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ABSTRACT 

In this research, a generally dynamic nonlinear theory is developed for 

the axisyminetric deformation of moderately thick shallow spherical shells 

and circular plates comprising laminated cylindrically ( or polar) orthotropic 

layers with flexible supports. The effects of transverse shear, rotatory inertia, 

geometrically initial imperfection and linear, nonlinear extension Winkler and 

shear Pasternak elastic foundations are included in the theory. The 

constitutive relations for a moderately thick Laminated shell are established 

on the basis of the generalized Hooke's law and characterized by four 

independent engineering elastic constants. The extensional stiffness, the 

bending-stretching stiffness and flexural stiffness of the shell are presented 

for unsymmetrical laminate, symmetrical laminath, orthotropic and isotropic 

shell, respectively. The transverse shear stiffness is determined by employing 

a parabolic shear stress distribution across the shell thickness and the 

principle of complementary energy. Nonlinear equations of motion and the 

corresponding set of boundary conditions are derived through the dynRmc 

principle of virtual work. 

The governing equations composed of compatibility condition, 

equilibrium equation of inplane couples and equation of transverse motion are 

expressed in terms of transverse displacement, rotation of a normal to mid-

surface and stress function. Those equations already reduce to Marguerre-
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type equations for thin shallow spherical shells by neglecting the effects of 

transverse shear and rotatory inertia, and are simplified to those for the 

static case by treating the time functions as constants and neglecting the 

inertia terms. 

A Fourier-Bessel series solution satisfying the required boundary 

conditions is formulated for the nonlinear free vibration, buckling and 

postbuckling behaviour of laminated shallow spherical shells. The Galerkin 

method is used to reduce the governing equations to a set of nonlinear 

ordinary differential equations which are solved by the principle of harmonic 

balance for the undamped vibration. The resulting equations are a set of 

nonlinear algebraic equations solved by the Newton-Rapbson method. The 

nonliner bending and postbuckling behaviour of these lamiliates are treated 

as special cases. 

Numerical results for nonlinear free vibration, buckling, postbuckling 

and static large deflection response of symmetrically and unsymmetrically 

laminated shallow spherical shells and circular plates are presented for 

various boundary conditions, initial rises of the shell, numbers of layers and 

material properties. The effects of transverse shear, rotatory inertia, 

geometrically initial imperfection, linear and nonlinear Winkler-Pasternak 

elastic foundations on the geometrically nonlinear behaviour of the shells and 

plates are investigated in some detail. In special cases, the present results 

are in good agreement with available results. Some significant conclusions 

are drawn on the basis of this study. 
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NOTATIONS 

B, Dt = Extensional, coupling and flexural rigidities of the laminated 

shallow spherical shell defined by Eqn. (2.32), i,j=1,2 

Bt*, D* = Constants for the laminated shallow spherical shell defined by 

Eqns. (2.58), i,j=1,2 

A, Bt, D = Diemnsionless constants for the laminated shallow spherical 

shell defined by Eqns. (2.64), ij=1,2 

a, h = Base radius and thickness of the shell 

aj, b1, c, Qn = Integration constants defined in Appendix B 

E = Modulus of elasticity of an isotropic shell 

Er, E0 = Principal moduli of elasticity of an orthotropic shell 

E, ET = Principal moduli of elasticity of an orthotropic layer or shell 

F = Dimensionless stress function 

F* = Stress function 

= Constant for the shell 

G = Dimensionless constant for the shell 

GLZ, GTZ = Shear rigidities of the orthotropic layer in the shell 

Grz Shear rigidity of an orthotropic shell 

H = Initial rise of the shell 

I, J = Inertia terms defined in Eqn. (2.50) 

I, I Modified Bessel functions of first kind of order zero and order 

one, respectively 

J0, J1 = Bessel functions of first kind of order zero and order one, 

respectively 

Kb, K1 = Dimeniothess rotational and inplane stiffness of the edge 



Kf, K, Gf = Dimensionless extensional, nonlinear extensional and shear 

moduli of elastic foundations 

kb, k1 = Rotational and inplane stiffnesses of the edge 

kf, k, g. = Extensional, nonlinear extensional and shear moduli of elastic 

foundation 

Mr, M0 Stress couples per unit length in cylindrical polar coordinates 

MP = Dimensionless stress couple 

N = Number of layers 

Nr, No = Stress resultants per unit length in cylindrical polar 

coodinates 

NP = Dimensionless stress resultant 

Q = Dimensionless lateral distributed load 

Qr = Transverse shear stress resultant per unit length 

q = Lateral distributed load per unit area 

R = Radius of the curvature of the undeformed shell 

R1, T5 = Tracing constants for effects of transverse shear and rotatory 

inertia 

r, 9, z = Cylindrically polar coordinates 

S1j = Inpiane stiffnesses, ij=1,2 

t=Time 

U = Dimensionless displacement component at the midsurface in 

the r direction 

u = Displacement component at the midsurface in the r direction 

u, u0, w = Displacement components at a point off the midsurface in r, 0, 

and z directions, respectively 

W = Dimensionless displacement component in z direction 

W = Dimensionless initial deflection 

WA = Dimensionless average deflection 
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CHAPTER 1 

INTRODUCTION 

1.1 THE NATURE AND SCOPE OF COMPOSITE MATERIALS 

Modern composite materials have had a significant impact on the 

technology of design and construction of structural elements. By combining 

two or more materials together, it is now possible to tailor-make advanced 

composite materials which are lighter, stiffer and stronger than any other 

structural materials ever used. The history of man-made composite materials 

can be dated back to ancient Egyptians, Israelites and Chinese (Vinson and 

Chou, 1975). It is interesting to note that they all made bricks by mixing 

straw with clay. The pattern-welding of sabres developed in ancient China 

involved the forging together of wrought iron and steel. Laminated 

composites also were used by the ancient Egyptians. It was recognised that 

by gluing thin veneers together, the strength of wood was enhanced and the 

possibility of swelling and shrinkage minimized. 

Composite materials can be found in numerous naturally occurring 

substances. Wood, for example, is an organic substance composed primarily 

of cellulose chains embedded in a lignin matrix at a ratio of about 2 to 1. 

The bundles of cellulose chains forming walls of the elongated cells are highly 

crystalline. The cells are held together by the amorphous lignin. The higher 
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the lignin content, the softer and more resilient the combination is. The bond 

between the fibres and lignin is strong, as is made evident by the high 

strength and stiffness of wood. 

The superior properties of man-made composite materials in structural 

applications can be best demonstrated by the example of a reinforced concrete 

beam. Concrete, a relatively inexpensive structural material, is excellent for 

supporting a compressive load. However, the low resistance of concrete to 

tension makes it an undesirable material for beam construction. One way to 

improve the situation is to strengthen its tensile properties by the use of steel 

bars. As a result, the tensile stress is borne chiefly by the reinforcing bars, 

and a heavier load can be applied to the beam without increasing its cross-

sectional area. The combination of steel and concrete has not only made the 

best use of the strengths of the components but also resulted in properties 

that cannot be achieved by either component. 

Technological progress has resulted in a continuous expansion of 

structural material types and in improvements of their properties. Generally, 

new materials emerge because of a natural desire to improve the efficiency 

of proposed structures. These materials in turn provide new possibilities of 

innovative designs and fabrication methods, while the subsequent 

development of structures and technology presents materials science with new 

tasks. 

One of the clearest manifestations of such an interrelated process in 

the development of materials, structures and technology is closely associated 



3 

with the development and application of reinforced composites. The 

emergence of glass-reinforced plastics, which have found extensive application 

because of their high strength and low density compared to conventional 

structural materials, has allowed the development of promising design 

concepts and efficient fabrication methods, followed in turn by new advanced 

materials based on organi, boron or graphite fibres dispersed in polymeric or 

metal matrices. 

Modern composite materials not only have a wide range of properties 

superior to conventional materials, but these properties can be altered and 

improved according to the designation of the structures. These properties 

include (Jones, 1975): strength, fatigue life, stiffliess, temperature-dependent 

behaviour, corrosion resistance, thermal insulation, wear resistance, thermal 

conductivity, attractiveness, acoustical insulation and weight. Naturally, not 

all the above properties are improved at the same time nor is there usually 

any requirement to do so. 

In modern composites the components, which are combined to produce 

a material, are high-strength fibres providing mechanical properties of 

materials and a matrix realizing these properties in design. The resulting 

material has precisely oriented features which can be controlled by changing 

the structural parameters of the composites. There is no need to prove that 

such a special design will always be more effective compared to conventional 

all-purpose isotropic metals and alloys. The principle of specialized properties 

can be accurately traced, e.g. in all natural materials which have emerged as 
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a result of a prolonged evolution after having been subjected to gravitational, 

wind and other static and dynamic loads. 

The effective realization of merits of composite materials in specific 

• designs calls for the solution of a series of problems including: selection of the 

matching initial components-- fibre and matrix, determination of the 

reasonable structure of materials adequate to the external load field and 

other influences, taking account of the specific properties of the material and 

processing limitation in the design. 

There are three commonly accepted types of composite materials: 

(Jones, 1975)(i) Fibrous composite which consists of fibres in a matrix; (ii) 

Laminated composites which consist of layers of various materials; and (iii) 

Particulate composites which are composed of particles in a matrix. In recent 

years, one of the most commonly used composite is fibrous composites. Many 

commonly used fibres or wires are Aluminum, Titanium, Steel, Glass, Carbon, 

Boron and Graphite. Glass, Boron and Graphite fibres possess ultrahigh 

strength and stiffness. The matrix material can be either a plastic such as 

epoxy or polyimide or a metal such as aluminum. The purpose of the binder 

material, called matrix, is manifold: (i) binding together the fibres and 

protecting their surface from damage during handling fabrication and 

prolonging the service life of the composite; (ii) dispersing the fibres and 

separating them in order to avoid catastrophic propagation of cracks and 

subsequent failure of the composite; (iii) transferring stress to the fibres by 

adhesion and/or friction ( when the composite is under load ). For the 
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remainder of this thesis, three composite materials--glass-epoxy, boron-epoxy 

and graphite-epoxy composites will be considered. 

A lamina is a flat or curved ( as in shells) arrangement of 

unidirectional fibres or woven fibres in a matrix. In a fibre-reinforced 

composite, fibres provide the majority of the strength and stiffness. The fibre-

reinforced composites such as glass-epoxy, boron-epoxy and graphite-epoxy are 

usually treated as linearly elastic materials. Refinement of that 

approximation requires consideration of some form of plasticity, viscoelasticity 

or both (viscoplasticity). 

In practice, composite materials rarely exist as a single lamina, but will 

be fabricated from a number of laminae bonded together. If the separate 

laminae possess orthotropic properties by virtue of the orientation of the 

fibres in the matrix, then the resulting composite will have properties 

depending upon thickness, principal material property, orientations and the 

final arrangement of each independent lamina within the composite. A major 

purpose of lamination is to tailor the directional dependence of strength and 

stiffness of a material to match the loading environment of the structural 

element. LRminates are uniquely suited to this objective since the principal 

material directions of each layer can be oriented according to 'the need. A 

generally laminated plate or shell comprises an arbitrary number of 

homogeneous orthotropic layers perfectly bonded together. Each layer has 

arbitrary elastic properties, thickness and orientation of orthotropic axes with 

respect to plate or shell axes. In the present analysis, the symmetrically 
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cross-ply laminates, in which the cylindrically ( or polar) orthotropic layers 

are so arranged that a mid-surface elastic symmetry exists, and the 

unsymmetrically ones, in which such elastic symmetry does not exist, are 

considered. 

Composite materials are finding ever new applications in different 

engineering fields, especially in aerospace engineering. This is primarily 

owing to the excellent mechanical properties of these new materials at 

relatively low densities, and to their other merits offering advantages over 

conventional materials. Because of their great practical importance, the 

developments in composite materials have established a new area of scientific 

research -- the mechanics of composites, which has achieved a number of 

effective analytical methods and some significant results. 

In recent years, almost every aerospace company is developing products 

composed of fiber-reinforced composite materials. The usage of composite 

materials has progressed through several stages. At present, for example, the 

fuselage section and horizontal tail on the General Dynamics F-ill airplane 

are made of boron-epoxy material. Graphite-epoxy horizontal and vertical 

stabilizers are in production for General Dynamics YF-16 airplane. This last 

goal has been approached in the deliberate, conservative, multistage fashion. 

A substantial composite materials technology has been built and awaits 

further challenge. 
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1.2 A REVIEW OF ADVANCES IN THE THEORY AND ANALYSIS OF 

LAMINATED SHELLS 

In recent years, considerable attention has been given to the 

improvement of the classical theory of shells. By large, such efforts have 

been prompted by the necessity of designing structures which employ up-to-

date composite materials. The correct and effective use of composite 

materials require more complex analysis in order to predict accurately the 

elastic response of these materials to external loadings. A great amount of 

research work, therefore, has been carried out on the elastic behaviour of 

laminated composites. As is well known, geometric nonlinearities stem from 

finite deformations of an elastic body. For composite plates and shells 

nonlinear strain-displacement relations are most commonly used in the 

literature for development of nonlinear theories. Many researchers have 

conducted studies in nonlinear vibration, buckling and postbuckling analyses 

of laminated plates and shells. A review of various studies on the 

geometrically nonlinear behaviour of composite plates may be found in 

references contributed by Chia (1980, 1988a), and the assessment of 

computational models for composite shells was given by Noor and Burton 

(1990). In this section, the developments oft the nonlinear shell theory, 

analytical investigation into the nonlinear analysis of laminated shell 

structures, buckling, postbuckling and vibration of laminated shallow 

spherical shells are given for reference. 
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1.2.1 Shell Theories 

The theory of plates and shells attempts, by using certain 

approximations, to reduce the essentially three-dimensional equations of solid 

mechanics to a set of two-dimensional, surface. equations. In 1850 Kirchhoff 

applied geometric restrictions to obtain a linear theory of plates. Later, Love 

(1888) developed a corresponding theory for shells utilizing what is now 

known as the Kirchhoff-Love hypothesis (or the first approximation theory), 

which may be summarized as (i) normals to the undeformed midsurface are 

deformed into normals to the deformed midsurface, (ii) the effects of stress 

and strain in the direction of normal may be neglected, and (iii) the ratio of 

shell thickness to the radii of curvature is small compared with unity. 

Assumptions (i) and (ii) may not be consistent with the three-dimensional 

nature of even a thin shell and implies that the effect of transverse shear 

deformation is neglected but have been invoked purely for the purpose of 

sufficiently describing practical structures by means of midsurface strains and 

stress resultants when (i) the lateral dimension-to-thickness ratio is large; (ii) 

the dynmic excitations are within the low-frequency range; (iii) the material 

anisotropy is not severe. Therefore, it is true that the thinner the shell is, 

the more accurate the assumptions. Refinements to Love's "first 

approximation theory" have been made by several researchers using various 

assumptions. 

Any relaxation of these restrictions prompts the necessity of improved 
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theories in which the transverse shear deformation and/or transverse normal 

deformation are taken into account. As pointed out by Koiter (1959), 

refinement to Love's first approximation theory of elastic shells are 

meaningless, unless the effect of transverse shear deformation are included 

in the theory. 

The simple and generalized theory (or the first-order shear deformation 

theory) which takes into account the effect of shear deformation is 

substantially due to Reissner (1945), where the displacements are assumed 

in the form: 

u=u0(x,y,t) +zcz(x,y,t) 

v=v0(x,y, 1) +zf3 (x,y,  

ww0(x,y, ) 

in which u, v and w are the two inpiane and transverse displacements in the 

x, y and z directions respectively, u0, v0 and w0 are the values of u, v and w 

at the middle surface, and cx and 0, the slope functions, are averaged 

components of direction change of the normal to the undeformed middle 

surface. In 1951, Mindlin (1951) efficiently incorporated the influence of 

rotatory inertia on the flexural motions of linearly elastic, isotropic plates due 

to considering transverse shear deformation. 

On the basis of the Kirchhoff-Love kinematic hypothesis, linear theories 

for la.iinated plates and shells have been well established by Reissner and 

Staysky (1961), Dong et al. (1962) and Ambartsumyan (1964). This simple 

kinematic assumption stipulates the application of these theories to structural 



10 

members with the large lateral dimension-to-thickness ratio and moderate 

variation of orthotropy of the materials across the thickness. It is expected 

that the transverse shear effect on the elastic behaviour of composite plates 

and shells, especially highly anisotropic materials, is greater than that on 

homogeneous isotropic ones. Application of laminated classical theories to 

layered anisotropic composite plates and shells could lead to as much as 30% 

or more errors in deflections, stresses and frequencies. 

For moderately thick isotropic cylindrical shells, a refined shell theory 

including transverse shear deformation and rotatory inertia was developed by 

Nagbdi and Cooper (1956) and Mirsky and Herrmann (1956, 1957). In the 

case of laminated composite cylindrical shells, several sets of equations have 

been derived, by Sinha and Rath (1975) using the Donnell-type shell theory 

(1933), by Dong and Tso (1972) and Rath and Das (1973) employing the 

Love's approximation. Since the derivation of all these sets of equations, 

except for those presented by Naghdi and Cooper (1956), guided by the work 

of Mindlin (1951) in the theory of homogeneous isotropic plates was based on 

the assumption of a uniform thickness shear deformation, it is not possible 

to satisfy the boundary conditions of zero thickness shear stresses at the 

inner and outer shell surfaces and, therefore, led to the introduction of shear 

correction factors in the transverse shear resultant-strain relations. By use 

of the higher-order approximation for transverse shear stresses and strains, 

the'shear deformation theories of laminated shells were given by Reddy and 

Liu (1985), Soldatos (1986, 1987) and Fu and Chia (1989a,b). A significant 
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common feature of these theories is that a parabolic distribution of the 

transverse shear stresses was obtained, whereby the need for using a shear 

correction factor was removed. Governing equations obtained in these 

theories include, entirely, the equations of the aforementioned classical Love-

type theory. Further, for earlier works on the inclusion of higher-order 

effects, reference may be made to the higher-order theories proposed by Hsu 

and Wang (1970), Biricikoglu and Kalnins (1971), Dong (1972) and Whitney 

and Sun (1973, 1974). The developemnt of these higher-order theories is 

mostly based on a displacement field in which the inplane displacements in 

the -surface of the shell are expanded as linear functions of the thickness 

coordinate and the transverse displacement is expanded as quadratic function 

of the thickness coordinate. These high-order shell theories are cumbersome 

and computationally more. demanding, because, with each additional power 

of the thickness coordinate, an additional dependent unknown is introduced 

into the theory. 

Nonlinearity in the behaviour of any structure is developed due to large 

deflections which substantially change the initial geometry of the structure 

or due to a nonlinear stress-strain relationship or both. Nonlinearity due to 

nonlinear constitutive relations is called material nonlinearity. Elastic-plastic 

constitutive relations should be considered when analyzing material 

nonlinearity. Nonlinearity caused by large deflection is called geometrical 

nonlinearity. In the present research, problems of geometric nonlinearity are 

exfimined. For the magnitude of the deflections beyond a certain level (w ≥ 



12 

O.3h ) (Sivakumaran, 1983), the lateral deflections are accompanied by 

stretching of the middle surface. In these instances the load carrying 

capacity of shells is increased considerably. Consequently, for such problems, 

the use of an extended shell theory, which accounts for the effect of geometric 

nonlinearity, requires the use of nonlinear strain-displacement relations, 

because displacement gradients can ,no longer be considered small compared 

to unity. The need for more accurate analysis for plates and shells has led 

to the appearance of a number of theories which are the formulation of von 

Karman's large deflection equations (1910), the Donnell type equations (1933), 

Marguerre-type equations (1938), Hildebrand configuration (1949), the 

Berger's linearlized equations (1955) and the others reviewed by Stein (1986). 

It is worth noting that Donnell's nonlinear theory, owing to its relative 

simplicity and practical accuracy, has been most widely used for analyzing the 

elastic behaviour of isotropic thin shells, especially for cylindrical shells and 

shallow shells, and for the basis f developing nonlinear laminated shell 

theories. This theory is based on the following assumptions: (i) the shell is 

sufficiently thin; (ii) the strains are sufficiently small compared to unity; (iii) 

straight lines normal to the undeformed middle surface remain straight, and 

the length of normal to the deformed middle surface stays unchanged; (iv) the 

normal stress acting in the direction normal to the middle surface may be 

neglected in comparison with the stresses acting in the direction parallel to 

the middle surface; (v) two inplane displacements are infinitesimal, while 

normal displacement is of the same order as the shell thickness; (vi) the 
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derivatives of normal displacement are small, but their squares and products 

are of the same order; and (vii) curvature changes are small and the 

influences of two inpiane displacements are negligible so that they can be 

represented by linear functions of normal displacement only. Assumptions 

(iii) and (iv) constitute the so-called Kirchhoff-Love hypotheses while those 

from (v) to (vii) correspond to the shallow shell approximations applicable for 

deformation dominated by the normal displacement. The Donnell. )s equations, 

in cases where the curvature radii of the shell become indefinitely large, 

reduce to the von Karman equations for large deflections of thin plates. 

Attention has also been paid to geometrically nonlinear theories of 

laminated composite shells. Librescu (1987,1988) presented a refined 

geometrically nonlinear theory of anisotropic symmetrically laminated 

composite shallow shells by incorporating transverse shear deformation and 

transverse-normal stress effects. Lagrangian formulation was used to derive 

the theory, and the three-dimensional strain-displacement relations were 

modified to include the nonlinear terms. A rate theory for shells admitting 

anisotropic elastic-plastic behaviour was developed by Weichert(1988). The 

theory takes into account the shear effects using a first-order shear 

approximation theory and takes into account geometrically nonlinear effects 

by using consistent strain and relation-based approximations. Based on the 

Donnell-type assumptions and Mindlin hypothesis, lu and Chia (1988a,b) 

derived a nonlinear theory for antisyjnmetric cross-ply circular cylindrical 

shells. 
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1.2.2 Analytical studies of Laminated shallow spherical shells 

The geometrically, nonlinear elastic behaviour of laminated circular 

cylindrical shells or panels was reported by several researchers (Knot, 1970; 

Hirano, 1979; Sheinman and Simitses, 1983; Zhang and Matthews, 1983, 

1985; Bhattacharya, 1984; Hui, 1985; Chia, 1987a,b, lu and Chin, 1988a,b and 

Hsu et al, 1991) using various analytical methods. 

Based on the Donnell's shell approximations, the nonlinear 

axisymmetric response of cylindrically (or polar) orthotropic shallow spherical 

shells has been investigated in some detail. Making use of Hamilton's 

principle, Varadan and .Pandalai (1978) utilized the one-term mode shape 

solution to solve the nonlinear flexural free vibration problem of clamped 

orthotropic shallow spherical shells. Using a two-term shape approximation 

associated with the Rayleigh-Ritz method, Varadan (1978) examined static 

buèkling of clamped orthotropic shallow spherical shells. Alwar and Reddy 

(1979a) and Dumir et al. (1984a) analyzed the axisymmetric static and 

dynamic buckling behaviour of clamped orthotropic shallow spherical shells 

with a circular hole. The former used the Chebyshev series in the space 

domain and a Houbolt numerical integration scheme in the time domain 

while the latter adopted the orthogonal point collocation method in the space 

domain and Newmark-f3 scheme in the time domain. Ganapathi and Varadan 

(1982) presented a solution to the study of dynamic buckling of clamped 

orthotropic shallow spherical shells subjected to instantaneously uniform step-
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pressure load of infinite duration. With an assumed two-term mode shape for 

the lateral displacement, the governing equations were derived by using 

Lagrange's equations and the numerical results were obtained by the Runge-

Kutta method. Dumir (1986) reported the nonlinear free vibration response 

and the response of orthotropic shallow spherical shells with immovable 

clamped and simply supported edges under uniformly distributed static load 

by using the spatial mode and Galerkin's method. For a flexible edge 

condition, Dumir et al (1984b) expanded deflection and stress function as 

polynomials and used the orthogonal collocation technique to examine the 

static and dynamic buckling of orthotropic shallow spherical shells with 

flexible supports and to investigate the influence of the edge stiffness 

parameters on the nonlinear behaviour. 

The nonlinear analysis of orthotropic shallow spherical shells on elastic 

foundations have been carried out by several researchers. The study of 

interaction between deformable bodies is relevant to many engineering 

situations. The exact analysis of interaction is very complicated. Therefore, 

simplified mathematical models accounting for the structure interaction with 

the surroundings have been proposed by Winkler (1867), Pasternak (1954), 

Reissner (1958), Kerr (1964), Levinson and Bharatha (1978) and others. Nath 

et al (1985a,b, 1986, 1987, 1989) and Jain et al (1986) applied the Chebyshev 

series to analyzing the nonlinear behaviour of immovable simply-supported 

and clamped orthotropic shallow spherical shells on elastic foundations such 

as the transient response, the static and dynamic response and the effect of 
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foundation on the transient response of these shells. In the first three and 

the last of these six papers, Winkler and Pasternak elastic foundation models 

were employed while in the others Winkler and nonlinear (cubic) Winkler 

models were used. Utilizing Winkler, nonlinear Winkler and Pasternak 

models of the elastic foundation, Diirnir (1985) reported the nonlinear free 

vibration and static response of orthotropic shallow spherical shells with the 

flexible supports by a single-mode solution and the Galerkin's method. 

The effect of geometrically initial imperfection on the nonlinear analysis 

of isotropic shallow spherical shells, however, has received some attention. 

Budiansky (1959) investigated the effect of the initial imperfection on the 

buckling of caimped isotropic shallow by use of the Bessel functions. Hui 

(1983a) reported the results of this effect on the nonlinear vibrations of 

isotropic shallow spherical shells. To simplify the theoretical analysis and 

provide useful information on the possible effects in a preliminary design, 

Budiansky proposed that the shape of the initial imperfection was the 

parabolic function and Hui suggested that the same mode shapes were 

assumed for the vibration mode and the geometric imperfection, although the 

shapes of the geometric imperfection are random in practical structures. 

Recently, based on von Karman-Marguerre type nonlinear equations, 

nonlinear vibration and post-buckling of symmetrically-laminated shallow 

spherical shells of rectilinearly orthotropic material with rectangular planform 

were discussed by Chia (1988b) utilizing a generalized double-Fourier series. 

All these analyese mentioned above, however, are confined to 
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orthotropic and laminated thin shallow spherical shells, and the effects of 

transverse deformation and rotatory inertia are not taken into account. 

As for the geometrically nonlinear analysis of laminated shallow 

spherical shells by use of the finite element method, some shell elements 

including the effects of transverse shear have been developed on the basis of 

the first-order assumption. Reddy and Chandrashekhara employed the 

clisplcement finite element model to study the large defleciáon (1985a) and the 

nonlinear transient response (1985b) of the laminated shallow spherical shells 

of rectilinearly orthotropic material with rectangular planform. 

For the geometrically nonlinear analysis of circular plates, which is the 

special case of shallow spherical cap, some previous work are briefly reviewed 

as follows: 

Nowinski (1963) employed a single-mode solution to discuss nonlinear 

vibrations of circular plates of rectilinearly orthotropic materials. Using the 

Chebyshev series, Aiwar and Reddy (1979b) and Nath and Aiwar (1980) 

considered the nonlinear static and dynamic response of orthotropic circular 

and annular plates. Ruei, Jiang and Chia (1984) studied static and dynamic 

problems of orthotropic circular plates with nonuniform edge constrains. The 

nonlinear vibration of isotropic layered circular plates were considered by 

Kunukkaseril and Venkatesan (1979). Employing a dynamic relaxation 

method, Turvey (1982) reported the large deflection of laminated circular 

plates. The nonlinear vibration and buckling of laminated anisotropic circular 

plates were investigated by Srinivasamurthy and Chia (1987). Based on von 
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Karman-Marguerre type equations, Nath et al (1987) discussed the nonlinear 

static response of orthotropic circular plates on Winkler and nonlinear 

Winkler elastic foundations by use of a Chebyshev series solution. Utilizing 

Winkler , nonlinear Winkler and Pasternak models of the elastic foundation, 

Dumir (1985) investigated the nonlinear axisymmetric response of orthotropic 

thin circular plates by a single mode solution. Including the effect of 

geometric imperfection in his investigation, Hui (1983b) studied the large 

amplitude vibration of isotropic circualr plates. In all the above studies, the 

effects of transverse shear and rotatory inertia have not been encompassed. 

As for the effects of transverse shear and rotatory inertia, 

Sathyamoorthy and Chia discussed nonlinear vibrations of circular plates of 

rectilinearly orthotropic and isotropic materials for clamped boundary 

conditions by using the Galerkin method and the Runge-Kutti numerical 

procedure (1979, 1981) and by using the Berger's approach (1982). For 

laminated thick circular plates, Srinivasamurthy and Chia (1990) formulated 

a single-mode solution to study the nonlinear static and dynamic response of 

laminated thick circular plates of rectilinearly orthotropic material with a 

clamped edge. 

Based on the works of Reissner (1945) and Fu and Chia (1989a,b), the 

writer developed a nonlinear theory for the elastic behaviour of laminated 

cross-ply moderately thick 'shallow spherical shells, which extended the 

Donnell-type shell theory to include transverse shear and rotatory inertia. 

A multi-mode solution in the Fourier-Bessel series is formulated for the 
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nonlinear governing equations which are reduced to a set of nonlinear 

ordinary differential equations by making use of Ga1erkins method. 

Analytical results were obtained for the buckling and postbuckling response 

of symmetrically laminated shallow spherical shells including the effect of 

transverse shear (Xu, 1991); for the nonlinear free vibration of these shells 

with the flexibly supported edge (Xu and Chia, 1991a); for the nonlinear 

static and dynamic analysis of these shells taking into account the effects of 

transverse shear, rotatory inertia, geometric imperfection and elastic 

foundations (Xu, 1992a); for the nonlinear analysis of unsymmetrically 

laminated moderately thick shallow spherical shells with considering the 

effects of the transverse shear and rotatory inertia (Xu and Chia, 1992a). 

Results were also obtained for the nonlinear vibration of symmetrically 

laminated moderately thick circular plates (Xu and Chia, 1991b); for the 

nonlinear static and dynamic responses of these plates including the effects 

of transverse shear, rotatory inertia, geometric imperfection and elastic 

foundations (Xu, 1992b); for the influence of the elastic foundation on the 

large amplitude vibration of unsymmetrically thick circular plates (Xu and 

Chia, 1992b). 

1.3 SCOPE OF THE PRESENT THESIS 

To the writer's knowledge there is no other literature available, except 

for the work conducted by the writer, on the buckling, postbuckling and 
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nonlinear vibration response of laminated shallow spherical shells of 

cylindrically ( or polar ) orthotropic materials. A wide class of boundary 

conditions and the effects of transverse shear deformation, rotatory inertia, 

elastic foundation and geometrically initial imperfection are included in this 

study. The corresponding circular plate problems are treated as special cases. 

The objective of the present thesis is 

(i) to define a set of stress resultants and stress couples to incorporate 

the transverse shear for the laminated shallow spherical shell; 

(ii) to establish a variational principle for the vibratory motion of 

laminated shallow spherical shells of cylindrically orthotropic 

materials including the effects of the transverse shear, rotatory 

inertia, geometric imperfection and elastic foundation; 

(iii) to obtain a set of equations of motion, and the corresponding set 

of boundary conditions; 

(iv) to simplify the equations of motion for the following cases: 

(1) Unsymmetrically laminated cross-ply shallow spherical shells 

(2) Symmetrically laminated cross-ply shallow spherical shells 

(3) Orthotropic shallow spherical shells 

(4) Isotropic shallow spherical shells 

(5) Unsymmetrically laminated cross-ply circular plates 

(6) Symmetrically lamianted cross-ply circular plates 

(7) Orthotropic circular plates 

(8) Isotropic circular plates 
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including transverse shear, rotatory inertia, geometric 

imperfection and elastic foundation; 

(v) to obtain approximate solutions for buckling, postbuckling and 

nonlinear vibration of a laminated cross-ply shallow spherical 

cap and its special cases including the above-mentioned 

complicating effects with the following boundary conditions: 

(1) The edge of a symmetrically laminated cross-ply shell is 

flexibly supported with its special cases: 

(a) Movable simply-supported 

(b) Movable clamped 

(c) Immovable simply-supported 

(d) Immovable clamped 

(2) The edge of an unsymmetrically laminated cross-ply shell is 

movable and rotational restrained with the movable 

clamped edge as a special case. 

(vi) to compare the present numerical results in special cases with 

available data; 

(vii) to obtain relationships between the following with physical 

parameters for various boundary conditions, ratios of base radius 

to shell or plate thcikness, numbers of layers and elastic 

properties of materils: 

(1) Frequency ratio (nonlinear frequency to the corresponding 

linear frequency) and maximum amplitude of 
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symmetrically and unsymmetrically laminated cross-ply 

shallow spherical shells; 

(2) Frequency ratio (nonlinear frequency to the corresponding 

linear , frequency) and maximum amplitude of 

symmetrically and unsymmetrically lRminated cross-ply 

circular plates; 

(3) Postbuckling load and maximum deflection of symmetrically 

and unsymmetrically laminated cross-ply shallow spherical 

shells; 

(4) Load and maximum deflection of symmetrically and 

unsymmetrically laminated cross-ply circualr plates; 

(viii) to draw conclusions and some recommendations for further 

research. 
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CHAPTER 2 

NONLINEAR THEORY OF LAMINATED SHALLOW 

SPHERICAL SHELLS 

A dynamic nonlinear theory for the axisymmetric deformation of a 

laminated elastic shallow spherical shell composed of cylindrically ( or polar) 

orthotropic layers is developed with the aid of the variational principle of 

elasticity. The effects of transverse shear deformation, rotatory inertia, 

geometric imperfection and elastic foundation are included. The constitutive 

relations for the laminated shell are derived from the generalized Hooke's 

law. The equations of motion are expressed in terms of a transverse 

displacement, a rotation of a normal to mid-surface and a stress function. 

For special cases, the governing equations derived in this chapter agree with 

those given by the earlier theories. 

In the derivation of the theory it is assumed that: 

(1) The material of the shell is homogeneous, continuous and linear 

elastic and the stresses of the deformed shell at any time are 

less than the corresponding yield stress. 

(2) The layers constituting the shallow spherical shell are perfectly 

bonded together and are of the same material. 

(3) The type of elastic foundation is nonlinear Winkler-Pasternak 
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model and the bonding between the shell and foundation is 

perfect. 

(4) The deformation of the shell is axisymmetric, namely, independent 

of the circumferential coordinate ( say, 0 ). 

(5) The shell is moderately thick and the products of inplane 

displacement derivatives in the nonlinear strain-displacement 

relations may be neglected in comparison with the other terms. 

(6) The effect of transverse normal contraction or extension is 

neglected. 

(7) The tangential inertia terms are neglected. 

(8) The ratio of the shell rise to the base radius is less than 0.25 such 

that the tangential displacements and forces may be taken to be 

their projections on the base plane of the shell (Reissner, 1946 ). 

2.1 GEOMETRY AND DISPLACEMENT FIELD 

Consider a shallow spherical shell of constant thickness referred to a 

right-handed cylindrical coordinate system of r, 0 and z (Fig. 2.1). The 

elevation of the undeformed middle surface of the shell above the base 

circular plane, r, is approximated by the paraboloid: 

f=H[1- (i/a) 2 ] (2.1) 

where H is the initial rise of the spherical shell and a is the base radius. 

The radius of curvature of the undeformed shell is 



a 

h kb  

SHEAR LAYER(g 1) 

r 

WINKLER SPRING (k f,k fl) 

Figure 2.1: Geometry of a shallow spherical shell 
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R=a 2/ (2H) (2.2) 

The radial displacement at a distance z from the middle surface is 

assumed to vary linearly across the thickness of the shell and the transverse 

displacement is to remain constant. In the case of axisymmetric deformation 

of the shallow spherical shell, the displacement field may be written in the 

form: 

Ur (r,Z,t)U(r,t)+Z1J * (r,b) 

u0 (r, z, t) =0 

w(r,z ; b)=w(r,t) 

(2.3) 

in which u., u9 and w are the displacement components in the r, 9, and z 

directions, respectively and in which u is the value of u at the middle 

surface, V the rotation of a normal to the middle surface and t the time. 

With the transverse shear effect being taken into account, N' is not equal to 

the derivative of w. 

2.2 STRAIN-DISPLACEMENT RELATIONS 

The nonlinear strain-displacement relations for axisymnietric 

deformation of a shallow spherical shell are derived from the three - 

dimensional nonlinear theory of elasticity by the classical method. 

When a deformable body is under the action of external forces such as 

applied loads, body forces, and support reactions, the body will be deformed 

and the internal forces interacting between elemental portions of the body 

will be developed. The deformation of the body is characterized by the 
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extension and distortion of line elements and the components of strain in 

engineering are defined as unit elongations of line elements and the changes 

in right angles between line elements, whereas those of a strain tensor are 

defined in terms of three displacement components. The deformation, 

however, may be either finite or infinitesimally small. In the theory of finite 

deformations or the nonlinear theory of elasticity, strain can be described by 

two different coordinate systems of reference, namely, the eulerian 

coordinates describing the material particles with respect to the deformed 

configuration, and the lagrangian coordinates describing these particles with 

respect to the original or undeformed configuration. In the following 

discussion, the lagrangian coordinate system is adopted. In the lagrangian 

description, all quantities are expressed in terms of the initial position 

coordinates of each particle and time during all subsequent motion. Thus the 

initial material lines and rectangular planes are deformed to curves and 

curved surface. 

Consider a material particle P(x1, x2, x3) in an unstrained shallow 

spherical shell as shown in Fig.2.2. At a later instant of time the shell is 

deformed and the particle is deformed to a new location P*(xi*,. x2, x3*) by 

a displacement vector u. The deformation from the initial configuration to 

the deformed configuration is assumed to be continuous with one-to-one 

correspondence. From Fig. 2.2, the relation between Xj and xr is given by 

= X1 + ( .i = 1, 2, 3 (2.4) 

The square of length ds0 connecting the particle P ( x1, x2, x3 ) to a 



Figure 2.2: Deformation of a line element 
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neighbouring particle Q(x1+dx1; x2+dx2, x3+clx3), both lying on a line element 

in the undeformed state, is 

ds = dx1 dx1 (2.5) 

in whiôh the repeated index in a term indicates summation with respect to 

this index. During deformation the particle P and Q are displaced to P*(xi*, 

x2, x3*) and Q*(xi*+ * x2*+dx, x3*+dx3*), respectively. The square of the 

length ds of the new line element p*Q* is given by 

ds2 = dxj*dxj* (2.6) 

The difference (ds2 - ds02) is a measure of strain. In the Lagrangian 

description the coordinate x1, x2, x3 are regarded as independent variables 

such that ds2=(axj*/axj)(xj*/axk)dxjdxk. Thus 

ds2 - ds = d,c.thc - dxdx1 = 2c1 dc1dx (2.7) 

where et is called the Green strain tensor or the lagrangian strain 

components and is symmetric. 

Considering the cylindrical coordinate system used in this work and the 

axisymmetric deformation of the shell as assumed in (2.3), the following 

relations including the geometric imperfection exist (Fig. 2.3): 

x1 =rcosO x2 =rsin6 

U1 = ( U1 COS(p - wsinq ) cosO 

= ( ucós(p - wsinp ) sinO 

U3 = u1 5inq + wcosp 

(2.8) 

in which is the initial deflection or geometric imperfection. Within the 



r 

Z, x3 

Figure 2.3: Displacement field of the shell 
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framework of the shallow shell theory ( ha < 0.25 ), the tangential 

displacements and forces can be taken to be their projections on the base 

plane of the shell, as proposed by Reissner (1946) and Donnell (1976). Due 

to the assumption of shell shallowness, some approximations are made, 

d  
di R' 

coscp i. 1 (2.9) 

Substituting (2.8) and (2.9) into (2.5) and (2.6), the square of the length of the 

element before deformation is given by 

dS2 = d.r2 + r2d02 + dz2 + di2 + 2dWdz (2.10) 

and after deformation by 

ds2 = ( di +dUr - -wdr - dw )2 + ( r + - w )2d02 
R (2.11) 

+ (dz +d + -Ur dr + z du, + dw )2 

With the products of inplane displacement derivatives and small quantities 

of other higher-order being neglected, the measure of strain in eqn. (2.7) can 

be written as 

ds2 - ds - 28rdi2 + 2e0.r2d02 + 2c r3drdz 

Thus, the strain-displacement relations are obtained: 

r Ur,r - w/R + 

Be = Ui /I - w/R 

8 iz Ur,z + 

= 80z = = 0 

+ 

(2.12) 

(2.13) 

where a comma denotes differentiation with respect to the corresponding 
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coordinates. By virtue of eqns. (2.3), the eqns. (2.13) can be rewritten as 

= + zxz 

ezz = (lr* + W, r 

Co =  Ce  ' +z 1c0 

eoz= ere= Cz= 0 

in which c° and e° are the middle surface strains given by 

= Uir - w/R • 2 

e'=u/r—w/R 

and ixr and rce are the changed values of shell curvatures given by 

Icr * - 1 
- q' 1 

ice = 

(2.14) 

(2.15) 

(2.16) 

When the transverse shear deformation and the geometric imperfection are 

neglected, i.e., c = 0 and = 0, the strain-displacement relations (2.14) are 

reduced to those given by Donnell (1933). 

2.3 CONSTITUTIVE EQUATIONS 

2.3.1 Stress 

In discussing stress it is natural to employ the Lagrangian coordinate 

system since stress is related to strain. The components of a stress tensor 

per unit area of the deformed state are defined to be those of the Kirchhoff 

stress tensor which is measured with reference to the initial state. The stress 

tensor is symmetric in the system of orthogonal coordinates as the strain 
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tensor. The normal components of the Kirchhoff stress tensor in the direction 

of cylindrical coordinate axes r, 8, z are denoted by ar, respectively, 

and the shearing components by a, Or' rz' zr' Oz' 0• The first subscript 

in shearing .stress components indicates the direction of the normal to the 

plane under consideration, and the second the direction of the átress 

component. The sense of stress components are depicted in Fig. 2.4. 

2.3.2 Hooke's Law 

Throughout this analysis the material of the shell is assumed to be 

linearly elastic. The stress then depends only on the deformation but not on 

the history of that deformation. A body whose elastic properties are different 

for different directions is called anisotropic. The generalized Hooke's law for 

a homogenous elastic body of general ansiotropy in the cylindrical coordinate 

system can be expressed in the matrix form as in Ref.(Chia, 1980). 

er 
80 

erz 

8r6 

Ill 1 12 .t13 r14 1 15 1 16 

1 12 1 22 1 23 1 24 1 25 1 26 

1 13 1 23 133 134 135 1 36 

1 14 1 24 134 144 145 1 46 

1 15 1 25 135 145 155 1 56 

1 16 1 26 1 36 1 46 1 56 1 66 

luez 

(2.17) 

where the coefficients rjj are the elastic compliance and i, j = r, 0, z. The 

number of independent elastic constants is 21 in the general case. If, 
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x 

Figure 2.4: Sign convention for stresses in cylindrical coordinates 
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however, any plane of elastic symmetry is present in elastic properties, this 

number is reduced. In the case of an orthotropic body there are three 

mutually perpendicular planes of elastic symmetry. The matrix (2.17) then 

becomes 

1 12 Z.3 0 0 0 

12 122 '23 0 0 0 

1 13 r23 133 0 0 0 

o a o 144 0 0 

o a o 0 r., 0 

o a o 0 0 r66 

(2.18) 

where there are nine independent elastic constants. It can be shown that in 

the case of isotropic material, the elastic properties are independent of 

direction and the number of independent elastic constants is reduced to two. 

It is evident from the symmetric matrix (2.18) that the constitutive 

relations for a cylindrically orthotropic material can be written in the so-

called engineering constants as follows: 

Cr 

e0 

Cz 

8 rz 

eoz 

1 VOr Vzr 

Er E0 E 

_V xo 1 V20 

Er He E2 

Vrz Vo 1 

Er E0 E2 

0 0 0 

0 00 

0 0 0 

0 0 0 

1 

Grz 

0 0 0 0 

0 0 

1 

Go 

0 0 0 0 0 

0 

1 

(2.19) 

in which Ej are Young's. moduli along the i principal direction of elasticity, i 
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are the Poisson's ratios characterizing contraction in the j direction during 

tension applied in the i direction, and are the shear moduli characterizing 

changes of angles in the ij planes. 

Due to the symmetric compliance matrix the elastic constants in 

equation(2.19) are related by 

v 1E1 = v1 E 

veE =vE0 

Vez E, = VeEo 

(2.20) 

The Hooke's law with the compliance matrix (2.18) can be written in 

the form 

S11 12 13 

l2 22 ,g23 

S:i.3 S23 533 

000 

000 

000 

0 0 0 544 

0 0 0 0 555 0 

0 0 0 0 0 

00 
(2.21) 

in which Sjj are the elastic stiffness. Neglecting the influence of the 

transverse normal stress and considering the axisymmetric deformation ( say, 

are = a0z =  0 ), the eqn. (2.21) is simplified to yield 

12. 5V12 

S12 S22 

0 0 

0 

0 

844 

where S,, are the reduced stiffness given by 

(2.22) 
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Er Ee  
S11 - (1VV0r) I S22 - (1 -vver) 

12 = vE0 

(1 VZØVOX ) 

V rEr 

(2.23) 

It is observed that eqn. (2.22) also represents the stress-strain relations for 

a cylindrically orthotropic shallow spherical shell which has principal 

directions of elasticity coinciding with the shell axes. Note that only four 

independent elastic constants for an orthotropic shallow spherical shell 

subject to axisymmetric deformation exist, that is, Grz and any three of the 

four parameters Er, E0, DrO,DOr. 

In engineering applications, the elastic properties of an cylindrically 

orthotropic shallow spherical shell are usually known in the principal 

directions (L, T ) of elasticity where L is the major direction and T the minor 

direction. The reduced stiffness are related to these material axes of 

symmetry by 

= , SLT = V LTET 
S T IL 

3SL =  GLZ S ST =  G TZ 

(2.24) 

in which EL and ET are major and minor Young's moduli, DLT and 0TL the 

Poisson's ratios, GLT the inplane shear modulus and GL7 and GT7 the 

transverse shear moduli, and in which 

IL = 1 -  VLTVTL 

vEL = VLTET 

(2.25) 

The elastic constants of a composite material with reference to orthotropic 
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directions ( r, 0 ) can be found by the equations: 

(1) when the major direction L coincides with the r axis 

ll = 3L I S12 = SL 2' 

S22 = r ' 44 = SL 

(2) when the minor direction T coincides with the r axis 

5 11 =sT 

S22 = SL 

= 5 LT 

344 = S ST 

2.3.3 Constitutive Equations of Laminated Shallow Spherical Shells 

(2.26) 

(2.27) 

The type of the shell under consideration is constructed of an arbitrary 

number of homogeneous cylindrical orthotropic layers perfectly bonded 

together. Each layer has arbitrary thickness, elastic properties and 

orientation of orthotropic axes with respect to the shell axes. The geometry 

of the kth layer is defined by two surfaces z = fk..l(r) and z = fk(r) and the 

upper and lower boundary surfaces are defined by z = -h/2 and z = +h12 from 

the middle surface (Fig. 2.5). The total thickness of the liminate is h. The 

shell materials are continuous everywhere and each layer obeys the 

generalized Hooke's law. 

By the use of the constitutive equation (2.22), we have for the kth layer 
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1ST LAYER 

2ND LAYER 

MID-SURFACE 

k-TH LAYER 

N-TH LAYER 

Figure 2.5: Structure of the laminated shell 
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(k) (k) S11 S12 

( " k) (k) 
S12 22 

0 0 

0 

0 

( 544k) I (2.28) 

in which Sjj are the reduced stiffness of the kth layer. 

As in the classical shell theory, the stress resultants and stress couples 

are defined by 

+h/2 

ENr , N0]= f [a W 0(k) I dz 
-h/2 

+h/2 

[Mr, M ] = f [ a , ] zdz 

(2.29) 

In which, Nr, No are membrane forces and Mr, M0 are bending moments, all 

per unit length. These forces and moments are shown in Fig. 2.6. 

Substituting eqn. (2.28) into eqns. (2.29) and taking eqns. (2.14) into account, 

yields the constitutive relations of the shell. 

5 [ N] - [A] [B] 5 [ go :i 
[ MI J - [B] ED] 1 [x. ] 

where 

INr [M]= 
l 1Mr1 

lNc f lMo [N] c 

180 1 r iCr[8 ° ] = , [] = c 
Ke 

All A12 1 [B1.1 

[A] = [Al2 A22J I [B] = [B12 

and 

B12 

B22 
[D] = 

P11 D12 

D12 D22 

(2.30) 

(2.31) 



z y 

Figure 2.6: Shell element with stress resultants and couples 
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+h/2 

fS>(1,Z,Z2 )dz (i,j=1,2) 
-h/2 

The material constants Ajj, B and D ( i, j = 1, 2 ) are, respectively, the 

extensional stiffnesses, the coupling stiffliesses and flexural stiffnesses of the 

shell. The B display coupling between transverse bending and inplane 

stretching. It is noted that bending-stretching coupling exists even for a 

laminate constructed of isotropic layers of various materials. In fact, only 

when the shell is symmetric about its middle surface, the coupling Bt will 

disappear. This requires symmetry in laminae properties, laminae orientation 

and distance from the middle surface. 

For various types of shell construction in this study, the values of Aj, 

B and Dt are presented as follows: 

(1) Unsymmetric cross-ply laminate 

Unsymmetric cross-ply laminates are constructed of an even number 

of cylindrically orthotropic layers all of the same thickness and identical 

mechanical properties, with orthotropic axes of symmetry in each layer 

alternately oriented at angles of 00 and 90° with the shell axes, namely, the 

base plane axes of the shell. The fiber direction of odd layers is assumed to 

be coincided with the e axis and that of the even layers with the r axis. In 

this case, it can be shown that 

B11 = -B22 = 

22 ) = h (   2 ' 8 LT 

4 A2 (STSL) , B12 =O 
IV 

A3 
D22 = - (S, + ) , 12 = 12 SLT 

(2.32) 

(2.33) 
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(2) Symmetric cross-ply laminate 

Symmetric cross-ply laminates are constructed of an odd number of 

cylindrically orthotropic layers all of the same thickness and identical 

mechanical properties. The layers of a symmetric cross-ply laminate are so 

arranged that a mid-surface elastic symmetry exists. That is, for each layer 

above the mid-surface, there is a corresponding layer identical in thickness, 

elastic properties, and orientation of filaments located at the same distance 

below the mid-surface. Thus, it is assumed that the fiber direction of odd 

layers coincides with the e axis, and that of the even layers with the r axis. 

In present case, the material coupling does not occur between bending and 

stretching and the shell stiffliesses are 

A11 — [ (N+i)ST+ (N-1) L] 

- [(N-i) ST+ (N-i-i) Sr 

Al2 = h SzT 

h3  
11 24N3 E T (IV- I)() L] 

3 
D22 h  24N3 [(N-1)(N2-2N-2)ST+(N3+3N2-2)SL] 

_h 3 
- LD 12 12 T 

(2.34) 

(3) Orthotropic shell 

For a cylindrically orthotropic shallow spherical shell its material axes 

of symmetry parallel to the coordinate axes of the shell and the fiber direction 

coinciding with 0 axis, the stiffness are 
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(A11 , Al2 , A22 ) =h(ST, SLT , L ) 

Bij = 0 

(D11 , .0 12, D22 h3 ) ( S,, SLT, SL12  

(4) Isotropic shell 

In the case of an isotropic shell 

_  
All = A22 Eh , Al2 = V A11 

1-v2 

= 0 

Eli 3  
22 = 12 (1-v2) , D1 = vD11 

(2.35) 

(2.36) 

where E is the modulus of elasticity and u Poisson's ratio of the isotropic 

shell. 

2.3.4 Transverse Shear Deformation 

For the analysis of most plate or shell structures composed of composite, 

materials, the transverse shear deformation should be taken into account. In 

the axisymmetric deformation of the shell, only one transverse stress exists. 

From eqn. (2.28), this shear stress is 

(k) - (k) 
Orz - S44(k) Czz 

As in eqn. (2.29), the shear stress resultant is defined by 

+h/2 

Qr f ojdz 
-12/2 

(2.37) 

(2.38) 
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The transverse shear strain in (2.14) represents the average shear strain 

across the thickness of the shell. As can be derived from (2.22), the 

transverse shear stress is a step distribution across the she11 thickness and 

does not vanish on the bounding surface of the shell. To eliminate this 

discrepancy a parabolic shear stress distribution across the shell thickness is 

assumed in the form as in the work by Fu and Chia (1989a,b) 

Cr 30, ___ 

=rz  [1 Z  )2 J -C  
h/2 

and the transverse shear stress resultant, Qr' may be written as 

Qr = G* Crz = G* (4r* + w,1) 

(2.39) 

(2.40) 

in which G* is the transverse shear stiffness. 

By introducing the complementary energy, the shear stiffness G* can 

be determined. The complementary energy due to arz, given by expression 

(2.39) is 

+h/2 

V= - f [ () ) 2/ 4(4) ] dz 
-h/2 

9Q2 AV 

__ __ 

— 8h 2 f C) [hk-h.  - 3h 2 - h_1) + -- (h - 

Sb4 

(2.41) 

where  N is the number of layers. On the other hand, the complementary 

energy from expression (2.40) is 

v= (2.42) 

Equating the shear complementary energies and hence coefficients of like 
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terms yields 

4h 2 
1-7 

k=1 

(2.43) 

If the transverse shear effect is negligible, then e = 0 and 

consequently, 

1r * +W, r =O (2.44) 

which is consistent with Kirchhoffs assumption that the straight line element 

of the shell which is perpendicular to .the middle surface before deformation 

remains so after deformation. 

2.4 NONLINEAR EQUATIONS OF MOTION 

The principle of virtual work established by Lagrange is one of the• 

variational principle in three dimensional continuum mechanics. It may be 

stated as follows: Assume that the mechanical system is in equilibrium 

under applied forces and prescribed geometrical constraints. Then, the sum 

of all the virtual work, denoted by 6w, done by external and internal forces 

existing in the system in any arbitrary infinitesimal virtual displacements 

satisfying the prescribed geometrical constraints is zero: 

ôw=o (2.45) 

This principle may be stated alternatively in the following manner: If the 
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sum of all the virtual work vanishes for any arbitrary infinitesimal virtual 

displacements satisfying the prescribed geometrical constraints, then the 

mechanical system is in equilibrium. Thus, the principle of virtual work is 

equivalent to the equations of equilibrium of the system. The above 

formation may be extended to the dynamical problem of a mechanical system 

subjected to time-dependent applied forces and geometrical constraints. By 

the use of D'Alembert's principle which states that the system can be 

considered to be in equilibrium if inertial forces are taken into account, the 

principle of virtual work of the dynRmical problem can be derived in a 

manner similar to the static problem case, except that terms representing the 

virtual work done by the inertial forces are now included. Based on the 

principle of virtual work, various variational principles have been derived by 

many researchers, such as, Reissner's principle (1950). which allows 

independent variation of both displacements and stresses and leads to 

equations of equilibrium, constitutive relations (assuming strain-displacement 

relations are satisfied) and natural boundary conditions, Washizu's 

principle(1968) which allows independent variation of stress, displacement 

and strain and results in all three sets of equilibrium equations, constitutive 

relations and the corresponding boundary conditions, and others. 

In this work, making use of the principle of virtual work, the 

equilibrium equations of motion for laminated shallow spherical shells can be 

derived. Assuming that the strain-displacement and constitutive relations are 

satisfied, the sum of all the virtual work done by external and internal forces 
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(including inertial forces) can be expressed in the form: 

ejj  - fffBudv - If TudS 
V V 

ow1 8 W2 a W3 
(2.46) 

where: B1 = body force per unit volume of material acted on along the 

coordinate direction i. 

T1 = surface traction per unit area acted on along the direction i. 

S1 = a part of the surface on which surface tractions. 

S = surface of the shell. 

v = space occupied by the shell. 

For the present case, the first term of Sw is 

a 2i +h/2 

ow1=ff f [arOcr+aoOeo+arzOczz]rdZdOdr 
0 0 -h/2 

(2.47) 

Using relations (2.14) and (2.29) and integrating with respect to z from -h12 

to +h/2 and to 0 from 0 to 2ir, expression (2.47) can be written as: 

8W1 2f[rNr8(u, r_w/R+, rw, r+w,/2)+rMr8*, r 

+rN08 (u/r-w/R) +rN8 (*/) 4rQ10 (*+w)] di 

2f { E (iNr) Ir+NO]8U [ - (rM) rQr] Ot 

+ [ - (iNs) /R- (ZNr ir+iNrW, r) r (1N0)/R 

_(iQr),r]OW}27t(iNr1)I+27t(ZMrO1Iy*) I 
+27r[ (ZNrir+iNrW,r+iQr)OWj I 

(2.48) 

From D'Alember's principle, the effect due to acceleration of the shell 
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in consideration, can be represented as a body force. Neglecting the mass 

body force effects and retaining only the acceleration terms, the second term 

of oW is given by 

a 2i +h/2 

q2= _ff f . k) (u,8U +uO 6u0 +w,8w) 
0 0 -h/2 

a 2 +22/2 

=-ff 
0 0 -22/2 (2.49) 

fy(k) [ (u, t•zij,*,) 6 (u+ziJr) +w,6wJ 

— 27rf I (YU, ,+I4r tt) a U+ (lu , tt; + -T* * I tt) 8 4r* 

+yw,dw] zdr 

where (k) is the shell mass density per unit volume, and 

h/2 

(Y IJ)_f'y(k)(1 zz2)dz (2.50) 

-22/2 

The shell in this work is supported on a nonlinear Winkler-Pasternak 

elastic foundation and is subject to distributed transverse load q(r,t) on the 

upper face (Fig. 2.1). In this figure, Kf is the extensional modulus, k is the 

nonlinear extensional modulus and g is the shear modulus which assumes 

the existance of shear interaction between the foundation elements. On 

account of the elastic foundation, the total transverse load is to be replaced 

by q-kfw-kw3+gf(w,-i-w,1Jr)( Duinir, 1985). Also, the shell is rested on the 

flexible edge of inplane stiffness k1 and rotational stiffness kb. Thus, the last 

term of Ow is expressed as 

a 2IX 

8W3==ff[ q _kfw_kflw3+gf (w,+w, /r )] 6wrdOdz 

00 

+2ta[_k22iJi*(a)8lr*(a) -ku(a)8u(a) 

(2.51) 
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The sum of all virtual work is rewritten as 

- I - (rm.) Ir ZQr+IU lb j1lI*, lt] j7 

+ I- (iNr+iN0)/R (rNr ,r+rNrw, r) r (1 Q,) 'r 

-q+kw+kw3 -g (w, rr +Wi r/1) +yw, ] 8w} di 

+2 7r (rN1ôu) I' + 2 7C (iMr8iJ*) I 
+2ir[ (INrir +iNrWir +iQr)ôW] 

+27ca[kbl!1*(a) 84r* (a) +k1u(a)6u(a)] 

(2.52) 

Employing the principle of virtual work, 8W must vanish and hence the 

arbitrary and independent variations of displacements will lead to the 

following governing equations of motion and mixed boundary conditions: 

(1) Governing Equations of Motion 

( i Nr 'r - N0 = y u + r I C tt (2. 53a) 

(2.53b) 

r (Nr +N0 )/R+ [iNr (W, r +W, r ) I, ,+ (iQr ), r 

I q-kw-kw3 ( W, rr +WI 1/r) ] = rw, tt 

(2) Mixed Boundary Conditions 

Nr kiU or uu0 at ra (2.54a) 

(2.53c) 

Mr _kb IT* or at r=a (2.54b) 
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Qr Nr (, r +1, r) or w= w0 at r=a (2.54c) 

where u0, w0 and jr are the prescribed boundary displacement functions. 

For axisymmetric deformation of a shallow spherical shell, the 

symmetry condition jt = 0 at the apex should be satisfied. To ensure that 

membrane stress resultants do not increase indefinitely at apex, the condition 

of Nr being finite should be also imposed. In this work, since the shell edge 

is supported by elastic restraints and finite conditions are imposed at the 

apex, the boundary conditions may be rewritten as 

rO and Nr is finite at r=O. 

W0 N= -k1 U, Mrkb1I7* at r=a 

(2.55a) 

(2.55b) 

Boundary conditions treat the specific values of kb and k1 (i.e., kb, k1 = 0, oo) 

as special cases: 

(a) Movable simply supported edge (SM), when k1 = 0 and kb 0; 

(b) Immovable simply supported edge (SI), when k1 = 00 and kb 0; 

(c) Movable clamped edge (CM), when k = 0 and kb  

(d) Immovable clamped edge (CI), when k1 = 00 and kb = 00 

2.5 GOVERNING EQUATIONS IN TERMS OF TRANSVERSE 

DISPLACEMENT, ROTATION AND STRESS FUNCTION 

As usual the tangential inertia terms are neglected and a stress 



52 

function, F*, is introduced as 

Nr = F*/r No = (2.56) 

It is observed that I in eqn. (2.50) disappears when 'y00 is a constant as 

assumed. Thus the stress function satisfied the first governing eqn. (2.53a). 

A partial inverse of eqn. (2.30) yields 

f[gO] [A*] [B*] 5 [N] 
I [ N] J _[B*JT ED*] E K I 

in which superscript T represents the matrix transpose and 

[A*] = [A]1 , [B*] = — [A] 1 [B] 

ED*] = [D] - [B] [A] - [B] 

In general [A*] and [D*] are symmetric but [B*J is not a symmetric matrix. 

The equation obtained by eliminating u in strain-displacement relations 

(2.14) is called the compatibility condition: 

-e + (rc), + rw, 1/R + grW r + w,/2 0 (2.59) 

(2.57) 

(2.58) 

Making use of eqns. (2.56) and (2.57) , the compatibility condition in terms 

of w, Nt and F* can be obtained, 

A22(ZF, rr +F, r) _A 1F*/r+B;1r1*, rr +(B;l +B;2 _B l)I*, r 

- (2.60) 

Employing the partial inversion of relation (2.57) for MT, M0 and eqn. 

(2.40) for Qr respectively, eqn. (2.53b) is expressed in terms of w, Nt and F* as 
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TS  _B;1rF*, rr _ (B 1+B 1-B 2) 

_D2iJ,*/r_R1rJ1Ir*, ) -G' r(j,* + w, r) = 0 (2.61) 

In the above equation, tracing constants T5 and R1 are introduced to represent 

the influence of transverse shear and rotatory inertia when T8 = 1 and R1 = 1; 

when T5 = 0 and R1 = 0, these effects are neglected. 

Using the governing equation (2.53b) for rQr, the partial inversion of 

the constitutive relation (2.57) for M,., M0 and eqn. (2.56), and integrating 

eqn. (2.53c) with respect to r from 0 to r, the governing equation of motion 

may be written in terms of w, t and F* as 

_BrF*,rr_(B+B l_Bz)F*, r+B 2F*/r+D i (1lr*, r+rir*, rr) 

+ (rF*)/R+F* (r/RIW,+w, 1) 

+fr[q_kfw_kflw3+gf(w,1+w,/r) -w,] dz=0 

To simplify the calculation for numerical results, equations (2.60) to 

(2.62). are expressed in the dimensionless form 

(2.62) 

A22 (P F, PP  +F,) -A11F/p +.1piIr1/X1+ ( 22 

— — . (2.63a) 
-B12 i4r/ .1p) (2). 3. ) =0 

(2.63b) 

-.ir/p R1p ./(12))J - wGp (ijr + W, ) = 0 

-?B21pF, pp - 1 (11-2) F, 1512 F/p (r, p + p,, ) 

-D22117/p -R1[pi4r,/ (12A) ] +2??.2pF+F(W,+W,) 

+p [Q-KfW-KflW3+Gf (W,+W,/p) -W,] dp=0 

In which, the dimensionless parameters are defined as 

(2.63c) 
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p=.r /a,W=w/h,W /h,qr=(a/h)\ ,* ,F=F*/ (Eh2) 

1=a/h, X2=H/a, Q=qa 4/ (Eh") , 

41j=AjETh ,'ii =B'j/h, D.jj=Dj/(ETh3) (i,j= 1,2) 

GG*/(E.h) 

Kf=kfa4/(ETh3) , Kfl=kfla4/(ETh) , Gf=gfa2/(Eh 3) 

(2.64) 

Also the boundary conditions (2.55) can be rewritten in terms of W, N, 

and F dimensionlessly, 

l=O and N (=Fl p) is finite at p=O. (2.65a) 

and 

W=O , , N=-K U at p=i (2.65b) 

where 

M= -BF/p -B21F,+D11 1Ir, p +D 2 r/p 

U=A. 2F+A22 pF,+B21 pir,+B22 ijr+2A2pW 

In the above expressions, M, N, U, Kb and K are defined as 

Mp=Mra2/(E1,h4) NP=NXa/(ETh2) U=u/h 

Kb—kba/(ETh3) , Kj=kja/(ETh) 

• Equations (2.63a,b,c) constitute a system of equations governing the 

nonlinear analysis of axisymmetric deformation of a laminated shallow 

spherical shell composed of cylindrically orthotropic layers. The effects of 

transverse shear, rotatory inertia, geometric imperfection and elastic 

(2.66) 

(2.67) 
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foundation are included. It is to be noted that, with appropriate assumptions, 

equations (2.63) can be simplified for some particular cases: 

(1) Marguerre-type equations of motion for laminated shallow 

spherical shells 

Neglecting the effects of transverse shear and rotatory inertia, the 

second of governing equations in this case becomes 

(2.68) 

Substituting the above equation into the other two governing equations, a set 

of two governing equations are obtained. 

X2 (pF, . 
, + F, ) -AF/p -p w, 1,1,1,/ + ( +B22 L1) PT13/X2 (2.69a) 

+!12W,/ (?.1p) P/'X j. =0 

-BpF, PP -) (B11+ 1- 2) F, +A.B12F/p - Ell (W, PPP ) 

l-D22 W,p/p +2).2pF+ 1F(W,+W,) 

+f P [Q-KfW-KW3+Gf (W,+W,/p) W, T] dp=0 

(2.69b) 

which are the so-called Marguerre-type equations for the dynRmic analysis of 

a laminated thin shallow spherical shell. 

(2) Mindlin and von Karman-type equations of motion for laminated 

circular Plates 

Assuming that the curvature of the shell in eqns. (2.63) is zero (i.e., hR 

= 0 ), the governing equations are simplified to those for laminated circular 

plates. If the effects of transverse shear and rotatory inertia are neglected, 
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these equations become those for laminated thin circular plates in the sense 

of von Karman. 

(3) Equations of motion for symmetric Laminated shallow spherical 

shells 

In the case the material coupling does not occur between transverse 

bending and inplane stretching, namely, B1 = 0. The governing equations 

(2.63) are simplified as 

A22(pF, PP +F,) =O( 2.70 a) 

2 2-

[r/ (i2X)] +2? 2pF 

(2.70c) 

+2F(w,+w,) ifp [QKfWKW31Gf(Wspp +W,/p) —W,] dp=0 

When eqns. (2.69) and (2.70) are specified for orthotropic and isotropic 

shells, the resulting equations agree with those given in the earlier theories 

or classical theories. 

2.6 SUMMARY 

In this chapter, the constitutive relation for a moderately thick shallow 

spherical shell composed of cylindrically orthotropic layers are established 

based on the generalized Hooke's law and are characterized by four 
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independent engineering elastic constants. The extensional stiffness, the 

bending-stretching stiffness and flexural stiffliess of the shell are presented 

for unsymmetric cross-ply laminate, symmetric cross-ply laminate, oi'thotropic 

and isotropic shell, respectively. The transverse shear stifihess is given by 

employing a parabolic shear stress distribution across the shell thickness and 

the principle of complementary energy. 

The governing equations and corresponding boundary conditions are 

derived by the dynamic principle of virtual work and expressed in terms of 

a transverse displacement, a rotation of a normal to mid-surface and a stress 

function. The, effects of transverse shear, rotatory inertia, geometric 

imperfection or initial deflection and elastic foundations are included.. For 

specific cases, the governing equations are simplified to those given in the 

earlier theories. The governing equations agree with the dynamic Marguerre-

type equations by neglecting the effects of transverse shear and rotatory 

inertia; become the dynamic Mindlin-von Karman-type equations for 

laminated circular plates by assuming zero curvature of the shell; reduce to 

those proposed in classical theories of orthotropic and isotropic shells; and are 

further simplified to those for static analysis by deleting. the time-dependent 

terms. It is observed that the present governing equations are more general 

and accurate for studying the elastic behaviour of laminated shallow spherical 

shells than the existing theories. 
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CHAPTER 3 

METHOD OF SOLUTION 

3.1 INTRODUCTION 

The equations derived in Chapter 2 constitute a system of equations for 

nonlinear analysis of axisymmetric deformation of a laminated shallow 

spherical shell composed of cylindrically ( or polar) orthotropic layers. The 

effects of transverse shear deformation, rotatory inertia, geometric 

imperfection and elastic foundations are included. In some special cases, such 

as, neglecting the effects of transverse shear and rotatory inertia, assrimng 

the zero curvature of the shell, and considering no bending-stretching 

coupling, etc., these equations may be reduced to the simplifying forms. An 

exact solution to this system of the nonlinear differential equations is in 

general very difficult to obtain. Therefore, in this chapter an approximate 

solution of the Fourier-Bessel series is sought in the analysis. And the 

Galerkin method is used to reduce the governing equations of motion to a set 

of nonlinear ordinary differential equations and these equations for time 

functions are expanded into Fourier cosine series in the time by the method 

of harmonic balance. The resulting equations are solved by the Newton-

Raphson method. 

The multi-mode solution has the advantage that an infinite set of 
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nonlinear equations can be truncated to obtain any desired degree of 

accuracy, over the single-mode solution. In engineering, further, several 

terms taken in the truncated series may yield sufficient accuracy provided 

that the terms considered are close to the actual shape of vibration or the 

deformed configuration of the shell. Certainly, when an infinite series 

solution satisfying the governing equations and boundary conditions is 

presented, the solution can be said to be exact. 

3.2 GALERKIN METHOD 

A number of approximate methods have been developed by using the 

variational principle, numerical analysis and other mathematical theories. 

Those used extensively in solid mechanics are Double Fourier series by 

expressing the dependent variables and the loading function as double Fourier 

series; generalized double Fourier series by expressing these variables in 

terms of any orthogonal sets of functions; Ritz method (Ritz, 1908) by 

applying the principle of minimum potential energy and assuming that the 

desired extremal of a given problem can be approximated by linear 

combinations of suitably chosen functions; perturbation method or small 

parameter method (Poincare, 1892; Nowinski and Ismail, 1965) by generating 

the perturbation in the neighbourhood of the solution of the linearized 

equations such that the known properties of the linear system can be utilized 

for the solution to the perturbed system; and Galerkin's method (Galerkin, 
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1915) by minimizing the errors produced by the chosen spatial functions. 

In this work, the Galerkin method is used to obtain an approximate 

solution. It is briefly reviewed as follows: 

The Galerkin method which has been widely applied to both static and 

dynamic problems in the area of solid mechanics is the method of an 

approximate solution of the boundary-value problems. The idea of the method 

is minimization of error by orthogonalizing with respect to a set of given 

functions. Consider a system of differential equations 

L ( u, v, w) = C i=1, 2, 3 (3.1) 

subjected to appropriate boundary conditions. In these equations L1 are 

nonlinear (or linear ) differential operators. These equations physically 

represent the conditions of dynamic ( or static ) equilibrium of a differential 

element dK2 cut out from a structure under external forces. Let arbitrary 

virtual displacements 6u, 6v and 6w be applied to the structural system. 

These displacements, however, are continuous function of x1 (i = 1, 2, 3 ) and 

t and satisfy the geometrical boundary conditions. The virtual work done on 

the element by these virtual displacements is 

CL1 (U,V,W)ÔU+L2 (U,V,W)8V+L3 (U,V,W)?JW}dQ (3.2) 

By the principle of virtual work the following is obtained 

fff CL1 (u, v, w) 8u+L2 (u, v, w) 

+L3 (u, v, w) 8 w} d≥ = 0 

in which the integration is carried out over the entire structural volume Q. 



61 

An approximate solution of the problem is sought in the form 

Akm  akmn  
kma 

= EEEB(t) bkmn (x1, x2, x3) 
k m n 

Ckn  
k m n 

(3.4) 

in which A's, B's, C's are undetermined variable coefficients of time and a's, 

b's, c's are suitably chosen spatial functions satisfying the prescribed boundary 

conditions and capable of representing the mode of deformation. The assumed 

solution (3.4) is not required to satisfy equations (3.1) but the functions a,b 

and c should have at least the same order of derivatives as those in these 

differential equations. The virtual displacements are taken to be of the form 

EEEak.  
k m n 

6v=EEEb(x,x21 x3) ô kml B(b) 
kmn 

EEEc, (x1, x2, x3) 8 Ck.  b) 
k m n 

(3.5) 

and substituted into the variational equation (3.3). Since A's, B's and C's can 

be varied independently, the only way that the resulting variational equation 

can be zero is that the coefficients of and 8Ckmn must vanish 

identically in the domain, namely 

fff L1 (u, v, w) amnk (x1, x2, x3) dQ = 

fff L2 (u, v, w) b (x1, x21 x3) dQ = 0 (3.6) 

ff f IL3 (u, v, w) c (x1, x2, x3) cff2 = 0 

which provide the same number of equations for the number of A, Bmnk 



62 

and Cmnk taken. Introducing the approximate solution (3.4) into equations 

(3.6) and performing integration will lead either to a system of ordinary 

differential equations for A(t), Bm(t) and Cm(t) in the dynRmc 

problems or to a system of algebraic equations for constant coefficients A,,k, 

Bmnk and Cmnk in the static problems. Unlike the Ritz method the Galerkin 

method does not require the formulation of an energy principle. This method 

yields good approximation only after taking a few terms for u, v, w in 

expressions (3.4). Evidently the accuracy of this procedure is very sensitive 

to the choice of the assumed solution. 

3.3 FOURIER-BESSEL SERIES SOLUTION 

3.3.1 Bessel Function 

Bessel functions, like many other branches of mathematics, had their 

origin in the solution of physical problems. In 1824, F. W. Bessel studied a 

problem associated with elliptic planetary motion and made an attempt to deal 

with it in a systematic way. Thus, the terminology "Bessel Functions" were 

proposed. 

Consider a differential equation 

dz2 z dz 
(3.7) 

which is known as Bessel's equation for functions of order n. It is a linear 
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differential equation of the second order having variable coefficients, namely 

liz and (l-n2/z2). By the theory of linear differential equations, it has two 

distinct or linearly independent solutions, i.e., one is not a constant multiple 

of the other. If we take J(z) as the first solution to equation (3.7), we obtain 

Bessel's definition of the function which bears his name. J(z) is sometimes 

called a Bessel coefficient, but it is regarded more generally as a Bessel 

function of the first kind of order n. It can be shown that J(z) is expressed 

in the form (Mclachlom, 1955) 

J(z) = 

or 

(!z) 12 1_L._  (z/2) 2  +  (z/2) 4 (z/2) 6  + 
2 In! 1! (n+i) ! 2! (n+2) 3! (n+3) ! 

00 (z/2)n 2r 

x=O i (n+r) 

LT" (Z) =-.i-f cos (nO-zsinO)dO 
29 

(3.8) 

(3.9) 

Series (3.8) and its derivatives are absolutely convergent for all finite values 

of z real or complex, and uniformly convergent in any boundary region of the 

z-plane, namely term by term differentiation and integration is permissible. 

In virtue of uniform convergence, J(z), J'(z) ..., the functions represented by 

the series and its derivatives, are continuous functions of z in the finite part 

of the z-plane. The function represented by the integrated series are 

continuous also. 

Furthermore, we define the first solution to the differential equation 
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(3. 10) 

as a modified Bessel function of the first kind of order n, denoted I(z). 

Similarly, it can be show that I(z) is of the form 

or 

I(z) =  Z'  11+  +  + 

2T (n+1) 2 (2n•2) 2'4 (2n+2) (2n+4) 

(z/2) 2'  
- r!T(n+r+1) 

-T" (Z) = _fe050cosnedo 
27c a 

(3.11) 

(3.12) 

The properties on convergence and continuity of J(z) apply to I(z), namely 

the series (3.11) is absolutely and uniformly convergent in the finite part of 

the z-plane. 

Some features of the Bessel function and modified Bessel function of the 

first kind used in this work are presented in Appendix A. 

3.3.2 Solution 

An approximate multi-mode solution to the system of equations (2.63) 

with the correspondingboundary conditions is assumed in the form of Fourier-

Bessel series. 
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CO 

W(Pi•t)=EWm (t)Xm (P) 
m=1 

am 

l =E Rm (t) Y. (3.13) 
n1 

F(p,v) =E S. (r) Zr (i.') 
X-1 

To simplify the theoretical analysis, the geometric imperfection is also 

expanded into a Fourier-Bessel series as the transverse displacement although 

the shape of the geometric imperfection is random in practical structures. 

(p) =E X" (P) 

In the above expressions, Wm are the constant coefficients, Wm (V), Tm ('r) and 

Sr(s) are time dependent coefficients to be determined and functions Xm, 'm 

and Zr are the combination of Bessel functions and modified Bessel functions 

given by 

X,, (p) 

m(P) = 

(3.14) 

(3.15) 

Z' (P)Pt  (PP) 

where J0, J1, 10 and I are the Bessel functions and modified Bessel functions 

of the first kind of order zero and order one. The condition W=O at the edge, 

i.e., the first of eqns.(2.55b), and the finite conditions at the apex, i.e., 

eqns.(2.55a), are automatically satisfied by the assumed solution (3.13). The 

constants Xm and Pr in expressions (3.15) are determined by the last two of 

boundary conditions (2.55b) respectively. 

(1) For a symmetrically laminated shallow spherical shell 
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In this case, B =0, the last two of edge boundary conditions (2.55b) are 

of the form: 

N=-K U 

Using eqns. (2.66), the conditions (3.16) are rewritten as 

D1r,+.2iji/p +KbII1=0 

F/p + K [p (Al2F+X 2pF, 0) +2A2pw] = 0 

(3.16) 

(3.17) 

Substituting eqns. (3.13) into eqns. (3.17) and considering the values of W and 

p at the edge, the above equations become 

am F13. 'T11  +IL(am) 'To (am)/za(am)] 
+(. 2+Kb) [Ji(am)+T.(tm)Jo(azn)/bo(tm)] 0 (3.18) 

(1+KX 2) (fir) +K1A22 [T0 (13:) ] = 0 

These equations are used for determining the coefficients oc and or. Typical 

sets of values of these coefficients are given in Tables 3.1 and 3.2, respectively. 

The elastic constants of glass-epoxy (GL), boron-epoxy (BO), graphite-

epoxy(GR) composite materials and isotropic material (ISO) used in this work 

are presented in Table 3.5. 

(2) For an unsymmetrically laminated shallow spherical shell 

In this work, the edge movable and rotationally restrained is considered 

for an unsymmetrically laminated shallow spherical shell. Thus, the last two 

of the edge boundary conditions (2.55b) are 

NP = 0 

Similarly, introducing (3.13) into (3.19), we obtain 

(3.19) 
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Table 3.1. Values of ak in Eqns. (3.18) 

B.C. Material* N k=1 k=2 k=3 

ISO 2.22151952 5.45160570 8.61139102 

GL 2.19856358 5.44445294 8.60711666 
BO 3 2.17409864 5.43713453 8.60277098 

Kb=O GR .2.18432727 5.44015689 8.60456229 

GL 2.17837067 5.43839035 8.6035 1473 
BO 5 2.13993080 5.42741614 8.59704288 
GR 2.13840552 5.42699551 8.59679605 

ISO 2.97361324 5.95335276 9.00131998 

GL 2.97287258 5.95242671 9.00038768 
BO 3 2.93546877 5.90741875 8.95624565 

Kb=l GR 2.90560325 5.87383069 8.92474292 

GL 2.92092025 5.89080663 8.94051571 
BO 5 2.76153701 5.73674906 8.80767932 
GR 2.66983863 5.66712084 8.75449430 

ISO 3.06978351 6.08634237 9.14610654 

GL 3.06964366 6.08612912 9.14585622 
BO 3 304557810 6.05035368 9.10470121 

Kb=2 GR 3.02506134 6.02122532 9.07242994 

GL 303570310 6.03618011 9.08886227 
BO 5 2.91896 188 5.888607 12 8.93845508 
GR 2.84083561 5.80745772 8.86586736 

ISO 3.14114791 6.20354820 9.29345134 

GL 3.14117734 6.20360018 9.29352111 
BO 3 3.12974933 6.18365227 9.26704000 

K=5 GR 3.11954481 6.16623134 9.24439299 

GL 3.12488270 6.17529845 9.25612465 
BO 5 3.06307852 6.07619251 9.13425386 
GR 3.01557386 6.00816570 9.05831094 

Kb=co 3.19622061 6.30643704 9.43949914 

*The elastic constants of ISO, GL, BO and GR are given in Table 3.5. 
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Table 3.2. Values of Pk in Eqns. (3.18) 

B.C. Material N k=1 k=2 k=3 

K1=0 2.40482555 5.52007809 8.65372792 

ISO 1.51935696 4.23172426 7.24963172 

GL 1.81599472 4.49277964 7.43261039 
BO 3 2.12760621 4.93652344 7.84428444 

K=1 GR 2.21464220 5.10259619 8.04352475 

GL 1.79910946 4.47446504 7.41863895 
BO 5 2.10770703 4.90129631 7.80554831 
GR 2.19857760 5.07050009 8.00283299 

ISO 1.34557615 4.12495713 7.18305239 

GL 1.60486281 4.29522576 7.29123675 
BO 3 1.94887462 4.6,5556975 7.56606677 

K1=2 GR 2.07165337 4.84007249 7.74100662 

GL 1.59127027 4.28457734 7.28414480 
BO 5 1.92339347 4.62160123 7.53674775 
GR 2.04793590 4.80159750 7.70218397 

ISO 1.20484047 4.05616663 7.14205397 

GL 1.39265282 4.15126138 7.19909927 
BO .3 1.67685843 4.35545595 7.33229144 

iç=s GR 1.81121728 4.48754777 7.42859936 

GL 1.38673080 4.14785295 7.19700760 
BO 5 1.65340037 4.33509753 7.31823044 
GR 1.78361415 4.45808475 7.40630557 

ISO 1.08725429 4.00845 193 7.11434701 

GL 1.17757340 4.04437232 7.13515350 
BO 3 1.22832799 4.06670280 7.14824868 

Kj=oo GR 1.23087936 4.06786886 7.14893604 

GL 1.18374410 4.04700118 7.13668850 
BO 5 1.23198514 4.06837554 7.14923482 
GR 1.23450466 4.06953302 7.14991765 
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F/p=O 

+Kb 1r = 0 
(3.20) 

The constants 13r is determined by the first of (3.20) and as being the coupling 

boundary conditions, am is approximately taken to be the eigenvalue of the 
formula given by 

a tl { i' ('rn) + Il' (Urn) J0 (Urn) /.To  (Urn )] 

+ (P2 + Kb) [Ji( am) + -TI ( am) 'TO ( am) / -TO (Urn )] 0 

(3.21) 

Some values of these coefficients am , Pr are listed in Tables 3.3 and 3.4, 

respectively. 

To fulfil the rotational edge constraint, the following procedure is 

adopted (Chia, 1985). The moment at the edge of the shell is replaced by an 

equivalent lateral pressure near the edge (Fig. 3.1) denoted by Q5, and this 

pressure is represented by a sine series. If the value of d shown in the figure 

approaches to zero, the Qe may be expressed as 

Q0=27r -(-1)MI...1sin(i7vp) 

The edge moment in this equation which can be evaluated by substituting 

eqns. (3.13) and (3.19) into (3.22) is written as 

M pIpl KbI1Ip_l KbE R rn (t)Ym(UmP )Ip...l 

-KbE Rrn ('V) Yrn (Urn) 
rn-a. 

Thus eqn. (3.22) is rewritten as 

0S a 

Q02t E (1)KbRrn (-r) Yrn (Urn) sin (ip) 
=1 1R1 

The total lateral load now is 

(3.22) 

(3.23) 

(3.24) 
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Table 3.3. Values of ak in Eqn. (3.21) 

B.C. Material N k=1 k=2 k=3 

ISO 2.22151952 5.45 160570 8.61139102 

GL 2.15897136 5.43276118 8.60018731 
BO 2 2.12495757 5.42333452 8.59465148 

Kb=O GR 2.12299479 5.42280729 8.59434317 

GL 2.15897136 5.43276118 8.60018731 
BO 4 2.12495757 5.42333452 8.59465148 
GR 2.12299479 5.42280729 8.59434317 

ISO 2.97361324 5.95335276 9.00131998 

GL 2.89227033 5.85946759 8.91163127 
BO 2 2.77160734 5.74514781 8.81436164 

Kb=l GR 2.70634982 5.69343508 8.77414226 

GL 2.85705660 5.82329914 8.87952868 
BO 4 2.62730495 5.63860119 8.73378856 
GR 2.52338163 5.57744269 8.69132877 

ISO 3.06978351 6.08634237 9.14610654 

GL 3.01644477 6.00935395 9.05958676 
BO 2 2.92787862 5.89869168 8.94794515 

Kb=2 GR 2.87423252 5.84062857 8.89474919 

GL 2.99135032 5.97595122 9.02438106 
BO 4 2.80312694 5.77249614 8.83654145 
GR 2.69928748 5.68820617 8.77019540 

150 3.14114791 6.20354820 9.29345134 

GL 3.11540490 6.15926748 9.23546396 
BO 2 3.06845927 6.08432661 9.14374152 

Kb=S GR 3.03699459 6.0380 1743 9.09090083 

GL 3.10250906 6.13795211 9.20856869 
BO 4 2.99128296 5.97586385 9.02429075 
GR 2.91562746 5.88488 186 8.93497666 

Kb=oo 3.19622061 6.30643704 9.43949914 
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Table 3.4. Values of 13k in Eqns. (3.20) 

B.C. Material N k=1 k=2 k=3 

K=0 2.40482555 5.52007809 8.65372792 

Table 3.5. Numerical values of elastic constants 11 

Material EL/ET LT GLJET GTJET 

Isotropic (ISO) 1 0.30 0.385 0.385 
Glass-epoxy (GL) 3 0.25 0.5 0.333 
Boron-epoxy (BO) 10 0.22 0.333 0.2 
Graphite-epoxy (GR) 16 0.30 0.22 0.15 

Q,= Q + Q0 

The load in governing equations is to be replaced by QT. 

With the equivalent lateral pressure and the values of a and or given 

by eqns. (3.17) and (3.18) or (3.20) and (3.21), all boundary conditions are 

satisfied by the assumed solution (3.13). 

3.4 EQUATIONS FOR TIME-DEPENDENT COEFFICIENTS 

3.4.1 Nonlinear Ordinary Differential Equations 

(3.25) 

Introducing the solution (3.13) in governing eqn. (2.63) and making use 

of the Galerkin method by multiplying the first by Z(p), the second by Y(p) 

and the third by X(p), then integrating with respect to p from 0 to 1 and 0 



Figure 3.1: Equivalent pressure distribution ( d—O ) for edge moment 
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from 0 to 2ir, the following three sets of nonlinear ordinary differential 

equations for Wm (t), Rm (t) and Sr(r) are obtained: 

mk 

0 (3.26) 

14 15n 16 17n W, Wk Wj 

Q ., m • n+a18nm m+a19n rif - - 

where a1 to a19 and Qn are constant coefficients presented in Appendix B. In 

special cases, some coefficients disappear: 

(1) For symmetrically laminated shells, a10--2%4=O; 

(2) For neglecting the geometric imperfection, a4=a12=0; 

(3) For excluding the elastic foundations, a16 a17=0; 

(4) For circular plates, a3=a11=0. 

To simplify calculations, functions Sr(r) can be expressed in terms of 

linear combinations of R('r), Wm (r) and Wm (t)Wk(t) from the first of eqns. 

(3.26) 

W Is 58 m 3 1 Wm Wk (3 '27) Is 2s 1S 3s 4S 

Substituting (3.27) into the last two of (3.26), the resulting equations for Wm (t) 

and Rm(t) are 

= 0 20 21 22n 9n 

(3.28) 

+Qn+a nRm,T+ am, Wm 0 

in which a20 to a27 are given in the Appendix B. 
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Making use of the properties of the Bessel-function and the Simpson 

integration method, all the coefficients a1 to a27 can be calculated for a given 

set of shell parameters. 

3.4.2 Resulting Equations for Nonlinear Free Vibration 

In the case of the undamped nonlinear free vibration (Q.-- O), the method 

of harmonic balance is. used to reduce eqns. (3.28) to a set of algebraic 

equations. This is a common method for obtaining a periodic solution of a 

nonlinear differential equations for time functions. The procedure has been 

fully explained by Hayashi (1964) or elsewhere. The idea is that the periodic 

solution is first expanded into M terms of a Fourier series with unknown 

coefficients. The assumed periodic solution is then inserted into the time 

equations. Equating the coefficient of each of harmonics to zero, a system of 

algebraic equations is obtained. In assuming the harmonic expansion, only 

terms of the harmonic frequency and a few additional terms of different 

frequencies (usually subharmonic or higher-harmonic frequencies) are 

considered because Of their prime importance. Terms of frequency other than 

those are certain to be present also, but they may tolerably be omitted in most 

cases. 

In this work, the unknowns Wrn('r) and RmQr) are expanded as Fourier 

cosine series in r, 
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Ce 

W( 1 )= E Wcosk(t 

(3.29) 

Rm() = E R(k)coskc 

where Wm and Rm are constant Fourier coefficients for the kth harmonic 

amplitude of Wm('r) and Rm() respectively, and in which o) is the dimensionless 

vibrating frequency related to the circular frequency CO* by 

((L), Co.) =a2%/y/ (ETh3) (*, co t) (3.30) 

in which the dimensional and dimensionless fundamental linear frequencies 

0) and o) both neglecting the effects of transverse shear and rotatory inertia 

will be used for the presentation of numerical results. 

The expressions (3.29) are inserted into equations (3.28) and each term 

is converted into the first power of cosine functions, a system of simultaneous 

nonlinear algebraic equations is obtained. 

3.4.3 Resulting Equations for. Static Response 

In the case of buckling and postbuckling of laminated shallow spherical 

shells or static large deflections of laminated circular plates, the time 

parameter 't is treated as a constant. Deleting all inertia terms in (3.26), the 

uflkfl.OWflS Sr and Rm are expressed in terms of Wm and WmWk from the first 

two of (3.26) as 
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bl'n  (3.31) 

where b's are constant coefficients presented in Appendix B. Substituting 

eqns. (3.31) into the last of eqns. (3.26), the relation between the load and the 

maximum transverse displacement is 

cWWmWk+CWm WkWj+Qn O ± c  

with the constants c's given in Appendix B. 

3.5 NUMERICAL PROCEDURE 

3.5.1 Newton-Raphson Method 

(3.32) 

Simultaneous nonlinear equations are in general much more difficult to 

be solved than a single equation. The iterations are involved and convergence 

is frequently very slow. Many really clever methods have been devised for 

speeding up a solution of these equations. The Newton-raphson method is 

widely accepted as one of the best methods for solving nonlinear algebraic 

equations. The excellent results that are generally obtained with the method 

and the simple computational routine justify its popularity. The method 

applies as well for complex roots as for real roots, and the iterations converge 

rapidly provided the initial estimate for roots is close enough. To briefly 

introduce this method (Hartee, 1958), consider a single nonlinear equation 

The algorithm for the Newton-raphson method is obtained from a Taylor-series 
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f(x) =0 (3.33) 

expansion of fl:x) about an approximation to a root. Let x=x0 be an estimate 

to a root a. Then 

f(x) =f(x0+h) = f(x0)'+hf'(x0) + f f'/() 
where 4 is on the range x0 to x0-i-h. If x0+h is set equal to a then. 

(3.34) 

(3.35) 

An estimate to the value of h can be made by using only the first two terms 

in eqn. (3.35). Let this estimate be designated by h1 

-  f(x0) (3.36) 

.f'(x0) 

The basic formula for the iterations in the Newton-Raphson method is 

obtained by adding h1 to the estimate x0. This new approximation is 

designated by x1 

x1 =x f(x)0+h=x0- '() (3.37) 
XO  

The (k+1)th approximation to the root is obtained by using the kth 

approximation in the right-hand side of the following 

Xk+1Xk f'(xk) (3.38) 

The iteration defined by equation (3.38) usually gives fast convergence to a 

root of f(x)=O provided the error in the initial approximation x0 is small. 

Good results can even be obtained when the initial approximation is not close 

to a root, provided the slope on the interval between x=x0 and x=a is not 
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small. These statements are verified by the expression for the error in the 

first iterate 

f /I 
E(x1)=a-x1 ,— . / (a-x0)2+o(a-x0)3 (3.39) 

2f (x0) 

Equation (3.39) says the error in the first approximation from eqn. (3.38) 

(k=O) is o(h2), where h=a-x0. For this reason the method is said to be 

quadratically convergent and is a second-order method. 

Figure 3.2 shows the geometric interpretation for the Newton-Raphson 

method when the root at a is real. 

The Newton-Raphson method can obviously be applied to a system of 

n simultaneous nonlinear equations in n unknowns. At each step of the 

iteration, n2 partial derivative functions and n functions should be evaluated. 

This represents a considerable amount of computational effort. However, the. 

Newton-Raphson method is very fast and quite convenient for polynomials. 

In this work all simultaneous nonlinear equations are composed of 

polynomials of the third degree and this method used for solving these 

equations is suitable. 

3.5.2 Numerical Procedure for Solving Simultaneous Nonlinear 

Equations 

The numerical procedure for obtaining by solving the set of nonlinear 

algebraic equations (3.28) or (3.32) is briefly described. For nonlinear free 



xO xi x2 
x 

Figure 3.2: Newton—Raphson method 
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vibration, the number of nonlinear algebraic equations is equal to the product 

of the number of equations in eqns. (3.28) and the number of terms in the 

Fourier cosine expansion for each Wm(t) and Rm('r). By prescribing one of the 

unknowns among Wm , Rm and a, the resulting nonlinear algebraic 

equations can be solved by the Newton-Raphson method provided that a good 

initial estimate is given. By successively solving these nonlinear equations 

with a prescribed unknown and an initial approximation, the amplitude-

frequency response curve can be traced. The prescribed unknown is chosen 

as one of the harmonic amplitudes and o which has shown the greatest 

change in the last step of a solution while the initial estimate is 

approximated by the previous solution or an extrapolation from several of 

previous successive results. Usually, the prescribed value is one of the 

harmonic amplitudes as they change faster than co, especially when the 

amplitude of vibration is small. However, the difference of the prescribed 

unknown and the corresponding unknown in the previous solution should be 

kept small to ensure proper convergence. Once a solution in terms of 

harmonic amplitudes and frequency Co is computed, the maximum amplitude 

Wmax at the apex can then be determined from a plot of the dimensionless 

transverse displacement W at p=0 vs the dimensionless time t over a period 

of 2ir. Actually, the location of the maximum amplitude on the t-axis can be 

easily pinpointed by inspection because the first few harmonic terms usually 

bear the greater contributions than higher ones. 

For the static case, a similar procedure is implemented. The number 
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of nonlinear algebraic equations is equal to the number of eqns. (3.32). The 

prescribed unknown is taken one of the unknowns Wm and Q. In general, 

the prescribed value is one of Wm. 

3.5.3 Program NALSSS 

The computer program NALSSS (Nonlinear Analysis of Laminated 

Shallow Spherical Shells) is designed to obtain the numerical results for a set 

of given shell parameters. This program is easily implemented only by 

inputting basic simple information. The program NALSSS is composed of the 

following: 

(1) Processing the essential input data; 

(2) Calculating the elastic coefficients of composite materials; 

(3) Determining the eigenvalues of Bessel functions by boundary 

conditions; 

(4) Forming the matrix for a set of nonlinear algebraic equations; 

(5) Solving the nonlinear equations by the Newton-Raphson method; 

(6) Giving the results of buckling load, postbuckling, static large 

deflection or amplitude-frequency response. 

The flow chart of this program is listed in Fig. 3.3 and the copy of the 

program is given in Appendix C for reference. 
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Read input data and 

various control parameters 

( Do loop over groups of B.C., i..jl,zlwl 

( Do loop over groups of layers, i ... iu ) 

(Do loop over groups of materials, 1 ... ILMA) 

( Do loop over groups of H, 1..JLRMI2 ) 
Yes 

Is the number of layers odd? 

Calculate elastic constants 

A11, D1j G 

Calculate elastic constants 

B11 , D11 . G 

Calculate equivalent pressure Q0 

Find the eigenva]ues of 

Bessel function qn' Pr 

Calculate Integration constants : a1 ,a2,a3, 

.87.88 ,a9,a10 ,a11 ,a 13 ,a14 ,a 15 ,a18 ,a19 An 

< Is - the initaial deflection W included? 

Yes 

Calculate integration constants: a4 ,a 12 

Figure 3.3: Flow chart for program NALSSS 



83 

<Are  the elastic foundations included? 

Yes 

Calculate Integration constants: ale a17 

Is nonlinear free vibration analysed? 

Calculate constants c1, 1=1,2,3 

Do loop over points of 

response curve, I..IPOINT 

Solve nonlinear simultaneous algebraic 

equations for Wrze m=1.2,8 

Find the relation between the maximum 

displacement and the uniform load Q 

Yes 

Calculate constants b1, i=1,..,4 

Solve simultaneous elgenvalue 

equations for linear frequency W0 

Expand Wm and R m by hamonlo balance 

Do loop over points of 

1sresponse curve, 1 ... IPOINT 

Solve nonlinear simultaneous algebraic 

equations for W 1. k,rn=1,2,3 

Find the relation between the maximum 

amplitude and the frequency ratio W/w0 

 f" print numerical results 

I 
( P) 

Figure 3.3: (Continued) 
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3.6 SUMMARY 

In this chapter, a Fourier-Bessel series solution satisfying the 

prescribed boundary conditions is formulated for the governing equations of 

laminated shallow spherical shells. The eigenvalues of Bessel functions are 

listed in Tables for some typical cases. The Galerkin procedure furnishes 

three sets of nonlinear ordinary differential equations for time functions. For 

nonlinear free vibration, the time dependent coefficients of Fourier-Bessel 

series are expanded as Fourier cosine series and a system of simultaneous 

nonlinear algebraic equations is obtained and then solved by the method of 

harmonic balance. For the static response, the nonlinear ordinary differential 

equations become the nonlinear algebraic equations by treating the time as 

a constant and deleting the inertia terms. In some special cases, the 

simplified equations are presented. The Newton-Raphson method is used for 

solving the system of simultaneous nonlinear equations. Some features of 

computer programme NALSSS are briefly described. The numerical results 

can be obtained by implementing the programme NALSSS for a given set of 

shell parameters. 
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CHAPTER 4 

NUMERICAL RESULTS AND DISCUSSIONS 

4.1 INTRODUCTION 

In Chapter 3, the solutions for nonlinear analysis of laminated shallow 

spherical shells satisfying the required boundary conditions have been 

obtained. The laminated circular plates are treated as a special case of the 

shell. In this chapter, numerical results for nonlinear free vibration, 

buckling, postbuckling and static large deflection responses of laminated 

shallow spherical shells and circular plates are presented. The effects of 

transverse shear, rotatory inertia, geometric imperfection and elastic 

foundation are investigated in detail. 

Computations were performed for a laminated cross-ply moderately 

thick shallow spherical shell or circular plate which consists of a number of 

cylindrically ( or polar) orthotropic layers. All of the laminae are of same 

thickness and material properties. Elastic constants used in calculation are 

listed in Table 3.5 for glass-epoxy (GL), boron-epoxy (BO) and graphite-epoxy 

(GR) composite materials and for an isotropic material (ISO). A uniformly 

distributed static loading normal to the undeforined middle surface in static 

problems is considered. In calculation, only the first three terms in each 

truncated series for W, qi, F in solution (3.13) and the first three terms in' 
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cosine series (3.29) for the nonlinear free vibration are taken into account as 

the influence of the other terms have numerically demonstrated to be 

negligibly small. With geometric imperfection included, only the first term 

for W in eqn. (3.14) is considered in order to simplify the calculation. The 

results are presented in graphs and tables for dimensionless load, Q / ( H2/h2 

) ( Q for circular plates), for buckling and postbuckling, and the frequency 

ratio, co/o, for nonlinear free vibration against the dimensionless maximum 

transverse displacement, wm/h. In addition, the average dimensionless 

deflection, WA, is introduced in Figs. 4.7 and 4.8 in order to be compared with 

the previous results obtained by Duniir et al(1984b) and Nath et al (1987): 

WA = 4 f p wdp (4.1) 

Unless otherwise stated, the present results obtained by neglecting effects of 

transverse shear and rotatory inertia are represented by solid curves (T5 = 

R1 = 0 ) and those taking these effects into account by dashed curves for 

nonlinear free vibration ( T5 = 1, R1 = 1 ), or for buckling, postbuckling and 

large deflection response ( T5 = 1, R1 = 0 ) in all figures. In this study, the 

least value of the geometric parameter, H/a, for which buckling occurs, is 

denoted by (H/a)cr, and the corresponding buckling load denoted by Qcr 

The convergence study of the solution is discussed in section 4.2 while 

a comparison with availably previous results is presented in section 4.3. The 

results are presented for nonlinear free vibrations of symmetrically and 

unsymmetrically laminated zi,ullow spherical shells and circular plates with 
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different parameters in section 4.4 and for buckling, postbuckling or static 

large-deflection response of these shells and plates with different parameters 

in section 4.5. 

4.2 CONVERGENCE STUDY 

To assess the reliability of the present multi-mode solution, a 

convergence study was made with different numbers of terms taken in each 

truncated series for W, V and F in the solution (3.13). The linear frequency 

parameter, and the ratio, 0)!;, for the fundamental mode of an 

immovable clamped isotropic shallow spherical shell are presented in Table 

4.1, while the static load parameter, Q, is given in Tables 4.2 and 4.3 for 

nonlinear bending of an elastically supported isotropic shallow spherical shell. 

The figures shown in Tables 4.1 and 4.2 are obtained by neglecting the effects 

of transverse shear and/or rotatory inertia and those in Table 4.3 are obtained 

by considering the effect of transverse shear. It can be seen from these tables 

that the difference between the results obtained by three terms and those' 

obtained by four terms is very small. With an increase in the number of 

terms taken, this difference tends to decrease. Therefore the convergence is 

very good and a three term solution gives considerably accurate results. 

4.3 COMPARISON WITH PREVIOUS RESULTS 

As a partial check on the accuracy of the present solution for the 
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Table 4.1 Convergence study for an immovable clamped isotropic shallow 

spherical shell (H/h=l) 

0),/ coo 

Numbers of terms taken for W, ir and F 

2x2x2 3x3x3 4x4x4 5x5x5 6x6x6 
WmJh O)4.167581 O)4.169225 (O4.175766 O)4.176349 O)4.177559 

0.00 1.000000 1.000000 1.000000 1.000000 1.000000 
0.25 0.992432 0.992584 0.992587 0.992610 0.992612 
0.50 0.974748 0.975464 0.975483 0.975571 0.975578 
0.75 0.953430 0.955310 0.955338 0.955525 0.955539 
1.00 0.934167 0.937871 0.937831 0.938140 0.938150 
1.25 0.922486 0.928298 0.928020 0.928452 0.928428 
1.50 0.923136 0.930840 0.930044 0.930575 0.930463 
1.75 0.939642 0.948160 0.946489 0.946345 0.946797 
2.00 0.973496 0.981056 0.977376 0.978699 0.978187 

Table 4.2 Convergence study for an elastically supported isotropic shallow 

spherical shell (Kb=5, K1=5, H/h=1.5, T5=0) 

Q 

Numbers of terms taken for W, Ni and F 

wmdh 2 x 2 x 2 3 x 3 x 3 4 x 4 x 4 5 x 5 x 5 6 x 6 x 6 

0.00 0.000000 0.000000 0.000000 0.000000 0.000000 
0.25 3.200569 3.157779 3.162981 . 3.157947 3.158763 
0.50 5.180716 5.135711 5.140530 5.134824 5.135596 
0.75 6.303466 6.276269 6.278049 6.274036 6.274316 
1.00 6.884068 6.892340 6.890041 6.889167 6.888836 
1.25 7.186695 7.252818 7.245803, 7.249153 7.246719 
1.50 7.430431 7.579849 7.566285 7.574929 7.573108 
1.75 7.808203 8.069343 8.035509 8.050540 8.047001 
2.00 8.515846 8.859200 8.823400 8.845903 8.838593 
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Table 4.3 Convergence study for an elastically supported isotropic shallow 

spherical shell (Kb=S, K1=5, Hfh=1.5, T=1) 

Q 

Numbers of terms taken for W, ij and F 

Wma,/h 2 x 2 x 2 3 x 3 x 3 4 x 4 x 4 5 x 5 x 5 6 x 6 x 6 

0.00 0.000000 0.000000 0.000000 0.000000 0.000000 
0.25 3.189794 3.141400 3.152146 3.144479 3.148010 
0.50 5.145913 5.096684 5.107294 5.099440 5.102940 
0.75 6.239011 6.210338 6.216261 6.211214 6.213383 
1.00 6.790282 6.798819 6.799172 6.797930 6.798759 
1.25 7.066387 7.133220 7.128247 7.131274 7.131138 
1.50 7.285434 7.434643 7.423661 7.431370 7.430500 
1.75 7.637199 7.886080 7.865704 7.878329 7.876402 
2.00 8.315154 8.657382 8.619799 8.636754 8.632536 

nonlinear free vibration, buckling, postbuckling or large deflection response 

of shallow spherical shells and circular plates, some previous numerical 

results are presented for comparison with the corresponding present results. 

As indicated in Chapter 1, very few results exist on the nonlinear elastic 

behaviour of shallow spherical shells including effects of transverse shear and 

rotatory inertia. In this comparison, the effects of transverse shear and 

rotatory inertia for nonlinear free vibration and that of transverse shear for 

static response are not taken into account. Usually, in this section, thin 

shells or plates is considered. 
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4.3.1 Comparison of Fundamental Linear Frequency 

The comparison of fundamental linear frequencies of an immovable 

clamped isotropic shallow spherical shell with those obtained by 

Reissner(1955) using an exact solution for different initial rises of the shell 

and Poisson's ratios is listed Table 4.4. 

Table 4.4 Comparison of fundamental linear frequency of an isotropic 

shallow spherical shell 

(O 

o=0 u=0.3 
H/h 

Present Reissner Present Reissner Present Reissner 
(1955) (1955) (1955) 

0.0 2.9490 2.9480 3.0914 3.0904 3.4053 3.4041 
0.5 3.1958 3.1838 3.3940 3.3872 3.7619 3.7734 
1.0 3.8413 3.8619 4.1692 4.1272 4,6656 4.6873 
1.5 4.7226 4.7462 5.2031 5.1590 5.8547 5.8960 
2.0 5.7285 5.7191 6.3606 6.3676 7.1672 7.1342 
2.5 6.7999 6.8098 7.5711 7.5763 8.5168 8.4608 
3.0 7.9051 7.8711 8.7950 8.8145 9.8499 9.7874 
3.5 9.0255 9.0208 10.0058 10.0232 11.1269 10.9960 
4.0 10.1490 10.1116 11.1831 11.1434 12.3194 12.1458 
4.5 11.2666 11.2319 12.3121 12.2637 13.4166 13.2365 
5.0 12.3711 12.3226 13.3859 13.2955 14.4272 14.4157 
6.0 14.5203 14.4452 15.3846 15.2411 16.2767 16.0666 
7.0 16.5772 16.4793 17.2597 17.0984 18.0280 17.7175 
8.0 18.5584 18.3365 19.0921 18.8967 19.7674 19.4568 
9.0 20.4981 20.2232 20.9256 20.6654 21.5281 21.2256 
10. 22.4268 22.1100 22.7793 22.4638 23.3208 23.0534 
11. 24.3654 23.9672 24.6622 24.3210 25.1486 24.8811 
12. 26.3310 25.8245 26.5816 26.1782 27.0127 26.6794 
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It is observed that the two corresponding sets of the fundamental linear 

frequencies are very close and the difference is less than 2%. With elastic 

foundations, the fundamental linear frequencies of an orthotropic shallow 

spherical shell for four special cases of the elastically restrained edge are 

presented in Table 4.5 to compare with those given by Dumir (1985) using a 

single mode solution. It is found that these two sets of values are very 

consistent. The effect of geometric imperfection on the fundamental linear 

frequency of immovable clamped and movable simply supported isotropic 

circular plates is presented in Table 4.6 for comparison with those using 

Linstedt's perturbation solution ( Hui, 1983b). A good agreement is observed 

between the corresponding two sets of values. 

4.3.2 Comparison of the Frequency-Amplitude Response 

The frequency ratios of an isotropic immovable clamped shallow 

spherical shell for Wm/h=l are presented in Table 4.7 for comparison with 

those given by Grossman et al(1969) and Varadan and Pandalai(1978). A 

good agreement is found between the corresponding sets of values. 

Figure 4.1 shows that present results for the movable clamped edge of 

a shallow spherical shell are in good agreement with those obtained by use 

of series solution (Ramachandran, 1976). The response curves for an 

immovable clamped edge are somewhat different from those given by 

Sinharay and Banerjee (1985) at large values of the amplitude. 
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Table 4.5 Comparison of fundamental linear frequency of an orthotropic 

shallow spherical shell with elastic foundations (Kf=4, K=0, HJh=1,00r=0.3) 

Kb K, Gf 
E0/Er 1 Eø/Er 3 

o0(Present) o0(Diimir, o0(Present) a0(Du.mir, 
1985) 1985) 

00 00 0.0 4.6241 4.6784 5.1932 5.1792 
0.5 4.9938 5.0234 5.5518 5.4811 

00 0 0.0 3.9294 3.9430 4.6592 4.5754 
• 0.5 4.3504 4.3455 5.0143 4.9154 
0 00 0.0 3.9104 3.9461 4.4389 4.4024 

0.5 4.2620 4.2971 4.7557 4.7278 
0 0 0.0 2.7333 2.7175 3.3890 3.2505 

0.5 3.2181 3.2077 3.8055 3.6814 

Table 4.6 Comparison of fundamental linear frequency of an isotropic 

imperfect circular plate 

(00 

Immovable clamped Movable simply 
supported 

W 1 Present Hui( 1983) Present Hui( 1983) 

0.0 3.0914 3.107 1.4934 1.498 
0.2 3.1605 3.168 1.5092 1.513 
0.4 3.3577 3.380 1.5555 1.567 
0.6 3.6573 3.637 1.6291 1.648 
0.8 4.0295 3.995 1.7258 1.740 
1.0 4.4473 4.387 1.8410 1.858 
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Table 4.7 Comparison of the frequency ratio of an immovable clamped 

isotropic shallow spherical shell 

co / coo for Wm /h = 1 

H/h 
Present Grossman et 

al (1969) 
Varadan and 

Pandalai (1978) 

0 1.1766 1.166 1.176 
2 0.9122 0.898 0.895 
5 0.9236 0.921 0.898 

This difference arises from the fact that a single-mode solution is used in 

Sinharay and Baneijee(1985) and a multi-mode solution is used in present 

analysis. It is noted that the previous results in this figure are available in 

the range of values, wmax≤h. In Fig. 4.2, the present frequency-amplitude 

response curves are compared with those given in Varadan and 

Pandalai(1978) using a single mode solution. A slight difference is found 

froii these four sets of curves for Wm ≤l.3h. 

Considering the elastic foundations, the frequency-amplitude response 

curves of present results for an immovable clamped orthotropic shallow 

spherical shell resting on linear Winkler and Pasternak foundations, shown 

in Fig. 4.3 are close to those obtained by use of a spatial mode 

solution(Duniir, 1985). In addition, the fundamental linear frequency is also 

compared with those (only Eø/E,=1,3 available) given by DUmir (1985) in 

Table 4.8. 
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Table 4.8 Comparison of fundamental linear frequency of an immovable 

clamped orthotropic shallow spherical shell in Fig. 4.3 

.0)o 

Eo/Er Present Ditmir(1985) 

1 4.9938 5.0234 
3 5.5184 5.4810 
10 6.5400 

The effect of geometrically initial imperfection on the frequency ratio 

of an isotropic circular plate is illustrated in Fig. 4.4 for comparison with that 

given by Hui(1983b). The curves of frequency ratio are plotted at the value 

of vibration amplitude, Wmjh=l. A slight difference between these two sets 

of curves is observed, which arises from the fact that the assumed mode of 

geometric imperfection in Hui(1983b) is different that in this study. However, 

Figure 4.4 shows that the general behaviour reflected by these two sets of 

curves is similar. 

For a circular plate, the frequency-amplitude response curves of 

isotropic immovable and movable clamped edges are depicted in Fig. 4.5. 

Previous results obtained by Huang and Sandman(1971) and Nowinski(1963) 

are also shown in the figure. A good agreement is observed between the 

corresponding sets of curves. 
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4.3.3 Comparison of the Buckling, Postbuckling and Load-Deflection 

Response 

The values of (H/a)cr for which the buckling occurs and the associated 

buckling loads Qcr for isotropic and orthotropic immovable clamped shallow 

spherical shells are presented in Table 4.9 for comparison with those given 

by Varadan(1978). The maximum difference between two sets of values is 

less than 3%. 

Table 4.9 Comparison of values of (HJa)cr and Qcr of an immovable 

clamped orthotropic shallow spherical shell 

Present Varadan (1978) 

ør h13 (H/a)cr Qcr (H/a)cr Qcr 

E0/Er 1 
Eø/Er 4 

0.08305 
0.09720 

3.1802 
4.7172 

0.08248 
0.10010 

3.2152 
4.8170 

A comparison of buckling loads is shown in Fig. 4.6 for an isotropic 

shallow spherical shell with immovable clamped and simply-supported edges. 

The present results are in good agreement with those given by Varadan(1978) 

for a clamped edge and those given by Ditmir et al (1984b) for simply-

supported edge, respectively. In Fig. 4.7, the present results for post-buckling 

behaviour of an immovable clamped orthotropic shallow spherical shell with 
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different shell rises agree closely with those given by Diimir et al(1984b) 

using an orthogonal point collocation method. 

Figure 4.8 shows the static large deflection of an immovable simply-

supported orthotropic shallow spherical shell on elastic foundations. In this 

figure the present results are compared with those given by Nath et al (1987) 

employing the collocation method of the Chebyshev series. Good agreement 

is observed between the corresponding curves. In addition, the present 

results also agree very well with those given by Sinha(1963), Way(1934) and 

Chien and Yeh(1954) for the static large deflection of an isotropic clamped 

circular plate shown in Fig. 4.9. 
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4.4 NONLINEAR FREE VIBRATION 

In this section, the numerical results as presented in the figures show 

the relationship between frequency ratio and dimensionless amplitude of 

vibration of a laminated cross-ply shallow spherical shell or circular plate 

having different edge conditions, shell rises, ratios of the base plane radius-to-

thickness, numbers of layers, elastic properties of material, values of initial 

imperfection and moduli of linear, nonlinear Winkler and shear Pasternak 

elastic foundations. In the presentation, unless specified, the frequency ratio 

(oilO)0) is the ratio of the nonlinear frequency co of vibration to the 

corresponding linear frequency wo, of a classical shallow spherical shell or 

circular plate. And the dimensionless amplitude (Wmdh) is the ratio of the 

maximum amplitude of vibration to the shell or plate thickness. The linear 

frequencies o are obtained by neglecting the nonlinear terms and the effects 

of transverse shear and rotatory inertia in eqns. (2.63a) and (2.63c). 

4.4.1 Symmetrically Laminated Shallow Spherical Shells 

4.4.1.1 The Effects of Transverse Shear and Rotatory Inertia on the  

Frequency-Amplitude Response 

Figures 4.10 shows the individual effect of transverse shear and 
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rotatory inertia on the frequency-amplitude response of a five-layer shallow 

spherical shell. And the effect of the ratio of base radius to thickness of the 

shell on the response is plotted in Figs. 4.11 and 4.12. The fundamental 

linear frequencies for these three figures are listed in Table 4.10. In Fig. 

4.10, the effects of transverse shear and rotatory inertia reduce the frequency 

at infinitely small amplitude by approximately 2.7% and 3.5% for a movable 

simply-supported five-layer graphite-epoxy shallow spherical shell with alh=10 

and a/h=8, respectively, and these effects increase with decreasing ratio of 

base radius to shell thickness for given dimensionlessly initial rise of the 

shell, H/h,' which, for instance, is equal to 2 in Fig. 4.10. These curves 

exhibit the softening type behaviour, and the frequency ratio, aV0 ), decreases 

as the amplitude of vibration increases. The nonlinear frequency is reduced 

approximately by 19%, 21%, and 25% at Wm=2h for the thin shell (i.e. 

T5 R0), the shell with a/h.=10 and alh=8, respectively. In these frequency-

amplitude response curves shown in Figs. 4.10, as expected, the effect of 

transverse shear plays more important role than that of rotatory inertia. The 

effect of rotatory inertia generally reduces the nonlinear frequency including 

the effect of transverse shear (i.e., T5=1, R1=0) by only about 0.2% to 0.3%, 

and is very small compared with the effect of transverse shear. Therefore, 

the effect of rotatory inertia can be neglected in an analysis. Unless stated, 

for the rest of the study the individual effect of transverse shear and rotatory 

inertia is not separately investigated. 
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Table 4.10 Values of fundamental linear frequency parameter w, 

in Figs. 4.10-4.12 

CO 

Fig. 4.10 Fig. 4.11 Fig. 4.12 

7.6407 9.8260 13.5535 

The effect of the ratio of base radius to the shell thickness on the 

frequency-amplitude response is presented for a movable clamped three-layer 

graphite-epoxy shallow spherical shell in Fig. 4.11 and an immovable clamped 

five-layer boron-epoxy imperfect shallow spherical shell resting on elastic 

foundations in Fig. 4.12, both with the dimensionlessly initial rise , H/h, 

equating to 2. The effects of transverse shear and rotatory inertia reduce the 

frequency ratio at infinitely small amplitude of vibration by approximately 

0.5%, 1.8%, 2.5%, -5.7% and 8.1% in Fig. 4.11 and 0.2%, 0.5%, 0.8%, 1.8% and 

2.7% in Fig. 4.12 for alh=50, 20, 16, 10 and 8, respectively. It is observed 

that theses effects increase with decreasing the ratio of base radius to shell 

thickness and increasing the ratio of major principal modulus to minor one. 

With the ratio of a/h=8, the frequency ratio reaches at 0.73 for a shell of 

graphite-epoxy material and 0.91 for one of boron-epoxy material. For the 

high ratio of alh, for instance, which is larger than 50, these effects are very 

small and may be neglected in an analysis. 
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The curves behave the soften type of nonlinearity in Fig. 4.11, and 

initially hardening one, then softening one and finally hardening one in Fig. 

4.12. 

It is shown that the effects of transverse shear and rotatory inertia are 

pronounced especially for lower ratio of base radius to shell thickness and 

high modulus ratio, but generally do not change the behaviour of response. 

Also, it is noted that from these figures in this section, the frequency ratio 

response 'neglecting the effects of transverse shear and rotatory inertia only 

depends on the dimensionlessly initial rise of the shell, i.e., H/h, whatever the 

ratios of base radius to shell thickness and rise to the base radius are. 

4.4.1.2 The Effect of the Number of Layers on the Frequency-

Amplitude Response 

The effect of number of layers on the frequency-amplitude is depicted 

for an elastically supported boron-epoxy shallow spherical shell in Fig. 4.13 

and a movable clamped graphite-epoxy shallow spherical shell in Fig. 4.14. 

The fundamental linear frequencies in these two figures are listed in Table 

4.11. 

• The frequency ratio in Fig. 4.13 increases with increasing the number 

of layers for given value of dimensionless maximum amplitude , wdh. The 

curves for number of layers larger than 7 (some not shown herein) are quite 

close. The effects of transverse shear and rotatory inertia reduce the 
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Table 4.11 Values of fundamental linear frequency parameter coo 

in Figs. 4.13-4.14 

(O 

N Fig. 4.13 Fig. 4.14 

1 -- 7.0882 
3 7.4191 8.4514 
5 7.9062 9.6448 
7 8.0158 10.0019 
9 -- 10.1614 
15 8.0694 --

21 -- 10.3967 
00 

-- 10.4833 

frequency ratio by 2.5%, 3.5%, 3.8% and 4.3% at infinitely small, amplitude 

of vibration for N=3, 5, 7 and 15, respectively. It is shown that these effects 

increase slightly as the number of layers increases. 

Figure 4.14 shows that the results for the number of layers 9, 21, and 

are close to that given by the one layer (i.e., orthotropic shell). These 

curves and Table 4.11 indicate that the nonlinear frequency increases with 

an increase in the number of layers although the frequency ratio for some 

curves decrease with this parameter. The results, including the effeéts of 

transverse shear and rotatory inertia ( not shown herein ), are similar to 

those neglecting these effects in Fig. 4.14 except for the frequency ratio being 

reduced. The curves in Fig. 4.13 exhibit softening type of nonlinearity while 
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those in Fig. 4.14 exhibit initially softening one then changing to hardening 

one. 

It is observed from these two figures that the effect of number of layers 

on the frequency-amplitude response is more significant for three and five 

layer shells. Therefore, three and five layer shells are typical for 

symmetrically laminated shell and the numerical results in this chapter are 

presented mainly for these shells. 

4.4.1.3 The Effect of Material Properties on the Frequency-Amplitude 

Response  

The frequency-amplitude response curves with different materials are 

plotted for an elastically supported five-layer shallow spherical shell in Fig. 

4.15 and a movable simply-supported three-layer shallow spherical shell in 

Fig. 4.16. Table 4.12 lists the fundamental linear frequencies in Figs. 4.15 

and 4.16. From these figures I and Table 4.12, the nonlinear frequency 

neglecting the effects of transverse shear and rotatory inertia increase with 

increasing the ratio of major principal modulus of material to minor one, 

EL/ET, although the frequency ratio for some curves decreases with this 

parameter. The effects of transverse shear and rotatory inertia for materials 

of isotropic and glass-epoxy are small compared with those of boron-epoxy and 

graphite-epoxy with high modulus ratios. These effects reduce the frequency 

ratio by about 22% and 24.4% for material of BO and GR in Fig. 4.15, 
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respectively. The results in Fig. 4.16 show that the effects of transverse 

shear and rotatory inertia reduce the frequency ratio by only 1.5% and 3% for 

material of BO and GR, respectively, due to lower edge restrained stiffn.esses 

Kb and K1 in this case K1=K=0 ), which will be discussed in the section 

4.4.1.4. 

Table 4.12 Values of fundamental linear frequency parameter coo 

in Figs. 4.15-4.16 

WO 

Material Fig. 4.15 Fig. 4.16 

ISO 5.7248 2.2329 
GL 7.1231 3.2006 
BO 10.1658 5.0960 
GR 11.8628 6.2858 

4.4.1.4 The Effect of Boundary Conditions on the Frequency-Amplitude 

Response 

In this study, the edge boundary conditions of the shell are 

characterized by the inplane and rotational restrained stiffnesses K1 and Kb 

and so called elastic supports. Individual effect of inplane and rotational 

stiffness on the frequency-amplitude response is illustrated for an elastically 
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supported five-layer graphite-epoxy shell in Fig. 4.17 and three-layer boron-

epoxy shell in Fig. 4.18, respectively. Figure 4.19 shows the results of a five-

layer graphite-epoxy shallow spherical shell for four extreme cases of these 

stiffnesses. Table 4.13 lists the fundamental linear frequencies in these 

figures. 

Table 4.13 Values of fundamental linear frequency parameter coo 

in Figs. 4.17-4.19 

Fig. 4.17 Fig. 4.18 Fig. 4.19 

K1 
Co0 Kb (O Kb 

0 9.6448 0 7.4986 00 00 9.9726 
1 10,0477 0.3 7.7809 oo 0 7.5086 
5 10.9988 0.5 7.8929 0 00 8.2458 
00 12.9526 1 8.0597 0 0 5.8693 

5 8.3472 
00 8.4737 

In Fig. 4.17, all response curves for a clamped shell exhibit the 

softening type of nonlinearity. The values of K1=O and Kj=oo correspond to 

movable and immovable edges, respectively. The frequency ratio neglecting 

the effects of transverse shear and rotatory inertia decreases with an increase 

of the amplitude of vibration and the inplane stiffness K1. It is seen that the 

ratio at Wm=2h is reduced to 0.88 for K1=5 and 0.77 for I(=oo. The effects 

of transverse shear and rotatory inertia decrease with an increase of inplane 
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stiffness K at infinitely small amplitude of vibration. These effects reduce 

the frequency ratio by approximately 6% for all curves in the figure. 

The results for the shell with different stiffnesses of edge rotation show 

that the response curves behave the softening type of nonlinearity except for 

Kb=O, and the frequency ratio neglecting the effect of transverse shear and 

rotatory inertia increases with an increase of the rotational stiffliess, Kb. The 

values of Kb=O and Kb=oo correspond to simply-supported and clamped edges, 

respectively. It is shown in this figure that the frequency ratio reaches at 

Wm =2b to 0.64 for Kb=O.3 and 0.55 for Kb=O, respectively. The curves for 

Kb larger than 5 are very close to that given for Kb=oo. 

It is observed form Fig. 4.19 th.t the response curves exhibit the 

hardening type of nonlinearity for immovable edge shells and initially 

softening one and then changing to hardening one for movable edge shells. 

For considering the effects of transverse shear and rotatory inertia, the effect 

of rotational edge conditions is much noticeable. The effects of transverse 

shear and rotatory inertia reduce the frequency ratio by 10% to 13% for 

clamped edge shells and 2% to 4 %  for simply supported edge shells. 

4.4.1.5 The Effect of the Shell Rise on the Frequency-Amplitude  

Response 

Figures 4.20 and 4.21 show the effect of dimensionlessly shell rise, H/h, 

on the frequency-amplitude response for an elastically supported five-layer 
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graphite-epoxy shallow spherical shell and an immovable clamped three-layer 

glass-epoxy shallow spherical shell, respectively. The fundamental linear 

frequencies are listed in Table 4.14. It is seen that the response curves in 

Fig. 4.20 are the softening type of nonlinearity for dimensionless shell rise 

H/h=0 and 0.5, the hardening one for H!h=1.5 and 2.0, and the curve for 

H/h=1 is initially of the softening one and changes to the hardening one at 

large values of the amplitude. The frequency ratio neglecting the effects of 

transverse shear and rotatory inertia increases by 36.5% for the shell with 

H/h=0 (circular plate) and reduces by 15.2% for H/h=2. The frequency ratio 

including the effects of transverse shear and rotatory inertia is reduced by 

about 8-10% for all curves. 

Table 4.14 Values of fundamental linear frequency parameter coo 

in Figs. 4.20-4.21 

Fig. 4.20 Fig. 4.21 

H/h WO li/li coo 

0 7.0388 0 3.9995 
0.5 7.4372 1 5.1803 
1 8.5200 2 7.9589 
1.5 10.0655 4 14.0810 
2 11.8905 6 19.8237 

It is observed that the response curve is the hardening type of 

nonlinearity for the value of H/h=0 (circular plate) and the other curves are 
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initially of the softening type behaviour and change to the hardening one at 

large values of the amplitude for H/h=2,4,6. At wmax=2h, the frequency ratio 

neglecting the effects of transverse shear and rotatory inertia is increased by 

63% for the circular plate but reduced by 38% for the shell with llih=4. The 

response curves including the effects of transverse shear and rotatory inertia 

(not shown herein) are close those excluding these effects due to the glass-

epoxy matérial with a lower ratio of EL to ET. 

4.4.1.6 The Effect of Geometrically Initial Imperfections on the 

Frequency-Amplitude Response 

The curves for the effect of the geometrically initial imperfection on the 

frequency-amplitude response are drawn for an elastically supported seven-

layer graphite-epoxy shallow spherical shell in Fig. 4.22 and a movable 

simply-supported shallow spherical shell in Fig. 4.23. The result for W 1 == 0 

corresponds to that for a perfect laminate. The fundamental linear 

frequencies are given in Table 4.15. The frequency-amplitude response 

initially behaves the weak softening type then changes to the hardening type 

of nonlinearity for the values of W 1=0 and 0.3 in Fig. 4.22 and W 1 ≥ 0 in Fig. 

4.23, and exhibit the behaviours of the hardening type for those W 1>0.3 in 

Fig. 4.22 and the softening type for those W 1 < 0 in Fig. 4.23, respectively. 

This may arise from the fact that bent-outward type of imperfection increases 

the shell curvature in Fig. 4.23 while bent-inward type of imperfection 
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reduces the shell curvature in Figs. 4.22 and 4.23. In Fig. 4.22 as the value 

of imperfection increases, the .effects of transverse shear and rotatory inertia 

reduce the frequency ratio by approximately 10% to 17%, and decrease at 

infinitely small amplitude of vibration and increase at large amplitude of 

vibration. It is observed that these effects are noticeable due to the high 

ratio of material and the low ratio of base radius to shell thickness. 

Table 4.15 Values of fundamental linear frequency parameter coo 

in Figs. 4.22-4.23 

Fig. 4.22 Fig. 4.23 

.W1. 

o 10.7118 -0.6 3.1477 
0.3 9.6708 -0.4 3.0638 
0.5 9.0865 -0.2 2.9768 
1.0 8.2125 0 2.8864 

0.2 2.7922 
0.4 2.6938 
0.6 2.5906 
0.8 2.4820 

It is seen from Fig. 4.23 that the frequency ratio at wmax = 2h is 0.82 

for W 1 = -0.6 and increases with an increase in the value of W 1. The ratio 

reaches to 1.13 for W 1 = 0.8. The results, including the effects of transverse 

shear and rotatory inertia ( not shown herein ), are quite close to those 

neglecting these effects to the glass-epoxy material with a lower ratio of EL 

to ET-
' 
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4.4.1.7 The Effect of Elastic Foundations on the Frequency-Amplitude 

Response  

The results of frequency-amplitude response for the shell resting on 

elastic foundations are plotted in Figs. 4.24 to 4.26, and the fundamental 

linear frequencies in these figures are listed in Table 4.16. 

Table 4.16 Values of fundamental linear frequency parameter coo 

in Figs. 4.24-4.26 

Fig. 4.24 Fig. 4.25 Fig. 4.26 

Kf coo Gf coo (DO 

0 11.7838 0 8,3418 8.7465 
20 12.6039 5 10.1820 
40 13.3738 10 11.7295 
60 14.1017 20 14.3198 

Figure 4.24 shows the effect of linear Winkler elastic foundation on 

frequency-amplitude response of an immovable clamped graphite-epoxy 

shallow spherical shell. All response curves in the figure exhibit the 

hardening type of nonlinearity, and the nonlinear frequency increases with 

the linear Winkler parameter Kf. The frequency ratio for Ts = 0 and R1 = 0 

is increased approximately by 24%, 21%, 19% and 18% at w max =  2h for Kf 

= 0, 20, 40 and 60 respectively. It is noted that the effects of transverse 

shear and rotatory inertia reduce the frequency ratio by approximately 6% 
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compared with the corresponding ratio with neglecting these effects. In Fig. 

4.25, the frequency ratio for a movable clamped shallow spherical shell on an 

elastic foundation is plotted against the relative amplitude of vibration for 

different values of Pasternak foundation parameter Gf. The ratio in the 

figure decreases as the parameter Gf increases when Gf> 0. The ratio for Gf 

= 0 is lower in the range of value of Wm < li, and higher in the range of 

value of h < Wmax < 2h, than that for Gf> 0 in the corresponding ranges of 

relative amplitude value. Actually, the nonlinear frequency for Gf> 0 is 

larger than those for Gf = 0 since the corresponding linear frequencies shown 

in Table 4.13 for Gf> 0 are much larger than that for Gf = 0. In addition, 

the effects of transverse shear and rotatory inertia reduce the frequency ratio 

by approximately 2% to 5% for different values of Gf. Figure 4.26 depicts the 

frequency-amplitude response curves of an elastically supported shallow 

spherical shell with different values of nonlinear Winkler foundation 

parameter K. The curves in the figure behave initially the softening type 

and then reverts to the hardening type of nonlinearity for K ≤ 10 and behave 

the hardening type of nonlinearity for K = 20. For K = 20, the frequency 

ratio at wmax = 2h reaches 1.34 when the effects of transverse shear and 

rotatory inertia are not taken into consideration, and 1.22 when these effects 

are taken into account. Similarly as mentioned above, the effects of 

transverse shear and rotatory inertia reduced the frequency ratio. It is worth 

noting from Table 4.13 that the linear frequency parameter, wo, for different 

nonlinear Winkler parameter, K, is the same since the ; is not affected by 

nonlinear terms in the governing equations. 
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Figure 4.10: Individual effect of transverse shear and rotatory inertia on the 

frequency-amplitude response of a movable simply-supported five-layer graphite-epoxy 

shallow spherical shell 
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Figure 4.11: Effect of the base radius-to-thickness ratio on the frequency-amplitude 

response of a movable clamped three-layer graphite-epoxy shallow spherical shell 
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Figure 4.12: Effect of the base radius-to-thickness ratio on the frequency-amplitude 

response of an immovable clamped five-layer boron-epoxy sh11ow spherical shell 

resting on elastic foundation (W 1=0.2, Kf=1O, K=10, Gr5) 
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Figure 4.13: Effect of the number of layers on the frequency-amplitude response of an 

elastically supported boron-epoxy shallow spherical shell (Kb=5, K1=O, alh=12, HJa=O.15) 
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Figure 4.14: Effect of the number of layers on the frequency-amplitude response of a 

movable clamped graphite-epoxy shallow spherical shell (a/h=15, H/a=O.1) 
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Figure 4.15: Effect of material properties on the frequency-amplitude response of an 

elastically supported five-layer shallow spherical shell (a/h=10, HJa=O.2) 



Figure 4.16: Effect of material properties on the frequency-amplitude response of a 

movable simply-supported three-layer shallow spherical shell (a/h=15, }JJa=O.1) 
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Figure 4.17: Effect of inplane edge stiffness on the frequency-amplitude response of a 

clamped five-layer graphite-epoxy shallow spherical shell (a/h=15, H(a=O.1) 
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Figure 4.18: Effect of rotational edge stiffness on the frequency-amplitude response of 

an elastically supported three-layer boron-epoxy shallow spherical shell 

(K=5, a/h=1O, HJa=O.15) 
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Figure 4.19: Effect of boundary conditions on the frequency-amplitude response of a 

five-layer graphite-epoxy imperfect shallow spherical shell resting on elastic foundations 

(W1=0.3, Kfc2, I=2, Gfc1, a/h=10, HJa=O.1) CO 
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Figure 4.20: Effect of the shell rise on the frequency-amplitude response of an 

elastically supported five-layer graphite-epoxy , shallow spherical shell resting on elastic 

foundations (Kb=2, K1=3, K=2, K=2, Gfc1.5, a/h=10) 
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Figure 4.21: Effect of the shell rise on the frequency-amplitude response of an 

immovable clamped three-layer glass-epoxy shallow spherical shell ( alh=25) 
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Figure 4.22: Effect of geometrically initial imperfection on the frequency-amplitude 

response of an elastically supported seven-layer graphite-epoxy sh11ow spherical shell 

(Kb=oo, K1=2, a/h=1O, H/a=O.15) 
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Figure 4.23: Effect of geometri1ly initial imperfection on the frequency-amplitude 

response of a movable simply-supported three-layer glass-epoxy shallow spherical shell 

(a/h.=12, HJa=0.1) CO 
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Figure 4.24: Effect of Winkler foundation parameter on the frequency-amplitude 

response of an immovable clamped five-layer graphite-epoxy shi11ow spherical shell 

(}ç=5, G10, alh=1O, HJa=O.05) 
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Figure 4.25: Effect of Pasternak foundation parameter on the frequency-amplitude 

response of a movable clamped five-layer boron-epoxy imperfect shi11ow spherical shell 

(W1=O.1, Kf=1O, Fç=io, a/h=1O, H/a=O.15) 
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Figure 4.26: Effect of nonlinear Winkler foundation parameter on the frequency-

amplitude response of an elastically supported three-layer graphite-epoxy imperfect 

sh11ow spherical shell ( Kb=2, K1=3, W1=O.2, Kf=5, G2, a/h=12, HJa=O.1) 
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4.4.2 Symmetrically Laminated Circular Plates 

In this section, numerical results are presented for the nonlinear 

vibration of symmetrically laminated circular plates which are the special 

cases of shallow spherical shells with the initial rise of the shell equal to zero. 

All curves of frequency-amplitude response, generally, behave the hardening 

type of nonlinearity. The fundamental linear frequencies in the figures of 

this section are listed in Tables 4.17 and 4.18. 

4.4.2.1 The Effect of the Radius-to-Thickness Ratio on the Frequency-

Amplitude Response  

Figure 4.27 shows 'the effect of the ratio of radius-to-thickness on the 

frequency-amplitude response of an immovable clamped five-layer graphite-

epoxy circular plate. It is observed from the figure that the effects of 

transverse shear and rotatory inertia are very dominant for thicker circular 

plates, i.e., low values of a/h. These effects reduce the nonlinear frequency 

at infinitely small amplitude of vibration as 'much as 40% for a/h=5. This 

reduction decreases with an increase in the ratio of radius-to-thickness and 

the amplitude of vibration. The response curves for the ratio of a/h larger 

than 20 and the amplitude larger than 11 are very close that given by 

neglecting these effects. Due to the nonlinearity, the frequency ratio in the 

range of value of amplitude 0 to 2h is raised by 65% from 1.0 to 1.65, 84% 
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from 0.83 to 1.53 and 133% from 0.6 to 1.40 for the thin shell(i.e., T5=R1=0), 

the shell with a/h=10 and 5, respectively. 

Table 4.17 Values of fundamental linear frequency parameter w 

in Figs. 4.27-4.31 

Fig. 4.27 Fig. 4.28 Fig. 4.29 Fig. 4.30 Fig. 4.31 

(O N coo Mat oO Kb Kb 

7.6030 1 2.1975 ISO 2.9858 0 4.1082 00 00 6.1781 
3 2.1989 GL 3.8951 2 5.6039 oo 0 6.1781 
5 2.1644 BO 5.9008 10 6.0293 0 co 4.1082 
7 2.1226 GR 7.0248 oo 6.1781 0 0 4.1082 
9 2.0908 
15 2.0348 
21 2.0061 
00 1.9418 

Table 4.18 Values of fundamental linear frequency parameter (00 

in Figs. 4.32-4.35 

Fig. 4.32 Fig. 4.33 Fig. 4.34 Fig. 4.35 

W 1 o0 Kf (0 Gf (00 (00 

0 2.1644 0 11.4470 0 7.9250 5.7599 
0.2 2.1843 20 12.2896 5 9.8610 
0.4 2.2429 40 13.0780 10 11.4658 
0.6 2.3363 60 13.8215 20 14.1245 
0.8 2.4597 
1.0 2.6073 

4.4.2.2 The Effect of the Number of Layers on the Frequency-

Amplitude Response  
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The effect of number of layers on the frequency-amplitude response is 

presented for an immovable clamped glass-epoxy circular plate in Fig. 4.28. 

The frequency ratio increases as the number of layers increases, and the ratio 

is smoothly raised as N larger than 3. It is shown that at Wm=2h, the ratio 

reaches to 2.02 for N=1(orthotropic), 2.31 for N=3 and 2.56 for N=eo, 

respectively. The effect of number of layers is not significant when N is value 

of range of 5 to 21. It is noted that from Table 4.17 that the fundamental 

linear frequency decreases with an increase in the number of layer except for 

N=3. The effects of transverse shear and rotatory inertia (not shown herein) 

are very small as the plate with low material ratio and high ratio of radius-

to-thickness. 

4.4.2.3 The Effect of Material Properties on the Frequency-Amplitude  

Response 

The response curves for an elastically supported seven-layer circular 

plate with different material are depicted in Fig. 4.29. The frequency ratio 

for neglecting effects of transverse shear rotatory shows increasing slightly 

with an increase in modulus ratio, EL/ET, but no much difference among these 

curves although effect of material properties on the corresponding 

fundamental linear frequencies shown in Table 4.17 are pronounced. As 

expected, the effects of transverse shear and rotatory inertia increase when 

the modulus ratio is raised and reduce the frequency ratio by 3%, 4%, 12% 

and 22% for the material ISO, GL, BO and GR, respectively. 
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4.4.2.4 The Effect of Boundary Condition on the Frequency-Amplitude 

Response  

The response of the frequency-amplitude for an elastically supported 

three-layer graphite-epoxy circular plate is illustrated in Fig. 4.30. In the 

figure the curves for Kb=O and co are those for simply supported and clamped 

edges respectively. The frequency ratio decreases as the rotational stiffness 

Kb increases. The curve for Kb=lO is very close to that for Kb=oo, a clamped 

plate. The nonlinear frequency for T8=0 and R1=0 is increased approximately 

by 147 and 89 percent at Wm=2h for simply supported (Kb=O) and clamped 

(Kb = oo) edges, respectively. In addition the effects of transverse shear and 

rotatory inertia reduce the frequency ratio by 4.0, 5.2, 6.1 and 6.4 percent at 

Wmax 2h for Kb=O, 2, 10 and oo respectively. 

Figure 4.31 shows the frequency-amplitude response curves of a three-

layer graphite-epoxy circular plate for four extreme cases. It is noted that the 

nonlinear frequency increases more quickly for immovable edges than movable 

edges and that the effects of transverse shear and rotatory inertia are more 

significant for clamped edges than simply supported edges. 

4.4.2.5 The Effect of Geometrically Initial Imperfections  

on the Frequency-Amplitude Response  

The curves for the effect of the geometrically initial imperfection on the 

frequency-amplitude response of a movable simply-supported circular plate 
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are shown in Fig. 4.32 The results for W 1 = 0 corresponding to that for a 

perfect plate. The frequency-amplitude response behaves the hardening type 

of nonlinearity for W 1 = 0, 0.2, 0.4 and 0.6, and initially the weak softening 

type then changing to the hardening type of nonlinearity for W 1 = 0.8 and 

1.0. This may arise from the fact that the larger values of initial 

imperfection increase the plate curvature. It is seen that the frequency ratio 

at Wm = 2h is 1.35 for W 1 =0 and 1.27 for W 1 = 1.0. Actually,the nonlinear 

frequency increases with increasing the value of W1 since the corresponding 

linear frequencies shown in Table 4.18 increase more quickly. The results, 

including the effects of transverse shear and rotatory inertia (not shown 

herein), are quite close to those neglecting these effects in Fig. 4.32 due to the 

glass-epoxy material with a lower ratio of EL to ET. 

4.4.2.6 The Effect of Elastic Foundations on the Frequency-Amplitude 

Response  

The ratio of nonlinear frequency co to the corresponding linear 

frequency co is illustrated in Figs. 33-35 against the relative amplitude 

w/h of the vibration of laminated plates for various foundation 

parameters. Figure 4.33 shows the effect of linear Winkler elastic foundation 

on frequency-amplitude response of an elastically supported circular plate. 

The frequency ratio for T5 = 0 and R1 = 0 is increased approximately by 24%, 

21%, 19% and 17% at wmax = 2h for Kf =0, 20, 40 and 60, respectively. 

Referring to the linear frequency in Table 4.18, it is seen that the nonlinear 



142 

frequency increases with the linear Winkler parameter Kf. The effects of 

transverse shear and rotatory inertia reduce the frequency ratio by 

approximately 3-4% compared with the corresponding ratio with neglecting 

these effects. In Fig. 4.34, the frequency ratio for a movable clamped circular 

plate on elastic foundation is given for different values of Pasternak 

foundation parameter Gf. The ratio neglecting the. effects of transverse shear 

and rotatory inertia in the figure decreases as Gf increases. And the ratio 

considering these effects increases in the range of 0 <Wmax <h and decreases 

in the range of h < Wmax < 2h with increasing Gf. In addition, the effects of 

transverse shear and rotatory inertia reduce the frequency ratio by 5-10% for 

different values of Gf. Figure 4.35 depicts the frequency-amplitude response 

curves of an elastically supported circular plate with different values of 

nonlinear Winkler foundation parameter K. The frequency ratio increases 

with an increase of K. At wmax = 2h, the ratio reaches to 1.41, 1.52, 1.62 

and 1.71 (T5 = 0, R1 = 0 ) and to 1.35, 1.46, 1.56 and 1.66 ( Ts = 1, R = 1) 

for K = 0, 5, 10 and 15, respectively. It is worth noting from Table 4.18 that 

the linear frequency parameter, c)n, for different values of K is the same 

since the Co0 is not affected by the nonlinear terms in the governing equations. 
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Figure 4.27: Effect of the base radius-to-thickness ratio on the frequency-amplitude 

response of an immovable clamped five-layer graphite-epoxy circualr plate 



Figure 4.28: Effect of the number of layers on the frequency-amplitude response of an 

immovable simply-supported boron-epoxy circular plate (alh=12) 
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Figure 4.29: Effect of material properties on the frequency-amplitude response of an 

elastically supported seven-layer circular plate ( a/h=8) 
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Figure 4.30: Effect of rotational edge stiffness on the frequency-amplitude response of 

a three-layer graphite-epoxy circular plate with an immovable edge ( a/h=12) 
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Figure 4.31: Effect of boundary conditions on the frequency-amplitude response of a 

three-layer graphite-epoxy circular plate ( aJh=8) 
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Figure 4.32: Effect of geometrically initial imperfections on the frequency-amplitude 

response of a movable simply-supported five-layer glass-epoxy circular plate ( alh=15) 
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Figure 4.33: Effect of Winkler foundation parameter on the frequency-amplitude 

response of an elastically supported three-layer graphite-epoxy imperfect circular plate 
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Figure 4.34: Effect of Pasternak foundation parameter on the frequency-amplitude 

response of a movable clamped five-layer graphite-epoxy imperfect circular plate shell 

(W1 0.2, Kfc5, K,a=5, a/h=12) 
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Figure 4.35: Effect of nonlinear Winkler foundation parameter on the frequency-

amplitude response of an elastically supported three-layer boron-epoxy circular plate 

(Kb=2, K1=3, K10, G=O, alh=8) 
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4.4.3 Unsymmetrically Laminated Shallow Spherical Shells and Circular 

Plates 

The nonlinear free vibration response of unsymmetrically shallow 

spherical shells and circular plates is presented in this section. The shells 

and plates consist of even number of orthotropic layers. The edge boundary 

conditions under consideration are movable in radial direction and elastically 

restrained in rotational direction which are given in eqns. (3.19). Due to the 

coupling terms exist in boundary conditions, the technique of the equivalent 

lateral pressure has been introduced in Chapter 3 in order to fulfil the 

rotational edge constraint condition. In calculations, the terms of sine series 

in (3.22) for expansion of the equivalent lateral pressure, Qe' are taken 10, 

as other terms have demonstrated numerically to be negligibly small. It may 

be noted that the movable clamped edge condition is exactly satisfied by the 

assumed solution. The corresponding fundamental linear frequencies in this 

section are given in Tables 4.19 and 4.20. The presentation in Figs 4.37, 4.39 

and 4.41 is only given the response neglecting the effects of transverse shear 

and rotatory inertia for clarity. 
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Table 4.19 Values of fundamental linear frequency parameter a 

in Figs. 4.36-4.39 

Fig. 4.36 Fig. 4.37 Fig. 4.38 Fig. 4.39 

(00 N co Mat. coo Kb (O 

9.5172 2 8.2421 ISO 3.0134 0 1.8872 
4 10.1047 GL 4.0142 0.5 3.1689 
6 10.3712 BO 6.1154 1.0 3.6823 
8 1Q.4524 GR 7.3331 2.0 4.1061 
10 10.4852 5.0 4.4548 
20 10.5155 oo 4.7121 
00 10.5063 

Table 4.20 Values of fundamental linear frequency -parameter coo 

in Figs. 4.40-4.42 

Fig. 4.40 Fig. 4.41 Fig. 4.42 

HJh wo Wi Kf,K,Gf CO 

0.5 6.7537 0 4.1148 K-K=Gf=0 8.2421 
1.0 7.3452 0.2 4.1417 K=10, =Gf=0 8.8280 
1.5 8.1847 0.4 4.2339 K=10, R1--G1=0 8.2421 
2.0 9.1909 0.6 4.3885 Gf=10, KrKn=0 11.6372 

0.8 4.5951 
1.0 4.8415 

4.4.3.1 The Effect of the Radius-to-Thickness Ratio on the Frequency-

Amplitude Response  

The effect of the ratio of base radius-to-thickness on the frequency-
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amplitude response is shown in Fig. 4.36 for a movable clamped two-layer 

graphite-epoxy shallow spherical shell of initial rise equal to 2h. This effect 

increases with decreasing the values of the ratio, a/h. The effects of 

transverse shear and rotatory inertia are much pronounced for the shell with 

ratio, a/h, equal to 16, 10 and 8. The frequency ratio compared that 

excluding these effects is reduced by 0.3%, 1.7%, 5.7% and 8% for a/h=50, 20, 

10 and 8, respectively. Like the symmetrically laminated shell, the effects of 

transverse shear and rotatory inertia do not change the general behaviour of 

vibration response. The curves in the figure exhibit the softening type of 

nonlinearity. 

4.4.3.2 The Effect of the Number of Layers on the Frequency-

Amplitude Response  

Figure 4.37 shows the response curves of a movable clamped graphite-

epoxy shallow spherical shell with different number of layers. It is observed 

that the curves for shells with the number larger than 6 and the linear• 

frequencies for these shells in Table 4.19 are very close. The behaviour of the 

shell with numbers 2, 4 and 6 is typical. The frequency ratio increases with 

an increase in the number. For the two-layer shell, the frequency ratio is 

reduced to 0.923 at Wm=2h. All curves behave initially softening type of 

nonlinearity and then invert to hardening one at the amplitude Wm>l.5h. 
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4.4.3.3 The Effect of Material Properties on the Frequency-Amplitude  

Response  

The effect of the material properties on the frequency-amplitude 

response of a six-layer circular plate with elastically rotational edge is 

presented in Fig. 4.38. It is noted that when the modulus ratio, EL/ET, is 

raised the frequency ratio for neglecting effects of transverse shear and 

rotatory inertia increases very slightly although the corresponding linear 

frequency shown in Table 4.19 increases significantly. The effects of 

transverse shear and rotatory inertia on the frequency ratio are pronounced 

for material with the high modulus ratio. In this figure, these effects reduce 

the frequency ratio by approximately 10% and 16% for boron-epoxy and 

graphite-epoxy material, respectively. 

4.4.3.4 The Effect of Rotational Edge Stiffness on the Frequency-

Amplitude Response  

The results for the effects of rotational edge stiffness on the frequency-

amplitude response of a movable six-layer glass-epoxy circular plate are 

plotted in Fig. 4.39. The curves exhibit the hardening type of nonlinearity. 

When the rotational stiffness, Kb, is raised, the frequency ratio decreases for 

Kb<2 and slightly increases for Kb≥2, but the nonlinear frequency increases 

referring the corresponding linear frequency in Table 4.19. And the response 

curves for Kb>2 are close that for Kb=oo, i.e., clamped edge. It is noted that 
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the frequency ratio reaches 1.42 at Wmax=2h for Kb=O, i.e., simply-supported 

edge. 

4.4.3.5 The Effect of the Shell Rise on the Frequency-Amplitude 

Response 

The nonlinear free vibration response of a movable clamped four-layer 

boron-epoxy shallow spherical shell with different initial rise is presented in 

Fig. 4.40. The response curves are hardening type of nonlinearity for the 

dimensionless shell rise H/h=0.5 and 1 and softening one for Hih=1.5 and 2. 

At Wmax=2h, the frequency ratio neglecting the effects of transverse shear and 

rotatory inertia is 1.167, 1.066, 0.976 and 0.913 for H/h=0.5, 1, 1.5 and 2, 

respectively. The effects of transverse shear and rotatory inertia reduce the 

frequency ratio at infinitely small amplitude of vibration by 10%, 8%, 6.5% 

and 5.7% for H/h=0.5, 1, 1.5 and 2, respectively, and at larger values of 

amplitude by approximately 9% for all cases. 

4.4.3.6 The Effect of Geometrically Initial Imperfections on' the  

Frequency-Amplitude Response  

Figure 4.41 fives the frequency-amplitude response of a movable 

clamped four-layer glass-epoxy circular plate with different values of initial 

imperfection. The curves behave the hardening type of nonlinearity for 

W 1≤0.6, and initially softening one and then changing to hardening one for 
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W 1>O.6. The frequency ratio decreases with an increase in the value of initial 

imperfection as the increase of the plate curvature resulting from the initial 

imperfection. 

4.4.3.7 The Effect of Elastic Foundations on the Frequency-Amplitude  

Response 

The curves of frequency-amplitude response for a movable clamped two-

layer graphite-epoxy shallow spherical shell resting on elastic foundations are 

depicted in Fig. 4.42. These curves show the softening behaviour for the shell 

without elastic foundation and with linear Winkler elastic foundation, and 

initially softening one and then inverting to hardening one for with nonlinear 

Winkler and Pasternak elastic foundations, respectively. The effects of 

transverse shear and rotatory inertia are more significant for the shell 

without elastic foundation that for the shell with one. These effects reduce 

the frequency ratio by approximately 9%, 8%, 6% and 4% for the shell 

without elastic foundation, with nonlinear Winkler one, with linear Winkler 

one and with Pasternak one, respectively. 
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Figure 4.36: Effect of the base radius-to-thickness ratio on the frequency-amplitude 

response of a movable clamped two-layer graphite-epoxy shallow spherical shell 
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Figure 4.37: Effect of the number of layers on the frequency-amplitude response of a 

movable clamped glass-epoxy shallow spherical shell ( alh=15, HJa=0.1) 
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Figure 4.38: Effect of material properties on the frequency-amplitude response of an 

elastieilly supported six-layer circular plate ( alh=1O) 



Figure 4.39: Effect of rotational edge stiffness on the frequency-amplitude response of 

a six-layer glass-epoxy circular plate with a movable edge (aLh=15) 



Figure 4.40: Effect of the shell rise on the frequency-amplitude response of a movable 

clamped four-layer boron-epoxy shallow spherical shell (a/h=10) 
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Figure 4.41: Effect of geometrically initial imperfections on the frequency-amplitude 

response of a movable clamped four-layer glass-epoxy circular plate ( alh=15 ) 
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Figure 4.42: Effect of elastic foundations on the frequency-amplitude response of a 

movable clamped two-layer graphite-epoxy shallow spherical shell •( alh=1O, HJa=O.15) 
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4.5 BUCKLING, POSTBUCKLING AND STATIC LARGE DEFLECTION 

In this section, the numerical results are presented for the relation 

between the load and deflection of a laminated cross-ply shallow spherical 

shell. The buckling and postbuckling behaviour is investigated for the shell. 

In the calculation, the uniformly-distributed static load normal to the 

undeformed middle surface is assumed. In the presentation, the load is 

specified by dimensionless load, Q, for a circular plate, and the 'ratio of 

dimensionless load to square of dimensionless rise, Q/(H/h)2, for a shallow 

spherical shell, and the deflection is specified by the dimensionless maximum 

deflection Wmm/h. 

For large deflections, deformation of a shallow spherical shell is not 

proportional to the external loading. The load-deflection relation may be 

represented by a curve. After reaching the first maximum value of uniformly 

distributed lateral load, % r, the load tends to have a reduction. The value qr 

is called the buckling load for axisymmetrical snapping. Tests indicate that 

buckling generally starts as a small circular dimple and tends to occur where 

the shell is weakest (Donnell, 1976). To study this phenomenon, many 

researchers ( von Karman and Tsien, 1939; Kaplan and Fung, 1954; 

Budiansky, 1959; Weinitschke, 1960; Stephens and Fulton, 1969; Hyman, 

1971; ) proposed various methods. Most of them included nonlinear finite 

deflections in their analysis instead of just considering stability with respect 

to infinitesimal deflection from the prebuckled condition. Their calculations 

also show that the stiffness of the shell decreases with the deflection. A 

comprehensive survey of the state-of-the-art for buckling of a shallow 

spherical shell is given by Hutchinson and Koiter (1970). 
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4.5.1 Symmetrically Laminated Shallow Spherical Shells 

4.5.1.1 The Effect of Material Properties on Buckling Load 

Figures 4.43 and 4.44 show the effect of material properties on the 

buckling load of an immovable clamped five-layer and immovable simply-

supported shallow spherical shell, respectively. In this study, the least value 

of the geometric parameter, H/a, denoted by (H/a)cr, for which buckling occurs 

is obtained by use of iterative procedure. The value of the ratio H/a for 

which buckling does not occur is increased by a small increment and the eqn. 

(3.32) is solved by the Newton-Raphson method. The process is repeated 

until buckling just occurs and vice versa until buckling just disappears. The 

values of (H/a)cr and the associated buckling Qer in these figures are given in 

Table 4.21. The effect of transverse shear is also presented in the table. The 

value of (H/a)cr is roughly 0.08 for an immovable clamped five-layer shallow 

spherical shell with alh.=20 in Fig. 4.43 and 0.05 for an immovable simply-

supported three-layer shallow spherical shell with alh=15 in Fig. 4.44. It may 

be noted from these figures that once the critical value (H/8)cr occurs, the 

buckling load Qcr initially decreases and then increases with an increase in 

the ratio H/a. These figures also indicate that the buckling load Qer increase 

with increasing the modulus ratio, EL/ET, but the critical value (HJa)cr 

decreases for a laminated cross-ply shallow spherical shell. Evidently the 

transverse shear deformation reduces the buckling load. This effect is more 

pronounced for the composite of high modulus ratio. 
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Table 4.21 Values of (H/a)cr and [Q/(H2/h2)]cr in Figs. 4.43 and 4.44 

Mat. N a/h 
T8=0 T5=1 

(H/a)cr [Q/(H2/h2)]cr (H/a)cr [Q/(H2/h2)Icr 

GL 5 20 0.08484 5.2143 0.08441 5.1709 
Fig. 4.43 BO 5 20 0.08221 13.0095 0.08013 12.6998 

GR 5 20 0.08037 19.9635 0.07666 18.8221 

GL 3 15 0.05414 3.9635 0.05393 3.9478 
Fig. 4.44 BO 3 15 0.05246 9.1398 0.05168 9.0142 

GR 3 15 0.05197 13.6390 0.05037 13.2362 

4.5.1.2 The Effect of the Radius-to-Thickness Ratio on the 

Postbuckling Response  

The postbuckling response of movable simply -supported and clamped 

three-layer graphite-epoxy shallow spherical shells with different ratios of 

radius-to-thickness are given in Figs. 4.45 and 4.46. The effect of transverse 

reduces the buckling load and the load-carrying capacity in the postbuckling 

range especially for moderately thick shells. This can be found in Figs. 4.45 

and 4.46 which demonstrate the response curves for movable simply-

supported and clamped three-layer graphite-epoxy shallow spherical shells 

with different ratios of radius-to-thickness. The buckling load generally 

increases with this ratio. The effect of transverse shear reduces the buckling 

load by 10.3% for simply supported shell with alh=10, and by 8.2% for the 

clamped shell with alh=15. This effect,, however, is not significant for large 

values of this ratio. 
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4.5.1.3 The Effect of the Number of Layers on the Postbuckling  

• Response  

In Fig. 4.47, the effect of the number of layers, N, on the buckling load 

are illustrated for a movable clamped boron-epoxy shallow spherical shell. 

These curves indicate that the buckling load increases with increasing the 

number of layers. For the values N≤5 the influence of the number of layers 

on the buckling load is much pronounced. The buckling load increases by 

60% for N=15 than for N=1 (orthotropic shell). This increase is considerably 

significant for the load-carrying capacity. Figure 4.48 shows that the effects 

of the number of layers and the transverse shear on the load-deflection 

response of- a movable simply-supported graphite-epoxy shallow spherical 

shell. A similar behaviour as in Fig. 4.47 is observed for the effect of the 

number of layers. The effect of transverse shear on the load-carrying capacity 

generally increases more rapidly than that of the number of layers. 

4.5.1.4 The Effect of Material Properties on the Postbuckling Response 

The response curves of an immovable clamped five-layer shallow 

spherical shell are plotted in Fig. 4.49 for different material properties. 

Neglecting the transverse shear effect the snap-through buckling of all shells 

of different materials approximately occurs at the maximum deflection equal 

to the shell thickness. The effect of transverse shear reduces the buckling 

load by 4%, 11% and 18% for glass-epoxy, boron-epoxy and graphite-epoxy 
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materials, respectively. For a given deflection the reduction in the transverse 

load caused by the effect of transverse shear is evidently greater for the high 

modulus ratio than for low one. In the case of graphite-epoxy composite 

material the postbuckling load is reduced by 35% at Wm=1.2. A similar 

behaviour is also observed in Fig. 4.50 for a movable simply-supported five-

layer shallow spherical shell. The effect of transverse shear, however, is 

much reduced in this example. 

4.5.1.5 The Effect of Boundary Condition on the Postbuckling 

Response  

The postbuckling response for different boundary conditions are 

illustrated in Figs. 4.51-4.53. Figure 4.51 shows that the effect of rotational 

stiffness of edge on the postbuckling response of a movable edge three-layer 

boron-poxy shallow spherical shell. The Kb=O and oo correspond the simply-

supported and clamped edges, respectively. All shells with different values 

of Kb undergo the snap-through buckling and have a slight reduction after 

buckling and then a little increase at large value of deflection in the load. 

The buckling load and postbuckling load carrying capacity increase as the 

rotational stiffness, Kb, increases. The buckling load for Kb=5 is only less 

than that for K=oo by approximately 3.5%. The effect of transverse shear 

reduces the buckling load and postbuckling load carrying capacity. This effect 

increases with an increase in Kb and the maximum deflection. At Wm 2h, 

the effect of transverse shear reduces the postbuckling load by approximately 
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5%, 6.3%, 10%, 12% and 13% for Kb=O, 0.4, 1, 5 and 00, respectively. 

The response curves excluding the effect of transverse shear for a 

clamped five-layer boron-epoxy shallow spherical shell are depicted in Fig. 

4.52 for different inpiane stiffness of edge, K1. The values of I(=O and 

correspond the immovable and movable edges. The buckling occurs in all 

different values of K1. The buckling load increases with an increase in K1. 

The reduction of the postbuckling load is increased by raising K1 and the load 

are largest for K1=0 and the smallest for Kj=oo in the range of deflection 

2.5h≤Wm <3h. 

The load-deflection curves shown in Fig. 4.53 illustrate the effect of 

edge conditions on the buckling load of a five-layer graphite shell. It is noted 

that the effect of inpiane edge condition is much noticeable. The buckling 

load is increased by 80% for an immovable edge than a movable edge for the 

clamped shell, and by 240% for simply-supported shell. It is also shown from 

this figure that the effect of edge rotation on an immovable edge is less than 

a movable edge. The buckling load of the shell with an immovable edge is 

nearly the same for the clamped and simply-supported shells and that with 

a movable edge is increased by 90% for a clamped edge than for a simply-

supported edge. For these four' types of boundary conditions the effect of 

transverse shear generally reduces the buckling load. The reduction in the 

postbuckling load caused by this effect is much more significant for an 

immovable clamped and movable simply-supported shells. In the case of a 

movable simply-supported shell the effect of transverse shear generally 

increases the postbuckling load rather than reduces. 
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4.5.1.6 The Effect of the Shell Rise on the Postbuckling Response  

The postbuckling response curves are shown for an elastically 

supported three-layer boron-epoxy shallow spherical shell in Fig.4.54 and a 

movable simply-supported seven-layer graphite-epoxy shallow spherical shell 

in Fig. 4.55. It can be seen from Fig. 4.54 that the shell undergoes snap-

through buckling, and have a reduction in the load after the first maxima for 

H/h=2.4 and no buckling occurs for H/h=1.2 and 1.8. It is noted that for the 

shell with BJh=2.4, the load after reduction from buckling inverts to increase 

with an increase in deflection. In Fig. 4.55, all response curves demonstrate 

the buckling phenomenon and the buckling load increases as HJh is raised. 

The effect of transverse shear reduce the load. This effect generally increases 

with the deflection and is considerably pronounced for a moderately thickness 

shell at large values of the deflection. 

4.5.1.7 The Effect of Geometrically Initial Imperfections on the 

Postbuckling Response  

The postbuckling load-deflection curves for a movable clamped spherical 

cap on elastic foundation are plotted in Fig. 4.56 for various values of the 

'initial imperfection, W1. If may be seen from these response curves that all 

caps undergo buckling and have a reduction in load after buckling. The 

buckling load decreases as the value W 1 increases. The postbuckling load 

decreases with the amplitude of initial imperfection in the range of the values 

of 0 < wmax < 2.2h due to the neglecting of the effect of transverse shear ( 

T=O ) and of 0 <Wmax < 2.lh for including these effects ( T5=1 ), and 
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increases in the range of values of 2.2h < Wmax < 3h for T5=O and of 2.lh < 

Wmax < 3h for Ts=1, respectively. 

4.5.1.8 The Effect of Elastic Foundations on the Postbuckling 

Response  

In Fig. 4.57, the postbuckling response curves for an imperfect 

spherical cap are shown for different values of the linear Winkler foundation 

parameter, Kf. It is found that the buckling load increases with this value. 

The buckling phenomenon occurs in the range of values of 1.09h < 

1.35h for all values of Kf indicated in the figure and the buckling load is 53% 

greater for Kf = 20 than for Kf = 0. The effect of Pasternak elastic foundation 

parameter, Gf, on postbuckling of a movable simply supported cap is 

illustrated in Fig. 4.58. The response curves exhibit the buckling 

phenomenon except for the values of Gf = 5 and 10 without considering the 

effect of transverse shear and except for the value of Gf = 10 with this I effect. 

The load increases with an increase of the value of the Pasternak foundation 

parameter, Gf. The effect of transverse shear reduces the buckling and 

postbuckling load as expected. This reduction is pronounced at high values 

of the deflection. The load-deflection curves shown in Fig. 4.59 depict the 

effect of nonlinear Winkler foundation parameter, K, on the buckling and 

postbuckling load of an elastically supported spherical cap. It is observed 

that there is a reduction in load after buckling for K = 0 and 2. The load 

for a given deflection increases with the values of Kn. The effect of 

transverse shear reduces the load slightly due to the shell with large ratio of 

base radius to the cap thickness, i.e., a/h = 20. 
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Figure 4.43: Effect of material properties on buckling load of an immovable clamped 

five-layer shallow spherical shell ( a/h=20) 
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Figure 4.44: Effect of material properties on buckling load of an immovable simply-

supported three-layer shallow spherical shell ( alh=15) 
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Figure 4.45: Effect of the base radius-to-thickness ratio on the postbuckling response of 

a movable simply-supported three-layer graphite-epoxy shallow spherical shell (HJa=O.2) 
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Figure 4.46: Effect of the-base radius-to-thickness ratio on the postbuckling response of 

a movable clamped three-layer graphite-epoxy shallow spherical shell ( Wa=O.2) 
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Figure 4.47: Effect of the number of layers on the postbuckling response of a movable 

clamped boron-epoxy shallow spherical shell ( alh=30, H/a=O.1) 
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Figure 4.48: Effect of the number of layers on the postbuckHng response of a movable 

simply-supported graphite-epoxy shallow spherical shell ( a/h=15, H/a=O.25) 
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Figure 4.49: Effect of material properties on the postbuckling response of an 

immovable clamped five-layer shallow spherical shell C a/h=10, HJa=0;2) 
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Figure 4.50: Effect of material properties on the postbuckling response of a movable 

simply-supported five-layer shallow spherical shell ( alh=20, HJa=0.15) 
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Figure 4.51: Effect of rotational edge stiffness on the postbuckling response of a three-

layer boron-epoxy shallow spherical shell with a movable edge ( a/h=12, }TJa=O.2) 
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Figure 4.52: Effect of inpiane edge stiffness on the postbuckling response of a five-

layer boron-epoxy sh1low spherical shell with a clamped edge ( alh=20, H/a=O.125) 
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Figure 4.53: Effect of boundary conditions on the postbuckling response of a five-layer 

graphite-epoxy shallow spherical shell ( alh=15, H/=0.2) 
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Figure 4.54: Effect of the shell rise on the postbuckling response of an elastie2lly 

supported three-layer boron-epoxy shallow spherical shell (K=2) I( =O, alh=12) 
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Figure 4.55: Effect of the shell rise on the postbuckling response of a movable simply-

supported seven-layer graphite-epoxy shallow spherical shell ( a/h=20) 
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Figure 4.56: Effect of geometrically initial imperfection on the postbuckling response of 

a movable clamped five-layer graphite-epoxy shallow spherical shell resting on elastic 00 

foundations (K5, K=10, alh=20, HJa=O.2) 
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• Figure 4.57: Effect of Winkler foundation parameter on the postbuckling response of 

an elastically supported five-layer glass-epoxy imperfect shallow spherical shell 

(Kb=2, K=5, W1=0.5, K=5, Gfc1, alh=15, H/a=O.2) 
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Figure 4.58: Effect of Pasternak foundation parameter on the postbuckling response of 

an e1astici11y supported seven-layer graphite-epoxy shallow spherical shell 

(Kb=lO, I(=5, KfcS, K=O, a/h=1O, H(a=O.25) 
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Figure 4.59: Effect of nonlinear Winkler foundation parameter on the postbuckling 

response of a movable simply-supported five-layer graphite-epoxy shallow spherical 

shell (K=O, Gfc=O, a/h=20, H/a=O.2) 
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4.5.2 Symmetrically Laminated Circular Plates 

In this section, the large-deflection response of symmetrically laminated 

circular plates is presented for various geometric and material parameters. 

4.5.2.1 The Effect of the Radius-to-Thickness Ratio on the Static 

Large-Deflection Response 

The effect of transverse shear on the large-deflection response of an 

immovable five-layer graphite-epoxy circular plate is shown in Fig. 4.60 for 

different ratios of radius-t6-thickness. This effect reduces the load compared 

with that excluding this effect and is pronounced for moderately thick plates. 

At Wmax3h, the load is decreased by approximate 5.4%, 11% and 17% for 

a/h=20, 10 and 5, respectively. As expected, this effect is weakened for the 

thin plate, for instance in this figure, alh=50. 

4.5.2.2 The Effect of the Number of Layers on the Static Large-

Deflection Response  

Figure 4.61 shows the effect of the number of layers on the large-

deflection response of a movable simply-supported glass-epoxy circular plate. 

The load decreases with an increase in the number except for N=1. The 

transverse shear effect(not shown herein) is not remarkable as the low 
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material ratio, i.e., GL composite. 

4.5.2.3 The Effect of Material Properties on the Static Large-Deflection 

Response  

The load-deflection response of an elastically supported circular plate 

with different materials is demonstrated in Fig. 4.62 The load in the figure 

increases as the modulus ratio, EL/ ET, increases. The effect of transverse 

shear reduces the load by 1.6%, 1.8%, 10.5% and 13.3% for materials of 

isotropic, glass-epoxy, boron-epoxy and graphite-epoxy, respectively, at Wm ax 

=3h. 

4.5.2.4 The Effect of Boundary Conditions on the Static Large-

Deflection Response  

The effect of edge stiffnesses on the large-deflection response is 

presented in Figs. 4.63 and 4.64. The large deflection response of• an 

elastically supported seven-layer boron-epoxy circular plate is shown in Fig. 

4.63 for different edge rotational stiffness, Kb. The load increases with 

increasing Kb and the effect' of Kb is pronounced. At wm=3h, the load for 

Kb=oo(clamped edge) is increased by 63% compared with that for K=0(simply 

-supported edge). The load response including the effect of transverse shear 

is similar that shown in this figure, but not presented here. Similarly, the 

load increases with increasing K, which is demonstrated in Fig. 4.64 for a 
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clamped five-layer graphite-epoxy circular plate. At Wm =3h, the load for 

Kj=oo(immovable edge) is increased by approximately 133% compared with 

that for K1=0(movable edge). The effect of transverse shear reduces the load 

by about 10%. It is noted from these figures that the effect of inpiane edge 

stiffness is more pronounced than rotational one. 

4.5.2.5 The Effect of Geometrically Initial Imperfections on the Static 

Large-Deflection Response 

The load increases with an increase in the value of the initial 

deflection, W 1, which is shown in Fig. 4.65 for a movable clamped five-layer 

glass-epoxy circular plate. This is resulted from the change of midplane 

curvature due to the imperfection. 

4.5.2.6 The Effect of Elastic Foundations on the Static Large-

Deflection Response  

The load-deflection curves for an immovable clamped five-layer boron-

epoxy imperfect circular plate on elastic foundations are plotted in Fig. 4.66 

for various values of elastic foundation parameters. It is found that the load 

increases with an increase of the values of foundation parameters Kf and/or 

Kn. The effect of transverse shear reduces the load by about 6% at 

Wmax = 3h. 
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Figure 4.60: Effect of the base radius-to-thickness ratio on the static large-deflection 

response of an immovable clamped five-layer graphite-epoxy circular plate 
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Figure 4.61: Effect of the number of layers on the static large-deflection response of a 

movable simply-supported glass-epoxy circular plate ( alh=12) 
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Figure .4.62: Effect of material properties on the static large-deflection response of an 

e1astie11y supported three-layer circular plate ( Kb=l, K1=2, alh=1O.) 
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Figure 4.63: Effect of rotational edge stiffness on the static large-deflection response of 

an e1astic11y supported seven-layer boron-epoxy circualr plate ( K1=2, a/h=1O) 
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Figure 4.64: Effect of inpiane edge stiffness on the static large-deflection response of a 

five-layer graphite-epoxy circular plate with a clamped edge (alh=15) 
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Figure 4.65: Effect of geometrically initial imperfections on static the large-deflection 

response of a movable clamped five-layer glass-epoxy circular plate ( alh=20 ) 
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Figure 4.66: Effect of elastic foundations on the static large-deflection response of an 

immovable clamped five-layer glass-epoxy imperfect circular plate 

(W1=0.1, G=10 a/h=1O) 
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4.5.3 Unsymmetrically Laminated Shallow Spherical Shells and Circular 

Plates 

The buckling, postbuckling response for unsymmetrically lRminated 

shallow spherical shells and large-deflection response for unsymmetrically 

laminated circular plates are presented in this section for various geometric 

and material parameters. 

4.5.3.1 The Effect of Material Properties on the Buckling Load 

The buckling response of a movable clamped two-layer shallow 

spherical shell is given in Fig. 4.67. The values of (H/a)cr and the associated 

buckling load Qcr which are defined in section 4.5.1.1 are listed in Table 4.22. 

It is observed that once the critical value (H/a)cr occurs, the buckling load Qr 

initially decreases and then increases with increasing the value of H/a. The 

buckling load Qcr increases but the critical value (H/a)cr decreases as the 

material ratio, El/ET, increases. The effect of transverse shear increases with 

increasing the modulus ratio, EilET and reduces the buckling load. 

Table 4.22 Values of (HJa)cr and [Q/(H2/h2)Icr in Fig. 4.67 

T5=O T5=1 
Mat. N a/h 

(H/a)cr [Q/(H2/h2)Ilcr (HJa)cr h1Q1 2h1 2)]cr 
GL 2 20 0.1498 2.7637 0.1476 2.7894 

Fig. 4.67 BO 2 20 0.1323 6.1895 0.1279 6.1153 
GR 2 20 0.1257 8.9412 0.1214 8.5880 
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4.5.3.2 The Effect of the Radius-to-Thickness Ratio on the 

Postbuckling Response  

The postbuckling response of a movable clamped four-layer graphite-

epoxy shallow spherical shell with dimensionless initial rise, li/h, equal to 3 

is demonstrated in Fig. 4.68 for different ratios of base radius-to-thickness, 

a/h. The buckling load increases with the ratio, a/h. The effect of transverse 

shear reduces the buckling load by 29% for a/h=12 compared with that 

excluding this effect. As expected, this effect is not significant for large 

values of a/h. The load has a reduction after buckling and then a little 

increase at large value of deflection. 

4.5.3.3 The Effect of the Number of Layers on the Postbuckling 

Response 

The response curves for the number, N, larger than 4 are very close 

that for N=oo, which can be seen in Fig. 4.69 for a movable clamped boron-

epoxy shallow spherical shell. The buckling load is reduced by 23% for N=2 

than for N=4. This reduction is considerably significant for the load-carrying 

capacity. The effect of transverse shear reduces the buckling load and 

postbuckling carrying capacity which is not shown herein. 

4.5.3.4 The Effect of Material Properties on the Static Large-Deflection 

Response  
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It is observed from Fig. 4.70 that the effect of transverse shear on the 

large-deflection response is much pronounced for the boron-epoxy and 

graphite-epoxy materials. For an elastically supported six-layer circular plate, 

this effect reduce the load by 12% and 18% at Wmax3h for material of BO 

and GR, respectively. The load increases with an increase in the modulus 

ratio, EL/ET. 

4.5.3.5 The Effect of Rotational Edge Stiffness on the Static Large-

Deflection Response  

The large-deflection response curves excluding the effect of transverse 

shear for a movable two-layer glass-epoxy circular plate are plotted in Fig. 

4.71 for different rotational stiffness of edge, Kb. The K0 and Kb=-

correspond the simply-supported and clamped edges, respectively. The load 

for given deflection increases with an increases in Kb. The effect of Kb on the 

load is not much pronounced for the value, Kb>5 compared with that for 

Kb=oo. 

4.5.3.6 The Effect of the Shell Rise on the Postbuckling Response 

Figure 4.72 shows the load-deflection response of a movable clamped 

two-layer graphite-epoxy shallow spherical shell with different initial rise, 

H/h. The shell with H/h=3 and 4 undergo snap-through buckling and has a 

reduction in the load after buckling. The load for given deflection decreases 



203 

as the value of H/h increases. The effect of transverse shear reduces the load 

and,, increases at large value of deflection. 

4.5.3.7 The Effect of Geometrically Initial Imperfections on the Static 

Large-Deflection Response  

The Effect of initial imperfection, W 1, increases the load, which can be 

seen in Fig. 4.73 for a movable clamped four-layer glass-epoxy circular plate. 

This is due to the change of midplane to midsurface. The load for a given 

deflection is increased when the initial imperfection, W 1, increases. The effect 

of transverse shear (not shown herein) is small as the GL with low modulus 

ratio. 

4.5.3.8 The Effect of Elastic Foundations on the Static Large-

Deflection Response 

In Fig. 4.74, the load-deflection of a movable clamped four-layer 

graphite-epoxy imperfect shallow spherical shell resting on elastic foundations 

is presented for different values of nonlinear Winkler foundation parameter, 

K. The effect of K is pronounced for larger deflection. The load increases 

with an increase in the value of K. The effect of transverse shear increases 

with decreasing the value of K. and reduces load at wm=3h by 10.5%, 8.5%, 

6.5% and 4% for K=5, 10, 15 and 20, respectively. 
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Figure 4.67: Effect of material properties on buckling load of a movable clamped two-
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Figure 4.69: Effect of the number of layers on the postbuckling response of a movable 

clamped boron-epoxy shallow spherical shell ( a/h=50, H/a=O.06) 
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Figure 4.70: Effect of material properties on the static large-deflection response of an 

elastically supported six-layer circular plate (Kb=3, alh=10) 
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Figure 4.71: Effect of rotational edge stiffness on the static large-deflection response of 

a two-layer glass-epoxy circular plate with a movable edge ( alh=20) 
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Figure 4.72: Effect of the shell rise on the postbuckling response of a movable clamped 

two-layer graphite-epoxy shallow spherical shell ( alh=20) 
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Figure 4.73: Effect of geometrically initial imperfections on the static large-deflection 

response of a movable clamped four-layer glass-epoxy circular plate (a/h=I5) 
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Figure 4.74: Effect of elatic foundation parameters on the postbuckling response of a 

movable four-layer graphite-epoxy imperfect sh11ow spherical shell 

W 1=0.2, Kf=1O, Gfc2O, aih=1O, H/a=O.2) 
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4.6 SUMMARY 

In this chapter, the numerical results are presented for nonlinear free 

vibration, buckling, postbuckling and large-deflection of symmetrically and 

unsymmetrically shallow spherical shells and circular plates with various 

geometric, material and mechanical parameters. Some available previous 

results are also given for comparison. The effects of ratio of base radius-to-

thickness, the modulus ratio, EL/ET, the number of layers, boundary 

conditions, geometric imperfection and elastic foundations on the elastic 

response of these shells and plates are analyzed. The effects of transverse 

shear and rotatory inertia are investigated in some detail. Some significant 

results are obtained. 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 CONCLUSIONS 

In this thesis, a generally dynamic nonlinear theory is developed for 

the axisymmetric deformation of moderately thick shallow spherical shells 

and circular plates composed of laminated cylindrically (or polar) orthotropic 

layers with flexible supports. The effects of transverse shear, rotatory inertia, 

geometrically initial imperfection and linear, nonlinear extension Winkler and 

shear Pasternak elastic foundations are taken into account in the theory. 

In Chapter 2, the constitutive relations for a moderately thick 

laminated shallow spherical shell are established on the basis of the 

generalized Hooke's law. The transverse shear stiffness is given by employing 

a parabolic shear stress distribution across the shell thickness and the 

principle of complementary energy. The governing equations and the 

associated set of boundary conditions are presented by use of the dynamic 

principle of virtual work, stress function and condition of compatibility. 

These nonlinear equations of transverse motion are coupled in terms of 

transverse displacement, rotation of a normal to mid-surface and' stress 

function. For specific cases, the governing equations can be simplified to 
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those given in the earlier theories, such as Marguerre-type equations and 

Mindlin-von Karman equations, etc. The present theory is more general and 

accurate for studying the elastic behaviour of hminated shallow spherical 

shells in comparison with previous theories. 

In Chapter 3, a solution of the Fourier-Bessel series satisfying the 

prescribed boundary conditions is formulated for the governing equations of 

laminated shallow spherical shells. These equations are reduced to a set of 

nonlinear ordinary differential equations by making use of the Galerkin 

method. For undamped nonlinear free vibration, the time dependent 

coefficients of Fourier-Bessel series are expanded as Fourier cosine series and 

a system of simultaneous nonlinear algebraic equations obtained by the 

principle of harmonic balance. For the static response, the nonlinear ordinary 

differentail equations become the nonlinear algebraic equations by treating 

the time functions as constants and deleting the inertia terms. The Newton-

Raphson method is used for solving the system of simultaneous nonlinear 

equations. The eigenvalues of Bessel functions are listed in Tables for some 

typical cases. The technique of replacing the edge moments by an equivalent 

pressure near the edge is adopted for unsymmetrically laminated shells with 

rotational restrained edges. The outline of computer program NALSSS is 

introduced for implementing the numerical calculations. 

In Chapter, 4, the numerical results and discussions have been 

presented in graphs and tables for nonlinear free vibration, buckling and 

postbuckling or static large deflection response of symmetrically and 
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unsymmetrically laminated shallow spherical shells and circular plates with 

various geometric, material and mechanical parameters. Based on this study, 

some conclusions may be drawn. 

5.1.1 Nonlinear Free Vibration 

Generally, the frequency-amplitude response curves exhibit the 

softening type of nonlinearity for the shells with high dimensionless rise, H/h, 

and hardening one for the shells with low value of H/h and the plates. 

5.1.1.1 The Effect of Transverse Shear and Rotatory Inertia 

The Effect of transverse shear plays an important role. The effect of 

rotatory inertia can be neglected in an analysis. The effects of transverse 

shear and rotatory inertia reduce the linear frequency and the frequency ratio 

at any amplitude of vibration. These effects are quite significant for both 

shells and plates with the low ratio of base radius to thickness, a/h, and high 

modulus ratio, EL/ET. These effects are intensified with the increase  in an 

values of rotational and inpiane stiffnesses for symmetrically laminated 

shells and plates and with increasing the value of rotational stiffness for 

unsymmetrical shells and plates. The higher the number of layers of the 

shell or plate, the stronger the effects of transverse shear and rotatory 

inertia. The variation of these effects with the number of layers, however, is 
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not quite noticeable. These effects in any cases do not change the general 

behaviour of the response. 

5.1.1.2 The Effect of the Number of Layers  

The frequency ratio increases with the number of layers, N, for a given 

amplitude of vibration. The effect of the number of layers larger than 7 for 

symmetrically laminated shells and plates and larger than 6 for 

unsymmetrically laminated shells and plates is not prominent. 

5.1.1.3 The Effect of Boundary Conditions 

The frequency ratio decreases with an increase in the value of the 

inplane edge stiffness, K1, for symmetrically laminated shells. This ratio 

increases for symmetrically laminated shells but generally decreases for 

laminated plates as the value of the rotational edge stiffness, Kb, increases. 

The effect of Kb is not quite noticeable for symmetrically laminated shells. 

The nonlinear frequency increases more quickly for immovable edges than 

movable edges for symmetrically laminated plates. 

5.1.1.4 The Effect of Geometrically Initial Imperfection 

The frequency ratio increases for the shells but decreases for the plates 



217 

with increasing the amplitude of initial imperfections. 

5.1.1.5 The Effect of Elastic Foundation  

The, nonlinear frequency increases with an inérease in the values of 

parameters of elastic foundations K1, K and G1 for all cases. 

5.1.2 Static Response 

The shells undergo snap-through.buckling and have a reduction in the 

load after the first maxima for high dimensionless rise, H/h. For some cases, 

the load after reduction inverts to increase with an increase in the deflection. 

5.1.2.1 Buckling Response 

The bucklifig load, Qcr' increases' but the critical value, (H/a)cr, 

decreases with an increase in the modulus ratio, EL/ET, for the shells. Once 

the critical value occurs, the buckling load initially decreases and then 

increases with an increase in the ratio of HJa. For symmetrically laminated 

shallow spherical shells, the effect of the inplane edge condition on the 

buckling load is quite remarkable. 

5.1.2.2 The Effect of Transverse Shear 
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The effect of transverse shear reduces the buckling load and 

postbuckling load carrying capacity for shells and plates at any value of the 

deflection. This effect is more pronounced for the shells and plates that are 

moderately thick and have the high modulus ratio. This effect increases at 

large values of the deflection of shells and plates. 

5.1.2.3 The Effect of the Number of Layers  

The load increases with the number of layers except for N=1 for 

symmetrically laminated plates and for N>1O for unsymmetrically laminated 

shells. This effect is quite noticeable for the number equal to 3 and 5 for 

symmetrically laminated shells and plates, and 2 and 4 for unsymmetrically 

laminated shells and plates, respectively. 

5.1.2.4 The Effect of Material Properties  

The load in postbuckling and large-deflection response increases with 

increasing the value of the modulus ratio. 

5.1.2.5 The Effect of Boundary Conditions  

The load increases with an increase in the values of Kb and K1 for 

symmetrically laminated shells and plates and of Kb for unsymmetrically 
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laminated shells and plates. 

5.1.2.6 The Effect of Geometrically Initial Imperfections 

The buckling load decreases as the amplitude of initial imperfections, 

W1, increases. The postbuckling load initially decreases and then increases 

in the large value of the deflection for symmetrically laminated shells. This 

load increases with an increase in W1 for symmetrically and unsymmetrically 

laminated plates. 

5.1.2.7 The Effect of Elastic Foundations 

The buckling load and the load in postbuckling or large-deflection 

response increase as the values of parameters of an elastic foundation Kf, K 

and Gf increase. 

5.2 RECOMMENDATIONS FOR FURTHER RESEARCH 

This research is concerned with the nonlinear free vibration, buckling, 

postbuckling and static large-deflection ( or nonlinear bending) response of 

symmetrically and unsymmetrically laminated shallow spherical shells and 

circular plates. Since the present formulation is general in nature, further 

work can be done: 
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(1) to analyze stress resultants and couples or stresses; 

(2) to study the nonlinear dynamic response of laminated shallow 

spherical shells and circular plates subject to a time-dependent transverse 

load; 

(3) to apply the present theory established in this study to the 

laminated shallow spherical shells with circular opening at the apex and 

annular plates; 

(4) to establish a comprehensive analytical system to incorporate 

systematic analysis of laminated shallow spherical shells and circular plates 

both with and without a hole. 
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PROPERTIES OF BESSEL FUNCTIONS 
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(1) Properties for first kind of Bessel functions 

J(z) = (-i)'2J(z) 

,T,, (- z) = (-1)J(z) 

J..(z) =J(-z) 

zJ(z) =nJ(z) -zJ 1 (z) 

zJ(z) = - nJ(z) +zJ 1 (z) 

2J(z) = J_1 (z)-J 1 (z) 

-rJ( z ) =J 1 (z)+J_1 (z) 

J(z) =-J1 (z) 

z 

fzJ +1 (z) dz = -zJ (z) 

3 

zx2J .1 (z)dzz1J f (z) 

11 d\ 
{zJ(z)}=zJ 3 (z) 

J(kz) = d{J(kz)} 
d(kz) 

(2) Properties for first kind of modified Bessel function 

I..(z) =I(z) 

I(-z) = (-1)I(z) 

zI(z) = nI(z) +zJ (z) 

zxnl  = -nI(z) +zI 1 (z) 

2I(z) =I 1 (z)+i +1 (z) 

2n I(z) =I_1(z)-i1(z) 
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I(z) = 11 (z) 

fZI .T,,.,, (z) dz= zI(z) 

fzn X,,-,, (z) dz = zI(z) 

Il d\ )r id {zI(z)} =Zfl-rl(Z) 

I(kz) = d{I(kz)} 
d(kz) 
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(1) The coefficients in eqn. (3.26) are: 

1 

a1r5=f ( 2PZs ' 2ZsZ••XiiZsZr1P) dp 
0 

1 

C = -i-f [. 1pz3Y'+ 

2 12  P Z3Xdp 

( 52 1 +92 2-1) Z3'Yi Bj• Z3Y/P1 dp 

:1. 

f Z, Xm' X' dp a9 = + 
1p=1_ 0 

Rk a53 = fZsXmXkdP 

1 

a6n = 1 3. T S f I 'F21 P Yn Zr I dp 
0 

a7 =T5f (11YY + m 11P nz D 2YnYm/P) dp - GfPYYdP 

a= -AGfpYX'dp 

a=- T5fpYnYmdp 

aiOn  11  [. 1pX3z'+ (B 

aj.Xj= 2g?v21 PXn2r CIP 

1 

a 3=.1 E ipfXXn Zr dP 
0 

+B22 -B11 XnZBi2 XnZr/P] dp 

al3n = f ( 'E ll X n. Y- .1 P X. Ym 22 X. Y./ P ) dp 

a 3 = 2KbYm (am) E f Xn P p cos (ix p ) + -L sin (i7c p ) Idp 
0 17t 
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fX. Z.' Z, dp 
p 1 

â fl _Kf x5 (fri Xrn dT1)dP + GfX5 
o 0 0 

1 p 
mkj 
â=KnfXn (fflXrn XkXjd 11)dP 

o 0 

R1 1 

a185 =- f P Xn Y. d p 
12  

anfXn (fri Xrnd TI) dP 
0 0 

Q5=fpX5 (fiiQdil)dP 

(2) The coefficients in eqn. (3.28) are: 

rn__ rr r1-j rn rn a205 - a65 L a13 a25 + a75 

rn - rr r 1 -jj rn m m 
a215 — a65 La1S J a35 +a45 , +a85 

rnk r MA 
a225 — - a65 Ea ] -1 SS 

- ( a12 + a + 

.n* rnr a245= -a155 [a] 1 a 

rn - ' r r a255 - - a15 + a115 + 

a mk 265 = ( a + a15 + 

+X) dfl]dp 

r ri-i m rn rn 
I. a13 . a23 + a135 +a145 

r r ri-i, rn rn rn a125 I I. a15 . a35 •a43 , +a165 

)[ rnk a15 ] a55 - a155 [as a5 r -i  

mkj - - rnr r r -i -i kj rnkj a275 - a155 L a13 a55 + a175 

(3) The coefficients in eqns. (3.31) are: 

Jb112. - a a2'.  a + am 
1rnI r j rn 
1'3i J a65 a75 a95 

k k a35 +a45 ) 
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{ 
r 

L.mkl r 
L)4j J a6 

{a} 

(4) The coefficients in eqn. (3.32) are: 

= (a + + a) b .n 10 11 12 + (ajf + a14 n  b3 + 

mk_ / r j n c2 - , 10 11 12 b + (a13 +af) bjc + mr k 

mlçj _ mr,kj mkj 
- a15flJJ2Z + 

in which primes denote differentiation with respect to the 



238 

APPENDIX C 

PROGRAM FOR NONLINEAR ANALYSIS OF LAMANATED 

SHALLOW SPHERICAL SHELLS 
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 =  

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

PROGRAM NALSSS 

NONLINEAR ANALYSIS OF LAMINATED SHALLOW SPHERICAL SHELLS 

ON NOVEMBER 1, 1991 

BY CHANGSHI XU 

=  

THIS PROGRAM IS DESIGNED TO ANALYSIS BUCKLING, POSTBUCKLING 
AND VIBRATION OF SYMMETRICALLY AND ANTISYMMETRICALLY LAMINATED 
MODERATELY THICK SPHERICAL SHELLS AND CIRCULAR PLATES WITH INITIAL 
IMPERFECTION, LINEAR, NONLINEAR AND SHEAR ELASTIC FOUNDATIONS 

THIS VERSION IS REVISED ON APRIL 3, 1991 
(1)------MINOR REVISION ON AUGUST 9,1991 
(2)------MINOR REVISION ON AUGUST 20,1991 
(3)-------MINOR REVISION ON SEI'I'JiMBER 18,1991 
(4)------MINOR REVISION ON OCTOBER 2,1991 

PROGRAM NALSSS(PUT,OUTPUT,XMAT,XGEM,XDYN,XINT,XOUT,XPcR, 
TAPE3=XMAT,TAPE4=INPUT,TAPE5=XGEM,TAPE6XOt3T, 
TAPE7=N,TAPE8=XINT,TAPE9=XPCR) 

DIMENSION Z11(10,10),Z12(10,1O),Z21(10,10),Z31(10,lo,1O), 
# Y11(10,10),Y12(1O,10),Y13(10,10),Y21(10,lo),X11(10,10), 
# X21(10,10,10),X31(10,10),X32(10,10), 
# Z1(1O,10),Z2(10,10),Z3(10,10,10),Y1(10,10), 
# Y2(10,10),X1(10,10),X2(10,10,10),X3(10,10),X4(lo,lo), 
# Z1V(10,10),Y1V(10,10),Z1T(10,10),Z2T(10,10,10), 
# Y1S(10,10),X1W1(10,10),X1W2(10,10,10),X2W1(10,10,lo), 
# X2W2(10, 10, 10, 10),X3W1( 10, 10),X3 W2( 10, 10, 10), 
# Y(60),SS(10),'rr(10),WK(6000),FVEC(60), 
# BSI(5),BSJ(5),OK1(10,10),0K2(10,10),WA(20), 
# AD(10,10),S(2),RS(60,3),EIG(10),BETA1(lo), 
# PQ(0:300),PCR(0:100),PWM(300),PWMA(300), 
# OW(300),OO(300),PO(0:30O),X11WO(10,10) 
DIMENSION Y1TS1(10,1O),Y1VTS1(10,10),Y1STS1(lo,lo),X3WT51(lo,10), 
# ATS1(10,10), 
# XB1(10,10),XB2(10,10),XB3(1O,10),YB1(lo,10),YB2(lo,lo), 
# YB3(10,10),ZB1(1O,10),ZB2(10,10),ZBS(lo,10),XKF(lo,10), 
# XGF(10,10),QE(10),XB(10,1O),Y.B(10,10),ZB(10,10), 
# ZWO(10,1O),XKN(10,10,10,10), 
# YZBL(20,20),BV(20,20),YZBST1(20,20),YZBST2(20,20,20), 
# Y2S(1O,10,10),YZBLTS1(20,20),BVTS1(20,20), 
# YZBST1TS(20,20),Z1TrS1(10,10),X1WTS1(10,10) 
DIMENSION ZKBA(12),ZKIA(12),NA(12),IMATA(12),RMIA(I2),RM2A(12), 
# WOA(12),ZKFA(12),ZKNA(12),ZGFA(12),ZMAT(3) 
DIMENSION DX(10,10),DY(10,10),ZDV(10,10),XD1(10,1O),XD2(lo,j.o,lo), 
# XD3(10, 10, 10, 10),XDY1( 10, 10),XDY(10, 10, 10),YDX1( 10, 10), 
# YDX2(10,1O,10),YD1(10,1O),XRI(10,10),YD1TS1(10,lo) 
COMMONIDYNA/ NTOT,HXM,NT,KX1,X(60),OMEGAO,ICOS(10), 
# ITBLA(10,1O,2),ITBLB(10,10,10,4),ITER 
COMMONIPOS/ IPOS 


