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ABSTRACT

In this research, a generally dynamic nonlinear theory is developed for
the axisymmetric deformation of moderately thick shallow spherical shells
and circular plates comprising laminated cylindrically ( or polar ) orthotropic
layers with flexible supports. The effects of transverse shéar, rotatory inertia,
geometrically iniﬁal imperfection and linear, nonlinear extension Winkler and
shear Pasternak elastic foundatioﬁs are included in the theory. The
constitutive relations for a moderately thick laminated shell are established
on the basis of t}he generalized Hooke’s law and characterized by four
independent engineeriﬁg elastic constants. The extensional stiffness, the
bending-stretching stiffness and flexural stiffness of the shell are presented
for unsymmetrical laminate, symmetrical laminate, orthotropic and isotropic
shell, respectively. The transverse shear stiffness is determined by employing
a parabolic shear stress distribution across the shell thickness and the
principle of complementary energy. Nonlinear equations of motion and the
corresponding set of boundary conditions are derived through the dynamic
principle of virtual work.

The governing equations composed of compatibility condition,
equilibrium equation of inplane couples and equation of transverse motion are
expressed in terms of t;ransverse displacement, rotation of a normal to mid-

surface and stress function. Those equations already reduce to Marguerre-
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type equations for thin shallow spherical shells by neglecting the effects of
transverse shear and rotatory inertia, and are simplified to thdsé for the
static case by treating the time functions as constants and neglecting the
inertia terms,

A Fourier-Bessel series solution satisfying the required boundary
conditions is formulated for the nonlinear free vibration, buckling and
postbuckling behaviour of laminated shallow spherical shells. The Galerkin
method is used to reduce the governing equations to a set of nonlinear
ordinary differential equations which are solved by the principle of harmonic
balance for the ‘undarr‘lp‘ed vibration. The resulting equations are a set of
nonlinear algebraic equations solved by the Newton-Raphson method. The
nonliner bending and post‘buckling behaviour of these laminates are treated
as speciél cases;

Numerical results for nonlinear free vibration, buckling, postbuckling
and static large deflection response of éymmetrically and unsymmetrically
laminated shallow spherical shells and circular plates are presented for
various boundary conditions, initial rises of the shell, numbers of layers and
material properties. The effects of transverse shear, rotatory inertia,
geometrically initial imperfection, linear and nonlinear Winkler-Pasternak
elastic foundations on the geometrically nonlinear behaviour of the shells and
plates are investigated in some detail. In special cases, the preserit results
are in good agreement with available results. - Some significant conclusions

are drawﬁ on the basis of this study.
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CHAPTER 1
INTRODUCTION

1.1 THE NATURE AND SCOPE OF COMPOSITE MATERIALS

Modern composite materials have had a significant impact on the
technology of design and construction of structural elements. By combining
two or more materials together, it is now possible to tailor-make advanced
composite materials which are lighter, stiffer and stronger than any other
structural materials ever used. The history of man-made composite materials
can be dated back to ancient Egyptians, Israelites and Chinese (Vinson and
Chou, 1975). It is interesting to note that they all méde bricks by mixing
straw with clay. The pattern-welding of sabres developed in ancient China
involved the forging together of wrought iron and steel. Laminated
composites also were used by the ancient Egyptians. It was recognised that
i)y gluing thin veneers together, the strength of wood was enhanced and the
possibility of swelling and shrinkage minimized.

Composite materials can be found in »numefous naturally occurring
substances. Wo’od, for example, is an organic substance composed primarily
of cellulose chains embedded in a lignin matrix at a ratio of ébout 2 t6 1.
The bundles of celluj.ose chains forming walls of the elongated cells are highly

crystalline. The cells are held together by the amorphous lignin. The higher
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the lignin content, the softer and more resilient the combination is. The bond

between the fibres and lignin is strong, as is made evident by the high

strength and stiffness of wood.

The superior properties of man-made composite materials in structural
applications can be best demonstrated by the example of a reinforced concrete
beam. Concrete, a relativély inexpensive structural material, is excellent for
supporting a compressive load. However, the low resistance of concrete to
tension makes it an undesirable material for beam construction. One way to
improve the situation is to strengthen its tensile properties by the use of steel
bars. As a result, the tensile stress is borne chiefly by the reinforcirig bars,
and a heavier load can be applied to the beam Without increasing its cross-
sectional area. The combination of steel and concrete has not only made the
best use of the strengths of the components but also resulted in properties
that cannot be achieved by either component.

Technological progress has resulted in a continuous expansion of
structural material types and in improvements of their properties. Generally,
new materials emerge because of a natural desire to improve the efficiency
of proposed structures. These materials in turn provide new possibilities of
innovative designs and fabrication methods, while the subsequent
development of structures and te;:hnology’presents materials science ﬁm new
tasks.

One of the clearest manifestations of such an interrelated process in

the development of materials, structures and technology is closely associated
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with the development and application of reinforced composites. The
emergence of glass-reinforced plastics, which have found extensive application
because of their high strength and low density compared to conventional
structural materials, has allowed the development' of promising design
concepts and efficient fabrication methods, followed in turn by new advanced
materials based oﬁ organi, boron or graphite fibres dispersed in polymeric or
metal matrices.

Modern composite mateﬁals not only have a wide range of properties
superior to conventional materials, but these properties can be altered and
improved according to the designation of the structures. These properties
include (Jones, 1975): strength, fatigue life, stiffness, temperature-dependent
behaviour, corrosion resistance, thermal insulation, wear resistance, thermal
conductivity, attractiveness, acoustical insulation and weight. Naturally, not
all the above properties are improved at the same time nor is there usually
any reqﬁirement to do so.

In modern composites the components, which are combined to produce
a material, are high-strength fibres providing mechanical properties of
ﬁateﬁds and a matrix realizing these properties in design. The resulting
material has precisely oriented features which can be controlled by changing
the structural parameters of the composites. There is no need to prove that
such a special design will always be more effective compared to conventional
all-purpose isotropic metals and allbys. The principle of specialized properties

can be accurately traced, e.g. in all natural materials which have emerged as
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a result’ ofa proloﬁged evolution af’ger having been subjected to gravitational,
wind and other static and dynamic loads.

The effective realization of merits of composite materials in specific
"designs calls for the solution of a seriés of problems including: selection of the
matching initial components-- fibre and matrix, determination of the
reasonable structure of materials adequate to the external load field and
other influences, taking account of the specific properties of the material and
processing limitation in the design.

There are three commonly accepted types of composite materials:
(Jones, 1975)(i) Fibrous composite which consists of fibres in a matrix; (ii)
Laminated composites which consist of layers of various materials; and (iii)
Particulate composites which are composed of particles in a matrix. In recent
'years, one of the most commonly used composite is fibrous composites. Many
commonly used fibres or wires are Aluminum? Titanium, Steel, Glass, Carbon,
Boron and Graphite. Glass, Boron and QGraphite fibres possess ultrahigh
strength and stiffness. The matrix material can be either a plastic such as
epoxy or polyimide or a metal such as aluminum. The purpose of the pinder
material, called matrix, is manifold: (i) binding together the fibres and
protecting their surface from damage during handling fabrication and
. prolonging the service life of the composite; (ii) dispersing the fibres and
separating them in order to avoid catastrophic propagation of cracks and
subsequent failure of the composite; (iii) transferring stress to the fibres by

adhesion and/or friction ( when the composite is under load ). For the
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remainder of this thesis, three composite materials--glass-epoxy, boron-epoxy
and graphite-epoxy composites will be considered.

A lamina is a flat or curved ( as in shells) arrangement of
unidirectional fibres or woven fibres in a matrix. In a fibre-reinforced
composite, fibres provide the majority of the strength and stiffness. The fibre-
reinforced composites such as glass-epoxy, boron-epoxy and graphite-epoxy are
usually treated as linearly elastic materials. Refinement of that
apprbximation requires consideration of some form of plasticity, viscoelasticity
or both (viscoplasticity).

In practice, composite materials rarely exist as a single lamina, but will
be fabricated from a number of laminae bonded together. If the separate
laminae possess orthotropic properties by virtue of the orientation of thé
fibres in the matrix, then Kthe resulting composite will have properties
depending upon thickness, principal material property , orientations and the
final arrangement of each independent lamina within the composite. A major
purpose of lamination is to tailor the directional dependence of strength and
stiffness of a material to match the loading environment of the structural
element. Laminates are uniquely suited to this objective since the principal
material directions of each layer can be oriented according to the need. A
generally laminated plate or shell comprises ‘an arbitrary number of
homogeneous orthotropic layers perfectly bonded together. Each layer has
arbitrary elastic properties, thickness and orientation of orthotropic axes with

respect to plate or shell axes. In the present analysis, the symmetrically



6

cross-ply laminates, in which the cylindrically ( or polar ) orthotropic layers
are so arranged that a mid-surface elastic symmetry exists, and the
unsymmetrically ones, in which such elastic symmetry does not exist, are
considered.

Composite materials a.re finding ever new applications in different
engineering fields, especially in aerospace engineering. This is prim:;lrily
owing to the excellent mechanical properties of these new materials at
relatively low densities, and to their other merits offering advantages over
conventional materials. Because of their great practical importance, the
developments in composite materials have established a new area of scientific
research -- the mechanics of composites, which has achieved a number of
effective analytical methods and some significant results.

In recent years, almost every aerospace company is developing products
composed of fiber-reinforced composite materials. The usage of composite
materials has progressed through several stages. At present, for example, the
fuselage section aﬁd horizontal tail on the General Dynamics F-111 airplane
are made of boron-epoxy material. Graphite-epoxy horizontal and vertical
stabilizers are iﬁ production for General Dynamics YF-16 airplane. This last
goal has been approached in the deliberate, conservative, multistége fashibn.
A substantial composite materials technology has been built and awaits

further challenge.
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12 A REVIEW OF ADVANCES IN THE THEORY AND ANALYSIS OF

LAMINATED SHELLS

In recent years, considerable attention has been given to the
improvement of the classical theory of shells. By large, such efforts have
‘been prompted by the necessity of designing structures which employ up-to-
date composite materials. The correct and effective use of composite
materials require more complex analysis in order to predict accurately the
elastic response of these materials to external loadings. A great amount of
research work, therefore, has been carried out on the elastic behaviour of
laminated composites. As is well known, geometric nonlinearities stem frbm
finite deformation_s of an elastic body. For composite plates and shells
nonlinear strain-displacement relations arer most commonly used in the
literature for development of nonlin;aaxj theories. Many researchers have
conducted studies in nonlinear vibration, buckling and postbuckling analyses
of laminated plates and shells. A review of various studies on the
geometrically nonlinear behaviour of ’composite plates may be found in
referenées contributed by Chia -‘(1980, 1988a), and the assessment of
computational models for composite shells was given by Noor and Burton
(1990). In this section, the deérelopments of the nonlinear shell theory,
analytical investigation into the nonlinear analysié of laminated shell
structures, buckling, postbuckling and vibration of laminated shallow

spherical shells are given for reference.



1.2.1 Shell Theories

The theory of plates and shells attempts, by wusing certain
approximations, to reduce the essentially three-dimensional equations of solid
mechanics to a set of two-dimensional, surface. equations. In 1850 Kirchhoff
applied‘ geometric restrictions to obtain a linear theory of plates. Later, Love
(1888) developed a corresponding theory for shells utilizing what is now
known és the Kirchhoff-Love hypothesis (or the first approximation theory),
Which‘may be summarized as (i) normals to the undeformed midsurface are
deformed into noﬁnals to the deformed midsurface, (ii) the effects of stress
and strain in the direction of normal may be neglected, and (iii) the ratio of
shell thickness to the radii of curvature is small compared with unity.
Assumptions (i) and (ii) may not be consisfent with the three-dimensional
nature of even a thin shell and implies that the effect of transverse shear
deformation is neglected but have been invoked purely for the purpose of
sufficiently describing practical structures by means of midsurface strains and
stress resﬁltants when (i) the lateral dimension-to-thickness ratio is large; (ii)
the dynamic excitations are within the low-frequency range; (iii) the material
anisotropy is not severe. Therefore, it is true that the thinner the shell is,
the more accurate the assumptions. Refinements to Love’s "first
approximation theory" have been made by several researchers using various
assumptions.

Any relaxation of these restrictions prompts the necessity of improved
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theories in which the transverse shear deformation and/or transverse normal
deformation are taken into account. As‘ pointed out by Koitef (1959),
refinement to Love’s first approx'imation theory of elastic shells are
meaningless, unless the effect of transverse shear deformation are included
in the theory.

The simple é.nd generalized theory (or the first-order shear deformation
theory) which takes into account the effect of shear deformation is
substantially due to Reissner (1945), where the displacements are assuméd
in the form:

u=u,(x,y,t) +za (x,y, t)

V=V°(le1 t)+ZB(XIy1 t) (1.1)
w=w,(X,y, t)

in which u, v and w are the two inplane and transverse displacements in the
x, y and z directions respectively, u,, v, and w, are the values of u, vand w
at the iniddle surface, and o and f, the slope functions, are éveraged
components of direction change of the norz‘nal to the undeformed middle
surface. In 1951, Mindlin (1951) efficiently incorporated the influence of
rotatory inertia on the flexural motions of linearly elastic, isotropic plates due
to considering transverse shear deformation.

On the basis of the Kirchhoff-Love kinematic hypothesis, linear theories
for laminated plates and shells have been well established by Reissner and
Stavsky (1961), Dong et al. (1962) and AI_nbértsumyan (l1964). This simple

kinematic assumption stipulates the application of these theories to structural
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members with the large lateral dimension-to-thickness ratio and moderate
variation of orthotropy of the materials across the thickness. It is expected
that the transverse shear effect on the elastic behaviour of composite plates
and shells, especially highly anisotropic matérials, is greater than that on
homogeneous isotropic ones. Application of laminated classical theories‘ to
layered ahisotropic composite plates and shells could lead to as much as 30%
Or mMOre errors in deflections, stresses and frequencies.

For moderately thick isotropic cylindrical shells, a refined shell theory
including transverse shear deformation and rotatory inertia W;‘ils developed by
Naghdi and Cooper (1956) and Mirsky and Herrmann (1956, 1957). In the
case of laminated composite cylindrical shells, several sets of equations have
been derived, by Sinha and Rath (1975) using the Donnell-type shell theory
(1933), by Dong and Tso (1972) and Rath and Das (1973) employing the
Love’s approximation. Since the derivation of all these sets of equations,
except for those presented by nNaghdi and Cooper (1956), guided by the work
of .Mindlin (1951) in the theory of homogeneous isotropic plates was based on
the assumption of a uniform thickness shear deformation, it is not possible
to satisfy the boundary conditions of zero thickness shear stresses at the
inner and outer shell surfaces and, therefore,rled to the introduétion of shear
correction factors in the transverse shear resultant-strain relations. By use
of the higher-order approximation for transverse shear stresses and strains, |
“the shear deformation theories of laminated shells were given by Reddy and

Liu (1985), Soldatos (1986, 1987) and Fu and Chia (1989ab). A significant
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common feature of these theories is that a parabolic distribution of the
transverse shear stresses was obtained, whereby the need for using a shear
correction factor was removed. Governing equations obtained in these
theories include, entirely, the equations of the aforementioned classical Love-
type theory. Further, for earlier works on the inclusion of ﬁigher—order
effects, reference may be made to the higher-order theories proposed by Hsu
gnd Wang (1970), Biricikoglu and Kaim'ns (1971), Dong (1972) and Whitney
and Sun (1973, 1974). The developemnt of these higher-order theories is
mostly based on a displacement field in which the inplane displacements in
the surface of the shell are expanded as linear functions of the thickness
coordinate and the transverse displacement is expanded as quadratic function
of the thickness coordinate. These high-order shell theories are cumbersome
and computationally more. demanding, because, with each additional power
of the thickness coordinate, an additional dependent unknown is introduced
into the theory.
Nonlinearity in .the behaviour of any structure is déveloped due to large
deflections which substantially change the initial geometry of the structure
- or due to a nonlinear stress-strain relationship or both. Nonlinearity due to

nonlinear constitutive relations is called material nonlinearity. Elastic-plastic

constitutive relations should be considered when analyzing material

nonlinearity. Nonlinearity caused by large deflection is called geometrical
nonlinearity. In the present research, problems of geometric nonlinearity are -

examined. For the magnitude of the deflections beyond a certain level ( w >
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0.3h ) (Sivakumaran, 1983), the lateral deflections are accompanied by

stretching of the middle surface. In these instances the load carrying
capacity of shells is increased considerably. Cor;séquqntly, for such problems,
the use of an extended shell theory, which accounté for the effect of geometric
- nonlinearity, requires the use of nonlinear strain-displacement relations,
because displacement gradients can no longer be considered small compared
to unity. The need for more accurate analysis for plates and shells has led
to the appearance of a numbér of theories which are the formulation of von
Karman’s large deflection equations (19 10); the Donnell type equations (1933),
Marguerre-type equations (1938), Hildebrand configuration (1949), the
Berger’s linearlized equations (1955) and the others reviewed by Stein (1986).
It is worth noting that Donnell’s nonlinear theory, owing to its relativé
simplicity and practical accuracy, has been most widely used for analyzing the
elastic behaviour of isotropic thin shells, especially for cylindrical shells and
shallow shells, and for the basis of developing nonlinear laminated shell
theories. This theory is based on the following assumptions: (i) the shell is
sufficiently thin; (ii) the strains are sufficiently small compared to unity; (iii)
straight lines normal to the undeformed middle surface remain straight, and
the length of normal to the deformed middle surface stays unchanged; (iv) the
normal stress actihg in the direction normal to the middle surface may be
neglgcted in comparison with the stresses acting in fhe direction parallel to
the middle surface; (v) two inplane displacements are infinitesimal, while

normal displacement is of the same order as the sheli thickness; (vi) the
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derivatives of normal displacement are small, but their squares and products
are of the same order; and (vii) curvature changes are small and the
influences of two inplane displacements are negligible so that they can be
represented by linear functions of normal dispiacement only. Assumptions
(iii) and (iv)r constitute the so-called Kirchhoff-Love hypotheses while those
from (v) to (vii) correspond to the shallow shell approximations applicable for
deformation dominated by the normal displacement. The Donnell’s equations,
in cases where the curvature radii of the shell become indefinitely large,
reduce to the von Karman equations for largg deflections of thin plates.
Attention has also been paid to geometrically nonlinear theories of )
laminated composite shells. Librescu (1987,1988) presented a refined
geometrically nonlinear theory of anisotropic symmetricaily laminated
" composite shallow shells by incorporating transverse shear deformation and
transverse-normal stress effects. Lagrangian formulation was used to derive
the tileory, and the three-dimensional strain-displacement relations Wére
modified to include the nonlinear terms. A rate theory for shells admitting
anisotropic elastic-plastic behaviour was developed by Weichert(1988). The
theory takes into account the shear effects using a first-order shear
approximation theory and takes into account geometrically nonlinear effects |
by using consistent strain and relation-based approximations. Based on the
Donnell-type assumptions and Mindlin hypothesis, Iu and Chia (1988a,b)

derived a nonlinear theory for antisymmetric cross-ply circular cylindrical
shells.
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1.2.2 Analytical studies of Laminated shallow spherical shells

The geometrically. nonlinear elastic behaviour of laminated circular
cylindrical shells or panels was reported by several researchers (Knot, 1970;
Hirano, 1979; Sheinman and Simitses, 1983; Zhang and Matthews, 1983,
1985; Bhattacharya, 1984; Hui, 1985; Chia, 1987a,b, Iu and Chia, 1988a,b and
Hsu et al, 1991) using various analytical methods.

Based on the Donnell’s shell approximations, the nonlinear
axisymmetric response of cyliﬁdrically (or polar ) orthotropic shallow spherical |
shells has been investigated in some detail. Making use of Hamilton’s
principle, Varadan and Pandalai (1978) utilized the one-term mode shape
solution to solve the nonlinear flexural frée vibration problem of clamped
orthotropic shallow spherical shells. Using a two-term shape approximation
associated with the Rayleigh-Bitz method, Varadan (1978) examined static
buckling of clamped orthotropic shallow spherical shells. Alwar and Reddy
(19792) and Dumir et al. (1984a) analyzed the axisymmetric static and
dynamic buckling behaviour of clamped orthotropic shallow spherical shells
with a circular hole. The former used the Chebyshev series in the space
dlomain and a Houbolt numerical integration scheme in the time domain
while the latter adopted the orthogonal point collocation method in the space
domain and Newmark-B scheme in the time domain. Gana.pathi and Varadan
(1982) presented a solution to the study of dynamic buckling of clamped

orthotropic shallow spherical shells subjected to instantaneously uniform step-



15

pressure load of infinite duration. With an assumed two-term mode shape for
the lateral displacement, the governing equations were derived by using
Lagrange’s equations and the numerical results were obtained bs; the Runge-
Kutta method. Dumir (1986) reported the nonlinear free vibration response
and the response of orthotropic shallow spherical shells with immovable
clamped and simply supported edges under uniformly distributed static load
by using the spatial mode and Galerkin’s method. For a flexible edge
condition, Dumir et al (1984b) expanded deﬂection and stress function as
polynomials and used the orthogonal collocation technique to examine the
static and dynamic buckling of orthotropic shallow spherical shells with
flexible supports and to ,investigate the influence of the edge stiffness
pai'ameters on the nonlinear behaviour.

The nonlinear analysis of orthotropic shallow spherical shells on elastic.
foundations have been carried out by several researchers. The study of
interaction between deformable bodies is relevant to many engineering
situations. The exact analysis of interaction is very complicated. Therefore,
simplified mathematical models accounting for the structure interaction with
the surroundings have been proposed by Winkler (1867), Pasternak (1954),
Reissner (1958), Kerr (1964), Levinson and Bharatha (1978) and others. Nath
et 51 (1985a,b, 1986, 1987, 1989) and Jain et al (1986) applied the Chebyshev
series to analyzing the nonlinear behaviour of immovable simply-supported
and clamped orthotropic shallow spherical shells on elastic foundations such

as the transient response, the static and dynamic response and the effect of
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foundation on the transient response of these shells. In the first three a;ld
the last of these six papers, Winkler and Pasternak elastic foundation models
were employed while in the others Winkler and nonlinear (cubic) Winkler
models were used. Utilizing Winkler, nonlinear Winkler and Pasternak
models of the elastic foundation, Dumir (1985) reported the nonlinear free
vibration and static respdnse of orthotropic shallow spherical shells with the
flexible supports by a single-mode solution and thé Galerkin’s method.

The effect of geometrically initial imperfection on the n;mlineair analysis
o'f isotropic shallow spherical shells, however, hgs received some attention.
Budiansky (1959) investigated the effect of the ‘initial imperfection on the
buckling of calmped isotropic shallow by use of the Bessel functions. Hui
(1983a) reported the results of this effect on the nonlinear vibrations of
isotropic shallow spherical shells. To simplify the theoretical analysis and
provide useful information on the possible effects in a preliminary deéign,
Budiansky proposed that the shape of the initial imperfection was the
parabolic functi;)n and Hui suggested that the same mode shapes were
assumed for the vibration mode and the geometric imperfection, although the
shapes of the geometric imperféction are random in practical structures.

Recenﬂy, based on von Karman-Marguerre type nonlinear equations,
nonlinear vibration and post-buckling of symmetrically-laminated shailow
spherical shells of rectilinearly orthotropic material with rectangular planform
were discussed by Chia (1_988b) utilizing a generalized double-Fourier series.

All these analyese mentioned above, however, are confined to



17
orthotropic and laminated thin shallow spherical shells, and the effects of

transvefse deformation and rotatory inertia are not taken into account.

As for the geometrically nonlinear analysis of laminated shallow
spherical .shells by use of the finite element method, some shell elements
including the effects of transverse shear have been de{reloped on the basisr of
the ﬁrst-o;‘der assumption. Reddy and Chandrashekhara employed the
displcement finite element model to study the large deflection (1985a) and the
nonlinear transient response (1985b) of the laminated shallow spherical éheﬂs
of rectilinearly orthotropic material with rectangular planform. |

| For the geometrically nonlinear analysis of circular plates, which is the
special case of shallow spherical cap, some previous work are briefly reviewed
‘as follows: |

Nowinski (1963) employed a single-mode solution to discuss nonlinear
vibrations of circular plates of rectilinearly orthotroi)ic Vmaterials. Using the
Chebyshev series, Al'War and Reddy (1979b) and Nath and Alwar (1980)
considered the nonlinear static and dynamic response of orthotropic circular
and annular plates. Ruei, Jiang and Chia (1984) studied static and dynamic
problems of orthotropic circular plates with nonuniform edge constrains. The
nonlinear vibration of isotropic layered circular plates were considered by
Kunukkaseril and Venkatesaﬁ (1979). Employing a dynamic relaxafion
method, Turvey (1982) reported the large deflection of laminated circular
plates. The nonlinear vibration and buckling of laminated anisotropic circular

plates were investigated by Srinivasamurthy and Chia (1987). Based on von
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. Karman-Marguerre type equations, Nath et al (1987) discussed the nonlinear

static response of orthotropic circular plates on Winkler and nonlinear
Winkler elastic foundatiops by use of a Chebyshev series solution. Utilizing
Winkler , nonlinear Winklef and Pasternak models of the elastic foundation,
Dumir (1985) investigated the nonlinear axisymmetric response of orthotropic
thin circular plates by a single mode solution. Including the effect of -
geometric imperfection in his investigation, Hui (1983b) studied the large
amplitude vibration of isotropic circualr plates. In all the above studies, the
effects of transverse shear and rotatory inertia have not been encompassed.
As for the effects of transverse shear and rotatory inertia,
Sathyamoorthy and Chia discussed nonlinear vibrations of circular plates of
rectilinearly orthotropic and isotropic materials for clamped boundary
conditions by using the Galerkin method and the Runge-Kutta numerical
procedure (1979, 1981) and by using the Bergef’s approach (1982). For
laminated thick circular plates, Srinivasamurthy and Chia (1990) formulated
a single-mode solution to study the nonlinear static and dynamic response of
laminated thick circular plates of rectilinearly orthotropic material With a
clamped edge. |
Based on the works of Reissner (1945) and Fu and Chia (1989a,b), the
writer developed a nonlinear theory for the elastic behaviour of laminated
cross-ply moderately thick ‘shallow 'spherical shells, which extended the
Donnell-type shell theory to include transverse shear and rotatory inertia. |

A multi-mode solution in the ‘Fourier-Bessel series is formulated for the
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nonlinear governing equations which are reduced to a set of nonlinear
ordinary differential equations by making use of Galerkin’s method.
Analytical results were obtained for the' buckling and postbuckling response
of symmetrically'laminated shallow spherical shells including the effect of
transverse shear (Xu, 1991); for the nonlinear free vibration of these shells
with the flexibly supported edge (Xu and Chia, 1991a); for the nonlinear
static and dynamic analysis of these shells taking into account the effects of
transverse shear, rotatory inertia, geometric imperfection and elastic
foundations (Xu, 1992a); for the nonlinear analysis of unsymmetrically
laminated moderately thick shaliow spherical shells with considering the
effects of the transverse shear and rotatory inertia (Xu and Chia, 19923).
‘Results were also obtained for the nonlinear vibration of symmetrically
laminated moderately thick circular plates (Xu and Chia, 1991b); for the
nonlinear static and dynamic responses o.f these plates including the effects
of transvérse shear, rotatory inertia, geometric imperfection and elastic
foundations (Xu, 1992b); for the influence of the elastic foundation on the
" large amplitude vibration of unsymmetrically thick circular plates (Xu and
Chia, 1992b).

1.3 SCOPE OF THE PRESENT THESIS

To the writer’s knowledge there is no other literature available, except

for the work conducted by the writer, on the buckling, postbuckling and
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nonlinear vibration response of laminated shallow sphericél shells of
cylindrically ( or polar ) orthotropic materials. A wide class of boundary
- conditions and the effects of transverse shear deformation, rotatory inertia,
elastic foundation and geometrically initial imperfection are included in this
study. The corresponding circular plate problems are treated as special cases.
The objective of the present thesis is
(i) to define a set of stress resultants and stress couples to incorporate
the transverse shear for the laminated shallow spherical shell;
(ii) to establish a variational principle for the vibratory motion of
laminated shallow spherical shells of cylindrically orthotropic
materials including the effects of the transverse shear, rotatory
inertia, geometric imperfection and elastic foundation;
(iii) to obtain a set of equations of motion, and the corresponding set
of boundary conditions;
(iv) to simplify the equations of motion for the following cases:
(1) Unsymmetrically laminated cross-ply shallow spherical shells
(2) Symmetrically laminated cross-ply shallow spherical shells
(3) Orthotropic shallow spherical shells
(4) Isotropic shallow spherical shells
(6) Unsymmetrically laminated cross-ply circular plates
(6) Symmetrically lamianted cross-ply circular plates
(7) Orthotropic circular plates

(8) Isotropic circular plates
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including transverse shear, rotatory inertia, geometric
imperfection and elastic foundation;

(v) to obtain approximate solutions for buckling, postbuckling and
nonlinear vibration of a laminated cross-ply shallow épherical
cap and its special cases including the above-mentioned
complicating effects with the following boundary conditions:
(1) The edge of a symmet_rically laminated cross-ply shell is |

flexibly supported with its special cases:
(a) Movable simply-supported
(b) Movable clamped
(¢) Immovable simply-supported
(d) Immovable clamped
(2) The edge of an unsymmetrically laminated cross-ply shell is
movable aﬁd rotational restrained with the movable
clémped ‘edge as a special cése.

(vi) to compare the present numerical results in special cases with

| available data;

(vii) to obtain relationships between the following with physical

| parameters for various boundary conditions, ratios of base radius
to shell or plate thcikness, numbers of layers and elastic
properties of materils:
(1) Frequency ratio (nonlinear frequency to the correéponding

linear frequency) and maximum amplitude of
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symmetrically and unsymmetrically laminated cross-ply

shallow spherical shells;

(2)  Frequency ratio (nonlinear frequency to the corresponding
linear frequency) and maximum amplitude of
symmetrically and uﬁsym‘metrical_ly laminated cross-ply
circular plates;

(8) Postbuckling load and maximum deflection of symmetrically
and unsymmetrically laminated cross-ply shallow spherical
shells;

| (4) Load and maximum deflection of symmetrically and
unsymmetrically laminated cross—ply.circualr plates;
(viii) to draw conclusions and some recommendations for further

research.
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CHAPTER 2
NONLINEAR THEORY OF LAMINATED SHALLOW
SPHERICAL SHELLS

A dynamic nonlinear théory for the axisymmetric deformation of a
laminated elastic shallow spherical shell composed of cylindrically ( or polar )
orthotropic layers is developed with the aid of the variational principle of
elasticity. The effects of transverse s;hear deformatidn, rotatory inertia,
geometric imperfection and elastic foundation are included. The constitutive
relations for the laminated shell are derived from the generalized Hooke’s
law. The equations of motion are expressed 1n terms of é. transverse
displacement, a rotation of a normal to mid-surface and a stress function.
For special cases, the governing equations derived in this chapter a;gree with
those given by the earlier theories.

In the derivation of the theory it is assumed that:

(1) The material of the shell is homogeneous, continuous and linear
elastic and the stresses of the deforme& shell at any time are
less than the corresponding yield stress.

| (2) The layers constituting the shallow spherical shell are perfectly
bonded together and are of the same material.

(8) The typé of elastic foundation. is nonlinear Winkler-Pasternak
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model and the bonding between the shell and foupdation is
perfect.

(4) The deformation of the shell is axisymmetric, namely, independent
of the circumferential coordinate ( say, 9 ).

(5) The shell is moderately thick ‘and the products of inplane
displacement derivatives in the nonlinear strain-displacement
relations may be neglected in comparison with the other terms.

(6) The effect of transverse normal contraction or extension is
neglected.

(7) The tangential inertia terms are neglected.

(8) The ratio of the shell rise to the base radius is less than 0.25 such
that the tangential displacements and fo?ces may be taken to be

their projections on fhe base plane of the shell ( Reissner, 1946 ).
2.1 GEOMETRY AND DISPLACEMENT FIELD

Consider a shallow spherical shell of constant thickness referred to a
right-handed cylindrical coordinate system of r, 6 and z (Fig. 2.1). The
elevation of the undeformed middle surface of the shell above the base

circular plane, f, is approximated by the paraboloid:

f=H[1-(zr/a)?] (2.1)

where H is the initial rise of the spherical shell and a is the base radius.

The radius of curvature of the undeformed shell is



SHEAR LAYER(g,) WINKLER SPRING (k k)

Figure 2.1: Geometry of

a shallow spherical shell
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R=a?/ (2H) | (2.2)

The radial displacement at a distance z from the middle surface is
assumed to vary linearly across the thickness of the shell and the transverse
displacement is to remain constant. In the case of axisymmetric deformation
of the shallow spherical shell, the displacement field may be written in the

form:

u (r,z,t)=u(r,t)+zy*(r,t)
ug (r,z,t)=0 (2.3)
w(r,z,t)=wl(r,t)

in which u,, ug and w are the displacement components in the r, 6, and z
directions, respectively and in’ which u is the value of u, at the middle
sufface, v" the rotation of a normal to the middle surface and t the time.
With the transverse shear effect being taken into account, \y* is not equal to

the derivative of w.
2.2 STRAIN-DISPLACEMENT RELATIONS

The nonlinear strain-displacement relations for axisymmetric
deformation of a shallow spherical shell are derived from the three -
dimensional nonlinear theory of elasticity by the classical method.

When a deformable body is under the action of external forces such Vas
applied loads, body forces, and support reactions, the body will be deformed

‘and the internal forces interacting between elemental portions of the body

will be developed. The deformation of the body is characterized by the
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extension and distortion of line elements and the components of strain in
engineering are defined as unit elongations of line elements and the changes
in right angles between line elements, whereas those of a strain tensor are
defined in terms of three displacement components. The deformation,,

however, may be either finite or infinitesimally small. In the theory of finite
deformations or the nonlinear theory of elasticity, strain can be described by
two different coordinate systems of reference, namely, the eulerian
coordinates describing the material particles with respect to the deformed
configuration, and the lagrangian coordinates describing these particles with
respect to the original or undeformed configuration. In the following
discussion, the lagrangian coordinate system is adopted. In the lagrangian
description, all quantities are expressed in terms of the initial position
coordinates of each paﬁicle and time during all subsequent motion. Thus the
initial material lines and rectangular planes are deformed to curves and
curved surface.

Consider a material particle P(x;, x5, X3) in an unstrained shallow
spherical shell as shown in Fig.2.2. At a later instant of time the shell is
deformed and the particle is deformed to a new location P*(xl*,.xz*, x3*) by
a displacement vector u. The deformation from the initial configuration to
the deformed configuration is assumed to be continuous with one-to-one

correspondence. From Fig. 2.2, the relation between x, and Xi* is given by

Xi = X4+ U (i =1,2,3) (2.4)

The square of length ds, connecting the particle P ('xl, X9, X3 ) t0 a



Figure 2.2: Deformation of a line element
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neighbouring particle Q(x;+dx;, Xo+dx,, Xg+dx3), both lying on a line element

in the undeformed state, is

ds? = dx; dx, (2.5)

in which the repeated index in a term indicates summation with respect to
this index. During deformation the particle P and Q are displaced to P*(xl*,
xz*, x3*) and Q*(x1*+dx1*, x2*+dx2*, x3*+dx3*), respectively. The square of the

length ds of the new line element P*Q* is given by

ds? = dx; dxj (2.6)

The difference (ds? - ds,?) is a measure of strain. In the Lagrangian
description the coordinate x,, X5, X3 are regarded as independent variables

such that ds®~(dx; /0x;)(@x; /0% )dx,dx;. Thus

ds? - dsi = dxjdxi - dx;dx; = 2e;,dx;dx; (2.7)

where & is called the Green strain teﬁsor or the lagrangian strain
components and is symmetric.

Considering the cylindrical coordinate system used in this work and the
axisymmetric deformation of the shell as assumed in (2.3), the fc;llowing

relations including the geometric imperfection exist (Fig. 2.3):

x, = rcos6 X, = rsinb X, = zZz+W

u, = (wu,cos¢ - wsing ) cosbO

u, = (u,cosep - wsing ) sin6 (2.8)
u; = u,sing + wcos¢

in which w is the initial deflection or geometric imperfection. Within the
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Figure 2.3: Displacement field of the shell
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framework of the shallow shell theory ( H/a < 0.25 ), the tangential

displacements and forces can be taken to be their projections on the base
plane of the shell, as proposed by Reissner (1946) and Donnell (1976). Due

to the assumption of shell shallowness, some approximations are made,

% é% ' cose =1 (2.9)

Substituting (2.8) and (2.9) into (2.5) and (2.6), the square of the length of the

element before deformation is given by

ds? = dr? + r2d@? + dz? + dw? + 2dwdz (2.10)
and after deformation by

ds?= (dr +du, - ~wdr - Zdw)? + (r +u, - Lw)2d6>
R R
(2.11)
+ ( dz +dw + -%Edr + %dur + dw)?

With the products of inplane displacement derivatives and small quantities
of other higher-order being neglected, the measure of strain in eqn. (2.7) can

be written as

-ds? - dsj = 2¢,dr? + 2eqr2d6? + 2¢,,drdz (2.12)

Thus, the strain-displacement relations are obtained:

e, =U,, -~ W/ R+ W, w,, +w2/2
gg = u,/r - w/R

(2.13)
erz = uz',z + W'r

o — 28, =8,=0

where a comma denotes differentiation with respect to the corresponding
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coordinates. By virtue of eqns. (2.3), the eqns. (2.13) can be rewritten as

— p© —
e,=8;+ZK, , €g=eg+tZKy

. (2.14)
8rz=l|"’.""W'r ’ oz ™ €9= ;= 0
in which &.° and €,° are the middle surface strains given by
€=y, -w/R+ W, W, tw, 2/ 2
r , (2.15)
e =u/r - w/R : :
and x, and kg, are the changed values of shell curvatures given by
k=, (2.16)
Kg=1V"/r

When the transverse shear deformation and the geometric imperfection are

neglected, i.e., &,, = 0 and w = 0, the strain-displacement relations (2.14) are

reduced to those given by Donnell (1933).
2.3 CONSTITUTIVE EQUATIONS

2.3.1 Stress

In discussing stress it is natural to employ the Lagrangian coordinate

system since stress is related to strain. The components of a stress tensor
per unit area of the deformed state are defined to be those of the Kirchhoff
stress tensor which is measured with reference to the initial state. The stress

tensor is symmetric in the system of orthogonal coordinates as the strain
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tensor. The normal components of the Kirchhoff stress tensor in the direction
of cylindrical coordinate axes .r, 9, z are denoted by o,, o5, G,, respectively,
and the shearing components by 6,4, Ggys Gy Oy Gy o,5- The first subscript
in shearing .stress components indicates the direction of the normal to the
plane under consideration, and the second the direction of the stress

component. The sense of stress components are depicted in Fig. 2.4.
2.3.2 Hooke’s Law

Throughout this analysis the material of the shell is assumed to be
linearly elastic. The stress then depends only on the deformation but not on
the history of that deformation. A body whose elastic properties are different
for different directions is called anisotropic. The generalized Hooke’s law for
a homogenous elastic body of general ansiotropy in the cylindrical coordinate

system can be expressed in the matrix forﬁ as in Ref.(Chia, 1980).

e R 3 1 ¢ 3

e, L1y Lap Iz Ly Iys Lis o,

gq Tyz Tap I3 Tpq Zas L6 | | Op

‘ez | Tys Ta3 L33 I'yg I35 I3e < o, \ (2.17)
€rz Tia Toa L3a Taa Tas Tas | | Ozz -

Coz Iis Las Las L4s Iss Ise | | Oz

(€20 Ti6 T26 T3¢ L46 Ts¢ Lec| {00 )

where the coefficients r;; are the elastic compliance and i, j = r, 0, z. The

number of independent elastic constants is 21 in the general case. If,
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Figure 2.4: Sign convention for stresses in cylindrical coordinates
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however, any plane of elastic symmetry is present in elastic properties, this

number is reduced. In the case of an orthotropic body there are three

mutually perpendicular planes of elastic symmetry. The matrix (2.17) then

becomes

(I} I1p iy 0 0 0]
Tizg Tz T3 0 0 O
T3 Ta3 I33 0 0 O
0 0 0 r, O O
0 0 0 0 zy O

0 0 0 0 0 zg

(2.18)

where there are nine independent elastic constants. It can be shown that in

the case of isotropic material, the elastic properties are independent of

direction and the number of independent. elastic constants is reduced to two.

It is evident from the symmetric matrix (2.18) that the constitutive

relations for a cylindrically orthotropic material can be written in the so-

.called engineering constants as follows:

1
xr
C _V:e
EI
Iz

2=

_Yeor _
E Ey
v 1
v _ Vez
Eg

EZ
V20
EG E z
2
EZ
0

[ (2.19)

in which E; are Young’s moduli along the i principal direction of elasticity, 0y
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are the Poisson’s ratios characterizing contraction in the j direction during
tension applied in the i direction, and Gij are the shear moduli characterizing
changes of angles in the ij planes.

Due tor the symmetric compliance matrix the elastic constants in

equation(2.19) are related by

VZZ EI = vzz EZ

Ve, E (2.20)

z

Vo, E

= V9 Eg

The Hooke’s law with the compliance matrix (2.18) can be written in

the form
(0,] [SuS255 0 0 0](e,
Og Siz Sz 83 0 0 O e
Y Si3 S3 S33 0 0 O € '
) Z | 13 23 33 ) z g (2.21)
o,, 0 0 0 8, 0 0])e,
O, 0 0 0 0 Sy 0f]eq,
00) [0 O 0 0 0 S (2]

in which Sij are the elastic stiffness. Neglecting the influence of the
transverse normal stress and considering the axisymmetric deformation ( say,
O,g = Og, = 0 ), the eqn. (2.21) is simplified to yield

o, S11 S, 0 e,

Og | =[Sz Saz O gg : (2'22.)

g 0 0 Syl le.,

Iz

where Sij are the reduced stiffness given by
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E E,
Sll = T - ‘ S, = ___e____
(1-v_gva,) 22 (1-v,qVq, )
0 V6r 0 Ver (2.23)
V.o Fp VorE;
S’ — E ’ S = G
12 (1 'Vze"ez ) ( 1 _Vrﬂver) 44 rz

It is observed that eqn. (2.22) also represents the stress-strain relations for
a cylindrically 'orthotropic. shallow spherical shell which has principal
directions of elasticity coinciding with the shell axes. Note that only four
independent elastic constants for an orthotropic shallow spherical shell
subject ;co axisymmetric deformation exist, that is, G, and any three of the
four parameters E,, Eq, v,4,0g,.

In engineering applicétions, the elastic properties of an cylindrically
orthotropic shallow spherical shell are usually known in the principal
directions ( L, T') of elasticity where L is the major direction and T the minor

direction. The reduced stiffness are related to these material axes of

symmetry by

_ By o
v ST—T ‘ SS“"GLT (2.24)

in which E;, and E; are major and minor Young’s moduli, v;; and vy, the
Poisson’s ratios, Gy the inplane shear modulus and Gy, and G, the

transverse shear moduli, and in which

B=1-VVg

Vo By = VypEp -

(2.25)

The elastic constants of a composite material with reference to orthotropic
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directions ( r, © ) can be found by the equations:

'(1) when the major direction L coincides with the r axis

S, =8, 1 S13= 8¢

(2.26)
S22 = Sr + ST Sg
(2) when the minor direction T coincides with the r axis
S13=S8r + S = Spp (2.27)

Sp2 =S8, + S = Sgr

2.3.3 Constitutive Equations of Laminated Shallow Spherical Shells

The type of the shell under consideration is constructed of an arbitrary
number of homogeneous cylindrical orfhotropic léyers perfectly bonded
together. Each layer -has arbitrary thickness, elastic properties and
orientation of 'orthotropic axes with respect to the shell axes. The geometry
of the kth layer is defined by two surfaces z = fr.1(r) and z = f;(r) and the
upper and lower boundary surfaces are defined by z=-h/2 and z = +h/2 from
the middle surface (Fig. 2.5). The total thickness of the laminate is h. The
shell materials are continuous everywhere and each layer obeys the
generalized Hooke’s law.

By the use of the constitutive equation (2.22), we have for the k£th layer
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1ST LAYER
2ND LAYER

MID—-SURFACE
k—TH LAYER

N-TH LAYER

Figure 2.5: Structure of the laminated shell
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. z(_k) s 1({:) AL e ;k)

Oe(k) — 5'1(2k) Sz(zk) 0 eék) (2.28)
(k) (k k

Orz 0 0 5&4) 3§;

in which Sﬁ(k) are the reduced stiffness of the kth layer.
| Asg in the classical shell theory, the stress resultants and stress couples

are defined by

+h/2

[N, 1= [ [of?, 0" 1dz
-a/2 (2.29)
+h/2

(M, My]l= f [ol¥ , ad¥ ] zdz
~h/2

In which, N,, Ny are membrane forces and M,, M, are bending moments, all
per unit length. These forces and moments are show;n in Fig. 2.6.
Substituting eqn. (2.28) into eqns. (2.29) and taking eqns. (2.14) into account,

yields the constitutive relations of the shell.

{[N]}= [a] [B]]{[eﬂ} (2.30)
[ M1] [B] [D] [ k]
where

Ny | ' My
g2 K, . ‘
[°] ={ } . [x] ={ } - (2.31)
€p Ko .
‘All AJ.Z] Bll Blz ' 'Dll 'D12
[A]l = . [Bl= . [D]=
‘ ‘Alz Z&z 'Blz E&Z I&Z LEZ




Figure 2.6: Shell element with stress resultants and couples
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(A;;, By, Dyy) = mf/z Sy (1, z,22)dz (i,j=1,2) (2.32)
-h/2
The material constants Aij’ Bﬁ and Dij (i, j=1, 2 ) are, respectively, the |
extensional stiffnesses, the éoupling stiffnesses and flexural stiffnesses of the
shell. The Bii display coupling between transverse bending and iriplane
stretching. It is noted that bending-stretching coupling exists even for a
laminate constructed of isotropic layers of various materials. In fact, only
when the shell is symmetric about its middle surface, the coupling Bij will
disappear. This requires symmetry in laminae properties, laminae orientation
and distance from the middle surface.
. For various types of she]l constructipn in this study, the values of Aﬁ,

Bij and Dﬁ are presented as follows:

(1) Unsymmetric cross-ply laminate |

Unsymmetric éross-ply laminates are constructed of an even number
of cylindricaHy orthotropic layers all of the same thickness and identical
mechanical properties, with orthotropic axes of symmetry in each layer
alternately oriented at angles of 0° and 90° with the shell axes, namely, the
base plane axes of the shell. The fiber direction (;f odd layers is assumed to
be coincided with the 6 axis and that of the even layers with the r axis. In

this case, it can be shown that

‘ S, + S S, +8S
(,A'll’AIZ’AZZ)=‘h( LZT'SLT’ LZT)V
2
By = -By, = 2N (Sp-8.,) + Bp,=0 (2.33)

h3

— _ h3 —
D11_D22——4( L*Sr) 125 35

SLT
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(2) Symmetric cross-ply laminate
Symmetric crosé—ply laminates are constructed of an odd numb‘ér of
cylindrically orthotropic layers all of the same thickness and identical
mechanical properties. The layers of a symmetric cross-ply laminate are so
arranged that a mid-surface elastic symmetry exists. That is, for each layer
above the mid-surface, there is a corresponding layer identical in thickness,
elastic properties, and orientation of filaments located at the same distance
below the mid-surface. Thus, it is assumed that the fiber direction of odd
layers coincides with the 6 axis, and that of the even layers with the r axis.
In present case, the material coupling does not occur between bending and

stretching and the shell stiffnesses are

a,= _2£N [ (N+1)Sp+ (N-1) 5, ]

A= S [ (N-1) Sp+ (N+1) 5]

A, = hSp,

Bi;=0

‘ h3 (2.34)

D, = [ (N3+3N2-2) Sp+ (N-1) (N%2-2N-2) S, ]

24 N3

— _h?

Dpy = 7= [ (N-1) (N2-2N-2) Sp+ (N*+3N%-2) S, ]
_ h?

Dlz"','ﬁ Spr

(3) Orthotropic shell
For a cylindrically orthotropic shallow spherical shell its material axes
of symmetry parallel to the coordinate axes of the shell and the fiber direction

coinciding with 0 axis, the stiffness are
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(A1 r Ay s By ) =h( 8y, Spp v Sp)
By =0 (2.35)
JE
(Dyy + Dip Dzz)é'ﬁ' ( Sp+ Spps Sp)
(4) Isotropic shell

In the case of an isotropic shell

= — Eh =
A = Ay, = 5 ¢+ AT VA,
. 1-v
By =0 (2.36)
Eh3
D,=D,———0(u , D,=vD
11 22" T (1-v%) 12 11

where E is the modulus of elasticity and v Poisson’s ratio of the isotropic

shell,
2.3.4 Transve_rse Shear Deformation

‘For the analysis of most plate or shell structures composed of composite
materials, the transverse shear deformation should be taken into account. In
the axisymmetric deformation of the shell, only one transverse stress exists.

From eqn. (2.28), this shear stress is

k) __ k. k
ol = g{P M (2.37)

As in eqn. (2.29), the shear stress resultant is defined by

+h/2
o,= [ o dz (2.38)
-h/2
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The transverse shear strain in (2.14) repfesents the average shear strain
across the thickness of the shell.. As can be derived from (2.22), the
transverse shear stress is a step distribution across the ‘shell thickness and
does not vanish on the bounding surface of the shell. To eliminate this
discrepancy a parabolic shear stress distribution across the shell thickness is

assumed in the form as in the work by Fu and Chia (1989a,b)

=3_Qr[1_( 2

2 2.39
2= g 5z )] (2.39)

g

and the transverse shear stress resultant, Q,, may be written as

O, =G%e,, = G (¢* + w,,) (2.40)

in which G is the transverse shear stiffness.

By introducing the complementary energy, the shear stiffness G' can
be determined. The corhplementary energy due to o,,, given by expression
(2.39) is

| +h/2

[ (oi¥y2/5/0 1 dz
-'h/Z (2.41)

V=

N

902 N
= 5n? ,(Z; s:‘Lk’ [hk'hk‘l—% (B = B + 51154 (B ~hia) )
. = 44

where N is the number of layers. On the other hand, the complementary

energy from expression (2.40) is

v = %Qrz/g* (2.42)

Equating the shear complementary energies and hence coefficients of like
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terms yields

G*= 4h?
9:’:51 { [ (Be-hy,) -8 (hg-hi,)/(3h?) +16 (hi-hg,) / (5h%) 1/5iK}
(2.43)

If the transverse shear effect is negligible, then g, = 0 and

consequently,

Y +w, =0 (2.44)

which is consistent with Kirchhoff’s assumption that the straight line element
of the shell which is perpendicular to-the middle surface before deformation

remains so after deformation.
2.4 NONLINEAR EQUATIONS OF MOTION

The principle of virtual work established by Lagrange is one of the:
variational principle in three dimensional continuum mechanics. It may be
stated as follows: Assume that the mechanical system is in equilibrium
under applied forces and prescribed geometﬁcal constraints. Then, the sum
of all the virtual work, denoted by dW, done by external and internal forces
existing in the system in any arbitrary infinitesimal virtual displacements

satisfying the prescribed geometrical constraints is zero:

SwWw=0 (2.45)

This principle may be stated alternatively in the following manner: If the
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sum of all the virtual work vanishes for any arbitrary infinitesimal virtual 7
displacements satisfying the prescribed geometrical constraints, then the
mechanical system is in equilibrium. Thus, the principle of virtual work is
equivalent to the equations of equilibrium of the system. The above
formation may be extended to the dynamical problem of a mechanical system
subjected to time-dependent applied forces and geometrical constraints. By
the use of D’Alembert’s principle which states that the system can be
considered to be in equilibrium if inertigl forces are taken into account, the
principle of virtual work of the dynamical problem can be derived in a
manner similar to the static problem case, except that terms representing the
virtual work done by the inertial forces are now included. Based on the
principle of virtuai work, various variational principles have been derived by
many researchers, such as, Reissner’s principle (1950) which allows
independent variation of both displacements and stresses and leads to
equations of equilibrium, constitutive relations (assuming strain-displacement
relations are satisfied) and natural boundary conditions, Washizu’s
principle(1968) which allows independent variation of stress, displacement
and strain and results in all three sets of equilibrium equations, constitl;.tive
relations and the corresponding boundary conditions, and others.

In this work, making use of the principle of virtual v'vork, the
equilibrium equations of motion for laminated shallow spherical shells can be
derived. Assuming that the strain-displacement and constitutive relations are

satisfied, the sum of all the virtual work done by external and internal forces
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(including inertial forces) can be expressed in the form:

dw=/Illo,;8e;5dv ~I[[B,du,;dv -] T,8u,ds
v v Sy

(2.46)
YA 3w, 3w,

where: B; = body force per unit volume of material acted on along the

coordinate direction i.

T; = surface traction per unit area acted on along the direction i.
S; = a part of the surface on which surface tractions.
S = surface of the shell.
v = gpace occupied by the _shell.
For the present case, the first term of 8w is
 azmene :
ow, = { !; -1!;2 [o,0e,.+0qdegq+0,,0e,,] rdzdldr (2.47)

Using relations (2.14) and (2.29) and integrating with respect to z from -h/2

to +h/2 and to 0 from 0 to 2w, expression (2.47) can be written as:

6W1=21rf [ZN.8 (u,  ~w/R+W, .w, . +w,5/2) +TM, 3",
0 .
+INgd (u/r-w/R) +rMd (§*/ 1) +rQ. 8 W*+w,.) ] dr
a .
=2 [ { [~ (2N,), +0p18u=[ - (£M,), +M+1Q,]1 8y* (2-48)
[o]

+[-(zN,) /R- (N, W, ;+INw, ), .- (zNy) /R
-(rQ.),, 18w} dr+2n (zN,8u) |§+2n (zM,8¢*) |2

+2% [ (ZN W, . +TN,w, ,+rQ,) dw] |5

From D’Alember’s principle, the effect due to acceleration of the shell
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in consideration, can be represented as a body force. Neglecting the mass
body force effects and retaining only the acceleration terms, the second term

of 3W is given by

a 2w +h/2

5W2=-ff f Y89 Uy, o 8u, + U, g +w, . 8W) rdzd0dr
0 0 -h/2
azax +h/2

- _ff f v [ (u, ee * 2P, o) O (Uu+2¥*) +w, . 6wl rdzdldr
00 W2 (2.49)

a
= “Zﬂf[ ('yu, tt'*'.z-ll.f*, tt) Su+ (Iul tt+JllJ*l tt) 61]!*
[}

+Yw, ccdf”] rdr

where yo(k) is the shell mass density per unit volume, and
. n/z
(Y,I,_J)=fvék’(1,z,z2)dz (2.50)
-h/2

The shell in this work is supported on a nonlinear Winkler-Pasternak
elastic foundation and is subject to distributed transverse load q(r,t) on the
upper face (Fig. 2.1). In this figure, K, is the extensional modulus, k, is the
nonlinear extensional modulus and g; is the shear modulus which assumes
the existance of shear interaction between the foundation elements. On
. account of the elastic foundation, the total transverse load is to be replaced
by q-kfw-knyv3+gt(w,n‘.+w,1/r)( Dumir, 1985 ). Also, the shell is rested on the
flexible edge of inplane stiffness k; and rotational stiffness k. Thus, the last

term of dW is expressed as

az2n

== — - 3
Sw, _[{ lg-kew-k,w*+ge(w, +w, /r)] Swrdddr (2.51)

+2nal -k P*(a)d¢*(a) ~kyu(a)du(a) ]



The sum of all virtual work is rewritten as

6W=2‘uf{ [-(ZN,) ,  +Ng+Y U, o+ TY*, . 18U
J ,

- (M), v My + 2 Q + TU,  +TY™, ] Y

+[ - (N +rNg)/R- (N W, ;+ZNw, ), .- (x0Q.) .,
~gtkwrk,wi-g;(w, . *w, /) +yw, .. ] dw} dr
+2m (N, 8u) |§+2n (M, 8¢*) |§

+2n [ (ZN, W, . +ZN,w, ,+rQ,) dw] |5

+2ma [k ¥* (a)dy* (a) +k,u(a)du(a)l

50

(2.52)

Employing the principle of virtual work, W niust vanish and hence the

arbitrary and independent variations of " displacements will lead to the

following governing equations of motion and mixed boundary conditions:

(1) Governing Equations of Motion
( er—)Ir _I%:Yulu;"'rl-w,*tt
(rM,),, - M -10,=rIU,  ,+IZJY ¢

I(NZ+N'6)/R+ [er(er+er) ]lr+ (IQI)II
+ [g—kfw-knwa-'-gf(err+er/r) ] =I‘YW' tt

(2) Mixed Boundary Conditions

N, =-k;u or u=u, at r=a

M =-k,¥* or Y=y, at r=a

(2.

(2

(2.

(2.

(2.

53a)

.53b)

53¢)

54a)

54b)
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0, =-N_ (W, +w,;) or w=w, at r=a - (2.54c¢)

where u,, w, and \|Io* are the prescribed boundary displacement functions.
For axisymmetric deformation of a shallow spherical shell, the
symmetry condition \]!* = 0 at the apex should be satisfied. To ensure that
membrane stress resultants do not increaée indefinitely ét apex, the condiﬁon
of N, being finite should bé also imposed. In this work, since the shell edge
is supported by elastic restraints and finite conditions are imposed at the

apex, the boundary conditions may be rewritten as

y*=0 and N, is finite at r=0. (2.55a)
W=0, Ny=-k;u, M,=-k,§* at r=a (2.55b)

Boundary conditions treat the specific values of ky, and k; (i.e., ky, k; = 0, o)
as special cases:
(a) Movable simply supported edge (SM), when k; = 0 and k; - 0;
(b) Immovable simply supported edge (SI), when kl = oo and kb‘= 0;
(¢) Movable clamped edge (CM), when k; = 0 and ky = o;

(d) Immovable clamped edge (CI), when k; = o0 and ky, = co,

2.5  GOVERNING EQUATIONS IN TERMS OF TRANSVERSE
DISPLACEMENT, ROTATION AND STRESS FUNCTION

As usual the tangential inertia terms are neglected and a stress
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function, F*, is introduced as

N,=F'/r , Ny=F, (2.56)

It is observed that I in eqn. (2.50) disappears when yo(k) is a constant as
assumed. Thus the stress function satisfied the first governing eqn. (2.53a).

A partial inverse of eqn. (2.30) yields
{[e°]}=[ [a*] [3*1]{ [N]} (2.57)
[ M1 -[B*1T [D*] [ ]

in which superscript T represents the matrix transpose and

(A*]=T[A] , [B*]=—[A]'1[B] (2.58)
[D*]1=I[D]-[B] [A][B]

In genéral [A"] and [D"] are symmetric but [B"] is not a symmetric matrix.

The equation obtained by eliminating u in strain-displacement relations

(2.14) is called the compatibility condition:

e+ (re§), +rw, /R + W, ,w,, + w,2/2=10 (2.59)

Making use of eqns. (2.56) and (2.57) , the compatibility condition in terms

of w, \;!* and F* can be obtained,

Agp (TF*,  +F*, ) -ANF*/r + By rY*, .+ (Byy + By — Bry) Yy,

—_ 2.60
—szq’r*/r+rW'r/R+WIIWIr+WI§'/2=0 ¢ )

Employing the partial inversion of relation (2.57) for M,, My and eqn.

(2.40) for Q, respectively, eqn. (2.58b) is expressed in terms of w, \y* and F* as
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Tg[-BhIF*, . =~ (Bl1+Bj1 —Byy) F*, _+BiF*/r+Dy (W, +zy*, )
-Dpp¥*/ 2 =Rz dy*, .1 -G* r(¥*+w,,.) =0 (2.60)

In the above equation, tracing constants Tg and R; are introduced to represent
the influence of transverse shear and rotatory inertia when Tg=1 and R;= 1;
when Tg = 0 and RI = (), these effects are neglected.

Using the governing equation (2,535) for rQ,, the partial inversion of
the constitutive relation (2.57) for M, My and eqn. (2.56), and integrating
eqn. (2.53¢) with respect to r from 0 to r, the goveminé equation of ihotidn

may be written in terms of w, w* and Fa'= as

-By T F*, 2z~ (Bi1+Bs1 —Bs3) F*, +B, F*/r+D/, (¢"I+Iw*lzz)
—D;zlll'/I"RI[Illl*, cc] + (rF*) /R+F* (r/R+'ﬁ;’r+W’I) (2’62)

I
'+fr lg-kew-k,w*+g.(w, . +w, . /x) -w, ] dr=0
() . :
To simplify the calculation for numerical results, equations (2.60) to

(2.62) are expressed in the dimensionless form

ZZZ(pF’pp+F'p) -2, F/p "'Empq"pp/a'l"' (B, ""‘_3;2'511)‘]";)/)'1 :
— — : (2.63a)
=B U/ (Ayp) +2A,0W, o + W, W, /Ay + W, 5/ (24;) =0

Ts[=21Bp1PF, gp=hy (Byy B, ~B,,) F'p+A'1-§12F/P+-511(‘l"p"'p"l"pp)

. {2.63b)
~Dpa¥/P ~Rep¥ 1, /(12A3)1- A5G p (¥ +W, ) =0
A1 By P F, op A1 (Byy +B,y ~By,) F, p*A1 By, F/p +Dyy (¥, PV pp)
-b'zzw/pfRI[pq:,,,/<1zxi)]+zAiAZpF+AlF(ﬁ,p+w,,) (2. 63¢)

. ,
: +fp [ Q=KW =K W3+ G (W, 0+ W, ,/P) =W, ., ] dp=0
o

In which, the dimensionless parameters are defined as
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p=r/a, W=;V/h, W=W/h, ¢ = (a/h)¢*, F=F*/ (E_h?)
A, =a/h, A,=H/a, Q=ga*/ (E h*) , T=—£§\/E}h—3/7
Zij=A;jETh,'§ij.=B;j/h, D,y = Diy/ (E;h®) (i,j=1,2)
G = G*/ (E;h) | '

K;=k;a*/ (Exh3) , K,=k,a*/ (E;h) , G=g;a?/ (E h3)

(2.64)

Also the boundary conditions (2.55) can be rewritten in terms of W, v

and F dimensionlessly,

¥v=0 and N, (=F/p) is finite at p=0. (2.65a)

and

W=0, My=-K, ¥ , Ny=-K, U at p=1 (2.65b)

where

M= -B, F/p =By Fr g +Dyy ¥, + D W/ p

(2.66)
U='Z!.2F+'ZZZPF’p+'§21p¢’p+BZZIp+2A’2PW
In the above expressions, Mp, Np, U, Ky, and K; are defined as
= 2 4 fa— 2 .
M,=M.a?*/(Eph*) , N,=N,a/(E;h?) , U=u/h (2. 67)

K,=kya/(Eh3) , K,=ksa/ (Egh)
, Equationé (2.63a,b,c) constitute a‘system of equations governing the
ﬁonlinear analysis of axisymmetric deformation of a laminated shallow
| spher'icalﬂ shell composed of cylindrically orthotropic layers. The effects of

transverse shear, rotatory inertia, geometric imperfection and elastic
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foundation are included. Itis to be noted that, with appropriate assumptions,
equations (2.63) can be simplified for some particular cases:
(1) Marguerre-type equations of motion for laminated shallow
spherical shells
Neglecting the effects of transverse shear and rotatory inertia, the

second of governing equations in this case becomes

—-w,, (2.68)

Substituting the above equation into the other two governing equations, a set

of two governing eciuations are obtained.

Zzz (pF, pp+F'p) _‘EllF/p—EMPW' ppp/l'l"*. (Ezl"'gzz —511) W, pp/ll

‘ (2.69a)
+-§12WIP/ (A'lp) +2A2pwlp+-W-lpWIp/A1+Wl‘2)/ (ZA']_) =o
_Al'gz_lpF' pp-l'l (§11+'§‘21—'§22) F, p+A‘1'-B—:.L2F/p_B;L1 (W, pp+pW' ppp)
+'522WI p/p +2A§AZPF+A‘1F(WIP+WIP) (2.69b)

P
+fp [ Q- K, WK W +Gy (W, 5o+ W, ,/P) =W, .1 dp=0
A |

which are the so-called Marguerre-type equations for the dynamic analysis of
a laminated thin shallow spherical shell.

(2) Mindlin and von Karman-type equations of motion for laminated

circular Plates

Assuming that the curvature of the shell in eqns. (2.63) is zero (i.e., /R
= ( ), the governing equations are simplified to those for laminated circular

plates. If the effects of transverse shear and rotatory inertia are neglected,
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these equations become those for laminated thin circular plates in the sense

of von Karman.

(8) Equations of motion for symmetric laminated shallow spherical
shells “

In the case the material coupling does not occur between transverse
bending and inplane stretching, namely, Bij = 0. The governing equations

(2.63) are simplified as

Zzz(pFlpp’*'Frp) _leF/p+2AZPWIP+WIPWIP/A1+WI‘2)/ (22'1) =0 (2‘70a)

Tg[Doy (¥, o +PV, 5g) ~Dya¥/p=R1p ¥ 1. /12A3)1-ASGp (Y +W, ) =0 (2.70b)

'5;.1 (¢’p+p¢lpp) "52211"/9 —RI[Pll’:.ﬁ/ (121?_) ] +ZK§AZPF
‘ P (2.70¢)
+ Ay F (W, o+ W, ) +fp [O-KW-K W3 +G (W, jo+ W, ,/P) =W, .1 dp=0
[o]

When eqns. (2.69) and (2.70) are specified for orthotropic and isotropic
shells, the resulting equations agree with those given in the earlier theories '

or classical theories.
2.6 SUMMARY

In this chapter, the constitutive relation for a moderately thick shallow
spherical shell composed of cylindrically orthotropic layers are established

based on the generalized Hooke’s law and are characterized by four
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independent Aengineering elastic constants. The extensional stiffneiss, the
bending-stretching stiffness and flexural stiffness of the shell are presentéd
for unsymmetric cross-ply laminate, symmetric cross-ply laminate, ortflotropic
and isotropic shell, respectively. The transverse shear stiffness is given by
employing a parabolic shear stress distribution across the shell thickness and
the principle of complementary energy. |

The governiné’ equations and corresponding bou.ndary conditions are
derived by the dynamic principle of virtual work and expressed in terms of
a transverse displacement, a rotation of a normal to mid-surface and a stress
function. The, effects of transverse shear, rotatory inertia, geometric
imperfection or initial deflection andr elastic foundations are included. For
specific cases, the governing equations are simplified to those given in the
earlier theories. The governing equations agree with the dynamic Marguerre-
type equations by neglecting the éﬁ‘écts of transverse shear and rotatory
inertia; becomé the dynamic Mindlin-von Karman-type equations for
laminated circular plates by assuming zero curvature of the shell; reduce to
those proposed in classical theories of orthotropic and isotropic shells; and are
further simplified to those for static analysis by deleting.the time-dependent
terms. It is observed that the present governing equations are more general
and accurate for studying the elastic behaviour of laminated shallow spherical

shells than the existing theories.
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CHAPTER 3
METHOD OF SOLUTION

3.1 INTRODUCTION

The equations derived in Chapter 2 constitute a system of equations fqr ‘
nonlinear analysis of axisymmetric deformation of a laminated shallow
spherical shell composed of cylindrically ( or polar ) orthotropic layers. The‘
effects of transverse shear deformation, rotatory inertia, geometric
imperfection and elastic foundationé are included. In sorrie spécial cases, such
as, neglecting the effects of transverse shear and rofatory inertia, assuming
the zero curvature of the shell, and considering no bending-stretching
coupling, etc., these equations niay be reduced to the simplifying forms. An
exact solution to this system of the nonlinear differential equations is in
general very difficult to obtain. Therefore, in this chapter an approximate
solution of the Fourier-Bessel series is sought in the analysis. And the
Galerkin method is used to reduce the governing equations of motion to a set
of nonlinear ordinary differential equations and these equations for time
functions are expanded into Fourier cosine series in the time by the method
of harmonic balance. The resulting equations are solved by the Newton-

_Raphson method.

The multi-mode solution has the advantage that an infinite set of
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nonlinear equations can be truncated to obtain any desired degree of
accuracy, over the single-mode solution. In engineering, further, several
terms taken in the truncated series may yield sufficient éécuracy provided
that the terms considered are close to the actual shape of vibration or the
deformed configuration of the shell. Certainly, when an infinite series
solution satisfying the governing equations and boundary conditions is

presented, the solution can be said to be exact.

3.2 GALERKIN METHOD

A number of approximate methods have been developed by using the
variational principle, numerical analysis and ofhe;' mathematical theories.
Those used extensively in solid mechanics are Double Fourier series by
expressing the dependent variables and the loading function as double Fourier
series; generalized double Fourier series by expressing these variables in
terms of any orthogonal sets of functions; Ritz method (Ritz, 1908) by
applying the principle of minimum potential energy and assuming that the
desired extremal of a given pioblem can be approximated by linear
combinationé of suitably chosen functions; perturbation method or sﬁﬂl
parameter method (Poincare, 1892; Nowinski and Ismail, 1965) by generating
lthe perturbation ip the neighbourhood of the solution of the linearized
equations such that the known properties of the linear system can be utilized

for the solution to the perturbed system; and Galerkin’s method (Galerkin, .
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1915) by minimizing the errors produced by the chosen spatial functions.

In this work, the Galerkin method is used to obtain an approximate
solution. It is briefly reviewed as follpws:

The Galerkin method which has been widely applied to both static énd
dynamic problems in the area of solid mechanics is the method of an
approximate solution of the boundary-value problems. The idea of the method
is minimization of error by orthogonalizing with respect to a set of given
functions. Consider a system of differential equations

Ly(u, v, w) = 0 i =1, 2, 3 ‘ (3.1)
subjected to appropriate boundary conditions. In these equations L; are
nonlinear ( or linear ) differential oper'ators. These eéuations physically
represent the conditions of dynamic ( or static ) equilibrium of a differential
element dQ cut out from a structure under external forces. Let arbitrary
virtual displacements &u, dv and 8w be applied to the structural syétem.
These displacements, however, are continuous function of x(i=1,2,3) ar;d
t and satisfy the geometrical boundary conditions. The virtual work done on
the element by these virtual displacements is

{L, (u, v, w) 4!5'u+L2 (u, v, w)dv+L,(u, v, w) dwldQ (3.2)

By the principle of virtual work the following is obtained

f!,‘f{Li(u,V,w)bu+L2(u,v,w)ﬁv 3.3)

+L, (u, v, w) Sw}dQ =0

in which the integration is carried out over the entire structural volume Q.
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An approximate solution of the problem is sought in the form

u= %iiAkm(t) Qen (X900 X5, X3)
V=%f3f33ka;(t)bkmn(xl,x2,x3) (3.4)
W= %iicm(t) Cnn (X1 Xy X3 )

m n

in which A’s, B’s, C’s are undetermined variable coefficients of time and a’s,
b’s, ¢’s are suitably chosen spatial functions satisfying the prescribed boundary
conditions and capable of representing the mode of deformation. The assumed
solution (3.4) is not reqﬁred to satisfy equations (3.1) but the functions a,b
and c should have at least the same order of derivatives as those in these

differential equations. The virtual displacements are taken to be of the form

o
i~
Il

e (X0 X5, %3 ) 8§ A, (E)

Dyn (Xy4 X540 X3 ) 8 By, () (3.5)

or
S
Il

O

<

I
wMs »[Me =x[s
sMe aMe =[Ms
s™Me sMe 5[

Cran ( X10 X0 X3 ) 8 Cpppy ( £)

and substituted into the variational equation (3.3). Since A’s, B’s and C’s can
be varied independently, the only way that the resulting variational equation
can be zero is that the coefficients of SAkmn’SBkmn’ and 6Cy - must vanish

identically in the domain, namely
ffle(u, Vi W) Quue (Xp0 X5, X,) dQ =0
Q
ffsz(u, v, w) b (X, %, %) dQ =0 (3.6)
0

fffL;;(U,V,W) Conie ( X1/ X5, X3) dQ =10
Q

which provide the same number of equations for the number of A, B, .
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and C, ;. taken. Introducing the approximate solution (3.4) into equations
(3.6) and performing integration will lead either to a system of ordinary
differential equations for A, (t), By (t) and C.u(t) in the dynamic
problems or to a system of algebraic equations for constant coefficients ALk
Bpnk and C ., in the static problems. Unlike the Ritz method the Galerkin
method does not require the formulation of an energy principle. This method
yields good approximation only after taking a few terms for u, v, w in
expressions (3.4). Evidently the accuracy of this procedure is very sensitive

to the choice of the assumed solution.
3.3 FOURIER-BESSEL SERIES SOLUTION

3.3.1 Bessel Function

Bessel functions, like many other branches of mathematics, had their
origin in the solution of physical problems. In 1824, F. W. Bessel studied a
problem associated with elliptic planetary motion and made an attempt to deal
with it in a systematic way. Thus, the terminology "Bessel Functions" were
proposed.

Consider a differential equation

dz2 z dz

2
%)y=0 (3.7)

which is known as Bessel’s equation for functions of order n. It is a linear
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differential equation of the second order having variable coefficients, namely
1/z and (1-n%/z2). By tHe theory hof linear differential equations, it has two
distinct or linearly independent solutions, i.e., one is not a constant multiple
of the other. If we take J (z) as the first solution to equation (3.7), we obtain
Bessel's definition of the function which bears his name. J,(2) is sometimes
called a Bessel coefficient, but it is regarded more generally as a Bessel
function of the first kind of order n. It can be shown that dJ,(z) is expressed

in the form (Mclachlom, 1955)

_ o 1oal1 _ (z2/2)° (2/2)¢  _ (2/2)8
Ia (2) (-?:Z) {n! 1! (n+1)1! +2!(n+2)! 3!(n+3)!+"'}
N (_qyz lz/2)mer
1;0( 1) r! (n+r)!
(3.8)
or
27 )
T, (z) = ifcos (nf - zsin®) dO , (3.9)
27

[o]

Series (3.8) and its derivatives are absolutely convergent for all finite values
of z real or complex, and uniformly convergent in any boundéry region of the
z-plane, namely term by term differentiation and integration is permissible. -
In virtue of uniform convergence, J,(z), J’°,(2) ..., the functions represented by
the series and its derivatives, are continuous functions of z in the finite part
of the z-plane. The function ’represented by the integrated éeries are
continuous also. o |

Furthermore, we define the first solution to the differential equation
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d2y+ 1 dy—(1+£_2_

St o Z)y=20 (3.10)

as a modified Bessel function of the first kind of order n, denoted I,(2).

Similarly, it can be show that I (2) is of the form

_ 2 72 z4 .
L2 = D) {1+2(2n+2) " 24 (2n+2) (2a+4) +}

2“’: (z/2)n*r
riT(n+r+1) : (3.11)

=0

or

2n

f e%°°%8 cosnd do (3.12)
0

I,(z)= 2—17;
The properties on convergence and continuity of J (z) apply to I,(z), namely
the series (8.11) is absolutely and uniformly bonvergent in the finite pari; of
the z-plane.

Some features of the Bessel function and modified Bessel function of the

first kind used in this work are presented in Appendix A.
3.3.2 Solution
An approximate multi-mode solution to the system of equations (2.63)

with the corresponding boundary conditions is assumed in the form of Fourier-

Bessel series.
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W(p,t) =§ W, (v) X, (p)
llr(p,r)=m2::lRm('c)Ym(p) (3.13)
F(p,t) =r§1 S, (t) Z. (p)

To simplify the theoretical analysis, the geometric imperfection is also
expanded into a Fourier-Bessel series as the transverse displacement although

the shape of the geometric imperfection is random in practical structures.

W(p) =Y W,X,(p) (3.14)

=1 :
In the above expressions, Wy, are the constant coefficients, W (), R_,(1) and
- 5,(1) are time dependent coefficients to bé determined and functions X, Y,
and Z, are the combination of Bessel functions and modified Bessel functions

given by

X,(p) = Jy(@up) - I, (@,p)T, (@) / I, (@)
Y,(p) = Jy(a,p)+ I, (a,p)dy (ay,) /I, () (3.15)
Z,(p) = pJy(B.p)

where dJ, J;, I, and I; are the Bessel functions and modified Bessel functions
of the first kind of order zero and order one. The condition W=0 at the edge,
i.e., the first of eqns.(2.55b), and the finite conditions at the apex, i.e.,
eqns.(2.55a), are automatically satisfied by the assumed solution (3.13). The
constants o, and B, in expressions (3.15) are determined by the last two of
boundary conditions (2.55b) respectively. |

(1) For a symmetrically laminated shallow spherical shell
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In this case, Bﬁ =0, the last two of edge boundary conditions (2.55b) are

of the form:
%= (3.16)
N,=-K; U

Using eqns. (2.66), the conditions (3.16) are fewritten as
DiyWip+ D/ p + Ky =0 (3.17)

F/p + Ky [p (A, F+2ypF,,) +2h,pw] =0

Substituting eqns. (3.13) into eqns. (8.17) and considering the values of W and

p at the edge, the above equations become

@, Dy [ T3 () + I (@) T, (ag) / I, (a,) ]
* (D +Kp) [0, (@) + I, () Ty () / Io (@) 1 =0 (3.18)

(1+KA,) Ty (B,) +KyAy, [0, (B,) +B,J3 (B,) 1 =0
These equations are used for determining the coefficients o, and B,. Typical
sets of values of these coefficients are given in Tables 3.1 and 3.2, respectively.
The elastic constants of glass-epoxy (GL), boron-epoxy (BO), graphite-
epoxy(GR) composite materials and isotropic material (ISO) used in this work
are presented in Table 3.5.

(2) For an unsymmetrically laminated shallow spherical shell

In this work, the edge movable and rotationally restrained is considered
for an unsymmetrically laminated shallow spherical shell. Thus, the last two
of the edge boundary conditions (2.55b) are

N,=0

© (3.19)
MP= "'Kblp .

Similarly, introducing (3.13) into (3.19), we obtain
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B.C. | Material* | N k=1 - k=2 k=3
: ISO 2.22151952 5.45160570 8.61139102
GL 2.19856358 5.44445294 8.60711666
BO 3 | 2.17409864 5.43713453 8.60277098
K, =0 GR 12.18432727 5.44015689 8.60456229
GL 2.17837067 5.43839035 8.60351473
BO 5 | 2.13993080 5.42741614 8.59704288
GR 2.13840552 5.42699551 8.59679605
180 2.97361324 5.95335276 9.00131998
GL 2.97287258 5.95242671 9.00038768
BO 3 | 2.98546877 5.90741875 8.95624565
K,=1 GR 2.90560325 5.87383069 8.92474292
GL '2.92092025 5.89080663 8.94051571
BO 5 | 2.76153701 5.78674906 8.80767932
GR 2.66983863 5.66712084 8.75449430
ISO 3.06978351 6.08634237 9.14610654
GL 3.06964366 6.08612912 9.14585622
BO 3 | 8.04557810 6.05035368 9.10470121
K, =2 GR 3.02506134 6.02122532 9.07242994
GL 3.08570310 6.03618011 9.08886227
BO 5 | 2.91896188 5.88860712 8.93845508
GR 2.84083561 5.80745772 8.86586736
ISO 3.14114791 6.20354820 9.29345134
GL 3.14117734 6.20360018 9.29352111
BO 3 | 8.12974933 6.18365227 9.26704000
=5 GR 3.11954481 6.16623134 9.24439299
GL 3.12488270 6.17529845 9.25612465
BO 5 | 38.06307852 6.07619251 9.13425386
GR - 3.01557386 6.00816570 9.05831094
K=o - 3.19622061 6.30643704 | 9.43949914

“The elastic constants of ISO, GL, BO and GR are given in Table 3.5.
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B.C Material N k=1 k=2 k=3
K;=0 2.40482555 5.52007809 8.65372792
ISO 1.51935696 4.23172426 7.24963172
GL 1.81599472 4.49277964 7.43261039
BO - 3 2.12760621 4.93652344 7.84428444
=1 GR 2.21464220 5.10259619 8.04352475
GL 1.79910946 4.47446504 7.41863895
BO 5 2.10770703 4.90129631 7.80554831
GR 2.19857760 5.07050009 8.00283299
ISO 1.34557615 4.12495713 . 7.18305239
GL 1.60486281 4,29522576 7.29123675
BO 3 1.94887462 4.65556975 7.56606677
K;=2 GR 2.07165337 4.84007249 7.74100662
GL 1.59127027 4.28457734 7.28414480
BO 5 1.92339347 4.62160123 7.63674775
GR 2.04793590 4.80159750 7.70218397
ISO 1.20484047 4.05616663 7.14205397
GL 1.39265282 4.15126138 7.19909927
BO .3 1.67685843 4.35545595 7.33229144
K=5 GR 1.81121728 4.48754777 7.42859936
GL 1.38673080 4.14785295 7.19700760
BO 5 1.65340037 4.33509753 7.31823044
GR 1 1.78361415 4.45808475 7.40630557
ISO 1.08725429 4.00845193 7.11434701
GL 1.17757340 4.04437232 7.13515350
BO 3 1.22832799 4.06670280 7.14824868
=00 GR 1.23087936 4.06786886 7.14893604 -
GL 1.18374410 4.04700118 7.13668850
BO 5 1.23198514 4.06837554 7.14923482 R
GR .1.23450466 4.06953302 7.14991765
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F/p=0

—_ - — = - - (3.20)
—BnF/P‘BuF'p +'D11il;'p +D,F/p +Kf = 0

The constants f, is determined by the first of (3.20) and as being the coupling
boundary conditions, o, is approximately taken to be the eigenvalue of the
formula given by

«, D, [ J(a,) +r{(am)Jo(a,,,)/Io(am)_J (3.21)
+ (D, +Ky) [0 (@) +T, (&) I (&,) /Ty (e,) ] =0
Some values of these coefficients o, B, are listed in Tables 8.3 and 3.4,
respectively. | |
To fulfil the rotational edge constraint, the following procedure is
adopted (Chia, 1985). The moment at the edge of the shell is replaced by an
eguivalent lateral pressure near the edge (Fig. 3.1) denoted by Q,, and this

pressure is represented by a sine series. If the value of d shown in the figure

approaches to zero, the Q, may be expressed as

Qe=2n; -(-1)M, |,y sin (imp) . (3.22)
=1
The edge moment in this equation which can be evaluated by substituting

eqns. (3.13) and (3.19) into (3.22) is written as

Mp|p=1= _Kb"l"lp=1= -szl Rm (1") Ym (amp) |p=1
RF

(3.23)
=-K,Y R,(7) ¥,(a,)
=l :
Thus eqn. (3.22) is rewritten as
Qe=2nf‘: Y (-1)!K R, (%) Y, (a,) sin (inp) (3.24)
=1 m=1 .

The total lateral load now is
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B.C. | Material | N k=1 k=2 k=3
ISO 2.22151952 5.45160570 8.61139102
GL 2.15897136 5.43276118 8.60018731
BO 2 | 2.12495757 5.42333452 8.59465148
K, =0 GR 2.12299479 5.42280729 8.59434317
GL 2.15897136 5.43276118 8.60018731
BO 4 | 2.12495757 5.42333452 8.59465148
GR 2.12299479 5.42280729 8.59434317
IS0 2.97361324 5.95335276 9.00131998
GL _ 2.89227033 5.85946759 8.91163127
BO 2 | 2.77160734 5.74514781 8.81436164
K,=1 GR 2.70634982 5.69343508 8.77414226
GL 2.85705660 5.82329914 8.87952868
BO 4 | 2.62730495 5.63860119 8.73378856
GR 2.52338163 5.57744269 8.69132877
IS0 3.06978351 6.08634237 9.14610654
GL 3.01644477 6.00935395 9.05958676
BO 2 | 2.92787862 5.89869168 8.94794515
Ky= GR 2.87423252 5.84062857 8.89474919
GL 1 2.99135032 5.97595122 9.02438106
BO 4 | 2.80312694 5.77249614 8.83654145
GR | 2.69928748 5.68820617 8.77019540
IS0 3.14114791 6.20354820 9.29345134
GL 3.11540490 6.15926748 9.23546396
BO 2 | 3.06845927 6.08432661 9.14374152
=5 GR 3.03699459 6.03801743 9.09090083
GL 3.10250906 6.13795211 9.20856869
BO 4 | 2.99128296 5.97586385 9.02429075
GR - 291562746 5.88488186 8.93497666
Ky =co 3.19622061 6.30643704 9.43949914
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Table 3.4. Values of B, in Eqns. (3.20 )

B.C. Material N k=1 k=2 - k=3
K= . 2.40482555 5.52007809 8.65372792

Table 3.5. Numerical values of elastic constants

Material E/E; - Vpp G /Er Gp/Ep
Isotropic (ISO) 1 0.30 0.385 0.385
Glass-epoxy (GL) 3 0.25 05 0.333
Boron-epoxy (BO) ‘ 10 - 0.22 0.333 0.2
Graphite-epoxy (GR) 16 0.30 0.22 0.15

Qr=0+ 0, | “ (3.25)

The load in governing equations is to be replaced by Q.
With the equivalent lateral pressure and the values of oy, and B, given
by eqgns. (3.17) and (3.18) or (3.20) and (38.21), all boundary conditions are

satisfied by the assumed solution (3.13).
3.4 EQUATIONS FOR TIME-DEPENDENT COEFFICIENTS

3.4.1 Nonlinear Ordinary Differential Equations

Introducing the solution (3.}3) in governing eqn. (2.63) and making use
of the Galerkin method by multiplying the first by Z(p), the second by Y, (p)

and the third by X (p), then integrating with respect to p from 0 to 1 and 6



\ A=

Figure 3.1: Equivalent pressure distribution ( d—0 ) for edge moment

——
// +Mp|p=1

GL
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from 0 to 2m, the following three sets of nonlinear ordinary differential

equations for W, (1), R,(t) and S.(7) are obtained:

ajy S; + ajs Ry + (@i + afy) W,+ afs WuW, = 0

86n Sy + @p Ry *+ Qon Wy + @p Ry oo = 0 (3.26)

m, TT
r r r m m mr m mkj
(@ion*@i1n*@i2n) S;+ (@u3n+@ran) Ry+asnWyS, + 16n Wy + @175 Wiy Wi W,

*+Qp* @18nRy, 1o * @190 Wy, 1o = O
. where a, to 2,4 and Q, are constant coefficients presented in Appendix B. In
special cases, some coefficients disappear:

(1) For symmetrically laminatea shells, a,y=a,4=0; .

(2) For neglecting the geometric imperfection, a,=a;5=0;

(3) For excluding the elastic foundations, a16=817=0;

(4) For circular plates, ag=a,;=0.

To simplify calculations, functions S (t) can be expressed in terms of
linear combinations of R(1), Wp,(7) and W ,(t)W}(7) from the first of eqns.
(3.26)

- - - (3.27)
Sz = - [aZ!.z;B] 1a2n;Rm- [all.:?] t (a3n;+a4n.;) Wm_ [a:!fs] lagslkwmwk

Substituting (3.27) into the last two of (3.26), the resulting equations for W_(t)
and R, (1) are

m m mk m _
@zon Ry + @210 Wy + @aan Wy Wi * @p Ry 1n = 0

mk mk mk; 3.28
853 n Ry + 85aa WyRic+ At n Wiy + 83t Wy Wy + A573 W, W W £ ( )

m m —_—
+Qn + alean, T +aion Wm, L2 0

in which a,, to as; are given in the Appendix B.
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Making use of the properties of the Bessel-function and the Simpson

integration method, all the coefficients a, to agy can be calculated for a given

set of shell parameters.
3.4.2 Resulting Equations for Nonlinear Free Vibration

In the case of thé undamped nonlinear free vibratidn (Q,=0), the method
of harmonic balance is. used to r;aduce eqns. (3.28) to a set of algebraic
equations. This is a common metﬂod for obtaining a periodic solution of a
nonlinear differential equations for time functions. The procedure has been
fully explained by Hayashi (1964) or elsewhere. The idea is that the periodic
soiution is first expanded into M terms of a Fourier series with unknown
coefficients., The assumed periodic solution is then inserted into the time
equations. Equating the coefficient of each of harmonics to zero, a system of
algebraic equations is obtained. In assuming the harmonic expansion, only
- terms of the harmonic frequency and a few additional terms of different
frequencies (usually subharmonic or higher-harmonic frequencies) are
considered becausg of their prime importance. Terms of frequency other than
those are certain to be present also, but they may tolerably be omitted in most
cases. |

In this work, the unknowns W;n('t) and R, (1) are expanded as Fourier

cosine series in 7, .
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Wy (1) =Y Wi¥ coskwt
k=0 (3.29)

R, () =Y R coskar
k=0
where Wm(k) and Rm(k) are constant Fourier coefficients for the £th harmonic
amplitude of W (1) and R, (%) respectively, and in which o is the dimensionless

vibrating frequency related to the circular frequency @ by

(0, 0,) =a?/y/ (E;h?) (e*, o) ' (3.30)

in which the dimensional and dimensionless fundamental linear frequencies
(oo* and @, both neglecting the effects of transverse shear and rotatory inertia
will be used for the presentation of numerical results.

The expressions (3.29) are inserted into equations (8.28) and each term
is converted into the first power of cosine functions, a éystem of simultaneous

nonlinear algebraic equations is obtained.
3.4.3 Resulting Equations for Static Response

In the case of buckling and postbuckling of léminated shallow spherical
shells or static large deflections of laminated circular plates, the time
parameter 7 is treated as a constant. Deleting all inertia terms in (3.26), the
unknowns S, and R, are expressed in terms of W, and W W, from the first
two of (3.26) as
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— mk
Sr—bﬂ.Wm+b21. Wka (3.31)
Ry=D35 W, + b Wy,

where b’s are constant coefficients presented in Appendix B. Substituting
eqns. (3.31) into the last of eqns. (3.26), the relation between the load and the
maximum transverse displacement is

Ol Wy + R Wiy Wy + O W Wi Wy + 0y = 0 ‘ (3.32)

with the constants ¢’s given in Appendix B.
3.5 NUMERICAL PROCEDURE
3.5.1 Newton-Raphson Method

Simultaneous nonlinear equations are in general much more difficult to
be solved than a single equation. The iterations are involved and convergence
is frequently very slow. Many really clever methods have been devised for
speeding up a solution of these equations. The Newton-raphson method is
widely accepted as one of the best methods for solving nonlinear algebraic
equétions. The excellent résults that are generally obtained W’iffh the method
and the simple computational routine justify its popularify. The method
applies as well for complex roots as for real roots, and the iterations converge
_rapidly provided the initial estimate for roots is close -enough. To briefly
introduce this method (Hartee, 1958), consider a single nonlinear equation

The algorithm for the Newton-raphson method is obtained from a Taylor-series
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f(x) =0 ) ‘ (3.33)
expansion of f(x) about an approximation to a root. Let x=x, be an estimate

to a root o. Then

F(x) = £(x,+h) = £ (x,) +hE!(x,) + 2 £/ (E) (3.34)

where & is on the range x, to x,+h. If x+h is set equal to o then

L Ela) =0 = £(x,) +hf! (x,) + 2 £1(E) (3.35)
An estlmate to the value of h can be made by using only the first two terms
in eqn. (3.35). Let this estlmate be designated by h;

_ £(x,)
t fl(x,)

(3.36)

The basic formula for the 1terat10ns in the Newton-Raphson method is
obtained by adding h; to the estimate x,. This new approximation is
designated by x;

f(x,)

X, = Xo+h1 = Xo'-'-f—/m
[+}

(3.37)
The (k+1)th approximation to the root is obtained by using the kth

approximation in the right-hand side of the following

£{x;)
£ (%)

Koy = Xp - (3.38)
The iteration defined by equation (8.38) usually gives fast convergence to a
root of f{x)=0 provided the error in the initial approximation x, is small.

Good results can even be obtained When the initial approximation is not close

to a root, provided the slope on the interval between x=x, and x=o is not



78

small. These statements are verified by the expression for the error in the

first iterate

£7(8)

Elr) =a-x = 2 f (x,)

(e-x,)2+0(@-x,)3 (3.39)

Equation (3.39) says the error in the first approximation from eqn. (3.38)
(k=0) is o(hz), where h=0-x,. For this reason the method is said to be
quadratically convergent and is a second-order method.

Figure 3.2 shows the geometrié interpretation for the Newton-Raphson
method when the root at o is real.

The Newton-Raphson method can obviously be applied to a system of
n simultaneous nonlinear equations in n unknowns. At each step of the
iterati(_)n, n? partial derivative functions and n functions should be evaluat;ed.
This represents a considerable amount of computational effort. However, the .
Newton-Raphson method is very fast and quite convenient for polynomials.
In this work all simultaneous nonlinear equaﬁoﬁs are composed of
polynomials of the third degree and this method used for solving these

equations is suitable.

3.5.2 Numerical Procedure for Solving Simultaneous Nonlinear

Equations

The numerical procedure for obtaining by solving the set of nonlinear

algebraic equations (3.28) or (8.32) is briefly described. For nonlinear free



(%)

Figure 3.2: Newton—Raphson method

6L
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vibration, the number of nonlinear algebraic equations is equal to the product
of the number of equations in eqns. (8.28) and the number of terms in the
Fourier cosine expansion for each W, (1) and R (7). By prescribing one of the
unknowns among Wm(k), Rm(k) and ®, the resulting nonlinear algebraic
equations can be solved by the Newton-Raphson method provided that a good
initial estimate is given. By successively solving these nonlinear equations
with a prescribed unknown and an initial approximation, the amplitude-
frequency response curve can be traced. The prescribed unknown is éhosen
as one of the harmonic amplitudes and ® which has shown the greatest
change in the last step of a solution while the initial estimate is
approximated by the previous solution or an extrapolation from several of
previous successive results. Usually, the prescribed value is one of the
harmonic amplitudes as they change faster than ®, especially when the
amplitude of vibration is small. However, the difference of the prescribed
unknown and the corresponding unknown in the p‘revious solution should be
kept small to ensure proper convergence. Once a solution in terms of
harmonic amplitudes and frequency o is computed, the maximum amplitude
Whax @t the apex can then be determined from a plot of the dimensiorﬂess
transverse displacement W at p=0 vs the dimensionless time 7 over a period
of 2r. Actually, the location of the maximum amplitude on the t-axis can be
easily pinpointed by inspection because the first few harmonic terms usually
bear the greater contributions than higher ones.

For the static case, a similar procedure is implemented. The number
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of nonlinear algebraic equations is equal to the number of eqns. (3.32). The
prescribed unknown is taken one of the unknowns W,and Q. In general,

the prescribed value is one of W,
3.5.8 Program NALSSS

The computer program NALSSS (Nonlinear Analysis of Laminated
Shallow Spherical Shells) is designed to obtain the numerical results for a set
of given shell barameters. This program is easily implement);ed only by
inputting basic simple information. The program NALSSS is composed of the
following: |

. (1) Processing the essential input data;

(2) Calculating the elastic coefficients of coﬁaposite materials;

(3) Determining the eigenvalues of ]éessel functions by boundary
cohditibns;

(4) Forming the matrix for a set of nonlinear algebraic equations;

(6) Solving the nonlinear equations by the Newton-Raphson method;

(6) Giving the results of buckling load, postbuckling, static largé
deflection or amplitude-frequency response.

The flow chart of this program is .listed in Fig. 3.3 rand the copy of the

program is given in Appendix C for reference.
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Read input daeta end !

various control parameters

( bo loop over groups of B.C., 1...1LZKBI )

( Do loop over groups of layers, 1..ILN )

@o loop over groups of materials, III.MAb

( Do loop over groups of H, 1..JLRM12 )

i-<Is the number of layers MD—@—

Calculate elastic constants
Calculate elastic constants Kij' Elj , Bij , G
Alj . Du , G &

Calculate equivalent pressure Qe

Find the eigenvalues of

Bessel function ay,

]

Calculate integration constants : a;,a5,84,
“ 84858 489,89.810 811 /813,814 815818 4819 Qn

1

Qhe initaial deflection W incluM

‘Yes

Calculate integration constants: a,.a,,

A

Figure 3.3: Flow chart for pfogram NALSSS
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4 the elastic foundations includ@o—

l Yes

Calculate integration constants: aj .84

Y
%nonlinear free vibration enalysed? i

Calculate constants g i=1,23

Do loop over points of
response curve, 1..IPOINT

1

Calculate constants b, i=1,..4

f

Solve simultaneous eigenvalue

equations for linear frequency @,

!

Expend ¥y, and Ry, by hamonic balance

Do loop over points of
response curve, 1..IPOINT

Solve nonlinear simultaneous algebraic
equations for W, m=1,23

Solve nonlinear simultaneous algebraic
equations for Wg‘), Rg). k.m=1,2,3

i

!

Find the relation between the maximum
displacement and the uniform load Q

Find the relation between the maximum
amplitude and the frequency ratio @/w,

————(Print numerical resuits

Figure 3.3: (Continued)
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3.6 SUMMARY

In. this _chapter, a Fourier-Bessel series solution satisfying the
prescribed Boundary conditions is formulated for the governing equations of
laminated shallow spherical shells. The eigenvalues of Bessel functions are
iisted in Tables for some typical cases. The Galerkin procedure furnishes
three sets of nonlinear ordinary differential equations for time functions. For
nonlinear free vibration, the time dependent coefficients of Fourier-Bessel
series are expanded as Fourier cosine series and a system of simultaneous
nonlinear algebraic equations is obtainéd and then solved by the method of
harmonicbalance. For the static responée, the nonlinear ordinary differential'
equations become the nonlinear algebraic equations by treating the time as
a constant and deleting the inertia terms. In s:ome special cases, the
simplified equations are presented. The Newton-Raphson method is used for
solving the system of simultaneous nonlinear equations. Some features of
computer programme NALSSS are briefly described. The numerical results
can be obtained by implementing the programme NALSSS for a given set of

shell parameters.
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CHAPTER 4
NUMERICAL RESULTS AND DISCUSSIONS

4.1 INTRODUCTION

In Chapter 3, the solutions for nonlinear analysis of laminated shallow
spherical shells satisfying the required boundary conditions have been
obtained. The laminated circular plates are treated as a special'case of the
shell. In this chapter, numerical results for nonlinear free vibration,
buckling, postbuckling and static large deflection responses of laminated
shalldw spherical shells and circular plates are presented. The effects of
transverse shear, rotatory inertia, geometric imperfection and elastic
fou.n&ai;ion are investigated in detail.

Computations were performed for a laminated cross-piy moderately
thick shallow spherical shell or circular plate which consists qf a number 6f
cylindrically ( or polar ) orthotropic layers. All of the laminae are of same
~ thickness and material properties. Elastic constants used in calculafion are
listed in Table 3.5 for glass-epoxy (GLj, boron-epoxy (BO) and graphite-epoxy
(GR) composite materials and for an isotropic material (ISO). A uniformly
distributed static loading normal to the undeformed middle surface in static
problems is considered. In calculation, only the first three terms in each

truncated series for W, v, F in solution (3.13) and the first three terms in’
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cosine series (3.29) for the nonlinear free vibration are taken into account as
the influence of the other terms have numerically demonstrated to be
negligibly small. With geometric imperfection included, only the first term
for W in eqn. (3.14) is considered in order to simplify the calculation. The
results are presented in graphs and tables for dimensionless load, Q / ( H%/h?2
) ( Q for circﬁlar plates ), for buckling and postbuckling, and the frequency
ratio, wa,, for nonlinear free vibration against the dimensionless maximum
transverse displacement, w,,./h. In addition, the average dimensionless
. deflection, W, is introduced in Figs. 4.7 and 4.8 in order to be compared with

- the previoué results obtained by Dumir et al(1984b) and Nath et al (1987):

. | .
Wa=14 [pwdp (4.1)
0 .

Unless otherwise stated, the present results obtained by neglecting effects of
transverse éhear and rotatory inertia are represented by solid curves ( Tg =
R; = 0 ) and those taking these effects into account by dashed curves for
nonlinear free vibration ( Tg = 1, R; = 1), or for buckling, postbuck]ing and
large deflection response ( Tg = 1, R; = 0 ) in all figures. In this study, the
least value of the geometric parameter, H/a, for which buckling occurs, is
denoted by (H/a)cr,i and the corresponding buckling load denoted by Q-

" The convergence study of the solution is discussed in section 4.2 while
a comparison with availably previous results is presented in section 4.3. The
results are presented for nonlinear free vibrations of symmetrically and

unsymmetrically laminated -i.ullow spherical shells and circular plates with
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different paramei:ers in section 4.4 and for buckling, postbuckling or static
large-deflection response of these shells and plates with different parameters

in section 4.5.
4.2 CONVERGENCE STUDY

To assess the reliability of the present multi-mode solution, a
convergence study was made with different numbers of terﬁas taken in each
~ truncated series for W, y and F in the solution (3.13). The linear frequency
_parameter, o, and tﬁe ratio, w/w, for the fundamental mode of an
immovable clamped isotropic shallow spherical shell are presented in Table
4.1, while the static load parameter, Q, is given in Tables 4.2 and 4.3 for
nonlinear bending of an elastically supported isotré)pic shallow spherical shell.
The figures shown in Tables 4.1 and 4.2 are obtained by neglecting the effects
of transverse shear and/or rotatory inertié and those“in Table 4.3 are obtained
by considering the effect of transversé shear. It can be seen from these tables
that the difference between the results obtained byr three terms and thosé
obtained by four terms is very small. With an increase in the number of

terms taken, this difference tends to decrease. Therefore the convergence is

very good and a three term solution gives considerably accurate 'results.

4.3 COMPARISON WITH PREVIOUS RESULTS

As a partial check on the accuracy of the present solution for the
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Table 4.1 Convergence study for an immovable clamped isotropic shallow

spherical shell (H/h=1)

o/ o,
Numbers of terms taken for W, v and F
2x2x2 | 3x3x8 | 4x4x4 | 5x5x5 | 6x6x6
Winax/R [0,=4.167581) 0,=4.169225 | 00,=4.175766 | =4.176349|0,=4.177559
0.00 1.000000 1.000000 1.000000 1.000000 1.000000
0.25 0.992432 0.992584 0.992587 0.992610 0.992612
0.50 0.974748 0.975464 0.975483 0.975571 0.975578
0.75 0.953430 0.955310 0.955338 0.955525 0.955539
1.00 0.934167 0.937871 0.937831 0.938140 0.938150
1.25 0.922486 0.928298 0.928020 0.928452 0.928428
1.50 0.923136 0.930840 0.930044 0.930575 0.930463
1.75 0.939642 0.948160 0.946489 0.946345 0.946797
2.00 0.973496 0.981056 0.977376 0.978699 0.978187
Table 4.2 Convergence study for an elastically supported isotropic shallow
spherical shell ( K;=5, K;=5, H/h=1.5, Tg=0 )
Q
Numbers of terms taken for W, v and F

Whna/B| 2x2x2 3x3x3 4x4x4 5x5x5 | 6x6x6
0.00 0.000000 0.000000 0.000000 0.000000 0.000000
0.25 3.200569 3.157779 3.162981 |. 3.157947 3.158763
0.50 5.180716 5.135711 5.140530 5.134824 | 5.135596
0.75 6.303466 6.276269 6.278049 6.274036 6.274316
1.00 6.884068 6.892340 6.890041 6.889167 6.888836
1.25 7.186695 7.252818 7.245803 . | 7.249153 7.246719
1.50 7.430431 7.579849 7.566285 7.574929 7.573108
1.75 7.808203 8.069343 8.035509 8.050540 8.047001
2.00 8.515846 8.859200 8.823400 8.845903 8.838593
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Table 4.3 Convergence study for an elastically supported isotropic shallow

spherical shell ( K=5, K;=5, H/h=1.5, Tg=1)

Q
Numbers of terms taken for W, v and F
Wpa'h| 2%2x2 | 3x3x3 | 4x4x4 | 5x5%x5 | 6x6x6
0.00 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000
0.25 | 3.189794 | 38.141400 | 3.152146 | 3.144479 | 3.148010
0.50 | 5.145913 | 5.096684 | 5.107294 | 5.099440 | 5.102940
0.75 | 6.239011 | 6.210338 | 6.216261 | 6.211214 | 6.213383
1.00 | 6.790282 | 6.798819 | 6.799172 | 6.797930 | 6.798759
1.25 | 7.066387 | 7.133220 | 7.128247 | 7.131274 | 7.131138
150 | 7.285434 | 7.434643 | 7.423661 | 7.431370 | 7.430500
1.75 | 7.637199 | 7.886080 | 7.865704 | 7.878329 | 7.876402
2.00 | 8315154 | 8.657382 | 8.619799 | 8.636754 | 8.632536

nonlinear free vibration, buckling, postbuckling or large deflection respoﬁse

of shallow spherical shells and circular plates, some previous numerical

results are presented for comparison with the corresponding present results.

As indicated in Chapter 1, very few results exist on the nonlinear elastic

behaviour of shallow spherical shells including effects of transverse shear and

rotatory inertia.

In this comparison, the effects of transverse shear and

rotatory inertia for nonlinear free vibration and that of transverse shear for

static response are not taken into account. Usually, in this section, thin

shells or plates is considered.
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4.3.1 Comparison of Fundamental Linear Frequency

The comparison of fundamental linear frequencies of an immovable
clamped isotropic shallow spherical shell with those obtained by

Reissner(1955) using an exact solution for different initial rises of the shell

and Poisson’s ratios is listed Table 4.4.

Table 4.4 Comparison of fundamental linear frequency of an isotropic

shallow spherical shell

mO
v=20 v=0.3 v=0.5

H/h

Present | Reissner | Present | Reissner | Present | Reissner

' (1955) (1955) (1955)

0.0 2.9490 2.9480 3.0914 3.0904 | 3.4053 3.4041
0.5 3.1958 | 3.1838 3.3940 3.3872 | 3.7619 3.7734
1.0 3.8413 3.8619 4.1692 4.1272 | 4.6656 4.6873
1.5 4.7226 4.7462 5.2031 5.1590 | 5.8547 5.8960
2.0 5.7285 5.7191 6.3606 6.3676 | 7.1672 7.1342
2.5 6.7999 6.8098 7.5711 7.5763 | 8.5168 8.4608
3.0 7.9051 7.8711 8.7950 8.8145 | 9.8499 9.7874
3.5 9.0255 9.0208 | 10.0058 | 10.0232 | 11.1269| 10.9960
4.0 10.1490 | 10.1116 | 11.1831 | 11.1434 | 12.3194 | 12.1458
4.5 11.2666 | 11.2319 | 12.3121 | 12.2637 | 13.4166 | 13.2365
5.0 12,3711 | 12.3226 | 13.3859 | 13.2955 | 14.4272| 14.4157
6.0 14.5203 | 14.4452 | 15.3846 | 15.2411 | 16.2767 | 16.0666
7.0 16.5772 | 16.4793 | 17.2597 | 17.0984 | 18.0280 | 17.7175
8.0 18.5584 | 18.3365 | 19.0921 | 18.8967 | 19.7674| 19.4568
9.0 20.4981 | 20.2232 | 20.9256 | 20.6654 |21.5281| 21.2256
10. 22.4268 | 22.1100 | 22.7793 | 22.4638 | 23.3208 | 23.0534
11. 24.3654 | 23.9672 | 24.6622 | 24.3210 | 25.1486| 24.8811
12. 26.3310 | 25.8245 | 26.5816 | 26.1782 | 27.0127 | 26.6794
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It is observed that the two corresponding sets of the fundamental linear

frequenciés are very close and the difference is less than 2%. With elastic
foundations, the fundamental linear frequencies of an orthotropic shallow
spherical shell for four special cases of the elastically restrained edge are
presented in Table 4.5 to compare with those given by Dumir (1985) using a
single mode solution. It is found that these two sets of values are very
consistent. The effect of geometric imperfection on the fundamental linear
frequency of immovable clamped and movable simply supported isotropic
circular plates is presented in Table 4.6 for comparison with those using
Linstedt’s perturbation solution ( Hui, 1983b). A good agreement is observed

between the corresponding two sets of values.
4.3.2 Comparison of the Frequency-Amplitude Response

The frequency ratios of an isotropic immovable clamped shallow
spherical shell for w,,, /h=1 are presented in Table 4.7 for comparison with
those given by Grossman et al(1969) and Varadan and Pandalai(1978). A
good agreement is found between the corresponding sets of values.

Figure 4.1 shows that present results for the movable clamped edge of
a shallow spherical shell are in good agreement with those obtained by use
of series solution (Ramachandran, 1976). The response ‘curves for an
.immovable clamped edge are somewhat . different from those given by

Sinharay and Banerjee (1985) at large values of the amplitude.
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Table 4.5 Comparison of fundamental linear frequency of an orthotropic

shallow spherical shell with elastic foundations (Ki=4, K,=0, H/h=1,04,=0.3)

Ey/E,=1 Ey/E,=3

Kp | Ki | Ge -
o,(Present) | @ (Dumir, | o (Present) o,(Dumir,
1985) 1985)
oo o | 0.0 4.6241 4.6784 5.1932 5.1792
0.5 4.9938 5.0234 5.5518 5.4811
oo 0 00| 3.9294 3.9430 4.6592 4.5754
: 0.5 4.3504 4.3455 5.0143 4.9154
0 o | 0.0 3.9104 3.9461 4.4389 4.4024
0.5 4.2620 4.2971 4,7557 4.7278
0 |0 |00 2.7333 2.7175 3.3890 3.2505
0.5 3.2181 3.2077 3.8055 3.6814

Table 4.6 Comparison of fundamental linear frequency of an isotropic

imperfect circular plate

0“)0
Immovable clamped - Movable simply
supported

W, | Present  Hui(1983) | Present  Hui(1983)
0.0 3.0914 3.107 1.4934 1.498
0.2 3.1605 3.168 . 1.5092 1.513
0.4 3.3577 3.380 1.5555 1.567
0.6 3.6573 3.637 1.6291 1.648
0.8 4.0295 3.995 1.7258 1.740 -
1.0 4.4473 4.387 1.8410 1.858
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Table 4.7 Comparison of the frequency ratio of an immovable clamped

isotropic shallow spherical shell

®/ o, for w,/h=1

Present | Grossman et | Varadan and
H/h al (1969) Pandalai (1978)
0 1.1766 1.166 1.176
2 0.9122 0.898 0.895
5 .0.9236 0.921 0.898

This difference arises from the fact that a single-mode solution is used in
Sinharay and Banerjee(1985) and a multi-mode solution is used in present
‘analysis. It is noted that the previous results in this ﬁgufe are available in
the range of values, w,, . <h. In Fig. 4.2, the present frequency-amplitude
response curves are compared with those given in Varadan and
Pandalai(1978) using a single mode solution. - A slight difference is found
from these four sets of curves for w, <1.3h.

Considering the elastic foundations, the frequency-amplitude response
curves of present results for an immovable clamped orthofropic shallow
spherical shell resting on linear Winkler and Pasternak foundations shown
in Fig. 4.3 are close to those obtained by use of a spatial' mode
solution(Dumir, 1985). In addition, the fundamental linear frequency is also
compared with those (only Ey/E =1,3 available) given by Dumir (1985) in
Table 4.8.
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Table 4.8 Comparison of fundamental linear frequency of an immovable

clamped orthotropic shallow spherical shell in Fig. 4.3

,(1)0

EQ/Er Present Dumir(1985)

1 4.9938 5.0234
3 5.5184 5.4810
10 6.5400 --

The effect of geometrically initial imperfection on the frequency ratio
_of an isotropic circular plate is illustrated in Fig. 4.4 for comparison with that
given by Hui(1983b). The curves of frequency ratio are plotted at the zvalue
of vibration amplitude, w,,, /h=1. A slight difference between these two sets
of curves is observed, which arises from the fact that the assumed mode of
g;;eometric imperfection in Hui(1983b) is different th?.t in this study. However,
Fig_ure 4.4 shows that the general behaviour reflected by these two sets of
curves is similar. |

For a circular plate, the frequeﬁcy-amplitudé response curves of
isotropic immovable and movable clanﬁped edges are depicted in Fig. 4.5.
Previous results obtained by Huang and Sandman(1971) and Nowinski(1963)

are also shown in the figure. A good agreement is observed between the

corresponding sets of curves.
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4.3.3 Comparison of the Buckling, Postbuckling and Load-Deflection

Response

The values of (H/a),, for which the buckling occurs a.an the associated
buckling loads Q,, for isotropic and orthotropic immovable clamped shallow
spherical shells are presented in Table 4.9 for comparison with those given
by Varadan(1978). The maximum difference between two sets of values is

less than 3%.

Table 4.9 Comparison of values of (H/a),, and Q_, of an immovable

clamped orthotropic shallow spherical shell

Present Varadan (1978)
Uer= 1/3 (H/a)cr ch (H/ a)cr ch
EyE =1 0.08305 3.1802 0.08248 3.2152
Ey/E =4 0.09720 4.7172 0.10010 4.8170

A comparison of buckling loads is shown in Fig. 4.6 for an isotropic
shallow spherical shell with immovable clamped and simply-supported edges.
The present results are in good agreement with those given by Varadan(1978)
for a clamped edge and those given by Dumir et al (1984b) for simply-r
supported edge, respéctively. In Fig. 4.7, the present results for post-buckling

behaviour of an immovable clamped orthotropic shallow spherical shell with
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different shell rises agree closely with those given bj Dumir et al(1984b)

| qsing an orthogonal point collocation method.

Figure 4.8 shows the static ‘large deflection of an immovable simply-
supported orthotropic shallow spherical shell on elastic foundations. In this
figure the present reéulté are compared W1th those given by Nath et al (1987)
employing the collocation method of the ChebSrshev series. Good agreement
is observed between the corresponding curves. In addition, the present‘
results also agree very well with those given by Siﬁha(1963), Way(1934) and
Chien and Yeh(1954) for the static large deflection of an isotropic clamped

circular plate shown in Fig. 4.9.
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4.4 NONLINEAR FREE VIBRATION

In this section, the numerical results as presented in the figures show
the relationship between frequency ratio and dimensionless amplitude of
vibration of a laminated cross-ply shallow spherical shell or circular plate
having different edge conditions, shell rises, ratios of the base plane radius-to-
thickness, numbers of layers, elastic properties of materiai, values of initial
imperfection and moduli of linear, nonlinear Winkler and shear Pasternak
 elastic foundations. In the presentation, unless specified, the frequency ratio
(w/w,) is the ratio of ther nonlinear frequency ® of vibration to the
corresponding linear frequency ®,, of a classilcal shallow spherical shell or
circular plate. And the dimensionless amplitude (w,,, /h) is the ratio of the
maximum amplitude of vibration to the shell or plate thickness. The linear
frequencies ®, are obtained by neglecting the nonlinear terms and the effects

of transverse shear and rotatory inertia in eqns. (2.63a) and (2.63c).
4.4.1 Symmetrically Laminated Shallow Spherical Shells

4.4.1.1 The Effects of Transverse Shear and Rotatory Inertia on the

Frequency-Amplitude Response

Figures 4.10 shows the individual effect of transverse shear and
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rotatory inertia on the frequency-amplitude response of a five-layer shallow
spherical shell. And the effect of the ratio of base radius to thickness of the
shell on the response is plotted in Figs. 4.11 and 4.12. The fundamental
linear frequencies for these three figures are listed in Table 4.10. In Fig.
4.10, the effects of transverse shear and rotatory inertia reduce the frequency
at infinitely small amplitude t;y approximately 2.7% and 3.5% for a movable
simply-supported five-layer graphite-epoxy shallow spherical shell with a/h=10 |
and a/h=8, respectively, and these effects increase with decreasing ratio of
base radius to shell thickness for given dimensionlessly initial rise of the
shell, H/h, which, for instance, is equal to 2 in Fig. 4.10. These curveé
exhibit the softening type behaviour, and the frequency ratio, w,, decreases
as the amplitude of vibration increases. The nonlinear freqﬁency is reduced
approximately by 19%, 21%, and 25% at Wmax=2h‘ for the thin shell (i.e.
Tg=R;=0), the shell with a/h=10 and a/h=8, respectively. In these frequency-
amplitude response curves shown in Figs. 4.10, as exp(;,cted, the effect of
transverse shear plays more important role than that of rotatory inertia. The
effect of.' rotatory inertia generally reduces the nonlinear frequency including
the effect of transverse shear (i.e., Tg=1, R;=0) by only about 0.2% to 0.3%,
and is very small compared with the effect of transverse shear. Therefore,
the effect of rotatory inertia can be neglected in an analysis, Unless stated,
for the rest of the study the individual effect of transverse shea;i' and rotatory

inertia is not separately investigated.
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Table 4.10 Values of fundamental linear frequency parameter @,

in Figs. 4.10-4.12

0’)0
Fig. 4.10 Fig. 4.11 Fig. 4.12
7.6407 9.8260 13.5535

The effect of the ratio of base radius to the shell thickness on the
frequency-amp]itu;ie response is presented for a movable clamped three-layer
graphite-epoxy shallow spherical shell in Fig. 4.11 and an immovable clamped
five-layer boron-epoxy imperfect shallow spherical shell resting on elastic
foundations in Fig. 4.12, both with the dimensionlessly initial rise , H/h,
equating to 2. The effects of transverse shear and rotatory inertia reduce the
frequency ratio at infinitely small amplitude of vibration by ‘approximately
0.5%, 1.8%, 2.5%, 5.7% and 8.1% in Fig. 4.11 and 0.2%, 0.5%, 0.8%, 1.8% and
2.7% in Fig. 4.12 for a/h=50, 20, 16, 10 and 8, respectively. It is observed
that f;heses effects increase with decreasing the ratio of base radius to shell
thickness and increasing the ratio of major principal modulus to minor one.
With the ratio of a/h=8, the frequency ratio reaches at 0.73 for a shell of
graphite-epoxy material and 0.91 for one of boron-epoxy material. For the
high ratio of a/h, for instance, which is larger than 50, these effects are very

small and may be neglected in an analysis.
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The curves behave the soften type of nonlinearity in Fig. 4.11, and

initially hardening one, then softening one and finally hardening one in Fig.
4.12. | |

It is shown that the effects of transverse shear and rotatory inertia are
pronounced especially for lower ratio of base radius to shell thickness and
high modulus ratio, but generally do not cha.nge thé behaviour of response.
Also, it is noted that from these figures in this section, the frequency ratio
response neglecting the effects of transverse shear and rotatory inertia only
depends on the dimensionlessly initial rise of the shell, i.e., H/h, whatever the

ratios of Base radius to shell thipkness and rise to the base radius are.

4.4.1.2 The FEffect of the Number of Layers on the Frequency-

Amplitude Response

The effect of number of layers on the frequency-amplitude is depicted

for an elastically supported boron-epoxy shallow spherical shell in Fig. 4.13
and a movable clamped graphite-epoxy shallow sphérical shell in Fig. 4.14.
The fundamental linear frequencies in these two figures are listed in Table

"4.11.

' The frequency ratio in Fig, 4.13 increases with increasing the numberz

of layers for given value of dimensionless maximum amplitude , w Wna/D. The
curves for number of layers larger than 7 (some not shown herein) are quite

close. The effects of transverse shear and rotatory inertia reduce the
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Table 4.11 Values of fundamental linear frequency parameter @,

in Figs. 4.18-4.14

O’)O

N Fig. 4.13 Fig. 4.14
1 - 7.0882
3 7.4191 8.4514
5 7.9062 . 9.6448
7 8.0158 10.0019
9 - 10.1614
15 8.0694 -

21 - 10.3967
oo - 10.4833

frequency ratio by 2.5%, 3.5%, 3.8% and 4.3% at infinitely small amplitude
of vibration for N=3, 5, 7 and 15, respectively. It is shown that these effects
increase slightly as the number of layers increases.

Figure 4.14 shows that the results for the number of layers 9, 21, and
« are close to that given by the one layer (i.e., orthotropic shell). These
curves and Téble 4.11 indicate that the nonlinear frequency increases with '
an increase in the number of layers although the frequency ratio for some
curves decrease with this parameter. The results, including the effects of
transverse shear and rotatory inertia ( not shown herein ), are similar to
those neglecting these effects in Fig. 4.14 except f;)r the frequency ratio being |

reduced. The curves in F1g 4.13 exhibit softening type of nonlinearity while



111
those in Fig. 4.14 exhibit initially softening one then changing to hardening’

one.

It is observed from these two figures that the effect of number of layers
on the ﬁ‘equency-'amplifude response is more significant for three and five
layer shells. Therefore, three and five layer shells are typical for

symmetrically laminated shell and the numerical results in this chapter are

pfesented mainly for these shells.

4.4.1.3 The Effect of Material Properties on the Frequency-Amplitude

Response

The frequency-amplitude response curves with different maferials are
plotted for an elastically supported five-layer shallow spherical shell in Fig.
4.15 and a movable simply-supported three-layer shallow spherical shell in
Fig. 4.16. Table 4.12 lists the fundamental linear frequencies in Figs. 4.15
and 4.16. From these figures and Table 4.12, the nonlinear frequency
neglecting the effects of tx:ansverse shear and rotatory inertia increase with
increasing the ratio of major principal modulus of matérial to minor one,
E;/Eq, although the frequency ratio for some curves decreases with this
parameter. The effects of transverée shear and rotatory inertia for materials
of isotropic and glass-epoxy are small compared with those of boron-epoxy and
graphite-epoxy with high modulus ratios. These effects reduce the frequency

ratio by about 22% and 24.4% for material of BO and GR in Fig. 4.15,



112
respectively. The results in Fig. 4.16 show that the effects of transverse

shear and rotatory inertia reduce the frequency ratio by only 1.5% and 3% for
material of BO and GR, respectively, due to lower edge restrained stiffnesses

K}, and K; ( in this case Ky,=K;=0 ), which will be discussed in the section
4414,

Table 4.12 Values of fundamental linear frequency parameter o,

in Figs. 4.15-4.16

0)0
Material Fig. 4.15 Fig. 4.16
ISO . 5.7248 2.2329
GL 7.1231 3.2006
BO 10.1658 5.0960
GR 11.8628 6.2858

4.4.1.4 The Effect of Boundary Conditions on the Frequency-Amplitude

Response

In this study, the edge boundafy conditions of the shell are
charactérized by the inplane and rotational restrained stiffnesses K, and K;,
and so called elastic supports. Individual effect of inplane and rotational

. stiffness on the frequency-amplitude response is illustrated for an elastically



. 113
supported five-layer graphite-epoxy shell in Fig. 4.17 and three-layer boron-

epoxy shell in Fig. 4.18, respectively. Figure 4.19 shows the results of a five-
layer graphite-epoxy shallow spherical shell for four extreme cases of these
stiffnesses. Table 4.13 lists the fundamental linear frequencies in these

figures.

Table 4.13 Values of fundamental linear frequehcy parameter o,

in Figs. 4.17-4.19

Fig. 4.17 Fig. 4.18 Fig. 4.19
@, Kb @, Kb Kx W,
K;
0 9.6448 0 7.4986 oo ) 9.9726
1 10,0477 | 0.3 7.7809 oo 0 7.5086
5 10.9988 | 0.5 7.8929 0 00 8.2458
o0 12,9526 1 8.0597 0 0 5.8693
5 8.3472
o | 8.4737

In Fig. 4.17, all responge curves for a clamped shell exhibit the
softening type of nonﬁﬁeaﬁty. The values of K;=0 and K;= correspond to
movable and immovable edées, respectively. The frequency ratio neglecting
the eﬁ'ects of transverse shear and rotatory inertia decreases with an increase
of the amplitude of vibration and the inplane stiffness K;. It is seen that the
ratio at wy,,=2h is reduced to 0.88 for K;=5 and 0.77 for K;=ce. The effects

of transverse shear and rotatory inertia decrease with an increase of inplane
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stiffness K, at infinitely small amplitude of vibration. These effects reé.uce
the frequency ratio by approximately 6% for all curves in the figure.

The results for the shell with different sﬁfﬁlessgs of edge rotation show
that the response curves behave the softening type of nonlinearity except for
K, =0, and the frequency ratio neglecting the effect of transverse shear and
rotatory inertia increases with an increase of the rotational stiffness, K;. The
vaiues of K;=0 and K= correspond to simply-supported and clamped edges,
respectively. It is shown in thié figure that the frequency ratio reaches at
Wnax=2h to 0.64 for K,p=0.3 and 0.55 for K;=0, respectively. The curves for
K;, larger than 5 are very close to that given for Ky=eco.

It is observed form F1g 4.19 that the response curves exhibit the
hardening type of nonlinearity for immovable edge shells and initially
softening one and then changing to hardening one for m;)vable edge shells,
. For considering the effects of transverse shear and rotatory inertia, the effect
of rotational edge conditions is m;J.ch noticeable. The effects of transverse
shear and rotatory inertia reduce the frequency ratio by 10% to 13% for

clamped edge shells and 2% to 4% for simply supported edge shells.

4.4.15 The Effect of the Shéll Rise on the Frequency-Amplitude

Response

Figures 4.20 and 4.21 show the effect of dimensionlessly shell rise, H/h,

on the frequency-amplitude response for an elastically supported five-layer
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graphite-epoxy shallow spherical shell and an immovable clamped three-layer
glass-epoxy shallow spherical shell, respectively. The fundamental linear
frequencies are listed in Table 4.14. It is seen that tile response curves in
Fig. 4.20 are the softeping type of nonlinearity for diménsionless shell rise
H/h=0 and 0.5, the hardening one for H/h=1.5 and 2.0, and the curve fof
H/h=1 is initially of the softening one and changes to the hardemng one at
large values of the amplitude. The frequency ratio neglecting the effects of
transverse shear and rotatory inertia increases by 36.5% for the shell with
H/h=0 (circular plate) and reduces by 15.2% for H/h=2. The frequency ratio

including the effects of transverse shear and rotatory inertia is reduced by

about 8-10% for all curves.

Table 4.14 Values of fundamental linear frequency parameter

in Figs. 4.20-4.21

Fig. 4.20 Fig. 4.21

H/h , H/h ®,
0 7.0388 0 3.9995
0.5 |+ 7.4372 1 5.1803
1 8.5200 2 7.9589
1.5 10.0655 4 14.0810
2 11.8905 6 19.8237

It is observed that the response curve is the hardening type of

nonlinearity for the value of H/h=0 (circular plate) and the other curves are
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initially of the softening type behaviour and change to the hardening one at

large values of the amplitude for H/h=2,4,6. At Wmax=2h, the frequency ratio
neglecting the effects of transverse shear and rotatory inertia is increased by
63% for the circular plate but reduced by 38% for the shell ﬁth H/h=4., The
response curves including the effects of transverse shear and rotatory inertia
(not shown herein) are close those excluding these effects due to the glass-

epoxy material with a lower ratio of E;, to Er.

4.4.1.6 The Effect of Geometrically Initial Imperfections on the

Frequency-Amplitude Response

The curves for the effect of the geometrically initial imperfection on the
frequency-amplitude response are drawn for an elastically supported seven-
layer graphite-epoxy shallow spherical shell in Fig. 4.22 and a movable

simply-supported shallow spherical shell in Fig. 4.23. The result for V_V1 =0

corresponds to that for a perfect laminate. The fundamental linear -

frequencies are given in Table 4.15. | The frequency-amplitude response
initially behaves the weak softening tyf)é then changes to the hardeni;1g type
of nonlinearity for the values of W1=0 and 0.3 in Fig. 4.22 and V—Vl 2 0 in Fig.
4.23,. and exhibit the behaviours of the hardening type for those V—V1>O.3 in
Fig. 4.22 and the; softening type for those V_V1 < 0 in Fig. 4.23, respectively.
This may arise from the fact that bent-outwal;d type of imperfection increases

the shell curvature in Fig. 4.23 ‘while bent-ipward type of imperfection
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reduces the shell curvature in Figs. 4.22 and 4.23. In Fig. 4.22 as the value

of imperfection increases, the effects of transverse shear and rotatory inertia
reduce the frequency ratio by approximately 10% to 177 %, and decrease at
infinitely small amplitude of vibration and increase at large amplitude of
vibration. It is observed that these effects are noticeable dpe to the high

ratio of material and the low ratio of base radius to shell thickness.

Table 4.15 Values of fundamental linear frequency parameter o,

in Figs. 4.22-4.23

Fig. 4.22 Fig. 4.23
W, , W, o,

0 10.7118 | -0.6 3.1477
0.3 9.6708 | -0.4 3.0638
0.5 9.0865 | -0.2 2.9768
1.0 8.2125 0 2.8864

| - 0.2 12.7922
0.4 2.6938

0.6 2.5906

0.8 | - 24820

It is seen from Fig. 4.23 that the frequency ratio at w,,, = 2h is 0.82
for V_V1 = -0.6 and incfeases with an increase in the value of V_Vl. The ratio
reaches to 1.13 for W; = 0.8. The results, including the effects of transverse
shear and rotafory inertia ( not shown herein ), are quite close to those

neglecting these effects to the glass-epoxy material with a lower ratio of E;,

to ET
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4.4.1.7 The Effect of Elastic Foundations on the Frequency-Amplitude

Response

The results of frequency-amplitude response for the shell resting on
elastic foundations are plotted in Figs. 4.24 to 4.26, and the fundamental

linear frequencies in these figures are listed in Table 4.16.

Table 4.16 Values of fundamental linear frequency parameter

in Figs. 4.24-4.26

Fig. 4.24 Fig. 4.25 Fig. 4.26

Kf W, Gf 0, @,

0 | 117838 0 8.3418 8.7465
20 | 12,6039 | 5 | 10.1820
40 | 13.3738 | 10 | 11.7295
60 | 14.1017 | 20 | 14.3198

Figure 4.24 shows the effect of linear_ Winkler elastic foundation on
frequenc&-amplitude response of an immovable clamped graphite-epoxy
shallow spherical shell. All response curves in the figure exhibit the
hardening type of nonlinearity, and the nonlinear frequency increases with
the linear Winkler parameter K. The frequency ratio for Tgy=0 and R; =0
is increased approximately by 24%, 21%, 19% and 18% at Wmax = 2h for K,
= 0, 20, 40 and 60 respectively. It is noted that the effects of transverse

shear and rotatory inertia reduce the frequency ratio by approximately 6%
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compared with the corresponding ratio with heglecting these effects. In Fig.
4.25, the frequency ratio for 2 movable clamped shallow spherical shell on an
elastic foundation is plotted against the relative amplitude of vibration for
“different values of Pasternak foundation parameter G;. The ratio in the
figure decreases as the parameter Gg increases when G;> 0. The ratio for G;
= 0 is lower in the range of value of w,. < h, and higher in the range of
value of h < w,,,. < 2h, than that for G; > 0 in the corresponding ranges of
relative amplitude value. Actually, the nonlinear frequency for G > 0 is
larger than those for G¢ = 0 since the corresponding linea¥' freQuencies shown
in Table 4.13 for G; > 0 are much larger than that for G, = 0. In addition, .
the effects of transverse shear and rotatory inertia reduce the frequency ratio
by approximately 2% to 5% for different values of G. Figure 4.26 depicts the
frequency;amplitude responée curves of an elastically supported shallow -
spherical shell with different values of nonlinear Winkler foundation
parameter K . The curves in the figure behave initially the softening type
and then reverts to the hardening type of nonlinearity for K <10 and behave ’
the hardening type of nonlinearity for K, = 20. For K, = 20, the frequency
ratio at wy,, = 2h reaches 1.34 when the effects of transverse shear and
rotatory inertia are not taken into consideration, and 1.22 when these effects
are taken into account. Similarly as mentioned above, the effects of
transverse shear and rotatory inertia reduced the frequency ratio. It is worth
noting from Table 4.13 that the linear frequency parameter, a0y, for different
nonlinear Winkler parameter, K., is the same since the cdo is not aﬁ'ected by

nonlinear terms in the governing equations.
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Figure 4.10: Individual effect of transverse shear and rotatory inertia on the
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Figure 4.11: Effect of the base radius-to-thickness ratio on the frequency-amplitude
response of a movable clamped three-layer graphite-epoxy shallow spherical shell
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Figure 4.12: Effect of the base radius-to-thickness ratio on the frequency-amplitude
response of an immovable clamped five-layer boron-epoxy shallow spherical shell
resting on elastic foundation (V-V1=O.2, Ki=10, K, =10, G=5)
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Figure 4.13: Eﬁ‘éct of the number of layers on the frequency-amplitude response of an
elastically supported boron-epoxy shallow spherical shell Ky,=5, K;=0, a/h=12, H/a=0.15)
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Figure 4. 14: Effect of the number of layers on the ﬁ’equency-amplitqde response of a
. movable clamped graphite-epoxy shallow spherical shell (a/h=15, H/a=0.1)
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Figure 4.15: Effect of material properties on the frequency-amplitude response of an
elastically supported five-layer shallow spherical shell (a/h=10, H/a=0.2)
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Figure 4.16: Effect of material properties on the frequency-amplitude response of a
movable simply-supported three-layer shallow spherical shell (a/h=15, H/a=0.1)
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Figure 4.17: Effect of inplane edge stiffness on the ﬁ'eqﬁency-amplitude response of a
clamped five-layer graphite-epoxy shallow spherical shell (a/h=15, H/a=0.1)
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Figure 4.18: Effect of rotational edge stiffness on the frequency-amplitude response of
an elastically supported three-layer rboron-epox'y shallow spherical shell
(&;=5, a/h=10, H/a=0.15)

831



1.2

w/m

0.8 ' : '

Figure 4.19: Effect of boundary conditions on the frequency-amplitude response of a’
five-layer graphite-epoxy imperfect shallow spherical shell resting on elastic foundations
( W;=0.3, Ke=2, K =2, G=1, a/h=10, H/a=0.1)
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Figure 4.20: Effect of the shell rise on the ﬁ'equency;amplitude response of an
elastically supported five-layer graphite-epoxy shallow spherical shell resting on elastic
foundations ( Ky=2, K;=3, K=2, K =2, G=1.5, a/h=10)

081



W/

1.50

125

1.00

075 |

0.50 ‘ ' ' !

0 ' 1 2

w

max/h

Figure 4.21: Effect of the shell rise on the frequency-amplitude response of an
immovable clamped three-layer glass-epoxy shallow spherical shell ( a/h=25 )
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Figure 4.22: Effect of geometrically initial imperfection on the frequéncy—amplitude
response of an elastically supported seven-layer graphite-epoxy shallow spherical shell
Ky =00, Ki=2, a/h=10, H/a=0.15)
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Figure 4.23: Effect of geometrically initial imperfection on the ﬁ‘équency;amplimde
response of a movable simply-supported three-layer glass-epoxy shallow spherical she]l
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Figure 4.24: Effect of Winkler foundation parameter on the frequency-amplitude
response of an immovable clamped five-layer graphite-epoxy shallow spherical shell
( K,=5, G¢=10, a/h=10, H/a=0.05)
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Figure 4.25: Effect of Pasternak foundation parameter on the frequency-amplitude
response of a movable clamped five-layer boron-epoxy imperfect shallow spherical shell
( W;=0.1, K10, K =10, a/h=10, H/a=0.15)
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Figure 4.26: Effect of nonlinear Winkler foundation parameter on the frequency-
amplitude response of an elastically supported three-layer graphite-epoxy imperfect
shallow spherical shell ( Ky=2, K;=3, W,=0.2, K=5, G=2, a/h=12, H/a=0.1)
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4.4.2 Symmetrically Laminated Circular Plates

In this section, numerical results are presented for the nonlinear
vibration of symmetrically laminated circular plates which are the special
cases of shallow spherical shells with the initial rise of the shell equal to zero.
All curves of frequency-amplitude response, generally, behave the hardening
type of nonlinearity. The fundamental linear frequencies in the figures of

this section are listed in Tables 4.17 and 4.18.

4.4.2.1 The Effect of the Radius-to-Thickness Ratio on the Frequency-

Amplitude Response

Figure 4.27 show.s the effect of the ratio of radius-to-thickness on the
frequency-amplitude response of an immovable clamped five-layer graphite-
epoxy circular plate. It is observed from the figure that the effects of
transverse shear and rotatory inertia are very dominant for thicker circular
plates, i.e., low values of a/h. These effects reduce the nonlinear frequency
at infinitely small amplitude of vibration as ‘much as 40% for a/h=5. This’
reduction decreases with an increase in the ratio of radius-to-thickness and
the amplitude of vibration. The response curves for the ratio of a/h larger
than 20 and the amplitude lérger than h are very close that given by
neglecting thesé effects. Due to the nonlinearity, the frequency ratio in the

range of value of amplitude 0 to 2h is raised by 65% from 1.0 to 1.65, 84%
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from 0.83 to 1.53 and 133% from 0.6 to 1.40 for the thin shellG.e., TS—RI—O),

the shell with a/h=10 and 5, respectlvely

Table 4.17 Values of fundamental linear frequency parameter «,

in Figs. 4.27-4.31

Fig. 4.27 | = Fig. 4.28 Fig. 4.29 Fig. 4.30 Fig. 4.31
o, N o, (Mat| o, | K, | o, |K|K | o
7.6030 1 | 21975 [ISO [2.9858| 0 |4.1082| e | < | 6.1781

3 121989 | GL |3.8951| 2 [5.6039| < | O | 6.1781
5 | 2.1644 | BO |5.9008| 10 |6.0293| 0 | o | 4.1082
7 | 21226 | GR |7.0248| -« |6.1781| 0 | O | 4.1082

‘9 | 2.0908
1 15 | 2.0348
21 | 2.0061
oo | 1.9418

Table 4.18 Values of fundamental linear frequency parameter o,

in Figs. 4.32-4.35

Fig. 4.32 Fig. 4.33 Fig. 4.34 | Fig. 4.35

Wl L Kf @, Gf ®o @,

0 2.1644 0 11.4470 | O 7.9250 | 5.7599
0.2 | 2.1843 20 | 12.2896 | 5 9.8610
0.4 | 2.2429 40 | 13.0780 | 10 | 11.4658
0.6 | 2.3363 60 | 13.8215 | 20 | 14.1245

4422 The Effect of the Number of Layers on the Frequency-

Amplitude Response
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The effect of number of layers on the frequency-amplitude response is
presented for an immovable clamped glass-epoxy circular plate in Fig. 4.28.
The frequency ratio increases as the number of layers increases, and the ratio
is smoothly raised as N larger than 8. It is shown that at Wmax=2h, the ratio
reaches tc') 2.02 for N=1(orthotropic), 2.31 for N=3 and 2.56 for N=c,
respectively. The effect of number of layers is not significant when N is value
of range of 5 to 21. It is noted that from Table 4.17 that the fundamental
linear frequency decreases with an increase in the number of layer except for
N=3. The effects of transverse shear and rotatory inertia (not sho§vn herein)
are very small as the plate v;rith low material ratio and high ratio of radius-

to-thickness.

4.4.2.3 The Effect of Material Properties on the Frequency-Amplitude .

Response

The response curves for an élastically supported seven-layer circular
plate with different material are depicted in Fig. 4.29. The frequency ratio
for neglecting effects of transverse shear rotatory shows increasing slightly
with an increase in modulus rétio, E;/Eq, but no much difference aﬁong these
. curves although effect of material properties on the .corresponding
fundamental linear frequencies shown in Table 4.17 are pronounced. As
expected, the effects of transverse shear and rotatory inertia increase when
the modulus ratio is raised and reduce the frequency ratio by 3%, 4%, 12%
and 22% for the material ISO, GL, BO and GR, respectively.
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4.4.2.4 The Effect of Boundary Condition on the Frequencv-Amﬁlitude “

Response

The respon.se of the frequency-amplitude for an elastically supported
three-layer graphite-epoxy circular plate is illustrated in Fig. 4.30. In the
figure the curves for K;=0 and < are those for simply supported and clamped
edges respectively. The frequency ratio decreases as the rotational stiffness
K;, increases. The curve for Ky =10 is very closé to that for Ky =co, a clamped
plate. The nonlinear frequency for T ;=0 and R;=0 is increased approximately
by 147 and 89 percent at w,,.,=2h for simply supported (Ky,=0) and clamped
( Kj, = ) edges, respectively. In addition the effects of transvefse shear and
rotatory inertia redﬁce the frequency ratio by 4.0, 5.2, 6.1 gnd 6.4 percent at
yvmax=2h for Ky =0, 2, 10 and o respectively.

Figure 4.31 shows the frequency-amplitude response curves of a three-
layer graphite-epoxy circular plate for four extreme cases. It is noted that the
nonlinear frequency increases more quickl'y for immovable edges than movable
edges and that the effects of transverse shear and rotatory inertia are more

significant for clamped edges than simply supported edges.

44.2,5 The Effect of Geometrically Initial Imperfections

on the Frequency-Amplitude Response

The curves for the effect of the geometrically initial imperfection on the

frequency-amplitude response of a movable simply-supported circular plate



141
are shown in Fig. 4.32 The results for V—Vl = 0 corresponding to that for a

perfect plate. The frequency-amplitude response behaves the hardening type
of nonlinearity for W; =0, 0.2, 0.4 and 0.6, and initially the weak softening
type then changing to the hardening type of nonlinearity for V_Vl = 0.8 and
1.0. This may arise from the fact that the larger values of initial
imperfection increase the plate curvature. It is seen that the frequency ratio
at Wppo, = 2h is 1.35 for W, =0 and 1.27 for W, = 1.0. Actually,the nonlinear
frequency increases with increasing the value of V_V1 since the corresponding
linear frequencies shown in Table 4.18 increase more quickly. The results,
including the effects of transverse shear and rotatory inertia (not shown
herein), are quite close to those neglecting these effects in Fig. 4.32 due to the

glass-epoxy material with a lower ratio of E;, to Er.

4.4.2.6 The Effect of Elastic Foundations on the Frequency-Amplitude

Response

The ratio of nonlinear frequency ® to the corresponding linear
frequency @, is illustrated in Figs. 33-35 against the relative amplitude
WnaR  of the vibration of IMated plates for ~various foundation
parameters. Figure 4.33 shows the effect of linear Winkler elastic foundation
on frequency-amplitude response of an elastically supported circular plate.
The frequency ratio for Tg= 0 and R; = 0 is increased approximately by 24%,
21%, 19% and 17% at w,,, = 2h for K¢ =0, 20, 40 and 60, respectivély.

Referring to the linear frequency in Table 4.18, it is seen that the nonlinear



142

frequency increases with the linear Winkler parameter K, The effects of
transverse shear and rotatory inertia reduce the frequency ratio by
approximately 3-4% compared with the corresponding ratio with neglecting
these eﬁ‘ects. In Fig. 4.34, the frequency ratio for a movable clamped circular |
plate on elastic foundation is given for different values of Pasternak
foundation parameter G;. The ratio neglecting the effects of transverse shear
and rotatory inertia in the figure decreases as Gy increases. And the ratio
- considering these effects increases in the range of 0 < wp,, <h and decreases
in the range of h < w, .. < 2h with increasing G;. In addition, the effects of
transverse shear and rotatory inertia reduce the frequency ratio by 5-10% for
different values of G;. Figure 4.35 depicts the frequency-amplitude response
curves 6f an elastically supported circular plate with different values of
ﬁonlinear Winkler foundation parameter K. The frequency ratio increases
with an increase of K. At wp,, = 2h, the ratio reaches to 1.41, 1.52, 1.62
and 1.71 (Tg =0, R;= 0 ) and to 1.35, 1.46, 1.56 and 1.66 (Tg=1,R;=1)
for K, =0, 5, 10 and 15, respectively. It is worth noting from Table 4.18 that
the linear frequency parameter, ,, for diﬁ'érent values of K, is the same

since the @, is not affected by the nonlinear terms in the governing equations.
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Figure 4.29: Effect of material properties on the frequency-amplitude response of an

elastically supported seven-layer circular plate ( a/h=8 )
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Figure 4.30: Effect of rotational edge stiffness on the &equency—ampﬁtude response of
a three-layer graphite-epoxy circular plate with an immovable edge ( a/h=12 )
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Figure 4.31: Effect of boundary conditions on the frequency-amplitude response 6f a
three-layer graphite-epoxy circular plate ( a/h=8 )
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Figure 4.32: Effect of geometrically initial imperfections on the frequency-amplitude
response of a movable simply-supported five-layer glass-epoxy circular plate ( a/h=15 )
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Figure 4.33: Effect of Winkler foundation parameter on the frequency-amplitude
response of an elastically supported three-layer graphite-epoxy imperfect circular plate
( Ky=3, K;=5, W;=0.1, K =10, G=15, a/h=10 )
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Figure 4.34: Effect of Pasternak foundation parameter on the frequency-amplitude
response of a movable clamped five-layer graphite-epoxy imperfect circular platcée shell
( W,=0.2, K=5, K =5, a/h=12 )
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4.4.3 Unsymmetrically Laminated Shallow Spherical Shells and Circular
Plates : ;

The nonlinear free vibration response of unsymmetrically shallow
spherical shells and circular plates is presented in this section. The shells
and plates consist of even number of orthotropic layers. The edge boundary
conditions under consideration are movable in radial direction and elastically
restrained in rotational direction which are given in eqns. (3.19). Due to the
coupling terms exist in boundary conditions, the technique of the equivalent
lateral pressure has been introduced in Chapter 3 in order to fulfil the
rotational edge constraint condition. In calculations, the terms of sine series
in (3.22) for expansion of the equivalent lateral pressure, Q,, are taken 10,
as other terms have demonstrated numerically to be negligibly small. It may
be noted that the movable clamped edge condition is exactly satisfied by the
assumed solution. The corresponding fundamental linear frequencies in this
section are given in Tables 4.19 and 4.20.' The presentation in Figs 4.37, 4.39
and 4.41 is only given the response neglecting the effects of transverse shear

and rotatory inertia for clarity.
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" Table 4.19 Values of fundamental linear frequency parameter o,

in Figs. 4.36-4.39

Fig. 4.36 Fig. 4.37 Fig, 4.38 Fig. 4.39
, N o, Mat. o, K, @,
9.5172 2 8.2421 | ISO | 3.0134 | © 1.8872
4 |10.1047 | GL | 4.0142 | 0.5 | 3.1689
6 | 103712 | BO | 6.1154 | 1.0 | 3.6823
8 | 104524 | GR | 7.3331 | 2.0 | 4.1061
10 | 10.4852 5.0 | 4.4548
20 | 10.5155 o | 47121

e | 10.5063

Table 4.20 Values of fundamental linear frequency parameter
in Figs. 4.40-4.42

Fig. 4.40 Fig. 4.41 Fig, 4.42
H/h @, V_Vl ®, Kf’Kn’Gf @,
05 167537 | O 4,1148 K=K =G=0 8.2421
1.0 | 73452 | 0.2 | 4.1417 K=10, K =G=0 8.8280
1.5 |8.1847 | 0.4 | 4.2339 | K =10, K=G=0 8.2421
2.0 | 9.1909 | 0.6 | 4.3885 | G=10, K=K =0 11.6372
0.8 | 4.5951 '
1.0 | 4.8415

4.4.3.1 The Effect of the Radius-to-Thickness Ratio on the Frequency-

Amplitude Response

The effect of the ratio of base radius-to-thickness on the frequency-
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amplitude response is shown in Fig.’4.36 for a ‘movable clamped tyvo-layer
graphite-epoxy shallow spherical shell of initial :rise equal to 2h. This effect
increases with decreasing the values of the ratio, a/h. The effects of
transverse shear and rotatory inertia are much prbnoun_ced for the shell with
ratio, a’h, equal to 16, 10 and 8. The frequency ratio compared that
excluding these effects is reduced by 0.8%, 1.7%, 5.7% and 8% for a/h=50, 20,
10 and 8, respectively. Like the symmetrically laminated shell, the effects of
transverse shear and rotatory inertia do not change the general behaviour of
vibration response. The curves in the figure exhibit the softening type of

nonlinearity.

4.4.3.2 The Effect of the Number of Layers on the Frequency-

Amplitude Response

e

Figure 4.37 shows the response curves of a movéi)le clamped graphite-
epoxy shallow spherical shell with different niumber of layers. It is observed
that the curves for shells with the number larger than 6 and the .linear:
frequencies for these shells in Table 4.19 are very close. The behaviour of the
shell with numbers 2, 4 and 6 is typical. "The frequency ratio increases with
an increase in the number. For the two-layer shell, the frequency ratio is
reduced to 0.923 at w,,,.=2h. All curves behave initially softening type of

nonlinearity and then invert to hardening one at the amplitude w,,, >1.5h.
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4.4.3.3 The Effect of Material Properties on the Frequency-Amplitude

Response

The effect of the material properties on the frequency-amplitude
response of a six-layer circular plate with elastically rotational edge is
presented in Fig. 4.38. It is noted that when the modulus ratio, E;/E,, is
raised the frequency ratio for neglecting effects of transverse shear and
rotatory inertia increases very slightly although the corresponding linear
frequency shown in _Table 4.19 increases sig:rliﬁcantly. The effects of
transverse shear and rotatory inertia on the frequency ratio are pronounced
for material with the high modulus ratio. In this figure, these effects reduce
the frequency ratio by approximately 10% and 16% for boron-epoxy and

graphite-epoxy material, respectively.

4.4.3.4 The Effect of Rotational Edge Stiffness on the Frequency-

Amplitude Response

The results for the effects of rotational edge stiffness on the frequency-
amplitude response of a movable six-layer glass-epoxy circular plate are
plotted in Fig. 4.39. The curves exhibit the hardening type of nonlinearity.
When the rotational stiffness, Ky, is raised, the frequency ratio decreases for
Ky <2 and slightly increases for K;>2, but the nonlinear frequency increases
referring the corresponding linear frequency in Table 4.19. And the response

curves for K;>2 are close that for Kt;=oo, i.e., clamped edge. It is noted that
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the frequency ratio reaches 1.42 at w,,, =2h for K;=0, i.e., simply-supported

edge.

4435 The Effect of the Shell Rise on the Frequency-Amplitude

Response

The nonlinear free vibration response of a movable clamped four-layer
boron-epoxy shallow spherical shell with different initial rise is presented in
Fig. 4.40. The response curves are hardening type of 110n1iﬁeaﬁty for the
dimensionless shell rise H/h=0.5 and 1 and softening one for H/h=1.5 and 2.
At Wnax=2h, the frequency ratio neglecting the effects of transverse shear and
rotatory inertia is 1.167, 1.066, 0.976 and 0.913 for H/h=0.5, 1:, 1.5 and 2,
respectively. The effects of transverse shear and rotatory inertia reduce the
frequency ratio at infinitely small amplitude of vibration by 10%, 8%, 6.5%
and 5.7% for H/h=0.5, 1, 1.5 and 2, respectively, and at larger values of

amplitude by approximately 9% for all cases.

4.43.6 The Effect of Geometrically Initial Imperfections on the

Frequency-Amplitude Response

Figure 4.41 fives the frequency-amplitude response of a movable
clamped four-layer glass-epoxy circular plate with different values of initial
imperfection. The curves behave the hardening type of nonlinearity for

WlsO.G, and initially softening one and then changing to hardening one for
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Wl>0.6. The frequency ratio decreases with an increase in the value of initial

imperfection as the increase of the plate curvature resulting from the initial

imperfection.

4.4.3.7 The Effect of Elastic Foundations on the Frequency-Amplitude

Response

The curves of frequency-amplitude response for a movable clamped two-
layer graphite-epoxy shallow spherical shell resting on elastic foundations are
depicted in Fig. 4.42; These curves show the softening behaviour for the shell
without elastic foundation and with linear Winkler elastic foundation, and
initially softening one and then inverting to hardening one for with nonlinear
Winkler and Pasternak elastic foundatlons, respectively. The effects of
transverse shear and rotatory inertia are more significant for the shell
without elastic foundation that for the shell with one. These effects reduce
the frequency ratio by approximately 9%, 8%, 6% and 4% for the shell
without elastic foundation, with nonlineé.r Winkler one, with linear Winkler

one and with Pasternak one, respectively.
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Figure 4.36: Effect of the base radius-to-thickness ratio on the frequency-amplitude
response of a movable clamped two-layer graphite-epoxy shallow spherical shell

8ST



1.00

0.95

0/o

0.90 : : :
0" ‘ 1 2
Wmax/h

Figure 4.37: Effect of the number of layers on the ﬁ‘equency—amplitude response of a
movable clamped glass-epoxy shallow spherical shell ( a/h=15, H/a=0.1 )
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Figure 4.39: Effect of rotational edge stiffness on the frequency-amplitude response of
a six-layer glass-epoxy circular plate with a movable edge ( a/h=15 )
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Figure 4.40: Effect of the shell rise on the frequency-amplitude response of a movable
clamped four-layer boron-epoxy shallow spherical shell ( a/h=10 )
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Figure 4.41: Effect of geometrically initial imperfections on the frequency-amplitude

response of a movable clamped four-layer glass-epoxy circular plate ( a/h=15 )
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4.5 BUCKLING, POSTBUCKLING AND STATIC LARGE DEFLECTION

In this section, the numerical results are presented for the relation
between the load and deflection of a laminated cross-ply shallow spherical
shell. The buckling and postbuckling behaviour is investigated for the shell.
In the calculation, the uniformly-distributed static load normal to the
undeformed middle surface is assumed. In the presentation, the load is
specified by dimensionless load, Q, for a circular plate, and the ratio of
dimensionless load to square of dimensionless rise, Q/(H/h)z, for a shallow
spherical shell, and the deflection is specified by the dimensionless maximum
deflection wy,, . /h.

For large deflections, deformation of a shallow spherical shell is not
proportional to the external loading. The. load-deflection relation may be
represented by a curve. After reaching the first maximum value of uniformly
distributed lateral load, q,,, the l.oad tends to have a reduction. The value q_, -
is called the buckling load for axisymmetrical snapping. Tests indicate that
buckling generally starts as a small circular dimple and tends to occur where
the shell is weakest (Donnell, 1976). To study this phenomenon, many
researchers ( von Karman and Tsien, 1939; Kaplan and Fung, 195_4;
Budiansky, 1959; Weinitschke, 1960; Stephens and Fulton, 1969; Hyman,
1971; ) proposed various methods. Most of them included nonlinear finite
deflections in their analysis instead of just considering stability with respect
to infinitesimal deflection from the prebuckled condition. Their éalculations
also show that the stiffness of the shell decreases with the deflection. A
comprehensive survey of the state-of-the-a;'t for buckling of a shallow

spherical shell is given by Hutchinson and Koiter (1970).
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4.5.1 Symmetrically Laminated Shallow Spherical Shells

4.5.1.1 The Effect of Material Properties on Buckling Load

Figures 4.43 and 4.44 show the effect of material properties on the
buckling load of an immovable clamped five-layer and immovable simply-
supported shallow spherical shell, respectively. In this study, the least value
of the geometric parameter, H/a, denoted by (H/a),,, for which buckling occurs
-~ is obtained by use of iterative procedure. The value of the ratio H/a for
which buckling does not occur is increased by a small increment and the eqn.
(3.32) is solved by the Newton-Raphson method. The process is repeated
until buckling just occurs and vice versa until buckling just disappears. The
values of (H/a),, and the associated buckling Q. in these figures are given in
Table 4.21. The effect of transverse shear is also presented in the table. The
value of (H/a),, is roughly 0.08 for an immovable clamped five-layer shallow
spherical shell with a/h=20 in Fig. 4.43 and 0.05 for an immovable simply-
supported three-layer shallow spherical shell with a/h=15in F1g 4.44. It may
be noted from these figures that once the critical value (H/a)g, occurs, the
buckling load Q_, initially decreases and then increases with an increase in
the ratio H/a. These figures also indicate that the buckling load Q, increase
with increasing the modulus ratio, E;/E;, but the critical value (H/a),,
decreases for a laminated cross-ply shallow spherical shell. Evidently the
transverse shear deformation reduces the bucklihg load. This effect is more

pronounced for the composite of high modulus ratio.



Table 4.21 Values of (H/a),, and [Q/(H¥h?)],, in Figs. 4.43 and 4.44
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Tg=0 Ty=1
Mat. | N {a/h
(H/a),, [QE*h)],| ), |[QEHhD)],
GL | 5 | 2010.08484 5.2143 |0.08441 5.1709
Fig. 443 BO | 5 |20 {0.08221| 13.0095 {0.08013| 12.6998
GR | 5 [200.08037| 19.9635 {0.07666| 18.8221
GL | 3 |15(0.05414 3.9635 |0.05393 3.9478
Fig. 4.44| BO | 3 |15 {0.05246 9.1398 |0.05168 9.0142
GR | 3 |15{0.05197! 13.6390 |0.05037 13.2362
4.5.1.2 The FEffect of the Radius-to-Thickness Ratio on the

Postbuckling Response

The postbuckling response of movable simply -supported and clamped
threg-layer graphite-epoxy shallow spherical shells with different ratios of
radius-to-thickness are given in Figs. 4.45 and 4.46. The effect of transverse
reduces fhe buckling load and the load-carrying capacity in the postbuckling
range especially for moderately thick shells. This can be found in Figs. 4.45 _
and 4.46 which aemonstrate the response curves for movable simply-
supported and clamped three-layer graphite-epoxy shallow spherical shells
with different ratios of radius-to-thickness. The buckling load generally
increases with this ratio. The effect of transverse shear reduces the buckling
load by 10.3% for simply supported shell with a/h=10, and by 8.2% for the
clamped shell with ash=15. This effect, however, is not significant for large

values of this ratio.
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4.5.1.3 The Effect of the Number of Layers on the Postbuckling

- Response

In Fig. 4.47, the effect of the number of layers, N, on the buckling load
are illustrated for a movable clamped boron-epoxy shallow spherical shell.
These curves indicate that the buckling load increases with increasing the
number of layers. For the values N<5 the influence of the number of layers
on the buckling load is much pronounced. The buckling load increases by
60% for N=15 than for N=1 (orthotropic shell). This increase is considerably
significant for the load-carrying capacity. Figure 4.48 shows that the effects
of the number of layers and the transverse shear on the load-deflection
response of a movable simply-supported graphite-epoxy shallow spherical
shell. A similar behaviour as in Fig. 4.47 is obsérved for the effect of the
number of layers. The effect of transverse shear on the load-carrying capacity

generally increases more rapidly than that of the number of layers.

4.5.1.4 The Effect of Material Properties on the Postbuckling Response

The response curves of an immovable clamped five-layer shallow
spherical shell are plotted in Fig. 4.49 for different material properties.
Neglecting the transverse shear effect the snap-through buckling of all shells
of different materials approximately occurs at the maximum deflection equal
to the shell thickness. The effect of transverse shear reduces the buckling

load by 4%, 11% and 18% for glass-epoxy, boron-epoxy and graphite-epoxy
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materials, respectively. For a given deflection the reduction in the transverse
load caused by the effect of transverse shear is evidently greater for the high
modulus ratio than for low one. In the case of graphite-epoxy composite
material the postbuckling load is reduced by 35% ét Wax=12. A similar
behaviour is also observed in Fig. 4.50 for a movable simply-supported five-
layer shallow spherical shell. The effect of transverse shear, however, is

much reduced in this example.

4.5.1.5 The Effect of Boundary Condition on the Postbuckling

Response

The postbuckling response for different béundary conditions are
illustrated in Figs. 4.51-4.53. Figure 4.51 shows that the effect of rotational
stiffness of edge on the postbuckling response of a movable edge three-layer
boron-poxy shallow ‘spherical shell. The K;=0 aﬁd oo correspond the simply-
supported and clamped edges, respectively. All shells with different values
of K;, undergo the snap-through buckling and have a slight reduction after
buckling and then a little increase at large value of deflection in the load.
The buckling load and postbuckling load carrying capacity increa:se as the
rotational stiffness, Ky, increases. The buckling load for Kb=5 is only less
than that for Kj=c by approximately 8.5%. The effect of transverse shear
reduces the buckling load and postbuckling load carrying capacity. This effect .
increases with an increase in K;, and the maximum deflection. At Winax=2h,

the effect of transverse shear reduces the postbuckling load by approximately

>
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5%, 6.3%, 10%, 12% and 13% for K;=0, 0.4, 1, 5 and o, respectively.

The response curves excluding the effect of transverse shear for a ‘
clamped five-layer boron-epoxy shallow spherical shell are depicted in Fig.
4.52 for different inplane stiffness of edge,'Ki. The values of K;=0 and oo
correspond the imniovable and movable edges. The buckling occurs in all 7
different values of K;. The buckling load increases with an increase in K.
The reduction of the postbuckling load is increased by raising K, and the load
are largest for K;=0 and the smallest for K=o in the range of deflection

2.5hsw,, <3h.
| The load-deflection curves shown in Fig. 4.53 illustrate the effect of
edgé conditions on the buckling load of a five-layer graphite shell. It is no{:ed
that the effect of inplane edge condiﬁon is much noticeable. The buckling
load is increased by 80% for an immovable edge than a movable edge for the
clamped shell, and by 240% for simply-supported shell. It is also shown from
this figure that the effect of edge rotation on an immovablé edge is less than
a mové.ble edge. The buckling load of the shell with an immovable edge is
nearly the same for the clamped and simply-supported shells and that with
a movable edge is increased by 90% for a clamped edge than for a simply-
supported edge. For these four'.types of boundary conditions the effect of
transverse shear generally reduces the buckling load. The reduction in the
postbuckling load caused by this effect is much more signiﬁcantr for an.
immovable clamped and movable simply-supported shells. In the case of a
movable simply-supported shell the effect of transverse shear generally

increases the postbuckling load rather than reduces.
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4.5.1.6 The Effect of the Shell Rise on the Postbuckling Response

The postbuckling response curves are shdwn for an elastiéally
supportedrthree-la_yer boron-epoxy shallow spherical shell in Fig.4.54 and a
movable simply-supported seven-layer graphite-epoxy shallow spherical shell
in Fig. 4.55. It can be seen fro_m Fig. 4.54 that the shell undergoes snap-
through buckling, and have a reduction in the load after the first maxima for
H/h=2.4 and no buckling occurs for H/h=1.2 and 1.8. It is noted that for the
shell with H/h=2.4, the load after reductioﬁ from buckling inverts to increase
with an increase in deflection. In Fig. 4.55, all response curves demonstrate

the buckling phenomenon and the bucklirig load increases as H/h is raised.
The effect of transverse shear reduce the load. This effect generally increases
with the deflection and is considerably pronounced for a moderately thickness

shell at large values of the deflection.

4.5.1.7 The Effect of Geometrically Initial In;perfeétions on the

Postbuckling Response

The postbuckling load-deflection curves for a movable clamped spherical
cap on elastic foundatioﬁ are plotted in Fig. 4.56 for various values of the
‘initial imperfection, Wl. It may be seen from these response curves that all
caps undergo buckling and have a reduction in load after ‘buckling. The
buckling load decreases as the value V—Vl increases. Thé postbuckling load
decreases with the amplitude of initial imperfection in the range of tﬁe values
of 0 < Wpax < 2.2h due to the neglecting of the effect of transverse shear (

Tg=0 ) and of 0 <w,,, < 2.1h for including these effects ( Tg=1 ), and
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increases in the range of values of 2.2h < Wmax < 8h for Tg=0 and of 2.1h <

Whnax < Sh for Tg=1, respectively.

45.1.8 The Effect of Elastic Foundations on the Postbuckling
‘Response '

In Fig. 4.57, the postbuckling response curves for an imperfect
sphérical cap are shown for different values of the linear Winkler foundation
parameter, K. It is found that the buckling load increases with this value.

The buckling phenomenon occurs in the range of values of 1.09h < <

Wmax
1.35h for all values of K¢ indicated in the figure and the buckling load is 53%
greater for Ky= 20 than for K;= 0. The effect of Pasternak elastic foundation
parameter, G;, on postbuckling of a movable simply supported caﬁ is
illustrated in Fig. 4.58. The response curves exhibit the“ buckling
phenoinenon except for the values of Gy =5 and 10 without considering the
effect of transverse shear and except for the value of Gp= 10 with this effect.
The load increases with an increase of the value of the Pasternak foundation
parameter, Gy. The effect of transverse shear reduces the buckling and
postbuckling load as expected. This reduction is pronounced at high values
of the deflection. The load-deflection curves shown in Fig. 4.59 depict the
effect of nohlinear Winkler foundé.tion parameter, K, on the buckling and
postbuckling load of an elastically supported spherical cap. It is observed
that there is a reduction in load after buckling for K, =0 and 2. The load
for a given deflection increases with the values of K. The effect of
transverse shear reduces the load slightly due to the shell with large ratio of

base radius to the cap tHickness, i.e., a’/h = 20.
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Figure 4.48: Effect of the number of layers on the postbuckling response of a movable
simply-supported graphite-epoxy shallow spherical shell ( a/h=15, H/a=0.25 )
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Figure 4.49: Effect of material properties on the postbuckling response of an
immovable clamped five-layer shallow spherical shell ( a/h=10, H/a=0.2 )
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Figure 4.50: Effect of material properties on the postbuckling response of a movable
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Figure 4.52: Effect of inplane edge stiffness on the postbuckling response of a five-
layer boron-epoxy shallow spherical shell with a clamped edge ( a/h=20, H/a=0.125 )
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Figure 4.53: Effect of boundary conditions on the postbuckling response of a five-layer
graphite-epoxy shallow spherical shell ( a/h=15, H/2=0.2 )
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Figure 4.54: Effect of the shell rise on the postbuckling response of an elastically
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Figure 4.56: Effect of geometrically initial imperfection on the postbuckling response ‘of
a movable clamped five-layer graphite-epoxy shallow spherical shell resting on elastic
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‘Figure 4.57: .Eﬁ‘ect of Winkler foundation parameter on the postbuckling response of
an elastically supported five-layer glass-epoxy imperfect shallow spherical shell
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Figure 4.58: Effect of Pasternak foundation parameter on the postbuckling response of
an elastically supported seven-layer graphite-epoxy shallow spherical shell
( Ky=10, K;=5, K=5, K =0, a/h=10, H/a=0.25)
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4.5.2 Symmetrically Laminated Circular Plates

In this section, the large-deflection response of symmetrically laminated

circular plates is presented for various geometric and material parameters.

.4.5.2.1 The Effect of the Radius-to-Thickness Ratio on the Static

Large-Deflection Response

The effect of transverse shear on the large-deflection response of an
immovable five-layer graphite-epoxy circular plate is shown in Flg 4.60 for
different rati.os of ra&ius—tﬁ-thickness. This effect reduces the load compared
with that excluding this effect and is pronounced for moderately thick plates.
At w_,.=3h, the load is decreased by approximate 5.4%, 11% and 17% for
a/h=20, 10 and 5, respectively. As expected, this effect is weakened for the

thin plate, for instance in this figure, a/h=50.

45.2.2 The Effect of the Number of Layers on the Static Large-

Deflection Response

Figure 4.61 shows the effect of the number of layers on the large-
deflection response of a movable simply-supported glass-epoxy circular plate.
The load decreases with an increase in the number except for N=1. The

transverse shear effect(not shown herein) is not remarkable as the low
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material ratio, i.e., GL composite.

4.5.2.3 The Effect of Material Properties on the Static Large-Deflection

Response

The load-deflection response of an elastically supported circular plate
with different materials is demonstrated in Fig. 4.62 The load in the figure
increases as the modulus ratio, E;,/ Ep, increases. The effect of transverse
shear reduces the load by 1.6%, 1.8%, 10.5% and 13.3% for materials of
isotropic, glass-epéxy, boron-epoxy and graphite-epoxy, respectively, at w,,, -

= 3h.

4524 The Effect of Boundary Conditions on the Static Large-

Deflection Response

The effect of edge stiffnesses on the large-deflection resbonse is
presented in Figs. 4.63 and 4.64. The large deflection response of an
elastically supported seven-layer boron-epoxy circular plate is shown in Fig.
4.63 for different edge rotatic;nal stiffness, K. The load increases with
increasing Ky, and the effect of K, is pronounced. At w,,, =3h, the load for
Kj,=oo(clamped edge) is increaéed by 63% compared with that for K;=0(simply
-supported edge). The load response including the effect of transverse shear
is similar that shown in thié figure, but not presented here. Similarly, the

load increases with increasing K;, which is demonstrated in Fig. 4.64 for a
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clamped five-layer graphite-epoxy circular plate. At Whax=0h, the load for

Ki=co(immovable edge) is increased by approximately 133% compared with
that for K;=0(movable edge). The effect of transverse shear reduces the load
by about 10%. It is noted from these figures that the effect of inplane edge

stiffness is more pronounced than rotational one.

4.5.2.5 The Effect of Geometrically Initial Imperfections on the Static

Large-Deflection Response

" The load increases with an increase in the value of the initial -
deflection, Wl, which is shown in Fig. 4.65 for a movable clamped five-layer
glass-epoxy circular plate. This is resulted from the change of midplane

curvature due to the imperfection.

4.5.2.6 The Effect of Elastic Foundations on the Static Large-

Deflection Response

The load-deflection curves for an immovable clamped five-layer boron-
epoxy imperfect circular plate on elastic foundations are plotted in Fig. 4.66
for various values of elastic foundation parameters. It is found that the load
increases with an increase of the values of foundation parameters K and/or

K, The effect of transverse shear reduces the load by about 6% at

Wax = 3h.
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Figure 4.61: Effect of the number of layers on the static large-deflection -response of a
movable simply-supported glass-epoxy circular plate ( a/h=12 )
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Figuré 4.63: Effect of rotational edge stiffness on the static large-deflection response of
an elastically supported seven-layer boron-epoxy circualr plate ( K;=2, a/h=10 )
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five-layer graphite-epoxy circular plate with a clamped edge ( a/h=15 )
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Figure 4.65: Effect of geometrically initial imperfections on static the large-deflection
response of a movable clamp_ed five-layer glass-epoxy circular plate ( a/h=20 )
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immovable clamped five-layer glass-epoxy imperfect circular plate
(W;=0.1, G=10 a/h=10)
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4.5.3 Unsymmetrically Laminated Shallow Spherical Shells and Circular
Plates

The buckling, postbuckling response for unsymmetrically laminated
shallow spherical shells and large-deflection response for unsymmetrically
laminated circular plates are presented in this section for various geometric

and material parameters.

4.5.3.1 The Effect of Material Properties on the Buckling I.oad

The buckling response of a movable clamped two-layer shallow
spherical shell ig given in Fig. 4.67. The values of (H/a),, and the associated
buckling load Q,, which are defined in section 4.5.1.1 are listed in Table 4.22.:
It is observed that once the critical 4value (H/a),, occurs, the buckling load Q,,
initially decreases and then increases with increasing the value of H/a. The
buckling load Q, increases but the critical value (H/a), decreases as the
material ratio, E;/Er, increases. The effect of transverse shear increases with

increasing the modulus ratio, E;/E; and reduces the buckling load.

Table 4.22 Values of (H/a),, and [Q/(H¥h?)],, in Fig. 4.67

T4=0 Te=1 ]

Mat. | N\ a/h Moy TIQ/EZD],| (H/a),, | QBT
GL |'2 {20] 0.1498 2.7637 0.1476 2.7894
Fig. 4.67 BO | 2 |20 ] 0.1323 6.1895 0.1279 6.1153
GR | 2 {20 0.1257 8.9412 0.1214 8.5880
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453.2 ‘The Effect of the Radius-to-Thickness Ratio on the

Postbuckling Response

The postbuckling response of a movable clamped four-layer graphite-
epoxy shallow spherical shell with dimensionless initial rise, H/h, equal to 3
is demonstrated in Fig. 4.68 for different ratios of base radius-to-thickness,
a/h. The buckling load increases with the ratio, a/h. The effect of transverse
shear reduces the buckling load by 29% for a/h=12 compared with that
_excluding this effect. As expected, this effect is not significant for large
values of a/h. The load has a reduction after buckling and then a little

increase at large value of deflection.

45.3.83 The Effect of the Number of Lavers on the Postbuckling

Response

 The response curves for the number, N, larger than 4 are very close
that for N=c, which can be seen in Fig. 4.69 for a movable clamped boron-
epoxy shallow spherical shell. The buckling load is reduced by 23% for N=2
than for N=4. This reduction is considerably significant for the load-carrying

capacity. The effect of transverse shear reduces the buckling load and

postbuckling carrying capacity which is not shown herein.

4.5.3.4 The Effect of Material Properties on the Static Large-Deflection

Response
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;t is observed from Fig. 4.70 that the effect of transvérse shear on the
large-deflection response is much pronounced for the boron-epoxy and
graphite-epoxy materials. For an elastically supported six-layer circular plate,
this effect reduce the load by 12% and 18% at w,,,,=8h for material of BO
and GR, respectively., The load increases with an increase in the modulus

ratio, EL/ET'

4.5.8.5 The Effect of Rotational Edge Stiffness on the Static Large-

Deflection Response

The large-deflection response curves excluding the effect of trahsverse
shear for a movable two-layer glass-epoxy circular plate are plotted in Fig.
4.71 for different rotational stiffness of edge, Ki. The Ky=0 and Kj=co
correspond the simply-supported and clamped edges, respectively. The load
for given deflection increases with an increases in Kb The effect of:Kb on the
load is not much pronounced for the value, K;>5 compared with that for

Kb=°°.

4.5.3.6 The Effect of the Shell Rise on the Postbuckling Response

Figure 4.72 shows the load-deflection response of a movable clamped
two-layer graphite-epoxy shallow spherical shell with different initial rise,
H/h. The shell with H/h=3 and 4 undergo snap-through buckling and has a

reduction in the load after Buckling. The load for given deflection decreases
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as the value of H/h increases. The effect of transverse shear reduces the load

and increases at large value of deflection.

4.5.3.7 The Effect of Geometrically Initial Imperfections on the Static

Large-Deflection Response

The Effect of initial imperfection, W, increases the load, which can be
seen in Fig. 4.73 for a movable clamped four-layer glass-epqu circular plate.
This is due to the change of midplané to midsurface. The load for a given
deflection is increased when thq initial imperfection, Wl, increases. Th(_a effect
of transverse shear (not shown herein) is small as the GL with low modulus

ratio. -

4.5.3.8 The Effect of Flastic Foundations on the Static Large-

Deflection Response

In Fig. 4.74, the load-deflection of a movable clamped four-layer
graphite-epoxy imperfect shallow spherical shell resting on elastic foundations
is presented for different values of nonlinear Winkler foundation parameter,
| K,. The effect of K, is pronounced for larger deﬂection. The load increases
with an increase in the value of K. The effect of transverse shear increases
with decreasing the value of K, and reduces load at w,, =3h by 10.5%, 8.5%,
6.5% and 4% for an-=5, 10, 15 and 20, respectively.
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Figure 4.69: Effect of the number of layers on the postbuckling response of a movable
clamped boron-epoxy shallow spherical shell ( a/h=50, H/a=0.06 )

903



250
200
7
. ,/,,
< . /’l
,/
150 B /, e
GR
. d
O 3 ,,/' , 4
Ve 4
/’l s <
100 ,,’ el
d /’
’/ ’/,
,’ Cd
3 > - G
’,/” ”,’ A L
. P ot BO ==
50 N ,f” ’,f” ,—”’
- ]
"”::"”’ M‘
-
- —’,—’ . .
) O = 1 ] 1 ]
0 1 2 3
Wmax/h

Figure 4.70: Effect of material properties on the static large-deflection response of an
elastically supported six-layer circular plate ( Ky=3, a/h=10 )

L0g



90

60 =
(e e}
O. . R
30 |
. .
0 1 2 3
\anla.x/:h

Figure 4.71: Effect of rotational edge stiffness on the static large-deflection response of
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a two-layer glass-epoxy circular plate with a movable edge ( a/h=20 )
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response of a movable clamped four-layer glass-epoxy circular plate ( a/h=15 )
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4.6 SUMMARY

In this chapter, the numérical results are presented for nonlinear free
vibration, buckling, postbuckiihg and large-deflection of symmetrically and
unsymmetrically shallow spherical shells and circular plates with various
geometric, material and mechanical parameters. Some available previous
results are also given for comparison. The effects of ratio of base radius-to-
thickness, the modulus ratio, E;/E;, the number of layers, boundary
conditions, geometric imperfection and elastic foundations on the elastic
response of these shells and plates are analyzed. The effects of transverse
shear and rotatory iner£ia are investigated in some detail. Some significant

results are obtained.



213

CHAPTER 5
CONCLUSIONS AND RECOMMENDATIONS

5.1 CONCLUSIONS

In this thesis, a generally dynamic nonlinear theory is deveioped for
the axisymmetric deformation of moderately thick shallow spherical shells
and circular plates composed of laminated cylindrically (or polar) orthotropic
layers with flexible supports. The effects of transverse shear, rotatory inertia,
geometrically initial imperfection and linear, nonlinear extension Winkler and
shear Pasternak elastic foundations are taken into account in the theory.

In Chapter 2, the constitutive relations for a moderately thick
laminated shallow spherical shell are established oﬁ fhe basis o-f the
generalized Hooke’s law. The fransverse shear stiffness is given by employing
a parabolic shear stress distribution across the shell thickness and the
principle of complementary energy. The governing equations and the
associated set of boundary conditions are presented ’by use of the dynamic
principle of virtual work, stress function and condition of compatibility.
These nonlinear equations of transverse motion are coupled in terms of
transverse displacement, rotation of a normal to mid;surface and stress

- function. For specific cases, the governing equations can be simplified to
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those given in the earlier theories, such eis Marguerre-type equations and
Mindlin-von Karman equations, etc. The present theory is more general and
accurate for studying the elastic behavigur of laminated shallow spherical
shells in cpmparison with previous 7theories. |

fn Chapter 3, a solution of the Fourier-Bessel series satisfying the
prescribed boundary conditions is formulated for the governing equations of
laminated shallow spherical shells. These equations are reduced to a set of
nonlinear ordinary differential equations by making use of the Galerkin
method. For undamped nonlinear free vibration, the time dependent
coefficients of Fourier-Bessel series are expanded as “Fourier cosine series and
a system of simultaneous nonlinear algebraic equations obtained by the
principle of harmonic balance. For the static response, the nonlinear ordinary
differentail equations become the nonlinear algebraic equations by treating
the time functions as constants and deleting the inertia terms. The Newton-
Raphson method is used for solving the system of simultaneous nonlinear
equations. The eigenvalues of Bessel functions are listed in Tables for some
typical cases. The technique of replacing the edge moments by an equivalent
pressure near the edge is adopted for unsymmetrically laminated s;he]ls with
rotational restrained edges. The outline of computer program NALSSS is
- introduced for implementing the numerical calculations.

In Chapter 4, the numerical resultg and discussions have been
presented in graphs and tables for nonlinear free vibration, buckling and

" postbuckling or static large deflection response of symmetrically and
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- unsymmetrically laminated shallow spherical shells and circular plates with
various geornetric, material and mechanical parameters. Based on this study,

some conclusions may be drawn.
; 5.1.1 Nonlinear Free Vibration

Generally, ;che frequency-amplitude response ~curves exhibit the
softening type of nonlinearity for the shells with high dimensionless rige, H/h,

and hardening one for the shells with low value of H/h and the plates.

5.1.1.1 The Effect of Transverse Shear and Rotatory Inertia

The Effect of transverse shear plays an importént role. The effect of
rotatory inertia can be neglected in an analysis. The effects of transverse
shear and rotatory inertia reduce the linear frequency and the frequency ratio
at any amplitude of vibration. These eﬁ'ects are quite significant for both
shells and plates with the low ratio of base radius to fhickness, a/h, and high
modulus ratio, E/Er. These effects are intensiﬁed with the increase in an
. values of rotational and inplane stiffnesses rfor symmetrically laminated
shells and plates and with increasing the vaiue of rotational stiffness for
unsfymmetrical shells and plates. The higher the number of layers of the
shell or plate, the stronger the effects of transverse shear and rotatory

inertia. The variation of these effects with the number of layers, however, is
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not quite noticeable. These effects in any cases do not change the general

behaviour of the response.

5.1.1.2 The Effect of the Number of Lavers

The frequency ratio increases with the number of layers, N, for a given
amplitude of vibration. The effect of the number of layers larger than 7 for
symmetrically laminated shells and plates and larger than 6 for

unsymmetrically laminated shells and plates is not prominent.

5.1.1.3 The Effect of Boundary Conditions

The frequency ratio decreases with an increase in the value of the
inplane edge stiffness, K, for symmetrically laminated shells. This ratio
increases for symmetrically laminated shells but generally decreases for
-laminated plates as the value of the rotational edge stiffness, K,,, increases.
’i‘he effect of K;, is not quite noticeable for symmetrically laminated shells.
'I"he nonlinear frequency increases more quickly for immovable edges than :

movable edges for symmetrically laminated plates.

5.1.1.4 The Effect of Geometrically Initial Imperfection

The frequency ratio increases for the shells but decreases for the plates
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with increasing the amplitude of initial imperfections.

.5.1.1.5 The Effect of Elastic Foundation

The nonlinear frequency increases with an increase in the values of

parameters of elastic foundations K, K, and Gy for all cases.

5.1.2 Static Response

The shells undergo snap-through buckling and have a reduction in the
load after the first maxima for high dimensionless rise, H/h. For some cases,

the load after reduction inverts to increase with an increase in the deflection. .

5.1.2.1 Buckling Response

The buckling load, Q. increases’ but the criﬁca_l value, (H/a),,
decreases with an increase in the modulus ratio, E;/E,, for the shells. Once
the critical value occurs, the buckling load initially decreases and then
increases with an increase in the ratio of H/a. For symmetrically laminated

shallow spherical shells, the effect of the inplané edge condition on the

buckling load is quite remarkable.

5.1.2.2 The Effect of Transverse Shear



218

The effect of transverse shear reduces the buckl_ing load and
postbuckling load carrying cépacity for shells and plates at any value of the
deflection. This effect is more pronounced for the shglls and plates that are
moderately thick and have the high modulus ratio. This effect increases at

large values of the deflection of shells and plates.

5.1.2.3 The Effect of the Number of Layers

The load increases with the number of layers except for N=1 for
symmetrically laminated plates and for N>10 for unsymmétrically laminated
shells. This effect is quite rnoticeable for the number équal to 3 and 5 for
symmetrically laminated shells and plates, and 2 and 4 for unsymmetrically

laminated shells and plates, respectively.

5.1.2.4 The Effect of Material Properties

The load in postbuckling and large-deflection response increases with

increasing the value of the modulus ratio.

5.1.2.,5 The Effect of JBoundarv Conditions

The load increases with an increase in the values of K;, and K; for

symmetrically laminated shells and plates and of K for unsymmetrically
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laminated shells and plates.

5.1.2.6 The Effect of Geometrically Initial Imperfections

The buckling load decreases as the amplitude of initial imperfections,
Wl, increases. The postbuckling load initially decreases and then increases
in the large value of the deflection for symmetrically laminated shells. This
load increases with an increase in Wl for symmetrically and unsymmetrically

laminated plates.

5.1.2.7 The Effect of Elastic Foundations '

The buckling load and the load in postbuckling or large-deflection

response increase as the values of parameters of an elastic foundation K, K

and Gy increase.
5.2 RECOMMENDATIONS FOR FURTHER RESEARCH

This research is concerned with the nonlinear free vibration, buckling,
postbuckling and static large-deflection ( or nonlinear bénding ) response of
symmetrically and unsymmetrically laminated shallow spherical shells and
circular plates. Since the present formulation is general in nature, further

work can be done:
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(1) to analyze stress resultants and coﬁples ér stresses;

(2) to study the nonlinear dynamic response of laﬁinéﬁd shallow
spherical shells and circular plates 'subject to a time-dependent transverse
load; | |

(8) to apply thé present theory established in this study to the
laminated shallov;/ spherical shells with circular opening at the apex and
~ annular plates; |

(4) to establish a comprehensive analytical system to incorporate
systematic analysis of laminated shallow-spherical shells and circular plates

both with and without a hole.
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APPENDIX A

PROPERTIES OF BESSEL FUNCTIONS



(1) Properties for first kind of Bessel functions
Jd,(z) = (-1)2J,(2)

J{-2z) = (-1)2J,(z)

Ja(2) = J,(-2)

zdy(z) = nJd,(z) -zJ,,, (z)

zdp(z) = -nJd,(z) +zJ,, (z)

200 (z) =T, (2) ~J,,, (2)

z—Zan(z) = J,,(z) +J,_, (2)

JQ/(Z) = _Jl(Z)

4
[ 20 (2) dz = =277, (2)
[0}

fz“Jn_l (z)dz = z"J,(z)
0

1id )r{zJ (z)} = z57%g,__(z)
(ZdZ nvn n-r
o _ di{Jg,(kz)}
In(kz) = —3503

(2) Properties for first kind of modified Bessel functioﬁ

I (z) =1I,(2)

I,(-2z) = (-1)*I,(z)
zI4(2) = nI,(z) +zJ,,, (z)
éI,ﬁ(z) = -nI (z)+zI,,(z)
2I)(z) =1I,.,(z) +’In+1(z) |

Ezﬁrn<z) = I,,(2)-I,, (2)
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I{(z) = I, (z)

4
fz"’In+1 (z)dz=z™"I, (z)
0

[ 27T (2) dz = 271, (2)
0

(3 d | (2L (2) ) = 2771, ()

z dz )
/ _d{I,(kz)}
Tn(kz) = —F

233



- 234

APPENDIX B

INTEGRATION CONSTANTS
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(1) The coefﬁcieni?s in eqn. (3.26) are:

f(Azsz zZl+2,z,7!-2,,2,2,/p) dp

1
1 (5 I e (B 2B T\ 5 v _F
agg = Tf [Bz1szY1£a + (Byy +By; = Byy ) Z,Yn-B,, Z, Y, /p ] dp
1%
1
!
asg zszpZSdep
0

8n = Ay T, [an.pYZz,.'/"" (le"'Bzz By, ) YnZzI"'EJ.z Yan/pj dp
1 ‘ 1

afy =T, [ (DY, Ys + DiapY,¥a - DY, Y,/ p) dp - A5G I3 AA:
0 o

1
alh=-A2@ f pY, X.dp

TgR
m=—
8gp = leprde

al%n = A'1f [E;lenZ;/'*- (‘—B-Z:L +‘§:22 —El.l) XnZJ{'_E:LZXan/p] dp
o .
1
aﬁ,,=zxiszpxnzrdp
[}

an=h, X W,

X)X, %, dp
=1

Oy 12

= /.5 n_%
aln:'sn=f (Dyy X, Yn+ Dy P X Y - Dy X, ¥,/ ) dp
o

o i
aian = 2K, ¥, (&,) iZ=31 1) fX p - pcos(lnp)+lisn.n(.7.np)]dp



1
affa=M, [ X, X427, dp
' [o]

R | P 1 P
aftn= K [ X, ( [n Xydm)dp + 6, [ X, [ [ (nxll+x}) dnldp
0 0 0 0

1 P
a.f}ﬁ,‘j:—anXn(ankaden)dp
[¢} 0

1

RI'
YT !an Y,dp

ala:m:"
1 [

afin=1{ %, ([n X,dn)dp
[+] [+

Qn=}an (7'0 Qdn )dp
0 [+]

(2) The coefficients in eqn. (3.28) are:

820n= ~86n [ 15 1 " @5 + ary

81— ~36n [ 215 17" ( @35 +ady) + agn

apn=-ag a5l als

azin= - ( al%n + @43, + algn ) [ afs 1™ ayg + @13n +a1ﬁ‘:‘z

i =-af, [a% 1™ a%

az5n == ( @on *+ @11n * @12 ) [rall; 17 ( asp +ads ) +afen

ajen="( @y + afin + a%, ) a5 1 al - aft, [af 1™ ( afs +afs )
afiy=-aft, [ a3 17 ald + alfy

(8) The coefficients in eqns. (3.31) are:

m r 71 m m
b:l.r . Qg A3y Aag + Qg

m r b m
b3j Qgn ain dgn
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mk r A
by Y {aé’f }

mk r J
b,y 8gn aip

(4) The coefficients in eqn. (8.82) are:

m __ r r r m d 7 m m
Cin = (Q@ion+@11n*A2n) Pir + (@f3n+ain) D37 + aiey

mk __ r r r mk 7 7 mk mr k
Can = (@jop+@11n+a812,) b2y + (@i, +aikn) byy + aysp by

— o mr ) mkj
C’:'amzfj = a15nbakz? + airn

in which primes denote differentiation with respect to

corresponding coordinate.
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APPENDIX C

PROGRAM FOR NONLINEAR ANALYSIS OF LAMANATED
| SHALLOW SPHERICAL SHELLS
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PROGRAM NALSSS

NONLINEAR ANALYSIS OF LAMINATED SHALLOW SPHERICAL SHELLS

ON NOVEMBER 1, 1991
BY CHANGSHI XU

oXoNoNoXoXoNoRoNoNoNoNoXo!

#

THIS PROGRAM IS DESIGNED TO ANALYSIS BUCKLING, POSTBUCKLING

AND VIBRATION OF SYMMETRICALLY AND ANTISYMMETRICALLY LAMINATED
MODERATELY THICK SPHERICAL SHELLS AND CIRCULAR PLATES WITH INITIAL
IMPERFECTION, LINEAR, NONLINEAR, AND SHEAR ELASTIC FOUNDATIONS

THIS VERSION IS REVISED ON APRIL 3, 1991

(1)--~---MINOR REVISION ON AUGUST 9,1991
(2)-—---MINOR REVISION ON AUGUST 20,1991
(8)--~---MINOR REVISION ON SEPTEMBER 18,1991
(4)--—---MINOR REVISION ON OCTOBER 2,1991

" PROGRAM NALSSSONPUT,OUTPUT,XMAT,XGEM,XDYN,XINT,XOUT,XPCR,
#

TAPE3=XMAT, TAPE4=INPUT,TAPE5=XGEM, TAPE6=XOUT,
TAPE7=XDYN,TAPE8=XINT,TAPE9=XPCR)

DIMENSION Z11(10,10),212(10,10),721(10,10),Z31(10,10,10),

St 3k Sk gl ok 4k S e e 3e 3k

Y11(10,10),Y12(10,10),Y13(10,10),Y21(10,10),X11(10, 10),
X21(10,10,10),X31(10,10),X32(10,10),
Z1(10,10),72(10,10),Z3(10,10,10),Y1(10,10),
Y2(10,10),X1(10,10),X2(10,10,10),X3(10,10),X4(10,10),
21V(10,10),Y1V(10,10),Z1T(10,10),Z27(10,10,10),
¥15(10,10),X1W1(10,10),X1W2(10,10,10),X2W1(10,10,10),
X2W2(10,10,10,10),X3W1(10,10),X3W2(10,10,10),
Y(60),55(10),TT(10), WK(6000),FVEC(60),
BSI(5),B84(65),0K1(10,10),0K2(10,10),WA(20),
AD(10,10),8(2),RS(60,3),EIG(10), BETA1(10),
PQ(0:300),PCR(0:100), PWM(300),PWMA(300),
OW(300),00(300),PQ0(0:300),X11W0(10,10)

DIMENSION Y1TS1(10,10),Y1IVTS1(10,10),Y1STS1(10,10),X3WTS1(10,10),

e O O O R

ATS1(10,10),
XB1(10,10),XB2(10,10),XB3(10,10),YB1(10,10),YB2(10,10),
'YB3(10,10),ZB1(10,10),ZB2(10,10),ZB3(10,10),XKF(10,10),
XGF(10,10),QE(10),XB(10,10),YB(10,10),ZB(10,10),
ZW0(10,10),XKN(19,10,10,10),
YZBI(20,20),BV(20,20),YZBST1(20, 20),YZBST2(20 20,20),
Y25(10,10,10),YZBLTS1(20,20),BVTS1(20,20),
YZBST1TS(20,20),Z1TTS1(10,10),X1WTS1(10,10)

DIMENSION ZKBA(12),ZKIA(12),NA(12),IMATA(12),RM1A(12),RM2A(12),

#

WOA(12),ZKFA(12),ZKNA(12),ZGFA(12),ZMAT(3)

DIMENSION DX(10,10),DY(10,10),ZDV(10,10),XD1(10,10),XD2(10,10,10),

#
#

XD3(10,10,10,10),XDY1(10,10),XD¥(10,10,10),YDX1(10,10),
YDX2(10,10,10),YD1(10,10),XRI(10,10),YD1TS1(10,10)

COMMON/DYNA/ NTOT,KXM,NT,KX1,X(60),0MEGA0,ICOS(10),

#

ITBLA(10,10,2),ITBLB(10,10,10,4),ITER

COMMON/POS/ IPOS



