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ABSTRACT

Dynamic inelastic constitutive equations that take the
dissipative nature of inelastic deformation processes into consideration
are developed. This is accomplished by employing the theory of
irreversible thermodynamics based on internal- state variables. | The
thermodynamic state variables consist of two internal state variables
(the strain hardening parameter and the thermoinelastic strain), the
total strain, the temperature, and the temperature gradiént. An
explicit representation for the Helmholéz free energy functional is
proposed, leading to explicit expressions for the stress and entropy
functionals. The temperature~dependent thermbinelastic material
properties that appear in the expression for the free energy are
determined by a novel concatenation of the results of thermodynamics,
materials science and mechanics experiments, and mathematical analysis.
These state equations in conjunction with the evolution laws for the
internal state variables and the modified Fourier law of heat conduction
give a complete characterization of the thermomechanical material
behavior.

The nonlinear material model so &eveloped is non—-isothermal,
non—-adiabatic, and applicable over ‘a wide range of temperatures.
Furthermore, it allows for  the coupling of thermoelastic and
thermoinelastic variables and automatically gives the dissipative part
of the stress thereby eliminating the need for a separate dissipation
potential.

The constitutive equations, in conjuntion with the fundamental

balance laws of continuum mechanics, are applied to the study of the
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propagation of coupled thermomeéhanical waves in inelastic solids. Two
computational algorithms: one based on the numerical mekhod of
characteristics and the other based on the MacCormack finite difference
scheme, are developed for quantitative studies of the problem. The
results of the numerical simulations illustrate the coupled nature of
the thermal and mechanical fields in consistency with the physical
process modelled. It ié shown that neglecting the stored energy of cold
work in the analysis of plastically deforming bodies leads to an
appreciable overestimation of the temperature rise in the body. It is
also shown that the law of conservation of energy is capable of
predicting temperature rises without resorting to ab initio quantitdtive

guesses concerning the interconversion of mechanical work into heat

energy.
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CHAPTER 1

INTRODUCTION

1.1 Significance of Wave Phenomena

The fascinating subject éf wave propagation is concerned with
the gtudy of the mechanism by which a suddenly applied, localized
disturbance in a medium is transmitted to other parts of the medium.
Familiar manifestations of‘the phenomenon of wave motion include the
transmission of sound in air, the spreading of ripples on a pool of
wafer, the transmission of seismic tremors in the earth, or the
transmission of radio waves [1.1]. These e%amples show that wave
phenomena could occur in gaseous, liquid, and solid media and free
space, Although these media are diversified, a feature common to all is
the transfer of energy so that the physical quantities of intefest are
necessarily associated with energy propagation [1.2].

Studies of wave propagation arise in virtually every branch of
the applied sciences, and it is not surprising that practical
applications are as diverse as to include ultrasound in medicine,
ultrasonic flaw detection in opaque materials, nondestructive testing,
0il reservoir exploration, earthquake monitoring and analysis of ground
motion arising from seismic activities; and the characterization of the
dynamic response of materials subjected to impacts, explosions and
collisions such as we have in the defense and aerospace industries. 1

In analyzing the response of solids when loading rates are
comparable with the transit times of the waves, wave propagation must be
considered. This requirement 1is dictated by the high level of

sophistication at which technology is being utilized nowadays which
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demands accurate predictions and assessments. of the performance of
engineering structures. In particular, the desire for optimum
utiiization of engineering materials in dynamic situations 1is of‘
paramount importance in a world with continuously diminishing natural
resources.,

The science of wave motion in elastic solids is very well
developed because the theory of elésticity is very well understood.
Several monographs [1.1, 1.3] have dealt with this subject. It is weil
known, however, that under severe loads, metals or metallic alloys may
;uffer local permanent deformation thus exhibiting plastic or inelastic
behavior. Since in many practical situations the 1oadingé are actually
severe enough to cause this permanent deformation, the gtudy of wave
propagation in inelastic media is of significance‘and has attraqted a
lot of research workers as will be seen in the next section. 1In spite
of this fact, the subject of inelastic waves cannot be said to be fully
understood today because of the complex nature of fhe phenomenon of

plastic flow.

1.2 Developments in Plastic Wave Theories

The étages invq}ved in quantitatively analyzing wave motion
generally consist of the following:
(a) development of an appropriate mathematical model to represent the
physical problem,
(b) formulation of constitutive equations ‘Which are capab;e of
adequately describing the dynamic behavior of' the medium of
'interesﬁ, |

(¢) solution of the resulting system of partial differential equations,



(d). interpretation of the results obtained in (c),
(e) experimental validation of the predicted results.

The development of an appropriate mathematical model is
effected through an application of the ﬁodern theory of continuum
mechanics. This involves a kinematic description of the motion and
deformation behavior of the solid considered as a continuum and a
systematic application of the fundamental balance laws of mass, momente,
energy, and the second law of thermodynamics. The desire to understand
the details of the complex intermal structure of plastically deforming
solids brings to focus the demand of materials science, while the
generation of mechanically induced thermal fields makes thermodynamic
considerations a mnecessity. The solution of the resulting system of
“ partial differential equations is of course enhanced by developments in
analytical tools and numerical analysis which immediately reminds us of
the role of computer hardware and seftware. Finally, experimehtal
validations must rely on improvements in instrumentation. In practical
terms, therefore, progress in inelastic wave studies relies on
developments in the various branches mentioned above as illustrated in
Figure 1.1 below.

The study of the propagation of longitudinal plastic or
elastoplastic waves 1in rods has been the subject of extensive
experimental and theoretical investigations in the past four decades.
The :subject was initiated during the second world war when, almost
simultaneously, von Karman [l.4] in U.S.A., Taylor [1.5] .in Great
Britian and Rakhmatulin [1.6] in U.S.S.R. carried out their pioneering
works in this field. In these works the partiel differential equations

goverhing the motion of the. wave were derived under the assumption of a
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Figure 1.1 Illustration of the interdisciplinary nature of plastic wave
propagation studies. )
constitutive relationship that is independent of the strain rate; an
assumption that implied that the stress-strain relation was the one
obtained in a conventional quasistatic’tensile test. This approach is
referred to as the Rate~Independent (RI) theory and was also used by
White and Griffis [1.7]. Experiments performed to verify the RI theory
of these workers show clearly that the theory was not capable of
describing certain aspects of wave propagation phenomena -and that
dynam;c stress-strain relations were different from their static
counterpart. Clifton [1.8] suggested that from a microphysical point of
view, rate independence cannot be a possibly exact characterization of
the behavior of real metals because the accumulation of plastic strain

through the movement of dislocations cannot occur instantaneously.




The second classical pléstic wave theory is the Rate-Dependent
theory  (RD) of Malvern [1.9] in which the stress is assumed to be a
function, not only of the instantaneous strain, but also of the
instantaneous strain rate, While the RD theory was able to remedy some
of the deficiencies of the RI theory, it was unable to predict all the
details of inelastic wave propagation. This fact, coupled with the
relative mathematical simplicity of the RI theory for certain boundary
value problems fueled a major controversy [1.9, 1.10, 1.11] over the
necessity of including strain—raté effects in constitutive models for
studying impacts in rods or bars. -

Various applications and developments of the two approaches
have appeared in well-known monographs [1.9, 1.10, 1.11]. We will not
give a detailed review of works in plastic waves here because excellent
review articles of earlier works have beén published [1.12,71.13, 1.14,
1.13, 1.16]. Also, recent updates have been provided by Nicholas [1.17]
and by Clifton [1.18]. More recently, Clifton [1.19] presented a
coﬁprehensive review of plagtic wave experiments, starting with the
earliest experiments of Bell [1.20] on the propagation of incremental
waves in prestressed bars and the pioneering work of IKolsky [1.21]
concerning the plastic response of metals at high strain rates.

Like any problem of continuum mechanics, the complete
formulatibn of a wave propagation model requires constitutive equations
which realistically describe the material behavior under the particular
loading conditions being considered. It is obvious then that analyses
of inelastic wave propagation phenomeﬁa hinge on a thorough knowledge of

the - dynamic constitutive behavior of the materials concerned.
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Ironically, however, it is these constitutive relations that are being
sought in such studies. This dilemma makes it difficult to interpret
experimental data obtained under conditions of high rates of loading
where wave propagation phenomena must be considered, and explains why
théoretical studies and experimentation are so closely intertwined.
With this background, it is easy to see that any analysis of a problem
is bnly as good as the constitutive relations employed in the study.
This shows that constitutive relations have roles that are more
important than the conventional in the formulation of wave propagation
problems. It is therefore not surprising .that controversies surrounding
the classical theories are centered on the nature of the constitutive
laws.

Expectedly, developménts' in plastic wave theories ﬁave
depended on developmeﬁts in the constitutive theories of plasticity.

The history of plasticity as a science may be traced"to 1864
when Tresca published his results on punching and extrusion experiments
and formulated his celebrated yield criterion [1.22]. These results
were later employed by Saint-Vemant and Levy to lay some of the
foundations of ° the <classical theory of plasticity. Important
contributions that were made (after a loné period of time following the
papers of Tresca, éaint—Vénant, and Levy) by von Mises, Hencky, Prandtl,
Reuss, and others were reviewed in the classical treatises by Hill
[1.23] and Prager [1.24].

The vast majo;ity of constitutive equations in plasticity are
empirically based. These include the plastic stress-strain relations

proposed by St. Venant and the general three-dimensional equations



relating the increments of total strain to the stress deviations given
by Levy and later independently by wvon Mises. So also are the
Prandtl-Reuss equations which are generalizations of the Levy-Mises
equations to include both elastic and plastic components of strain.
Thus, it may be said that classical constitutive equations of plasticity
are products of conjectures and inductive thoughts, growing as they did
7from attempts to model observed behavior of metals and metallic alloys
under loading histories seQere enough to cause permanent deformation.

Despité the numerous works and research efforts that have been
directed to plasticity studies over the decades, it has still not been

possible to bring togethér all the mathematical theories under a
generally acceptable umbrella. Ihdeed, the question as to what the
definition of 'plasticity' is can still be considered open even today.
Only recently, Drucker [1.25] reported escalations of a flurry of
excitement about the meaning of the word 'plastic' at a ~workshop
organized by Profeséor E.H. Lee at Stanford University'in 1981. This
shows that a lot of work still remains to be done in this important
field of applied mechanics.

This apparent backwardness of the subject of plasticity is due
to the complex nature of the phenomenon of plastic deformation. The key
ingredients responsible for the complex nature include irreversibilities
or dissipation, time dependence, path dependence, hardening, and large
ductility. The incorporation of these important items in the
development of a general form of plastic éonstitutive equations is very
difficult, to say the least. Indeed, Drucker [1.26] suggests that a
general form for plasticity is no form at all! It should also be noted

that the features mentioned above serve to distinguish the behavior of

s
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an elastic-plastic continuum from that of a nonlinear elastic continuum.
Nevertheless, important advances have been made ' in
generalizing the theory of plasticdity. Most of these advances are the
results of applications of the deductive methods of modern continuum
mechanics in which the framework for theories of nonlinear material
behavior is derived in a semi-axiomatic buﬁ systematic way from a set of
fundamental laws of physics. In such applications, the need for the
theory to be consistent with continuum thermodynamics and the classical
plasticity theories is evidently brought to the limelight. So also is
the requirement for consistency with observations from everyday
experience and the results of experiments. A few examples concerning
the application of thermodynamics to plasticity are given in Chapter 2.
The generation of thermal fields during inelastic deformation
processes is the rule rather than the exception in practical situations.
Early experimental evidence concerning this phenomenon of
deformation-induced heating was reported by Farren and Taylor [1.27].
Subsequently, a lot of work has been directed towards the understanding
and qﬁantification of not only this phenomenon, but the twin phenomenon'
of heat-induced deformation. A review of experimental and analytical
investigations concerning heat generation and their effects in plastic
deformation processes can be found in a recent thesis by Kim [1.28].
These works have eméhasized not only the need to include temperature in
the development of inelastic constitutive equations but the importance
of allowing for the interaction of mechanical‘énd thermal fields., This
interaction dictates that a realistic constitutive model be able to
describe the coupled thermomechanical behavior of inelastic solids - a

requirement that dincreases the degree of complexity of an already



difficult situation. Accordingly, a number of works on developments of
thermoplasticity and thermoviscoplasicity models abQund in the
literature.

In addition to thermal effects, the works of materials
scientists have shown that a full understanding of the mechanism of
plastic flow must depend on knowledge of activities occuring at the
micfoscopic level during deformation. While such microscopic mechanisms
include twinning, wvoid growth, grain boundary sliding and phase
transformations, the most important of them all is the generation,
motion and interaction of dislocations [1.29]. The theory of
dislocations in connection with plastic flow is discussed in tﬁe
excellent monograph by Gilman [1.30]. Drucker [1.31] was one of the
first to attempt a continuum theory.of plasticity on the microscale.
Interesting applications of mechanics on the microscale to developments
in plasticity include the works of Rice [1.32], Aifantis [1.29] and the
references contained therein.

All the various aspects of plastic deformation described thus
far have received attention of researchers in this vast area, thereby 7
updating and enriching available knowledge on the theory of plasticity
and its applications. The brief exposition given here further explains
the complexities and intricacies involved in inelastic constitutive
modelling. The diverse nature of the branches of knowledge involved as
evidenced by the description given above and illustrated by Figure 1.1
is? in the view of the author, a major factor that has been detrimental
to progress inrthis field. This is because collaboration of efforts of
researchers in the different fields and coordination of research

activities, developments and findings in the several branches have not
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been feasible. Works in the different areas are scattered in different
specialized publications and researchers tend to remain within the
artificial boundaries of their own carved76ut domains thus making the
cross-breeding of information and ideas very difficult.

Since progress in plastic wave studies depends directly on
progress‘in plastiéity theories, it is to be expected that the same
impediment alluded to in the preceding paragraph would hinder advances
in dynamic piasticity too. This is especially so as 'dynamic effects’,
in itself is a further complication. We will now give a brief
description of how the study of plastic wave propagation has been
hampered (or enhanced) by impediménts (or deve}opments) in plasticity.

For a basis of discussion, we vrecall the basic equations

governing the propagation of uniaxial waves in inelastic solids by the

RD theory:
equation of motion, %% = p %% R (1.1)
] 3
compatibility equation, 5% = 3% , . ) (1.2)
. d€ o0 .
constitutive equation, 3 f(o,€) 3¢ + g(o,€), (1.3)

where ¢ is the nominal stress, € is the strain, v is the particle
velocity, X is the position of the material particle, and t is the time.
Equation (l.1) is obtained from an application of the law of balance of
linear momentum, eqﬂ;tion (1.2) ensures the kinematic compatibility of

the defintions of the strain and the velocity which are derivatives.of
the displacement field, u. The strain'and the velocity are respectively

defined as:

N

€ = == - (1.4)
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v = U (1.5)

Equation (1.3) is a rate-dependent typé of constitutive eduation in
which; for a given material, the functions f and g are prescribed.

We note that in the above system of equations there are three
unknowns: o, v and €, and three equations. Mathematically, therefore,
the system of equations seems to completely represent the mechanical
behavior of the system during wave propagation. However, on a close
examination, one finds that out of the four fun&amental balance laws of
continuum mechanics only one, that of balance of linear momentum, has
been used to derive the equation of motion (1.1). In the case of
solids, the density of the body may be assumed to remain constant for
small displacement gradients, and so the law of conservation of mass is
identically satisfied. If the assumption of symmetry of the stress
tensor is accepted at the outset, then the law of balance of angular
momentum is identically satisfied even in a general three-dimensional
state of stress., If thermal effects are neglected, thus festric;ing‘
considerations to  isothermal plasticity, the‘ second law of
thermodynamics is also identically satisifed. The implications of this
will be discussgd later on in the thesis. The law of conservation of
energy, however, leads, in a uniaxial wave motion, to the equation

de ov

_—::0_3—X.,

T (1.6)

where e is the internal energy per unit volume. The satisfaction of
equation (1.6) is not obvious; nor is its role in the study of plastic

waves since the system of equations (i.l - 1.3) appear to be sufficient.
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It is easy to show that in the case of a conservative system
(which is associated with a reversible process), for example an elastic
rod with a constitutive equation of the form

o = £(e), )
where f is any function of € (linear or nonlinear), the equation of
conservation of energy leads to the compatibility equation (1.2). This
is because the internal energy is nothing but the strain en;rgy which is
the work of deformation. Thus, in the case of a reversible process of
deformation (which occurs only for an elastic material undergoing a

purely mechanical process), the compatibility equation may be taken to

‘represent the equation of conservation of energy since they are
identical. In other words, the equation of conservation of energy may
be considered to be identically satisfied. Thus, for elastic materials
the system of equations (1.1), (1.2) and (1.3) is complete - physically
and mathematically - in isothermal situations and may be solved for the'
three unknowns.

For the inelastic case that is the subject of consideration in
this thesis, however, the situation is quite different. It is common
knowledge in the applied mechanics community that inelastic deformation
is dinevitably accompanied by energy dissipation or irreversibilities.
Apart from the thermal fields generated due to conversion of mechanical
work to heat energy, there is also the phenomenon of 'stored energy of
cold work' in which part of the inelastic work due to externallylapplied
mechanical loads is irrecoverably stored within the deforming body.
. Under this condition, the elastic strain energy is clearly not the same
as the internal energy. Therefore, for nonconservative systems, the law

of conservation of energy cannot lead to the compatibility equation
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and as such it is not an identity. Thus, for inelastic deformation
processes, the law of conservation of energy has a unique role to play
and must enter the formulation independently. This requirement
immediately necessitates a knowledge of the explicit form of
representation for the internal energy density, e. The explicit
repfesentation of the internal energy funct;onal is, in itself, é
constitutive equation for the material and is not known a priori. In
addition, the entropy production and temperature rise that are
associated with irreversible deformations must be accounted for by the
second law of thermodynamics.

These observations cléarly show the inadequacy of the above
formulation, particularly the form of - the constitutive equation (1.3)
which, unfortunately, is still employed for inelastic wave pfopagation
studies. They also explain why the model is unable to explain all the
pertinent details of dynamic plasticity. -

The temporal and spatial temperature variations in a body
produce thermal, dilatational deformation and changes in the
constitutive properties which will either generate or influence wave
propagation [l.15]. Only a few quaﬁtitative studies of inelastic wave
propagation dincorporating the presence of temperature fields through
dissipation have been reported in the literature. Francis and Lindholm
[1.33] were one of the first to explore the influence of temperature on
the propagation of elastoplastic waves. They considered a stationary
temperature profile and assumed the materiél to be bilinear with
temperature—-dependent mechanical properties but did not account for
strain-rate effects. Further work by Francis [1.34] improved on this by

the introduction of a more rational but still conventional viscoplastic
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constitutive equation. The work of Raniecki [1.35] considered the
effect of dynamical thermal expansion on the propagation of plane
elastic~plastic stress waves. Other early investigations include the
works of Nowacki which were extensively referenced and discussed in his:
text [1.10]. Studies dealing with thermal effects in inelastic bodies
using the theory of propagating singular surfaces are also numerous, see
for example, references {1.36] and [1.37]. 7

Despite all these works, there is as yet no generally
acceptable procedure for systematically incorporating temperature fields
or their effects in dinelastic wave studies because the theory of
plasticity i1tself has not been generalized enough to give direction and
guidance. There are several ways through whiph thermal effects have
been accounted for. In the majority of cases, ad hoec procedures
concerning the balance of work and energy are resorted to thereby
pre-émpting the law of conservation of energy. Date [1.38], for
example, accounted for temperature rises during plastic wave propagation
by assuming that the plastic mechanical work is wholly and adiabatically
_converted into heat energy. Many other workers assume a fixed ratio for
the portion of .the plastic work that is.converted into heat energy.
Such are the assumptions in references [1.39] and [1.40], for example.
Although these studies recognize the non-isothermal nature of the
deformation processes involved, the efforts fall short of the complete
physical representation., While it is true that the process of plastic.
deformation is accompanied by a conversion of plastic work into heat
energy, it is not true that all of the plastic work is converted, it is
not trué that the conversion proéess is adiabatic in all cases, nor is

it true that a fixed ratio of the plastic work is converted. This is
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Because there is ample‘experiméntal evidence that some of the plastic
work is stored in the material. Early experiments in this regard were
reported by Taylor and Quinney [l.41] while comprehensive reviews of
experimental and theoretical developments have been given by Titchener
and Bever [1.42] and Bever et al [1.43]. A very recent theoretical
investigation by Aravas et(al [1.44] further attests to the importance
of this stpred energy of cold work phenomenon. All these investigations
indicate that the assumptiogs discussed above are, in general, not
founded on the actual behavior of inelastic solids.

To the author's knowledge, only the work of Bodner and Aboudi
[1.45] has come close to recognizing the stored energy of cold work in
the analysis of stress wave propagation in inelastic solids. Their
minvestigation made wuse of a miéromechanically based constitutive
equatién that accounts for isotropic work-hardening. However, the
applications reported were restricted to isothermal cases. It should be
mentioned in passing that other applications of micromechanically based
theories have appeared, potably the studies of Clifton and Markenscoff
[1.46] and Markenscoff .and Clifton [1.47]. These studies are
qualitative, however, perhaps not needing a quantificatién of the stored
energy.

In summary, it may safely be said that the study of plastic
wave propagation has not benefited enough from advances in the

understanding of the microscopic phenomena of plastic flow.

1.3 Thesis Objectives

In our discussions so far, we have shown that a realistic

description of plasticity should, in general, include thermal effects
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even in the presence of only mechanical loads. This together with the
fact that in many practical appiications there also exist the presence
of thermal loads show the importance of being able to characterize tﬂe
thermomechanical behavior of inelastic solids. Such practical
situations are encountered in aerospace engineering, internal combustion
engines, hot gas turbines, nuclear reactors, nuclear blast environments,
or experimental techniques 1like pulsed lasers and electron beam
accelerators.

The main objectives of this thesis are as follows. First is
the systematic development of dynamic constitutive relations that are
suitable for studying the propagation of coupled thermomechanical waves
in inelastic media when the transient disturbances are due to mechanical
loads alone, thermal loads alone, or a combination of mechanical and
thermal loads. Of particular interest is the ability to incorporate Ehe
essential features of dissipatién and its implications and its effects
such as heat generation, heat flow, thermomechanical coupling,
hardening, and irrecoverable energy storage. The constitutive equatiéns
are then used to formulate a new form of the initial—boundary—value—
problem describing wave propagation in inelastic solids in which the
role of the law of comservation of energy is appropriately brought into
focus and emphasized. The second major objective is the design and
implementation of appropriate computational algorithms that ma& be used
to numerically simulate the propagation of coupled thermomechanical
shock and acceleraﬁion wayes in inelastic solids under a variety of
loading environments. The approaches through which these broad

objectives are accomplished are described in what follows.
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1.4 Organization of the Dissertation

The thesis is organized into seven chapters. In Chapter 2, a
continuum thermodynamic development of constitutive equations using the
theory of internal state variables (ISVs) is given. It includes a brief
introduction of the application of thermodynamics to inelastic
constitutive modelling and a review of available models based on the
approach. This is followed by a discussion of the choice of the
internal state variables. The formalism of thermodynamics is then
employed to determine the nature of and the restrictions on the
constitutive response functionals.

In Chapter 3, an explicit expression for the Helmholtz free
energy functional is proposed, leading to .explicit expressions for the
stress and entropy funct;onals in terms of the thermodynamic state
variables, In particular, the temperature-~dependent thermoinelastic
material properties involved are determined by a novel concatenation of
the results of -the thermodynamic development in Chapter 2, the ?esults
of materials science and mechanics experiments, and mathematical
analysis. Typical material properties characterizing the inelastic
thermomechanical behavior of copper and aluminum over a wide range of
temperatures are presented. We a}so propose a.generalization of the
procedure for the characterization of the inelastic thermomechanical
behavior of inelastic solids. Other constitutive response functionals
required are also given.

Chapter 4 provides-a kinematic description of the problem of
inelastic wave propagation in a half space. The balance laws of
continuum mechanics and the constitutive equations developed in Chapter

N

3 are combined to formulate the corresponding initial boundary value
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problem. A mathematical analysis to investigate the nature of the
system of partial differential equations is presented as the
computational algorithms for solving the system depeﬁds on this
knowledge.

Chapter 5 presents the development of two computational
algorithms to numerically solve the equations derived in Chapter 4. The
first algorithm is based on the numerical method of characteristics
while the second uti}izes the MacCormack finite difference scheme.

The results of computer implementations of the algorithms are
presented in Chapter 6. Numerical simulations of the propagation of
coupled thermomechanical waves in copper and aluminum under a variety of
loading situations are presented.

Chapter 7 closes the thesis\with concluding remarks about the
constitutive equations developed in this work and the algorithms
presented earlier on. Recommendations for future work are also

presented.
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CHAPTER 2

CONTINUUM THERMODYNAMIC DEVELOPMENT OF INELASTIC CONSTITUTIVE EQUATIONS

2.} Preamble

The discussions given in the last chaptér illustrate that
dissipation could havg important honsequences' in inelastic wave
propagation. If is important, therefore, that any constitutive model
that seeks to characterize the behavior of inelastic solids include the
effects and dimplications of dissipation in its development. In
phenomenologicai theories of the dynamical behavior of continua there
are several ways of accountingrfor dissipative effects [2.1, 2.2]. The
four commonest ways are:

(i) . introducing a viscous constitutive response funétional which
depends on the rages of the independent constitutive variables,

(ii) assuming that the entire past history of the independent
constitutive variables influences the constitutive response
functionals in a manner compatible with the principle of fading
memory introduced by Coleman [2.3],

(iii) partitioning the material into heterogeneous substructures, for
example, hard and soft regions via an approach referred to as
mixture theory,

(iv) postulating:the existence of internal state varibles (or hidden
variables) which influence the constitutive response functionals
and whose rates of change are governed by evolution equations in
which the independent constitutive variables appear.

At this juncture, it dis to be noted that the RD theory

discussed in Chapter 1l is a speciél case of the first approach in which
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the constitutive response functional is merely the stress and the
independent constitutivé variable is the strain. Examples of recent
applications of approach (i) to the study of rate-type materials can be
found in references [2.4] and [2.5].

Approach (ii) requires a knowledge of the explicit structure

of memory functionals. This is obtained by a nonlinear multiple

integral representation. In practice, only the first few of these -

hereditary integrals can be used because of the formidable task involved
in thHe evaluation of the corresponding kernels [2.6]. The approach has
been widely applied to viscoelasticity studies.

The third approach has been applied primarily.to multi-phase
media and has not ’attracted the attention of workers in inglastic
constitutive modelling appreciably.

The fourth a;proach which invol&es the use of 1ISVs is
currently gaining Qide applicability. This is due to the recognition of
the fact that the mechanism of plastic deformation is governed by
microscopic processes which can be described on the average by
macroscopic variables.

It should be mentioned that all the four apprdaches have the
same objective. For example, Coléman. and Gurtin [2.1] showed that
thermodynamics based on internal state variables yields results very
similar to those derived from thermodynamics based on fading memory as
developed by Coleman and his co-workers -~ see, for example, refgrence
[2.3]. Lubliner [2.7] showed fhat materials with ISVs in fact possess

fading memory if the evolution equations for the ISVs satisfy certain
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equilibrium stability conditions. He also demonstrated the equivalence
of the rate-type approach and that of ISVs for viscoelastic materials.

Current research trends in mechanics, however, have foéused on
the development of constitutive equations on a micromechanical basis
using ISVs to rationalize some of the phenomenological features of -
inelastic deformation. This is because thesg models can be e;sily
cofrelgted wigh the microstructural changes which are associated with
the physical deformation mechanisms. For wave propagation phenomena in
particular, microstructural -features are becoming increasingly
recognized as important to the stress-wave process because they are most
pronounced in the regime of rapid changes and strong gradients.

Although the theory of internal state variables may be
employeé for constitutive modelling outside the realm‘of thermodynamics,
it is generally believed that ISVs are of the greatest value Whenr
employe& under the umbrella of a thermodynamic framework. This is not
onlj because purely mechanical efforts in this direction have not been
entirely successful but because, as noted by Ziegler and Wehrli [2.8],
the pursuit of continuum mechanics leads sooner or later into
thermodynamics. The latter 1is especially true for dissipative
processes. Accordingly, din the present work the approach of
therﬁodynamics with dinternal state variables 1is employed for the
development of the required relatioms.

The history of thermodynamics as a subjegtl is a long and
controversial ome especially as it concerns the study of irreversible
processes. These controversies include the distinction between absolute
and eﬁpirical temperature; the existence, definition, and measurability

of entropy; and the mathematical representation and interpretation of
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the secbnd law of thermodynamics. ~All these - issues are of concern in
the characterization of nonequilibrium states. So also is the question
of uniqueness in such characterizations. . An exposition of the theory of
thermodynamics of irreversible processes is given in the book by Lavenda
[2.9].

The concept Qf internal variables was introduced into
thermodynamics by Onsager [2.10;.2.113. Early applicatioﬁs to continuum
mechanics include the works of Eckart {2.12], Biot [2.13, 2.14], and
Ziegler [2.15]. However, the article by Coleman and Gurtin [2.1] was
about the first to firmly establish the idea of modelling the behavior
of a wide class of materials using éhe theory of thermodynamics with
internal state variables. This statement is without prejudice to the’
. excel%ent works of Schapery [2.16], who earlier applied this theory to
study thermomechanical, fracture and birefringent phenomena . in
viscoelastic media, and Valanis [2.17] who later but independently
presented a wunified theory of the thermomechanical behavior of
viscoelastic materials.

Tﬁe literature on the applicgtions of the theory of
thermodynamics with internal state variables to ineléstic solids is too
vast to be reviewed here. Only a few representative references will be
cited.

Kratochvil and Dillon [2.18] utilized the Coleman-Gurtin-type
thermodynamics for the study of an elastic~plastic substance in wﬁich
quantities related to the dislocation motion and the dislocation
arrangement in the material were considered as  ISVs. They later
extended this study to include rate sens;tivity [2.19]. Perz&na and

Wojno [2.20] formulated a thermodynamic theory of a rate sensitive
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material within the same framework. Also, Perzyna [2.21] presented a
thermodynamic theory of rheological materials in which he used one group
~of ISVs to describe memory effects and another group to describe
internal structural changes. The works of Rice [2.22] and Lubliner
[2.23] provided theoretical foundations for the idea of utilizing
nonequilibrium thermodynamics based on 1ISVs for the development of
inelastic constitutive models. Lehmann‘[2.24] connected the description
of non-isothermal elastic-plastic deformations and the description of
such pehnomena by thermodynamic state equations.
More recent defelopments‘include the works of Ponter etral.
[2.25], Cernocky and Krempl [2.26], Allen [2.27], Ghoneim and Matsuoka
[2.28], Riff et al. [2.29], and Lehmann [2.30], té mention but a few.
Most of these and other available works do not account for all
the dissipative effects of plastic deformation processes discussed in
Chapter 1. Even 1in cases where such effects are cénsi&ered, the
constitutive equations are not readily applicable to éhe quantitative
dynamic analysis of concrete initial~boundary-value-problems. Reasons
for this include non-availability 6f material properties for a given
material, non-validity din some ranges of femperatures, making
assumptions about energy balance that may be inconsistent with the
provisions of the first iaw of thermodynamics, or, most common of all,r
disregarding the stored energy of cold work phenomenon. These
shortcomings are the main motivations for the desire to develop dynamic
inelastic comnstitutive equations that will more realistically describe
the physical phenomena encountered dufing deformation., In the next
section, a discussion of the:choice of Lhe ISVs employed is discussed

before the presentation of the thermodynamic formalism in Section 2.3.
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2.2 Choice of Internal State Variables

In using internal state variables we are seeking to replace
the dependence of response upon deformation history by a dependence upon
what that history has produced. Thus, these ISVs must be capable of
characterizing the microstructural state and changes in that state. 1In
the case of plastic deformation, these variables must describe the
arrangement of dislocations in the material. In theory, an infinite
number of ISVs are required to describe this microscopic phenomena.
Obvioﬁsly, this is a requirement that is not feasible for physical and
analytical reasons 1f the 1ISVs are to be wuseful in practically
predicting material behavior. On the basis of the good rep?oducibility
observed in many types of plastic experiments (despite the fact that it
is impossible to prepare two specimens of the same material which have
exactly the same microscopic dislocation arrangement), Kr;ner [2.31]
concluded that not the whole infinite set of ISVs is necessary in
constructing a reasonable theory of plasticity. It is doubtless not
reasonable to ask for a theory of plasticity which is better than the
experimental feproducibility. Thus, the usual procedure is to settle
for a finite number of phenomeno{ogical macroscopic variables that are
average properties of the detailed microscopic phenomena.

Here we employ two ISVs: the strain hardening parameter, Z,
and the thermoinelastic, flow, or plastic strain, P.

The strain hardening (or work hardening) parameter (Z) is a
measure of the overall resistance to plastic deformation. There is
available experimental evidence that the mechanism of strain hardening
is largely due to the development of internal stresses [2.32].

Physically, therefore, Z may be regarded as an internal stress. Some
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authors, for example Allen [2.33], refer to Z as a drag stress. Merzer
and Bodner [2.34] also speculated that a possible physical
interpretation of Z is the stored energy of cold work per unit volume.
Although the process of cold working is accompanied by work hdardening,
that is an increase in resistance to further deformation, the stored
energy of cold work is the change in internal energy arisiﬁg from
plastic deformation and as such it is unlikely that this quantity is
synonymous with the strain hardening parameter. This 1is Dbecause
phenomena other than hardening may also contribute to the stored energy
of cold work. On a microphysical basis, Z is associated with
dislocation arrangement. The units of Z are the same as the units of
stress.

The plastié strain (P) is the deformation remaining after the
material has been unloaded to the stress~free configuration. As such,
it is wusually referred to as the '"permanent set". According to
Kratochvil [2.35], the plastic strain describes a shape change of the
material element after a loading process by sufficiently fast unloading.
A microphenomenological definition of plastic strain is given by Bamman
and Aifantis [2.36] as the strain induced by dislocation ﬁotion.

Some authors, for example Lehmann [2.24, 2.37], Anand [2.38],
Hart [2.39], and Riff et al. [2.29] are of the opinion that the -plastic
strain (being a path-dependent variable) is not suitable for use as an
ISV for plasticity studies. However, a large number of workers have
ﬁsed the plastic strain as an ISV. Notable are the works of Perzyna
[2.20, 2.21}, Kratochvil and Dillon [2.18, 2.19], Kratochvil [2.35],
Greén and Naghdi [2.40], Lubliner [2.41], and Kluitenberg [2.42].

The author is not in agreement with the arguments of those who
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belong to the school of thought that considers the plastic strain to be
inadmissible as an ISV. Since those thap use the plastic strain as an
ISV do not usually give reasons to justify its use, the controversial
issue is elaborated upon in this thesis.

Lebmann [2.24, 2.37] is one of the major proponents of the
point of view that the plastic strain is in general not suitable as an
ISV. According to Lehmann, "Dislocations which have completely passed
the crystal produce plastic s£rains but no changes of internal st;te".
This statement is equivalent to Anand's statement [2.38] which says that
-the surroundings of atoms before and after plastic straining are
"essentially wundistinguishable". The wvalidity of this statement
depenas, of course, on the definition of "internal state". The internal
state during a process of plastic deformat;on should not be taken to be
synonymous with the "state of hardenming”. 1In other words, there might
be plastic phenomena- other than hardening which contribute to ‘the
thefmodynamic state of plastic deformation. During an actual motion of
a dislocation through a crystal, energy must be conserved just as in any
physical process. Any decrease in the energy of the external agents
caused by energy dissipation occurking as a result of dislocation
interactions and resistance to dislocation motion must be balanced by
the corresponding increase in the internal energy of the medium. Also,
a small but finite stress 1is required to cause the motion of
dislocations through crystals (at least crystals Qith defects). Thus,
one cannot expect the totality of the state of a crystal that has just
experienced the passage of a dislocation to be the same as the state
before the passage. What is needed, perhaps, is the capability of being

able to detect that change.
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There are also claims that: "Most different states of
hardening can belong to the same plastic strains (at the same stresses
and the same temperatures)'"., TFirst, it is to be mnoted that this
statement is based on the implied assumption that the state of hardening
alone uniquely and completely defines the state of the material. It has
been remarked in the preceding paragraph that there is no justification
to presume that the state of hardening is all that is required to
characterize the plastic deformation state of a body. Even if it were
so, the question of whether enough hardening state variables have been
employed to describe the state of hardening remains an open one: If
more hardening variables were introduced, it might be possible to notice
a change of state that went undetected with the insufficient number of
state variables.

For a clearer insight dinto this discussion, consider the
following logic. Suppose, for instance, there exists a thermodynamic
representation of the form 7

c =0o(e, 8, Z, P), (2.1)
for the stress functional. For a well-behaved function o, équation
(2.1) may be expressed as

Z =12(e, 8, g, P). (2.2)
According to the statement quoted in the last paragraph, it is possible

to find a situation where there is a Zl given by

Zl = Z(el, 61, 01,;P1), - (2.3a)
and there also exists a ZZ’ different from Zl’ such that
22 = Z(sl,rel, Gl, Pl)' - (2.3b)

Obviously, this situation is undesirable because it is intended that the

state variables should uniquely define all the state functions - the
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dependent gonstitutive variables (or the response functions). However,
the problem might not be with the plastic strain. It might be that more
internal state variables are needed to describe the state of hardening
or the state in general. If new hardening state variables X and Y, for
instance, are .introduced, we have, instead of (2.1),

c = o*(e, 6, X, ¥, Z, P). (2.4)
Thus,.if

* .
g, =0 (el, 6., X

1 1’

it is totally acceptable to have a situation where

1’ Yl’ Zl, Pl)’ (2'5.3')

o, =0 (e, )5 Xpy Tys 2y, P, (2.5b)
since each element of the set of hardening variables: {Xz, Y2, 22} may
'adjust itself in such a way that the set has the same effect in the
function " as the set {Xl, Y, Zl}' In practice, for exémple, the
additional hardening variables X and Y may model, among other things,
c&clic hardening, or, for that matter, other hardening phenomena that
may yet be beyond the realm of present understanding. Therefore, (2.5a)
and (2.5b) do not suggest a lack of uniqueness.

Furthefmore, the value Gs of the stress at a given state § is
not what describes the state of the deformation process. The values of
the other response functions are also needed as will become evident in
the next section. For example, coéresponding to (2.5a) and (2.5b)
above, it may turn out that the value of the free energy associ;ted with
the first state of hardening {Xl, Yo Zl}:

¥, = ¥*(e), 0, X5 Y, 2y, B)) ~ (2.6a)
differs from the value of Y corresponding to the second state of

hardening {Xz, Yz; ZZ}‘ In other words, there may exist a ¥ys different
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from e such that

¥y = xp*(el, 8> Xp5 Yo5 Z,5 P} (2.6b)
Also, it is easy to see that there is no apparent lack of uniqueness if
more state variables that describe plastic phenomena other than
hardening are included.

There are also arguments that the plastic strain does not
uniquely describe the state. As noted above, no single state variable
is expected to uniquely describe the state; indeed such a situation is
impossible for a dissipative material -~ not even for a thermoeiastic
process. Such a "luxury" of simplicity is the sole possession of
elastic materials undergoing purely mechanical processes, in which case
the strain, and the strain alone, uniquely characterizes the state.
What is required by the property of uniqueness is the capability of
being able to deduce unique values of‘the response functions from a
given set of the state variables used for the process description.

We find it reasonable to include the plastic strain as a{state
variable because we believe it affepts the inelastic por;ion of the
internal energy. This view is supported by the experimentally [2.43]
and analytically [2.44] observed dependence of the stored emergy of cold
work on the "extent of deformation'" - the plastic strain or the total
strain is usually taken as a measure of the extent of deformation.

Although P gs a péth—dependent variable, it should be realized
that what is being modelled is the deformation process. Thus, what is
of intergst is the thermodynamic state of the deformation process and
not the "internal state" of the material per se. Indeed -the complete
elimination of path dependence requires an infinite set of ISVs - a

requirement whose impracticality has been discussed earlier on.
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Lastly, it is known that dislocation motioh (which induces
plastic strain) causes the external shape of a body to change and so is
associated with shape~memory effects, see, for instance, Kluifenberg
[2.42]. Thus, the plastic strain may be useful in deééribing the part
of thg deformation history associated with the change in shape of the

body.

2.3 Thermodynamic Formalism

With the introduction of the two ISVs in the last section, the

independent constitutive variables may be written in two sets as

follows:
(i) . A={e, T, g}. (2.7a)
(ii) r = {z, P}. , - (2.7b)

In (i), € is the total strain, T is the absolute temperature and g is

the temperature gradient, that is,

_dT :
g = 55 - (2.8)

Set (i) is the set of observable thermpmechanical variables
Whiéh describe the thermomechanicgl configuration of the body. Set (ii)
describes the method of preparation of the observed thermomechanical 
configuration, Whereas the set A is sufficient to completely
characterize the state of a conservative (or reversible) deformation
process, a combination of the two sets (A and I') is required éo; the
description of the state of a nonconservative (or dirreversible)
deformation process.

Thus, the set of the independent constitutive Qariables is the
union of the two sets A and T which we may denote by £:

@=AUT =1{e, T, g, Z, P}. ' (2.9)
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According to the constitutive axibm of causality [2.45], therefore, the
dependent constitutive variables or the response functionals must be the
set II given by:
I=A{y, o, n, g} (2.10)
wheré Yy is the Helmholtz free energy per unit voiume, o is the stress, n
is the entropy per unit volume, and q is the heat flux considered
positive whén directed outward from the body. The Helmholtz free energy
(which we find more convenient to use than the internal energy or any of
its other Legendre transforms) is related to the internal energy, e,
through the eqpation:
Y =e - Tn | (2.11)
With these variables, we consider the process of wave
propagation in inelastic solids (or indeed any inelastic deformation
process) as a thermodynamic process (TP) consisting of all the
independent and the dependent constitutive variables, that is
TP: {A, Ts I} o (2.12a)
or
TP: {9, IL (2.12b)
The comnstitutive response functionals, I, are now assumed to

depend on the independent constitutive variables, @, in the form:

V= @(e, T, g, Zs P), (2.13a)
o= o(e, Ts gs Z, P), (2.13b)
n=n(e, T, g Z, P), L (2.13¢)
q= &(e, T, g, Z, P), :(2.13d)
Z = ﬁ(e, T, g, 2, P), _ 7(2.13e)‘
B=ce T, g» Zs P); B (2.13f)

where overdots denote differentiation with respect to time. It is to be
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A A

noted that the quantities &, Os N &, ﬁ and é are referred to as
functionals in the sense that they are functions of quantities that are
themselves functions of other quantities. For example,

b= p(e(X,t), T, ), g(X,t), Z(X,t), P(X,t)). (2.14)

where X denotes position and t denotes time. Equations (2.13e) and
(2.13f) describe the change of the internal state variables with time
"and are referred to as EVOLUTION EQUATIONS for the 1ISVs.
Mathematically, the equations are required in complementing the balance
laws of continuum mechanics and the 'usual' constitutive relations in
the . complete formulation of a: well-posed, determinate
initial-boundary-value-problem.

The represgntation (2.13); is assumed to.be unique for the
deformation process at any point in space and time during the process in
the sense that the specification of the values of the independent
constitutive variables uniquely specifies the values of the dependent
constitutive variables. |

The assumed constitutive relations satisfy the principle of
equipresence and the principle of material objectivity [2.45].

It will now be required that the assumed relations be
admissible -~ that is they must be consistent with the basic principles
of continuum mechanics which implies comsistency with the'principles of
conservation of mass, balance of linear moméntum, balance of moment of
momentum, conservation of energy, and the second laW of thermodynamics.

For thermomechanical processes, the lgw of comnservation of

Aenergy, otherwise referred to as the first law of thermodynamics, is

given by:
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k) T dn _ e 3q
s + nat + Tat = 3t + e + v, (2.15)

where Y is the heat generation per unit volume.- There is as yet no
consensus on the mathematical representation of the Second Law but the
Clausius-Duhem inequality is accepted as a valid statement in this

development, namely:

ey 4, (2.16)
ax T 3 .

The requirement of the axiom of admissibility will now be

invoked. First, equation (2.15) is combined with the inequality (2.16)

to obtain:

A

b+t -oe -3y 0. (2.17)

Now, from equation (2.13a), if the response functionals are assumed to

be sufficiently smooth, then

U N _,;,. _Jz
Substituting equation (2.18) into (2.17) gives.
LI VRS VPR VAT S
{ae - ole + {§T + nlT + 5g © t3; Z+5 P -gg S0, (2.19)

Since the quantities é, T, and é can be varied independently for any
thermodynamic process, the inequality (2.19) is linear in é,‘i, and é.

Hence it can be satisfied if and only if:

wrv
m < >

’ (2.20&)

...aA
n = —3% , : (2.20b)
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%% =0, : (2.20c)

and
—g—ilé+-g—;‘{ié-%ggo. (2.20d)
The relations (2.20a) - (2,20d) constitute the restrictions imposed on

'the constitutive assumptions by thei first and second laws of
thermodynamics. We find that the free energy functional is, as usual, a
potential from which the stress and entropy funétionals are to be
derived. We also find that the ffeg energy functional does not depend
on the temperature gradient. The inequality (2.20d) is the reduced form
of the Clausium-Duhem inequality and is the new form of the dissipation
inequality.. It is not surprising to observe that the entropy production
arises from strain hardening, plastic straining, and heat conduction
which are the thrée sources of irreversibilities in our model.

Note that the inequality (2.20d4) is not linear in Z and P and
these quantities cannot be arbitrarilyrassigned due to the connection
provided by the evolution equations (2.13e) and (2.13f). This implies
that the rate of strain hardening depenés on the rate of plastic
straining. This thermodynamic deduction is consistent with the observed
physical behavior of the process of plastic deformation. Therefore,
8&/82 and ai/ap do not vanish and so the free energy does depend on both
Z and P. ‘Again, dependence of ¢ on Z and P have firm experimental
foundations.

A reformul;tion of the constitutive relations based on the

above thermodynamic deductions will be:
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(2.21a)

(2.21b)

(2.21¢)

(2.21d)
(2.21e)

(2.21f)

(2.21g)

For convenience, the temperature difference, 9, defined as

is introduced, where T

R

6=T-T_,

R

(2.22)

is the absolute temperature at a reference

state, R. With this, the relations (2.21) may be expressed iﬁ the form

sl
Ne

Ne 0

Hje

v = U(e, 6, Z, P),

+

-
o= e
..3~
q(e, 6, g, Z, P),
F(e’ e, g’ Z’ P)’
G(E’ e, g’ Z’ P)’
Wy 4 oso0
ap (8 + T.) -
R .
where g = %% .

(2.23a)

(2.23b)

(2.23¢)

(2.234)
(2.23e)

(2.23f)

(2.23g)

(2.23h)
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In the classical theory of irreversible thermodynamics, the

3y 9y
quantities 3% s v and (-

5p ° ) would be looked upon as thermodyna-

8 _
6 + TR

mic forces or-affinities while the conjugate set é, é, and q would be
the corresponding thgrmodynamic fluxes. One would then set up linear
constitutive equations between any one of the forces and all of the
fluxes and invoke Onsager's symmetry pripciple to reduce the number of
constitutive coefficients. This procedure is, however, not applicable
to plastic deformation because of its highly irreversible nature.

Thus, the restrictions expressed in (?.23) are the extent to
which one can go via thermodynamic arguments concerning the nature of
the constitutive equations. Unfortunately, however, the representation
given by (2.23) is far ffom being complete because Fhe constitutive
response functionalg involved are still unknown. Although such
relations mayu be used, for example, in qualitative studies of wave
propagation processes at the wave fronts using the theory of propagating
singular surfaces [2.46], explicit relations for the constitutive
response functionals involved are required for a detailed quantitative
analysis of the wave propagation process in the entire domain of'
interest. Therefore, explicit representations of the response
functionals involved in the relations (2.23) must be sought. This is

the subject of consideration in the next chapter.
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CHAPTER 3

CHARACTERIZATION OF THE CONSTITUTIVE RESPONSE FUNCTIONALS

3.1 Explicit Expressions for the Helmholtz

Free Energy, Stress, and Entropy Functionals

The Helmholtz free energy functional or, equivalently, any of
its Legendre transforms, is the ﬁpst important comnstitutive response
functional in thermodynamics-based material modelling. This is because
it usually serves as a thermodynamic potential from which two other
response functionals, namely, the stress and the entropy, may be
derived. The free energy thus has a very important role to play in the
characterization of material behavior and indéed the formulation of any
initial—boundaryévalue—problem of continuum mechanics that involves the
law of conservation of energy.

It appears that the important role of the free energy has not
been accorded due recognition by inelast;c deformation studies (static,
quasistatic, and dynamic) because of the féllowing._ Most studies in
plasticity and viséoplasticity employ empirically conjectured or
experimentally determined stress-strain relations which fall outside the
umbrella of a general thermodynamic framework. In such situations, for
isothermal cases, the law of conservation of energy is usually ignored
(since the system of equations describing the boundary-value-problem
appears to -be mathematically complete), or assumed to be identically
satisfied as in the theory of elasticity.: Moreover, in certain cases,
some ad hoc assumptions concerning the balance of work and energy are
employed at the outset or 'afterthrought' energy balance checks are made

at the end of computations! The inclusion of temperature brings the law
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of conservatién of energy well into focus and furthermore, the
recognition of the physical phenomenon of the stored inelastic energy
gives a very distinctive and important role to the law of conservation
of energy.

Thus, the application of £he law of conservation of energy,
equation (2.15), requires a knowledge of the free energy, V¥, and the
entrop&, n; which is espeéially significant for the highly irreversible
process of plastic flow. It is clear, therefore, that if we intend:tor
properly analyze an inelastic deformation process, the constitutive
equations are not synonymous with stress-strain relations. Indeed, the
results of the ,thermodynamic analysis in the preceding chapter show
that, for thermodynamic consistency, therrelations for 0 and N cannot be
arbitrarily assigned. The best way to guarantee this consistency is to
find a suitable expression for the free energy which has the role of a
'parent' potential.

A lot of researchers in thermoinelastic constitutive modelling

-via thermodynamics assume that the free energy functional is of the same

form as its thermoelastic counterpart. This assumption is, however,

not consistent with available experimental resuits which indicate that a

portion of the plastic mechanical work is irrecoverably stored in the

material duriﬁg inelastic deformation. A large number of experiments in
this connection were reviewed by Titchener and Bever [3.1] and Bever et
al. [3.2].

Only a few workers have explicitly incorpora?ed an inelastic
portion in their expression for the free energy function of an inelastic
material,

Kratochvil and Dillon [3.3] proposed the following form for an

4
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elastic-plastic material:

b= uEeH? + vlla(l)l + vza(z) - CT(InT-1), (3.1)

e . s . . :
where €~ is the elastic strain, T is the absolute temperature, a(l) is

(2)

an ISV representing the dislocation density, and o is the other ISV

designating the density of more complicated dislocation arrangements

known as tangelings. The quantities u, Vv and C are material

l’ \)2,
constants assumed to be positive. The same’ workers [3.4] also proposed
a similar functional representation for the free energy of an

elastic-viscoplastic material, namely:

+ va - kT(ln%— -1, (3.2)

R

V= —;— uooz
where 0 is the stress, T is the absolute temperature, and & (which is a
scalar parameter that characterizes the defect arrangement) is the
number of dislocations. Again, uo, v, and k are assumed to be positive
material constants. It can easily be seen from equations (3.1) and
(3.2) that the expressions are linear in the ISVs and do not include a
thermal expansion term. Furthermore, numerical values of the material
constants involved were not giveﬁ for any material.

Kim and Oden [3;5] proposed. a temperature-independent

expreséion in terms of the plastic work:

Wp - % (Zl - Zo) exp (-mWp) . ’ (3.3)A

v = %[A(cr )2 + 2uer (B%)] - z,

In this expression, ? is the elastic strain tensor, Wb is the plastic

work and it 1is the single internal stafe variable introduced to
chafactefize isotropic hardening of the material. The quantities A and
U are the well-known Lamé constants of classical elasticity.: There is a

hardness variable, Z, which is‘conjugate to the internal state variable,
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Wp, and related to it through the equation:

L
Z = TRl Z1 + (Zo Zl) exp(—me), (3.4)
P
where Zo’ Zl’ and m are given material constants. Obviously the
expression (3.3) is restricted to isothermal applications, with the
attendant implications discussed in Chapter 1.

The free energy expression utilized by Besdo [3.6] is of the

form:

A A A ~

—'-G— L of e u— LN 2 _._\)__...A_ 2
Y=g G IBCB - 260 4 3+ Tglones - 317 4
0B, a. 2 - 2
+ LK U+ [B*"U*B] + A[G—GO][Ct-B—3] + wo(e). (3.5)

o,B ~ -
This includes thermoelasticity and purely thermal effects. However, the
8 ~

inelastic term, namely, ZoLBKOLU"[B' U*B], is temperature-independent and

a,Bp ~

, . . " a
no numerical values of the ‘'inelastic' material parameters 8K were
given for any material.

Benallal and Marquis [3.7] had an expression of the form:

R P R (3.6)
in which the first term represents the elastic strain energy, the second
term is the energy density related to the kinematic hardening, and the
last term is the energy density associated with isotropic hardening;
This expression 1is restricted to isothermal applicationms. The

anisothermal elasto-viscoplastic model of Benallal and Cheikh [3.8] is

given by:

w=mn+gmnge+%gm:§we+%m)+mnm, (3.7a)

where
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2
hl(a) =“§- Craa :a, (3.7b)

and
H(T,p) = [a) (1-exp(-2,1)) + azl-[p + 2 exp(=1p)],  (3.7¢)

where the tensor o and the scalar p are the ISVs used to describe
kinematic and isotropic hardening, respectively. The procedure fog
identifying the inelastic material properties was described and typical
material constants for INCONEL 718 super-alloy were given.

A feature common to all the above expressions is the mneglect
of the coupling terms between (thermo)elastic and (thermo)inelastic
deformation variables. The implication of this is the assumption that
the stress-strain (or stress-strain-temperature) relations are the same
as for (thermo)elastic materials which is inconsistent with the idea of
a dissipative part of the stress. We are hence motivated in this study
to seek to remedy this and the other shortcomings highlighted above. It
is also of interest to give a firm physical basis for the determination
of the material properties encountered.

First, a reference equilibrium state R is defined as:

R=1{e=

Z = Zp, P =Pp3 0}, (3.8)

éR’ R?
The function ¢ is now to be expressed as a Taylor series expansion in
termé of its thermodynamic arguments: €, 8, Z, and P about Fhis
reference state of deformation. It is preferred, for physical reasons
that will become clearer shortly, that the function ¢ be expanded in
terms of €, Z, and P while keeping 6 as a parameﬁer that may appear as
coefficients of the expansion terms. Of course, this mode of expansion

is equivalent to the expansion of ¥ in terms of all its arguments €, 6,

Z, and P. Thus, ¥ is taken to be of the form:
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b= 6(0) +E (@) + B (0)e” + Ky(0)Z + K, ()P + B, (5)2”

+ §3(e)"1>2 +B,(0)eZ + B (0)eP + B, (0)2P. (3.9)

The quantities A,(0), B,(0), A,(0), B,(8), B,(0), B5(0), B, (0), Es(e),
and §6(6) are mnow didentified as temperature-dependent material
properties. ©Note that this nonlinear, non-isothermal representation of
the free energy functional reduces'to the free energy expression for
thermoelastic materials in the absence of plastic deformation, allows
for thermal expansion and purely thermal effects, incorporates the
effect of strain hardening and permanent deformation, and iﬁcludes a
coupling of thermal, elastic and inelastic deformation wvariables. All
these attributes are in conformity with the reality of the physical
phenomena being modelled.
The _additive decomposition of the total strain (g) into its
thermoelastic (E) and thermoinelastic (P) parts in the form:
¢e=E+7P, (3.10)
is now introduced. This decomposition is generally wvalid for
infinitesimal deformations. With this, equation (3.9) takes the new

form:

2 ’ 2
v = ¢(8) + Al(e)E + Bl(e)E + Az(e)z + As(e)P + Bz(e)z

N 2 .
+ BB(e)P + B4(6)EZ + BS(G)EP + B6(6)ZP. (3.11)

This expression for y may now be partitioned into its two comstituent
parts:
E I
Y=ty (3.12a)

where

¥" = ¢(8) + A (&)E + B (8)E, (3.12b)
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and

I 2 2
T = 8,(8)Z + A;(8)P + B,(8)2" + B, (8)P” + B, (8)EZ + By (0)ER

+ B6(6)ZP. (3.12¢)

The quantity wE is the thermoelastic portion of the free energy
functional while wI is the thermoinelastic portion. Now, wE'is either
known from the classical theory of thermoelasticity, or can be founé
from a knowledge of the specific heat capacity at a constant sﬁate of
deformation (CD) and the thermoelastic stress—stfain—temperature
relation. However, wI is unknown because the thermoinelastic material
properties AZ(G), A3(6), Bz(e), B3(6), B4(6), B5(6), and B6(6) in
(3.12¢c) are yet unknown.

' With the decomposition (3.10), the results of Chapter 2 may be
more conveniently expressed in terms of the thermoelastic strain rather

than the total strain in the form:

Vv = w(E, 8, Z, P), (3.13a)
= 3% '
o =35, (3.13b)
L
q = q(E, 9, g, Z, P), (3.13d)
z= F(E, 8, g, Z, P), 7(3.138)
P = G(E, 6, g, Z, P), (3.13f)

s W~ g
55 Lt 5p P T g < 0, (3.13g)

With the explicit expression for ¥ given in equation (3.11),

it is now possible to determine explicit expressions for the stress and
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entropy functionals. From equations (3.13b) and (3.11), it.follows that
the stress is given by:

g = Al(e) + 2B1(6)E + B4(G)Z + BS(G)P. (3.14)
It can be seen that the stress has two parts: thermoelastic and

thermoinelastic,  or, alternatively, quasiconservative and dissipative.

Thus,
o = oq + oD, (3.15a)
where
o = A (8) + 2B (O)E, (3.15b)
is the quasicomnservative stress, and
o’ = B,(8)2 + B, (0)2, - (3.15¢)

is the dissipative stress. Thus, from our representation of Y, it has
been possible to explicitly détermine the dissipative stress without the
need of postulating a separate dissipation (or plastic) potential
fpnctiop, as in the case of Ziegler and Wehrli [3.9], for example. The
portion oD ensures that the stress relation for thermoinelastic
deformation differs from its thermoelastic counterpart.

Similarly, applying the result (3.13c) to the representation
(3.11) yields the explicit expression for the entropy functional in the

form:

! T 1 2 ] ! t 2
n=-[¢"(8) + AJ(O)E + B (8)E" + AJ(8)Z + AJ(8)P + B} (6)Z

1 2 \ 1 1
+ BL(0)P” + B (0)EZ + BL(8)EP + B/ (6)ZP]. (3.16)

Again, it 1is seen that the entropy consists of contributions from
thermoelastic (nE) and thermoinelastic (nI) deformations, that is,
E I
n=n +n, (3.17a)

where



45.

nE = o671 (0) + A1 (O)E + Bi(e)Ez], (3.17b)

and

I:...' ! 2 2
n [Az(e)z + A3(6)P + Bé(e)Z + Bé(e)P + Ba(e)EZ

+ Bé(G)EP + Bé(e)ZP]. (3.+17¢)

It 1is eésy to see that the expression (3117b) represents the wusual
entropy production in thermoelasticity while (3.17c) is considered to be
the entropy due to irreversibility of plastic deformation. It may now
be appreciated‘that the neglect of nI is tantamount to assuming that the
process of plastic deformation is reversible!

One of the important attributes of the theory of
thermodynamics with  dinternal state variables is the ability to
characterize nonequilibrium staﬁes using thermodynamic state variaﬂles
even if those states are considered to be constrained equilibrium
states. The beauty of the above expressions for ¥, 0, n lies in the
fact that those quantities can be uniquely computed whenever the values
of E, 8, Z, and P are given at a particular point provided the.material
properties are known., Thus, the explicit relations are constitutive
state equations in the same sense that is used in the kinetic theory of
gases, for instance., It should be'emphasized that the desire to be able
to simply expreés constitutive response functioggls in terms of some
independent constitutive variables ‘as 1s dome for non-dissipative
materials is the main motivation behind research efforts directed
towards the application of internal state variables to dissipative

processes.
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~

3.2 Determination of the Thermoinelastic Material Properties

The most challenging endeavor in constitutive modell%ng is the
determination of the associated material properties especially if they
a¥e physically motivated.- The methodology bf which the thermoinelastic
material properties appearing in the expression for ¥ in the preceding
section are determined is now presented.

Materials scientists define the stored (or latent) energy of
cold work as the portion of the plastic work that is irrecoverably
stored in the material during deformation thereby raising its internal
energy. Micromechanically, it is associated with the energy of residual
sstresses in the material due to crystal defects. 1In addition to the
formal experimental evidénce first provided by Taylor and Quinney
[3.10], Titchener and Bever [3.1] and Bever et al. [3.2] carried out
excellent comprehensive reviews of experiments that have been performed
to determine the stored energy of cold work, Es' Most of the
experiments reported for various metals and metallic alloys [3.1, 3.2]
indicated that the stored energy is proportional to the square of the
flow stress, or, equivalently, that the rate of change of the stored
energy with respect to the total expended energy is proportional to the
rate of change of the stress with the strain in the plastic region.
Since ES represents the irrecoverable portion of the internal energy

(which 1s designated e here), the experimental findings may be

IRR
mathematically expressed as

A
eIpp = Ko, (3.18)

where K is the experimentally determined constant of proportionality.

If an allowance is made for a small portion of the elastic energy to be

irrecoverably stored, then
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E I

®iRr = °1RR T ®IRR’ (3.19)

E . . . : E I
where erpp 1€ 2 small portion of the elastic strain energy, e , and ©IRR

is the irrecoverable portion of the inelastic stored energy.

From the relation between {§ and e, namely:

p = e-(8 + TR)n, (3.20)
it follows that y can be similarly split as:
b= g * Vreg * VR Ve (3.21)
where the quantities are defined as follows:
wg = recoverable portion of the
thermoelastic free energy, (3.22a)
w?RR = irrecoverable portion of the
thermoelastic free energy, (3.22b)
¢§ = recoverable portion of the )
thermoinelastic free energy, (3122c)'
wiRR = irrecover;ble portion of the

thermoinelastic free energy. . (3.224)
It dis known that no portion of the thermoinelastic free energy is

recoverable, therefore,

I

¢R = 0, ) ' (3.23a)
and so
I I
¥ = Vrpgp, (3.23b)
Hence,
E E 1 ’
v o=y + Yirr T VIR (3.24)

Also, in practice, the amount of elastic energy stored is very small
compared to either the total elastic energy or the total inelastic

energy. Thus,



48,

<=
[R5

RR (3.252)

<

w ml
A
A
—

and

—— << 1. (3.25b)

If the irrecoverable portion of ¥ is denoted ¥ then, from

IRR’
(3.23b) and (3.24), it follows that

_E I

Thus, in terms of the development here, the experimental findings

expressed in equation (3.18) becomes

: 2
wIRR + (8 + TR)nIRR = Ko", (3.27)
where
oY
B IRR
"IRR © T Ta8 (3.28)
Because ¢ is a function of {E, 6, Z, P}, wIRR is also a function of

{E, 8, 2, P}, and so is nIRR‘ Therefore, the expression on the left

hand side of equation (3.27) is a functional @ say, of {E, 0, Z, P}.

L,
Similarly, since o = ¢(E, 6, Z, P) as can be seen from equation (3.14),
the right hand side of equation (3.27) is also a functional QR’ say, of

{E, 8, Z, P}. Equation (3.27) may therefore be expressed as:

@L(E, 8, Z, P) = @R(E, 8, Z, P). (3.29)

Since all the constitutive resposne functionals are assumed to be smooth
functions of their thermodynamic arguments, the functions @L and @R must
also be smooth functions of those arguments. Smoothness of the

functionals & an@ 0]

L

R leads to the ordinary differential equatioms:
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Ay =(8 + T )AL = ZKAB,, (3.30a)
Ay =(0 + TpAL = 243, (3.30b)
B, ~(8 + T,)B) = K&_, (3.30¢)
By =(8 + T,)BL = KB, (3.30d)
B4 -(0 + TR)BL = 4KBlB4, (3i30e)
B ~(8 + T )BL = 4KB B, (3.30£)
By —(8 + Tp)B. = 2KB,3B,, -(3.30g)

where a prime denotes differentiation with respect to the differential

temperatﬁre, ®. Equations (3.30) are obtained by differentiating 5L and

~

¢R with respect to their arguments as many times as necessary in

equation (3.29).

The solution of equations (3.30) requires a knowledge of the
appropriate auxiliary conditions. These auxiliary conditions are indeed
material constants at say the reference temperature TR’ and they must be
found from experiments.

First, the possibility of determining these auxiliary
conditions (or the material properties themselves) from experiments that
are specifically designed for that purpose will be considered.

Recall that the explicit representation for the stress is:

g = Al(e) + 2B1(9)E + B4(9)Z + B5(9)P. (3.31)

It is easy to obtain from (3.31):

3g

B4(9) =%z ° (3.32)
9g : '

Bs(®) =55 » ' (3.33)
g

231(9) = 3@:. (3.34)

In the sense that the quantity QBl(e) is the modulus of elasticity
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(assuming elastic incompressiBility), B4(e) may be regarded as a
"HARDENING MODULUS", while Bsge) may be called a "PLASTIC MODULUS".

Thus, it seems that B4(6) may be found from experiments
performed to see how the stress (¢g) varies with thg strain hardening
parameter (Z) at constant strain (that is, constant E and P). Such
experiments performed isothermally but at different temperatures would
give B4(6) as shown in Figure 3.1. Similarly, BS(G) may be
experimentally obtained by varying the stress and the plastic strain at
constant E- and Z for varying temperatures. This kind of experiment
should provide data that would enable omne to plot graphs like those
shown in Figure 3.2, The hypothetical experiments just described have
limited (if any) feasibility. It is difficult to physically measure the
strain hardening parameter; there is currently no available means of
quantifying the resistance to further plastic deformation. Also, there
is no experimental procedure by which the plastic strain could be
directly measured (without unloading) while keeping the elastic strain
and the strain hardening parameter constant.

From the expression for the free energy functiohal, equation

(3.11), it is observed that

.g_g. = Az(e) + 2B,(8)Z + B, (8)E + B, (0)P, (3.35)
g_ﬁ = 4,(8) + 2B,(8)P + B ()E + B, (0)Z, (3.36)
2 @Y - my, 6.5
'2? (_g_%) - 233(9)., (3.38)
& & - 5,00. O (3.39)



Figure 3.1

Hypothetical isothermal stress-hardening curves
for various temperatures.

51.



Figure 3.2

> q

Hypothetical isothermal stress-plastic strain
curves for various temperatures.

.52,
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The quantities Az(e) and A3(6) may be looked upon as the values of 3y/32
and 3y/dP respéctively, at the reference state of deformation where E =
O,VZ = ZR = ZO; and P = 0, However the physical meanings of 93¢/3Z and
9Y/d9P are not known. One is therefore not in a position to think of
hypothetical experimental programs by which Az(e), Ag(e), Bz(e), B3(6),
and B6(e), or even their wvalues at a given temperature, could :be
determined. There is no choice then other than seeking alternate
procedures by which the auxiliary conditions can be determined.

Consider equation (3.30e) which is recalled here *for easy

reference:

- ' = '
B4 (8 + TR)B4 4KBlB4. (3.40a)‘
Let the value of B4(6) at the reference temﬁerature, TR’ be B4R’ that
is,
B, (0) = B .
& 4R (3.40b)
6 =0
Then the solution of equations (3.40) is given by
1-A.=A,T
_ 0 1 "2°R
Ba(e) = B4R(1 + TR ) exp(kze), (3.41)
where
}\l = AKBll’ (3.42&)
and
AZ = 4KBlz, (3.42b)
in which the thermoelastic material property Bl(e) is defined as
Bl(e) = B11 - Blze, (3.43)
B11 and B12 being material constants to be precisely defined later.

Also, the solution of equation (3.30f) for B_. is:

5
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o MR
BS(S) = BSR(l + TE) ‘ exp(kze), . (3.44)
where
B.(9) = B._.
5
>R (3.45)
6=0
The constants BAR and BSR are determined from the usual
experimentally determined isothermal stress-strain curves as
(3 + 2u )0y : R T
B, = -[ > 1+ [ - exp(A)) (1 + ) 17 (3.46)

0 R
where, AR and uR are the values of Lamé constants at the reference

temperature, o, 1s the coefficient of thermal expansion at the reference

R
temperature, and Z0 is the reference value of the strain hardening

parameter given by Bodner and Partom [3.l1l] and by Bodner et al. [3.12].

The value of BSR is determined as

B., = s (3.47)

where YR' is the wvalue of the Young's modulus at the reference

temperature and ET 1s the slope of éhe plastic region of the
stress-strain curve (otherwise referred‘to as the tangent modulus) at
the feference temperature. The &etailed determination of B4R and BSR is
éiven in the Appendix. The other eduations cannot be precisely solved
since the appropriate auxiliafy conditions are mnot available as
expléined above. Thus, the other material properties are determined by
assuming that the entropy contribution to the free energy function is

negligibly small. This assumption is quife valid for moderate

temperature applications [3.1, 3.2].
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In summary, the solutions of the equations (3.30) are-

determined as:

1-A-A, T,

. B,(®) = Bl + %{-) exp(2,0), (3.48a)

1-A.=A.T

17
B_(8) = B._(1 + =) : exp(A.6) (3.48b)

5 5R T : 29)s .
A3(9) = 2KA1(6>BS(6), | (3.48d)
B,(6) = KBZ(G), (3.48e)
2

B,(8) = KBL(0), (3.488)
B, (6) = 2KB, (6)B,(6). (3.48g)

Thus, since K is known, all the thermoinelastic material properties are
now known and hence the thermoinelastic portion of the free energy
functional is explicitly known.

Typical parameters for copper and aluminum are given in Table
3.1 below.

As remarked earlier on, most studies disregard wI on the basis
that it is small compared to ¥. This is generally nof true, however.
Chrysochoos [3.13] performed experiments to measure the stored energy
during plastic: deformation processes using the traditional
microcalorimetric techniques and a more modern approach based on
infra-red thermography. For the three metals considered in his
experiments, he observed that the fraction of the stored energy could

]

reach 507 to 60%. More recently, Aravas et al, [3.14] reported-
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Table 3.1 Thermoinelastic material constants that characterize the
stored energy of cold work phenomenon in copper and

aluminum
Material Parameter Copper Aluminum
2 -1

K(mN" 1) 6.12 E -11 2.39 E -10

A 24,75 . 48.89
AZ(K_I) 4.43 E -03 2.30 E -03

B,o -2.88 ~1.25
BSR(Nm’Z) 2.18 E 09 1.24 E 09
All(Nm"z) 8.93 E 07 3.14 E 07

theoretical studies which show that the fraction of stored energy could
be of the order meaéured by Chrysochoos or even higher.

A lot of workers usually assume that only 10% of the plastic
mechanical work is stored in the material while the remainder is
converted into heat energy. It was on this basis, for example, that
Klopp et al. [3.15] carried out the necessary thermomechanical analysis
required to interpret their high-strain-rate plastic wave experimental
data. Riff and Simitses [3.16] also made the same assumption in a
recent work concerning thermoviscoplaétic analysis. From the works
reviewed by Bever and his associates, and more evidently the works of
Chrysochoos [3.13] and Aravas et al. [3.14], it is clear that this
assumption is, in.géneral, not’ in harmonf with the physical material
behavior. Factors ranging from 107 to 907 have been suggested in the
literature [3.1%, 3.18j. Reference [3.18] comments on this state of
uncertainty. Indeed, based on observations that some workers (for

example, Date [3.19]) assume all the plastic mechanical work to be

N
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adiabatically converted into heat energy while others assume plastic
deformation to be isothermal, it may be concluded that this factor
practically ranges from 07 to 100Z! The situation is, therefore, even
more serious than apparent.

This is why the author believes that the ability to quantify
the thermoinelastic portion of the free energy is significant,
especially as it has been achieved on arphysical basis in this thesis.
This is because the need to try to guess a priori the relative
magnitudes of wI to ¥ is eliminated. Furthermore, in a systematic
application of the principle of conservation of energy, the question of
how much of the inelastic mechanical work is converted into heat energy
fakes care of itself. We 1like to emphasize that the principle of
conservation of energy is applicable to inelastic deformation processes
" even though they are highly irreversible. From the formulation
présented, it is easy to see that the fraction of the stored energy is
indeed a variable that depends on the thermodynamic state of the

deformation process. If this fraction is denoted by ®w, then

erpr Ymrr t O * TR)pg
W = = Py (3-493)
W W
p : P
or
vh-o + Tl
' 36,
W = T | (3.49b)
%
where Wp is the plastic work defined as:
P
Wp = JC(E, 8, z, P)dP. (3.49¢)

[o}
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From the above, it is clearly seen that
w = w(E, 6, Z, P). (3.49d)
For a material whose stress-strain-temperature relation in the
thermoelastic range is of the form
g = All + [A(8) + 2u(B)]E —[3x(8) + 2u(8)]a(b)e, (3.50)
where All is the reference stress, a(8) is the coefficient of thermal
expansion, and whose specific heat capacity a£ a constant state of
deformation, CD’ is of the form
C, =C, +C,0, (3.51)

D 1 2
it can be shown that the thermoelastic free energy functional is given
by
W5 =y =9 -n e+ A E+<(+ 20E> - (31 + 2u)aE8
R o o 11 2 o

2

;) 1 !
= €)(6 + Tp)In(l + 5=) = p(C,Tp - C)8 =~ 5 pC,0°, (3.52)

+ p(C,T
2 R

R

where wo and n, are the reference values of the free energy and the
entropy respectively. Comparing this relation with the exbression for

¢E (equation (3.12b)), it follows that:

$(8) =¥ = n 8 + p(C,Tp = C) (8 + T)In(l + '-g—)

R R
- p(C,T, = C)8 = = pC67, | (3.53a)
A,(8) = A, -[3x(8) + zu(e)]a(e)e, (3.53b)
B,(8) = 3[A(8) + 2u(0)]. (3.53¢)

With these, the full nonlinear expression for the free energy functional
is completely and explicitly defined. So also are the expressions for

the stress and the entropy functionals.
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It should'be pointed out that the expression for ¢E, equation
(3.52), makes no assumptions concerning smallness of the incremental
temperature (8) and as such is valid over a very wide range of
temperatures. It may be noted in passing that (3.52) reduces to the
classical free energy expression of Ilinear therméeiasticity if the
smallness assumption for 6 is invoked, and the specific heat capacit§ is

assumed to be temperature-independent.

3.3 Other Constitutive Response Functionals

Three other constitutive response functionals remain to be

characterized in the model, namely:

q = q(E, 0, g, Z, P), (3.54)
Z =F(E, 9, g, Z, P), (3.55)
P = G(E, ©, g, Z, P). (3.56)

A systematic way of finding explicit representations for the functionals
a, %, and é would be to adopt the same procedure that was employed for
the free energy functional above. This would ggain call for a barrage
of experiments to determine the resulting material properties or, worse
still, it might even be impossible to think of appropriate experimenfs
in some cases. Fortunately, however, it dis possible to utilize
available experimentally substantiated relations insofar as such
relations do not conflict with thé constitutive model developed in this
work, |

The relation (3.54) is concerned about the nature of the heat
flow law. Since it is generally agreed that heat flow is not influenced

by the process of plastic deformation (or, for that matter, any kind of

deformation), it is assumed that the heat conduction is governed by the



60.

modified form of the Fourier law of heat conduction. This modified law,
usually referred to as the Maxwell-Cattaneo relation, is of the form:

39 o 3 ’
q+ Ty 5 = K3y o (3.57)

0 is the

so—called THERMAL RELAXATION TIME incorporated to allow second-sound

where k is the coefficient of thermal conductivity and T

effects., This heat flow law has. been used for thermoelastic wave
propagation studies by Loxrd and Shulman [3.20], Achenbach [3.21],
Norwood and Warren [3.22], Sherief énd Dhaliwal [3.23], and many others.
For the evolution functions (% and é) it is assumed that the-
temperature gradient (g) is of no practical significance. Many kinds of
evolution equations for hardening and plastic strain have been proposed
in the literatgre. The usual procedure for their determination is to
curve-fit empirical relations using experimental results. The
Bodner-Partom model {3.11, 3.12] has been very widely applied to the
analysis of inelastic deformation processes and is the one adopted in

this work. The expressions are given by:

‘aA
] o Z - 2,
Z = m(ZA - Z)oP - KAZA(——EZf—) s (3.58)
2D 2n
P = 7—% sgn(o)exp[- (= an)(%) 1, (3.59)

where ZA’ ZO’ KA’ DO’ aA, m, and n are known material constants. Note
that Z and P are functions of {E, 6, Z, P} through their dependence on
the stress, 0, which is a function of the same set of arguments. In

equation (3.58),'ZA is the limiting (saturation) value of Z, and m is

the hardening rate. The negative of the first term is the "dynamic
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recovery" while the second term corresponds to thermal or "static"
recovery of hardening. The inclusion of thermal recovery of hardening
is important at high temperatures and enables response characteristics
such as secondary creep to be properly predicted. The parameter n in
equation (3.59) controls strain rate sensitivity and also influences the
overall level of the flow stress.

It should be noted that no yield criterion is involved in the
development presented in this work. It dis assumed that both
thermoelastic and thermoinelastic deformations are preseﬁt at any state
of the thermodynamic process. This eliminates the need to specify
loading and unloading conditions so that the same equations may be
directly applied for all loading and unloading histories. Thus, this
development may be considered to belong to the class of the endochronic

theories of plasticity.

3.4 A Proposal for Generalization of the Procedure for the Explicit

Characterization of the Free Energy, Stress, and Entropy

Functionals
It is reasonable to expect that the experimental finding:
e . = Ko’ (3.60)
IRR .
is not valid for every metal. However, it will be desirable to be able
to apply such a systematic procedure as applied above to the explicit
characterization of the inelastic thermomechanical behavior of metals
and metallic alloys even under multidimensional stress states. In
particular, the systematic determination of the inelastic portion of the

free eénergy functional is very vital.

For the most general case, let the thermodynamic state
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variables be made up of the set

TSV = {gE, T, g, 2%, gD, QP}

. (3.61)
In (3.61), C is a measure of the total deformation; for example, it may
be the right Cauchy-Green strain tensor defined as

¢ = ng, (3.62)
where ? is the deformation gradient, and it is assumed that this total
deformation measure can be suitably decomposed into thermoelastic (gE)
and thermoinelastic parts (9?). The quantities ZI and ?D reﬁresent,
respectively, the disotropic ‘hardening and the directional (that is

anisotropic or kinematic) hardening. Thus, the set {CE, T, g}

. . I
represents the external variables while the set {Z7, ZD, CP} represent
the internal state variables.
Appiication of the thermodynamic formalism to constitutive

modelling as shown in Chapter 2 leads to the following:

~ E I .D P
‘p = 11’(9 s e, z > % > 9 )’ (3'623)
g = i’% , (3.62b)
aC
3 ,

n= - 5% , (3.62¢c)
q = q(CE, 9, g, ZI, ZD, CP), (3.62d)
2t = F (8, g, 2, 20, O, (3.62)
2> = r (c", 6, g 27, 20, ¢, (3.62f)
w—lil'*"alﬁ "%D"I'Ew—P "QP—-(—G—-%_—ﬁg_ . _&5 0, (3.62g)

9z 3 5C R

where

g =Y6, : (3.62n)



and
0 =T-T_, (3.621)

Now, the free energy ¢ is given by

v =t 8, 2, 2, ). (3.63)

~ ~

Let there be N invariants: Il’ ;2, IB""’IN’ associated with

the set of thermodynamic state variables

= {CE, 9, zI, zD, CP}.

~ ~

S¢ (3.64)
Then 4in a manner similar to the presentation in Section 3.2, a
polynomial representation of the free energy functional'may be written
as: ‘
b= 0g(0) + £ (OIT) 4 £,(O)T, + £5(OT 5+ oov + EL(OTy.  (3.65)
Out of the N invariants, let there by M invariants associated witﬁ
purely thermoelastic deformation variables, so that
I, = Ej(gE, 8) 4 4 = 1,2,3,...,M. (3.66)
Then equation (3.65) may be expressed as
b= 0g(8) + £ (VT + £, (0T, + .. + £ (DT,
¥ O+ £ (T + oou + £(O)T,. (3.67)

Thus, the expression for Y may again be partitioned into thermoelastic

(or recoverable) and thermoinelastic (or irrecoverable) portioms in the

form
b=t v, (3.68a)
where
E _ .
VU= 9p(0) + £,(O)T) + £,(O)T, + ... + £,(O)T,,  (3.68D)
I-—-
Y o= fM+1(e)IM+1 + fM+2(e)IM+2 + ve. + fN(e)IN, (3.68c)

The quantity ¢E can always be readily determined from a
knowledge of the thermoelastic stress-strain-temperature relation

(l1inear or nonlinear) and the temperature dependence of thé specific
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heat at constant state of deformationt Thus, the function ¢G§9) and the
material properties fl(e), fz(e), oo fN(e) in equation (3.68b) can be
determined., The quantity wI represents the irrecovergble portion of the
free energy function. The stored energy of cold work, erp

be measured directly is related to ¢I through the expression

R’ which can

I
_ ol oY '
©IRR YT —~(6 + TR) 6 * (3.69)
s I . . . .
Since V¥~ is a function of the.invariants IM+1’ IM+2’ cees IN’ it follows

that the right hand side of equation (3.69) is a function of the same
arguments. Similarly, ergp HuSt depend on those arguments. Thus,
equation (3.69) may be expressed as

* %

LT Twroe oo W T Ty Tege ceer I (3.70)
where

(3.71a)

*
= 0
errr = %L M1 Twgoe cve0 Iy

and

vt (o AL g I I 3.71b
VT -O TR 55 = %y Twepr vee0 Ty (3.71b)
* I

The form of ®R is explicitly known from the expression for ¥,
equation (3.68c). Several experiments are now to be performed to
measure the stored energy of cold work and determine the nature of the
dependence of e on the measurable deformation variables and

IRR
temperature. From this, the dependence of eIﬁR on the invariants IM+1’
IM+2’ cees IN’ or at least a subset of these invariants, can be
expressed as a polynomial representation in the same form as the right
hand side of équation (é.7lb), and the material coefficients obtained in

the polynomial. curve-fitting process., With this, the left hand side of

* «
(3.70), that is QL’ is now fully and explicitly known. On invoking the
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% * ,
and ¢ (as a consequence of

smoothness properties of the functions @L R

the assumed smoothness of the constitutive response functionals
involved), the unknown material properties fM+1(e)’ fM+2(6), ooy fN(G),
are readily obtained. Hence, the free energy functional has been fully
and explicitly ‘characterized to incorporate the stored energy of cold
work phenomenon, This leads to explicit expressions of the stress and
entropy functionals on the application of the thermodynamic results
(3.62b) and (3.62¢c).

For the heat flow law and the evolution\equatiéns for the
internal étate variables, the same treatment given in Section 3.3 is

adequate.
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CHAPTER 4 .

PROBLEM FORMULATION

4,1 Lagrangian Kinematic Description of the Problem

Consider the very long rod or bar whose geometry is shown in

Figure 4.1 below.

S

X . ‘ — TO ®

Figure 4.1 Schematic illustration of a semi-infinite rod

As shown above, X describes the position of a material particle at time
t. The motion of a typical particle is described by

x = x(X,t), (4.1
where x specifies the present position. Thus, the displacement of the
particle is given by

u = u(X,t), (4.2)
If geometrically linear. strains are assumed, then the strain (which

measures the observed deformation) is given by

e = o (4.3)

The particle velocity, defined as the time rate of change of the

displacement is

v=2, ‘ C4.4)

’

If the displacement function is assumed to be well behaved,
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then
azu 9 du d ou
e - 3% 3¢ T 5T Gy (4.5a)
or
9 _ v
3t 9X ° (4.5b)

Equation (4.5b) is the kinematic compatibility condition.

The formal derivation of the local forms of the fundamental
balance laws may be found in any classical text of continuum mechanics
(for example, the book by Eringen [4.1]) and as such is not repeated
here.

The law of conservation of mass is identically satisfied if we
assume infinitesimal deformation so that the denéity remains essentially
constant throughout the deformation process.

The law of balance of linear momentum gives the equation of

motion as:

o =p oL~ £, (4.6)

where f is the body force per unit volume.

The law of balance of moment -of momentum is identically
satisfied since symmetry of the stress tensor is ;utomatically
guaranteed with only one component of stress.

The principle of comservation of energy states that the time
rate of change of the kinetic plus internal energy is equal to the sum
of the rate of work of the external forces plus all other energies that
enter or leave the body per unit time, It is to be emphasized once

again that this principle is wvalid for every process including
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dissipative ones. The local form for a general' thermomechanical process
was given as equation (2.15), namely:

oy Bn B o€ q
3t+n3t+T 0 = +

Frie 5t T 3% + v . (4.7a)

With the developments in Chapter 2, this equation assumes the reduced
form:

wP+(9+T)n=2§ + v . (4.7b)

&’l%’

The Clausius-Duhem inequality, which is the mathematical form

of the Second Law adopted in this work, may be recalled as:

an 9q g
Tagsv¥tx-768 (4.82)

while the reduced form gives the dissipation inequality:

oY o oy = q
35 7 + 3 P - T TR) g £ 0. (4.8b)

4.2 Summary of Fundamental Equations

The equations governing the propagation of uniaxial coupied
therﬁomechanical waves in inelastic solids will now be assembled. These
equations consiét of the fundamental balance laws just given and the
éonstitutive equations developed in Chapter 2 and Chapter 3.

Thus, the system of fundamental equations reqﬁired is given by

the following:

o€ _ ov
-é-t-:' = TX 3 (4.9&)
= E + P, - (4.9b)
80 _ o % _ g, (4.9¢)
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gw Z + éﬁ P+(6 +T )n = g§ + v, (4.9d)

v ='w0 = n,0 + p(C,Ty = €)(8 + T)In(L + g—)

2R R

1 2 2
- p(CZTR - cl)e - Epcze + Al(e)E + Bl(e)E + A2(6)Z + A3(6)P

2 2
+ Bz(e)z + B3(6)P + B4(6)EZ + BS(S)EP + B6(6)ZP, (4.9e)
= 4,(0) + 2B (6)E + B, (8)Z + B (O)P, (4.9F)

n = =[n, - p(C,T, =~ C)In(l + %-) +0C,0 + Al (O)E

R

' 2 ' ' ' 2 ' 2 '
+ Bl(e)E + Az(e)z + A3(6)P + Bzge)z + B3(6)P + B4(6)Ez

+ BL(O)EP + B! (8)ZP], (4.98)
9q _ . 98
q + TO a_t. =k -8_}—( R (4.91’1)
: Z -z
Z = m(Z,- Z)oP - K,Z (—————9)@A (4.91)
A A°AYZ, ’
2D 2n
b oY sgn@ennl- G . (4.99)

Note that overdots in equations (4.9) denote partial differentiation
with respect to time and the material functions Al(e), Bl(e)’ Az(e),
A;(0), B,(8), B,(9), B,(8), B.(8), and B,(0) have been explicitly
defined in Chapter 3.

The above is a system of teﬁ simultaneous algebraic and
partial differential equations in the ten unknowns o, v, €, ¥, 6, n, q,
Z, E, and P apd so it forms a determinate system. Thus, in principle

the system (4.9) can be solved for the unknowns if the auxiliary
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conditions are appropriately prescribed. The boundary and initial
conditions must be prescribed in such a way that the mathematical model
is well-posed. This will ensure the uniqueness of the resultant wave
motion.

Before we proceed further, it is desirable to reduce the
system to one of partial differential equations alone.

From equation (4.9f), the thermoelastic strain is readily

determined as

E =D (8) +D,(8)0 + Dy (8)Z + D, ()P, (4.10)
where
Al(e)
D, (8) = m=—nr (4.11b)
2 231(6) ’
34(6)
D3(9) - EEI?@T s (4.11c)
BS(e)
D4(6) = 531157 s (4.114)
Thus,
E = E(o, 8, Z, P). (4.12)

Since ¢ = &(E, 8, Z, P), equation (4.10) may be used to
eliminate E from equation (4.9e) so that
v =", 8, z, p). (4.13)
Similarly; the entropy can be expressed as
n=n(, 6,2, P). (4.14)

The total strain, €&, may also be eliminated since the application of
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(4.10) to (4.9b) leads to
e=E+P=c(o, 0, 2, P). (4.15)
Thus, with the above, the dependent variables E, €, n, and ¥
have been eliminated. There now remains a system of six partial
differential equations in the six unknowns v, o, 6, q, Z, and P which

are as follows:

) %% - %% =f, “ (4.16a)
30 36 . 3Z
D2(6) 3t + DS(O', 0, Z, P) 3¢ + D3(6) 3t
3P 9
g 36
Ji (o, 8, 2, B) 5= + J,(0, 0, Z, P) o2
| 32 3 _23q _ |
+ J3(c, 6, Z, P) 3¢ + J4<0’ 6, Z, P 5t A% = Y s (4.16¢)
T, %% -k %% =-gq, (4.16d)
%% = - F,(0, 2) , (4.16e)
A (4.16f)
‘In the above,
. an
J; = (0 + T)D,(8) =3 » (4.17a)

._‘ N e 1 1 1 ; an ’
J2 = (6 + TR){QE [Dl(e) + DZ(G)O + D3(9)Z + D4(6)P] + ae} s (4.17b)

_  , 3 3y
J3 = (6 + TR)[D3(6)3E + az] + Sy (4.17¢)
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_ an , dn, . 3y
J, = (® + TR) [D4(6) g T 3P] t 5O (4.17d)
— T 1 ]
D5 = Dl(e) + D2(6)0 + D3(6)Z + DA(G)P , | (4.17e)
D, = 1+ sz(e) . . (4.176)

In (4.17), the quantities on/3E, 9n/386, 9n/3Z, 8n/9P, 3yY/3Z, and dY/oP

are expressed in terms of {o, 6, Z, P}. Of course, the functions F, and

2
G1 are given by
z -z, %A
F2 = m(ZA - Z)O‘ - KAZA(T) » | (4.18)
2D 2n
0 +1, 2
G, = 7 sgn(@exp[-G) () 1. (4.19)

Examination of equations (4.16a)-(4.16f) reveals that the
system is highly nonlinear and that the thermal and mechanical variables
are fully coupled. The degree of complexity is especially appreciated
on examination of the functions Jl’ JZ’ J3, and J4 which in turn are
dependent on the nonlinear temperature—dépendent matérial properties
given in the 1last chapter. Thus, it is quite evident that mno
closed~form or analytic solution can be found for the above system of
equations. A numerical approach must be applied. However, the system
must be analyzed to examine the nature of the partial differential

equations so that appropriate numerical techniques can be applied.

4.3 Mathematical Analysis of the System of Equations

Equations (4.16) form a system of six simultaneous first-order
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quasilinear partial differential equations in the six unknowns v, o, 6,
q, Z, P.
Let the vector U be defined as

U=[v o 6 q 2z PI%, (4.20)

where the superscript "T" denotes transpose. Then the above system may

be expressed in the vector form

AU, + Blg = G, (4.21)
where:
3U
~ T
e S 3E " [vt O, et q, Zt Pt] R (4.22a)
U
~ T
Up =55 =1[v, o 0 q zZ, B, (4.22Db)
_ 0
0 D, Dy Dy D¢
0 J, J. 0 J. J
A = b2 34, (4.22¢)
° 0 0 0 . 0 0
0
1 0
0 o 0 1|
0 -1 0 0]
-1 0 0 0 0
B = o 0 -0 op (4.22d)
—o 0 0 -k 0 0
0 0 0 0
0 o 0 0
and
=[f 0 - -F G.17 (4.22e)
2o Y ! 2 1 * *



74.

Since the matrix éo is non-singular with its determinant given
by
det éo = p'rO'G2 s C (4.23a)

where

G2 = D2J2 - JlDS’ (4.23b)

. . -1
its inverse, A0 » may be computed as:

Gy O 0 0 0 0

pTgTy  TPTgDs 0 ~PTCs PTG,

sty - 10 el etgPy 0 -ergGy Pl
~o . P18, 0 0 0 o€, 0 0
0 0 0 0 0748, 0

0 0 0 0 0 0108,

(4.23c)

1

On premultiplying equation (4.21) by é; > we obtain the equation:

ay Y -
Ream Beswm -0, (4.24)
where
o L 0 0 0 o0
p
3,6, 00 DG, O O
J6; 0 0 DG, 0 0
AU = o o -2 o o 9of, (4.25a)
-~ TO
B(U) = [- 1 £ -GG ~G.G L 5. 61T, (4.25b)
o o) "378 379 T 2 1 ?
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and the functions G3, G4, GS’ G6’ G7, GS’ and G9 are defined as
G, = = (4.25¢)
3 G,° -eo¢

2
G4 = DSJ4 - D6J2, 7 (4.25d)
G5 = J2D3 - JSDS’ (4.25e)
G6 = D6Jl - D2J4, ) (4.25f)
G, = D,Jg = J;Dy, (4.25g)
G8 = G1G4 + FZGS - YDS, (4.25h)
G9 = G1G6 + F 2 7 + yD (4.251)
It is easy to see from these definitions that
%

Gi = Gi(o, 6, 2, P), 1 =2, 3, ..., 9. (4.26)

Equation (4.24) now represents the system of equations in a
form that standard methods may be applied to its classification.
The characteristic equation corresponding to the system (4.24)

is

det (A - AD) =0, (4.27)

in which the A's are the eigenvalues and

1]

is the 6 x 6 identity matrix.

Now, the matrix A - AI is given by:

-2 L 0 0 0o 0
P
3,8, A 0 D, O 0
J.G 0 -A -D .G 0 0
A-2L-= 13 23 . (4.28)
0 0 -k/t, - 0o 0
0 0 -x» 0
| 0 0 -Al

Substituting equation (4.28) into equation (4.27) gives:

k

G
2,,2..2 k 3 2 k.
A{A"[A" - —D G3] [JZ(A - D G3) + — 5 G ]} = 0. (4.29)

o 0 o
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Thus, the six eigenvalues Ai’ i=1, 2, ..., 6, are given by:

Al =0, (4.30a)
A, =0, - (4.30b)
>‘3 = +{M[1 + ¥ (1-R) ]}1/2 , (4.30c)
A4 = -{M[1 + ¥V (1-R) ]}1/2 s (4.304)
A = +HMIL -/ (1-R) 117, (4.30e)
Ag = -{M[1 - ¥V (1-R) ]}1/2 , (4.30f)
in which
M=M(s 0, Z, P) = -;- G3(1;— D, + -;- sz , (4.31a)
0
and
kG
R =R(s, 0, Z, P) = 32 i (4.31b)
pTOM

With (4.30) and (4.31), therefore, it is easy to see that the
eigenvalues, in general, depend on U, thaf is,

*
Ai = Ai(o, 8, Z, P). (4.32)

It can also be seen that there are two coincident eigenvalues: Al and

Az. For the eigenvalues A3, A4, XS’ and A6 to be real, the following
conditions must be simultaneoqsly satisfied:
(1) R(o, 6, Z, P) <1, (4.33a)
(11) M(o, 6, Z, P) >0 , . (4.33b)

If these conditions are satisfied then all the six eigenvalues
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are real and so the system (4.24) is classified as hyperbolic. If any
of the two conditions is not satisfied‘then four of the eigenvalues (A3,
A4, AS,'and A6) are complex qdantities and the systgm will be said‘to be
ultra~hyperbolic [4.21. Thus, the conditions (4.33a) and (4.33b) are
therHYPERBOLICITY CONDITIONS. It is intuitively conjectured that these
conditions are satisfied for the thermodynamic process of wave
propagatioﬁ'in inelastic solids.

With this classificaﬁion, the eigenvalues are the

characteristic speeds which may not coincide with the velocities of

propagation of the waves because of the nonlinear nature of the problem.

Thus
Ay =0 | (4.34a)
Az =0 ‘ (4.34b)
Ay = Vo, o (4.34c)
A4 = -V3, (4.34d)
AS = V5, (4.34e)
A6 = —VS, (4.341)

in which V, and V. are the characteristic speeds in the positive X

3 5

direction. Even though these speeds may mnot coincide with the shock
wave speeds, they give indication of the presence of two waves which is
consistent with the physics of the problem. They also give indication
of the coupled nature since both V3 and V5 are functions of {o, 6, Z, P}
which consist of both thermal and mechanical deformation variables.

In the absence of second-sound effects, the thermal relaxation
time assumes a‘zero value. It can be shown that, under this situation,

on neglecting heat conduction, system (4.24) 1is still hyperbolic but

with only one positive wave speed given by:
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. .
A= {1}

D, (4.35)

This is the vélocity of propagation of thermoelastic waves. Ihis
finding 1s consistent with experiﬁ;ntal results of plastic wave
experiments which indicate that plastic waves propagate at the elastic
wave velocity [4.3]. A major attribute of the rate-dependent theory of
plasticity is its capability of correctly predicting the pléstic wave -
velocity. It is important, therefore, that the constitutive model

developed in this work is able to correctly predict this physical

behavior.

4.4 Jump Conditions at the Wavefronts

The system of partial differential equations (4.24) govern the
wave propagation process everywhere in the bar except at the location of
the points of discontinuity - that is the wavefronts. Conditions valid
at the wavefronts must be determined separately.

Achenbach L4;4] defines the wavefront as the moving surface
which separates the disturbed from the undisturbed part of thg body. 1In
other words, the wavefront is the surface which tfa&els through the
medium as time t varies continuously, and across which there may exist a
discontinuity in the primary dependent variables. Computation of
variables at wavefronts is based on the theory of propagating singular
surfaces which is well treated in the books b§ Eringen and Suhubi [4.5]
and Chen [4.6].

Consider a regular surface S(t} moving in a material body B
which divides this body into two subregions B+ and B~ and forms a common

boundary between them as shown in Figure 4.2 below. The unit normal N
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S (t)

Figure 4.2 A body containing a moving surface of disconfinuity.

of the surface is directed toward the region B+. Let ¢(X,t) be a
scalar-valued, vector-valued or tensor-valued function such that ¢(X,t)
is continuous within each of the regilons 3+ and B, and let ¢(X,t) have
definite limits ¢+ and ¢ as X approaches a point on the surface S(t)

from paths entirely within the regions B+ and B , respectively. The

surface S(t) is said to be singular with respect to ¢(X,t) if and only -
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if

61 = ¢~ - ¢7 = 0. (4.36)
The quantity [¢] is referred to as the jump in ¢ across the singular
surface S(t). Further, the singular surface S(t) is said to be a wave
if its speed of propagation is non-vanishing.

There are jump conditions (usually referred to as’ the
Rankipe—Hugoniot cbnditions) corresbonding'té each of the ten equatiomns
given in equations (4.9a) - (4.9j). These equations are obtained iﬁ
what follows.

For the partial differential equations, a theorem due to
Kosinski [4.7] is applied. According to the theorem, for a partial
differential equation of the form:

)

[ e

2 .
EE> S A .37

the corresponding jump condition across a wavefront X = S(t) is given by

v, ul = [F1, ' (4.38)

where VW is the velocity of the moving wavefront.

In order to directly apply equation (4.38), the compatibility
equation (4.9a), the momentum equation. (4.9c), the energy equation
- (4.9d), the heat conduction equation (4.9h), and the evolution equations

for Z and P equations (4.91i) and (4.9j) are expressed in the form:

9€ ov :
at "m0 (4.3%2)
9 80 _ ¢ o
3t(pv) 5% £f=0, (4.39b)

d 1 .2, 8 ' - -
§E{w + (g + TR)n + 5 PV } aX(ov + q) ‘ (vE + v) 0, (4.39c)
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5 3 |
§E(Toq) - gi(ke) +q=20, (4.39d)
bl
YA
-a—E + F2 =0 > (4.396)
3P _ '
586 = 0. (4.39£)

Applying Kosinski's theorem to (4.39) gives:

[v] = -V _[e] , (4.40a)
[0] == oV_[v] , (4.40b)
[ov] + [q] = = V_[¥ + (8 + T)n + 2ov°] , (4.40¢)
K
[q] = ~ —— (8] , (4.40d)
0'w
[z] =0, | (4.40e)
[P] =0 . (4.408)

It is interesting to note that the jumps in the internal state
variables Z and P vanish, which implies that Z and P are continuous
across the wavefronts. This is usually the case for internal state
variables whose evolution laws are of the rate form; similar results
were obtained by Kosinski [4.7] and Bailey and Chen [4.8]. Yet, from
physical considerations, it is expected that if a wave causes plastic

deformation, a change of the plastic state of the body should be
experienced immediately after the passage‘ of the wave. The inclusion of
a flux (or divergenc'e) term to account for the spatial variation of an
ISV will give non-vanishing values of the jumps of the ISVs- thereby
removing this anomaly. 1In this connection, it is noted that Aifantis
[4.9, 4.10] has emphasized the importance of allowing the ISVs to be

-

governed by what he referred to as "complete balance laws" in which both
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the raté and divergence terms are included. The only problem with this
approach is that these cdmplete balance 1laws are not generally
compatible with the Clausius-Duhem inequality and he proposed a
generalization of the energy equation to include the Wwork done by the
gradients of thermodynamic variables or internal variablés (4.10]. 1Im
the light of the seeming anomaly discussed above, it appears that the
propositions of Aifantis deserve serious considerations by all
researchers involved in the application of the theory of internal state
variables to constitutive modelling.

Foé the four algebraic‘ equations, the associated jump‘
conditions are now determined. TFirst, the assumption is made that since
the evolution equations employed here give zero jumps in Z and P, the
jumps in the thermoinelastic material properties are approximately zero.
This is also true if the variations of these material properties are

slowly varying functions of temperature. Thus, it is assumed that:

[4,(8)] = 0, (4.41a)
[A3(e)] =0, ‘ : (4.41b)
[B,(6)] = 0, (4.41c)
[B,(8)] = 0, (4.41d)
[Bg(e)] =0, (4.41e)
[B;(8)] =0, (4.41F)
[Bg(8)] = 0 . (4.41g)

With these, the jump conditions associated with'the algebraic relations

(4.9b), (4.9e), (4.9f), and (4.9g) are given as:

[e] = [E] , (4.42a)
TR+6' +
[yl = - no[e] + p(C,Tp - cl)ln(;T—;T;;) {[e] + e‘ + TR}

R
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e+ C C

+p(C,T, ~ CH[O1{ln(l + o) = 1 = =2 [8] = —2—_ o}
2°R 1 T, 2(C,T; =€) (€T, - ¢))
+ [A,(OE] + [B,(E’] , (4.42b)
[0 = [A[(®)] + 2[B, (O)E]", © (4u420)
T + N L,
[n] = 0C,[0] - p(C,Tp ~ CPHIn(——7) - [A](O)E] - [B](BYE"] . (4.42d)
T, + © :
In equations (4.42), [Al(6)] and [Bl(e)] are given by:
[Al(e)] = —(BAR + ZuR)aR[e] s (4.43a)
[B,(8)] = - B, (6] , : (4.43b)

in Which‘it has been assumed that the jumps in A(8), u(8) and a(8).are
negligible. These three thermoelastic properties have been defined
already in Chapter 3.

It has been said earlier that the presenée of two positive
characteristic speeds suggest the existence of tﬁo wavefronts.
Therefore, any disconginuity that exists will be split-between the two
wavefronts.

Let G denote the lagging wavefront and L the leading wavefront
as shown in Figure (4.3) below.

The two wavefronts ‘are propagating in the positve X direction with
velocities VG and VL respectively. In Figure (4.3), region I is fully
disturbed in the semse that both waves have passed through the region,

region II is partially disturbed because only the leading wave has

traversed the region, and region III is totally undisturbed since none



84.

G L
E—— NQ; ‘—_"_,"Vl.

)<_></+'////__ +
/ DISTURBED ~ 17 UNDISTURBED
ST S —

Figure 4.3 Illustration of the locations of the leading (L) and
lagging (G) wavefronts in a bar.
of the waves has reached that region. 1In the (X,t) plane, therefore,
the solution domain of interest is as shown in Figure (4.4).
The regions are identified as I, II, and III which correspond to the
same regions in Figure (4.3).
First, the following notations are introduced.
(i) fG— denotes the value of a quantity f evaluated at a point
immediately behind the lagging wavefront,
(i1) fG+ denotes the value of a quantity f evaluated at a point
immediately ahead of the lagging wavefront.
Similarly fL— denotes the value of f immediately behind L and fL+ is the

value immediately ahead of L.

Also,

i
Hh
i
Fh

-

[£]g (4.44a)

[£1,

mn
Hh

1
Hh
L4

(4.44D)

Since for the investigations of interest in this thesis the body is

L+

assumed to be initially undisturbed, £~ = 0, and so practically,



Figure 4.4  Illustration of the locations of the leading (L) and
lagging (G) wavefronts in the -X~t space.
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[£1, = £, (4.44c)

Also needed is a formula for evaluating the jumps of sums (or products)
in terms of the jump of each of the summands (or factors). The
following relations are useful in simplifying the jump relations (4.40)

and (4.42) above.

[f +g] = [£] + [g] » : (4.45a)

[fg] = £ [g] + [£lg¥ , (4.45b)
[£fg] = [£1[g] + £ (gl + g [£] . (4345¢)

The proofs of these relations are easily obtained by invoking the
definition of the jump in a quantity given earlier, equation (4.36).
On using the definitions (4.44) and the relations (4.45) in

the jump relations, the foilowing system of equations are obtained:

[0] =[] + [0l , (4.462)
(61 = [0, + [0l » | (4.46b)
- [vl = [vl_ + [v], »  (4u46e)
lql = [aly + [al; 5 - (4.46d)
[E] = [E]_ + [El, , © (4.46e)
W] = [¥1, + W], » (4.46£)
[n] = [n]; + [nl; (4.46g)
[o]; = = oV [v], (4.46h)
[olg = - oV¢lvlg > (4.461)
[vl, = - V.[El_, | (4.463)



[vlg = = VglEl,

[01; [v]y + [aly = = Vp[¥], = Tpv [n]; = V. [0] [n] - 2oV, ([v])?

[UIGIVIG + [G]L[VIG + [v] (9], + lal; =

= Vol¥lg = TRVelnly = Vol8l,Inl, - VoI®], [nd,

- VgInl 18], = 30V, (V1% = eV, Ivl, [v, »

[e]L = - TlVL[q]L 3
[e]G = = T].VG[q]G s ‘
2 1 2
[Vl = - C([01)% - B (81 [el, + 5 ¥ ([E]D?,
[Wlg = = Co([01)7 = 2,101, [81, - B [81 [E],

- BR8], [E], - BL[8],[E]

-

[o],

-

- BR[e]L + Yl[E]L

[0], = - B8], + ¥, [E]

-

[nly, = G, 01, + Bl + 3¥,([E1)°

1 \ 2
[n], = Cy[e]G + Bp[El, + Y, [E] [E], + 5Y,([E] )" .

(4.

(4.

(4.

(4.

(4.

(4.

(4.

(4.

(4.
(4.

(4.
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46k)

461)

46m)

46n)

460)

46p)

46q)

461)

46s)

46t)

46u)
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" In equations (4.46), the material comstants involved are defined thus:

0
Tl = Ef (4.472a)
PCl
CX = S (4.47b)
R
ocl‘
C.. = = (4.47¢c)
Y TR ) .
BR = (BAR + 'ZuR)aR s (4.47d)
Y1 = ZB11 s (4.47e)
Y, = 2B, . (4.47f)_

It is to be noted that the first seven equafions in (4.46) are
obtained by virtue of the fact that a physical discontinuity is split
between the two Wavgfronts G and L.

The system of twenty-one simultaneous equations (4.46) contain

the twenty-three unknowns:

3

[01, [o]y, [01g [0, 81, [8],
vl vl [vlgs lal, [alp, lalg s
1, (¥, [¥lgs [nl, [nlp, [nlg
(El, [E];, [El,s V;, and V. .
Thus, in order for the system of algebraic equations to be solvable, two
of these twenty-three quantities must be given, It is interesting that
this immediately reminds one of the necessity to prescribe appropriate
auxiliary conditions for the system. In this case, for example, [0] and
[6] could be known. This corresponds to prescribing the boundary

conditions:
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o(0,t)

GOfc(t) ’ (4.48a)

8(0,t) = 8, (t) ’ (4.48b)
which are time-dependent stress and temperature impacts that may be
specified for the solution of the system of six simultaneous partial
differential equations (4.24). Therefore, the jump analysis may also be
used to determine the number of boundary conditions required to fully

define a system of quasilinear hyperbolic equations.

4.5 Formal Statement of the Initial-Boundary-Value-Problem

The initial-boundary-value-problem to be solved may now be
formally defined as follows:

Partial Differential Equations:

— e o e e - f = O s (4.493)

%—J(me,ZPm(me ZP) % + Ds(0, 8, Z, P)G, (o, 6, Z, m
- GB(G, 8, Z, P)G8(G’ 8, Z, P) =0, (4.49b)
90 4 3,0, 8, Z, P)G,(0, 8, Z, P) - D._(6)G. (g, 0, z, P)24
3t ’ 4 2 3 s Iy > 3%
- GB(O’ 6, Z, P)Gg(c, 6, z, P) =0, (4.49¢)
9 _k 38 ., g9 _
5%t " t. 3% T 1 0 (4.494d)
0 0
3z F (0, 2) = 0, (4.49)



oP
at

Initial Conditions:

v (X,
o (X,
8 (X,
q(X,
Z(X,
P(X,

Boundary Conditions:

Case (i): o(0,
8 (0,
Case (ii): v (0,
6(0,

0)
0)
0)
0)

0)

t)

t)

t)

t)

v, (X

oi(x)

ey

.qi(X)

Z, (%)

P, (®)

co(t)

6, (t)

vo(t)

04(t)

» X>0

s t > 0 >

» £ >0,

>

90.

(4.49f)

(4.50)

(4.51a)

(4.51b)

'Thus, the system of partial differential equations (4.49) is

to be solved subject to the auxiliary conditions prescribed in equations

(4.50) and (4.51). The solution will give the values of

UE,t) = [v(Et) o(X,t) 0(X,t) q(X,t) Z(Xt) PE,t)] . (4.52)

The other four variables:

from the algebraic relations given previously since

E(X,t) = E(@(X,t), 8(X,t), Z(X,t), P(X,¢)) ,

E(X,t) = E(X,t) + P(X,t) ,

E, €, ¥, and n may now be computed

(4.53)

(4.54%)
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= BEED, 85,1, Z(K,t), B(K,L) , (4.552)

oY
b= 0 t), 8(K,t), Z(X,t), P(X,L)) , (4.55b)
n = nEE L), 0(X,t), 2(X,t), P(X,t)) , (4.56a)

or
n= n*(G(X,t), 8(X,t), Z(X,t), P(X,t)) . ] (4.56b)

With these, all the ten dependent variables are now known at an&
location X and any time t.

" The syétem of partial differential equations that govern the
motion of the waves 1in smooth regions and the jump conditions which
describe the relationships between discontinuities in the dependent
variables have been fully defined. Both systems are highly nonlinear

and coupled and can only be solved through numerical procedures.
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CHAPTER 5

DEVELOPMENT OF COMPUTATIONAL ALGORITHMS

5.1 Introduction

The availability of modern advanced computers has made
possible the solution of scientific and engineering problems of great
complexity. This has, in turn, spurred a great deal of research in
numerical analysis to effectively utilize the capabilities of
present-day computers. In fact, developments are now reaching the stage
where computing machinés are being specifically designed for solving
some particular problems.

Hyperbolic equations represent the most challenging class of
partial differential equations (PDEs) to solve using standard numericall
procedures. Whereas there are available many general-purpose
computational algorithms for solving elliptic and parabolic PDEs the
same cannot be said of hyperbolic equationms. Yet such equations
describe a variety of iImportant physical phenomena such as neutron
transpoft, wave mechanics, gas dynamics and vibrations. One of the
important factors that makes the numerical solution of hyperbolic PDEs
particularly difficult i1is the existence' or ‘development of strong
discontinuities or shocks especially for nonlinear problems. It is

\known that in the case of nonlinear probleﬁs, shocks may develop even
when the initial data are smooth,

The iiterature on the numerical solution of nonlinear
hyperbolic PDEs is quite extensive. Standard procedures can be found in
the texts by Ames [5.1], Mitchell and Griffiths [5.2], Leon and Lapidus

[5.3], and Anderson et al., [5.4]. Most applications of available
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numerical procedures have been in the area of fluid dynamics -
especially gas dynaﬁics. This is because equations which govern all
unsteady flow and steady supersonic flow are hyperbolic in nature. The
‘development of élgorithms for numerically simulating these flows forms a
very import;nt branch of computational fluid dynamics (CFD) which is now
a discipline in its own right., Applications in the area of solid
mechanics, however, are comparatively very few since it is only in wave
propagation.and vibration problems that such equations arise.

The numerical methods that are used to analyze hyperboiic PDEs
may be broadly classified into finite difference and finite element
methods. Finite difference methods are discrete techniques in which the
domain of interest is represented by a set of points or nodes and
information between these points i1s commonly obtained using Taylor
series expansions [5.3]. The finite element method employs piecewise
continuous polynomials to interpolate between nodal points. Each of
these techniques may lead to the phenomena of numerical dissipation and
dispersion which cfeate a lot of difficulties in formulating a numerical
scheme. These problems have been well addressed (especially in the case
of finite differences) for the so-called system§ of hyperbolic
conservation laws but ‘a lot of work remains to be done for
nonconservative systems such as the problem being considered in the
present work.

There are considerable difficulties inolved in the treatment
of hyﬁerbo;ic systems of PDEs by the finite element method especially in
the presence of jump discontinuities. These difficulties require the
development of new finite element techniques which differ from the

standard ones to achieve satisfactory convergence properties. Efforts
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in this direction are still very much in the developmental stage.

The application of the finite difference method may proceed
via two main approaches. First, the system of PDEs may be directly
discretized to obtain the appropriate difference equations which are
thén solved to obtain the values of the primary unknowns at the nodes.
In the other approach, popularly referred to as the numerical method of
characteristics, the system of equations is first transformed to a
system of ordinary differential equations satisfied along the
characteristic directions and finite differencing is subsequently
applied. Furthermore, two different techniques are available when
employing the method of characteristics. The first technique solves for
the unknowns at grid points formed by the intersection of opposite
families of characteristics. Whereas the grid of characteristics is
useful in determining some physical features of the solution [5.5],
extensive  two-dimensional interpolation is required to obtain
information along constant time lines, a given spatial position, or
along a particle path [5.6]. Thus, this l;ads to programming
difficulties. Thek second technique, wusually referred to as the
"constant-time technique' or "method of fixed time intervals'" utilizes a
computational ﬁesh formed by 1lines of constant time and distance.
However, the eqﬁations are still dintegrated along the characteristic
directions and interpolation is employed to calculate the quantities of
interest at the feet of the characteristic curves which do not coincide
with a grid point., Although this latter technique introduces some
additional errors due to interpolation, it has the advantage of being
more orderly and manageable for efficient programming and high speed

computations.
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In this work, two separate computational algdrithms' are
presented. Thehfirst is based on the application of the constant-time
technique of the numerical method of characteristics while the other is
based on the MacCormack finite difference scheme originally developed by
MacCormack [5.7]. The latter has been widely applied to fluid dynamics

problems but only a very few applications to problems in solid mechanics

have been reported.

5.2 Application of the Numerical Method of Characteristics

The numerical method of characteristics is regarded as the
natural technique for solving systems of hyperbolic equations and since
the vast majority of Qave propagation problems are hyperbolic in nature,
the technique has been the most popular one applied to the numerical
simulation of wéve motions.

In this section, the numerical method of characteristics is
applied for the development of a computational algori;hm for solving the
system of equations given in the preceding chapter. First, the
differential equations satisfied along the characteristic directions are
derived. These equations are then numerically integrated along the
characteristic curves using the constant-time technique. ‘Aparﬁ from the
advantages given in the last section, this technique is considered more
suitable in this work because of the highly nonlinear nature of the
system of equations which gives rise to curvilinear characteristics.

It is to be recalled that the system of partial differential

equations under consideration is given by:

T2 f=0, (5.1a)
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REA SRR T 10
g—g +‘J1G3 g—;’{ - D,G, g—;é - G464 = 0, (5.1¢)
2.k Pl .o, (5.1d)

0 0
%%+F2=0 , | (5.1e)
%-]E-Gl=o , R (5.1£)

where all the functions have been defined previously in Chapter 4. In
the vector form, the equations are represented by:

U+ AU, + BO) =0, (5.2)

where the vector g, the matrix A, and the vector § have also been defined
in the preceding chapter.

| Ffom the eigenvalues of matrix A determined in the last
chapter, it follows that tﬁe characteristic manifolds in the {X, t, g}

hyperspace is given by the following: .

; N Lo
Corresponding to Al' 7w =0 (5.3a)
dX2
‘ Corresponding to 12: Frai 0, (5.3b)
dX3
Corresponding to KB: Fradie VB(g) s (5.3¢)
dX4
Ay — =
Corresponding to PR V4(g) » (5.34d)
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. dX
; -
Corresponding to AS. Tl Vs(g) , (5.3e)
dX6
Corresponding to A6: Frathe V6(g) s (5.3£)

where Xi’ i=1, 2, ..., 6, are the characteristic curves.
Note that, as determined before,

V4(0: e,’ Z, P) - V3(U: 8, Z, P) , (5.4a)

]

V6(0, 8, Z, P) = - Vs(o, 0, Z, P) . (5.4b)
Thus, twé of the characteristic curves are straight lines (vertical in
the X-t space) and the remaining four are curvilinear because the
charactéristic speeds V3 and VS are nonlinear functions of the yet
unknown soiution vector, g.

For the equation (5.2), the left eigenvectors are found from

the relation:

Doy a2 Po P, (5.5

where z(l)(U) denotes the ith left eigenvector which is also dependent

on U. From equation (5.5), the following are found to be suitable left

~

eigenvectors:

LD

~

[o o 0 o0 1 07, (5.6a)

e

~

={0 0 O O O0 11, (5.6b)
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D) - )
2 ? ) (5.6(:)

%(4)(?‘)’= < 39163 7 {
, (5.6d)

%(5) (g) - 4
(5.6e)
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N ~
1 T
1
st
2 .
_(pvs - J2G3)
V_.J.G
(6) 57173 a
L) = - 9 ?, (5.6f)
~ - T pV_. - J,.G
__Q(S 23)
ok J1G3
0
\' ~’

The equations satisfied along the characteristics are given
by:
- du
Py c+1Pmsm=0,1-1,2 ...,56. (5.7)

~ ~ o~ o~

Thus, the explicit form of equation (5.7) is as follows:

. dz _ dx _
(1) e F2 =0, along Frie 0. (5.8a)
..\ dP _ dx
(ii) Friie G1 =0, along Frile 0. (5.8b)
v - 1.6 T oVZ - 1.6
(1i1) dv 1 _do (p 3 273y do _ 0 P73~ 72 3dq _ 1,
dt pV3 dt pV3J1G3 dt pk JlG3 dt
eV, - J,G pV2 - J,G
1 37 Y2°3 1 P'3 7 Y273
+ —— GG, —( YG,G, — ==( Yg =0, (5.8¢c)
pV3 378 3J1G3 379 pk J1G3
dx _
along i V3
Ve - J.G T oV - 1.6
vy W L odo_ P37 o340 TolTs T v 3ydq _ L
v dt " oV, dt pV,T G, ‘dE T ok J G, dt
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2 2
pv, - J,G . pvV, - J,.G
1 3 273 1 3 273
- == GG, + (——=—) G,G, - =—( Jg =0, (5.84)
DV3 378 OV3J1G3 379 pk J1G3
dX
along E = —V3 .
DV2 - J.G T sz - J.G
) dv 1 do +'( 5 2 B)de _ 0( 5 2 3)dg _1 £
dt pV5 dF pVSJlGB dt' Pk JLGB dt P
2 2
oV, - J,G pvV. - J.G
1 5 273 1 5 273
+ —=G,G, -~ (———F)G G, -~ = (———=")q =0, (5.8e)
DV5 378 pVSJlGB 379 pk J1G3
dX _
along It - V5 .
ov2 = 5.6, . T, eV: - JG
(vi) dv + 1 do _ ( 5 2 B)de _ O( 5 2 S)dq _ 1 £
dt DV5 dt pVSJlG3 dt pk J1G3 dt
2 2
pvV. - J,G pv:. - J,G
1 5 273 1 5 273
- —=G,G, + (——=)G,G, - ==(——=——=)q =0, (5.8£)
OVS 378 stJlG3 379 pk' J1G3
dX _
along Fri V5 .

These six equations are now to be numerically integrated along each of
the six directions specified.

The solution grid in the X~t space is as shown in Figure 5.1;
Starting with initial values of q at AO’ Al’ AZ’ A3, A4, ..;,lvalues of

g at the next time step, that is, values of .U at points BO, Bl’ B2, B3,

..+ and so on can be computed.

For example, starting from known values of U at AO* A1 and A2,

we calculate the solution at point Bl; similarly we use the values of U

at Al’ A2, A3 to calculate the value of U at Bz; and continue this, say
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Figure 5.1 Solution grid in the X-t plane.
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until BS' Then we move on to the next time step and proceed in a
similar fashion. The detailed description of this can be found in
reference [5.5].

The grid points are classified as:

(i) Interior Grid Points,

(ii) Boundary Grid Points.

This is because the treatment given to a particular grid point depends
on its type. Points (like Bl’ Bz, Cl’ DB’ E2) which lie inside the
domain of the solution are known as interior grid points. Points (like
BO’ CO’ DO’ EO) which lie on fhe boundary of the solution domain are
boundary grid points.

In what foilows, the finite difference schemes which
correspond to each type of grid point are derived.

A second-order accurate scheme is used in order for the
results to have a reasonable lével of accuracy. This means that
second-order approximations are used for the integrations and also
quadratic dinterpolations aré' employed wﬁerever interpolations are

required.

5.2.1. Treatment of Interior Grid Points

A typical interior grid point, P, is shown in Figure 5.2. 1In

Figure 5.2, 33, SS’ S6’ and S4 are the feet of the characteristic curves
+  +
3’C5,
characteristics are coincident and lie on the vertical line through
+ - -
CB’ CS’ CS’ and C3 are
A6, and A

C Cg, and C., respectively, It is to be noted that the other

point P, It should also be noted that C c

1’

respectively associated with the eigenvalues A

2’

1 AZ’ AS’ AS’ 4°
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The solution at point P is to be computed with the knowledge
of the solutions at the points A, C, and B, 1In the procedure’ to be
followed, the ordinary differential equations satisfied along the six
characteristic curves will be numerically integrated along those curves.
This will give six simultaneous equations for the unknowns at point P.

It is appropriate at .this juncture to define the finite
difference approximations of integrals. A first-order or linear
approximation is defined by the relation:

f(x)@x = f(xo)(x1 - x (5.9)

0).

)

The second-order approximation is expressed by the trapezoidal rule
formula as:

*1

£(x)dx = %[f(xo) + £, - x (5.10)

o

%0

The X coordinates of the feet of the characteristic curves

designated X 'XSS’ XS6’ and’ XS4 are determined by a second-order

s3’

integration of the characteristic curves. The results obtained are:

1
X53 = Xp = 3(V3g3 + V3pllt (5.11a)
- 1
Rgs = Xp = 5(Voge + V)AL, (5.11b)
‘ _ 1 :
Xgg = Xp + 3(Vseq + V)AL (5.11c)
1

XS4 = XP + —2-(V384 + VBP)At s (5.11d)
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where V... denotes the value of V, at point §., and V.. denotes the
iSj i j iP.

33’ XSS’ XS6’ and XS4 depend on the

yet unknown values of the solution at point P. Furthermore, they also

value of Vi at point P, Note that X

depend on the yet unknown quantities gSB’ gSS’ Y s4°

The next step, therefore, is to estimate the wvalues of US3’

USS’ US6’ and US4 using quadratic interpolation with a knowledge of the

36° and g

values of QA’ PC’ gB’ XA’ XC’ XB, and the estimates of XSS’ XSS’ XS6’
and XS4 given in equétions (5.11). Thus, the following results are
obtained:

Upo = Ut 20U, = U)(Vouq + Vo)

33 ~C 47 A -B 383 3p

12 . 2
* g% (Uy t U~ 20 (Vggq + Vap) " 5 (5.122)
B 1
Ugs = Ug + 300, = Up) (Vsgs + Vgp)
+ 502w +ul - (L + V)2 (5.12b)
g (Uy +Up = 20) (Voo + Vop)™ 5 .
U —U. - Low —uy. . +V.)
Use = Ug = 3200y = Up) (ggq + Vip
+ 120 +u - W)+ V)2 (5.12¢)
g% Uy T Up = 20 Wsge + Vsp) s :
_ 1 _
Ugy = Ug = 70, = Up) (Vgq, + Vap)
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12 2
* g% Uy +Up - ) (Vg + V)™, (5.12d)
where
At
o = X (5.12e)

Note, again, that the right hand sides of equations (5.12) depend on
953, gS5’ 986’ 984’ and gP which are all yet unknown.

*We now ‘find second-order approximations to the integrals of
the ordinary differential equations along the characteristic curves,
that is, equations (5.8a - 5.8f). Because of the complex nature of
equations (5.8a - 5.8f), their numerical integration involves lengthy
algebraic manipulations and so the details are omitted here, The result

is that six simultaneous algebraic equations which are nonlinear in the

T s
primary unknowns HP [vP % OP dp ZP PP] are obtained. The
equations also contain the unknowns gSB’ qSS’ PSG’ and 934. The

nonlinear nature of the equations together with the presence of
intermediate unknowns immediately suggest that an iterative procedure
must be employed thereby giving the finite difference scheme an implicit
character,

The iterative equations to be solved are therefore as follows:

(k+1) _ 1 (k) X
zP = zC - 2(F2C + FZP YAt , (5.13a)
(k+1) _ 1 (k) :
PP = PC + E(Glc + GlP, YAt (5.13b)
Cagy + vy ™ = Pogd) + of ol + o) + ofyefH)
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4. (k) (k) ) q(k+1)
P

L (k) (k). (k) ,2 (k) (k) _(k)
Qg3” + Qp Ivgs” =( )9 g3

- ¢ = Q53" * Qpp %3 * Qp

+ (3 (k) (k)>e§1§)_ 4 (k) (k)) (k)

. (k) (k)
Qg3” + Q3p Qg3 + Qup ddgqy T L(QsE) g5 + (Q5f)p

+ (qu)ég) + (Q8q)§k)+ 7Q§§) + Qég) - 6Q§§> - Qé§)}At , (5.13¢)

1 (k) (k

Yo (k1)
("0g,"+ Qpp")vp

+ (

W oo - O s P

- gy + agpa ™ = g+ efphivg + Cog + aghogy)

309 1 q{03e () _ (4 4 B
S

(k) (k)
- Q" *+ Qgp s * Yp £)

Jagy + @05 + ey

L) . (k). (k1) 2 (k) . (k). (k+1) . 3 (k) . (k). (kL)
(MWgg™ + Wip )vp = (Wgs™ + Wyp')op + (Wgg™ + Wap™)0p

4. (k) (k)| (ktl) _ L. (k) (k) _.(k) 2. (k) (k) - (k)
- (Wgs™ + W,p7)qp = (Wgg™ + WipT)vgs” = (Wgg” + Wop")ogg

O e -

& + e + (@ + WP

57785

+ (w8q)é§) + (wsq)ék) + 7w§§) + wég) - 6w§§) - Wég)}At , (5.13e)

1(k) |, () (kD) | 20 (k) |, o(k)y (kL) 3. (k) o (k) (L)
(Wgg™ +Wpdvp ~ F (Wgg + WppT)op 7 = (Wgg” + W3p")0p
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- 9 (gD (g ®) 09,00 250 4y

(k) (k)
2p %

= Cal +ullhe - Mige * g dage + LG + e
(
+ (qu)(k) + (W8q)(k) ¢ ég) + Wég) 7w§§) (k)}At , (5.13f£)

Also, the intermediate unknowns are to be found from the

following iterative equations:

~§§+1) =g+ 2 O, PB)(Vggé * V(k)) + e (U + Uy 20¢)

(Vggg + V§§))2 ) ; (5.14a)
R LRSI R ADIE SN AEES

(végé + vé?’)z , . (5.14b)
Use = Up = 32 Wy - Up) sgy + Vp)) + go" @y + Uy - 20

Wik + véi))z , (5. 14c)
Ugy ) = Ug = T, - U (Vag + Vi) + ga?(m, + 0y - 20

(k) | y(k)y2 '
(V3S4 Vap ) A (5.14d)
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In these equations,

1,8 = o @®,

QSj Qi(PSj ’ (5.15a)
Qéﬁ) = Q1<P§k)> , (5.15b)
lwé?) i W'(Pé?)) ’ (5.15¢)
Wé?? = W, 05 (5.154)
V§§§ = Vi(9§§)) , (5.15¢)
vy = i) (5.15¢£)

Furthermore; the numerical functions Qi and Wi are defined as:

Q) =pV,J,Gy, (5.16a)
Q, (1) = J1§3 , : (5.16b)
Q. (U) = ovZ - 3.G, » (5.16¢)
3. 3 273 :
To 2

Q4(P) =T V3(pV3 - J2G3) s (5.164d)
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Q, (U) = G26.J | (5.16£)
6. 7378Y] 2 ‘ .
- 2 _
Q. (U) = l(pV2 - J.G )V, | ) (5.16h)
8\, k™ '3 2737"3 2 N
wl(y) = pVgJ,Gq s (5.161)
wz(y) = J,6, (5.163)
W, (U) = v2 - J.G (5.16k)
3N PVs 2°3 10K
To 2
w4(y) = VS(pVS - J2G3) , ' (5.161)
WS(P) = VoJ,64 5 (5.16m)
W) = ¢2e.J © (5.16m)
6. 3781 ? ’

P S
Wo(U), = (Vg = J,6,)6,6 (5.160)

_lou2 o '
W) = £0 Vs ~ J,69)V, . '(SJﬁw
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Equations (5.13a) -~ (5.13f) comstitute a éystem of algebraic
equations to be solved for vék+1), cék+l), 6§k+1), q§k+1), Zék+l) and

Pék+l) at each iteration level. It is to be noted that the system.of

six simultaneous algebraic equations are now linear in v§k+l), c§k+1),

e(k+1) q(k+1) (k+1) (k+1)
>

P p 2% P

, and P at each iteration step.
However, starting values of all the unknown quantities (both

intermediate and primary) are required to begin the iterative process.

In other words, values must be assigned to the quantities Us§0)’ gs§0)’
Uséo>, gsio), and géo) in order to start the iterative process. In

order for the iteration to have good convergence properties, these
quantities cannot be arbitrarily assigned. A first-order-accurate

procedure will be used to estimate the values of gSB’ gSS’ gS6’

UP and these values will serve as the starting values for the above

984’ and -

iterative procedure,
The major steps above are now repeated but this time

first-order dintegrations and linear interpolations are employed to

obtain:
o _ ., _ '
ZP = ZC FZCAt ’ (5.17a)
) _
PP = PC + GlCAt R (5.17b)

1.(0).(0) _ 2. (0) ..3.(0),(0) & (0) (0) _
Qg3'Vp " = Qgfp Tt "Qg3’0p - Qg3'ap =

1

ASB

At , : (5.17¢)

2
+ ASS

1_(0)_(0) 2 .(0)_(0) 3.(0),(0) 4_(0) (0)
Qe Vp T Qg '%p © = Qg% 7~ Qg7 %
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3 4
Ag, + "Ag bt , (5.17d)

1.(0)_(0) _ 2.(0) _(0) , 3.(0),(0) _ 4 (0) (0)
Wss'Vp = Wgg'Op " F TWgg 87 - Woclap

5 6
AS5 + ASSAt , (5.17e)

1,(0)_(0) | 2,(0) (0) _ 3,(0)(0) _ 4. (0) (0)

S6 P S6 P S6 P se &p ~
7 8
ASG + AS6At . . (5.17£)
.. 1 2h ., 3 4 5 6 7 8
The quantities ASB’ S3 AS4’ ASA’ ASS’ AS5’ AS6’ and AS6 are

numerical functions defined as follows:

gy 1D - D+ (DD DD e
s = Tagy) * Q5959 + Qg gy - ogf (5.18b)
- D 2D - DD O
4As4 - <Q5f>§2) + 6Q§2> - 7Q§2) + (Q8q>§2) , (5.184d)
g+ DD - BDD DD HOL
T (o RS () R (YR S () (5. 186)

S5 S5 57785 8+%'85 s§5 °
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T, = W@, (0) |, 24(0) () | 3,(0),(0) _ 4(0) (O

s6 = "sg S6 s6 °s6 W56 06 s6 s (5.18g)
8, _ (0) 6..(0) 7 (0) (0)
AS6 = (W f) + wS6 S6 + (W8 q) (5.18h)
Again, it can be seen that equations (5.17) contain the
intermediate unknowns qsgo), ~S§O), ~Sé0)’ and gsio) which are tp be
found from the relations:
19 -y (1 - av. ) +auv (5.19a)
SS .C 3C JA3C *
v Ly (1 - wv. ) +auv (5.19b)
SS ~C 5C JATs5e? )
v® v (1 - av. ) +au v, (5.19¢)
~S6 ~.C 5C .B'5C°? *
00 Ly (1 - av. ) + auv (5.19d)
~S4 ~C 3C B 3C° *
Equations (5.17¢) - (5.17f) may be put in the more compact
form:
5(0) uéo) = h(o),, (5.20)
where the vector uéo) is defined as
A
[ ©
P
(0)
(o]
w0 < F ( , | (5.21a)
~P
5 (0)
P
0
o
.




(0)

the vector h

and the matrix a

(0)

L (0)

(0)

1_(0)
Q3

1.(0)
Qg4

1..(0)
Yss

1.(0)
| Vs

is defined as

-

1y

3\

ﬁSA

75

\.

is defined as

2 (0)
= Qg3

2_(0)
Qg4
2. (0)

= Vg5

2(0)
Y36

S3

S4

S5

S6

2 .
A
+ SBAt

4
+ ASéAt

6
+ ASSAt

8
+ As6At

3.(0)
Qg3

3 .(0)
- Qg

3_(0)
Wss

3..(0)
$6

114,

(5.21b)

(5.21c)

It is also more convenient to put the simultaneous equations

(5.13¢) - (5.13f) in the compact form:

where

It is easy to see from equations (5.13) that the four

SR

~P

A0 (eH) _ L (K)

- <P -

(
A2

(k+1) )

P

G(k+l)
P

o (k+1)
P

2

(5.22)

(5.23)

components of



115.

(k)

vector b are given by:

(k) _ ,1_ (k) (k). (k) 2 (k) (k), (k)
by " = (Qgg” + Qpp")vgy” ~(TQgq” + Qyp")0g4

PO+ el ol + o) +
+ @05 + (o + g + oY + o
6, (k) (k) , '
- QSB - Q6P }At > (5.24&)

(k) _ 1.(k) |, (k) (k) ,,2 (k) k), (k) ,3.(k) (k)
byt = Qg + QppT)vg,” +( p )9, ~(

(k)
sS4 Qg *+ Q Qg * Q3p

)94

4, (k) (k)

- Cagg? + qpagy G

Yagy) + 1QsBgs + (Q & i

07 + gD gr + Qg0;

(k) _ :1 (k) k), (k) .2 (k) (k) (k) 3 (k) (k) o (k)
byt = (Wgg™ + WypTvgg” —(TWgg® + Wop")0gs” + (TWgg™ + Wap")0gs

- UGS+ ags) + LD+ @y + G g + gy

7..(k) (k) _ 6.,(k) (k)
+ WS5 +Wop' - Wes® = Wep At (5.24c)

(k) _ ,1.(k) (k) (k) _,2.(k) (k) (k) 3., (k) (k) (k)
by = (Wgg™ + WpT)vgg” +(Tgg” + Wpp")0ge™ = (g™ + W3p")0g¢

- g+ W agy) + LD + G0, + Gl g + (g
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L 6 () | 70

(k)
S6 6P 56 W7P At . (5.24d)

(k)

may also be identified as:

200 | 100 () R0 | 2,0 )

T R ‘12"~ -("Qg5” + Qp7)
(k) _ 3.(k) | (k) (k) _  ,4.(k) (k)
Rig” = Qg3 * Q3" Riy” = -CQg5" + Q")
(k) _ 1_(k) (k) (k) _ 2 (k) (k)
Ror = Qg T Qpp" Roo" = Qg * Qpp" »

(k) _ 1..(k) (k) (k) _ _,2.(k) (k)
R3p = Wgs *Wp' oo Ryg" = =(Wg5™ + Wyp™)
(k) _ 3..(k) (k) (k) _  ,4.(k) (k)
Ry3" = "Wg5 *+ W3 s Ryp” = =CWgs” +W,57)
(k) _ 1.(k) (k) (k) _ 2_.(k) (k)
Rep” = Wgg™ T Wp" Ruo" = Wgg" + Wy
(k) _  ,3.(k) (k) (k)Y _ 4.(k) (k)
Busw = ~(Wgg” + W37 Rug. = ~(Wgg™ +Wp7) (5.23)

Thus, the procedure for solving for the primary unknowns U

consists of the following main items:

(1)

(11)

Start iteration and set iteration counter to k = 0,

Calculate the starting values of the intermediate unknowns

0 ) (0) (0)
Us3 "s Ugs "5 Ugg 7» and Ug,

equations (5.19a)-(5.194),

using the relations given in
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( START )
Y

ITERATION COUNT, N=0
Y

0) y©O O )
compute Y9\ ull Use AND Yol

Y

COMPUTE z(PO) AND ngO)

¥
SOLVE al0) y (an h(®) FoR ul®

COMPUTE z(F',) AND P(P')

Y

compute R anp '@

9
-
(@]
by
C
Y

SOLVE R‘O) uil

Y

4

1}
| Z ]

L g

) y 00,y (N)
coMPuTeE YNl y), u) ano ull:

Y
compuTE ZN*) AND p(‘gl*l) Y
A . {
COMPUTE RIN) AND- b(N)

Y

SOLVE B(N) (N+1) = b(N) FOR u(g+l)

NO
L<————""""Convergence p ___—=

YES
(__END )

Figure 5.3 Simplified flow diagram of the procedure for
computing the solution at interior grid points
using the numerical method of characteristics.
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(iid) Compute Zéo) and Pgo)‘using equations (5.17a) and (5.17b)
respectively,

(iv) Solve equation (5.20) for géo),

(v) Calculate the values of the intermediate unknowns gS§k+l),

g (k1) (k+1) . (k+1)
S5’ -°s6 * ls4 ¢

(vi) Compute Zék+l) and P§k+l) from equations (5.13a) and (5.13b)
respectively,
(vii) Solve equation (5.22) for u(k+l),

(viii) Check convergence: stop iteration if convergence has been
achieved or increment iteration counter (by oge) and return to
step (v).
Convergence is deemed to be achieved when

: (k+1) (k)
IUP - I“J"P

®

max < TOL , (5.26)

where TOL is a small number that defines the error tolerance.
A description of the skeletal procedure for solving for the
unknowns at the interior grid points:is given in the flow chart shown in

Figure 5.3.

5.2.2 Treatment of Boundary Grid Points

Figure 5.4 shows a typical grid éoint, M, and the
characteristic curves passing through it.

It will be recalled from Chapter 4 that two boundary
conditions are required for the problem under consideration. In this

thesis, two kinds of boundary conditions are considered. These are:
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t A
— M
At - C3
Cs
A
¢ s I X
A S¢ Sq4 C B
- A x | Ax R
» e >
KNOWN : INTERMEDIATE UNKOWN :
Xpr tas Up xs6 1 Use
xc» YcoUc . xg4a.Usgg
 tm, Ug
*B» 'B* 1B PRIMARY UNKNOWN :
tse Um
Tsa | T
XM o tm U=[V0'6qu]=U(x,t)

Figure 5.4 Characteristic curves passing through a typical
boundary grid point, M.
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(i) stress and temperature time-dependent input, that is, ¢ (0,t) and
8(0,t) are prescribed for t > 0 ,
(ii) velocity and temperature time~dependent input, that is, v(0,t) and
8(0,t) are prescribed for t > 0. |
Other physically reasonable combinations of ‘boundary conditions (for
example 0(0,t) and q(0,t) prescribed) may be considered following the
same line of develqpment presented below. |
The procedure for computing the unknown solution at point M,

that is U is essentially the same as the procedure employed for the

M
interior grid points.

In the case of the boundary grid points, there are only four
characteristic equations (and not six) involved since there are only
four characteristic curves through the point M that 1ie within the
solution domain as shown in Figure 5.4. The positive characteristics C;
and C; through point M ;ie outside  the solution domain and hence the
equations along those curves cannot be numerically integrated.

However, the four simultaneous equations that will bewébtained
from the numerical integrations along the characteristi; curves AM, AM,
SéM and S4M are sufficient to find the ﬁnknowns at point M, This is
because two quantities have been prescribed along the boundary so that
there are only four unknowns at point M,

We proceed as in the case of interior grid points to derive a
second-order-accurate scheme for the iterative computations of the

unknown solution at point M, The results are summarized below for the

two types of boundary conditioms.
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Case (i): o0(0,t) and 6(0,t) prescribed.

Starting values for the iterative process:

(0)

Use) = U, (1 = aVg,) + aUv,, , (5.27a)
(0) _ _
ugy) = U, (1 20) + OUTs, s (5.27b)
(0) _ _
2, =z, - F, At , | (5.28a)
(0) _
M = PA + GlAAt s (5.28b)
o) _ & 7 8 3 2
vy = A Qg U g + TAgAt + WG By ~ “Wg oy}
- { A + 4A At + 3Q 8. - 2Q 0.} (5.28¢c)
9 Wsel Agy sS4 54 54’ .
0 _, 1, (7, .8 3 2
Q= Ay Qg U Agg + TAgeht + THg By = TWgoop ]
1. .3 4 3
- Ag Wsa{ Ao, + "Ag,At + 7Qg, 6, - QS40 Yo (5.28d)
where
L. 4 14, L
By = 1 Wgg Qg = Qg Wggh -+ (5.29)

Iterative equations:

Use = Uo = 70y - U {8Vsgy + Vo )-2) + 5T, + Uy - 20)
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{a(Végé + V§§>)—2}2 , |  (5.30a)

gD oy (k)

Ly - ()y_o3 4+ L
U4 Ue = 7(Ua = Updte(Vagy + Vay')-2) + g(U, + Uy - 20)
(k) (k) 2
la(Vg, + Vg )=2}" (5.30b)
(k = O, l, 2, n-n)
(kt) _, _ L (k)
Zs =2, - 5(F,, + Fy)ae (5.31a)
(k+1) _ 1 (k) -
B, = B, 456, + Gt (5.31b)
2l a lerl) _a, () (5.32)
where
V.
®r, = M . (5.33)
Iy

i( .
The two components of the vector aw( ) are:

20(0) 4 o)y (&) _ 300 , () (&) | 4o (R) L () ()
Yog, = ( )8 (

+ (Qg,” + Qpy Qg * Q3 19,4 Qs + Qy Jdgy

6H® (k)

% + (Qga)gy

QD + (g + Qg
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6. (k) (k) 7.(k) (k)

+ QS4 + Q6M QS4 Q7M ot (5.34a)

O I PP LIy w(k) b ) (O

b A g 90)6 ) L 3y, 0600 400, (k>) @

S6
H (W E )(k) + @ 4 g ¢ &+ ) P
+ 6y (&) (k) _ 7 (k) (k)
WSé + W6M S6 ae , (5.34b)
'while the elements of the 2x2 matrix ag(k) are:
a (k) _ 1 (k) (k) a_(k) _ 4 (k) (k)

81 = Qg Oy o By =~ (Qg + Q) »

(5.35)

A simplified flow diagram for computing the unknown solution

for this case is shown in Figure 5.5.

Case (ii): v(0,t) and 6(0,t) prescribed:

Starting values for the iterative process:

Values of gséo), ?320)’ Zéo), and Péo) are computed from the
(0) (0)

same equations given for case (i). However, the values of On and Ay

are given by:
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( START )
)

ITERATION COUNT, N=0
Y

(0) ‘u(0)
COMPUTE ESS AND 9084

Y

(0} (0)
COMPUTE ZM AND PM

+ }
(0) (0)
COMPUTE VM AND a\

Y

(1) (1)
COMPUTE ZM AND PM

!

COMPUTE o(g) AND 0(8)

v :
(0) q(1) - 4(0) (1)
SOLVE ag ‘-J,SM oz FOR OL

Y
» Nz=N+| |
¥

(N) (N)
COMPUTE 9'36 AND 984

)
COMPUTE z‘,’j*” AND P(N"“') , Y

A {’
COMPUTE a(qN) AND o)

- ~

Y

‘ N) G(N+1) 5 o(N N+
SOLVE a‘g? afu; ) o(!) FOR °(Lr;)

YES

Figure 5.5 Simplified flow diagram of the procedure for
computing the solution at boundary grid points
using the numerical method of characteristics
with o(0,t) and 6(0,t) prescribed.
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L0 8, 3.6 1
M A QSé{ A + AS6At + Ws6M~— WS6VM}
4 4 3 1 .
- Ap wS6{ 3y g4t AS4At + 7Qg, 0, - QS4VM} s (?.36a)
0y _, 2. 7 8 3 1
dy = = Ay Qgul Agg + TAght + THg By — TWg vy}
2 4 3 1 )
Ag S6{ Agy + “hg,At + Qg 8, = “Qg, vy}, (5.36b)
where
A, = {2, %, - %, % }—l ,, (5.37)
T s6 %54 = Qg4 Yge! - :
Iterative equations:
Values of Usék+1), gsik+l), Zék+l), and Pék+l) are computed from the
same equations given for case (i). However the values of Gék+1) and
§F+l) are determined from the equation:
k k+1 k
by b (k) _ b (0 (5. 38)
where
k+1 b
et
bkl L }. (5.39)
(k+1)
Gy
- J

b (k)

The two components of vector "w are given by:
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= (3n(k) (k) 1. (k) (k)

1. (k) (k). (k) 2_(k) (k) (k) 3.(k) (k)| (k)
+ Qg + Qpy)vg,” + (TQg” + Q" )0g,” = (CQg,” + Q) 0,

- ol + oiNal? + 1 + @ + o ¥ + gy

7

+ 6Q34 T Qe ~ Qg — Qi s | (5.40a)

,3..(k) (k) 1.(k) (k) 1 (k) (k)
bwz(k) = (Wgg" + Wgy )eMv - (g™ + Wy dvy + CWge” + Wiy v,

(k) 3, (k) (k) 4 (k) (k) (k)
s6 = (Wgg" T Way')8ge = (Wgg” + W,p")age

D

+ {(st)ss + (WSf)M + (w8q)S6 + (qu)M

6 7

+ W W = W, - W7M}At , (5.40Db)
b (k)
while the elements of the 2x2 matrix g are:
b (k) _ 2 (k) (k) b (k) _ 4 (k) (k)
811 T Qs Uy o 81y =~ (Qg + Q) »
b (k 2. (k k b (k 4 (k k

The simplified flow diagram corresponding to case (ii) is given in

Figure 5.6.
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ITERATION COUNT, N=0O

Y

(0) A (0)
compuTe Yl AND YOl

Y

(0) (0)
COMPUTE ZM AND PM

Y
(0) (0)
coMPUTE o{®) AND qi0

Y

) (1
compute z{)) anp P

v

comMpuTE b{% anD b (D

+ d

0) p(1) . plo !
SOLVE b(g) b(L)M - b0 FOR bl )M

‘ ~ ~

> N=N+l |
v
(N) (N)
coMPUTE UM} anp yil) .
Y
COMPUTE z(,&'*‘) AND P {N*D)
+ - 7

compuTE b anp b ()

y

SOLVE b‘é“) bfLN';l) = b(N) FOR p(N+I)

~e ~e

Figure 5.6

YES
(__END )

Simplified flow diagram of the procedure for
computing the solution at boundary grid points
using the numerical method of characteristics
with v(0,t) and 6(0,t) prescribed.
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5.2,3 Remarks on the Propertieé of the Scheme

Finite difference approximations of partial differential
equations are usually required to satisfy conditions of consistency,
stability, and convergence. Consistency has to do with assurance that,
as the finite difference mesh is refined, the truncation errors approach
zero. This condition ensures that the scheme does in fact approximate
the given problem rather' thén some other problem. Computational
stability calls for the boundedness of all perturbations in a computed
solution. Convergence requires the solution of the finite difference
equations to approach the true solution of the partial differential
equation as the mesh is refined. Stability and coﬁsistency of a scheme
usually guarantee ité convergence.

No rigorous analyses of the above properties are available for
nonlinear problems. For schemes based on the method of characteristics
however, it has been shown [5.8] that stability is assured when the
domain of dependence of any point as given by the finite difference
equation is not less than the exact domain of dependence of the
differential equation. Mathematically, tﬁe requirement is expressed as

AX

max A(i)(UP)

The condition (5.42) is commonly referred to as the CFL condition and
the CFL number, Cv’ is defined as

At

X (5.43)

C. = max

(1)
Y A (gP)

Note that maxIA(l)(qP)l denotes the numerically greatest eigenvalue of

the matrix A(U) computed at point P.
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5.3 Application of the MacCormack Finite Difference Scheme

5.3.1 Treatment of Interior Gfid Points

The MacCormack finite difference scheme was originally
developed by MacCormack [5.7] for the solution of the time-dependent’
compressible Navier~stokes equations and applied to calculate the
axisymmetric flow field produced by hypérvelocity impact. It was
subsequently applied in a modified form for the solution of the
interaction of a shock wave with a laminar boundary layer by the same
author [5.9]. \

The vector form of the time-dependent Navier-stokes equationms,
in two dimensions, neglecting body forces and heat sources may be

written as

R (5.44)

Tl
+
e
+
S5
I
o

where

U = e s (5.45a)
- -

pu

pu2 + Gx :

F = < > s (5.45b)

~ puv + T -
. Xy

oT
(e + qx)u + Tyxv + k ET

. o/
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. A
oV
‘ puv + Tyx
9 = { 2 > ’ (5.45(2)
pv_ + 0O
y
3T
e + g0 + + k —
( PV Tyt 3y
\N </
= p - (8, 3vy , du
o, =P A(ax + ay) 2u 5% (5.454d)
- = _ydu v
TXY = Tyx = u(ay + ) (5.45e)
- - 3_11 - 3V
cy =p A(ax ) 2u — 3y (5.45f)

where p is the density, u and v the x and y components of velocity; A
and p are the viscosity coefficients, e is the total energy per unit
volume, e* is the specific internal energy, k is the coefficient of heat
conductivity, and T is the temperature. The pressure p is related to e*

and p. by the equation of state:

-e_1 2
e =2 -0+ . (5.46)

The two~step second-order accurate method devised by

MacCormack to solve equation (5.44) is as follows:

+1 n

n - _ i _ At n _ o
Y, 7 Y,5 Ax(Fi+l,J i, 3y Cq, 541 ~ Gi,9) o (5.47a)
Un+l _ l{Un + Un+ _ AE( n+1 n+1 ) AE(Gn+1 n+1 Y},  (5.47b)

21,3 2Vli, 0 Jili BMx 1,3 T oLi=1,37 T Ay ii,i T liLi-l
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where

S . ,
Ay E f(Ui’j) s (5.47¢)
¢ =ze@® ) . (5.47d)

~i,j ~ 1,j

The subscripts in equations (5.47) refer to a spatial mesh of
points (Xi’ yj) with spacing Ax and Ay{ and the superscripts refer tos
times t = nAt where At is the time increment that the solution is
advanced during each cycle of equations (5:47). Equation (5.47a) is
referred to as the predictor step and equation (5.47b) is known as the
;orrector step. Whereas the predictor step uses forward differences to
approximate the spatial derivatives, the corrector step employs backward
differences.

Applications of Ehe MacCormack scheme to problems in fluid
dynamicé are numerous while there has only been a few solid mechanics -
applications. The first concrete application in solids was by Hanagud
and Abhyankar [5.10] who studied the finite deformation coupled
torsional and longitudinal wave propagation problems iﬁ cylindrical rods
made of neo-Hookean materials.

Despite its popularity in the solution of nonlinear systems of
hyperbolic partial differential equations, éhe scheme has been

predominantly applied to systems of the form:

oy oy _
o + é(y) Frel 0, (5.48)

in which the so-called source terms are conspicuously absent. Lorimer
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{5.11] and Haddow et al., [5.12] have presented a modified form of the
MacCormack scheme suitable Eor.the numerical solution of equationé of
the form:

gu + A(g) LA B(U) (5.49)

which is the type of problem being considered in this thesis. In those
references the modifications were applied to the solution of elasto-
dynamic problems for hyperelastic ‘and viscoelastic solids.

The modifications given in references [5.11] and [5.12] are as
follows. First, for the conservative form of systems of hyperbolic

partial differential equations which are expressible as:

R SRR IO (5.50)

the modification is given as: ~

W _ oa o oa
gj = ~j {Q(UJ+1) g(gj)} Atg(gj> (5.51a)
;}*1 - —{U + UJ [Q(Un+1) - Q(Un+l)] AtB(Un+1)} . (5.51b)

In the above, equation (5.5la) is the predictor step while equation
(5.51b) is the corrector step. This veréion of the MacCormack scheme is
usually referred to as the forward backward (FB) scheme because the
predictor step uses forward spatial differencing while the corrector
step utilizes backward spatial differencing. For nonconservative

systems of equations, that is, equations of the form (5.49), the
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modified scheme is given by:

n+1 n At n n n n
U, = U, - —[A(U. U, - U.] - AtB(U)) , 5.52a
U = UY - gElaUDIUL,) - UN - acB ) (5.52a)

= Leg? 4 o2t
2.3 &3

n+1
~]

n+1 n+l n+l

n+l . ’
)][gj - gj_l]‘- Atg(gj >} . (5.52b)

*

At
- xaU

Equation (5.52a) is the predictor step and equation (5.52b) is the

corrector step. Note that in equations (5.51) and (5.52),

U? = U(jAX , nAt) . (5.53)

The system of equations under study in the present work may be

put into the semi-conservative form: -

*
3y 9F *
5 Tax B =05 (3.54)
where
P ov I
€
vt = v +(6 + T )n + L pv2 (5.55a)
: 1 PNt g vy 55
Toq
. P,



134,

Fe o (-vE b, ~ (5.55b)

and

B = < > , (5.55c)

In equation (5.54), the @ependent variables are the components of g*.
Although this equation is of a divergence form, it is not possible to
expfess the vector fuﬁction ¥ as an explicit function of g*. The same
is also true of the vector function §*. -Thus, equation (5.54) is not
strongly conservative and for the purposes of the discussion here is
referred to as semi-conservative.

It is possible 1in principle to seek the application of thé
conservative version of the scheme to (5.54). In such a procedure, the
primary dependent variables of physical interest, that is, y (defined
earlier) will have to be computed at each grid point from a knowledge of
U*. However, because of the highly nonlinear forms of the expressions
for ¢ and n, iterative processes must be applied. Since it ié well

known that good convergence .properties of iterative procedures usually
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depend on reasonable choices of initial values, which in this complex
case is difficult to espimate, the procedure is iﬁfeasible. Therefore,
in this study, the nonconservative version, equations (5.52) is directly
applied,

A typical interior grid point is as shown in Figure 5.7.

A common practice in the numerical solution of hyperbolic
éartial differential equations is the addition of artificial viscosity.
This practice, referred to as shock capturing, is aimed at the
attenuation of the high frequency components of the numerical éolution
as the computation progresses, It was first applied by von Neumann and
Richtmyer [5.13] for the numerical solution of hydrodynamic problems.
Another type of an easy-to-use third-order artificial viscosity was

proposed by Lapidus [5.15] in the form:

#n+l _ . nt+l ) ¢ 0tl .ot potl
gj = gj + ocCav3 AT[1A Uj+l 1 A gj+l] s (5.56a)
where the finite difference operator A' is defined as:
AY UT = U - U 5.56b
~J ~J ~J_]- ’ ( )
and Cav3 is an.adjustable constant. In equatioms (5.56) U?+l are the

Lk
quantities calculated from the usual MacCormack scheme and U,n+l are the

new values obtained after the additionm of artificial viscosity. Hanagud
and Abhyankar [5.10] also recommended the addition of artificial
viscosity terms of the forms:

@™t o gty U?+i) , (5.57a)

32 N Cav2 ~jtl - ~J ~j=
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Figure 5.7 Illustration of a typical interior grid point ®)
' in the MacCormack scheme.
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for second order viscosity or

_ nt+l . n+l n+l n+l n+l
9 = CapgUgug = Wyyp T 605 7 - 40 ) + T, 5) (5.57b)

for a fourth order viscosity. The parameters Cav2 and cav4 are also
adjustable artificial viscosity constants.

The major attributes of artificial viscosity terms are the
preservation of the high order of accuracy of the solution and removal
of nonlinear instabilities which may appear in shock regions and near
boundaries., The results of numerical experimentaions on thé present
problem show that the addition of artificial viscosity terms are
unnecessary. This is not surpriéing because the physical process under
study is dissipative in itself so that physical damping is already
present.

It may be seen from the above that the MacCormack scheme (with
or without artificial viscosity) is an explicit scheme and is very ﬁucﬁ
simpler to apply than the method of characteristics presented in the

last section.

5.3.2 Treatment of Boundary Grid Points -

‘The procedure for determininé the extraneous boundary
conditions is described in what follows.

Gottlieb and Turkel {[5.15] considered various types of
boundary procedures for the MacCormack finite difference scheme, Their
study recommended the reversal of the difference operator at a boundary
so that ‘either forward forward (FF) or backward backward- (BB)
differences are employed at boundary grid points. On a left boundary

(corresponding to X = 0), it was recommended that FF differences be
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utilized. Again, implementation of this recommendation was effected in
references [5.11] and [5.12]. Thus, for a typical boundary point M
shown in Figure 5.8, the modified schemes are given below.

For the conservative scheme:

ntl _ .n At n n n ;

Yo = Y~ x0T - QUYT - AtB(U) (5.58a)
ntl _1l.m ntl At n+l, _ n+1 _ n+1 (5.58b)
U =30+ T 332U ) - QWG DT - AeBU, )

For the nonconservative scheme:

ntl . n At n n _ .n, n

Yo = = Yo ~ mxlaWUp Iy - Uyl - AeBWUY (5.592)
ntl 1, n n+l At n+l n+l n+l n+l
U =3+ U " - AU DI - U Tl - MBI (5.5%b)

Of course, equations (5.59) are applied to the problem under study for
reasons that have been discussed earlier. |
Just as for most numerical schemes, no rigorous stability
criteria of the present scheme have been established for nonlinear
problems. However, it is known from linear stability analysis that the
MacCormack finite difference scheme is stable if:
c.s1. (5.60)
In this‘ computations, it was found that this i1s also a necessary

condition for numerical stability.
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‘CHAPTER 6

NUMERICAL SIMULATIONS

6.1 Introduction

The numerical simulations of the propagation of coupled
thermomechanical waves 1in inelastic solids are presented in this
chapter. Responses of initially quiescent semi-infinite aluminum and
copper rods are considered under various kinds of time-dependent inputs.

Two computer programs corresponding to each of the
computational algorithms presented in the last chapter are employed.
The computer programs‘are coded in the FORTRAN 77 language and were
implemented on the CDC Cyber 205 supercomputer for'faster computations,
The programs were wriften in a modular form for good computational
efficiency and flexibility. Each of the programs has two major
subroutines: one subroutine for computing solutions at boundafy grid
points and the other for interior grid points.

For the computer program based on the numerical method of-
characteristics, the subroutine for the boundary géid poings is coded in
line with the simplified flow diagram given in Figure 5.5 or Figure 5.6,
depending on whether {oc(0,t), 6(0,t)} is prescribe& or {v(O,E), 8(0,t)}
is prescribed. The subroutine for the interior grid points is coded in
line with the simplified flow diagram given in Figure 5.3.

For the computer program based on the MaéCormack finite
difference scheme, the interior boint routine is coded in accordance
with equations (5.52) while the boundary point routine is coded in
accordance with equations (5.59). |

The two main programs are essentially identical. The skeletal
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Figure 6.1 Simplified flow diagram of the main computer programs.
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flow diagram for the main programs is as shown in Figure 6.i. The
boundary point routines are referred to as ﬁGPSl for {o(0,t), 6(0,;)}
prescribed and BGPS2 for {v(0,t), 6(0,t)} prescribéd while the interior
boint routines are referred to as IGPS. Although the main programs
control the computations, most of the computations'are carried out in

the subroutines IGPS and BGPS1l or BGPS2,

6.2 Numerical Examples

Three kinds of time-~dependent inputs applied to the ends of
the rods are considered.
(1) Step input
The unit step function H(t) is defined as
| 0, £ <0

H(t) = (6.1)
) 1, £ > 0.

It describes a suddenly applied and maintained impact such as the

following:

Stress impact: o(0,t) = GOH(t) s L (6.2a)
Velocityrimpact: v(0,t) = VOH(t) s (6.2b)
Temperature impact: 8(0,t) = OOH(t) . ‘ (6.2¢)

This type of input corresponds to physical shock waves as the
discontinuity in the boundary conditions propagate through the medium.

(ii) Pulsive sine input

The pulsive sine function is defined as

A
gla gl=

" sin wt , t

SP(t) = s (6-3)

o

-

ot
v

where w is a constant. Thus, pulsive-sine inputs in stress, velocity,
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‘and temperature are of the form:

o(0,t) = cOSP(t) s (6.4a)
v(0,t) = VOSP(t) s (6.4b)
8(0,t) = 8,8, (t) . ” (6.4c)

The pulsive-~sine. input propagates as an acceleration wave since it gives
discontinuous derivatives of the dependent variables.

(iii) Terminated ramp input

The terminated ramp function is defined as

-
t
A
r

L
. to .
Rp(e) = ' ) (6.5)
1, t >t *

where tO is a given time, chosen as w/w din this work. Therefore,

terminated ramp inputs for stress, velocity and, temperature are of the

form:
o(0,t) = OORT(t) s (6.6a)
v(0,t) = VORT(t) s (6.6b)
08(0,t) = GORT(t) . (6.6¢)

Again, the terminated-ramp input propagates as an acceleration’ wave
since it gives discontinuous derivatives of the dependent variables.
The material properties used in the numerical simulations are

given in Tables 6.1 and 6.2. The inelastic material constants KA’ m,

A? ZO’ n, and o, pertain to the evolution equations for the

Bodner-Partom model [6.1].

z

The numerical results are given in Figures 6.2a - 6.19e. For
convenient graphical illustrations, the following dimensionalization
scheme for the time and position have been employed. The nondimensional

time, E, is defined as
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Thermoelastic material constants
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for aluminum and copper.

Material Constant Aluminum Coppef
-2

v, (%) 1.02 E 11 2.02 E 11
Yz(Nm“ZK'l) 4.81 E 06 3.62 E 07
¢, kg 'k 900. 42 382.67
C,(J kg 'K 0.46 0.10

v 0.33 0.34

-2.-1
B (MK 4.72 E 06 6.94 E 06
(v 1K) 238.0 398.53
al(K"l) 2.32 E 05 1.68 E -05
aZ(K‘Z) 7.0 E -09 7.53 E 09
o(kg m ) 2.70 E 03 8.94 E 03

Y, oC
N
t = (p ) T t, (6.73)
while the nondimensional distance, X, is defined as
L
_ Y, % o
N (6.7b)

where XDF is a constant that varies from one plot to the other. For

simplicity the 'bar' on X and t is omitted in the plots so that,

henceforth, X and t refer to nondimensional position and nondimensional

time respectively.

For simplicity the semi-infinite aluminum rod is

referred.;o as SIAR while the semi-infinite copper rod is called SICOR.
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Table 6.2 Thermoinelastic material constants for aluminum and copper.

Material Constant Aluminum Copper
2 -1
K @?N 1) 2.39 E -10 6.12 E -11
K, 0.0 0.0
A 48.89 - 24.75
A 1 2.30 E =03 4.43 E =03
B ~1.25 ~2.88
Beo (Nm~2) 1.24 E 09 2.18 E 09
n (@ D) 6.0 E =07 4.0 E 07
Z, (%) 1.50 E 08 2.37 E 08
Zy (Nm~2) 2.50 E 07 3.10 E 07
n 5.0 9.2
o 1.0 1.0
AL (m™2) 3.14 E 07 8.93 E 07

The results presented ' in Figures 6.2a~6.19¢ cover the

responses of semi-infinite aluminum and copper rods for all the three

time-dependent inputs given above.

are given in the titles of the figures.

The input and computation parameters

It should be noted that the

values of the time step (At) and thermal relaxation time (TO) given in

the figures are nondimensional quantities which are related to- their

corresponding dimensional values through equation (6.7a).
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At = 0.387, XDF = 0.0158).
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Figure 6.8a Velocity and stress response of SIAR to terminated-ramp
stress and temperature inputs (00 205 MPa, 60 = 5K,
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Figure 6.15a Velocity and stress response of SICOR to pulsive-sine stress
and temperature inputs (o, = 205 MPa, 60 = 5K,

DO = 1.0 E 03, XDF = 0.24?, At = 0.1942, w = 2.61 E 10).
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Temperature and heat flux response of SICOR to pulsive-sine
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Figure 6.17a Velocity and stress response of SICOR to stress and

s témperature step inputs for a very high leading wave
velocity (00 = 205 MPa, 60 =5K,D. =1.0E 04,

Ty = 0.074, XDF = 10.743, At = 0.00994).
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response of SIAR to-velocity only step input in the -1
absence of second-sound and heat-flow effects (v0 = —200ms ~,
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199.

— Stored Energy Included

-~~~ Stored Energy Neglected
3500

3000

2500

an

=

N’

© 1500
1000

500

Figure 6.19b The effect of irrecoverable energy storage on the stress
response of SIAR to velocity only step input in the
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6.3 Discussion of Results

All results involving the propagation of shock waves, for
example Figure 6.2a, show the excellen£ shock resolution profiles of the
numerical method of characteristics whereas there are evidences of shock
smearing din the MacCormack finite difference scheme due to the
phenomenon of numerical dispersion. Application of available shock
capturing schemes such as the ones discussed in Chapter 5 did not
improve‘the shock resolution capabilities of the MacCormack scheme. The
author believes that this is due to the fact that the problems studied
in this work are inherently dissipative thus not being able to benefit
from additional dissipation introduced as artificial viscosity via
conventional shock—~capturing schemes., The observed numerical
dispersions were most pronounced for velocity and stress responses but
the responses of the temperature, heat £lux, strain hardening, and
plastic strain are better as can be seen in Figures 6.2b, 6.2c3 6.5a,
and 6.5c, for example.

For the cases involving acceleration waves -~ that is respomnses
to pulsive sine and terminated ramp inputs, there are excellent
agreements between the characteristic and MacCormack algorithms for all
variables. This can be easily seen from Figures 6.7a~c and 6.8a-c for
alﬁminum, and Figures 6.15a-c and 6.l6a~c for copper. Therefore, the
MacCormack scheme is recommended for applications involving continuous
inputs since algorithms based on this scheme are far easier to design
and'considerably cheaper to implement.

The initial heat flux responses are usually very high but die
down and attain steady-state values after longer time periods as can be

seen in Fiures 6.2b and 6.10b. It can also be seen that for suddenly

’
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imposed velocity or stress impacts, the heat flux magnitudes are
greatest at the impacted ends for all times. These two observations
show that in short-time response studieé, non-adiabatic analyses are
required especially at or near points of applications of impacts., The
heat flux responses to mechanical-only inputs are very localized as can
be seen in Figures 6.4b, 6.6b, 6.11b, and 6.14b.

As expected, for identical input éonditions, the heat flux
response levels of copper are generally higher than those of aluminum
because copper haé a higher coefficient of thermal conductivity -
compare, for example, Figure 6.2b and Figure 6.10b, or Figure 6.7b and
Figure 6.15b,

It is interesting to note that thé terminatéd ramp input .gives
) linear responses of velocity and stress but nonlinear responses in
temperature, heat flux, and even strain hardening. Figures 6.8a-c and
Figures 6.l6a-c illustrate this observation.

For very small values of the thermal relaxation time, the
ju@ps in temperature and heat flux are more pronounced. Wheréas, no

jumps in 6 or q can be noticed in Figures 6.2b and 6.10b for a T, of 3.8

0

E 10_12 s, appreciable jumps in 6 and q for Ty = 3.8 E 10_'13 s can be
observed for identical impact conditions in Figures 6.9b and 6.17b. It
is also significant that the jumps in the thermal deformation variables
are most pronounced at times that are shorter than or of the same order
as the thermal relaxation time.

Evidence of the ability of the constitutive model developed in
this work to simulate thermomechanical coupling effects is given by the

results displayed in Figures 6.4b, 6.6b, 6.11b, 6.12a, and 6.14b. These

results illustrate that stress dimpacts or velocity dimpacts would
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generate thermal fields and that a temperature impact would give rise to
velocity and stress fields. In particular, there is evidence of
temperature rise due to conversion of inelastic mechanical work to heat
energy which are most pronounced neér the impacted ends where tﬁe
plastic strains, of course, attain their maximum values: This also
shows that the law of conservation of energy is capable of predicting
temperature rises in inelastic deformation processes.

Figures 6.18a-e and 6.19a-e illustrate the influence of the
stored energy of cola work on the various respomses. First, it may be
observed that neglecéing the - irrecoverably stored energy slightly
overestimates the responses of the mechanical deformation variables: v,
0, Z, P. The overestimation becoﬁes more pronounced as time increases
as can be seen in Figures 6.18a and 6.19a, for example. Thus, it is
believed that appreciable overestimation of these variables would be
observed for very large times. Figures 6.18c and 6.19c clearly show
that neglecting the stored enefgy of cold work leads to appreciable
overestimation of the temperature rise in‘ the material. This is
consistent with physical expectations since neglecting the stored energy
is equivalent to assuming that all the plastic mechanical work is
converted into heat energy. It was also found that neglecting the
stored energy of cold work overestimates the wave speeds as illustrated
in Tables 6.3a and 6.3b.

Although for mnonlinear prdblgms, the- shock waves do not
necessarily propagate along the characteristic curves, it was found in
this work that the shock waves appear to propagate along the
characteristic directions. This is because the velocities’of the shock

waves (VG and VL) " computed from the Rankine-Hugoniot conditions,
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Table 6.3a Effect of stored energy of cold work on the initial wave
velocities in an aluminum rod for different values of the
thermal relaxation time.

Thermal Lagging wavglvelocity; Leading wave_Yelocity,

Vs(ms ) V3 (ms 7)
relaxation

time, To(s) | Stored Stored Stored Stored

~ energy. energy energy energy
included neglected included neglected

3.8 E ~-13 6147.87 6139. 44 11627.10 16086.90

3.8 E -12 3369.39 4902,60 6153.66 6370.49

2,0 E -11 1468.71 2179.97 6153.57 6244,91

1.0 E -10 656.827 976.37 6153.55 6235.55

Table 6.3b Effect of stored energy of cold work on the initial wave
velocities in a copper rod for different values of the
thermal relaxation time. '

Thermal Lagging wavglvelocity, Leading wave_Yelocity,

V.(ms ) Vv, (ms )
X 5 3
relaxation
time, To(s) Stored Stored ‘Stored Stored
energy energy energy energy |.
included neglected included neglected

3.8 E -13 4756.13 4752.28 14296.40 17523.,10

3.8 E ~12 4520,33 4640.33 4756.75 5674.99

2,0 E -11 1983.85 2381.27 4758.21 4820.39

1.0 E -10 881,278 1067.92 4756.19 4806.91 |




Table 6.4a  Comparison of the initial velocities of the shock waves calculated from the Jump
conditions and the wave velocities computed from the numerical algorithms for an
aluminum rod when the stored energy is neglected.

Lagging wave velocity Leading wave velocity Uncoupled wave velocities
(ms—l) (ms—l) (ms_l)

Thermal

relaxation

time, To(s) Purely Purely

mechanical, thermal,
Ve Vs K3 V3 Vi Ve

3.8 E ~-13 6140.28 6139.44 16021.80 16086.90 6153.29 16050.60

3.8 E -12 4876.95 4902.60 6343.20 6370.49 6153.29 5075.66

2.0 E -11 2168.71 2179.97 6236,40 6244.91 6153.29 | 2212.43

1.0 E ~-10 975.11 976.37 6235.63 6235.55 6153.29 989.43

*L0T



Comparison of the initial velocities of the shock waves calculated from the jump

Table 6.4b
" conditions and the wave velocities computed from the numerical algorithms for a copper
rod when the stored energy is neglected.
Lagging wave velocity Leading wave velocity Uncoupled wave velocities
(ms_l) (ms (ﬁs—l)
Thermal
relaxation
time, To(s) Purely Purely
mechanical, thermal,
Ve Vs v, V3 i Vo
3.8 E ~13 4752.42 4752.28 17449.80 17523.10 4756.13 17508.90
3.8 E -12 4640.16 4640,33 5662,26 5674.99 4756.13 5536.81
2,0 E -11 2369.90 2381.27 4815.81 4820,.39 - 4756.13 2413,44
1.0 E ~-10 1062.88 1067.92 4803.63 4806.91 4756.13 1079.32

*80¢
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equations (4.46), and the valﬁes of the characteristic speeds (V5 and
V3) are almost identical as illustrated ianébles 6.4a and 6.4b. All
wave velocities are computed at the origin of the salution domain. The
tables also show that the two wave velocities differ from the wave
velocities corresponding to the purely mechanical (VM) or purely thermal
(VT) theories.

Some wiggles are noticed in the strain hardening responses.
These are slightly noticeable in Figures 6.2c and 6.10c for example, but
are more seriously pronounced in Figures 6.7c and 6.8c. These are
believed to be.due to numerical problems associated with the stiffness
of the evolution equatioms. _

It was found by numerical experimentations that for both
algorithms, the CFL criterion was necéssary but insufficient for
stability, The time step was found to be sensitive to the values of the
thermal relaxétion time, TO’ and Fhe parameter Do(snl) which essentialiy
rdetermines the magnitude of the plastic strain rate. It was observed

that a time step smaller than T, was required for. the numerical

0

stability of each of the computational algorithms. This requirement
considerably limited the computations reported to relatively short time

response studies since a very small time step demands a very large

number of computations in order to proceed far in time.
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CHAPTER 7

CONCLUSIONS

Novel thermodynamically-consistent constitutive equations for
the study of the propagation of inelastic waves are developed in this
thesis. Essential features of dissipative effects such as heat
generation, heat flow, thermomechanical coupling, and irrecoverable
inelastic energy storage are incorporated in the model. Also included
in the development are rate dependence and isotropic hardening. The
approach consists of a systematic application of the theory of continuum
thermodynamics with internal state variables, the results of materials
science and mechanics experiments, and mathematical analysis. It 1is
clearly dillustrated by examples that an explicit, yet physically
motivated, quantification of the dirrecoverable po;tion of the free
energy functional is feasible. A general framework under which the
procedure may be globally employed for the characterization of the
thermomechanical behavior of inelastic solids is given,

The nonlinear material model presented allows for the coupling
of thermoelastic and thermoinelastic variables and automatically gives
the dissipative part of the stress thereby eliminating the.need for a
separate dissipation potential., The model is also applicable over a
wide range of temperatures since no assumption is made concerning the
relative magnitudes of the incremental and reference temperatures.

The - following main conclusions may be drawn from the
development of the- constitutive equations and the ﬁesign and

implementation of the computational algorithms.

(1) The law of conservation of energy can adequately deal with the
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(v)

(vi)

(vii)
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issue of balance of work and emergy even in the presence of
dissipative effects. Thus, there is no need for ad hoc
assumptions that se?ve to ﬁre-empt the application of this
fundamental principle of continuum mechanics.

It is unneceésary to resort to ab initio quantitative guesses
concerning the interconversion of mechanical work into heat
energy. This issue autoﬁatically takes care of itself in a
systematic application of the law of conservation .of energy
together with physically-motivated constitutive laws that
account for the stored energy of cold work.

In a plastically deforming material, the ratio of the energy
irrecoverably stored to the energy converteq into heat is not
a constant but a variable that depends on the thermodynamic
state of the deformation process.

Neglecting the stored energy of cold work in inelastic
analysis slightly overestimates the stress and velocity
responses but leads to an appreciable overestimation offfhe
temperature rise in the body.

Incorporation of thé stored energy of cold work phenomenon
decreases the wave speeds thus confirming the jdissipatiVe
nature of the process of irrecoverable energy storage.

There exist two coupled nonlinear thermomechanical waves
propagating with distinct velocitigs iﬁ the positive X
direction; the wave velocities are different from the purely
mechanical or éurely thermal wave velocities.

The thermoinelastic waves propagate at the thermoelastic wave

speeds in the absence of second sound effects. This is
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consistent with earlier experimental findings Aiscussed in the
text.,

The algorithm based on the numerical ﬁethod of characteristics
is more complicated and involves much larger computation times
than the algorithm based on the MacCormack finite difference
scheme. However, the numerical method of characteristics

gives sharper resolutions of the shock profiles.

The algorithm based on the MacCormack finite difference scheme

is recommended for numerical simulations of acceleration waves
or other time~dependent inputs that are continuous with
respect to the primary dependent variables. This
recommendation is based on the observation that the MacCormack
scheme gives very accurate results with negligible numerical
dispersion for smooth inputs while it is easier to design and
cheaper to implement.

For both computational algorithms, the CFL stability criterion
is nécessary but insufficient for stability. The time step
required for stability is sensitive to the -smallest
;haracteristic time of the physical process. For the problems

considered in this thesis, in particular, the time step was

found to be sensitive to the thermal relaxation time and the

magnitude of the plastic strain rate.

Heat flux responses attain gteady—state values after
sufficiently large times but are significant for short time
response studies of fast dynamical systems.

As far as the author knows, no elaborate quantitative analysis

inelastic wave propagation that encompasses non-isothermal,
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non-adiabatic, and coupled effects, and that involves so many dependent
variables as was done in this work has been reported in the literature.
It is hoped that the results and conclusions given above will provide
ﬁurther insight into the'methodology of inelastic constitutive modelling
in general and the theory of inelastic wave propagation in:particular.
It is also expected that the work will be exploited for improving the
design of plastic wave experiments and the proper ihterpretation of

experimental data especially in the presence of high strain rates.

7.1 Recommendations for Further Work

Further work is needed in the experimental determination of
the stored energy of cold work for a wider variety of loading conditions
and for more metals and metallic alloys. This 'will allow the
application of the procedure developed in this work to multidimensional
stress states and to the characterization of other materials.

Inclusion of more internal state variables such as directional
or kinematic hardening will be desirable for situations involving finite
geémetries so that loading and unloading phenomena caused by wave
reflections may be accurately modelled.

As discussed in Chapter 4, conventional forms of evolution
equations for internal state variables lead to vanishing jumps of the
internal state variables. 1In the light of the fact that this is not
generally consistent with the physical behavior of inelasfic deformation
processes, it 1is recommended that seripus considerations be given the
development of evolution equations that include divergence terms,

Development of shock-capturing schemes that are more suitable

for nonconservative systems of equations would certainly improve the
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shock resolution capabilities‘ of the MacCormack finite difference
scheme,

It will be interesting to search for numerical algorithms that .
demand less stringent stability requirements so that computations can
proceed faster and further in time.

In summary, the author believes that any exploitation of
advances in the various branches of knowledge illustrated in Figure 1.1
will significantly contribute 'to progress in the study of wave

propagation in inelastic solids.
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APPENDIX

DETERMINATION OF THE MATERIAL PARAMETERS B4R and BSR

The detailed determination of the values of the quantites BAR

and B which are used as the auxiliary conditions for the solution of

5R
equations (3.30e) and (3.30f) is presented in this appendix.

Recall that the explicit representation for the stress is
given by
o =4 ~[3A(8) + 2u(®)Ja(®) 6 + [A(O) + 2u(O]E + B, ()2 + B, (OP. (Al)
Consider a‘piece ofrmaterial to be in the reference state R defined in

equation (3.8) as

P =P_;

2 =2,=127 R’

R = 1{E - % R~ ‘0’

8}, (A2)
Let the state R0 .be associated wi?h a reference undeformed
configuration in which the differential temperature (6) assumes a zero
value, that is,

Ro=1{E=0,2=2,,P=0, 6= 0} (A3)

This stress—-free configuration implies that at state RO’ the value of

the stress is zero, that is,

ol =o0. | ‘ (44)

Substituting (A3) and (A4) into- (Al) gives

A = 0. | ' (A5)

+
11 * Bar %o
Now, consider the same piece of material to be in another
stress—-free undeformed cdnfiguration in which the uniform differential

temperature is 8 = 1 K. This equilibrium configuration, Rl’ is defined

as
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Rl%{E=.0,z'=zO,P=o, 6=1K} (46)
In (A6), it sﬁould fe noted that the value of the strain hardening
parameter corresponding to state R1 remains essentially the same as the
value for state RO' This is pecause the strain hardening parameter is
insensitive to Véry small changes in temperature.

The expression for B4(e) may be recalled as

L= - T

B,(6) = Byp(l + %:; exp (1, 0) - (A7)

From equation (A7),~ the value of B4(e) at this latter reference
configuration (Rl) is
L=y - n%

B,(6)| =B, =Bl +71) exp(hy) > (48)

R1 R

orr
S, (A9a)

where

5= (1+4) e (). (A9b)

It should be noted that S is known because Al’ AZ’ and TR are known.

Since state R; is also stress-free, that is,

1

(o] = 0, (A10)

and there is no appreciable variation of the thermoelastic material
properties A(6), u(8), and o(6) for small increments of temperature,

satisfaction of the expression for stress at state R1 requires that:
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All —(BAR + ZuR)aR + 34120 = 0, (Alla)

‘or, on using equation (A9a) in equation (Alla),
All —(BAR + ZuR)aR + SB4R'Z0 = 0. (Allb)
Solving equations (A5) and (Allb) simultaneously gives the two

unknowns as

-1
1 - Al - AZTR
Ay, =(3h + 2m) (1~ exp(A) (L + —é—;) B B (V0
-1
1 - A = AT
1 2°R
GA *+ 2p) g | 1

Byp = ~[ Z ] - [l‘— exp(Az)(l + EE? ] . (al3)

Next, consider the approximate isothermal stress-strain curve
of a plastically deformed material to' be as shown in Figure Al below at

the reference temperature 6 = 0.

Figure Al Isothermal stress-strain curve at the
reference temperature.
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From equation (Al), it is easy to see that

o0

o = B5(9 (a14)
so that
2 = B, - (AL5)
L

Thus, from equation (Al5), it can be seen that B__ is the rate of change

5R
of the stress with the plastic strain at the reference temperature. It
follows that BSR is the slope of the isothermal stress-plastic strain

curve.,

Invoking the additive decomposition assumption of the total
strain into elastic and plastic parts and assuming that the
elastic deformation obeys Hooke's law, the stress-plastic strgin curve
can be constructed from the stress-total strain curve given in Figure Al
as follows. The stress-strain relation in the plastic region of Figure
-Al is giyen by

O=0_+ E € - E

Y T TeY’ (416)

where OY is the yield stress and SY is the corresponding strain. The

two assumptions above imply that .

€=E+ P, (A17)
g = YRE, (A18a)
and | OY = YREY. (A18b)
Substituting equations (Al7), (Al8a), and (Al8b) into (Al6) gives
Y E
o= g, + (?——§5%—)P. (A19)
R T

Equation (Al9) reveals that, approximately, the stress-plastic strain

curve is as shown in Figure A2,
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(T=TR)

oYy

Figure A2 Derived isothermal stress—-plastic strain
curve at the reference temperature.

Thus, it can be seen that the value of the constant B5 is approximately

R

determined as

Bep = o . (420)



