documentation cost and eventually improve its cost-effectiveness.

9.2 Future Work Directions

9.2.1 For Research Methodology

As a future work on the method DCCDA, we suggest conducting more case studies from

different development processes, e.g., Waterfall, Iterative and Agile, to validate our methodology

and identify context-specific documentation cost-drivers. These results would help to establish

the initial basis for future confirmatory studies. In addition, more documentation types should be

investigated to evaluate DCCDA, such as requirement and code comments, in order to reveal

cost-drivers for a specific documentation type. Due to the availability of data, only three types of

documentation (Conceptual Design, Test Plan and Process Regulation) were studied in this case

study.

We also suggest refining and extending the selection and measurement of candidate cost-

drivers in documentation properties, as it is inevitably influenced by the types of documentation

to study and the availability of data. To investigate the correlation between documentation

quality and cost, for instance, we can further consider the impact of documentation accuracy and

up-to-dateness as quality indicators. However, we should notice that they can only be measured

with qualitative approaches, instead of the easy data in repositories. Hence, people should

consider the trade-off between measurement completeness and measurement effort before

conducting such study.

107

9.2.2 For the CRD Project under Study

As a future work on the CRD project, we plan to convert the measured documentation effort

to real cost. By referring to people’s payroll information, we would be able to calculate the cost

of each document version.

Our method has found a set of cost-drivers existing in the case study context. These cost-

drivers should be paid enough attention to control documentation cost in the future. But we

cannot reveal the root-causes of these factors. For example, Change Volatility was identified as a

significant cost-driver. This phenomenon might be introduced by requirement volatility so that

people had to make subsequent changes on source code and documentation, or lack of suitable

regulation on documentation process. Therefore, follow-up qualitative studies should be focusing

on the root-causes of these cost-drivers.

 As part of a three-year CRD project, our ultimate goal is to improve software documentation

cost-effectiveness and to achieve software maintainability for our industrial partner, NovAtel.

The results on documentation cost from this thesis should be combined with quantitative

measurement of documentation usage/benefit accomplished by others. Then we are able to

address the question whether the cost outweighs the gained benefit of documentation. Moreover,

a fine-grained evaluation on cost-benefit aspects of documentation artifacts would help to ease

documentation maintenance effort, by prioritizing documentation with high benefit and relatively

low cost. Our ultimate goal is to find the answer to the question “What/How should we

document to enable optimal subsequent development and maintenance activities?” in NovAtel.

108

References

[1] A. Mockus, S. G. Eick, T. L. Graves, and A. F. Karr, "On Measurement and Analysis of

Software Changes," National Institute of Statistical Sciences BL0113590-990401-06TM,

1999.

[2] R. Glass, Facts and Fallacies of Software Engineering: Addison WesLey, 2002.

[3] M. Ramage and K. Bennett, "Maintaining Maintainability," in IEEE International

Conference on Software Maintenance, Bethesda, Maryland, 1998.

[4] B. P. Lientz, E. B. Swanson, and G. E. Tompkins, "Characteristics of application

software maintenance," Communications of ACM, vol. 21, pp. 466-471, 1978.

[5] E. Arisholm, L. C. Briand, S. E. Hove, and Y. Labiche, "The Impact of UML

Documentation on Software Maintenance: An Experimental Evaluation," IEEE

Transactions on Software Engineering, vol. 32, pp. 365-381, 2006.

[6] A. Forward, "Software Documentation – Building and Maintaining Artefacts of

Communication," in Ottawa-Carleton Institute for Computer Science. vol. Master in

Computer Science: University of Ottawa, 2002.

[7] S. Ambler, "Agile/Lean Documentation: Strategies for Agile Software Development," in

http://www.agilemodeling.com/essays/agileDocumentation.htm, Last accessed: June 2012.

[8] F. Maurer and S. Martel, "Extreme programming: Rapid development for Web-based

applications," IEEE Internet Computing, vol. 6, pp. 86-90, 2002.

[9] G. Ruhe and V. Garousi, "Tuning of Artifact and Process Parameters towards Optimized

Maintenance," NSERC CRD Project #CRDPJ414157-11, 2011.

[10] A. E. Hassan, "The road ahead for Mining Software Repositories," in Frontiers of

Software Maintenance, 2008.

[11] A. E. Hassan and T. Xie, "Software intelligence: the future of mining software

engineering data," in Proceedings of the FSE/SDP workshop on Future of software

engineering research, Santa Fe, New Mexico, USA, 2010.

[12] H. Gall, M. Jazayeri, and J. Krajewski, "CVS release history data for detecting logical

couplings," in Proceedings 6th International Workshop on Principles of Software

Evolution, Los Alamitos CA, 2003.

[13] J. Sliwerski, T. Zimmermann, and A. Zeller, "When do changes induce fixes?," in

Proceedings 2nd International Workshop on Mining Software Repositories, New York,

2005.

[14] H. Kagdi, M. L. Collard, and J. I. Maletic, "A survey and taxonomy of approaches for

mining software repositories in the context of software evolution," Journal of Software

Maintenance and Evolution: Research and Practice, vol. 19, pp. 77-131, 2007.

[15] I. Kwan and D. Damian, "A Survey of Techniques in Software Repository Mining,"

University of Victoria Technical Report DCS-340-IR, 2011.

[16] A. John, H. Lyndon, and C. M. Gail, "Who should fix this bug?," in Proceedings of the

28th international conference on Software engineering, Shanghai, China, 2006.

[17] A. Hindle, M. W. Godfrey, and R. C. Holt, "What's hot and what's not: Windowed

developer topic analysis," in IEEE International Conference on Software Maintenance,

2009.

[18] A. Hindle, N. A. Ernst, M. W. Godfrey, and J. Mylopoulos, "Automated topic naming to

support cross-project analysis of software maintenance activities," in Proceedings of the

http://www.agilemodeling.com/essays/agileDocumentation.htm

109

8th Working Conference on Mining Software Repositories Waikiki, Honolulu, HI, USA,

2011.

[19] T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A. Schroter, and C. Weiss, "What

Makes a Good Bug Report?," IEEE Transactions on Software Engineering, vol. 36, pp.

618-643, 2010.

[20] J. Ratzinger, T. Sigmund, P. Vorburger, and H. Gall, "Mining Software Evolution to

Predict Refactoring," in First International Symposium on Empirical Software

Engineering and Measurement, 2007.

[21] G. Robles, J. M. Gonzalez-Barahona, M. Michlmayr, and J. J. Amor, "Mining large

software compilations over time: another perspective of software evolution," in

Proceedings of the 2006 international workshop on mining software repositories,

Shanghai, China, 2006.

[22] A. Hindle, M. W. Godfrey, and R. C. Holt, "Software process recovery using Recovered

Unified Process Views," in IEEE International Conference on Software Maintenance,

2010.

[23] P. Daryl, H. Abram, and D. Premkumar, "A simpler model of software readability," in

Proceedings of the 8th Working Conference on Mining Software Repositories Waikiki,

Honolulu, HI, USA, 2011.

[24] C. Gerardo, C. Michele, C. Luigi, and P. Massimiliano Di, "Using multivariate time

series and association rules to detect logical change coupling: An empirical study," in

Proceedings of the 2010 IEEE International Conference on Software Maintenance, 2010.

[25] T. T. BARKER, "Software documentation: from instruction to integration," IEEE

Transactions on Professional Communication, vol. 33, pp. 172-177, 1990.

[26] D. L. Parnas and S. Nanz, Precise Documentation: The Key to Better Software: Springer

Berlin Heidelberg, 2011.

[27] J. Zhi, V. Garousi, B. Sun, G. Garousi, S. Shahnewaz, and G. Ruhe, "Cost, Benefits and

Quality of Technical Software Documentation: A Systematic Mapping," submitted to

Journal of Systems and Software, 2012.

[28] B. Boehm, "Value-based software engineering: reinventing," SIGSOFT Software

Engineering Notes, vol. 28, p. 3, 2003.

[29] M. Jorgensen and M. Shepperd, "A Systematic Review of Software Development Cost

Estimation Studies," IEEE Transactions on Software Engineering, vol. 33, pp. 33-53,

2007.

[30] S. Chulani, B. Boehm, and B. Steece, "Bayesian analysis of empirical software

engineering cost models," IEEE Transactions on Software Engineering, vol. 25, pp. 573-

583, 1999.

[31] NASA, Software Measurement Guide Book. Revision 1.: Software Engineering

Laboratory Series. NASA-GB-001-94, 1995.

[32] NASA, Software Process Improvement Book. Revision 1.: Software Engineering

Laboratory Series. NASA-GB-001-95, 1996.

[33] I. Sánchez-Rosado, P. Rodríguez-Soria, B. Martín-Herrera, J. Cuadrado-Gallego, J.

Martínez-Herráiz, and A. González, "Assessing the Documentation Development Effort

in Software Projects," in Proceedings of the International Conferences on Software

Process and Product Measurement, Amsterdam, The Netherlands, 2009.

110

[34] L. C. Briand and J. Wüst, "The Impact of Design Properties on Development Cost in

Object-Oriented Systems," in Proceedings of the 7th International Symposium on

Software Metrics, 2001.

[35] J. Li, T. Stålhane, J. M. W. Kristiansen, and R. Conradi, "Cost drivers of software

corrective maintenance: An empirical study in two companies," in 2010 IEEE

International Conference on Software Maintenance, 2010.

[36] V. Nguyen, B. Boehm, and P. Danphitsanuphan, "A controlled experiment in assessing

and estimating software maintenance tasks," Information and Software Technology, vol.

53, pp. 682-691, 2011.

[37] H. Benestad, B. Anda, and E. Arisholm, "Understanding cost drivers of software

evolution: a quantitative and qualitative investigation of change effort in two evolving

software systems," Empirical Software Engineering, vol. 15, pp. 166-203, 2010.

[38] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, "Systematic mapping studies in

software engineering," in 12th International Conference on Evaluation and Assessment in

Software Engineering, 2008.

[39] B. Kitchenham and S. Charters, "Guidelines for Performing Systematic Literature

Reviews in Software engineering," Evidence-Based Software Engineering, 2007.

[40] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege, "A Systematic Review

of the Application and Empirical Investigation of Search-based Test-Case Generation,"

IEEE Transactions on Software Engineering, vol. 36, pp. 742-762, 2010.

[41] F. Elberzhager, J. Münch, and V. T. N. Nha, "A systematic mapping study on the

combination of static and dynamic quality assurance techniques," Information and

Software Technology, vol. 54, pp. 1-15, 2012.

[42] V. Garousi, "Classification and trend analysis of UML books (1997-2009)," Journal on

Software & System Modeling, vol. 11, pp. 273-285, 2011.

[43] "Cost, Benefits, Usage, and Quality of Technical Software Documentation System

Mapping Repository (Online)," 2012.

[44] W. J. Dzidek, E. Arisholm, and L. C. Briand, "A Realistic Empirical Evaluation of the

Costs and Benefits of UML in Software Maintenance," IEEE Transactions on Software

Engineering, vol. 34, pp. 407-432, 2008.

[45] P. C. Pendharkar and J. A. Rodger, "An empirical study of factors impacting the size of

object-oriented component code documentation," in Proceedings of the 20th annual

international conference on Computer documentation, Toronto, Ontario, Canada, 2002.

[46] A. Dautovic, R. Plösch, and M. Saft, "Automated Quality Defect Detection in Software

Development Documents," in Proceedings of Fifth International Workshop on Software

Quality and Maintainabilit, Carl Von Ossietzky Universität in Oldenburg, Germany,

2011.

[47] E. Soloway, R. Lampert, S. Letovsky, D. Littman, and J. Pinto, "Designing

documentation to compensate for delocalized plans," Communications of the ACM, vol.

31, pp. 1259-1267, 1988.

[48] D. Schreck, V. Dallmeier, and T. Zimmermann, "How documentation evolves over time,"

in 9th international workshop on Principles of software evolution: in conjunction with the

6th ESEC/FSE joint meeting, Dubrovnik, Croatia, 2007.

111

[49] C. J. Stettina and W. Heijstek, "Necessary and neglected?: an empirical study of internal

documentation in agile software development teams," in Proceedings of the 29th ACM

international conference on Design of communication, Pisa, Italy, 2011.

[50] T. C. Lethbridge, J. Singer, and A. Forward, "How Software Engineers Use

Documentation: The State of the Practice," IEEE Software, vol. 20, pp. 35-39, 2003.

[51] D. L. Parnas and Sebastian Nanz, "Precise Documentation: The Key to Better Software "

in THE FUTURE OF SOFTWARE ENGINEERING: Springer Berlin Heidelberg, 2011,

pp. 125-148.

[52] R. M. Posten, "Selecting Software Documentation Standards," IEEE Software, vol. 2, pp.

90-91, 1985.

[53] G. Du and G. Ruhe, "Two machine-learning techniques for mining solutions of the

ReleasePlaner decision support system," Information Sciences, 2009, In Process.

[54] E. Paikari, G. Ruhe, B. Sun, and E. Livani, "Customization support for CBR-based defect

prediction," in Proceedings of the 7th International Conference on Predictive Models in

Software Engineering, Banff, Alberta, Canada, 2011.

[55] R. H. Myers, D. C. Montgomery, and G. G. Vining, Generalized linear models: with

applications in engineering and the sciences: J. Wiley, 2002.

[56] L. Fahrmeir, W. Hennevogl, and G. Tutz, Multivariate statistical modelling based on

generalized linear models, 2 ed.: New York: Springer, 2001.

[57] V. S. Rini and E. Berghout, The Goal/Question/Metric Method: McGraw-Hill Education,

1999.

[58] G. A. Hall and J. C. Munson, "Software evolution: code delta and code churn," Systems

and Software, vol. 54, pp. 111-118, 2000.

[59] S. A. Ajila and R. T. Dumitrescu, "Experimental use of code delta, code churn, and rate

of change to understand software product line evolution," Journal of Systems and

Software, vol. 80, pp. 74-91, 2007.

[60] Microsoft, "Range.Revisions Property (Word)," in http://msdn.microsoft.com/en-

us/library/ff838481.aspx, Last accessed: June 2012.

[61] W. H. Dubay, "The Principles of Readability," Costa Mesa, CA: Impact Information,

2004.

[62] J. W. Hunt and M. D. McIlroy, "An algorithm for differential file comparison,"

Computing Science Technical Report 41, 1975.

[63] T. DeMarco and T. Lister, "Programmer performance and the effects of the workplace,"

in Proceedings of the 8th international conference on Software engineering, London,

England, 1985.

[64] J. Fox and G. Monette, "Generalized Collinearity Diagnostics," Journal of the American

Statistical Association, vol. 87, pp. 178-183, 1992.

[65] C. List, D. Grimm, G. Hammer, J. Tucht, and K. Varis, "WinMerge 2.12.4," in

http://winmerge.org/, Last accessed: June 2012.

[66] I. SoftInterface, "WordDocDiff," in http://www.softinterface.com/wdd/wdd.htm, Last

accessed: June 2012.

[67] Microsoft, "Parallel Programming in the .NET Framework 4," in

http://msdn.microsoft.com/en-us/library/dd460693.aspx, Last accessed: June 2012.

[68] Microsoft, "ReadabilityStatistics Interface," in http://msdn.microsoft.com/en-

us/library/ms264649.aspx, Last accessed: June 2012.

http://msdn.microsoft.com/en-us/library/ff838481.aspx
http://msdn.microsoft.com/en-us/library/ff838481.aspx
http://winmerge.org/
http://www.softinterface.com/wdd/wdd.htm
http://msdn.microsoft.com/en-us/library/dd460693.aspx
http://msdn.microsoft.com/en-us/library/ms264649.aspx
http://msdn.microsoft.com/en-us/library/ms264649.aspx

112

[69] M. Bastian, S. Heymann, and M. Jacomy, "Gephi: an open source software for exploring

and manipulating networks," in International AAAI Conference on Weblogs and Social

Media, 2009.

[70] A. C. Oliver, G. Stampoultzis, A. Sengupta, R. Klute, and D. Fisher, "Apache POI - the

Java API for Microsoft Documents," in http://poi.apache.org/, Last accessed: May 2011.

[71] Apache, "PDFBox," in http://pdfbox.apache.org/, Last accessed: March 10 2012.

[72] P. Runeson and M. Höst, "Guidelines for conducting and reporting case study research in

software engineering," Empirical Software Engineering, vol. 14, pp. 131-164, 2009.

[73] C. Kaner and W. P. Bond, "Software engineering metrics: What do they measure and

how do we know? ," in 10th International Software Metrics Symposium, 2004.

[74] H. Sackman, W. J. Erikson, and E. E. Grant, "Exploratory experimental studies

comparing online and offline programming performance," Communications of ACM, vol.

11, pp. 3-11, 1968.

[75] R. W. Numrich, L. Hochstein, and V. R. Basili, "A metric space for productivity

measurement in software development," in Proceedings of the second international

workshop on Software engineering for high performance computing system applications,

St. Louis, Missouri, 2005.

[76] G. Gousios, E. Kalliamvakou, and D. Spinellis, "Measuring developer contribution from

software repository data," in Proceedings of the 2008 international working conference

on Mining software repositories, Leipzig, Germany, 2008.

[77] T. L. Graves and A. Mockus, "Inferring Change Effort from Configuration Management

Databases," in Proceedings of the 5th International Symposium on Software Metrics,

1998.

[78] W. M. Evanco, "Analyzing Change Effort in Software during Development," in

Proceedings of the 6th International Symposium on Software Metrics, 1999.

[79] S. D. Conte, H. E. Dunsmore, and V. Y. Shen, Software engineering metrics and models:

Benjamin-Cummings Publishing Co., Inc., 1986.

http://poi.apache.org/
http://pdfbox.apache.org/

113

List of Publications

1) Accepted:

 A. Niknafs, B. Sun, M. M. Richter, and G. Ruhe, “Comparative analysis of three

techniques for predictions in time series with repetitive patterns, ” in Proceedings of the

13th International Conference on Enterprise Information Systems, Beijing, China, 2011.
 E. Paikari, G. Ruhe, B. Sun, and E. Livani, “Customization support for CBR-based defect

prediction”, in Proceedings of the 7th International Conference on Predictive Models in

Software Engineering, Banff, Canada, 2011.

Submitted:

 J. Zhi, V. Garousi, B. Sun, G. Garousi, S. Shahnewaz, and G. Ruhe, “Cost, Benefits and

Quality of Technical Software Documentation: A Systematic Mapping,” Journal of

Systems and Software, 2012.

