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Chapter 1 

Introduction 

For groups G1, G2 and G3, a pairing is a map of the form 0 : G1 X G2 -* C3. 

Typically, C1 and C2 are written additively, while C3 is written multiplicatively. In 

elliptic curve cryptography, a pairing maps a pair of points on an elliptic curve into 

the multiplicative group of a finite field. 

For cryptographic applications, it is desirable for the pairing to have additional 

properties. In particular, pairings that are bilinear, non-degenerate and efficiently 

computable [BFO3] may be used in several different ways. A pairing is bilinear if for 

all points P1, P2 E G1 and Q1, Q2 E C2, 

q5(P1 + F2, Qi) = q(P1, Q1)q(P2, Qi) 

çb(Pi, Q. + Q2) = q(P1, Q1)q(P1, Q2) 

which implies that çb(aPi, bP2) = çb(Pi, P2)tth for integers a and b. A pairing is non-

degenerate if for every nonzero point P1 E C1 there exists a point P2 E C2 such 

that q(Pi, F2) 0 1 and likewise, for every nonzero point P2 E C2 there exists a point 

P1 E G1 such that (P1, F2) 1. An efficiently computable pairing simply means 

that there must be an efficient algorithm to compute (P1, P2) for P1 E C1 and 

P2 E C2. 

It is also desirable that the selected groups have large prime order. Furthermore, 

the groups must be selected so that the discrete logarithm problem, DLP, is suffi-

ciently hard in each of the groups. The DLP is given elements a and b, find k E Z 
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such that ak = b. 

1.1 Applications of Cryptographic Pairings 

There are numerous instances in which pairings can be applied to elliptic curve 

cryptography. Some of the earlier inspirational work is given by the MOV attack 

[M0V93], the Tripartite Key Exchange [JouOO}, and most notably, the Identity Based 

Encryption scheme [BFO3]. For a more extensive list of applications using pairings, 

see [BKLSO2]. 

In 1993, the first application of a pairing used in cryptography was given by the 

MOV attack, named after its creators Alfred Menezes, Tatsuaki Okamoto, and Scott 

Vanstone. This attack converts an elliptic curve discrete logarithm problem, ECDLP, 

into a DLP in a finite field. The ECDLP is stated as follows: let P be a point on an 

elliptic curve of order rn and R an additional point on the curve where rn, P and R 

are publicly known. Find an integer £ such that 0 ≤ £ ≤ rn — I. and R = £P, provided 

it exists. The MOV attack is accomplished by way of an isomorphism between a 

subgroup of an elliptic curve of order m generated by P and the set of mth roots of 

unity. This map is given by the Weil pairing e,,,. Let Q be a point of order dividing 

m such that the Weil pairing applied to S E (P) and Q, m (8, Q), is an root of 

unity. This isomorphism, denoted by f, is defined as 

[m 

S 

The general idea is to solve ,,,(R, Q) = Cm (P, Q)i for £ (mod rn). Note that under 

certain conditions m is a subset of the multiplicative group of a finite field and so the 

2 



ECDLP becomes a DLP. This attack can be applied to supersingular elliptic curves 

due to the fact that urn is embedded into a relatively small field that is a subset of or 

equal to see Chapter 10 for further discussion. It is unknown if this attack will 

be effective as the size of the field is embedded into tends to infinity [M0V93]. In 

particular, this attack can be avoided by choosing non-supersingular curves (these 

curves have fewer restrictions on the value k, as k can be at most 6 for a supersingular 

curve) such that the field that urn is embedded into is large enough so that the DLP 

is infeasible. The advantage of using this attack is that it is easier to solve the DLP 

than it is to solve the ECLP as there are known attacks for the former form of the 

logarithm problem that have running times that are subexponential [M0V93]. 

The first constructive application of a pairing was with the Tripartite Key Ex-

change, created by Antoine Joux in 2000. This allows three parties to exchange a key 

in one round of communication so that they can all participate in a secure exchange 

of information. Since the exchange is done in only one step, the process is faster and 

less demanding of the communication channel. For the key exchange, the parties 

agree upon an elliptic curve E defined over a finite field lFq such that the discrete 

logarithm problem in E(1Fq) is sufficiently difficult. Also, two linearly independent 

points, P and Q, are chosen with large prime order. Each party has a secret inte-

ger, a, b and c and computes aP, aQ, bP, bQ and cP, cQ respectively; these values 

are made public. Using a pairing, each party computes çb(bP, cQ)' = q(cP, bQ)a, 

q(aP, cQ)' = (cP, aQ)b and q(aP, bQ)c = q(bP, aQ)c. By the bilinearity property, 

each of these values is equal to (P, Q)abc, the shared secret key. What is significant 

about this application is that all previously developed protocols for key exchange 

between three parties require at least two rounds of communication for exchanging 
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keys. 

Arguably the most useful application was to due Dan Boneh and Michael Franklin 

in 2003 with their identity based-encryption scheme. This enables one to attach an 

identity along with an encryption that is efficient and secure. Although there have 

been several identity-based encryption schemes presented in the literature, they have 

all required certain restrictions [BF03], making them less desirable. The identity-

based encryption scheme given by Boneh and Franklin manages to avoid problematic 

stipulations and is therefore a much more functional system. In fact, before 2003, 

finding such a system was considered an open problem. 

1.2 The Motivation and Organization 

In a given application that makes use of a cryptographic pairing, computing the 

pairing is often the computational bottleneck. In an attempt to expedite this com-

putation, numerous pairings have been developed and improved. This thesis serves 

as a dictionary for these pairings which, to the best of my knowledge, does not cur-

rently exist in the literature. Also, for the sake of simplicity, an attempt to obtain 

consistnet notation among each of the pairings has been provided to make com-

prehending and comparing the pairings more feasible. As well, my analysis of the 

cryptographic pairings has been included. 

First, the background for cryptographic pairings is covered in Chapter 2. This is 

followed by a description of each of the pairings in Chapters 3-8, beginning with the 

first pairing that was applied to cryptography, the Weil pairing. This is followed by 

the Tate pairing, and then each of the variants of the Tate pairing are introduced 

4 



in the order in which they were developed. In Chapter 9, the basic algorithm that 

is used to compute the pairings is outlined. Finally, a discussion on the efficiency of 

each of the pairings is given in Chapter 10. 
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Chapter 2 

Preliminaries for Pairings 

This chapter begins by introducing the space in which an elliptic curve is defined 

and builds up to the formal definition of a curve. This is followed by a discussion on 

divisors which are fundamental for cryptographic pairings. Finally, an elliptic curve 

is defined and the chapter concludes with pairing specific definitions. 

2.1 Affine and Projective Space 

Let K be a perfect field. Affine n-space over K is defined to be the set of n—tuples 

The set of points An(K) = {P = (xi,... ,x) € A'(7) I Xi € K} is called the set 

of K—rational points in A. In a similar manner, projective n-space can be defined 

over K as the set of (n + 1)—tuples as follows, 

The equivalence relation is given by (x0,... , x,) (yo,. . . , y) if there is an element 

E such that for every i, xi = Ay. The equivalence is denoted by [x0,... , 

The coordinates of [x0,. . . , x] are called the homogeneous coordinates for the cor-

responding point in P. Again, the set of K— rational points in Ptm is given by 

TPTh(K) = {P = [x0.. .. x] € iP(k xi € K}. It may be the case that not each 
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of the xi E K for P = [x0,. . . xv,] E P(r), it is just required that some non-zero 

coordinate xi can be chosen such that xjlxi E K. 

The relationship between projective and affine space, roughly speaking, is that 

projective space can be thought of as affine space with points at infinity added. 

Projective n—space contains many copies of affine n—space. One particular way to 

illustrate this notion is to consider the map qj for 0 < i < n such that 

0i: An -+ 1pn 

(x1,. . . , x) i-p [x1,. .. ,x, 1, ,x]. 

Each i gives a distinct copy of A in F. 

Let [X] denote the ring of polynomials in n variables, [X1,. . . , X] with 

coefficients in R. A polynomial f E [X] is called homogeneous of degree d if 

f(AX1,...,AX)=A'1f(X1,...,X) 

for every A E T. For example, let f(X1, X2, X3, X4) E '[X] such that 

f (X1, X2, X3, X4) = 12 XX + X + X3X 

and A e 7?. Note that 

f(AX1,... , AX4) = (AX1)2(AX4)2 + (AX2)4 + (Ax3) (AX4)3 

A4(XX + X24 + X3X) 

=A4f(X1,...,X4), 

and so f is a homogeneous polynomial of degree 4. 
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An ideal J C K[X] is called a homogeneous ideal if it is generated by homoge-

neous polynomials. The set of zeros of the homogeneous polynomials in a homoge-

neous ideal J is called a (projective) algebraic set and is denoted as 

V(J) = {P E Pn I f(P) = 0 V homogeneous f E J}. 

The homogeneous ideal of V(J) is denoted by I(V(J)) C Y[X] and it is generated by 

homogeneous polynomials f E R[X] such that f(P) = 0 for all points P E V(J). If 

the polynomials that generate I(V(J)) are strictly in K[X], then V(J) is said to be 

defined over K which is denoted as V(J)/K and its ideal is denoted as I(V(J)/K). 

In affine space the notions of an affine algebraic set, the variety V(J) defined over 

K and the ideal of V(J) hold except that polynomials need not be homogeneous. 

If V(J) is an algebraic set defined over K then the set of K-rational points of 

V(J) is 

(V(J))(K) = 
V(J) fl A(K) in affine space, and 

v(i)  fl 1P(K) in projective space. 

The projective algebraic set V(J) is called a (projective) variety if the homogeneous 

ideal of V(J), I(V(J)), is prime in [X]. Likewise, an (affine) variety is defined in 

the same way, except that I(V(J)) need not be homogeneous. 

Let V(J) be a variety defined over K. The affine coordinate ring of V(J)/K is 

defined by 

KVJ - K[X] 
I(V(J)/K) 

The quotient field of K[V(J)] is denoted as K(V(J)) and is called the function field 

of V(J)/K. Similarly, the affine coordinate ring for k is defined as [V(J)] = 

[X]/I(V(J)) and its function field is k(V(J)). In projective space, the function 
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field K(V(J)) of V(J) defined over K is given by the function field of V(J) n A. 

(V(J)) may be defined in the same manner. 

A subset . , 4} of a field L that is an extension over F is called alge-

braically independent if there does not exist a non-zero polynomial f E F[X] such 

that f(e1,... , = 0. The transcendence base for the extension L over F is a maxi-

mal subset, with respect to inclusion, of L that is algebraically independent over F. 

The transcendence degree of the extension L over F is the cardinality of the tran-

scendence base. For an affine variety V(J) the transcendence degree of the extension 

R'(V(J)) over E is called the dimension of V(J), which is denoted as dim(V(J)). 

In projective space, if An C pn is chosen so that V(J) fl An 0 0 for V(J) defined 

over K, then the dimension of V(J) is given by dim(V(J) fl As). 

Definition 2.1.1. (An algebraic curve) A projective variety of dimension one is 

called an algebraic curve. 

Finally, consider the following map between the algebraic varieties V(J)1, V(J)2 

in A. A map 0 is called a rational map from V(J)1 to V(J)2 if 

q: V(J)1 - V(J)2, 

where fi E (V(J)1) and for every point P E V(J)1, each of the f's are defined, i.e. 

= (f0(P),... , f(P)) E V(J)2. The rational map 0 is defined over K if there 

is an element A E such that Af0,... , Af, E K(V(J)1). Note that (fo,. . . , fn) and 

(Afo,.. . , Af) give the same map on points. 
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Consider two curves C1 and C2 and a non-constant rational map q: C1 -+ C2 

defined over K. Then q induces an injection of function fields that fixes K as follows, 

K(02) -* K(C1) (2.1) 

f I,' 

The degree of q, deg 0, is defined to be zero if 0 is constant, otherwise the degree 

is said to be finite and is given by 

deg  = {K(C1) : 

Furthermore, the map q induces another map 

K(C1) - p K(C2) (2.2) 

f (*)_1 o 

where NK(01)/j,* (K(02)) is the norm map [DF99] relative to the inclusion of K(C2) 

into K(C1) under . 

2.2 Divisors 

The free abelian group of a curve C, generated by the points on the curve is called 

the divisor group of C which is denoted by Div(C). A divisor D in Div(C) is written 

as the formal sum 

D= )np(P) 
PEC 

where flp E Z, and flp = 0 for all but a finite number of points P on C. The degree 

of D is defined to be 

degD = E np. 
PEC 
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The divisors of degree 0, which are denoted 

Div°(C) = {D E Div(C) I deg D =  01, 

form a subgroup of Div(C). The support of D, supp(D), is the set of points P such 

that flp 0 0. 

For example, let C be a curve and 8, T, U be points on C. A divisor D E Div(C) 

could take the form 

D = 3(S) + 4(T) - 7(U). (2.3) 

In this case, deg D = 3+4 - 7 = 0, hence D E Div°(C). Also, supp(D) = {S, T, U}. 

Let C be a smooth curve and f E 7?'(C)*. A divisor can be associated to f, called 

div(f), which is given by 

div(f) = ordp(f)(P) 
P€c 

where ordp(f) E Z counts the multiplicity of a zero or a pole' at a point P E C. 

To illustrate this notion, consider a curve C = F' and identify F' with A' U {O}. 

Let f be a function in F restricted to an affine set such that 

= (x - P)2(x - Q)3  
(x—R)5 

(2.4) 

The divisor of f is given by div(f) = 2(P) + 3(Q) - 5(R). 

A divisor D E Div(C) is called principal if D = div(f) for some f 

let Prin(C) describe the set of principal divisors. An equivalence relation of divisors 

D and D' is defined by the property that if D - D' is principal then D D'. The 

1Note that if ordp(f) > 0 then P is a zero, and if ordp(f) <0 then P is a pole. 
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Picard group or the divisor class group of C called Pic(C) is defined as 

Div(C)  
Pic(C) = Prin(C) 

The subgroup of Pic(C) which is fixed by Gj'/K is written as PicK(C). Pico(C) refers 

to the quotient of Div°(C) by Prin(C) and is called the degree 0 part of the divisor 

class group of C. 

Once again, consider the non-constant map of smooth curves q5: C1 -* C2. This 

map also induces a map on divisor groups, 

Div(C2) - Div(C1) 

(Q) F-4 L e(P)(P) 
(2.5) 

PEçb'(Q) 

which can be extended additively to arbitrary divisors. The term e(P) is called the 

ramification index of q at P which is defined as 

e(P) = ordp(cb*(t (p) )) 

where t(p) E K(02) is a uniformizer at the point O(P). A uniformizer for a curve 

at a given point P is defined as a function t E 7?(C) such that ordp(t) = 1. 

Proposition 2.2.1. Consider the non-constant map of smooth curves q: C1 -+ C2, 

then for all f E K(C2)*, 

*(djv(f)) = div(*(f)). 
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Proof. 

*(div(f)) = * ( ordP(f)(P)) 
F€C 

ordp(f)q5*(P) 

FEC 

PEC 

ordp(f) L; e(Q)(Q) 
QEcb 1(P) 

= >i ordp(f)e(Q)(Q) 
FEC QEçfr 1(P) 

= ordQ(*(f))(Q) 
PEC QEçb'(P) 

= ordQ(q*(f))(Q) 

QEq5' (P) 

= div(q*(f)) 

Note that the fifth equality comes from [Sil86, Ex.2.2] and the second to last equality 

is due to the fact that every point is counted exactly once. 0 

The previous proposition indicates that the map ç' takes divisors of degree zero 

to divisors of degree zero and also principal divisors to principal divisors, hence 

inducing the map 

Pic°(C2) - Pic°(C1). 

2.3 Elliptic Curves 

Definition 2.3.1. (Elliptic Curve) An elliptic curve is a curve given by the Weier-

stral3 equation 

y2 + a1xy + a3y = x3 + a2x2 + a4x + a6. 
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The elliptic curve is non-singular i.e., there are no points of the curve satisfying both 

the partial derivative with respect to y 

2y + a1x + a3 = 0, 

and the partial derivative with respect to x 

3x2 + 2a2x + a4 - a1y = 0. 

E is said to be defined over K if a € K for all i. If the points (x, y) on E are in 

L x L for some extension L of K, this set is denoted by 

E(L)={(x,y)€LxLy2+a1xy+asy=x3+a2x2+a4x+a6}U{Q} 

where 0 represents a special point at infinity. If the char(K) 54 2,3 then the Weier-

straj3 equation can be written in the reduced form 

V2 = x3+Ax+B. 

This equation is non-singular if the discriminant fDF99J - 16(4A3 + 27B2) is nonzero 

[Sil86]. 

For a more theoretical definition of an elliptic curve see [Sil86, III]. 

Consider an elliptic curve of the form 

E y2 + a1xy + a3y = x3 + ad + a4x + a6. 

Points P € E are of the form (x, y) along with the point 0 at infinity. Recall that 

E is a subset of p2. Since the degree of E is 3, then a line L in IF2 intersects B 

in three places, which need not be distinct. Two points F, Q € B are added using 
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the Composition Law: Let L be the secant line of P and Q (or the tangent line if 

P = Q) and denote R as the third point of intersection of L with E. Let V denote 

the vertical line through R and 0. The third point of intersection of V with E is 

defined to be P+Q. 

Proposition 2.3.2. The Composition Law on E has the following properties. 

1. Consider the line L that intersects E at the points P, Q, R, then 

(P+Q)+R= 0. 

. For every point PEE, P+0=P. 

S. For all points P,Q€E,P+Q_—Q+P. 

4. Every point P in E has an inverse which is denoted as —P. 

5. For all points P, Q, R E E, addition is associative, i.e. 

(P + Q) + R = P + (Q + R). 

Note that E together with the Composition Law forms an abelian group. 

Proof. 1. Clear from the Composition Law. 

2. Let Q = 0, then the lines L and V in the Composition Law are the same line. 

Since L intersects E at points P, 0, R and V intersects E at points R, 0 + P, 0 

then P=0+P. 

3. Clear from the Composition Law. 

4. Let L be the line that intersects B at points P, 0, R. The vertical line V through 

Rand 0 intersects Eat P+0 = P. Thus 0 = (P+0)+R= P + R implying 

that R is the inverse of P. 
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5. Using the Group Law given in Definition 2.3.3, this can be proved by working 

each case out explicitly. 

0 

Not only can points on E be added together, but they can also be scaled. Multi-

plying a point P by an integer is given by the multiplication by m map, [m], where 

where [m]P=P+..+P(mterms) for m> 0. 

The following definition gives explicit formulae for computing the addition of 

points on an elliptic curve. 

Definition 2.3.3. (The Group Law) Consider the elliptic curve B given by 

y2 + a1xy + a3y = x3 + a2x2 + a4x + a6, 

with points P = (Xj,yj) E E for l ≤i ≤ 3, and P3 =P1+P2. 

.1. The point —P1 is given by (x1, - y - a1x1 - a3). 

2. If xi = x2 and Yi + 112 + a1x2 + a3 = 0, then Pi+ P2 = 0. 

3. If XI = X2 and y+y2+a1x2+a3 0, then P1+P2 is given by 

x3=A2+a1A—a2—x1—x2, y3=—(A+ai)x3—b—a3 

where L = )x + b and 

- 3x + 2a2x1 + a4 - a1y1 b = + a4x1 + 2a6 - a3y1 

- 2y + a1x1 + a3 ' 211i + a1x1 + a3 
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4. If xi 2 then P3 = Pi + P2 is again given by 

x3=) 2+a1A—a2—x1—x2, y3= —(A+ai)x3—b—a3 

where L = )¼x + b and 

A_ 21 b= Y1x22x1  
X2-X1 

The possible values for the number of points on an elliptic curve is given in the 

following theorem. 

Theorem 2.3.4. Let N = q + 1 - t where q = pn for a prime p and t is called the 

trace of Frobenius [WasO8]. For an elliptic curve E defined over lFq, #E(1Fq) = N 

if and only if It ≤ 2,,Fq and one of the following holds: 

1. gcd(t,p) = 1, 

. n is even and t = 

8. n is even, p # 1 (mod 3) and t = 

4. n is odd, p = 2 or 3, and t = 

5. n is even, p # 1 (mod 4) and t = 0, 

6. n is odd and t = 0. 

2.4 Divisors for Pairings 

The following definitions are standard in most cryptographic pairings. Let D = 

EPEE np(P) be a divisor such that 

D(P)—(0) 
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for points P, 0 E E. Let fi,D be a rational function on E with divisor 

div(f,D) = iD - D 

where Di = ([i]P) - (0). If D = (P) - (0) then the function fi,D is also written as 

fj,p with divisor 

div(fj,p) = i(P) - i(0) - ([i]P) + (0). 

For any function f, the evaluation of f at a divisor D = EPEE np(P) is given by 

f(D) = flf(p)nP 

For example, consider the divisor D = 3(S) + 4(T) - 7(U) given in (2.3) and function 

f = (x - P)2(x - Q)3/ (x - R)5 defined in (2.4). Then 

D - (S - P)2(S - Q)13 (T -  P)2(T -  Q)3 ' (U - P)2(U -  Q)3  
(S—R)5 j I (T—R)5 (U—R)5 

A standard requirement for most pairings is that the function f,D is normalized 

by a uniformizer at the point 0 so that the pole at 0 is removed. Thus, the product 

of fi,D with the uniformizer evaluates to 1. at the point 0. From here on, it will 

always be assumed that fi,D is normalized at 0. 

An important property of principal divisors is given in the next proposition. 

Proposition 2.4.1. For f E ?(E)*, deg(div(f)) = 0. 

For a proof see [Sil86, 11.3]. A property that is often used for determining whether 

a divisor is principal is given by the following theorem. 

Let a define the following sun ective map that takes a degree zero divisor D to 
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the following sum 

o:Div°(E) -* E 

D 1-4 >[np]P. 
PEE 

Theorem 2.4.2. Consider an elliptic curve E and a divisor D = EPEE np(P) E 

Div°(E). Then 

D is principal < 

PEE 

1P=c9. 

Proof. In order to simplify the proof, it is necessary to show that the general form 

of D is 

D= (S) — (T) + div(e) 

for points S, T E E and a function E. Consider the points F, Q and R on E that also lie 

on the line ax+by+c = 0. then these points are zeros of the line f(x, y) = ax+by+c. 

If b 54 Ot then f has a triple pole at the point (9. Note that 

div(f) = (F) + (Q) + (R) - 3(0) 

= (P) + (Q) + (—(P + Q)) — 3(0) (2.6) 

where the last equality holds by Proposition 2.3.2. Suppose that the points R and 

—R lie on the vertical line x + d = 0, then the function g(x) = x + d has zeros at R 

and —R. This implies that g has a double pole at 0 and the divisor of g is given by 

div(g) = (R) + (—R) - 2(0) 

= (—(P + R)) + (P + R) - 2(0) (2.7) 

If b = 0 then x = —c/a is a vertical line. 
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and again, the last equality follows from Proposition 2.3.2. Subtracting (2.7) from 

(2.6) yields the following, 

div(f) - div(g) = div(f/g) = (P) + (Q) - (P + Q) - (0). (2.8) 

Equation (2.8) can be rewritten as (P) + (Q) = (P + Q) + (0) + div(f/g) which 

shows that for a divisor D on E, the sum of any two terms with positive coefficients 

is equal to a single positive term, say (8), plus a multiple of (0) plus the divisor 

of a function. This is analogous for the sum of any two terms of D with negative 

coefficients, which gives the following general form for D, 

D = (S) - (T) + i(0) + div(e) 

for some points 8, T E E, i E Z and a function £. For the map o defined in equation 

(2.8) note that 

o(div(f/g))=P+Q—P—Q-0=0 

and so the function £ is the product of functions of the form f/g which implies that 

o(div()) = 0 (2.9) 

as well. 

By supposition, deg D = 0, therefore 

0 = deg  = 1— 1+i+0 = 

that is, i = Ott, and 

D=(S)—(T)+div() 

ttNote that by Proposition 2.4.1, deg(div(e)) = 0. 
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gives the simplified general form for D. 

Applying the map o to D shows that 

cr(D)=S—T-l-O=S-j-T. 

(=) : Suppose that a(D) = = 0, then S - T = 0, i.e. S = T, and 

D = div(s) is principal. 

() : On the other hand, let D = div(k) for some function k. Using (2.9), 

a(D) = o(div(k)) = 0 

that is EPEE[rtp]P = 0 as desired. 0 

By Theorem 2.4.2, the kernel of o- is Prin(E). Using the 1st Isomorphism Theorem 

note that 

Pico(E) = Div°(E)/ Prin(E) Im(o-) = o(Div°(E)) = E 

where the last equality holds since o is surjective. Therefore, o also induces an 

isomorphism, which is again denoted by o, 

Pico (E) -+ E (2.10) 

[(P)—(0)] I.' P 

where [(P) - (0)] represents the equivalence class of the divisor (P) - (0). 

Finally, two special types of divisors that are required for pairings are defined 

as follows. A semi-reduced divisor is a divisor of the form D = >PEE np(P) - 

>PEE np(0) where flp ≥ 0 and the points P are finite points such that when 

P E supp(D) then —P 0 supp(D). Let D = >p€E mp(P) - >IPEE np(0) be a semi-

reduced divisor. For an elliptic curve, if >PEE flp ≤ 1 then D is a called a reduced 

divisor. 

21 



Chapter 3 

The Well pairing 

André Weil introduced this pairing in his proof of the Riemann Hypothesis for 

function-fields [Wei46] in 1946. Almost fifty years later, Menezes et al. [M0V93] 

first made use of the Weil pairing in cryptography in 1993 with the MOV attack. 

The Well pairing is significant as it was the first pairing used in cryptography; how-

ever, in practice it is no longer favoured because it takes more than double the time 

required to compute than other types of pairings, such as the Tate Pairing [GalO5]. 

This is due largely to the fact that it requires computing the Tate pairing twice. It 

has been argued that asymptotically this pairing would be more efficient to compute 

at high security levels [KMO5]. However, in [GPSO6] it is stated that at security 

levels of cryptographic relevance, the Tate pairing is always more efficient than the 

Well pairing. 

3.1 The Definition of the Weil Pairing 

For an elliptic curve E defined over a field K the set of rn-torsion points of E for 

m E Z is defined to be 

E[m]={PEE(?)I[m}P=O}. 

Let T E E[m]. By Theorem 2.4.2 there exists a function f E k(E) such that 

div(f) = m(T) - m(0). Let T' E E such that [m]T' = T. Similarly, there exists a 

function g E E(E) such that 
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div(g) = [m ]*(T) - [m ]*(0) 

= y (T'+R)—(R), 

(3.1) 

REE[m] 

where [m]* is an automorphism induced by [m] on Div(E) given by [m]*(Q) = 

PE[m1'(Q) e1,(P)(P). 

Since f o [m] and gm have the same divisor, then up to a scalar multiple in :k;* 

fo[m]=gm. (3.2) 

For all points X E E and a point S E E[m] the following holds, 

g(X + S)tm = f({m]X + [m]S) = f([m]X) = g(X)m. (3.3) 

Thus g(X + S)tm/g(X)m = 1, and hence g(X + S)/g(X) E /tm where /jm is the set 

of M lh roots of unity. 

From these properties it is possible to give the classical definition of the Well 

pairing [Sil86]. 

Definition 3.1.1. Let E be an elliptic curve defined over a field K. Let m E Z such 

that m ≥ 2 and relatively prime to char(K) > 0. Let T, S E E[m]. For a function g 

as defined in (3.1) the Weil pairing em is defined to be 

em:E[m]xE[m] " I-tm 

(S, T) '-* g(X +S)/g(X) 

for any point X E E such that g(X + 8) and g(X) are defined and nonzero. 

23 



Note that although g is only defined up to a scalar multiple c E k*, the pairing 

is independent of this choice of c. 

3.2 Properties of the Weil Pairing 

The Weil pairing has several nice properties that are particularly useful in applica-

tions. For example, the bilinearity property is an integral component of A. Joux's 

Tripartite key exchange [JouOO]. The following is a list of the relevant properties. 

Theorem 3.2.1. The Weil pairing has the following properties: 

.1. (Bilinearity) For all points 81, 8 2, 5, T1, 1'2, T E E[m], 

(a.) e,n (Si +82,T) = e,n(Si,T)em (52,T) 

(b.) em (S,Ti +2'2) = em (S, TI) em(S,T2). 

2. (Alternating) For any point T E E[m], em (T, T) = 1. This implies that for any 

points 8, T E Elm] 

m (8, T) = em(T,S)'. 

S. (Non-degeneracy) For any point S E E[m], if em (S,T) = 1 for all T E E[m] 

then 5=0. 

.. (Calois invariance) If E is defined over K and cr E Gal(/K) then for all 

points 8, T E E[m] 

= 

5. (Compatibility) If P E E[mn] and Q E E[m], then 

emn(P,Q) = em([n]P,Q). 
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Proof. 1. Bilinearity: (a.) 

em (Si + 82,T)g(X+81+82) g(X+81)  
g(X) g(X+81) 

- m (Si,T) g(X + 81+ 82)  
- g(X+S1) 

- m (8i,T) g(Y+S2) 
g(Y) 

= em(81,T) em(82,T). 

(b.) Let fi, f2, f, g1,g2,g3 be functions such that for i = 1, 2,3, T E E[m] and 

(E) such that div(f) = m(I) —m(Q). Let E E such that [m]1' = Tj 

and define gi € R(E) such that div(g) = [m }*(T) - [m ]*(0). As in (3.2), up 

to a constant in fj o [m] = gim. Let T3 = T1 + T2, and h E T(E) such that 
div(h) = (T1 + 1'2) - (Ti) - (T2) + (0). Consequently 

div (2 ) = div(f3) - div(f1) - div(f2) 
fl f 

= m(T1 + T2) - m(0) - (m(T1) - m(0)) - (m(T2) - m(0)) 

= m[(Ti + T2) - (T1) - (T2)+ (0)] 

=div(h).m 

= div(hm) 

and hence f3 = c11f2hm for some constant c € . Therefore 

= f3 o [m] = (cf1f2hm) o [m] 

= c(fi o [m])(f2 o [m])(hm o [m]) 

= cgg(h o [m ])m, 
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and 93 = c'g1g2(h o [m]). Evaluating the pairing by substituting for g3 yields 

em (S, T1 + T2) = g3(X +8) - gi(X + S)g2(X + S)h([m]X + [m]S)  
93(X) - g1(X)g2(X)h([m]X) 

= 6m (S, Ti)em(S, 
h( [m]X) 

= em (S,Ti)em (S,T2) 

as desired. 

2. Alternating: By the bilinearity property, 

em (S + T, S + T) = em (S, S)em (S, T) m (T, S)em (T, T). 

If for all T E E[m], em (T,T) = 1. then 

em(S+T,S+T) = em (S,T)em (T,S) = 1 

and the desired result would be obtained. Consider the translation by P map 

rp where 

'rp:E - p E 

R i' R+P. 

The translation by P map induces the map r on Div(E) as follows, 

Div(E) -* Div(E) 

(T) i.' eT(Q)(Q). 
QEr'(T) 

Hence, -rP takes (T) to the sum of points that are in the preimage of T under 

the map 'rp counting appropriate multiplicity. It is worth noting that this is a 
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rather simple map with no multiplicity and that there are only single points in 

the preimage. For example, observe that 

div(f 0 = div(T[]T(f)) 

= m(T]T(T)) - m(TjT(0)) 

Let Q be a point that gets mapped to T under -F[i]T. Then 

and solving for Q, 

Therefore, 

and hence 

T = T[i]T(Q) = Q + i[T], 

Q=[1—i]T. 

div(f 0 = m([1 - i]T) - 

div (rn-i rn-i ri f 0]T) = in - i]T) - ([—i]T) =0. 

This implies that fl'(f o Ij)T) is constant. 

Composing f f MIh irst with the function [m] gives fl'(f o [m] o -r[i]T) which is 

still a constant function. Raising the product of functions fl' (g o to 

the power gives 

rn-i rn-i rn-i 

H (go T[]T')m = H (gm 0 T[IT/) = H (gm 
i=O i=O i=O 

where the latter equality holds, as T(T(P) = P+ [m][i]T' = P+ [i]T = T[i]T(P). 

Observe that fl' (grn i]T) = IT' (f o [m] o i]T) by the property that 

f o [m] = gm  and so fl 1(g 0 -F[i]TI) is constant. 
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Thus, evaluating this function at the two points X and X + T' produces the 

same result, i.e. 

Cancellation gives 

rn-i rn-i 

fl g(X + [i]T') = fi g(X + [u + 1]T'). 
i=O i=O 

g(X) = g(X + [m]T') = g(X + T) 

and so 

 hm 

em(T,T) = g(X +T) = 1. 

3. Non-degeneracy: Suppose that for all S E E[m], em (S, T) 1. Since em (S, T) = 

g(X + S)/g(X) then g(X + 8) = g(X) for all S E E[m]. By [III.4.1O.b Silv] 

there exists a function h E (E) such that g = h o [m]. Then 

f o [m]= gm  = (h o [rn])tm = 0 [m]. 

Therefore htm = f, and so m - div(h) = div(f) = m(T) - m(0), giving that 

div(h) = (T)—(0). Finally, [Si186, 111. 3.3] states that if (T) r'. (0) then T 0. 

4. Galois invariance: Let u E G/K. If f, g are functions for T as above, then 

f, g are the corresponding functions for T. Evaluating the pairing yields 

em(sa T - 90(X0 + S') - g(X + 8)1 - S T ° 
- g(X) - g(X) j - ern(, 

5. Compatibility: Taking the functions f and g as above, 

and 

div(fm) = nm(T) - nm(0) 



Therefore, 

emn(S,T) - go [n](X-i-S) - g(Y+ [n]S)  
= em({nJS,T). 

- go[n](X) - g(Y) 

3.3 The Computational Description 

It is possible to give an alternate, more explicit definition for the Weil pairing. 

This definition is better suited for computations and facilitates comparisons to other 

pairings. 

Theorem 3.3.1. Let P, Q E Elm]. Let D and D' be divisors of degree zero with 

disjoint support such that D e'-' (F) - (0) and D' r- (Q) - (0). Let fm,D and fm,D' 

be functions as defined in § 2.4. Namely, dlv(fm ,D) = mD - Dm and dV(fm,D') = 

mD' - D. The Weil pairing, em (P, Q), is defined as 

em: Elm] xE[m] " Pm 

(F, Q) i; fm,D(D')/fm,D'(D). 

(3.4) 

For a proof of the equivalence this description of the Weil pairing to the definition 

of the pairing given by Definition 3. 1.1 see [How96]. Note that D and D' are typically 

chosen to be D = (F) - (0), and D' = (Q + R) - (R), where R is an arbitrarily 

chosen point on the curve. In a cryptographic setting, the points P and Q are usually 

taken from the groups E(]Fq) and E(lFqk) respectively. This pairing, like many of the 

other pairings, is computed using Miller's algorithm which will be described later in 

Chapter 9. 
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The following proposition gives yet another description of the Well pairing. In 

this case, the functions fm,p and fm,Q are evaluated at points rather than divisors. 

Other types of pairings are often evaluated in this way, and thus this particular 

description makes it easier to compare each of the different pairings. 

Proposition 3.3.2. Let E be an elliptic curve defined over Fq. Consider the points 

P,QEE[m] such that PQ. Then 

imfmQ  
,'/- ..) 

Jm,Q 

For a proof see [Mil04, C090]. It is interesting to note that in the literature this 

version of the Weil pairing is often given incorrectly— without the (- I)m factor. 

3.4 The Squared Weil Pairing 

This pairing was developed by Kirsten Eisenträger, Kristen Lauter, and Peter L. 

Montgomery [ELMO4] in 2004. Although it provides an improvement to the Weil 

pairing, which will be discused further in Chapter 10, it is still not superior to the 

Tate pairing or its variants. However, the concepts used in the Squared Tate pairing 

may be applied to the Tate pairing giving an improvement of the efficiency there. 

Definition 3.4.1. The Squared Weil pairing is the composite 

e: E[m] x E[m] --
02 

Ym Pm 

(P,Q)i—* em(P,Q)'— em(P,Q)2. 

Theorem 3.4.2. Let m E Z. Let P, Q E E[m] such that P, Q 0 and P 0 ±Q. 
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Then the Squared Weil pairing admits the following formula 

fm,P(Q)fm,Q(P) - (_1)mem(P,Q)2. 
fm,P(Q)fm,Q(P) - 

Proof. Let R1, R2 E E such that the divisors D = (P + R1) - (R1) and D' = 

(Q + R2) - (R2) have disjoint support. Let D" = (-Q + R2) - (R2). Note that the 

functions fm,D, fm,D' have divisors 

div(fm ,D) = mD - ([m]P) - (0) = mD 

and 

div(fm ,D') = mD' - ([mJQ) - (0) = mD'. 

From Theorem 3.3.1, 

m(P,Q) - fm,D((Q + R2) - (R2)) - fm,D(Q + R2)fm,D'(Rl)  
- fm,D'((P+RI) - (R1)) - fim,D'(P+ Rl)fm,D(R2) 

Let g(X) = fm,p(X - R1). Then 

div(g) = m(P + R1) - m(Ri) = mD = div(fmD ). 

Therefore g = Cfm,D for some constant c E and hence 

fm,D(Q+R2) - g(Q+R2) - fm,p(Q+R2—RI)  

fm ,D(R2) - g(R2) - fm,p(R2RI) 

Likewise, 

f,m,D'(Rl) - fm,Q(R1RI) 

fm,D'(P+Rl) - fm,Q(P+Rl R2) 

Substituting into the Weil pairing gives 

- fm ,D(D') - f,p(Q + R2 - R1) fm,Q(Rl - R2)  
em (P, - fm,D'(D) - fm ,p(R2 - R1) fm,Q(P + R1 - R2) 
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Similarly for P, - Q: 

-Q) = fm,p(—Q + R -  R1) fm,_Q(Rl - R2) 
fm,p(R2 - R1) fm,_Q(P + R1 - R2) 

which reduces to 

_fm,p(Q+R2'i) fm,Q(R1+R2)  
em(p fm,p(R2 - R1) fm,Q(P - R1+R2) 

Therefore em (P, Q)2 can be simplified to 

em (P,Q) -  fm,p(Q+ R2 - Rl)fm,Q(Rl - R2)fm,Q(P R1+R2)  

em (P, _Q) - f,p(—Q + R2 - Rl)fm,Q((Rl - R2))fm,Q(P + R1 - R2) 

Letting R = R2 - R1 gives 

em (P 2 frn,p(Q + R)fin,Q(R)fm,Q(P + R)  
) fm,P(Q+R)fm,Q(R)fm,Q(PR)' 

Let F, Q E E[m] such that P is not a multiple of Q. Equation (3.5) is a ratio-

nal function in R, call it £(R). Since the zeros and poles of f,p are at P and 0 

respectively and similarly at Q and 0 for fm,Q, then £(R) can only have zeros and 

poles at R E {P, Q, -Q, P + Q, P - Q, 0}. Although at each of these points the 

function £ cannot be evaluated at R, there is an equivalent function that behaves 

like £ at every other place, except that it has these singularities at R removed. Since 

£(R) =Cm (P, Q)2 for the values of R where £ does not have a zero or a pole, then 

this must hold for all values of R. 

Now, let f: E -p lFq be a rational function on E with a zero of order m at 0. 

Consider the rational function h(X) = x(X)/y(X) that has only a zero of order 1 at 

X = 0. Then the function 

I  _L 
- = (x/y)m - xrn 
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has neither a pole nor a zero at X = 0 since f has a zero of order m at (9. Then 

k(0) is finite and nonzero. Consider the function q(X) = h(X)/h(—X). Since this 

function has no zeros or poles on E, it is constant. Computing (X) at a finite point 

X = (x, y) on E with nonzero coordinates gives 0 = —1. Let 

g : E -* lFq 

X -* f(X)/f(—X). 

Thus 

f(X) k(X)hm(X) çb(X)mk(X) m  k(X)  
g( ) = f(—X) k(X)hm(_X) = k(—X) (1) 

This gives that g(0) = (_1)m and so 

fm,çj(Ri -  R2) - (_1)m 
fm,Q((Rl - R2)) - 

for R = (9, i.e. R1 = R2. By assumption, fm,p has no zeros or poles at Q and 

similarly, fm,Q has no zeros or poles at P which gives the following simplification 

em(P,Q)2 = (_1)mfrY&P(Q)fmQ()  
fm,p(Q)fm,Q(P) 

3.4.1 Computing the Squared Weil Pairing 

The Squared Weil pairing is computed using a modified version of Miller's algorithm 

[Mil86], also Chapter 9, except that the functions are built up and evaluated as 

follows, to account for the squaring. 

fj+k,P (Q)/f+k,P(- Q) - f,p(Q)/f,p (_Q) fk,P(Q)/fk,P(- Q)  

fj+k,Q (P)/f +k,Q (—P) - (P)/f (—P) fk,Q (P)/fk,Q (—F) 

g]p,[k]P(Q)/gJP,[k)P (-Q)  
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Because the pairing is a quotient of the Weil pairing evaluated at a point over Weil 

pairing evaluated at the negative of the point there is cancellation with the secant 

line terms that is not obtained with the standard Well pairing. Therefore, there are 

two less fractions in the Squared Weil pairing than in the Well pairing which will be 

more evident in Chapter 10. 
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Chapter 4 

The Tate Pairing 

Despite some early debate [KMO5], it is now commonly accepted that the Tate 

pairing is more efficient to compute in a general cryptographic setting than the 

Weil pairing, [GPSO6]. John Tate introduced this pairing in Applications of Galois 

Cohomology in Algebraic Geometry [Tat59] in 1959. Stephen Lichtenbaum, a former 

student of Tate, modified this pairing for computational purposes [Lic69] in 1969. 

In 1994, Gerhard Frey and Hans-Georg Rück first made use of the Tate pairing in 

cryptography by expanding upon the MOV attack [FR94]. Five years later, Gerhard 

Frey and Michael Muller along with Hans-Georg Rück proposed the idea of using 

the Tate pairing as part of an elliptic curve cryptographic protocol [FMR99]. Note 

that in the literature the names Tate pairing and Tate-Lichtenbaum pairing are often 

used interchangeably. 

4.1 Definition of the Tate Pairing 

Let E be an elliptic curve defined over lFq, with q = pfl for some prime p. Choose m 

such that gcd(m, q) = 1. Let k be the unique integer such that Fqk = Fq(itm) where 

I2m is the set of mth roots of unity in ]F. The value Ic is called the embedding degree 

and it is the least positive integer such that m I (qk - 1) and unless specified, it is 

assumed that Ic> 1. Consider the sets E(]Fqk)[m] = {P E E(]Fqk) I [m]P = O} and 

mE(lFqk) = {[m]P I P E E(IP'qk)}. Let P E E(TFqk)[m], and Q E E(lFqk). 

35 



Definition 4.1.1. Let D and D' be divisors with disjoint support such that D = 

(P) - (0) and D' = (Q + R) - (R), for some R E E(Fqk). As defined in § 2., let 

f,p be a function (normalized at 0) such that div(f,p) = i(P) - i(0) - ([i]P) + (0) 

for i E Z. The Tate pairing is defined as 

E(]Fqk)[m] x E(lFqk)/mE(]Fqk) Fk/(iF.k) (4.1) 

(P, Q) E- frn,p(D') (mod (TB'k)m). 

Note that the element Q is of the form Q + mE(lFqk). However, for a point S E 

mE(Fqk), 

(P,Q + mS)m = (PI Q)m ' (P, S) (1', Q)m (mod (Fk)m ) 

by bilinearity of the pairing, § 4.2. For simplicity, the element Q + mE(lFqk) will be 

always written as Q. 

Alternatively, by the isomorphism Pico(E) E from (2.10), this map can be de-

fined as follows [FR94], which can be used to extend the Tate pairing to hyperelliptic 

curves, Let [D] and [D'] represent equivalence classes in Pic° (E) [m] and Pic' (E) re-

spectively. Let D = (F) - (0), D' (Q) - (0) and let fm,D be defined as in § 2.4, 

i.e. with divisor div(fm ,D) = mD - Dm = MD. Then 

(.,.)m  : Pic?Fqk (E)[m} X Pic qk (E)/mPiCSqk (E) 
iu'* /( * \m 

qkl Lr qk) (4.2) 

([D], [D']) I.' fm,D(D') (mod (Irk)'). 

Proposition 4.1.3 states that the choice of divisors for the Tate pairing in the divi-

sor equivalence classes is irrelevant. In order to prove this proposition, the following 

property is required. 
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Lemma 4.1.2. (Weil Reciprocity law) Let C be a non-singular curve, K a field and 

f, 9 E 7?(C)* functions such that supp(f) fl supp(g) = 0. Then 

f(div(g)) = g(div(f)). 

Proof. Case 1: Suppose that C = PI. Let PI be identified with A1 U {O}. Looking 

at the restriction of functions f and g in PI to an affine set, these functions are of 

the form 
in 

x - p)OrdP(f) f = fJ(  

i=O 

n 

g = fJ(x - Q)OrdQi(9) 

i=O 

where the divisors of these functions are given by 
m 

div(f) = E ordp(f)(P), 
i=O 

n 

div(g) = T IordQ (g)(Q). 
i=O 

Suppose that f and g have disjoint support and that their support does not contain 

the point 0. Notice that 

f(div(g)) = fJf(Q)ordQi() = f11J(Q - p)OrdQ(9)ordP(f) 

i=O i=O i=O 

n m 

= (_1)EordQI()ordP(f) JJ fJ(p - Q)OrdQ(g)Ordp(f) 

i=O i=O 
n in 

= fJfJ(P, - Q)ordQ(g)ordp(f) 

i=O i=O 

M 

= Jg(pj)ordPi(f) = g(div(f)) 

i=O 
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where the fourth equality holds by Proposition 2.4.1. If 0 E supp(f) or 0 E supp(g), 

then (0 - P1)/(0 - P) is defined to be 1 and the proof still holds. 

Case 2: Let C be an arbitrary curve and id E IP' be the identity function. Note 

that div(id) = (0) - (0). Using Proposition 2.2.1, 

g*(div(id)) = div(g*(id)) 

= div(g oid) 

= div(g) 

where g* is the map on funtion fields and divisor groups defined in equations (2.1) and 

(2.5) respectively. Thus, f(div(g)) = f(g*(div(id))) = (g(f))(div(id)), where the 

former equality holds by [Si186, Ex.2.10] and g is the map on function fields defined 

in equation (2.2). The function g(f) is defined on IP' and by the Weil reciprocity 

law on IP' given in Case 1, 

(g(f))(div(id)) = id(div(g o f)) 

(g* (id)) (div(f)) 

(go id) (div(f)) 

= g(div(f)). 

0 

Proposition 4.1.3. In the evaluation of the Tate pairing, the divisors D and D' 

may be replaced with any divisors C and C' from the equivalence classes [D] and [D'] 

respectively, provided that the support of C is disjoint from that of C'. 

Proof. Consider C E [D] and C' E [D']. Note that C = D + div(g) and C' = 

D' + div(h) for some functions g, h defined over TFqk. Let f,0 be a function such that 
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div(f,c) = mC - Cm = mC as in § 2.4, and such that supp(h) n supp(fc) 0. 

Also, assume that supp(C) n supp(g, h, = 0. Note that 

div(f ,0) = mC 

= mD + m div(g) 

= div(fm ,p) + div(gm). 

Then up to a constant in Fk, the equality f0 = f,p gm holds. Consider 

f,(C') = fm ,p(C')g(C')m 

= fm,p(D' + div(h))g(C')m 

f,p(D')fm ,p(div(h))g(C')m 

= fm ,p(.D')h(div(fm ,p))g(C')m 

fm,p(1Y)h(D)mg(C')m 

fm ,p(D') (mod (IF*)rn) 

The fourth equality holds by the Lemma 4.1.2. Therefore, the choice of divisors 

in the divisor classes [D] and [D'] in the Tate pairing is irrelevant. 0 

A variant, e, of the Tate pairing often called the reduced Tate pairing [RSVO6] is 

defined as 

e: E(JFqk)[m] X E(}Fqk)/mE(lFqk) > 

(P, Q)  (P, Q)(qk_1)/m 

Like the Weil pairing, in practice the point P is chosen from the group E(]Fq) and Q 

from the group E(]Fqk). This pairing is better suited to computations as it does not 
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involve cosets in the codomain, but rather a unique value in (J)(qk_1)/m• Again, 

by the isomorphism Pico(E) E, the reduced Tate pairing can be represented as 

1D ,\(qk_1)/m 

Im 

Since by (4.2) the Tate pairing can be expressed as (F, Q)m = fm ,D(D') and by 

(3.4) the Weil pairing as em (P Q) = fm,D(D')/fm,D'(D), the relationship between 

these two pairings is given by 

- (Q' 1 )m ' 
(4.3) 

Note that computing the Weil or Tate pairing reduces to finding the value of the 

function fm,D (and also f,D' in the case of the Weil pairing) evaluated at D' (D) such 

that dV(fm,D) = mD - Dm (div(fm,D') = mD' - D). Miller's algorithm, described 

more fully in Chapter 9, can be used to compute the value of the necessary function 

at a given divisor. 

4.2 Properties of the Tate Pairing 

Much like the Weil pairing, the Tate pairing has the following properties. 

1. (Bilinearity) For all points F, F1, P2 E E(]Fk) [m], and Q, Q, Q2 E E(]Fqk), 

(P1 +12,Q)m (11,Q m (1D2,Q) m , 

(1, Qi + Q2) m  (', Qi)m (1, Q2)m 

2. (Non-degeneracy) For any point P E E(]Fqk)[m], such that P 0, there 

exists a point Q E E(Fqk) such that (1J, Q)m 0 1. Similarly, for any point 

Q E E(IFqk) such that Q 0 mE(lFqk) there exists a point P E .E(TF'qk){m} such 

that (P, Q)ni 1. 
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3. (Galois invariance) If a E Gal(i qk/1Fq) then o((P, Q)m) = (a(P), °(Q))m 

These properties can be proved using techniques that are similar to those used 

for the Weil pairing in §3.2. For a more detailed description, see [GalO5, IX.4]. 

Another property of the Tate pairing that is useful for relating it to its variants 

is given by the following Theorem. 

Theorem 4.2.1. Consider an elliptic curve E defined over lFq. Let rn I #EFq) 

and k be the embedding degree. Suppose that N = hm, for some h E Z such that 

N I (qk - 1). Choose P E E(1Fq) to have order m and Q E E(lFqk). Then 

(P, Q)(c?_1)/N = (p, Q)(qk)/ 

Proof. Let D (Q) - (0) and g be a function over lFq such that div(g) = m(P) - 

m(0). Then div(g') = N(P) - N(0) and hence 

(P Q) (qk_1)/N = gh()(qk_1)/N g(D)(c)1 = (p Q(qk.1)/m 

0 

The function f,p in the Tate pairing can be evaluated at a point rather than at 

a divisor; this is commonly used in the variants of the pairing. The following lemma 

and theorem show how this may be accomplished. 

Lemma 4.2.2. Let d be a divisor of k such that d < k. Then the value q  - 1 is a 

factor of (q' - 1)/rn if m is prime. 

Proof. Note that q' - 1 can be factored as 

q  - 1 = (qd 

i=O 
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Since the embedding degree k is greater than 1, m I (qk —1) and m t qd — 1.  Therefore, 

and so qd - 1 is a factor of (qk - 1)/rn. 0 

Theorem 4.2.3. Let P E E(1Fq) [rn], Q E E(]Fqk) be linearly independent points, and 

k> 1. Then 

e(P, Q) = fp(Q)(qk_1)Im. 

Proof. Choose a point R E E(]Fq) such that R {O, —P, Q, Q - P}. Let C be a 

divisor such that C = (P + R) - (R). Consider a function such that div(f,c) = 

rnC - Cm = m(P + R) - m(P) - ([rn]P) + (0) = m(P + R) - m(P). Since C = 

(P + R) - (R) (P) - (0) = D, this gives that C = (P) - (0) + div(g) for some 

rational function g. In the proof of Proposition 4.1.3, the equality = f,p 

was demonstrated. Due to the restrictions imposed on the point R, the function f 

has neither a zero nor a pole at Q or 0. Again, by Proposition 4.1.3, the function 

f,p in the Tate pairing can be evaluated at any divisor in the divisor class [D'] 

provided that its support is disjoint from the support of C. Since (Q) - (0) satisfies 

this property, 

e(P, Q) = f,((Q) - (Q))(qk_1)/m = f,(Q )(qk_1)/m 

f , (0)_l)/m 

Because the points P + R, R E E(]Fq), may be chosen so that f0 e Fq(E) 

which implies f ,0 (0) E F. By Lemma 4.2.2, (q - 1) I (qk - 1)/rn and hence 

((D) (qkl)/m = (f,ç ((9)q_1)(qk_1)/m(q_1) = 1. 

Therefore e(P, Q) = f,(Q)(qk_1)1m Note that g(Q) E and so 

f,(Q)1)1m = f,p(Q)(qk_1)/m . g(Q)L1 = f,p(Q)(qk_1)/rn• 

0 
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4.3 The Squared Tate Pairing 

This pairing was created in 2003 by Eisenträger et al. [ELMO4], the same authors who 

created the Squared Weil pairing, in an effort to improve the efficiency of the Tate 

pairing. Under certain circumstances, less operations are required for computing the 

Squared Tate pairing versus Tate pairing, as will be described further in Chapter 10. 

The Squared Tate pairing is based upon the same principles used for the Squared 

Weil pairing. 

Definition 4.3.1. The Squared Tate pairing is the composite 

Vm = e2 : E(Fqk)[m] x E(Fqk)/mE(JFqk) + 

(PI Q)i— 

where e is the reduced Tate pairing. 

e(P,Q)i—* e(P,Q)2 

Theorem 4.3.2. Let m E Z, let E be an elliptic curve defined over ]Fq such that 

M  (qk —1). Consider points P E E(lFqk)[m] and Q E E(iFqk) such that P,Q 0 0 

and are linearly independent. Consider the divisor D ' (P) - (0) and the function 

f,p on E such that div(fm ,p) = m(P) - m(0) - ([m]P) + (0). The Squared Tate 

pairing admits the following formula 

fm,p(Q)  
Vm (P,Q) = 

(fm,p(-Q)) 

Note that this proof is analogous to the proof of the Squared Weil pairing except 

that there is no (- I)m factor involved. 

Proof. Let R1, R2 E E such that the divisors D = (P + R1) - (R1), D' = (Q + R2) - 

(R2) have disjoint support. Let D" = (-Q + R2) - (R2). The proof follows from 
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the proof of the Squared Weil pairing, except that the term fm ,D'(D) need not be 

computed. This gives that 

W, 
-  ('Q)m  -  fm,p(Q+R2 R1)  

( 2 - I (P,Q)m fm,pe+R2Ri 

Using the same reasoning as in the Weil case, R2 can be chosen to equal R1. Raising 

to the appropriate exponent gives the desired result, namely 

/  fm,p(Q)  ) (qkl)/m  

e(P,Q)2 vm(P,Q). =  

0 

4.3.1 Computing the Squared Tate Pairing 

The method used for computing the Squared Tate pairing is similar to the approach 

for the Squared Weil pairing, which in turn uses the same principles as Miller's 

algorithm (Chapter 9). The functions are built up and evaluated as follows, 

f+k,P(Q) =  f,p(Q) fk,P(Q) 9L51P[k]P(Q)  

fj+k,P( - Q) fj,P (Q) fk,P(Q) g[j]P,[k]P (—Q) 
Again, like the Squared Weil pairing, there is cancellation with the functions 

g[j+k]P(Q) and g+k],P(-Q), as the vertical lines through [j + k]P evaluated at Q 

and —Q are equal. 
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Chapter 5 

The Eta pairing 

The Eta pairing is a generalization of the ideas originally presented by Iwan Du-

ursma and Hyang-Sook Lee [DLO3] in 2003 on a specific hyperelliptic curve. In 2007, 

Paulo S. L. M. Barreto, Steven Galbraith, Coim O'hEigeartaigh and Michael Scott 

[BGOSO7] developed the Eta pairing which extends the ideas of Duursma and Lee to 

more supersingular elliptic and hyperelliptic curves. To date, it is the only pairing 

that has been designed explicitly for such curves. Due to erroneous statements about 

their efficiency, misconceptions about their security and their seemingly simple form', 

supersingular elliptic curves have not been popular choices for uses in cryptography 

[KMO5]. This is likely due to the fact that in cryptographic settings that do not in-

volve pairings, supersingular curves are typically avoided [FSTOG]. However, making 

use of these curves provides a greater selection for pairing based cryptosystems and 

some of the most efficient pairing computations to date have utilized supersingular 

hyperelliptic curves [BGOSO7]. 

5.1 Supersingular Elliptic Curves 

The Eta pairing requires the elliptic curve E to be supersingular. A supersingular 

curve can be defined as follows. 

1An example of a simplistic supersingular elliptic curve is E: y2 = - 1 defined over lFq with 
q-1 (mod 6). 
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Definition 5.1.1. Let E be an elliptic curve defined over Fq, where q = pfl for some 

n E Z and a prime p. E is said to be supersingular if one of the following (equivalent) 

conditions holds. 

1. #.(Fq) 1 (mod p) in which case p I t where #E(]Fq) = q + 1 - t. 

. E( q)[p]={O}. 

.9. The ring of endomorphisms of E defined over }Fq is non-commutative. 

For a proof of the equivalence of these conditions, see [Sil86, V.3]. 

Define a distortion map as an endomorphism that maps a point from E(1Fq) to 

EFqk). Making use of such a map, another property of supersingular curves is given 

by the following theorem. 

Theorem 5.1.2. Let E be an elliptic curve defined over ]Fq. If E has a distortion 

map then it is supersingular. 

Proof. Consider a point P E E(1Fq), then irq(P) = P, where lrq is the qth power Frobe-. 

nius map. Let q be a distortion map such that q(P) 0 E(TFq). Note that q(irq(P)) = 

O(P) 4 'irq(cb(P)). Since both lrq, 0 E End(E), End(E) is non-commutative, and 

hence E is supersingular by the third condition in Definition 5.1.1. 0 

Finally, another interesting property of supersingular curves is that the embed-

ding degree is always less than or equal to 6 [M0V93]. 

5.2 Defining the Eta Pairing 

Let E be a supersingular elliptic curve defined over ]Fq with q a power of a prime 

such that the embedding degree is even. Let q be a distortion map that allows 
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denominator elimination; that is if P E E(IFq) then the x—coordinate of q(P) is 

defined over lFqk/2. 

Definition 5.2.1. (The Eta pairing) Choose N E Z such that m I N I (qk - 1). Let 

D, D' be reduced divisors on E that represent divisor classes of order dividing N; 

that is, {D}, [D'] E Pic°(E)[N] and let D = (P) - (0). As defined in 2.4, let fj,p be 

a function such that div(f,p) = i(P) - i(0) - ([i]P) + (0)t. For any integer T the 

Eta pairing is defined as 

?7T Pico (E)[N] x Pico (E)/NPic°(E) - p 

([D],[D']) fT,p(q(D')). 

The Eta pairing on points P, Q is defined as 

77T (P, Q) = 77T ((P) - (0), (Q) - (0)). 

A special case of this pairing, when T = q, gives the pairing defined by I. Duursma 

and H. Lee [DLO3] for a specific class of supersingular hyperelliptic curves; this was 

the motivation for the development of the Eta pairing. P. Barreto, S. Galbraith, 

C. O'hEigeartaigh and M. Scott [BGOSO7] improved the Eta pairing's efficiency by 

taking T = q - N. 

5.3 Relating the Eta Pairing to the Tate Pairing 

The following theorem relates the Eta pairing to the Tate pairing and hence shows 

that the Eta pairing is both non-degenerate and bilinear. 

tlfi < 0 theniD is written as (—i)(--D) and div(f,p) =  
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Theorem 5.3.1. Let E be a supersingular elliptic curve defined over ]Fq with even 

embedding degree k ≥ 2 and distortion map 0. Let D be a divisor on E defined over 

]Fq with order dividing N E N. Choose T E Z such that 

1. TD r-' 'y(D) in the divisor class group where y is an automorphism of E which 

is defined over ]Fq. 

2. 'y and 0 satisfy the condition that ,yq5q(Q) = q(Q) for all points Q E E(Fq). 

3. Ta+1=LN for some aEN and LE7L. 

. T=q+cN for some cEZ. 

Then 

((D, (D') (k_1)/N)L = (T(D, F)(qk_1)IN)aTa_l 

In Chapter 6 it will be shown that this pairing is simply a version of the Ate 

pairing'. For this reason, the proof of this theorem will be omitted until that time. 

The Eta pairing can be defined in a much simpler way [HSVO6] as 

77T G1 X C2 -* Pm 

(P, Q) i-* fT,P(Q), 

where the definition of the groups G1 and C2 will be given in § 6.2. The relation 

between the Tate and Eta pairing is given as 

e(P, Q)L = fT,P(Q) '_1)1M  

2The original version of this proof contains unnecessary details that the authors of [HSVO6] 
manage to work around. In particular, the use of the automorphism 'y is avoided altogether. 
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where M = gcd(qk - l, T' - 1), L = (T' - 1)/M and 

C= ET  kq'' (mod m). 

Although Theorem 5.3.1 relates the Eta pairing to the Tate pairing, a further ex-

ponentiation is required to obtain the correct value for the exponent of the reduced 

Tate pairing; the authors of [BGOSO7] indicate that as an alternative, a cryptosystem 

could be designed around the Eta pairing which would alleviate this requirement. 

However, since it may not be desirable to work with a non-standard pairing, con-

verting the Eta pairing to the Tate pairing may be required. Despite this additional 

step, the Eta pairing is still more efficient to compute than the Tate pairing for the 

supersingular curves defined over finite fields of characteristic 2 and 3 examined in 

[BGOSO7]. 

Another advantage of the Eta pairing is in the case where it is desirable for points 

P and Q to be linearly dependent. Most pairings are degenerate in this case. For 

instance, if Q = [E]P for some £ E Z, then 

e(P, Q) = (P, []P) = e(P, .P)t = I' = 1. 

Using a supersingular curve, a distortion map q can be used so that q(P) 0 (P) and 

so the Eta pairing applied to linearly dependent points need not be degenerate. 
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Chapter 6 

The Ate Pairing 

The Ate pairing is a generalized version of the Eta pairing and can be extended to 

ordinary curves as well as supersingular curves. This pairing was created by Florian 

HeJ3, Nigel Smart, and Frederik Vercauteren [HSVO6] in 2006. The name was chosen 

based upon the fact that this pairing is very much like the Tate pairing, but under 

certain circumstances it is more efficient, see Chapter 10, so removing the 'T' from 

the name represents the accelerated computation. Since it is also like the Eta pairing 

in various ways, except that the arguments for the pairing are reversed, then noting 

that Ate is Eta spelled backwards is also rather fitting. 

6.1 Defining the Ate Pairing 

Typically the Tate pairing is defined on C1 x C2 with the groups C1 = E(lFqk) [m] 

and C2 = E(1F ) /mE(]Fqk). In practice however, subgroups of the form 

Ci = E[m] fl Ker(irq - [1]), (6.1) 

G2 = E[m] fl Ker(irq - [q]) (6.2) 

are often used to speed up the computations where 

irq—[1]:E - E 

(X1 Y) i- (xy)_(xy) 
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and 

lrq — [q] : E 

(X, Y) 

— E 

'—p (xc,y) — [q](x,y). 

Computing the Tate pairing on the cross product G2 x G1 is less complicated 

from a theoretical stand point, which will become more evident in § 6.2. It is with 

these ideas that the Ate pairing is defined. 

Definition 6.1.1. (Ate pairing) Let E be an elliptic curve defined over JFq and m be 

a large prime such that m I #E(1Fq). Define t by #EFq) = q + 1 — t. The quantity 

t is called the trace of Frobenius acting on E(i). Denote T = t - 1 and choose 

Q E G2, P E G1 for G2, G1 defined in (6.) and (6. 1), respectively. Let fT,Q be the 

function defined in § 2.4, such that div(fT,Q) = T(Q) - T(0) - ([T]Q) + (0). The 

Ate pairing, aT, is defined as follows, 

aT:G2xGl — I27n 

(Q' P) i-+ fTQ(P). 

The following series of lemmata will be required for relating the Ate pairing to 

the Tate pairing. 

Let N E Z such that N = gcd(T' - 1,q'' —1) where m I N. Denote (T' — 1)/N 

by L. 

Lemma 6.1.2. The Ate pairing with parameter Tk is related to the reduced Tate 

pairing by the equality, 

e(Q,P)" = fQ(p)( k_1)IN = aTk  (Qp)(qk_1)/N 
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Proof. By definition, 

e(Q,P) = (Q p) (qk_1)/m = fQ (p)(qk_1)/m  

Lemma 4.2.1 implies that 

fQ (p)(qk_1)Im  = 

since m I N I (qk - 1). The divisors of the functions fN',Q and fLN,Q are given by 

div(f ,Q) = L(N(Q) - N(Q) - ([N]Q) + (0)) = 

div(fLN,Q) = LN(Q) - LN(0) - ([LN]Q) + (0)) =.div(fLN,D) 

for D = (Q) - (0) E [D], where [D] E Pic°(E)[m]. Since the order of D divides N 

then 

By the isomorphism 0 : Pico(E) -i E from equation (2.10), o(N((Q) - (0))) = 

[N]Q and u((0) - (0)) = 0. Since N(Q) - N(0) - (0) - (0), then [N]Q = 0. Up 

to a constant in 

JN,Q = JLN,Q. 

Consider 

e(Q, p)L = fQ(p)L(qk_1)IN 

= fLN,Q(P)" 

= 

where the third equality holds by definition of L. Finally, all that remains to be 

shown is that the parameter T' - 1 can be replaced with T'. Since T' - 1 = LN 
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and the order of Q divides m which in turn divides N, [T' - 1]Q = 0 and so 

div(fTk_l,Q) = (T'' - 1)(Q) - (Tk - 1)(0) - ([T' - 1]Q) + (0) 

= (T') (Q) - (T')(0) - (Q) + (0). 

Observe that [Td]Q = [T - 1]Q + Q = Q, hence 

div(fTk,Q) = Tk(Q) - Tlc(0) - ([Tk]Q) + (0) 

=T'(Q)—T'(0)—(Q)+(0) 

= div(fTk_ l,Q). 

This implies that up to a constant in ]F, fTk_1,Q = fTk,Q giving the desired result 

that 

= fTk,Q(P)_1)1 r. 

D 

Lemma 6.1.3. For T = t - 1, where t is the trace of Frobenius, the function fTk,Q 

can be chosen such that 

fTk,Q - ,cT cTk_2 .L 
- JT,Q JT,[T]Q JT,[Tk1]Q. 

Proof. Observe that 

div(fTk_l Tk_2 T,Q fT,[T]Q fT,[Tk-11Q) = T'(Q) - T'(0) - T''([T]Q) + T' 1(0) 

+ T1([T]Q) - T1(0) - T12 ([T2]Q) + T 2(0) 

+ T([T' 1]Q) - T(0) - ([T'']Q) + (0) 

= div(fTkQ) 
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T' T 2 and so up to a constant in 1F, fTk,Q fT,Q fT,[T]Q fT,[Tk-1]Q. 

Lemma 6.1.4. For each point Q in the group G2, 

h,4(Q) = JT,Q 

where a is the qIh power F'robenius endomorphism. 

Proof. For every point Q E G2, irq(Q) = [q]Q = [t 1]Q = [T]Q, hence, 

[Ti]Q. With this property, 

div(fT(Q)) = T(ir(Q)) - T(0) - ([T](ir(Q))) + (0) 

= T(4(Q)) - T(0) - (i+l(Q)) + (0). 

Since lTq is of degree q and purely inseparable, 

= div((1r)*(fT,(Q))) 

= qT(Q) - qT(0) - q(irq(Q)) + q(0) 

= div(f Q) 

Also, by Theorem 2.2.1, 

(z)*(div(f.)) = div(fT,, (Q) o 7r) 

and hence up to a scalar multiple in TF 

qt 
JT,4(Q) 0 irj JT,Q 

E 

7rqi (Q) = 

Note that qi can be interpreted as an action of Frobenius and thus fQ can be written 

as fQ o,7rqi implying that fT,,i o .7rqi = fTO,Q 0 ir. The desired result, fT,(Q) = 

follows since is in the group of automorphisms of E and hence the cancellation 

law holds. 0 
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The following Theorem describes the conditions under which the Ate pairing is 

non-degenerate. Also, it relates the reduced Ate pairing to the reduced Tate pairing. 

Theorem 6.1.5. Let E be an elliptic curve over Fq, m a large prime such that 

M I #EFq), k the embedding degree and t the trace of Frobenius. For T = t - 1, 

Q E G2 = E[m] fl Ker(irq - [q]) and P E C1 = E[m] fl Ker(irq - [1]), the following 

hold. 

1. aT(Q, P) = fT,Q(P) is a bilinear pairing. 

2. For  = gcd(T" - 1,q' —1), TIc —1= LN, 

e(Q, p)L = fQ(p)c(qk_1)/N 

where e is the reduced Tate pairing and 

k-i 

C=E T k-l-ie  

i=O 

(mod m). 

S. If m does not divide L then the pairing is non-degenerate. 

Proof. Recall that 

fTk,Q(P) = fT,Q(P)T'fT,[TJQ(P)T2 ... fr_ij(P) (Lemma 6.1.3) 

= fT,Q (p)Tk_l fT,q(Q) (p)T2 f-' (P) 

= fQ(p)Tk_lfQ(p)T2q. f(p)qkl 

J£ rfT,Q( )c 

(Lemma 6.1.4) 

where c = Tc_i_iqi kqk_i (mod m). In summary, fTk,Q(P) = fT,Q(P)c and 

therefore Lemma 6.1.2 gives 

e(Q, p)L = fQ(p)(qk_i)/N = 
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This shows that the Ate pairing is bilinear. If m does not divide L, the Ate pairing 

is a non-degenerate pairing since the reduced Tate pairing is non-degenerate. 0 

Like the Tate pairing, the Ate paring can be given in a reduced form. By con-

vention, m is chosen so that m2 t (qk - 1) and hence m2 t N. Denoting N = ms for 

some integer s, then m t s. Also, in practice, m is much larger than k thus m t k. 

Since m p q' - 1, m t q and so m t c where c kqc_l (mod m). Denoting M as 

M Lsc' (mod m), the reduced Ate pairing can be defined as 

e(Q, p)M = c(Q, p)L8/c fT,Q(p)(_1)1m. 

6.2 A Different Approach for the Ate Pairing 

For a slightly more complicated procedure defining the Ate pairing, consider the 

pairing on G1 x G2. The first step will be to give a different representation for the 

groups G1 and G2. Let q denote the dual isogeny of lrq, called the Verschiebung, 

where *q 0 7rq = [q]. 

Note that for P E G1 = E[m] n Ker(irq - [1]), 

[q]P = (q 0 irq)(P) q(P) 

since irq(P) = P. Hence another representation for G is given by G1 

Ker(-q - [q]). 

Similarly, for Q E G2= Ker(irq - [q]), 

'irq(Q) = [q]Q = (q 0 irq)(Q) = q(irq(Q)). 

For a point Q E G2 consider the subgroup (Q) of G2; 

irq(Q) = [q]Q E (Q) C G2 
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and since Q was chosen arbitrarily, lrq(G2) = G2. Using (6.3), this implies that for 

a given point Q, q(Q) = Q. Therefore, another representation for G2 is given by 

= E[m] flKer( q — [1]). 

In order to define the Ate pairing on C1 x G2 a few modifications are required. 

The properties of the Ate pairing given by Theorem 6.1.5 still holds in the case of the 

Ate pairing on G2 x C1 except that Lemma 6.1.4 may require modification depending 

upon whether B is a supersingular or an ordinary elliptic curve. 

Case 1: Let B be a supersingular elliptic curve. By definition [Sil86, V.3.1], 

E[q] = {O} and the map is purely inseparable of degree q• Lemma 6.1.4 implies 

that 

fT,(P) 0 = f2q,• 

Since q(Q) = Q for Q E G2 then 

(fT,*(P) 0 )(Q) = fT,(P)(Q) = (fT,P(Q)). 

Finally, by Theorem 6.1.5, 

e(P, Q)L = 

where c = T_l_iqi = kq'_1 (mod m ). 

This particular case gives a lovely description of the Eta pairing that is more 

simplified in contrast to the definition of the pairing given in Chapter 5. 

Case 2: Let B be an ordinary elliptic curve. Then, by definition [Sil86, V.3.1], 

E[q] Z/qZ and the map is separable. Note that Ker(*) = E[q], and 

hence Ker( -) is not equivalent to {O} as before, which makes it difficult to relate 

fT,*(P) 0 to fT,P as is needed in the proof of Lemma 6.1.4 for the Ate pairing. 
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However, using a twist of the elliptic curve it is possible to get around this problem, 

which will be addressed in Chapter 7. 

6.3 The Optimised Ate Pairing 

This pairing is a generalized version of the Ate pairing where the parameter T is 

replaced with any integer that is congruent to q modulo m. The parameter is chosen 

to be of minimal absolute value, hence optimizing the Ate pairing in certain cir-

cumstances. In 2007, this pairings was developed by Florian Hei3, Naoki Kanayama, 

Seiichi Matsuda, and Eiji Okamoto [HKMOO7]. 

The following theorem gives a description of the Optimised Ate pairing and relates 

the pairing to the reduced Tate pairing. 

Theorem 6.3.1. Let E be an elliptic curve defined over Fq. Let S E Z such that 

S q (mod m). Let N = gcd(S' - 1, qk - 1) > 0 and L = (sk - 1)/N. Let 

CS = 5i_lq (mod N). Then 

as : G2 X C1 

(Q' P) 

YM 

-* f5,Q(P)_1)h11 

is a bilinear pairing. 

If m does not divide L then this pairing is non-degenerate. 

The Optimised Ate pairing can be related to the reduced Tate pairing as follows 

as(Q, P) = e(Q, p)L 

The proof of this theorem is analogous to the proof of Theorem 6.1.5 for the 

Ate pairing. The pairing also gives improvements to the Ate pairing for certain 
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embedding degrees and composite group orders which will be addressed in Chapter 

10. 

6.4 The Atei Pairing 

This pairing is like the Optimised Ate pairing in that it generalizes the Ate pairing, 

but does so in a different way. The parameter T is now replaced with a power i of T 

modulo m for an i within a certain range and can be computed efficiently for curves 

with small trace values. This pairing was developed by Jiwu Huang, Fangguo Mang 

and Chang-An Zhao in 2008 [HZZO8]. 

In a manner similar to § 6.3, the subsequent theorem gives a description of the 

Atei pairing and provides the relationship that equates it to the Tate pairing. 

Theorem 6.4.1. Consider an elliptic curve E defined over a finite field F. with q 

a power of a prime. Let m be a large prime such that m I #EFq), t the trace of 

Frobenius, k the embedding degree and T = t-1. ConsiderT = Tiq (mod m) for 

0 <i < k. Choose Q E C2 = E[m] n Ker(irq - [q]) and P E C1 = E[m] fl Ker(irq - [1]). 

Consider the following: 

1. aT(Q, P) = fT,Q(P) is a bilinear pairing. 

. Let £ be the least positive integer such that (Ti)' 1 (mod m). Let N = 

gcd(Til  and TI-1=LN, then 

e(Q,P)" = f Q (p)C(!_l)/N 

where e is the reduced Tate pairing and c >II I'_(q)i (mod N). 

3. If m does not divide L this pairing is non-degenerate. 
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The proof follows in an analogous fashion to the proof of Theorem 6.1.5 for the Ate 

pairing. 

In optimizing the computation of this pairing, the idea is to compute T = T q 

(mod m) for each i E Z such that 0 <i < k and to select the T, parameter with 

the least number of bits. In general, this approach does not provide improvements 

over the Tate pairing, but for curves in which the trace of Frobenius value is small, 

there may in fact be a reduction in the Miller loop. This will be discussed further in 

Chapter 10. 
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Chapter 7 

The Twisted Ate pairing 

The Twisted Ate pairing is like the Ate pairing except that it reverses the order 

of the arguments. In order to define a map in this way, the theory of twists is 

required. This pairing was developed in 2006 along with the Ate pairing by He3et al. 

[HSVO6]. Given certain parameters, this pairing provides improved efficiency over 

the Tate pairing, which will be discussed further in Chapter 10. 

7.1 Preliminaries for Twists 

First, the background material that is specific to the Twisted Ate pairing will be 

discussed. 

Definition 7.1.1. Let E, B' be elliptic curves defined over lFq. If there exists an 

isomorphism 

d:E— E 

defined over Fqd where d is minimal, then B' is called a twist of degree d of B. 

Consider an elliptic curve B of the form B x3 + Ax + B defined over Fq 

where q = ptm for some prime p. From [Sil86, X.5.4], if p ≥ 5 then the set of twists is 

canonically isomorphic to with 
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2 ifj(E)0,l728, 

d 4 ifj(E)= 1728, 

6 ifj(E)=0. 

The term j (E) is called the j—invariant of the elliptic curve which is a quantity 

defined by the coefficients and the discriminant of the curve [Sil86, IlL 1]. Note 

that all elliptic curves have at least degree 2 twists [FSTO6]. In the case when 

d = 2, which is usually the case, the unique twist B' of B is given by the equation 

(y2 =x3+Ax+B, for ç E1F*/(1*)2 

For d = 2,4 and 6, Aut(E) Pd, with Pd the set of dth roots of unity [Sil86, 

111.10.2]. An isomorphism is given by 

[•] Pd —f Aut(E) 

where [](x, y) = (e2z, 3y). 

Note that the isomorphism defining the twist B' of B of degree d induces the 

following ring isomorphism, 

d: End(E') End(E) 

f d(f)=qdofoçb'. 

Let lrq and 'ir denote the Frobenius endomorphisms on B and B' respectively. Con-

sider any rational map g: B —) E' and observe that irqo g = g olrq. Therefore, 

'd( 71q) =q5do7rqoqq' (Od  
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The automorphism Od 0 ()°• E Aut(E) is of order d [HSVO6] and hence a 

primitive dth root of unity. By the isomorphism [•] : Ad —f Aut(E), the twists Ej of 

degree dividing d of E can be labelled for i = 0,. . . d — 1 by 

j(irq,j) = [}irq. 

The value d is a fixed primitive dth root of unity and '11q,i E -* Ej is the usual 

obenius endomorphism. The map Ij is the ring isomorphism induced by the 

isomorphism q5 Ej E defining the twist Ej of degree dividing d of E. 

Notice that E(Fa) = Ker(ir— [1]) and likewise Ej(]Fq) = Ker(ii q,j— [1]). Mapping 

the Frobenius endomorphism of B' into B by (irq,j) = []irq gives the following 

isomorphism 

Ei(]Fq) Ker([]irq - [11). (7.1) 

Recall that 

G1 = E[m] n Ker(irq - [1]) and (7.2) 

= E[m] n Ker(irq - [q]). (7.3) 

Using the previous analysis, let B' be a twist of degree d of B, n = gcd(k, d) and 

e = k/n. Then 

E'(}Fqe) Ker([]ir — [1]). 

Hence, the isomorphism in (7.1) can be used to give the following alternative repre-

sentation for G2 for the twisted Ate pairing, 

G2 = E[m] n Ker([]ir — [1]). 
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Working with G2 in the form of (7.3) for Q E G2, lrq acts as a multiplication by q 

map. Using the alternate representation of G2 given in (7.4), this implies that the 

map [] acts as a multiplication by q. From [HSVO6], [] acts as a multiplication 

by qe map on C1 and so for P E C1, [qe]P = [TC]P = []P. These properties of G1 

and C2 will be required for the Twisted Ate pairing. 

7.2 Definition of the Twisted Ate Pairing 

Suppose that E admits a twist E' of degree d. Let n = gcd(k, d), e = k/n and 

G1 = E[m] fl Ker(irq - [1]), 

G2 = E[m] fl Ker([]ir - [1]), 

where is a primitive flth root of unity. 

Definition 7.2.1. Let E be an elliptic curve over lFq, m a large prime dividing 

#E(1Fq) = q + 1 - t where t is the Trace of Frobenius. Set T = t - 1 and choose 

P E C1 and Q E C2. Let f,p be a function as defined in § 2.4 such that div(f,p) = 

i(P) - i(0) - ([i]P) + (0). Then the twisted Ate pairing is defined as follows, 

aTtwistC :G1xG2 AM 

(P, Q)  fTe,p(Q)I_1)h1\T 

where N = gcd(Tk - 1,q' —1), T'' —1 = LN, and 

c= 
—1 

i=O 
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The reduced twisted Ate pairing is defined as f,p(Q)(qk_1)1m• 

The Twisted Ate pairing can be related to the Tate pairing in a similar manner 

as the Ate pairing relates to the Tate pairing. The following theorem describes 

this relation and gives the conditions under which the Twisted ate pairing is non-

degenerate. 

Theorem 7.2.2. Let E be an elliptic curve defined over lFq, m a large prime such 

that m I #B'q). Denote t as the trace of Frobenius and set T = t - 1. For P E 

G1 = E[m] fl Ker(irq - [1]) and Q E C2 = E[m] fl Ker([]ir - [1]) the following hold. 

1. fTe,p(Q) is a bilinear pairing. 

. ForN = gcd(T'1,q''1), T''1 LN andc= i=O nqe() 

(mod m), 

e(P, Q)L = 

where e(P, is the reduced Tate pairing. 

3. If m ' L then the pairing is non-degenerate. 

The proof parallels the proof of Theorem 6.1.5 for the Ate pairing except that 

Lemma 6.1.4 is replaced by the following lemma. 

Lemma 7.2.3. Let P E C1. Then 

fTC,EenlP o ['en] fTe,P. 

Proof. Note that [] is an automorphism of E, has trivial kernel, and is separable 
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of degree 1. Consider 

div((fTe,[]p) o{]) = []* div(fTe,[e]p) 

= []* (Te([]P) - Te(0) - ([Te]([]P)) + (Q)) 

= T(P) - T(0) - ([T]P) + (0) 

= div(fTe,p). 

Also, precomposing with ii- gives 

fTe,[]P 0 [] 0 e= JTC,P 

since fTe,P is defined over lFq. Thus for Q E G2 

fTe,[]p(Q) = fTe,p(Q) 

Following the remaining steps in the proof of Theorem 6.1.5 gives 

e(P, Q)L = f(Q)c(qk_1)IN 

for N = gcd(Tk - 1,qk' —1), T' —1= LN, and 

rn—i 

C = mq' (mod m). 

The Twisted Ate pairing is only more efficient to compute than the Tate pairing 

when ITI ≤ m, namely when the trace of Frobenius is relatively small compared 

to the value of m. It is also worth noting that in the case where E = E' and E is 

supersingular, this pairing coincides with the Eta pairing. 
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7.3 The Optimised Twisted Ate Pairing 

Like the Optimised Ate pairing, the Optimised Twisted Ate pairing was developed by 

He13 et al. [HKMOO7] in 2007. This pairing also gives improvements to the Twisted 

Ate pairing for certain embedding degrees and composite group orders. 

Theorem 7.3.1. Let E be an elliptic curve defined over F. that admits a twist of 

degree d. Let  E Z such that S= q (mod m). Let  = gcd(Sc - 1,q'' —1)> 0 and 

L = (Sk - 1)/N. Let CS = 5l_l_q (mod N). For points P E G1 and Q E C2 

as defined in § 7. 2, a bilinear pairing called the Optimised Twisted Ate pairing is 

defined as 

twist as :G1xG2 —* MM 

(F, Q) i—+ f5p(Q)cs(qk_1)/N 

If m does not divide L then this pairing is non-degenerate. 

The Optimised Twisted Ate pairing can be related to the reduced Tate pairing as 

follows. 

ai8t(P, Q) = e(P, Q)L 

The proof of this theorem is analogous to the proof of the Twisted Ate pairing 

in § 6.1.5. See [HKMOO7] for the slight change of details. This pairing provides a 

generalization of the Twisted Ate pairing. 

7.4 The Twisted Atei Pairing 

The definitions of the Atei and Twisted Ate pairings can be extended to define the 

Twisted Atei pairing. This pairing was developed by Huang et al. [HZZO8] in 2008, 
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along with the Ate1 pairing. The definition is as follows. 

Definition 7.4.1. (Twisted Atej Pairing) Consider the elliptic curve E defined over 

lFq with embedding degree k. Suppose that E admits a twist E' of degree d. Let m be 

a large prime divisor of #EFq), T = t-1 and Ti = T1 q' (mod m) for  <i < k. 

For a function f,p defined in § 2.4 and points P E G1 and Q E G2 as defined in § 

?, the Twisted Ate1 pairing is defined by 

twist :G1xG2 

(F, Q) i— fTf,P(Q)c_l)IN 

where N = gcd(T' - 1, q  - 1), T' - 1 = LN, and 

rn—i 

= 2(m _1_1)qei mqe( 1) 

1=0 

(mod m). 

Showing that this is a bilinear, non-degenerate pairing is similar to doing this for 

the cases of the Ate1 and Twisted Ate pairings. 
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Chapter 8 

The R-ate pairing 

The R-ate pairing is a further generalization of the Ate pairing that incorporates 

the Atei pairing as well. In addition, it offers faster computation over the Ate 

pairing given certain parameters, which will be discussed further in Chapter 10. 

This pairing yields greater efficiency on certain curves than has been obtained with 

any other pairing. It was developed in 2008 by Eunjeong Lee, Hyang-Sook Lee and 

Cheol-Min Park [LLPO8]. 

8.1 Defining the R-ate Pairing 

As defined in §2.4, for D e' (F) - (0) let fn,D denote the function with divisor 

div(f,D) = mD -  Dn 

and let D denote the divisor 

D ([n]P) - (0). 

Note that a function fn,Dn has divisor div(f,D ) = nD - and is also commonly 

denoted as fn,nD where nD in this case does not refer to the divisor D multiplied by 

the scalar n. If D = (F) - (0), then f,D can also be written as f,p where 

div(f,p) = n(P) - n(0) - ([n]P) + (0). 
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Denote by G[j]p,[k]p the function that is the quotient of the secant line through the 

points [j]P and [k]P over the vertical line through the point [j + k]P. Consequently, 

div(G]p,[kjp) = ([j]P) + ([k]P) - ([j + k]P) - (0) 

which is represented in Miller's algorithm as the function g[j)p,[k]p/g+kjp in Chapter 

9. 

Definition 8.1.1. Let E be defined over lFq. Let [D], [D'] E Pic°(E)[m] such that 

D (P) —(0) and D' (Q) —(0). Let a,b,A,B E Z such that  = aB+b. The 

R-ate pairing is defined as follows 

T (D, r,I\ £ I I\ .e (D') 7- I\ f I 7- / 
.LlA,.L1, i_I) = Ja,D2.l—') Jb,D/—') -7 [aBJP,[b]P'.J-) 

This pairing is bilinear and non-degenerate if the conditions in the subsequent 

theorem are satisfied. Additionally, this theorem relates the R-ate pairing to the 

reduced Tate pairing. 

Theorem 8.1.2. Let E be defined over IFq. Let D, D' and a, b, A, B be defined as in 

the definition of the R-ate pairing. Suppose fA,D(D') and fB,D(D') are Tate pairings 

and hence non-degenerate bilinear pairings' such that 

e(D,D)'' = fA,D(DF)M1 , e(D,D/)L2 = fB,D (E)M2 

for L,,L2, MI, M2 E Z. Let M = lcm(M,,M2), d1 = M/M,, d2 and 

L = di L, - ad2L2. If m does not divide L then the R- ate pairing RA,B(D, D') is a 

non-degenerate bilinear pairing such that 

e(D,D')" = RA,B(D,D')M . 

'Recall that by the properties of the Tate pairing given in § 4.2, the pairing is bilinear and 
non-degenerate. 
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Proof. Let D = (P) - (0). Note that 

dV(faB,D) = aBD - DaB 

= a.B(P) - aB(0) - ([aB]P) + (0) 

= aB(P) - aB(0) - (a([B]P) - a(0)) 

+ (a([B]P) - a(0)) - ([aB]P) + (0) 

= a - div(fB,D) + dV(fa,DB ). 

Up to a constant in 1F, this implies 

JaB,D = JB,D Ja,DB 

Thus 

fA,D(D') = faB+b,D(D') 

= faB,D(D') f,(D') . G[aB]p,[b]p(D') 

ta ( \ .t I /\ .t 
= JB,D ) Ja,D ) Jb,D( ) [aB]P,[b]P. 

= f.,D(D') . RA,B(D, DI). 

The second equality follows from Theorem 9.1.1. Since fA,D(D') and f,D (D') are 

bilinear pairings then RA,B(D, D') is as well. Raising both sides to the exponent M 

gives 

J.tA,D ) ( /\M - J:B,D R A,B (D,/ /\ ) aM  ) /\M 

Hence 

e(D, D 1 )d11 = e(D, D/)ad22 RA,B(D, D') M . 

Therefore e(D, D1)" = RA,B(D, DI)M. In conclusion, the R-ate pairing is non-degen-

erate if m does not divide L, as in the Ate pairing, Theorem 6.1.5. 
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8.2 Optimizing the R-ate Pairing 

The functions fa,DB and fb,D are defined with distinct divisors, namely DB and D. 

Using certain parameters for A and B (that are typically used for other pairings) the 

functions fa,DB and fb,D can be defined in a more optimal way. One way to do this 

is to define the functions with the same divisor and therefore Miller's algorithm does 

not need to be computed twice. Another way to optimize the pairing is to eliminate 

one of the functions altogether. 

Corollary 8.2.1. Let E be a non-singular elliptic curve defined over ]Fq. Let k denote 

the embedding degree and consider a large prime m such that m I # Pico (E)(]Fq). As 

in the Ate pairing, choose [D] E G1 = Pic°(E)[m] fl Ker(ir - [1]) and [D'] E G2 = 

Pico (E) [m] fl Ker(irq - [q]). Consider the following. 

• T=T=q (mod m) for O<i<k. 

• h, the least positive integer such that 1 (mod m). 

• N = gcd(2 - 1,q' —1); Tt —1= 

•ci = .hi•••l•••i(qi)i (mod Ni). 

• 

The R-ate pairing is related to the Tate pairing via the relation 

e(D, D)L = RA,B(D, D/)M 

for the following parameters (A,B) and exponents L, M. 
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1. (A, B) = (q, m), 

L = jqz_lg_i - kq''_'a, M = kqk_1 1. 

2. (A, B) = (q, T), for q > T, 

L=M1—aL1,M=c1M1. 

3. (A,B)=(T,T), 

L = dL - adL, M = lcm(cjM1, cjMj) = dcjMj = dcjMj. 

4. (A,B)—(rn,Tj), 

Ii = do - adL, M = lcm((q" - 1)/rn, cMj) = 

In each of these cases, the R-ate pairing is equal to: 

1. Rqi,m (D, D') = fT,D(D') 

2. Rq,T(D, D') = fa,D(D1 ) fb,D(D') . G[aT]p,[b]p(D') 

3. Rr,(D, D') = . fi(D') . GIaTj)p,[b]p(D') 

4. Rm ,pj(D, D') = fa,D(D') fio(.D') . G[a2'j]p,[b]p(D'). 

Note that in the first case the R-ate pairing reduces to the Atei pairing. 

Proof. For A = q, B = m, the R-ate pairing is defined as follows, 

Rqi,m (D, D') = fa,Dm (D') fb,D(D') G[am]p,[b]p(D') 

= 

where qi = am + b. Since T = q (mod m) this gives that q' = am + T, i.e. b = T. 

Because P E E[m], the secant line through [am]P = 0 and [T]P is equal to the 

vertical line through [am + T]P = [am]P + [T]P = [T]P. Additionally, note that 
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Dm = ([m]P) - (0) = 0 and so fa,Dm = fa,o, that is, f,,,ø is a constant function; let 

fa,o = 1. Therefore 

Rqi,m (D, D') = fT,D(1Y). 

The proofs for cases 2 through 4 are identical since B is given as some power of 

T in each of these situations. Although the parameters for A are quite distinct, they 

only affect the value of a and b given by the relation A = aB + b which does not 

alter the proof. For B = T, and A is either q, T or m the R-ate pairing is defined 

as follows, 

RA,T(D,D') = fa,DT (D') fb,D(D') . G[aTj]p,[b]p(D'). 

Note that [D'] E Pic°(E) n Ker(ir - [1]), and so irq(D') = D. Similarly, [D] E 

Pic°(E) fl Ker(ir - [q]), hence, irq(D) = [q]D = [T]D. Since T q (mod m), 

?r(D) = [T2]D. Consider 

fa,D (D') fa,TjD = fa,ir (D)(E ') = faD(1 ') 

where the third equality holds by Lemma 6.1.4. Whence 

RA,T(D, D') = f, (Dt) . fb,D(D') G[aTj]p,[b]p(D'). 

For a proof of the choice of exponents, see [LLPO8]. 
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Chapter 9 

Miller's Algorithm 

Victor Miller [Mil86] created the first efficient algorithm for computing pairings on 

elliptic curves in 1986. At present, it is the algorithm of choice for computing the 

Weil pairing, the Tate pairing and several of its variants, namely the Eta, Ate and 

Twisted Ate pairings. The Squared Weil and Tate pairings and the R-ate pairing 

are computed using algorithms that are variations of Miller's algorithm. The goal of 

this algorithm is to compute the value of a function at a divisor (or a point) using 

properties of the group law. The idea is to begin with the constant function f,,p with 

divisor div(fi,p) = 1(P)-1(0)—([1]P)+(0) and, using point addition and doubling, 

obtain the function f,p with divisor diV(fm ,p) = m(P) - m(0) - ([m]P) + (0) 

evaluated at the divisor D' -. (Q) - (0) (or explicitly at the point Q provided that 

the embedding degree is larger than 1). What makes this algorithm particularly 

efficient is that specific functions for f,p in x and y need not be computed at each 

stage; rather, the evaluation of these functions at either the divisor or the point is 

all that is required. 

9.1 Overview 

Miller's algorithm applied to the Tate pairing and its variants' proceeds based upon 

the idea that if f,p(D') and fk,p(D') have been computed then f+k,P(D') can be 

'Miller's algorithm for the Weil pairing is quite similar, but an explicit description will be 
omitted as computing it is far less efficient than computing the Tate pairing [GPSO6]. 
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computed' as follows. 

Theorem 9.1.1. Let P E E(JF'q), Q E E(lFqk) and f,,p the function defined in the 

usual way where div(f,p) = n(P) - n(0) - ([n]P) + (0) for  E Z. Choose divisors 

D '-.-' (P) - (0) and D' (Q) - (0) with disjoint support, denote .q]P,[k]P as the 

line through the points [j}P and [k]P and g+k]P as the vertical line through [j + k]P. 

Then for all j,k E Z 

f+k,P(D') = f,p(D') fk,p(D') g]p,[k]p(D') 
g+k]p(D') 

Proof. Note that 

div(g ]p, [kJp) = ([j]P) + ([k]P) + (-Li + k]P) - 3(0), 

div(g+kJp) = (Li + k]P) + (-U + k]P) - 2(0). 

Thus, 

div(g1p,[k]p) - div(gy+k)p) = ([j]P) + ([k]P) - (Li + k]P) - (0). 

Using the above equality, 

div(f+k,p) = (j + k)(P) - (j + k)(0) - ([j + k]P) + (0) 

=j(P) —j(0) - ([lIP) + (0) 

+ k(P) - k(0) - ([k]P) + (0) 

= div(f,p) + div(fk,p) + div(g[j]p,[k]p) - div(g+kJp) 

2Equivalently given f,p(Q) and f.,p(Q), then fj+k,P(Q) can be computed. 
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giving the desired result, 

f+k,P(D') = f,p(D') fk,P(D') g]p,[k]p(D') 
g +k]p(D') 

0 

Computing the function fj+k,P is called a "Miller operation" [MilO4]. 

Analogously, for the Weil pairing: 

f+k,p(D') = f,p(D') fk,P(D') g]p,[k]p(D')/g +k]p(D') 

f+k,Q(D) f,Q(D) fk,Q(D) g[j]Q,[k]Q(D)/g5+k]Q(D) 

9.2 Miller's Algorithm 

(9.2) 

The following gives a description for computing the Tate pairing (hence also the 

Eta, Ate and Twisted Ate pairings) using Miller's algorithm. The Weil pairing is 

computed in a similar manner using the equality in (9.2). This algorithm uses the 

principles of the Right-to-Left Double-and-Add algorithm. 

Let P E E(Fq)[m], and let Q € E(Fqk). Let f,p be a function with divisor 

div(f,p) = n(P) - n(0) - ({n]P) + (0) and consider the divisors D "-' (P) - (0) 

and D' (Q)—(0) with disjoint support. Define vn = f,p(D') and let fo,p, fi,p = 1. 

1. Seti=m,j=O,k=1,v0=1,v1=1. 

2. If i is even: replace i with .. Compute 

V2k = f2k,P(D') = f,(D') g[k]P,[k]P(°)  

g[2kjP (D') 

tNote that D' is a degree zero divisor and so the equality holds, not simply up to a scalar 
multiple. 
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which holds by Theorem 9.1.1. This term, V2k, is computed by finding the 

tangent line at [k]P and the vertical line at [2k]P. Change k to 2k. Save vk for 

the new value of k. 

3. If i is odd: replace i with i - 1. Compute 

Vj+k = f+kP(D') = f,p(D') fk,P(D') gP,[k1p(D') 
g +k]p(D) 

which again is due to Theorem 9.1.1. The term Vj+k is computed by finding 

the secant line of [k]P and [j]P, and the vertical line at [j + k]P. Change j to 

j + k. Save vj for the new value of j. 

4. If i 54 0 go to step 2. 

5. Output: Vm = frn,p(D'). 

9.3 Example of the Algorithm 

Let E : y 2 = x3 + 2 be an elliptic curve defined over IF7. The value m is chosen to 

be a large (typically prime) divisor of +E(F7) = 9 so let m = 3. The least positive 

integer Ic such that 3 17 k - 1 is 1, so 1 is the embedding degree. Let P = (3,6) and 

note that P has order 3. 

Suppose that the objective is to compute (P, P)3. Then Q = P = (3, 6). 

Let D = (3, 6) - (0), D' = (0,4) - (5, 1) so that D and D' have no common 

points3. 

3Note that (3,6) + (5,1) = (0, 4). 
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Miller's algorithm is then used to compute fm ,p(.D') where div(fm ,p) = 3(3,6) - 

3(0) - ([3](3,6)) + (0) = 3(3,6) - 3(0). Recall that both fo,p and fi,p are equal to 

1. 

1. Set i = 3,j = O,k = 1,v0 = 1,v1 = 1. 

2. i = 3 is odd, so Vj+k = = v1 must be computed. However, v1 = 1 from 

step 1. The values are updated: i = 2,j = 1,k = 1,v1 = 1,v1 = 1. 

3. i = 2 is even, so V2k = v2 must be computed. This is done by computing the 

tangent line at [k]P = F, which in turn is done using the group law to compute 

[2]P = P+ P. The slope of the tangent line of E at P is 4 and so [2]P = (3, 1). 

The tangent line through P is given by y + 3x + 6 = 0 and the vertical line 

through [2]P is x +4 = 0. Thus, 

2 (y+ 3x-i-6)/(x+ 4)l(o,4)  
v — 5 
2 - - V1 (y + 3x + 6)/(x + 4)1(5,') - 

(mod 7). 

Finally, the values are updated: i = 1,j = 1,k = 2,v, = 1,v2 = 5. 

4. i = 1 is odd, so Vj+k = vj 2 = v3 must be computed. This is done by computing 

the secant line of [2]P and P. However, [2]P + P = [3]P = 0 which simplifies 

this step to requiring only the computation of the secant line through [2]P and 

F, which is given by the vertical line x + 4 = 0. The term v3 is given by 

(x + 4)1(0,4) = V1 = 1-5-2=_3   (mod 7). 
V2 (x + 4)1(5,1) 

Therefore the Tate pairing for m = 3 at P = Q = (3,6) is given by 

(P, P)3 = v3 = 3 (mod (F7* )3) 
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and the reduced Tate pairing value is 

e(P, p) = (P, p) 7- l)/3 = 32 2 (mod 7). 

9.4 Miller's Algorithm in Practice 

The description in § 9.2 gives a nice, illustrative version of Miller's algorithm. How-

ever, for the purpose of applications, this algorithm is typically implemented in a 

more efficient manner using the principles of the Left-to-Right Double-and-Add al-

gorithm. This procedure is more desirable as it requires less storage. 

The setup of the algorithm is similar to the Right-to-Left version. Choose P E 

E(Fq)[m] and Q E E(]Fqk). Let D 's-' (F) (0) and D' e' (Q) - (0) have disjoint 

support. The function f,p with divisor div(f,p) = m(P)—m(0) which is evaluated 

at D' is computed as follows. 

Set T = F, f = 1 and i = log2(m)j - 1. For i ≥ 0, compute the following steps: 

1. Calculate the tangent line £ at T and the vertical line v through [2]T. 

2. T - [2]T. 

3 f 4— . 

4. If the i1h bit of m is 1, then: 

(a) Calculate the secant line £ of T and P and the vertical line v through 

T+P. 

(b) T<—T+P 

(c) f - f 
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(x + 4)1(5,') 

5. i <- —1. 

5. i +- i - 1. 

Output: f = fm,p(D'). 

The example from § 9.3 using the Left-to-Right method is computed as follows. 

Recall that E is defined over IF7 and is given by y2 = x3 + 2, m = 3, k = 1, 

P = Q = (3,6). The divisors D and D' are given by (3,6) —(0) and (0,4) - (5,1) 

respectively. The objective is to compute f3,p(D'). Note that 3 = 112. 

Let T = (3,6), f = 1 and i = 0. Since i ≥ 0, the lines £ and v must be computed. 

1. The tangent line £ is given by y + 3x + 6 = 0 and the vertical line v is x + 4 = 0. 

2. T—[2]T=(3,1). 

3. Set 

__ (y + 3x + 6)/(x + 4)1(0,4) = 5 (mod 7). 
" f2. (y + 3x + 6)/(x + 4)1(5,') 

4. Because the 0th bit of 3 is 1: 

(a) The lines £ and v must be computed for adding P and T. Note that 

P + T = [3](3,6) = 0 and so £=v and is given byx+4=0. 

(b) T — O. 

(c) Set 

(x + 4)1(0,4) - 3 (mod 7). 

Output: f = f3,p(D') 3 (mod 7). 

The remaining steps of the computation are identical to those given in § 9.2. 
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Chapter 10 

Efficiency Comparison 

With such a large selection of pairings, it may seem that choosing the appropriate 

pairing in a particular cryptographic setting may be a daunting task that no longer 

comes down to simply deciding between the Weil or Tate pairings. If the embedding 

degree is small and the curve is supersingular, it may be more advantageous to work 

with the Eta pairing. Alternatively, perhaps the curve is ordinary and the number 

of points on the curve is roughly the same size as the large prime m; in this case 

the Ate pairing may be more optimal. There are a multitude of factors that can 

be considered. The objective of this chapter is to determine whether or not it is 

worthwhile to consider such factors or to simply use the Tate pairing in all settings. 

10.1 Minimum Security Requirements 

Let q = pfl for n E Z and consider the field lFqk where k is the embedding degree. 

Although the pairing is computed over the field IF'qk, this may not be the minimal 

field in which Pm is embedded into [HitO7]. In fact, the minimal field in which /2m  

is embedded into is JFqk' = lFqordm(P)/n, where m is the large prime divisor of #E(lFq). 

Note that in the case where q is a prime, i.e. q = p', then lFqw = ]Fqk. For security 

purposes, a pairing-based cryptosystem requires that qk' is large enough so that the 

discrete logarithm problem is infeasible'. It is also necessary that m is large enough 

'Currently, the best known algorithms for solving discrete logs in a finite field is the index 
calculus attack [FSTO6]. 
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Table 10.1: Security requirements for a given bit size. 

Security Level 80 128 192 256 

M 160 256 384 512 
I]Fqkll 1024 3072 8192 15360 

so that the points of order m are unaffected by the Pollard-rho attack. For m = 

£ E Z, the number of group operations required to compute the Pollard-rho attack is 

= 2e12. The value £/2 defines the security level of a cryptosystem in bits, which 

indicates the number of bits required to write down the number 2e/2. For instance, if 

m = 2160, then V/ m_  280 group operations are required for the Pollard-rho algorithm 

and such a system would have an 80 bit security level. Given a specific security level, 

the minimum bit length size for m and Fqv are given in Table 10.1 [KMO5]. 

Note that not just any elliptic curve can be used for pairing based cryptography. 

Curves with relatively small embedding degree and large prime divisor m (as men-

tioned above) are required; these curves are called pairing-friendly elliptic curves 

[FSTO6]. 

10.2 The Cost of Computing the Well Pairing 

Although in practice it is undesirable to compute, as it requires roughly two Tate 

pairing computations, the Weil pairing is, nevertheless, worthwhile examining, as it 

gives insight into the computation of the other, more efficient pairings. By Proposi-

tion 3.3.2, computing the pairing requires obtaining the value 

em(P,Q) = i 1 mfm,p(Q)  

f(P) 
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The coordinates of the points P and Q are typically chosen from the fields lFq and ]Fqk 

respectively. Therefore, computing frn,p(Q) is not equivalent to computing fm,Q(P) 

for embedding degree larger than one. In the literature the latter is referred to 

as a Miller-Lite operation, as it is faster to compute, where the former is called 

the Full-Miller operation. It was argued in [KMO5] that for high security levels, 

exponentiating the Tate pairing would have such a significant cost that it would 

offset the cost of computing the Weil pairing. However, at that time, the extent to 

which the exponentiation could be computed efficiently was not known. There are 

techniques that are used for point exponentiation for elliptic curves such as the use 

of projective coordinates [GalO5], defined in [BSS99, IV.1] and the Sliding Windows 

method [GalO5, GPSO6], defined in [BSS99, IV.2.3]. However, it was argued in 

[GalO5] that these techniques are not useful for the Tate pairing. In the case of the 

Tate pairing, the exponentiation can be computed efficiently by making use of the 

Frobenius endomorphism [GalO5]; hence, it was concluded that at relevant levels of 

security, the Tate pairing is in fact always faster than the Well pairing [GPSO6]. 

A consideration that must be made when computing a pairing is whether to 

use affine coordinates or projective coordinates. Depending upon the circumstances, 

either choice could be more advantageous. This decision depends upon the number 

of divisions that are required when using affine coordinates versus the number of 

extra multiplications required when using projective coordinates. The Weil pairing 

will be examined using both types of coordinates following the analyses given in 

[KMO5] and [ELMO4] with some additional details included. 
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10.2.1 Projective Coordinates 

Recall that in affine space, the Weierstraf3 equation for an elliptic curve defined over 

]B'q can be written as 

E:y2=x3+Ax+B 

if char(Fq) 0 2,3. Using projective coordinates E becomes 

E : Y2Z=X3-i-AXZ2+BZ3 

where (x, y) = (X/Z, Y/Z) for Z 0 0. A special type of weighted projective coor-

dinates are called Jacobian coordinates. These are given by the relation (x, y) = 

(X/Z2, Y/Z3) for Z 54 0 where E takes the form 

E: y2 
= X3 + AXZ4 + .8Z6. 

At each stage of Miller's algorithm the computation of 

f+k,P(Q) = fj,P(Q) f,p(Q) 9]P,[k]P(Q)  
91i+kIP(Q) 

is required for the Miller-Lite operation. 

If m is chosen to be a Solinas prime [Sol99] of the form 2 ± 2° ±1, the Miller-Lite 

operation can be denoted as 

fi f? 4(Q)/4  
-<-

f2 fj VI(Q)/V2 ' 

In this case, building up to [m]P = [2a ± 2,6 ± l]P = [2'(2' ± 1) ± l]P requires 

only 2 additions or subtractions and a doublings, which means that the number of 

required additions (or subtractions) is negligible. The terms £ and v are the tangent 

and vertical lines at a point T and [2]T, respectively, where T represents [2i]P in 
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Miller's algorithm for some i E Z. Note that the divisions are not computed at 

each stage but rather at the end of the computation and so the value fj+k,P(Q) is 

represented as a fraction. This computation is also done for fm,cj (F). 

Let T = (X, Y, Z) be a point given in Jacobian coordinates. The formula for 

doubling T is given by [2]T = (X3, Y3, Z3) where 

X3 = (3X + AZ4)2 - 8XY2 

= (3X2 + AZ4)(4XY2 - X3) - 8Y4 

= 2YZ. 

The vertical and tangent lines are given by 

V(X) = v1(x)/v2 = (Zx - X3)/Z, 

£(x, y) = £1(x,y)/e2 = (Z3Z2y - 2Y2 - (3X2 + aZ4)(xZ2 - X))/(Z3Z2). 

For the case when k = 1, let B be an elliptic curve defined over ]Fq where q > 2 

and q=A2+1.If4qlet 

E:Y 2 =x - X. 

If q 2 (mod 4) then take 

B: Y 2 =x - 4x. 

Computing a Miller operation requires the following step for each bit of M. 

T c-  [2]T, fi - fv21(Q), f2 < f?!2v1(Q). 

Denoting a squaring as S, a multiplication as M and an inversion as I in the 

field Fqi this procedure requires 98 + 12M1. Since the Weil pairing requires the 
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computation of both f,p(Q) and fm,Q(P) the total operation count for this pairing 

is 18S + 24M1. 

Consider the case when k ≥ 2 and k is even. Let E be defined over TFq, for q> 2 

and E of the form 

E: Y 2 =X - 3x + B. 

In this case, there are several ways to make the pairing computation more efficient. 

Since k is even, the field 1Fqk12 can be used by choosing the point Q with x—coordinate 

in ]Fqk/2 and y—coordinate of the form 'y\/ where /3 is a non-square in lFqk/2 [Sol99]. 

The terms x and y can be referred to as "real" and "imaginary" respectively [KMO5]. 

The value m is chosen to be a large and therefore odd prime, and has the property 

that m I (qk - 1) but m (q' /2 - 1). Note that m I (q''/2 + 1) which is an even value 

since q> 2. Rewriting the exponent (q'' - 1)/rn as (') (qk/2 - 1) shows that an 

element of the form 'y./5 when raised to this power is squared by the term (qW2+ 1) /M  

and hence lies in lFqk/2 and the term (q''2 - 1) ensures the resulting element is 1. 

Therefore, in the final exponentiation of the reduced Tate pairing, terms in 

become trivial, and so do terms that are "purely imaginary," i.e. of the form y\/. 

When computing the Miller-Lite portion of the Weil pairing, fm,p(Q), the terms 

V2, £2 E ]F'qk/2 and thus the computation of fl/12 is reduced to 

T - [2]T, fi - fi(Q). 

In the computation of the Full-Miller part of the Weil pairing, fm,Q (P), the terms 

VI (X), v2 are in ]Fqk/2 and £2 is "purely imaginary" which gives the same simplification 

as in the Miller-Lite operation 

T — [2]T, f1•— f4(P). 
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Computing the Full-Miller step requires kM1 +4Sk/2 + 6Mk/2 + 8k +Mk operations. 

The Miller-Lite step requires 4S + 8k!1 +82+ M2 for k = 2 and 4S + (k + 7)M1 + 

Sk + Mk for k ≥ 4 and k even [KMO5]. 

10.2.2 Affine Coordinates 

Following the method in [ELMO4] both the numerator and the denominator of the 

Weil pairing are computed together as fm,p(Q)/frn,Q(P) which doesn't affect the 

efficiency, but is significant for computing the Squared Well pairing, thus enabling a 

comparative analysis. This description was given in Chapter 9; recall that at each 

stage of Miller's algorithm for D = (P) - (0) and D' = (Q + R) - (R), the value 

fj+k,D (D')/f+k,D' (D) is computed from fj,D (D') /fj,D' (D) and fk,D (D') /fk,D' (D) as 

follows, 

f+k,D(D') = f,D(D') fk,D(D') gyjp,[k]p(D')/gj+k]p(D') 

fj+k,D' (D) fj,D' (D) fk,D' (D) g]Q,[k]Q (D)/g[j+k]Q(D) 

fj,D(Q + R)/f,D(R) fk,D(Q + R)/fk,D(R) 

fj,D' (P)/f,D' (0) fk,D' (P) /fk,D' (0) 

g1P,[k]P(Q + R) g[+k]p(R) 9[jJQ,[k]Q(0) g+k]Q(P) (10.1) 

g]p,[k]p(R) g+k]P(Q + R) 9[j]Q,[k]Q(P) g+kQ(0 ) 

where 9[j]P,[k]P is the secant line through [j]P and [k]P and g--k]P is the vertical line 

through [j + k] P (respectively for Q). Computing [j] P + [k] P costs 1 field inver-

sion and 2 field multiplications if the x—coordinates of [j]P and [k]P are distinct2. 

The secant line through [j]P and [k]P is given by g]p, [k]p(X) = y(X) - y([j]P) - 

'y(x(X) - x([j]P)) where 'y is the slope. Hence, evaluating gj]p,[k]p(D') requires 2 

field multiplications. No further operations are required to compute g+k]P (D') since 

21f [j]P = [k]P with non-zero y—coordinate, then doubling [j]P requires 2 addition field 
multiplications. 
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g +k]p(X) = x(X) - x([j + k]P). This procedure is repeated for point doubling and 

addition involving Q. Finally an additional 10 multiplications are required for mul-

tiplying the 6 fractions in (10.1) together. Thus for each bit of m, this procedure 

requires 18Mk + 21k. In this particular case, an inversion is roughly equivalent to 5 

multiplications, giving a total of 28Mk. 

10.3 The Cost of Computing the Tate Pairing 

By analogy to the Weil pairing, an analysis of computing the Tate pairing in both 

projective and affine coordinates will be given. 

10.3.1 Projective Coordinates 

Computing the Tate pairing requires the evaluation of 

(P, Q)m = f,n,p(D'). 

As in the similar case of the Weil pairing, at each stage of Miller's algorithm, 

fj+k,p(D') must be computed; this can also be represented as 

f? £(Q + R)/4(Q)  
f2 f22 v(Q + R)/vi(R) 

where £ and v are the tangent lines and vertical lines respectively defined in § 10.2.1 

and D' = (Q+R)—(R). Let R = (0, 0). For the case of k = 1 and hence P, Q, RE Fq 

the following Miller operations must be computed for each bit of m 

T - [2]T, fi - f4(Q + R)vi(R), f2 - fj?i(R)v1(Q + R) (10.2) 

for points T and [2]T as defined in § 10.2.1. This operation requires 9S1 + 13M1. 
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Now consider the case when k ≥ 2 and k is even. Let the points P and Q be 

defined as in § 10.2.1. As in the case of the Weil pairing, terms contained in a proper 

subfield of Fqk can be ignored. By Lemma 4.2.3, the point R can be ignored, and 

then computing the reduced Tate pairing amounts to calculating 

e(P, Q) = (P, Q) (qk_1)/m  = f,p(Q)(qk_1)/m• 

Since Q E ]Fqk/2 then vi(Q) E F qk/2, and so the denominator in (10.2) can be elimi-

nated. Therefore, for each bit of m the Miller operation is simplified to 

T - [2]T, fi - f4(Q). 

This requires 4S + 8M1 + S2 + M2 operations for k = 2 and 4S + (k + 7) M1 + Sk + Mk 

for k ≥ 4 and k even. 

10.3.2 Affine Coordinates 

The analysis for the Tate pairing computation using affine coordinates is analogous 

to that of the Weil pairing. The notable difference being that the goal is to compute 

fm,D(D') versus fm,D(D')/fm,D'(D) and so there are two less fractions to compute. 

For D = (P) - (0), D' = (Q + R) - (R), the value f+k,D(D') is given by: 

f+k,D(D') = f,D(D') . fk,D(D') gJp,[k]p(D') 
g+k]P (D') 

fj,D(Q + R) fk,D(Q + R) g]P,[k]P(Q + R) g+k]p(R) 
  (10.3) 

f,D(R) fk,D(R) g]p,[k]p(R) 9[J+k]P(Q + R) 

which must be computed for each bit of m. Again, elliptic curve addition requires 2 

multiplications and 1 inversion'. Another 2 multiplications are required to evaluate 

31n the case of point doubling, only 1 additional multiplication is required. 
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the secant lines and no further operations are needed for the vertical lines. Finally, 

combining the 4 fractions in (10.3) requires 6 multiplications giving a total of 10 

multiplications and 1 inversion. Since 1 inversion is roughly equal to the cost of 5 

multiplications, this gives a total of l5Mk for each bit of m for computing the Tate 

pairing. 

10.4 The Cost of Computing the Squared Weil Pairing 

The computation of the Squared Weil pairing is analogous to that of the Weil pairing 

except that the objective is to compute 

fra,p(Q)/frn,p(Q)  
fm,Q(P)/fm,Q(P) 

Consider 

fj+k,P (Q)/fl+k,P (-Q) - fj,p(Q)/fj,p (-Q) f.,p (Q)/fk,P(— Q)  

fj+k,Q (P)/fj+k,Q (—F) - (P)/f (—F) fk,Q (P)/fk,Q (—F) 

9j)P,[k]P(Q) 9Li+k]P(—Q) 9[j]Q,[k]Q(— F) 9LI+k]Q(F)  

g]P,[k]P( — Q) 'ci+k]P(Q) g]Q,[k]Q (') gi+k1Q (—F) 

- fj,P(Q)/fj,P (-Q) fic,p (Q)/fk,p(Q)  
- f5,Q(P)/f,Q(—P) fk,Q(P)/fk,Q(— P) 

g(j]P,[k]P(Q) g]Q,[kQ(—P) 

9[j]P,[k]P(Q) g]Q,[k]Q(P) 

This follows as the vertical lines through [j + k]P evaluated at x(Q) and x(-Q) are 

equal (respectively for [j + k]Q) and hence allow for cancellation. 

Like the Weil pairing, the elliptic curve addition requires 2 multiplications and 1 

inversion'. Evaluating 

9j]P,[k)P(Q)  -  y(Q) -  y([j]P) -  X(x(Q) - x([j]P)) 

g)P,[k]p(— Q) - y(—Q) - y([j]P) - A(x(—Q) - x([j}P)) 

'An additional 2 multiplications are required for a point doubling, as in the case of the Weil 
pairing. 
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requires one multiplication5. Repeating this procedure for g[j]Q,[k]Q (P)/g[j]Q,[k]Q (—P) 

requires a total of 6 multiplications and 2 inversions. Computing the product of the 

remaining four fractions requires an additional 6 multiplications, giving a total of 

12Mk + 21k operations. 

10.5 The Cost of Computing the Squared Tate Pairing 

The cost of computing this pairing is analogous to that of the Squared Weil pairing 

except that there are two less terms required. The objective is to compute 

fj+k,P(Q) -  fj,P(Q) fk,P(Q) g]P,[k]P(Q) g+k]P(Q)  

fj+k,P (Q) - f,(-Q) fk,P( — Q) g[j1P,[k]P (-Q) g[j+k]P (-Q) 
fj,P(Q) fk,P(Q) g]P,[k]P(Q)  

f,p(— Q) fk,P (-Q) g]P,[k]P (-Q) 

Again, evaluating the vertical line at x(Q) and x(—Q) gives cancellation. 

The elliptic curve addition requires 2 multiplications and 1 inversion, and 1 ad-

ditional multiplication if a point doubling is required. Only one multiplication is 

required to evaluate g[j]p,[k]p(Q)/g[j]p,[k]p(—Q). Combining the remaining three frac-

tions requires 6 additional multiplications giving a total of 7MK + 'k operations for 

each bit of m. 

Table 10.2 summarizes the cost required to compute the Weil and Tate pairing 

in both affine and projective coordinates (which will be denoted by A and P respec-

tively) and as well as the Squared Weil and Tate pairings. The operations in the 

field Fqk can be done with O((lg I11'qiI)2) bit operations [B596]. Although it is more 

efficient to compute operations in smaller fields, by current standards, it is desirable 

to have an embedding degree k 6 - 10 [Fre06]. 

5Note that x(Q) = x(—Q). 
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Table 10.2: Efficiency Comparison Between the Weil and Tate Pairings' 

Pairing: k = 1 k = 2 k = 4, even 

Weil (P) 18S + 24M1 
8S + 16M1 

+2S2+2M2 
4S + (2k + 7)M1 + 4Sk/2 

+6Mk/2+2Sk+2Mk 
Well (A) 18M1 + 2I 18M2 + 212 l8Mk + 21k 
Sq. Well 12M1 + 211 12M2 + 212 12Mk + 21k 

Tate (P) 981+13M1 
4S1+8M1 

+S2+M2 
4S1+(k+7)M1 

+Sk+Mk 
Tate (A) 10M1 + 11 10M2 + 12 10Mk + Ik 
Sq. Tate 7M1 + 11 7M2 + 12 7Mk + Ik 

10.6 Computing the Variants of the Tate Pairing 

Following the analysis in [KMO5, GPSO6, HSVO6], consider a curve E of the form 

E:y2=x3+Ax+B. 

Suppose that E admits a twist of degree 2 and a twist of degree 6; then A = -3 

and A = 0 respectively. Let CLite represent the cost of computing the Miller-Lite 

operation, fN,P (Q), the Full-Miller operation, fN,Q (P), in affine coordinates 

and CFPII1 the Full-Miller operation in projective coordinates. The cost of computing 

a pairing of the form fN,P1 (P2) for point P1 and P2 is given in the following two cases. 

Case 1: For (d, A) = (2,-3), 

CLite = [4S1 + (2e + 7)M1 + Sk + Mk] '1092(N) 

C A. 11 = {4S + 6Me + 2eM1 + Sk + Mk] . 1092(N) 

F 11 = [2Sf + 3M + 'e + eM1 + Sk + Mk] '1092(N). 

6Recall that Sk, Mk and 'k represent squaring, multiplication and inversion, respectively, in the 
field lFqk. 
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Table 10.3: Efficiency Comparison Between the Tate Pairing and its Variants 

Pairing: Defined on: Evaluated as: 

Tate G1 x G2 f,p(Q) 

Eta G1 x C2 fT,P(Q) 

Ate C2 x G1 fT,Q(P) 
Optimised Ate C2 x G1 fs,Q(P) 
Atei G2 x C1 hi, Q(P) 
Twisted Ate C1 x C2 fTe,p(Q) 

Optimised Twisted Ate G1 x G2 fse,p(Q) 

Twisted Atei Ci x G2 fe,p(Q) 

Case 2: For (d, A) = (6, 0), 

CLite = [5S1 + (2e + 6) M, + Sk + Mk] 1092 (N) 

CFAull = [56, + 6Me + 2eM1 + Sk + Mk] ' 1092(N) 

CFPujj = [2Se + 3Me + .t + eMi + Sk + Mk] '1092(N). 

Substituting the parameter N for the corresponding parameter in each of the 

pairings in Table 10.3 provides a comparison of the length of the loop in Miller's 

algorithm for each of the pairings. Recall that T = t - 1, S q (mod m), T = T 

q (mod m) for 0 <i < k and e = k/gcd(k,d). 

The following gives the specifications required for these pairings to be optimal, 

which is summarized in Table 10.4. 

The Eta and Ate pairings: Although the Ate pairing requires a Full-Miller 

operation, it is still possible to decrease the loop length so that it is shorter than the 

loop in the Miller-Lite operation of the Tate pairing. In a standard implementation, 

the number of bits of m is roughly equal to the number of bits of q. Typically, the 
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trace is approximately however, it can be as small as m" °' [HSVO6] where cc 

is the Euler-phi function. The loop length in Miller's algorithm for the Eta and Ate 

pairings is roughly log2 ( t) and is at most half of the loop length in the Tate pairing, 

which is roughly 1og2(m), if m #E(F'q), and hence the trace must be small. This 

follows from Hasse's Theorem which states that for an elliptic curve E defined over 

lFq, the order of E(1Fq) satisfies Itl = q + 1 - #EB'q)j ≤ Taking the logarithm 

of both sides yields log2 (It) ≤ 21092(q). Substituting m for q into the equality gives 

the desired result log2(tj) 1og2(m). On the other hand, the Tate pairing may 

be more efficient to compute than the Eta and the Ate pairings if m ≤ 1og2(q) 

[RKMOO7]. 

The Twisted Ate pairing: This pairing can only be more efficient than the 

Tate pairing when IT11 ≤ m since both pairings require computing the Miller-Lite 

operation [HSVO6]. 

The Atei and Twisted Atei pairings: These pairings have improvements 

over the Ate and Twisted Ate pairings when the number of bits of T and Tie are 

less then the number of bits in T and Td respectively. Also, these pairing are more 

efficient when the number of bits of m is significantly less than the number of bits 

of q [HZZO8]. 

The Optimised Ate and Twisted Ate pairings: The loop lengths of the 

Optimised Ate and Twisted Ate pairings are always no larger than the loop length 

of the Tate pairing. There is a reduction in the length of the loops by a factor of 

(deg(m(x)) - 1)/(deg(m(x))), where m(x) refers to the single variable function used 

in the construction of the family of pairing friendly elliptic curves [FSTO6] evaluated 

at a particular prime, when T ≥ m for the Optimised Ate pairing and T6 ≥ m for 
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Table 10.4: Optimizing the Pairings 

Pairing Parameter Specification 

Eta M #E(Fq), supersingular curves 
Ate m#E(]Fq) 
Twisted Ate TI ≤ m 
Atei [1g(T)j ≤ [lg(T)j 
Twisted Atei [lg(2)] < [lg(T6)] 
Optimised Ate T ≥ m 
Optimised Twisted Ate TC ≥ m 
R-ate [lg((76cd/17) min{ a, b})j ≤ [1g(T)j 

the Optimised Twisted Ate pairing [HKMOO7]. 

The following pairings are excluded from Table 10.3 as they are not of the form 

fN,P1(P2). 

The Squared Tate pairing: This pairing requires fewer multiplications than 

the Tate pairing when using affine coordinates with the advantage that there are no 

restrictions imposed upon the choice of k. However, this is not as significant of an 

improvement that can be obtained with other variants of the Tate pairing. 

The R-ate pairing: Let max{a, b} = c min{ a, b} + d where A = aB + b and 

A, B are the parameters in the pairing RA,B(D, D'). In order for the R-ate pairing 

to be more efficient than the Atei pairing, the value 

76 
- .c.d.min{a,b} 
17 

must have fewer bits than the parameter T [LLPO8]. 
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10.7 Conclusion 

Although in each of the specific circumstances, described in § 10.6, advantages can 

be obtained for each of the pairings, it is unclear if it is justifiable to substitute 

the Tate pairing with one of its variants in a general cryptographical setting. In 

[GPSO6, BGOSO7, HSVO6, HKMOO7, LLPO8] emperical data has been given with 

regard to the cost of computing the Tate pairing, the Eta pairing, the Ate and 

Twisted Ate pairings, The Optimised Ate and Twisted Ate pairings, and the Ate 

and Pt-ate pairings respectively. For the most part, the data for the variants of the 

Tate pairing is given for the most optimal circumstances in which the pairing may 

be applied, and not in a general setting. However, the trials given in [HSVO6] seem 

to compare the cost of the Tate pairing to the Ate and Twisted Ate pairings in a 

broader range of settings and indicate that on average the Tate pairing is superior to 

the other pairings and when it is not, it is not significantly less efficient than those 

other pairings. It would seem worthwhile to replace the Tate pairing with one of its 

variants only if a given cryptosystem happened to meet a specification required to 

optimize the pairing computation outlined in Table 10.4, It was, however, concluded 

that the Weil pairing is not more efficient to compute than the Tate pairing with the 

currently known computational methods [GPSO6]. 

Each of the pairings presented here have also been extended to hyperelliptic 

curves. In some cases, such as the Eta pairing applied to hyperelliptic curves defined 

over fields of characterstic 3, the pairings can be computed more quickly. However, 

in general they do not provide an improvement over elliptic curves [GHVO7] and so 

they have not been included in this thesis. 
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One potential idea with regard to further work in this area is to further examine 

the following parameters: the embedding degree k, the prime power q and the large 

prime m dividing the order of the elliptic curve group. Doing so may shed some 

light on how the number of iterations of the Miller loop can reach the lower bound 

of m1/c0(l). 
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